
EDITED BY : Sharon Crook, Andrew P. Davison, Robert Andrew McDougal

and Hans Ekkehard Plesser

PUBLISHED IN : Frontiers in Neuroinformatics

REPRODUCIBILITY AND RIGOUR IN
COMPUTATIONAL NEUROSCIENCE

https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://www.frontiersin.org/journals/neuroinformatics

Frontiers in Neuroinformatics 1 July 2020 | Reproducibility and Rigour in Computational Neuroscience

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88963-838-3

DOI 10.3389/978-2-88963-838-3

https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://www.frontiersin.org/journals/neuroinformatics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org

Frontiers in Neuroinformatics 2 July 2020 | Reproducibility and Rigour in Computational Neuroscience

REPRODUCIBILITY AND RIGOUR IN
COMPUTATIONAL NEUROSCIENCE

Topic Editors:
Sharon Crook, Arizona State University, United States
Andrew P. Davison, UMR9197 Institut des Neurosciences Paris Saclay (Neuro-PSI),
France
Robert Andrew McDougal, Yale University, United States
Hans Ekkehard Plesser, Norwegian University of Life Sciences, Norway

Citation: Crook, S., Davison, A. P., McDougal, R. A., Plesser, H. E., eds. (2020).
Reproducibility and Rigour in Computational Neuroscience.
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-838-3

https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://www.frontiersin.org/journals/neuroinformatics
http://doi.org/10.3389/978-2-88963-838-3

Frontiers in Neuroinformatics 3 July 2020 | Reproducibility and Rigour in Computational Neuroscience

05 Editorial: Reproducibility and Rigour in Computational Neuroscience

Sharon M. Crook, Andrew P. Davison, Robert A. McDougal and
Hans Ekkehard Plesser

08 Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into
Scientific Contributions

Fabien C. Y. Benureau and Nicolas P. Rougier

16 Reproducibility vs. Replicability: A Brief History of a Confused
Terminology

Hans E. Plesser

20 Credibility, Replicability, and Reproducibility in Simulation for
Biomedicine and Clinical Applications in Neuroscience

Lealem Mulugeta, Andrew Drach, Ahmet Erdemir, C. A. Hunt, Marc Horner,
Joy P. Ku, Jerry G. Myers Jr., Rajanikanth Vadigepalli and William W. Lytton

36 Challenges in Reproducibility, Replicability, and Comparability of
Computational Models and Tools for Neuronal and Glial Networks, Cells,
and Subcellular Structures

Tiina Manninen, Jugoslava Aćimović, Riikka Havela, Heidi Teppola and
Marja-Leena Linne

58 Toward Rigorous Parameterization of Underconstrained Neural Network
Models Through Interactive Visualization and Steering of Connectivity
Generation

Christian Nowke, Sandra Diaz-Pier, Benjamin Weyers, Bernd Hentschel,
Abigail Morrison, Torsten W. Kuhlen and Alexander Peyser

79 FindSim: A Framework for Integrating Neuronal Data and Signaling
Models

Nisha A. Viswan, Gubbi Vani HarshaRani, Melanie I. Stefan and Upinder S. Bhalla

93 Using NEURON for Reaction-Diffusion Modeling of Extracellular
Dynamics

Adam J. H. Newton, Robert A. McDougal, Michael L. Hines and
William W. Lytton

107 Parameter Optimization Using Covariance Matrix
Adaptation—Evolutionary Strategy (CMA-ES), an Approach to Investigate
Differences in Channel Properties Between Neuron Subtypes

Zbigniew Jȩdrzejewski-Szmek, Karina P. Abrahao,
Joanna Jȩdrzejewska-Szmek, David M. Lovinger and Kim T. Blackwell

127 Reproducing Polychronization: A Guide to Maximizing the
Reproducibility of Spiking Network Models

Robin Pauli, Philipp Weidel, Susanne Kunkel and Abigail Morrison

148 Uncertainpy: A Python Toolbox for Uncertainty Quantification and
Sensitivity Analysis in Computational Neuroscience

Simen Tennøe, Geir Halnes and Gaute T. Einevoll

177 Intra- and Inter-Scanner Reliability of Voxel-Wise Whole-Brain Analytic
Metrics for Resting State fMRI

Na Zhao, Li-Xia Yuan, Xi-Ze Jia, Xu-Feng Zhou, Xin-Ping Deng,
Hong-Jian He, Jianhui Zhong, Jue Wang and Yu-Feng Zang

Table of Contents

https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://www.frontiersin.org/journals/neuroinformatics

Frontiers in Neuroinformatics 4 July 2020 | Reproducibility and Rigour in Computational Neuroscience

186 Code Generation in Computational Neuroscience: A Review of Tools and
Techniques

Inga Blundell, Romain Brette, Thomas A. Cleland, Thomas G. Close,
Daniel Coca, Andrew P. Davison, Sandra Diaz-Pier, Carlos Fernandez Musoles,
Padraig Gleeson, Dan F. M. Goodman, Michael Hines, Michael W. Hopkins,
Pramod Kumbhar, David R. Lester, Bóris Marin, Abigail Morrison, Eric Müller,
Thomas Nowotny, Alexander Peyser, Dimitri Plotnikov, Paul Richmond,
Andrew Rowley, Bernhard Rumpe, Marcel Stimberg, Alan B. Stokes,
Adam Tomkins, Guido Trensch, Marmaduke Woodman and
Jochen Martin Eppler

221 Rigorous Neural Network Simulations: A Model Substantiation
Methodology for Increasing the Correctness of Simulation Results in the
Absence of Experimental Validation Data

Guido Trensch, Robin Gutzen, Inga Blundell, Michael Denker and
Abigail Morrison

241 BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library
in Python

Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel,
Darpan T. Sanghavi, Hava T. Siegelmann and Robert Kozma

259 Reproducible Neural Network Simulations: Statistical Methods for Model
Validation on the Level of Network Activity Data

Robin Gutzen, Michael von Papen, Guido Trensch, Pietro Quaglio, Sonja Grün
and Michael Denker

https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://www.frontiersin.org/journals/neuroinformatics

EDITORIAL
published: 27 May 2020

doi: 10.3389/fninf.2020.00023

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2020 | Volume 14 | Article 23

Edited by:

Mike Hawrylycz,
Allen Institute for Brain Science,

United States

Reviewed by:

Daniel Krzysztof Wójcik,
Nencki Institute of Experimental

Biology (PAS), Poland
William W. Lytton,

SUNY Downstate Medical Center,
United States

*Correspondence:

Sharon M. Crook
sharon.crook@asu.edu

Received: 19 March 2020
Accepted: 23 April 2020
Published: 27 May 2020

Citation:

Crook SM, Davison AP, McDougal RA
and Plesser HE (2020) Editorial:

Reproducibility and Rigour in
Computational Neuroscience.

Front. Neuroinform. 14:23.
doi: 10.3389/fninf.2020.00023

Editorial: Reproducibility and Rigour
in Computational Neuroscience

Sharon M. Crook 1*, Andrew P. Davison 2, Robert A. McDougal 3 and

Hans Ekkehard Plesser 4,5

1 School of Mathematical and Statistical Sciences, School of Life Sciences, Arizona State University, Tempe, AZ,
United States, 2Department of Integrative and Computational Neuroscience, Paris-Saclay Institute of Neuroscience,
CNRS/Université Paris-Saclay, Gif-sur-Yvette, France, 3Department of Biostatistics and Center for Medical Informatics, Yale
University, New Haven, CT, United States, 4 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås,
Norway, 5 Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany

Keywords: reproducible research, model sharing, model validation, replicability, code generation, model

parameterization

Editorial on the Research Topic

Reproducibility and Rigour in Computational Neuroscience

1. INTRODUCTION

Independent verification of results is critical to scientific inquiry, where progress requires that
we determine whether conclusions were obtained using a rigorous process. We also must know
whether results are robust to small changes in conditions. Modern computational approaches
present unique challenges and opportunities for these requirements. As models and data
analysis routines become more complex, verification that is completely independent of the
original implementation may not be pragmatic, since re-implementation often requires significant
resources and time.Model complexity also increases the difficulty in sharing all details of themodel,
hindering transparency.

Discussions that aim to clarify issues around reproducibility often become confusing due to
the conflicting usage of terminology across different fields. In this Topic, Plesser provides an
overview of the usage of these terms. In previous work, Plesser and colleagues proposed specific
definitions for repeatability, replicability, and reproducibility (Crook et al., 2013) that are similar
to those adopted by the Association for Computing Machinery (2020). Here, Plesser advocates
for the lexicon proposed by Goodman et al. (2016), which separates methods reproducibility,
results reproducibility, and inferential reproducibility—making the focus explicit and avoiding
the ambiguity caused by the similar meanings of the words reproducibility, replicability, and
repeatability in everyday language. In the articles associated with this Topic, many authors use
the terminology introduced by Crook et al. (2013); however, in some cases, opposite meanings for
reproducibility and replicability are employed, although all authors carefully define what theymean
by these terms.

2. TOPIC OVERVIEW

Although true independent verification of computational results should be the goal when possible,
resources and tools that aim to promote the replication of results using the original code are
extremely valuable to the community. Platforms such as open source code sharing sites and model
databases (Birgiolas et al., 2015; McDougal et al., 2017; Gleeson et al., 2019) provide the means for
increasing the impact of models and other computational approaches through re-use and allow

5

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.00023
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.00023&domain=pdf&date_stamp=2020-05-27
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sharon.crook@asu.edu
https://doi.org/10.3389/fninf.2020.00023
https://www.frontiersin.org/articles/10.3389/fninf.2020.00023/full
http://loop.frontiersin.org/people/32935/overview
http://loop.frontiersin.org/people/937/overview
http://loop.frontiersin.org/people/88491/overview
http://loop.frontiersin.org/people/2833/overview
https://www.frontiersin.org/research-topics/5964/reproducibility-and-rigour-in-computational-neuroscience
https://doi.org/10.3389/fninf.2017.00076

Crook et al. Editorial: Reproducibility and Rigour in Computational Neuroscience

for further development and improvement. Simulator-
independent model descriptions provide a further step toward
reproducibility and transparency (Gleeson et al., 2010; Cope
et al., 2017; NineML Committee, 2020). Despite this progress,
best practices for verification of computational neuroscience
research are not well-established. Benureau and Rougier describe
characteristics that are critical for all scientific computer
programs, placing constraints on code that are often overlooked
in practice. Mulugeta et al. provide a more focused view, arguing
for a strong need for best practices to establish credibility and
impact when developing computational neuroscience models for
use in biomedicine and clinical applications, particularly in the
area of personalized medicine.

Increasing the impact of modeling across neuroscience
areas also requires better descriptions of model assumptions,
constraints, and validation. When model development is driven
by theoretical or conceptual constraints, modelers must carefully
describe the assumptions and the process for model development
and validation in order to improve transparency and rigor. For
data driven models, better reporting is needed regarding which
data were used to constrain model development, the details
of the data fitting process, and whether results are robust to
small changes in conditions. In both cases, better approaches
for parameter optimization and the exploration of the sensitivity
of parameters are needed. Here we see several approaches
toward more rigorous model validation against experimental
data across scales, as well as multiple resources for better
parameter optimization and sensitivity analysis.

Viswan et al. describe FindSim, a novel framework for
integrating experimental datasets with large multiscale models
to systematically constrain and validate models. At the network
level, considerable challenges remain over what metrics should
be used to quantify network behavior. Gutzen et al. propose
much needed standardized statistical tests that can be used
to characterize and validate network models at the population
dynamics level. In a companion study, Trensch et al. provide
rigorous workflows for the verification and validation of
neuronal network modeling and simulation. Similar to previous
studies, they reveal the importance of careful attention to
computational methods.

Although there are many successful platforms that aid
in the optimization of model parameters, Nowke et al.
show that parameter fitting without sufficient constraints or
exploration of solution space can lead to flawed conclusions
that depend on a particular location in parameter space. They
also provide a novel interactive tool for visualizing and steering
parameters during model optimization. Jȩdrzejewski-Szmek
et al. provide a versatile method for the optimization of
model parameters that is robust in the presence of local
fluctuations in the fitness function and in high-dimensional,
discontinuous fitness landscapes. This approach is also applied to
an investigation of the differences in channel properties between
neuron subtypes. Uncertainty quantification and sensitivity
analysis can provide rigorous procedures to quantify how
model outputs depend on parameter uncertainty. Tennøe
et al. provide the community with Uncertainpy, which is a
Python toolbox for uncertainty quantification and sensitivity

analysis, and also provide examples of its use with models
simulated with both NEURON (Hines et al., 2020) and NEST
(Gewaltig and Diesmann, 2007).

Approaches and resources for reproducibility advocated
by Topic authors cross many spatial and temporal scales,
from sub-cellular signaling networks (Viswan et al.) to whole-
brain imaging techniques (Zhao et al.). We discover that the
NEURON simulation platform has been extended to include
reaction-diffusion modeling of extracellular dynamics, providing
a pathway to export this class of models for future cross-
simulator standardization (Newton et al.). We also see how
reproducibility challenges extend to other cell types such as
glia as well as subcortical structures (Manninen et al.). At
the network level, Pauli et al. demonstrate the sensitivity of
spiking neuron network models to implementation choices, the
integration timestep, and parameters, providing guidelines to
reduce these issues and increase scientific quality. For spiking
neuron networks specifically geared toward machine learning
and reinforcement learning tasks, Hazan et al. provide BindsNET,
a Python package for rapidly building and simulating such
networks for implementation on multiple CPU and GPU
platforms, promoting reproducibility across platforms.

And finally, Blundell et al. focus on one approach to
address the challenges for reproducibility that arise due to
increasing model complexity, which relies on high-level
descriptions of complex models. These high-level descriptions
require translation to code for simulation and visualization,
and the use of code generation to automatically translate
description into efficient code enhances standardization.
Here, authors summarize existing code generation pipelines
associated with the most widely-used simulation platforms,
simulator-independent multiscale model description languages,
neuromorphic simulation platforms, and collaborative model
development communities.

3. OUTLOOK

In this Research Topic, researchers describe a wide range of
challenges for reproducibility and rigor, as well as efforts to
address them across areas of quantitative neuroscience. These
include best practices that should be employed in implementing,
validating, and sharing computational results; fully specified
workflows for complex computational experiments; a range of
tools supporting scientists in performing robust studies; and a
carefully defined terminology. In view of the strong interest in the
practices, workflows, and tools for computational neuroscience
documented in this Research Topic, and their availability to the
community, we are optimistic that the future of computational
neuroscience will be increasingly rigorous and reproducible.

AUTHOR CONTRIBUTIONS

SC, AD, RM, and HP all contributed equally to determining and
approved the content of this editorial. SC wrote the content of
this editorial.

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2020 | Volume 14 | Article 236

https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.3389/fninf.2018.00018
https://doi.org/10.3389/fninf.2018.00038
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.3389/fninf.2018.00032
https://doi.org/10.3389/fninf.2018.00047
https://doi.org/10.3389/fninf.2018.00049
https://doi.org/10.3389/fninf.2018.00038
https://doi.org/10.3389/fninf.2018.00054
https://doi.org/10.3389/fninf.2018.00041
https://doi.org/10.3389/fninf.2018.00020
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.3389/fninf.2018.00068
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Crook et al. Editorial: Reproducibility and Rigour in Computational Neuroscience

FUNDING

SC’s contributions to this Frontiers Topic were funded in part
by the National Institutes of Health under award number

R01MH106674. HP received funding from the European
Unions Horizon 2020 Framework Programme for Research and
Innovation under grant agreements 720270 (HBP SGA1), 785907
(HBP SGA2), and 754304 (DEEP-EST).

REFERENCES

Association for Computing Machinery (2020). Artifact Review and Badging.

Available online at: https://www.acm.org/publications/policies/artifact-review-

badging

Birgiolas, J., Dietrich, S. W., Crook, S., Rajadesingan, A., Zhang, C., Penchala,

S. V., et al. (2015). “Ontology-assisted Keyword Search for NeuroML Models,”

in Proceedings of the 27th International Conference on Scientific and Statistical

Database Management, SSDBM ’15 (New York, NY: ACM), 37:1–37:6.

Cope, A. J., Richmond, P., James, S. S., Gurney, K., and Allerton, D. J. (2017).

SpineCreator: a graphical user interface for the creation of layered neural

models. Neuroinformatics 15, 25–40. doi: 10.1007/s12021-016-9311-z

Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from the Past:

approaches for reproducibility in computational neuroscience,” in 20 Years of

Computational Neuroscience, ed J.M. Bower (NewYork, NY: Springer), 73–102.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,

et al. (2019). Open source brain: a collaborative resource for visualizing,

analyzing, simulating, and developing standardized models of neurons and

circuits. Neuron 103, 395–411.e5. doi: 10.1016/j.neuron.2019.05.019.

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLOS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goodman, S. N., Fanelli, D., and Ioannidis, J. P. A. (2016). What

does research reproducibility mean? Sci. Transl. Med. 8:341ps12.

doi: 10.1126/scitranslmed.aaf5027

Hines, M., Carnevale, T., and McDougal, R. A. (2020). “NEURON

Simulation Environment,” in Encyclopedia of Computational

Neuroscience, eds D. Jaeger and R. Jung (New York, NY: Springer),

1–7.

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore,

M., et al. (2017). Twenty years of ModelDB and beyond: building essential

modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.

doi: 10.1007/s10827-016-0623-7

NineML Committee (2020). NineML. Available online at: incf.github.io/nineml-

spec

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Crook, Davison, McDougal and Plesser. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2020 | Volume 14 | Article 237

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1007/s12021-016-9311-z
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.neuron.2019.05.019.
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1007/s10827-016-0623-7
incf.github.io/nineml-spec
incf.github.io/nineml-spec
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

PROTOCOLS
published: 04 January 2018

doi: 10.3389/fninf.2017.00069

Frontiers in Neuroinformatics | www.frontiersin.org 1 January 2018 | Volume 11 | Article 69

Edited by:

Sharon Crook,
Arizona State University, United States

Reviewed by:

Thomas E. Nichols,
Independent Researcher, Oxford,

United Kingdom
Paul Pavlidis,

University of British Columbia, Canada
Thomas Marston Morse,

Department of NeuroScience, Yale
School of Medicine, Yale University,

United States

*Correspondence:

Fabien C. Y. Benureau
fabien@benureau.com

Received: 28 August 2017
Accepted: 17 November 2017
Published: 04 January 2018

Citation:

Benureau FCY and Rougier NP (2018)
Re-run, Repeat, Reproduce, Reuse,
Replicate: Transforming Code into

Scientific Contributions.
Front. Neuroinform. 11:69.

doi: 10.3389/fninf.2017.00069

Re-run, Repeat, Reproduce, Reuse,
Replicate: Transforming Code into
Scientific Contributions

Fabien C. Y. Benureau 1, 2, 3* and Nicolas P. Rougier 1, 2, 3

1 INRIA Bordeaux Sud-Ouest, Talence, France, 2 Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre
National de la Recherche Scientifique UMR 5293, Bordeaux, France, 3 LaBRI, Université de Bordeaux, Bordeaux INP, Centre
National de la Recherche Scientifique UMR 5800, Talence, France

Scientific code is different from production software. Scientific code, by producing

results that are then analyzed and interpreted, participates in the elaboration of scientific

conclusions. This imposes specific constraints on the code that are often overlooked in

practice. We articulate, with a small example, five characteristics that a scientific code in

computational science should possess: re-runnable, repeatable, reproducible, reusable,

and replicable. The code should be executable (re-runnable) and produce the same result

more than once (repeatable); it should allow an investigator to reobtain the published

results (reproducible) while being easy to use, understand and modify (reusable), and it

should act as an available reference for any ambiguity in the algorithmic descriptions of

the article (replicable).

Keywords: replicability, reproducibility of results, reproducible science, reproducible research, computational

science, software development, best practices

INTRODUCTION (R0)

Replicability1 is a cornerstone of science. If an experimental result cannot be re-obtained by an
independent party, it merely becomes, at best, an observation that may inspire future research
(Mesirov, 2010; Open Science Collaboration, 2015). Replication issues have received increased
attention in recent years, with a particular focus on medicine and psychology (Iqbal et al., 2016).
One could think that computational research would mostly be shielded from such issues, since a
computer program describes precisely what it does and is easily disseminated to other researchers
without alteration.

But precisely because it is easy to believe that if a program runs once and gives the expected
results it will do so forever, crucial steps to transform working code into meaningful scientific
contributions are rarely undertaken (Schwab et al., 2000; Sandve et al., 2013; Collberg and
Proebsting, 2016). Computational research is plagued by replication problems, in part, because
it seems impervious to them. Contrary to production software who provides a service geared
toward a practical outcome, the motivation behind scientific code is to test a hypothesis. While in
some instance production software and scientific code are indistinguishable, the reasons why they
were created are different, and, therefore, so are the criteria to evaluate their success. A program

1Reproducibility and replicability are employed differently by different authors and in different domains (see for instance

the report from the U.S. National Academies of Sciences, 2016). Here, we place ourselves in the context of computational

works, where data is produced by a program. In this paper, we call a result reproducible if one can take the original source

code, re-execute it and reobtain the original result. Conversely, a result is replicable if one can create a code that matches the

algorithmic descriptions given in the published article and reobtain the original result.

8

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2017.00069
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00069&domain=pdf&date_stamp=2018-01-04
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fabien@benureau.com
https://doi.org/10.3389/fninf.2017.00069
https://www.frontiersin.org/articles/10.3389/fninf.2017.00069/full
http://loop.frontiersin.org/people/31195/overview
http://loop.frontiersin.org/people/2410/overview

Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

can fail as a scientific contribution in many different ways for
many different reasons. Borrowing the terms coined by Goble
(2016), for a program to contribute to science, it should be re-
runnable (R1), repeatable (R2), reproducible (R3), reusable (R4),
and replicable (R5). Let us illustrate this with a small example, a
random walk (Hughes, 1995) written in Python:

import random

x = 0

for i in xrange(10):

step = random.choice([-1,+1])

x += step

print x,

LISTING 0: Random walk (R0) raw code, archive

In the code above, the random.choice function
randomly returns either +1 or −1. The instruction “for
i in xrange(10):” executes the next three indented lines
ten times. Executed, this program would display:

-1, 0, -1, 0, -1, 0, -1, 0, 1, 2

with the steps being -1,+1,-1,+1,-1,+1,-1,+1,+1,+1

Output

What could go wrong with such a simple program?
Well...

RE-RUNNABLE (R1)

Have you ever tried to re-run a program you wrote some years
ago? It can often be frustratingly hard. Part of the problem is
that technology is evolving at a fast pace and you cannot know
in advance how the system, the software and the libraries your
program depends on will evolve. Since you wrote the code, you
may have reinstalled or upgraded your operating system. The
compiler, interpreter or set of libraries installed may have been
replaced with newer versions. Youmay find yourself battling with
arcane issues of library compatibility—thoroughly orthogonal to
your immediate research goals—to execute again a code that
worked perfectly before. To be clear, it is impossible to write
future-proof code, and the best efforts can be stymied by the
smallest change in one of the dependencies. At the same time,
modernizing an unmaintained ten-year-old code can reveal itself
to be an arduous and expensive undertaking—and precarious,
since each change risks affecting the semantics of the program.
Rather than trying to predict the future or painstakingly dusting
off old code, an often more straightforward solution is to recreate
the old execution environment2. For this to happen however, the
dependencies in terms of systems, software, and libraries must be
made clear enough.

2To be clear, and although virtual machines are often a great help here, this is not

always possible. It is, however, always more difficult when the original execution

environment is unknown.

A re-runnable code is one that can be run again when needed,
and in particular more than the one time that was needed
to produce the results. It is important to notice that the re-
runnability of a code is not an intrinsic property. Rather, it
depends on the context, and becomes increasingly difficult as
the code ages. Therefore, to be and remain re-runnable on
the computers of other researchers, a re-runnable code should
describe—with enough details to be recreated—an execution
environment in which it is executable. As shown by Collberg and
Proebsting (2016), this is far from being either obvious or easy.

Tested with Python 3

import random

x = 0

walk = []

for i in range(10):

step = random.choice([-1,+1])

x += step

walk.append(x)

print(walk)

LISTING 1: Re-runnable random walk (R1) raw code, archive

In our case, the R0 version of our tiny walker seems to imply
that any version of Python would be fine. This not the case: it uses
the print instruction and the xrange operator, both specific to
Python 2. The print instruction, available in Python 2 (a version
still widely used; support is scheduled to stop in 2020), has been
deprecated in Python 3 (first released in 2008, almost a decade
ago) in favor of a print function, while the xrange operator has
been replaced by the range operator in Python 3. In order to try
to future-proof the code a bit, we might as well target Python 3,
as is done in the R1 version. Incidentally, it remains compatible
with Python 2. But whichever version is chosen, the crucial step
here is to document it.

REPEATABLE (R2)

The code is running and producing the expected results. The
next step is to make sure that you can produce the same output
over successive runs of your program. In other words, the next
step is to make your program deterministic, producing repeatable
output. Repeatability is valuable. If a run of the program
produces a particularly puzzling result, repeatability allows you
to scrutinize any step of the execution of the program by re-
running it again with extraneous prints, or inside a debugger.
Repeatability is also useful to prove that the program did indeed
produce the published results. Repeatability is not always possible
or easy (Diethelm, 2012; Courtès and Wurmus, 2015). But for
sequential and deterministically parallel programs (Hines, and
Carnevale, 2008; Collange et al., 2015) not depending on analog
inputs, it often comes down to controlling the initialization of the
pseudo-random number generators (RNG).

For our program, that means setting the seed of the random
module. We may also want to save the output of the program
to a file, so that we can easily verify that consecutive runs do

Frontiers in Neuroinformatics | www.frontiersin.org 2 January 2018 | Volume 11 | Article 699

https://raw.githubusercontent.com/rougier/random-walk/frontiers/random-walk-R0.py
https://doi.org/10.5281/zenodo.848217
https://docs.python.org/3.6/library/random.html#random.choice
https://raw.githubusercontent.com/rougier/random-walk/frontiers/random-walk-R1.py
https://doi.org/10.5281/zenodo.848217
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

produce the same output: eyeballing differences is unreliable and
time-consuming, and therefore won’t be done systematically.

Tested with Python 3

import random

random.seed(1) # RNG initialization

x = 0

walk = []

for i in range(10):

step = random.choice([-1,+1])

x += step

walk.append(x)

print(walk)

Saving output to disk

with open('results-R2.txt', 'w') as fd:

fd.write(str(walk))

LISTING 2: Re-runnable, repeatable random walk (R2) raw code, archive

Setting seeds should be done carefully. Using 439 as a seed
in the previous program would result in ten consecutive +1
steps3, which—although a perfectly valid random walk—lend
itself to a gross misinterpretation of the overall dynamics of the
algorithm. Verifying that the qualitative aspects of the results
and the conclusions that are made are not tied to a specific
initialization of the pseudo-random generator is an integral part
of any scientific undertaking in computational science; this is
usually done by repeating the simulations multiple times with
different seeds.

REPRODUCIBLE (R3)

The R2 code seems fine enough, but it hides several problems
that come to light when trying to reproduce results. A result is
said to be reproducible if another researcher can take the original
code and input data, execute it, and re-obtain the same result
(Peng et al., 2006). As explained byDonoho et al. (2009), scientific
practice must expect that errors are ubiquitous, and therefore be
robust to them. Ensuring reproducibility is a fundamental step
toward this: it provides other researchers the means to verify
that the code does indeed produce the published results, and
to scrutinize the procedures it employed to produce them. As
demonstrated by Mesnard and Barba (2017), reproducibility is
hard.

For instance, the R2 programwill not produce the same results
all the time. It will, because it is repeatable, produce the same
results over repeated executions. But it will not necessarily do
so over different execution environments. The cause is to be
found in a change that occurred in the pseudo-random number
generator between Python 3.2 and Python 3.3. Executed with
Python 2.7–3.2, the code will produce the sequence −1, 0, 1,
0, −1, −2, −1, 0, −1, −2. But with Python 3.3–3.6, it will
produce −1, −2, −1, −2, −1, 0, 1, 2, 1, 0. With future versions

3With CPython 3.3–3.6. See the next section for details.

of the language, it may change still. For the R3 version, we
abandon the use of the random.choice function in favor of
the random.uniform function, whose behavior is consistent
across versions 2.7–3.6 of Python.

Because any dependency of a program—to the most basic one,
the language itself—can change its behavior from one version to
the other, executability (R1) and determinism (R2) are necessary
but not sufficient for reproducibility. The exact execution
environment used to produce the results must also be specified—
rather than the broadest set of environments where the code
can be effectively run. In other words, assertions such as “the
results were obtained with CPython 3.6.1” are more valuable, in a
scientific context, than “the program works with Python 3.x and
above”. With the increasing complexity of computational stacks,
retrieving, and deciding what is pertinent (CPU architecture?
operating system version? endianness?) might be non-trivial. A
good rule of thumb is to includemore information than necessary
rather than not enough, and some rather than none.

Recording the execution environment is only the first step.
The R2 program uses a random seed but does not keep a trace of
it except in the code. Should the code change after the production
of the results, someone provided with the last version of the code
will not be able to know which seed was used to produce the
results, and would need to iterate through all possible random
seeds, an impossible task in practice4.

This is why result files should come alongside their context,
i.e., an exhaustive list of the parameters used as well as a precise
description of the execution environment, as the R3 code does.
The code itself is part of that context: the version of the code
must be recorded. It is common for different results or different
figures to have been generated by different versions of the code.
Ideally, all results should originate from the same (and last)
version of the code. But for long or expensive computations,
this may not be feasible. In that case, the result files should
contain the version of the code that was used to produce it. This
information can be obtained from the version control software.
This also allows, if some errors are found and corrected after
some results have been obtained, to identify which ones should
be recomputed. In R3, the code records the git revision, and
prevents execution if the repository holds uncommitted changes
when the computation starts.

Published results should obviously come from versions of the
code where every change and every file has been committed.
This includes pre-processing, post-processing, and plotting code.
Plotting code may seem mundane, but it is as vulnerable as any
other piece of the code to bugs and errors. When it comes to
checking that the reproduced data match the one published in the
article, however, figures can reveal themselves to be imprecise and
cumbersome, and sometimes plain unusable. To avoid having
to manually overlay pixelated plots, published figures should be
accompanied by their underlying data (coordinates of the plotted

4Here, with 210 possibilities for a 10-step random walk, the seed used or another

matching the generated sequence could certainly be found. For instance, 436 is the

smallest positive integer seed to reproduce the results of R0 with Python 2.7 (1,151,

3,800, 4,717 or 11,235,813 work as well). Such a search becomes intractable for a

100-step walk.

Frontiers in Neuroinformatics | www.frontiersin.org 3 January 2018 | Volume 11 | Article 6910

https://raw.githubusercontent.com/rougier/random-walk/frontiers/random-walk-R2.py
https://doi.org/10.5281/zenodo.848217
https://docs.python.org/3.6/library/random.html#random.choice
https://docs.python.org/3.6/library/random.html#random.uniform
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

Copyright (c) 2017 N.P. Rougier and F.C.Y. Benureau

Release under the BSD 2-clause license

Tested with 64-bit CPython 3.6.2 / macOS 10.12.6

import sys, subprocess, datetime, random

def compute_walk():

x = 0

walk = []

for i in range(10):

if random.uniform(-1, +1) > 0:

x += 1

else:

x -= 1

walk.append(x)

return walk

If repository is dirty, don't run anything

if subprocess.call(("git", "diff-index",

"--quiet", "HEAD")):

print("Repository is dirty, please commit first")

sys.exit(1)

Get git hash if any

hash_cmd = ("git", "rev-parse", "HEAD")

revision = subprocess.check_output(hash_cmd)

Unit test

random.seed(42)

assert compute_walk() == [1,0,-1,-2,-1,0,1,0,-1,-2]

Random walk for 10 steps

seed = 1

random.seed(seed)

walk = compute_walk()

Display & save results

print(walk)

results = {

"data" : walk,

"seed" : seed,

"timestamp": str(datetime.datetime.utcnow()),

"revision" : revision,

"system" : sys.version}

with open("results-R3.txt", "w") as fd:

fd.write(str(results))

LISTING 3: Re-runnable, repeatable, reproducible random walk (R3)

raw code, archive

points) in the supplementary data to allow straightforward
numeric comparisons.

Another good practice is to make the code self-verifiable. In
R3, a short unit test is provided, that allows the code to verify its
own reproducibility. Should this test fail, then there is little hope
of reproducing the results. Of course, passing the test does not
guarantee anything.

It is obvious that reproducibility implies availability. As
shown in Collberg and Proebsting (2016), code is often
unavailable, or only available upon request. While the latter
may seem sufficient, changes in email address, changes in
career, retirement, a busy inbox or poor archiving practices
can make a code just as unreachable. Code and input data
and result data should be available with the published article,
as supplementary data, or through a DOI link to a scientific

repository such as Figshare, Zenodo5 or a domain specific
database, such as ModelDB for computational neuroscience.
The codes presented in this article are available in the
GitHub repository github.com/rougier/random-walk and at
doi.org/10.5281/zenodo.848217.

To recap, reproducibility implies re-runnability and
repeatability and availability, yet imposes additional conditions.
Dependencies and platforms must be described as precisely and
as specifically as possible. Parameters values, the version of the
code, and inputs should accompany the result files. The data
and scripts behind the graphs must be published. Unit tests are
a good way to embed self-diagnostics of reproducibility in the
code. Reproducibility is hard, yet tremendously necessary.

REUSABLE (R4)

Making your program reusable means it can be easily used, and
modified, by you and other people, inside and outside your lab.
Ensuring your program is reusable is advantageous for a number
of reasons.

For you, first. Because the you now and the you in 2 years
are two different persons. Details on how to use the code, its
limitations, its quirks, may be present to your mind now, but will
probably escape you in 6 months (Donoho et al., 2009). Here,
comments and documentation can make a significant difference.
Source code reflects the results of the decisions that were made
during its creation, but not the reasons behind those decisions.
In science, where the method and its justification matter as
much as the results, those reasons are precious knowledge. In
that context, a comment on how a given parameter was chosen
(optimization, experimental data, educated guess), why a library
was chosen over another (conceptual or technical reasons?) is
valuable information.

Reusability of course directly benefits other researchers from
your team and outside of it. The easier it is to use your code,
the lower the threshold is for other to study, modify and
extend it. Scientists constantly face the constraint of time: if
a model is available, documented, and can be installed, run,
and understood all in a few hours, it will be preferred over
another that would require weeks to reach the same stage. A
reproducible and reusable code offers a platform both verifiable
and easy-to-use, fostering the development of derivative works
by other researchers on solid foundations. Those derivative works
contribute to the impact of your original contribution.

Having more people examining and using your code also
means that potential errors have a higher chance to be caught.
If people start using your program, they will most likely report
bugs or malfunctions they encounter. If you’re lucky enough,
they might even propose either bug fixes or improvements, hence
improving the overall quality of your software. This process
contributes to the long-term reproducibility to the extent people
continue to use and maintain the program.

5Online code repositories such as GitHub are not scientific repositories, and may

disappear, change name, or change their access policy at any moment. Direct links

to them are not perpetual, and, when used, they should always be supplemented by

a DOI link to a scientific archive.

Frontiers in Neuroinformatics | www.frontiersin.org 4 January 2018 | Volume 11 | Article 6911

https://raw.githubusercontent.com/rougier/random-walk/frontiers/random-walk-R3.py
https://doi.org/10.5281/zenodo.848217
https://figshare.com
https://zenodo.org
https://senselab.med.yale.edu/modeldb/
https://github.com/rougier/random-walk
https://doi.org/10.5281/zenodo.848217
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

Copyright (c) 2017 N.P. Rougier and F.C.Y. Benureau

Release under the BSD 2-clause license

Tested with 64-bit CPython 3.6.2 / macOS 10.12.6

import sys, subprocess, datetime, random

def compute_walk(count, x0=0, step=1, seed=0):

"""Random walk

count: number of steps

x0 : initial position (default 0)

step : step size (default 1)

seed : seed for the initialization of the

random generator (default 0)

"""

random.seed(seed)

x = x0

walk = []

for i in range(count):

if random.uniform(-1, +1) > 0:

x += 1

else:

x -= 1

walk.append(x)

return walk

def compute_results(count, x0=0, step=1, seed=0):

"""Compute a walk and return it with context"""

If repository is dirty, don't do anything

if subprocess.call(("git", "diff-index",

"--quiet", "HEAD")):

print("Repository is dirty, please commit")

sys.exit(1)

Get git hash if any

hash_cmd = ("git", "rev-parse", "HEAD")

revision = subprocess.check_output(hash_cmd)

Compute results

walk = compute_walk(count=count, x0=x0,

step=step, seed=seed)

return {

"data" : walk,

"parameters": {"count": count, "x0": x0,

"step": step, "seed": seed},

"timestamp" : str(datetime.datetime.utcnow()),

"revision" : revision,

"system" : sys.version}

if __name__ == "__main__":

Unit test checking reproducibility

(will fail with Python<=3.2)

assert (compute_walk(10, 0, 1, 42) ==

[1,0,-1,-2,-1,0,1,0,-1,-2])

Simulation parameters

count, x0, seed = 10, 0, 1

results = compute_results(count, x0=x0, seed=seed)

Save & display results

with open("results-R4.txt", "w") as fd:

fd.write(str(results))

print(results["data"])

LISTING 4: Re-runnable, repeatable, reproducible, reusable random walk (R4)

raw code, archive

Despite all this, reusability is often overlooked, and it is
not hard to see why. Scientists are rarely trained in software
engineering, and reusability can represent an expensive endeavor

if undertaken as an afterthought, for little tangible short-term
benefits, for a codebase that might, after all, only see a single use.
And, in fact, reusability is not as indispensable a requirement
as re-runnability, repeatability, and reproducibility. Yet, some
simple measures can tremendously increase reusability, and at
the same time strengthen reproducibility and re-runnability over
the long-term.

Avoid hardcoded or magic numbers. Magic numbers are
numbers present directly in the source code, that do not have
a name and therefore can be difficult to interpret semantically.
Hardcoded values are variables that cannot be changed through
a function argument or a parameter configuration file. To be
modified, they involve editing the code, which is cumbersome
and error-prone. In the R3 code, the seed and the number of steps
are respectively hardcoded and magic.

Similarly, code behavior should not be changed by
commenting/uncommenting code (Wilson et al., 2017).
Modification of the behavior of the code, required when different
experiments examine slightly different conditions, should always
be explicitly set through parameters accessible to the end-user.
This improves reproducibility in two ways: it allows those
conditions to be recorded as parameters in the result files, and
it allows to define separate scripts to run or configuration files
to load to produce each of the figures of the published paper.
With documentation explaining which script or configuration
file corresponds to which experiment, reproducing the different
figures becomes straightforward.

Documentation is one of the most potent tools for reusability.
A proper documentation on how to install and run the software
often makes the difference whether other researchers manage to
use it or not. A comment describing what each function does,
however evident, can avoid hours of head-scratching. Great code
may need few comments. Scientists, however, are not always
brilliant developers. Of course, bad, complicated code should be
rewritten until is simple enough to explain itself. But realistically,
this is not always going to be done: there is simply not enough
incentive for it. There, a comment that explains the intentions
and reasons behind a block of code can be tremendously useful.

Reusability is not a strict requirement for scientific code.
But it has many benefits, and a few simple measures can
foster it considerably. To complement the R4 version provided
here, we provide an example repository of a re-runnable,
repeatable, reproducible and reusable random walk code. The
repository is available on GitHub github.com/benureau/r5 and at
doi.org/10.5281/zenodo.848284.

REPLICABLE (R5)

Having made a software reusable offers an additional way to
find errors, especially if your scientific contribution is popular.
Unfortunately, this is not always effective, and some recent cases
have shown that bugs can lurk in well-used open-source code,
impacting the false positive rates of fMRI studies (Eklund et al.,
2016), or the encryption of communications over the Internet
(Durumeric et al., 2014). Let’s be clear: the goal here is not
to remove all bugs and mistakes from science. The goal is to
have methods and practices in place that make possible for the

Frontiers in Neuroinformatics | www.frontiersin.org 5 January 2018 | Volume 11 | Article 6912

https://raw.githubusercontent.com/rougier/random-walk/frontiers/random-walk-R4.py
https://doi.org/10.5281/zenodo.848217
https://github.com/benureau/r5
https://doi.org/10.5281/zenodo.848284
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

inevitable errors that will be made to be caught and corrected
by motivated investigators. This is why, as explained by Peng
et al. (2006), the replication of important findings by multiple
independent investigators is fundamental to the accumulation of
scientific evidence.

Replicability is the implicit assumption that an article that
does not provide the source code makes: that the description it
provides of the algorithms is sufficiently precise and complete to
re-obtain the results it presents. Here, replicating implies writing
a new code matching the conceptual description of the article, in
order to reobtain the same results. Replication affords robustness
to the results because, should the original code contain an error,
a different codebase creates the possibility that this error will
not be repeated, in the same way that replicating a laboratory
experiment in a different laboratory can ferret out subtle biases.
While every published article should strive for replicability, it is
seldom obtained. In fact, absent an explicit effort to make an
algorithmic description replicable, there is little probability that
it will be.

This is because most papers strive to communicate the
main ideas behind their contribution in terms as simple
and as clear as possible, so that the reader may be able
to easily understand them. Trying to ensure replicability in
the main text adds a myriad of esoteric details that are not
conceptually significant and clutter the explanations. Therefore,
unless the writer dedicates an addendum or a section of
the supplementary information for technical details specifically
aimed at replicability, the information will not be there
because clarity and concision represent enticing incentives not
to do so.

But even when those details are present, the best efforts may
fall short because an oversight, a typo or a difference between
what is evident for the writer and for the reader (Mesnard and
Barba, 2017). Minute changes in the numerical estimation of
a common first-order differential equation can have significant
impact (Crook et al., 2013). Hence, a reproducible code plays an
important role alongside its article: it is a objective catalog of all
the implementation details.

A researcher seeking to replicate published results might first
consider only the article. If she fails to replicate the results, she
will consult the original code, and with it be able to pinpoint
why her code and the code of the authors differ in behavior.
Because a mistake on their part? Hers? Or a difference in a
seemingly innocuous implementation detail? A fine analysis of
why a particular algorithmic description is lacking or ambiguous
or why a minor implementation decision is in fact crucial
to obtain the published results is of great scientific value.
Such an analysis can only be done with access to both the
article and the code. With only the article, the researcher will
often be unable to understand why she failed to replicate the
results, and will naturally be inclined to only report replication
successes.

Replicability, therefore, does not negate the necessity of
reproducibility. In fact, it often relies on it. To illustrate this, let
us consider what could be the description of the random walker,
as it would be written in an article describing it:

The model uses the Mersene Twister generator
initialized with the seed 1. At each iteration, a uniform
number between −1 (included) and +1 (excluded) is
drawn and the sign of the result is used for generating
a positive or negative step.

This description, while somewhat precise, forgoes—as it is
common—the initialization of the variables (here the starting
value of the walk: 0), and the technical details about which
implementation of the RNG is used.

It may look innocuous. After all, the Python documentation,
states that “Python uses the Mersenne Twister as the core
generator. It produces 53-bit precision floats and has a period
of 2∗∗19937-1”. Someone trying to replicate the work however
might choose to use the RNG from the NumPy library. The
NumPy library is extensively used in the science community,
and it provides an implementation of the Mersene Twister
generator too. Unfortunately, the way the seed is interpreted by
the two implementations is different, yielding different random
sequences.

Copyright (c) 2017 N.P. Rougier and F.C.Y. Benureau

Release under the BSD 2-clause license

64-bit CPython 3.6.2 / NumPy 1.12.0 / macOS 10.12.6

import random

import numpy as np

def _rng(seed):

"""Return a numpy random number generator

initialized with seed as it would be with

a python random generator.

"""

rng = random.Random()

rng.seed(seed)

_, keys, _ = rng.getstate()

rng = np.random.RandomState()

state = rng.get_state()

rng.set_state((state[0], keys[:-1], state[2],

state[3], state[4]))

return rng

def walk(n, seed):

"""Random walk for n steps"""

rng = _rng(seed)

steps = 2 * (rng.uniform(-1, +1, n) > 0) - 1

return steps.cumsum().tolist()

if __name__ == "__main__":

Unit test

assert (walk(n=10, seed=42) ==

[1,0,-1,-2,-1,0,1,0,-1,-2])

Random walk for 10 steps, with seed=1

seed = 1

path = walk(n=10, seed=seed)

Save & display results

results = {"data": path, "seed": seed}

with open("results-R5.txt", "w") as fd:

fd.write(str(results))

print(path)

LISTING 5: Replicated random walk (R5) raw code, archive

Frontiers in Neuroinformatics | www.frontiersin.org 6 January 2018 | Volume 11 | Article 6913

https://docs.python.org/3.6/library/random.html
http://www.numpy.org/
https://raw.githubusercontent.com/rougier/random-walk/frontiers/random-walk-R5.py
https://doi.org/10.5281/zenodo.848217
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

Here we are able to replicate exactly6 the behavior of the pure-
Python randomwalker by setting the internal state of the NumPy
RNG appropriately, but only because we have access to specific
technical details of the original code (the use of the random
module of the standard Python library of CPython 3.6.1), or to
the code itself.

But there are still more subtle problems with the description
given above. If we look more closely at it, we can realize that
nothing is said about the specific case of 0 when generating a
step. Do we have to consider 0 to be a positive or a negative step?
Without further information and without the original code, it is
up to the reader to decide. Likewise, the description is ambiguous
regarding the first element of the walk. Is the initialization value
included (it was not in our codes so far)? This slight difference
might affect the statistics of short runs.

All these ambiguities in the description of an algorithm pile
up; some are inconsequential (the 0 case has null probability),
but some may affect the results in important ways. They are
mostly inconspicuous to the reader and oftentimes, to the writer
as well. In fact, the best way to ferret out the ambiguities, big and
small, of an article is to replicate it. This is one of the reasons
why the ReScience journal (Rougier et al., 2017) was created (the
second author, Nicolas Rougier, is one of the editor-in-chief of
ReScience). This open-access journal, run by volunteers, targets
computational research and encourages the explicit replication
of already published research, promoting new and open-source
implementations in order to ensure that the original research is
reproducible.

Code is a key part of a submission to the ReScience journal.
During the review process, reviewers run the submitted code,
may criticize its quality and its ease-of-use, and verify the
reproduciblity of the replication. The Journal of Open Source
Software (Smith et al., 2017) functions similarly: testing the code
is a fundamental part of the review process.

CONCLUSION

Throughout the evolution of a small random walk example
implemented in Python, we illustrated some of the issues that
may plague scientific code. The code may be correct and of
good quality, and still possess many problems that reduce its
contribution to the scientific discourse. To make these problems
explicit, we articulated five characteristics that a code should
possess to be a useful part of a scientific publication: it should be
re-runnable, repeatable, reproducible, reusable, and replicable.

Running old code on tomorrow’s computer and software
stacksmay not be possible. But recreating the old code’s execution
environment may be: to ensure the long-term re-runnability of a
code, its execution environment must be documented. For our

6Striving, as we do here, for a perfect quantitative match may seem unnecessary.

Yet, in replication projects, in particular in computational research, quantitative

comparisons are a simple and effective way to verify that the behavior has been

reproduced. Moreover, they are particularly helpful to track exactly where the code

of a tentative replication fails to reproduce the published results. For a discussion

about statistical ways to assess replication see the report of the U.S. National

Academies of Sciences (2016).

example, a single comment went a long way to transform the R0

code into the R1 (re-runnable) one.
Science is built on verifying the results of others. This is

harder to do if each execution of the code produce a different
result. While for complex concurrent workflows this may not be
possible, in all instances where it is feasible the code should be
repeatable. This allows future researchers to examine exactly how
a specific result was produced. Most of the time, what is needed
is to set or record the initial state of the pseudo-random number
generator, as what done in the R2 (repeatable) version.

Even more care is needed to make a code reproducible.
The exact execution environment, code and parameters used
must be recorded and embedded in the results files, as the
R3 (reproducible) version does. Furthermore, the code must
be made available as supplementary data with the whole
computational workflow, from preprocessing steps to plotting
scripts.

Making code reusable is a stretch goal that can yield
tremendous benefits for you, your team, and other researchers.
Taken into account during development rather than as an
afterthought, simple measures can avoid hours of head-
scratching for others, and for yourself—in a few years.
Documentation is paramount here, even if it is a single comment
per function, as it was done in the R4 (reusable) version.

Finally, there is the belief that an article should suffice by itself:
the descriptions of the algorithms present in the paper should
suffice to reobtain (to replicate) the published results. For well-
written papers that precisely dissociate conceptually significant
aspects from irrelevant implementation details, that may be. But
scientific practice should not assume the best of cases. Science
assumes that errors can crop up everywhere. Every paper is
a mistake or a forgotten parameter away from irreplicability.
Replication efforts use the paper first, and then the reproducible
code that comes along with it whenever the paper falls short of
being precise enough.

In conclusion, the R3 (reproducible) form should be accepted
as the minimum scientific standard (Wilson et al., 2017).
This means this should be actually checked by reviewers and
publishers when code is part of a work worth being published.
It’s hardly the case today.

Compared to psychology or biology, the replication issues
of computational works have reasonable and efficient solutions.
But making sure that these solutions are adopted will not be
solved by articles such as this one. Just like in other fields, we
have to modify the incentives for the researchers to publish by
adopting exigences, enforced domain-wide, on what constitutes
an acceptable scientific computational work.

AUTHOR CONTRIBUTIONS

We both contributed equally to the ideas, the text and the code.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2017.00069/full#supplementary-material

Frontiers in Neuroinformatics | www.frontiersin.org 7 January 2018 | Volume 11 | Article 6914

https://www.frontiersin.org/articles/10.3389/fninf.2017.00069/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Benureau and Rougier Re-run, Repeat, Reproduce, Reuse, Replicate

REFERENCES

Collange, S., Defour, D., Graillat, S., and Iakymchuk, R. (2015). Numerical

reproducibility for the parallel reduction on multi- and many-core

architectures. Parallel Comput. 49, 83–97. doi: 10.1016/j.parco.2015.09.001

Collberg, C., and Proebsting, T. A. (2016). Repeatability in computer systems

research. Commun. ACM 59, 62–69. doi: 10.1145/2812803

Courtès, L., and Wurmus, R. (2015). “Reproducible and user-controlled software

environments in HPC with Guix,” in 2nd International Workshop on

Reproducibility in Parallel Computing (RepPar) (Vienne).

Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from the past:

approaches for reproducibility in computational neuroscience,” in 20 Years

of Computational Neuroscience, ed J. M. Bower (New York, NY: Springer),

73–102.

Diethelm, K. (2012). The limits of reproducibility in numerical simulation.

Comput. Sci. Eng. 14, 64–72. doi: 10.1109/mcse.2011.21

Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., and Stodden, V. (2009,

January). Reproducible research in computational harmonic analysis. Comput.

Sci. Eng. 11, 8–18. doi: 10.1109/mcse.2009.15

Durumeric, Z., Payer, M., Paxson, V., Kasten, J., Adrian, D., Halderman, J. A., et al.

(2014). “The matter of heartbleed,” in Proceedings of the 2014 Conference on

Internet Measurement Conference - IMC’14 (Vancouver, BC: ACM Press).

Eklund, A., Nichols, T. E., and Knutsson, H. (2016). Cluster failure: why fMRI

inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad.

Sci. U.S.A. 113, 7900–7905. doi: 10.1073/pnas.1602413113

Goble, C. (2016). “What is reproducibility? The R∗brouhaha,” in First

International Workshop on Reproducible Open Science (Hannover). Available

online at: http://repscience2016.research-infrastructures.eu/img/CaroleGoble-

ReproScience2016v2.pdf (September 9, 2016).

Hines, M. L., and Carnevale, N. T. (2008). Translating network models

to parallel hardware in NEURON. J. Neurosci. Methods 169, 425–455.

doi: 10.1016/j.jneumeth.2007.09.010

Hughes, B. D. (1995). Random Walks and Random Environments. Oxford; New

York, NY: Clarendon Press; Oxford University Press.

Iqbal, S. A., Wallach, J. D., Khoury, M. J., Schully, S. D., and Ioannidis, J. P. A.

(2016). Reproducible research practices and transparency across the biomedical

literature. PLoS Biol. 14:e1002333. doi: 10.1371/journal.pbio.1002333

Mesirov, J. P. (2010). Accessible reproducible research. Science 327, 415–416.

doi: 10.1126/science.1179653

Mesnard, O., and Barba, L. A. (2017). Reproducible and replicable computational

fluid dynamics: it’s harder than you think. Comput. Sci. Eng. 19, 44–55.

doi: 10.1109/mcse.2017.3151254

Open Science Collaboration (2015). Estimating the reproducibility of

psychological science. Science 349:aac4716. doi: 10.1126/science.aac4716

Peng, R. D., Dominici, F., and Zeger, S. L. (2006). Reproducible

epidemiologic research. Am. J. Epidemiol. 163:783. doi: 10.1093/aje/

kwj093

Rougier, N., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L., Benureau, F., et al.

(2017, July). Sustainable computational science: the ReScience initiative. ArXiv

e-prints. arXiv:1707. 04393.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E. (2013). Ten simple

rules for reproducible computational research. PLoS Comput. Biol. 9:e1003285.

doi: 10.1371/journal.pcbi.1003285

Schwab, M., Karrenbach, N., and Claerbout, J. (2000). Making

scientific computations reproducible. Comput. Sci. Eng. 2, 61–67.

doi: 10.1109/5992.881708

Smith, A., Niemeyer, K. E., Katz, D., Barba, L., Githinji, G., Gymrek,M., et al. (2017,

July). Journal of Open Source Software (JOSS): design and first-year review.

ArXiv e-prints. arXiv:170 7.02264.

U.S. National Academies of Sciences, Engineering, andMedicine (2016). Statistical

Challenges in Assessing and Fostering the Reproducibility of Scientific Results:

Summary of a Workshop, ed M. Schwalbe. Washington, DC: The National

Academies Press.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and

Teal, T. K. (2017, June). Good enough practices in scientific

computing. PLOS Comput. Biol. 13:e1005510. doi: 10.1371/journal.pcbi.

100551

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Benureau and Rougier. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 8 January 2018 | Volume 11 | Article 6915

https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1145/2812803
https://doi.org/10.1109/mcse.2011.21
https://doi.org/10.1109/mcse.2009.15
https://doi.org/10.1073/pnas.1602413113
http://repscience2016.research-infrastructures.eu/img/CaroleGoble-ReproScience2016v2.pdf
http://repscience2016.research-infrastructures.eu/img/CaroleGoble-ReproScience2016v2.pdf
https://doi.org/10.1016/j.jneumeth.2007.09.010
https://doi.org/10.1371/journal.pbio.1002333
https://doi.org/10.1126/science.1179653
https://doi.org/10.1109/mcse.2017.3151254
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1093/aje/kwj093
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1109/5992.881708
https://doi.org/10.1371/jou
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

OPINION
published: 18 January 2018

doi: 10.3389/fninf.2017.00076

Frontiers in Neuroinformatics | www.frontiersin.org 1 January 2018 | Volume 11 | Article 76

Edited by:

Xi-Nian Zuo,
Institute of Psychology (CAS), China

Reviewed by:

Ting Xu,
Child Mind Institute, United States

Ruiwang Huang,
State Key Laboratory of Brain and

Cognitive Science, Institute of
Biophysics (CAS), China

*Correspondence:

Hans E. Plesser
hans.ekkehard.plesser@nmbu.no

Received: 26 September 2017
Accepted: 18 December 2017
Published: 18 January 2018

Citation:

Plesser HE (2018) Reproducibility vs.
Replicability: A Brief History of a

Confused Terminology.
Front. Neuroinform. 11:76.

doi: 10.3389/fninf.2017.00076

Reproducibility vs. Replicability:
A Brief History of a Confused
Terminology

Hans E. Plesser 1,2*

1 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, 2 Institute for Neuroscience and
Medicine (INM-6), Jülich Research Centre, Jülich, Germany

Keywords: computational science, repeatability, replicability, reproducibility, artifacts

A cornerstone of science is the possibility to critically assess the correctness of scientific claims
made and conclusions drawn by other scientists. This requires a systematic approach to and precise
description of experimental procedure and subsequent data analysis, as well as careful attention to
potential sources of error, both systematic and statistic. Ideally, an experiment or analysis should
be described in sufficient detail that other scientists with sufficient skills and means can follow the
steps described in published work and obtain the same results within the margins of experimental
error. Furthermore, where fundamental insights into nature are obtained, such as a measurement
of the speed of light or the propagation of action potentials along axons, independent confirmation
of the measurement or phenomenon is expected using different experimental means. In some
cases, doubts about the interpretation of certain results have given rise to new branches of science,
such as Schrödinger’s development of the theory of first-passage times to address contradictory
experimental data concerning the existence of fractional elementary charge (Schrödinger, 1915).
Experimental scientists have long been aware of these issues and have developed a systematic
approach over decades, well-established in the literature and as international standards.

When scientists began to use digital computers to perform simulation experiments and data
analysis, such attention to experimental error took back stage. Since digital computers are exact
machines, practitioners apparently assumed that results obtained by computer could be trusted,
provided that the principal algorithms and methods employed were suitable to the problem at
hand. Little attention was paid to the correctness of implementation, potential for error, or variation
introduced by system soft- and hardware, and to how difficult it could be to actually reconstruct
after some years—or even weeks—how precisely one had performed a computational experiment.
Stanford geophysicist Jon Claerbout was one of the first computational scientists to address this
problem (Claerbout and Karrenbach, 1992). His work was followed up by David Donoho and
Victoria Stodden (Donoho et al., 2009) and introduced to a wider audience by Peng (2011).

Claerbout defined “reproducing” to mean “running the same software on the same input data
and obtaining the same results” (Rougier et al., 2017), going so far as to state that “[j]udgement
of the reproducibility of computationally oriented research no longer requires an expert—a clerk
can do it” (Claerbout and Karrenbach, 1992). As a complement, replicating a published result
is then defined to mean “writing and then running new software based on the description of a
computational model or method provided in the original publication, and obtaining results that are
similar enough . . . ” (Rougier et al., 2017). I will refer to these definitions of “reproducibility” and
“replicability” asClaerbout terminology; they have also been recommended in social, behavioral and
economic sciences (Bollen et al., 2015).

Unfortunately, this use of “reproducing” and “replicating” is at odds with the terminology long
established in experimental sciences. A standard textbook in analytical chemistry states (Miller and
Miller, 2000, p. 6, emphasis in the original)

16

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2017.00076
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00076&domain=pdf&date_stamp=2018-01-18
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hans.ekkehard.plesser@nmbu.no
https://doi.org/10.3389/fninf.2017.00076
https://www.frontiersin.org/articles/10.3389/fninf.2017.00076/full
http://loop.frontiersin.org/people/2833/overview

Plesser Reproducibility vs. Replicability

... modern convention makes a careful distinction between

reproducibility and repeatability. ... student A ... would do the

five replicate titrations in rapid succession The same set of

solutions and the same glassware would be used throughout,

the same temperature, humidity and other laboratory conditions

would remain much the same. In such circumstances, the

precision measured would be the within-run precision: this

is called the repeatability. Suppose, however, that for some

reason the titrations were performed by different staff on five

different occasions in different laboratories, using different pieces

of glassware and different batches of indicator This set of data

would reflect the between-run precision of the method, i.e. its

reproducibility.

and further on p. 95

A crucial requirement of a [collaborative test] is that it should

distinguish between the repeatability standard deviation, sr , and

the reproducibility standard deviation, sR. At each analyte level

these are related by the equation

s2R = s2r + s2L

where s2L is the variance due to inter-laboratory differences,....
Note that in this context reproducibility refers to errors arising in
different laboratories and equipment, but using the samemethod:
this is a more restricted definition of reproducibility than that
used in other instances.

Further, the International Vocabulary of Metrology
(Joint Committee for Guides in Metrology, 2006) and the
corresponding standard ISO 5725-2 define as repeatability
condition of a measurement (§2.21)

a set of conditions that includes the same measurement

procedure, same operators, same measuring system, same

operating conditions and same location, and replicate

measurements on the same or similar objects over a short

period of time

and as reproducibility condition of a measurement (§2.23)

a set of conditions that includes the same measurement

procedure, same location, and replicate measurements on the

same or similar objects over an extended period of time, but may

include other conditions involving changes.

Based on these definitions, the Association for Computing
Machinery has adopted the following definitions (Association for
Computing Machinery, 2016)

Repeatability (Same team, same experimental setup): The

measurement can be obtained with stated precision by the

same team using the same measurement procedure, the same

measuring system, under the same operating conditions, in the

same location on multiple trials. For computational experiments,

this means that a researcher can reliably repeat her own

computation.

Replicability (Different team, same experimental setup): The

measurement can be obtained with stated precision by a

different team using the same measurement procedure, the same

measuring system, under the same operating conditions, in the

same or a different location on multiple trials. For computational

experiments, thismeans that an independent group can obtain the

same result using the author’s own artifacts.

Reproducibility (Different team, different experimental setup):

The measurement can be obtained with stated precision by

a different team, a different measuring system, in a different

location on multiple trials. For computational experiments, this

means that an independent group can obtain the same result using

artifacts which they develop completely independently.

I will refer to this definition as the ACM terminology. Together
with some colleagues, I proposed similar definitions some
years ago (Crook et al., 2013). The different terminologies are
summarized in Table 1.

The debate about which terminology is the proper one is
heated at times, as witnessed by a discussion on “R-words” on
Github (Rougier et al., 2016). One reason for the intensity of
that debate may be a paper by Drummond (2009). He attempted
to bring terminology in computational science in line with the
experimental sciences, but at the same time argued that one
should not focus on collecting computer-experimental artifacts to
ensure that simulations and analyses can be re-run. While I agree
with Drummond on the choice of terminology, I consider it to be
essential to preserve artifacts such as software, scripts, and input
data underlying computational science publications. Where re-
running is successful, the published artifacts allow others to build
on earlier work. Where re-running fails, which may happen
due to subtle differences in system software (Glatard et al.,
2015) as well as through genuine errors in problem-specific code
written by researchers, well-preserved and accessible artifacts
provide a basis to identify the cause of errors; Baggerly and
Coombes (2009) give a high-profile example of such forensic
bioinformatics.

In recent years, a number of authors have attempted to
resolve this disagreement on terminology. Patil et al. (2016; see
especially the Supplementary Material) give a precise definition
of reproducibility, of different types of replicability, and of
related terms in the form of a σ-algebra. They follow Claerbout
terminology, but encounter conflicts with their own choice of
terms when discussing one specific example (Patil et al., 2016;
Supplementary Material, p. 6):

In this case, data and code for the original study were made

available but were incomplete and/or incorrect. An independent

group . . . examined what was provided and engineered a new set

of code which reproduced the original results. . . . This differs

from our definition of reproducibility because the second set of

analysts . . . were unable to use the original code, and had to apply

[modified code] instead.

Nichols et al. (2017) suggest best practices for neuroimaging
based on a detailed discussion of different levels of
reproducibility and replicability. They provide an informative
table of which aspects of a study are fixed and which may
vary at the different levels, using a terminology closer
to Claerbout than to the ACM. But also these authors
appear to confuse terminology slightly, since they state

Frontiers in Neuroinformatics | www.frontiersin.org 2 January 2018 | Volume 11 | Article 7617

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Plesser Reproducibility vs. Replicability

TABLE 1 | Comparison of terminologies. See text for details.

Goodman Claerbout ACM

Repeatability

Methods reproducibility Reproducibility Replicability

Results reproducibility Replicability Reproducibility

Inferential reproducibility

that “Peng reproducibility” allows for variation in code,
experimenter and data analyst, while Peng’s definition of
reproducibility only allows for a different data analyst (Peng,
2011)—a case which Nichols et al label “Collegial analysis
replicability”.

To solve the terminology confusion, Goodman et al. (2016)
propose a new lexicon for research reproducibility with the
following definitions:

• Methods reproducibility: provide sufficient detail about
procedures and data so that the same procedures could be
exactly repeated.

• Results reproducibility: obtain the same results from an
independent study with procedures as closely matched to the
original study as possible.

• Inferential reproducibility: draw the same conclusions from
either an independent replication of a study or a reanalysis of
the original study.

These definitions make explicit which aspects of trustworthiness
of a study we focus on and avoid the ambiguity caused by
the fact that “reproducible”, “replicable,” and “repeatable” have
very similar meaning in everyday language (Goodman et al.,
2016).

Applying the terminology of Goodman and colleagues to
computational neuroscience, we need to consider two types
of studies in particular: simulation experiments and advanced
analyses of experimental data. In the latter case, we assume that
the experimental data is fixed. In both types of study, methods
reproducibility amounts to obtaining the same results when
running the same code again; access to simulation specifications,
experimental data and code is essential. Results reproducibility,
on the other hand will require access to the experimental data for
analysis studies, but may use different code, e.g., different analysis
packages or neural simulators.

The lexicon proposed by Goodman et al. (2016) is an
important step out of the terminology quagmire in which
the active and fruitful debate about the trustworthiness of
research has been stuck for the past decade, because it sidesteps
confounding common language associations of terms by explicit
labeling (explicit is better than implicit; Peters, 2004). One can
only wish that it will be adopted widely so that the debate can
once more focus on scientific rather than language issues.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
approved it for publication.

ACKNOWLEDGMENTS

I am grateful to the reviewers for constructive criticism and
to Sharon Crook, Andrew Davison, and Robert McDougal for
discussions and comments on a draft of this manuscript. My
work was partly supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement
no. 720270 (HBP SGA1).

REFERENCES

Association for Computing Machinery (2016). Artifact Review and Badging.

Available online at: https://www.acm.org/publications/policies/artifact-review-

badging (Accessed November 24, 2017).

Baggerly, K. A., and Coombes, K. R. (2009). Deriving chemosensitivity from cell

lines: forensic bioinformatics and reproducible research in high-throughput

biology Ann. Appl. Stat. 3, 1309–1334. doi: 10.1214/09-AOAS291

Bollen, K., Cacioppo, J. T., Kaplan, R., Krosnick, J., and Olds, J. L. (2015). Social,

Behavioral, and Economic Sciences Perspectives on Robust and Reliable Science.

Arlington, VA: National Science Foundation. Available online at: https://

www.nsf.gov/sbe/SBE_Spring_2015_AC_Meeting_Presentations/Bollen_

Report_on_Replicability_SubcommitteeMay_2015.pdf (Accessed December

8, 2017).

Claerbout, J. F., and Karrenbach, M. (1992). Electronic documents give

reproducible research a new meaning. SEG Expanded Abstracts 11, 601–604.

doi: 10.1190/1.1822162

Crook, S., Davison, A. P., and Plesser, H. E. (2013). “Learning from the

past: approaches for reproducibility in computational neuroscience,” in

20 Years in Computational Neuroscience, ed J. M. Bower (New York,

NY: Springer Science+Business Media), 73–102. doi: 10.1007/978-1-4614-1

424-7_4

Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., and Stodden, V. (2009).

15 Years of reproducible research in computational harmonic analysis.Comput.

Sci. Eng. 11, 8–18. doi: 10.1109/MCSE.2009.15

Drummond, C. (2009). “Replicability is not reproducibility: nor is it good science,”

in Proceedings of the Evaluation Methods for Machine Learning Workshop at the

26th ICML (Montreal, QC). Available online at: http://www.site.uottawa.ca/~

cdrummon/pubs/ICMLws09.pdf (Accessed September 24, 2017).

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., et al.

(2015). Reproducibility of neuroimaging analyses across operating systems.

Front. Neuroinform. 9:12. doi: 10.3389/fninf.2015.00012

Goodman, S. N., Fanelli, D., and Ioannidis, J. P. A. (2016). What

does research reproducibility mean? Sci. Transl. Med. 8:341ps12.

doi: 10.1126/scitranslmed.aaf5027

Joint Committee for Guides in Metrology (2006). International Vocabulary of

Metrology – Basic and General Concepts and Associated Terms, 3rd Edn. Joint

Committee for Guides in Metrology/Working Group 2. Available online

at: https://www.nist.gov/sites/default/files/documents/pml/div688/grp40/

International-Vocabulary-of-Metrology.pdf (Accessed September 24, 2017).

Miller, J. N., and Miller, J. C. (2000). Statistics and Chemometrics for Analytical

Chemistry. 4th Edn. Harlow: Pearson.

Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M., et al.

(2017). Best practices in data analysis and sharing in neuroimaging using MRI.

Nat. Neurosci. 20, 299–303. doi: 10.1038/nn.4500

Patil, P., Peng, R. D., and Leek, J. T. (2016). A statistical definition for

reproducibility and replicability. bioRxiv. doi: 10.1101/066803. [Epub ahead of

print].

Peng, R. D. (2011). Reproducible research in computational science. Science 334,

1226–1227. doi: 10.1126/science.1213847

Frontiers in Neuroinformatics | www.frontiersin.org 3 January 2018 | Volume 11 | Article 7618

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1214/09-AOAS291
https://www.nsf.gov/sbe/SBE_Spring_2015_AC_Meeting_Presentations/Bollen_Report_on_Replicability_SubcommitteeMay_2015.pdf
https://www.nsf.gov/sbe/SBE_Spring_2015_AC_Meeting_Presentations/Bollen_Report_on_Replicability_SubcommitteeMay_2015.pdf
https://www.nsf.gov/sbe/SBE_Spring_2015_AC_Meeting_Presentations/Bollen_Report_on_Replicability_SubcommitteeMay_2015.pdf
https://doi.org/10.1190/1.1822162
https://doi.org/10.1007/978-1-4614-1424-7_4
https://doi.org/10.1109/MCSE.2009.15
http://www.site.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
http://www.site.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.1126/scitranslmed.aaf5027
https://www.nist.gov/sites/default/files/documents/pml/div688/grp40/International-Vocabulary-of-Metrology.pdf
https://www.nist.gov/sites/default/files/documents/pml/div688/grp40/International-Vocabulary-of-Metrology.pdf
https://doi.org/10.1038/nn.4500
https://doi.org/10.1101/066803
https://doi.org/10.1126/science.1213847
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Plesser Reproducibility vs. Replicability

Peters, T. (2004). PEP20—The Zen of Python. Available online at: https://www.

python.org/dev/peps/pep-0020/ (Accessed December 8, 2017).

Rougier, N. P., et al. (2016). R-words. Available online at: https://

github.com/ReScience/ReScience-article/issues/5 (Accessed September

24, 2017).

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F.

C. Y., et al. (2017). Sustainable Computational Science: The ReScience Initiative.

Available online at: https://arxiv.org/abs/1707.04393

Schrödinger, E. (1915). Zur Theorie der Fall- und Steigversuche an Teilchen mit

Brownscher Bewegung. Physik. Z. 16, 289–295.

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Plesser. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 4 January 2018 | Volume 11 | Article 7619

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://github.com/ReScience/ReScience-article/issues/5
https://github.com/ReScience/ReScience-article/issues/5
https://arxiv.org/abs/1707.04393
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 1

REVIEW
published: 16 April 2018

doi: 10.3389/fninf.2018.00018

Edited by:
Sharon Crook,

Arizona State University, United States

Reviewed by:
Georg Hinkel,

FZI Forschungszentrum Informatik,
Germany

Upinder S. Bhalla,
National Centre for Biological

Sciences, India

*Correspondence:
Lealem Mulugeta

lealem@insilico-labs.com
William W. Lytton

bill.lytton@downstate.edu

Received: 01 February 2018
Accepted: 29 March 2018

Published: 16 April 2018

Citation:
Mulugeta L, Drach A, Erdemir A,

Hunt CA, Horner M, Ku JP,
Myers JG Jr., Vadigepalli R and

Lytton WW (2018) Credibility,
Replicability, and Reproducibility

in Simulation for Biomedicine
and Clinical Applications

in Neuroscience.
Front. Neuroinform. 12:18.

doi: 10.3389/fninf.2018.00018

Credibility, Replicability, and
Reproducibility in Simulation for
Biomedicine and Clinical
Applications in Neuroscience
Lealem Mulugeta1* , Andrew Drach2, Ahmet Erdemir3, C. A. Hunt4, Marc Horner5,
Joy P. Ku6, Jerry G. Myers Jr.7, Rajanikanth Vadigepalli8 and William W. Lytton9,10,11*

1 InSilico Labs LLC, Houston, TX, United States, 2 The Institute for Computational Engineering and Sciences, The University
of Texas at Austin, Austin, TX, United States, 3 Department of Biomedical Engineering and Computational Biomodeling
(CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States, 4 Department of Bioengineering and
Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States, 5 ANSYS, Inc., Evanston,
IL, United States, 6 Department of Bioengineering, Stanford University, Stanford, CA, United States, 7 NASA Glenn Research
Center, Cleveland, OH, United States, 8 Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for
Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States, 9 Department
of Neurology, SUNY Downstate Medical Center, The State University of New York, New York, NY, United States,
10 Department of Physiology and Pharmacology, SUNY Downstate Medical Center, The State University of New York,
New York, NY, United States, 11 Department of Neurology, Kings County Hospital Center, New York, NY, United States

Modeling and simulation in computational neuroscience is currently a research
enterprise to better understand neural systems. It is not yet directly applicable to the
problems of patients with brain disease. To be used for clinical applications, there
must not only be considerable progress in the field but also a concerted effort to
use best practices in order to demonstrate model credibility to regulatory bodies, to
clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we
can learn lessons from long-standing practices in other areas of simulation (aircraft,
computer chips), from software engineering, and from other biomedical disciplines.
In this manuscript, we introduce some basic concepts that will be important in the
development of credible clinical neuroscience models: reproducibility and replicability;
verification and validation; model configuration; and procedures and processes for
credible mechanistic multiscale modeling. We also discuss how garnering strong
community involvement can promote model credibility. Finally, in addition to direct usage
with patients, we note the potential for simulation usage in the area of Simulation-Based
Medical Education, an area which to date has been primarily reliant on physical models
(mannequins) and scenario-based simulations rather than on numerical simulations.

Keywords: computational neuroscience, verification and validation, model sharing, modeling and simulations,
Simulation-Based Medical Education, multiscale modeling, personalized and precision medicine, mechanistic
modeling

Frontiers in Neuroinformatics | www.frontiersin.org 1 April 2018 | Volume 12 | Article 1820

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00018
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2018.00018
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00018&domain=pdf&date_stamp=2018-04-16
https://www.frontiersin.org/articles/10.3389/fninf.2018.00018/full
http://loop.frontiersin.org/people/523548/overview
http://loop.frontiersin.org/people/547796/overview
http://loop.frontiersin.org/people/234601/overview
http://loop.frontiersin.org/people/2277/overview
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 2

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

INTRODUCTION

One hallmark of science is reproducibility. An experiment that
cannot be reproduced by others may result from statistical
aberration, artifact, or fraud. Such an experiment is not credible.
Therefore, reproducibility is the first stage to ensure the
credibility of an experiment. However, reproducibility alone is
not sufficient. For example, an in vitro experiment is performed to
advance or aid the understanding of in vivo conditions. However,
the applicability of in vitro results to the living tissue may be
limited due to the artifact of isolation: a single cell or a tissue slice
extracted from its environment will not function in precisely the
way it functioned in situ. In medicine, animal models of a disease
or treatment are frequently used, but may not be credible due to
the many differences between the human and the monkey, rat, or
another animal that may limit the transfer of findings from one
species to another.

In the computational world, the credibility of a simulation,
model or theory depends strongly on the projected model
use. This is particularly true when translating a model from
research usage to clinical usage. In research, innovation and
exploration are desirable. Computer models are used to introduce
or explore new hypotheses, ideally providing a new paradigm for
experimentation. In this setting, the most important models may
in some cases be the less credible ones – these are the models that
stretch understanding by challenging the common view of how a
particular system works, in order to offer a paradigm shift. Here,
prima facie credibility is in the eye of the beholder, who is more
likely representing the views of the community – the dominant
paradigm.

In the clinical realm, by contrast, establishing credibility is
of paramount importance. For pharmaceuticals, credibility is
currently established through evidence-based medicine (EBM),
ideally through double-blind trials with large numbers of
patients. The downside of this statistical approach is that it
necessarily aggregates a large number of disparate patients to
achieve statistical significance. In some cases, this has resulted
in tragedy, as a subgroup with particular genetics has a fatal
response to a drug that is beneficial in the overall group (e.g.,
rofecoxib, brand-name Vioxx). As EBM gives way to precision
medicine, pharmaceutical credibility will be established in each
subgroup, or even at an individual level, to enhance safety.
However, to establish pharmaceutical reliability for personalized
medicine (precision with a subgroup of n = 1), a lack of
comparator precludes the use of data-mining by definition.
Simulations based on patient genetics and various levels of
epigenetics up through brain connectomics will then be the only
way to predict the response of an individual patient to a particular
treatment. Such patient simulation would provide a prediction of
the response of that patient’s unique physiodynamics to a therapy.
The credibility of such models will be essential.

In addition to pharmacotherapy, brain disease treatment also
utilizes other therapeutic modalities, ranging from neurosurgery
to the talk therapy of psychiatry and clinical psychology.
While the latter will likely remain beyond the range of our
modeling efforts, neurosurgery has already begun to benefit
from modeling efforts to identify locations and pathways for

epilepsy ablation surgery (Jirsa et al., 2017; Lytton, 2017; Proix
et al., 2017). Another set of therapeutic approaches that are
likely to benefit from modeling are the electrostimulation
therapies that are finding increased use in both neurology
and psychiatry, e.g., deep brain stimulation (DBS), transcranial
magnetic stimulation (TMS), transcranial direct/alternating
current stimulation (tDCS/tACS), and electroconvulsive therapy
(ECT) (Kellner, 2012). Neurorehabilitation will also benefit
from modeling to help identify procedures to encourage
neuroplasticity at locations where change will have the greatest
effect for relief of deficit.

In most respects, the issues of credibility, replicability,
reproducibility for computational neuroscience simulation are
comparable to those faced by researchers using simulation to
study other organ systems. However, the complexity of the
brain and several special features provide unique challenges.
As with modeling of other organ systems, the relevant length
scales range from molecular (angstrom) level up through tissue
(centimeter) levels. Many experiments extend from the lowest to
highest scales, for example evaluating performance on a memory
task as a drug modifies ion channel activity at the molecular
level. Compared to other organ systems, there is a particularly
broad range of temporal scales of interest: 100 microseconds of
sodium channel activation up to years of brain maturation and
learning. In addition to physical scales of the central nervous
system (CNS) itself, brain research includes further investigative
levels of cognition, information, and behavior. An additional
aspect of nervous system organization involves overlap between
scales, which prevents encapsulation of one scale for inclusion in
the higher scale. For example, spatiotemporal activity in apical
dendrites of neocortical pyramidal cells (subcellular level) are co-
extensive in both spatial and temporal scales with the scales of the
local network (supracellular level).

In this paper, we will focus on the many issues of model
credibility from a biomedical and clinical perspective. We will
use model here forward to mean a mathematical model, primarily
analyzed in silico via a simulation, which is the numerical
instantiation of a mathematical model on a computer. We will
identify explicitly in cases where we are discussing other types
of models: verbal models, animal models, physical models, etc.
Currently, there are still relatively few models of brain disease,
and those remain in the research domain, rather than being
practical clinical tools. Therefore, we are considering policy and
practice for a future clinical computational neuroscience, based
on the current uses of computational neuroscience in basic
biomedical research, and on the clinical usage of simulations
in other domains of medicine. In doing this, we will introduce
some basic concepts that are important in the development of
credible models: Reproducibility and Replicability; Verification
and Validation.

REPRODUCIBILITY AND REPLICABILITY

Replicability, here subsuming repeatability, is the ability to
achieve a fully identical result (Plesser, 2017). For example, in
the case of neuronal network simulation, a simulation has been

Frontiers in Neuroinformatics | www.frontiersin.org 2 April 2018 | Volume 12 | Article 1821

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 3

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

fully replicated when one can show that spike times, as well as
all state variables (voltages, calcium levels), are identical to those
in the original simulation. Replicability is a design desideratum
in engineering when one wants to ensure that a system being
distributed runs identically to a prototype system (Drummond,
2009; Crook et al., 2013; McDougal et al., 2016a).

Reproducibility, in contrast, is the ability of a simulation to be
copied by others to provide a simulation that provides the same
results (Crook et al., 2013; McDougal et al., 2016a). This will then
depend on what one considers to be a result, which will reflect the
purposes of the simulation and will involve some measures taken
on the output. Taking again the case of the neuronal network
simulation, a result might involve some direct statistical measures
of spiking (e.g., population rates), perhaps complemented by
the summary statistics provided by field potential spectra, likely
ignoring state-variable trajectories or their statistics.

Replicability and reproducibility are inversely related.
A turnkey system, provided on dedicated hardware or a
dedicated virtual machine, will run identically every time
and therefore be fully replicable. However, such a system
will not be reproducible by outsiders, and may in some
cases have been encrypted to make it difficult to reverse
engineer. Generally, the higher level the representation is,
the more readily other groups understand a simulation and
reproduce the results, but the less likely it is that they obtain
an identical result – lower replicability. Representations using
equations – algebra, linear algebra, calculus – are identical
worldwide and therefore can provide the greatest degree of
reproducibility by any group anywhere. However, reproducing a
simulation from equations is a laborious process, more difficult
than reproducing from algorithms, which is, in turn, more
laborious than reproducing from a declarative (e.g., XML)
representation. A dedicated package in the domain which
provides a declarative description of a simulation will be more
easily ported than general mathematical declarative description
for \dynamical systems. Even at the level of reproduction from
software code, differences in numerical algorithms used in
computer implementations will lead to somewhat different
results.

Different software representations also provide different levels
of difficulty in the task of reproducing a simulation by porting to
another language. The major innovation in this respects has been
the development and adoption of object-oriented languages such
as Java and Python. In particular, the use of object inheritance
allows the definition of a type (e.g., a cell) with a subsequent
definition of particular subtypes, where each type has parameter
differences that are easily found and can be clearly documented
by provenance.

Some difficulties with precise replicability of simulations are
common to many different simulation systems. In particular,
a model that uses pseudo-random numbers will not replicate
precisely if a different randomizer is used, if seeds are not
provided, or if randomizers are not handled properly when going
from serial to parallel implementations. One difficulty peculiar
to neural simulation is related to the strong non-linearities
(and numerical stiffness) associated with action potential spike
thresholding. Spiking networks are sensitive to round-off error; a

single time-step change in spike time will propagate to produce
changes in the rest of the network (London et al., 2010).

In general, specific simulation programs have enhanced
reproducibility by providing purpose-built software to solve the
particular problems of the computational neuroscience domain.
Typically, these packages couple ordinary differential equation
(ODE) solvers for simulating individual neurons with an event-
driven queuing system to manage spike event transmission to
other neurons in neuronal networks. These facilities are provided
by neuronal network simulators such as BRIAN (Goodman and
Brette, 2008), PyNN (Davison et al., 2008), and NEST (Plesser
et al., 2015), which allow spiking neurons to be connected in
networks of varying size. It should be noted that these simulators
are very different from the artificial neural networks used in
deep learning, which do not implement spiking neurons. Some
other packages also add the ability to do more detailed cellular
simulation for the individual neurons by adding the partial
differential equations (PDE) needed to simulate the internal
chemophysiology that complements the electrophysiology of
spiking – NEURON (Carnevale and Hines, 2006) and MOOSE
(Dudani et al., 2009) provide this additional functionality. Many
computational neuroscience simulations in are still carried out
using general-purpose mathematical software, e.g., Matlab (The
Mathworks, Inc., Natick, MA, United States); or by more general
computer languages such as FORTRAN, C, or C++, limiting
their reproducibility, reusability, and extensibility. However, it
should also be noted that the popularity of software also plays
a role. A language or package that is widely used will increase
the number of people that can easily contribute to developing or
utilizing the simulations.

Since computational neuroscience simulations are often
very large, extensibility to high-performance computing (HPC)
resources is also desirable and will enhance reproducibility.
Some current simulator tools offer a direct path to these larger
machines. NetPyNE, a declarative language built on top of
NEURON, provides a general description of a network that
can be run directly either on a serial processor or, via MPI
(message passing interface), on an HPC resource (Lytton et al.,
2016). The Neuroscience Gateway Portal provides a shared, NSF-
supported graphical resource that simplifies HPC for a variety
of simulators, including NetPyNE, NEURON, NEST, BRIAN,
and others, avoiding the need for the user to know MPI usage
(Carnevale et al., 2014).

Hypothetically, journal articles permit reproducibility using
equations given in the Methods section. Often, however, full
details are not provided due to the enormous complexity
of information associated with many different cell types,
and complex network connectivity (McDougal et al., 2016a).
Furthermore, parameters and equations may be given for one
figure, but not for all figures shown. Journal articles may also
have typographical or omission errors. And even when the
document is complete and entirely without error, errors are likely
to creep in when reproduction is attempted, and the model is
typed or scanned back into a computer. For all of these reasons,
an electronic version of a model is more accurate and more
immediately usable than a paper copy. Some journals, and many
individual editors or reviewers, require software sharing as part

Frontiers in Neuroinformatics | www.frontiersin.org 3 April 2018 | Volume 12 | Article 1822

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 4

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

of the publication process. However, some authors resist this
mandate, desiring to retain exclusive access to their intellectual
property.

Databases of models and parts of models have become
important and have encouraged reproducibility in computational
neuroscience (Gleeson et al., 2017). Additional value is added
by utilizing formal model definitions such as ModelML,
CellML, NeuroML, VCML, SBML (Hucka et al., 2003; Zhang
et al., 2007; Lloyd et al., 2008; Moraru et al., 2008; Gleeson
et al., 2010; Cannon et al., 2014). Major databases are being
provided by the Human Brain Project, the Allen Brain Institute,
the International Neuroinformatics Coordinating Facility,
and others. Other databases include the NeuroMorpho.Org
database of neuronal morphologies, the ModelDB database of
computational neuroscience models (see this issue) in a variety
of simulation packages and languages, and the Open Source
Brain database for collaborative research (Gleeson et al., 2012,
2015; Gleeson et al., unpublished). We discuss these resources
further in the section discussing the “Role of the Community.”

A recent initiative to encourage reproducibility in science is
the new ReScience Journal (rescience.github.io), which publishes
papers that replicate prior computational studies. By hosting the
journal on GitHub, new implementations are directly available
alongside the paper, and alongside any ancillary materials
identifying provenance or providing documentation. Recently,
the classic Potjans-Diesmann cortical microcircuit model was
ported from NEST to BRIAN, reproducing and confirming the
primary results (Cordeiro et al., unpublished).

GOOD PRACTICES CONTRIBUTING TO
SIMULATION CREDIBILITY

Verification and Validation (V&V)
Verification
Verification and validation (V&V) help users demonstrate the
credibility of a computational model within the context of its
intended use. This is accomplished by assessing the quantitative
and qualitative aspects of the model that influence model
credibility. The process of establishing the model’s correctness
and its capability to represent the real system is accomplished
through the processes of verification, validation, uncertainty
propagation, and sensitivity analysis. Of these, V&V represent
the most well-known, and potentially confused, aspects of model
assessment.

Computational models may be implemented using open-
source or commercial (off-the-shelf) software, custom (in-house)
code, or a combination of the two (modified off-the-shelf
software). Verification assures that a computational model
accurately represents the underlying mathematical equations
and their solution on a specific code platform. Verification
also emphasizes confirmation of parameter specification
and the accurate translation of model data from model
data sources into the model application. Full verification
for all possible inputs is technically not possible due to
the halting problem. Nonetheless, software implementation

of model concepts should always include some level of
code verification and, to the extent possible, follow best
management practices and established quality-assurance
processes. In the case of commonly used simulation packages,
verification will be the responsibility of the platform
developer and not of the user, but unanticipated usage can
bring verification concerns back to the fore in particular
cases.

Verification can be divided into two sequential steps:
code verification and calculation verification. Code verification,
initially performed by the software platform developer provides
evidence that the numerical algorithms implemented in the
code are faithful representations of the underlying physical or
conceptual model of the phenomenon. Code verification should
be repeated by the user in the case of novel usage of the simulator.
Code verification establishes the reliability of the source code in
representing the conceptual model, including relevant physics,
for the problem. Ideally, benchmark problems with analytical
solutions are employed to ensure that the computer code
generates the correct solution at the specified order of accuracy.
For example, a common reference in computational fluid
dynamics (CFD) is laminar flow in a straight pipe with a circular
cross-section, whose analytical solution is well-known (Bird et al.,
1960; Stern et al., 2006). CFD modeling techniques are being
used to provide insight into flow patterns and rupture-risk of
cerebral artery aneurysms (Campo-Deaño et al., 2015; Chung and
Cebral, 2015) and for interventional radiology planning (Babiker
et al., 2013). Unfortunately, no analytic solutions are available
for most computational neuroscience applications. Therefore,
one is restricted to comparing results from one numerical
approximation to that of another, without reference to any
ground truth (Brette et al., 2007).

Next, calculation verification aims to estimate numerical
and logical errors associated with the conceptual model
implementation, i.e., the computational model representing the
target application. Going back to the laminar pipe flow example,
one would specify geometry, material properties, and loading
conditions to match the problem at hand. This typically results
in a problem that no longer has an analytical solution but
must be solved numerically. Various aspects of the numerical
representations, particularly discretization, are investigated and
refined until the model is deemed to be accurate within a
pre-specified tolerance. Upon completion of the calculation
verification step, the developer has established (and should
document) a bug-free implementation of the model concepts
with reasonable parameter values.

One of aspect of verification that is often overlooked in the
computational science community is the testing of model scripts
and binary codes. Researchers tend to focus their attention on
V&V in the context of overall program performance, but omit
testing the functionality of individual software modules. Module
verification can be implemented as a suite of tests which verify
the functionality of individual functions and modules (unit tests)
and their integration within the system (integration tests). It is
common practice to automate the testing procedures using an
automated testing framework to perform these tests after each
version update.

Frontiers in Neuroinformatics | www.frontiersin.org 4 April 2018 | Volume 12 | Article 1823

http://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 5

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

Validation
Everyday vernacular often equates or confuses the terms
“verification” and “validation.” As described in the previous
section, verification seeks to ensure the quality of the
implementation of the conceptual model. Meanwhile,
validation seeks to assess how well the conceptual model
and its implementation on a specified code platform represent
the real-world system for a defined application. More rigorously
stated, validation is an assessment of the degree to which the
model and simulation is an accurate representation of the
response of the real system within the intended context of use.
In this case, validation is a comparative process that defines a
qualitative or quantitative measure of how the model differs from
an appropriate experimental or other data source – the referent,
generally a series of experiments in our context. Validation also
helps to ensure that the computational model has sufficient rigor
for the context of use, although a more rigorous or more precise
model is not necessarily more credible.

The definition of an appropriate referent is a critical aspect
of model validation. Ideally, a validation referent consists of
data obtained from a system with high similarity to the system
being modeled in an environment similar to that of the
target system. In clinical computational neuroscience, this is
often difficult since data is obtained from a rodent (not high
similarity to human), and sometimes from a slice (environment
not similar to in vivo situation). The data used should be
considered to be high quality by the model end-user community,
and should represent data not used in model development.
This separates design data from testing data (also called fit
vs. benchmark data, or calibration vs. validation data). Model
limitations due to inadequacies of the validation referent should
be communicated. Practitioners should also keep in mind that
a model validation, or the understanding of the variability of
the model in predicting real world response, is only valid in the
area of the referents used in the validation process, as illustrated
by the Validation Domain (Figure 1). The Application Domain
may be larger than the Validation Domain; it establishes the
range of input and output parameters relevant to the context
of use of the computational model. As the application of the
model deviates from the situational context described by the
referent, the influence of the model validation information will
also change.

In most cases, the more quantitative the comparison, the
stronger the case that a model and simulation is contextually
valid. Organizations such as the American Society of Mechanical
Engineers have developed standards to guide the model
practitioner in performing successful model validation activities
for specific application domains1. These comparisons range
from qualitative, graphical comparative measures to quantitative
comparative measures relying on statistical analysis of referent
and model variances, the latter obtained over a wide range of
input parameter variation (Oberkampf and Roy, 2010). Ideally,
the end-user community and regulatory agencies will play a role
in assessing the adequacy of the validation based on the context

1https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=
100108782

of an expected application and the influence the model has on
critical decision-making.

Aspects of Good Practice for Credibility
Software Aspects
The credibility of simulation results requires the reliability of
simulation protocols and software tools. Good software practices
include version control; clear, extensive documentation and
testing; use of standard (thoroughly tested) software platforms;
and use of standard algorithms for particular types of numerical
solutions. It is also desirable to rely on existing industry
standards and guidelines and to compare simulation results
against competing implementations. To maintain the highest
level of credibility, one would establish and follow these practices
at every step of the development, verification, validation, and
utilization of the simulation tools.

Version control is an approach for preserving model
development and use histories, which can also be useful for
tracing the provenance of model parameters and scope of
applicability. There exists a large number of version control
systems (VCS) which provide on-site, remote, or distributed
solutions (e.g., Git, SVN, and Mercurial). In general terms,
these systems provide tools for easy traceability of changes
in individual files, attribution of modifications and updates to
the responsible author, and versioning of specific snapshots
of the complete system. Use of a VCS is recommended for
both development (troubleshooting of bugs) as well as the
day-to-day use of the modeling tools (monitoring of modeling
progress).

Good documentation can be aided by the rigorous use of a
detailed, dated electronic laboratory notebook (e-notebook). The
e-notebook can provide automatic coordination with software
versions and data output. E-notebooks are supported through
various software packages, notably the Python Jupyter notebook
and the Emacs org-mode notebook (Schulte and Davison, 2011;
Stanisic et al., 2015; Kluyver et al., 2016). A major advantage
over the traditional paper notebook is that the e-notebook can
be directly integrated into simulation workflow, and will also
provide direct pointers to simulation code, output, figures, data,
parameter provenance, etc. This then allows later reviewers to
identify all these links unambiguously. However, compared with
a paper notebook, the e-notebook is at greater risk of falsification
due to later rewriting. This risk can be reduced by including
the e-notebook in the VCS, and can be eliminated by using
blockchain technology (Furlanello et al., 2017). An e-notebook
will also include informative records of model development and
implemented assumptions; hypotheses and approaches to testing
the hypotheses; model mark-up; detailed descriptions of the input
and output formats; and simulation testing procedures. Going
beyond the e-notebook, but also linked through it, the developer
may add case studies, verification problems, and tutorials to
ensure that other researchers and practitioners can learn to use
the model.

It should be noted that even models developed following
the aforementioned guidelines will have application bugs and
usability issues. Thus, it is valuable to also cross-verify simulation
results using alternative execution strategies and competing

Frontiers in Neuroinformatics | www.frontiersin.org 5 April 2018 | Volume 12 | Article 1824

https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100108782
https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100108782
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 6

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

FIGURE 1 | Validation domain of a computational model for a range of input parameters and outputs (system responses). Red diamonds represent the validation set
points, where comparisons between the computational model and applicable referents were conducted by discrete simulations performed in each referent
sub-domain. The range of parameters evaluated establishes the Validation Domain (green ellipse), which will define the extent of the Application Domain (large blue
ellipse) where model performance has established credibility. Applications of the model outside of the Application Domain lack validation and have lesser credibility.

model implementations – e.g., run a simulation using BRIAN
and NEST (Cordeiro et al., unpublished) – to reduce the chance
of obtaining spurious simulation results. In addition to the
inter-model verification, simulation process should be governed
by generally applicable or discipline-specific standard operating
procedures, guidelines, and regulations.

Developing Credible Mechanism-Oriented Multiscale
Models: Procedure and Process
In science, an explanation can be inductive, proceeding from
repeated observation. Ideally, however, explanation precedes
prediction, permitting deductive reasoning (Hunt et al., 2018).
Simulation of a mechanistic multiscale model provides an explicit
way of connecting a putative explanatory mechanism to a
phenomenon of interest.

Credibility and reproducibility can be enhanced by taking note
of the many factors and workflows required to build a credible
simulation to be used in a clinical application. One of these, often
overlooked, is the role of exploratory (non-credible) simulations
in building credible simulations. We would argue that most of the
simulations that have been done in computational neuroscience
are exploratory, and that we can now begin winnowing and
consolidating these to create credible simulations for clinical
application.

Unfortunately, the problems in biology and particularly
in neuroscience are characterized by (1) imprecise, limited
measures – for example, EEG measures 6 cm of cortex at once
(Nunez and Srinivasan, 2005); (2) complex observations whose
relevance is sometimes unclear – there is no broad agreement
on the relevance of particular bands of brain oscillations
(Weiss and Mueller, 2012); (3) sparse, incommensurable and
sometimes contradictory supporting information – for example,

the difficulties of connecting microconnectomic (<1 mm; axon
tracing, dual impalement, etc.) with macroconnectomic (1 cm;
functional magnetic resonance imaging, fMRI) measures; and
(4) high degree of uncertainty – parameter values obtained
from brain slice work may differ from in vivo values. These
limitations (left of ranges in Figure 2) contrast with the more
solid information, concepts, observables and lower uncertainty
associated with “classical” engineering of man-made devices such
as computers, cars, and aircraft.

Model development is difficult, involving the need to
consider and consolidate a large variety of factors from

FIGURE 2 | Spectra to characterize biological aspects of interest. Classical
engineering problems lie at the right side of each range, working with precise
measures, strong expectations, detailed information and low uncertainty.
Unfortunately, most neuroscience problems lie far to the left with weak
measures, unclear phenomenology, sparse information and high uncertainty.

Frontiers in Neuroinformatics | www.frontiersin.org 6 April 2018 | Volume 12 | Article 1825

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 7

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

biology, engineering, mathematics, and design under the many
constraints due to the limitations mentioned above. We have
identified a set of procedures for the building of credible
simulations, breaking out the many sub-workflows and processes
involved (Figure 3). One can spend years building tools and
running exploratory simulations that only lay the groundwork
for future credible models. Nonetheless, it is important not to
lose sight of the goal, which is to explain brain phenomenology at
one or more levels of description: electrical rhythms, movement,
behavior, cognition, etc.

The first task is to specify phenomena to be explained
(Figure 3b – Observed Phenomenon). From this perspective,
potentially relevant biological aspects are then organized
together with relevant information and data into incipient
explanations (Figure 3c – Descriptions and Explanations). In
the computational neuroscience community, there are multiple
perspectives regarding what information is to be considered

FIGURE 3 | Mechanistic multiscale modeling process. (a) Causal explanation
to be discovered. (b) Observables of phenomena to be explained. (c) Process
(workflow) to identify and organize related information into descriptions; this
process will involve simulation. (d) Meta-modeling workflows required for
defining the extent of the final model. (e) Credible simulation which matches
target phenomenon within some tolerance.

relevant. For example, some argue that dendritic morphology
and the details of ion channels are critical for understanding
cortical networks (Amunts et al., 2017), while others consider
that one need only consider simplified spiking cells (Diesmann
et al., 1999; Potjans and Diesmann, 2014; Cain et al., 2016),
and still others that it is best to work with high-level dynamical
representations of populations (Shenoy et al., 2013) or mean-field
theory (Robinson et al., 2002). Indeed all of these perspectives can
be regarded as part of the explanatory modeling that will find its
way into new concepts of (1) what is considered to be a relevant
observation or measurement (c to b in Figure 3) and (2) what will
be considered to be the form of an eventual causal explanation
(c to a). Development of this incipient explanation will involve
establishing mappings and drawing analogies between features of
the explanation and particular measurements. These mappings
and analogies may then be extended to provide working
hypotheses and to actual preliminary biomimetic simulations for
the eventual causal explanations.

A set of additional considerations (Figure 3d – Numerics and
Specifications) provide the bridge from the exploratory activities
(Figure 3c – Descriptions) to final credible models of (Figure 3e –
Software). Although illustrated toward the bottom, these aspects
of project formulation should be considered from the start as
well. In computational neuroscience, potential use cases are still
being developed and differ considerably across the four major
clinical neuroscience specialties. Use cases, and data availability,
will identify phenomena to be considered. For example, access
to electroencephalography (EEG), but not electrocorticography,
changes not only the type of software to be developed, but also the
types of explanations to be sought. Use cases will also need to be
organized based on expectations, separating near-term and long-
term needs. New computational neuroscience users, use cases,
and applications will arise in other specialties as they consider the
innervation of other organs (Barth et al., 2017; Samineni et al.,
2017; Vaseghi et al., 2017; Ross et al., 2018).

While identification of users and use cases remains
relatively underdeveloped in computational neuroscience,
the development of simulation tools is quite sophisticated. The
need for multialgorithmic as well as multiphysics simulation
has required that simulation platforms combine a variety of
numerical and conceptual techniques: ODEs, PDEs, event-
driven, graph theory, information theory, etc. Simulation
techniques have been developed over more than a half-century,
starting with the pioneering work of Hodgkin and Huxley (1952),
Fitzhugh (1961), Rall (1962), and others. Today, we have a large
variety of simulators with different strengths (Carnevale and
Hines, 2006; Brette et al., 2007; Davison et al., 2008; Goodman
and Brette, 2008; Bower and Beeman, 2012; Plesser et al., 2015;
Tikidji-Hamburyan et al., 2017) that can be used individually or
in combination, cf. MUSIC (Djurfeldt et al., 2010).

During the final stage of credible model development
(Figure 3e), we demonstrate that the model provides the desired
outputs to represent observations (e to b). A typical requirement
is that simulation outputs agree with target phenomenon
measurements within some tolerance. Since the simulation
system will be multi-attribute and multiscale, it will at the very
least begin providing mechanism-based, causal understanding

Frontiers in Neuroinformatics | www.frontiersin.org 7 April 2018 | Volume 12 | Article 1826

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 8

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

across measures. To the extent that the model is truly biomimetic,
direct mappings will exist to specific biological counterparts –
voltages, spike times, field potential spectra, calcium levels, or
others.

Although credible software appears to be the end of the
road, actual practice will require that the resulting software
system undergoes many rounds of verification, validation,
refinement, and revision before even being released to users.
From there, continued credibility requires continuing work
on documentation, tutorials, courses, bug reports and bug
fixes, requested front-end enhancements, and identified backend
enhancements.

ROLE OF THE COMMUNITY

Community involvement is important to establish the credibility
of the modeling and simulation process, and of the models
themselves. The peer-review publication process serves as a
traditional starting point for engaging the community. However,
sharing of models, along with the data used to build and
evaluate them, provides greater opportunities for the community
to directly assess credibility. The role of sharing models and
related resources has been acknowledged in the neurosciences
community (McDougal et al., 2016a; Callahan et al., 2017).
Related resources for sharing include documentation of the
model (commonly provided in English) and implementation
encoded in its original markup or code. With access to the model
and its associated data and documentation, interested parties can
then assess the reproducibility and replicability of the models and
the simulation workflow first-hand. Further, reuse of the models
and extensions of the modeling and simulation strategies for
different applications can reveal previously unknown limitations.
These various community contributions help build up the
credibility of a model.

It is also important to note the value of cross-community
fertilization to establish a common ground for credible modeling
and simulation practices, to conform to and evolve standards
that promote a unified understanding of model quality. Such
standards enable individuals to easily exchange and reuse a
given model on its own, or in combination with other models.
Especially in multi-scale modeling, the ability to trust and build
upon existing models can accelerate the development of these
larger-scale efforts. Organizations such as the Committee on
Credible Practice for Modeling and Simulation in Healthcare
are leading efforts to establish such standards (Mulugeta and
Erdemir, 2013).

Most community involvement in computational neuroscience
has come through the establishment of databases and other
resources that have encouraged submissions from the overall
community of researchers. For example, the Scholarpedia
resource established by Izhikevich and collaborators has hosted
articles on computational neuroscience concepts and techniques
that have been used to share concepts, modeling techniques,
and information about particular modeling tools (Gewaltig
and Diesmann, 2007; Wilson, 2008; Seidenstein et al., 2015).
The Open Source Brain project provides a central location

for collaborators working on modeling the nervous system
of particular brain areas or of whole organisms, notably the
OpenWorm project for modeling the full nematode nervous
system (Szigeti et al., 2014). The Human Brain Project, an
EU effort, has established a number of “Collaboratories,” web-
accessible platforms to curate models and conduct simulations,
to encourage community involvement in coordinated projects
(Amunts et al., 2017). One of these projects aims to identify
the parameters underlying individual synaptic events recorded
in voltage clamp experiments (Lupascu et al., 2016). The Allen
Brain Institute, another large modeling and data collection center,
shares all results with the community, even before publication.
Most of the major simulator projects encourage contributions
from the community to provide either simulator extensions or
additional analytic tools. For example, the SenseLab project hosts
a SimToolDB alongside ModelDB for sharing general simulation
code (Nadkarni et al., 2002). ModelDB itself is a widely used
resource which specifically solicits model contributions and then
provides a starting point for many new modeling projects that
are extensions or ports of existing models (Peterson et al., 1996;
McDougal et al., 2016b).

The above databases are used to provide completed models
that are designed to be stand-alone but can also be used as
components of larger models. By contrast, detailed neuron
morphologies and ion channel models are generally only used as
starting points for other models to build models at higher scales.
Examples of these databases include the NeuroMorpho.Org
database of neuronal morphologies and the Channelpedia
database of voltage-sensitive ion channels (Ascoli et al., 2007;
Ranjan et al., 2011).

The availability of these valuable resources is a testament to
the successful engagement of the computational neuroscience
community. A coming challenge will be to provide mechanisms
for the discovery and selection of appropriate models for defined
contexts among the existing hundreds of models. Here again,
community involvement can play a critical role by providing the
feedback and assessments of a model and its credibility to aid
others in deciding whether to, or how to, re-use a model or part
of a model.

USE OF SIMULATION IN MEDICAL
EDUCATION

Simulation-Based Medical Education (SBME) is rapidly growing,
with applications for training medical students, and residents
(Jones et al., 2015; Yamada et al., 2017). However, the use of the
word simulation in SBME differs from our usage above. SBME is
referring to simulated reality: paper exercises based on protocols;
mannequins; re-enactments with live actors for physical exams or
major disasters; detailed computer-based virtual reality training,
similar to video games. Currently, even the most advanced
mannequins and computer-generated simulations have very
limited capacity to produce a realistic focal neurological deficit or
combination of signs and symptoms. Design and implementation
of SBME tools is especially challenging in brain disease due to
the complexity of the brain, and the variety of its responses to

Frontiers in Neuroinformatics | www.frontiersin.org 8 April 2018 | Volume 12 | Article 1827

http://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 9

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

insult (Chitkara et al., 2013; Ermak et al., 2013; Fuerch et al., 2015;
Micieli et al., 2015; Konakondla et al., 2017). This complexity
suggests that back-end multiscale modeling would be particularly
valuable in SBME development for brain disease.

Mechanistic multi-scale modeling has been used in
both pre-clinical and clinical education to explain disease
causality. For example, a demyelination simulation, relevant
to multiple sclerosis and Guillain-Barre syndrome, is available
that demonstrates both the effects of demyelination on
action potential propagation and the consequent increase in
temperature sensitivity (Moore and Stuart, 2011). Although
this model has not been linked directly to a hands-on SBME
activity, it could be linked to a training activity for Nerve
Conduction Studies. Another promising area of recent
research interest is in the area of neurorobotics, where
robotic arms have been linked to realistic biomimetic
simulations in the context of neuroprosthetics (Dura-
Bernal et al., 2014; Falotico et al., 2017). In the clinical
neurosciences, epilepsy is one of the most successfully
modeled disorders in neurology and neurosurgery (Lytton,
2008). Jirsa et al. (2017) have pioneered models of individual
patients prior to epilepsy surgery – see Section “Personalized
Medicine Simulation for Epilepsy.”. These simulations could
now be extended into training protocols for neurology
and neurosurgery residents, offering an opportunity
for melding educational simulation with computational
neuroscience.

Current SBME efforts are focused on mannequins. A generic
mannequin was used to train medical students to manage
differential diagnoses and emergency procedures for status
epilepticus and acute stroke (Ermak et al., 2013). The mannequin
used was not capable of mimicking visible, or electrographic,
signs of stroke or seizures. Instead, students were given chart data
and simulation actors playing family member. Such simulations
necessarily fall short on one aspect of effective implementation of
SBME (Issenberg et al., 2005): the degree to which the simulation
has a “real-life” feel.

In the future, life-like and highly immersive SBME will
facilitate the learning of dangerous medical procedures, including
emergencies and recovery from mistakes, in the way that is
currently done with simulators used to train pilots, astronauts
and flight controllers. Ideally, neurology and neurosurgery
(and eventually psychiatry and physiatry) SBME systems will
produce learned skills that are transferable to patient care. The
predictive validity of the simulation could then be assessed by
comparing performance measured under simulation conditions
with corresponding measurements made on real patients
(Konakondla et al., 2017). However, the skill level of a learner
in the simulator should not be taken as a direct indication of
real-life skill performance. In one example from flight training,
a particular technique (full rudder), which served to “game” the
simulator, resulted in a fatal accident due to tail separation when
used in real life (Wrigley, 2013).

An example of SBME in neurosurgical training is the Neuro-
Touch surgical training system developed by the National
Research Council of Canada (Konakondla et al., 2017). The
systems is built around a stereoscope with bimanual procedure

tools that provide haptic feedback and a real-time computer-
generated virtual tissue that responds to manipulation. As the
surgeon is working through a surgical scenario, the simulator
records metrics for detailed analysis to develop benchmarks for
practitioners at different stages of training.

The Neurological Exam Rehearsal Virtual Environment
(NERVE) virtual-patient SBME tool was developed to teach
1st- and 2nd-year medical students how to diagnose cranial
nerve deficits (Reyes, 2016). Educational results were validated
using questionnaires designed for virtual patient simulators
(Huwendiek et al., 2014). An interesting future extension would
be to provide an underlying simulator that would take account
of the many complex neurological deficits found in patients due
to the anatomical confluence of tracts in the brainstem. Such a
simulator would be useful for neurology residents as well as for
medical students.

To advance both the technologies and methodologies applied
in SBME, the Society for Simulation in Healthcare (SSH)
recently established the Healthcare Systems Modeling and
Simulation Affinity Group. The Committee on Credible Practice
of Modeling and Simulation in Healthcare (Mulugeta and
Erdemir, 2013) has been collaborating with the SSH community
by providing guidance on how to design and implement
explicit multiscale computational models into traditional SBME
systems. Additionally, the Congress of Neurological Surgeons
has formed a Simulation Committee to create simulations
for resident education (Konakondla et al., 2017). The US
Food and Drug Administration (FDA) and the Association for
the Study of Medical Education have also been working to
publish standards and guidelines for regulatory submissions
involving computational models and simulations for healthcare
applications (Hariharan et al., 2017).

USE OF MODELING IN CLINICAL
DOMAINS OF BRAIN DISEASE

Simulations in the clinical neuroscience domain have largely
focused on accounting for the neural activity patterns underlying
brain disease. Testing the predictions arising from the simulation
is dependent on technological advances in neuromodulation,
pharmacology, electrical stimulation, optogenetic stimulation,
etc. Neuropharmacological treatment is systemic, with effects
wherever receptors are found, often peripherally as well as
centrally. Although targeted treatment with an implanted
cannula is possible, it is not widely used clinically. By contrast,
electrical stimulation can be highly targeted with a local
placement of electrodes. Development of closed-loop systems
and devices for brain stimulation (Dura-Bernal et al., 2015),
are currently being used and show promise in treating a wide
range of neurological diseases and disorders including Parkinson,
depression, and other disorders (Johansen-Berg et al., 2008; Shils
et al., 2008; Choi et al., 2015). Non-targeted electrostimulation
using transcranial electrodes is also being widely used but
remains controversial, and lacks precise clinical indications
(Lefaucheur et al., 2014; Esmaeilpour et al., 2017; Huang et al.,
2017; Lafon et al., 2017; Santos et al., 2017). Consideration is also

Frontiers in Neuroinformatics | www.frontiersin.org 9 April 2018 | Volume 12 | Article 1828

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 10

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

being given to future use of optogenetic stimulation therapies
that would offer still greater precision compared to electrical
stimulation – targeting not only a particular area but a particular
cell type or set of cell types within that area (Vierling-Claassen
et al., 2010; Kerr et al., 2014; Samineni et al., 2017). All such
stimulation protocols require identification of suitable, if not
necessarily optimal, ranges of parameters, e.g., strength, duration,
frequency, waveform, location, iterations, schedule, reference
activity, etc. It is not generally feasible to evaluate this large and
high-dimensional stimulus parameter space empirically through
experimentation. Hence, stimulation development would benefit
from the extensive explorations possible using simulation of the
response of micro- and macro-scale neural circuits in the brain,
potentially in patient-specific fashion.

Successful application of models in the clinical domain
will in future depend on the use of credible practices to
develop, evaluate, document and disseminate models and
simulations, using the principles outlined above. Nonetheless,
clinical applications will also always need to be verified and
validated by in a clinical before being utilized. At present, studies
have been done in the absence of standards for computational
neuroscience models. The current manuscript is designed in
part to continue the discussion about the development of
such standards. Meanwhile, clinically relevant studies have been
performed with varying degrees of adherence to engineering
best-practices. Here, we briefly discuss two such studies, noting
adherence to such practices and where investigators may have
fallen short.

Simulation of Multi-Target Pharmacology
We first consider a mechanistic multiscale model of multi-
target pharmacotherapy for disorders of cortical hyperexcitability
(Neymotin et al., 2016). The study assessed hyperexcitability in
an exploratory manner. They did not identify a single clinical
context. Rather, they left the study open for exploration of cortical
activation in both dystonia and seizures.

The multiscale model included molecular, cellular, and
network scales, containing 1715 compartmental model neurons
with multiple ion channels and intracellular molecular dynamics.
Data used to develop the model was taken from a large number of
sources including different species, different preparations (slice,
cell culture, in vivo, ex vivo), different age animals, different
states, different conditions. None of the data was taken from
the clinical disorders in question due to limitations of human
experimentation. As the model lacked a description of the motor
output, the simulations could not be systematically evaluated
in the context of dystonia. Beta activation in the cortex was
used as a surrogate biomarker to evaluate whether simulations
could account for activity patterns relevant to dystonia. However,
as with many brain diseases, there is no established, clinically
validated biomarker for dystonia. Additionally, the model
lacked representations of spinal cord or limb, as well as many
pharmacological parameters, particularly with respect to the role
of neuromodulators (known unknown), brain states (less known
unknown) and metabolic parameters.

The simulations were able to reproduce the target patterns
of heightened cortical activity. The corresponding pathological

parameter sets were identified by independent random variations
in parameters. These simulations demonstrated degeneracy,
meaning that there were many combinations of parameters that
yielded the pathological syndrome. The primary result was that
no individual parameter alteration could consistently distinguish
between pathological and physiological dynamics. A support
vector machine (SVM), a machine learning approach, separated
the physiological from pathological patterns in different regions
of high-dimensional space, suggesting multi-target routes from
dystonic to physiological dynamics. This suggested the potential
need for a multi-target drug-cocktail approach to intervening in
dystonia.

Several aspects of best-practices were utilized in this study.
Dissemination: The model was disseminated via publication
and meeting presentations with the code made available via
ModelDB resource (reference #189154). Documentation: Limited
documentation was also made available at a level conforming
to ModelDB requirements, consistent with practices accepted by
the computational neuroscience community. Provenance: Due
to the nature of the clinical domain, parameter provenance
was partial; details of parameter sources were included in the
paper. Replicability: Model replicability was tested by ModelDB
curators, but was not tested directly by the manuscript reviewers.
Reproducibility: There have not yet been any third-party studies
reproducing the model. There are unexploited opportunities
to compare the model with alternative implementations, for
example by considering simpler modeling formalisms for single-
neuron activity. The credibility of the simulations along with
insights derived from the results would be enhanced by
follow-on work that reproduces the simulations using similar
or alternative implementations. Validation: The current lack
of an adequate biomarker for dystonia limits the ability to
validate this study in the future. Verification: The NEURON
simulation platform was used in this study. It has been
vetted both internally and in comparison to other simulators
(Brette et al., 2007). Versioning: The Mercurial VCS was used
to track parameter variations and match to corresponding
simulations.

Personalized Medicine Simulation for
Epilepsy
As a contrast to above examination of the credibility practices
as applicable to a mechanistic multiscale model, we considered
these issues in the context an individualized phenomenological
model of seizure propagation by Proix et al. (2017), implemented
using The Virtual Brain platform (Sanz-Leon et al., 2013). The
study was aimed at demonstrating that patient-specific virtual
brain models derived based on information from diffusion
MRI technique have sufficient predictive power to improve
diagnosis and surgery outcome in cases of drug-resistant
epilepsy. Data from individual patient tractography and EEG
was utilized to parameterize each individual model separately.
The diffusion MRI-based connectivity observed between the
parcellated brain regions in each individual was used to
create patient-specific connectivity matrices that related distinct
autonomous oscillators (“Epileptors”) at each brain region. The
resultant patient-specific virtual brain model was evaluated for

Frontiers in Neuroinformatics | www.frontiersin.org 10 April 2018 | Volume 12 | Article 1829

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 11

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

its consistency in predicting seizure-like activity patterns in that
patient.

Dissemination: The model and the results were disseminated
as part of the published manuscript as well as through
conference presentations and posters. Documentation: The
platform is well documented. Internal documentation of
individual models for use by neurosurgeons may be available
but was not publically available, perhaps for reasons of patient
confidentiality. Provenance: Provenance of connectivity data
from individual patients was made clear. The Epileptor model
is a phenomenological description of oscillatory patterns of
activity in a bulk tissue (neural mass model); hence, there
are no explicit parameters or variables that directly arise from
specific molecular, cellular and metabolic pathways. Replicability:
While the manuscript was peer-reviewed, it is not readily
apparent if the model was tested directly in simulations by the
manuscript reviewers. Reproducibility: Virtual Brain provides
a particular dynamical formalism based on bulk activity. It
would be interesting to see if alternative model formalisms
that incorporate details at cellular scales would produce
similar results. Validation: Alternative connectivity matrices
and weightings were considered based on data from control
subjects, shuffling the data, changing the weights while preserving
the topology of the connectivity, and log-transformation. The
authors demonstrated that prediction of seizure patterns was best
when the patient-specific topology of the connectivity matrix
was utilized. Verification: The study considered alternative
models based on fast coupling, no time-scale separation, and
a generic model that shows saddle-node bifurcation. Based on
the simulations considering these alternative models, the authors
concluded that weak coupling is necessary for the predictions
on the recruited networks. The Virtual Brain platform has
undergone considerable code testing over the years. Versioning:
The platform is made available in a public repository using Git.

ACTIONABLE RECOMMENDATIONS
AND CONCLUSIONS

The potential of modeling and simulation in clinical application
and medical education are promising. However, this potential
is mainly being tapped in the areas that are close to traditional
engineering domains, such as CFD and stress analysis. For
this reason areas of medicine that are related to blood flow,
biomechanics and orthopedics have benefited most. By contrast,
the brain has an idiosyncratic evolved set of mechanisms that
are extremely difficult to reverse engineer and which draw on
many areas of engineering, some of which have not been invented
yet. Therefore, computational neuroscience remains primarily
in the research domain, with only fragmented translations
from computational neuroscience to clinical use or to medical
education. As medical practice moves toward precision, and then
personalized, healthcare, multiscale modeling will be necessary
for simulating the individual patient’s response to disease and
treatment. To move toward this goal, we must cultivate credible
modeling and simulation practices taken from traditional areas of
engineering.

Model Configuration Management
Since many models will be built within the context of a simulation
platform, we refer here to “Model configuration.” However, all of
these points apply a fortiori to models being built from scratch in
a general-purpose programming language.

(1) Use version control: Git or Mercurial (hg) are preferred.
GitHub can be used to host projects (Dabbish et al.,
2012). In shared projects, version control establishes who
is responsible for which pieces of code.

(2) Use an electronic notebook (e-notebook) with clear
documentation of every stage of model development
(including mistakes).

(3) Include provenance of parameters in e-notebook and via
version control – parameters may be changed due to new
experimental data, and it is valuable to have a clear record
of when and why the change was made and what the
consequence was for the model.

(4) Perform testing of model components: for example,
demonstrate that the cell-types show proper firing
characteristics before incorporating them into networks.

(5) Later in the process, develop a test suite for further testing.
Ideally, model testing should be performed at every version
update. A test suite can be linked to standard testing
frameworks to automate this testing. Commonly used
frameworks include Travis CI (Continuous Integration),
Circle CI, Jenkins, and AppVeyor.

(6) Whenever possible, use reliable model development
platforms such as NEST, BRIAN, NEURON, MOOSE,
NENGO, PyNN, etc. This will increase the likelihood of
accurate simulation and will enhance sharing. Similarly,
model components should be taken from reliable databases
of morphologies, channels and other components.

(7) Later in the process, encourage other groups to compare
simulation results on alternative platforms or with different
implementations.

Verify and Validate Models
(1) Simulation platform developers generally verify the

adequacy of the numerical analysis. Some simulators offer
alternative numerical solvers which can be tested to assess
the qualitative similarity of results. For example, one
problematic area is the handling of fixed and variable time
steps for spike handling in networks (Lytton and Hines,
2005).

(2) Verify algorithms you develop. For example, when
developing a neuronal network, make sure that the network
design is correct before moving to actual simulation.

(3) Verify that the simulation is a reasonable implementation
of the conceptual model, ideally by comparing a graphical
output of basic phenomenology with target phenomena. It
is tragically easy to move on to the analysis phase of the
study without first looking at the raw output to make sure it
is reasonable.

(4) Validate based on data from a real-world system. In some
cases, it may be important to distinguish simulation results

Frontiers in Neuroinformatics | www.frontiersin.org 11 April 2018 | Volume 12 | Article 1830

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 12

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

from the same model for different situations, e.g., in vitro
slice vs. in vivo background activation.

(5) Test robustness of a model to parameter changes to
ascertain whether a particular result is only seen with a
particular set of parameter choices.

(6) Document and propagate V&V testing processes and
findings to the community.

Although all of these steps are valuable, it is important to
understand that higher model fidelity and V&V rigor do not
automatically translate to higher credibility.

Share Models and Data
(1) Submit models to shared databases such as ModelDB or via

GitHub. Share widely – you can submit the same model to
various databases, and submit components such as cells and
ion channel definitions to component databases.

(2) Document thoroughly – the Methods section of a paper
will provide an overall gloss but, typically, will not provide
sufficient detail about software design and use. Comment
code. Provide a README on how to launch the simulation.

(3) Disseminate – publish, of course, and present posters and
talks to various audiences. In a multidisciplinary area such
as computational neuroscience, the same model will say
different things to different audiences – physiologists,
anatomists, cognitive neuroscientists, neurologists,
psychiatrists, other modelers.

(4) Join communities via organizations such as Society
for Neuroscience (SFN), Computational and Systems
Neuroscience (CoSyne), Organization for Computational
Neuroscience (CNS).

(5) Obtain independent reviews of models. This is difficult
and time-consuming but some grants are now providing
funding explicitly to pay for consultants to review models
(NIH, 2015).

Define Context of Use and Simulation
Requirements
We distinguished above between exploratory models, done
by an individual researcher in order to provide ideas and
new hypotheses, and context models, purpose-built models for
external users in a given environment, for example, clinical or
medical education use. In the latter case, it is essential to be
clear about who the users are and which usage patterns (sets
of use cases) are to be targeted and which ones are to be
excluded or to be left as part of longer-term goals. However,
even exploratory models can benefit from these considerations,
envisioning yourself, your team, and perhaps an experimental
collaborator as users.

(1) Identify the users. Even if you are the only user at the
beginning of the project, you will be sharing the model later,
so you may want to take account of other users who are
not as familiar with your domain. For clinical use, a clinical
assistant for epilepsy would be different for neurosurgeons
vs. neurologists.

(2) Identify the context of use. For example, will this model
primarily be used to study dynamics, or will it be extended
into information theory or will it be expected to perform a
memory function, etc.

(3) Identify intended uses. You may have one intended use
for yourself as a modeler to generate new theoretical
hypotheses and another for your experimental colleague.
In the context of an educational application, an SBME for
medical students will be very different than an application
for residents or continuing medical education.

(4) Attempt to identify usage patterns – it is often the case
that underprepared users who have not read the manual
use a program in unintended, and sometimes dangerous,
ways. Platforms and programs can produce warnings
when it detects that the user is trying to use unsuitable
combinations of parameters, etc.

Translation of Computational
Neuroscience Models for Clinical and
Medical Education Use
In the preceding sections, we have given examples of particular
clinical and educational/training scenarios that may be ripe for
the introduction of simulation technology. Here we list both
those already mentioned and others that have potential for future
applications. This list is by no means complete.

(1) Education: Integration of modeling into mannequins and
online virtual patients to reproduce neurological deficits
in SBME. Initial versions of this would not require
mechanistic multiscale modeling but could be done
with phenomenological modeling. Future versions would
incorporate mechanistic modeling to also incorporate the
time-course of signs and symptoms (dynamics at multiple
timescales).

(2) Training: Virtual reality simulators with haptic feedback for
neurosurgery training.

(3) Personalized patient simulations to decide on surgery vs.
interventional radiology (coiling) for aneurysms.

(4) Clinical decision making: Personalized patient simulations
to decide on surgical approach for epilepsy surgery (Jirsa
et al., 2017).

(5) Simulation for seizure prediction in Epilepsy Monitoring
Unit (EMU).

(6) Personalized patient simulation to determine therapies for
Parkinson disease to include combinations of surgical,
electrical and pharmacological therapy (Grill and McIntyre,
2001; Hammond et al., 2007; Shils et al., 2008; Van Albada
et al., 2009; Kerr et al., 2013; Holt and Netoff, 2017).

(7) Head, brain and neural modeling for understanding
effects of different kinds of electrical stimulation including
transcranial stimulation (Esmaeilpour et al., 2017; Huang
et al., 2017; Lafon et al., 2017).

(8) Modeling vagal and peripheral nerve stimulation for
treatment of systemic disorders (NIH SPARC program2).

2https://commonfund.nih.gov/sparc

Frontiers in Neuroinformatics | www.frontiersin.org 12 April 2018 | Volume 12 | Article 1831

https://commonfund.nih.gov/sparc
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 13

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

(9) Psychiatry: identifying the varying roles of disorder in
dopaminergic, glutamatergic, inhibitory and other deficits
in schizophrenia to develop new multi-target therapies
(Lisman et al., 2010).

(10) Neurorehabilitation (physiatry) Modeling the interface
between neural and musculoskeletal models to
treat spasticity or dystonia (van der Krogt et al.,
2016).

AUTHOR CONTRIBUTIONS

LM and WL worked collaboratively to layout the contents of
the manuscript, coordinate the team of co-authors, as well
as edited the final draft of the manuscript. All of the co-
authors drafted the specific section listed below beside their
initials, as well as helped with the review and editing of
the entire manuscript. LM: Abstract, Use of Simulation in
Medical Education, and Actionable Recommendations and
Conclusions, rewriting manuscript. AD: Software Aspects. AE
and JK: Role of the Community. CH: Developing Credible
Mechanism-Oriented Multiscale Models: Procedure and Process
section. JM and MH: Verification and Validation (V&V).
RV: Use of Modeling in Clinical Domains of Brain Disease.
WL: Introduction, Reproducibility and Replicability, and

Actionable Recommendations and Conclusions, rewriting
manuscript.

FUNDING

This research was supported by NIH R01GM104139,
R01EB024573, and USAMRMC W81XWH-15-1-0232 (AE); NIH
R01 GM107340, U54 EB020405, P2C HD065690; USAMRMC
W81XWH-15-1-0232 (JK); NIBIB U01 EB023224, NHLBI U01
HL133360, NIH OT2 OD023848 (RV); and NIH R01-EB022903,
U01-EB017695, R01-MH086638, NYS DOH01-C32250GG-
3450000 (WL).

ACKNOWLEDGMENTS

The authors would like to thank all members of the Committee
on Credible Practice of Modeling & Simulation in Healthcare
who have been dedicated to the advancement of the Committee’s
mission, but were not able to directly contribute to the
development of this manuscript. The authors would also like
to extend their sincerest gratitude to the Interagency Modeling
and Analysis Group (IMAG), and the Multiscale Modeling
Consortium (MSM) for enabling the Committee’s work.

REFERENCES
Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2017).

The human brain project: creating a European research infrastructure to
decode the human brain. Neuron 92, 574–581. doi: 10.1016/j.neuron.2016.
10.046

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org: a central
resource for neuronal morphologies. J. Neurosci. 27, 9247–9251. doi: 10.1523/
JNEUROSCI.2055-07.2007

Babiker, M. H., Chong, B., Gonzalez, L. F., Cheema, S., and Frakes, D. H.
(2013). Finite element modeling of embolic coil deployment: multifactor
characterization of treatment effects on cerebral aneurysm hemodynamics.
J. Biomech. 46, 2809–2816. doi: 10.1016/j.jbiomech.2013.08.021

Barth, B. B., Henriquez, C. S., Grill, W. M., and Shen, X. (2017). Electrical
stimulation of gut motility guided by an in silico model. J. Neural Eng.
14:066010. doi: 10.1088/1741-2552/aa86c8

Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960). Transport Phenomena, 1st
Edn. Hoboken, NJ: John Wiley & Sons, 808.

Bower, J. M., and Beeman, D. (2012). The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System. Berlin: Springer
Science & Business Media.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
et al. (2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Cain, N., Iyer, R., Koch, C., and Mihalas, S. (2016). The computational properties
of a simplified cortical column model. PLoS Comput. Biol. 12:e1005045.
doi: 10.1371/journal.pcbi.1005045

Callahan, A., Anderson, K. D., Beattie, M. S., Bixby, J. L., Ferguson, A. R., Fouad, K.,
et al. (2017). Developing a data sharing community for spinal cord injury
research. Exp. Neurol. 295, 135–143. doi: 10.1016/j.expneurol.2017.05.012

Campo-Deaño, L., Oliveira, M. S. N., and Pinho, F. T. (2015). A review of
computational hemodynamics in middle cerebral aneurysms and rheological
models for blood flow. Appl. Mech. Rev. 67:030801. doi: 10.1115/1.4028946

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,
et al. (2014). LEMS: a language for expressing complex biological models in

concise and hierarchical form and its use in underpinning NeuroML 2. Front.
Neuroinform. 8:79. doi: 10.3389/fninf.2014.00079

Carnevale, T., and Hines, M. (2006). The NEURON Book. New York, NY:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Carnevale, T., Majumdar, A., Sivagnanam, S., Yoshimoto, K., Astakhov, V.,
Bandrowski, A., et al. (2014). The neuroscience gateway portal: high
performance computing made easy. BMC Neurosci. 15(Suppl. 1):101.
doi: 10.1186/1471-2202-15-S1-P101

Chitkara, R., Rajani, A. K., Oehlert, J. W., Lee, H. C., Epi, M. S., and Halamek,
L. P. (2013). The accuracy of human senses in the detection of neonatal heart
rate during standardized simulated resuscitation: implications for delivery of
care, training and technology design. Resuscitation 84, 369–372. doi: 10.1016/j.
resuscitation.2012.07.035

Choi, K. S., Riva-Posse, P., Gross, R. E., and Mayberg, H. S. (2015). Mapping the
‘Depression Switch’ during intraoperative testing of subcallosal cingulate deep
brain stimulation. JAMA Neurol. 72, 1252–1260. doi: 10.1001/jamaneurol.2015.
2564

Chung, B., and Cebral, J. R. (2015). CFD for evaluation and treatment planning of
aneurysms: review of proposed clinical uses and their challenges. Ann. Biomed.
Eng. 43, 122–138. doi: 10.1007/s10439-014-1093-6

Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from the past:
approaches for reproducibility in computational neuroscience,” in 20 Years
of Computational Neuroscience, ed. J. M. Bower (New York, NY: Springer),
73–102.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. (2012). “Social coding in
github: transparency and collaboration in an open software repository,” in
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work CSCW ’12, (New York, NY: ACM), 1277–1286. doi: 10.1145/2145204.214
5396

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2008). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Diesmann, M., Gewaltig, M. O., and Aertsen, A. (1999). Stable propagation
of synchronous spiking in cortical neural networks. Nature 402, 529–533.
doi: 10.1038/990101

Frontiers in Neuroinformatics | www.frontiersin.org 13 April 2018 | Volume 12 | Article 1832

https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1016/j.jbiomech.2013.08.021
https://doi.org/10.1088/1741-2552/aa86c8
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1371/journal.pcbi.1005045
https://doi.org/10.1016/j.expneurol.2017.05.012
https://doi.org/10.1115/1.4028946
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1186/1471-2202-15-S1-P101
https://doi.org/10.1016/j.resuscitation.2012.07.035
https://doi.org/10.1016/j.resuscitation.2012.07.035
https://doi.org/10.1001/jamaneurol.2015.2564
https://doi.org/10.1001/jamaneurol.2015.2564
https://doi.org/10.1007/s10439-014-1093-6
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1038/990101
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 14

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans, T. C., et al.
(2010). Run-time interoperability between neuronal network simulators based
on the MUSIC framework. Neuroinformatics 8, 43–60. doi: 10.1007/s12021-
010-9064-z

Drummond, C. (2009). “Replicability is not reproducibility: nor is it good science,”
in Proceedings of the Evaluation Methods for Machine Learning Workshop at the
26th ICML, Montreal, QC.

Dudani, N., Ray, S., George, S., and Bhalla, U. S. (2009). Multiscale modeling and
interoperability in MOOSE. BMC Neurosci. 10(Suppl. 1):54. doi: 10.1186/1471-
2202-10-S1-P54

Dura-Bernal, S., Chadderdon, G. L., Neymotin, S. A., Francis, J. T., and Lytton,
W. W. (2014). Towards a real-time interface between a biomimetic model
of sensorimotor cortex and a robotic arm. Patt. Recognit. Lett. 36, 204–212.
doi: 10.1016/j.patrec.2013.05.019

Dura-Bernal, S., Majumdar, A., Neymotin, S. A., Sivagnanam, S., Francis,
J. T., and Lytton, W. W. (2015). “A dynamic data-driven approach to
closed-loop neuroprosthetics based on multiscale biomimetic brain models,”
in Proceedings of the IEEE Interanationl Conference on High Performance
Computing 2015 Workshop: InfoSymbiotics/Dynamic Data Driven Applications
Systems (DDDAS) for Smarter Systems, (Bangalore: IEEE).

Ermak, D. M., Bower, D. W., Wood, J., Sinz, E. H., and Kothari,
M. J. (2013). Incorporating simulation technology into a neurology
clerkship. J. Am. Osteopath. Assoc. 113, 628–635. doi: 10.7556/jaoa.
2013.024

Esmaeilpour, Z., Marangolo, P., Hampstead, B. M., Bestmann, S., Galletta, E.,
Knotkova, H., et al. (2017). Incomplete evidence that increasing current
intensity of tDCS boosts outcomes. Brain Stimul. 11, 310–321. doi: 10.1016/j.
brs.2017.12.002

Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez Tieck,
J. C., et al. (2017). Connecting artificial brains to robots in a comprehensive
simulation framework: the neurorobotics platform. Front. Neurorobot. 11:2.
doi: 10.3389/fnbot.2017.00002

Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of
nerve membrane. Biophys. J. 1, 445–466. doi: 10.1016/S0006-3495(61)86902-6

Fuerch, J. H., Yamada, N. K., Coelho, P. R., Lee, H. C., and Halamek, L. P. (2015).
Impact of a novel decision support tool on adherence to neonatal resuscitation
program algorithm. Resuscitation 88, 52–56. doi: 10.1016/j.resuscitation.2014.
12.016

Furlanello C., De Domenico, M., Jurman, G., and Bussola, N. (2017).
Towards a scientific blockchain framework for reproducible data analysis.
arXiv:1707.06552.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool). Schol.
J. 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). NeuroML: a language for describing data driven models of neurons
and networks with a high degree of biological detail. PLoS Comput. Biol.
6:e1000815. doi: 10.1371/journal.pcbi.1000815

Gleeson, P., Davison, A. P., Silver, R. A., and Ascoli, G. A. (2017). A commitment to
open source in neuroscience. Neuron 96, 964–965. doi: 10.1016/j.neuron.2017.
10.013

Gleeson, P., Piasini, E., Crook, S., Cannon, R., Steuber, V., Jaeger, D., et al.
(2012). The open source brain initiative: enabling collaborative modelling in
computational neuroscience. BMC Neurosci. 13(Suppl. 1):7.

Gleeson, P., Silver, A., and Cantarelli, M. (2015). “Open source brain,” in
Encyclopedia of Computational Neuroscience, eds D. Jaeger and R. Jung
(New York, NY: Springer), 2153–2156.

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in python. Front. Neuroinformat. 2:5. doi: 10.3389/neuro.11.005.2008

Grill, W. M., and McIntyre, C. C. (2001). Extracellular excitation of
central neurons: implications for the mechanisms of deep brain
stimulation. Thalamus Relat. Syst. 1, 269–277. doi: 10.1017/S147292880100
0255

Hammond, C., Bergman, H., and Brown, P. (2007). Pathological synchronization
in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30,
357–364. doi: 10.1016/j.tins.2007.05.004

Hariharan, P., D’Souza, G. A., Horner, M., Morrison, T. M., Malinauskas, R. A.,
and Myers, M. R. (2017). Use of the FDA nozzle model to illustrate validation

techniques in computational fluid dynamics (CFD) simulations. PLoS One
12:e0178749. doi: 10.1371/journal.pone.0178749

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544. doi: 10.1113/jphysiol.1952.sp004764

Holt, A. B., and Netoff, T. I. (2017). Computational modeling to advance deep brain
stimulation for the treatment of Parkinson’s disease. Drug Discov. Today Dis.
Models 19, 31–36. doi: 10.1016/j.ddmod.2017.02.006

Huang, Y., Liu, A. A., Lafon, B., Friedman, D., Dayan, M., Wang, X., et al.
(2017). Measurements and models of electric fields in the in vivo human
brain during transcranial electric stimulation. Elife 6:e18834. doi: 10.7554/eLife.
18834

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,
et al. (2003). The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524–531. doi: 10.1093/bioinformatics/btg015

Hunt, A. C., Erdemir, A., MacGabhann, F., Lytton, W. W., Sander, E. A.,
Transtrum, M. K., et al. (2018). The spectrum of mechanism-oriented models
for explanations of biological phenomena. arXiv:1801.04909.

Huwendiek, S., De Leng, B. A., Kononowicz, A. A., Kunzmann, R., Muijtjens,
A. M., Van Der Vleuten, C. P., et al. (2014). Exploring the validity and
reliability of a questionnaire for evaluating virtual patient design with a special
emphasis on fostering clinical reasoning. Med. Teach. doi: 10.3109/0142159X.
2014.970622 [Epub ahead of print].

Issenberg, S. B., Mcgaghie, W. C., Petrusa, E. R., Lee Gordon, D., and Scalese,
R. J. (2005). Features and uses of high-fidelity medical simulations that lead
to effective learning: a BEME systematic review. Med. Teach. 27, 10–28.
doi: 10.1080/01421590500046924

Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-
Martinez, J., et al. (2017). The virtual epileptic patient: individualized whole-
brain models of epilepsy spread. Neuroimage 145, 377–388. doi: 10.1016/j.
neuroimage.2016.04.049

Johansen-Berg, H., Gutman, D. A., Behrens, T. E. J., Matthews, P. M., Rushworth,
M. F. S., Katz, E., et al. (2008). Anatomical connectivity of the subgenual
cingulate region targeted with deep brain stimulation for treatment-resistant
depression. Cereb. Cortex 18, 1374–1383. doi: 10.1093/cercor/bhm167

Jones, F., Passos-Neto, C. E., and Braghiroli, O. F. M. (2015). Simulation in medical
education: brief history and methodology. Princ. Pract. Clin. Res. 1, 56–63.

Kellner, C. H. (2012). Brain Stimulation in Psychiatry: ECT, DBS, TMS and
Other Modalities. Cambridge: Cambridge University Press. doi: 10.1017/
CBO9780511736216

Kerr, C. C., O’Shea, D. J., Goo, W., Dura-Bernal, S., Francis, J. T., Diester, I.,
et al. (2014). Network-level effects of optogenetic stimulation in a computer
model of macaque primary motor cortex. BMC Neurosci. 15(Suppl. 1):107.
doi: 10.1186/1471-2202-15-S1-P107

Kerr, C. C., Van Albada, S. J., Neymotin, S. A., Chadderdon, G. L., Robinson,
P. A., and Lytton, W. W. (2013). Cortical information flow in Parkinson’s
disease: a composite network/field model. Front. Comput. Neurosci. 7:39.
doi: 10.3389/fncom.2013.00039

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J.,
et al. (2016). “Jupyter notebooks-a publishing format for reproducible
computational workflows,” in 20th International Conference on Electronic
Publishing, Amsterdam: IOS Press, 87–90.

Konakondla, S., Fong, R., and Schirmer, C. M. (2017). Simulation training in
neurosurgery: advances in education and practice. Adv. Med. Educ. Pract. 8,
465–473. doi: 10.2147/AMEP.S113565

Lafon, B., Rahman, A., Bikson, M., and Parra, L. C. (2017). Direct current
stimulation alters neuronal input/output function. Brain Stimul. 10, 36–45.
doi: 10.1016/j.brs.2016.08.014

Lefaucheur, J.-P., André-Obadia, N., Antal, A., Ayache, S. S., Baeken, C., Benninger,
D. H., et al. (2014). Evidence-based guidelines on the therapeutic use of
repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125,
2150–2206. doi: 10.1016/j.clinph.2014.05.021

Lisman, J. E., Pi, H. J., Zhang, Y., and Otmakhova, N. A. (2010). A thalamo-
hippocampal-ventral tegmental area loop may produce the positive feedback
that underlies the psychotic break in Schizophrenia. Biol. Psychiatry 68, 17–24.
doi: 10.1016/j.biopsych.2010.04.007

Frontiers in Neuroinformatics | www.frontiersin.org 14 April 2018 | Volume 12 | Article 1833

https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1186/1471-2202-10-S1-P54
https://doi.org/10.1186/1471-2202-10-S1-P54
https://doi.org/10.1016/j.patrec.2013.05.019
https://doi.org/10.7556/jaoa.2013.024
https://doi.org/10.7556/jaoa.2013.024
https://doi.org/10.1016/j.brs.2017.12.002
https://doi.org/10.1016/j.brs.2017.12.002
https://doi.org/10.3389/fnbot.2017.00002
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/j.resuscitation.2014.12.016
https://doi.org/10.1016/j.resuscitation.2014.12.016
https://arxiv.org/abs/1707.06552
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1016/j.neuron.2017.10.013
https://doi.org/10.1016/j.neuron.2017.10.013
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1017/S1472928801000255
https://doi.org/10.1017/S1472928801000255
https://doi.org/10.1016/j.tins.2007.05.004
https://doi.org/10.1371/journal.pone.0178749
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1016/j.ddmod.2017.02.006
https://doi.org/10.7554/eLife.18834
https://doi.org/10.7554/eLife.18834
https://doi.org/10.1093/bioinformatics/btg015
https://arxiv.org/abs/1801.04909
https://doi.org/10.3109/0142159X.2014.970622
https://doi.org/10.3109/0142159X.2014.970622
https://doi.org/10.1080/01421590500046924
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1093/cercor/bhm167
https://doi.org/10.1017/CBO9780511736216
https://doi.org/10.1017/CBO9780511736216
https://doi.org/10.1186/1471-2202-15-S1-P107
https://doi.org/10.3389/fncom.2013.00039
https://doi.org/10.2147/AMEP.S113565
https://doi.org/10.1016/j.brs.2016.08.014
https://doi.org/10.1016/j.clinph.2014.05.021
https://doi.org/10.1016/j.biopsych.2010.04.007
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 15

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

Lloyd, C. M., Lawson, J. R., Hunter, P. J., and Nielsen, P. F. (2008). The CellML
model repository. Bioinformatics 24, 2122–2123. doi: 10.1093/bioinformatics/
btn390

London, M., Beeren, A. R. L., Häusser, M., and Latham, P. E. (2010).
Sensitivity to perturbations in vivo implies high noise and suggests
rate coding in cortex. Nature 466, 123–127. doi: 10.1038/nature
09086

Lupascu, C. A., Morabito, A., Merenda, E., Marinelli, S., Marchetti, C., Migliore, R.,
et al. (2016). A general procedure to study subcellular models of transsynaptic
signaling at inhibitory synapses. Front. Neuroinform. 10:23. doi: 10.3389/fninf.
2016.00023

Lytton, W. W. (2008). Computer modelling of epilepsy. Nat. Rev. Neurosci. 9,
626–637. doi: 10.1038/nrn2416

Lytton, W. W. (2017). Computers, causality and cure in epilepsy. Brain 140,
516–526. doi: 10.1093/brain/awx018

Lytton, W. W., and Hines, M. L. (2005). Independent variable timestep integration
of individual neurons for network simulations. Neural Comput. 17, 903–921.
doi: 10.1162/0899766053429453

Lytton, W. W., Seidenstein, A., Dura-Bernal, S., Schurmann, F., McDougal,
R. A., and Hines, M. L. (2016). Simulation neurotechnologies for advancing
brain research: parallelizing large networks in NEURON. Neural Comput. 28,
2063–2090. doi: 10.1162/NECO_a_00876

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016a). Reproducibility in
computational neuroscience models and simulations. IEEE Trans. Biomed. Eng.
63, 2021–2035. doi: 10.1109/TBME.2016.2539602

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore, M.,
et al. (2016b). Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.
doi: 10.1007/s10827-016-0623-7

Micieli, G., Cavallini, A., Santalucia, P., and Gensini, G. (2015). Simulation in
neurology. Neurol. Sci. 36, 1967–1971. doi: 10.1007/s10072-015-2228-8

Moore, J. W., and Stuart, A. (2011). Neurons in Action 2. Oxford: Oxford University
Press.

Moraru, I. I., Schaff, J. C., Slepchenko, B. M., Blinov, M. L., Morgan, F.,
Lakshminarayana, A., et al. (2008). Virtual cell modelling and simulation
software environment. IET Syst. Biol. 2, 352–362. doi: 10.1049/iet-syb:2008
0102

Mulugeta, L., and Erdemir, A. (2013). “Committee on credible practice of modeling
and simulation in healthcare,” in Proceedings of the ASME 2013 Conference
on Frontiers in Medical Devices: Applications of Computer Modeling and
Simulation, V001T10A015–V001T10A015, (New York, NY: American Society
of Mechanical Engineers). doi: 10.1115/FMD2013-16080

Nadkarni, P., Mirsky, J., Skoufos, E., Healy, M., Hines, M., Miller, P., et al.
(2002). “Senselab: modeling heterogenous data on the nervous system,” in
Bioinformatics: Databases and Systems, ed. S. I. Letovsky (Boston, MA:
Springer), 105–118. doi: 10.1007/0-306-46903-0_10

Neymotin, S. A., Dura-Bernal, S., Lakatos, P., Sanger, T. D., and Lytton, W. W.
(2016). Multitarget multiscale simulation for pharmacological treatment of
dystonia in motor cortex. Front. Pharmacol. 7:157. doi: 10.3389/fphar.2016.
00157

NIH (2015). PAR-15-085: Predictive Multiscale Models for Biomedical, Biological,
Behavioral, Environmental and Clinical Research (U01).” Department of Health
and Human Services. Available at: http://grants.nih.gov/grants/guide/pa-files/
PAR-15-085.html [accessed January 8, 2015].

Nunez, P. L., and Srinivasan, R. (2005). Electric Fields of the Brain: The Neurophysics
of EEG, 2nd Edn. New York, NY: Oxford University Press.

Oberkampf, W. L., and Roy, C. J. (2010). Verification and Validation in
Scientific Computing. Cambridge: Cambridge University Press. doi: 10.1017/
CBO9780511760396

Peterson, B. E., Healy, M. D., Nadkarni, P. M., Miller, P. L., and Shepherd, G. M.
(1996). ModelDB: an environment for running and storing computational
models and their results applied to neuroscience. J. Am. Med. Inform. Assoc.
3, 389–398. doi: 10.1136/jamia.1996.97084512

Plesser, H., Diesmann, M., Marc-Oliver, G., and Morrison, A. (2015). “NEST: the
neural simulation tool,” in Encyclopedia of Computational Neuroscience, eds D.
Jaeger and R. Jung (New York, NY: Springer), 1849–1852.

Plesser, H. E. (2017). Reproducibility vs. Replicability: a brief history of a confused
terminology. Front. Neuroinform. 11:76. doi: 10.3389/fninf.2017.00076

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Proix, T., Bartolomei, F., Guye, M., and Jirsa, V. K. (2017). Individual brain
structure and modeling predict seizure propagation. Brain 140, 651–654.
doi: 10.1093/brain/awx004

Rall, W. (1962). Electrophysiology of a dendritic neuron model. Biophys. J. 2,
145–167. doi: 10.1016/S0006-3495(62)86953-7

Ranjan, R., Khazen, G., Gambazzi, L., Ramaswamy, S., Hill, S. L., Schürmann, F.,
et al. (2011). Channelpedia: an integrative and interactive database
for ion channels. Front. Neuroinform. 5:36. doi: 10.3389/fninf.2011.
00036

Reyes, R. (2016). An Empirical Evaluation of an Instrument to Determine the
Relationship Between Second-Year Medical Students’ Perceptions of NERVE VP
Design Effectiveness and Students’ Ability to Learn and Transfer Skills from
NERVE. Orlando, FL: University of Central Florida.

Robinson, P. A., Rennie, C. J., and Rowe, D. L. (2002). Dynamics of large-scale
brain activity in normal arousal states and epileptic seizures. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 65, 041924. doi: 10.1103/PhysRevE.65.041924

Ross, S. E., Ouyang, Z., Rajagopalan, S., and Bruns, T. M. (2018). Evaluation of
decoding algorithms for estimating bladder pressure from dorsal root ganglia
neural recordings. Ann. Biomed. Eng. 46, 233–246. doi: 10.1007/s10439-017-
1966-6

Samineni, V. K., Mickle, A. D., Yoon, J., Grajales-Reyes, J. G., Pullen, M. Y.,
Crawford, K. E., et al. (2017). Optogenetic silencing of nociceptive primary
afferents reduces evoked and ongoing bladder pain. Sci. Rep. 7:15865.
doi: 10.1038/s41598-017-16129-3

Santos, M. D. D., Cavenaghi, V. B., Mac-Kay, A. P. M. G., Serafim, V., Venturi, A.,
Truong, D. Q., et al. (2017). Non-invasive brain stimulation and computational
models in post-stroke aphasic patients: single session of transcranial magnetic
stimulation and transcranial direct current stimulation. A Randomized Clinical
Trial. Sao Paulo Med. J. 135, 475–480. doi: 10.1590/1516-3180.2016.01940
60617

Sanz-Leon, P., Knock, S., Woodman, M., Domide, L., Mersmann, J., McIntosh, A.,
et al. (2013). The virtual brain: a simulator of primate brain network dynamics.
Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Schulte, E., and Davison, D. (2011). Active documents with org-mode. Comput. Sci.
Eng. 13, 66–73. doi: 10.1109/MCSE.2011.41

Seidenstein, A. H., Barone, F. C., and Lytton, W. W. (2015). Computer modeling
of ischemic stroke. Scholarpedia J. 10:32015. doi: 10.4249/scholarpedia.32015

Shenoy, K. V., Sahani, M., and Churchland, M. M. (2013). Cortical control of
arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36,
337–359. doi: 10.1146/annurev-neuro-062111-150509

Shils, J. L., Mei, L. Z., and Arle, J. E. (2008). Modeling parkinsonian circuitry and
the DBS electrode. II. Evaluation of a computer simulation model of the basal
ganglia with and without subthalamic nucleus stimulation. Stereotact. Funct.
Neurosurg. 86, 16–29. doi: 10.1159/000108585

Stanisic, L., Legrand, A., and Danjean, V. (2015). An effective git and org-mode
based workflow for reproducible research. ACM SIGOPS Operat. Syst. Rev. 49,
61–70. doi: 10.1145/2723872.2723881

Stern, F., Wilson, R., and Shao, J. (2006). Quantitative V&V of CFD simulations
and certification of CFD codes. Int. J. Numer. Methods Fluids 50, 1335–1355.
doi: 10.1002/fld.1090

Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., et al.
(2014). OpenWorm: an open-science approach to modeling caenorhabditis
elegans. Front. Comput. Neurosci. 8:137. doi: 10.3389/fncom.2014.
00137

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-Ghazawi, T. A.
(2017). Software for brain network simulations: a comparative study. Front.
Neuroinform. 11:46. doi: 10.3389/fninf.2017.00046

Van Albada, S. J., Gray, R. T., Drysdale, P. M., and Robinson, P. A. (2009). Mean-
field modeling of the basal ganglia-thalamocortical system. II: dynamics of
parkinsonian oscillations. J. Theor. Biol. 257, 664–688. doi: 10.1016/j.jtbi.2008.
12.013

van der Krogt, M. M., Bar-On, L., Kindt, T., Desloovere, K., and Harlaar, J.
(2016). Neuro-musculoskeletal simulation of instrumented contracture and
spasticity assessment in children with cerebral palsy. J. Neuroeng. Rehabil. 13:64.
doi: 10.1186/s12984-016-0170-5

Frontiers in Neuroinformatics | www.frontiersin.org 15 April 2018 | Volume 12 | Article 1834

https://doi.org/10.1093/bioinformatics/btn390
https://doi.org/10.1093/bioinformatics/btn390
https://doi.org/10.1038/nature09086
https://doi.org/10.1038/nature09086
https://doi.org/10.3389/fninf.2016.00023
https://doi.org/10.3389/fninf.2016.00023
https://doi.org/10.1038/nrn2416
https://doi.org/10.1093/brain/awx018
https://doi.org/10.1162/0899766053429453
https://doi.org/10.1162/NECO_a_00876
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1007/s10072-015-2228-8
https://doi.org/10.1049/iet-syb:20080102
https://doi.org/10.1049/iet-syb:20080102
https://doi.org/10.1115/FMD2013-16080
https://doi.org/10.1007/0-306-46903-0_10
https://doi.org/10.3389/fphar.2016.00157
https://doi.org/10.3389/fphar.2016.00157
http://grants.nih.gov/grants/guide/pa-files/PAR-15-085.html
http://grants.nih.gov/grants/guide/pa-files/PAR-15-085.html
https://doi.org/10.1017/CBO9780511760396
https://doi.org/10.1017/CBO9780511760396
https://doi.org/10.1136/jamia.1996.97084512
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1093/brain/awx004
https://doi.org/10.1016/S0006-3495(62)86953-7
https://doi.org/10.3389/fninf.2011.00036
https://doi.org/10.3389/fninf.2011.00036
https://doi.org/10.1103/PhysRevE.65.041924
https://doi.org/10.1007/s10439-017-1966-6
https://doi.org/10.1007/s10439-017-1966-6
https://doi.org/10.1038/s41598-017-16129-3
https://doi.org/10.1590/1516-3180.2016.0194060617
https://doi.org/10.1590/1516-3180.2016.0194060617
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1109/MCSE.2011.41
https://doi.org/10.4249/scholarpedia.32015
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1159/000108585
https://doi.org/10.1145/2723872.2723881
https://doi.org/10.1002/fld.1090
https://doi.org/10.3389/fncom.2014.00137
https://doi.org/10.3389/fncom.2014.00137
https://doi.org/10.3389/fninf.2017.00046
https://doi.org/10.1016/j.jtbi.2008.12.013
https://doi.org/10.1016/j.jtbi.2008.12.013
https://doi.org/10.1186/s12984-016-0170-5
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00018 April 13, 2018 Time: 17:8 # 16

Mulugeta et al. Credibility in Simulation for Biomedicine and Clinical Applications

Vaseghi, M., Salavatian, S., Rajendran, P. S., Yagishita, D., Woodward, W. R.,
Hamon, D., et al. (2017). Parasympathetic dysfunction and antiarrhythmic
effect of vagal nerve stimulation following myocardial infarction. JCI Insight
2:e86715. doi: 10.1172/jci.insight.86715

Vierling-Claassen, D., Cardin, J. A., Moore, C. I., and Jones, S. R. (2010).
Computational modeling of distinct neocortical oscillations driven by cell-type
selective optogenetic drive: separable resonant circuits controlled by low-
threshold spiking and fast-spiking interneurons. Front. Hum. Neurosci. 4:198.
doi: 10.3389/fnhum.2010.00198

Weiss, S., and Mueller, H. M. (2012). Too many betas do not spoil the broth’:
the role of beta brain oscillations in language processing. Front. Psychol. 3:201.
doi: 10.3389/fpsyg.2012.00201

Wilson, C. (2008). Up and down states. Scholarpedia J. 3:1410. doi: 10.4249/
scholarpedia.1410

Wrigley, S. (ed.). (2013). “Negative training: when the simulator lies,” in Why Planes
Crash Case Files: 2001. Mannheim: Fear of Landing.

Yamada, N. K., Fuerch, J. H., and Halamek, L. P. (2017). Simulation-based patient-
specific multidisciplinary team training in preparation for the resuscitation and
stabilization of conjoined twins. Am. J. Perinatol. 34, 621–626. doi: 10.1055/s-
0036-1593808

Zhang, C., Bakshi, A., and Prasanna, V. K. (2007). “ModelML: a markup language
for automatic model synthesis,” in Proceedings of the IEEE International
Conference on Information Reuse and Integration 2007 (Las Vegas, IL: IEEE),
doi: 10.1109/iri.2007.4296640

Conflict of Interest Statement: LM owns and operates InSilico Labs LLC and
Medalist Fitness LLC. AE owns and operates Innodof, LLC. MH is employed by
ANSYS, Inc.

The other authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict
of interest.

Copyright © 2018 Mulugeta, Drach, Erdemir, Hunt, Horner, Ku, Myers, Vadigepalli
and Lytton. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 April 2018 | Volume 12 | Article 1835

https://doi.org/10.1172/jci.insight.86715
https://doi.org/10.3389/fnhum.2010.00198
https://doi.org/10.3389/fpsyg.2012.00201
https://doi.org/10.4249/scholarpedia.1410
https://doi.org/10.4249/scholarpedia.1410
https://doi.org/10.1055/s-0036-1593808
https://doi.org/10.1055/s-0036-1593808
https://doi.org/10.1109/iri.2007.4296640
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 01 May 2018

doi: 10.3389/fninf.2018.00020

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2018 | Volume 12 | Article 20

Edited by:

Sharon Crook,

Arizona State University, United States

Reviewed by:

Robert C. Cannon,

Textensor Limited, United Kingdom

Andy Wai Kan Yeung,

University of Hong Kong, Hong Kong

*Correspondence:

Tiina Manninen

tiina.manninen@tut.fi

Jugoslava Aćimović

jugoslava.acimovic@tut.fi

Marja-Leena Linne

marja-leena.linne@tut.fi

Received: 01 February 2018

Accepted: 06 April 2018

Published: 01 May 2018

Citation:

Manninen T, Aćimović J, Havela R,

Teppola H and Linne M-L (2018)

Challenges in Reproducibility,

Replicability, and Comparability of

Computational Models and Tools for

Neuronal and Glial Networks, Cells,

and Subcellular Structures.

Front. Neuroinform. 12:20.

doi: 10.3389/fninf.2018.00020

Challenges in Reproducibility,
Replicability, and Comparability of
Computational Models and Tools for
Neuronal and Glial Networks, Cells,
and Subcellular Structures

Tiina Manninen 1,2*, Jugoslava Aćimović 1,2*, Riikka Havela 1,2, Heidi Teppola 1,2 and

Marja-Leena Linne 1,2*

1Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere

University of Technology, Tampere, Finland, 2 Laboratory of Signal Processing, Tampere University of Technology, Tampere,

Finland

The possibility to replicate and reproduce published research results is one of the biggest

challenges in all areas of science. In computational neuroscience, there are thousands

of models available. However, it is rarely possible to reimplement the models based on

the information in the original publication, let alone rerun the models just because the

model implementations have not been made publicly available. We evaluate and discuss

the comparability of a versatile choice of simulation tools: tools for biochemical reactions

and spiking neuronal networks, and relatively new tools for growth in cell cultures. The

replicability and reproducibility issues are considered for computational models that are

equally diverse, including the models for intracellular signal transduction of neurons and

glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples

of spiking neuronal networks. We also address the comparability of the simulation

results with one another to comprehend if the studied models can be used to answer

similar research questions. In addition to presenting the challenges in reproducibility

and replicability of published results in computational neuroscience, we highlight the

need for developing recommendations and good practices for publishing simulation

tools and computational models. Model validation and flexible model description

must be an integral part of the tool used to simulate and develop computational

models. Constant improvement on experimental techniques and recording protocols

leads to increasing knowledge about the biophysical mechanisms in neural systems.

This poses new challenges for computational neuroscience: extended or completely

new computational methods and models may be required. Careful evaluation and

categorization of the existing models and tools provide a foundation for these future

needs, for constructing multiscale models or extending the models to incorporate

36

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00020
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00020&domain=pdf&date_stamp=2018-05-01
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tiina.manninen@tut.fi
mailto:jugoslava.acimovic@tut.fi
mailto:marja-leena.linne@tut.fi
https://doi.org/10.3389/fninf.2018.00020
https://www.frontiersin.org/articles/10.3389/fninf.2018.00020/full
http://loop.frontiersin.org/people/18724/overview
http://loop.frontiersin.org/people/125300/overview
http://loop.frontiersin.org/people/411418/overview
http://loop.frontiersin.org/people/39107/overview
http://loop.frontiersin.org/people/18558/overview

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

additional or more detailed biophysical mechanisms. Improving the quality of publications

in computational neuroscience, enabling progressive building of advanced computational

models and tools, can be achieved only through adopting publishing standards which

underline replicability and reproducibility of research results.

Keywords: astrocyte, computational model, glial cell, neuron, neuronal network, replicability, reproducibility,

subcellular structure

1. INTRODUCTION

All areas of science are facing problems with reproducibility
and replicability (Baker, 2016; Eglen et al., 2017; Munafò et al.,
2017; Rougier et al., 2017), and computational neuroscience is
no exception. We aim to contribute to the ongoing discussion
on reproducibility and replicability by presenting several efforts
to systematize and compare, rerun and replicate, as well as
reimplement, simulate, and reproduce models and knowledge
within our fields of expertise. By comparability, we mean
comparing either the simulation results of different simulation
tools when the same model has been implemented in them or
the simulation results of different models. By replicability, we
mean rerunning the publicly available code developed by the
authors of the study and replicating the original results from the
study. By reproducibility, we mean reimplementing the model
using the knowledge from the original study, often in a different
simulation tool or programming language from the one reported
in the study, and simulating it to verify the results from the
study. These definitions are consistent with the terminology on
replicability and reproducibility used in the literature (see also
Crook et al., 2013; McDougal et al., 2016). However, there is an
ongoing discussion on optimal use of terminology and several
alternatives have been proposed (see e.g., Goodman et al., 2016;
Rougier et al., 2017; Benureau and Rougier, 2018). The lack of
universally accepted terminology, solutions proposed in other
scientific disciplines, and possible solutions for computational
neuroscience are also discussed by Plesser (2018). In order to
focus on our findings and conclusions rather than terminology,
we will adopt the definitions described above without further
discussion about the alternatives.

There is an evident need to evaluate, compare, and
systematize tools and models. With the increasing number of
published models, it is becoming difficult to evaluate the unique
contribution in each of them or assess the scientific rigor. The
published articles might provide incomplete information, due
to accidental mistakes or limited space and publication format.
The original model implementations are not always available.
The overhead of model reimplementation and reproduction
of the results could be significant. More systematic model
description (Nordlie et al., 2009), publishing the code in addition
to the article (Eglen et al., 2017; Rougier et al., 2017), and
efforts on independent reproduction and replication of the
published models (Manninen et al., 2017; Rougier et al., 2017)
improve quality and reliability of results in computational
neuroscience. Better systematization and classification of the
models provide more straightforward recommendations for the

scientists initiating new projects or for the training of young
researchers entering the field (see also Akil et al., 2016; Amunts
et al., 2016; Nishi et al., 2016). All these can better support
the reuse and extension of the published models which is
often necessary when building models of complex phenomena.
The development of new experimental techniques and the
new experimental findings also pose new questions for the
computational neuroscience. The models that address these
questions are often built on top of the existing ones, and heavily
depend on the reusability and reliability of the published work.
These issues become even more important with the increasing
interest and current intensive development of multiscale models.
Multiscale models include fine details of all levels of physical
organization (molecular reaction networks, individual cells, local
neuronal networks, glial networks, large-scale networks, and
even complete functional brain systems), and naturally such
complex and demanding models must rely even more on the
existing knowledge and models. Furthermore, as the complexity
of the models increases it becomes more difficult to duplicate the
original work even if only one parameter value is mistyped, or
completely omitted.

The listed challenges have been extensively discussed
within the computational neuroscience and neuroinformatics
community. Several publications have proposed improvements
in model development and description recommending a
clear and compact tabular format for model description (see e.g.,
Nordlie et al., 2009; Topalidou et al., 2015;Manninen et al., 2017).
The issue of reproducibility in computational neuroscience has
been emphasized through development of model description
and simulation tools: the standardization of tools significantly
accelerates development of new models and reproduction of the
published models. An overview of the existing simulation tools,
their features and strengths, as well as a discussion on future
developments are presented in recent publications (Brette et al.,
2007; Crook et al., 2013; McDougal et al., 2016). In addition,
journals rarely explicitly state that they accept replicability and
reproducibility studies (Yeung, 2017). However, the ReScience
initiative was started to encourage researchers to reimplement
published models and reproduce the research results (Rougier
et al., 2017). During the review process in the ReScience Journal,
both the manuscript and the reimplementation of the model are
tested and checked by the reviewers, and both are made publicly
available for the scientific community. In our previous study
(Manninen et al., 2017), we addressed the reproducibility of a
small set of computational glial models. Based on this study, we
emphasize the necessity for giving out all information about the
models, such as the inputs, equations, parameters, and initial

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2018 | Volume 12 | Article 2037

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

conditions, in a tabular format, in addition to making the model
code publicly available. Similar holds for complex network-level
models composed of many interacting neurons where every
small error might lead to a large deviation in the simulation
outcome.

Equally important concept that should be discussed in the
context of reproducibility and replicability is the development of
validation strategies for comparability of various computational
models. Better mathematical and computational tools are needed
to provide easy and user-friendly evaluation and comparison.
As can be seen from the reviews of previous modeling work in
the field (Manninen et al., 2010, 2018a,b), many new models
are built on top of pre-existing models, with some further
parameter estimation based on experimental data. Often the
validation against existing similarmodels is too tedious to do and,
consequently, is skipped. To facilitate the usability of models,
future computational neuroscience research should pay more
attention to the questions of reproducibility, replicability, and
validation of simulation results. As indicated, this issue becomes
even more important with the current trends toward developing
multiscale models.

In this study, we evaluate a number of computational models
describing a very diverse set of neural systems and phenomena,
as well as simulation tools dedicated to these models.We evaluate
and discuss a versatile choice of simulation tools, from simulation
tools of biochemical reactions, to relatively new simulation
tools of growth in cell cultures, to relatively mature and widely
adopted tools for modeling spiking neuronal networks. The
computational models are equally diverse, including the models
of intracellular signal transduction for neurons and glial cells,
in addition to single glial cells, neuron-glia interactions, and
neuronal networks. Although we take into account a range of
models, some classes of models are not considered in this study.
We omit single neuron models which are already well developed,
compared, and systematized in the literature (Izhikevich, 2004;
Sterratt et al., 2011). Furthermore, we do not intend to provide
any extensive evaluation of neuronal network models, which are
numerous in the literature, but instead discuss an illustrative
data-driven modeling example and specific reproducibility,
replicability, and comparability issues that emerge in this type
of studies. The models for glial networks and the larger models
of neuron-glia networks are also excluded from this work and
might be subject of future studies. Through the evaluation of
examples under consideration, we present the state-of-the-art
in reproducibility and replicability of computational models of
neuronal and glial systems, summarize our recent findings about
reproducibility in computational neuroscience, and propose
some good practices based on our present and previous work.

2. MATERIAL AND METHODS

2.1. Simulation Tools
In this section, we describe a range of simulation tools utilized to
simulate the spiking neuronal networks, biochemical reactions,
and neuronal growth. Simulation tools that allow constructing,
simulating, and analyzing whole-cell and neuronal circuit models
attracted the most attention in the past and are among the most

developed tools used in computational neuroscience. Typical
models range from multicompartmental neurons integrating
some level of morphological and physiological details of the
certain neuron type to the highly abstract models containing
large number of low-dimensional model neurons and statistical
description of connectivity rules. In computational systems
biology, the simulation tools developed for different kinds of
biological systems, such as gene regulatory networks, metabolic
networks, and signal transduction, have been the focus of
development. These tools are relativelymature, standardized, and
well-known in the research community. On the other hand, the
simulation tools for neurodevelopment are not so well-known,
and thus we give more details about these tools in the upcoming
sections. All the simulation tools tested and compared in this
work are listed in Table 1.

2.1.1. Simulation Tools for Biochemical Reactions
Mathematical modeling of biochemistry is important for
understanding complex biochemical processes that underlie
many neuronal, glial, and synaptic phenomena. Recent interest
in modeling biochemical networks in systems biology and in
neuroscience have provided several tools that can be used to
simulate time-series behavior of the networks (see e.g., Lemerle
et al., 2005; Pettinen et al., 2005; Alves et al., 2006; Gilbert et al.,
2006; Strömbäck et al., 2006; Wierling et al., 2007; Bergmann
and Sauro, 2008; Blackwell, 2013; Schöneberg et al., 2014;
Bartocci and Lió, 2016; Olivier et al., 2016). In this study, we
used the following simulation tools: GENESIS/Kinetikit (Wilson
et al., 1989; Bower and Beeman, 1998; Bhalla and Iyengar,
1999; Bhalla, 2001, 2002), Gepasi (Mendes, 1993, 1997; Mendes
and Kell, 1998), Jarnac/JDesigner (Sauro, 2000, 2001), XPPAUT
(Ermentrout, 2002), SimTool (Aho, 2003), Dizzy (Ramsey et al.,
2005), Copasi (Hoops et al., 2006), NEURON (Carnevale and
Hines, 2006), Systems Biology Toolbox (Schmidt and Jirstrand,
2006), and Narrator (Mandel et al., 2007) (see Table 1). Here,
we do not provide any detailed overview of the simulation
tools, because the topic has been already extensively discussed
previously. However, we want to point out the differences in
these tools by providing information about the methods used for
modeling and simulation.

In the listed simulation tools, the model is often implemented
using chemical reactions presented by the law of mass
action and Michaelis-Menten kinetics. These reactions form
coupled ordinary differential equations (ODEs) presenting the
biochemical network, and these equations are then solved
numerically when simulating the model. However, for example,
in XPPAUT, the model is directly implemented using the ODEs
and not the chemical reactions. Several of the tools also provide
stochastic approaches to model and simulate the reactions (see
e.g., Manninen et al., 2006a; Gillespie, 2007), such as the discrete-
state Gillespie stochastic simulation algorithm (Gillespie, 1976,
1977) and τ -leap method (Gillespie, 2001), as well as continuous-
state chemical Langevin equation (Gillespie, 2000) and several
other stochastic differential equations (SDEs, Manninen et al.,
2006a,b). Few simulation tools providing hybrid approaches
also exist. They combine either deterministic and stochastic
methods or different stochastic methods (see e.g., Salis et al.,

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2018 | Volume 12 | Article 2038

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

TABLE 1 | List of simulation tools and model repositories.

Tool/Repository Website References

SIMULATION TOOL

Brian http://brian2.readthedocs.io/en/stable/index.html Goodman and Brette, 2008

Copasi http://copasi.org/ Hoops et al., 2006

Cortex3D https://www.ini.uzh.ch/~amw/seco/cx3d/ Zubler and Douglas, 2009

Dizzy http://magnet.systemsbiology.net/software/Dizzy/ Ramsey et al., 2005

GENESIS/ Kinetikit http://genesis-sim.org/, https://www.ncbs.res.in/faculty/bhalla-kinetikit Wilson et al., 1989; Bower and Beeman, 1998;

Bhalla and Iyengar, 1999; Bhalla, 2001, 2002

Gepasi http://www.gepasi.org/ Mendes, 1993, 1997; Mendes and Kell, 1998

Jarnac/JDesigner http://jdesigner.sourceforge.net/ Sauro, 2000, 2001

Narrator https://omictools.com/narrator-tool Mandel et al., 2007

NEST http://www.nest-simulator.org/ Eppler et al., 2015

NETMORPH http://www.netmorph.org/Home, http://www.scholarpedia.org/article/NETMORPH Koene et al., 2009

NEURON https://www.neuron.yale.edu/neuron/ Carnevale and Hines, 2006

PyNN http://neuralensemble.org/PyNN/ Davison et al., 2009

SimTool Request from the author Aho, 2003

Systems Biology Toolbox http://www.sbtoolbox.org/ Schmidt and Jirstrand, 2006

XPPAUT http://www.math.pitt.edu/~bard/xpp/xpp.html Ermentrout, 2002

MODEL REPOSITORY

DOQCS http://doqcs.ncbs.res.in/ Sivakumaran et al., 2003

DRYAD http://datadryad.org/

ModelDB http://senselab.med.yale.edu/modeldb/ Migliore et al., 2003; Hines et al., 2004

This table lists the names of the simulation tools and model repositories as well as their websites and references.

2006; Lecca et al., 2017). The increased computing power has
recently made it possible also to take into account diffusion
processes. The reaction-diffusion simulation tools often use
combined Gillespie algorithm or τ -leap method for both reaction
and diffusion processes, such as STEPS (Wils and De Schutter,
2009; Hepburn et al., 2012) and NeuroRD (Oliveira et al., 2010),
or track each molecule individually in a certain volume with
Brownian dynamics combined with a Monte Carlo procedure
for reaction events, such as MCell (Stiles and Bartol, 2001; Kerr
et al., 2008) and Smoldyn (Andrews et al., 2010). Few studies
to compare different reaction-diffusion tools exist (Dobrzyński
et al., 2007; Oliveira et al., 2010; Schöneberg et al., 2014). In this
study, however, we were only interested in comparing simulation
tools with simple reaction models, and thus reaction-diffusion
tools and models were not tested. The more detailed testing of
reaction-diffusion tools remains for future work and will most
probably be accelerated once more models for reaction-diffusion
systems become available. The simulation tools for biochemical
reactions addressed in this work have been studied in detail in
our previous work (Pettinen et al., 2005; Manninen et al., 2006c;
Mäkiraatikka et al., 2007) and the here presented results are a
summary of our previous work. We recommend to consult the
earlier studies for more details.

2.1.2. Simulation Tools for Neurodevelopment
We examined relatively new and promising tools for modeling
neurodevelopment. They facilitate exploring through
computational means individual biophysical mechanisms
involved in development and growth of neuronal circuits and

analyzing the properties that arise from those mechanisms.
We examined two simulation tools, NETMORPH (Koene
et al., 2009) and Cortex3D (Zubler and Douglas, 2009), the full
references and links to these tools are given in Table 1. Because
these tools are newer, less known and used than the other
simulation tools presented in this study, we describe them with
additional details.

NETMORPH implements a phenomenological model of
neurite growth (in 2D or 3D) based on extensive statistical
characterization of dendritic morphology in developing circuits
conducted by the authors of the simulation tool (van Pelt and
Uylings, 2003; Koene et al., 2009). It can simulate formation
of synaptic contacts based on morphology and the proximity
between axonal and dendritic segments. The simulation tool
was developed in C++ under Unix/Linux and can be installed
straightforwardly under the same environment. In Windows, it
can be installed using Cygwin. The inputs are text files containing
a list of model components and the belonging parameters.
The components include description of neuronal population,
morphology for each neuron type, parameters determining
synapse formation, and a set of flags describing the format of
simulation outputs. Model equations are evaluated at fixed time
steps, and the output can be generated either at specified time
points or at the end of a simulation. Three types of outputs are
possible: visualization of neuronal morphologies and networks,
raw data containing the list of all generated model components,
and the statistics computed from the raw data.

Cortex3D is a simulation platform that supports modeling
biophysical and mechanistic details of neural development. As

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2018 | Volume 12 | Article 2039

http://brian2.readthedocs.io/en/stable/index.html
http://copasi.org/
https://www.ini.uzh.ch/~amw/seco/cx3d/
http://magnet.systemsbiology.net/software/Dizzy/
http://genesis-sim.org/
https://www.ncbs.res.in/faculty/bhalla-kinetikit
http://www.gepasi.org/
http://jdesigner.sourceforge.net/
https://omictools.com/narrator-tool
http://www.nest-simulator.org/
http://www.netmorph.org/Home
http://www.scholarpedia.org/article/NETMORPH
https://www.neuron.yale.edu/neuron/
http://neuralensemble.org/PyNN/
http://www.sbtoolbox.org/
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://doqcs.ncbs.res.in/
http://datadryad.org/
http://senselab.med.yale.edu/modeldb/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

such it does not specify any particular model but rather a set
of underlying mechanisms that can be used to implement and
simulate user-defined models. The mechanisms embedded into
the simulation tool include discretization of space occupied
by a model, production, diffusion, degradation, and reactions
between chemical species, the effect of mechanical and chemical
forces between components of the model, and movement of
objects inside the model. The model is solved at a fixed time
grid. Parts of the model represented by dynamical equations are
solved using Euler method, but numerical integration is replaced
by analytical solution whenever possible to avoid overshoot
for large time steps. The simulation tool is organized into
layers of abstraction, with the discretization of space mapped
into the lowest layer, the physical properties of the objects
being specified one layer above, and the biological properties
mapped into the top two layers. Most of the user-defined model
properties can be specified in the top “cell” layer (Zubler and
Douglas, 2009). The simulation tool was implemented in Java
and is easy to install on any platform. A parallelized version
of the simulation tool is also available (Zubler et al., 2011,
2013). Recently, a new simulation tool capable of modeling
neuronal tissue development, inspired by Cortex3D and based
on the same computational principles, was proposed (https://
biodynamo.web.cern.ch/). To specify amodel in Cortex3D, a user
should write Java module containing the description of model
components, interactions between the components, and model
parameters. The output of the simulation tool is an Extensible
Markup Language (XML) schema compatible with NeuroML
containing the details of the obtained model. The simulation
tool also integrates Java packages that allow visualization of the
simulation evolution. We tested and compared NETMORPH
and Cortex3D by implementing and running the same model
compatible with both tools and evaluating the simulated data. In
addition to tool evaluation, we were interested in promoting the
usefulness of these new and underutilized simulation tools.

2.1.3. Simulation Tools for Neuronal Networks
Computational studies of individual neurons and neuronal
circuits were the first attempts at computational modeling in
neuroscience, have the longest history, and are still the most
represented level of abstraction when addressing the function
and organization of neuronal systems. They originate from the
experimentally verified models of neurons, the ground truth
of neuron electrophysiology based on Hodgkin-Huxley (HH,
Hodgkin and Huxley, 1952) formalism and the mathematical
description of ion channel dynamics. Individual neurons can be
described either as single compartmental models representing
the somatic membrane potential or as multicompartmental
models including parts of dendritic and axonal arbors. In
addition, the simulation tools provide a number of simpler and
computationally less demanding neuron models based on an
integrate-and-fire (IF) modeling formalism. They also provide
mechanisms to construct networks of model neurons, from
generic random networks to specific brain circuits. Some of these
simulation tools also have a capacity to implement subcellular
models (NEURON, XPPAUT, and GENESIS). Consequently,
these simulation tools are widely accepted and well known within

the scientific community and can be considered mature. All of
these simulation tools implement deterministic methods to solve
the systems of ODEs, and some of them also have possibility
to implement SDE models (see e.g., Stimberg et al., 2014).
Deterministic integration methods for solving ODEs use either
a fixed or adaptable integration step size. For some neurons
of IF type, it is possible to solve the ODE exactly between
the spike times and update the model at each spike time, thus
significantly increasing the accuracy of numerical integration.
The extensive discussion about numerical methods can be found
in the literature (Rotter and Diesmann, 1999; Lytton and Hines,
2005; Carnevale and Hines, 2006; Brette et al., 2007; Stimberg
et al., 2014). Here, we do not aim at giving an overview of
simulation tools or comparing their properties, these topics
have been extensively discussed elsewhere (see e.g., Brette et al.,
2007; McDougal et al., 2016). Instead, we will present our
unpublished user experiences from describing and simulating
spiking neuronal networks using NEST (Eppler et al., 2015),
Brian (Goodman and Brette, 2008; Stimberg et al., 2014), and
PyNN (Davison et al., 2009).

2.2. Models
In this section, we give an overview of computational models
used in our reproducibility, replicability, and comparability
studies. These include the models of intracellular signal
transduction for neurons and glial cells, in addition to single
glial cells, neuron-glia interactions, and neuronal networks. We
tabulated the following properties for the models whenever
suitable:

• Neuron model:Multicompartmental or point neuron models
adopted from the literature.

• Synapse model: Types of synaptic models and receptors.
• Neuron-astrocyte synapse model: Types of synaptic models

and receptors.
• Connectivity: Statistical description of connectivity schemes.
• Intracellular signaling; Intracellular calcium signaling (e.g.,

leaks, pumps, and receptors that are not named under other
categories) in addition to different intracellular chemical
species taken into account either in neurons or astrocytes.

• Data analysis: Description of the methods used to analyze
in silico data from spiking neuronal network models.

Some of the models we used in this study were found available in
model repositories. These repositories are listed in Table 1.

2.2.1. Neuronal Signal Transduction Models
More than a hundred intracellular biochemical species are
important in synaptic plasticity. Hundreds of neuronal signal
transduction models have been developed to test the criticality
of different chemical species. Several reviews of the models
exist, some focus on just a few different models whereas others
give an overview of more than hundred models (Brown et al.,
1990; Neher, 1998; Hudmon and Schulman, 2002a,b; Bi and
Rubin, 2005; Holmes, 2005; Wörgötter and Porr, 2005; Ajay and
Bhalla, 2006; Klipp and Liebermeister, 2006; Zou and Destexhe,
2007; Morrison et al., 2008; Ogasawara et al., 2008; Bhalla,
2009; Ogasawara and Kawato, 2009; Tanaka and Augustine,

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2018 | Volume 12 | Article 2040

https://biodynamo.web.cern.ch/
https://biodynamo.web.cern.ch/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

2009; Urakubo et al., 2009; Castellani and Zironi, 2010; Gerkin
et al., 2010; Graupner and Brunel, 2010; Hellgren Kotaleski and
Blackwell, 2010; Manninen et al., 2010; Shouval et al., 2010).
The models range from a simple models with just a single
reversible reaction to very detailed models with several hundred
reactions. In Table 2, we list the neuronal signal transduction
models for plasticity that we evaluated in this study. The models
by d’Alcantara et al. (2003) and Delord et al. (2007) were
the simplest with just a few reactions, whereas the model by
Zachariou et al. (2013) had both pre- and postsynaptic single-
compartmental neurons and rest of the models had very detailed
intracellular signaling pathways taken into account. The models
by d’Alcantara et al. (2003), Delord et al. (2007), and Zachariou
et al. (2013) we used in the reproducibility studies. In the
comparability studies (Manninen and Linne, 2008; Manninen
et al., 2011), we tested the models by d’Alcantara et al. (2003),
Hayer and Bhalla (2005), Lindskog et al. (2006), Delord et al.
(2007), Nakano et al. (2010), and Kim et al. (2010).

2.2.2. Astrocyte Models
Similarly to neuronal signal transduction models, hundreds
of single astrocyte, astrocytic network, and neuron-astrocyte
interaction models have been developed to study different
phenomena. Several reviews of computational astrocyte and
neuron-astrocyte models have appeared during the last few years,
some focusing only to a few models and some giving a general
overview of the field (see e.g., Jolivet et al., 2010; Mangia et al.,
2011; De Pittà et al., 2012, 2016; Fellin et al., 2012; Min et al.,
2012; Volman et al., 2012; Wade et al., 2013; Linne and Jalonen,
2014; Tewari and Parpura, 2014; Manninen et al., 2018a,b). In
Table 3, we list the models that we evaluated in this study.
We chose five single astrocyte and signal transduction models
(Di Garbo et al., 2007; Lavrentovich and Hemkin, 2008; De Pittà
et al., 2009; Dupont et al., 2011; Riera et al., 2011a,b) and four
neuron-astrocyte interaction models (Nadkarni and Jung, 2003;
Silchenko and Tass, 2008; Wade et al., 2011, 2012). Silchenko
and Tass (2008) used a two-compartmental neuron model,
whereas the other three (Nadkarni and Jung, 2003; Wade et al.,
2011, 2012) used single-compartmental models. The models by
Nadkarni and Jung (2003), Di Garbo et al. (2007), Silchenko and
Tass (2008), Lavrentovich and Hemkin (2008), De Pittà et al.
(2009), Riera et al. (2011a,b), Dupont et al. (2011), and Wade
et al. (2011, 2012) were tested in the reproducibility studies (see
also Manninen et al., 2017, 2018b). In addition, the models by
Lavrentovich and Hemkin (2008), De Pittà et al. (2009), Riera
et al. (2011a,b), and ourmodified version of themodel by Dupont
et al. (2011) were used in the comparability study (see also
Manninen et al., 2017).

2.2.3. Spiking Neuronal Network Models
Spiking neuronal network models are numerous in the literature
and used to model various phenomena and brain structures.
In order to constrain this evaluation to a reasonable set of
models, we selected only those models which are developed
for the spontaneously synchronized population activity from
dissociated neuronal cultures in vitro (for more details, see
Robinson et al., 1993; Teppola et al., 2011). The focus on

data-driven models gives us an opportunity to emphasize
the need for reproduction of both model and data analysis
tools. We compared several publications (Latham et al., 2000;
Giugliano et al., 2004; French and Gruenstein, 2006; Gritsun
et al., 2010, 2011; Baltz et al., 2011; Maheswaranathan et al.,
2012; Mäki-Marttunen et al., 2013; Masquelier and Deco,
2013; Yamamoto et al., 2016; Lonardoni et al., 2017), that use
similar models, address similar questions, and should converge
toward similar conclusions. Some differences emerge from the
experimental preparation, from the recording technology, or
variations in model composition. The publications by Gritsun
et al. (2010, 2011) present two parts of the same study. They
are considered as one study, but are presented separately in
Table 4 due to the small differences in model construction
and data analysis. The publication by Mäki-Marttunen et al.
(2013) is not, strictly speaking, modeling the experimental data
but rather uses the theoretical concepts to explore models and
synthetic data typical for this same type of experiments. All of
the studies under consideration implement networks of point-
neurons (a few hundred to few thousand neurons) with none
or short-term plasticity in synapses and statistical description
of connectivity. Similar models have been extensively analyzed
in theoretical studies exploring feasible dynamical regimes, and
some of them are available in public repositories dedicated to
reproducible model development (see OpenSourceBrain; http://
www.opensourcebrain.org/). In this study, we do not consider
recent attempts to model the effects of non-neuronal cells, and
we also leave out the mean field approaches to modeling the
same type of experiments and data. The 10 selected studies are
summarized in Table 4.

3. RESULTS

We here evaluate first the simulation tools we used for
biochemical reactions, growth in cell cultures, and spiking
neuronal networks, and last the computational models for
signal transduction in neurons, astrocytes, and spiking neuronal
networks.

3.1. Evaluation of Simulation Tools
3.1.1. Simulation Tools for Biochemical Reactions
In our previous studies, we have extensively used and
evaluated both deterministic and stochastic simulation tools
for biochemical reactions (see Table 1), categorized their basic
properties, benefits, and drawbacks, as well as tested the tools by
implementing test cases and running simulations (Pettinen et al.,
2005; Manninen et al., 2006c; Mäkiraatikka et al., 2007). At first,
we tested four deterministic simulation tools, GENESIS/Kinetikit
(versions 2.2 and 2.2.1 of the GENESIS and versions 8 and
9 of the Kinetikit), Jarnac/JDesigner (version 2.0 of Jarnac
and version 1.8k of JDesigner), Gepasi (version 3.30), and
SimTool, by implementing the same test case for every simulation
tool and running simulations (Pettinen et al., 2005). Next, we
tested three stochastic simulation tools, Dizzy (version 1.11.2),
Copasi (release candidate 1, build 17), and Systems Biology
Toolbox (version 1.5), the same way (Manninen et al., 2006c;
Mäkiraatikka et al., 2007). Last, we tested the possibility to

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2018 | Volume 12 | Article 2041

http://www.opensourcebrain.org/
http://www.opensourcebrain.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

TABLE 2 | Summary of the neuronal signal transduction models.

Model Neuron model Synapse model Intracellular signaling

d’Alcantara et al., 2003 No AMPAR CaM, CaMKII, CaN, DARPP32 or I1, PP1

Hayer and Bhalla, 2005 No AMPAR, NMDAR AC1, AC2, AMP, Ca2+, CaM, CaMKII, cAMP, CaN, I1, Ng, PDE1, PKA, PKC, PP1,

PP2A

Lindskog et al., 2006 No D1R AC5, AMP, ATP, CaM, CaMKII, cAMP, CaN, Cd5k, DARPP32, G protein, PDE1,

PDE4, PKA, PP1, PP2A

Delord et al., 2007 No No Kinase, phosphatase, substrate

Nakano et al., 2010 No AMPAR, D1R AC5, AMP, ATP, Ca2+, CaM, CaMKII, cAMP, CaN, Cd5k, CK1, DARPP32, G protein,

I1, PDE1, PDE2, PKA, PP1, PP2A, PP2C

Kim et al., 2010 No D1R AC1, AC8, AMP, ATP, Ca2+, CaM, CaMKII, cAMP, CaN, G protein, I1, PDE1B, PDE4,

PKA, PP1

Zachariou et al., 2013 Presyn.: HH (Kdr, Na,

N-type VGCC), postsyn.:

HH (Kdr, L-type VGCC, Na)

Presyn.: CB1,

postsyn.: AMPAR,

GABAAR

Postsyn.: 2-AG, Ca2+ (Ca2+ leak from ER into cyt, Ca2+ leak from ext into cyt,

PMCA, SERCA), Ca2+ER , DAG

Neuron model: pre- and postsynaptic point neuron models. Synapse model: pre- and postsynaptic receptors. Intracellular signaling: intracellular calcium signaling (e.g., leaks

and pumps that are not named under other categories) in addition to different intracellular chemical species in pre- and postsynaptic neurons. 2-AG, 2-arachidonoylglycerol; AC1,

adenylyl cyclase type 1; AC2, AC type 2; AC5, AC type 5; AC8, AC type 8; AMP, adenosine monophosphate; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;

ATP, adenosine triphosphate; Ca2+, calcium ion; CaM, calmodulin; CaMKII, Ca2+/CaM-dependent protein kinase II; cAMP, cyclic AMP; CaN, calcineurin; CB1, cannabinoid type 1

receptor; Cdk5, cyclin-dependent kinase 5; CK1, casein kinase 1; cyt, cytosol; D1R, dopamine receptor; DAG, diacylglycerol; DARPP32, dopamine- and cAMP-regulated neuronal

phosphoprotein of 32 kDa; ER, endoplasmic reticulum; ext, extracellular space; GABAAR, gamma-aminobutyric acid type A receptor; HH, Hodgkin-Huxley; I1, inhibitor 1; Kdr, delayed

rectifier potassium current; Na, sodium current; Ng, neurogranin; NMDAR, N-methyl-D-aspartate receptor; PDE1, phosphodiesterase type 1; PDE1B, PDE type 1B; PDE2, PDE type

2; PDE4, PDE type 4; PKA, cAMP-dependent protein kinase; PKC, protein kinase C; PMCA, plasma membrane Ca2+ ATPase; PP1, protein phosphatase 1; PP2A, PP type 2A; PP2C,

PP type 2C; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; VGCC, voltage-gated Ca2+ channel.

easily exchange models between stochastic simulation tools
using Systems Biology Markup Language (SBML) (Mäkiraatikka
et al., 2007). As a surprise, only a few of the tools that were
supposed to support SBML import were capable of simulating
the selected test case when imported as SBML file (Mäkiraatikka
et al., 2007). Of the tools that we tested for that study,
only Dizzy, Narrator, and XPPAUT succeeded in simulating
the imported SBML file. We found out in all of our studies
(Pettinen et al., 2005; Manninen et al., 2006c; Mäkiraatikka
et al., 2007) that the simulation results between the tools were
convergent. Using the same test case as by Pettinen et al. (2005),
we also found out in a separate set of tests that NEURON
produced similar results as the other tools mentioned above.
Based on our studies, we concluded that the comparability
of the simulation results needed several requirements to be
fulfilled. First, the usability of the simulation tools and existence
of proper manuals were crucial. For example, even beginners
were able to use Dizzy, Gepasi, Copasi, and Jarnac/JDesigner,
but former experience in MATLABr was required for Systems
Biology Toolbox and SimTool. Second, the lack of standards
and interfaces between tools also made the comparability
problematic. For example related to SBML import, graphical
user interfaces designed to help the SBML import were not
intuitive, the error messages were not informative enough,
and not all the SBML levels were supported. Furthermore, for
stochastic simulations with the Gillespie stochastic simulation
algorithm, all the chemical reactions in the model had to
be implemented as irreversible. Although the test case was
implemented and exported with only irreversible reactions, we
found simulation tools that mistook some of the irreversible
reactions for reversible reactions during the SBML import and
thus, we were not able to run stochastic simulations with these

tools (Mäkiraatikka et al., 2007). In addition, problems arose
when having various biochemical and physiological units because
during manual conversion the chance of making errors was
significant. Third, the utilization of realistic external stimuli was
not possible in all simulation tools. Out of the tested simulation
tools, GENESIS/Kinetikit was one of the good examples where
external stimuli were enabled. Fourth, only a few of the tools had
built-in automated parameter estimation methods to tune the
models and their unknown parameter values. However, several
methodology improvements have been made in the field in order
to perform sophisticated parameter estimation. The use may,
however, require some more detailed knowledge in computer
science. Thus, all these difficulties and deficiencies present in
simulation tools can make the comparison of simulation results
difficult.

3.1.2. Simulation Tools for Neurodevelopment
We tested two simulation tools dedicated to modeling
neurodevelopmental mechanisms, NETMORPH and Cortex3D
(Aćimović et al., 2011). While other simulation tools (e.g.,
NEURON) can be used to implement models at particular
developmental age, NETMORPH and Cortex3D implement
the mechanisms behind developmental changes. NETMORPH
and Cortex3D can be used to address the same questions, but
they are fundamentally different in methodology, approach, and
philosophy of modeling being therefore complementary rather
than competing. NETMORPH and Cortex3D were implemented
using different programming languages. Running simulations
beyond making simple changes to the provided examples
required a deeper understanding of the tools.

In short, we implemented a phenomenological model,
compatible with both simulation tools, of neurite growth and

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2018 | Volume 12 | Article 2042

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

TABLE 3 | Summary of the astrocyte and neuron-astrocyte models.

Model Neuron model Neuron-astrocyte synapse

model

Intracellular

signaling in neuron

Intracellular signaling in astrocyte

Nadkarni and

Jung, 2003

Postsyn.: HH (Kdr, Na) Postsyn. voltage 7→ astro IP3,

astro Ca2+ 7→ postsyn. current

No Ca2+ (CICR via IP3R, Ca
2+ leak from ER into cyt,

SERCA), IP3, active fraction of IP3R

Di Garbo et al.,

2007

No Astro: P2XR, P2YR No Ca2+ (CCE, CICR via IP3R, Ca
2+ efflux, Ca2+ leak from

ER into cyt, Ca2+ leak from ext into cyt, SERCA), Ca2+ER ,

IP3, active fraction of IP3R

Silchenko and

Tass, 2008

Postsyn.: Pinsky-Rinzel,

HH (AHP, Kdr, L-type

VGCC, Na)

Postsyn.: AMPAR, NMDAR,

astro: mGluR

Ca2+ Ca2+ (CICR via IP3R, Ca
2+ efflux, glutamate-dependent

Ca2+ influx, Ca2+ influx, Ca2+ leak from ER into cyt,

SERCA), Ca2+ER , IP3, vesicle cycle, glutamate release

Lavrentovich and

Hemkin, 2008

No No No Ca2+ (CICR via IP3R, Ca
2+ efflux, Ca2+ influx, Ca2+

leak from ER into cyt, SERCA), Ca2+ER , IP3

De Pittà et al.,

2009

No No No Ca2+ (CICR via IP3R, Ca
2+ leak from ER into cyt,

SERCA), IP3, active fraction of IP3R

Riera et al.,

2011a,b

No No No Ca2+ (CCE, CICR via IP3R, Ca
2+ efflux, Ca2+ influx via

channels, Ca2+ leak from ER into cyt, SERCA), Ca2+free,

IP3, active fraction of IP3R

Dupont et al.,

2011

No Astro: mGluR No Ca2+ (CICR via IP3R, Ca
2+ efflux, Ca2+ influx, Ca2+

leak from ER into cyt, SERCA), DAG, IP3, fraction of

Ca2+-inhibited IP3R, active fraction of PKC

Wade et al., 2011 Postsyn.: LIF Tsodyks 7→ astro IP3 and syn.

current, astro Ca2+ 7→

postsyn. NMDAR,

astro glutamate 7→ Tsodyks

No Ca2+ (CICR via IP3R, Ca
2+ leak from ER into cyt,

SERCA), IP3, active fraction of IP3R, glutamate release

Wade et al., 2012 Postsyn.: LIF Postsyn. 2-AG 7→ astro IP3,

astro glutamate 7→ syn. current

Postsyn.: 2-AG,

depression,

potentiation

Ca2+ (CICR via IP3R, Ca
2+ leak from ER into cyt,

SERCA), IP3, active fraction of IP3R, glutamate release

Neuron model: postsynaptic multicompartmental and point neuron models. Neuron-astrocyte synapse model: Tsodyks-Pawelzik-Markram model; postsynaptic and astrocytic

receptors. Intracellular signaling in neuron: intracellular chemical species in postsynaptic neuron. Intracellular signaling in astrocyte: intracellular calcium signaling (e.g., leaks,

pumps, and receptors that are not named under other categories) in addition to different intracellular chemical species in astrocyte. We only implemented the astrocyte component of

the model by Di Garbo et al. (2007), and not the neuron component at all. 2-AG, 2-arachidonoylglycerol; AHP, after-hyperpolarization current; AMPAR, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor; ATP, adenosine triphosphate; Ca2+, calcium ion; CCE, capacitive Ca2+ entry; CICR, Ca2+-induced Ca2+ release; cyt, cytosol; DAG, diacylglycerol; ER,

endoplasmic reticulum; ext, extracellular space; HH, Hodgkin-Huxley; IP3, inositol trisphosphate; IP3R, IP3 receptor; Kdr, delayed rectifier potassium current; LIF, leaky integrate-and-fire;

mGluR, metabotropic glutamate receptor; Na, sodium current; NMDAR, N-methyl-D-aspartate receptor; P2XR, ionotropic purinergic ATP receptor; P2YR, purinergic G-protein-coupled

metabotropic receptor; PKC, protein kinase C; SERCA, sarco/ER Ca2+-ATPase; VGCC, voltage-gated Ca2+ channel.

formation of synaptic contacts based on morphology criteria
(for more details see Aćimović et al., 2011). The choice is
determined by model components and mechanisms available
in NETMORPH. To analyze the simulation results, we wrote
own MATLABr code which converted both simulated data
sets to the same format and computed the statistics from the
data. We examined the simulated morphologies, analyzed the
number of generated synapses at different simulation times, and
compared the synapse counts to the experimental data extracted
from the literature (see Figure 1). As a conclusion, the two
simulation tools produced qualitatively similar growth dynamics.
The simulated results were consistent with the experimental data
in the early phase of growth but deviated in the latter phase.
Cortex3D gave somewhat shorter neurites with less synaptic
contacts and less precise control of the orientation of neurite
segments than NETMORPH. While NETMORPH implements
a set of equations derived to produce precise statistics for all
relevant parameters of neurite morphology, Cortex3D focuses on
the underlying mechanisms of growth, for example the tensions
resulting from elongation and the production of resources
needed for growth. These mechanisms affect neurite morphology

in a complex and not fully predictable way. The computational
model used for testing and comparing the simulation tools
was a natural choice for NETMORPH and therefore easier to
implement, faster to simulate, and less memory consuming.
However, Cortex3D offers more flexibility to implement user-
defined models for various phases of neurodevelopment, and can
be used to study many other mechanisms in addition to neurite
growth.

3.1.3. Simulation Tools for Spiking Neuronal Networks
We present our user experience with three common tools for
simulation of large spiking networks of point neuron models.
In addition to testing and comparing the simulation tools,
we discuss the flexibility of simulation tools to implement
user-defined model components. We tested the common tools,
NEST (version 2.8.0) with PyNN (version 0.8.0) used as an
interface and Brian (version 2.0). All of the tested packages
are well documented and additional support is offered through
user groups. The general tendency to develop Python based
simulation tools or Python interface to simulation tools saves
time when analyzing the obtained simulation results, since the

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2018 | Volume 12 | Article 2043

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

TABLE 4 | Summary of the spiking neuronal network models.

Model Neuron model Synapse model Connectivity Data analysis

Latham et al.,

2000

QIF/Theta, AHP, Ref,

excitatory and inhibitory

exp-cond. Nonstructured,

distance-based

Burst detection: none; Measures: rasterplot, GFR

Giugliano et al.,

2004

LIFa, excitatory exp-curr. Nonstructured Burst detection: not given; Measures: burst structure,

burst count/freq.

French and

Gruenstein, 2006

LIF, AHP, Ref, T-type VGCC alpha-curr., depression SW Burst detection: none; Measures: burst size (number of

active neurons), speed of burst propagation

Gritsun et al., 2010 Izhikevich, excitatory and

inhibitory

exp-curr., Tsodyks Nonstructured Burst detection: GFR; Measures: burst structure

Gritsun et al., 2011 Izhikevich, excitatory and

inhibitory

exp-curr., Tsodyks Nonstructured, intense

neurons

Burst detection: ISI-cell.; Measures: burst count/freq.

Baltz et al., 2011 LIF, AHP, Ref, T-type VGCC,

excitatory

AMPAR, NMDAR, Tsodyks Nonstructured Burst detection: ISI-cell.; Measures: rasterplots, GFR,

burst structure, burst count/freq.

Maheswaranathan

et al., 2012

Izhikevich, excitatory and

inhibitory

exp SW Burst detection: GFR; Measures: rasterplots, GFR, burst

structure, spectral analysis, PCA

Mäki-Marttunen

et al., 2013

LIF, HH (Kdr, K-slow, Na,

NaP), excitatory and

inhibitory

(with LIF) exp-curr., Tsodyks;

(with HH) AMPAR, NMDAR,

GABAAR

Nonstructured,

distance-based, SW,

complex, simulated

Burst detection: ISI-pop.; Measures: rasterplots, burst

structure, connectivity, graph measures

Masquelier and

Deco, 2013

LIF, AHP, excitatory AMPAR, NMDAR, Tsodyks Nonstructured Burst detection: GFR; Measures: burst count/freq.

Yamamoto et al.,

2016

LIF, AHP, Ref, T-type VGCC,

excitatory

biexp-cond. Nonstructured Burst detection: not clear; Measures: rasterplots, burst

count/freq., connectivity

Lonardoni et al.,

2017

AdExp, excitatory and

inhibitory

biexp-cond., AMPAR,

GABAAR, NMDAR, Tsodyks

Distance-based

(alternatives

considered)

Burst detection: GFR; Measures: burst structure, burst

count/freq., GFR, connectivity, burst propagation, graph

measures

Neuron model: point neuron model, one (excitatory) or two (excitatory and inhibitory) neuronal populations. Synapse model: exponential (exp.), bi-exponential (biexp.), or alpha

postsynaptic current (curr.) or conductance (cond.); Tsodyks-Markram model; synaptic receptors. Connectivity: network connectivity, nonstructured (equal probability of connection

for every pair of neurons), distance-based (probability of connection decreases with the distance between somata), small-world and other complex connectivity schemes, intense

neurons (nonstructured, but a subset of neurons has particularly strong synapses), simulated (morphology-based connectivity simulated using NETMORPH). Data analysis: burst

detection (identifying periods of global synchronization from the data), categories: from inter-spike-intervals of individual neurons (ISI-cell.), from inter-spike-intervals of the population

(ISI-pop.), from global firing rates (GFR). Data measures: burst structure (length, number of spikes per burst etc.), burst count or frequency or statistics of inter-burst-intervals, frequency

analysis, burst propagation through network, analysis of connectivity (physical or functional/from spike trains), graph measures of connectivity. AdExp, adaptive exponential; AHP, after-

hyperpolarization current; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; GABAAR, gamma-aminobutyric acid type A receptor; HH, Hodgkin-Huxley; Kdr,

delayed rectifier potassium current; K-slow, slow potassium current; LIF and LIFa, leaky integrate and fire without and with adaptation; Na, sodium current; NaP, persistent sodium

current; NMDAR, N-methyl-D-aspartate receptor; PCA, principal component analysis; QIF, quadratic integrate-and-fire; Ref, refractory current; SW, small-world connectivity; Theta,

theta model; T-type VGCC, T-type voltage-gated Ca2+ channel (in bursting neurons).

same Python modules for analysis and visualization of data
can be combined with each simulation tool. Parallelization
is supported by NEST and PyNN, however it is still under
development in Brian. An earlier version of Brian offers a
model fitting method for tuning the statistics of the interspike
intervals in spiking neuron models. In Brian version 2.0, this
option is under development. NEST and PyNN do not provide
direct tools for model fitting. However, both Brian and NEST
can easily be combined with external Python modules for
model fitting. For fast exploration of models, for example in
the early phase of model development, or for incorporating
nonstandard biophysical mechanisms in the model, Brian offered
more flexibility. In NEST and PyNN, the components of the
model have to be either selected from the list of existing
models or implemented by extending the simulation tool to
include new models. Brian provides more flexible framework
for implementation of user-defined models. Model components
are specified directly as strings of ODEs. Various models can
easily be implemented, however they still rely on the existing
functionalities of the simulation tool.

3.2. Evaluation and Comparison of

Computational Models
3.2.1. Neuronal Signal Transduction Models
Based on our large review of postsynaptic signal transduction
models for long-term potentiation and depression (Manninen
et al., 2010), we found out that it would have been often
time consuming or even impossible to try to reproduce the
simulations results. First, not all the details of the models, such as
equations, variables, inputs, outputs, compartments, parameters,
and initial conditions, were given in the original publications. For
example, even just missing to give the inputs in the publications
makes the reimplementation and reproduction of the simulation
results difficult or impossible with signal transduction models.
Second, most of the models were not available in model
databases or were not open access, and sometimes even the
simulation tool or programming language used was not named
in the publications. Third, comparison to previous models
was non-existent. Even qualitative comparison was difficult
because only a few publications provided graphical illustrations
of the model components or the graphical illustrations were

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2018 | Volume 12 | Article 2044

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

FIGURE 1 | Evaluation and comparison of the neuronal growth simulation tools (NETMORPH and Cortex3D). Panels illustrate the increase in synapse counts during

simulation time equivalent to 4–21 days in vitro. The number and position of somata were fixed. For each neuron, the neurites grew according to the implemented

model and formed synaptic contacts based on proximity between axonal and dendritic branches. In this figure, we varied one of the parameters that controlled neurite

growth, the elongation rate ν0 (see legend), and different colors correspond to different parameter values. The results show mean (line) and standard deviation (bar) for

the number of synapses per neuron, averaged over all neurons in the culture. Stars indicate experimental values extracted from the literature (Ichikawa et al., 1993).

(Top left) Synapse counts obtained from NETMORPH, elongation rates equal to 1, 2, 4, 6, and 8 µm/day. (Top right) Zoomed interval 7–14 days from the panel (Top

left). (Bottom) Synapse counts obtained from Cortex3D, elongation rates equal to 2, 6, 10, 14, and 22 µm/day. x axis—growth time in days, y axis—number of

synapses per neuron. For days 4–14 and ν0 = 2µm/day (NETMORPH) or ν0 = 10µm/day (Cortex3D), the simulated values corresponded to the experimental ones.

After 14 days the simulated values increased while the experimental values saturated as no synaptic pruning was implemented in this test. The neurite growth was

slower for Cortex3D which was visible from the values for ν0. Reproduced from Aćimović et al. (2011) with permission from Hindawi.

misleading by having also components that were not actually
modeled. We concluded that the value of computational models
for understanding molecular mechanisms of synaptic plasticity
would be increasing only with detailed descriptions of the
published models and sharing the codes online.

We listed the models we tried to reimplement, resimulate, and
compare based on the information in the original publications in
Tables 2, 5. In Table 5, we can see that four out of seven models

were available in the model repositories but this is because four of
the models were chosen to this study because of the availability of
the code. Thus, the ratio of models available online is generally
not this high. In addition, most of the publications gave all
the details of the models as text, tabular format, supplementary
material, or at least in the model code. We were able to reproduce
Figure 1C of the publication by Delord et al. (2007). From the
publication by d’Alcantara et al. (2003), we decided to reproduce

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2018 | Volume 12 | Article 2045

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

TABLE 5 | Evaluation of the neuronal signal transduction models.

Model Online Language Equations Parameters Init. cond. Repro., Repli. Compa.

d’Alcantara et al., 2003 No MATLABr All appendix Most text Most appendix, text ++ Tested

Hayer and Bhalla, 2005 DOQCS GENESIS/Kinetikit, MATLABr, SBML All code, suppl, tab All code, suppl, tab All code, suppl, tab Not tried Tested

Lindskog et al., 2006 ModelDB XPPAUT All code, tab, text All code, tab All code Not tried Tested

Delord et al., 2007 No Not given All text All text All text +++ Tested

Nakano et al., 2010 ModelDB GENESIS/Kinetikit All code, suppl, tab, text All code, suppl, tab All code, suppl, tab Not tried Tested

Kim et al., 2010 ModelDB XPPAUT All code, tab, text All code, tab, text All code Not tried Tested

Zachariou et al., 2013 No XPPAUT Most text Most tab, text Some text – Not tried

Online: availability of the model implementation in a model repository by the original authors. Language/Simulation tool: programming language or simulation tool used by the original

authors to implement the model. Equations: availability and format of equations—embedded in the text, appendix, or supplementary material, presented in a table, or described in

the publicly available model implementation (code). Parameters: availability and format of model parameters (same categories as for Equations). Init. cond.: availability and format of

initial conditions (same categories as for Equations). Repro., Repli.: reproducibility or replicability of the original results with the information given in the original publication. Compa.:

comparability of the models to each other. We described model implementation in the original publication using the following categories: none, some (at least about one third of the

details necessary for model reimplementation is given), most (at least about two thirds are given), or all. Models for which we were not able to reproduce any results are marked by −

sign. Models for which we reproduced at least some of the results are marked by one to three + signs depending how well we reproduced the results. We implemented the chosen

models with MATLABr. See more details in section 3 and in our previous publications (Manninen and Linne, 2008; Manninen et al., 2011).

only Figures 3D–F. After fixing one mistake in the equations
by d’Alcantara et al. (2003), we were able to reproduce most of
the simulation results. We were able to reproduce all the other
curves, except our maximum value for α-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid receptor (AMPAR) activity
was about 220 % whereas the original maximum value in Figure
3D was about 280 %. The reason behind the different value
might be that not all parameter and initial values were given
in the original publication. We were not able to completely
implement the model by Zachariou et al. (2013) because not
all the information of the model was given in the original
publication. More information about the reproducibility issues of
the models can be found in our previous publications (Manninen
and Linne, 2008; Manninen et al., 2011).

We were the first ones to provide a computational comparison
of postsynaptic signal transduction models for synaptic plasticity
(Manninen et al., 2011). We evaluated altogether five models,
of which two were developed for hippocampal CA1 neurons
(d’Alcantara et al., 2003; Kim et al., 2010), two were developed
for striatal medium spiny neurons (Lindskog et al., 2006; Nakano
et al., 2010), and one was a generic model (Hayer and Bhalla,
2005) (see Tables 2, 5). The model by d’Alcantara et al. (2003),
we implemented ourselves in MATLABr, but the others we took
from model databases. The models by Kim et al. (2010) and
Lindskog et al. (2006) we took from ModelDB (Migliore et al.,
2003; Hines et al., 2004) in XPPAUT format. The codes were
properly commented and clearly written, which made it easy
to find the values we wanted to modify. The model by Nakano
et al. (2010) we took from ModelDB in GENESIS/Kinetikit
format. The model codes were neither intuitive nor commented.
However, the database and simulation tool provided helpful
explanation files to ease the use of the model files (see more
details in Manninen et al., 2011). The model by Hayer and
Bhalla (2005) we took from the Database of Quantitative Cellular
Signaling (DOQCS, Sivakumaran et al., 2003) in MATLABr

format. However, the MATLABr implementation of the model
was hard to modify due to issues with parameter handling.

Precisely, it was challenging to identify model parameters as the
authors opted to hard code numerical values to the MATLABr

script instead of using parameter names (see more details in
Manninen et al., 2011). We compared the simulation results
of the models by using the same input for the models. We
ran a set of six simulations with different total concentrations
of calcium/calmodulin-dependent protein kinase II and protein
phosphatase 1 to see how the behavior of the models changed.
Our study showed that when using the same input for all the
models, models describing the plasticity phenomenon in the very
same neuron type produced partly different responses. On the
other hand, the models by d’Alcantara et al. (2003) and Nakano
et al. (2010) produced partly similar responses even though they
had been built for neurons in different brain areas, and Nakano
et al. (2010) did not report using the details of the model by
d’Alcantara et al. (2003) when building their model. The models
by Lindskog et al. (2006) and Kim et al. (2010) produced also
partly similar responses even though they had been built for
neurons in different brain areas, but Kim et al. (2010) stated that
they used the details of the model by Lindskog et al. (2006) when
building their model. Based on these results, we concluded that
there is a demand for a general setup to objectively compare the
models (see more details in Manninen et al., 2011). In our other
study (Manninen and Linne, 2008), we compared the models by
d’Alcantara et al. (2003) and Delord et al. (2007) with the same
input and the total concentration of AMPARs. We verified that
the model by d’Alcantara et al. (2003) was only able to explain the
induction of plastic modifications, whereas the model by Delord
et al. (2007) was able to explain both induction and maintenance
(see also d’Alcantara et al., 2003; Delord et al., 2007).

3.2.2. Astrocyte Models
After categorization of astrocyte and neuron-astrocyte models
in our previous studies (Manninen et al., 2018a,b), we realized
that these models have the same shortcomings as listed in the
previous section for neuronal signal transduction models, such
as several publications lacked important model details, model

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2018 | Volume 12 | Article 2046

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

codes were rarely available online, graphical illustrations of these
models were misleadingly plotting also model components that
were not part of the actual model, mathematical equations were
sometimes incorrect, and selected model components were not
often justified.

In our previous studies (Manninen et al., 2017, 2018b), we
tried to reimplement altogether seven astrocyte models. In the
present study, we tried to reimplement two more models. None
of the models were available in model repositories by the original
authors. However, the model by Lavrentovich and Hemkin
(2008) is in ModelDB submitted by someone else (Accession
number: 112547).We have provided our implementation for four
out of nine models in ModelDB [the models by Lavrentovich and
Hemkin (2008), De Pittà et al. (2009), and Riera et al. (2011a,b),
and modified version of the model by Dupont et al. (2011),
Accession number: 223648]. Most of the publications provided
all the details of the models, except the initial conditions, either
in text, tabular format, appendix, supplementary material, or
in corrigendum. We were able to reproduce all of the chosen
original results by Di Garbo et al. (2007) and Lavrentovich and
Hemkin (2008) (see Table 6). We reproduced Figures 2, 5, and
8 by Di Garbo et al. (2007) and Figures 3, 4, 5, 7, and 9 by
Lavrentovich and Hemkin (2008). We were not able to reproduce
any of the important features of the original results by Riera et al.
(2011a,b) with the original equations, but after we fixed the found
error in one of the equations we were able to reproduce some of
the original results in Figure 4B by Riera et al. (2011a) when XIP3

was 0.43 µM/s between 100 and 900 s and 0 otherwise and all of
the original results when XIP3 was 0.43 µM/s between 100 and
900 s and 0.2 µM/s otherwise. We were able to reproduce most
of the original results in Figure 12 by De Pittà et al. (2009). We
were able to reproduce well the amplitude modulation but not
the frequency modulation part of the figure. Thus the problem
might be that the original authors did not provide all the model
details correctly for the frequency modulation. We were not able
to reproduce any of the important features of the original results
in Figures 2 and 3 by Dupont et al. (2011) with the original
equations. After we tested our implementation, we realized that
there had to be a mistake in the original calcium equation. We
tested several different calcium equations based on the equations
published by the same authors and were able to reproduce most
of the original results with one of the tested equations. At first,
we were not able to reproduce Figure 2 by Nadkarni and Jung
(2003). After we fixed mistakes in one of the original equations
and parameter values, we were able to reproduce most of the
original results in Figure 2 by Nadkarni and Jung (2003). Due to
several deficiencies in the original model descriptions, we were
not able to reproduce the simulation results of the models by
Wade et al. (2011, 2012) (see Table 6). In addition, we were not
able to completely implement the model by Silchenko and Tass
(2008) because not all the information of the model was given in
the original publication. More details about the reproducibility
issues of the astrocyte models can be found in our previous
publications (Manninen et al., 2017, 2018b).

In addition to testing reproducibility, we also addressed the
comparability of the astrocyte models in our previous study
(Manninen et al., 2017). We compared the model by Riera

et al. (2011a,b) to the model by Lavrentovich and Hemkin
(2008), and the model by De Pittà et al. (2009) to our modified
version of the model by Dupont et al. (2011). We chose these
models because they described similar biological processes. The
models by Riera et al. (2011a,b) and Lavrentovich and Hemkin
(2008) were spontaneously oscillating models, whereas the other
two models used glutamate as stimulus. The overall dynamical
behaviors of the models were relatively different. The model
by Lavrentovich and Hemkin (2008) oscillated less frequently
than the model by Riera et al. (2011a,b). We found out that
both models were sensitive to parameter values. Especially, when
using the parameter values from the model by Riera et al.
(2011a,b) in the model by Lavrentovich and Hemkin (2008), the
model by Lavrentovich and Hemkin (2008) behaved differently
compared to the behavior with its own parameter values. With
a constant glutamate stimulus, the models by De Pittà et al.
(2009) and our modified version of the model by Dupont et al.
(2011) showed partly similar kind of behavior but there were
a few exceptions. First, a higher constant glutamate stimulus
value produced higher calcium concentrations with the model
by De Pittà et al. (2009) and lower calcium concentrations with
our modified version of the model by Dupont et al. (2011).
Second, the higher the constant glutamate stimulus value, the
faster the model by De Pittà et al. (2009) ceased to oscillate. With
pulse wave stimuli, the model by De Pittà et al. (2009) and our
modified version of the model by Dupont et al. (2011) produced
differing results. In our modified version of the model by Dupont
et al. (2011), the calcium concentration oscillated even with the
minimum concentration value of the glutamate stimulus pulse.
This did not happen with the model by De Pittà et al. (2009).
More details about the comparability issues of the astrocyte
models can be found in our previous publication (Manninen
et al., 2017).

3.2.3. Spiking Neuronal Network Models
We evaluated 10 models listed in Table 4. The majority
of the examined publications presented a complete set of
equations describing the neuron and synapse models, either in
the methods section, appendices, or supplementary material.
We found an incomplete set of equations in two of the
publications. All model parameters were presented, however not
in an easily tractable format. Only one publication presented
all the parameters in a tabular format, 6/10 (7/10 if the
supplementary material was included) publications partially
summarized parameters in a tabular format. None of the
publications used the recommendable model description format
introduced by Nordlie et al. (2009). Non-systematic model
description increases the chance of errors both in the publication
and when reimplementing the model. We found several minor
errors: wrong naming of parameters, same name used for
different parameters in the same article, missing to define
some relevant parameters before using them, ambiguities in
defining probability distributions used to randomize some of
the parameters (e.g., using the wrong name for probability
distribution, ambiguity about implementation of probability
distribution in the utilized simulation tool), and ambiguities in

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2018 | Volume 12 | Article 2047

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

TABLE 6 | Evaluation of the astrocyte and neuron-astrocyte models.

Model Online Language Equations Parameters Init. cond. Repro. Compa.

Nadkarni and

Jung, 2003

No Not given All text All text No −/++ Not tried

Di Garbo et al.,

2007

No Not given All text All tab No +++ Not tried

Silchenko and

Tass, 2008

No Not given Most appendix, text Most appendix, tab, text No − Not tried

Lavrentovich and

Hemkin, 2008

No (ModelDB by

us and others)

Fortran (Python by

us, XPP by others)

All text All corrigendum, text All text +++ Tested

De Pittà et al.,

2009

No (ModelDB by

us)

Not given (Python

by us)

All appendix, text All tab No ++ Tested

Riera et al.,

2011a,b

No (ModelDB by

us)

MATLABr

(Python by us)

All suppl, tab, text All suppl, tab, text No −/+/+++ Tested

Dupont et al.,

2011

No (ModelDB by

us)

MATLABr (Mod.

model with Python

by us)

All text All tab, text No −/++ Tested

Wade et al., 2011 No MATLABr All text Most tab, text Some text − Not tried

Wade et al., 2012 No MATLABr All text All appendix, tab, text Most appendix, tab, text − Not tried

Online: availability of the model implementation in a model repository by the original authors, by us, or by someone else. Language/Simulation tool: programming language or

simulation tool used by the original authors, by us, or by someone else to implement the model. Equations: availability and format of equations—embedded in the text, appendix,

supplementary material, or corrigendum, or presented in a table. Parameters: availability and format of model parameters (same categories as for Equations). Init. cond.: availability and

format of initial conditions (same categories as for Equations). Repro.: reproducibility of the original results with the information given in the original publication. Compa.: comparability

of the models to each other. We described model implementation in the original publication using the following categories: none, some (at least about one third of the details necessary

for model reimplementation is given), most (at least about two thirds are given), or all. Models for which we were not able to reproduce any results are marked by − sign. Models for

which we reproduced at least some of the results are marked by one to three + signs depending how well we reproduced the results. We implemented all the models with Python and/or

MATLABr, and made some of the models available in ModelDB (Accession number: 223648). We marked the language we used only if we made the model available in ModelDB. See

more details in section 3 and in our previous publications (Manninen et al., 2017, 2018b).

describing the connectivity scheme. In addition, most of the
publications did not give the initial conditions.

Description of network connectivity scheme is equally
important part in presentation of network models. The
unstructured connectivity is used in 6/10 studies, thus each pair
of neurons was connected with equal probability. The other
studies included additional connectivity schemes, often distance-
dependent connectivity, where the probability of connection
decreased with the distance between the pair of neurons, or
the small-world connectivity that allows the majority of local
and a few long-distance connections. A careful description
of the connectivity generating algorithm is advisable for all
but the simplest (unstructured) connectivity in order to avoid
implementation errors. For example, in one of the publications
the authors described network connectivity as “scale-free
random” but then assigned a number of outputs to each neuron
using a uniform random instead of a power-law distribution. The
two studies by Mäki-Marttunen et al. (2013) and Lonardoni et al.
(2017) paid additional attention to the generation of connectivity
matrix. Both included supplementary material to describe
implementations and implications of different connectivity
schemes.

The comparison between simulated and experimental data
requires extensive data analysis. The lack of standardization of
methodology and the ambiguity in presentation of the applied
algorithms pose additional obstacles to reproducibility and
replicability. All of the models under consideration generated
the same type of data, the spontaneous activity exhibiting

network-wide bursts, thus the intervals of intensive spiking
activity reflecting global synchronization. The analysis of this
data often consists of two steps: bursts detection, segmenting
the population spike-data into intervals containing bursts, and
computing the statistics of different quantitative measures based
on the burst detection or on original non-segmented data. Burst
detection itself might not be very reliable. A recent review
article conducted evaluation of a broad range of burst detection
methods and tested them against a carefully crafted benchmark
data (Cotterill et al., 2016). The authors concluded that none of
the algorithms performed ideally, and suggested a combination
of several methods for improving the precision. The issue was
not so dramatic in studies that we examined. All of them focused
on relatively large bursting events that were easier to identify,
compared to the study by Cotterill et al. (2016). Typically,
burst detection algorithms depend on free parameters that are
manually tuned to the data. However, the fact that methods
used in various studies differ and that authors rarely provide the
implementation of the algorithms creates an additional obstacle
in reproducing the published results. Even bigger variability
is presented in selection of methodology to quantify bursting
dynamics. The last column in Table 4 illustrates this variability
and lists the data measures used in different publications. In the
table, burst detection methods are classified into three categories:
methods based on spike-data of individual electrodes/neurons,
based on population spike-data, and based on global/population
firing rate. The measures used to quantify data include analysis
of the spike-data statistics, analysis of burst profiles or frequency

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2018 | Volume 12 | Article 2048

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

TABLE 7 | Evaluation of the spiking network models.

Model Online Language Equations Parameters Init. cond. Repli.

Latham et al., 2000 No Not given All text All tab, text No Not tried

Giugliano et al., 2004 No Not given All text All tab, text No Not tried

French and Gruenstein, 2006 No MATLABr All text All text No Not tried

Gritsun et al., 2010 No C++, MATLABr Most appendix, text All tab, text No Not tried

Gritsun et al., 2011 No C++, MATLABr Some text Some tab, text No Not tried

Baltz et al., 2011 No Brian v2, Python All text All text No Not tried

Maheswaranathan et al.,

2012

No C++, MATLABr Most text Most tab, text No Not tried

Mäki-Marttunen et al. (2013) ModelDB MATLABr, NEST All code, text All code, tab, text All code +++

Masquelier and Deco, 2013 ModelDB Brian v1, Python All code, text All code, tab, text All code ++

Yamamoto et al., 2016 No Not given All text All text No Not tried

Lonardoni et al., 2017 DRYAD NEURON, Python All code, suppl, text All code, suppl, tab, text All code ++

Online: availability of the model implementation in a model repository by the original authors. Language/Simulation tool: programming language or simulation tool used by the original

authors to implement the model. Equations: availability and format of equations—embedded in the text, appendix, or supplementary material, presented in a table, or described in the

publicly available model implementation (code). Parameters: availability and format of model parameters (same categories as for Equations). Init. cond.: availability and format of initial

conditions (same categories as for Equations). Repli.: replicability of the original results with the information given in the original publication. We described model implementation in the

original publication using the following categories: none, some (at least about one third of the details necessary for model reimplementation is given), most (at least about two thirds are

given), or all. Models for which we replicated at least some of the results are marked by one to three + signs depending how well we replicated the results.

of their occurrences, frequency analysis, principal component
analysis applied to global firing rates, spatial burst propagation,
extraction of connectivity from the spike-data of individual
neurons, as well as graph theoretic analysis of the extracted
connectivity. This lack of standardization in data representation
somewhat hinders the comparison between different studies.
Reproducibility of the model requires reimplementation of the
model equations, burst detection method, and measures used to
quantify the data.

The simulation tools range from the custom-made software
in MATLABr or C++ to the public simulation tools of spiking
neuronal networks (e.g., Brian, NEST, and NEURON). Three
out of 10 listed studies provide the full model implementation,
namely Masquelier and Deco (2013), Mäki-Marttunen et al.
(2013), and Lonardoni et al. (2017). From these studies, we
attempted to replicate the results that demonstrate time evolution
of model variables and the global dynamical regime of the model,
for example adaptation variables, cell membrane potential, and
spike raster plots. The replicability of the three studies is
summarized in Table 7. The model by Masquelier and Deco
(2013) is available in Brian version 1.4.0 and Python version 2.6,
and we ran it in Brian version 1.4.1 and Python version 2.7.
The code contains model implementation, the list of parameters,
and the plotting function sufficient to replicate Figures 4, 5
from the article. The replication of Figure 4, the illustration
of neuron and network dynamics, was straightforward. In
Figure 5, the neuronal adaptation mechanism was examined
and the basic model was tested for two different values of
the adaptation time constant τa. We replicated the result
obtained for τa = 1.6 s but failed to replicate the results
for τa = 1.2 s. This might be caused by different versions
of Python and Brian used in the original study and in our
replicability test. Themodel by Lonardoni et al. (2017) is available
in NEURON/Python format (versions of the software not

indicated). It required installation of an additional nonstandard
Python package. The model is well documented and supported
by many implementation details. The code downloaded from
DRYAD repository included model implementation, the code for
generating connectivity matrices, as well as three test examples
and three examples of connectivity matrices. The first attempt
to run the model using Neuron 7.1. produced errors. After
contacting the authors, we obtained the correct version for the
simulation tool (Neuron 7.3) and Python packages, as well as
valuable instructions how to use the code. Under Neuron 7.3,
all three test examples worked. We were able to use two out
of three connectivity matrices, but not the biggest one (N =

4,096 neurons) used in the article. Attempt to run the biggest
matrix failed most likely due to memory issues. However, we
managed to replicate the rasterplots in Figure 2A by Lonardoni
et al. (2017) using a smaller matrix (N = 1,024 neurons)
and after modifying one parameter. In a smaller network, the
burst propagation in Figure 2B by Lonardoni et al. (2017) was
somewhat less evident. Thus, we were able to replicate most of
the original results by Lonardoni et al. (2017). The study by
Mäki-Marttunen et al. (2013) contains two models, a network
of HH neurons and a network of leaky-IF (LIF) neurons. We
replicated Figure 3 from the article. The first, HH model, is
available in MATLABr format (version R2010a/R2011b) using
own code and it was possible to replicate it. The second, LIF
model, is available in PyNEST format (Python version 2.4.3
and NEST version 2.0.0). The software versions are indicated
in the code. We managed to replicate the result using Python
version 2.7 and NEST version 2.2.1. Running the same code
in a newer version of the simulation tool, NEST version 2.8.0,
failed to produce any bursting dynamics. All of the studies
provided well-documented models and full set of parameters.
However, the replicability of the results was hindered by common
problems related to versions of the utilized software. These

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2018 | Volume 12 | Article 2049

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

FIGURE 2 | Summary of reproducibility and replicability studies. Both x- and y-values are based on subjective estimation. On the x-axis, we present the difficulty to

reimplement, simulate, and reproduce or rerun and replicate previous results (numbers mean the following: 0—immediately, 1—after a few hours of working on the

model, 2—after 1 day, 3—after a few days, 4–after 1 week, and 5—after 2 weeks or more). On the y-axis, we present the percentage of reproduced or replicated

results. The models are separated into three categories based on were they supplied in model repositories by original authors, were at least part of the parameter

values given in a tabular format, and were parameter values given only in text format.

examples illustrate the need to provide detailed information
about simulation environment, in addition to model description
and implementation.

3.2.4. Summary of Reproducibility and Replicability

Studies
Figure 2 shows our subjective evaluation of the difficulty in
timewise to reproduce and replicate the original simulation
results and the percentage of reproduced and replicated original
results. The list of issues affecting the evaluation of models
included: (1) complexity of the reproduced/replicated model, (2)
model description in the original publication (in a tabular format,
as text, or as a supplementary material, and the amount of details
given), (3) possible errors in the model description, (4) report
of versions of the simulation tools and packages, (5) person who
reimplemented the model, thus the experience of the researcher,
and (6) user support from the authors of the model.

We separated all tested reproducibility and replicability
models (see Tables 5–7) into three classes according to
presentation in related publications: models described fully
in the text (all parameters embedded in the text), models
with parameters at least partially (and in some cases entirely)
given in a tabular format, and the studies which supplied
model implementation to the public repositories. We carried

out reproducibility studies for the first two categories and
replicability studies for the last category. As expected, the
replicability studies were less difficult than most of the
reproducibility studies, the replication times ranged from
working immediately to 2 days. The percentage of replicated
results was high in all studies (more than 60 %), and the
main obstacle was incompatibility of simulation tool versions.
Reproduction time for models described entirely in text ranged
from a few hours to a week. Surprisingly, we were able to
reproduce on average better the results from these models than
the rest of the models, including the three models that we tried
to replicate by rerunning the available model implementations
(see Figure 2). The reason might be a difference in complexity
of models, as these models tended to be simpler than others.
The majority of the reproduced models presented most or all
the parameter values in a tabular format. The time needed for
reproducing these models ranged from a few days to more than 2
weeks. Even though parameter values were given, at least partly,
in a tabular format for eight models, we were able to reproduce
the original results completely only with two of these models
and none of the original results with four of these models. Thus,
this category of models had a huge variation in percentage of
reproduced results, indicating that some other issues, in addition
to model presentation in the article, determined the success of

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2018 | Volume 12 | Article 2050

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

reproduction. The difficulty to reproduce the results increased
even when only one parameter value was missing or one mistake
in equations. Our results showed that the four models for
which we were able to reproduce all the original results gave all
the equations and parameter values in the original publication,
including corrigenda and supplementary material. However, one
of the completely reproduced models had a mistake in one of
the equations that we had to fix, for all the other completely
reproduced models all the details were given correctly in the
publications. Moreover, if all the details of the models were
given in the original publication, it did not mean that we were
able to reproduce all the results. The reason was that often
the models had mistakes in parameter values or equations. We
should emphasize that small number of model examples in some
categories affected the conclusions (only three replication tests
and four tests with models fully described in text are shown).

Figure 2 shows some level of correlation between difficulty
and accuracy of reproduction/replication studies: all studies that
were done relative fast (up to a few days) achieved relatively
high reproduction/replication of the original results. The studies
that required more time ranged from no reproduction to perfect
reproduction. This also reflects the way how these studies
were carried out, some models immediately gave good results
while others required long time and numerous tests without
guarantee of success. The distribution of values reflecting the
success was somewhat bimodal, the reproduction results either
failed or succeeded with over 60 % reproduced results. The
percentage of replicated results were over 60 % for all models.
Finally, the large distribution of precisions for some classes
of models indicated that additional issues affect the success
of reproduction, particularly the complexity and the accuracy
of the model description. This should be emphasized in the
light of increasing interest for very complex and biophysically
accurate multiscale models. While simpler models provide
solid reproducibility in relatively short time, complex models
require detailed description of the model, preferably with model
implementation made publicly available.

4. DISCUSSION

We have continually evaluated computational neuroscience and
systems biology software and computational models since 2004
while developing new methods and models for computational
neuroscience. In this study, we partly summarized results
from our previous studies and partly presented new results.
We examined selected simulation tools that are intended for
simulation of biochemical reactions and subcellular networks
in neuronal and glial cells (see also Pettinen et al., 2005;
Manninen et al., 2006c; Mäkiraatikka et al., 2007) and for
studying the growth and development of neocortical cultures
(see also Mäki-Marttunen et al., 2010; Aćimović et al., 2011)
and the dynamics of spiking neuronal networks. We have
previously provided an extensive overview of more than hundred
computational models for postsynaptic signal transduction
pathways in synaptic plasticity (Manninen et al., 2010) and more

than hundred computational models for astrocytes and neuron-
astrocyte interactions (Manninen et al., 2018a,b), where our
purpose was to categorize the models in order to make their
similarities and differences more readily apparent. In this study,
we provided reproducibility and comparability results for some
of these models (see alsoManninen et al., 2011, 2017, 2018b) with
an aim to present the state-of-the-art in the field and to provide
solutions for better reproducibility. Additionally, we provided
replicability results for spiking neuronal network models.

Our results show that the different simulation tools we
tested were able to provide same simulation results when the
same models were implemented in them. On the other hand,
it was somewhat difficult to reproduce the original simulated
results after reimplementing and simulating the models based
on the information in the original publications. We were able
to reproduce all the original simulation results of four models
out of 12 models we tested. The more complete and correct
description the model had in the original publication, the more
likely we were able to reimplement the model and reproduce
the original results. When the parameter values were in a
tabular format, it was much easier to reimplement the model
because there was no need to go through the whole article
looking for the possible values. Mistyped or missing equations
and parameter values in the original publications made the
reproducibility of the simulation results most difficult. In our
replicability studies, we were able to replicate one study and most
of the results from the other two studies. The issues encountered
while rerunning the models can be attributed to mismatch in
versions of the software used for replication and for original
model development. Our experiences emphasize the need to
supply not only the model description and implementation
but also the details of simulation environment, the versions
of the software, and the list of necessary packages. The
need for better tracking and documentation of the simulation
environment and possible solutions are discussed by Crook et al.
(2013).

When developing new simulation tools, a multitude of
questions should be asked. Naturally, every simulation tool is
limited with the adopted modeling framework but should aim at
providing the maximal flexibility within that framework. In that
context, the following challenges and questions are relevant:

• How big programming load is needed to implement new
biological mechanisms?

• How easy is it to incorporate the model components into the
existing models from the literature and public databases?

• Does the simulation tool allow flexible level of details when
describing different model components?

• Do the version of the simulation tool and packages needed to
run the simulations pose a problem for replicability?

Most of the existing simulation tools of spiking neuronal
networks impose strict constraint on selection of model
components. Those components are implemented as part of
the model source code, and the new ones can be added
only through extension of the source code which prevents
fast modification of model components. Simulation tools that

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2018 | Volume 12 | Article 2051

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

provide basic mechanisms for model implementation and allow
flexible description of details, for example directly implementing
the model as either ODEs or SDEs (Brian, XPPAUT), by
providing interface for adding new components (NEURON), or
by providing unit checks (Brian), offer easier manipulation and
modification of the model. For the same reason, the simulation
tools of this type allow easier extension and reuse of the
published models. Several existing tools support development
of multiscale models [MOOSE (Ray et al., 2008), GENESIS,
NEURON] or implementation of models using more than
one standard simulation tool (MUSIC, Djurfeldt et al., 2010).
These tools support models where different mechanisms are
represented at different level of details. The different versions
of the simulation tools and the packages needed can make
replicability problematic. It is very important for the tool
developers to take this into account.

Our findings on a specific set of published models for different
biological systems stress the importance of a variety of aspects of
model development. The following challenges and questions are
relevant:

• Has the model been checked carefully in the review process
and can it produce the results in the publication?

• Is the quality of the code sufficient?
• Is the model properly validated against experimental wet-lab

data and correctly representing the biological findings?
• What new biological, modeling, and computational aspects the

model provides on top of the previously published models?
• Are all the details of the model equations and biological

components given in the publication in a clear way, preferably
in a tabular format?

• Which programming language or simulation tool was used to
implement the model, which data analysis methods were used,
and are the implementation of the model and data analysis
methods available online?

It is important to emphasize that a good-quality model
implementation supplied with the original publication improves
not only replicability of the study but also understanding of
the model itself. This is already important during the review
process. Reviewers should have the possibility to rerun the
model code, check the simulated results, and compare the
simulated and experimental data during the review process (see
also Eglen et al., 2017; Rougier et al., 2017). Equally important
is to clearly explain what new components the model has
in comparison to previously published models and what old
and new results the model can show. Verbal description is a
suboptimal way to present complex mathematical formalisms
and algorithms. It often turns out to be incomplete and a number
of ambiguities emerge when attempting to reimplement a model,
usually not evident at first. More systematic and compact
description of all model details, such as equations, parameter
values, initial conditions, and stimuli, using, for example, a
tabular format proposed by Nordlie et al. (2009) and Manninen
et al. (2017) and a supplementary material presenting a metadata
and meta-code are needed for successful reproduction of the
published scientific results. Tools to manage, share, and, most
importantly, analyze and understand large amounts of both

experimental and simulated data are still needed (Bouchard
et al., 2016). However, suggestions how to design workflows
for electrophysiological data analysis (Denker and Grün, 2016)
and how to structure, collect, and distribute metadata of
neurophysiological data (Zehl et al., 2016) has already been
proposed. Our example of replicability of spiking network
models points at a bottleneck in reproducibility and replicability
created by the lack of commonly adopted methodology and
publicly available code for analysis of simulated data. Following
the good practices in development of data-analysis methods,
careful description of the methods in the article, and supplying
the code with method implementation in addition to the
model implementation are necessary steps to ensure model
reproducibility and replicability.

Best practices for description of neuronal network models
(Nordlie et al., 2009) and minimum information requirements
for reproduction (Le Novère et al., 2005; Waltemath et al.,
2011a) have been suggested. Moreover, many XML-based model
and simulation representation formats, such as SBML (Hucka
et al., 2003), CellML (Lloyd et al., 2004), NeuroML (Gleeson
et al., 2010), SED-ML (Waltemath et al., 2011b), and LEMS
(Cannon et al., 2014), have been developed. On the other
hand, Jupyter Notebook (earlier known as IPython Notebook)
could be a potential solution to enhance reproducibility and
accessibility. In addition to giving all the details needed for
model implementation, it is equally important to categorize the
biological details of the models, such as neuron models, ion
channels, pumps, receptors, signaling pathways, synapse models,
in tabular format in publications (see e.g., Manninen et al., 2010,
2018a,b). If not possible to publish via journal due to page
limitations, providing the implementation of themodel and data-
analysis method in a public and widely adopted simulation tool
or programming language (e.g., Python) in some of the available
model repositories, for example in ModelDB and BioModels
database (Le Novère et al., 2006), is a must. Regardless of all the
available formats and tools, many authors do not publish their
models in a format that is easily exchangeable between different
simulation platforms or provide their models at all in model
repositories. All these issues should be carefully considered in the
training of both experimental and computational neuroscientists
(see also Akil et al., 2016).

Throughout this study, we evaluated, reimplemented and
reproduced, and replicated a range of models incorporating
different levels of biological details and modeling scales. The
models and biological mechanisms included some relatively
conventional examples but also some that only recently attracted
larger attention within the computational community. As the
experimental methodology and protocols advance and various
neurobiological mechanisms become better understood, the new
challenges for computational modeling emerge. Few examples
are molecular diffusion in synaptic clefts, dendritic spines, and
in other neural compartments (Chay et al., 2016; Hepburn et al.,
2017), models of neurodevelopmental phenomena (Tetzlaff et al.,
2010; van Ooyen, 2011), or wider range of plasticity mechanisms
explored using conventional spiking networks (Miner and
Triesch, 2016). Finally, one can aim beyond network modeling
formalism and include extracellular space, for example similarly

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2018 | Volume 12 | Article 2052

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

to the approach adopted in the Cortex3D simulation tool (Zubler
and Douglas, 2009).

All the above suggestions would greatly improve the
replicability and reproducibility of the published results, reduce
the time needed to compare the model details and results, and
support model reuse in complementary studies or in the studies
extending the range of biophysical mechanisms and experimental
data.

AUTHOR CONTRIBUTIONS

TM: Designed the study, acquired and reimplemented the
neuronal signal transduction and astrocyte models, simulated
the models, evaluated and tabulated the results, and coordinated
the production of the final version; JA: Designed the study,
evaluated the simulation tools for growth and spiking neuronal
networks, acquired and reran the spiking neuronal network
models, and evaluated and tabulated the results; RH: Contributed
to the design of the study, reimplemented, simulated, and
evaluated an astrocyte model, contributed to the testing of
the simulation tools for growth, and interpreted biological
terminology and knowledge; HT: Contributed to the design of
the study, contributed to the interpretation of network growth
and activity studies, and interpreted biological terminology;
M-LL: Conceived, funded, and designed the study, took part
in the selection and evaluation of all models and tools,

and interpreted the results in terms of replicability and

reproducibility. All contributed to the drafting of the manuscript
and approved the final version of the manuscript. All other
work reported in the present publication, as motivation for
the topic, is cited and is based on the work done previously
in Computational Neuroscience Research Group in Tampere,
Finland.

FUNDING

This project received funding from the European Union’s
Seventh Framework Programme (FP7) under grant agreement
No. 604102 (HBP RUP), the European Union’s Horizon 2020
research and innovation programme under grant agreement No.
720270 (HBP SGA1), and the Academy of Finland (decision No.
297893).

ACKNOWLEDGMENTS

The authors wish to thank Tampere University of Technology
Graduate School, Emil Aaltonen Foundation, The Finnish
Concordia Fund, and Ulla Tuominen Foundation for support
for RH and Tampere University of Technology Graduate School,
Finnish Foundation for Technology Promotion, Finnish Cultural
Foundation, Pirkanmaa Regional Fund of Finnish Cultural
Foundation, and Finnish Brain Foundation sr. for HT.

REFERENCES

Aćimović, J., Mäki-Marttunen, T., Havela, R., Teppola, H., and Linne, M.-L.

(2011). Modeling of neuronal growth in vitro: comparison of simulation

tools NETMORPH and CX3D. EURASIP J. Bioinf. Syst. Biol. 2011:616382.

doi: 10.1155/2011/616382

Aho, T. (2003). Simulation Tool for Genetic Regulatory Networks. Master’s thesis,

Department of Information Technology, Tampere University of Technology,

Tampere.

Ajay, S. M., and Bhalla, U. S. (2006). Synaptic plasticity in vitro and in

silico: insights into an intracellular signaling maze. Physiology 21, 289–296.

doi: 10.1152/physiol.00009.2006

Akil, H., Balice-Gordon, R., Cardozo, D. L., Koroshetz, W., Norris, S. M. P.,

Sherer, T., et al. (2016). Neuroscience training for the 21st century. Neuron 90,

917–926. doi: 10.1016/j.neuron.2016.05.030

Alves, R., Antunes, F., and Salvador, A. (2006). Tools for kinetic modeling of

biochemical networks. Nat. Biotechnol. 24, 667–672. doi: 10.1038/nbt0606-667

Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016).

The Human Brain Project: creating a European research infrastructure to

decode the human brain. Neuron 92, 574–581. doi: 10.1016/j.neuron.2016.

10.046

Andrews, S. S., Addy, N. J., Brent, R., and Arkin, A. P. (2010). Detailed

simulations of cell biology with Smoldyn 2.1. PLoS Comput. Biol. 6:e1000705.

doi: 10.1371/journal.pcbi.1000705

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature 533,

452–454. doi: 10.1038/533452a

Baltz, T., Herzog, A., and Voigt, T. (2011). Slow oscillating population activity in

developing cortical networks: models and experimental results. J. Neurophysiol.

106, 1500–1514. doi: 10.1152/jn.00889.2010

Bartocci, E., and Lió, P. (2016). Computational modeling, formal analysis,

and tools for systems biology. PLoS Comput. Biol. 12:e1004591.

doi: 10.1371/journal.pcbi.1004591

Benureau, F., and Rougier, N. (2018). Re-run, repeat, reproduce, reuse, replicate:

transforming code into scientific contributions. Front. Neuroinform. 11:69.

doi: 10.3389/fninf.2017.00069

Bergmann, F. T., and Sauro, H. M. (2008). Comparing simulation

results of SBML capable simulators. Bioinformatics 24, 1963–1965.

doi: 10.1093/bioinformatics/btn319

Bhalla, U. S. (2001). “Modeling networks of signaling pathways,” in Computational

Neuroscience: Realistic Modeling for Experimentalists, ed E. De Shutter (New

York, NY: CRC Press LLC), 25–48.

Bhalla, U. S. (2002). “Use of Kinetikit and GENESIS for modeling signaling

pathways,” in Methods in Enzymology, Vol. 345, eds J. D. Hildebrandt and R.

Iyengar (San Diego, CA: Academic Press), 3–23.

Bhalla, U. S. (2009). “Molecules, networks, and memory,” in Systems Biology: The

Challenge of Complexity, eds S. Nakanishi, R. Kageyama, and D. Watanabe

(Tokyo: Springer), 151–158.

Bhalla, U. S., and Iyengar, R. (1999). Emergent properties of networks of biological

signaling pathways. Science 283, 381–387. doi: 10.1126/science.283.5400.381

Bi, G.-Q., and Rubin, J. (2005). Timing in synaptic plasticity: from detection to

integration. Trends Neurosci. 28, 222–228. doi: 10.1016/j.tins.2005.02.002

Blackwell, K. T. (2013). Approaches and tools for modeling signaling pathways

and calcium dynamics in neurons. J. Neurosci. Methods 220, 131–140.

doi: 10.1016/j.jneumeth.2013.05.008

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann,

M., et al. (2016). High-performance computing in neuroscience for data-

driven discovery, integration, and dissemination. Neuron 92, 628–631.

doi: 10.1016/j.neuron.2016.10.035

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic

NeuralModels with the GEneral NEural SImulation System, 2nd Edn.NewYork,

NY: Telos; Springer-Verlag.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

et al. (2007). Simulation of networks of spiking neurons: a review of tools

and strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-

0038-6

Brown, T. H., Kairiss, E. W., and Keenan, C. L. (1990). Hebbian synapses:

biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13, 475–511.

doi: 10.1146/annurev.ne.13.030190.002355

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,

et al. (2014). LEMS: a language for expressing complex biological models in

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2018 | Volume 12 | Article 2053

https://doi.org/10.1155/2011/616382
https://doi.org/10.1152/physiol.00009.2006
https://doi.org/10.1016/j.neuron.2016.05.030
https://doi.org/10.1038/nbt0606-667
https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1371/journal.pcbi.1000705
https://doi.org/10.1038/533452a
https://doi.org/10.1152/jn.00889.2010
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.1093/bioinformatics/btn319
https://doi.org/10.1126/science.283.5400.381
https://doi.org/10.1016/j.tins.2005.02.002
https://doi.org/10.1016/j.jneumeth.2013.05.008
https://doi.org/10.1016/j.neuron.2016.10.035
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1146/annurev.ne.13.030190.002355
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

concise and hierarchical form and its use in underpinning NeuroML 2. Front.

Neuroinform. 8:79. doi: 10.3389/fninf.2014.00079

Carnevale, T., and Hines, M. (2006). The NEURON Book, 1st Edn. Cambridge, UK:

Cambridge University Press.

Castellani, G. C., and Zironi, I. (2010). “Biophysics-based models of LTP/LTD,”

in Hippocampal Microcircuits: A Computational Modelers Resource Book, eds

V. Cutsuridis, B. Graham, S. Cobb, and I. Vida (New York, NY: Springer),

555–570.

Chay, A., Zamparo, I., Koschinski, A., Zaccolo, M., and Blackwell, K. T. (2016).

Control of βAR- and N-methyl-D-aspartate (NMDA) receptor-dependent

cAMP dynamics in hippocampal neurons. PLoS Comput. Biol. 12:e1004735.

doi: 10.1371/journal.pcbi.1004735

Cotterill, E., Charlesworth, P., Thomas, C. W., Paulsen, O., and Eglen, S. J. (2016).

A comparison of computational methods for detecting bursts in neuronal spike

trains and their application to human stem cell-derived neuronal networks. J.

Neurophysiol. 116, 306–321. doi: 10.1152/jn.00093.2016

Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from the past:

approaches for reproducibility in computational neuroscience,” in 20 Years of

Computational Neuroscience, ed J.M. Bower (NewYork, NY: Springer), 73–102.

d’Alcantara, P., Schiffmann, S. N., and Swillens, S. (2003). Bidirectional

synaptic plasticity as a consequence of interdependent Ca2+-controlled

phosphorylation and dephosphorylation pathways. Eur. J. Neurosci. 17,

2521–2528. doi: 10.1046/j.1460-9568.2003.02693.x

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2009). PyNN: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

De Pittà, M., Brunel, N., and Volterra, A. (2016). Astrocytes: orchestrating synaptic

plasticity? Neuroscience 323, 43–61. doi: 10.1016/j.neuroscience.2015.04.001

De Pittà, M., Goldberg, M., Volman, V., Berry, H., and Ben-Jacob, E. (2009).

Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics

in astrocytes. J. Biol. Phys. 35, 383–411. doi: 10.1007/s10867-009-9155-y

De Pittà, M., Volman, V., Berry, H., Parpura, V., Volterra, A., and Ben-

Jacob, E. (2012). Computational quest for understanding the role of astrocyte

signaling in synaptic transmission and plasticity. Front. Comput. Neurosci. 6:98.

doi: 10.3389/fncom.2012.00098

Delord, B., Berry, H., Guigon, E., and Genet, S. (2007). A new principle for

information storage in an enzymatic pathway model. PLoS Comput. Biol.

3:e124. doi: 10.1371/journal.pcbi.0030124

Denker, M., and Grün, S. (2016). “Designing workflows for the reproducible

analysis of electrophysiological data,” in Brain-Inspired Computing. BrainComp

2015. Lecture Notes in Computer Science, Vol. 10087, eds K. Amunts, L.

Grandinetti, T. Lippert, and N. Petkov (Cham: Springer), 58–72.

Di Garbo, A., Barbi, M., Chillemi, S., Alloisio, S., and Nobile, M. (2007). Calcium

signalling in astrocytes and modulation of neural activity. Biosystems 89, 74–83.

doi: 10.1016/j.biosystems.2006.05.013

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans,

T. C., et al. (2010). Run-time interoperability between neuronal network

simulators based on the MUSIC framework. Neuroinformatics 8, 43–60.

doi: 10.1007/s12021-010-9064-z

Dobrzyński, M., Rodríguez, J. V., Kaandorp, J. A., and Blom, J. G. (2007).

Computational methods for diffusion-influenced biochemical reactions.

Bioinformatics 23, 1969–1977. doi: 10.1093/bioinformatics/btm278

Dupont, G., Lokenye, E. F. L., and Challiss, R. A. J. (2011). A model for Ca2+

oscillations stimulated by the type 5 metabotropic glutamate receptor:

an unusual mechanism based on repetitive, reversible phosphorylation

of the receptor. Biochimie 93, 2132–2138. doi: 10.1016/j.biochi.2011.

09.010

Eglen, S. J., Marwick, B., Halchenko, Y. O., Hanke, M., Sufi, S., Gleeson, P., et al.

(2017). Toward standard practices for sharing computer code and programs in

neuroscience. Nat. Neurosci. 20, 770–773. doi: 10.1038/nn.4550

Eppler, J. M., Pauli, R., Peyser, A., Ippen, T., Morrison, A., Senk, J., et al. (2015).

NEST 2.8.0. Zenodo. doi: 10.5281/zenodo.32969

Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems:

A Guide to XPPAUT for Researchers and Students, 1st Edn. Philadelphia, PA:

Society for Industrial & Applied Mathematics (SIAM).

Fellin, T., Ellenbogen, J. M., De Pittà, M., Ben-Jacob, E., and Halassa, M. M. (2012).

Astrocyte regulation of sleep circuits: experimental and modeling perspectives.

Front. Comput. Neurosci. 6:65. doi: 10.3389/fncom.2012.00065

French, D. A., and Gruenstein, E. I. (2006). An integrate-and-fire model for

synchronized bursting in a network of cultured cortical neurons. J. Comput.

Neurosci. 21, 227–241. doi: 10.1007/s10827-006-7815-5

Gerkin, R. C., Bi, G.-Q., and Rubin, J. E. (2010). “A phenomenological calcium-

based model of STDP,” in Hippocampal Microcircuits: A Computational

Modelers Resource Book, eds V. Cutsuridis, B. Graham, S. Cobb, and I. Vida

(New York, NY: Springer), 571–591.

Gilbert, D., Fuß, H., Gu, X., Orton, R., Robinson, S., Vyshemirsky, V., et al.

(2006). Computational methodologies for modelling, analysis and simulation

of signalling networks. Brief. Bioinform. 7, 339–353. doi: 10.1093/bib/

bbl043

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

doi: 10.1016/0021-9991(76)90041-3

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.

J. Phys. Chem. 81, 2340–2361. doi: 10.1021/j100540a008

Gillespie, D. T. (2000). The chemical Langevin equation. J. Chem. Phys. 113,

297–306. doi: 10.1063/1.481811

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation

of chemically reacting systems. J. Chem. Phys. 115, 1716–1733.

doi: 10.1063/1.1378322

Gillespie, D. T. (2007). Stochastic simulation of chemical kinetics.Annu. Rev. Phys.

Chem. 58, 35–55. doi: 10.1146/annurev.physchem.58.032806.104637

Giugliano, M., Darbon, P., Arsiero, M., Lüscher, H.-R., and Streit, J. (2004). Single-

neuron discharge properties and network activity in dissociated cultures of

neocortex. J. Neurophysiol. 92, 977–996. doi: 10.1152/jn.00067.2004

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Goodman, S. N., Fanelli, D., and Ioannidis, J. P. A. (2016). What

does research reproducibility mean? Sci. Transl. Med. 8:341ps12.

doi: 10.1126/scitranslmed.aaf5027

Graupner, M., and Brunel, N. (2010). Mechanisms of induction and maintenance

of spike-timing dependent plasticity in biophysical synapse models. Front.

Comput. Neurosci. 4:136. doi: 10.3389/fncom.2010.00136

Gritsun, T., le Feber, J., Stegenga, J., and Rutten, W. L. C. (2011).

Experimental analysis and computational modeling of interburst intervals in

spontaneous activity of cortical neuronal culture. Biol. Cybern. 105, 197–210.

doi: 10.1007/s00422-011-0457-3

Gritsun, T. A., Le Feber, J., Stegenga, J., and Rutten,W. L. C. (2010). Network bursts

in cortical cultures are best simulated using pacemaker neurons and adaptive

synapses. Biol. Cybern. 102, 293–310. doi: 10.1007/s00422-010-0366-x

Hayer, A., and Bhalla, U. S. (2005). Molecular switches at the synapse

emerge from receptor and kinase traffic. PLoS Comput. Biol. 1:e20.

doi: 10.1371/journal.pcbi.0010020

Hellgren Kotaleski, J., and Blackwell, K. T. (2010). Modelling the molecular

mechanisms of synaptic plasticity using systems biology approaches. Nat. Rev.

Neurosci. 11, 239–251. doi: 10.1038/nrn2807

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. (2012). STEPS: efficient

simulation of stochastic reaction-diffusion models in realistic morphologies.

BMC Syst. Biol. 6:36. doi: 10.1186/1752-0509-6-36

Hepburn, I., Jain, A., Gangal, H., Yamamoto, Y., Tanaka-Yamamoto, K., and

De Schutter, E. (2017). Amodel of induction of cerebellar long-term depression

including RKIP inactivation of Raf and MEK. Front. Mol. Neurosci. 10:19.

doi: 10.3389/fnmol.2017.00019

Hines,M. L., Morse, T., Migliore,M., Carnevale, N. T., and Shepherd, G.M. (2004).

ModelDB: a database to support computational neuroscience. J. Comput.

Neurosci 17, 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Holmes, W. R. (2005). “Calcium signaling in dendritic spines,” in Modeling in the

Neurosciences: From Biological Systems to Neuromimetic Robotics, 2nd Edn, eds

G. N. Reeke, R. R. Poznanski, K. A. Lindsay, J. R. Rosenberg, and O. Sporns

(Boca Raton, FL: CRC Press), 25–60.

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2018 | Volume 12 | Article 2054

https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1371/journal.pcbi.1004735
https://doi.org/10.1152/jn.00093.2016
https://doi.org/10.1046/j.1460-9568.2003.02693.x
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1016/j.neuroscience.2015.04.001
https://doi.org/10.1007/s10867-009-9155-y
https://doi.org/10.3389/fncom.2012.00098
https://doi.org/10.1371/journal.pcbi.0030124
https://doi.org/10.1016/j.biosystems.2006.05.013
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1093/bioinformatics/btm278
https://doi.org/10.1016/j.biochi.2011.09.010
https://doi.org/10.1038/nn.4550
https://doi.org/10.5281/zenodo.32969
https://doi.org/10.3389/fncom.2012.00065
https://doi.org/10.1007/s10827-006-7815-5
https://doi.org/10.1093/bib/bbl043
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.481811
https://doi.org/10.1063/1.1378322
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1152/jn.00067.2004
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.3389/fncom.2010.00136
https://doi.org/10.1007/s00422-011-0457-3
https://doi.org/10.1007/s00422-010-0366-x
https://doi.org/10.1371/journal.pcbi.0010020
https://doi.org/10.1038/nrn2807
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.3389/fnmol.2017.00019
https://doi.org/10.1023/B:JCNS.0000023869.22017.2e
https://doi.org/10.1113/jphysiol.1952.sp004764
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., et al. (2006).

COPASI – a complex pathway simulator. Bioinformatics 22, 3067–3074.

doi: 10.1093/bioinformatics/btl485

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,

et al. (2003). The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi: 10.1093/bioinformatics/btg015

Hudmon, A., and Schulman, H. (2002a). Neuronal Ca2+/calmodulin-

dependent protein kinase II: the role of structure and autoregulation

in cellular function. Annu. Rev. Biochem. 71, 473–510.

doi: 10.1146/annurev.biochem.71.110601.135410

Hudmon, A., and Schulman, H. (2002b). Structure-function of the multifunctional

Ca2+/calmodulin-dependent protein kinase II. Biochem. J. 364, 593–611.

doi: 10.1042/BJ20020228

Ichikawa, M., Muramoto, K., Kobayashi, K., Kawahara, M., and Kuroda, Y.

(1993). Formation and maturation of synapses in primary cultures of rat

cerebral cortical cells: an electron microscopic study. Neurosci. Res. 16, 95–103.

doi: 10.1016/0168-0102(93)90076-3

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Jolivet, R., Allaman, I., Pellerin, L., Magistretti, P. J., and Weber, B.

(2010). Comment on recent modeling studies of astrocyte–neuron

metabolic interactions. J. Cereb. Blood Flow Metab. 30, 1982–1986.

doi: 10.1038/jcbfm.2010.132

Kerr, R. A., Bartol, T. M., Kaminsky, B., Dittrich, M., Chang, J.-C. J., Baden, S. B.,

et al. (2008). Fast Monte Carlo simulation methods for biological reaction-

diffusion systems in solution and on surfaces. SIAM J. Sci. Comput. 30,

3126–3149. doi: 10.1137/070692017

Kim,M. S., Huang, T., Abel, T., and Blackwell, K. T. (2010). Temporal sensitivity of

protein kinase A activation in late-phase long term potentiation. PLoS Comput.

Biol. 6:e1000691. doi: 10.1371/journal.pcbi.1000691

Klipp, E., and Liebermeister, W. (2006). Mathematical modeling of

intracellular signaling pathways. BMC Neurosci. 7(Suppl 1):S10.

doi: 10.1186/1471-2202-7-S1-S10

Koene, R. A., Tijms, B., van Hees, P., Postma, F., de Ridder, A., Ramakers, G. J. A.,

et al. (2009). NETMORPH: a framework for the stochastic generation of large

scale neuronal networks with realistic neuron morphologies. Neuroinformatics

7, 195–210. doi: 10.1007/s12021-009-9052-3

Latham, P. E., Richmond, B. J., Nelson, P. G., and Nirenberg, S. (2000). Intrinsic

dynamics in neuronal networks. I. Theory. J. Neurophysiol. 83, 808–827.

doi: 10.1152/jn.2000.83.2.808

Lavrentovich, M., and Hemkin, S. (2008). A mathematical model of spontaneous

calcium (II) oscillations in astrocytes. J. Theor. Biol. 251, 553–560.

doi: 10.1016/j.jtbi.2007.12.011

Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri,

H., et al. (2006). BioModels Database: a free, centralized database of curated,

published, quantitative kinetic models of biochemical and cellular systems.

Nucleic Acids Res. 34, D689–D691. doi: 10.1093/nar/gkj092

Le Novère, N., Finney, A., Hucka, M., Bhalla, U. S., Campagne, F.,

Collado-Vides, J., et al. (2005). Minimum information requested in the

annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23, 1509–1515.

doi: 10.1038/nbt1156

Lecca, P., Bagagiolo, F., and Scarpa, M. (2017). Hybrid deterministic/stochastic

simulation of complex biochemical systems. Mol. BioSyst. 13, 2672–2686.

doi: 10.1039/C7MB00426E

Lemerle, C., Di Ventura, B., and Serrano, L. (2005). Space as the final frontier

in stochastic simulations of biological systems. FEBS Lett. 579, 1789–1794.

doi: 10.1016/j.febslet.2005.02.009

Lindskog, M., Kim, M., Wikström, M. A., Blackwell, K. T., and

Hellgren Kotaleski, J. (2006). Transient calcium and dopamine increase

PKA activity and DARPP-32 phosphorylation. PLoS Comput. Biol. 2:e119.

doi: 10.1371/journal.pcbi.0020119

Linne, M.-L., and Jalonen, T. O. (2014). Astrocyte–neuron interactions: from

experimental research-based models to translational medicine. Prog. Mol. Biol.

Transl. Sci. 123, 191–217. doi: 10.1016/B978-0-12-397897-4.00005-X

Lloyd, C. M., Halstead, M. D. B., and Nielsen, P. F. (2004). CellML:

its future, present and past. Prog. Biophys. Mol. Biol. 85, 433–450.

doi: 10.1016/j.pbiomolbio.2004.01.004

Lonardoni, D., Amin, H., Di Marco, S., Maccione, A., Berdondini, L., and Nieus,

T. (2017). Recurrently connected and localized neuronal communities initiate

coordinated spontaneous activity in neuronal networks. PLoS Comput. Biol.

13:e1005672. doi: 10.1371/journal.pcbi.1005672

Lytton,W.W., andHines,M. L. (2005). Independent variable time-step integration

of individual neurons for network simulations. Neural Comput. 17, 903–921.

doi: 10.1162/0899766053429453

Maheswaranathan, N., Ferrari, S., VanDongen, A., and Henriquez, C. (2012).

Emergent bursting and synchrony in computer simulations of neuronal

cultures. Front. Comput. Neurosci. 6:15. doi: 10.3389/fncom.2012.00015

Mäki-Marttunen, T., Aćimović, J., Ruohonen, K., and Linne, M.-

L. (2013). Structure-dynamics relationships in bursting neuronal

networks revealed using a prediction framework. PLoS ONE 8:e69373.

doi: 10.1371/journal.pone.0069373

Mäki-Marttunen, T., Havela, R., Aćimović, J., Teppola, H., Ruohonen, K., and

Linne, M.-L. (2010). “Modeling growth in neuronal cell cultures: network

properties in different phases of growth studied using two growth simulators,”

in Proceeding of the 7th International Workshop on Computational System

Biology (WCSB 2010), eds M. Nykter, P. Ruusuvuori, C. Carlberg, and O. Yli-

Harja (Luxemburg), 75–78.

Mäkiraatikka, E., Manninen, T., Saarinen, A., Ylipää, A., Teppola, H., Hituri,

K., et al. (2007). “Stochastic simulation tools for cellular signaling: survey,

evaluation, and quantitative analysis,” in Proceedings of the 2nd Conference on

Foundations of Systems Biology in Engineering (FOSBE 2007), eds F. Allgöwer

and M. Reuss (Stuttgart), 171–176.

Mandel, J. J., Fuß, H., Palfreyman, N. M., and Dubitzky, W. (2007). Modeling

biochemical transformation processes and information processing with

Narrator. BMC Bioinformatics 8:103. doi: 10.1186/1471-2105-8-103

Mangia, S., DiNuzzo, M., Giove, F., Carruthers, A., Simpson, I. A., and Vannucci,

S. J. (2011). Response to ‘comment on recent modeling studies of astrocyte–

neuron metabolic interactions’: much ado about nothing. J. Cereb. Blood Flow

Metab. 31, 1346–1353. doi: 10.1038/jcbfm.2011.29

Manninen, T., Havela, R., and Linne., M.-L. (2017). Reproducibility and

comparability of computational models for astrocyte calcium excitability.

Front. Neuroinform. 11:11. doi: 10.3389/fninf.2017.00011

Manninen, T., Havela, R., and Linne., M.-L. (2018a). Computational models

for calcium-mediated astrocyte functions. Front. Comput. Neurosci. 12:14.

doi: 10.3389/fncom.2018.00014

Manninen, T., Havela, R., and Linne, M.-L. (2018b). “Computational models of

astrocytes and astrocyte-neuron interactions: characterization, reproducibility,

and future perspectives,” inMathematical Methods in Modeling of Neuron-Glia

Interactions, eds M. De Pittà and H. Berry (Springer), 2018.

Manninen, T., Hituri, K., Hellgren Kotaleski, J., Blackwell, K. T., and Linne, M.-L.

(2010). Postsynaptic signal transductionmodels for long-term potentiation and

depression. Front. Comput. Neurosci. 4:152. doi: 10.3389/fncom.2010.00152

Manninen, T., Hituri, K., Toivari, E., and Linne, M.-L. (2011). Modeling signal

transduction leading to synaptic plasticity: evaluation and comparison of five

models. EURASIP J. Bioinf. Syst. Biol. 2011:797250. doi: 10.1155/2011/797250

Manninen, T., and Linne, M.-L. (2008). “Stochastic kinetic simulations of

activity-dependent plastic modifications in neurons,” in Proceedings

of the 5th International Workshop on Computational Systems Biology

(WCSB 2008), eds M. Ahdesmäki, K. Strimmer, N. Radde, J.

Rahnenfuhrer, K. Klemm, H. Lähdesmäki, and O. Yli-Harja (Leipzig),

101–104.

Manninen, T., Linne, M.-L., and Ruohonen, K. (2006a). Developing Itô stochastic

differential equation models for neuronal signal transduction pathways.

Comput. Biol. Chem. 30, 280–291. doi: 10.1016/j.compbiolchem.2006.04.002

Manninen, T., Linne, M.-L., and Ruohonen, K. (2006b). A novel approach to

model neuronal signal transduction using stochastic differential equations.

Neurocomputing 69, 1066–1069. doi: 10.1016/j.neucom.2005.12.047

Manninen, T., Mäkiraatikka, E., Ylipää, A., Pettinen, A., Leinonen, K., and Linne,

M.-L. (2006c). “Discrete stochastic simulation of cell signaling: comparison

of computational tools,” in Proceedings of the 28th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC

2006) (New York, NY), 2013–2016.

Masquelier, T., and Deco, G. (2013). Network bursting dynamics in excitatory

cortical neuron cultures results from the combination of different adaptive

mechanisms. PLoS ONE 8:e75824. doi: 10.1371/journal.pone.0075824

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2018 | Volume 12 | Article 2055

https://doi.org/10.1093/bioinformatics/btl485
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1146/annurev.biochem.71.110601.135410
https://doi.org/10.1042/BJ20020228
https://doi.org/10.1016/0168-0102(93)90076-3
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1038/jcbfm.2010.132
https://doi.org/10.1137/070692017
https://doi.org/10.1371/journal.pcbi.1000691
https://doi.org/10.1186/1471-2202-7-S1-S10
https://doi.org/10.1007/s12021-009-9052-3
https://doi.org/10.1152/jn.2000.83.2.808
https://doi.org/10.1016/j.jtbi.2007.12.011
https://doi.org/10.1093/nar/gkj092
https://doi.org/10.1038/nbt1156
https://doi.org/10.1039/C7MB00426E
https://doi.org/10.1016/j.febslet.2005.02.009
https://doi.org/10.1371/journal.pcbi.0020119
https://doi.org/10.1016/B978-0-12-397897-4.00005-X
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.1371/journal.pcbi.1005672
https://doi.org/10.1162/0899766053429453
https://doi.org/10.3389/fncom.2012.00015
https://doi.org/10.1371/journal.pone.0069373
https://doi.org/10.1186/1471-2105-8-103
https://doi.org/10.1038/jcbfm.2011.29
https://doi.org/10.3389/fninf.2017.00011
https://doi.org/10.3389/fncom.2018.00014
https://doi.org/10.3389/fncom.2010.00152
https://doi.org/10.1155/2011/797250
https://doi.org/10.1016/j.compbiolchem.2006.04.002
https://doi.org/10.1016/j.neucom.2005.12.047
https://doi.org/10.1371/journal.pone.0075824
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility in

computational neurosciencemodels and simulations. IEEE Trans. Biomed. Eng.

63, 2021–2035. doi: 10.1109/TBME.2016.2539602

Mendes, P. (1993). GEPASI: a software package for modelling the dynamics, steady

states and control of biochemical and other systems. Comput. Appl. Biosci. 9,

563–571. doi: 10.1093/bioinformatics/9.5.563

Mendes, P. (1997). Biochemistry by numbers: simulation of biochemical

pathways with Gepasi 3. Trends Biochem. Sci. 22, 361–363.

doi: 10.1016/S0968-0004(97)01103-1

Mendes, P., and Kell, D. B. (1998). Non-linear optimization of biochemical

pathways: applications to metabolic engineering and parameter estimation.

Bioinformatics 14, 869–883. doi: 10.1093/bioinformatics/14.10.869

Migliore, M., Morse, T. M., Davison, A. P., Marenco, L., Shepherd, G. M.,

and Hines, M. L. (2003). ModelDB: making models publicly accessible

to support computational neuroscience. Neuroinformatics 1, 135–139.

doi: 10.1385/NI:1:1:135

Min, R., Santello, M., and Nevian, T. (2012). The computational power

of astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6:93.

doi: 10.3389/fncom.2012.00093

Miner, D., and Triesch, J. (2016). Plasticity-driven self-organization under

topological constraints accounts for non-random features of cortical synaptic

wiring. PLoS Comput. Biol. 12:e1004759. doi: 10.1371/journal.pcbi.1004759

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D.,

du Sert, N. P., et al. (2017). A manifesto for reproducible science. Nat. Hum.

Behav. 1:0021. doi: 10.1038/s41562-016-0021

Nadkarni, S., and Jung, P. (2003). Spontaneous oscillations of dressed

neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91:268101.

doi: 10.1103/PhysRevLett.91.268101

Nakano, T., Doi, T., Yoshimoto, J., and Doya, K. (2010). A kinetic model of

dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput.

Biol. 6:e1000670. doi: 10.1371/journal.pcbi.1000670

Neher, E. (1998). Usefulness and limitations of linear approximations

to the understanding of Ca2+ signals. Cell Calcium 24, 345–357.

doi: 10.1016/S0143-4160(98)90058-6

Nishi, R., Castañeda, E., Davis, G.W., Fenton, A. A., Hofmann, H. A., King, J., et al.

(2016). The global challenge in neuroscience education and training: the MBL

perspective. Neuron 92, 632–636. doi: 10.1016/j.neuron.2016.10.026

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible

descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456.

doi: 10.1371/journal.pcbi.1000456

Ogasawara, H., Doi, T., and Kawato, M. (2008). Systems biology

perspectives on cerebellar long-term depression. Neurosignals 16, 300–317.

doi: 10.1159/000123040

Ogasawara, H., and Kawato, M. (2009). “Computational models of cerebellar

long-term memory,” in Systems Biology: The Challenge of Complexity, 1st

Edn, eds S. Nakanishi, R. Kageyama, and D. Watanabe (Tokyo: Springer),

169–182.

Oliveira, R. F., Terrin, A., Di Benedetto, G., Cannon, R. C., Koh, W., Kim,

M., et al. (2010). The role of type 4 phosphodiesterases in generating

microdomains of cAMP: large scale stochastic simulations. PLoSONE 5:e11725.

doi: 10.1371/journal.pone.0011725

Olivier, B. G., Swat, M. J., and Moné, M. J. (2016). “Modeling and simulation tools:

from systems biology to systems medicine,” in Systems Medicine. Methods in

Molecular Biology, Vol. 1386, eds U. Schmitz and O. Wolkenhauer (New York,

NY: Humana Press), 441–463.

Pettinen, A., Aho, T., Smolander, O.-P., Manninen, T., Saarinen, A.,

Taattola, K.-L., et al. (2005). Simulation tools for biochemical networks:

evaluation of performance and usability. Bioinformatics 21, 357–363.

doi: 10.1093/bioinformatics/bti018

Plesser, H. E. (2018). Reproducibility vs. replicability: a brief history of a confused

terminology. Front. Neuroinform. 11:76. doi: 10.3389/fninf.2017.00076

Ramsey, S., Orrell, D., and Bolouri, H. (2005). Dizzy: stochastic simulation of

large-scale genetic regulatory networks. J. Bioinform. Comput. Biol. 3, 415–436.

doi: 10.1142/S0219720005001132

Ray, S., Deshpande, R., Dudani, N., and Bhalla, U. S. (2008). A general biological

simulator: the multiscale object oriented simulation environment, MOOSE.

BMC Neurosci. 9:P93. doi: 10.1186/1471-2202-9-S1-P93

Riera, J., Hatanaka, R., Ozaki, T., and Kawashima, R. (2011a). Modeling the

spontaneous Ca2+ oscillations in astrocytes: inconsistencies and usefulness. J.

Integr. Neurosci. 10, 439–473. doi: 10.1142/S0219635211002877

Riera, J., Hatanaka, R., Uchida, T., Ozaki, T., and Kawashima, R. (2011b).

Quantifying the uncertainty of spontaneous Ca2+ oscillations in

astrocytes: particulars of Alzheimer’s disease. Biophys. J. 101, 554–564.

doi: 10.1016/j.bpj.2011.06.041

Robinson, H. P., Kawahara, M., Jimbo, Y., Torimitsu, K., Kuroda, Y., and Kawana,

A. (1993). Periodic synchronized bursting and intracellular calcium transients

elicited by low magnesium in cultured cortical neurons. J. Neurophysiol. 70,

1606–1616. doi: 10.1152/jn.1993.70.4.1606

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant

linear systems with applications to neuronal modeling. Biol. Cybern. 81,

381–402. doi: 10.1007/s004220050570

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F.

C. Y., et al. (2017). Sustainable computational science: the ReScience initiative.

PeerJ Comput. Sci. 3:e142. doi: 10.7717/peerj-cs.142

Salis, H., Sotiropoulos, V., and Kaznessis, Y. N. (2006). Multiscale Hy3S:

hybrid stochastic simulation for supercomputers. BMC Bioinformatics 7:93.

doi: 10.1186/1471-2105-7-93

Sauro, H. M. (2000). “JARNAC: a system for interactive metabolic analysis,” in

Animating the Cellular Map: Proceegings of the 9th International Meeting on

BioThermoKinetics (Stellenbosch: Stellenbosch University Press), 221–228.

Sauro, H. M. (2001). JDesigner: A Simple Biochemical Network Designer. Technical

report.

Schmidt, H., and Jirstrand, M. (2006). Systems Biology Toolbox for MATLAB:

a computational platform for research in systems biology. Bioinformatics 22,

514–515. doi: 10.1093/bioinformatics/bti799

Schöneberg, J., Ullrich, A., and Noé, F. (2014). Simulation tools for particle-

based reaction-diffusion dynamics in continuous space. BMC Biophys. 7:11.

doi: 10.1186/s13628-014-0011-5

Shouval, H. Z., Wang, S. S. H., and Wittenberg, G. M. (2010). Spike timing

dependent plasticity: a consequence of more fundamental learning rules. Front.

Comput. Neurosci. 4:19. doi: 10.3389/fncom.2010.00019

Silchenko, A. N., and Tass, P. A. (2008). Computational modeling of paroxysmal

depolarization shifts in neurons induced by the glutamate release from

astrocytes. Biol. Cybern. 98, 61–74. doi: 10.1007/s00422-007-0196-7

Sivakumaran, S., Hariharaputran, S., Mishra, J., and Bhalla, U. S. (2003). The

Database of Quantitative Cellular Signaling: management and analysis of

chemical kinetic models of signaling networks. Bioinformatics 19, 408–415.

doi: 10.1093/bioinformatics/btf860

Sterratt, D., Graham, B., Gillies, A., and Willshaw, D. (2011). Principles

in Computational Modeling in Neuroscience. New York, NY: Cambridge

University Press.

Stiles, J. R., and Bartol, T. M. (2001). “Monte Carlo methods for simulating realistic

synaptic microphysiology using MCell,” in Computational Neuroscience:

Realistic Modeling for Experimentalists, ed E. De Schutter (Boca Raton, FL: CRC

Press), 87–127.

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi: 10.3389/fninf.2014.00006

Strömbäck, L., Jakoniene, V., Tan, H., and Lambrix, P. (2006). Representing,

storing and accessing molecular interaction data: a review of models and tools.

Brief. Bioinform. 7, 331–338. doi: 10.1093/bib/bbl039

Tanaka, K., and Augustine, G. J. (2009). “Systems biology meets single-

cell physiology: role of a positive-feedback signal transduction network in

cerebellar long-term synaptic depression,” in Systems Biology: The Challenge of

Complexity, 1st Edn, eds S. Nakanishi, R. Kageyama, and D. Watanabe (Tokyo:

Springer), 159–168.

Teppola, H., Okujeni, S., Linne, M.-L., and Egert, U. (2011). “AMPA, NMDA

and GABAA receptor mediated network burst dynamics in cortical cultures

in vitro,” in Proceedings of the 8th International Workshop on Computational

Systems Biology (WCSB 2011), eds H. Koeppl, J. Aćimović, J. Kesseli, T. Mäki-

Marttunen, A. Larjo, and O. Yli-Harja (Zurich), 181–184.

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2018 | Volume 12 | Article 2056

https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1093/bioinformatics/9.5.563
https://doi.org/10.1016/S0968-0004(97)01103-1
https://doi.org/10.1093/bioinformatics/14.10.869
https://doi.org/10.1385/NI:1:1:135
https://doi.org/10.3389/fncom.2012.00093
https://doi.org/10.1371/journal.pcbi.1004759
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1103/PhysRevLett.91.268101
https://doi.org/10.1371/journal.pcbi.1000670
https://doi.org/10.1016/S0143-4160(98)90058-6
https://doi.org/10.1016/j.neuron.2016.10.026
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.1159/000123040
https://doi.org/10.1371/journal.pone.0011725
https://doi.org/10.1093/bioinformatics/bti018
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1142/S0219720005001132
https://doi.org/10.1186/1471-2202-9-S1-P93
https://doi.org/10.1142/S0219635211002877
https://doi.org/10.1016/j.bpj.2011.06.041
https://doi.org/10.1152/jn.1993.70.4.1606
https://doi.org/10.1007/s004220050570
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.1186/1471-2105-7-93
https://doi.org/10.1093/bioinformatics/bti799
https://doi.org/10.1186/s13628-014-0011-5
https://doi.org/10.3389/fncom.2010.00019
https://doi.org/10.1007/s00422-007-0196-7
https://doi.org/10.1093/bioinformatics/btf860
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1093/bib/bbl039
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Manninen et al. Challenges in Reproducibility, Replicability, and Comparability

Tetzlaff, C., Okujeni, S., Egert, U., Wörgötter, F., and Butz, M. (2010). Self-

organized criticality in developing neuronal networks. PLoS Comput. Biol.

6:e1001013. doi: 10.1371/journal.pcbi.1001013

Tewari, S., and Parpura, V. (2014). Data and model tango to aid the

understanding of astrocyte-neuron signaling. Front. Comput. Neurosci. 8:3.

doi: 10.3389/fncom.2014.00003

Topalidou, M., Leblois, A., Boraud, T., and Rougier, N. P. (2015). A long journey

into reproducible computational neuroscience. Front. Comput. Neurosci. 9:30.

doi: 10.3389/fncom.2015.00030

Urakubo, H., Honda, M., Tanaka, K., and Kuroda, S. (2009). Experimental and

computational aspects of signaling mechanisms of spike-timing-dependent

plasticity. HFSP J. 3, 240–254. doi: 10.2976/1.3137602

van Ooyen, A. (2011). Using theoretical models to analyse neural development.

Nat. Rev. Neurosci. 12, 311–326. doi: 10.1038/nrn3031

van Pelt, J., andUylings, H. B.M. (2003). Growth functions in dendritic outgrowth.

Brain Mind 4, 51–65. doi: 10.1023/A:1024160131897

Volman, V., Bazhenov, M., and Sejnowski, T. J. (2012). Computational models

of neuron-astrocyte interaction in epilepsy. Front. Comput. Neurosci. 6:58.

doi: 10.3389/fncom.2012.00058

Wade, J., McDaid, L., Harkin, J., Crunelli, V., and Kelso, S. (2012). Self-repair in

a bidirectionally coupled astrocyte-neuron (AN) system based on retrograde

signaling. Front. Comput. Neurosci. 6:76. doi: 10.3389/fncom.2012.00076

Wade, J., McDaid, L., Harkin, J., Crunelli, V., and Kelso, S. (2013).

Biophysically based computational models of astrocyte ∼ neuron

coupling and their functional significance. Front. Comput. Neurosci. 7:44.

doi: 10.3389/fncom.2013.00044

Wade, J. J., McDaid, L. J., Harkin, J., Crunelli, V., and Kelso, J. A. S. (2011).

Bidirectional coupling between astrocytes and neurons mediates learning and

dynamic coordination in the brain: a multiple modeling approach. PLoS ONE

6:e29445. doi: 10.1371/journal.pone.0029445

Waltemath, D., Adams, R., Beard, D. A., Bergmann, F. T., Bhalla, U. S., Britten,

R., et al. (2011a). Minimum information about a simulation experiment

(MIASE). PLoS Comput. Biol. 7:e1001122. doi: 10.1371/journal.pcbi.100

1122

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K.,

et al. (2011b). Reproducible computational biology experiments with SED-ML -

the simulation experiment description markup language. BMC Syst. Biol. 5:198.

doi: 10.1186/1752-0509-5-198

Wierling, C., Herwig, R., and Lehrach, H. (2007). Resources, standards and

tools for systems biology. Brief. Funct. Genomic. Proteomic. 6, 240–251.

doi: 10.1093/bfgp/elm027

Wils, S., and De Schutter, E. (2009). STEPS: modeling and simulating

complex reaction-diffusion systems with Python. Front. Neuroinform. 3:15.

doi: 10.3389/neuro.11.015.2009

Wilson, M. A., Bhalla, U. S., Uhley, J. D., and Bower, J. M. (1989). “GENESIS:

a system for simulating neural networks,” in Advances in Neural Information

Processing Systems, ed D. S. Touretzky (San Francisco, CA: Morgan Kaufmann

Publishers Inc.), 485–492.

Wörgötter, F., and Porr, B. (2005). Temporal sequence learning, prediction,

and control: a review of different models and their relation to biological

mechanisms. Neural Comput. 17, 245–319. doi: 10.1162/0899766053011555

Yamamoto, H., Kubota, S., Chida, Y., Morita, M., Moriya, S., Akima, H., et al.

(2016). Size-dependent regulation of synchronized activity in living neuronal

networks. Phys. Rev. E 94:012407. doi: 10.1103/PhysRevE.94.012407

Yeung, A. W. K. (2017). Do neuroscience journals accept replications? A survey of

literature. Front. Hum. Neurosci. 11:468. doi: 10.3389/fnhum.2017.00468

Zachariou, M., Alexander, S. P. H., Coombes, S., and Christodoulou,

C. (2013). A biophysical model of endocannabinoid-mediated short

term depression in hippocampal inhibition. PLoS ONE 8:e58926.

doi: 10.1371/journal.pone.0058926

Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., et al. (2016).

Handlingmetadata in a neurophysiology laboratory. Front. Neuroinform. 10:26.

doi: 10.3389/fninf.2016.00026

Zou, Q., and Destexhe, A. (2007). Kinetic models of spike-timing dependent

plasticity and their functional consequences in detecting correlations. Biol.

Cybern. 97, 81–97. doi: 10.1007/s00422-007-0155-3

Zubler, F., and Douglas, R. (2009). A framework for modeling the growth

and development of neurons and networks. Front. Comput. Neurosci. 3:25.

doi: 10.3389/neuro.10.025.2009

Zubler, F., Hauri, A., Pfister, S., Bauer, R., Anderson, J. C., Whatley, A. M., et al.

(2013). Simulating cortical development as a self constructing process: a novel

multi-scale approach combining molecular and physical aspects. PLoS Comput.

Biol. 9:e1003173. doi: 10.1371/journal.pcbi.1003173

Zubler, F., Hauri, A., Pfister, S., Whatley, A., Cook, M., and Douglas, R. (2011). An

instruction language for self-construction in the context of neural networks.

Front. Comput. Neurosci. 5:57. doi: 10.3389/fncom.2011.00057

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Manninen, Aćimović, Havela, Teppola and Linne. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 22 May 2018 | Volume 12 | Article 2057

https://doi.org/10.1371/journal.pcbi.1001013
https://doi.org/10.3389/fncom.2014.00003
https://doi.org/10.3389/fncom.2015.00030
https://doi.org/10.2976/1.3137602
https://doi.org/10.1038/nrn3031
https://doi.org/10.1023/A:1024160131897
https://doi.org/10.3389/fncom.2012.00058
https://doi.org/10.3389/fncom.2012.00076
https://doi.org/10.3389/fncom.2013.00044
https://doi.org/10.1371/journal.pone.0029445
https://doi.org/10.1371/journal.pcbi.1001122
https://doi.org/10.1186/1752-0509-5-198
https://doi.org/10.1093/bfgp/elm027
https://doi.org/10.3389/neuro.11.015.2009
https://doi.org/10.1162/0899766053011555
https://doi.org/10.1103/PhysRevE.94.012407
https://doi.org/10.3389/fnhum.2017.00468
https://doi.org/10.1371/journal.pone.0058926
https://doi.org/10.3389/fninf.2016.00026
https://doi.org/10.1007/s00422-007-0155-3
https://doi.org/10.3389/neuro.10.025.2009
https://doi.org/10.1371/journal.pcbi.1003173
https://doi.org/10.3389/fncom.2011.00057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 01 June 2018

doi: 10.3389/fninf.2018.00032

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2018 | Volume 12 | Article 32

Edited by:

Robert Andrew McDougal,
Yale University, United States

Reviewed by:

Salvador Dura-Bernal,
SUNY Downstate Medical Center,

United States
Jeffrey L. Krichmar,

University of California, Irvine,
United States

Marianne J. Bezaire,
Boston University, United States

*Correspondence:

Christian Nowke
cnowke@gmail.com

Sandra Diaz-Pier
s.diaz@fz-juelich.de

†These authors have contributed
equally to this work.

Received: 06 December 2017
Accepted: 11 May 2018
Published: 01 June 2018

Citation:

Nowke C, Diaz-Pier S, Weyers B,
Hentschel B, Morrison A, Kuhlen TW
and Peyser A (2018) Toward Rigorous
Parameterization of Underconstrained

Neural Network Models Through
Interactive Visualization and Steering

of Connectivity Generation.
Front. Neuroinform. 12:32.

doi: 10.3389/fninf.2018.00032

Toward Rigorous Parameterization of
Underconstrained Neural Network
Models Through Interactive
Visualization and Steering of
Connectivity Generation
Christian Nowke 1*†, Sandra Diaz-Pier 2*†, Benjamin Weyers 1, Bernd Hentschel 1,

Abigail Morrison 2,3,4, Torsten W. Kuhlen 1 and Alexander Peyser 2

1 Visual Computing Institute, RWTH Aachen University, JARA-HPC, Aachen, Germany, 2 SimLab Neuroscience, Jülich
Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany,
3 Institute of Neuroscience and Medicine, Institute for Advanced Simulation, JARA Institute Brain Structure-Function
Relationships, Forschungszentrum Jülich GmbH, Jülich, Germany, 4 Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, Bochum, Germany

Simulation models in many scientific fields can have non-unique solutions or unique

solutions which can be difficult to find. Moreover, in evolving systems, unique final state

solutions can be reached by multiple different trajectories. Neuroscience is no exception.

Often, neural network models are subject to parameter fitting to obtain desirable output

comparable to experimental data. Parameter fitting without sufficient constraints and a

systematic exploration of the possible solution space can lead to conclusions valid only

around local minima or around non-minima. To address this issue, we have developed

an interactive tool for visualizing and steering parameters in neural network simulation

models. In this work, we focus particularly on connectivity generation, since finding

suitable connectivity configurations for neural network models constitutes a complex

parameter search scenario. The development of the tool has been guided by several

use cases—the tool allows researchers to steer the parameters of the connectivity

generation during the simulation, thus quickly growing networks composed of multiple

populations with a targeted mean activity. The flexibility of the software allows scientists

to explore other connectivity and neuron variables apart from the ones presented as use

cases. With this tool, we enable an interactive exploration of parameter spaces and a

better understanding of neural network models and grapple with the crucial problem of

non-unique network solutions and trajectories. In addition, we observe a reduction in turn

around times for the assessment of these models, due to interactive visualization while

the simulation is computed.

Keywords: simulation and modeling, neural networks, structural plasticity, interactive systems, high performance

computing, visualization software

58

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00032&domain=pdf&date_stamp=2018-06-01
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cnowke@gmail.com
mailto:s.diaz@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00032
https://www.frontiersin.org/articles/10.3389/fninf.2018.00032/full
http://loop.frontiersin.org/people/268211/overview
http://loop.frontiersin.org/people/264471/overview
http://loop.frontiersin.org/people/279286/overview
http://loop.frontiersin.org/people/276037/overview
http://loop.frontiersin.org/people/13504/overview
http://loop.frontiersin.org/people/14183/overview
http://loop.frontiersin.org/people/222839/overview

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

INTRODUCTION AND RELATED WORK

Neuronal models and neural mass models, usually based on
coupled systems of differential equations, contain many degrees
of freedom which determine the dynamics of the system. In a
neural network, thesemodels are interconnected and the strength
of the interactions between elements can also change through
time.

Since biological evidence to specify a complete set of
parameters for a neural network model is often incomplete,
conflicting, or measured to an insufficient level of certainty,
parameter fitting is typically required to obtain outputs
comparable to experimental results (see for example, López-
Cuevas et al., 2015; Schuecker et al., 2015; Zaytsev et al., 2015;
Schirner et al., 2016). And even if we had infinite experimental
data available, Cubitt et al. (2012) have shown that, regardless
of how much experimental data is acquired for a general
system, the inverse problem of extracting dynamical equations
from experimental data is intractable: “extracting dynamical
equations from experimental data is NP hard.” This implies
that in neural networks, the problem of finding the exact
free parameters for a simulation leading to results matching
experimental measurements cannot be solved in polynomial
time, at least under the current understanding of computational
complexity.

However, we can explore the parameter space with forward
simulations in order to discover the system’s characteristic
behaviors and thus limit the search space to a computationally
tractable sub-problem in an educated manner. The definition
of these subspaces can then be the basis for robust—
and non-arbitrary—parameter determination (in other words,
mathematically valid performance function minimization). In
fact, given the known mathematical characteristics of the
dynamics of neuronal and neural mass networks, investigators
should characterize the solution spaces of sufficiently complex
networks and models before selecting what they propose are
statistically diagnostic simulation trajectories. In practice, this
rarely happens, even though parameter fitting without sufficient
constraints and a rigorous exploration of the possible solution
space can lead to conclusions valid only around local minima or
around non-minima. Researchers frequently stay within arbitrary
regions in the parameter space which show interesting behaviors,
leaving other regions unexplored.

Visual parameter space exploration has been successfully
applied in several key scientific areas, as detailed by Sedlmair
et al. (2014). Combined with interactive simulation steering, the
time for obtaining optimal parameter space solutions can be
significantly reduced (Matković et al., 2008, 2014). Whitlock et al.
(2011) present an integration of VisIt (Childs et al., 2005), a
flexible end-user visualization system, into existing simulation
codes. This approach enables in situ processing of large datasets
while adding visual analysis capabilities at simulation runtime. A
similar approach has been suggested by Fabian et al. (2011) for
ParaView (Henderson, 2004).

Coordinated multiple views (CMVs) as proposed by North
and Shneiderman (1997) and Wang Baldonado et al. (2000)
can assist in visual parameter space exploration. CMVs are a

category of visualization systems that use two or more distinct
views to support the investigation of a single conceptual entity.
For example, a CMV system can display a 3D rendering of
a building (the conceptual entity) alongside a top-down view
of its schematics—whenever a room is selected within the
schematic overview, the 3D rendering will highlight the room’s
location. Roberts (2007) shows that CMVs support exploratory
data analysis by offering interaction with representations of
the same data while emphasizing different details. Ryu et al.
(2003) present CMV systems that have been successfully utilized
to uncover complex relationships by enabling users to relate
different data modalities and scales, and assisting researchers in
context switches, comparative tasks, and supplementary analysis
techniques. Additional examples of such systems are presented by
North and Shneiderman (2000), Boukhelifa and Rodgers (2003),
and Weaver (2004).

Visual exploration of neural network connectivity, e.g.,
by displaying spatial connectivity data in 3D renderings, has
previously been employed by scientists to better understand
and validate models as well as to support theories regarding the
networks’ topological organization (Migliore et al., 2014; Roy
et al., 2014). The infinite solution space of suitable connectivity
paths and end configurations for neural networks makes
fully automatic parameter fitting “hard,” since it involves
satisfying multiple contradictory objectives and qualitative
assessment of complex data, as explained by Sedlmair et al.
(2014). Kammara et al. (2016) conclude that for multi-objective
optimization problems, visualization of the optimization
space and trajectories permits more efficient and transparent
human supervision of optimization process properties, e.g.,
diversity and neighborhood relations of solution qualities.
They also point their work toward interactive exploration
of complex spaces which allows expert knowledge and
intuition to quickly explore suitable locations in the parameter
space.

To address efficient but rigorous parameter space exploration,
we have developed an interactive tool for visualizing and steering
parameters in neural network simulation models. In this work,
we focus particularly on the generation of connectivity, since
finding suitable connectivity configurations for neural network
models constitutes a complex parameter search scenario. The
generation of local connectivity is achieved using structural
plasticity in NEST (Bos et al., 2015) following simple homeostatic
rules described in Butz and van Ooyen (2013). We specify
the problem from the control theory perspective, as variations
in the structure system control the transition in its dynamics
from an initial to a final state following a defined trajectory.
The tool allows researchers to steer the parameters of the
structural plasticity during the simulation, thus quickly growing
networks composed of multiple populations with individually
targeted mean activities. The flexibility of the software allows
the exploration of other connectivity and neuron variables apart
from those presented as use cases. We use CMVs to interactively
plot firing rates and connectivity properties of populations
while the simulation is performed. Moreover, simulation steering
is realized by providing interactive capabilities to influence
simulation parameters on the fly.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2018 | Volume 12 | Article 3259

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

We have developed this tool based on two use cases where
visual exploration is key for obtaining insights into non-unique
dynamics and solutions. The first use case focuses on the
generation of connectivity in a simple two population network.
Here we show how the generation of connectivity to a desired
level of average activity in the network can be achieved by taking
multiple trajectories with different biological significance. The
second use case is inspired by a whole brain simulation described
in Deco et al. (2013), where the exploration of non-unique
connectivity solutions is desired to understand the behavior of
the model.

Applying this approach, an intractable inverse problem can
be reduced to a tractable subspace, and the requirements for
statistically valid analyses can be determined. Visualization can
simplify a complex parameter search scenario, helping in the
development of mathematically robust descriptions amenable
to further automated investigation of characteristic solution
ensembles. Observing the evolution of connectivity, especially in
cases where several biologically meaningful paths may lead to
the same solutions, can be useful for a better understanding of
development, learning and brain repair. This work is a first step
toward developing new analytic and computational solutions
to specific inverse problems in neuronal and neural mass
networks. Our software platform promotes rigorous analysis of
complex network models and supports well-informed selection
of parameters for simulation.

This paper is structured as follows: first, we present an
introduction to generic dynamic neural network models from
a control theory perspective. Next, we describe connectivity
construction and its effects on the dynamics of the system.
Then, the development process and design of the steering and
visualization tool is detailed. The fifth section describes the
results of using the steering tool in two different use cases. Finally,
we discuss our results and present open questions and future
work.

GENERAL FORM OF NETWORK
DYNAMICS

Let a neural network be defined by a set of ordinary differential
equations in which x1(t), x2(t)...xn(t) are state variables of the
system at time t. We assume that neurons in this model can
be either in an active or quiescent state. The master equation
of a neural network has been derived and explained in Cowan
(1991) and Ohira and Cowan (1993). This equation provides a
mathematical description of the evolution of stochastic neural
networks in the form of a Liouvillian:

L = α

N
∑

i = 1

(1+i − 1)1−i +

N
∑

i = 1

(1−i − 1)1+i φ

1

ni

N
∑

j = 1

ωijxj

(1)

where α is the decay function after a neuron has spiked, 1+i

and 1−i are the raising and lowering operators which take a
neuron i to and from an activation state, ni is the number of

connections to neuron i, N is the total number of neurons in the
network, φ is the activation rate function which depends on the
neuron model and ωij is the strength of the connection between
neuron i and j. Synaptic growth and connectivity variations in
neural networks further increase the complexity of the system. In
the case of variable connectivity, the network master equation is
transformed into:

L = α

N
∑

i = 1

(1+i − 1)1−i

+

N
∑

i = 1

(1−i − 1)1+i φ

1

ni
(

u(t)
)

N
∑

j = 1

ωij

(

u(t)
)

xj

 (2)

where both ωij and ni depend on the control signal u coming
from the synaptic and structural plasticity algorithms at time t.
We introduce this formulation to expose variables u(t) in the
system, which can be controlled. We are interested in modifying
these signals in order to induce changes in the network and thus
achieve a target dynamic profile. However, it is worth noting
that our approach is also applicable to non-stochastic neural
networks.

Control Theory for Network State
Trajectories
Both synaptic and structural plasticity can be seen as biological
controllers in a multi-objective optimization problem. Under
this view, the system gradually creates and destroys connections
between neurons, or modifies the strength of existing synapses
(control), to achieve a transition from one initial state to a final
steady (or even homeostatic) state. This final state can be a
previously known activity state which has been altered, as in
repair after a lesion, or a new activity state to be achieved, as is
the case in learning. Thus, the evolving connectivity problem can
bemathematically expressed in terms of control theory as defined
in Kirk (2012).

In our case, the control signals refer to the variations in the
connectivity of the network while the states refer to the dynamics
of the network. The state equations take the form of:

ẋ = a
(

x(t), u(t), t
)

(3)

where u is the history of control signals during the interval
[t0, tf], and the state trajectory denoted by x is the history of state
values during the same time interval. A control history which
satisfies the constraints of the system (in this case, experimental
parameters of neurons and synapses) during the time interval
of interest is called an “admissible control.” On the other hand,
an “admissible trajectory” is a state trajectory which satisfies the
constraints of the state variables through the whole period of
interest. The final state of the system is then required to lie in a
specific region, defined as the target set, of the n+ 1-dimensional
state-time space.

By applying the control signal u(t) from t0 to tf , the system
will evolve from its initial state x0 following some trajectory
to a final state xf . The “performance” of this trajectory is the

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2018 | Volume 12 | Article 3260

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

difference between a desired and the obtained measure for a
heuristic involving the dynamics of the system. In our case,
the performance function is given by the homeostatic rules the
system must follow. To reach a defined target activity regime,
we cannot know a priori whether an optimal admissible control
exists, which leads the system through an admissible trajectory
for a given performance function. It may be impossible to find
such a control history, and even if it exists, it may not be unique
or numerically stable.

The optimization problem posed seeks a global minimum for
one or more admissible trajectories of the system. For the class of
neural networks described by the dynamical equations above, the
problem of finding the exact control signals or free parameters
for a simulation leading to experimental results cannot be solved
in polynomial time. However, it may still be possible to confirm
solutions in polynomial time.

CONNECTIVITY GENERATION IN NEURAL
NETWORKS

Previous research by Sporns et al. (2005) has found that
the assembly of anatomical connections among neurons, also
known as the connectome, plays a fundamental role in
explaining the high-level activities of the brain. However, the
exact relationship between anatomical links and the functions
performed by the brain has aspects that remains unclear. An
attempt to model biologically realistic circuits immediately
runs into the problem that the structure of the brain has
yet to be comprehensively characterized. Existing connectomic
datasets are incomplete or contain large uncertainties (Bakker
et al., 2012). Conversely, information about the average
electrical activity in specific brain regions is easier to acquire
either directly, e.g., electroencephalogram, extracellular electrode
recordings of spiking activity and local field potential, or
indirectly, e.g., functional magnetic resonance imaging and
optogenetics/calcium imaging.

Variations in the physical elements, which constitute a neural
network, can be modeled using synaptic and structural plasticity.
Structural plasticity, a model of the dynamic creation and
deletion of synapses in a neural network, is desirable from
two main perspectives. The primary purpose is to study the
neurobiological phenomenon of morphological transformations
that a neuron or set of neurons undergoes through time, leading
to the creation or deletion of synapses. This phenomenon is
part of brain development, learning and repair. However, a
promising secondary role suggested by Diaz-Pier et al. (2016)
is the automatic generation of neuron-to-neuron synapses to
compensate for gaps in experimental connectivity data. Using
structural plasticity, a network can autonomously generate
synapses to achieve a stable desired profile of electrical activity,
a measure that is experimentally more accessible than detailed
connectivity data. By progressively and slowly changing the
connections between neurons in the network and the weight
of these connections for all regions, the structural plasticity
algorithm is able to find stable configurations within the desired
firing rate profile.

The structural plasticity implementation in NEST is based on
the model proposed by Butz and van Ooyen (2013) and described
in detail by Diaz-Pier et al. (2016). In this plasticity framework,
neurons have contact points called synaptic elements which
increase or decrease in number according to simple homeostatic
rules. When new synaptic elements become available, they can be
used to create new synapses. If the contact points are eliminated,
the synapses formed earlier are destroyed. Homeostatic rules
applied to the synaptic elements are intended to take the mean
electrical activity to a desired state.

A Gaussian curve (Figure 1) is an example of a homeostatic
rule describing the growth rate of connection points for neurons.
The original model by Butz and van Ooyen (2013) uses
intracellular calcium concentration as a proxy for the mean firing
rate. In this paper’s examples, we will use a variation directly
referencing the mean firing rate as our homeostatic rule.

The parameters defining the growth and decay of synapses are
the minimum firing rate η required to generate synaptic elements
(or destroy them, depending on sign of ν), the value ν of the
growth rate curve when the firing rate is (ε− η)/2, and the target
firing rate ε. Modifying these values alters the way connectivity is
created and destroyed in the network.

Thus, to calculate the number of synaptic elements per second
(dn/dt) to create (or remove, if negative), we use:

dn

dt
= v H[λ − η]

[

2 pow2

(

−

[

2
λ − η

ǫ − η
− 1

]2
)

− 1

]

(4)

where pow2 x is the power function 2x and H[x] is the Heaviside
step function equal to 0 when x < 0, otherwise 1. Equation (4)
is equivalent to the Gaussian used in Diaz-Pier et al. (2016)
after directly replacing the calcium concentration with the
firing rate λ. In this paper’s simulations, this form is not
biologically motivated, but is a homeostatic meta-rule being used
to numerically solve for networks consistent with fixed firing
rates.

The firing rate λ at time t used in Equation (4) is calculated
by low-pass filtering spike train data by convolving that data with
an exponential decay kernel (Park et al., 2013): the current firing
rate λ is increased by 1/τ spikes/s for each spike and decays
exponentially with a time constant τ = 10 s between firing times.
Thus,

τ
dλ

dt
= −λ +

∑

tf

δ

(

t − tf
)

(5)

where tf are the firing times of the neuron and δ is the Dirac delta
function. This calculation is internal to NEST and independent
of our tool. When the convolution technique isn’t suitable, an
alternate mean firing rate can be computed using a user-defined
window size applied to binned spike trains.

As discussed in the previous section, synaptic and structural
connectivity can be seen as multi-objective optimization
algorithms which take the network from an initial state to a final
state where something has been learned or a new activity pattern
has been enabled. Partial information about the connectivity
can be combined with information about average activity in

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2018 | Volume 12 | Article 3261

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

ε

Firing rate (Hz)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
5.0 10.0 0.510.0

∆
 S

y
n
a
p
ti

c
 e

le
m

e
n
ts

/s

ε

Time (s)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
5.0 10.0 0.510.0

∆
 S

y
n
a
p
ti

c
 e

le
m

e
n
ts

/s

 ε

Time (s)

12.0

10.0

8.0

6.0

4.0

 2.0

 0.0
5.0 10.0 0.510.0

F
ir

in
g
 r

a
te

 (
H

z
)

A B C

FIGURE 1 | (A) Example of growth rate curves determining the rate of creation or deletion of synaptic elements in the structural plasticity model. The parameters

which define the shape of the curve are two firing rates, the minimal firing rate for creating/deleting synaptic elements η and the target firing rate ǫ, and the growth rate

ν which is the value of the curve in synaptic elements/s when the firing rate λ = (ǫ − η)/2. The red, cyan and purple curves have a negative value of ν which implies

that synaptic elements will be deleted when the current firing rate is less than the target rate. These curves are therefore suitable for inhibitory synapses. Conversely,

synaptic elements will be created when the current firing rate exceeds the target. The brown curve has a positive ν which works in the opposite way. All curves display

different values of η; in particular, the cyan curve has a negative value of η. In these cases, all curves have a target firing rate ǫ of 8 Hz. It is important to note the slope

of each curve close to the target firing rate ε; this slope is critical for the stability of the optimization algorithm. (B) Firing rate externally imposed on sample systems

with Gaussian growth curves shown in (A,C) the resulting evolution of synaptic growth rate through time due to the firing rate changes depicted in (B). See Figure 5B

for an equivalent Gaussian growth curve for the two-population example in this paper, and the resulting free (not driven) dynamics in Figures 5C–E.

the system to initialize models of structural plasticity filling the
gaps in the constraints of the system. However, finding suitable
connectivity configurations and generation trajectories for neural
network models is non-trivial, which is exacerbated by the nature
of experimental data. The known experimental data often fails
to sufficiently constrain the model to parameter subspaces that
can be completely explored with reasonable resources within
reasonable time frames.

Enabling structural plasticity for a single population to reach
a targeted activity level is usually unproblematic, fast, and
relatively insensitive to the choice of parameters such as ν and
η. However, a big challenge arises when structural plasticity is
involved simultaneously on several interconnected populations
with differing levels of activity. Even small changes in the
connectivity of each population will impact the activity of
all others to which it is connected, leading to a propagated
destabilization. Another parameter which has a great impact on
stability is the update interval at which synapses can be deleted or
created. As in any control system, the delay between a control
change and the response of the system strongly determines
the capability of the controller to keep the system in a stable
region.

In Diaz-Pier et al. (2016), the simulations were performed
statically, meaning no steering was possible during runtime.
Due to the large combination of parameters to be controlled
and variables to be observed during the search process, brute-
force parameter search based on static simulation proved
to be insufficient to obtain stable states. The selection of
adequate parameters to define and constrain the growth of
network connectivity, especially for multi-population or coupled
networks, is not trivial since some values might lead to unstable
setups. Therefore, modifying the characteristics of the growth
behavior (ν and η see Figure 1) for each population and the
update interval during simulation becomes crucial for finding
a suitable stable state for multi-population networks. We use
the terms “population” and “region” interchangeably to refer

to groups of neurons. The term chosen depends on the use
case. In general, a region contains one or more populations
while populations specify groups of neurons of the same type.
Connectivity exists both within and between populations and
regions. All types of connectivity can be subject to plasticity or
remain fixed after setup. The software can be modified to take
into account any number of populations per region, arbitrary
types of neurons, and any number of regions. The user can
also specify different types of connections between the same
populations and apply various structural plasticity rules to each
of them. The user can choose between a variety of connectivity
modalities in NEST, ranging from one-to-one, all-to-all, fixed in-
degree, fixed out-degree, fixed total number of connections, and
pairwise Bernoulli. However, structural plasticity support is only
currently implemented for one-to-one and all-to-all connectivity.
Other modalities can be used, but structural plasticity will not
affect these connections.

In the context of a simulation with evolving connectivity, the
dynamic nature of the parameter search workflow derived from
the two use cases presented later requires:

W1: The simultaneous analysis of several changing variables by
an expert.

W2: Comparing the level of activity of several populations
simultaneously.

W3: Changing simulation parameters at any moment in each
population of the network.

W4: Snapshotting a time point in the simulation and storing the
connectivity state.

W5: Loading a previously stored connectivity state.

This workflow can potentially be assisted with an interactive
tool enabling scientists to explore and steer such simulations
within the space of possible trajectories. To achieve this
goal, a scientist needs interactive feedback on the number
of connections and the level of electrical activity in all
populations.

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2018 | Volume 12 | Article 3262

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

IN SITU VISUALIZATION AND STEERING
OF CONNECTIVITY GENERATION

To enable navigation through the connectivity generation
parameter space, we developed a tool enabling interactive
steering and visualization. The development was driven by the
need to rapidly reach stable configurations of connectivity in
multiple tightly connected populations. We then extended the
tool to support further use cases which are presented later.
The tool allows for the visualization of trajectories that the
system undergoes during simulation by showing the changes
in the observable states of the network (specifically the activity
and connection properties of the network). In addition, this
tool allows for the modification of the control signals for
the generation of connectivity, i.e., the plasticity algorithm’s
parameters.

The developed tool realizes a CMV system by applying
principles of event-driven architectures as presented in Abram
and Treinish (1995), Michelson (2006), and Nowke et al. (2015).
The development of the tool was organized into four stages: first,

the simulation script was modified to retrieve electrical activity
and connectivity values; second, the visualization components
and user interfaces were developed; third, processing of

parameter changes from the user interface was added; and finally,
the simulation script was optimized to run on supercomputers.

In the first step, we started by reproducing the plots from
the non-interactive analysis workflow used in the second use
case. This initial design phase revealed the following visualization
requirements (R1–R5), followed by the requirements for
simulation steering (R6–R10). These requirements hold for all
presented use cases:

R1: Deal with at least 2 × N representations of time series data
(electrical activity and connectivity), where N is the number
of populations in the simulation.

R2: Interactively plot the firing rate for selected populations. The

firing rate from the last simulation step should be displayed
as soon as its computation concludes.

R3: Interactively plot connections for each population. As for
the firing rate, the latest total connections per population
should be displayed.

R4: Enable the selection and filtering of populations for plotting

and further investigation. The means to select and filter

populations of interest must be provided.
R5: Have a well defined way to distinguish populations in

the plot. Since multiple populations can be selected for

comparison, visual clutter needs to be avoided.
R6: The user interface must allow for the modification of each

population’s growth rate ν and apply each value in the
simulation.

R7: The user interface must allow for the modification of a
population’s minimum electrical activity η and transfer the
new value to the simulation engine.

R8: The user interface must allow for the modification of the
update interval and transfer its change to the simulator.

R9: Control the NEST simulation from within a graphical user
interface. Provide the means to start or stop the simulation,

trigger the saving and loading of a network state, and allow
convenient access to the visualizations.

R10: Enable loading and saving of the current network state
(connections and user controlled parameters).

Requirements R1–R5 cover the parameter search workflow W1

and W2. R6–R10 target W3–W5. Based on these requirements,
we developed the software architecture as depicted in Figure 2.
Each box in this figure we term a service. Services and the
simulation engine NEST exclusively communicate via events.
Communication via events allows us to treat each visualization
as an independent loosely-coupled service. One benefit of this
approach is that all services are independent of each other,
facilitating the production of small reusable software components
that are easy to maintain and can be reused in different contexts.

Event-communication is realized with the “nett ” messaging
framework (see Supplementary Material), which is an open
source C++ network library facilitating data transfer between
application boundaries based on the publish and subscribe
pattern. To enable communication between applications,
nett provides slots. A slot is an unidirectional communication
channel strictly typed to an event. Slots exist in two flavors:
out-slots for publishing events and in-slots for subscribing to
these. Consequently, subscribing slots can be connected to
several publishers emitting the same event. An event is defined
via a customizable schema, describing the fundamental data
types the event is composed of. Moreover, nett provides Python
bindings, making it possible to communicate between Python,
i.e., the visualization implementations, and C++ applications,
i.e., NEST.

Streaming simulation results from NEST is already possible
with the MUSIC interface (Djurfeldt et al., 2010). However,
MUSIC is specifically built for transferring large arrays of
structured data in parallel with a certain step size and with a focus
on latency. It is tailored to multi-scale coupling and large data

FIGURE 2 | Overview of the system architecture: boxes denote individual

services. Black arrows mark communication from the simulation engine to the

visualization front-ends. Vice versa, white arrows indicate event-flow from the

visualization services to the simulation engine. Ranks indicate individual MPI

processes responsible for the parallel computation of the neural network. The

“ETA” (η) and “growth rate” (ν) manipulators control the respective variables

from Figure 1.

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2018 | Volume 12 | Article 3263

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

transfer. In comparison, nett focuses on arbitrary serialization
of data through tiny pipes and is based on a publish-and-
subscribe communication mechanism. In addition, it is intended
for point-to-point continuous streaming and is event-driven
in comparison to the pull-driven communication regime by
MUSIC. Furthermore, nett offers routing discovery whileMUSIC
relies an a static configuration on startup. In summary, nett is
tailored to concise and light data transport and easy to integrate
data streaming from C++ or Python codes.

The rest of this section will outline the required simulation
instrumentation and the visualization services in more detail.

Simulation Instrumentation
Interactive steering relies on a bidirectional communication
between the visualization and steering interfaces to a simulator.
In our setup, activity levels and connectivity from populations
computed by NEST are transferred via event communication
over a network connection to the visualizations, where users can
modify parameters of the simulation model, which in turn are
fed back to the simulator. The values of interest are the firing
rate of each population which serves as a proxy for electrical
activity and a population’s total connections formed due to
connectivity generation. These are the observable states of the
network. Steering parameters are the minimum firing rate η and
the growth rate ν of each population, the update interval for the
connectivity generation, and finally, basic commands to NEST
such as ending or resetting the simulation, and storing or loading
the current network state.

To retrieve firing rates and total connections, instrumentation
of the simulation script is required. To this end, the simulation
acquires the latest firing rates and total connections of each
population in each iteration and publishes these as events.
Then, parameter changes from the graphical steering interfaces,
asynchronously retrieved during the model’s computation, are
applied and the next iteration is continued.

To adapt a NEST simulation to a different use case, the first
step consists of determining what data needs to be transferred
from or to the simulation. The next step consists of creating
an event definition schema for the data to be transferred if
one is not yet present. Then, slots for communicating this data
definition can be created: out-slots for publishing data and in-
slots to retrieve it. Once slots are created, in-slots need to be
connected to their corresponding out-slots. Any in-slot should
be used in a thread to asynchronously retrieve data without
blocking the computation of the simulation. Once an event is
received by a slot, its data needs to be applied in the next iteration
of the simulation. In a complementary fashion, out-slots send
the simulation results for each iteration by retrieving values
of interest from the simulation and filling the slot’s event and
sending it. The same methodology is used for visualizations or
graphical user interfaces which are use case specific.

Visualization System Overview
The visualization system consists of six services fulfilling the
above listed requirements. A demonstration video of the tool can
be found in Supplementary Material (see video Movie 1). In the

following, we outline each service and its responsibility in the
workflow.

Control Panel
The Control Panel is the central place to provide convenience
functionality, i.e., to start the simulation, all visualization
services, steering interfaces, the Color Editor, and Region Selector
(see Figure 3). It serves as an entry point for users to start the
investigation of structural plasticity. The user interface facilitates
changing the update interval (R8) and allows the simulation to
be paused or restarted (R9). In addition, it provides a graphical
interface for loading and saving the network state (R10).

Region Selector
The Region Selector is a graphical interface displaying a list of all
populations in the simulation (see Figure 3, rightmost element).
These populations are defined by the network modeler in the
simulation script as part of the instrumentation process. This
is detailed in the instrumentation manual in Supplementary
Material. The list provides the means to select populations of
interest whose connectivity and firing rates should be plotted
(R4). To this end, the Region Selector retrieves the number
of populations from the simulation (see Figure 2). The user
can then select multiple populations by clicking on them. All
connected visualizations are linked with the current selections;
thus it can be used to synchronize all tools for filtering data
and in this way populations of interest can be focused (R4). The
Region Selector can also be used to inspect individual populations
of interest. By double clicking on a population in the list, an
additional Activity Plot and Connectivity Plot is created plotting
only the selected population of interest. This functionality can
be used on multiple populations, independently of selections
performed later on and facilitates the pairwise comparison of
populations.

Activity Plot
The assessment of the simulation results is based on the
inspection of a population’s firing rate. The Activity Plot is
an interactive service that plots the firing rates of populations
selected in the region selector (R1). It is used to visualize
the trajectories that the network traverses in terms of its
functional states. To this end, it connects to the region selector
and listens for incoming selection events (R4). To display the
firing rate (R2), the service directly connects to the simulation
to retrieve the last iteration result. Interactive zooming and
panning capabilities allow the scientist to focus on details on
demand, following the “information seeking” mantra postulated
by Shneiderman (1996). Interactive zooming can be used to zoom
into a specific time interval and assess the depicted curve in
more detail. Panning allows the user to move the selected time
interval of interest, effectively moving the curve to the left or
right. The information seeking mantra states that users should
be able to get an overview first, then zoom and filter the data,
and finally query details on demand. Furthermore, axes can be
independently scaled or their data range confined. In the Activity
Plot’s initial configuration, which can be modified by the user,
both axes will be scaled in such a way that all retrieved firing rate

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2018 | Volume 12 | Article 3264

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 3 | Firing rate in spikes/s of simulated brain regions (Upper left) and total connections (Upper right) are retrieved while a NEST simulation is performed.

Time is measured in number update intervals. The steering interfaces (Control Panel and growth rate manipulation; bottom left and center) allow interactive parameter

space exploration which is synchronized with the current simulation. The growth rate (in 1 synaptic elements/ms) for each region can be controlled using the

corresponding slider. The region selector (far right) provides the means to filter the brain regions of interest depicted in the plots. The legends provided in each plot

denote the current selection from the region selector along with the color used to identify the corresponding curve. Specifically in the example shown, the labels e0 -

e10 and i0 - i5 identify the average firing rate for excitatory and inhibitory populations in network regions 0-10 accordingly. Labels r0 - r10 identify total outgoing

connections from network regions 0–10. Please refer to section 5.2 for more details on the network model used in this example. Please refer to the video Movie 1 in

Supplementary Material, for a detailed explanation of the tool’s interface.

values are visible. The tool also allows the user to export the plot
as a figure. To distinguish multiple curves, a color table can be
defined via the Color Editor (R5), as discussed below. A legend
in the upper left corner relates the selected populations to the
depicted curves shown in Figure 3 in the upper left window. In
addition, it shows the latest firing rate next to each population’s
legend label. The legends can be changed by the user of the tool.
In this work we use the label e and i to identify excitatory and
inhibitory populations and a number to identify the region they
belong to. Individual Activity Plots can be used in conjunction
with the region selector by specifying a population of interest.
Therefore, multiple plots can be used for comparison tasks (R1).
In this setup, the visualization ignores user input and is fixed to
the initial selection.

Connectivity Plot
TheConnectivity Plot (see Figure 3, upper right window) displays
the total number of connections for a population in accordance
with R3. Since structural plasticity is responsible for a change in

the total connections depending on the population’s firing rate,
the plot is the primary means to verify the structural plasticity
model. It shows the trajectories of the network in terms of its
structure. This visualization is connected to the region selector
and thus enables filtering of the populations to be displayed
(R4). Analogously to the Activity Plot, it is linked to the Color
Editor. Whenever attributes like color, line-style-drawing, or
thickness are changed, these values are applied. The legends can
be changed by the user of the tool. In this work we use the
label r and a number to identify the total connectivity values
for an specific region. Like the Activity Plot service, it offers
interactive zooming and panning functionality. Likewise, axes are
automatically scaled such that all retrieved connectivity values
are depicted. In addition, plots can be exported as figures for
publication purposes or the tracking of results.

Color Editor
TheColor Editor provides a graphical user interface that mediates
the customization of color, line drawing style, and line thickness

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2018 | Volume 12 | Article 3265

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

for each population’s firing rate and connectivity plots.Whenever
the user changes an entry, a “color changed” event is emitted
and processed by the Activity Plots and Connectivity Plots. In
addition, the color table is saved to disk for later reuse. Its
primary use is to help in distinguishing curves within the plotting
visualizations (R5). The Color Editor enables the customization
of the depicted firing rate and connectivity curves in the plot.
Here, users can select a color for a population’s inhibitory (I)
and excitatory (E) population by clicking on the corresponding
list entry. In addition, line drawing style and thickness can
be controlled. The population’s name is equal to its specified
counterpart in the simulation.

Manipulation of Structural Plasticity Parameters
The user interfaces for η and ν are the primary means of steering
the simulation for the parameter space exploration (R6 and
R7). This interface allows for the modification of the control
signals, enabling the structural plasticity algorithm to take the
system from its current state to a desired final state (see Figure 3,
bottom center). Both steering interfaces are designed as separate
standalone services that can be started within the Control Panel.
The η and ν services provide graphical user interfaces, each
presenting one slider for each population. Their influence on
the creation or deletion of synapses is indicated in Figure 1.
Each slider is named according to the population’s label and
shows the current value used in the simulation. Whenever the
user changes a value by adjusting the slider, an event is emitted
which is subsequently processed and applied by the simulation
in its next iteration step. The upper and lower limits for the
control parameters can be defined inside the scripts for each
controller interface. Please refer to the instrumentation manual
in Supplementary Material, for more details.

Loading and Saving Network States
To re-use previously found connectivity patterns in neighboring
points of the parameter space, we implemented a save and load
functionality (R10). The current values for η and ν are saved for
each population as well as the connectivity update interval. All
current connections between all neurons are also saved. These
connections are defined by a source neuron, a target neuron and
the synapse model which links them. Finally, the total number of
connections for each population are exported to a file which can
be used in the next phase of the simulation loop.

To re-use a previously created snapshot, we first load the types
of all synaptic elements for each population. When using the
structural plasticity framework in NEST, the first step consists of
defining the plastic synapses. This requires the specification of a
synapse model as well as the definition of pre- and post-synaptic
elements between which a synapse can be created. The growth
curves for these synaptic elements are reconstructed using the
stored values for η and ν. Then the synaptic elements are
registered in the structural plasticity framework and the update
interval is set for the simulation. This is performed by using the
set status functions of NEST through PyNEST/CyNEST (Eppler
et al., 2009; Zaytsev and Morrison, 2014). Finally, all connections
are recreated, marking them as non-static links which can be
modified by the structural plasticity algorithm. In this way, a new

network with differing global parameters such as global coupling
or inhibitory strength can start from a partial solution and arrive
at the target activity values more quickly. For more details about
the implementation of the structural plasticity framework please
refer to Diaz-Pier et al. (2016). This functionality can be triggered
from the Control Panel.

RESULTS

In this section, we present the results obtained from two use cases
in connectivity generation. For the first use case, the results of
running structural plasticity simulations before the interactive
visualization tool was developed were previously reported in
Diaz-Pier et al.(2016, Figure 5, section 3.3.1). Figure 4 (from this
current paper) shows the equivalent output for the second use
case, reflecting the previous visualization approach. Due to the
large number of unlabeled curves, the inability to focus on data
for particular populations and the lack of interactivity with the
visualization, using this static approach makes it very difficult for
the user to identify the evolution of connectivity in relation to
parameter changes. Moreover, a new simulation run is required
whenever any parameter needs to be changed. Even when some
regions have easily reached the target activity of 3 spikes/s,
for some set-ups it is extremely challenging to identify suitable
trajectories that lead to stable solutions for all populations.

In this type of simulation, the system is constrained by
connectivity data and desired activity levels obtained from
experimental measurements. However, these constraints still
allow the system to reach non-physiological states such as
saturating at high firing rates (see Figure 4). Moreover, the
system may follow several trajectories to reach these implausible
states, indicating that the system is under-constrained. On the
other hand, there are many admissible trajectories which take the
system to biologically plausible states. Biologically meaningful
trajectories should be identified by heuristics, expert knowledge,
and further experimental measurements gained through a deeper
understanding of the parameter space to which the neural circuit
is subject. At first glance, it is not clear how to explore the
parameter space in these complex systems, as the large number
of variables and long simulation times make it unfeasible to
find stable populations through a brute force approach, and no
heuristic is available to reduce the dimensionality.Without expert
knowledge in a closed loop setup, admissible trajectories are
fundamentally hard to find.

In the following sections, we demonstrate the challenges
of parameterizing network models and the potential for an
interactive visualization and steering tool, such as the one
we propose, to address them. All experiments have been
implemented with NEST 2.10.0 (Bos et al., 2015) and its Python
language bindings which are described in Eppler et al. (2009);
Zaytsev andMorrison (2014). The complete NEST scripts used in
this work can be found in a GitHub repository. For more details,
please see Supplementary Material.

Two Population Model
In this use case, we create a model with two populations
of point neurons, one excitatory and one inhibitory as

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2018 | Volume 12 | Article 3266

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 4 | Previous method of visualizing simulations: visualization of the simulation as performed before the presented tool was developed. The figure shows the

evolution of the average firing rate for each region (solid curves) and numbers of outgoing connections (dashed curves) from each region using structural plasticity in a

non-interactive (static) experiment. Each color represents a different population. In this static approach, a large number of independent simulator runs are performed

over a predetermined, non-interactive parameter space and then displayed with ad hoc scripts. Mapping the non-physiological solutions with saturated firing rates

onto regions of the parameter spaces is highly non-trivial (compare approach with Figure 3).

TABLE 1 | Network parameters for the first and second use cases.

Parameter Value

Capacitance of the membrane Cm 0.25 nF

Resting potential VL −65 mV

Threshold membrane potential Vthr −50 mV

Reset membrane potential Vres −65 mV

Refractory time τref 2 ms

Growth rate excitatory synaptic elements 0.0001 elements/ms

Growth rate inhibitory synaptic elements 0.0004 elements/ms

shown in Figure 5A. The whole network contains 1,000
leaky integrate-and-fire neurons with exponential-shaped post-
synaptic currents, of which 80% belong to the excitatory
population and the rest to the inhibitory population. Parameters
for the point neurons are listed in Table 1. All neurons receive
independent background excitatory Poisson noise at a rate of
10 kHz. At the beginning of the simulation, no connections
between neurons are present. The system is allowed to create
both excitatory and inhibitory connections (red and blue dashed
arrows, respectively, in Figure 5A), using the structural plasticity
framework in NEST. The weights for the created synapses are 1
and −1 respectively. The evolution of the firing rate (Figure 5C)
and the growth of connections (Figure 5C) is regulated by
two homeostatic rules defined by Gaussian curves, as shown
in Figure 5D. The target average activity of the inhibitory
population is set to 20 Hz while the target average activity in
the excitatory population is set to 5 Hz. Figure 5C shows the
evolution of the growth rate for excitatory synaptic elements
in both populations during a simulation. These dynamics
originate from the fixed firing rate curves shown in Figure 5B.
The structural plasticity algorithm uses that relation at every

simulation step to decide how many connections to create or
delete.

The evolution of the connectivity generation can be guided by
modifying the growth rate and shape of the Gaussian curve linked
to each type of connection. Figures 5D,E show an example of this
process. In this use case, an interesting feature to observe using
the visualization and steering tool is the path to the solution.
With the configurations used here, one can see how allowing
faster growth of inhibition triggers an overshoot in the generation
of excitatory connection to compensate. As a result, a rewiring
of the system is obtained. These paths to the solution can be
linked to onsets of critical periods in learning and healing or
by external stimulation (Hensch, 2005). By regulating the speed
of the creation of connections in the system, scientists can
explore different paths to solution where the relationship between
excitation and inhibition changes through time.

Figure 6 shows the evolution of growth rate (synaptic
elements/s), firing rate (Hz) and connectivity (total number
of connections) for six examples of the multiple trajectories
and connectivity configurations that the network can show. All
examples start with an initial growth rate of 0.0001 synaptic
elements/ms. Figure 6A shows a smooth growth similar to
Figure 5, but where the control signals have been modified to
reduce the overshoot in the inhibitory population. That is done
by reducing the initial growth rate to 0.00005 at iteration 8 (mark
a.1). Figure 6B shows an example of a simulation where the
control signals for growth start with aggressive growth values,
producing a constant oscillatory behavior. That is achieved by
changing the growth rate from 0.0001 to 0.0010 at iteration
38 (mark b.1) and then to 0.0030 at iteration 80 (mark b.2).
Following these signals, the connectivity update interval is
increased to 500 ms (from the standard length of 100 ms), which
produces a big oscillation, triggering a rewiring of the network
(mark b.3). Finally, growth is reduced to a slower pace, which
helps the system settle at a stable state. This reduction is achieved

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2018 | Volume 12 | Article 3267

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 5 | Evolution of firing rate and connectivity for the two population example: (A) abstract view of the model consisting of two populations, one excitatory (red)

and one inhibitory (blue) with respectively excitatory connections (red arrows) and inhibitory connections (blue arrows), both controlled by structural plasticity;

(B) Gaussian growth curves mapping current firing rate to growth rates (see Figure 1); (C) growth rate dynamics; (D) evolution of the firing rate; and (E) evolution of

the total number of connections during the simulation. Colors in (B–E) are as in (A).

by setting the growth rate to 0.00005 at update 161 (mark b.4).
The final connectivity is very similar to the one reached in
Figure 5. This example shows a different trajectory which reaches
the same final state.

Figure 6C illustrates very fast initial growth by changing
the growth to 0.004 at iteration 46 (mark c.1). Then, a sharp
reduction in growth when the system oscillates near the target
firing rate. The growth rate is changed to 0.0018 at iteration
98 and further down to 0.0007 at iteration 103 (marks c.2 and
c.3 accordingly). Figure 6D shows a case which seems stable in
terms of activity, but is unstable in terms of connectivity, as it
exhibits a constant race between excitation and inhibition in the

connectivity to maintain the target activity. The growth rate is set
to 0.001 at iteration 24 (mark d.1), to 0.0056 at iteration 52 (mark
d.2) and to 0.0020 at iteration 78 (mark d.3). Figure 6E shows a
trajectory which is not biologically meaningful. This network has
been built only from excitatory connections by modulating the
growth of connections very carefully around the target activity.
Here, we have defined a growth curve that does not allow the
creation of inhibitory connections unless the activity is above
the desired firing rate. Finally, in Figure 6F, we see a trajectory
which is not admissible (not biologically meaningful) because the
network is taken to an artificially high firing rates before it settles
back to its target. At iteration 17, the growth rate is set to 0.002

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2018 | Volume 12 | Article 3268

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 6 | Evolution of growth rate (Top), firing rate (Middle), and outgoing connections (Bottom) for six different trajectories (A–F) in the two population model use

case, excitatory (red) and inhibitory (blue). Vertical dashed lines correspond to manual changes using the graphic interface to the growth rate (top curves) or update

interval (at b.3) control variables. All other simulation parameters are held constant for all runs, including initial growth rate. Please see the main text for a discussion of

the features of each set of trajectories.

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2018 | Volume 12 | Article 3269

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

(mark f.1) and then slowly reduced to 0.00056 at iteration 60, to
0.0002 at iteration 80 and finally to 0.00005 at iteration 90 (marks
f.2, f.3, and f.4 accordingly). This graph shows how a network
can traverse biologically inadmissible trajectories and still reach
the target activity.

These results show that several instantiations of the same
system using different dynamics lead to the same target activity
but different connectivity patterns. Visualization and steering is
fundamental for producing, observing, studying and cataloging
these behaviors in the network. See Bahuguna et al. (2017) for an
example of the same phenomenon exhibited in a more complex
network. Thus using target activity as a tuning parameter without
this kind of exploration leads to selecting one of these network
connectivity states arbitrarily. The resulting model may not be
representative of the kinds of networks that produce this activity,
or of the target system to be modeled.

In other words, the target activity does not uniquely identify a
network, or even a contiguous volume of parameter space, but is
the property of a distribution of distinct networks distinguished
by parameters that are not the direct targets of research—this
class of inverse problem is degenerate. The network structure
may be critically path-dependent, dependent upon parameters
which are stochastic sequences (external control variables) or
even dependent upon numerically unstable parameter functions.
Simple networks such as the one shown in this example are
frequently used in computational neuroscience but rarely with
consideration to the careful characterization of the parameter
spaces. Thus, in the absence of analytical methods to identify
alternative solutions in the parameter space, steered visualization
is a highly effective method for producing, observing, comparing
and cataloging network configurations.

Whole Brain Simulation
This use case is inspired by a previous study by Deco et al.
(2014). The experiment consists of a whole brain simulation
using 68 interconnected brain regions, each of which represented
by a spiking network containing 200 conductance-based leaky
integrate-and-fire neurons, as illustrated in Figure 7A. The
original work by Deco et al. (2014) uses a Dynamic Mean Field
Model (DMFM) originally developed inWong andWang (2006).

The coupled non-linear stochastic equations of the DMFM
describe the behavior of mean-field neuronal regions and their
influence on each other:

ṡ = s/τs + (1− s)γH(x)+ σννν(t)

H(x) = (ax− b)/
(

1− exp
(

−d(ax− b)
)

)

x = wJNs+ GJNCs+ I0

(6)

where H represents the population firing rate function; s is
the vector representing the average gating variable for each
region; a, b, d, and σ are scaling parameters; γ and τs are
kinetic parameters; ννν is the stochastic input vector; w is the local
excitatory recurrence; JN is the synaptic coupling;G is the general
coupling factor; C is the connectivity matrix; Io is the effective
external current; and x is the state variable vector for the regions.
This model is applied in Deco et al. (2013) to describe a system

FIGURE 7 | Use case 1 inspired by Deco et al. (2014) whole brain model.

(A) Abstract representation of the whole brain model including 68 regions. A

subset of the regions is selected (pink area). The zoom-in view of one of the

regions shows the abstract model of each region, consisting of two

populations, one excitatory (red) and one inhibitory (blue). Inhibitory

connections to excitatory neurons in the same region (blue dashed arrow

labeled J) are subject to structural plasticity. (B) Activity Plot (see section 4.2.3)

of selected regions (0–10) as a function of biological time. Regions are

numbered from 0 to 67. Tags eX and iX identify curves for excitatory and

inhibitory populations in the Xth region. A legend (upper left) indicates the

current selection. The number following the colon after the tag is the region’s

firing rate during the last simulation step. Vertical dashed lines separate

sections of the simulation with differing values of the global connectivity

coupling (see section 5) , G = (A) 0.5; (B) 1.0; (C) 1.5; (D) 2.0. The vertical

dashed lines are superimposed on this plot and are not part of the Activity Plot
service. Increases to the global coupling parameter lead to an increase in the

strength of the connections between regions. The firing rate spikes initially as a

response to this change; in response, structural plasticity modifies connectivity

according to the homeostatic rules until the firing rate stabilizes again closer to

the target firing rate.

dominated at the measured time frame by NMDA gating, while
AMPA and GABA gating are neglected as “fast” variables. For a
complete description and analysis of the model, see Wong and
Wang (2006) and Deco et al. (2014).

Here, we apply a mapping from the DMFM to a network
of point neurons. In our simulation, each region contains two
populations, one excitatory (80% of the total neurons in the

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2018 | Volume 12 | Article 3270

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

region) and one inhibitory (20%). In this case, neurons in NEST
do not represent biological neurons but processing units whose
mathematical description at population level is equivalent to the
elements which comprise the DMFM. The initial parameters used
to set up the network are taken from Deco et al. (2013) and
detailed in Table 2. For a complete explanation of the model and
its motivation, see Deco et al. (2013) andWong andWang (2006).

Recurrent excitatory connections have a strength of 1.4 pA,
while recurrent inhibitory connections have a weight of
−1.0 pA. Each neuron per region initially receives 160 excitatory
connections from the local excitatory population. Only inhibitory
connections are created during the simulation (blue dashed
arrow tagged J in the region zoom in of Figure 7A) since
we are only interested in substituting the feedback inhibition
control algorithm described by Deco et al. (2014). The inter-
regional connectivity (black lines between regions in Figure 7A)
is specified from structural data obtained by DTI, which results
in a connectivity matrix C, but further regulated by the general
coupling parameter G, a multiplicative factor. This enables the
linear modification of the strength of the connections without
altering the ratio of connectivity among regions. Thus, the
total weight of the connections between regions is equal to
G · C pA. Each connection between regions is made between
a single representative neuron in each excitatory population.
Connections between regions are only excitatory. Additionally,
all neurons receive independent background input from a
Poisson generator producing spike trains with a rate of 11.9 kHz.

We followed the procedure described by Deco et al. (2014)
through the generation of synaptic activity, substituting the
feedback inhibition control used in that paper with our
interactive exploration method. The strength of the background
input was tuned to achieve a firing rate of 3 spikes/s for
the excitatory population and 8 spikes/s for the inhibitory
population when regions were isolated (without inter-region
connections). In Deco et al. (2014), an iterative tuning strategy
was used to determine the intra-region inhibition for the
DMFMs required to produce an activity profile consistent
with experimental observations. The key insight inspiring our
approach is that finding the intra-region inhibition can be
mapped on to determining the number of inhibitory connections
required to produce the same activity pattern in a multi-area
spiking neuronal network. Finding the right amount of inhibition
per region which satisfies all the dependencies is still a hardmulti-
objective optimization problem, especially if the space cannot be

TABLE 2 | Network parameters taken from Deco et al. (2013) for each region.

Parameter Excitatory neurons Inhibitory neurons

Number of neurons Nr 160 40

Capacitance of the membrane Cm 0.5 nF 0.2 nF

Membrane leak conductance gm 25 ns 20 ns

Resting potential VL −70 mV −70 mV

Threshold membrane potential Vthr −50 mV −50 mV

Reset membrane potential Vres −55 mV −55 mV

Refractory time τref 2 ms 1 ms

interactively explored. This is demonstrated in Figure 4, which
shows the result of simulating one static parameter setup for the
connectivity generation programmatically.

In this setup, the tool was used with different values for
the inter-region global coupling factor G. A complete view of
the visualization and steering tool for this use case is shown
in Figure 3. By using the tool, we detected that as G grows,
it becomes more difficult to bring all regions to the desired
activity state, and the standard deviation of the average firing
rate increases as well. G has this impact because any change in
one region due to G has a strong impact on all other regions
dynamically reacting to the change in G. This effect is visible in
Figures 7, 8, where the time it takes for all regions to stabilize
increases as the value of G grows.

We are also able to detect which regions are more crucial
for stability, since they have a higher inter-connectivity to other
regions. Figure 9 shows a comparison of the evolution of the
firing rate and outgoing connections of four regions. Each peak
shows an increment in the global coupling value G by 0.5,
starting from a base value of 0.5. Regions 25 and 63 show
large oscillations due to their high connectivity with multiple
other regions. Conversely, regions 0 and 10 rapidly reach a
stable state even for high values of G. This capacity for detailed
inspection allows the researcher to verify that all regions reach
the desired average activity while the simulation is running,
and thus drastically decreases turn-around times to research this
behavior.

The search algorithms proposed in Deco et al. (2014) and
Schirner et al. (2016) are based on an update pattern which (in the
same terms as the algorithms used in this work) can be described
by a fixed step update around the target activity, as shown in
Figure 10. The effectiveness of a fixed search approach in the
connectivity parameter space depends mainly on two factors.
First, the effectiveness is dependent on the size of the correlation
step. If the step is too small, it will take too long to reach the target
activity if the initial conditions are not close to the solution. If the
step is too large, the system will oscillate because the corrections
are too coarse. Second, the effectiveness is dependent on the
accuracy. The speed to find a solution is inversely proportional
to the desired accuracy. The correction step should also be
smaller than the accuracy, otherwise the system may oscillate
indefinitely around the final target state without ever reaching
a state with the desired accuracy. In summary, the ability of
the search algorithm to find a solution depends on the initial
conditions, the size of the update step and the desired accuracy.
Our proposed approach allows the size of the update step and
the speed with which changes take place to be adapted during
simulation. This solves the problem of the dependency between
step and accuracy and also allows the system to potentially find
a solution from a broader range of initial conditions due to the
capacity to increase the resolution of the search as the target state
is approached.

In addition to the advantages in speed and use of
computational resources which our expert-steered approach
confers over brute force parameter search (and which may, in
fact, be computationally intractable), the process of steering
allows the researcher more insight into the system. Whereas

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2018 | Volume 12 | Article 3271

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 8 | Total number of connections for selected regions (0–10) as a function of biological time. Colors are synchronized between this plot and the Color Editor.
Vertical dashed lines separate sections of the simulation with differing values of the global connectivity coupling (see section 5), G = (A) 0.5; (B) 1.0; (C) 1.5; (D) 2.0.

Regions are coupled and numbered from 0 to 67. Tag rX identifies the curve for the total number of connections corresponding to the Xth region.

in the first use case, the primary finding was that multiple
connectivity configurations can result in the same activity
profile, in the second use case we are able to identify which
regions are most critical for the overall network stability, as
illustrated in Figure 9. Thus, interactive visualization can support
the researcher in sensitivity analysis, which is essential for
understanding the main driving parameters of the model and for
making better inferences about the relations between parameters
and function. As with the multiple configurations observed in
the first use case, it is rare to encounter a network modeling
study in computational neuroscience where a sensitivity analysis
has been carried out (but see Bos et al., 2016 for a counter
example).

Usage of the Tool
In this section, we summarize the main steps required to use the
tool to take the system from its initial state to a final connectivity
setup where the target mean activity values are achieved. A
step-by-step tutorial video of carrying out parameter exploration
on a network using our tool is provided in Supplementary
Material (Movies 1, 2). In the following, we make reference to
the requirements listed in section 4. The first step during the
simulation steering is to determine which regions have one or
more of the following characteristics (R2–R5):

• the electrical activity is far from the target activity, and there
is no tendency of the system to correct for this error (or the
correction is too slow);

• the electrical activity oscillates around the target activity and

the oscillations are of equal or higher amplitude in each
cycle;

• or the number of connections does not converge even though

electrical activity is around the target activity.

This is achieved using the visualization tool by observing

the firing rate and connectivity plots. Figure 7 shows the
evolution of the firing rate for the first ten regions of the

brain model. Figure 8 shows the changes in connectivity

which are guided by the homeostatic growth rules defined

for the structural plasticity algorithm. Each curve in the plot

is uniquely identified by color and linked to a population
or region, thus enabling the assessment of the three above

listed characteristics. Reaching the targeted stable state

is indicated when all firing rate curves converge to the

target activities while the connection curves flatten to
horizontal lines. This allows the user to simply and effectively
identify which regions deviate from the target state and to
correct the structural parameters according to the following
criteria:

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2018 | Volume 12 | Article 3272

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 9 | Number of connections (Top) and firing rate (Bottom) shown in

comparison of four regions (0, 10, 25, 63). Vertical dashed lines separate

sections of the simulation with differing values of the global connectivity

coupling, G = (A) 0.5; (B) 1.0; (C) 1.5; (D) 2.0. Regions are numbered from 0 to

67. Tags eX and iX identify curves for excitatory and inhibitory populations in

the Xth region. The number at the side of the tags denotes the current value of

the average firing rate for each region.

• If the actual electrical activity is far away from the target
activity, the growth rate ν for that region should be increased
(R6).

• If the actual electrical activity oscillates around the target
activity, the growth rate ν for that region should be decreased
in small increments and the value of η should be reduced
to decrease the rate of change in the number of created and
deleted synaptic elements around the target point ε (R6–R7).

• If the number of connections does not converge, highly
interconnected regions should be identified and the growth
rate ν should be modified down in all of them (R7). In this

FIGURE 10 | Connectivity update rule employed in the algorithms proposed in

Deco et al. (2014) and Schirner et al. (2016), where a fixed value is added or

subtracted iteratively to the inner inhibitory connectivity until convergence to

the desired firing rate is achieved in each simulated region.

case, the update interval can also be modified to a smaller
value to have a faster response of the control changes in
the connectivity (R8). A shorter update interval allows better
and smoother control, but impacts the performance of the
simulation.

The resulting network state can be saved and used later
as a starting point for other parameter combinations,
thereby minimizing the need for further computations
using similar values of the global coupling term
(R9–R10).

Implementing Further Use Cases
Using an event-driven architecture, our framework provides
a convenient way for domain scientists to extend the tool
to their needs. This tool can be used with any neuron and
any synapse model in NEST, except for gap junctions. By
using the scripts provided in the Supplementary Material
(versions for all use cases discussed in this manuscript)
as templates, the user can easily change the neuron and
synapse model to explore the impact of these variations. An
instrumentation manual which specifies the steps required to
integrate the tool with other network models implemented in
NEST can be found as part of the Supplementary Material.
The instrumentation manual provides instructions based on
examples for NEST, but the tool can be adapted to other
simulators providing a Python interface by replacing the
corresponding functionality. However, if the simulator does not
provide an interface to Python, instrumentation will require

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2018 | Volume 12 | Article 3273

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

TABLE 3 | Estimation on the complexity to adapt the nettmessaging framework

to different steering and visualization use cases.

Challenge Solution Complexity

Change network topology Change number of

populations

Simple

Increase the size of the network Increase the number of

neurons in the simulation

script

Simple

Retrieve additional parameter Create new event definition Medium

Add a new model parameter Create new event definition Medium

Connect different simulators

with Python interface

Create new event definition

for the specific simulation

values

Medium-hard

No Python / C++ environment None Hard

substantial development effort by the user. Table 3 provides
estimates for the complexity of adapting the nettmessaging
library to different use cases. The complete tool and the
underlying messaging framework is open source (for further
details, see Supplementary Material).

Simulating on a Supercomputer
To leverage the power of supercomputers to reduce turn-around
times for parameter space exploration, the simulation scripts can
be adapted to use MPI. In this section, we show an example
of adapting the whole brain simulation use case described in
section 5.2 to supercomputers. To ensure that each process is in
sync with all steering commands, one process (rank 0) serves as
master. Only this master process establishes a connection to the
visualization front-ends and processes their steering events. Then
parameter synchronization is conducted via synchronization
barriers with the remaining compute nodes. The master process
is responsible for gathering the electrical activities and total
connections from all other compute nodes to finally send these
to the visualization front-ends.

After all the simulations had been parallelized, we adapted the
tool to cope with the supercomputing environment. A challenge
of the current usage conditions of most supercomputing
environments is their batch-mode operation where users submit
jobs which are granted compute time after a possibly long
delay; interactive supercomputing is still a work in progress as
outlined in Lippert and Orth (2014). Since our tool relies on a
network connection to NEST, the IP-address of the compute-
node running the simulator is unknown a priori. To circumvent
this issue, we rely on the supercomputer’s global file system: when
the simulation is granted compute time, the node’s IP-address
is obtained and written to disk. Subsequently, all visualization
services use this configuration file and connect to the given
address. However, one limitation of this approach is the need to
start the simulation first.

Since the visualization tools are independent of the
network topology and size, the scaling impact of the
network’s performance can be measured while neglecting
the communication overhead. To simulate a larger number of
populations with a larger number of neurons, it is crucial to

use supercomputers. To this end, we deployed the tool to the
JURECA supercomputer at the Jülich Super Computing Centre.
JURECA has 260 compute nodes with Intel Xeon E5 − 2680 v3
Haswell CPUs with 2 × 12 cores per CPU, 128 GB of RAM per
node and runs CentOS 7. To assess the speed-up obtained using
this machine, we used the third use case’s setup and measured the
execution times for 50 updates of connectivity in the network,
with an update interval of 100 ms. Using a full node on JURECA,
we were able to obtain a 2.94-fold speed-up compared to the
workstation setup, which uses 8 Intel Core i7 − 4710MQ CPUs
@ 2.50 GHz and 16 GB of RAM running on Ubuntu 16.10.

Figure 11 shows a strong scaling test for different numbers
of neurons per population. Simulation scalability increases
with the number of neurons per population—particularly for
8, 000 neurons per population (a total of 544, 000 neurons
in the network). This is due to the network size and spike
distribution overhead; larger networks benefit more from the
larger number of compute-nodes and overcomes the inter-
process communication and intra-process spike distribution
overhead up to the point that the global number of spikes
dominates performance (for a current discussion, see Jordan
et al., 2018). In addition, the number of synapses increases
quadratically with the number of neurons per population, which
highly impacts the scalability of the simulation.

On the other hand, visualization scalability is dominated by
the data gathering step at every update interval. For the case
of large networks like the 8, 000 neuron network, the impact of
the data gathering step can be reduced by gathering information
from only a portion of the network. A well selected statistical
sample would provide enough information about the ensemble
behavior of the populations while benefiting performance. The
current paradigm for the tool funnels data from a large
number of compute backends to a single frontend visualizer. In
order to scale with increasing numbers of backend nodes for
massive supercomputing, a more complex data flow and analysis
framework will be needed, such as a multi-node reduction stage
to reduce the impedance between the backends and frontend, as
well as reducing the load on the fronted. A generalized software
framework for such infrastructure to couple visualization with
supercomputing at scale is, to our knowledge, currently not
available, and is a work in progress.

DISCUSSION AND CONCLUSION

In this paper, we have introduced a visualization and steering tool
for the interactive analysis of connectivity generation in NEST.
To show its applicability, we have presented two use cases where
the tool was used to visualize and steer populations of point
spiking neurons to reach a desired target activity level. Our results
indicate that by interactively exploring the parameter space and
possible trajectories, scientists can gain a better understanding of
the system and concentrate on regions of biological interest, as
compared to a blind brute force exploration. The improvements
over brute force exploration are due to the effects of changes in
specific parameters in the network which can be visualized and
states outside the admissible regions which can be identified and

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2018 | Volume 12 | Article 3274

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

5

Δ
T
im

e
 /

 Δ
C

o
re

 (
s
/c

o
re

)

Δ Cores

A

B

Neurons per Simulation

2

3

4

2

3

4

FIGURE 11 | Execution time as a function of the number of compute nodes for varying numbers of neurons per population: 50, 100, 200, 400, 800, and 8, 000;

curves shaded from light to dark. Dotted lines indicate ideal scaling, while solid lines represent experimental results. (A) The change in time consumed per core added.

Each point is the difference in the execution time divided by the difference in cores for consecutive points in (B); points are placed at the midpoint between the source

measurements. (B) The execution time for each simulation as the number of cores are varied; for the simulation with 8, 000 neurons per populations, measurements

were made only for 768–3,072 cores, since fewer cores leads to excessive time demands. The simulated biological time was 5 s using an update interval of 100 ms.

excluded from further simulation. These improvements lead to a
reduction in computational resources and an educated definition
of interesting parameters, states and trajectories.

In this work, we have presented results using the interactive
steering and visualization tool for two use cases where a desired
firing rate was set by the modeler at the beginning of the
simulation. We have used firing rate calculations produced
internally in NEST to guide the generation of connectivity. This
method for computing the mean firing rate can impact the
performance of the control system since controllability depends
on the delay between measuring an observable and producing a
response. However, the tool is independent of this calculation and
other techniques, such as spike train binning, can be used instead
to increase the controllability. Calculation of firing rates on
streams of spike trains might become computationally intensive
with increasing network size. Future implementation of other
techniques to increase the data gathering speed will lower delays
and allow other spike processing techniques to be efficiently
implemented as alternatives to the convolution approach.

The use cases presented were selected for their differing
degrees of complexity in terms of connectivity and network
definition. In the simple use case, different connectivity
configurations lead to the same activity profiles even when

some of the trajectories are biologically inadmissible. With our
approach, the user can concentrate on exploring only those
configurations which are of interest in answering the scientific
question posed. In Figure 6, we show different trajectories
produced using structural plasticity following homeostatic rules
to fit the system to a firing rate profile. Even the non-biological
parameters of the optimizing algorithm itself have an impact
on the final configuration of the network. For example, if one
performs a gradient descent to optimize the activity profile of a
network, the results will be sensitive to any arbitrary choice of
initial states of the populations and connectivity. With our tool
we can characterize the distribution of representative models and
results.

In the second use case, our tool also enables a sensitivity
analysis of the system by visualizing the effect that changes in the
connectivity have on the dynamics of the full system. Thus, the
user can draw better conclusions about the relationships between
the controllable parameters, in this case connectivity, and the
observables of the system, in this case the firing rate of each
population. We can see the relative sensitivity of the system to
the biologically relevant parameters (connectivity) and the non
biological parameters of the optimization algorithm. Our tool
can provide more insight into how different types of synapses are

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2018 | Volume 12 | Article 3275

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

created or modified in the neural circuit to give rise to different
features in the dynamics of the system.

As we have discussed in this paper, a brute force exploration of
the parameters of a network can easily become a computationally
intractable problem. Choosing a single random configuration
or even only a small sample of configurations from the whole
space without a proper characterization of their distribution
is unlikely to lead to a statistically valid distribution of the
results. Interactive visualization is a way to move toward
statistically validated conclusions as it allows an assessment of the
essential features of the system, ultimately leading to automated
sampling.

While the resulting connectivity patterns are not
necessarily unique, our approach enables exploration and
assessment of these solutions and their paths. The main
contribution of this approach is the use of interactive
visualization and parameter control techniques. These
techniques allow the system to be controlled and stabilized
within a physiological configuration space by an expert.
When increasing the number of neurons and populations,
the number of parameters to tune increases, resulting
in an ever harder-to-reach stable state. Thus, interactive
visualization becomes even more important. The knowledge
gained through interactive exploration can lead to the
development of automated tools assisting in the parameter
space exploration.

Using this approach, we can reduce the turn-around times
of exploring different connectivity configurations in comparison
to simulating all possible parameter configurations and assess
reasonable configurations in a later phase. The speed-up achieved
by this exploration is mainly due to four factors. First, it is
not necessary to simulate the system for long times iteratively;
instead, the modifications are performed on demand. Second,
partial solutions can be reused for different global parameter
combinations, resulting in the reduction of total computational
costs. Third, the user can visualize the behavior of the system’s
observables with respect to individual parameters, allowing
the user to isolate regions of interest and form a better
understanding. Finally, we can study the transition points in the
activity of the networks, which are produced by the underlying
connectivity variations, and interact with the tuning algorithms
by visualizing their impact.

As stated before, the connectivity solutions and paths to
solutions for the presented use cases are not unique, rendering a
knowledgeable exploration process crucial. Thus, the interactive
analysis process can help the user accomplish the following:

1. Form an understanding of the implication of different
parameter setups for each network model.

2. Validate the models.
3. Define biologically meaningful populations of interest for the

simulation.
4. Derive measures for the automatic or semi-automatic

assessment of the models’ behavior leading to automated tools
guiding the exploration process.

While the generation of connectivity based on empirical
constraints for the dynamic system or experimental data

inherently leads to non-unique solutions and especially solutions
which are physiologically implausible, the ability to identify and
explore subsets of the solution space is valuable to form an
understanding of the dynamic nature of these systems.

In this work, we have formalized the effects of dynamic
connectivity of a network in terms of control theory. We take
into account that the network starts at an initial state and
is taken to a final state through the introduction of control
signals which alter the connectivity of the network. In this
case, control of the synapse creation and deletion is induced
by the structural plasticity algorithm. The eigenvalues of the
Liouvillian of the network are thus modified with these signals
through the evolution of the simulation and the state of the
neurons in the network is changed. Visualization shows the
immediate effects of the control signals in the system. The results
shown in section 5.1 exemplify how even a simple network can
traverse different admissible trajectories (Figures 6A–E) using
different elements from the set of all possible controls. We
show how the unconstrained system can traverse an inadmissible
trajectory (Figure 6F) or end in states outside of the admissible
set (Figure 6D). We have also seen how inadmissible control
signals are still able to give rise to admissible trajectories and final
states (Figure 6E).

We adapted the tool to scale with supercomputers allowing
larger networks to be simulated and finer simulation stepping
to be used, thus achieving more accurate results. This way,
researchers can explore the manifold solutions and paths of
connectivity satisfying average activity targets in a variety
of neural network models. Our tool gathers data from the
simulation at specific intervals, which impacts the performance as
the networks become larger. Continuously streaming data from
of the simulation by using, for example, MUSIC (Djurfeldt et al.,
2010) or the NEST I/O backends can reduce this bottleneck and
allow greater flexibility in the network size.

In summary, our interactive tool provides the means to
visualize and steer connectivity generation of a running NEST
simulation to stabilize complex non-linear systems. The applied
concepts of the tool are generalizable and extensible to other
types of systems with similarly large degrees of freedom.
Adapting and exploring further model parameters, e.g., synaptic
weights and delays, background input frequency, and variation in
weights of spike-timing-dependent plasticity synapses is possible.
Our implementation is open to the public (see Supplementary
Material).

In the future, we would like to explore further techniques
to track already explored parameter spaces, to develop semi-
automatic systems to guide researchers in tracking manifold
solution spaces and to extend the tool to support further use
cases. Currently, the saved state refers only to the connectivity
and last values of all variables at the time of saving. We are
working to provide a visualization that shows parameter changes
for reproducing all trajectories. For the moment, the loading
features are limited and the subject of future work. In addition,
we are adding support for machine learning algorithms coupled
with the interactive exploration for various network variables
beyond connectivity. Our goal is to to detect oscillations and
other troubling behavior in the network using machine learning

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2018 | Volume 12 | Article 3276

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

and then to correct this behavior by use of the controllers. Other
target control measures such as power-spectrum shape and inter-
population correlations may be interesting as complex control
variables in the context of machine learning. The modularity of
the software, primarily derived from applying an event driven
design, allows for such additions in a non-intrusive manner.

Linking the time axes of the activity and connection plots
to allow for coordinated zooming is currently not supported
but would be a useful extension to the analysis workflow.
A visualization of changes in the network’s eigenvalues as
connectivity evolves is also subject to future work. The creation
of additional plots for further variables is simple and can be
achieved by adapting the scripts used in the presented use cases
(see Supplementary Material). Connecting another visualization
application to the NEST simulator is in principle feasible but
requires adapting the visualizer to our communication protocol.

We argue that it is crucial to explore the distribution of
paths to solutions instead of focusing on just a possible solution
satisfying a set of constraints. To develop this understanding,
interactive exploration of dynamic systems is a key tool
for developing mathematical intuition, and thus for deriving
mathematically robust descriptions. These descriptions are then
amenable to further automated investigation of characteristic
solution ensembles.

AUTHOR CONTRIBUTIONS

CN and SD-P have contributed equally to this paper. CN
developed the interactive steering tool and the framework.
In addition, he designed the data flow for steering the main
structural plasticity parameters. SD-P, AP, and AM defined the
use cases. SD-P evaluated the results and compared the process
of parameter navigation with and without the steering tool. AP
provided the high performance computing knowledge to port
and optimize the code for supercomputing usage. BW, BH, and
TK provided scientific guidance on the visualization tool. AM
provided neuroscientific guidance and assessed the usability of
the tool for generalized use cases. CN, SD-P, AM, and AP wrote
the paper.

FUNDING

The authors would like to acknowledge the support by
the Excellence Initiative of the German federal and state

governments, the Jülich Aachen Research Alliance—High-
Performance Computing, the Helmholtz Association through the

portfolio theme Supercomputing and Modeling for the Human
Brain (SMHB) and the Initiative and Networking Fund. In
addition, this project has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No 720270 (HBP SGA1) and No 785907
(HBP SGA2). Finally, this project has received funding from the
German Federal Ministry of Education and Research (“D-USA
Verbund: Mechanistische Zusammenhänge zwischen Struktur
und funktioneller Dynamik immenschlichenGehirn,” project no.
01GQ1504B). Responsibility for the content of this publication
belongs to the authors.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00032/full#supplementary-material

Movie 1 | Introduction to the interactive steering and visualization tool.

Movie 2 | Using the interactive steering and visualization tool in a specific use

case for structural plasticity in NEST.

Presentation 1 | Instrumentation manual.

We have included two videos as Supplemental Material that
demonstrate our visualization tool. The first video presents its
basic structuring and functionality. The second one discusses
one use case for structural plasticity and explains how the tool
can help in the assessment of the simulation. Moreover, we
have included an instrumentation manual describing the general
process for modifying simulation scripts in order to use the tool.

The nettmessaging framework can be downloaded at https://
devhub.vr.rwth-aachen.de/VR-Group/nett.git, and https://
devhub.vr.rwth-aachen.de/VR-Group/nett-python.git. The
NEST structural plasticity framework can be found at https://
github.com/sdiazpier/nest-simulator.git, branch sp_rate and
tag sp_viz_rate.

The visualization tool, simulation scripts for both use cases,
and a user manual to build the code can be found at https://
github.com/sdiazpier/isv_neuroscience. In addition to the use
cases discussed in this work, a script showing the instrumentation
of the cortical microcircuit model (Potjans and Diesmann, 2014)
is also provided in the aforementioned git repository.

REFERENCES

Abram, G., and Treinish, L. (1995). “An extended data-flow architecture for

data analysis and visualization,” in Proceedings of the 6th Conference on

Visualization’95 (Washington, DC: IEEE Computer Society), 263.

Bahuguna, J., Tetzlaff, T., Kumar, A., Hellgren Kotaleski, J., and Morrison,

A. (2017). Homologous basal ganglia network models in physiological

and parkinsonian conditions. Front. Comput. Neurosci. 11:79.

doi: 10.3389/fncom.2017.00079

Bakker, R., Wachtler, T., and Diesmann, M. (2012). Cocomac 2.0

and the future of tract-tracing databases. Front. Neuroinform. 6:30.

doi: 10.3389/fninf.2012.00030

Bos, H., Diesmann, M., and Helias, M. (2016). Identifying anatomical origins

of coexisting oscillations in the cortical microcircuit. PLoS Comput. Biol.

12:e1005132. doi: 10.1371/journal.pcbi.1005132

Bos, H., Morrison, A., Peyser, A., Hahne, J., Helias, M., Kunkel, S., et al. (2015).

NEST 2.10.0.

Boukhelifa, N., and Rodgers, P. J. (2003). A model and software system for

coordinated and multiple views in exploratory visualization. Inform. Visuali.

2, 258–269. doi: 10.1057/palgrave.ivs.9500057

Butz, M., and van Ooyen, A. (2013). A simple rule for dendritic spine and

axonal bouton formation can account for cortical reorganization after focal

retinal lesions. PLoS Comput. Biol. 9:e1003259. doi: 10.1371/journal.pcbi.10

03259

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2018 | Volume 12 | Article 3277

https://www.frontiersin.org/articles/10.3389/fninf.2018.00032/full#supplementary-material
https://devhub.vr.rwth-aachen.de/VR-Group/nett.git
https://devhub.vr.rwth-aachen.de/VR-Group/nett.git
https://devhub.vr.rwth-aachen.de/VR-Group/nett-python.git
https://devhub.vr.rwth-aachen.de/VR-Group/nett-python.git
https://github.com/sdiazpier/nest-simulator.git
https://github.com/sdiazpier/nest-simulator.git
https://github.com/sdiazpier/isv_neuroscience
https://github.com/sdiazpier/isv_neuroscience
https://doi.org/10.3389/fncom.2017.00079
https://doi.org/10.3389/fninf.2012.00030
https://doi.org/10.1371/journal.pcbi.1005132
https://doi.org/10.1057/palgrave.ivs.9500057
https://doi.org/10.1371/journal.pcbi.1003259
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

Childs, H., Brugger, E. S., Bonnell, K. S., Meredith, J. S., Miller, M., Whitlock,

B. J., et al. (2005). “A contract-based system for large data visualization,” in

Proceedings of IEEE Visualization 2005 (Minneapolis, MN), 190–198.

Cowan, J. D. (1991). “Stochastic neurodynamics,” in Advances in Neural

Information Processing Systems (Denver, CO), 62–69.

Cubitt, T. S., Eisert, J., and Wolf, M. M. (2012). Extracting dynamical

equations from experimental data is NP hard. Phys. Rev. Lett. 108:120503.

doi: 10.1103/PhysRevLett.108.120503

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini,

D., and Corbetta, M. (2014). How local excitation–inhibition ratio

impacts the whole brain dynamics. J. Neurosci. 34, 7886–7898.

doi: 10.1523/JNEUROSCI.5068-13.2014

Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., and

Corbetta, M. (2013). Resting-state functional connectivity emerges from

structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33,

11239–11252. doi: 10.1523/JNEUROSCI.1091-13.2013

Diaz-Pier, S., Naveau,M., Butz-Ostendorf, M., andMorrison, A. (2016). Automatic

generation of connectivity for large-scale neuronal network models through

structural plasticity. Front. Neuroanat. 10:57. doi: 10.3389/fnana.2016.00057

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans,

T. C., et al. (2010). Run-time interoperability between neuronal network

simulators based on the music framework. Neuroinformatics 8, 43–60.

doi: 10.1007/s12021-010-9064-z

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Fabian, N., Moreland, K., Thompson, D., Bauer, A. C., Marion, P., Geveci, B., et al.

(2011). “The paraview coprocessing library: a scalable, general purpose in situ

visualization library,” in LDAV, eds D. Rogers and C. T. Silva (Providence, Rl:

IEEE), 89–96.

Henderson, A. (2004). The ParaView Guide: A Parallel Visualization Application.

Clifton Park, NY: Kitware.

Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nat. Rev.

Neurosci. 6, 877–888. doi: 10.1038/nrn1787

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops to

exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Kammara, A. C., Palanichamy, L., and König, A. (2016). Multi-objective

optimization and visualization for analog design automation. Complex Intell.

Syst. 2, 251–267. doi: 10.1007/s40747-016-0027-3

Kirk, D. (2012). Optimal Control Theory: An Introduction. Dover Books on

Electrical Engineering. Mineola, NY: Dover Publications.

Lippert, T., and Orth, B. (2014). Supercomputing Infrastructure for Simulations of

the Human Brain. Cham: Springer International Publishing.

López-Cuevas, A., Castillo-Toledo, B., Medina-Ceja, L., and Ventura-Mejía,

C. (2015). State and parameter estimation of a neural mass model from

electrophysiological signals during the status epilepticus. NeuroImage 113,

374–386. doi: 10.1016/j.neuroimage.2015.02.059

Matković, K., Gračanin, D., Jelović, M., and Hauser, H. (2008). Interactive visual

steering-rapid visual prototyping of a common rail injection system. IEEE

Trans. Visual. Comput. Graph. 14, 1699–1706. doi: 10.1109/TVCG.2008.145

Matković, K., Gračanin, D., Splechtna, R., Jelović, M., Stehno, B., Hauser, H., et al.

(2014). Visual analytics for complex engineering systems: hybrid visual steering

of simulation ensembles. IEEE Trans. Visual. Comput. Graph. 20, 1803–1812.

doi: 10.1109/TVCG.2014.2346744

Michelson, B. M. (2006). Event-driven architecture overview. Patricia Seybold

Group 2:12. doi: 10.1571/bda2-2-06cc

Migliore, M., Cavarretta, F., Hines, M. L., and Shepherd, G. M. (2014).

Distributed organization of a brain microcircuit analyzed by three-

dimensional modeling: the olfactory bulb. Front. Comput. Neurosci. 8:50.

doi: 10.3389/fncom.2014.00050

North, C., and Shneiderman, B. (1997). A Taxonomy of Multiple Window

Coordination Technical Research Report. College Park, MD: Institute for

Systems Research. Available online at: http://hdl.handle.net/1903/5892

North, C., and Shneiderman, B. (2000). “Snap-together visualization: a user

interface for coordinating visualizations via relational schemata,” in Proceedings

of the Working Conference on Advanced Visual Interfaces, AVI ’00 (New York,

NY: ACM), 128–135.

Nowke, C., Zielasko, D., Weyers, B., Hentschel, B., Peyser, A., and Kuhlen, T.

(2015). Integrating visualizations into modeling NEST simulations. Front.

Neuroinform. 9:29. doi: 10.3389/fninf.2015.00029

Ohira, T., and Cowan, J. D. (1993). Master-equation approach to stochastic

neurodynamics. Phys. Rev. E 48:2259. doi: 10.1103/PhysRevE.48.2259

Park, I. M., Seth, S., Paiva, A. R. C., Li, L., and Principe, J. C. (2013). Kernel methods

on spike train space for neuroscience: a tutorial. IEEE Signal Process. Mag. 30,

149–160. doi: 10.1109/MSP.2013.2251072

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Roberts, J. C. (2007). “State of the art: coordinated & multiple views in exploratory

visualization,” in Fifth International Conference on Coordinated and Multiple

Views in Exploratory Visualization (CMV 2007) (Zurich), 61–71.

Roy, D., Sigala, R., Breakspear, M., McIntosh, A. R., Jirsa, V. K., Deco, G.,

et al. (2014). Using the virtual brain to reveal the role of oscillations and

plasticity in shaping brain’s dynamical landscape. Brain Connect. 4, 791–811.

doi: 10.1089/brain.2014.0252

Ryu, Y. S., Yost, B., Convertino, G., Chen, J., and North, C. (2003).

Exploring cognitive strategies for integrating multiple-view visualizations.

Proc. Hum. Fact. Ergonom. Soc. Annu. Meeting 47, 591–595.

doi: 10.1177/154193120304700371

Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., and Ritter, P. (2016). Bridging

multiple scales in the human brain using computational modelling. bioRxiv.

doi: 10.1101/085548

Schuecker, J., Schmidt, M., van Albada, S. J., Diesmann, M., and Helias, M.

(2015). Fundamental activity constraints lead to specific interpretations of the

connectome. arXiv:1509.03162.

Sedlmair, M., Heinzl, C., Bruckner, S., Piringer, H., and Möller, T. (2014). Visual

parameter space analysis: a conceptual framework. IEEE Trans. Visual. Comput.

Graph. 20, 2161–2170. doi: 10.1109/TVCG.2014.2346321

Shneiderman, B. (1996). “The eyes have it: a task by data type taxonomy for

information visualizations,” in Proceedings 1996 IEEE Symposium on Visual

Languages (San Francisco, CA), 336–343. doi: 10.1109/VL.1996.545307

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome:

a structural description of the human brain. PLoS Comput. Biol. 1:e42.

doi: 10.1371/journal.pcbi.0010042

Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). “Guidelines

for using multiple views in information visualization,” in Proceedings of the

Working Conference on Advanced Visual Interfaces - AVI ’00 (New York, NY),

110–119.

Weaver, C. (2004). “Building highly-coordinated visualizations in Improvise,”

in IEEE Symposium on Information Visualization, 2004 (Austin, TX: IEEE

Computer Society), 159–166.

Whitlock, B., Favre, J. M., and Meredith, J. S. (2011). “Parallel in situ coupling

of simulation with a fully featured visualization system,” in EGPGV (Bangor),

101–109.

Wong, K.-F., and Wang, X.-J. (2006). A recurrent network mechanism

of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328.

doi: 10.1523/JNEUROSCI.3733-05.2006

Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-

based interface for the NEST simulator. Front. Neuroinform. 8:23.

doi: 10.3389/fninf.2014.00023

Zaytsev, Y. V., Morrison, A., and Deger, M. (2015). Reconstruction of recurrent

synaptic connectivity of thousands of neurons from simulated spiking activity.

J. Comput. Neurosci. 39, 77–103. doi: 10.1007/s10827-015-0565-5

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Nowke, Diaz-Pier, Weyers, Hentschel, Morrison, Kuhlen and

Peyser. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2018 | Volume 12 | Article 3278

https://doi.org/10.1103/PhysRevLett.108.120503
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1523/JNEUROSCI.1091-13.2013
https://doi.org/10.3389/fnana.2016.00057
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1038/nrn1787
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1007/s40747-016-0027-3
https://doi.org/10.1016/j.neuroimage.2015.02.059
https://doi.org/10.1109/TVCG.2008.145
https://doi.org/10.1109/TVCG.2014.2346744
https://doi.org/10.1571/bda2-2-06cc
https://doi.org/10.3389/fncom.2014.00050
http://hdl.handle.net/1903/5892
https://doi.org/10.3389/fninf.2015.00029
https://doi.org/10.1103/PhysRevE.48.2259
https://doi.org/10.1109/MSP.2013.2251072
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1089/brain.2014.0252
https://doi.org/10.1177/154193120304700371
https://doi.org/10.1101/085548
https://doi.org/10.1109/TVCG.2014.2346321
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.3389/fninf.2014.00023
https://doi.org/10.1007/s10827-015-0565-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

TECHNOLOGY REPORT
published: 26 June 2018

doi: 10.3389/fninf.2018.00038

FindSim: A Framework for Integrating
Neuronal Data and Signaling Models
Nisha A. Viswan1,2†, Gubbi Vani HarshaRani 1†, Melanie I. Stefan 3,4 and Upinder S. Bhalla 1*

1National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India, 2The University of
Trans-Disciplinary Health Sciences and Technology, Bangalore, India, 3Centre for Discovery Brain Sciences, University of
Edinburgh, Edinburgh, United Kingdom, 4ZJU-UoE Institute, Zhejiang University, Hangzhou, China

Edited by:
Hans Ekkehard Plesser,

Norwegian University of Life
Sciences, Norway

Reviewed by:
C. Daniel Meliza,

University of Virginia, United States
David Phillip Nickerson,

University of Auckland, New Zealand

*Correspondence:
Upinder S. Bhalla

bhalla@ncbs.res.in

†Joint first authors.

Received: 26 February 2018
Accepted: 05 June 2018
Published: 26 June 2018

Citation:
Viswan NA, HarshaRani GV, Stefan

MI and Bhalla US (2018) FindSim: A
Framework for Integrating Neuronal

Data and Signaling Models.
Front. Neuroinform. 12:38.

doi: 10.3389/fninf.2018.00038

Current experiments touch only small but overlapping parts of very complex subcellular
signaling networks in neurons. Even with modern optical reporters and pharmacological
manipulations, a given experiment can only monitor and control a very small subset of
the diverse, multiscale processes of neuronal signaling. We have developed FindSim
(Framework for Integrating Neuronal Data and SIgnaling Models) to anchor models to
structured experimental datasets. FindSim is a framework for integrating many individual
electrophysiological and biochemical experiments with large, multiscale models so as to
systematically refine and validate the model. We use a structured format for encoding
the conditions of many standard physiological and pharmacological experiments,
specifying which parts of the model are involved, and comparing experiment outcomes
with model output. A database of such experiments is run against successive
generations of composite cellular models to iteratively improve the model against each
experiment, while retaining global model validity. We suggest that this toolchain provides
a principled and scalable way to tackle model complexity and diversity of data sources.

Keywords: simulation, signaling pathway, systems biology, biochemistry, pharmacology, LTP, synaptic signaling

INTRODUCTION

Neuronal signaling is a complex, multiscale phenomenon which includes genetic, biochemical,
transport, structural, protein synthesis, electrical and network components. There is an abundance
of models of specific parts of this landscape, with a special focus on electrophysiological properties
of neurons (Hodgkin and Huxley, 1952; Bhalla and Bower, 1993; De Schutter and Bower, 1994;
Narayanan and Johnston, 2010) and biochemical signaling in plasticity (Lisman, 1985; Bhalla
and Iyengar, 1999; Shouval et al., 2002; Hayer and Bhalla, 2005; Smolen et al., 2006; Kim et al.,
2010; Manninen et al., 2010; Li et al., 2012; Stefan et al., 2012). Each of these models has its own
parameterization idiosyncrasies, and even when the data sources are described in some detail (e.g.,
Bhalla and Iyengar, 1999) the derivation of specific rate terms and parameters is something of an
individualistic art form. Further, each of these models typically incorporates far more knowledge
about the biological system than is apparent from a plain listing of data sources. While this
has resulted in high quality, hand-crafted models for specific processes, there are several major
drawbacks of this almost universal modeling process. First, it is idiosyncratic. Second, most models
are highly specific for individual questions posed by the developers. Third, by necessity, all such
models are tiny subsets of known signaling (Heil et al., 2018). Fourth, models rarely venture across
scales, that is cross electrical and biochemical, or structural and genetic.

There are some counter-currents to this highly personalized modeling process. The first has
been the emergence of a range of standards for model specification (Hucka et al., 2003; Gleeson
et al., 2010), experiments (Waltemath et al., 2011; Garcia et al., 2014; Teeters et al., 2015), andmodel

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2018 | Volume 12 | Article 3879

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00038
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00038&domain=pdf&date_stamp=2018-06-26
https://www.frontiersin.org/articles/10.3389/fninf.2018.00038/full
https://www.frontiersin.org/articles/10.3389/fninf.2018.00038/full
https://loop.frontiersin.org/people/538088/overview
https://loop.frontiersin.org/people/574185/overview
https://loop.frontiersin.org/people/159357/overview
https://loop.frontiersin.org/people/368/overview
https://creativecommons.org/licenses/by/4.0/
mailto:bhalla@ncbs.res.in
https://doi.org/10.3389/fninf.2018.00038
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

output (Ray et al., 2016). The continued development of
community-based standards is overseen by the COMBINE
initiative (Hucka et al., 2015). These standards mean that even
though individual model development may remain personalized,
models can be much more readily shared. Numerous databases
now host such models (Migliore et al., 2003; Sivakumaran et al.,
2003; HarshaRani et al., 2005; Le Novère et al., 2006; Gleeson
et al., 2015). With this set of resources, the models, simulation
experiments performed on them, and their output, can each be
specified in a platform-neutral and unambiguous manner.

A second recent development has been the emergence of
simulators designed for multiscale signaling (Ray and Bhalla,
2008; Wils and De Schutter, 2009) as well as the incorporation of
multiscale features in existing simulators (Bhalla, 2002b; Brown
et al., 2011; McDougal et al., 2013). With these developments
the most common scale crossover, between spatially detailed
electrical and chemical models, is greatly facilitated.

A third major counter-current to this highly personalized
modeling process is the development of model specification
pipelines. The CellML project has developed data pipelines
for model composition, annotation, model reduction and
linkage to databases (Beard et al., 2009). The Allen Brain
Project (Gouwens et al., 2018) and the Human Brain Project
(Markram et al., 2015) have each developed systematic approach
to parameterizing neuronal models, and the availability of
such open resources has enabled development of independent
efforts for experiment-drivenmodeling workflows (Stockton and
Santamaria, 2017). These models build on previously developed
ion-channel specifications and the parameter tuning is typically
by way of assigning experimentally-driven passive properties
and scaling channel densities, both in reduced and in detailed
cellular morphologies. There are several related approaches to
specify experimental data and metadata. For example, Silva
and colleagues (Silva and Müller, 2015; Matiasz et al., 2017)
have come up with frameworks for defining neurobiological
experiments. Much more structured experiments such as
microarrays (Brazma et al., 2001), next-generation sequencing,
e.g., (Kent et al., 2010) or proteomics (Taylor et al., 2006,
2007) have their own metadata formats. In neuroscience, several
such initiatives exist, for various types of neurobiological data
(Garcia et al., 2014; Rübel et al., 2016; Stead and Halford, 2016).
These specification formats are very powerful ways to ensure
experimental consistency and reproducibility. However, our
objectives were distinct, and more restricted, in two important
ways. First, we needed not to reproduce experiments, but to be
able to map them to simulations. Second, we needed to do this
for a wide range of ‘‘legacy’’ style experiments, where structured
metadata was neither available, nor easily specified. We therefore
selected a small core subset of metadata and experimental data of
direct relevance to simulation development.

The current study examines how to systematically use
experimental data to parameterize multiscale neuronal signaling
models reproducibly, scalably, openly, and in a generally
applicable manner. It is clearly desirable to have a standard
for facile mapping between experiments and models, especially
in the rapidly expanding domain of neural physiology and
signaling. We envision the role of FindSim as a first key

step towards a standard, by demonstrating a functional
implementation of experiment-driven simulation specification in
a production environment. We examine the requirements for
such an eventual standard by exploring a diverse and challenging
set of use cases. We report two core developments: how to
unambiguously and scalably match experimental observations
to models, and how to manage development of very large
models having thousands of components needing thousands of
experimental constraints. Both are combined in FindSim, the
Framework for Integration of Neuronal Data and SIgnaling
Models. We explain FindSim and illustrate a model development
pipeline capable of handling such models and their associated
experiments.

METHODS AND RESULTS

General Approach
We illustrate our approach using a large core model of
biochemical signaling which is designed to be embedded
in a single-compartment electrical model (Figure 1). The
biochemical model has over 300 molecular species and a similar
number of reactions and is drawn from several neuronal
signaling models (Bhalla and Iyengar, 1999; Hayer and Bhalla,
2005; Jain and Bhalla, 2009). While large by current standards,
this model is, of course, far from the current known complexity
of synaptic signaling (Bayés et al., 2011; Heil et al., 2018).
Even though reduced, the current models explore many of the
technical challenges for model specification that will arise in
more complete future models and serve as a good test-bed for
the current analysis.

Based on experience with development of neuronal signaling
models, both within our groups and from the published
literature, we chose three categories of experiments for our initial
set. These were time-series, dose-response and multi-stimulus
response. It was our observation that a large fraction (typically
well over half) of data panels from the articles that were used
for prior model development studies in this domain (Bhalla and
Iyengar, 1999; Shouval et al., 2002; Lindskog et al., 2006; Stefan
et al., 2008; Kim et al., 2010) fell into these three categories. As
such, these were easy targets with substantial value for model
development. Further, we were able to generalize effectively
within each category. For example, there are many variations
of dose-response experiments. These may use different initial
conditions, different ways of controlling the stimulus (dose),
absolute or relative scaling for measuring the response, and so
on. These variations were readily accommodated within our
framework. As we discuss below, this approach also generalizes
to the electrophysiological domain, and commonly used current
and voltage-clamp experiments also fall into this framework.

Model Development and Parameterization
Pipeline
The first of the core advances in this study is the definition of a
model development and parameterization pipeline that takes the
model and subjects it to a battery of experimental tests, defined
in an open, extendable and structured form. In brief, any of a set

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2018 | Volume 12 | Article 3880

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

FIGURE 1 | Signaling model and experiments on it. (A) Block diagram of model. (B) Expanded reaction scheme for one of the reaction blocks. The experiments
typically act on similar small subsets of the full model. (C–F): Typical kinds of experiments on the model. (C) Time-series experiment with stimulus pulse
(brain-derived neurotrophic factor (BDNF), blue) leading to signaling response (TrkB receptor activation, black). (D) Dose-response experiment, where defined BDNF
stimuli lead to receptor activation. (E) Schematic of drug interaction experiment, where different combinations of stimuli are examined for their response, as shown by
the bar chart. (F) Schematic voltage trace following a step current clamp stimulus.

of models is simulated according to instructions derived from the
experimental dataset, and the outcome for each such simulation
is scored according to how well the model fits the data. The
models may be variants of the reference model, updated with
progressively improved parameters or reaction schemes. They
may also be specifically altered ‘‘mutant’’ or ‘‘disease’’ versions of
the reference, for example, representing known mutants through
the loss of a given molecular species. Our reference model is a
composite of several modeling studies linked together based on
known interactions.

Each structured experiment entry in the dataset is drawn
from one of the three categories illustrated above: time-series,
dose-response, or multi-stimulus response (Figure 1). The
∼40 experiments in our initial database are all variants of
these three categories, though further categories can readily be
implemented. The experiment definitions specify which part of
the model to use, which stimuli to deliver, and what results to
expect (Figures 2, 3). The structured form of these definitions
makes them independent of the exact model implementation.

To run through the models, we have implemented a Python-
based script that reads the model and experiment definitions

and launches the MOOSE simulator to execute the experiment.
This wrapper script then examines the outputs fromMOOSE and
compares these with those expected from experiment (Figure 2).
This comparison is scored according to a user-defined scoring
function specified as part of the experiment definition. In
order to improve cross-platform testability, the pipeline can also
generate an SBML file for execution of the model on alternate
platforms. This SBML file contains the model definition for
that subpart or version of the reference model upon which the
experiment is carried out, and where feasible, the definition of
the stimulus that is applied to the model.

Stepping back, this entire pipeline can be run successively with
different models, different experiments, and different scoring
schemes. This is an embarrassingly parallel problem, so it is
relatively easy to decompose the entire experiment set onto
different processors on a cluster. Further, the structure of the
scoring pipeline lends itself to an optimization step (dashed line
in Figure 2) in which the model parameters are tweaked to
improve the match to experiment as reflected in the model score.

In summary, we have implemented a model, a database
and structure for experiment specification, and a pipeline to

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2018 | Volume 12 | Article 3881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

FIGURE 2 | Block diagram of the FindSim pipeline. Top: the inputs to the pipeline. Left: Model specification, typically in SBML. Middle: experimental stimuli. Right:
experimental outcomes. Middle from top: the two experimental inputs and the metadata for how to apply these to the model are specified in a structured experiment
definition in a tab-separated text file (.tsv file). This may be manipulated by an enhanced spreadsheet, or through a GUI. Below: the experiment definition and model
are read in and executed by a Python/MOOSE script. This may either run the simulation and compare with experiment (right, lowermost) or emit SBML output so
that the experiment can be run on other simulators. There are options to utilize the score from the simulation comparison as part of a model optimization cycle.

systematically test the model against each experiment. Each of
these is in an open format and is accessible for other models and
simulation tools1.

1https://github.com/BhallaLab/FindSim

Experiment Specification and Mapping
The second core development in this study is a methodology
for mapping experiments to large models. The conceptual
challenge is how to merge many pathway-specific readouts into a
consistent, cell-wide model. One could do so either by assembly

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2018 | Volume 12 | Article 3882

https://github.com/BhallaLab/FindSim
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

FIGURE 3 | Components of experiment specification. (A) Experiment
metadata, including citation information and authorship. (B) Experimental
context, including species, preparation and conditions. (C) Stimulus
information such as molecular identity and concentration of a pharmacological
agent. (D) Readouts from the experiment, such as a gel or time-course, each
representing a set of measurables that should have a direct mapping to the
model.

of small models into a large composite one, or by extraction
of small sub-models from the reference composite model. The
first approach maps closely to the individual experiments and
modular perspectives of pathway function (Bhalla and Iyengar,
2001). We have described composition of large models from
small modules for the first approach in previous work (Bhalla,
2002a), but with a topological rather than parameterization
emphasis. The second approach incorporates interactions and
takes a systems-level view.

The problems with the first approach are: (a) it is just as
important and difficult to parameterize interactions between
pathways as it is to parameterize the pathways themselves; (b)
modifications to one pathway are likely to have knock-on effects
on many others. The second approach (which we adopt here)
handles pathway modularity by running the experiment on just
that sub-portion of themodel that is addressed in the experiment.
It addresses point (a) by building in the pathway interactions into
the composite model. This facilitates model comparison with
experiments that span interacting pathways, and hence provides
a process to parameterize the interactions. It does pose a specific
technical issue of cleanly extracting small sub-models from the
large one, which is addressed below. Point (b) remains relevant
even in the second approach using a composite model. However,
the larger model is amenable to ‘‘clean-up’’ of knock-on effects
by running through all the subsequent experiments to fine-tune
sub-models that may be impacted by the original change.

We now describe the structured experiment definition that
implements the mapping of experiments to a large composite
model (Figure 3). The goal of this definition is to provide a
standardized, model-independent specification of experimental
context, inputs, observed experimental results, and support for
mapping each of these to model definitions. Some portions
of such a definition have been formalized in the Simulation
Experiment Definition Markup Language (Waltemath et al.,
2011). Other aspects have been implemented in individual
projects (Wolstencroft et al., 2017). SBML itself has support
for delivery of specific inputs within the model definition
markup file (Hucka et al., 2003). To our knowledge there
is no unified specification standard that supports all of the
elements essential to developing a model pipeline of the kind we
envisage.

The key parts of the structured experiment definition are:
(1) Experiment metadata. This specifies who did the experiment,
citations, and other context. (2) Experiment context. This
specifies species, cell-types, sample extraction methods, and the
pathways expected to be relevant to the experiment. It also
includes temperature, pH and other conditions pertinent to
reproducibility. (3) Stimuli. These are the specific manipulations
performed in the course of the experiment. This section can
be quite diverse, and currently represents three main classes of
experiments (Figure 1). For example, in the case of a time-series
experiments, the inputs section would specify which molecule(s)
were added to the preparation, at what times, and at what
concentration. (4) Readouts. These are the readouts from the
experimental preparation. This too is specific for each class of
experiment. For example, in a time-series experiment the output
would specify which molecule(s) were monitored, the observed

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2018 | Volume 12 | Article 3883

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

concentration, and where available, the standard error for each
observation.

The above four sections are all purely in the experimental
domain and could in principle be filled in without any reference
to the modeling. Part 5 (Model mapping) is special in that it
explicitly sets up the mapping of experimental entities to model
entities. Several of these are straightforward, such as identifying
the mapping between input/output molecules in the experiment
and in the model. The crucial and novel part of the experiment
definition is the extraction of the relevant pathways from
the composite model. While the experimentalist will provide
some indication of the relevant pathways when describing the
experiment (Figure 3B), it requires some understanding of
model structure to formally define which pathways should be
used. In brief, we impose a hierarchical organization onto
our reference composite models, thus facilitating grouping
of molecules and reactions into pathways, and even further
groupings of related pathways into larger pathway circuits. In
most experiments, the extraction of sub-models is a simple
matter of specifying which pathways need to be used. Further
fine-tuning of the sub-model may involve addition or removal
of specific molecules or reactions from the final subset for
extraction (Figure 4). In the current implementation, the
extracted subset is defined as a string in the familiar directory/file
format, which is also similar to the XPATH format used in XML.

While this key step is conceptually simple, the
implementation of pathway extraction has a number of
subtleties (Figure 4B). First, there is the problem of ‘‘dangling’’
reactions, which occur when model extraction has removed one
or more of the substrates of a reaction. This admits of a technical
solution by way of explicit tests and warnings for such situations.
Second, extracted pathways may lose key regulatory inputs,
leading to uncontrolled build-up of signals at run-time. This
requires human inspection of the outcome of each experiment,
and subsequent reconsideration of the extraction procedure.
Third, experimental conditions frequently modify the base
model not just by removal of pathways, but also by addition
of buffers and inhibitors to the medium. This is addressed by
expansion of Part 5 of the experiment specification to include
such manipulations. Fourth, the mapping of experiment to
model entities is not always clean. For example, there may be
multiple protein isoforms in the experiment, the model, or both.
In essence, this is a problem of model detail, and the modeler and
experimentalist have to get together to decide the appropriate
mapping, given the detail in any given composite model.

One of the key design decisions for the current pipeline
implementation was not to try to automate too much of the
mapping of entities that comprises part 5 of the experiment
definition. For example, one could envisage using extensive
Gene Ontology (GO) markup of each pathway or molecule
to automatically obtain the appropriate mapping between
experiment and model (Ashburner et al., 2000). This is the
approach taken in existing tools for model merging (Neal et al.,
2015), model feature extraction (Alm et al., 2015; Neal et al.,
2015), or combination of models with experimental datasets
(Cooper et al., 2011) based on semantic annotation. All those
tools rely on high-quality expert annotation. For our purposes,

FIGURE 4 | Specification of model sub-parts. (A) Original full model, from
which a few pathways are selected. (B) Further selections of reactions from
the subset of pathways. Deleted molecules, reactions, and enzymes are
indicated by boxes with blue crosses. In some cases, deleting molecules
leads to dangling reactions (red dashed boundary), which lack one or more
reactants. The system identifies these. In addition to removal of extraneous
reactions and reactants, the experiment specification may involve alteration of
parameters, such as the concentration of a molecule that is buffered in the
experiment. This is illustrated as orange boxes around the molecule TOR_clx.
Finally, the model specification also defines the mapping between the
experimental names for stimulus or readout molecules, to the corresponding
names for these molecules as used in the model.

our analysis was that the GO, or any other markup, would
typically fall short of specifying all the details of experiments
or model implementation. Thus, in practice one would almost
always have to layer on further explicit specification of entities,
and thus have to fall back on some more complicated version
of our current ‘‘part 5’’. We also felt that extensive GO
annotation from the outset would impose a further burden on the
experimentalist as well as on anyone adapting existing models.

This effectively means that part 5 of the experiment definition
requires curation by human experts. This is an opportunity for
experimentalists and modelers to collaborate and provides a
framework for clarifying assumptions on both sides and reaching
agreement on the model. It is also worth noting that once this
work has been done once for a specific combination of sub-model
and experiment, it can be used for testing and validating future
versions of the model.

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2018 | Volume 12 | Article 3884

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

FIGURE 5 | Components of the structured specification of experiment and its mapping to the simulation, implemented as a spreadsheet. In all sections the top line
specifies a block of data, and the left column specifies fields to fill in that block. All fields and block titles support tool-tips, that is, pop-up help windows with an
explanation of the block and field. These are illustrated here as speech balloons. Fields having a restricted set of options, such as quantity units, are specified with
pull-down menus. In several cases there are tabulated sections, which contain value-range limited entries and which can be extended for additional data points.
(A) Experiment metadata section. This specifies data about the experiment source and who transcribed it. A menu item is illustrated for the “exptSource” field.
(B) Experiment context section. This specifies biological context for the experiment. (C) Stimuli. This section specifies inputs that were given during the experiment:
which entity or molecule to change, which parameter was altered, and finally a series of time-value pairs that specifies the stimulus. (D) Readouts. This specifies
which entities (such as molecules) were monitored during the experiment, and what values were obtained at each readout time. It may include error bars for each
value. (E) Model mapping. This section is the only model-specific part. It indicates a reference model for which the experiment was first tested. For that model it
specifies how to obtain the appropriate subset of pathways, molecules and other model entities to use in the simulated “experiment”. The model map next specifies
which numerical methods to use. There follows a dictionary of entity names, which maps the experimenter’s naming scheme to unique entity names in the
simulation. Finally, there is a table of parameters that have to be changed so that the model matches the experimental conditions. For example, some of the
molecules in the experiment may now be buffered to specified values.

Having determined the components of the structured
experiment specification, we next explain its implementation.
Drawing upon lessons from existing projects that implement
some parts of these requirements (Wolstencroft et al., 2011,
2017), we chose an enhanced spreadsheet interface as our
initial interface (Figure 5). Our interface is implemented and
exported in Google Docs2 and additional versions are provided
for Microsoft Excel and Open Office. The contents of these
spreadsheets are exported to tab-separated value (tsv) files for use
by FindSim. We provide a schema for these tsv files3.

There were several reasons for a first implementation as a
spreadsheet. First, spreadsheets are easy to set up and familiar

2https://www.ncbs.res.in/faculty/bhalla-findsim/worksheet
3https://github.com/BhallaLab/FindSim

to users. Our spreadsheet interface supports key features such as
bounds checking on entered data, for example to ensure that only
positive values are used. It also supports pull-downmenu options
for restricted choices, such as concentration units. Explanatory
tool-tips are readily incorporated to provide immediate online
help. Spreadsheets are inherently extendable with additional
data rows or columns and can easily export data into the
standard tab-separated value (tsv) format we use for driving the
simulations. Finally, spreadsheets are highly portable, including
in the cloud.

Based on a pilot set of ∼40 experiments, we have found
that a large range of biochemical experiments can be specified
with just three kinds of very similar spreadsheets: time-series,
dose-response, and multi-stimulus response. In all cases there
are identical panels for experiment metadata and context. There

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2018 | Volume 12 | Article 3885

https://www.ncbs.res.in/faculty/bhalla-findsim/worksheet
https://github.com/BhallaLab/FindSim
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

are slightly specialized blocks for experimental stimulus and
readouts. The final, model mapping panel (Figure 5E) is again
almost identical. This framework is easily extended to further
kinds of experiments, including electrophysiological and imaging
data.

In summary, we have designed and implemented a framework
for specifying the design and outcomes of experiments in a form
which maps directly to corresponding simulation experiments.
This supports validation, scoring and optimization of models.
The key innovations are formalization of a wide range of
experiments and a procedure for defining how to extract parts
of a large model that are necessary and sufficient to account for
any given experiment.

Example of Data Flow Through the Pipeline
We now illustrate the data flow through the pipeline (Figure 2)
using a specific example of a pre-existing model, and an
experiment to be applied to it (Figure 6). The stages in the
pipeline are:

1. Model specification. In this case the model specification is a
pre-existing SBML file.

2. Experimental details. The experiment is a straightforward
stimulus-response experiment in which the 40S subunit of
the translation complex is applied to a solution with a known
amount of eIF4E-mRNA, and the formation of 43S subunit is
monitored.

3. Mapping between experiment andmodel. As the experimental
pathways are a small subset of the larger model, we select a few
relevant pathways, and further we remove from the pathway
models those reactions that are not present in the experiment.

4. Simulation control. Here we take those molecules that are
buffered in the experiment and change the model accordingly.
We then run the simulation, applying the stimulus to one of
the molecules at the specified times.

5. We now compare experiment and simulation readouts, using
a scoring equation defined in themodel mapping section from
Figure 5.

6. At this stage we could use the score to do a local optimization
of parameters using manual or automated optimization. This
would give us a version of the main model where the
local parameters for this pathway have been matched to
experiment.

7. We now repeat steps 2 to 6 for different experiments, to obtain
a global score for the model. Additionally, local optimizations
will need validation from experiments that involve larger
subsets of the overall model.

At the end of this process, we will have a model that is a
better fit to specific experiments, and we also have a score that
can be given to the model as a whole. Note that it is entirely up
to the modeler-experimentalist team to decide how much weight
should be given to different experiments.

Cross-Experiment Model Reproducibility
A key goal of the FindSim pipeline is to expose models to a range
of experiments so that the model is a good fit to all of them, not
just a single case. This is a particularly tough constraint when

FIGURE 6 | Data flow using the model specification, experiment specification,
model subset extraction, simulation and comparison with output.

we have multiple experiments that probe responses of the same
and overlapping signaling pathways. In this section we describe
how the model database can include just this kind of overlapping
experiment, to show how the modeler and experimentalist can
together examine reproducibility and generalizability of the core
model.

Here we focused our attention on the MAPK signaling
pathway. We first considered reproducibility of the core part
of this pathway, in which MAPK is stimulated by an epidermal
growth factor (EGF) signal in PC12 cells (Figure 7A, green
boundary; Teng et al., 1995). The simulation approximates
the experiment quite closely (Figure 7B). We next illustrate a
fundamental limitation on being able to reproducibly fit data:
the observation that different experiments with very similar
contexts may give mutually inconsistent results (Figures 7B,C).
We then considered experiments involving overlap of the
core (MAPK) pathway but distinct input signaling via brain-
derived neurotrophic factor (BDNF) in E18 primary embryonic
hippocampal neurons (Ji et al., 2010). In the case of BDNF, the
core model behavior of a transient strong response followed by

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2018 | Volume 12 | Article 3886

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

FIGURE 7 | Reproducibility example: multiple experimental inputs converging onto a common signaling pathway (MAPK). (A) Block diagram of composite model.
Sub-models for the different inputs are indicated in green (epidermal growth factor, EGF), red (BDNF) and blue (Calcium). (B) Response to EGF stimulus is a transient
activation of MAPK. Model (dashed green line) closely follows experimental curve (solid green line). (C) Response to EGF in similar preparation but lower dose. Note
that the simulated peak response is higher than experiment in (B), but lower in (C), leading to difficulties in model fitting. (D) Response to BDNF stimulus is also a
transient, but the time-course of MAPK signaling in this experiment is much longer than it was in panel (B). (E) Response to an LTP-induction stimulus for calcium,
consisting of three pulses separated by 600 s. Here the reference is an earlier simulation predicting sustained activation of MAPK. Remarkably, there is a reasonable
match to the reference behavior in all three cases, despite the inputs converging onto the MAPK pathway through different signaling pathways, and the results drawn
from very different data sources.

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2018 | Volume 12 | Article 3887

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

a sustained low response was preserved, but the time-courses
and the intervening stages were quite different. Again, the model
performed reasonably well in comparison to this experiment
(Figure 7D). This was reassuring because it meant that the same
core pathway generalized well for two completely different kinds
of input. In these two experiments the stimulus andmodel system
are the same, but there is a difference in dose. Even allowing
for differences in effective dose, the simulation cannot fit both
of these. As discussed above, the FindSim framework provides
for a user-defined scoring scheme for each experiment, so that
broader considerations can factor into how the user weights each
experiment.

Finally, for Ca2+ input we asked if the model could replicate
the qualitative behavior of sustained activity, that had been
predicted in an earlier modeling study (Bhalla and Iyengar,
1999). Again, this activated a large number of distinct input
stages but the core MAPK pathway was able to replicate the
previous behavior of switching to a state of sustained high activity
following three calcium pulses which corresponded to three
tetanic stimuli used for LTP induction (Figure 7E). Overall,
this exercise showed the efficacy of the FindSim framework
in testing model reproducibility across quite different stimulus
conditions.

DISCUSSION

We have developed FindSim, a framework for systematic,
data-driven construction of large biologically detailed models
of neuronal signaling. The key advances are: (1) A simulation
pipeline that combines a database of structured experimental
data with each model, to systematically generate scores of how
well the model fits the entire dataset. (2) A way to systematically
specify and extract small sub-parts of the full model upon
which to carry out these simulated experiments. Together
with the underlying Python-driven MOOSE simulation engine
for multiscale models, this framework is an open, standards-
driven, and scalable approach to developing reliable, large-scale
models.

Big Models and Biological Problems
It is widely accepted that complex biological pathways
benefit from structured modeling approaches to address
the many routes by which signals flow between stimuli and
physiological outcomes (Kitano, 2002; Hunter and Borg,
2003). This is particularly relevant for complex neurogenetic
diseases such as autism, where mutations in key signaling
components cause ramifying perturbations in many pathways.
The complexity of this problem is exacerbated by cellular
homeostasis mechanisms, which may lead to partial rescue
of some symptoms, but not others. The expectation is that as
models begin to incorporate the relevant range of pathways,
these outcomes may be better understood. Further, such
models would be excellent platforms upon which to conduct
tests of possible pharmacological and other manipulations
with the goal of suggesting treatments (Rajasethupathy et al.,
2005).

Correctness of Big Models
A common criticism of big models, dating from the von
Neumann tradition, is that they have somany parameters that the
modeler could do anything (such as fit an elephant) with them.
Here we first explain how the current model building pipeline
counters this criticism. We then point to two ways in which
the details embedded in a big model improve its testability and
utility.

The modeling framework described in this study provides a
systematic way to avoid the problems ofmulti-parametermodels.
Here we have formalized how multiple experiments map to
different parts of the model. Further, this formalization facilitates
parameterization, and testing, from individual reactions, to
multi-pathway cascades. By testing the models at many scales of
function, this approach is able to ensure not only that individual
pathways work as observed, but that they work together in
a manner consistent with experiment. This process has been
adopted, albeit in a more free-form manner, for other large
models (Bhalla and Iyengar, 1999; Karr et al., 2012).

There are two key positive aspects that large, detailed models
bring to ascertaining correctness. The first is that there is a
clear, usually one-to-one mapping between experimental entities
(molecules, reactions) and their model counterparts. Thus,
there is no ambiguity about what each readout represents.
The second major positive of detail is that the curse of the
abstract model—that it may abstract away essential functional
detail—is avoided. A further, empirically noted corollary of
having biologically detailed models is that they tend to
partake of similar kinds of functional robustness as their
biological counterparts (Morohashi et al., 2002). In biology
this means that minor fluctuations in metabolism or protein
distribution has little functional effect. In the model this
brings the additional benefit that it tends to behave well
even if the parameters are, inevitably, somewhat off. Thus,
the methodology of the current study is designed to allow
principled construction of large, detailed models that avoid the
major drawbacks of such models, while benefiting from their
advantages.

Big Data and Big Models
Our appreciation for biological complexity has risen steeply with
the flood of large-scale data. As an example in neuronal signaling,
we now know the identities of some 1500 postsynaptic proteins
(Bayés et al., 2011), but our understanding of synaptic function
has not kept pace with this explosion of data. Models have
long been tools for understanding complex systems, as well as
predicting their properties in health and disease (Kitano, 2002;
Rajasethupathy et al., 2005). A systematic alignment of big data
to developing big models is therefore highly desirable. One of the
major problems with doing this is that a large fraction of current
experiments is better at providing model constraints rather than
model parameters. A model constraint is an observation that the
model must satisfy, but it does not always yield easily usable
data for improving the model. For improving models, one needs
experiments that more directly provide parameters.

Automated parameter estimation and tuning is important
for developing large, complex models. The current framework

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2018 | Volume 12 | Article 3888

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

is designed to efficiently run many simulated experiments on a
model, and this is of obvious utility for parameter estimation and
tuning. This is a complex and well-studied topic (Chou and Voit,
2009; Geier et al., 2012; Sun et al., 2012) and is out of scope of the
current report. A key feature of the FindSim framework is that
every run computes a score of how well the model output fits the
experiment. Effective scoring is itself closely linked to details of
parameter optimization. Here we simply give the user freedom
to specify arbitrary mathematical expressions for comparison
of model output to experimental output, including error bars
(example scoring formula in Figure 5E). This expression can
also include less-tangible scaling factors based on the judgment
of the team implementing the test, such as the reliability of the
experimental approach, or whether the experimental system was
a mouse or a rat.

Model constraints typically arise from remote input-output
relationships. A peculiarity of biological signaling systems is that
very long chains of elementary events, such as reactions, may
link stimulus and response. For example, long-term potentiation
(LTP), which is the staple of synaptic plasticity studies, is
mechanistically separated from synaptic input patterns by at least
the following steps: presynaptic calcium events, neurotransmitter
release, synaptic channel opening, calcium influx, activation of
kinase pathways, protein synthesis and receptor translocation
(Bliss and Collingridge, 1993). Each of these steps may involve
numerous biophysical events and chemical reactions. Yet at
an observational level, LTP is reliable, easily measured, and
well characterized. It is an excellent model constraint. From a
modeling viewpoint, there are far more ‘‘good’’ experiments on
LTP, than there are measurements of mechanisms of just one
of its steps: dendritic protein synthesis. Big data is therefore of
limited value for big models unless the experiments are designed
to home in on, and parameterize, finer mechanistic steps. In
the context of our modeling pipeline, experiments on small
pathways are better for parameterization, including the use of
optimization. Long-pathway experiments tell us what the overall
model should do, but don’t directly help us refine it. Thus,
our data-model development framework defines the kinds of
big data that are of most relevance to constructing reliable, big
models.

Scalability
The current report describes the core concepts and
implementation of a first level modelling and data organization
effort for models of neuronal signaling. The approach is designed
to be scalable both in the kinds of problems it can take on, and in
the technical capabilities it brings to the table.

The current framework was designed around studies of
autism spectrum disorders, with the technical aim of building
sufficiently detailed models so as to be able to match up with the
wide range of current data. Thus only a few models were initially
envisioned: a control model, and a few with known disease-
causing mutations. The approach is readily extended to many
other neurodevelopmental and other diseases provided there are
clear molecular signatures of the signaling deficit in each case.

An obvious further extension of the approach is to apply
it to different cell-types, and in parallel to develop experiment

libraries to parameterize them. In addition to neurons, it would
be interesting to model glia, and then proceed to making models
not just of individual neurons but small groupings of strongly
coupled cells in neural tissue.

Scalability can also be envisaged as extending the experiment-
model interplay to different physical processes. From the
viewpoint of neuronal function, it is clearly important to also
consider the domain of electrical activity of neurons. A few
simulators (e.g., NEURON, MOOSE, STEPS) are now able to
simultaneously model electrical and chemical signaling, but each
has different ways to specify such multiscale models (Ray and
Bhalla, 2008; Wils and De Schutter, 2009; McDougal et al.,
2013). There are efforts to broaden model standards to include
chemical as well as electrical signaling (Cannon et al., 2014).
While the evolution of the FindSim framework to such models
is beyond the scope of the current article, as proof of principle
we illustrate the use of the FindSim format on the Hodgkin-
Huxley model of an action potential4. This requires very minor
extensions within the framework of a time-series experiment.
We anticipate that an important direction for the FindSim
framework will be to support multiscale experiments that
synthesize electrophysiological stimuli with multiple signaling
and physiological readouts.

A further aspect of scalability is the ability of this framework
to host competing models, in the sense that models are
hypotheses of neuronal signaling function. Here the value of the
open experimental database becomes evident. Different groups
can readily re-assign weights and scoring terms for different
experiments, to developmodels that better fit their interpretation
of the experimental literature. The expectation is that such
competing models would spur the execution of more definitive
experiments to decide between the alternatives, and thus advance
the field.

On the technical side, there are clear directions with respect to
the evolution of the experiment specification format, including
standards development for storing them in databases.

The current experiment specification is set up through a
spreadsheet and stored in tab-separated value (tsv) format.
Clearly a more flexible and powerful format would be desirable
as we scale up to much larger models and datasets. We
have considered extensions to the extant SED-ML standard
(Waltemath et al., 2011) as one possible way to define the
experiments. Another alternative may be JSON and its associated
schema (Crockford, 2006). Each of these is also much better
suited to being handled in a database. On the interface front
it would be desirable to develop a browser-based graphical
interface to the model/experiment building pipeline, where the
runs may be hosted in the cloud. These all lend themselves to
incorporation into the FindSim framework. In summary, the
FindSim framework is a principled, scalable framework that
lends itself to reproducibly integrating experiments with complex
multiscale models of neuronal signaling systems.

The FindSim framework currently relies on human
interactions between modelers and experimentalists for the
‘‘model mapping’’ (part 5 of the pipeline). This was a conscious

4https://github.com/BhallaLab/FindSim

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2018 | Volume 12 | Article 3889

https://github.com/BhallaLab/FindSim
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

choice on our part. This stage of the framework is an ideal place
for encouraging interaction between human experts, since this is
a stage that relies on expert judgment on what the various parts
of a model and of an experiment mean. In terms of scalability,
this may be a bottleneck. Indeed, other initiatives have aimed
at automating similar processes (Cooper et al., 2011; Alm et al.,
2015; Neal et al., 2015). It should be noted, however, that those
automations depend on high-quality annotations. As such, they
do not eliminate the need for human curation, it just happens at
a different stage of the process (model/data annotation). Which
of those two approaches is ultimately better scalable, and to
what extent the expert annotation component can be automated,
remains an interesting avenue for future research.

DATASETS

The datasets and code used for this study can be found in
https://github.com/BhallaLab/FindSim. The MOOSE simulator
is hosted at https://moose.ncbs.res.in/ and on https://github.
com/BhallaLab/moose.

AUTHOR CONTRIBUTIONS

NV built the model, assembled the database of experimental
conditions, designed the experiment interface and worked

on the figures. GVHR worked on the code, designed the
experiment interface and on the figures. MS examined
existing model development projects, helped conceptualize the
framework and wrote the article. UB worked on the code,
designed the project and experiment interface and wrote the
article.

FUNDING

GVHR was supported by the B-Life grant to UB from the
Department of Biotechnology (DBT), Ministry of Science and
Technology BT/PR12422/MED/31/287/2014. NV was supported
by University Grants Commission (UGC)-ISF grant F.6-
18/2014 (IC) to UB. UB is supported by National Centre for
Biological Sciences, Tata Institute of Fundamental Research
(NCBS-TIFR) and the J. C. Bose Fellowship SB/S2/JCB-
023/2016.

ACKNOWLEDGMENTS

We acknowledge thoughtful discussions with Dagmar
Waltemath, Jacob Snoep and Stuart Owen. We are also grateful
to Aditi Bhattacharya and Richard Fitzpatrick for discussions on
the framework and helping flesh out the requirements for data
reporting.

REFERENCES

Alm, R., Waltemath, D., Wolfien, M., Wolkenhauer, O., and Henkel, R. (2015).
Annotation-based feature extraction from sets of SBML models. J. Biomed.
Semantics 6:20. doi: 10.1186/s13326-015-0014-4

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: tool for the unification of biology. The gene ontology
consortium. Nat. Genet. 25, 25–29. doi: 10.1038/75556

Bayés, A., van de Lagemaat, L. N., Collins, M. O., Croning, M. D. R., Whittle, I. R.,
Choudhary, J. S., et al. (2011). Characterization of the proteome, diseases
and evolution of the human postsynaptic density. Nat. Neurosci. 14, 19–21.
doi: 10.1038/nn.2719

Beard, D. A., Britten, R., Cooling, M. T., Garny, A., Halstead, M. D. B.,
Hunter, P. J., et al. (2009). CellML metadata standards, associated tools
and repositories. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1845–1867.
doi: 10.1098/rsta.2008.0310

Bhalla, U. S. (2002a). The chemical organization of signaling interactions.
Bioinformatics 18, 855–863. doi: 10.1093/bioinformatics/18.6.855

Bhalla, U. S. (2002b). Use of kinetikit and GENESIS for modeling signaling
pathways. Methods Enzymol. 345, 3–23. doi: 10.1016/s0076-6879(02)
45003-3

Bhalla, U. S., and Bower, J. M. (1993). Exploring parameter space in detailed single
neuronmodels: simulations of the mitral and granule cells of the olfactory bulb.
J. Neurophysiol. 69, 1948–1965. doi: 10.1152/jn.1993.69.6.1948

Bhalla, U. S., and Iyengar, R. (1999). Emergent properties of networks of biological
signaling pathways. Science 283, 381–387. doi: 10.1126/science.283.5400.381

Bhalla, U. S., and Iyengar, R. (2001). Functional modules in biological signalling
networks. Novartis Found. Symp. 239, 4–13; discussion 13–15, 45–51.
doi: 10.1002/0470846674.ch2

Bliss, T. V., and Collingridge, G. L. (1993). A synapticmodel ofmemory: long-term
potentiation in the hippocampus. Nature 361, 31–39. doi: 10.1038/361031a0

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P.,
Stoeckert, C., et al. (2001). Minimum information about a microarray
experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29,
365–371. doi: 10.1038/ng1201-365

Brown, S.-A., Moraru, I. I., Schaff, J. C., and Loew, L. M. (2011). Virtual
NEURON: a strategy for merged biochemical and electrophysiological

modeling. J. Comput. Neurosci. 31, 385–400. doi: 10.1007/s10827-011-
0317-0

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,
et al. (2014). LEMS: a language for expressing complex biological models in
concise and hierarchical form and its use in underpinning NeuroML 2. Front.
Neuroinform. 8:79. doi: 10.3389/fninf.2014.00079

Chou, I.-C., and Voit, E. O. (2009). Recent developments in parameter estimation
and structure identification of biochemical and genomic systems.Math. Biosci.
219, 57–83. doi: 10.1016/j.mbs.2009.03.002

Cooper, J., Mirams, G. R., and Niederer, S. A. (2011). High-throughput functional
curation of cellular electrophysiology models. Prog. Biophys. Mol. Biol. 107,
11–20. doi: 10.1016/j.pbiomolbio.2011.06.003

Crockford, D. (2006). The application/json Media Type for JavaScript Object
Notation (JSON). Available online at: https://tools.ietf.org/html/rfc4627
[Accessed May 15, 2018].

De Schutter, E., and Bower, J. M. (1994). An active membrane model of the
cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol.
71, 375–400. doi: 10.1152/jn.1994.71.1.375

Garcia, S., Guarino, D., Jaillet, F., Jennings, T. R., Pröpper, R., Rautenberg, P. L.,
et al. (2014). Neo: an object model for handling electrophysiology data in
multiple formats. Front. Neuroinformatics 8:10. doi: 10.3389/fninf.2014.00010

Geier, F., Fengos, G., Felizzi, F., and Iber, D. (2012). Analyzing and constraining
signaling networks: parameter estimation for the user.Methods Mol. Biol. 880,
23–39. doi: 10.1007/978-1-61779-833-7_2

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). NeuroML: a language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput.
Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Gleeson, P., Silver, A., and Cantarelli, M. (2015). ‘‘Open source brain,’’ in
Encyclopedia of Computational Neuroscience (New York, NY: Springer.),
2153–2156.

Gouwens, N. W., Berg, J., Feng, D., Sorensen, S. A., Zeng, H., Hawrylycz, M. J.,
et al. (2018). Systematic generation of biophysically detailed models for diverse
cortical neuron types. Nat. Commun. 9:710. doi: 10.1038/s41467-017-02718-3

HarshaRani, G. V., Vayttaden, S. J., and Bhalla, U. S. (2005). Electronic data
sources for kinetic models of cell signaling. J. Biochem. (Tokyo) 137, 653–657.
doi: 10.1093/jb/mvi083

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2018 | Volume 12 | Article 3890

https://github.com/BhallaLab/FindSim
https://moose.ncbs.res.in/
https://github.com/BhallaLab/moose
https://github.com/BhallaLab/moose
https://doi.org/10.1186/s13326-015-0014-4
https://doi.org/10.1038/75556
https://doi.org/10.1038/nn.2719
https://doi.org/10.1098/rsta.2008.0310
https://doi.org/10.1093/bioinformatics/18.6.855
https://doi.org/10.1016/s0076-6879(02)45003-3
https://doi.org/10.1016/s0076-6879(02)45003-3
https://doi.org/10.1152/jn.1993.69.6.1948
https://doi.org/10.1126/science.283.5400.381
https://doi.org/10.1002/0470846674.ch2
https://doi.org/10.1038/361031a0
https://doi.org/10.1038/ng1201-365
https://doi.org/10.1007/s10827-011-0317-0
https://doi.org/10.1007/s10827-011-0317-0
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1016/j.mbs.2009.03.002
https://doi.org/10.1016/j.pbiomolbio.2011.06.003
https://tools.ietf.org/html/rfc4627
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.1007/978-1-61779-833-7_2
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1038/s41467-017-02718-3
https://doi.org/10.1093/jb/mvi083
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

Hayer, A., and Bhalla, U. S. (2005). Molecular switches at the synapse
emerge from receptor and kinase traffic. PLoS Comput. Biol. 1, 137–154.
doi: 10.1371/journal.pcbi.0010020

Heil, K. F., Wysocka, E., Sorokina, O., Kotaleski, J. H., Simpson, T. I.,
Armstrong, J. D., et al. (2018). Analysis of proteins in computational models
of synaptic plasticity. BioRxiv [Preprint]. doi: 10.1101/254094

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.
117, 500–544.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,
et al. (2003). The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics
19, 524–531. doi: 10.1093/bioinformatics/btg015

Hucka, M., Nickerson, D. P., Bader, G. D., Bergmann, F. T., Cooper, J.,
Demir, E., et al. (2015). Promoting coordinated development of community-
based information standards for modeling in biology: the COMBINE initiative.
Front. Bioeng. Biotechnol. 3:19. doi: 10.3389/fbioe.2015.00019

Hunter, P. J., and Borg, T. K. (2003). Integration from proteins to organs: the
physiome project. Nat. Rev. Mol. Cell Biol. 4, 237–243. doi: 10.1038/nrm1054

Jain, P., and Bhalla, U. S. (2009). Signaling logic of activity-triggered dendritic
protein synthesis: an mTOR gate but not a feedback switch. PLoS Comput. Biol.
5:e1000287. doi: 10.1371/journal.pcbi.1000287

Ji, Y., Lu, Y., Yang, F., Shen, W., Tang, T. T.-T., Feng, L., et al. (2010). Acute and
gradual increases in BDNF concentration elicit distinct signaling and functions
in neurons. Nat. Neurosci. 13, 302–309. doi: 10.3410/f.3559973.3266072

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow,M. V., Jacobs, J. M., Bolival, B.,
et al. (2012). A Whole-cell computational model predicts phenotype from
genotype. Cell 150, 389–401. doi: 10.1016/j.cell.2012.05.044

Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S., and Karolchik, D.
(2010). BigWig and BigBed: enabling browsing of large distributed datasets.
Bioinforma. Oxf. Engl. 26, 2204–2207. doi: 10.1093/bioinformatics/btq351

Kim, M., Huang, T., Abel, T., and Blackwell, K. T. (2010). Temporal sensitivity of
protein kinase a activation in late-phase long term potentiation. PLoS Comput.
Biol. 6:e1000691. doi: 10.1371/journal.pcbi.1000691

Kitano, H. (2002). Systems biology: a brief overview. Science 295, 1662–1664.
doi: 10.1126/science.1069492

Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H.,
et al. (2006). BioModels Database: a free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems.
Nucleic Acids Res. 34, D689–D691. doi: 10.1093/nar/gkj092

Li, L., Stefan, M. I., and Novère, N. L. (2012). Calcium input frequency, duration
and Aamplitude differentially modulate the relative activation of calcineurin
and CaMKII. PLoS One 7:e43810. doi: 10.1371/journal.pone.0043810

Lindskog, M., Kim, M., Wikström, M. A., Blackwell, K. T., and Kotaleski, J. H.
(2006). Transient calcium and dopamine increase PKA activity and DARPP-32
phosphorylation. PLoS Comput. Biol. 2:e119. doi: 10.1371/journal.pcbi.0020119

Lisman, J. E. (1985). A mechanism for memory storage insensitive to molecular
turnover: a bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. U S A
82, 3055–3057. doi: 10.1073/pnas.82.9.3055

Manninen, T., Hituri, K., Kotaleski, J. H., Blackwell, K. T., and Linne, M.-L.
(2010). Postsynaptic signal transductionmodels for long-term potentiation and
depression. Front. Comput. Neurosci. 4:152. doi: 10.3389/fncom.2010.00152

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Matiasz, N. J., Wood, J., Wang, W., Silva, A. J., and Hsu, W. (2017). Computer-
aided experiment planning toward causal discovery in neuroscience. Front.
Neuroinform. 11:12. doi: 10.3389/fninf.2017.00012

McDougal, R. A., Hines, M. L., and Lytton, W. W. (2013). Reaction-diffusion in
the NEURON simulator. Front. Neuroinformatics 7:28. doi: 10.3389/fninf.2013.
00028

Migliore, M., Morse, T. M., Davison, A. P., Marenco, L., Shepherd, G. M.,
and Hines, M. L. (2003). ModelDB: making models publicly accessible
to support computational neuroscience. Neuroinformatics 1, 135–139.
doi: 10.1385/ni:1:1:135

Morohashi, M., Winn, A. E., Borisuk, M. T., Bolouri, H., Doyle, J., and Kitano, H.
(2002). Robustness as a measure of plausibility in models of biochemical
networks. J. Theor. Biol. 216, 19–30. doi: 10.1006/jtbi.2002.2537

Narayanan, R., and Johnston, D. (2010). The h current is a candidate
mechanism for regulating the sliding modification threshold in a BCM-like
synaptic learning rule. J. Neurophysiol. 104, 1020–1033. doi: 10.1152/jn.01129.
2009

Neal, M. L., Carlson, B. E., Thompson, C. T., James, R. C., Kim, K. G., Tran, K.,
et al. (2015). Semantics-based composition of integrated cardiomyocyte models
motivated by real-world use cases. PLoS One 10:e0145621. doi: 10.1371/journal.
pone.0145621

Rajasethupathy, P., Vayttaden, S. J., and Bhalla, U. S. (2005). Systems modeling: a
pathway to drug discovery. Curr. Opin. Chem. Biol. 9, 400–406. doi: 10.1016/j.
cbpa.2005.06.008

Ray, S., and Bhalla, U. S. (2008). PyMOOSE: Interoperable Scripting in Python for
MOOSE. Front. Neuroinform. 2:6. doi: 10.3389/neuro.11.006.2008

Ray, S., Chintaluri, C., Bhalla, U. S., andWójcik, D. K. (2016). NSDF: neuroscience
simulation data format. Neuroinformatics 14, 147–167. doi: 10.1007/s12021-
015-9282-5

Rübel, O., Dougherty, M., Prabhat, Denes, P., Conant, D., Chang, E. F.,
et al. (2016). Methods for specifying scientific data standards and modeling
relationships with applications to neuroscience. Front. Neuroinform. 10:48.
doi: 10.3389/fninf.2016.00048

Shouval, H. Z., Bear, M. F., and Cooper, L. N. (2002). A unified model of
NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl. Acad.
Sci. U. S. A. 99, 10831–10836. doi: 10.1073/pnas.152343099

Silva, A. J., and Müller, K.-R. (2015). The need for novel informatics tools for
integrating and planning research in molecular and cellular cognition. Learn.
Mem. 22, 494–498. doi: 10.1101/lm.029355.112

Sivakumaran, S., Hariharaputran, S., Mishra, J., and Bhalla, U. S. (2003). The
Database of Quantitative Cellular Signaling: management and analysis of
chemical kinetic models of signaling networks. Bioinformatics 19, 408–415.
doi: 10.1093/bioinformatics/btf860

Smolen, P., Baxter, D. A., and Byrne, J. H. (2006). A model of the roles of essential
kinases in the induction and expression of late long-term potentiation. Biophys.
J. 90, 2760–2775. doi: 10.1529/biophysj.105.072470

Stead, M., and Halford, J. J. (2016). Proposal for a standard format for
neurophysiology data recording and exchange. J. Clin. Neurophysiol. 33,
403–413. doi: 10.1097/WNP.0000000000000257

Stefan, M. I., Edelstein, S. J., and Le Novère, N. (2008). An allosteric model of
calmodulin explains differential activation of PP2B and CaMKII. Proc. Natl.
Acad. Sci. U S A 105, 10768–10773. doi: 10.1073/pnas.0810309105

Stefan, M. I., Marshall, D. P., and Novère, N. L. (2012). Structural analysis and
stochastic modelling suggest a mechanism for calmodulin trapping by CaMKII.
PLoS One 7:e29406. doi: 10.1371/journal.pone.0029406

Stockton, D. B., and Santamaria, F. (2017). Integrating the allen brain institute
cell types database into automated neuroscience workflow. Neuroinformatics
15, 333–342. doi: 10.1007/s12021-017-9337-x

Sun, J., Garibaldi, J. M., and Hodgman, C. (2012). Parameter estimation using
meta-heuristics in systems biology: a comprehensive review. IEEE/ACM Trans.
Comput. Biol. Bioinform. 9, 185–202. doi: 10.1109/tcbb.2011.63

Taylor, C. F., Hermjakob, H., Julian, R. K., Garavelli, J. S., Aebersold, R.,
and Apweiler, R. (2006). The work of the human proteome organisation’s
proteomics standards initiative (HUPOPSI).OMICS 10, 145–151. doi: 10.1089/
omi.2006.10.145

Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P.-A., Julian, R. K., Jones, A. R., et al.
(2007). The minimum information about a proteomics experiment (MIAPE).
Nat. Biotechnol. 25, 887–893. doi: 10.1038/nbt1329

Teeters, J. L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B.,
et al. (2015). Neurodata without borders: creating a common data
format for neurophysiology. Neuron 88, 629–634. doi: 10.1016/j.neuron.
2015.10.025

Teng, K. K., Lander, H., Fajardo, J. E., Hanafusa, H., Hempstead, B. L., and
Birge, R. B. (1995). v-Crk modulation of growth factor-induced PC12 cell
differentiation involves the Src homology 2 domain of v-Crk and sustained
activation of the Ras/mitogen-activated protein kinase pathway. J. Biol. Chem.
270, 20677–20685. doi: 10.1074/jbc.270.35.20677

Waltemath, D., Adams, R., Bergmann, F. T., Hucka,M., Kolpakov, F., Miller, A. K.,
et al. (2011). Reproducible computational biology experiments with SED-ML--
the simulation experiment descriptionmarkup language. BMC Syst. Biol. 5:198.
doi: 10.1186/1752-0509-5-198

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2018 | Volume 12 | Article 3891

https://doi.org/10.1371/journal.pcbi.0010020
https://doi.org/10.1101/254094
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.3389/fbioe.2015.00019
https://doi.org/10.1038/nrm1054
https://doi.org/10.1371/journal.pcbi.1000287
https://doi.org/10.3410/f.3559973.3266072
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1093/bioinformatics/btq351
https://doi.org/10.1371/journal.pcbi.1000691
https://doi.org/10.1126/science.1069492
https://doi.org/10.1093/nar/gkj092
https://doi.org/10.1371/journal.pone.0043810
https://doi.org/10.1371/journal.pcbi.0020119
https://doi.org/10.1073/pnas.82.9.3055
https://doi.org/10.3389/fncom.2010.00152
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.3389/fninf.2017.00012
https://doi.org/10.3389/fninf.2013.00028
https://doi.org/10.3389/fninf.2013.00028
https://doi.org/10.1385/ni:1:1:135
https://doi.org/10.1006/jtbi.2002.2537
https://doi.org/10.1152/jn.01129.2009
https://doi.org/10.1152/jn.01129.2009
https://doi.org/10.1371/journal.pone.0145621
https://doi.org/10.1371/journal.pone.0145621
https://doi.org/10.1016/j.cbpa.2005.06.008
https://doi.org/10.1016/j.cbpa.2005.06.008
https://doi.org/10.3389/neuro.11.006.2008
https://doi.org/10.1007/s12021-015-9282-5
https://doi.org/10.1007/s12021-015-9282-5
https://doi.org/10.3389/fninf.2016.00048
https://doi.org/10.1073/pnas.152343099
https://doi.org/10.1101/lm.029355.112
https://doi.org/10.1093/bioinformatics/btf860
https://doi.org/10.1529/biophysj.105.072470
https://doi.org/10.1097/WNP.0000000000000257
https://doi.org/10.1073/pnas.0810309105
https://doi.org/10.1371/journal.pone.0029406
https://doi.org/10.1007/s12021-017-9337-x
https://doi.org/10.1109/tcbb.2011.63
https://doi.org/10.1089/omi.2006.10.145
https://doi.org/10.1089/omi.2006.10.145
https://doi.org/10.1038/nbt1329
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1074/jbc.270.35.20677
https://doi.org/10.1186/1752-0509-5-198
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Viswan et al. FindSim: Experiment-Driven Model Specification

Wils, S., and De Schutter, E. (2009). STEPS: modeling and simulating complex
reaction-diffusion systems with python. Front. Neuroinform. 3:15. doi: 10.3389/
neuro.11.015.2009

Wolstencroft, K., Krebs, O., Snoep, J. L., Stanford, N. J., Bacall, F., Golebiewski, M.,
et al. (2017). FAIRDOMHub: a repository and collaboration environment
for sharing systems biology research. Nucleic Acids Res. 45, D404–D407.
doi: 10.1093/nar/gkw1032

Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W.,
Snoep, J. L., et al. (2011). RightField: embedding ontology annotation in
spreadsheets. Bioinformatics 27, 2021–2022. doi: 10.1093/bioinformatics/
btr312

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Viswan, HarshaRani, Stefan and Bhalla. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2018 | Volume 12 | Article 3892

https://doi.org/10.3389/neuro.11.015.2009
https://doi.org/10.3389/neuro.11.015.2009
https://doi.org/10.1093/nar/gkw1032
https://doi.org/10.1093/bioinformatics/btr312
https://doi.org/10.1093/bioinformatics/btr312
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

METHODS
published: 10 July 2018

doi: 10.3389/fninf.2018.00041

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2018 | Volume 12 | Article 41

Edited by:

Arjen van Ooyen,

VU University Amsterdam,

Netherlands

Reviewed by:

Geir Halnes,

Norwegian University of Life Sciences,

Norway

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

*Correspondence:

Adam J. H. Newton

adam.newton@downstate.edu

Received: 10 March 2018

Accepted: 12 June 2018

Published: 10 July 2018

Citation:

Newton AJH, McDougal RA,

Hines ML and Lytton WW (2018)

Using NEURON for Reaction-Diffusion

Modeling of Extracellular Dynamics.

Front. Neuroinform. 12:41.

doi: 10.3389/fninf.2018.00041

Using NEURON for
Reaction-Diffusion Modeling of
Extracellular Dynamics
Adam J. H. Newton 1,2*, Robert A. McDougal 1,3, Michael L. Hines 1 and William W. Lytton 2,4

1Department of Neuroscience, Yale University, New Haven, CT, United States, 2 SUNY Downstate Medical Center, The State

University of New York, New York, NY, United States, 3Center for Medical Informatics, Yale University, New Haven, CT,

United States, 4Neurology, Kings County Hospital Center, Brooklyn, NY, United States

Development of credible clinically-relevant brain simulations has been slowed due to

a focus on electrophysiology in computational neuroscience, neglecting the multiscale

whole-tissue modeling approach used for simulation in most other organ systems.

We have now begun to extend the NEURON simulation platform in this direction

by adding extracellular modeling. The extracellular medium of neural tissue is an

active medium of neuromodulators, ions, inflammatory cells, oxygen, NO and other

gases, with additional physiological, pharmacological and pathological agents. These

extracellular agents influence, and are influenced by, cellular electrophysiology, and

cellular chemophysiology—the complex internal cellular milieu of second-messenger

signaling and cascades. NEURON’s extracellular reaction-diffusion is supported by an

intuitive Python-based where/who/what command sequence, derived from that used

for intracellular reaction diffusion, to support coarse-grained macroscopic extracellular

models. This simulation specification separates the expression of the conceptual model

and parameters from the underlying numerical methods. In the volume-averaging

approach used, the macroscopic model of tissue is characterized by free volume

fraction—the proportion of space in which species are able to diffuse, and tortuosity—the

average increase in path length due to obstacles. These tissue characteristics can be

defined within particular spatial regions, enabling the modeler to account for regional

differences, due either to intrinsic organization, particularly gray vs. white matter, or

to pathology such as edema. We illustrate simulation development using spreading

depression, a pathological phenomenon thought to play roles in migraine, epilepsy

and stroke. Simulation results were verified against analytic results and against the

extracellular portion of the simulation run under FiPy. The creation of this NEURON

interface provides a pathway for interoperability that can be used to automatically

export this class of models into complex intracellular/extracellular simulations and future

cross-simulator standardization.

Keywords: reusability, computer simulation, multiscale modeling, spreading depression, stroke

93

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00041
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00041&domain=pdf&date_stamp=2018-07-10
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:adam.newton@downstate.edu
https://doi.org/10.3389/fninf.2018.00041
https://www.frontiersin.org/articles/10.3389/fninf.2018.00041/full
http://loop.frontiersin.org/people/297786/overview
http://loop.frontiersin.org/people/88491/overview
http://loop.frontiersin.org/people/396/overview
http://loop.frontiersin.org/people/2277/overview

Newton et al. Extracellular Reaction-Diffusion

1. INTRODUCTION

Computational neuroscience has had an historical focus on
electrophysiology, with consequent neglect not only of the
accompanying chemophysiology that directly underlies neural
function, but also of the brain as a complex organ within
which neuronal networks are embedded (De Schutter, 2008).
This neglect is of particular importance as we try to adapt
our models for understanding of brain disease, many of which
are associated with changes in extracellular concentrations of
ions, metabolites, transmitters, or toxins in various parts of the
brain (Mulugeta et al., 2018). These extracellular concentration
changes then cause alterations in reactions and reaction rates
involving cellular elements including specific and nonspecific
receptors, ion channels, and intracellular signaling pathways.
In order to begin to fill out modeling of the brain as a
whole organ, we have developed an extracellular modeling
extension for the NEURON modeling platform (Carnevale and
Hines, 2006), a widely used simulation tool that has been
used in over 1900 neuroscience publications, with around
600 models freely available on ModelDB (McDougal et al.,
2017).

NEURON has always allowed modelers to describe arbitrarily
complex phenomena with their own “mod” files, optionally
including verbatim C-code, thereby permitting arbitrary
programming to be done to augment the package. This
left the user with complex code which intermingled model
specifics with the numerics, making reuse difficult. One of
the guiding principles of simulator development, both for
NEURON and for other simulators, has been to promote
reproducibility, reusability, and credibility by providing a
consistent numerics-independent way to specify models. In
the reaction-diffusion domain, the NEURON rxd module
simplified and standardized the description of accumulation,
reaction and diffusion (McDougal et al., 2013). This module
has been used to study calcium dynamics in both physiological
and pathological conditions (Neymotin et al., 2014, 2016). We
have now expanded the rxd module to include macroscopic
volume averaged description of extracellular space (ECS).
This is appropriate for spatial discretization on the order of
10 µm to produce simulations up to centimeters (Nicholson
and Phillips, 1981; Nicholson, 1995). The rxd macroscopic
model of tissue is parameterized by free volume fraction—the
proportion of space unoccupied by cells, blood vessels, etc.; and
tortuosity—the increase in a diffusing particle’s path-length due
to obstacles.

In the following sections we give details of the development
of the extracellular rxd module, with examples to demonstrate
the utility of the Python interface. We then show some
details of the numerical methods underling the module’s
interface and techniques used to improve performance for large
simulations, providing several tests to verify rxd simulation
results. We give a basic example of clinically-relevant simulation
by demonstrating the phenomenon of spreading depression, a
pathological condition thought to play a role in a variety of
conditions including mirgraine, epilepsy, and stroke (Wei et al.,
2014).

2. OBJECTIVES

As with cells of other solid organs, neurons exist in a highly active
medium, influenced by bioactive chemicals whose concentrations
change rapidly through: (1) passive diffusion, (2) active deposit
and clearance from other cells, and (3) binding or other
reactions with extracellular species (Syková and Nicholson,
2008). These important tissue-level chemophysiological influences
have been neglected by computational neuroscience for a
variety of reasons, including the aforementioned focus on
electrophysiology. Primarily, however, simulators have been
unable to support this level of interaction due to the difficulty of
reconciling the small spatial scale of single cell and local network
simulation with the large millimeter (mouse) or centimeter
(primate) scale of the brain as an organ. This type of broad
multiscale modeling naturally requires compromises at both
ends, and across the temporal scales as well. We set out to
extend NEURON to handle this domain by providing a coarsely-
discretized extracellular domain within which cells and networks
can be embedded, creating mosaic models where different parts
are provided at different levels of detail. The coarse scale permits
relatively rapid simulation runs, but is sufficiently detailed
to set parameters based on currently available experimental
measures. Other spatial scales will be added to this mosaic in the
future.

A major focus for both the original rxd module and
this extension is ease-of-use. This goal is partly achieved
by separating the user from the details of the numerics
enhancing reproducibility by making it easy to identify the
conceptual model. Additionally, the rxd Python interface
subserves this goal by providing relatively simple, biologically-
intuitive representations that allow the user to focus on the
translation of the conceptual model by specifying (1) regions:
where? — in this case the ECS; (2) species in each region:
who? — an ionic species, a peptide, a transmitter, etc.; and (3)
transformations what? — reactions between species, signaling
across a membrane, or transits involving the same species across
a membrane.

Providing consistent modeling of both intracellular and
extracellular space also ensures conservation of mass. The
total amount of a substance of interest will be conserved
within the simulation, despite moving in and out of subcellular
compartments, or in and out of cells, via currents, active
transport, or vesicular release.

3. EXAMPLES

We present two related examples to demonstrate the use
of the rxd module to model extracellular concentrations: (1)
simple potassium diffusion, and (2) spreading depression.
In each case we begin by specifying the region for the
dynamics, here the ECS. We then identify the species involved.
Finally, their interactions with each other or with fixed agents
are identified. The code for these examples are available at
ModelDB (http://modeldb.yale.edu/238892) (McDougal et al.,
2017).

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2018 | Volume 12 | Article 4194

http://modeldb.yale.edu/238892
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

3.1. Potassium Diffusion in ECS
This example shows potassium diffusion through a box of
ECS, with spatial uptake represented phenomenologically as
a reaction. We demonstrate each of the stages required to
specifying a model. First, to use extracellular rxd, we import it
from NEURON and enable it:

from neuron import crxd as rxd

rxd.options.enable.extracellular = True

3.1.1. Region
We then specify the specific extracellular region;

ecs = rxd.Extracellular(xlo=-500, ylo=-500,

zlo=-500, xhi=500, yhi=500,

zhi=500, dx=10,

volume_fraction=0.2,

tortuosity=1.6)

(xlo,ylo,zlo) and (xhi,yhi,zhi) define the lower left
back and upper right front corners of a 3D box in micrometers.
dx is the size of a side of a cubic voxel; alternatively dx

can be a 3-element tuple to specify voxel length, height and
depth. The optional argument volume_fraction is the free
volume fraction or porosity, the accessible portion of extracellular
volume. The tortuosity is the average multiplicative increase
in path length a particle must travel due to obstacles. The effective
diffusion coefficient is the free diffusion coefficient divided by
the square of the tortuosity. Here, the free volume fraction
(0.2) and tortuosity (1.6) were set to typical values for brain
(Syková and Nicholson, 2008). Both the volume fraction and
the tortuosity can be scalar values as shown here. Alternatively,
arrays the size of the extracellular space, or functions that take
the x, y, z coordinates as arguments can be used (section 3.2.1).
Extracellular concentrations are given relative to free volume, i.e.,
the total amount in a voxel divided by free volume of the voxel.

3.1.2. Species
To create extracellular potassium, we use the same
rxd.Species call as would be used for intracellular diffusion;
the difference is in the first argument that gives the extracellular
region.

k = rxd.Species(ecs, name=’k’,

d=2.62, charge=1,

initial=lambda nd: 40

if nd.x3d**2 + nd.y3d**2 + nd.z3d**2

< 100**2 else 3.5,

ecs_boundary_conditions=3.5)

Where d (the free diffusion coefficient) is set to 2.62µm2/ms
for K+(Samson et al., 2003), where d has been increased to
reflect a higher temperature of 37◦C by using the Stokes-Einstein
equation, assuming viscosity of the extracellular fluid to be the
same as water. Anisotropic diffusion is supported by passing a 3-
tuple for diffusion coefficients in 3 dimensions. Initial conditions
can be a scalar value for the whole region, an array matching the

region

(

i.e.,

⌈

xhi− xlo

dx

⌉

,

⌈

yhi− ylo

dy

⌉

,

⌈

zhi− zlo

dz

⌉)

or an anonymous (lambda) function, as shown here. The lambda
function is given a NodeExtracellular as argument,
allowing the model to specify initial concentration depending
on the location (x3d, y3d, z3d). If the species exists in both
intracellular rxd.Region and the ECS then the initial function
will receive both NodeExtracellular and either Node1D or
Node3D from the class rxd.node. This multiplicity of regions,
where the same location is represented in both the intracellular
space and the ECS is due to using an interposition of intracellular
and extracellular space handled by ECS free volume fraction,
instead of by using excluded volume. The initial function can
assign values by first checking region is equal to the defined ecs.
The default boundary conditions for the ECS are Neumann (zero
flux). Dirichlet boundary conditions can be specified with the
keyword argument ecs_boundary_conditions set to the
desired concentration. Concentrations are in mM.

3.1.3. Reactions
Extracellular reactions are specified using rxd.Rate,
rxd.Reaction and rxd.MultiCompartmentReaction
as described in the rxd tutorial (McDougal, 2018). We consider
the case of excess potassium in the ECS, which is primarily taken
up by astrocytes (MacAulay and Zeuthen, 2012). A wide variety
of modeling options are available for explicitly modeling these
cells at various levels of complexity (Wei et al., 2014; Conte et al.,
2018). Here we demonstrate the phenomenological model of
astrocytic buffering from (Bazhenov et al., 2004; Krishnan and
Bazhenov, 2011). This model treats astrocytes as a chemical
buffer that could take up excess K+ but would then release K+

when ECS levels dropped.

[K][A]
kf
⇋

kb
[AK] (1)

where A is the concentration of free astrocyte “buffering”
capacity and AK is the concentration of bound potassium. By
default mass-action kinetics are assumed, so the stoichiometry
is implicit. The rate of change in unbound astrocyte
capacity A used in the following example is then given by;
kf*[K]*[A] - kb[AK]mM/ms. Alternative kinetics can be
specified with the keyword argument mass_action=False.
The rates would then be assumed to be the full forward and
reverse rates, and change in unbound buffer would be kf-kb
mM/ms. The initial condition Amax represents the total capacity
of glial to buffer K+ (in mM), in this phenological model it
represents the density of astrocyte uptake/binding sites. These
sites are immobile: d=0.

The specification of kf uses the exponential of an
rxd.Species. This is achieved in Python by importing
the rxd.rxdmath module, which provides the same library of
functions as the Python math module. However while Python
math functions require numeric arguments the rxd.rxdmath
allows rxd.Species to be used, as in the following example;

from neuron.rxd import rxdmath

kb = 0.0008 #backward rate mM/ms

kth = 15.0 #k threshold

kf = kb/(1.0 + rxdmath.exp(-(k - kth)/1.15))

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2018 | Volume 12 | Article 4195

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

Amax = 10 #uptake/release site density

A = rxd.Species(ecs,name=’astrocyte’,

d=0, initial=Amax)

AK = rxd.Species(ecs,name=’bound’,

d=0, initial=0)

astrocytes = rxd.Reaction(k + A, AK, kf,

kb)

3.2. Cortical Spreading Depression
The preceding simulation framework can be used to develop
a model of spreading depression (SD). SD is a wave of near
complete depolarizations of neurons that propagates in gray
matter at 2–7 mm/min and lasts for ∼1 min. This phenomena
is highly reproducible and is associated with several pathological
conditions, including; migraines, ischemic stroke, traumatic
brain injury and epilepsy (Somjen, 2004). An early mechanistic
model attributed the depolarization to an increase in extracellular
K+ (Grafstein, 1956). A positive feedback loop underlies SD: high
extracellular K+ activates cells whose depolarization opens K+

channels which release more K+ into extracellular space.
To produce this positive feedback between ECS and cellular

physiology, we simulate a realistic density of 90,000 cells/mm3

embedded in 1mm3 of ECS with diffusion of both K+ and
Na+. Each neuron has a soma and dendrite with the Hodgkin-
Huxley complement of channels (naf, kdr, gleak) as well as kleak
and nap (persistent Na+ channel) with parameters based on
Conte et al. (2018). This initial simplified model omits several
mechanisms likely to contribute to spreading depolarization,
including slow Ca2+-dependent K+ currents. More importantly,
we omit neurons Na-K-ATPase, a major mechanism for restoring
ion gradients. As noted above, glial Na-K-ATPase is partially
modeled by the field of K+ sink.

An initial spherical bolus of 40 mM K+ of radius 100 µm
was placed in the center of the ECS to trigger SD. In the
absence of astrocytic uptake, the SDwave front propagated at 1.69
mm/min. High astrocyte capacity of 500 mM (Bazhenov et al.,
2004) immediately removed the free K+, preventing SD. At a far
lower astrocyte density of 10 mM, SD did occur (Figure 1). SD
speed was reduced by 70% compared to the no-astrocyte case
(Figure 2).

3.2.1. Cerebral Edema
The volume-averaged macroscopic description of tissue can be
characterized by free volume fraction and tortuosity. Both vary
across brain regions (Nicholson and Syková, 1998), as well
as during the sleep-wake cycle (Xie et al., 2013) and under
pathological conditions (Hrabětová and Nicholson, 2000). A
major pathological condition that decreases free volume fraction
and increases tortuosity is cytotoxic edema, which is caused by
cell swelling resulting in reduced ECS. In the case of ischemia
(stroke), edema will be greatest at the ischemia core, the central
location where metabolites have been cut-off through lack of
blood flow. At the core we reduced free volume fraction to
0.07 and increased tortuosity to 1.8 (Zoremba et al., 2008).
Outside of the core, there is a penumbra where cell function and
ECS characteristic are less abnormal. The penumbra in turn is

surrounded by normal tissue. The notion of 3 concentric volumes
is a gross approximation since there is fall-off of damage as
one passes from central core to normal tissue at the outside.
We therefore simulated SD with cerebral edema using a linear
change in the free volume fraction and tortuosity parameters
from central core outward.

The characteristics of the ECS were specified with functions:

Lx, Ly, Lz = 1000, 1000, 1000

alpha0, alpha1 = 0.07, 0.2

tort0, tort1 = 1.8, 1.6

r0 = 100

def alpha(x, y, z) :

return (alpha0 if x**2 + y**2 + z**2

< r0**2

else min(alpha1, alpha0 +(alpha1

-alpha0) *((x**2+y**2+z**2)**0.5-r0)/

(Lx/2)))

def tort(x, y, z) :

return (tort0 if x**2 + y**2 + z**2

< r0**2

else max(tort1, tort0 - (tort0

-tort1) *((x**2+y**2+z**2)**0.5-r0)/

(Lx/2)))

ecs = rxd.Extracellular(-Lx/2.0, -Ly/2.0,

-Lz/2.0, Lx/2.0, Ly/2.0, Lz/2.0, dx=10,

volume_fraction=alpha, tortuosity=tort)

We repeated the SD simulation in the ischemic context. Although
diffusion was slowed by the increased tortuosity, the effect was
less than the speed-up obtained due to reduced volume fraction.
With the reduced volume fraction, less K+ was required to
propagate the wave (Figure 2).

This simple model demonstrates the utility and simplicity of
the expanded rxd module. However, it only included diffusion
of K+ and Na+. Other relevant species could be added to make
the simulation more closely comparable to the clinical situation.
Adding glutamate would produce further depolarization through
synaptic receptors and could contribute to both excitotoxicity
(cell damage due to excessive depolarization and calcium) and
to the propagation of SD (Kager et al., 2000; Hübel et al.,
2017). Demonstrating excitotoxicity would also suggest adding
diffusion of calcium, which is also involved in the induction and
propagation of SD. Chloride contributes to K+ homoeostasis via
Cl-K cotransport and also regulates cell osmolarity (Hübel and
Ullah, 2016).

In order to explicitly simulate uptake by astrocytes
rxd.MultiCompartmentReaction would be used to
define stoichiometrically-defined flux between intracellular
and extracellular regions. A more sophisticated model of
astrocytes would include gap junctions, allowing astrocytes to
maintain a lower membrane potential facilitating K+ uptake.
Such a model could also include spatial buffering, where K+

is transported via astrocytes rather than diffusion in the ECS
(Gardner-Medwin, 1983). While the buffering in this simple
model is neuroprotective, astrocytes also play an adverse role in

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2018 | Volume 12 | Article 4196

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

FIGURE 1 | SD wave Time points at 10, 20, 30 s, with concentrations averaged over the depth of 1 mm3 of ECS. (A) Extracellular K+ with glial uptake and Dirichlet

boundary conditions. (B) Glial uptake occupancy. (C) Membrane potential for 1,000 of the 90,000 cells [their locations are shown in (A,B) by white points]. Video

available in Supplementary Data.

SD, as gap-junction mediated calcium waves may be related to
the initiation and amplification of SD, facilitating propagation
over longer distances (Nedergaard et al., 1995).

These simulations focused on the wave of cell depolarization
and omitted the silencing of electrical activity that follows—
looking at the spreading depolarization rather than at the
specifics of the spreading depression itself (Dreier, 2011).
This second phase of neuronal inactivity may be related to
depolarization blockade, as well as to synaptic plasticity and the
accumulation of extracellular adenosine (Frenguelli and Wall,
2016; Cozzolino et al., 2018).

4. IMPLEMENTATION DETAILS

We provide a Python interface for specifying the model for
ease of use and reproducibility; for performance reasons the
numerical details are implemented in C and connected to Python
using ctypes. This separation between interface and numerics

allows the user to see a standard approach to modeling the
ECS, where species and reactions are immediately apparent when
examining a model. Parameters can be read directly from the
Python code or obtained by querying the model through the
Python console. In the future, parameters will also be accessible
via a graphical user interface (GUI).

4.1. Model Specification Aids
Reproducibility
The concise, declaratory syntax for model specification has
been slightly augmented since introduction of the original rxd
module introduced with NEURON 7.3. However, all models
implemented using a previous version of the rxd module will
continue to work with the expanded version. Because of the
vast difference in spatial scale between the intracellular and
extracellular volumes, distinct modeling techniques are used to
support diffusion in region rxd.Extracellular.

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2018 | Volume 12 | Article 4197

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

FIGURE 2 | Spreading depression spread faster with edema. (A) Maximum distance from the center where extracellular K+ exceeds 15 mM. The extent was limited

by the loss of K+ at the Dirichlet boundary. (B) Wave speed from the first 10 s of SD.

4.2. Finite-Volume Alternating Direction
Implicit Method
We used the Douglas-Gunn Alternating Direction Implicit
method (DG-ADI) for diffusion in the ECS (Douglas and Gunn,
1964). DG-ADI divides each time step into three sub-steps
(Equations A1–A3). The first deals with the diffusion operator
in the x-direction, the second in the y-direction and the third
in the z-direction. DG-ADI is computationally efficient with
worst case runtimeO(N) for N voxels. DG-ADI also provides an
embarrassingly parallel workload. If the size of the extracellular
space is Nx × Ny × Nz , then there are Ny × Nz independent
operations for (EquationA1),Nx×Nz for (EquationA2) andNx×

Ny for (Equation A3). The finite volume method discretization
(Equation A15) can be modified to account for heterogeneous
diffusion coefficients and free volume fractions (Equation A16),
while ensuring conservation of mass (Figure 5A). The details of
the numerical scheme are given in Appendix A.

4.3. Just-in-Time Compiled Reactions
Reaction-diffusion performance is further improved by using
compiled reactions. Reactions are now parsed into C code which
is compiled Just-In-Time (JIT). For example, the reaction given
in section 3.1.3 produces the following C code;

#include <math.h>

#include <rxdmath.h>

void reaction(double* species_ecs,

double* rhs)

{

double rate;

rate = -((species_ecs[2])*(0.0008))

+(((0.0008)/(1.0+exp((

-(species_ecs[0]-(15.0)))/(1.15))))

(species_ecs[1]))(species_ecs[0]);

rhs[1] = (-1)*rate;

rhs[0] = (-1)*rate;

rhs[2] = (1)*rate;

}

The 0 index of the species_ecs and rhs arrays corresponds
to k, 1 to A and 2 to AK. The C code for the reactions are
compiled into a dynamic library using the C compiler distributed
with the operating system or distributed with NEURON. The
compiled library is loaded and provides a function pointer that
is used to numerically approximate the Jacobian. This allows
function overloading, so the same method is used to process all
extracellular reactions. The Jacobian for the reaction is solved
using the Meschach library (Stewart and Leyk, 1994) included
with the NEURON distribution. rxd.rxdmath supports all the
mathematical functions in the math module. Most of these are
defined in the GNU C Library math.h. Additional functions
have been added in rxdmath.h.

4.4. Parallel Implementation
Extracellular reaction-diffusion benefits from two forms of
parallelization; multithreading and multiprocessor (Figure 3).
Multithreading, implemented with POSIX threads, uses shared
memory. The number of rxd threads n can be set by calling
rxd.nthread(n).

A thread pool is created at the start of the simulation;
the calculations required for both diffusion (DG-ADI) and
reactions are distributed across the available threads in
the pool. The rxd threads are independent of NEURON
threads used for electrophysiology, which are accessed via

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2018 | Volume 12 | Article 4198

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

A B

FIGURE 3 | Reduction in runtime with parallelization. (A) 5x speedup with 8 threads with 2503 (15,625,000) extracellular voxels for example in section 3.1. (B) A

spreading depression example with 1mm3 tissue, with 250,000 two compartment neurons and 1503 (3,375,000) voxels. Electrophysiology accounts for 62% of the

runtime with one process (with 38% due to extracellular rxd), this is reduced to 22% when four processes are used, increasing the relative burden of extracellular rxd

to 78%. Walltime minimum and standard error are shown for 5 runs of each simulation performed on a 24 core system (4 Intel Xeon L5640 processors).

ParallelContext.nthreads. Independent pools are used
because these are independent problems: (1) electrophysiology:
ParallelContext threads split computations either by cell, or
by cell section (multi-split method; Hines et al., 2008) (2)
diffusion and reaction: DG-ADI. Although DG-ADI is trivially
parallelizable, we do not achieve optimal scaling (Figure 3A).
Performance is limited by the overhead of the relatively large
non-contiguous memory access required, and the need to
coordinate with the NEURON time step.

The multiprocessor approach, implemented with the Message
Passing Interface (MPI) is primarily intended for large neuronal
network models. The network that is embedded within the
ECS may in this case be purely electrophysiological or may
also include intracellular rxd. In either case, the speed-up from
using MPI is entirely due to network speed-up; each processor
solves the entire ECS reaction-diffusion space independently. All
cellular influx and efflux are made available to all processors.
This simple approach was adopted after demonstrating that
communication overhead dominated over calculation when
the ECS was split across processors. Multiprocessor and
multithreading can be used together, with MPI reducing the
runtime for the intracellular rxd for electrophysiology and for
networks, multiple threads reducing runtime for ECS reaction-
diffusion (Figure 3B).

5. VERIFICATION AND VALIDATION

We verified the numerical implementation by (1) comparing
a simple model with its analytic solution; and (2) confirming
conservation of mass, (3) comparing results with FiPy, a finite
volume PDE solver (Guyer et al., 2009).

5.1. Comparison With Analytic Results
A simple model with an analytic solution is an initial cube of
elevated concentration diffusing in a closed boxed. It is solved by
integrating the Green’s function over the initial conditions and
matching the Neumann boundary conditions with the method
of images (Appendix B). A direct comparison to the numerical
method is obtained by integrating over the central voxel and
dividing by volume to obtain the average concentration at the
center (Equation A20). There is close agreement between the
numerical solution provided by the rxdmodule and this analytic
solution (Figure 4).

5.2. Conservation of Mass
When using Neumann (zero flux) boundary conditions the
finite volume method will conserve mass. This provides a
basic numerical and algorithmic verification that can be applied
even to complex models. The example of section 3.2.1 can be
modified so rxd manages both intracellular and extracellular
concentrations. Multiplying the extracellular concentration by
the volume fraction and the voxel volume and the intracellular
concentration by the segment volume gives the total amount of
K+. The change in total amount of K+ (Figure 5A) was on the
order of floating point accuracy (∼ 10−12).

5.3. FiPy Comparison
We modeled a morphologically detailed reconstruction of
a rat hippocampal CA1 pyramidal neuron obtained from
NeuroMorpho.Org NMO_00227 (Ishizuka et al., 1995; Ascoli
et al., 2007), with constant outgoing ion flux corresponding to
a current density of 1mA/cm2 of K+ (Figure 5B).

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2018 | Volume 12 | Article 4199

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

FIGURE 4 | Verification against analytic solution. (A) Cross-section of initial conditions (top) and after 100ms (bottom). 9 µm3 cube diffuses in a 21 µm3 cube. (B)

Concentration of center voxel compared to analytic solution (Equation A20), with insets at two 2.5 ms periods (1x = 1 µm, 1t = 0.1 ms). (C) Relative error tends

toward zero with finer spatial discretization.

In rxd objects provide point sources, and occupied space
is represented by the free volume fraction and tortuosity. We
exported the point sources from the NEURON simulation and
used them with the FiPy solver (Figure 5C). Differences were≤5
nM, with largest differences at the sites of efflux (Figure 5D). The
sum of absolute differences was 0.03% of the total concentration
at t = 1s.

6. DISCUSSION

The original rxd package expanded multiscale modeling in
NEURON from the electrophysiological scales of neurites,
cells and networks into chemophysiological scales of spines,
subcellular organelles, interactomics, metabolomics, proteomics.
This further development of the module into the domain
of extracellular space considerably extends the scope of
chemophysiology into the vast distances of interneuronal space.
Computational performance for this large-scale problem is
improved by the use of multi-threading parallelization of DG-
ADI algorithm for diffusion, multiprocessor parallelization for
electrophysiology, and JIT compilation of reactions. The ECS
module implementation was verified against an analytic solution,
a test of conservation, and by comparison to an established
simulator.

The extension to whole-organ simulation in the brain
is particularly important for the development of multiscale
modeling for clinical applications (Hunt et al., 2018; Mulugeta
et al., 2018). In the past, large neural simulations have
typically been neuronal networks which focus exclusively on
the electrical activity of neurons and their mutual influence
via chemical and electrical synapses. Such neuronal network
simulations have effectively operated in a vacuum, omitting

the effects of nonsynaptic neuromodulators, neuromodulatory
gases, ions, glia, metabolites, etc. These physiological agents
also play pathophysiological roles, for example the excessive ion
concentrations seen in spreading depression, and the lack of
metabolites that causes tissue damage from ischemia and stroke.
Pharmacological agents used in treatments are also broadcast
diffusively, as are agents and effects associated with microglia.
Mechanical factors from brain trauma and current in electrical
stimulation follow their respective tissue impedance boundaries.
Many pathological disorders, particularly stroke and traumatic
brain injury, involve large volumes of tissue. For this reason, the
initial development of our new extension has focused on coarse
spatial discretization in order to accommodate large distances,
permitting representative neuronal networks to be seeded in a
mosaic of locations within the volume.

6.1. Large Volume Averaged Approach
Electrophysiological models in NEURON can specify currents
either in absolute terms or as current densities. In the latter case,
membrane surface area must be used to calculate the current.
The ECS rxd module identifies ion flux from currents, which are
then placed in the corresponding voxel of the ECS simulation.
Macroscopic measure of ion diffusion in bulk tissue observed
experimentally with ion selective sensors, biosensors, and fast-
scan cyclic voltammetry can be used to constrain parameters
(Budygin et al., 2000; Dale et al., 2005; Nicholson and Hrabětová,
2017).

Currently, we support two boundary conditions: Neumann
boundary conditions (constant boundary flux) and Dirichlet
conditions (constant boundary concentration). Neumann
boundary conditions are appropriate for in-vivo models
where we are simulating a piece of brain in continuity with
other similar pieces of brain. In this case, any substance that

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2018 | Volume 12 | Article 41100

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

FIGURE 5 | Verification and validation. (A) Conservation of mass for verification: < 10−12 change with currents from 1, 000 neurons in tissue with heterogeneous

diffusion. (B) rxd simulation of 1mA/cm2 constant K+ flux from a traced rat hippocampal CA1 pyramidal neuron and Dirichlet boundary conditions, concentrations at

1 s (averaged over depth). (C) Comparable solution using FiPy with identical current fluxes. (D) Difference between rxd and FiPy concentrations results (note scale in

nM).

leaves the simulated space would be replaced by substance
from neighboring regions. Conversely Dirichlet conditions
(constant boundary) are appropriate if the region modeled is
not representative, as occurs under pathological conditions
such as the core area of a stroke. In this case perturbations
in extracellular concentrations are expected to be restored
sufficiently far from their source. In both cases, clearance can still
be modeled using NEURON models or extracellular reactions
to represent transport through the blood-brain-barrier. If the
ECS is made large enough relative to simulation duration, the
choice of boundary conditions will not have a significant effect
on results.

6.2. Multiple Uses of Extracellular
Reaction-Diffusion Simulation
There are many forms of extracellular extra-synaptic signaling
between cells. Here we have illustrated the utility of the module
with a simple model for spreading depression, where the “signal”
is a change in ion concentration. The extracellular rxd module
has a wide range of potential applications tracking the variety
of substances of both physiological and pathological relevance.
For example, neurotoxic substances such as free radicals diffuse
away from areas of damaged tissue; amyloid-β oligomers
may diffuse away from specific cells creating misfolding of
protein in remote cells (Waters, 2010). Both synaptic spillover
and nonsynaptic release provide diffusing of neurotransmitters
(e.g., glutamate and excitotoxicity), and of neuromodulators:
dopamine, acetylcholine, norepinephrine, adenosine, etc. For

example, dopamine (DA) in striatum is released by axonal
projections from midbrain, and diffuses in a local region before
reuptake by DA transporter (Sulzer et al., 2016). Models of
striatal activity in physiological (Humphries et al., 2010) or
pathological conditions (Migliore et al., 2008; Blackwell et al.,
2018) would benefit by including this extracellular dopamine
spread. Simulating extracellular dopamine would follow the same
procedure described in section 3.1; specifying the region with
tortuosity and porosity, the species with its diffusion coefficient
and boundary conditions and the reactions that remove it from
the ECS including the kinetics of DA transporters.

6.3. Future Development
The ECS simulation developed here will provide the broadest
spatial scale for future multiscale models that will add
additional methods at smaller scales. These multiple methods
will interconnect so as to be used together in single multiscale
simulations that coordinate a broad range of spatial and
temporal scales, that could not be assessed using a uniform fine
discretization, or uniform algorithms throughout. At the finest
scales, stochastic methods will be used to better understand the
variability seen at small scale, for example in synaptic clefts.
Additional simulation method currently being addressed include
techniques for understanding bulk tissue current flow to simulate
deep and transcranial current stimulation. Whether induced
externally or produced by local field potentials (Lindén et al.,
2014), bulk electric field effects will not only depolarize or
hyperpolarize cells, but will also affect diffusion of ions and

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2018 | Volume 12 | Article 41101

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

other charged species i.e., the phenomenon of electrodiffusion.
Not only are ions affected by the field, ions also produce a field
that will affect other ions, potentially producing fields of order
hundreds of microvolts over 1mm of tissue (Halnes et al., 2016;
Solbrå et al., 2018). Such gradients are likely to have an even
greater influence in SD, where there is a large redistribution of
ions.

There are a number of other important organ-level processes
that are particularly important for brain pathology. These include
blood flow which is of importance for understanding stroke,
and mechanical properties of importance for understanding
traumatic brain injury. Additional processes that are unique to
the brain would include CSF production, flow and reuptake; and
status of the blood-brain barrier. More controversial is the role
of advection—fluid flow. The brain lacks a lymphatic system for
waste clearance, and the small spaces between cells, ∼40 nm, are
too small to support advection (Jin et al., 2016; Holter et al., 2017).
It has been hypothesized to instead use a glymphatic system that
establishes fluid flow via glial astrocytic aquaporin-4 channels,
driven by pulsations from respiration and heartbeat. Fluid would
flow via astrocytes oriented to provide the pathways that cannot
be supported by the interstitium (Iliff et al., 2012).

All of these processes are currently the subject of multiscale
modeling at varying degrees of sophistication (Anderson and
Vadigepalli, 2016; Linninger et al., 2016; Calvetti et al., 2018;
Durka et al., 2018; Zhao et al., 2018). Although it would not
be practical to incorporate these many types of simulation
within NEURON, there will be possibilities for cross-simulator
communication providing complex multiphysics simulations in
the future (Djurfeldt et al., 2010). In the meantime, some
aspects of this complexity can be readily incorporated without
considering the details: for example, brain vascularization can be
modeled as a “metabolite field” that would take account of the
greater availability of oxygen and glucose at locations within, and
reduced availability in the watershed areas that lie between, the
major artery distribution trees.

The term mosaic modeling may be used to describe
these complex multiscale, multiphysics, multialgorithmic,
multidimensional simulations—the mosaic involves pieces of
a cell or of a brain simulated with different dimensionality,
different algorithms, and different discretizations. An example at

the cellular level are spines, which are best handled stochastically

and in three dimensions, while the rest of the cell is handled
deterministically and as a one dimensional branched tree
structure (Lin et al., 2017a,b). Similarly, in the ECS, small spaces
such as synapses require a microscopic approach that is not
practical for bulk tissue modeling. In the future, these pieces
of the mosaic will be adapted from approaches currently used
by other simulators. For example, one approach at small scales
is to track individual particles, done by Smoldyn (Andrews,
2012) and MCell (Stiles and Bartol, 2001; Franks et al., 2002).
Another small-volume technique uses averaged volumetrics
as done by the ENOS platform, which has also been used
for high resolution models of glutamatergic synapses and their
interaction with glia (Bouteiller et al., 2008). Other platforms that
support intracellular diffusion will also be mined for additional
techniques, including STEPS (Wils and De Schutter, 2009),
NeuroRD (Brandi et al., 2011), MOOSE (Ray and Bhalla, 2008).

AUTHOR CONTRIBUTIONS

WL, MH, RM, and AN expanded the rxd module. WL, RM, and
AN created the examples and wrote the paper.

FUNDING

Supported by NIH grant R01 MH086638.

ACKNOWLEDGMENTS

We thank Prof. Charles Nicholson, Prof. Sabina Hrabětová and
Dr. Jan Hrabe for their advice on modeling the extracellular
space. We thank Prof. David Terman who provided the
inspiration and channel kinetics for the spreading depression
simulations.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00041/full#supplementary-material

REFERENCES

Anderson, W. D., and Vadigepalli, R. (2016). Modeling cytokine

regulatory network dynamics driving neuroinflammation in central

nervous system disorders. Drug Discov. Today Dis. Models 19, 59–67.

doi: 10.1016/j.ddmod.2017.01.003

Andrews, S. S. (2012). “Spatial and stochastic cellular modeling with the smoldyn

simulator,” in Bacterial Molecular Networks. Methods in Molecular Biology

(Methods and Protocols), Vol. 804, eds J. van Helden, A. Toussaint, and D.

Thieffry (New York, NY: Springer).

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). Neuromorpho. org:

a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251.

doi: 10.1523/JNEUROSCI.2055-07.2007

Bazhenov, M., Timofeev, I., Steriade, M., and Sejnowski, T. J. (2004). Potassium

model for slow (2-3 hz) in vivo neocortical paroxysmal oscillations. J.

Neurophysiol. 92, 1116–1132. doi: 10.1152/jn.00529.2003

Blackwell, K. T., Salinas, A. G., Tewatia, P., English, B., Hellgren Kotaleski,

J., and Lovinger, D. M. (2018). Molecular mechanisms underlying

striatal synaptic plasticity: Relevance to chronic alcohol consumption

and seeking. Eur. J. Neurosci. doi: 10.1111/ejn.13919. [Epub ahead of

print].

Bouteiller, J. M., Baudry, M., Allam, S. L., Greget, R. J., Bischoff, S., and

Berger, T. W. (2008). Modeling glutamatergic synapses: insights into

mechanisms regulating synaptic efficacy. J. Integr. Neurosci. 7, 185–197.

doi: 10.1142/S0219635208001770

Brandi, M., Brocke, E., Talukdar, H. A., Hanke, M., Bhalla, U. S., Kotaleski,

J. H., et al. (2011). Connecting moose and neurord through music: towards a

communication framework for multi-scale modeling. BMC Neurosci. 12:P77.

doi: 10.1186/1471-2202-12-S1-P77

Budygin, E. A., Kilpatrick, M. R., Gainetdinov, R. R., and Wightman, R. M. (2000).

Correlation between behavior and extracellular dopamine levels in rat striatum:

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2018 | Volume 12 | Article 41102

https://www.frontiersin.org/articles/10.3389/fninf.2018.00041/full#supplementary-material
https://doi.org/10.1016/j.ddmod.2017.01.003
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1152/jn.00529.2003
https://doi.org/10.1111/ejn.13919
https://doi.org/10.1142/S0219635208001770
https://doi.org/10.1186/1471-2202-12-S1-P77
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

comparison of microdialysis and fast-scan cyclic voltammetry. Neurosci. Lett.

281, 9–12. doi: 10.1016/S0304-3940(00)00813-2

Calvetti, D., Capo Rangel, G., Gerardo Giorda, L., and Somersalo E(2018). A

computational model integrating brain electrophysiology and metabolism

highlights the key role of extracellular potassium and oxygen. J. Theor. Biol.

446, 238–258. doi: 10.1016/j.jtbi.2018.02.029

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge, UK:

Cambridge University Press.

Conte, C., Lee, R., Sarkar, M., and Terman, D. (2018). A mathematical model

of recurrent spreading depolarizations. J. Comput. Neurosci. 44, 203–217.

doi: 10.1007/s10827-017-0675-3

Cozzolino, O., Marchese, M., Trovato, F., Pracucci, E., Ratto, G. M., Buzzi, M. G.,

et al. (2018). Understanding spreading depression from headache to sudden

unexpected death. Front. Neurol. 9:19. doi: 10.3389/fneur.2018.00019

Dale, N., Hatz, S., Tian, F., and Llaudet, E. (2005). Listening to the brain:

microelectrode biosensors for neurochemicals. Trends Biotechnol. 23, 20–428.

doi: 10.1016/j.tibtech.2005.05.010

De Schutter, E. (2008). Why are computational neuroscience and systems biology

so separate? PLoS Comput. Biol. 4:e1000078. doi: 10.1371/journal.pcbi.1000078

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans,

T. C., et al. (2010). Run-time interoperability between neuronal network

simulators based on the MUSIC framework. Neuroinformatics 8:43–60.

doi: 10.1007/s12021-010-9064-z

Douglas, J., and Gunn, J. E. (1964). A general formulation of alternating direction

methods. Numer. Math. 6, 428–453. doi: 10.1007/BF01386093

Dreier, J. P. (2011). The role of spreading depression, spreading depolarization

and spreading ischemia in neurological disease. Nat. Med. 17:439.

doi: 10.1038/nm.2333

Durka, M. J., Wong, I. H., Kallmes, D. F., Pasalic, D., Mut, F., Jagani, M., et al.

(2018). A data-driven approach for addressing the lack of flow waveform data

in studies of cerebral arterial flow in older adults. Physiol. Meas. 39:015006.

doi: 10.1088/1361-6579/aa9f46

Franks, K. M., Bartol, T. M., and Sejnowski, T. J. (2002). A monte carlo model

reveals independent signaling at central glutamatergic synapses. Biophys. J. 83,

2333–2348. doi: 10.1016/S0006-3495(02)75248-X

Frenguelli, B. G., and Wall, M. J. (2016). Combined electrophysiological

and biosensor approaches to study purinergic regulation of epileptiform

activity in cortical tissue. J. Neurosci. Methods 260, 202–214.

doi: 10.1016/j.jneumeth.2015.09.011

Gardner-Medwin, A. (1983). Analysis of potassium dynamics in mammalian brain

tissue. J. Physiol. 335, 393–426. doi: 10.1113/jphysiol.1983.sp014541

Grafstein, B. (1956). Mechanism of spreading cortical depression. J. Neurophysiol.

19, 154–171. doi: 10.1152/jn.1956.19.2.154

Guyer, J. E., Wheeler, D., and Warren, J. A. (2009). FiPy: partial differential

equations with Python. Comput. Sci. Eng. 11, 6–15. doi: 10.1109/MCSE.2009.52

Halnes, G., Mäki-Marttunen, T., Keller, D., Pettersen, K. H., Andreassen,

O. A., and Einevoll, G. T. (2016). Effect of ionic diffusion on

extracellular potentials in neural tissue. PLoS Comput. Biol. 12:e1005193.

doi: 10.1371/journal.pcbi.1005193

Hines, M. L., Markram, H., and Schürmann, F. (2008). Fully implicit

parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448.

doi: 10.1007/s10827-008-0087-5

Holter, K. E., Kehlet, B., Devor, A., Sejnowski, T. J., Dale, A. M., Omholt, S. W.,

et al. (2017). Interstitial solute transport in 3d reconstructed neuropil occurs by

diffusion rather than bulk flow. Proc. Natl. Acad. Sci. U.S.A. 114, 9894–9899.

doi: 10.1073/pnas.1706942114

Hrabetová, S., and Nicholson, C. (2000). Dextran decreases extracellular tortuosity

in thick-slice ischemia model. J. Cereb. Blood Flow Metab. 20, 1306–1310.

doi: 10.1097/00004647-200009000-00005

Hübel, N., Hosseini-Zare, M. S., Žiburkus, J., and Ullah, G. (2017).

The role of glutamate in neuronal ion homeostasis: a case study

of spreading depolarization. PLoS Comput. Biol. 13:e1005804.

doi: 10.1371/journal.pcbi.1005804

Hübel, N., and Ullah, G. (2016). Anions govern cell volume: a case study of

relative astrocytic and neuronal swelling in spreading depolarization. PLoS

ONE 11:e0147060. doi: 10.1371/journal.pone.0147060

Humphries, M. D., Wood, R., and Gurney, K. (2010). Reconstructing the

three-dimensional gabaergic microcircuit of the striatum. PLoS Comput. Biol.

6:e1001011. doi: 10.1371/journal.pcbi.1001011

Hunt, C. A., Erdemir, A., Lytton, W. W., MacGabhann, F., Sander, E. A.,

Transtrum, M. K., et al. (2018). The spectrum of Mechanism-Oriented

models and methods for explanations of biological phenomena. Processes 6:56.

doi: 10.3390/pr6050056

Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., et al. (2012).

A paravascular pathway facilitates csf flow through the brain parenchyma and

the clearance of interstitial solutes, including amyloid β . Sci. Transl. Med. 4,

147ra111–147ra111. doi: 10.1126/scitranslmed.3003748

Ishizuka, N., Cowan, W. M., and Amaral, D. G. (1995). A quantitative analysis of

the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp.

Neurol. 362, 17–45. doi: 10.1002/cne.903620103

Jin, B.-J., Smith, A. J., and Verkman, A. S. (2016). Spatial model of convective

solute transport in brain extracellular space does not support a glymphatic

mechanism. J. Gen. Physiol. 148, 489–501. doi: 10.1085/jgp.201611684

Kager, H., Wadman, W. J., and Somjen, G. G. (2000). Simulated seizures and

spreading depression in a neuron model incorporating interstitial space and

ion concentrations. J. Neurophysiol. 84, 495–512. doi: 10.1152/jn.2000.84.1.495

Krishnan, G. P., and Bazhenov, M. (2011). Ionic dynamics mediate spontaneous

termination of seizures and postictal depression state. J. Neurosci. 31, 8870–

8882. doi: 10.1523/JNEUROSCI.6200-10.2011

Lin, Z., Tropper, C.,McDougal, R. A., Patoary,M. N. I., Lytton,W.W., Yao, Y., et al.

(2017a). Multithreaded stochastic pdes for reactions and diffusions in neurons.

ACM Trans. Model. Comput. Simul. 27:7. doi: 10.1145/2987373

Lin, Z., Tropper, C., Yao, Y., Mcdougal, R. A.,Ishlam Patoary, M. N., Lytton,

W. w., et al. (2017b). Load balancing for multi-threaded pdes of stochastic

reaction-diffusion in neurons. J. Simul. 11:267. doi: 10.1057/s41273-016-0033-x

Lindén, H., Hagen, E., Leski, S., Norheim, E. S., Pettersen, K. H., and

Einevoll, G. T. (2014). Lfpy: a tool for biophysical simulation of extracellular

potentials generated by detailed model neurons. Front. Neuroinform. 7:41.

doi: 10.3389/fninf.2013.00041

Linninger, A. A., Tangen, K., Hsu, C.-Y., and Frim, D. (2016). Cerebrospinal fluid

mechanics and its coupling to cerebrovascular dynamics. Annu. Rev. Fluid

Mech. 48, 219–257. doi: 10.1146/annurev-fluid-122414-034321

MacAulay, N., and Zeuthen, T. (2012). Glial K+ clearance and cell swelling:

key roles for cotransporters and pumps. Neurochem. Res. 37, 2299–2309.

doi: 10.1007/s11064-012-0731-3

McDougal, R. A. (2018). Reaction-Diffusion Tutorials. Available online at: https://

neuron.yale.edu/neuron/static/docs/rxd/index.html

McDougal, R. A., Hines, M. L., and Lytton, W. W. (2013). Reaction-diffusion in

the neuron simulator. Front. Neuroinform. 7:28. doi: 10.3389/fninf.2013.00028

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore,

M., et al. (2017). Twenty years of modeldb and beyond: building essential

modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.

doi: 10.1007/s10827-016-0623-7

Migliore, M., Cannia, C., and Canavier, C. C. (2008). A modeling study

suggesting a possible pharmacological target to mitigate the effects of ethanol

on reward-related dopaminergic signaling. J. Neurophysiol. 99, 2703–2707.

doi: 10.1152/jn.00024.2008

Mulugeta, L., Drach, A., Erdemir, A., Hunt, C. A., Horner, M., Ku, J. P.,

et al. (2018). Credibility, replicability, and reproducibility in simulation for

biomedicine and clinical applications in neuroscience. Front. Neuroinform.

12:18. doi: 10.3389/fninf.2018.00018

Nedergaard, M., Cooper, A. J., and Goldman, S. A. (1995). Gap junctions are

required for the propagation of spreading depression. Dev. Neurobiol. 28,

433–444. doi: 10.1002/neu.480280404

Neymotin, S. A., Dura-Bernal, S., Lakatos, P., Sanger, T. D., and Lytton,

W. W. (2016). Multitarget multiscale simulation for pharmacological

treatment of dystonia in motor cortex. Front. Pharmacol. 7:157.

doi: 10.3389/fphar.2016.00157

Neymotin, S. A., McDougal, R. A., Hines, M., and Lytton, W. W. (2014).

Calcium regulation of hcn supports persistent activity associated with working

memory: a multiscale model of prefrontal cortex. BMC Neurosci. 15:P108.

doi: 10.1186/1471-2202-15-S1-P108

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2018 | Volume 12 | Article 41103

https://doi.org/10.1016/S0304-3940(00)00813-2
https://doi.org/10.1016/j.jtbi.2018.02.029
https://doi.org/10.1007/s10827-017-0675-3
https://doi.org/10.3389/fneur.2018.00019
https://doi.org/10.1016/j.tibtech.2005.05.010
https://doi.org/10.1371/journal.pcbi.1000078
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/BF01386093
https://doi.org/10.1038/nm.2333
https://doi.org/10.1088/1361-6579/aa9f46
https://doi.org/10.1016/S0006-3495(02)75248-X
https://doi.org/10.1016/j.jneumeth.2015.09.011
https://doi.org/10.1113/jphysiol.1983.sp014541
https://doi.org/10.1152/jn.1956.19.2.154
https://doi.org/10.1109/MCSE.2009.52
https://doi.org/10.1371/journal.pcbi.1005193
https://doi.org/10.1007/s10827-008-0087-5
https://doi.org/10.1073/pnas.1706942114
https://doi.org/10.1097/00004647-200009000-00005
https://doi.org/10.1371/journal.pcbi.1005804
https://doi.org/10.1371/journal.pone.0147060
https://doi.org/10.1371/journal.pcbi.1001011
https://doi.org/10.3390/pr6050056
https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.1002/cne.903620103
https://doi.org/10.1085/jgp.201611684
https://doi.org/10.1152/jn.2000.84.1.495
https://doi.org/10.1523/JNEUROSCI.6200-10.2011
https://doi.org/10.1145/2987373
https://doi.org/10.1057/s41273-016-0033-x
https://doi.org/10.3389/fninf.2013.00041
https://doi.org/10.1146/annurev-fluid-122414-034321
https://doi.org/10.1007/s11064-012-0731-3
https://neuron.yale.edu/neuron/static/docs/rxd/index.html
https://neuron.yale.edu/neuron/static/docs/rxd/index.html
https://doi.org/10.3389/fninf.2013.00028
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1152/jn.00024.2008
https://doi.org/10.3389/fninf.2018.00018
https://doi.org/10.1002/neu.480280404
https://doi.org/10.3389/fphar.2016.00157
https://doi.org/10.1186/1471-2202-15-S1-P108
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

Nicholson, C. (1995). Interaction between diffusion and michaelis-menten uptake

of dopamine after iontophoresis in striatum. Biophys. J. 68, 1699–1715.

doi: 10.1016/S0006-3495(95)80348-6

Nicholson, C., and Hrabetová, S. (2017). Brain extracellular space: the final frontier

of neuroscience. Biophys. J. 113, 2133–2142. doi: 10.1016/j.bpj.2017.06.052

Nicholson, C., and Phillips, J. (1981). Ion diffusion modified by tortuosity and

volume fraction in the extracellular microenvironment of the rat cerebellum.

J. Physiol. 321, 225–257. doi: 10.1113/jphysiol.1981.sp013981

Nicholson, C., and Syková, E. (1998). Extracellular space structure

revealed by diffusion analysis. Trends Neurosci. 21, 207–215.

doi: 10.1016/S0166-2236(98)01261-2

Ray, S., and Bhalla, U. (2008). PyMOOSE: interoperable scripting in Python for

MOOSE. Front. Neuroinform. 2:6. doi: 10.3389/neuro.11.006.2008

Samson, E., Marchand, J., and Snyder, K. A. (2003). Calculation of ionic diffusion

coefficients on the basis of migration test results. Mater. Struct. 36, 156–165.

doi: 10.1007/BF02479554

Solbrå, A., Bergersen, A. W., van den Brink, J., Malthe-Sørenssen, A.,

Einevoll, G. T., and Halnes, G. (2018). A Kirchhoff-Nernst-Planck

framework for modeling large scale extracellular electrodiffusion

surrounding morphologically detailed neurons. bioRxiv [Preprint]. 261107.

doi: 10.1101/261107

Somjen, G. G. (2004). Ions in the Brain: Normal Function, Seizures, and Stroke.

New York, NY: Oxford University Press.

Stewart, D. E., and Leyk, Z. (1994). Meschach: Matrix Computations in C, Vol.

32. Canberra ACT: Centre for Mathematics and its Applications, Australian

National University.

Stiles, J. R., and Bartol, T. M. (2001). “Monte carlo methods for simulating realistic

synapticmicrophysiology usingmcell,” in Computational Neuroscience: Realistic

Modeling for Experimentalists, ed E. De Schutter, (Boca Raton, FL: CRC Press),

87–127.

Sulzer, D., Cragg, S. J., and Rice, M. E. (2016). Striatal dopamine

neurotransmission: regulation of release and uptake. Basal Ganglia, 6,

123–148. doi: 10.1016/j.baga.2016.02.001

Syková, E., andNicholson, C. (2008). Diffusion in brain extracellular space. Physiol.

Rev. 88, 1277–1340. doi: 10.1152/physrev.00027.2007

Waters, J. (2010). The concentration of soluble extracellular amyloid-β

protein in acute brain slices from crnd8 mice. PLoS ONE 5:e15709.

doi: 10.1371/journal.pone.0015709

Wei, Y., Ullah, G., and Schiff, S. J. (2014). Unification of neuronal spikes,

seizures, and spreading depression. J. Neurosci. 34, 11733–11743.

doi: 10.1523/JNEUROSCI.0516-14.2014

Wils, S., and De Schutter, E. (2009). Steps: modeling and simulating

complex reaction-diffusion systems with python. Front. Neuroinfor. 3:15.

doi: 10.3389/neuro.11.015.2009

Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., et al. (2013).

Sleep drives metabolite clearance from the adult brain. Science 342, 373–377.

doi: 10.1126/science.1241224

Zhao, W., Choate, B., and Ji, S. (2018). Material properties of the brain in injury-

relevant conditions–experiments and computational modeling. J. Mech. Behav.

Biomed. Mater. 80, 222–234. doi: 10.1016/j.jmbbm.2018.02.005

Zoremba, N., Homola, A., Slais, K., Vorísek, I., Rossaint, R., Lehmenkühler, A.

et al. (2008). Extracellular diffusion parameters in the rat somatosensory cortex

during recovery from transient global ischemia/hypoxia. J. Cereb. Blood Flow

Metab. 28, 1665–1673. doi: 10.1038/jcbfm.2008.58

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Newton, McDougal, Hines and Lytton. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2018 | Volume 12 | Article 41104

https://doi.org/10.1016/S0006-3495(95)80348-6
https://doi.org/10.1016/j.bpj.2017.06.052
https://doi.org/10.1113/jphysiol.1981.sp013981
https://doi.org/10.1016/S0166-2236(98)01261-2
https://doi.org/10.3389/neuro.11.006.2008
https://doi.org/10.1007/BF02479554
https://doi.org/10.1101/261107
https://doi.org/10.1016/j.baga.2016.02.001
https://doi.org/10.1152/physrev.00027.2007
https://doi.org/10.1371/journal.pone.0015709
https://doi.org/10.1523/JNEUROSCI.0516-14.2014
https://doi.org/10.3389/neuro.11.015.2009
https://doi.org/10.1126/science.1241224
https://doi.org/10.1016/j.jmbbm.2018.02.005
https://doi.org/10.1038/jcbfm.2008.58
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

A. HETEROGENEOUS TORTUOSITIES AND
VOLUME FRACTIONS

Solving the diffusion equation in 3D with DG-ADI method,
involves splitting the problem into 3 linear equations for each
time-step;

1−
rx

2
∇

2
xφ

(

j+ 1
3

)

=

(rx

2
∇

2
x + ry∇

2
y + rz∇

2
z

)

φ(j) (A1)

1−
ry

2
∇

2
yφ

(

j+ 2
3

)

= −
ry

2
∇

2
yφ

(

j+ 1
3

)

(A2)

1−
rz

2
∇

2
zφ

(j+1)
= −

rz

2
∇

2
zφ

(

j+ 2
3

)

(A3)

Where rx =
D1t

12
x

, ry =
D1t

12
y

and rz =
D1t

12
z

. 1x, 1y, 1z and

1t are the spatial and temporal discretization step sizes and D

is the diffusion coefficient. The variables φ(j) and φ(j+1) are the

concentrations at the j and j+ 1 time-step and φ
(

j+ 1
3

)

φ
(

j+ 2
3

)

are
intermediate solutions that do not correspond to a concentration
at a given time. Each equation involves the Laplacian (∇2) for
a different dimension (∇2

x , ∇
2
y , or ∇

2
z). So to adapt DG-ADI

method for inhomogeneous tortuosities or volume fractions, it
is sufficient to consider how to modify the 1D diffusion operator.

A.1. Tortuosity
The diffusion equation (in one dimension) with an
inhomogeneous tortuosity (λ) is;

∂φ(t, x)

∂t
= ∇ ·

D

λ(x)2
∇φ(t, x) (A4)

Here we use the finite-volume method with N voxels with the
tortuosities defined at the boundaries λi = λ

(

xi− 1
2

)

and average

concentrations at the centers φi(t) = φ (t, xi) for i = 0, . . .N− 1.
The flux at the left and right of the ith voxel are;

Fi− 1
2
=

D

λ2i

φi(t)− φi−1(t)

1x
(A5)

Fi+ 1
2
=

D

λ2i+1

φi+1(t)− φi(t)

1x
(A6)

This gives the semi-discretized form of the diffusion equation;

dφi (t)

dt
=

Fi+ 1
2
− Fi− 1

2

1x
(A7)

=
D

12
x

(

φi+1(t)

λ2i+1

−

(

1

λ2i+1

+
1

λ2i

)

φi(t)+
φi−1(t)

λ2i

)

(A8)

Neumann boundary conditions with zero flux are obtained by
setting F

−
1
2
= FN−

1
2
= 0. This discretization of the diffusion

operator can then be applied to the 3D diffusion problem using
DG-ADI method.

A.2. Volume Fraction
A similar approach is used for inhomogeneous volume fractions,
but it is important to distinguish between the total concentration
(CT) and the relative concentration (CR). CT is the amount
divided by the volume of the voxel, CR is the amount divided
by the free volume of the voxel. These quantities are related
by α, the volume fraction CT = αCR. The concentration used
in extracellular rxd are relative concentrations, as this is more
biological relevant. Subsequently currents between cells and the
ECS are scaled by the volume fraction.

Let both the volume fractions and the concentrations be
defined at the center of the voxels αi = α (xi). Then the relative
concentration at the boundary, by linear interpolation is;

φ

(

t, xi+ 1
2

)

=
αi+1φ (t, xi+1) + αiφ (t, xi)

αi+1 + αi
(A9)

Then the flux of the total concentration is given by;

Fi+ 1
2
=

D
1
21x

αi

(

φ

(

t, xi+ 1
2

)

− φ (t, xi)
)

(A10)

=
D

1
21x

αiαi+1

αi + αi+1
(φ (t, xi+1) − φ (t, xi)) (A11)

The fluxes are then divided by the relevant volume fraction for
the semi-discretized form of the diffusion equation, i.e., for voxel
i;

rx

2
∇

2
x =

1

αi1x

(

Fi+ 1
2
− Fi− 1

2

)

(A12)

Note that if the volume fractions are uniform then (Equation A9,
A11, A12) are;

φ

(

t, xi+ 1
2

)

=
φ (t, xi+1) + φ (t, xi)

2
(A13)

Fi+ 1
2
= αi

D

1x
(φ (t, xi+1) − φ (t, xi)) (A14)

rx

2
∇

2
x =

1

1x

(

Fi+ 1
2
− Fi− 1

2

)

(A15)

Which is the standard finite-volume approximation.

A.3. Tortuosity and Volume Fraction
It is straightforward to adapt the above formula for when both
tortuosity and volume fraction vary, the flux term (Equation A11)
is;

Fi+ 1
2
=

D
1
2λ

2
i 1x

αiαi+1

αi + αi+1
(φ (t, xi+1) − φ (t, xi)) (A16)

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2018 | Volume 12 | Article 41105

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Newton et al. Extracellular Reaction-Diffusion

B. ANALYTIC SOLUTION FOR VALIDATION

The Green’s function for a source at location x′ = (x′, y′, z′) and
time t′ is;

g(x, t, x′, t′) =
1

(

4πD(t − t′)
)
3
2

exp

(

−

(

x− x′
)2

+
(

y− y′
)2

+
(

z − z′
)2

4D(t − t′)

) (A17)

Given an initial unit concentration in a cube of size l3 at the
origin, the concentrations for an unbounded space are found by
integrating the Green’s function.

φu(x, y, z, t) =
1

8

[

erf

(

l− 2x
√
16Dt

)

+ erf

(

l+ 2x
√
16Dt

)]

[

erf

(

l− 2y
√
16Dt

)

+ erf

(

l+ 2y
√
16Dt

)]

[

erf

(

l− 2z
√
16Dt

)

+ erf

(

l+ 2z
√
16Dt

)]

(A18)

For diffusion within a finite cube of volume L3 with zero flux
boundary conditions, the solution is obtain by the method of
images;

φ(x, y, z, t) =

∞
∑

i=−∞

∞
∑

j=−∞

∞
∑

k=−∞

φu(x+ iL, y+ jL, z + kL, t)

(A19)

So the average concentration for a voxel of size 13
x at the center

is;

φ0(t) =
1

813
x

∞
∑

i=−∞

∞
∑

j=−∞

∞
∑

k=−∞

∏

m∈{i,j,k}

√

16Dt

π

[

exp

(

−

(

l+ 2mL+ 1x

)2

16Dt

)

− exp

(

−

(

l+ 2mL− 1x

)2

16Dt

)]

+
(

l+ 2mL+ 1x

)

erf

(

l+ 2mL+ 1x
√
16Dt

)

+
(

l+ 2mL− 1x

)

erf

(

l+ 2mL− 1x
√
16Dt

)

(A20)

The terms of the sum decay with order e−m2
so few are needed.

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2018 | Volume 12 | Article 41106

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 31 July 2018

doi: 10.3389/fninf.2018.00047

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2018 | Volume 12 | Article 47

Edited by:

Hans Ekkehard Plesser,
Norwegian University of Life Sciences,

Norway

Reviewed by:

Werner Van Geit,
École Polytechnique Fédérale de

Lausanne, Switzerland
Pablo Martinez-Cañada,

Universidad de Granada, Spain

*Correspondence:

Kim T. Blackwell
kblackw1@gmu.edu

†Present Address:

Zbigniew Jȩdrzejewski-Szmek,
Red Hat Poland, Warsaw, Poland

Joanna Jȩdrzejewska-Szmek,
Department of Neurophysiology,
Nencki Institute of Experimental

Biology, Warsaw, Poland

Received: 01 March 2018
Accepted: 06 July 2018
Published: 31 July 2018

Citation:

Jȩdrzejewski-Szmek Z, Abrahao KP,
Jȩdrzejewska-Szmek J, Lovinger DM
and Blackwell KT (2018) Parameter

Optimization Using Covariance Matrix
Adaptation—Evolutionary Strategy

(CMA-ES), an Approach to Investigate
Differences in Channel Properties

Between Neuron Subtypes.
Front. Neuroinform. 12:47.

doi: 10.3389/fninf.2018.00047

Parameter Optimization Using
Covariance Matrix
Adaptation—Evolutionary Strategy
(CMA-ES), an Approach to
Investigate Differences in Channel
Properties Between Neuron Subtypes

Zbigniew Jȩdrzejewski-Szmek 1†, Karina P. Abrahao 2, Joanna Jȩdrzejewska-Szmek 1†,

David M. Lovinger 2 and Kim T. Blackwell 1,3*

1 Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA, United States, 2 Laboratory for Integrative
Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of
Health, Rockville, MD, United States, 3Department of Bioengineering, Volgenau School of Engineering, George Mason
University, Fairfax, VA, United States

Computational models in neuroscience can be used to predict causal relationships

between biological mechanisms in neurons and networks, such as the effect of blocking

an ion channel or synaptic connection on neuron activity. Since developing a biophysically

realistic, single neuron model is exceedingly difficult, software has been developed

for automatically adjusting parameters of computational neuronal models. The ideal

optimization software should work with commonly used neural simulation software;

thus, we present software which works with models specified in declarative format for

the MOOSE simulator. Experimental data can be specified using one of two different

file formats. The fitness function is customizable as a weighted combination of feature

differences. The optimization itself uses the covariance matrix adaptation-evolutionary

strategy, because it is robust in the face of local fluctuations of the fitness function, and

deals well with a high-dimensional and discontinuous fitness landscape. We demonstrate

the versatility of the software by creating several model examples of each of four types of

neurons (two subtypes of spiny projection neurons and two subtypes of globus pallidus

neurons) by tuning to current clamp data. Optimizations reached convergence within

1,600–4,000model evaluations (200–500 generations× population size of 8). Analysis of

the parameters of the best fitting models revealed differences between neuron subtypes,

which are consistent with prior experimental results. Overall our results suggest that this

easy-to-use, automatic approach for finding neuron channel parameters may be applied

to current clamp recordings from neurons exhibiting different biochemical markers to help

characterize ionic differences between other neuron subtypes.

Keywords: striatum, globus pallidus, MOOSE, neuronal model, biophysics, ion channels

107

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00047
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00047&domain=pdf&date_stamp=2018-07-31
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kblackw1@gmu.edu
https://doi.org/10.3389/fninf.2018.00047
https://www.frontiersin.org/articles/10.3389/fninf.2018.00047/full
http://loop.frontiersin.org/people/542493/overview
http://loop.frontiersin.org/people/54358/overview
http://loop.frontiersin.org/people/17628/overview
http://loop.frontiersin.org/people/622/overview
http://loop.frontiersin.org/people/2574/overview

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

INTRODUCTION

Computational models of neurons and networks are being
used increasingly to test hypotheses regarding causation of
biological mechanisms, e.g., ion channels, on neuron function.
For example, the effect of blocking an ion channel on neuron
activity (Tucker et al., 2012; Qian et al., 2014), the effect
of a synaptic connection on network activity (Prinz et al.,
2004; Damodaran et al., 2015), or the effect of morphology
on neuron firing patterns (Schaefer et al., 2003; Meza et al.,
2018) can be tested by computational models. Unlike in wet
lab experiments, neither non-specific effects of drugs nor
compensatory effects during development confound the results.
Computational models also can be used to determine whether
the observed differences in voltage trajectory (e.g., action
potential width or firing rate) between neuron classes correspond
to differences in ion channel conductances (Rumbell et al.,
2016).

Whereas the simulation experiments (comparison of control
and treatment models) are relatively simple, creation of the
control model is exceedingly difficult. Developing a biophysically
realistic, single neuron model requires equations describing ionic
channel kinetics developed from voltage clamp data (Gurkiewicz
and Korngreen, 2007; Taylor et al., 2009), cell morphology (Segev
and London, 2000; Van Ooyen et al., 2002), and then ionic
channel conductances are adjusted to match firing properties
of the target neuron. The number of parameters and the non-
linear interactions between ionic channels makes adjusting the
parameters an extremely difficult problem. Furthermore, changes
in current density of an outward current can be compensated by
similar changes to inward current density or opposite changes
to other outward currents (Marder and Goaillard, 2006). Thus, a
single neuron class has numerous sets of parameters that produce
the same observed physiology.

Several approaches have been developed recently for
automatically adjusting parameters of computational neuronal
models. Given the increase in computing power, the number of
publications is increasing; thus, for brevity, we will mostly discuss
the recent publications and refer the reader to a previous review
of earlier publications (Van Geit et al., 2008). These methods vary
not only in the search technique (i.e., the method of sampling the
parameter space), but also in the fitness function used and the
data used to fit the model. Perhaps the most successful approach
is to fit a model to simulated data (Vanier and Bower, 1999;
Brookings et al., 2014). The advantage of this approach is that a
known solution exists. The disadvantage is that the goal of most
parameter optimization is to fit electrophysiology data, which is
a more difficult undertaking.

All optimization algorithms use one or more fitness functions
(also called cost functions), which are measures of similarity
between the model and the experiment. Comparing simulated
and experimental voltage traces directly is a difficult problem,
because a millisecond change in spike time, which misaligns
the spikes, may produce a large difference in Euclidean
distance between traces (though only a minor change in
perceived similarity). A clever solution to this problem is
to apply an adjustment in the simulation values, based on

the difference between experimental and simulated values,
to promote alignment of the traces (Abarbanel et al., 2009;
Brookings et al., 2014). If multiple data traces are being fit,
the similarity of each trace needs to be weighted to calculate
an overall similarity value. A more common solution is to
extract features of the voltage traces, such as spike width and
firing rate, and then either combine them into a single objective
(Holmes et al., 2006; Rumbell et al., 2016) or use a multi-objective
optimization method (Druckmann et al., 2007; Hay et al., 2011;
Rumbell et al., 2016; Neymotin et al., 2017). Feature extraction
avoids the problem of spike alignment, but compounds the
problem of how to weight the different features when combined
into a single-objective.

Most of the modern search methods use variants of
evolutionary algorithms (Vanier and Bower, 1999; Keren et al.,
2005; Hendrickson et al., 2011b; Brookings et al., 2014; Martínez-
Álvarez et al., 2016; Rumbell et al., 2016; Martínez-Cañada et al.,
2017; Neymotin et al., 2017). The covariance matrix adaptation
evolutionary strategy is a modern evolutionary algorithm that
works quite well for large numbers of parameters (Hansen
and Kern, 2004). CMA-ES combines an evolutionary approach
with a model of the fitness landscape. In an evoluationary
approach, a population of sample points (a sample point is
the set of parameters that describe an individual model) is
used to generate a new set of points to test, and the subset of
points with the best fitness survives to the next generation. In
CMA-ES the differences in average fitness between subsequent
populations are used to evolve the center of the population
toward the optimum.Moreover, knowledge about the interaction
between parameters is iteratively gathered in a covariance matrix,
which is used to allocate new sampling points so that points
are close together in the directions which are well described
and further apart in other directions. Because a derivative is
never calculated, and just the ranking between solutions is
used, this method is resilient to local fluctuations in the fitness
landscape.

To simplify model creation, parameter tuning and
reproducibility, the parameter optimization algorithm should
work with models specified by a declarative model specification.
Creation of neuronal models is a time consuming and error
prone process, and model code all too often is written in a
fashion that impedes reproducibility and extensibility (Gewaltig
and Cannon, 2014). A declarative model specification, which
separates the model parameters from the simulation itself,
e.g., NeuroML (Gleeson et al., 2010; Cannon et al., 2014) or
NineML (Raikov et al., 2011; Richmond et al., 2014) simplifies
model development and enhances reproducibility. Furthermore,
to enhance utility of a parameter optimization algorithm,
setting up the optimization and specification of parameters
to vary should be independent of the model specification
itself.

We describe a versatile software tool, written in Python for
theMOOSE simulator (Ray and Bhalla, 2008), for model creation
and automatic parameter optimization that can be used by
experimentalists and theoreticians alike to automatically fit a
model to experimental traces for different neuron types without
delving into simulator-specific details.

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2018 | Volume 12 | Article 47108

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 1 | Types and subtypes of neurons used in the simulations.

Type Subtypes Names

Striatal Spiny Projecton

(SP) neurons

Dopamine D1 receptor containing

spiny projection neuron

D1-SPN

Dopamine D2 receptor containing

spiny projection neuron

D2-SPN

Globus Pallidus (GPe)

neurons

Arkypallidal neuron ArkyN

Prototypical neuron ProtoN

METHODS

Overview
We created multi-compartment, multi-conductance models of
two neuron types. Table 1 lists the two subtypes of neurons of the
external globus pallidus (GPe): arkypallidal neuron (ArkyN) and
prototypical neuron (ProtoN); and the two subtypes of striatal
neurons: dopamine D1 receptor containing spiny projection
neurons (D1-SPN) and dopamine D2 receptor containing spiny
projection neurons (D2-SPN). To facilitate model development
and inspection, we use a declarative parameter specification
to create the models. Python scripts interpret the parameters
to create and simulate the multi-compartmental, multi-ion
channel model using the MOOSE simulator. For the parameter
optimization, the simulated voltage response to current injection
is compared to experimentally measured membrane potential
using a feature-based fitness function. The parameters are
optimized using the covariance matrix adaptation evolutionary
strategy (https://github.com/CMA-ES/pycma).

Model Specification
To facilitate reproducibility, re-use and extension, the declarative
model specification uses a modular format. The ion channel
kinetics are specified in one file: (https://github.com/neurord/
moose_nerp/blob/master/moose_nerp/d1d2/param_chan.py),
e.g.,

param_chan.py

from moose_nerp.prototypes.util import

NamedDict

from moose_nerp.prototypes.chan_proto

import (

SSTauQuadraticChannelParams,

AlphaBetaChannelParams,

TauInfMinChannelParams,

ChannelSettings,

TypicalOneD)

qfactNaF = 2.5

Na_m_params = SSTauQuadraticChannelParams(

SS_min = 0.0,

SS_vdep = 1.0,

SS_vhalf = -25e-3,

SS_vslope = -10e-3,

taumin = 0.1e-3/qfactNaF,

tauVdep = 2.1025e-3/qfactNaF,

tauVhalf = -62e-3,

tauVslope = 8e-3)

Na_h_params = TauInfMinChannelParams(

T_min = 2*0.2754e-3/qfactNaF,

T_vdep = 2*1.2e-3/qfactNaF,

T_vhalf = -42e-3,

T_vslope = 3e-3,

SS_min = 0.0,

SS_vdep = 1.0,

SS_vhalf = -60e-3,

SS_vslope = 6e-3)

NaFparam = ChannelSettings(Xpow=3, Ypow=1,

Zpow=0, Erev=50e-3, name='NaF')

KDr_X_params = AlphaBetaChannelParams(

A_rate = 28.2,

A_B = 0,

A_C = 0.0,

A_vhalf = 0,

A_vslope = -12.5e-3,

B_rate = 6.78,

B_B = 0.0,

B_C = 0.0,

B_vhalf = 0.0,

B_vslope = 33.5e-3)

KDr_Y_params = []

KDrparam = ChannelSettings(Xpow=1, Ypow=0,

Zpow=0, Erev=-90e-3, name='KDr')

Channels = NamedDict(

'Channels',

Krp = TypicalOneD(KDrparam, KDr_X_params

, KDr_Y_params),

NaF = TypicalOneD(NaFparam, Na_m_params,

Na_h_params),

)

Both the morphology file (either standard GENESIS .p files
or .swc files are supported by MOOSE) and conductances (in
units of Siemens/m2) are specified in a separate file (https://
github.com/neurord/moose_nerp/blob/master/moose_nerp/
d1d2/param_cond.py), e.g.,

param_cond.py

from moose_nerp.prototypes.util import

NamedDict

morph_file = {'D1':'MScell-Entire.p',

'D2': 'MScell-Entire.p'}

NAME_SOMA='soma'

prox = (0, 26.1e-6) #units are meters

med = (26.1e-6, 50e-6)

dist = (50e-6, 1000e-6)

_D1 = NamedDict(

'D1',

KDr = {prox:150.963, med:70.25,

dist:77.25},

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2018 | Volume 12 | Article 47109

https://github.com/CMA-ES/pycma
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_chan.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_chan.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_cond.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_cond.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_cond.py
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

NaF = {prox:130e3, med:1894, dist:927},

)

_D2 = NamedDict(

'D2',

KDr = {prox:177.25, med:177.25, dist:27

.25},

NaF = {prox:150.0e3, med:2503, dist:1073

},

)

Condset = NamedDict(

'Condset',

D1 = _D1,

D2 = _D2,

)

Explicit spines, calcium dynamics, and synaptic channels are
each optional and specified in separate files. Calcium dynamics
can be specified either with a single time constant of decay or
utilizing various mechanisms such as calcium buffers, pumps
and diffusion. Model stimulation, creation of output elements
and model simulation are clearly and explicitly separated from
the model creation. Parameter specification files are imported in
https://github.com/neurord/moose_nerp/blob/master/moose_
nerp/d1d2/__init__.py:

__init__.py

from .param_chan import (VMIN, VMAX, VDIVS,

CAMIN, CAMAX, CADIVS,

qfactNaF,

Channels)

from .param_cond import (ghKluge,

neurontypes,

ConcOut, Temp,

morph_file,

Condset)

spineYN = False

synYN = False

calYN = True

Given these parameter files, the model creation and
simulation procedures are implemented in __main__.py,
e.g.:

__main__.py

from moose_nerp.prototypes import

(cell_proto,

inject_func,

standard_options)

from moose_nerp import d1d2

import moose

option_parser = standard_options

.standard_options()

param_sim = option_parser.parse_args()

syn,neuron= cell_proto.neuronclasses(d1d2)

neuron_paths = {ntype:[neuron.path] for

(ntype, neuron) in neuron.items()}

pg = inject_func.setupinj(d1d2,

param_sim.injection_delay,

param_sim.injection_width,

neuron_paths)

for injection_current in param_sim.

injection_current:

pg.firstLevel = injection_current

moose.reinit()

moose.start(param_sim.simtime) # this

runs simulation for 'simtime'

We made the simplifying assumption that both subtypes of
GPe neurons had similar kinetics and differed only in channel
conductance, as previously suggested (Gunay et al., 2008).
Similarly, both subtypes of SP neurons differed only in channel
conductance. In contrast, channel kinetics of the GPe neurons
differed from that of SP neurons. Models were simulated with
PyMoose version 3.1.0 using the hsolve numerical solver. The
complete model specification is available at https://github.com/
neurord/moose_nerp/, with moose_nerp/d1d2 specifying the SP
model parameters and moose_nerp/gp specifying the GPe model
parameters.

Experimental Data
All animal handling and procedures were in accordance with the
National Institutes of Health animal welfare guidelines and were
approved by the George Mason University IACUC committee,
or the National Institute on Alcohol Abuse and Alcoholism
Animal Care and Use Committee. The experimental data used
for the optimizations are part of the python package waves,
available at https://github.com/neurord/waves. The data consists
of recordings from identified external globus pallidus neurons
and unidentified striatal spiny projection neurons. As the data
was collected for other purposes, the current injection protocol
was implemented only once per neuron.

Globus pallidus neuron data was obtained from recordings
performed for a prior publication (Abrahao et al., 2017). Briefly,
mouse coronal GPe slices, ages P23-P45, were prepared in
sucrose cutting solution (in mM: 194 sucrose, 30 NaCl, 4.5
KCl, 26 NaHCO3, 1.2 NaH2PO4, 10 D-glucose, 1 MgCl2, and
saturated with 95%O2/5% CO2). Slices were equilibrated for 30–
40min at 32◦C in carbogen-bubbled aCSF (in mM: 124 NaCl,
4.5 KCl, 26 NaHCO3, 1.2 NaH2PO4, 10 D-glucose, 1 MgCl2,
and 2 CaCl2). Slices were then incubated at room temperature.
Recordings were performed at 30–32◦C using micropipettes (2–
4 M�) filled with internal solution (in mM: 140 K-gluconate,
10 HEPES, 0.1 CaCl2, 2 MgCl2, 1 EGTA, 2 ATP-Mg, and 0.2
GTP-Na, pH 7.25, 300–305 mOsm. Neurons were visualized
using an upright microscope (Scientifica, Uckfield, East Sussex,
UK) with a LUMPlanFL N × 40/0.80W objective (Olympus,
Waltham, MA). Recordings were obtained using a Multiclamp
700A amplifier, Digidata 1322A digitizer and analyzed using

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2018 | Volume 12 | Article 47110

https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/__init__.py
https://github.com/neurord/moose_nerp/
https://github.com/neurord/moose_nerp/
https://github.com/neurord/waves
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

pClamp 10.3 software (Molecular Devices, Sunnyvale, CA).
A low-pass filter of 2 kHz and sampling frequency of 10 kHz
were used. We used the spontaneous firing with no current
injection during the 5th min of recording after breakthrough
and the response to 1 s hyperpolarizing current injection (from
−200 to −50 pA in 50 pA increments). Depolarizing current
injection was not used since these neurons fire spontaneously.
When recording in slices from wild-type C57BL/6J mice, 1%
Neurobiotin (Vector Laboratories, Burlingame, CA) was added
into the internal solution for post hoc immunocytochemistry of
Parvalbumin (PV), a marker for fast spiking prototypical GPe
neurons (ProtoN). Though the fast firing, PV+ neurons generally
are considered prototypical neurons (four were used for the
optimization), the low firing, PV− neurons (three were used for
the optimization) are likely a mixture of arkypallidal and other
neuron types. Nonetheless, for the purpose of evaluating subtype
differences, we are labeling the three low firing, PV− neurons as
ArkyN.

Spiny projection neuron data was collected in current clamp
from dorso-lateral striatum of ex vivo brain slices of C57Bl6
male and female mice, ages P20–P28. Briefly, brain slices
were extracted following decapitation of mice anesthetized with
isoflurane. Brains were sliced using a VT1000S vibratome (Leica)
in oxygenated ice-cold slicing solution (in mM: KCl 2.8, Dextrose
10, NaHCO3 26.2, NaH2PO4 1.25, CaCl2 0.5, Mg2SO4 7, Sucrose
210). Slices were incubated in aCSF (in mM: NaCl 126, NaH2PO4

1.25, KCl 2.8, CaCl2, Mg2SO4 1, NaHCO3 26.2, Dextrose 11)
for 30min at 33◦C, then removed to room temperature (21–
24◦C) for at least 90 more minutes before use. For whole cell
recording, a single hemislice was transferred to a submersion
recording chamber (ALA Science) gravity-perfused (at 1–2
ml/min) with oxygenated aCSF containing 50µM picrotoxin
(Tocris Bioscience). Temperature was maintained at 30–32◦C
(ALA Science) and was monitored with an external thermister.
Pipettes were pulled from borosilicate glass on a laser pipette
puller (Sutter P-2000) and fire-polished (Narishige MF-830) to
a resistance of 3–7 M�. Pipettes were filled with a potassium
based internal solution (in mM: K-gluconate 132, KCl 10,
NaCl 8, HEPES 10, Mg-ATP 3.56, Na-GTP 0.38, Biocytin
0.77) for all recordings. Intracellular signals were collected in
current clamp and filtered at 3 kHz using an Axon2B amplifier
(Axon instruments), and sampled at 10–20 kHz using an ITC-
16 (Instrutech) and Pulse v8.80 (HEKA Electronik). Series
resistance (6–30 M�) was manually compensated. Voltage
responses were collected using 400ms hyperpolarizing current
injection from −500 to −0 in 50 pA increments, and using
400ms depolarizing current injections, starting from 100 or
200 pA increasing in 20 pA increments. Striatal neurons were
identified as being SP neurons (as opposed to fast spiking or
low-threshold-spiking interneurons) by their inward rectifier,
shallow afterhyperpolarization (AHP), and long latency to fire
an action potential in response to current injection. When
recording from SP neurons identified using D1Cre- or D2Cre-
GFP (green fluorescent protein), the D2Cre-GFP neurons have a
lower rheobase current (Chan et al., 2012). Thus, for the purpose
of evaluating subtype differences, SP neurons with a rheobase
below 200 pA were considered D2-SPN (3 neurons used), and SP

neurons with a rheobase above 300 pA were considered D1-SPN
(3 neurons used).

Fitness Function
We compared multiple characteristics of spiking and non-
spiking activity between simulation and experiment. The spiking
characteristics include action potential (AP) time, width, height,
number, AHP depth, AHP shape, and (for SP neurons) latency to
spike in response to depolarizing current injection. Spike height
is calculated with respect to the spike threshold, defined as the
point where the membrane potential derivative exceeds 5% of the
maximum. Spike height is the difference between spike threshold
and the peak membrane potential, and spike width is full width
at half height. The non-spiking characteristics include resting
potential (both pre- and post-current injection), steady-state
voltage response to current injection, time course of membrane
potential (falling curve time constant), and rectification (sag
caused by inward rectifier, which is the difference between
steady state response and the minimum membrane potential
deflection during negative current injection). Feature extraction
functions are specified in https://github.com/neurord/ajustador/
blob/master/ajustador/features.py, and they are combined into
a fitness function in https://github.com/neurord/ajustador/blob/
master/ajustador/fitnesses.py. To minimize simulation time, for
each GPe neuron we used 2 hyperpolarizing traces and 1
trace with no current injection (which contained spontaneously
generated action potentials); and for each SP neuron we used
1 hyperpolarizing and 3 depolarizing traces (one of which did
not produce action potentials). The difference in feature values
between model and data was normalized by dividing by the sum
of the model and data response. This normalization converted
the feature difference to a fractional, unitless difference. In
their multi-objective normalization (Druckmann et al., 2007),
divided by the standard deviation of the experimental data.
Unfortunately this is not possible for us because our experimental
data set is not large enough. We calculated a single fitness value
from the weighted sum of the normalized feature differences. A
user can further normalize the features by standard deviation by
setting the weights equal to the multiplicative inverse of standard
deviation, calculated either within neuron if multiple traces are
collected or across neurons of a single type. For the simulations
reported here, the weights on most features were equal to 1, with
several exceptions to produce better fits visually (Table 2 gives
weight on each feature, and Figure 2 illustrates experimental
and simulated voltage traces for visual inspection of various
features).

Parameter Optimization
In the optimization loop, the ajustador.optimize.

Optimizer class is used as a wrapper for the actual fitting
algorithm. Maximum conductances and passive electrical
properties may be specified as parameters to vary. Each
parameter is assigned an initial value and a permitted range
of values (e.g., a minimum value of 0 prevents negative
parameters). Appending _0, _1, or _2 to the channel name
allows different conductances in the different neuron regions,
corresponding to the regions specified in param_cond.py,

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2018 | Volume 12 | Article 47111

https://github.com/neurord/ajustador/blob/master/ajustador/features.py
https://github.com/neurord/ajustador/blob/master/ajustador/features.py
https://github.com/neurord/ajustador/blob/master/ajustador/fitnesses.py
https://github.com/neurord/ajustador/blob/master/ajustador/fitnesses.py
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 2 | Weights on feature values to create fitness function.

Feature D1-SPN and D2-SPN ArkyN and ProtoN

Baseline pre 1 0

Baseline post 1 1

Rectification 0 2

Falling curve 1 1

Voltage response 1 1

Latency 1 0

Spike time 0 0.5

Spike width 1 1

Spike height 1 0.5

Spike count 1 1

AHP depth 1 1

AHP curve 4 1

Histogram 1 1

AHP curve was weighted higher for SPN to avoid the optimizer creating models with
large, sharp AHPs. For the GPe models, spike height weight was reduced to avoid
the optimizer producing an extreme mismatch in other features while trying to reduce
spike height to the unusually small values observed experimentally. Spike time was
reduced for both GPe and SPN models reflecting the high variability of this value between
neurons of the same type. A weight of zero means to not use the feature, e.g., latency
is not defined for a spontaneously spiking neuron. Features are further described in
the online documentation (https://neurord.github.io/ajustador/features.html and https://
neurord.github.io/ajustador/fitnesses.html). “histogram” is a root-mean-square of the
difference between cumulative histograms of membrane potential-values in the two
recordings.

otherwise the conductance in all neuron regions are made the
same value. For the simulations reported, the initial values
were conductances from a roughly hand-tuned model to start
the optimization in an area that exhibits spiking behavior
(Supplementary Figure 1, also available at https://github.
com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_
initialconditions.jpg). Each neuron of the same type started
with the same initial value; thus any differences between
neuron subtypes cannot be due to different initial conditions.
The CMA-ES loop was started with a high initial estimate of
variance, so that a diverse set of parameter values would be
explored.

import ajustador as aju

P = ajustador.optimize.AjuParam

params = ajustador.optimize.ParamSet(

P('RA', 12.004, min=0, max=100),

P('RM', 9.427, min=0, max=10),

P('CM', 0.03604, min=0, max=0.10),

P('Cond_KDr', 14.5, min=0, max=100),

P('Cond_NaF_0', 192000, min=0, max=1e6),

P('Cond_NaF_1', 65300, min=0, max=1e6),

P('Cond_NaF_2', 2500, min=0, max=1e6),

P('morph_file', 'GP1_41comp.p', fixed=1),

P('neuron_type', 'proto', fixed=1),

P('model', 'gp', fixed=1))

The optimization object uses the specified parameter set,
experimental traces, fitness function, and directory for storing the
simulation results:

import gpedata_experimental as gpe

dataname='proto079'

exp_to_fit = gpe.data[dataname+'-2s'][[0,2,

4]]

fitness = aju.fitnesses.combined_fitness(

'empty',

baseline =1,

rectification=2,

spike_width=1,

spike_latency=0,

spike_ahp=1

)

Experimental data can be specified using one of two different
file formats: Igor binaries or comma separated values. The
traces for the experiments are placed in a separate subdirectory,
e.g., gpedata_experimental, and the class Param in the python
package waves (https://github.com/neurord/waves) specifies the
onset and offset time of the injection current, as well as the time
frame for measuring baseline membrane potential and steady
state depolarization. Since the data specification is a separate
module, adding support for other file formats is straightforward.

It is also necessary to specify which type of model (GPe or
SP neurons), which neuron subtype to optimize (e.g., for GPe
either arkyN or protoN), and that the simulation is a MOOSE
simulation:

ntype='proto'

modeltype='gp'

fit1 = aju.optimize.Fit(tmpdir,

exp_to_fit,

modeltype, ntype,

fitness, params,

_make_simulation=aju.optimize.

MooseSimulation.make,

_result_constructor=aju.

optimize.

MooseSimulationResult)

Functions in ajustador.basic_simulation are used
by the parameter optimization to run the MOOSE simulation.
They implement only the key model creation and simulation
commands from __main__.py, thereby simplifying the interface
between creation of neuron model and parameter optimization.

After the optimization is configured with this information, the
optimization is performed for a specified number of generations,
using a specified population size for each generation. The total
number of model evaluations is the product of population
size and generations. The simulations reported herein used the
default population size of 8, but the user can specify other
population sizes. Similarly, the user can specify the simulation
seed to be used by the do_fit function:

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2018 | Volume 12 | Article 47112

https://neurord.github.io/ajustador/features.html
https://neurord.github.io/ajustador/fitnesses.html
https://neurord.github.io/ajustador/fitnesses.html
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_initialconditions.jpg
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_initialconditions.jpg
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_initialconditions.jpg
https://github.com/neurord/waves
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

generations=300

popsiz=8

fit1.load()

fit1.do_fit(generations, popsize=popsiz)

The python package ajustador is available at https://github.
com/neurord/ajustador, and the scripts used to run the
simulations are at https://github.com/neurord/ajustador/tree/
master/FrontNeuroinf.

In many mathematical optimization scenarios, the calculation
of the fitness of a single point (individual model) is quick,
and the optimization loop is the important part. Here, as often
in computational neuroscience, the simulation of each point
is a lengthy process, requiring instantiation of the MOOSE
interpreter, loading of the model, actual simulation, saving
of the result to a file, and finally generating a fitness value
from those results. The Optimizer class communicates with
the implementation of CMA-ES to retrieve a set of points,
perform simulations and calculate the fitness for all of them,
feed the results back, so that the numerical algorithm can
generate a new set of points to execute. Actual simulation is
parallelized at a high level to speed up the whole process:
although each individual simulation is single-threaded, during
optimization multiple parameter combinations are evaluated
together, and for each of those, multiple traces corresponding
to different experimental conditions, e.g., different injection
currents, need to be simulated. This means that we can
take full advantage of available computational power by
parallelizing at the level of whole simulations, one simulation
per available processor core using a simple queue of jobs.
We used Python’s multiprocessing module (https://docs.
python.org/3/library/multiprocessing.html) to schedule jobs on
a single machine, and IPython’s ipyparallel (https://
ipyparallel.readthedocs.io/en/latest) on multiple machines in a
local network. In both cases, the results were saved to disk
to a directory with a file containing a copy of the simulation
parameters, and files for the simulation results (typically, voltage
traces over time). In the multi-machine case a network file system
was used to access the storage area. Saving directly to disk
provided a mechanism to introspect the running simulation and
to retrieve the results for any previously-simulated parameter
combination.

When the optimization is complete, the results include the
set of parameters, the normalized feature differences, and the
overall fitness value for each individual model. The fitness history
is the plot of overall fitness value vs. model evaluations (each
generation evaluates a population size of models).

To analyze whether parameters are predictive of different
neuron subtypes, we used a two-step statistical analysis applied
to the parameter values using SAS version 9.4. In step one,
a stepwise discriminant analysis was performed (procedure
STEPDISC), using the parameter values normalized by standard
deviation (procedure STDIZE), to identify the parameters that
could perform the best linear separation of the two neuron
subtypes. In addition, we plotted one parameter value vs. a
second parameter value, for all parameters, and inspected these

graphs to visualize which parameters segregated and clustered
the two neuron subtypes. In step two, a cluster analysis was
performed using those variables identified in step one, to assess
the extent to which the neuron subtypes segregated. Two
methods of cluster analysis were performed. First the procedure
CLUSTER was used to determine the optimum number of
clusters. Then, the procedure FASTCLUS was used, on the
data normalized with STDIZE and with the number of clusters
determined by CLUSTER, to calculate the distance between
clusters of same and different neuron subtypes. The procedure
FREQ was appied to the output of the cluster analysis to generate
the confusion matrices.

RESULTS

Declarative Model Specification
We created a python module called moose_nerp (moose
neuron prototype) to simplify and standardize the creation
and simulation of neuron models using the MOOSE software.
The declarative framework facilitates reproducibility, re-use and
extension of MOOSE models of neurons and networks. Each
set of neuron models has a set of parameter files specifying (1)
channel kinetics, (2) channel conductances and morphology, (3)
synaptic channel parameters, (4) calciummechanism parameters,
and (5) spine parameters. Spines, synapses and calcium dynamics
can be included or excluded with a simple parameter switch, e.g.,
calYN = True and spineYN = False. Parameter specifications
for channel kinetics and conductances use similar organization,
keywords and parameter types as NeuroML version2, facilitating
conversion, whereas the parameters for calcium dynamics, such
as buffer and pump specifications, do not yet have NeuroML
version2 equivalents.

Two subtypes of each of two types of neuron models were
created for use with the parameter optimization. Models of the
two subtypes of neurons in the globus pallidus were developed,
representing arkypallidal (low firing rate, PV−, ethanol sensitive)
and prototypical (high firing rate, PV+, ethanol insensitive) by
creating a set of parameter files. In addition, models of the two
subtypes of striatal spiny projection neurons in the striatum were
developed (called D1-SPN and D2-SPN, representing the direct
pathway neurons that contain dopamine D1 receptors and the
indirect pathway neurons that contain dopamine D2 receptors)
by creating a second set of parameter files specifying channel
kinetics, conductances, etc. Channel kinetics for the GPe neuron
models were adapted from Hendrickson et al. (2011a); both
arkyN and protoN neurons used the same channel kinetics and
morphology. Channel kinetics for the SP neuron models were
adapted from Jedrzejewska-Szmek et al. (2017); both D1-SPN
and D2-SPN used the same morphology and channel kinetics.
Both models used single time constant of decay for calcium
dynamics, though calcium buffers, pumps and diffusion have
been implemented in the SP neuron models and can be specified
with a parameter switch.

Parameter Optimization Using CMA-ES
Parameter optimization was run on a 16-core Linux workstation
with Intelr Xeonr CPU E5-2650 processors. Each of the four

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2018 | Volume 12 | Article 47113

https://github.com/neurord/ajustador
https://github.com/neurord/ajustador
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://ipyparallel.readthedocs.io/en/latest
https://ipyparallel.readthedocs.io/en/latest
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 1 | Fitness history shows the fitness values rapidly reach good fits (within 1,000 model evaluations/sample points) and reaches an asymptote typically within

2,000 model evaluations/sample points). (A) Fitness vs. model evaluation for GPe neurons of (A1) prototypical type and (A2) arkypallidal type. (B) Fitness vs. model

evaluation for SP neurons of (B1) D1 type and (B2) D2 type. Note that GPe neuron fitness values reached considerably lower values than SP neuron fitness values.

Right panels show fitness vs. model evaluation for the 1st set of optimizations and left panels show the mean and standard deviation of the fitness values of the last

25 generations of the 2nd set of optimizations (which used a different random seed). The number above the bar gives the number of model evaluations to

convergence for the 2nd set of optimizations.

neuron models was optimized to 3–4 sets of voltage traces,
each set from a different, experimentally recorded neuron. For
each recorded neuron, traces both with and without action

potentials were utilized in a single optimization. Optimizations
were run until the fitness value reached an asymptote, typically
within 200–500 generations using a population size of 8

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2018 | Volume 12 | Article 47114

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 3 | Characteristics of optimization simulations.

SP GPe

Number of compartments 189 41

Number of experimental traces used 4 3

Duration of trace 0.9 s 2 s

Simulation time* 12.4 ± 1.03 h per

1,000 models

8.5 ± 0.16 h per

1,000 models

Evaluations to convergence# 2,100 ± 500 3,514 ± 1,007

Evaluations till fitness value is within

5% of minimum

867 ± 1,185 2,482 ± 1,133

*Reported simulation time (mean and standard deviation) is for the second simulation
seed. #Evaluations to convergence (mean and standard deviation) is for the second
simulation seed; one of the GP simulations did not reach convergence within 5,000 model
evaluations, yet reached a minimum fitness of 0.26.

(Figure 1, Table 3). The convergence was determined from
the change in mean fitness: the slope of the mean fitness
across 25 generations must be <0.002 and the standard
deviation of mean fitness across 25 generations must be
less than 0.06 (implemented in https://github.com/neurord/
ajustador/tree/master/ajustador/helpers/converge.py). For each
optimization, all current injections are simulated in parallel. In
general, each simulation job is submitted to a scheduler, and
started when resources are available. The result is returned to
the optimization algorithm when all requested points have been
finished.

The parameter algorithm was able to find reasonable
parameters for most of the data sets. We defined the feature
funtions in a way that would give values on the order of one, so
that when multiple features were combined with equal weights,
all features could contribute significantly to the total. The
optimizations were originally performed using equal weighting,
and then repeated once or twice after visual comparison of
simulations and experiments and adjusting the weights (Table 2)
to de-emphasize spike time and improve the fit to shape of the
AHP. Figure 1 shows total fitness value vs. model evaluation for
GPe neurons (A) and SP neurons (B). Most combined fitness
values decreased to ∼0.4 or less for the seven GPe neurons and
to ∼1.0 or less for the SP neurons. Simulations were repeated
using a different random seed, with similar results: the change in
minimum total fitness reached was 0.018 (6.4%) for GPe neurons
and−0.041 (4.4%) for SP neurons.

Figure 2 shows an overlay of the model traces and
experimental data for the optimizations in Figure 1 to illustrate
similarity between model and experiments. Figures 2A,B show
optimizations of two different arkypallidal neurons from the
external globus pallidus. For both neurons, the shape of the AHP
and the amplitude of the sag match quite well. On the other
hand, the fit to arky N 120 shows the difficulty in fitting to
neurons with short action potentials (similar results are obtained
with a spike height weight of 1.0). Figure 2C shows the fit to
a prototypical neuron, which fires at a much faster rate than
the arkypallidal neurons. The ability to match the shape of the
AHPs is illustrated in Figure 2C2 which expands the time scale
of the plot. Figures 2D,E show optimizations of one D1-SPN and

one D2-SPN. Again, AP characteristics and AHP shape fit quite
well.

One motivation for using a multi-objective optimization is
the observation that improvement in the fit of one feature often
comes at the expense of another feature (Druckmann et al.,
2007; Rumbell et al., 2016; Neymotin et al., 2017). To evaluate
to what extent this trade-off occurs in these single objective
optimizations, we evaluated the correlation between various
feature functions for the 2.5% best fitting (lowest total fitness
value) models (or the last 50 of the best fitting models if more
than 2,000 evaluations were performed). The feature fitnesses and
total fitness value for (mean over the 50 best models) for each data
set is provided in Tables 4A,B. Figures 3A–C, 4A–E shows that
very few trade-offs are evident between the features that comprise
the fitness function. For the GPe neurons, spike height improves
as spike width worsens, but this relationship does not hold for the
SP neurons (Figure 4E). Several positive correlations are notable.
An increase in AHP curve fitness is correlated with an increase
in spike count fitness (Figure 3C), and an increase in voltage
response fitness is correlated with an increase in spike time fitness
(Figure 3B) for GPe neurons. For the SP neuron optimization,
trade-offs are less apparent, and instead the charging curve fitness
is positively correlated with the spike width fitness (Figure 4A),
though negatively correlated with AHP curve (Figure 4B) fitness.
In addition, the voltage response fitness is positively correlated
with spike height fitness (Figure 4C). As the long latency to 1st
spike in SP neurons is attributed to transient potassium currents,
which also can produce large AHPs, we examined AHP curve
vs. 1st spike latency (Figure 4D), but the correlation between
these two features is quite small. Graphs of single features vs.
total fitness (Figures 3D–F, 4F–H) demonstrate that most single
features are either not correlated with the total fitness, or explain
very little of the variance, e.g., voltage response for the GPe
neurons (Figure 3D), and spike latency (R = 0.05) and spike
count (R=−0.31) for SP neurons. A summary of all correlations
is provided for GPe neurons in Figure 3G. The lack of correlation
reflects that the total fitness is calculated from the combination
of multiple features. An exception to this is the high correlation
between AHP curve and total fitness for SP neurons, likely due
to the high weight of this feature in the total fitness (Figure 4H).
Curiously, in some cases feature fitness is negatively correlated
with total fitness, such as spike width for both GPe neurons
(Figure 3F) and SP neurons (Figure 4F), and charging curve
for SP neurons (Figure 4G).This shows that strong fitting of a
specific feature can result in a model that is weak when other
features are considered, possibly because the model is not flexible
enough to provide a good fit on all of those features.

Non-linear systems are often difficult to find parameters for
because a unique set of parameters may not exist. Prior studies
(Golowasch et al., 2002; Prinz et al., 2003a) have observed that
higher outward conductances can be compensated by higher
inward, or different potassium conductances can compensate
for each other. To examine to what extent this occurs in
our optimizations, we evaluated the correlation between the
different conductances from the same best models as used above.
Figure 5 illustrates the conductances for the best GPemodels and
demonstrates several types of compensation. In the GPe neurons,

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2018 | Volume 12 | Article 47115

https://github.com/neurord/ajustador/tree/master/ajustador/helpers/converge.py
https://github.com/neurord/ajustador/tree/master/ajustador/helpers/converge.py
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 2 | Comparison of simulated and experimental traces. In all panels, simulations are in shades of turquoise and experimental data in shades of magenta. (A)

Fit to arkypalidal cell #140 (minimum fitness = 0.29). Spike height, timing and AHP are all fit quite well. (B) Fit to arkypallidal cell #120 (minimum fitness = 0.29). This

example shows the difficulty in fitting to spike height when spikes are shorter than usual. (C) Fit to protoypical cell #144 (minimum fitness = 0.25). C1 shows fit to

entire 1 sec of current injection, whereas C2 zooms in to illustrate match to AHP shape. (D) Fit to D1R type of SP neuron (minimum fitness 0.78). (E) Fit to D2R type of

SP neuron (minimum fitness 0.88). Both (D,E) show good fit to AP shape, AHP shape and long latency to fire.

an increase in the slow sodium current (NaS) is compensated by a
decrease in the fast sodium current (NaF) in the axon (Figure 5A)
or an increase in the KCNQ potassium current (Figure 5B).
Similarly, an increase in the fast sodium current is compensated
by an increase in the Kv3 potassium current (Figure 5C) or
an increase in the fast transient potassium (KAF) current
(Figure 5D). There is a tradeoff between somatic and axonal
transient potassium (KAS) currents (Figure 5E). In contrast
to these compensatory correlations, Figure 5F demonstrates
a non-compensatory correlation: the dendritic KAS current
positively correlates with the dendritic Kv3 current. A similar
range of correlations is apparent for the SP optimizations
(Figure 6). Figures 6A–C shows inward currents compensating
for outward currents. Figure 6D shows the slow transient

potassium current (KAS) compensating for the fast transient
potassium current (KAF) in the soma; whereas Figures 6E,F

shows non-compensatory correlations: A correlated increase in
two inward currents (Figure 6E), or a decrease in a calcium
current correlated with an increase in a potassium current
(Figure 6F).

Approach to Identifying Mechanisms

Underlying Difference Between Cell Types
CMA outputs provide parameters for generating sets of good
models instead of the parameters for the single best fit model.
This has the advantage of providing sets of good models
for performing simulation experiments and demonstrating
robustness to parameter variations. In addition, the parameters

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2018 | Volume 12 | Article 47116

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 4A | Mean feature fitnesses of the 50 best models for each of the globus pallidus neurons.

GPe proto154F proto144F proto122F proto079F arky140F arky138F arky120F

Voltage response 0.367 ± 0.022 0.154 ± 0.085 0.289 ± 0.057 0.272 ± 0.081 0.240 ± 0.093 0.565 ± 0.076 0.273 ± 0.116

Baseline post 0.086 ± 0.034 0.093 ± 0.050 0.084 ± 0.047 0.125 ± 0.098 0.050 ± 0.036 0.066 ± 0.049 0.079 ± 0.055

Rectification 0.261 ± 0.107 0.324 ± 0.130 1.318 ± 0.015 0.705 ± 0.267 0.540 ± 0.037 0.853 ± 0.146 0.511 ± 0.241

Falling curve 0.222 ± 0.090 0.132 ± 0.074 0.298 ± 0.075 0.321 ± 0.173 0.227 ± 0.037 0.256 ± 0.113 0.155 ± 0.087

Spike time 0.058 ± 0.007 0.065 ± 0.038 0.075 ± 0.011 0.118 ± 0.015 0.052 ± 0.011 0.164 ± 0.015 0.087 ± 0.019

Spike width 0.450 ± 0.042 0.548 ± 0.028 0.325 ± 0.027 0.277 ± 0.077 0.455 ± 0.036 0.464 ± 0.089 0.278 ± 0.069

Spike height 0.075 ± 0.042 0.089 ± 0.042 0.332 ± 0.025 0.258 ± 0.089 0.077 ± 0.036 0.156 ± 0.065 0.287 ± 0.029

Spike count 0.144 ± 0.023 0.148 ± 0.047 0.121 ± 0.062 0.378 ± 0.121 0.103 ± 0.039 0.306 ± 0.087 0.326 ± 0.088

AHP amplitude 0.070 ± 0.033 0.112 ± 0.052 0.104 ± 0.047 0.115 ± 0.084 0.074 ± 0.035 0.104 ± 0.077 0.094 ± 0.083

AHP curve 0.693 ± 0.032 0.516 ± 0.022 0.534 ± 0.042 0.904 ± 0.046 0.616 ± 0.033 0.714 ± 0.032 0.712 ± 0.033

Histogram 0.299 ± 0.039 0.239 ± 0.092 0.329 ± 0.049 0.478 ± 0.110 0.146 ± 0.052 0.332 ± 0.096 0.271 ± 0.074

Total 0.316 ± 0.007 0.281 ± 0.015 0.484 ± 0.005 0.448 ± 0.026 0.310 ± 0.006 0.445 ± 0.016 0.348 ± 0.026

TABLE 4B | Mean feature fitnesses of the 50 best models for each of the striatal spiny projection neurons.

D1_051811 D1_042811 D1_010612 D2_081011 D2_051311 D2_010612

Voltage response 0.996 ± 0.021 0.057 ± 0.032 0.228 ± 0.121 0.243 ± 0.121 0.414 ± 0.038 0.944 ± 0.025

Baseline pre 0.018 ± 0.001 0.072 ± 0.003 0.044 ± 0.007 0.110 ± 0.026 0.015 ± 0.001 0.073 ± 0.001

Baseline post 0.016 ± 0.001 0.057 ± 0.002 0.039 ± 0.008 0.004 ± 0.003 0.013 ± 0.001 0.061 ± 0.001

Falling curve 0.233 ± 0.039 0.058 ± 0.026 0.273 ± 0.084 0.393 ± 0.053 0.294 ± 0.111 0.076 ± 0.018

Spike width 0.253 ± 0.028 0.171 ± 0.022 0.055 ± 0.040 0.141 ± 0.030 0.040 ± 0.022 0.241 ± 0.016

Spike height 0.203 ± 0.008 0.096 ± 0.007 0.123 ± 0.005 0.187 ± 0.004 0.191 ± 0.010 0.191 ± 0.004

Spike latency 0.207 ± 0.017 0.311 ± 0.027 0.332 ± 0.086 0.339 ± 0.070 0.153 ± 0.017 0.313 ± 0.016

Spike count 1.077 ± 0.011 1.066 ± 0.001 1.021 ± 0.067 0.958 ± 0.044 0.946 ± 0.000 0.908 ± 0.004

AHP amplitude 0.187 ± 0.015 0.019 ± 0.013 0.342 ± 0.003 0.184 ± 0.014 0.256 ± 0.003 0.170 ± 0.013

AHP curve 2.434 ± 0.147 2.618 ± 0.062 3.750 ± 0.023 3.336 ± 0.032 3.437 ± 0.025 2.744 ± 0.019

Charging curve 0.147 ± 0.024 0.174 ± 0.025 0.056 ± 0.022 0.094 ± 0.026 0.058 ± 0.023 0.170 ± 0.030

Histogram 0.591 ± 0.011 0.075 ± 0.007 0.357 ± 0.019 0.392 ± 0.036 0.601 ± 0.010 0.441 ± 0.009

Total 0.851 ± 0.036 0.826 ± 0.016 1.142 ± 0.003 1.027 ± 0.0093 1.060 ± 0.006 0.899 ± 0.004

themselves can be analyzed to determine whether certain
parameters are predictive of different cell types and capture
the feature differences between neuron subtypes (Table 5). To
address this latter question, we used a multi-step statistical
analysis (discriminant analysis followed by cluster analysis)
applied to the 50 best fitting models.

For the GPe neurons, graphical analysis revealed that
capacitance (CM) and the large conductance, calcium dependent
potassium current (BK) in soma and dendrite as the variables
that best separate the data. The discriminant analysis similarly
identified capacitance, but did not identify the BK conductance.
Instead, it identified the slow transient potassium current (KAS)
in the soma. A plot of these parameter values (Figures 7A,B)
demonstrate that the arkyN have either a higher somatic or
dendritic BK conductance, and also have a higher capacitance.
Inspection of the panels in Figures 5, 7C,D confirm that most of
the other parameters do not separate the data by neuron class.

We performed a cluster analysis using these identified
parameters (CM and either BK or KAS). Because the BK
conductance was elevated in either the soma or the dendrite,

but not always both, we used the sum of the somatic and
dendritic BK conductance as one of the variables. Two types
of cluster analyses were performed. The first analysis used the
SAS CLUSTER procedure, which performs a hierarchical cluster
analysis without the need to specify either the number of clusters
or the cluster size. This procedure provides a measure of the
goodness of separation vs. number of clusters. Using the number
of clusters suggested by the 1st cluster analysis, the second cluster
analysis, which implements a disjoint cluster analysis using the
SAS FASTCLUS procedure, then provides a measure of the
distance between the clusters. This second procedure allowed
quantification of the difference between neuron subtypes.

The disjoint cluster analysis using the 3 clusters suggested
by the hierarchical cluster analysis correctly classifies all but
two of the neuron parameter sets correctly (Table 6), regardless
of whether BK or KAS was used. This suggests that the
parameters identified may represent subtype differences. The
BK conductance in particular has already been demonstrated
to differ between arkypallidal and prototypical GPe neurons.
Because the parameter optimizations used the same morphology

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2018 | Volume 12 | Article 47117

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 3 | Comparison of feature fitnesses for 50 best models for GPe neuron optimizations. (A) Spike height vs. spike width shows that improvements in spike

height come at expense of worsening of spike width. In contrast to this trade-off, (B) steady state voltage response vs. spike time and (C) AHP curve vs. spike count

show that two features can improve simultaneously. (D–E) contribution of voltage response (D), spike height (E) and spike width (F) to the total fitness. Despite the

significant positive correlation for two of the features, no one feature appears to control the fit. R is the Pearson’s R correlation; all illustrated correlations are significant

at P < 0.0001. Symbols corresponding to different neurons are the same in all panels and indicated in C. (G) Pairwise Pearson’s R correlation between all features

illustrated as image plot. AP: spike.

for arkyN and protoN, the difference in CM values suggests that
the morphology of these two neurons differ, with arkypallidal
neurons having either a larger number of dendrites or a greater
number of spines. The greater conductance of the slow transient

potassium channel may be producing the shallower AHPs in
arkyN as compared to protoN (e.g., compare Figure 2B with
Figure 2C2). The Euclidean distance between centroids of the
two arkyN clusters (1.78) is smaller than the distance between

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2018 | Volume 12 | Article 47118

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 4 | Comparison of feature fitnesses for 50 best models for SP neuron optimizations. The positive correlations for (A) spike width vs. charging curve fitness

and (C) voltage response vs. spike height show that two features can improve simultaneously. With some features, such as (B) AHP curve vs. charging curve fitness,

there is a trade-off between these two features.(D) AHP curve is not correlated with 1st spike latency (P = 0.052). (E) Spike height vs. spike width does not appear to

be correlated in the SP neurons, though reaching statistical significance (P < 0.0001). (F–H) Contribution of spike width (F), charging curve (G), and AHP curve (H) to

the total fitness. Improvement in spike width is negatively correlated with total fitness. The strong correlation of AHP curve to total fitness is likely caused by strong

weight on AHP curve in the fitness function. R is the Pearson’s R correlation; Correlations above 0.7 are significant at P < 0.0001. Symbols corresponding to different

neurons are the same in all panels and indicated in H.

centroids of the arkyN and protoN clusters (2.95 and 2.27).When
the analysis was repeated on the best models from the second set
of GPe optimizations, a similar KAS conductance was identified,

but instead of the CM or the BK conductance, KAF, NaF, and
KDr were identified. The difference in these two sets of variables
suggests that a larger set of optimizations is needed (with fewer

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2018 | Volume 12 | Article 47119

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 5 | Compensation and other correlations among channel conductances for GPe neurons. (A) A decrease in fast sodium conductance in the axon can be

compensated by an increase in the slow sodium conductance in the soma. (B–D) An increase in conductance of various potassium channels can be compensated by

an increase in sodium conductance. (E) An increase in the transient potassium current in the soma is correlated with a decrease in the axon. (F) A non-compensatory

correlation: an increase in KAS type of potassium conductance is associated with an increase in the Kv3 potassium conductance. R is the Pearson’s R correlation; all

illustrated correlations are significant at P < 0.0001. Symbols corresponding to different neurons are the same in all panels and indicated in F.

models per optimization) for accurate identification of differing
channel conductances.

DISCUSSION

We created python code for automatic parameter optimization of
single neuron models simulated using the MOOSE software. In
order to facilitate development and reuse of multi-compartment,
multi-conductance models, we used a declarative parameter
specification to create the models, and then demonstrated
its utility by creating two subtypes of two neuron types:
striatal spiny projection neurons, and external globus pallidus

neurons. We demonstrated the utility of the covariance
matrix adaptation evolutionary strategy by tuning each model
type to several sets of experimentally measured membrane
potential responses to current injection. Each optimization
required ∼1 day of simulation time and only 1,600–4,000
evaluations, suggesting that a powerful supercomputer could
be used to tune models to large data sets reasonably quickly.
Statistical analysis of the resulting parameter sets revealed a
small set of parameters that varied between neuron subtypes,
indicating that this data-driven modeling approach would be
a useful technique for identifying differences between neuron
subtypes.

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2018 | Volume 12 | Article 47120

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 6 | Compensation and other correlations among channel conductances for SP neurons. (A–C) An increase in potassium channel conductance is

compensated by an increase in inward channel conductance (sodium or calcium channels). (D) An increase in fast transient (KAF) potassium channel conductance is

compensated by a decrease in slow transient (KAS) potassium channel conductance in in the soma. (E,F) Two non-compensatory correlations between channel

conductances. (E) An increase in the fast sodium current in the soma is associated with an increase in the R type calcium channel (CaR) conductance. (F) An increase

in delayed rectifier potasium channel is correlated with a decrease in N type calcium current in the soma. R is the Pearson’s R correlation; all illustrated correlations are

significant at P < 0.0001. Symbols corresponding to different neurons are the same in all panels and indicated in E.

The use of declarative model specification instead of
procedural model specification is considered best practice in
model development (Gewaltig and Cannon, 2014). A declarative
model specification simplifies inspection of the model, and
facilitates re-use and extension of the model. The most
comprehensive declarative model specification language for
multi-compartment, multi-channel models is NeuroML version
2 (Gleeson et al., 2010; Cannon et al., 2014). Its support
by both MOOSE and NEURON would simplify exchange of
models between simulators. One limitation with NeuroML
is that the declarative specification for calcium dynamics is
not yet developed; hence the difficulty in using the current
NeuroML for our MOOSE models. Nonetheless, implementing
a declarative parameter specification with organization and
keywords similar to NeuroML will facilitate translation into

NeuroML in the near future. A second key feature of our
parameter optimization software is to have the optimization
wrapped around existing models, similar to some existing
optimization algorithms (Friedrich et al., 2014). An advantage
of our optimization wrapper is that it keeps the declaration
of the parameters and morphology declarative, in contrast
to some other approaches (e.g., Brookings et al., 2014; Van
Geit et al., 2016). In other words, the parameters for tuning
are specified separately from the base model code, both
for MOOSE models and for signaling pathway models that
are specified and simulated in NeuroRD (https://github.com/
neurord/neurord_fit). This approach eliminates the need either
to re-specify the model using optimization specific annotations
or to insert parameter ranges directly into the base model
code.

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2018 | Volume 12 | Article 47121

https://github.com/neurord/neurord_fit
https://github.com/neurord/neurord_fit
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 5 | Mean feature properties of data.

arky (N = 3) proto (N = 4)

AP count 33.67 ± 14.50 134.25 ± 38.66

Spike Height 0.0623 ± 0.0094 0.0675 ± 0.0100

Spike Width 0.00045 ± 0.00008 0.00028 ± 0.00008

Spike AHP −0.0506 ± 0.0028 −0.0581 ± 0.0040

Baseline Vm −0.0446 ± 0.0023 −0.0496 ± 0.0044

Rectification (at −200pA) 0.00787 ± 0.00289 0.00298 ± 0.00299

deltaV (at −100pA) −0.0272 ± 0.0039 −0.0114 ± 0.0043

deltaV (at −200pA) −0.0430 ± 0.0068 −0.0229 ± 0.0029

Falling curve 0.0129 ± 0.0022 0.0072 ± 0.0014

Distinguishing features include number of action potentials, spike width, deltaV (input
resistance), falling curve.

TABLE 6 | Confusion matrix for cluster analysis using CM and total BK

conductance.

Cell Cluster 1 (protoN) Cluster 2 (arkyN) Cluster 3 (arkyN)

Arky120 1* 48 1

Arky138 0 0 50

Arky140 0 50 0

Proto079 50 0 0

Proto122 50 0 0

Proto144 50 0 0

Proto154 50 0 0

Note that labeling the clusters was performed post-hoc, based on the composition of the
clusters. *Indicates the incorrectly classified parameter set.

One limitation of our current optimization software is the
inability to adjust half activation and time constants of channel
gating for the ionic channels. An initial set of optimizations of
the GPe neurons (results not shown) revealed that activation of
the hyperpolarization activated cyclic-nucleotide gated (HCN)
current in response to hyperpolarizing currents produced a “sag”
that was much faster than observed experimentally. To improve
this aspect of the fit, the time constant of one of the HCN
currents was increased, and the optimizations illustrated all used
this slower HCN channel. Given the number of ionic channels
activated during action potentials, this hand-tuning approach is
not practical for depolarization activated channels. The inability
to tune channel characteristics may have contributed to the
lower quality fits for the SP neurons. Currently, the software
can adjust half activation of one of the channels; thus it will be
straight forward to add the capability for all channels. Adding
in these parameters should improve the ability to fit the model
(Hendrickson et al., 2011b; Brookings et al., 2014; Neymotin
et al., 2017), though it would double the number of parameters
to tune.

CMA-ES was selected because it has properties which make
it appropriate for fitting of complicated and slow-to-simulate
models to experimental data: it is robust in the face of local
fluctuations of the fitness function, deals well with a high-
dimensional and discontinuous fitness landscape, and finally,

is frugal with the number of required evaluations, especially
compared to other evolutionary algorithms. CMA-ES has been
applied to determine protein conformation (Bourquard et al.,
2015), and parameters for spiking neuron models (Rossant et al.,
2011). A benefit of this algorithm is its fast convergence time,
even with large numbers of parameters. Though some parameter
optimization algorithms suffer severe slowdowns when the
number of parameters is increased, CMA-ES does not suffer
from this problem until parameter numbers reach hundreds to
thousands (Hansen and Kern, 2004; Hendrickson et al., 2011b;
Friedrich et al., 2014; Neymotin et al., 2017). An approach to limit
the number of parameters is to perform optimizations in several
steps, such as optimizing the passive properties first and spiking
activity second (Rumbell et al., 2016), optimizing parameters for
proximal conductances to data collected from a neuron with
the apical dendrite occluded (Bahl et al., 2012), or using data
collected from somatic followed by dendritic recordings (Hay
et al., 2011). Though this stepwise approach could facilitate
parameter fitting using CMA-ES, avoiding a multi-step approach
has the advantage of simplifying the model fitting procedure
(conserving the work required from the scientist), and avoids
the pitfall where various parameters are strongly correlated
and the result of a multi-step fit differs from a single-step fit.
Furthermore, fitting to passive properties can underestimate
membrane resistance when channels have some activity at resting
potential (Keren et al., 2009).

Several studies demonstrate that additional sources of data
better constrain the fits. In other words, using measures at
two spatial locations (Keren et al., 2009; Hay et al., 2011)
or with pinched dendrite (Bahl et al., 2012) better constrains
the data. Another data source is calcium dynamics, with
simultaneous measures of calcium dynamics and electrical
activity (Nevian and Sakmann, 2004; Day et al., 2008; Johenning
et al., 2015; Ryu et al., 2017) providing dual contraints. When
creating models of calcium dynamics, typically the buffer and
pump properties (analogous to channel kinetics) are known
(Lee et al., 2000), but pump density and buffer quantity are
unknown and need to be adjusted (analogous to channel
density). Given the ability of the software to model calcium
dynamics, a logical extension would be to optimize to both
electrical activity and calcium dynamics measurements. Adding
in the calcium dynamics optimization includes reading in
calcium imaging data and adapting the fitness function to
calcium.

One of the difficult aspects of optimization is designing a
fitness function that captures the perceived similarity between
simulated and measured voltage traces (or calcium dynamics).
One approach is to perform a point-by-point match to the
voltage trace. This measure is problematic for neuron activity
due to the narrow time window of spikes. A clever approach
to avoid this problem has been implemented (Abarbanel et al.,
2009; Brookings et al., 2014) and avoids sensitivity to the
fitness functions selected. Unfortunately, the custom code to
implement this approach is not written for an existing simulator;
however, it would be interesting to incorporate that approach
into a fitness function for use with MOOSE. A second approach
is to use features of the data, such as spike time, width,

Frontiers in Neuroinformatics | www.frontiersin.org 16 July 2018 | Volume 12 | Article 47122

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 7 | A small number of parameters separate the two subtypes of GPe neurons. (A) The large conductance, calcium dependent potassium conductance (BK)

in soma and dendrite are larger in arkyN than in protoN. (B) Capacitance (CM), and (to a lesser extent) the slow transient potassium channel conductance are greater

in arkyN than in protoN (C–D) No systematic differences are observed in HCN conductance (C) or in Kv3 or KAF (D) between arkyN and protoN. Symbols

corresponding to different neurons are the same in all panels and indicated in A.

height, AHP shape as well as non-spiking features. The large
number of features can be combined into a single feature,
used individually in multi-objective optimization (Druckmann
et al., 2007; Rumbell et al., 2016; Neymotin et al., 2017),
or combined into one (or a few) combined features (Keren

et al., 2009; Rumbell et al., 2016). One rationale for performing
a multi-objective optimization is that an overall best match
may not be possible; instead a multi-objective optimization
provides a set of optimal solutions that represent the best
trade-offs between conflicting objectives. Using multi-objective

Frontiers in Neuroinformatics | www.frontiersin.org 17 July 2018 | Volume 12 | Article 47123

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

optimization also avoids the process of assigning weights to
features, which by definition are to some extent arbitrary.
Nevertheless, after obtaining the set of optimal solutions from a
multi-objective optimization, finding one solution that achieves
a good fit of all features may be difficult. We opted to
combine multiple objectives (features) into a single fitness
value, effectively preferring solutions that performed moderately
well on all measures to those which were optimized toward
some specific subset of features. Early explorations using multi-
objective optimization yielded models that indeed fitted some
features well, but at the same time were divergent enough
in other characteristics that if observed experimentally, such
neurons would be classified as a different type. For real neurons,
natural variability exists between inviduals of the same type, and
also between repeated measurements, yet the defining features
are common to all neurons of a certain type. We feel that
fitting very precisely to some characteristics of an invidual
experimental measurement is less useful than fitting all features
approximately.

An important concept utilized by multi-objective
optimization is weighting the various feature fitnesses by variance
across the data, under the assumption that more variable features
should be less constrained. Weighting by variance (i.e., dividing
by the standard deviation) also removes dimensionality from the
data (e.g., dividing a difference of 10mV by a standard deviation
of 1mV yields the dimensionless number of 10). This procedure
allows fitness values of features with both small values (e.g.,
spike width measured in seconds) and large values (e.g., spike
height measured in mV) to contribute meaningfully to the total
fitness. Whereas the variance for the spike characteristics can be
calculated within a neuron, a better variance estimate requires
recordings of multiple trials or multiple neurons (Hendrickson
et al., 2011b). Our algorithm removes dimensionality from the
feature fitnesses by dividing the difference between data and
simulations by the mean. The software also allows a weight
to be specified, which could be (the inverse of) the variance
between neurons. Clearly, another improvement to the software
would be to add a module to calculate and use the variance
between neurons either when current injection protocols
are repeated several times or when multiple data sets are
available.

A major concern with using parameter optimization to
identify differences between neuron types is that unique
parameter sets do not exist (Golowasch et al., 2002; Prinz et al.,
2003b; Olypher and Calabrese, 2007; Hay et al., 2011). Instead
there are multiple valid parameter sets with parameter co-
variation, which hinders the ability to classify neurons based
on these conductance parameters. Though CMA-ES takes into
account these correlations during the optimization, CMA-ES
does not find all parameter sets, since it continually seeks
a (single) global minimum. In principal, CMA-ES could be
initiated from different points in parameter space to find
multiple local minima. Even with a single run of CMA-
ES per neuron recording, analysis of the best parameter
sets revealed several correlations between conductances when

all models of a neuron subtype were considered. The most
common correlations were compensatory, with increases in
inward currents correlated with increases in outward currents,
or increases in one type of potassium current correlated
with a decrease in a different type of potassium current.
Interestingly, most correlations were not observed for a
single neuron, but were observed across the set of neurons,
suggesting that differences in that set of conductances may
represent natural variation within neuron subtypes (Taylor et al.,
2009).

Optimization of several exemplars allowed us to evaluate
differences between neuron subtypes. Experimentally, low
frequency firing neurons of the globus pallidus, such as the
arkypallidal neurons, show a slight increase of firing rate
when the BK channel is blocked (Abrahao et al., 2017). In
addition, ethanol (which directly targets the BK channel) does
not affect the firing rate of high frequency firing, prototypical
neurons of the globus pallidus; but does decrease the firing
rate of low frequency GPe neurons by increasing the open
probability of BK channels (Abrahao et al., 2017). These
experimental data suggest that arkypallidal and prototypical
neurons have different conductance of BK channels, as suggested
by statistical analysis of the arkyN and protoN parameters.
ArkyN and protoN neuron models also differed in transient
potassium conductance, which has been reported experimentally
(Hernández et al., 2015). The HCN channel also has been
characterized in arkypallidal and prototypical neurons, with one
report of a difference (Hernández et al., 2015) and one report
of no difference (Mastro et al., 2014). Our observation of no
difference in HCN currents between subtypes is consistent with
the latter publication, but it is not inconsistent with the data
from the former which shows that strong hyperpolarization
is required to observe the greater sag ratio of PV− vs. PV+
neurons.

The optimization also reported that ArkyN had higher
capacitance than ProtoN, a difference that is not supported
experimentally. One possible cause of this discrepancy is the use
of the same morphology for all GPe optimizations, since using
a different morphology changes the fitted passive parameters
(Holmes et al., 2006). The neurons from which electrophysiology
data were obtained have not been reconstructed, precluding
using the morphology that matches the data. In addition,
the optimization may have (incorrectly) increased the ArkyN
capacitance to produce shallow AHPs, to compensate for the
present inability to adjust time constants and half activation
values of the potassium currents. Note that the classification
of arkypallidal vs. prototypical neurons is based on firing
characteristics, with recent attempts to identify these neurons
based on biochemical markers. There is broad agreement than
PV+ neurons are prototypical, but PV− neurons can be
prototypical cells, expressing Lhx6 (Mastro et al., 2014), or
arkypallidal cells, expressing Npas1+ or FoxP2+ (Dodson et al.,
2015; Hernández et al., 2015; Glajch et al., 2016). In fact, there are
both similarities (HCN conductance) and differences (transient
potassium current) between the Npas1+ and Lhx6+ neurons.

Frontiers in Neuroinformatics | www.frontiersin.org 18 July 2018 | Volume 12 | Article 47124

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

Future parameter optimization of morphlogically reconstructed
neurons exhibiting these different markers may better determine
ionic conductance differences among all these neuron types.
Ideally, easy-to-use, automatic approaches for identifying
neuron channel parameters may facilitate experiments used to
characterize such differences.

AUTHOR CONTRIBUTIONS

ZJ-S: modeling and optimization software development,
manuscript preparation; JJ-S: modeling software development,
manuscript preparation; KA: GPe experiments, manuscript
preparation; DL: GPe experiments, manuscript preparation;
KB: SP experiments, modeling software development, model
simulation and analysis, manuscript preparation.

FUNDING

This work was supported by the joint NIH-NSF CRCNS program
through NIAAA grant R01DA03889 and NSF grant 1515686.

ACKNOWLEDGMENTS

Thanks to Rebekah Evans for collecting the SP experimental
data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00047/full#supplementary-material

REFERENCES

Abarbanel, H. D. I., Creveling, D. R., Farsian, R., and Kostuk,M. (2009). Dynamical

state and parameter estimation. SIAM J Appl. Dyn. Syst 8, 1341–1381.

doi: 10.1137/090749761

Abrahao, K. P., Chancey, J. H., Chan, C. S., and Lovinger, D. M. (2017).

Ethanol-sensitive pacemaker neurons in the mouse external globus pallidus.

Neuropsychopharmacology 42, 1070–1081. doi: 10.1038/npp.2016.251

Bahl, A., Stemmler, M. B., Herz, A. V., and Roth, A. (2012). Automated

optimization of a reduced layer 5 pyramidal cell model based on experimental

data. J. Neurosci. Methods 210, 22–34. doi: 10.1016/j.jneumeth.2012.04.006

Bourquard, T., Landomiel, F., Reiter, E., Crépieux, P., Ritchie, D. W.,

Azé, J., et al. (2015). Unraveling the molecular architecture of a G

protein-coupled receptor/β-arrestin/Erk module complex. Sci. Rep. 5, 1–13.

doi: 10.1038/srep10760

Brookings, T., Goeritz, M. L., and Marder, E. (2014). Automatic parameter

estimation of multicompartmental neuron models via minimization of

trace error with control adjustment. J. Neurophysiol. 112, 2332–2348.

doi: 10.1152/jn.00007.2014

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,

et al. (2014). LEMS: a language for expressing complex biological models in

concise and hierarchical form and its use in underpinning NeuroML 2. Front.

Neuroinform. 8:79. doi: 10.3389/fninf.2014.00079

Chan, C. S., Peterson, J. D., Gertler, T. S., Glajch, K. E., Quintana, R. E.,

Cui, Q., et al. (2012). Strain-specific regulation of striatal phenotype

in Drd2-eGFP BAC transgenic mice. J.Neurosci. 32, 9124–9132.

doi: 10.1523/JNEUROSCI.0229-12.2012

Damodaran, S., Cressman, J. R., Jedrzejewski-Szmek, Z., and Blackwell, K.

T. (2015). Desynchronization of fast-spiking interneurons reduces -band

oscillations and imbalance in firing in the dopamine-depleted striatum. J.

Neurosci. 35, 1149–1159. doi: 10.1523/JNEUROSCI.3490-14.2015

Day, M., Wokosin, D., Plotkin, J. L., Tian, X., and Surmeier, D.

J. (2008). Differential excitability and modulation of striatal

medium spiny neuron dendrites. J. Neurosci. 28, 11603–11614.

doi: 10.1523/JNEUROSCI.1840-08.2008

Dodson, P. D., Larvin, J. T., Duffell, J. M., Garas, F. N., Doig, N. M., Kessaris,

N., et al. (2015). Distinct developmental origins manifest in the specialized

encoding of movement by adult neurons of the external globus pallidus.Neuron

86, 501–513. doi: 10.1016/j.neuron.2015.03.007

Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., and Segev,

I. (2007). A novel multiple objective optimization framework for constraining

conductance-based neuron models by experimental data. Front. Neurosci. 1,

7–18. doi: 10.3389/neuro.01.1.1.001.2007

Friedrich, P., Vella, M., Gulyás, A. I., Freund, T. F., and Káli, S. (2014). A flexible,

interactive software tool for fitting the parameters of neuronal models. Front.

Neuroinform. 8:63. doi: 10.3389/fninf.2014.00063

Gewaltig, M. O., and Cannon, R. (2014). Current practice in software development

for computational neuroscience and how to improve it. PLoS Comput. Biol.

10:e1003376. doi: 10.1371/journal.pcbi.1003376

Glajch, K. E., Kelver, D. A., Hegeman, D. J., Cui, Q., Xenias, H. S., Augustine, E.

C., et al. (2016). Npas1+ pallidal neurons target striatal projection neurons. J.

Neurosci. 36, 5472–5488. doi: 10.1523/JNEUROSCI.1720-15.2016

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Golowasch, J., Goldman, M. S., Abbott, L. F., and Marder, E. (2002). Failure

of averaging in the construction of a conductance-based neuron model. J.

Neurophysiol. 87, 1129–1131. doi: 10.1152/jn.00412.2001

Günay, C., Edgerton, J. R., and Jaeger, D. (2008). Channel density distributions

explain spiking variability in the globus pallidus: a combined physiology

and computer simulation database approach. J. Neurosci. 28, 7476–7491.

doi: 10.1523/JNEUROSCI.4198-07.2008

Gurkiewicz, M., and Korngreen, A. (2007). A numerical approach to ion channel

modelling using whole-cell voltage-clamp recordings and a genetic algorithm.

PLoS Comput. Biol. 3:e169. doi: 10.1371/journal.pcbi.0030169

Hansen, N., and Kern, S. (2004). Evaluating the CMA evolution strategy on

multimodal test functions. Parallel Probl. Solv. Nat. PPSN 2004, 282–291.

doi: 10.1007/978-3-540-30217-9_29

Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011).

Models of neocortical layer 5b pyramidal cells capturing a wide range of

dendritic and perisomatic active properties. PLoS Comput. Biol. 7:e1002107.

doi: 10.1371/journal.pcbi.1002107

Hendrickson, E. B., Edgerton, J. R., and Jaeger, D. (2011a). The capabilities and

limitations of conductance-based compartmental neuron models with reduced

branched or unbranched morphologies and active dendrites. J.Comput.

Neurosci. 30, 301–321. doi: 10.1007/s10827-010-0258-z

Hendrickson, E. B., Edgerton, J. R., and Jaeger, D. (2011b). The use of

automated parameter searches to improve ion channel kinetics for neural

modeling. J. Comput. Neurosci. 31, 329–346. doi: 10.1007/s10827-010-

0312-x

Hernández, V.M., Hegeman, D. J., Cui, Q., Kelver, D. A., Fiske, M. P., Glajch, K. E.,

et al. (2015). Parvalbumin+ neurons and Npas1+ neurons are distinct neuron

classes in the mouse external globus pallidus. J. Neurosci. 35, 11830–11847.

doi: 10.1523/JNEUROSCI.4672-14.2015

Holmes, W. R., Ambros-Ingerson, J., and Grover, L. M. (2006). Fitting

experimental data to models that use morphological data from public

databases. J. Comput. Neurosci. 20, 349–365. doi: 10.1007/s10827-006-7189-8

Jedrzejewska-Szmek, J., Damodaran, S., Dorman, D. B., Blackwell, K. T.,

et al. (2017). Calcium dynamics predict direction of synaptic plasticity

in striatal spiny projection neurons. Eur. J. Neurosci. 45, 1044–1056.

doi: 10.1111/ejn.13287

Frontiers in Neuroinformatics | www.frontiersin.org 19 July 2018 | Volume 12 | Article 47125

https://www.frontiersin.org/articles/10.3389/fninf.2018.00047/full#supplementary-material
https://doi.org/10.1137/090749761
https://doi.org/10.1038/npp.2016.251
https://doi.org/10.1016/j.jneumeth.2012.04.006
https://doi.org/10.1038/srep10760
https://doi.org/10.1152/jn.00007.2014
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1523/JNEUROSCI.0229-12.2012
https://doi.org/10.1523/JNEUROSCI.3490-14.2015
https://doi.org/10.1523/JNEUROSCI.1840-08.2008
https://doi.org/10.1016/j.neuron.2015.03.007
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.3389/fninf.2014.00063
https://doi.org/10.1371/journal.pcbi.1003376
https://doi.org/10.1523/JNEUROSCI.1720-15.2016
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1152/jn.00412.2001
https://doi.org/10.1523/JNEUROSCI.4198-07.2008
https://doi.org/10.1371/journal.pcbi.0030169
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1371/journal.pcbi.1002107
https://doi.org/10.1007/s10827-010-0258-z
https://doi.org/10.1007/s10827-010-0312-x
https://doi.org/10.1523/JNEUROSCI.4672-14.2015
https://doi.org/10.1007/s10827-006-7189-8
https://doi.org/10.1111/ejn.13287
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

Johenning, F. W., Theis, A. K., Pannasch, U., Rückl, M., Rüdiger, S., and Schmitz,

D. (2015). Ryanodine receptor activation induces long-term plasticity of spine

calcium dynamics. PLOS Biol. 13:e1002181. doi: 10.1371/journal.pbio.1002181

Keren, N., Bar-Yehuda, D., and Korngreen, A. (2009). Experimentally guided

modelling of dendritic excitability in rat neocortical pyramidal neurones. J.

Physiol 587, 1413–1437. doi: 10.1113/jphysiol.2008.167130

Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental

models using multiple voltage recordings and genetic algorithms. J.

Neurophysiol. 94, 3730–3742. doi: 10.1152/jn.00408.2005

Lee, S. H., Schwaller, B., and Neher, E. (2000). Kinetics of Ca2+ binding

to parvalbumin in bovine chromaffin cells: implications for [Ca2+]

transients of neuronal dendrites. J. Physiol. 525(Pt 2), 419–432.

doi: 10.1111/j.1469-7793.2000.t01-2-00419.x

Marder, E., and Goaillard, J. M. (2006). Variability, compensation and

homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574.

doi: 10.1038/nrn1949

Martínez-Álvarez, A., Crespo-Cano, R., Díaz-Tahoces, A., Cuenca-Asensi, S.,

Ferrández Vicente, J. M., and Fernández, E. (2016). Automatic tuning

of a retina model for a cortical visual neuroprosthesis using a multi-

objective optimization genetic algorithm. Int. J. Neural Syst. 26:1650021.

doi: 10.1142/S0129065716500210

Martínez-Cañada, P., Morillas, C., Plesser, H. E., Romero, S., and Pelayo, F.

(2017). Genetic algorithm for optimization of models of the early stages in

the visual system. Neurocomputing 250, 101–108. doi: 10.1016/j.neucom.2016.

08.120

Mastro, K. J., Bouchard, R. S., Holt, H. A., and Gittis, A. H. (2014). Transgenic

mouse lines subdivide external segment of the globus pallidus (GPe) neurons

and reveal distinct GPe output pathways. J. Neurosci. 34, 2087–2099.

doi: 10.1523/JNEUROSCI.4646-13.2014

Meza, R. C., López-Jury, L., Canavier, C. C., and Henny, P. (2018). Role

of the axon initial segment in the control of spontaneous frequency

of nigral dopaminergic neurons in vivo. J. Neurosci. 38, 733–744.

doi: 10.1523/JNEUROSCI.1432-17.2017

Nevian, T., and Sakmann, B., (2004). Single spine Ca2+ signals evoked by

coincident EPSPs and backpropagating action potentials in spiny stellate cells

of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci. 24,

1689–1699. doi: 10.1523/JNEUROSCI.3332-03.2004

Neymotin, S. A., Suter, B. A., Dura-Bernal, S., Shepherd, G. M., Migliore, M.,

and Lytton, W. W. (2017). Optimizing computer models of corticospinal

neurons to replicate in vitro dynamics. J. Neurophysiol. 117, 148–162.

doi: 10.1152/jn.00570.2016

Olypher, A. V., and Calabrese, R. L. (2007). Using constraints on neuronal activity

to reveal compensatory changes in neuronal parameters. J. Neurophysiol. 98,

3749–3758. doi: 10.1152/jn.00842.2007

Prinz, A. A., Billimoria, C. P., and Marder, E. (2003a). Alternative to hand-tuning

conductance-based models: construction and analysis of databases of model

neurons. J. Neurophysiol. 90, 3998–4015. doi: 10.1152/jn.00641.2003

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity

from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/

nn1352

Prinz, A. A., Thirumalai, V., and Marder, E. (2003b). The functional

consequences of changes in the strength and duration of synaptic inputs to

oscillatory neurons. J. Neurosci. 23, 943–954. doi: 10.1523/JNEUROSCI.23-03-

00943.2003

Qian, K., Yu, N., Tucker, K. R., Levitan, E. S., and Canavier, C. C. (2014).

Mathematical analysis of depolarization block mediated by slow inactivation

of fast sodium channels in midbrain dopamine neurons. J. Neurophysiol. 112,

2779–2790. doi: 10.1152/jn.00578.2014

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., et al.

(2011). NineML: the network interchange for neuroscience modeling language.

BMC Neurosci. 12:P330. doi: 10.1186/1471-2202-12-S1-P330

Ray, S., and Bhalla, U. S. (2008). PyMOOSE: Interoperable Scripting in Python for

MOOSE. Front Neuroinformatics. 2:6. doi: 10.3389/neuro.11.006.2008

Richmond, P., Cope, A., Gurney, K., and Allerton, D. J. (2014). From model

specification to simulation of biologically constrained networks of spiking

neurons. Neuroinformatics 12, 307–323. doi: 10.1007/s12021-013-9208-z

Rossant, C., Goodman, D. F., Fontaine, B., Platkiewicz, J., Magnusson, A. K., and

Brette, R. (2011). Fitting neuron models to spike trains. Front. Neurosci. 5:9.

doi: 10.3389/fnins.2011.00009

Rumbell, T. H., Draguljić, D., Yadav, A., Hof, P. R., Luebke, J. I., and Weaver, C.

M. (2016). Automated evolutionary optimization of ion channel conductances

and kinetics in models of young and aged rhesus monkey pyramidal neurons.

J. Comput. Neurosci. 41, 65–90. doi: 10.1007/s10827-016-0605-9

Ryu, C., Jang, D. C., Jung, D., Kim, Y. G., Shim, H. G., Ryu, H. H.,

et al. (2017). STIM1 regulates somatic Ca2+ signals and intrinsic firing

properties of cerebellar Purkinje neurons. J. Neurosci. 37, 8876–8894.

doi: 10.1523/JNEUROSCI.3973-16.2017

Schaefer, A. T., Larkum, M. E., Sakmann, B., and Roth, A. (2003). Coincidence

detection in pyramidal neurons is tuned by their dendritic branching pattern.

J. Neurophysiol. 89, 3143–3154. doi: 10.1152/jn.00046.2003

Segev, I., and London, M. (2000). Untangling dendrites with quantitative models.

Science 290, 744–750. doi: 10.1126/science.290.5492.744

Taylor, A. L., Goaillard, J. M., and Marder, E. (2009). How Multiple conductances

determine electrophysiological properties in a multicompartment model. J.

Neurosci. 29, 5573–5586. doi: 10.1523/JNEUROSCI.4438-08.2009

Tucker, K. R., Huertas, M. A., Horn, J. P., Canavier, C. C., and Levitan,

E. S. (2012). Pacemaker rate and depolarization block in nigral dopamine

neurons: a somatic sodium channel balancing act. J. Neurosci. 32, 14519–14531.

doi: 10.1523/JNEUROSCI.1251-12.2012

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron

model optimization techniques: a review. Biol. Cybern. 99, 241–251.

doi: 10.1007/s00422-008-0257-6

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,

E. B., et al. (2016). BluePyOpt: leveraging open source software and

cloud infrastructure to optimise model parameters in neuroscience. Front.

Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017

Van Ooyen, A., Duijnhouwer, J., Remme, M. W., and Van Pelt, J. (2002). The

effect of dendritic topology on firing patterns in model neurons.Netw. Comput.

Neural Syst. 13, 311–325. doi: 10.1088/0954-898X/13/3/304

Vanier, M. C., and Bower, J. M. (1999). A comparative survey of automated

parameter-search methods for compartmental neural models. J. Comput.

Neurosci. 7, 149–171. doi: 10.1023/A:1008972005316

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

At least a portion of this work is authored by David M. Lovinger on behalf of the U.S.

Government and, as regards Dr. Lovinger and the US government, is not subject to

copyright protection in the United States. Foreign and other copyrights may apply.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 20 July 2018 | Volume 12 | Article 47126

https://doi.org/10.1371/journal.pbio.1002181
https://doi.org/10.1113/jphysiol.2008.167130
https://doi.org/10.1152/jn.00408.2005
https://doi.org/10.1111/j.1469-7793.2000.t01-2-00419.x
https://doi.org/10.1038/nrn1949
https://doi.org/10.1142/S0129065716500210
https://doi.org/10.1016/j.neucom.2016.08.120
https://doi.org/10.1523/JNEUROSCI.4646-13.2014
https://doi.org/10.1523/JNEUROSCI.1432-17.2017
https://doi.org/10.1523/JNEUROSCI.3332-03.2004
https://doi.org/10.1152/jn.00570.2016
https://doi.org/10.1152/jn.00842.2007
https://doi.org/10.1152/jn.00641.2003
https://doi.org/10.1038/nn1352
https://doi.org/10.1523/JNEUROSCI.23-03-00943.2003
https://doi.org/10.1152/jn.00578.2014
https://doi.org/10.1186/1471-2202-12-S1-P330
https://doi.org/10.3389/neuro.11.006.2008
https://doi.org/10.1007/s12021-013-9208-z
https://doi.org/10.3389/fnins.2011.00009
https://doi.org/10.1007/s10827-016-0605-9
https://doi.org/10.1523/JNEUROSCI.3973-16.2017
https://doi.org/10.1152/jn.00046.2003
https://doi.org/10.1126/science.290.5492.744
https://doi.org/10.1523/JNEUROSCI.4438-08.2009
https://doi.org/10.1523/JNEUROSCI.1251-12.2012
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.1088/0954-898X/13/3/304
https://doi.org/10.1023/A:1008972005316
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 03 August 2018

doi: 10.3389/fninf.2018.00046

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2018 | Volume 12 | Article 46

Edited by:

Sharon Crook,
Arizona State University, United States

Reviewed by:

Antonio C. Roque,
Universidade de São Paulo, Brazil

Thomas Nowotny,
University of Sussex, United Kingdom

*Correspondence:

Robin Pauli
r.pauli@fz-juelich.de

†These authors have contributed
equally to this work.

Received: 01 March 2018
Accepted: 26 June 2018

Published: 03 August 2018

Citation:

Pauli R, Weidel P, Kunkel S and
Morrison A (2018) Reproducing

Polychronization: A Guide to
Maximizing the Reproducibility of

Spiking Network Models.
Front. Neuroinform. 12:46.

doi: 10.3389/fninf.2018.00046

Reproducing Polychronization: A
Guide to Maximizing the
Reproducibility of Spiking Network
Models
Robin Pauli 1*†, Philipp Weidel 1†, Susanne Kunkel 2,3 and Abigail Morrison 1,4

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I,
Jülich Research Centre, Jülich, Germany, 2 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås,
Norway, 3Department of Computational Science and Technology, School of Computer Science and Communication, KTH
Royal Institute of Technology, Stockholm, Sweden, 4 Institute of Cognitive Neuroscience, Faculty of Psychology,
Ruhr-University Bochum, Bochum, Germany

Any modeler who has attempted to reproduce a spiking neural network model from its

description in a paper has discovered what a painful endeavor this is. Even when all

parameters appear to have been specified, which is rare, typically the initial attempt to

reproduce the network does not yield results that are recognizably akin to those in the

original publication. Causes include inaccurately reported or hidden parameters (e.g.,

wrong unit or the existence of an initialization distribution), differences in implementation

of model dynamics, and ambiguities in the text description of the network experiment.

The very fact that adequate reproduction often cannot be achieved until a series of such

causes have been tracked down and resolved is in itself disconcerting, as it reveals

unreported model dependencies on specific implementation choices that either were

not clear to the original authors, or that they chose not to disclose. In either case,

such dependencies diminish the credibility of the model’s claims about the behavior

of the target system. To demonstrate these issues, we provide a worked example of

reproducing a seminal study for which, unusually, source code was provided at time

of publication. Despite this seemingly optimal starting position, reproducing the results

was time consuming and frustrating. Further examination of the correctly reproduced

model reveals that it is highly sensitive to implementation choices such as the realization

of background noise, the integration timestep, and the thresholding parameter of the

analysis algorithm. From this process, we derive a guideline of best practices that

would substantially reduce the investment in reproducing neural network studies, whilst

simultaneously increasing their scientific quality. We propose that this guideline can be

used by authors and reviewers to assess and improve the reproducibility of future network

models.

Keywords: reproducibility, polychronization, spiking network models, spike-timing dependent plasticity,

synchrony

127

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00046
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00046&domain=pdf&date_stamp=2018-08-03
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:r.pauli@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00046
https://www.frontiersin.org/articles/10.3389/fninf.2018.00046/full
http://loop.frontiersin.org/people/231251/overview
http://loop.frontiersin.org/people/231250/overview
http://loop.frontiersin.org/people/8419/overview
http://loop.frontiersin.org/people/13504/overview

Pauli et al. Reproducing Polychronization

1. INTRODUCTION

Reproducing computational models of networks of spiking point
neurons seems like it should be easy. Neuron and synapse
models are described as systems of ordinary differential equations
with a few additional conditions and constraints. By specifying
the parameters, the initial conditions, and any stimulus to the
network, the dynamics of any reproduced network should be at
least statistically equivalent, or even identical if external sources
of random numbers are handled appropriately.

However, this optimistic attitude rarely survives the
experience of trying to reproduce a model from a paper.
As contributors to the NEST simulator (Gewaltig and Diesmann,
2007), the authors have reproduced a variety of models to
create examples. A major source of frustration is inadequate
specification of numbers. Parameters are sometimes missing
from the description in the paper. This can be in an overt
manner, e.g., τm occurs in the neuron model equations but its
value is not stated anywhere, or occur covertly, such that the
parameter is not even mentioned in the text. Another common
issue with parameters is that the value used in the paper is not the
value used for the simulation. Sometimes the number is rounded
to a smaller number of decimal places, sometimes it is plain
wrong, sometimes the unit is wrong, and sometimes the author
fails to mention, for example, a multiplicative factor. Similarly,
initial conditions can be incompletely or incorrectly specified,
for example the authors state that the initial values for a given
parameter are drawn from a certain random distribution, but fail
to mention it is truncated.

A further area of divergence is inadequate specification of
implementation. One example of this would be for the truncated
distribution mentioned above, the authors do not state the
behavior when a number is drawn outside of the bounds: clip
to bounds or re-draw? Other examples include the choice of the
numeric solver of model dynamics and issues to do with event
ordering in plastic synapse models – if a pre- and post-synaptic
spike arrive simultaneously at a synapse implementing spike-
timing dependent plasticity, which happens first, depression or
facilitation?

It is worth noting that the two types of insufficient
specification are of quite different natures and cannot necessarily
be addressed by the same approach. For the majority of current
spiking point neuron models, the number of parameters to be
specified is large but not ridiculously so. Thus it is reasonable
to expect that they all be mentioned explicitly in the main text
of a manuscript or in its Supplementary Material. This issue
was partially addressed by Nordlie et al. (2009), who developed
a break-down of network models into components (e.g., neuron
model, connectivity, stimulus etc.) which can then be expressed
in tables with a standardized layout. The experience of the
authors is that the exercise of filling out these tables brings
parameters to light that might otherwise have been overlooked,
however it does not provide any protection against wrong values

or secret multiplicative factors as discussed above.
In contrast, a complete specification of the implementation

cannot be sensibly captured in tables, as it is “how” rather than

“what” information. Whereas some aspects can be explained in

the text of a manuscript, comprehensive coverage cannot be
expected, firstly because it would make manuscripts technically
dense to the point of unreadability, and secondly because human
readable language is rife with ambiguities that would hamper an
accurate reproduction of the described model. Because of these
specification issues it is often not possible to reproduce a model
from a paper without contacting the authors and extracting more
information.

Clearly, then, sharing model code should be seen as part
of a modeler’s obligation to enable reproducibility of his or
her study. This is easily achieved on a variety of platforms.
However, downloading a model code from such a platform
and running it on your own machine does not constitute
reproducing a study in the strong sense. Using the definitions
proposed by the Association for Computing Machinery (2016),
we will refer to this as replication, i.e., different team, same
experimental set-up (see Plesser, 2018 for a summary and
analysis of different technical definitions for reproduction and
replication). At best, it simply shows that the model code is
portable and generates the reported results. At worst, it does
nothing, since availability of code does not entail that this
code can be run on your machine, as tragically documented
by Topalidou et al. (2015) and on a more industrial scale (but
outside the neuroscience context) by Collberg and Proebsting
(2016).

The ReScience Initiative (Rougier et al., 2017) seeks to address
this issue by providing a home for reproductions of model
studies (i.e., different team, different experimental set-up). The
reproductions published there are open-source implementations
of published research that are tested, commented, and reviewed.
However, it would be preferable if the original publications were
intrinsically reproducible, rather than requiring intense post-
publication efforts by others. To achieve this, it is important
not only for researchers to put greater effort into making their
code available and comprehensible, but also for reviewers to be
able to quickly evaluate any factors that might undermine its
reproducibility.

In this article, we develop a guideline for spiking neuronal
network modelers to present their work in such a way as to
minimize the effort of other scientists to reproduce it. As we
believe that concrete illustrations are necessary to convincingly
motivate recommendations, we provide these by reproducing a
seminal study in computational neuroscience, aminimal network
generating polychronous groups (Izhikevich, 2006). We analyze
which features of the model and analysis code (and description in
the manuscript) support, and which hinder, the reproduction of
the study. From each of these features, we derive a corresponding
recommendation that, if followed by future studies, would
increase their reproducibility.

The choice of this source material is motivated by the
following considerations. Firstly, the author took the (then)
highly unusual step of making the model code available, both
in the manuscript itself (MATLAB) and in downloadable form
(MATLAB and C++). Secondly, despite the availability of the
code, the model is rather challenging to reproduce, due to a
number of non-standard models and numerics choices, thus
making it a fruitful source of recommendations.

Frontiers in Neuroinformatics | www.frontiersin.org 2 August 2018 | Volume 12 | Article 46128

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

We would like to emphasize that the choice is purely
demonstrative, and almost any study with published code could
have been used for our purposes; indeed the authors’ own work
has not come up to the standards we propose. Furthermore, we
point out that many of the technical solutions we propose were
not available at the time the source material was published.

In the first phase (section 2.2), we establish a baseline by
downloading the author’s C++ code and carrying out some
minimal modifications to enable it to run locally. In the second
phase we demonstrate that our best-effort initial attempt to
reproduce the study’s results using a NEST implementation of
the network fail (section 3.2), and focus our efforts on creating
an implementation capable of reproducing results identical on
the level of individual spikes and synaptic weights. For this
implementation, various artifacts (e.g., connectivity matrix) need
to be exported from the original implementation into NEST.
Therefore, in the the third phase we develop a stand-alone
NEST implementation and investigate how well it reproduces the
original results (section 3.3). We demonstrate that the original
network has a second activity mode unreported in the original
study.

In section 3.4, we manipulate the stand-alone NEST
implementation to investigate various issues with respect to
numerics and model features that we discovered in the preceding
phases, and in section 3.5 we perform an analogous investigation
of the main analysis algorithm provided as part of the original
code. In this way, we uncover unreported major dependencies
on coding errors and implementation (rather than conceptual)
choices such as the background noise, the resolution of the
neuron update and the thresholding parameter of the analysis
algorithm. The series of recommendations that we derive from
reproducing the original model and investigating its sensitivity
to parameters and implementation details are gathered and
discussed in section 3.6.

Our results demonstrate that putting effort into code
presentation and study design to boost its reproducibility does
not just make it easier for future researchers to independently
confirm the results and/or extend the model. It also increases the
scientific quality of the study, by reducing the risk that results
have been distorted by avoidable coding errors, inappropriate
choices of numerics, or highly specific parameter settings.

2. METHODS

Our implementation of the model and all materials used for this
study are publicly available on GitHub1 under MIT license.

2.1. Polychronization Network Model
The polychronization network model as described in Izhikevich
(2006) is inspired by a patch of cortical tissue. The networkmodel
contains 1, 000 neurons, of which 800 are modeled as excitatory
and 200 modeled as inhibitory, as described in Izhikevich (2004).
Throughout the simulation the neurons are stimulated by the
unusual method of randomly selecting one neuron in each

1https://github.com/INM-6/reproducing-polychronization

millisecond step, and applying a direct current of 20 pA to it for
the duration of that step, reliably evoking a spike.

The neurons in the original network model are connected
as follows: for each inhibitory neuron, 100 targets are selected
from the excitatory population, not permitting multapses or
autapses. Inhibitory synaptic connections are static with a weight
of −5 mV and argued to be local, and thus have a delay of 1 ms.
For the excitatory neurons, the 100 targets are selected at random
from the whole network, also not permitting multapses or
autapses. Excitatory synaptic connections are plastic, the detailed
dynamics of which are described in section 3.4.2. The delays for
these connections are highly structured: they are evenly spread
between 1 and 20 ms, i.e., exactly five outgoing connections of
each neuron have the delay 1 ms, exactly five connections have
the delay 2 ms, and so on. Themodel parameters are summarized
in tables in the Supplementary Materials.

2.2. Preparing the Polychronization
Network Model for Replication
We downloaded the C++ source code poly_spnet.cpp

from the author’s website2 and installed it locally. The original
code could not be compiled with the standard g++ compiler
under Ubuntu 16.04 LTS. Some minor adjustments were
necessary to make the code compile and run, which are given in
the Supplementary Material. We note that there are differences
between the MATLAB code published in Izhikevich (2006) and
that available for download, and between bothMATLAB versions
and the C++ code. Unless stated otherwise, all remarks on
features of “the original code” refer to the C++ version used as
the basis of this study.

The source code is a single standalone script that comprises
both simulation and the analysis, including identification of
polychronous groups. In order to later compare the statistics of
groups found by the original simulation code and by the NEST
re-implementations, we re-structured the code to separate the
analysis from the simulation, writing the neural activity (spike
times and membrane potentials) in NEST-formatted text files,
and the network connectivity in JSON format.

We checked that using the separated versions of the
simulation script and analysis script serially yields identical
results to running the downloaded code with integrated
simulation and analysis. This enabled us to run the same analysis
on data produced by the original code and by implementations in
NEST, rather than having to chase down disparities in simulation
and analysis code simultaneously. In the following, we refer to
this slightly modified version of the downloaded code as the
“original network model”.

The recommendations that we compile in section 3.6.1 are
mostly inspired by this initial process of assessing and adapting
the original source code.

2.2.1. NEST
Network simulations are either carried out using Izhikevich’s
homebrewed network simulator written in C++ or using NEST
2.14. (Peyser et al., 2017). The source code for the Izhikevich

2https://www.izhikevich.org/publications/spnet.htm

Frontiers in Neuroinformatics | www.frontiersin.org 3 August 2018 | Volume 12 | Article 46129

https://github.com/INM-6/reproducing-polychronization
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

synapse model is publicly available on GitHub in a branch of
a fork of the NEST repository. Due to the model’s multiple
idiosyncrasies and numerical issues reported on in this article
(see section 3.2.2 and section 3.4), it does not fulfill the quality
standards for NEST and so will not be merged to the master
branch of the main repository and included with future releases
of NEST.

2.3. Experiments
2.3.1. YAML
In order to investigate the dynamics of the model under study,
we defined several experiments described in section 3.4. In
the experiments we varied parameters such as stimuli, delay
distributions and numeric resolution. For each experiment we
wrote a distinct parameter file in YAML (“Yet Another Markup
Language” or “YAML Ain’t Markup Language”) which makes the
workflow very clear and modular. All YAML files are available in
the repository and in the Supplemental Material in tabular form.

2.3.2. Polychronous Group Finding Algorithm
For our data analysis we used two different versions of the
algorithm which finds polychronous groups. For the first version,
we extracted the original algorithm from Izhikevich’s C++ code
and adapted it such that it uses our JSON data format. We
confirmed that our adaptation does not change the original
results by comparing the found groups on a given dataset.

This C++ version of the algorithm finds groups by running
a full network simulation, in which a specific group of neurons
is stimulated and the network response recorded. As the delay
distribution is hardcoded in the structure of the algorithm and
the integration timestep is fixed to 1 ms, it is not possible to
apply this algorithm to experiments in which we changed these
parameters. We therefore wrote a second algorithm in Python
that runs a NEST simulation, in which we can easily alter the
integration timestep or delay distribution.

For the Python version of the algorithm we tried to be as
close as possible to the original C++ version, but generalized
to be applicable to all parameter sets. Starting from a pivot
neuron, we iterate over all triplets of neurons (“anchor neurons”)
forming synapses with at least 95% of the maximal weight to this
pivot neuron. We then determine all other neurons which are
targeted by this triplet, start a NEST simulation, and stimulate
the targeted neurons in the order of their delay relative to the
pivot neuron, with the corresponding weight from the triplet.
We record the network response and consider the triplet and
all neurons emitting a spike during the simulation as part
of a polychronous group. After the NEST simulation finishes
we scan the connectivity for connections between the neurons
participating in this group and define the “layer of a neuron”
as the length of the chain of pre-synaptic neurons within the
group. Finally, following the original algorithm, the group is only
considered to be relevant if the longest path is larger than seven
layers and all three anchor neurons participate in the activation of
the group.We point out that setting theminimum layer threshold
lower than seven leads to a rapid increase of the number of
groups. The Python version deviates from the original C++
code, as we found errors in the original code that we fixed in our

version. For example, for large groups, the original code exhibits
an array index overflow, leading to erroneous spike delivery
during group detection. Moreover, the original code often misses
one last spike in the network response; this reduces the group size
and longest path by one, leading to a reduced number of relevant
groups.

Compared to the original algorithm, our Python version
typically finds twice as many polychronous groups. However,
conceptually the two algorithms seem to be approximately
equivalent as nearly all (>99%) groups found by the original
version are also found by the Python version. Thus, we consider
the Python version to be a “generous” evaluation of the number of
groups with respect to the original version. A detailed discussion
of the group finding algorithm and the definition of polychrony
can be found in section 3.5.

2.3.3. Activity Metrics
To estimate firing rates, we binned the spikes of all excitatory
(inhibitory) neurons in bins of 5 ms. We then divided by
the number of excitatory (inhibitory) neurons to calculate the
average rate of one neuron in the population fpop in spks/s.
The single neuron variability is expressed by the coefficient
of variation (CV) of the inter-spike interval distribution,
CV = σ (ISI)/µ(ISI). The synchrony of the network dynamics
is calculated as the Fano factor (FF) of the population averaged
spike counts N(t) with FF = σ (N(t))2/µ(N(t)). To estimate
the spectral characteristic of the network, we applied a Fourier
transformation on the population rate fpop of the excitatory
neurons, following Izhikevich (2006). We calculated the peak
frequency in the range between 20 − 500 Hz and categorized
the network activity as having a low gamma peak if its maximum
amplitude fell in the range 35− 50 Hz, and a high gamma peak if
the maximum amplitude fell in the range 50− 100 Hz.

2.3.4. Snakemake
Snakemake is a script based workflow management system
which allows reproducible and scalable data analysis (Köster and
Rahmann, 2012). The complexity of our simulations, involving
several different versions of neuron, synapse and network
models as well as analysis scripts was massively eased by using
snakemake. It allows its users to run their analysis on laptops and
clusters, visualize the workflow (see Figure 1) and manage the
data in a consistent and efficient way. Using a workflow manager
enables us to keep track of the files generated by the original code,
the slightly modified version of the original code and the various
experiments conducted in sections 3.4 and 3.5. Snakemake links
the version of the program to the data it created, such that it can
re-run specific sections of a workflow depending on what parts
were changed.

2.4. Workflow
In order to investigate the dynamics and performance of
the model under study on different sets of parameters (see
our recommendations in section 3.6.3), we simulated the
model many times under different conditions which led to a
rather complex workflow. This is illustrated in Figure 1 for
the example of comparing the bitwise reproduction to the

Frontiers in Neuroinformatics | www.frontiersin.org 4 August 2018 | Volume 12 | Article 46130

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

FIGURE 1 | Example visualization of the snakemake workflow for comparing the bitwise reproduction and the qualitative model. Shown are the rulenames defined

and their input output relationships.

qualitative reproduction. Shown are the rulenames (labels in
the boxes) defined and their input-output (arrow between
boxes) relationships, for example collect_data where the arrows
indicate that the defined rule uses input, i.e., a data file from
run_nest_model and its output is used by plot_dynamics.

First, to prepare the simulations we have to compile
and install all dependencies including the original model in
C++ (compile_model), the tools for reformatting the original
data to JSON (compile_reformat), the original algorithm to
find polychronous groups (compile_find_polychronous_groups)
and NEST (install_nest). Next, we run the original model
(original_bitwise_reproduction) and reformat the produced data
to use the JSON dataformat (reformat_izhi). The output of the
original model is used to initialize the neurons, connectivity
and stimuli in the NEST bitwise reproduction. We run the
bitwise reproduction (run_nest_reproduction) and the qualitative
reproduction (run_nest_model), which is independent of the
output of the original model. Afterwards we collect all data
(collect_data) and run the algorithm for finding polychronous
groups (find_groups and find_groups_nest). Finally we calculate
group statistics (calc_stats) and activity statistics and plot the

relevant data (plot_dynamics). The box with label all is a dummy
target used to define all files that should be produced by the
workflow. This is used by Snakemake to generate the dependency
tree in Figure 1. This workflow is repeated automatically 10 times
for all experiments and 100 times for bitwise reproduction and
qualitative reproduction using Snakemake. After generation of
the necessary files, the plots for the single neuron dynamics
(Figure 9), group analysis (Figure 8) and the bi-modal dynamic
states (Figures 5, 7) are produced.

3. RESULTS

3.1. Replicating the Polychronization
Network Model
The polychronization network model was proposed by
Izhikevich (2006) as a minimal spiking neural network model
capable of exhibiting polychronization, consisting of randomly
coupled point neurons expressing STDP (see section 2.1 for a
detailed network description). In addition to the network model,
an algorithm for detecting polychronous groups was provided
in this study. A polychronous group is a group of neurons

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2018 | Volume 12 | Article 46131

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

connected in such a way that neural activity propagates in a
reliable and stereotypical fashion due to the interplay between
synaptic delays and the activation times of neurons. Izhikevich
(2006) illustrates the concept of polychrony in a comprehensible
way and links to higher neural processes such as cognition,
computation, attention and consciousness.

Our execution of the original network model, prepared
for execution on our system as described in section 2.2,
successfully replicates the main results reported in that study.
Executing the original network model on our system results in
18,000 s of network activity, exhibiting slow oscillations and
gamma rhythms (interpreted by the original study as “sleep-
like” and “implicated in cognitive tasks”). After simulation, the
original polychronous group finding algorithm (see section 2.3.2)
identifies 4, 305 polychronous groups in the connectivity of
the network model. The final weight distribution and power
spectrum can be seen in Figure 2.

3.2. Identical Reproduction
In order to reproduce a network model in machine precision it is
not enough to parameterize the network model identically. The
issue of reproducibility goes deeper than the model specification

itself. For example the choice of compiler, the order in which
numerical operations are executed or the underlying hardware
themodel is run on can lead to rounding errors; these accumulate
over a long simulation time and therefore lead to different results.
Without providing the original code with provenance tracking
and raw data, a model can therefore not be reproduced identically
as there is no possibility to compare the exact results, i.e., every
spike and every weight (Ghosh et al., 2017).

The original raw data was not provided, but given that the
original code is written in C++, as is NEST, we determined
that it should be possible to replicate the results yielded by
the original C++ version on our machines with a NEST
version on the same machine. This is not what is normally
understood as “reproduction of a neural network model,” which
would typically only aim for statistical equivalence of aggregate
findings, e.g., firing rates, mean number of groups, etc. For such
measures, environmental features such as the operating system
or compiler version should not play a role; if they do, this
suggests the model is inherently excessively sensitive. However,
we take this step here to ensure we have captured all details
of the neuron and synapse model used in the original network
model.

FIGURE 2 | Comparison of initial NEST network model with original. (A) Spike raster plot and rate envelope generated by the NEST simulation in the final 10 s

(17, 990− 18, 000) for inhibitory (green) and excitatory (blue) neurons. (B) Final weight distribution (frequency plotted on a logarithmic scale) for the original (dark gray)

and NEST (light gray) simulations. Inset: rate distributions over the final 10 s displayed as box plots for the excitatory and inhibitory populations in the original and

NEST simulations, colors as above. (C) Power spectrum of the rate envelope over the final 10 s for the excitatory population in the original (orange curve) and NEST

(blue curve) simulations.

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2018 | Volume 12 | Article 46132

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

3.2.1. Initial Iteration
The Izhikevich neuron model (Izhikevich, 2004) used in the
original code already existed in the NEST code base, but we
needed to implement the synapse model based on the text
description in Izhikevich (2006) and the modified version of
source code as described in section 2.2.

The original network model has three sources of randomness:
the selection of which neurons to connect, the initial values of the
membrane potentials, and the noise stimulation, implemented as
a direct current delivered to one randomly selected neuron in
each millisecond. We therefore modified the original version to
save the connectivity matrix, the initial values of the membrane
potentials and the order of neuron stimulation to file; these are
then read in and applied by the NEST simulation. Additionally,
wemodified the original to allow the seed for the randomnumber
generator to be set as a parameter, thus enabling multiple runs
of the model to be carried out in our snakemake workflow (see
section 2.4).

Figure 2A shows a raster plot of the spiking activity in the
final 10 s of simulation in our initial iteration of trying to
replicate the original model identically; the rate distributions are
strikingly different, in particular the inhibitory rate of the NEST
model is low compared with the original version (see Figure 2B,
inset). The power spectra (Figure 2C) reveal that the strong
gamma peak exhibited by the original model is not present in
the NEST simulation. The weight distribution is also different;
whilst still maintaining a bimodal character, the NEST simulation
has a larger number of maximum weights (Figure 2B). Using the
original algorithm to find polychronous groups we were able to
find five groups in ten iterations with different random seeds.

These results show that despite the best, good-faith attempt of
a group of researchers with considerable experience in developing
neuron, synapse and network models, it was not possible
to reproduce the neuron and synapse dynamics described in
Izhikevich (2006) in one pass, even though the source code was
available for inspection. Our first iteration fails to reproduce
the key findings of the original study, either in terms of
network dynamics or in terms of the generation of polychronous
groups. Not only does this demonstrate that reproduction of
computational models can be challenging even for experienced
modelers with access to the original model code, it also raises the
possibility that the aforementioned key findings are dependent
on implementation details of the synapse and neuron models.

3.2.2. Final Iteration
It took a great investment of time to iteratively adapt the NEST
simulation described above such that it yielded identical results
to the original version. There were a number of disparities in
the respective neuron and synapse models, including priority
assigned to simultaneous events in the synapse model, ordering
of neuron update, implementation of exponential functions, and
ordering of mathematical operations.

These algorithmic and numeric aspects are (understandably)
not discussed in the text description of the manuscript,
underlining once again the importance of sharing the code.
However, neither can they be readily found by examining the

C++ code, as it is rather hard to comprehend in detail for the
following reasons:

• It is uncommented (or commented only with the
corresponding lines from the MATLAB version of the
code)
• It exhibits low encapsulation; neuronal and synaptic updates

are mixed throughout the simulation code, and synaptic
interactions rely on long nested sequences of indexing rather
than meaningfully named functions
• Numerics are not always standard, e.g., multiplication by 0.95

in each time step rather than using an exponential function
• Parameters are not always given meaningful names and

defined in one place, such as the beginning of the script or
in a separate parameter file; moreover, some appear as “magic
numbers” in the middle of the code

We note that the MATLAB code is somewhat better commented,
but the discrepancies between the sources mean that comments
in one do not necessarily help to understand the other. However,
even with a perfectly structured and commented source code it
would be difficult to find all disparities, as there are many special
cases in the particular synaptic plasticity algorithm used in the
original network model. It would be very challenging to think of
all possible special cases and check by mental simulation of the
two codes whether each one would be handled identically.

Consequently, it was necessary to write several specific tests
for the neuron and synapse model in both the original version
and the NEST implementation in order to progressively eliminate
discrepancies until they all came to light (see section 3.6.2 in
the recommendations). By comparing their responses to identical
input, especially border cases, it was possible to track down the
algorithmic differences between the models. In the case of NEST,
writing scripts to test a synapse or neuron with a particular
input is easy, because it is a modular simulation tool written in a
general purpose fashion, i.e., not optimized for a specific network
model. In contrast, as the homebrewed original version is neither
modular nor general, testing the behavior of individual elements
required some creative modifications (see our recommendations
in section 3.6.2).

The main discrepancies between the original version and our
initial attempt, which we resolved in the bitwise reproduction,
were as follows:

• The STDP spike pairing in the original model is of type
nearest-neighbor, whereas the default pairing in NEST is all-
to-all (see Morrison et al., 2008 for a review)
• The original neuron model processes incoming spikes at the

beginning of a timestep, rather than the end, as in NEST,
leading to a shift in delivery times of 1 ms and thus overall
weaker synapses (see STDP windows of the initial and bitwise
reproduction in Figure 4)
• For border cases, e.g., synchronous spiking of pre- and post-

synaptic neurons, the original synapse model applies the LTP
and LTD in a different order from our initial reproduction
• The original C++ model applies a decaying term to the

eligibility trace before adding it to the synaptic weights,
whereas our initial attempt (and the MATLAB version)

Frontiers in Neuroinformatics | www.frontiersin.org 7 August 2018 | Volume 12 | Article 46133

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

applied it afterwards:
wdev← wdev * 0.9;
weight← weight + 0.01 + wdev;

Note that the C++ and MATLAB versions of the code diverge in
their handling of the eligibility trace, and the variables wdev and
weight (the buffered weight changes and the current synaptic
weight), are known as sd and s in the original code.

These four disparities in the synapse model lead to the largest
differences in the two models. However, even after aligning these,

we observed that the spike trains of the original and our re-
implementation could be identical for several hours of simulation
before some small differences in spike timings ultimately led to
complete divergence. This was due to some extremely small (i.e.,

aroundmachine precision) deviations, which were inflated by the

instable numerical integration. We therefore had to additionally
adjust all numerical operations to be in the same order as in the
original code, and reverse any conversions to standard numerics.

• In the eligibility trace, replace exp(−1t/20) by 0.951t

• In the neuron update, replace
0.04 * v * v + 5 * v + 140. - u + I

by
(0.04 * v + 5) * v + 140. - u + I

• In the synapse update, replace
wdev*= 0.9; weight += 0.01 + wdev;

by
weight += 0.01 + wdev * 0.9;

Finally, after detailed investigation and adjustments to the NEST
implementation of the neuron and synapse model, the NEST
simulation yielded identical results to the original version over
the entire 18,000 s simulation period. Figure 3 shows a raster plot
of the spiking activity in the final 10 s of simulation for a NEST
network model that replicates the original model identically. It
is unquestionable that if the original study had complied with
the recommendations in section 3.6.2, the process of identically
reproducing the results would have been far less complicated.

The rate of the inhibitory population is high compared to the
NEST network activity shown in Figure 2, and the oscillations in
the gamma band are more strongly represented, as can be seen
in the power spectrum in the bottom right panel. The bottom
left panel demonstrates, for an example inhibitory neuron (top)
and an example excitatory neuron (bottom), that the spike times
of the NEST simulation coincide with those of the original. The
membrane potential in the NEST simulation is recorded after
the numeric update step, but before spikes are detected and the
membrane potential set back to resting potential. This leads to the

FIGURE 3 | Comparison of bitwise identical NEST network model to original. (A) Spike raster plot and rate envelope generated by the NEST simulation in the final

10 s (17, 990− 18, 000) for inhibitory (green) and excitatory (blue) neurons. (B) membrane potential for a selected inhibitory neuron from the NEST simulation and

spike times of corresponding neuron from original code. (C) As in (B) for a selected excitatory neuron. (D) Power spectrum of the rate envelope over the final 10 s for

the excitatory population from the NEST (blue curve) and original (orange curve) simulation.

Frontiers in Neuroinformatics | www.frontiersin.org 8 August 2018 | Volume 12 | Article 46134

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

FIGURE 4 | STDP windows of alternative STDP implementations: initial

implementation (green), bitwise identical implementation (blue) qualitatively

equivalent implementation (orange). Our initial attempt is similar to the bitwise

identical reproduction, but shifted by 1 ms to positive delays. The windows of

the bitwise identical and qualitatively equivalent implementations coincide.

membrane potential reaching values of above 100 mV, frequently
reaching values of around 1, 000 mV (Figure 9). This indicates
numerical instabilities when simulating the neuron model with a
resolution of 1 ms, which we investigate further in section 3.4.4.

The original study showed an analysis of the polychronous
groups for exactly one run. To investigate the properties
of the distribution of groups, we performed 100 runs of
the bitwise identical NEST simulation using different random
seeds. Surprisingly, we discovered that the network model
does not converge to a single dynamic and structural state, as
demonstrated in Figure 5. In the majority of cases (87%), the
network activity results in a power spectrum with a high gamma
peak around 60 Hz, as previously shown in Figures 2C, 3D.
However, the rest of the simulation runs result in a lower peak
at 40 Hz, an eventuality not reported in the original study. The
full collection of power spectra is shown in Figure 5A. The two
dynamical states correspond to two alternate structural states. For
the high gamma state, the maximum weight of 10 mV occurs for
delays between 12 and 14 ms and for the low gamma state, this
maximum occurs for a delay of 20 ms (Figure 5B).

Analyzing the polychronous groups (Figure 5C) reveals that
the two dynamical/structural states described above develop
significantly different numbers of groups. The distribution of
numbers of groups detected is shown in Figure 5C. For the high
gamma state, the mean number of groups detected was 2, 500
with a inter quartile range (IQR) of 1,300, with a minimum of
1, 200 and a maximum of 23, 000 over the 87 trials resulting in
that state. For the 13 low gamma runs, a mean of 1, 600 groups
with an IQR of 1,400 were detected (minimum: 700; maximum:
29, 000). Notably, both distributions are lower than the figure of
5, 000− 6, 000 reported in the original study.

3.3. Qualitative Reproduction
The network model developed in section 3.2 replicates the
original results precisely, but this does not coincide with
the common understanding of reproducing a model. Firstly,

requiring equality of floating-point numbers at machine
resolution is too strict, and generally not practicable - here we
had the advantage that the original code and the code of the target
simulator NEST are both in C++, and so identical sequences of
mathematical operations will be compiled into identical machine
code. Secondly, all pseudorandom elements need to be extracted
from the original code in order to initialize the code used for
reproducing the model.

We therefore developed a network model that reproduces the
original in the commonly understood sense, i.e., all concepts of
the original are faithfully translated into the new framework.
Specifically, the sources of randomness (connectivity, membrane
potential initialization and neuron stimulation) are replaced
with analogous routines within the NEST simulation script,
and hence there is no dependence on output from the original
model. Moreover, the numerics of the synapse model comply
with standard forms, and the simulation is parallelized for
multithreaded execution.

It could be argued that such a qualitative reproduction should
also integrate the neuron dynamics at a finer resolution than
the 1 ms used in the original version, as the resolution of a
simulation or the algorithm chosen to numerically solve the
dynamics should not be considered a conceptual element of a
model. However, it turns out that the numerical integration of the
dynamics is critical for the model behavior, which we examine
in greater detail in section 3.4. We therefore remained with the
original numerical choices to create the qualitative reproduction
of the model.

Figures 6, 7 demonstrates that the qualitative reproduction
captures the key features of the original model. The raster
plots are visually similar to those shown in Figure 3A, an
impression supported by the similarity of the rate distributions
(Figure 6B, inset) and the power spectra (Figure 6C) to those
of the original model. Likewise, the final weight distributions
(Figure 6B) overlap almost completely. In line with the bitwise
reproduction, simulations exhibiting a high gamma peak yield
more groups than the simulations exhibiting a low gamma
peak (median 2, 700, IQR 1,300 vs. median 1, 500 IQR: 800;
Figure 7C).

However, despite the apparent good match between the
qualitative reproduction and the original, analyzing the activity
from 100 simulation runs with different random seeds reveals
that the proportion of high gamma and low gamma states
have reversed (14 high gamma simulations, 86 low gamma
simulations) with respect to the bitwise identical reproduction
(compare Figure 5A and Figure 7A).

A full investigation of the mechanism by which the
network converges to one dynamic state or the other, and
the implementational differences between the bitwise identical
and qualitatively equivalent NEST simulations that cause a
differentiation in the respective likelihoods of these states, lies
outside the scope of the current manuscript. However, this result
does highlight the importance of the recommendation made in
section 3.6.3: performing multiple runs so that one can discover,
and report, alternate dynamical states for a network model. A
researcher may have implemented everything correctly, and yet
still fail to reproduce key results, if he or she was unlucky enough

Frontiers in Neuroinformatics | www.frontiersin.org 9 August 2018 | Volume 12 | Article 46135

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

FIGURE 5 | Sensitivity of network dynamics of the bitwise identical NEST implementation to choice of random seed. (A) Power spectrum of the rate envelope over

the final 10 s for the excitatory population for 100 different seeds. Light blue curves indicate runs resulting in a high gamma peak (60 Hz), dark blue curves those with

a low gamma peak (40 Hz). Inset shows the proportion in which these two activity profiles occur. (B) The equilibrium distribution of weights (Maximum 10 mV, blue

curves; minimum 0 mV, green curves) as functions of the delay in the high (light) and low (dark) gamma dynamical states. (C) Relationship between dynamical state

and number of polychronous groups found. Boxes show median and interquartile range (IQR); whiskers show additional 1.5× IQR or limits of distribution.

FIGURE 6 | Comparison of qualitatively equivalent NEST network model to original. (A) Spike raster plot and rate envelope generated by the NEST simulation in the

final 10 s (17, 990− 18, 000) for inhibitory (green) and excitatory (blue) neurons. (B) Final weight distribution (frequency plotted on a logarithmic scale) for the original

(light gray) and NEST (dark gray) simulations. Inset: rate distributions over the final 10 s displayed as box plots for the excitatory and inhibitory populations in the

original and NEST simulations, colors as above. (C) Power spectrum of the rate envelope over the final 10 s for the excitatory population in the original (orange curve)

and NEST (blue curve) simulations, colors as above.

Frontiers in Neuroinformatics | www.frontiersin.org 10 August 2018 | Volume 12 | Article 46136

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

FIGURE 7 | Sensitivity of network dynamics of the qualitatively equivalent NEST implementation to choice of random seed. (A) Power spectrum of the rate envelope

over the final 10 s for the excitatory population for 100 different seeds. Light blue curves indicate runs resulting in a high gamma peak (60 Hz), dark blue curves those

with a low gamma peak (40 Hz). Inset shows the proportion in which these two activity profiles occur. (B) The equilibrium distribution of weights (Maximum 10 mV,

blue curves; minimum 0 mV, green curves) as functions of the delay in the high (light) and low (dark) gamma dynamical states. (C) Relationship between dynamical

state and number of polychronous groups found. Boxes show median and interquartile range (IQR); whiskers show additional 1.5× IQR or limits of distribution.

to select a random seed that caused the network to converge to an
unreported, but completely valid, dynamical regime.

3.4. Generalizing Reproduction
Creating a scientific model by necessity requires making
simplifying assumptions. In order to draw credible conclusions
on how the brain works from the results of simulating a
simplified model, it is therefore important to be vigilant that
it is not precisely those simplifying assumptions that cause the
reported phenomena. Moreover, when a mathematical model
is implemented in code for simulation, this introduces the
risk that the numerical approach chosen is not suitable to
evaluate the model dynamics with adequate accuracy. If the
numerics are not suitable, the reported phenomena may be
contaminated with misleading numerical artifacts. Even if the
simplifying assumptions are valid, and the numerics well-chosen,
the selection of parameters may give results that are a special
case, and not representative either of the model or of the targeted
physical system.

Obviously, it is generally not practicable to test the generality
of the results with respect to every aspect of the model. However,
it is certainly possible to analyze a network model to identify
conceptual, parameter and numeric choices that have a high
risk of being critical, and examine those with greater rigor
(see our recommendations in section 3.6.3). To demonstrate
this, we pinpointed a number of such choices during the
process outlined in the previous sections, and modified the
qualitative reproduction developed in section 3.3 accordingly to
test them. Each modification is quite simple, and either relaxes
an assumption (hidden or otherwise), shifts a parameter or alters
the numerics of the dynamic components of the network model.
On the basis of these generalizing reproductions of the original
model, we can then determine to what extent the originally
reported results are dependent on these. For all modifications, we

made sure that the network dynamics are similar to the original
model. The average network firing rate in the final 10 s is in
the range between 2 and 8 Hz (compared with 2–5 Hz of the
original). Raster plots, weight distributions, power spectra and
parameters can be found in the Supplementary Materials. The
results are summarized in Figure 8.

3.4.1. Stimulus
In the original network model, the neurons are stimulated
throughout the simulation by the unusual method of randomly
selecting one neuron in each millisecond step, and applying a
direct current of 20 pA to it for the duration of that step. We
replace this stimulation model with a more widely-used and
biologically plausible scenario, in which each neuron receives
an independent Poissonian spike train with synaptic weight of
10 mV and rate of 40 Hz, tuned such that the excitatory and
inhibitory rates in the final second of simulation are closely
matched to the original values (∼ 3 spks/s).

In comparison to the original results, this scenario yields
significantly different results in respect to the group statistics.
Although the statistics for the longest path remain similar to the
original results (data not shown), the number of found groups are
reduced by around 90% to a median of 291 with an IQR of 24 (see
Figure 8A Poisson Stimulus).

3.4.2. Plasticity Model
Izhikevich describes the plasticity in the original model as STDP
with a time constant of τ+ = τ− = 20 ms, A+ = 0.1 mV and
A− = −0.12 mV without dependence on the current strength
of the synapse, i.e., of the form described by Song et al. (2000),
amongst others. This form of additive STDP is known to yield
bimodally distributed synaptic strengths which does not fit well
to experimental observations. Clearly, an STDP rule resulting in
a unimodal distribution of weights would generate qualitatively

Frontiers in Neuroinformatics | www.frontiersin.org 11 August 2018 | Volume 12 | Article 46137

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

FIGURE 8 | Sensitivity of number of groups found to various parameters.

Number of groups found for (A) the original group finding algorithm, (B) the

Python group finding algorithm. Note the different scales; the Python algorithm

find about twice as many groups (see section 2.3.2). Boxes show median and

interquartile range (IQR); whiskers show additional 1.5× IQR or limits of

distribution. Group statistics are measured over 100 realizations in the case for

bitwise reproduction and qualitative model in (A) and over ten realizations

otherwise. Colors indicate type of experiment: Bitwise reproduction (green),

qualitative reproduction (blue), altered connectivity (violet), altered plasticity

mechanism (yellow). The IQR of the number of found groups for the bitwise

reproduction are indicated by vertical dashed green lines; indicates

algorithm failure due to too many groups (memory consumption exploded).

different results, but this is well known and does not need to be
examined in this context. Instead, we turn our attention to several
assumptions and parameters, for which biological motivation is
not always easily identifiable:

1. In order to calculate the weight change the pre- and post-
synaptic activity is filtered with an exponential kernel using
the time constants stated above. In the default STDP synapses

in NEST, the LTP/LTD traces are increased by A+/A− leading
to an “all to all” matching between pre- and post-synaptic
spike pairs. The synapse model presented by Izhikevich (2006)
caps the traces to a maximum value of A+/A−, leading to a
“nearest neighbor” matching.

2. Synaptic weights are not updated directly after the occurrence
of pre- and post-synaptic spikes. Instead, weight changes are
accumulated in a separate buffer for one biological second. At
the end of each simulated second, weight changes are applied
to all plastic synapses simultaneously.

3. Before applying the buffered weight changes to the synaptic
strengths, the buffered values are multiplied with 0.9. This
reduced value is applied as an increment to the corresponding
synapse and also kept as a start value for the next second.
Although this mechanism lacks any biological counterpart, we
refer to it as the “eligibility trace” as it introduces a very long
time constant of 10 s to the model. The stated intention is to
have smoother development of the synaptic weights instead of
the rapid and volatile development in additive STDP (Gütig
et al., 2003).

4. Additionally to the weight update due to STDP, each synapse
is strengthened every second by a constant value of 0.01 mV.
The stated motivation is to reactivate and strengthen silent
neurons.

We relax these assumptions in the following ways:

1. We change the “nearest neighbor” matching to “all to all”
matching. Notably, the STDP windows for a single pre/post
pair look exactly the same in both cases. Interestingly, the
version with “all to all” matching finds maximally 11 groups
which underlines the sensitivity of the model to the exact
implementation of STDP (Figure 8A STDP window match).

2. We vary the duration of buffering the synaptic changes in
both directions. For a duration of 10 ms the simulation yields
considerably more groups (median: 11, 200, IQR: 910 see
Figure 8A Buffer length 10 ms). The model also seems to be
sensitive to larger buffering times, as the number of groups
exploded for an increased buffer duration (10 s) such that
a quantitative analysis was not possible: all runs crashed due
to memory limitations of our cluster (Figure 8A Buffer length
10 s).

3. We replace the multiplication with 0.9 with an exponential
decay and run the simulation for two extreme choices
for the time constant: 2 s and 1,000 s, translating to a
multiplicative factors of roughly 0.6 and 1.0. For the 2 s
version we find 27, 000 groups in median with a high variance
expressed in an IQR of 21, 600 groups (Figure 8A Eligibility
trace 2 s).
The 1, 000 s time constants yields 13, 500 groups with an IQR
of 11, 200 (Figure 8A Eligibility trace 1,000 s). In both cases the
network is exclusively in the high gamma state. In a further
experiment we disabled this eligibility trace completely. To
this end, we updated the weights with the full value of the
buffer after 1 s, and reset the buffered values to zero. This
experiment also yields significantly more groups (10, 000)
than the original model with an IQR of 2, 000 (Figure 8A No
eligibility trace).

Frontiers in Neuroinformatics | www.frontiersin.org 12 August 2018 | Volume 12 | Article 46138

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

We conclude that the model results are rather sensitive to
this parameter, for which we can ascertain neither a plausible
biological motivation nor a reason why 0.9 would be a good
choice. Presumably this factor is needed to make the groups
more stable over time, which is one of the main findings of the
original manuscript.

4. We investigate the role of the constant additive value by
setting it to zero. This seems to be completely irrelevant as
the group statistics (median 2, 400 and IQR 1, 600) hardly
changes with respect to the original model (Figure 8A No
additive value). We criticize this parameter as unnecessary,
introducing additional complexity to the plasticity model
adding, to our understanding, no benefit.

3.4.3. Connectivity
The delays in the connections are highly structured: they are
evenly spread between 1 and 20 ms, i.e., exactly five outgoing
connections of each neuron have the delay 1 ms, exactly five
connections have the delay 2 ms, and so on. Izhikevich (2006)
argues that this very wide distribution is biologically motivated,
because connections between remote neurons, that have to
pass through white matter, can easily be so long. However,
this is incompatible with the connection probability of 0.1,
which suggests a population of neurons within the same cortical
microcircuit, and thus a distribution of delays up to, at most,
2 ms.

We relax the assumptions on the connectivity in two ways.
First, we simulate with a uniform distribution of delays, i.e., each
delay is randomly selected between 1 and 20 ms. Second, we
additionally restrict the upper limit to 15, 10, and 5 ms.

Unfortunately, the original group finding algorithm is not able
to analyze this data as this particular delay distribution is hard
wired in the C++ code, as is the integration timestep investigated
in the next section. It was therefore necessary to create a more
general version of this algorithm in Python, instantiating a NEST
simulation, thus allowing us to perform equivalent analysis on
all of our data. Due to errors in the original code which we did
not re-implement in Python, our version of the algorithm finds
around twice as many groups, including almost all (>99%) of
the groups found by the original algorithm. A description of the
Python implementation can be found in section 2.3.2, and we
provide an in-depth discussion of the errors and definition of
polychrony in section 3.5. If the original code had been designed
in a flexible way allowing for potential changes to the model
and its implementation, as suggested in our recommendations
in section 3.6.2, the time-consuming re-implementation of the
group finding algorithm would not have been necessary.

In the experiments mentioned above, we find only a weak
dependence of the group statistics on the delay distribution in
the range between 10 − 20 ms. In the cases of 20, 15, and
10 ms, the simulations yield 2, 200, 900, and 7, 000 groups in
median with IQRs of 700, 400, and 500 respectively (Figure 8B
delay 20 / 15 / 10 ms). In the case of 5 ms, the group
statistics exhibit an extremely high median number of 35, 000
with IQR of 1, 800 (Figure 8B delay 5 ms). In all cases the gamma
oscillations are lost, meaning (in Izhikevich’s interpretation) that

the network model stays “sleeping” and never “wakes up.” For
the simulation with 5 ms maximal delays, the network exhibits
strong synchronization around 27 Hz. We thus conclude that the
choice of delay range beyond that found within a local cortical
area is critical for the model behavior, and as such should be
clearly reported.

3.4.4. Neuron Integration and Resolution
The neuron model in the original version is integrated in 1 ms
steps using a form of forward Euler integration scheme:

v[i]+=0.5*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);

v[i]+=0.5*((0.04*v[i]+5)*v[i]+140-u[i]+I[i]);

u[i]+=a[i]*(0.2*v[i]-u[i]);

where v represents the membrane potential and u a membrane
recovery variable. This is a symplectic, or semi-implicit scheme,
i.e., the update of u is based on an already updated value for v.
We note several unusual features of this scheme that may result
in numeric artifacts. Firstly, the forward Euler integration is a
first order method, which, whilst computationally inexpensive, is
less accurate than higher order methods. Secondly, the choice of
1 ms as the integration time step is ten times longer than usual
in computational neuroscience models, and may give inaccurate
results on the single neuron level, especially in combination
with the first order integration scheme. Finally, the variable v is
integrated in two 0.5 ms steps whilst u is integrated in one 1 ms
step. On the network level, forcing spikes onto a 1 ms time grid
may result in artefactual synchrony (Hansel et al., 1998; Morrison
et al., 2007), which would in turn affect the STDP dynamics.

To consider the results of a simulation to be representative
of the dynamics of the underlying model, we would expect
them to show no qualitative changes if the model is re-run at a
higher resolution. However, the numerical integration used in
the original code is not sufficiently stable, as evidenced by the
membrane voltage frequently reaching values around 1, 000 mV
(see Figure 9A). Consequently, simply reducing the timestep to
0.1 ms may well change the single neuron dynamics, and, in
turn, the network dynamics. Therefore, to investigate whether the
1 ms timestep induces artefactual synchrony, we have to carefully
control for all the model features that are affected by the choice
of timestep.

We first adapt the neuron model to separate the numerical
instability issue from the locking of spikes to a 1 ms grid,
by introducing integration substeps, see also Trensch et al. (in
press) for an in-depth analysis of increasing the accuracy of
integration of the Izhikevich model by this method. Thus the
original configuration is simulated with 1 ms resolution and one
integration substep: (1.0, 1). We also examine a configuration in
which the numerics are integrated at a higher resolution using ten
0.1 ms substeps: (1.0, 10). For this configuration, if themembrane
potential crosses threshold in any substep, no further substeps
are carried out in that 1 ms timestep. The spike is emitted at the
end of the timestep, along with the corresponding update/reset
of the dynamic variables u and v. We call this the “locked”
configuration, as the dynamics is integrated with high resolution
but the spikes and associated neuron reset is locked to the lower

Frontiers in Neuroinformatics | www.frontiersin.org 13 August 2018 | Volume 12 | Article 46139

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

FIGURE 9 | Comparison of the evolution of the membrane potential v (top) and the membrane recovery variable u (bottom) for three different configurations of the

adapted Izhikevich neuron. The original configuration is simulated with a 1 ms timestep (blue curves). The locked configuration performs the integration of the

dynamics with a 0.1 ms timestep, but spikes can only be emitted on the 1 ms grid (green curves). The high resolution configuration is simulated with a 0.1 ms timestep

(orange curves). Insets depict applied currents. Dashed black line depicts action potential threshold. (A,B) Constant input of 4 pA. (C,D) Two synchronous spikes of

maximal weight arriving at 50 ms and evoking an action potential. (E,F) One spike of maximal weight arriving at 50 ms which does not evoke an action potential.

resolution grid. As a comparison, we also investigate a “high
resolution” configuration, in which the dynamics integration
and the spike generation and reset occur on a 0.1 ms grid:
(0.1, 1).

As the synaptic interaction in the original is modeled as a
direct current for the duration of the 1 ms timestep in which it
arrives, simply decreasing the timestep for the high resolution
configuration would decrease the effect a spike has on the
postsynaptic neuron. To adjust the synaptic weights and plasticity
accordingly, we apply three criteria:

• Two synchronous incoming spikes of maximal weights elicit a
post synaptic spike (as defined in Izhikevich, 2006)
• The post synaptic potential (PSP) evoked by a spike with

maximal weight is conserved
• The STDP windows match

The adjusted parameters are summarized in Table 1, and the
single neuron dynamics for the three configurations is illustrated
in Figure 9. Unlike the original configuration, the high resolution
and locked configurations exhibit a stable integration with no
excessive peaks in the variables u and v when stimulated by
a constant input current (Figures 9A,B). The firing rates of
all three configurations are very close (see Table 1), but the

locked and high resolution configurations exhibit a coefficient
of variation two orders of magnitude lower than the original.
The high coefficient of variation can therefore be ascribed to the
numerical instability in the integration. All three configurations
fit to the firing scheme of regular spiking as described in
Izhikevich (2004).

The responses of the three configurations to spiking input
(Figures 9C–F) indicate that the first two criteria stated above
have been fulfilled (data not shown for third criterion), indicating
that the three configurations can be meaningfully compared in a
full network simulation. Note that the curves for the locked and
high resolution configurations are still distinguishable, because
the high resolution configuration can emit spikes on a 0.1 ms
grid whereas the locked configuration can only emit them on a
1 ms grid.

To remove synchronization artifacts in the full network
simulation of the high resolution configuration due to the
distribution of delays in multiples of 1ms, we draw the
delays for the excitatory-excitatory connections from a uniform
distribution between 1.0 and 20.0 ms with a resolution of 0.1 ms.
To allow the fairest comparison, for all configurations we use
the original input stimulus (one neuron made to fire randomly
selected to fire each millisecond by current injection of an input

Frontiers in Neuroinformatics | www.frontiersin.org 14 August 2018 | Volume 12 | Article 46140

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

TABLE 1 | Comparison between the parameters, dynamics, and number of groups found for the original, locked, and high resolution neuron configurations.

Original Locked High resolution

PARAMETERS

Resolution 1.0 1.0 0.1

Integration steps 1 10 1

Delay distribution ∈ [1, 20] 1 ms steps ∈ [1, 20] 1 ms steps ∈ [1, 20] 0.1 ms steps

Initial synaptic weight 6 mV 6 mV 50 mV

Max synaptic weight 10 mV 10 mV 85 mV

LTP 0.1 0.1 0.85

LTD −0.12 −0.12 −1.02

Const add value 0.1 mV 0.1 mV 0.85 mV

SINGLE NEURON DYNAMICS (4pA CURRENT INPUT)

Firing rate 6.83 spks/s 7.10 spks/s 7.13 spks/s

CV 0.124 0.004 0.003

NETWORK DYNAMICS (LOW GAMMA)

Firing rate 3.28± 0.36 spks/s 2.73± 0.04 spks/s 2.84± 0.04 spks/s

CV 0.39± 0.04 0.43± 0.02 0.43± 0.01

Fano factor (1.0 ms bin) 2.21 2.29 1.89

Fano factor (0.5 ms bin) 12.20 12.34 2.91

Spectral peak ≈ 40 Hz ≈ 27 Hz ≈ 25 Hz

GROUPS FOUND

4, 300± 2, 900 13, 000± 1, 100 151± 25

current of twice maximal synaptic weight), as we previously
showed in section 3.4.1 that a Poissonian stimulus reduces the
number of groups found by around 90%. The network activity
for the full network simulations of the locked and high resolution
exhibits average firing rates that are very close to each other
and slightly lower than the original; the coefficients of variation
are comparable across all three configurations (around 3 spks/s
and 0.4, respectively, see Table 1). The spectral peak is found
at around 40 Hz for the original, but around 25 Hz for the
locked and high resolution configurations.We thus conclude that
the gamma band oscillation is an artifact of the low resolution
of the integration step. In terms of synchrony, the Fano factor
measured with a binsize of 1.0 ms yields slightly higher values
for the original and locked configurations (2.21, 2.29) than for
the high resolution configuration (1.89). However, with a bin size
of 0.5 ms the synchrony induced by the 1.0 ms spike locking
is clearly visible. The original and locked configurations have
a much increased Fano factor of around 12, whereas the high
resolution network simulation increases only slightly to around 3.

Applying our Python reproduction of the polychronous
group finding algorithm to the network results of all three
configurations yields 4,300 (IQR 2,900) groups for the original,
13, 000 (IQR 1,100) groups for the locked, and 151 (IQR 25)
groups for the high resolution configuration. These results are
indicated by the labels Improved integration and Resolution
0.1 ms in Figure 8B.

Thus, in summary, the key difference between the original and
the locked configuration is that the latter integrates the dynamics
without the numerical instabilities of the former. Resolving this
issue causes an increase in the number of groups by a factor of

three. The difference between the locked and the high resolution
simulation is that spikes and delays occur on a 0.1 ms grid rather
than a 1 ms grid. This decreases the number of groups found by
a factor of 90 (and by a factor of 30 from the original).

We therefore conclude that the number of groups found is
strongly influenced by the choice of a 1 ms timestep and delay
resolution, although the network dynamics, in terms of firing
rate and coefficient of variation, is not. In particular, the original
study significantly overstates the number of groups to be found
in such networks, due to the artificial synchrony induced by
these implementational (rather than conceptional) choices. Using
standard numerics or testing the robustness of the results for
a higher simulation precision as recommended in section 3.6.3
could have prevented this misinterpretation in the original study.

3.5. Definition of Polychrony
In section 3.4, we examined the sensitivity of polychronous group
generation to parameter settings and model assumptions, given
comparable network dynamics. We now turn our attention to the
group finding algorithm itself. As stated in the previous section,
it was necessary to re-implement the original analysis script in
order to investigate the effects of alternative choices of delay
distribution and integration timestep.

In this process we found several aspects of the original
algorithm, briefly outlined in section 2.3.2, that warrant further
discussion and investigation. First, we note that the identification
of a polychronous group is based on an analysis of the
connectivity, rather than the activity. The original manuscript
reports that ∼ 90% of the groups which are found to be stable
over 24 h of simulation time can also be found to be active in the

Frontiers in Neuroinformatics | www.frontiersin.org 15 August 2018 | Volume 12 | Article 46141

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

FIGURE 10 | Number of groups identified by the original algorithm as a

function of the proportion of excitatory synapses that are strong. Realizations

of the bitwise identical reproduction; black dots. Surrogate data with

connections randomly selected to be strong (excitatory-excitatory synapses

only—all excitatory-inhibitory synapses are strong); blue curve. Surrogate data

with connections randomly selected to be strong (all excitatory); green curve.

spiking activity. However, this part of the analysis is not part of
the available online materials, and so we were not able to confirm
this relationship.

Second, we found three major errors in the C++
implementation of the algorithm:

• During the simulation phase, the spike delivery buffer often
overflows, leading to a spike being delivered at the wrong time.
Although thismainly happens in large groups, we consider this
to be a critical error as exact spike timings are necessary to
reliably activate groups.
• A group is only valid if the maximum layer, the longest chain

of neurons within the group, is greater than, or equal to seven.
However, the calculation of layers depends on an arbitrary
sorting of neuron ids and also on the time of activation of those
neurons. This leads to errors in which neurons are assigned to
the wrong layer. If this results in a sub-threshold number of
layers, the group will be considered invalid and not counted.
• The maximal duration of the simulation is set to 1 ms after the

last spike delivery, however two simultaneous spike arrivals
lead to a postsynaptic spike generation of up to 4 ms later. This
last spike is thus overlooked in the original algorithm. This is
a crucial error, as missing the last spike can result in a reduced
number of layers identified for a group, and therefore to the
group being considered invalid (i.e., less than seven layers).

In our re-implementation of the algorithm we fixed these errors;
as a result, our algorithm finds around twice as many groups,
but including more than 99% of those found by the original
algorithm.

Thirdly, we note that the motivation for many of the
conditions underlying the definition of a polychronous group
is unclear; for example, the exclusion of weak synapses from
the analysis, or the classification of groups that are activated
by only one or two neurons as invalid. In particular, the
analysis algorithm sets the seemingly arbitrary conditions that
a polychronous group has to consist of at least six neurons

and seven layers. The choice of the number of layers has a
profound effect on the number of groups found. Reducing it to
five increases the number of groups found in the original model
from 4, 305 to 27, 116, whereas increasing it to ten decreases the
number to 608. As no scientific justification is given for the choice
of seven, we speculate that it was chosen for aesthetic reasons. In
any case, the strong dependence of the results on the choice of
thresholding parameter indicate that it should be explicitly stated
as a model critical parameter, even though it is not a parameter of
the network model.

To get an understanding of how many groups are found
with respect to those expected from a network with random
connectivity, we performed a surrogate analysis. The original
C++ code provides a similar functionality, by shuffling the
excitatory-excitatory connections. However, it is not clear why
the number of groups found with this shuffling defines the
null hypothesis, given that the excitatory-inhibitory connections
also adapt during the course of the simulation (and almost
all become strong). Regarding the strength of these as a
given introduces a bias. Moreover, the functionality does not
allow the proportion of strong synapses to be considered as
an independent variable. We therefore developed a surrogate
analysis in which excitatory connections (either just excitatory-
excitatory, or all excitatory) are randomly drawn with a
given probability of being strong. The results are shown in
Figure 10.

In line with the original findings, networks with randomly
selected strong excitatory-excitatory synapses exhibit fewer
groups (using the original group finding algorithm) than those
where the strong synapses develop due to network activity.
The proportion of random strong synapses must be increased
to around ∼ 50% in order to find as many groups as
in the “grown” networks, where the proportion of strong
synapses is around ∼ 45%. Note that in this setting, 20% of
synapses are automatically strong, being the excitatory-inhibitory
connections. However, if the strong synapses are randomly
selected from all excitatory synapses, the opposite tendency is
found: only around ∼ 40% strong synapses are required for the
group finding algorithm to identify as many groups as in the
grown network. Hence, the algorithm finds either more or fewer
groups in grown networks than random networks, depending on
what assumption is used to generate the latter.

We therefore conclude that the provided analysis script
is an additional factor undermining the reproducibility of
the original study. It contains coding errors that distort
the results, making it likely that a researcher trying to re-
implement the analysis would generate substantially different
numbers of groups, even if the network model had been
reproduced identically. These errors could have been avoided,
or at least made more visible, by clean code features such
as encapsulation and commenting, as discussed in section
3.2.2 and summarized in section 3.6.2. Moreover, there is
an unstated strong dependence on an apparently arbitrary
threshold parameter, and the null hypothesis from which
positive results are to be distinguished is not well motivated.
For future research into polychronous groups, we would
therefore suggest following a different analytic approach. Some

Frontiers in Neuroinformatics | www.frontiersin.org 16 August 2018 | Volume 12 | Article 46142

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

alternative methods (none of which were available at the time
of publication of the original study) are discussed in section
4.3.

3.6. Recommendations
In carrying out the steps outlined in sections 2.2–3.5, we
identified which features of the code and the methodology of the
original study support reproducing the results, and which hinder
it. From these we derive a series of recommendations that, if
followed, would not only increase the reproducibility of a given
study, but also its scientific credibility, by reducing the risk that
results are dependent on implementational details.

These can be roughly divided into three categories, although
of course there is overlap. On the most basic level, it is
important to make the code available and executable. This
includes topics such as sharing and providing an installation
guide, as well as information about the versions used of
model code and any dependencies. On the next level, we
provide recommendations on how to make it comprehensible
and testable. This covers topics from low-level artifacts like
commenting and naming of parameters and functions, to more
abstract issues such as appropriate organization of the code
and unit tests for components. Finally, our work revealed
that computational models may easily contain undesirable
implementation dependencies. Whereas it is not feasible to
comprehensively test for all of them, we emphasize the
importance of using existing standards as much as possible, both
for accuracy and comprehensibility. In addition, we uncovered
an alternative dynamical mode of the original network, with a
lower peak in the power spectrum, which occurs in a minority
of simulation runs. This illustrates the importance of carrying
out multiple runs of models to uncover any dependency on the
random seed used.

3.6.1. Make Code Available and Executable

Recommendation: share the code
We would certainly not have been able to reproduce the
simulation results either identically or qualitatively if the author
had not provided the complete source. This applies not only to
the network model but also to the analysis of the results. As there
are many options for sharing the code in a sustainable fashion,
as listed below, “available from the author on request” should not
be considered an adequate fulfillment of this recommendation.
Moreover, the code should be accessible for the reviewers when
an article is submitted to a journal, and not deferred until
publication, so that the reviewers can form an opinion of its
reproducibility.

ModelDB. ModelDB3 is a database for computational and
conceptual models in neuroscience. One can choose to share the
code on ModelDB itself or as a weblink to the code. ModelDB
provides a direct link between publication and source code of the
model. Additionally, the database can be searched by keywords,
for example for specific neuron models, types of plasticity or
brain regions. Since a model can even be entered into ModelDB

3https://senselab.med.yale.edu/modeldb/

as a link to another hosting platform, there is really no reason not
to make an entry.

Zenodo. Zenodo4 makes it possible to assign a DOI to a certain
version of the code. The code version will also be archived on the
CERN cloud infrastructure. The model code can be stored in a
github repository and then linked and archived via Zenodo.

GitHub, GitLab, Bitbucket. Web-based hosting services such
as GitHub, GitLab, and Bitbucket5,6,7 are mainly based on
git, a standard and widely used tool in collaborative software
development. The advantage of sharing model code through git
is that it facilitates opening up the code to the community.

Open Source Brain. The Open Source Brain platform is a web
resource for publishing and sharing models in the field of
computational neuroscience with a strong focus on open source
technologies. The submitted models can be visualized and their
parameter spaces and dynamics can be explored in browser-based
simulations (Gleeson et al., 2018).

Collaboratory. The collaboratory is a web portal designed within
the Human Brain Project intended to improve the quality of
collaboration between many possibly international parties (Senk
et al., 2017). It allows scientists to share data, collaborate on
code and re-use models and methods, and enables tracking and
crediting researchers for their contributions.

Recommendation: provide an installation guide
The single stand-alone C++ program downloaded for this study
was easy to install. However, more complicated set-ups with
dependencies on other applications (e.g., simulation or analysis
tools) require more work. An installation guide takes (most of)
the guesswork out of it. An installation guide should not only
include the exact steps and commands to install the software, but
should also name the platform and operating system on which
the authors tested the installation steps. Additionally, it should
mention a complete list of software dependencies.

Recommendation: use a version control system
In the current investigation, the downloaded script did not match
the paper, and the C++ and MATLAB versions did not match
each other. Therefore it was not clear which version of the code
had been used to generate the reported results. More generally,
models are often developed further after being published, which
leads to increasing divergence between the description in the
manuscript and the current version of the model. A version
control system such as git, SVN or Mercurial helps to keep
different versions accessible, and enables users and scientists to
understand the changes to the implementation of a model.

Recommendation: provide provenance tracking
To reproduce the study, we used specific versions of NEST and
various Python packages. However, sometimes different versions

4https://zenodo.org/
5https://github.com/
6https://gitlab.com/
7https://bitbucket.org

Frontiers in Neuroinformatics | www.frontiersin.org 17 August 2018 | Volume 12 | Article 46143

https://senselab.med.yale.edu/modeldb/
https://zenodo.org/
https://github.com/
https://gitlab.com/
https://bitbucket.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

of software applications vary significantly in their performance
(Gronenschild et al., 2012) or just have non-compatible APIs. The
manuscript and the installation guide should be specific about
which versions of software were used to generate the results.

3.6.2. Make Code Comprehensible and Testable

Recommendation: modularize the code
Separating simulation and data analysis makes it possible to
use the two independently. In this study, it allowed us to
apply a new analysis to the original simulation results and,
vice versa, the original analysis code to our implementation of
the model. Without the possibility to apply exactly the same
analysis to different implementations, we would not have been
able to discover the causes of the disparities between the original
network model and our initial attempts to reproduce it.

Recommendation: encapsulate the code
Encapsulation gathers data and the methods that operate on it
into cohesive units. This is a similar principle to modularization.
Using methods with meaningful names rather than operating
directly on data makes the code easier to comprehend; compare:
I[i]+=s[firings[k][1]][delays[firings[k][1]][t-firings[k][0][j]];

and
deliver_spike(post_neuron,weight(pre_neuron, post_neuron))

Further, it makes the code less error prone, as complex
access/operation routines are defined in one place and
parameterized, rather than repeated throughout the code.
Finally, it facilitates testing, see below.

Recommendation: write flexible code
Code flexibility is a precondition for efficient testing of
model robustness toward changes on both the implementation
level (e.g., smaller integration time step) and the modeling
level (e.g., different parameter values). Testing the generalized
reproducibility of the model (see section 3.4) was a tedious and
time-consuming process due to several model features being
hardwired into the simulation and analysis code. Routines should
be written as general as possible to avoid these problems; using
standard tools (see next section) will tend to mitigate this issue
automatically.

Recommendation: provide tests
Reproducing the synapse model was challenging, because there
were discrepancies between our initial model and the original
and handling specific combinations of pre- and post-synaptic
spikes that were not defined in the original publication. To avoid
this situation, novel network elements such as neuron, synapse
or stimulus models should be accompanied by tests that define
the output of the model for representative or critical inputs. This
documents the behavior of the model, especially for border cases,
in much greater detail than it would be reasonable to include in a
text description.

Recommendation: comment the code
Using comments substantially increases the comprehensibility of
the code, and thus the ability of a researcher to re-implement it in
a different framework. Comments should explain what complex

code sections are doing, but often straightforward code sections
are greatly enhanced by a comment explaining why they are
performing their operations.

Recommendation: parameterize meaningfully and

consistently
Parameters should be given meaningful names such that they
can be understood when they occur in an expression. Parameter
definitions should be gathered in parameter files, or at the
beginning of a stand-alone script, rather than spread throughout.
Raw numbers (other than 0 and 1) should not appear in
expressions, as this reduces the comprehensibility of the code,
and they are easy to overlook as parameters that influence the
behavior of the model.

Recommendation: use parameter files
Models often rely on a set of parameters which should be
either declared in the beginning of the source code, or, if
there are more than a few parameters, in a separate file. To
aid comprehensibility, if there is more than one experiment
conducted with one model there should be a dedicated parameter
file for each experiment, with a corresponding human-readable
table as proposed by Nordlie et al. (2009).

Recommendation: use tables to communicate parameters
It is easy to overlook a parameter when writing a text description
of a network model. Use of structured tables, such as those
proposed by Nordlie et al. (2009) acts as a reminder to record
all the model parameters and their values, and present them in a
comprehensible and easily referable fashion for the reader.

3.6.3. Reduce Risk of Implementation Dependencies

Recommendation: use standard tools
Tools that are created and maintained by a group of developers
over a period of time and have a substantial user base will
generally have more consistently applied coding standards,
documentation and tests than a homebrewed single-purpose
application. All these aspects increase the comprehensibility
of the code and reduce the risk that it contains numeric or
algorithmic errors. Given the current excellent availability of
open source tools for simulation and data analysis, using standard
tools should be preferred over homebrew as far as possible.
Novel network elements (e.g., neuron model) or analyses should
ideally be handled by contributing features to open source
tools, or at least formating them as compatible patches. The
use of homebrewed simulation or analysis tools should be
clearly motivated, and such code should comply with the
recommendations set out here.

Recommendation: use standard numerics
Using standard numerics lowers the risk of introducing rounding
or other numeric errors and alsomakes it easier to understand the
code.

Recommendation: perform multiple realizations
A robust model will generate statistically equivalent results for
different choices of the random seed. Variable behavior should be
reported; this is not only relevant for a reader’s ability to evaluate

Frontiers in Neuroinformatics | www.frontiersin.org 18 August 2018 | Volume 12 | Article 46144

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

the explanatory power of the model, it is also important for
reproducibility to be aware that the model can yield substantially
different results.

Recommendation: test model robustness
Proofs of model robustness with regard to implementation
details, parameter values, and higher-level modeling choices
boost the quality and credibility of the presented scientific
results. A basic requirement of model robustness is that an
outcome of a simulation that is reported as model behavior
should not change qualitatively if the simulation is repeated
with higher precision. In case of the model that we investigate
here, increasing the simulation resolution significantly affects the
number of polychronous groups found (see section 3.4.4), and
hence, renders the main result of the study questionable. Such
checks should always be carried out if there is a risk that the
results might be distorted by artificial synchrony or numeric
instabilities.

4. DISCUSSION

In this article, we have demonstrated that even if model code
is available and can be executed on a local machine with only
minimal modifications (section 3.1), this is only a first step
toward enabling reproduction of a study. By taking the publicly
available model code of a well-known study (Izhikevich, 2006)
and attempting to reproduce it in NEST, we uncovered a variety
of barriers to reproducibility (sections 3.2, 3.3). From each of
these barriers, we derive a recommendation that would lower or
remove it.

These recommendations are explained in detail in
the previous section, and for convenience we have
gathered them into a checklist, which is available in the
Supplementary Material. This checklist can be used by
researchers to evaluate and improve the reproducibility of their
neuronal network model before submitting an article. Similarly,
a reviewer can use it to rapidly assess the likely reproducibility of
a submitted model, without having to expend considerable time
trying to actually reproduce it.

Beyond the practical steps that can be taken to improve the
quality of model code and related artifacts, in the course of
our study we have identified several unusual assumptions and
numerics choices in the original simulation and analysis code,
and investigated to what extent the reported model behavior
depends on them (sections 3.4, 3.5).

With regards to the model code, in the case of the
implementation of background noise (random selection in each
millisecond of a neuron to fire), the non-standard features of
the plasticity model, and the extremely long range of delays,
making a choice that was better biologically founded (or at
least removed complexity that did not have a clear biological
foundation) resulted in a reduction or increase in the number
of groups found by an order of magnitude. In the case of
the simulation resolution, despite careful matching of network
and single neuron dynamics, in a network running at a higher
resolution of 0.1 ms, we found a massive reduction of groups
compared to either the original network, or one with 0.1 ms

integration but spikes locked to a 1.0 ms grid. This last finding
is of particular concern, as it demonstrates that the majority of
the polychronous groups reported in the original study can be
attributed to artificial synchrony brought about by an unsuitable
choice of numerics (low resolution).

Similarly, with regards to the analysis code, we discovered a
series of coding errors that distorted the findings, and strong
dependencies on both a thresholding parameter (lacking a
biological motivation) and the assumptions defining the null
hypothesis.

Thus we conclude that the main reported results of the
original study generalize very poorly. The number of groups
found varies substantially with each aspect we investigated, with
the exception of the additive factor in the plasticity model, which
seems to have no effect. We argue that had the dependence of
the findings on a very specific configuration of modeling and
implementation choices been apparent, the original study would
not have been as influential as it has been.

Clearly, it is not possible to check for all parameter and
implementation choices, and it is reasonable to assume that the
authors of the current study have more computational resources
at their disposal for such analyses than were available to the
author of the original. This notwithstanding, we note that it is the
obligation of authors to evaluate their choices and assumptions
critically, and to be transparent about which ones are necessary
for the reported results. Analogously, it is the obligation of
reviewers to use their expertise to identify potential dependencies
and request additional simulations to uncover them.

As discussed in the next section, following the set of
recommendations laid out in section 3.6 would not only increase
the ability of researchers to independently verify the findings
of neuronal network studies, but would decrease the likelihood
that such findings are subject to highly specific parameter and
implementation choices.

4.1. Relationship of the Reproducibility
Guideline to Scientific Quality
The reproducibility guideline is divided into three categories. The
first category contains recommendations that allow researchers
to reproduce identical results, which includes also the case
where a researcher wants to rerun a simulation at a later
point in time. The second category of recommendations
facilitate qualitative reproduction by others, primarily through
effective communication of the model code and parameters.
The recommendations of the third category principally address
model robustness. All three categories are important for the
quality and credibility of the presented scientific results, but on
different levels. By following the recommendations of the first
category, a researcher can be transparent about exactly what
experiments were carried out using which software. Following
the second category provides evidence to other researchers
that the study was conducted in a structured way. Moreover,
a study that follows these recommendations invites other
researchers to investigate the model independently. A study that
follows the third category of recommendations demonstrates
the researchers’ ability to critically assess their own work,

Frontiers in Neuroinformatics | www.frontiersin.org 19 August 2018 | Volume 12 | Article 46145

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

their willingness to disclose limitations, and their openness to
potential refutation of the results by other researchers in future
studies.

4.2. Limitations of the Reproducibility
Guideline
The reproducibility guideline developed in the course of this
study is not intended as a definitive document, and the
authors welcome suggestions for further recommendations
to increase the currently poor record of reproducibility
in neuronal network modeling studies. In particular, our
guideline is aimed at the reproducibility of networks of
point (or few-compartment) neuron models. Where as much
of it is likely applicable to networks of biophysical neuron
models with thousands of compartments (commenting code
is never a bad idea), some recommendations are likely to be
inappropriate (e.g., using tables to communicate parameters)
and some important aspects that boost reproducibility may
well have been overlooked entirely. The adaptation of the
guideline to such models lies outside the expertise of the
authors. We suspect that domain specific languages such as
NEUROML (Gleeson et al., 2018) have an important role to
play here, as they provide unambiguous, standardized, and
machine-readable representations of complex neurons and their
connectivity.

4.3. Alternative Methods for Detecting
Polychronous Groups
Izhikevich (2006) introduces a method to find polychonous
groups in the connectivity data of the presented spiking neural
network model. Although the concept is fruitful in this very
specific case, it does not generalize to other means. More general
methods (e.g., Torre et al., 2013; Quaglio et al., 2017; Russo and
Durstewitz, 2017) have recently been developed for the detection
of repeated precise spike sequences in electrophysiological
recordings. Such methods do not use any assumption of the
underlying connectivity and could be applied to the simulated
spiking activity in order to find active patterns without the prior
detection of potential polychronous groups in the connection
profile. With these methods the same kind of analysis could
be performed as in Izhikevich (2006) with the advantageous
possibility of comparing the results to experimental data in order
to confirm the validity of the model.

5. CONCLUSION AND OUTLOOK

Based on our work to reproduce the network presented by
Izhikevich (2006), we conclude that the more points in the
guideline are adhered to, the easier it will be to reproduce
a study of a network of spiking neurons, and the higher
quality the study will be. Whereas journals are beginning
to take issues such as availability of model code more
seriously than before, the current study clearly demonstrates
that this is a necessary but not sufficient condition for
reproducibility. We propose that the editorial boards of journals
in computational neuroscience go considerably further, and
provide their reviewers with clearly defined reproducibility
criteria, for which we provide a draft. Only in this way can we
achieve a substantial change in attitude and approach in our
field.

AUTHOR CONTRIBUTIONS

SK and AM created a prototype of the project. RP created
all figures. RP, PW, and AM investigated and eliminated the
discrepancies between the original code and the NESTmodel. RP
and PW performed the analysis and simulations. SK, PW, and
RP created the NEST group finding algorithm. All authors jointly
wrote the manuscript.

ACKNOWLEDGMENTS

We acknowledge the Initiative and Networking Fund of the
Helmholtz Association, the Helmholtz Association through the
Helmholtz Portfolio Theme Supercomputing and Modeling for
the Human Brain, the German Research Foundation (DFG;
KFO 219, TP9) and the European Union’s Horizon 2020
research and innovation programme under grant agreement
no. 720270 (HBP SGA 1) and no. 754304 (DEEP-EST). We
thank P. Quaglio, G. Trensch, and R. Gutzen for fruitful
discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00046/full#supplementary-material

REFERENCES

Association for Computing Machinery (2016). Artifact Review and Badging.

Available online at: https://www.acm.org/publications/policies/artifact-review-

badging (Accessed March 14, 2018).

Collberg, C., and Proebsting, T. A. (2016). Repeatability in computer systems

research. Commun. ACM 59, 62–69. doi: 10.1145/2812803

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Ghosh, S. S., Poline, J.-B., Keator, D. B., Halchenko, Y. O., Thomas,

A. G., Kessler, D. A., et al. (2017). A very simple, re-executable

neuroimaging publication. F1000Research 6:124. doi: 10.12688/f1000research.

10783.2

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Piasini, E., et al.

(2018). Open Source Brain: a collaborative resource for visualizing, analyzing,

simulating and developing standardized models of neurons and circuits.

bioRxiv. [Preprint]. Available online at: https://www.biorxiv.org/content/early/

2018/01/11/229484

Gronenschild, E. H. B. M., Habets, P., Jacobs, H. I. L., Mengelers, R.,

Rozendaal, N., van Os, J., et al. (2012). The effects of FreeSurfer

version, workstation type, and Macintosh operating system version on

anatomical volume and cortical thickness measurements. PLoS ONE 7:e38234.

doi: 10.1371/journal.pone.0038234

Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning input

correlations through nonlinear temporally asymmetric hebbian plasticity.

J. Neurosci. 23, 3697–3714. doi: 10.1523/JNEUROSCI.23-09-03697.2003

Frontiers in Neuroinformatics | www.frontiersin.org 20 August 2018 | Volume 12 | Article 46146

https://www.frontiersin.org/articles/10.3389/fninf.2018.00046/full#supplementary-material
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/2812803
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.12688/f1000research.10783.2
https://www.biorxiv.org/content/early/2018/01/11/229484
https://www.biorxiv.org/content/early/2018/01/11/229484
https://doi.org/10.1371/journal.pone.0038234
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pauli et al. Reproducing Polychronization

Hansel, D., Mato, G., Meunier, C., and Neltner, L. (1998). On numerical

simulations of integrate-and-fire neural networks.Neural Comput. 10, 467–483.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural

Comput. 18, 245–282. doi: 10.1162/089976606775093882

Köster, J., and Rahmann, S. (2012). Snakemake–a scalable bioinformatics workflow

engine. Bioinformatics 28, 2520–2522. doi: 10.1093/bioinformatics/bts480

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybernet. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007).

Exact subthreshold integration with continuous spike times in

discrete-time neural network simulations. Neural Comput. 19, 47–79.

doi: 10.1162/neco.2007.19.1.47

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible

descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456.

doi: 10.1371/journal.pcbi.1000456

Peyser, A., Sinha, A., Vennemo, S. B., Ippen, T., Jordan, J., Graber, S., et al. (2017).

NEST 2.14.0. doi: 10.5281/zenodo.882971

Plesser, H. E. (2018). Reproducibility vs. replicability: a brief history of a confused

terminology. Front. Neuroinformatics 11:76. doi: 10.3389/fninf.2017.00076

Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M., and Grün, S. (2017).

Detection and evaluation of spatio-temporal spike patterns in massively

parallel spike train data with spade. Front. Comput. Neurosci. 11:41.

doi: 10.3389/fncom.2017.00041

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F. C.,

et al. (2017). Sustainable computational science: the ReScience initiative. PeerJ

Comp. Sci. 3:e142. doi: 10.7717/peerj-cs.142

Russo, E., and Durstewitz, D. (2017). Cell assemblies at multiple time scales with

arbitrary lag constellations. Elife 6:e19428. doi: 10.7554/eLife.19428

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Davison, A., Lester,

D. R., et al. (2017). “A collaborative simulation-analysis workflow

for computational neuroscience using HPC,” in High-Performance

Scientific Computing, eds E. Di Napoli, M. A. Hermanns, H. Iliev, A.

Lintermann, and A. Peyser (Cham: Springer International Publishing),

243–256.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3:919.

doi: 10.1038/78829

Topalidou, M., Leblois, A., Boraud, T., and Rougier, N. P. (2015). A long journey

into reproducible computational neuroscience. Front. Comput. Neurosci. 9:30.

doi: 10.3389/fncom.2015.00030

Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., and Grün, S. (2013).

Statistical evaluation of synchronous spike patterns extracted by frequent

item set mining. Front. Comput. Neurosci. 7:132. doi: 10.3389/fncom.2013.

00132

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (in press).

Rigorous neural network simulations: model cross-validation for boosting the

correctness of simulation results. Front. Neuroinformatics.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Pauli, Weidel, Kunkel andMorrison. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 August 2018 | Volume 12 | Article 46147

https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.5281/zenodo.882971
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.3389/fncom.2017.00041
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.7554/eLife.19428
https://doi.org/10.1038/78829
https://doi.org/10.3389/fncom.2015.00030
https://doi.org/10.3389/fncom.2013.00132
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

METHODS
published: 14 August 2018

doi: 10.3389/fninf.2018.00049

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2018 | Volume 12 | Article 49

Edited by:

Andrew P. Davison,
FRE3693 Unité de Neuroscience,
Information et Complexité (UNIC),

France

Reviewed by:

Nicholas T. Carnevale,
Yale School of Medicine, Yale

University, United States
Hermann Cuntz,

Ernst Strüngmann Institut für
Neurowissenschaften, Germany

*Correspondence:

Gaute T. Einevoll
gaute.einevoll@nmbu.no

Received: 02 March 2018
Accepted: 20 July 2018

Published: 14 August 2018

Citation:

Tennøe S, Halnes G and Einevoll GT
(2018) Uncertainpy: A Python Toolbox

for Uncertainty Quantification and
Sensitivity Analysis in Computational

Neuroscience.
Front. Neuroinform. 12:49.

doi: 10.3389/fninf.2018.00049

Uncertainpy: A Python Toolbox for
Uncertainty Quantification and
Sensitivity Analysis in Computational
Neuroscience
Simen Tennøe 1,2, Geir Halnes 1,3 and Gaute T. Einevoll 1,3,4*

1Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway, 2Department of Informatics, University of Oslo, Oslo,
Norway, 3 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, 4Department of Physics,
University of Oslo, Oslo, Norway

Computational models in neuroscience typically contain many parameters that are

poorly constrained by experimental data. Uncertainty quantification and sensitivity

analysis provide rigorous procedures to quantify how the model output depends on

this parameter uncertainty. Unfortunately, the application of such methods is not yet

standard within the field of neuroscience. Here we present Uncertainpy, an open-source

Python toolbox, tailored to perform uncertainty quantification and sensitivity analysis

of neuroscience models. Uncertainpy aims to make it quick and easy to get started

with uncertainty analysis, without any need for detailed prior knowledge. The toolbox

allows uncertainty quantification and sensitivity analysis to be performed on already

existingmodels without needing tomodify themodel equations or model implementation.

Uncertainpy bases its analysis on polynomial chaos expansions, which are more efficient

than the more standard Monte-Carlo based approaches. Uncertainpy is tailored for

neuroscience applications by its built-in capability for calculating characteristic features

in the model output. The toolbox does not merely perform a point-to-point comparison

of the “raw” model output (e.g., membrane voltage traces), but can also calculate the

uncertainty and sensitivity of salient model response features such as spike timing,

action potential width, average interspike interval, and other features relevant for various

neural and neural network models. Uncertainpy comes with several common models

and features built in, and including custom models and new features is easy. The aim

of the current paper is to present Uncertainpy to the neuroscience community in a

user-oriented manner. To demonstrate its broad applicability, we perform an uncertainty

quantification and sensitivity analysis of three case studies relevant for neuroscience:

the original Hodgkin-Huxley point-neuron model for action potential generation, a

multi-compartmental model of a thalamic interneuron implemented in the NEURON

simulator, and a sparsely connected recurrent network model implemented in the NEST

simulator.

Keywords: uncertainty quantification, sensitivity analysis, features, polynomial chaos expansions, quasi-Monte

Carlo method, software, computational modeling, Python

148

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00049
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00049&domain=pdf&date_stamp=2018-08-14
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gaute.einevoll@nmbu.no
https://doi.org/10.3389/fninf.2018.00049
https://www.frontiersin.org/articles/10.3389/fninf.2018.00049/full
http://loop.frontiersin.org/people/456229/overview
http://loop.frontiersin.org/people/54278/overview
http://loop.frontiersin.org/people/940/overview

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

SIGNIFICANCE STATEMENT

Amajor challenge in computational neuroscience is to specify the
often large number of parameters that define neuron and neural
network models. Many of these parameters have an inherent
variability, and some are even actively regulated and change with
time. It is important to know how the uncertainty in the model
parameters affects the model predictions. To address this need
we here present Uncertainpy, an open-source Python toolbox
tailored to perform uncertainty quantification and sensitivity
analysis of neuroscience models.

1. INTRODUCTION

Computational modeling has become a useful tool for examining
various phenomena in biology in general (Brodland, 2015) and
neuroscience in particular (Koch and Segev, 1998; Dayan and
Abbott, 2001; Sterratt et al., 2011). The field of neuroscience has
seen the development of ever more complex models, and models
now exist for large networks of biophysically detailed neurons
(Izhikevich and Edelman, 2008; Merolla et al., 2014; Markram
et al., 2015).

Computational models typically contain a number of
parameters that for various reasons are uncertain. A typical
example of an uncertain parameter in a neural model can be
the conductance gx of a fully open ion channel of a specific type
x. Despite the parameter uncertainty, it is common practice to
construct models that are deterministic in the sense that single
numerical values are assigned to each parameter.

Uncertainty quantification is a means to quantify the
uncertainty in the model output that arises from uncertainty
in the model parameters. Instead of assuming fixed model
parameters as in a deterministic model (as illustrated in
Figure 1A), one assigns a distribution of possible values to each
model parameter. The uncertainty in the model parameters
is then propagated through the model and gives rise to a
distribution in the model output (as illustrated in Figure 1B).

Sensitivity analysis is tightly linked to uncertainty
quantification and is the process of quantifying how much
of the output uncertainty each parameter is responsible for
Saltelli (2002b). A small change in a parameter the model is
highly sensitive to, leads to a comparatively large change in the
model output. Similarly, variations in a parameter the model has
a low sensitivity to, result in comparatively small variations in
the model output.

Given that most neuroscience models contain a variety of
uncertain parameters, the need for systematic approaches to
quantify what confidence we can have in the model output
is pressing. The importance of uncertainty quantification and
sensitivity analysis of computational models is well known in
a wide variety of fields (Leamer, 1985; Beck, 1987; Turanyi
and Turányi, 1990; Oberkampf et al., 2002; Sharp and Wood-
Schultz, 2003; Marino et al., 2008; Najm, 2009; Rossa et al.,
2011; Wang and Sheen, 2015; Yildirim and Karniadakis, 2015).
Due to the prevalence of inherent variability in the parameters
of biological systems, uncertainty quantification and sensitivity
analysis are at least as important in neuroscience. Toward

this end we have created Uncertainpy1, a Python toolbox
for uncertainty quantification and sensitivity analysis, tailored
toward neuroscience models.

The uncertainty in a model parameter may have many
origins. It may be due to (i) measurement uncertainty or (ii)
lack of experimental techniques that enable the parameter to
be measured. The uncertainty can also be due to an inherent
biological variability, meaning the value of a parameter can
vary (iii) between neurons of the same species (Edelman and
Gally, 2001; Hay et al., 2013), or (iv) dynamically within a
single neuron due to plasticity or homeostatic mechanisms
(Marder andGoaillard, 2006). Additionally, somemodels include
parameters that are (v) phenomenological abstractions, and
therefore do not represent directly measurable physical entities.
They might, for example, represent the combined effect of
several physical processes. The above uncertainties can generally
be divided into two main classes: aleatory uncertainties and
epistemic uncertainties. Epistemic uncertainty reflects a lack
of knowledge, and can in principle be reduced to zero by
acquiring additional information. Aleatory uncertainty, on the
other hand, is uncertainty due to inherent variability of the
parameters. The importance of distinguishing between aleatory
and epistemic uncertainties has evoked some debate (Ferson
and Ginzburg, 1996; Hora, 1996; Oberkampf et al., 2002; Ferson
et al., 2004; Kiureghian and Ditlevsen, 2009; Mullins et al.,
2016), but the distinction is important for how to interpret
the results of an uncertainty quantification. Parameters with
epistemic uncertainties produce an uncertainty as to whether or
not we have acquired the “correct” result, while parameters with
aleatory uncertainties reflect the true variability of the system.

A common way to avoid addressing the uncertainty in
measured parameters is to use the means of several experimental
measurements. This can be problematic since the underlying
distribution of a set of parameters can be poorly characterized
by the mean and variance of each parameter (Golowasch et al.,
2002). Additionally, during model construction, a subset of the
uncertain parameters are commonly treated as free parameters.
This means the parameters are tuned by the modeler to values
that make the model output match a set of experimental
constraints. An example is fitting an ion-channel conductance
gx so the membrane potential of a neuron model reproduces an
experimentally measured voltage trace. Whatever method used,
the tuning procedure does not guarantee a unique solution for the
correct parameter set, since it is often the case that a wide range
of different parameter combinations give rise to similar model
behavior (Bhalla and Bower, 1993; Beer et al., 1999; Goldman
et al., 2001; Golowasch et al., 2002; Prinz et al., 2004; Tobin, 2006;
Halnes et al., 2007; Schulz et al., 2007; Taylor et al., 2009; Marder
and Taylor, 2011).

When we have uncertain parameters, but nevertheless choose
to use a single set of fixed parameter values, it is a priori
difficult to assess to what degree we can trust the model result.
Performing an uncertainty quantification enables us to properly
take the effects of the uncertain parameters into account, and
it quantifies what confidence we can have in the model output.

1https://github.com/simetenn/uncertainpy

Frontiers in Neuroinformatics | www.frontiersin.org 2 August 2018 | Volume 12 | Article 49149

https://github.com/simetenn/uncertainpy
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 1 | Illustration of uncertainty quantification of a deterministic model. (A) A traditional deterministic model where each input parameter has a chosen fixed

value, and we get a single output of the model (gray). (B) An uncertainty quantification of the model takes the distributions of the input parameters into account, and

the output of the model becomes a range of possible values (light gray).

An uncertainty quantification enables us to model the naturally
occurring variation in the parameters of biological systems. It also
increases our understanding of the model by quantifying how the
uncertain parameters influence the model output. Additionally,
performing an uncertainty quantification makes comparing two
model outputs, as well as a model output and an experimental
result, more informative. By knowing the distribution of the
model output we can better quantify how similar (or different)
the two model outputs, or model output and experimental
result, are.

Performing a sensitivity analysis provides insight into how
each parameter affects different aspects of the model, and it
gives us a better understanding of the relationship between
the parameters (and by extent the biological mechanisms) and
the output of the model (Marino et al., 2008). A model-based
sensitivity analysis can thus help to guide the experimental focus
(Zi, 2011). Knowing how sensitive the model is to changes in
each parameter, enables us to take special care to obtain accurate

measures of parameters with a high sensitivity, while more crude
measures are acceptable for parameters with a low sensitivity.

Sensitivity analysis is also useful in model reduction contexts
and when performing parameter estimations (Degenring et al.,
2004; Zi, 2011; Snowden et al., 2017). A parameter that the
model has a low sensitivity to, can essentially be set to any
fixed value (within the explored distribution), without greatly
affecting the variance of the model output. In some cases, such
an analysis can even justify leaving out entire mechanisms from
a model. For example, if a single neuron model is insensitive to
the conductance of a given ion channel gx, this ion channel could
possibly (but not necessarily) be removed from the model with
only small changes to the model behavior.

Unfortunately, a generally accepted practice of uncertainty
quantification and sensitivity analysis does not currently
exist within the field of neuroscience, and models are
commonly presented without including any form of uncertainty
quantification or sensitivity analysis. When an effort is made in

Frontiers in Neuroinformatics | www.frontiersin.org 3 August 2018 | Volume 12 | Article 49150

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

that direction, it is still common to use rather simple, so-called
One-At-A-Time methods, where one examines how much the
model output changes when varying one parameter at a time
(see e.g., De Schutter and Bower, 1994; Blot and Barbour, 2014;
Kuchibhotla et al., 2017). Such approaches do not account for
potential dependencies between the parameters, and therebymiss
correlations within the often multi-dimensional parameter space
(Borgonovo and Plischke, 2016). Other methods that have been
applied are local methods, which are multi-dimensional, but
confined to exploring small perturbations surrounding a single
point in the parameter space (see e.g., Gutenkunst et al., 2007;
Blomquist et al., 2009; O’Donnell et al., 2017). Such methods
can thus not explore the effects of arbitrarily broad uncertainty
distributions for the parameters.

Methods for uncertainty quantification and sensitivity
analysis that take the entire parameter space into account are
often called global methods (Borgonovo and Plischke, 2016;
Babtie and Stumpf, 2017). Global methods are only occasionally
used within the field of neuroscience (see e.g., Halnes et al.,
2009; Torres Valderrama et al., 2015). The most well-known
of the global methods is the (quasi-)Monte Carlo method,
which relies on randomly sampling the parameter distributions,
followed by calculating statistics from the resulting model
outputs. The problem with the (quasi-)Monte Carlo method
is that it is computationally very demanding, particularly for
computationally expensive models. A means to obtain similar
results in a much more efficient way, is provided by the recent
mathematical framework of polynomial chaos expansions (Xiu
and Hesthaven, 2005). Polynomial chaos expansions are used
to approximate the model with a polynomial (as a surrogate
model), on which the uncertainty and sensitivity analysis can be
performed much more efficiently.

To lower the threshold for neuroscientists to perform
uncertainty quantification and sensitivity analysis, we have
created Uncertainpy, an open-source Python toolbox for efficient
uncertainty quantification and sensitivity analysis. Uncertainpy
aims to make it quick and easy to get started with uncertainty
quantification and sensitivity analysis. Just a few lines of Python
code are needed, without any need for detailed prior knowledge
of uncertainty or sensitivity analysis. Uncertainpy implements
both the quasi-Monte Carlo method and polynomial chaos
expansions. The toolbox is model-independent and treats the
model as a “black box,” meaning that uncertainty quantification
can be performed on already existing models without needing to
modify the model equations or model implementation.

Whereas its statistical methods are generally applicable,
Uncertainpy is tailored for neuroscience applications by having
a built-in capability for recognizing characteristic features in the
model output. This means Uncertainpy does not merely perform
a point-to-point comparison of the “raw” model output (e.g.,
a voltage trace). When applicable, Uncertainpy also recognizes
and calculates the uncertainty in model response features, for
example the spike timing and action-potential shape for neural
models and firing rates and interspike intervals for neural
networks.

To present Uncertainpy, we start this paper with an overview
of the theory behind uncertainty quantification and sensitivity

analysis in section 2, with a focus on the (quasi-)Monte Carlo
method and polynomial chaos expansions. In section 3 we
explain how to use Uncertainpy, and give details on how
the uncertainty quantification and sensitivity analysis are
implemented. In section 4 we illustrate the use of Uncertainpy by
showing four different case studies where we perform uncertainty
analysis of: (i) a cooling coffee-cup model (Newton’s law of
cooling) to illustrate the uncertainty analysis on a conceptually
simple model, (ii) the original Hodgkin-Huxley point-neuron
model for action potential generation, (iii) a comprehensive
multi-compartmental model of a thalamic interneuron, and
(iv) a sparsely connected recurrent network model (Brunel
network). The final section of section 4 gives a comparison
of the performance, that is, numerical efficacy, of the quasi-
Monte Carlo method and polynomial chaos expansions using the
original Hodgkin-Huxley model as an example. We end with a
discussion and some future prospects in section 5.

2. THEORY ON UNCERTAINTY
QUANTIFICATION AND SENSITIVITY
ANALYSIS

Uncertainty quantification and sensitivity analysis provide
rigorous procedures to analyze and characterize the effects of
parameter uncertainty on the output of a model. Themethods for
uncertainty quantification and sensitivity analysis can be divided
into global and local methods. Local methods examine how the
model output changes with small perturbations around a fixed
point in the parameter space. Global methods, on the other hand,
take the whole range of parameters into consideration.

The global methods can be divided into intrusive and
non-intrusive methods. Intrusive methods require changes to
the underlying model equations and are often challenging to
implement. Models in neuroscience are often created with the
use of advanced simulators such as NEST (Peyser et al., 2017)
and NEURON (Hines and Carnevale, 1997). Modifying the
underlying equations of models using such simulators is a
complicated task best avoided. Non-intrusive methods, on the
other hand, consider the model as a black box and can be
applied to any model without needing to modify the model
equations or model implementation. Global, non-intrusive
methods are therefore the methods of choice in Uncertainpy.
The uncertainty calculations in Uncertainpy are mainly based on
the Python package Chaospy (Feinberg and Langtangen, 2015),
which provides global, non-intrusive methods for uncertainty
quantification and sensitivity analysis. Additionally, Uncertainpy
uses the package SALib (Herman and Usher, 2017) to perform
sensitivity analysis with the quasi-Monte Carlo method.

In this section, we go through the theory behind the methods
for uncertainty quantification and sensitivity analysis used in
Uncertainpy. We start by introducing the notation used in
this paper (section 2.1). Next, we introduce the statistical
measurements for uncertainty quantification (section 2.2) and
sensitivity analysis (section 2.3). Further, we give an introduction
to the (quasi-)Monte Carlo method (section 2.4) and polynomial
chaos expansions (section 2.5), the two methods used to perform

Frontiers in Neuroinformatics | www.frontiersin.org 4 August 2018 | Volume 12 | Article 49151

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

the uncertainty analysis in Uncertainpy. We next explain how
Uncertainpy handles cases with statistically dependent model
parameters (section 2.6). Finally, we explain the concept and
benefits of performing a feature-based analysis (section 2.7).
We note that detailed insight into the theory of uncertainty
quantification and sensitivity analysis is not a prerequisite for
using Uncertainpy, so the more practically oriented reader may
choose to skip this section, and go directly to the user guide in
section 3.

2.1. Problem Definition
Consider a model U that depends on space x and time t, has d
uncertain input parameters Q = [Q1,Q2, . . . ,Qd], and gives the
output Y :

Y = U(x, t,Q). (1)

The output Y can have any value within the output space �Y

and has an unknown probability density function ρY . The goal
of an uncertainty quantification is to describe the unknown ρY
through statistical metrics. We are only interested in the input
and output of the model, and we ignore all details on the inner
workings of the model. The model U is thus considered a black
box and may represent any model, for example a spiking neuron
model that returns a voltage trace, or a neural networkmodel that
returns a spike train.

We assume the model includes uncertain parameters that can
be described by a multivariate probability density function ρQ.
Examples of parameters that can be uncertain in neuroscience
are the conductance of a single ion channel or the synaptic
weight between two types of neurons in a neural network.
If the uncertain parameters are statistically independent, the
multivariate probability density function ρQ can be given as
separate univariate probability density functions ρQi , one for
each uncertain parameter Qi. The joint multivariate probability
density function for the independent uncertain parameters is
then:

ρQ =

d
∏

i=1

ρQi . (2)

In cases where the uncertain input parameters are statistically
dependent variables, the multivariate probability density
function ρQ must be defined directly. It should be noted that
with statistically dependent parameters we here mean that there
is a dependence between the input parameters. When drawing
parameters from the joint probability function, by drawing one
parameter we influence the probability of drawing specific values
for the other parameters. Thus, we do not refer to dependencies
between how the input parameters affect the model output. We
assume the probability density functions are known and are not
here concerned with how they are determined. They may be the
product of a series of measurements, a parameter estimation, or
educated guesses.

2.2. Uncertainty Quantification
As mentioned, the goal of an uncertainty quantification is to
describe the unknown distribution of the model output ρY

through statistical metrics. The two most common statistical
metrics used in this context are the mean E (also called the
expectation value) and the variance V. The mean is defined as:

E[Y] =

∫

�Y

yρY (y)dy, (3)

and tells us the expected value of the model output Y . The
variance is defined as:

V[Y] =

∫

�Y

(

y− E[Y]
)2

ρY (y)dy, (4)

and tells us how much the output varies around the mean.
Another useful metric is the (100 · x)-th percentile Px of Y ,

which defines a value below which 100 · x percent of the model
outputs are located. For example, 5% of the evaluations of a
model will give an output lower than the 5th percentile. The
(100 · x)-th percentile is defined as:

x =

∫ Px

−∞

ρY (y)dy. (5)

We can combine two percentiles to create a prediction interval
Ix, which is a range of values within which a 100 · x percentage of
the outputs Y occur:

Ix =
[

P(x/2), P(1−x/2)

]

. (6)

The 90% prediction interval gives us the interval within which
90% of the Y outcomes occur, which also means that 5% of the
outcomes are above and 5% are below this interval.

2.3. Sensitivity Analysis
A sensitivity analysis quantifies how much of the uncertainty
in the model output each uncertain parameter is responsible
for. Several different sensitivity measures exist, for a review
of methods for sensitivity analysis see Saltelli et al. (2007),
Hamby (1994), and Zi (2011). Uncertainpy uses variance-based
sensitivity analysis and computes the commonly considered
Sobol sensitivity indices (Sobol, 1990). This sensitivity analysis
is global, non-intrusive and allows the effects of interactions
between parameters within the model to be studied (Zi, 2011).
(Two parameters are said to interact if they have a non-additive
effect on the output (Saltelli et al., 2007).)

The Sobol sensitivity indices quantify how much of the
variance in the model output each uncertain parameter is
responsible for. If a parameter has a low sensitivity index,
variations in this parameter result in comparatively small
variations in the final model output. Similarly, if a parameter has
a high sensitivity index, a change in this parameter leads to a large
change in the model output.

There are several types of Sobol indices. The first-order Sobol
sensitivity index Si measures the direct effect each parameter has
on the variance of the model:

Si =
V[E[Y|Qi]]

V[Y]
. (7)

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2018 | Volume 12 | Article 49152

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

Here, E[Y|Qi] denotes the expected value of the output Y when
the parameter Qi is fixed. The first-order Sobol sensitivity index
tells us the expected reduction in the variance of the model
when we fix parameter Qi. The sum of the first-order Sobol
sensitivity indices cannot exceed one, and is only equal to one
if no interactions are present (Glen and Isaacs, 2012).

Higher order Sobol indices exist and give the sensitivity
due to interactions between a parameter Qi and various other
parameters. It is customary to only calculate the first and total-
order indices (Saltelli et al., 2010). The total Sobol sensitivity
index STi includes the sensitivity of both the first-order effects,
as well as the sensitivity due to interactions between a given
parameter Qi and all combinations of the other parameters
(Homma and Saltelli, 1996). It is defined as:

STi = 1−
V[E[Y|Q−i]]

V[Y]
, (8)

where Q−i denotes all uncertain parameters except Qi. The sum
of the total Sobol sensitivity indices is equal to or greater than
one, and is only equal to one if there are no interactions between
the parameters (Glen and Isaacs, 2012). When the goal is to use
sensitivity analysis to fix parameters with low sensitivity, it is
recommended to use the total-order Sobol indices.

We might want to compare Sobol indices across different
features (introduced in section 2.7). This can be problematic
when we have features with a different number of output
dimensions. In the case of a zero-dimensional output, the Sobol
indices are a single number and for a one-dimensional output
we get Sobol indices for each point in time. To better be able to
compare the Sobol indices across such features, we also calculate
the average of the first-order Sobol indices Si, and total-order
Sobol indices STi.

2.4. (Quasi-)Monte Carlo Method
A typical way to obtain the statistical metrics mentioned above is
to use the (quasi-)Monte Carlo method. We give a brief overview
of the Monte Carlo and quasi-Monte Carlo method here, for a
more comprehensive review see Lemieux (2009).

The general idea behind the standard Monte Carlo method
is quite simple. A set of parameters is randomly drawn from
the joint multivariate probability density function ρQ of the
parameters. The model is then evaluated for the sampled
parameter set. This process is repeated thousands of times, and
statistical metrics such as the mean and variance are computed
from the resulting series of model outputs. The accuracy
of the Monte Carlo method, and by extent the number of
samples required, is independent of the number of uncertain
parameters. Additionally, the Monte Carlo method makes no
assumptions about the model. However, a limitation of the
Monte Carlo method is that a very high number of model
evaluations are required to get reliable statistics. If the model is
computationally expensive, the Monte Carlo method may thus
require insurmountable computer power.

The quasi-Monte Carlo method improves upon the standard
Monte Carlo method by using variance-reduction techniques to
reduce the number of model evaluations needed. This method is

based on increasing the coverage of the sampled parameter space
by distributing the samples more evenly. Fewer samples are then
required to obtain a given accuracy. Instead of randomly selecting
parameters from ρQ, the samples are selected using a low-
discrepancy sequence such as the Sobol sequence or Hammersley
sequence (Hammersley, 1960; Sobol, 1967). The quasi-Monte
Carlo method is faster than the Monte Carlo method, as long as
the number of uncertain parameters is sufficiently small, and the
model is sufficiently smooth (Lemieux, 2009).

Uncertainpy allows the quasi-Monte Carlo method to be used
to compute the statistical metrics. When this option is chosen,
the metrics are computed as follows. With Ns model evaluations,
which gives the results Y = [Y1,Y2, . . . ,YNs], the mean is given
by

E[Y] ≈
1

Ns

Ns
∑

i=1

Yi, (9)

and the variance by

V[Y] ≈
1

Ns − 1

Ns
∑

i=1

(Yi − E[Y])2. (10)

Prediction intervals are found by sorting the model evaluations
Y in an ascending order, and then finding the (100 · x/2)-th
and (100 · (1 − x/2))-th percentiles. The Sobol indices can be
calculated using Saltelli’s method (Saltelli, 2002a; Saltelli et al.,
2010). The number of samples required by this method is:

Ns = N(d + 2), (11)

where N is the number of samples required to get a given
accuracy with the quasi-Monte Carlo method. This means that
the number of samples required by both theMonte Carlo method
and the quasi-Monte Carlo method for sensitivity analysis
depends on the number of uncertain parameters. Due to how
the samples are selected in Saltelli’s method, when selecting N
samples for the uncertainty quantification (which give Ns = N),
we get Ns = N(d + 2)/2 samples for the sensitivity analysis. The
chosen number of samples N is effectively halved.

It should be noted that there is no guarantee that each set of
sampled parameters will produce a valid model evaluation. For
example, the spike width will not be defined for a model that
produces no spikes. The (quasi-)Monte Carlo method is robust
for such missing model results when performing an uncertainty
quantification, as long as the number of valid model evaluations
is relatively high. However, for the sensitivity analysis the (quasi-)
Monte Carlo method using Saltelli’s approach requires that there
are no missing model results. A suggested workaround (Herman
and Usher, 2017) is to replace invalid model evaluations with the
mean of the evaluations2. This workaround introduces an error
depending on the number of missing evaluations but enables us
to still calculate the Sobol indices. This workaround is used in
Uncertainpy.

2https://github.com/SALib/SALib/issues/134

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2018 | Volume 12 | Article 49153

https://github.com/SALib/SALib/issues/134
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

2.5. Polynomial Chaos Expansions
A recent mathematical framework for efficient uncertainty
quantification and sensitivity analysis is that of polynomial chaos
expansions (Xiu and Hesthaven, 2005). This method calculates
the same statistical metrics as the (quasi-)Monte Carlo method
but is typically much faster (Xiu and Hesthaven, 2005; Crestaux
et al., 2009; Eck et al., 2016). For the Hodgkin-Huxley model,
we find that polynomial chaos expansions require one to three
orders of magnitude fewer model evaluations than the quasi-
Monte Carlo method (see section 4.5). We here give a short
review of polynomial chaos expansions, for a comprehensive
review see Xiu (2010).

Polynomial chaos expansions are typically much faster than
the (quasi-)Monte Carlo method as long as the number of
uncertain parameters is relatively low, typically smaller than
about 20 (Xiu and Hesthaven, 2005; Crestaux et al., 2009; Eck
et al., 2016). This means polynomial chaos expansions require far
fewer model evaluations than the (quasi-)Monte Carlo method
to obtain the same accuracy. It is often the case that neuroscience
models have fewer than about 20 parameters, and even formodels
with a higher number of uncertain parameters, polynomial
chaos expansions can be used for selected subsets of the
parameters.

The main limitation of polynomial chaos expansions is
that the required number of model evaluations scales worse
with an increasing number of uncertain parameters than the
(quasi-)Monte Carlo method does. This is the reason why
the (quasi-)Monte Carlo method becomes better at around 20
uncertain parameters. Another limitation of the polynomial
chaos expansions is that the performance is reduced if the output
has a non-smooth behavior with respect to the input parameters
(Eck et al., 2016).

The exact gain in efficiency when using polynomial chaos
expansions instead of the quasi-Monte Carlo method is problem
dependent. However, Crestaux et al. (2009) examined three
different benchmark problems with three, twelve, and five
uncertain parameters. They found that the error in the
polynomial chaos expansions converged as N−6

s , N−2
s , and

between N−1
s and N

−3/4
s , respectively. In comparison, the error

of the quasi-Monte Carlo method converged as ∼ N
−3/4
s

for each of the problems. Polynomial chaos expansions thus
have a much faster convergence for the first two benchmark
problems, while the convergences were essentially the same for
the last problem. The last benchmark problem was non-smooth,
which led to the slower convergence of the polynomial chaos
expansions. Still, even in the worst-case example considered
in Crestaux et al. (2009), the convergence of the polynomial chaos
expansions was essentially as good as for the quasi-Monte Carlo
method.

The general idea behind polynomial chaos expansions is
to approximate the model U with a polynomial expansion
Û:

U ≈ Û(x, t,Q) =

Np−1
∑

n=0

cn(x, t)φn(Q), (12)

where φn are polynomials, and cn are expansion coefficients. The
number of expansion factors Np is given by

Np =

(

d + p

p

)

, (13)

where p is the polynomial order. The polynomials φn(Q) are
chosen so they are orthogonal with respect to the probability
density function ρQ, which ensures useful statistical properties.

When creating the polynomial chaos expansion, the first
step is to find the orthogonal polynomials φn. In Uncertainpy
this is done using the so-called three-term recurrence relation
(Xiu, 2010) if available, otherwise the discretized Stieltjes method
(Stieltjes, 1884) is used. The next step is to estimate the expansion
coefficients cn. The non-intrusive methods for doing this can be
divided into two classes, point-collocation methods and pseudo-
spectral projection methods, both of which are implemented in
Uncertainpy.

Point collocation is the default method used in Uncertainpy.
This method is based on demanding that the polynomial
approximation is equal to the model output evaluated at a set
of collocation nodes drawn from the joint probability density
function ρQ. This demand results in a set of linear equations for
the polynomial coefficients cn, which can be solved by the use of
regression methods. The regression method used in Uncertainpy
is Tikhonov regularization (Rifkin and Lippert, 2007). Hosder
et al. (2007) recommends using Ns = 2(Np + 1) collocation
nodes.

Pseudo-spectral projectionmethods are based on least squares
minimization in the orthogonal polynomial space and calculate
the expansion coefficients cn through numerical integration. The
integration uses a quadrature scheme with weights and nodes,
and the model is evaluated at these nodes. The number of
samples is determined by the quadrature rule. The quadrature
method used in Uncertainpy is Leja quadrature, with Smolyak
sparse grids to reduce the number of required nodes (Smolyak,
1963; Narayan and Jakeman, 2014). Pseudo-spectral projection is
only used in Uncertainpy when requested by the user.

Of these two methods, point collocation is robust toward
invalid model evaluations as long as the number of remaining
evaluations is high enough, while spectral projection is not (Eck
et al., 2016).

Several of the statistical metrics of interest can be obtained
directly from the polynomial chaos expansion Û. The mean is
simply

E[Y] ≈ c0, (14)

and the variance is

V[Y] ≈

Np−1
∑

n=1

γnc
2
n, (15)

where γn is a normalization factor defined as

γn = E
[

φ2
n(Q)

]

. (16)

Frontiers in Neuroinformatics | www.frontiersin.org 7 August 2018 | Volume 12 | Article 49154

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

The first and total-order Sobol indices can also be calculated
directly from the polynomial chaos expansion (Sudret, 2008;
Crestaux et al., 2009). On the other hand, the percentiles
(Equation 5), and thereby the prediction interval (Equation 6),
must be estimated by using Û as a surrogate model and then
performing the same procedure as for the (quasi-)Monte Carlo
method.

2.6. Dependency Between Uncertain
Parameters
One of the underlying assumptions when creating the polynomial
chaos expansions is that the model parameters are independent.
However, dependent parameters in neuroscience models are
quite common (Achard and De Schutter, 2006). Fortunately,
models containing dependent parameters can be analyzed with
Uncertainpy by the aid of the Rosenblatt transformation from
Chaospy (Rosenblatt, 1952; Feinberg and Langtangen, 2015).
Briefly explained, the idea is to create a reformulated model
˜U(x, t,R) based on an independent parameter set R, and then
perform polynomial chaos expansions on the reformulated
model. The Rosenblatt transformation is used to construct the
reformulated model so it gives the same output (and statistics) as
the original model, i.e.,:

˜U(x, t,R) = U(x, t,Q). (17)

For more information on the use of the Rosenblatt
transformation, see the Uncertainpy documentation3 or Feinberg
and Langtangen (2015).

2.7. Feature-Based Analysis
When measuring the membrane potential of a neuron, the
precise timing of action potentials often varies between
recordings, even if the experimental conditions are the same.
This behavior is typical for biological systems. Since the
experimental data displays such variation, it is often meaningless
and misleading to base the success of a computational model
on a direct point-to-point comparison between a particular
experimental recording and model output (Druckmann et al.,
2007; Van Geit et al., 2008). A common modeling practice
is therefore to have the model reproduce essential features
of the experimentally observed dynamics, such as the action-
potential shape or action-potential firing rate (Druckmann
et al., 2007). Such features are typically more robust across
different experimental measurements, or across different model
simulations, than the raw data or raw model output itself, at least
if sensible features have been chosen.

Uncertainpy takes this aspect of neural modeling into account
and is constructed so that it can extract a set of features relevant
for various common model types in neuroscience from the
raw model output. Examples include the action potential shape
in single neuron models and the average interspike interval
in neural network models. Thus Uncertainpy performs an
uncertainty quantification and sensitivity analysis not only on
the raw model output but also on a set of relevant features

3http://uncertainpy.readthedocs.io/

selected by the user. Lists of the implemented features are
given in section 3.4, and the value of a feature-based analysis is
illustrated in two of the case studies (sections 5.3 and 5.4).

3. USER GUIDE FOR UNCERTAINPY

Uncertainpy is a Python toolbox, tailored to make uncertainty
quantification and sensitivity analysis easily accessible to the
computational neuroscience community. The toolbox is based
on Python, since Python is a high level, open-source language
in extensive and increasing use within the scientific community
(Oliphant, 2007; Einevoll, 2009; Muller et al., 2015). Uncertainpy
works with both Python 2 and 3, and utilizes the Python packages
Chaospy (Feinberg and Langtangen, 2015) and SALib (Herman
and Usher, 2017) to perform the uncertainty calculations. In this
section, we present a guide on to how to use Uncertainpy. We
do not present an exhaustive overview, and only show the most
commonly used classes, methods and method arguments. We
refer to the online documentation4 for the most recent, complete
documentation. A complete case study with code is shown in
section 4.1.

Uncertainpy is easily installed by following the instructions in
section 3.8. After installation, we get access to Uncertainpy by
simply importing it:

import uncertainpy as un

Performing an uncertainty quantification and sensitivity
analysis with Uncertainpy includes three main components:

1. Themodel we want to examine.
2. The parameters of the model.
3. Specifications of features in the model output.

The model and parameters are required components,
while the feature specifications are optional. The three
(or two) components are brought together in the
UncertaintyQuantification class. This class
performs the uncertainty calculations and is the main class
the user interacts with. In this section, we explain how to
use UncertaintyQuantification with the above
components, and introduce a few additional utility classes.

3.1. The Uncertainty Quantification Class
The UncertaintyQuantification class is used to
define the problem, perform the uncertainty quantification
and sensitivity analysis, and save and visualize the results.
Among others, UncertaintyQuantification takes the
arguments:

UQ = un.UncertaintyQuantification(

Required

model=...,

parameters=...,

Optional

features=...

)

4http://uncertainpy.readthedocs.io/

Frontiers in Neuroinformatics | www.frontiersin.org 8 August 2018 | Volume 12 | Article 49155

http://uncertainpy.readthedocs.io/
http://uncertainpy.readthedocs.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

The model argument is either a Model instance (section 3.2) or
a model function (section 3.2.2). The parameters argument
is either a Parameters instance or a parameter dictionary
(section 3.3). Lastly, the features argument is either a
Features instance (section 3.4) or a list of feature functions
(section 3.4.1). In general, using the class instances as arguments
give more options, while using the corresponding functions are
slightly easier. We go through how to use each of these classes
and corresponding functions in the next three sections.

After the problem is set up, an uncertainty quantification
and sensitivity analysis can be performed by using the
UncertaintyQuantification.quantify method.
Among others, quantify takes the optional arguments:

data = UQ.quantify(

method="pc"|"mc",

pc_method="collocation"|"spectral",

single=False

)

The method argument allows the user to choose whether
Uncertainpy should use polynomial chaos expansions ("pc"
) or the quasi-Monte Carlo method ("mc") to calculate the
relevant statistical metrics. If polynomial chaos expansions
are chosen, pc_method further specifies whether point
collocation ("collocation") or spectral projection ("
spectral") methods are used to calculate the expansion
coefficients. single specifies whether we perform the
uncertainty quantification for a single parameter at the time,
or consider all uncertain parameters at once. Performing the
uncertainty quantification for one parameter at the time is a
simple form of screening. The idea of such a screening is to
use a computationally cheap method to reduce the number of
uncertain parameters by setting the parameters that have the
least effect on the model output to fixed values. We can then
consider only the parameters with the greatest effect on themodel
output when performing the “full” uncertainty quantification
and sensitivity analysis. This screening can be performed using
both polynomial chaos expansions and the quasi-Monte Carlo
method, but polynomial chaos expansions are almost always
the faster choice. If nothing is specified, Uncertainpy by default
uses polynomial chaos expansions based on point collocation
with all uncertain parameters. The Rosenblatt transformation is
automatically used if the input parameters are dependent.

The results from the uncertainty quantification are returned
in data, as a Data object (see section 3.6). By default, the
results are also automatically saved in a folder named data, and
the figures are automatically plotted and saved in a folder named
figures, both in the current directory. The returned Data

object is therefore not necessarily needed.
As mentioned earlier, there is no guarantee that each set of

sampled parameters produces a valid model or feature output.
In such cases, Uncertainpy gives a warning which includes the
number of runs that failed to return a valid output and performs
the uncertainty quantification and sensitivity analysis using the
reduced set of valid runs. However, if a large fraction of the

simulations fail, the user could consider redefining the problem
(e.g., by using narrower parameter distributions).

Polynomial chaos expansions are recommended as long as the
number of uncertain parameters is small (typically < 20), as
polynomial chaos expansions in these cases are much faster than
the quasi-Monte Carlo method. Which of the polynomial chaos
expansion methods to preferably use is problem dependent.
In general, the pseudo-spectral method is faster than point
collocation, but has a lower stability. We therefore recommend
to use the point-collocation method.

The accuracy of the quasi-Monte Carlo method and
polynomial chaos expansions is problem dependent and is
determined by the chosen number of samples N, as well as
the polynomial order p for polynomial chaos expansions. It
is therefore a good practice to examine if the results from
the uncertainty quantification and sensitivity analysis have
converged (Eck et al., 2016). A simple method for doing this is
to increase or decrease the number of samples or polynomial
order, or both, and examine the difference between the current
and previous results. If the differences are small enough, we can
be reasonably certain that we have an accurate result.

3.2. Models
In order to perform the uncertainty quantification and sensitivity
analysis of a model, Uncertainpy needs to set the parameters of
the model, run the model using those parameters, and receive the
model output. Uncertainpy has built-in support for NEURON
and NEST models, found in the NeuronModel (section 3.2.4)
and NestModel (section 3.2.5) classes respectively. It should be
noted that while Uncertainpy is tailored toward neuroscience, it
is not restricted to neurosciencemodels. Uncertainpy can be used
on anymodel thatmeets the criteria in this section. Below, we first
explain how to create custom models, before we explain how to
use NeuronModel and NestModel.

3.2.1. The Model Class
Generally, models are created through the Model class. Among
others, Model takes the argument run and the optional
arguments interpolate, labels, postprocess and
ignore.

model = un.Model(

run=example_model,

interpolate=True,

labels=["xlabel", "ylabel"],

postprocess=example_postprocess,

ignore=False

)

The run argument must be a Python function that runs a
simulation on a specificmodel for a given set ofmodel parameters
and returns the simulation output. In this paper we call such a
function a model function. If we set interpolate=True,
Uncertainpy automatically interpolates the model output to a
regular form, meaning each model evaluation has the same
number of measurement points (most commonly time points).
An irregular model, on the other hand, has a varying number
of measurement points between different evaluations (the output

Frontiers in Neuroinformatics | www.frontiersin.org 9 August 2018 | Volume 12 | Article 49156

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

is on an irregular form), a typical example is a model that
uses adaptive time steps. The uncertainty quantification requires
the model output to be on a regular form, and we must set
interpolate=True for irregular models. labels allows
the user to specify a list of labels to be used on the axes when
plotting the results. The postprocess argument is a Python
function used to post-process the model output if required. We
will go into details on the requirements of the postprocess
and model functions below. Finally, if ignore=True we do
not perform an uncertainty quantification of the model output.
This is used if we want to examine features of the model, but are
not interested in the model result itself.

3.2.2. Defining a Model Function
As explained above, the run argument is a Python function that
runs a simulation of a specific model for a given set of model
parameters, and returns the simulation output. An example
outline of a model function is:

def example_model(parameter_1,

parameter_2):

An algorithm for the model,

or a script that runs an

external model, using the

given input parameters.

Returns the model output and

model time along with the

optional info object.

return time, values, info

Such a model function has the following requirements:

1. Input. The model function takes a number of arguments
which define the uncertain parameters of the model.

2. Run the model. The model must then be run using the
parameters given as arguments.

3. Output. The model function must return at least two objects,
the model time (or equivalent, if applicable) and model
output. Additionally, any number of optional info objects can
be returned. In Uncertainpy, we refer to the time object as
time, themodel output object asvalues, and the remaining
objects as info.

(a) Time (time). time can be interpreted as the x-axis of the
model. It is used when interpolating (see below), and when
certain features are calculated. We can return None if the
model has no time associated with it.

(b) Model output (values). The model output must either
be regular (each model evaluation has the same number of
measurement points), or it must be possible to interpolate
or post-process the output (see section 3.2.3) to a regular
form.

(c) Additional info (info). Some of the methods provided
by Uncertainpy, such as the later defined model
post-processing, feature pre-processing, and feature
calculations, require additional information from the
model (e.g., the time when a neuron receives an external
stimulus). This information can be passed on as any

number of additional info objects returned after time
and values. We recommend using a single dictionary
as info object, with key-value pairs for the information, to
make debugging easier. Uncertainpy always uses a single
dictionary as the info object. Certain features require
specific keys to be present in this dictionary.

The model itself does not need to be implemented in Python.
Any simulator can be used, as long as we can set the model
parameters and retrieve the simulation output via Python. As a
shortcut, we can pass a model function to the model argument
in UncertaintyQuantification, instead of first having to
create a Model instance.

3.2.3. Defining a Post-process Function
The postprocess function is used to post-process the model
output before it is used in the uncertainty quantification. Post-
processing does not change the model output sent to the feature
calculations. This is useful if we need to transform the model
output to a regular form for the uncertainty quantification, but
still need to preserve the original model output to reliably detect
the model features. Figure 2 illustrates how the objects returned
by the model function are sent to both model postprocess
and feature preprocess (see section 3.4).

An example outline of the postprocess function is:

def example_postprocess(time, values,

info):

Post-process the result to a

regular form using time, values,

and info returned by the model

function.

Return the post-processed

model output and time.

return time_postprocessed,

values_postprocessed

The only time post-processing is required for Uncertainpy
to work is when the model produces output that cannot be
interpolated to a regular form by Uncertainpy. Post-processing
is for example required for network models that give output in
the form of spike trains, i.e., time values indicating when a given
neuron fires. It should be noted that post-processing of spike
trains is already implemented in Uncertainpy (see section 3.2.5).
For most purposes, user-defined post-processing will not be
necessary.

The requirements for the postprocess function are:

1. Input. The postprocess function must take the objects
returned by the model function as input arguments.

2. Post-processing. The model time (time) and output
(values) must be post-processed to a regular form, or
to a form that can be interpolated to a regular form by
Uncertainpy. If additional information is needed from the
model, it can be passed along in the info object.

3. Output. The postprocess function must return two
objects:

Frontiers in Neuroinformatics | www.frontiersin.org 10 August 2018 | Volume 12 | Article 49157

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 2 | Classes that affect the objects returned by the model. The Uncertainpy methods that use, change, and perform calculations on the objects returned by

the model function (time, values, and the optional info). Functions associated with the model are in red while functions associated with features are in green.

(a) Model time (time_postprocessed). The first object
is the post-processed time (or equivalent) of the model.
We can return None if the model has no time. Note
that the automatic interpolation can only be performed if
a post-processed time is returned (if an interpolation is
required).

(b) Model output (values_postprocessed). The second
object is the post-processed model output.

3.2.4. NEURON Model Class
NEURON (Hines and Carnevale, 1997) is a widely used
simulator for multi-compartmental neural models. Uncertainpy
has support for NEURON models through the NeuronModel
class, a subclass of Model. Among others, NeuronModel takes
the arguments:

model = un.NeuronModel(

file="mosinit.hoc",

path="path/to/neuron_model",

interpolate=True,

stimulus_start=1000, # ms

stimulus_end=1900 # ms

)

The file argument is the name of the hoc file that loads
the NEURON model, which by default is mosinit.hoc.
path is the path to the folder where the NEURON model is
saved (the location of the mosinit.hoc file). interpolate
indicates whether the NEURON model uses adaptive time steps
and therefore should be interpolated. stimulus_start and
stimulus_end denote the start and end time of any stimulus
given to the neuron. NeuronModel loads the NEURON model
from file, sets the parameters of the model, evaluates the
model and returns the somaticmembrane potential of the neuron

(we record the voltage from the segment named "soma").
NeuronModel therefore does not require a model function to
be defined. A case study of a NEURON model analyzed with
Uncertainpy is found in section 4.3.

If changes are needed to the standard NeuronModel, such
as measuring the voltage from other locations than the soma,
the Model class with an appropriate model function could be
used instead. Alternatively, NeuronModel can be subclassed
and the existing methods customized as required. An example of
the latter is shown in uncertainpy/examples/bahl/.

3.2.5. NEST Model Class
NEST (Peyser et al., 2017) is a simulator for large networks
of spiking neurons. NEST models are supported through the
NestModel class, another subclass of Model:

model = un.NestModel(

run=nest_model_function,

ignore=False

)

Unlike NeuronModel, NestModel requires the model
function to be specified through the run argument. The NEST
model function has the same requirements as a regular model
function, except it is restricted to return only two objects: the
final simulation time (denoted simulation_end), and a list of
spike times for selected neurons in the network, which we refer
to as spike trains (denoted spiketrains).

A spike train returned by a NEST model is a set of irregularly
spaced time points where a neuron fired a spike. NEST models
therefore require post-processing to make the model output
regular. Such a post-processing is provided by the implemented
NestModel.postprocess method, which converts a spike
train to a list of zeros (no spike) and ones (a spike) for each

Frontiers in Neuroinformatics | www.frontiersin.org 11 August 2018 | Volume 12 | Article 49158

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

time step in the simulation. For example: If a NEST simulation
returns the spike train [0, 2, 3.5], it means the neuron
fired three spikes occurring at t = 0, 2, and 3.5 ms, respectively.
If the simulation has a time resolution of 0.5 ms and ends
after 4 ms, NestModel.postprocess will return the post-
processed spike train [1, 0, 0, 0, 1, 0, 0, 1, 0],
and the post-processed time array [0, 0.5, 1, 1.5, 2,

2.5, 3, 3.5, 4]. The final uncertainty quantification of a
NEST network therefore predicts the probability for a spike to
occur at any specific time point in the simulation. It should be
noted that performing an uncertainty quantification of the post-
processed NEST model output is computationally expensive. As
such we recommend setting ignore=True as long as you are
not interested in the uncertainty of the spike trains from the
network. An Uncertainpy-based analysis of a NEST model is
found in the case study in section 4.4.

3.3. Parameters of the Model
The parameters of a model are defined by two properties: They
must have (i) a name and (ii) either a fixed value or a distribution.
It is important that the name of a parameter is the same as
the name given as the input argument in the model function.
A parameter is considered uncertain if it is given a probability
distribution, which are defined using Chaospy. 64 different
univariate distributions are available in Chaospy, and Chaospy
has support for easy creation of multivariate distributions. For
a list of available distributions and detailed instructions on how
to create probability distributions with Chaospy, see section 3.3
in Feinberg and Langtangen (2015).

The parameters are defined by the Parameters class.
Parameters takes the argument parameters, which is a
dictionary where the names of the parameters are the keys, and
the fixed values or distributions of the parameters are the values.
Here is an example of such a parameter dictionary with two
parameters, where the first is named name_1 and has a uniform
probability distribution in the interval [8, 16], and the second is
named name_2 and has a fixed value of 42:

import chaospy as cp

parameters = {

"name_1": cp.Uniform(8, 16),

"name_2": 42

}

Parameters is now initialized as:

parameters = un.Parameters(parameters=

parameters)

As a shortcut, we can pass the above parameter
dictionary to the parameters argument in
UncertaintyQuantification, instead of first having to
create a Parameters instance.

If the parameters do not have separate univariate probability
distributions, but a joint multivariate probability distribution, the
multivariate distribution can be set by giving Parameters the
optional argument distribution:

Create the multivariate distribution

multivariate = cp.J(cp.Uniform(8, 16),

cp.Uniform(40, 44))

parameters = un.Parameters(

parameters=parameters,

distribution=multivariate

)

3.4. Features
As discussed in section 2.7, it is often more meaningful
to examine the uncertainty in salient features of the model
output, than to base the analysis directly on a point-to-point
comparison of the raw output data (e.g., a voltage trace). Upon
user request, Uncertainpy can identify and extract features of
the model output. If we give the features argument to
UncertaintyQuantification, Uncertainpy will perform
uncertainty quantification and sensitivity analysis of the given
features, in addition to the analysis of the raw output data (if
desired).

Three sets of features come predefined with
Uncertainpy, SpikingFeatures, EfelFeatures, and
NetworkFeatures. Each feature class contains a set of
features tailored toward one specific type of neuroscience
models. We first explain how to create custom features, before
explaining how to use the built-in features.

Features are defined through the Features class:

feature_functions = [example_feature]

features = un.Features(

new_features=feature_functions,

features_to_run=["example_feature"],

preprocess=example_preprocess,

interpolate=["example_feature"]

)

The new_features argument is a list of Python functions that
each calculates a specific feature, whereas features_to_run
specifies which of the features to perform uncertainty

quantification of. If nothing is specified, the uncertainty
quantification is by default performed on all features
(features_to_run="all"). preprocess is a Python
function that performs common calculations for all features.
interpolate is a list of features that are irregular. As with
models, Uncertainpy automatically interpolates the output
of these features to a regular form. Below we first go into
detail on the requirements of a feature function, and then the
requirements of a preprocess function.

3.4.1. Feature Functions
A feature is given as a Python function. The outline of such a
feature function is:

def example_feature(time, values, info):

Calculate the feature using

time, values, and info.

Frontiers in Neuroinformatics | www.frontiersin.org 12 August 2018 | Volume 12 | Article 49159

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

Return the feature time

and values.

return time_feature, values_feature

Feature functions have the following requirements:

1. Input. The feature function takes the objects returned by
the model function as input, except when a preprocess
function is used (see below). In those cases, the feature
function instead takes the objects returned by the
preprocess function as input. preprocess is normally
not used.

2. Feature calculation. The feature function calculates the value
of a feature from the data given in time, values and
optional info objects. As previously mentioned, in all built-
in features in Uncertainpy, info is a dictionary containing
required information as key-value pairs.

3. Output. The feature function must return two objects:

(a) Feature time (time_feature). The time (or equivalent)
of the feature. We can return None instead for features
where this is not relevant.

(b) Feature values (values_feature). The result of the
feature calculation. As for the model output, the feature
result must be regular, or able to be interpolated. If there
are no feature result for a specific model evaluation (e.g.,
if the feature was spike width and there were no spikes),
the feature function can return None. The specific feature
evaluation is then discarded in the uncertainty calculations.

As with models, we can, as a shortcut, directly give a
list of feature functions as the feature argument in
UncertaintyQuantification, instead of first having to
create a Features instance.

3.4.2. Feature Pre-processing
Some of the calculations needed to quantify features may overlap
between different features. One example is finding the spike times
from a voltage trace. The preprocess function is used to
avoid having to perform the same calculations several times. An
example outline of a preprocess function is:

def preprocess(time, values, info):

Perform all common feature

calculations using time, values,

and info returned by the model

function.

Return the pre-processed model

output and info.

return time_preprocessed,

values_preprocessed, info

The requirements for a preprocess function are:

1. Input. A preprocess function takes the objects returned
by the model function as input.

2. Pre-processing. The model output (time, values, and
additional info objects) are used to perform all pre-process
calculations.

3. Output. The preprocess function can return any number
of objects as output. The returned pre-process objects are used
as input arguments to the feature functions, so the two must
be compatible.

Figure 2 illustrates how the objects returned by the model
function are passed to preprocess, and the returned pre-
process objects are used as input arguments in all feature
functions. This pre-processing makes feature functions have
different required input arguments depending on the feature
class they are added to. As mentioned earlier, Uncertainpy comes
with three built-in feature classes. These classes all take the
new_features argument, so custom features can be added
to each set of features. These feature classes all perform a
pre-processing and therefore have different requirements for
the input arguments of new feature functions. Additionally,
certain features require specific keys to be present in the info
dictionary. Each class has a reference_feature method
that states the requirements for feature functions of that class in
its docstring.

3.4.3. Spiking Features
Here we introduce the SpikingFeatures class, which
contains a set of features relevant for models of single neurons
that receive an external stimulus and respond by producing
a series of action potentials, also called spikes. Many of these
features require the start time and end time of the stimulus, which
must be returned as info["stimulus_start"] and info
["stimulus_end"] in the model function. info is then
used as an additional input argument in the calculation of each
feature. A set of spiking features is created by:

features = SpikingFeatures()

SpikingFeatures implements a preprocess method,
which locates spikes in the model output. This preprocess
method can be customized; see the documentation on
SpikingFeatures.

The features included in SpikingFeatures are briefly
defined below. This set of features was taken from the previous
work of Druckmann et al. (2007), with the addition of the number
of action potentials during the stimulus period. We refer to the
original publication for more detailed definitions.

1. nr_spikes – Number of action potentials (during stimulus
period).

2. spike_rate – Action-potential firing rate (number of
action potentials divided by stimulus duration).

3. time_before_first_spike – Time from stimulus
onset to first elicited action potential.

4. accommodation_index – Accommodation index
(normalized average difference in length of two consecutive
interspike intervals).

5. average_AP_overshoot –Average action-potential peak
voltage.

Frontiers in Neuroinformatics | www.frontiersin.org 13 August 2018 | Volume 12 | Article 49160

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

6. average_AHP_depth – Average afterhyperpolarization
depth (average minimum voltage between action potentials).

7. average_AP_width – Average action-potential width
taken at themidpoint between the onset and peak of the action
potential.

The user may want to add custom features to the set of
features in SpikingFeatures. The SpikingFeatures.
preprocess method changes the input given to the feature
functions, and as such each spiking feature function has the
following input arguments:

1. The time array returned by the model simulation.
2. A Spikes object (spikes) which contain the spikes found

in the model output.
3. An info dictionary with info["stimulus_start"]

and info["stimulus_end"] set.

The Spikes object is the pre-processed version of the model
output, used as a container for Spike objects. In turn, each
Spike object contains information about a single spike. This
information includes a brief voltage trace represented by a time
and a voltage (V) array that only includes the selected spike. The
information in Spikes is used to calculate each feature. As an
example, let us create a feature that is the time at which the first
spike in the voltage trace ends. Such a feature can be defined as
follows:

def first_spike_ends(time, spikes, info)

:

Get the first spike

spike = spikes[0]

The last time point

in the spike

values_feature = spike.t[-1]

return None, values_feature

This feature may now be used as a feature function in the list
given to the new_features argument.

From the set of both built-in and user-defined features,
we may select subsets of features that we want to use in the
analysis of a model. Let us say we are interested in how the
model performs in terms of the three features: nr_spikes,
average_AHP_depth and first_spike_ends. A spiking
features object that calculates these features is created by:

features_to_run = [

"nr_spikes",

"average_AHP_depth",

"first_spike_ends"

]

features = un.SpikingFeatures(

new_features=[first_spike_ends],

features_to_run=features_to_run

)

3.4.4. eFEL Features
Amore extensive set of features for single neuron voltage traces is
found in the Electrophys Feature Extraction Library (eFEL) (Blue
Brain Project, 2015). A set of eFEL spiking features is created by:

features = EfelFeatures()

Uncertainpy has all features in the eFEL library in the
EfelFeatures class. At the time of writing, eFEL contains
160 different features. Due to the high number of features, we
do not list them here, but refer to the eFEL documentation5 for
detailed definitions, or the Uncertainpy documentation for a list
of the features. EfelFeatures is used in the same way as
SpikingFeatures.

3.4.5. Network Features
The last set of features implemented in Uncertainpy is found in
the NetworkFeatures class:

features = NetworkFeatures()

This class contains a set of features relevant for the output
of neural network models. These features are calculated using
the Elephant Python package (NeuralEnsemble, 2017). The
implemented features are:

1. average_firing_rate – Average firing rate (for a single
recorded neuron).

2. instantaneous_rate – Instantaneous firing rate
(averaged over all recorded neurons within a small time
window).

3. average_isi – Average interspike interval (averaged over
all recorded neurons).

4. cv – Coefficient of variation of the interspike interval (for a
single recorded neuron).

5. average_cv – Average coefficient of variation of the
interspike interval (averaged over all recorded neurons).

6. local_variation – Local variation (variability of
interspike intervals for a single recorded neuron).

7. average_local_variation – Average local variation
(variability of interspike intervals averaged over all recorded
neurons).

8. fanofactor – Fanofactor (variability of spike trains).
9. victor_purpura_dist – Victor-Purpura distance (spike

train dissimilarity between two recorded neurons).
10. van_rossum_dist – Van Rossum distance (spike train

dissimilarity between two recorded neurons).
11. binned_isi – Histogram of the interspike intervals (for all

recorded neurons).
12. corrcoef – Pairwise Pearson’s correlation coefficients

(between the binned spike trains of two recorded neurons).
13. covariance – Covariance (between the binned spike trains

of two recorded neurons).

A few of these network features can be customized; see
the documentation on NetworkFeatures for a further
explanation.

5http://efel.readthedocs.io

Frontiers in Neuroinformatics | www.frontiersin.org 14 August 2018 | Volume 12 | Article 49161

http://efel.readthedocs.io
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

The use of NetworkFeatures in Uncertainpy follows the
same logic as the use of the other feature classes, and custom
features can easily be included. As with SpikingFeatures,
NetworkFeatures implements a preprocess method.
This preprocess returns the following objects:

1. End time of the simulation (end_time).
2. A list of NEO (Garcia et al., 2014) spike trains

(spiketrains).

Each feature function added to NetworkFeatures therefore
requires these objects as input arguments. Note that the info
object is not used.

3.5. Uncertainty Calculations in
Uncertainpy
In this section, we describe how Uncertainpy performs the
uncertainty calculations, as well as which options the user
has to customize the calculations. Moreover, a detailed insight
into this is not required to use Uncertainpy, as in most
cases the default settings work fine. In addition to the
customization options shown below, Uncertainpy has support
for implementing entirely custom uncertainty-quantification and
sensitivity-analysis methods. This is only recommended for
expert users, as knowledge of both Uncertainpy and uncertainty
quantification is needed. We do not go into detail here but refer
to the Uncertainpy documentation for more information.

3.5.1. Quasi-Monte Carlo Method
To use the quasi-Monte Carlo method, we call quantify with
method="mc", and the optional argument nr_mc_samples:

data = UQ.quantify(

method="mc",

nr_mc_samples=10**4

)

The quasi-Monte Carlo method quasi-randomly draws Ns =

N(d + 2)/2 parameter samples, where N = nr_mc_samples

, and d is the number of uncertain parameters. This is the
number of samples required by Saltelli’s method to calculate
the Sobol indices. By default nr_mc_samples=10000. These
samples are drawn from a multivariate independent uniform
distribution using Saltelli’s sampling scheme, implemented in the
SALib library (Saltelli et al., 2010; Herman and Usher, 2017). We
use the Rosenblatt transformation to transform the samples from
this uniform distribution to the parameter distribution given by
the user. This transformation enables us to use Saltelli’s sampling
scheme for any parameter distribution.

The model is evaluated for each of these parameter samples,
and features are calculated from each model evaluation (when
applicable). To speed up the calculations, Uncertainpy uses the
multiprocess Python package (McKerns et al., 2012) to perform
this step in parallel. When model and feature calculations are
done, Uncertainpy calculates the mean, variance, and 5th and
95th percentile (which gives the 90% prediction interval) for the
model and each feature. This is done using a subset with N
number of samples of the total set. We are unable to use the full
set since not all samples are independent in Saltelli’s sampling

scheme. The Sobol indices are calculated using Saltelli’s method
and the complete set of samples. We use a modified version of
the method in the SALib library, which is able to handle model
evaluations with any number of dimensions.

Saltelli’s method requires all model and feature evaluations
to return a valid result. When this is not the case we use
the workaround6 suggested by Herman and Usher (2017), and
replace invalid model and feature evaluations with the mean
of that model or feature. This workaround introduces an error
depending on the number of missing evaluations but enables us
to still calculate the Sobol indices. If there are invalid model or
feature evaluations, Uncertainpy gives a warning which includes
the number of invalid evaluations.

3.5.2. Polynomial Chaos Expansions
To use polynomial chaos expansions we use quantify with
the argument method="pc", which takes a set of optional
arguments (the specified values are the default):

data = UQ.quantify(

method="pc",

pc_method="collocation",

rosenblatt="auto",

polynomial_order=4,

nr_collocation_nodes=None,

quadrature_order=None,

nr_pc_mc_samples=10**4

)

As previously mentioned, Uncertainpy allows the user to select
between point collocation (pc_method="collocation")
and pseudo-spectral projections (pc_method="spectral").
The goal of both these methods is to create separate polynomial
chaos expansions Ûmodel/feature for the model and each feature.
The first step of both methods is the same: Uncertainpy starts by
creating the orthogonal polynomial φn using ρQ and the three-
term recurrence relation if available, otherwise the discretized
Stieltjes method (Stieltjes, 1884) is used. By default, Uncertainpy
uses a fourth order polynomial expansion, as recommended
by Eck et al. (2016). The polynomial order p can be changed
with the polynomial_order argument. The polynomial φn

is the same for the model and all features, since they have the
same uncertain input parameters, and therefore the same ρQ.
Only the polynomial coefficients cn differ between the model and
each feature.

The two polynomial chaos methods differ in terms of how
they calculate cn. For point collocation Uncertainpy uses Ns =

2(Np + 1) collocation nodes, as recommended by Hosder et al.
(2007), where Np is the number of polynomial chaos expansion
factors. The number of collocation nodes can be customized with
nr_collocation_nodes (Ns), but the new number of nodes
must be chosen carefully. The collocation nodes are sampled
from ρQ using Hammersley sampling (Hammersley, 1960), also
as recommended by Hosder et al. (2007). Themodel and features
are calculated for each of the collocation nodes. As with the
quasi-Monte Carlo method, this step is performed in parallel.

6https://github.com/SALib/SALib/issues/134

Frontiers in Neuroinformatics | www.frontiersin.org 15 August 2018 | Volume 12 | Article 49162

https://github.com/SALib/SALib/issues/134
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

The polynomial coefficients cn are calculated using themodel and
feature results, and Tikhonov regularization (Rifkin and Lippert,
2007).

For the pseudo-spectral projection, Uncertainpy chooses
nodes and weights using a quadrature scheme, instead of
choosing nodes from ρQ. The quadrature scheme used is Leja
quadrature with a Smolyak sparse grid (Smolyak, 1963; Narayan
and Jakeman, 2014). The Leja quadrature is by default of
order two greater than the polynomial order, but this can be
changed with quadrature_order. The model and features
are calculated for each of the quadrature nodes. As before, this
step is performed in parallel. The polynomial coefficients cn are
then calculated from the quadrature nodes, weights, and model
and feature results.

When Uncertainpy has derived Û for the model and features,
it uses Û to compute the mean, variance, first and total-
order Sobol indices, as well as the average first and total-order
Sobol indices. Finally, Uncertainpy uses Û as a surrogate model
and employs the quasi-Monte Carlo method with Hammersley
sampling and nr_pc_mc_samples=10**4 samples to find
the 5th and 95th percentiles.

If the model parameters have a dependent joint multivariate
distribution, the Rosenblatt transformation is by default
automatically used. This can be changed by setting
rosenblatt=True to always use the Rosenblatt transform,
or rosenblatt=False to never use the Rosenblatt
transformation. Note that the latter gives an error if you
have dependent parameters. To perform this transformation
Uncertainpy chooses a multivariate independent normal
distribution ρR, which is used instead of ρQ to perform the
polynomial chaos expansions. Both the point-collocation
method and the pseudo-spectral method are performed as
described above. The only difference is that we use ρR instead
of ρQ, and use the Rosenblatt transformation to transform the
selected nodes from R to Q, before they are used in the model
evaluation.

3.6. Data Format
All results from the uncertainty quantification and sensitivity
analysis are returned as a Data object, as well as being stored
in UncertaintyQuantification.data. The Data class
works similarly to a Python dictionary. The names of the model
and features are the keys, while the values are DataFeature
objects that store each statistical metric in Table 1 as attributes.
Results can be saved and loaded through Data.save and Data
.load, and are saved either as HDF5 files (Collette, 2013) or
Exdir structures (Dragly et al., 2018). HDF5 files are used by
default.

An example: If we have performed an uncertainty
quantification of a spiking neuron model with the number
of spikes as one of the features, we can load the results and get
the variance of the number of spikes by:

data = un.Data()

data.load("filename")

variance = data["nr_spikes"].variance

TABLE 1 | Calculated values and statistical metrics, for the model and each

feature stored in the Data class.

Calculated statistical

metric

Symbol Variable

Model and feature

evaluations

U evaluations

Model and feature

times

t time

Mean E mean

Variance V variance

5th percentile P5 percentile_5

95th percentile P95 percentile_95

First-order Sobol

indices

S sobol_first

Total-order Sobol

indices

ST sobol_total

Average of the

first-order Sobol indices

S sobol_first_average

Average of the

total-order Sobol

indices

ST sobol_total_average

3.7. Visualization
Uncertainpy plots the results for all zero and one-dimensional
statistical metrics, and some of the two-dimensional statistical
metrics. An example of a zero-dimensional statistical metric
is the mean of the average interspike interval of a neural
network (Figure 8). An example of a one-dimensional statistical
metric is the mean of the membrane potential over time for a
multi-compartmental neuron (Figure 4). Lastly, an example of
a two-dimensional statistical metric is the mean of the pairwise
Pearson’s correlation coefficient of a neural network (Figure 9).
These visualizations are intended as a quick way to get an
overview of the results, and not to create publication-ready plots.
Custom plots of the data can easily be created by retrieving the
results from the Data class.

3.8. Technical Aspects
Uncertainpy is open-source and found at https://github.com/
simetenn/uncertainpy. Uncertainpy can easily be installed using
pip:

pip install uncertainpy

or from source by cloning the Github repository:

$ git clone https://github.com/simetenn/

uncertainpy

$ cd uncertainpy

$ sudo python setup.py install

Uncertainpy comes with an extensive test suite that can be
run with the test.py script. For information on how to use
test.py, run:

$ python test.py --help

Frontiers in Neuroinformatics | www.frontiersin.org 16 August 2018 | Volume 12 | Article 49163

https://github.com/simetenn/uncertainpy
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

4. EXAMPLE APPLICATIONS

In the current section, we demonstrate how to use Uncertainpy
by applying it to four different case studies: (i) a simple model
for the temperature of a cooling coffee cup implemented in
Python, (ii) the original Hodgkin-Huxley model implemented
in Python, (iii) a multi-compartmental model of a thalamic
interneuron implemented in NEURON, and (iv) a sparsely
connected recurrent network model implemented in NEST. The
codes for all four case studies are available in uncertainpy/
examples/, which generates all results shown in this paper. All
the case studies can be run on a regular workstation computer.
Uncertainpy does not create publication-ready figures, so custom
plots have been created for the case studies. The code for creating
all figures in this paper is found in a Jupyter Notebook in
uncertainpy/examples/paper_figures/.

For simplicity, uniform distributions were assumed for all
parameter uncertainties in the example studies. Further, the
results for the case studies are calculated using point collocation.
For the examples shown we used the default polynomial order of
p = 4, but also confirmed that the results converged by increasing
the polynomial order to p = 5, which gave similar results (results
not shown).

The case studies were run in a Docker7 container with Python
3, created from the Dockerfile uncertainpy/.docker

/Dockerfile_uncertainpy3. A similar Dockerfile is
available for Python 2. The used version of Uncertainpy is 1.0.1,
commit b7b3fa0, and Zenodo8 DOI 10.5281/zenodo

.1300336. We also used NEST 2.14.0, NEURON 7.5, and
Chaospy commit05fea24. A requirements file that specifies the
version of all used Python packages is located in uncertainpy
/examples/paper_figures/.

4.1. Cooling Coffee Cup
To give a simple, first demonstration of Uncertainpy, we perform
an uncertainty quantification and sensitivity analysis of a hot cup
of coffee that follows Newton’s law of cooling. We start with
a model that has independent uncertain parameters, before we
modify the model to have dependent parameters to show an
example requiring the Rosenblatt transformation.

4.1.1. Cooling Coffee Cup With Independent

Parameters
The temperature T of the cooling coffee cup is given by:

dT(t)

dt
= −κ(T(t)− Tenv), (18)

where Tenv is the temperature of the environment in units of ◦C.
κ is a cooling constant in units of 1/min that is characteristic of
the system and describes how fast the coffee cup radiates heat to
the environment. We set the initial temperature to a fixed value,
T0 = 95◦C, and assume that κ and Tenv are uncertain parameters

7https://www.docker.com/
8https://zenodo.org/

characterized by the uniform probability distributions:

ρκ = Uniform(0.025, 0.075), (19)

ρTenv = Uniform(15, 25). (20)

The following code is available in uncertainpy/

examples/coffee_cup/. We start by importing the
packages required to perform the uncertainty quantification:

import uncertainpy as un

To create distributions

import chaospy as cp

For the time array

import numpy as np

To integrate our equation

from scipy.integrate import odeint

Next, we create the cooling coffee-cup model. To do this
we define a Python function (coffee_cup) that takes the
uncertain parameters kappa and T_env as input arguments,
solves Equation (18) by integration using scipy.integrate
.odeint over 200 min, and returns the resulting time and
temperature arrays.

def coffee_cup(kappa, T_env):

Initial temperature and time array

time = np.linspace(0, 200, 150) #

Minutes

T_0 = 95 #

Celsius

The equation describing the model

def f(T, time, kappa, T_env):

return -kappa*(T - T_env)

Solving the equation by

integration

temperature = odeint(f, T_0, time,

args=(kappa, T_env))[:, 0]

Return time and model output

return time, temperature

We now use coffee_cup to create a Model object, and add
labels:

model = un.Model(

run=coffee_cup,

labels=["Time (min)",

"Temperature (C)"]

)

As previously mentioned, it is possible to use
coffee_cup directly as the model argument in the
UncertaintyQuantification class, however we would
then be unable to specify the labels.

In the next step, we use Chaospy to assign distributions to the
uncertain parameters κ and Tenv, and use these distributions to
create a parameter dictionary:

Frontiers in Neuroinformatics | www.frontiersin.org 17 August 2018 | Volume 12 | Article 49164

https://www.docker.com/
https://zenodo.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

Create the distributions

kappa_dist = cp.Uniform(0.025, 0.075)

T_env_dist = cp.Uniform(15, 25)

Define the parameter dictionary

parameters = {"kappa": kappa_dist,

"T_env": T_env_dist}

We can now set up the UncertaintyQuantification:

UQ = un.UncertaintyQuantification(

model=model,

parameters=parameters

)

With that, we are ready to calculate the uncertainty and sensitivity
of the model. We use polynomial chaos expansions with point
collocation, the default options of quantify, and set the
seed for the random number generator to allow for precise
reproduction of the results:

data = UQ.quantify(seed=10)

quantify calculates all statistical metrics discussed in sections
2.2 and 2.3, but here we only show the mean, standard deviation
(square root of the variance), and 90% prediction interval
(Figure 3A), and the first-order Sobol indices (Figure 3B). The
reason we plot the standard deviation instead of the variance is to
make it easier to compare it to the mean. As the mean (blue line)
in Figure 3A shows, the cooling gives rise to an exponential decay
in the temperature, toward the temperature of the environment
Tenv. From the sensitivity analysis (Figure 3B) we see that T is
most sensitive to κ early in the simulation, and to Tenv toward the
end of the simulation. This is as expected since κ determines the
rate of the cooling, while Tenv determines the final temperature.
After about 150 min, the cooling is essentially completed, and the
uncertainty in T exclusively reflects the uncertainty of Tenv.

4.1.2. Cooling Coffee Cup With Statistically

Dependent Parameters
Uncertainpy can also perform uncertainty quantification and
sensitivity analysis using polynomial chaos expansions on
models with statistically dependent parameters. Here we use the
cooling coffee-cup model to construct such an example. Let us
parameterize the coffee cup differently:

dT(t)

dt
= −ακ̂

(

T(t)− Tenv

)

. (21)

In order for the model to describe the same cooling process
as before, the new variables α and κ̂ should be dependent,
so that ακ̂ = κ . We can achieve this by demanding that
ρκ̂ = ρκ/ρα (note that ρα should not include 0) and
otherwise define the problem following the same procedure as
in the original case study. Since this gives us a dependent
distribution, Uncertainpy automatically uses the Rosenblatt
transformation.

In this case, the distribution we assign to α does not
affect the end result, as the distribution for κ̂ will be scaled
accordingly. Using the Rosenblatt transformation, an uncertainty
quantification and sensitivity analysis of the dependent coffee-
cup model therefore return the same results as seen in Figure 3,
where the role of the original κ is taken over by κ̂ , while
the sensitivity to the additional parameter α becomes strictly
zero (we do not show the results here, but see the example in
uncertainpy/examples/coffee_cup_dependent/).

4.2. Hodgkin-Huxley Model
From here on, we focus on case studies more relevant for
neuroscience, starting with the original Hodgkin-Huxley model
(Hodgkin and Huxley, 1952). An uncertainty analysis of this
model has been performed previously (Torres Valderrama
et al., 2015), and we here repeat a part of that study using
Uncertainpy.

The original version of the Hodgkin-Huxley model has
eleven parameters with the numerical values listed in Table 2.

FIGURE 3 | The uncertainty quantification and sensitivity analysis of the cooling coffee-cup model. (A) The mean, standard deviation (square root of the variance) and

90% prediction interval of the temperature of the cooling coffee cup. (B) First-order Sobol indices of the cooling coffee-cup model.

Frontiers in Neuroinformatics | www.frontiersin.org 18 August 2018 | Volume 12 | Article 49165

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

TABLE 2 | Parameters in the original Hodgkin-Huxley model.

Parameter Value Unit Meaning

V0 −10 mV Initial voltage

Cm 1 µF/cm
2 Membrane capacitance

ḡNa 120 mS/cm
2 Maximum sodium (Na)

conductance

ḡK 36 mS/cm
2 Maximum potassium

(K) conductance

ḡL 0.3 mS/cm
2 Maximum leak current

conductance

ENa 112 mV Sodium equilibrium

potential

EK −12 mV Potassium equilibrium

potential

EL 10.613 mV Leak current

equilibrium potential

n0 0.0011 Initial potassium

activation gating

variable

m0 0.0003 Initial sodium activation

gating variable

h0 0.9998 Initial sodium

inactivation gating

variable

As in the previous study, we assume each of these parameters
has a uniform distribution in the range ±10% around
their original value. We use uncertainty quantification and
sensitivity analysis to explore how these parameter uncertainties
affect the model output, i.e., the action potential response
of the neural membrane potential to an external current
injection.

As in the cooling coffee-cup example, we implement the
Hodgkin-Huxley model as a Python function and use polynomial
chaos expansions with point collocation to calculate the
uncertainty and sensitivity of the model (the code for this case
study is found in uncertainpy/examples/valderrama
/).

The uncertainty quantification of the Hodgkin-Huxley model
is shown in Figure 4A, and the sensitivity analysis in Figure 4B.
As we were not able to extract all implementation details
in Torres Valderrama et al. (2015), our analysis is likely not an
exact replica of the previous study, but the results obtained are
quantitatively similar. Although the action potential is robust
(within the selected parameter ranges), the onset and amplitude
of the action potential vary between simulations. The variance
(standard deviation) in the membrane potential is largest during
the upstroke and peak of the action potential (Figure 4A),
which occur in the time interval between t = 8 and 9 ms.
This occurs mainly due to the difference in action potential
timing.

The sensitivity analysis reveals that the variance in the
membrane potential mainly is due to the uncertainty in two
parameters: the maximum conductance of the K+ channel,
ḡK, and the Na+ reversal potential, ENa (Figure 4B). The low

sensitivity to the remaining parameters means that most of the
variability of the Hodgkin-Huxley model would be maintained
if these remaining parameters were kept fixed. This result tells
us that if we want to reduce the uncertainty in the model
predictions, experiments should focus on measuring ḡK and
ENa more precisely, while crude estimates of the remaining
parameters will suffice. Of course, this conclusion only holds for
the conditions considered in the current simulation, where the
neuron is exposed to positive current injection starting at t = 0.
If the neuron received no input, the membrane potential would
show a much higher sensitivity to the leak current (EL and ḡL)
which are important for determining the resting potential of the
neuron.

A sensitivity analysis such as that in Figure 4B may serve to
give an insight into how different mechanisms are responsible for
different aspects of the neuronal response. Some of the findings
confirm what we would expect from a general knowledge of
action potential firing (see figure 3.12 in Sterratt et al., 2011
for an overview). For example, it is not surprising that the
action potential peak potential is most sensitive to the Na+

reversal potential (ENa), since this parameter is known to closely
determine the peak value. Nor is it surprising that ḡK is the
most important parameter during the downstroke of the action
potential, since the essential role of the K+ channel is to
repolarize the neuron.

Other parts of the analysis reveal some less intuitive
relationships. For example, Figure 4B shows that the membrane
potential during the upstroke of the action potential is most
sensitive to ḡK. This may be surprising given that the Na+ channel
(parameterized by ḡNa and ENa) is responsible for depolarizing
the neuron. This indicates that the all-or-nothing response of
the Na+ channel activation is rather robust, and that variance
during the upstroke predominantly is due to the effects of the
K+ channel on the timing of the action-potential onset. Another
unexpected observation is that ENa has a high sensitivity within a
time window after the peak of the action potential. This indicates
that the Na+ channel is not fully closed, and is involved in
determining the potential at which the neuron lingers within this
time window.

Another aspect of modeling where sensitivity analysis can
be useful, is in exploring the dependence on initial conditions.
When analyzing complex models, it is common to discard the
initial part of the simulation from the analysis, i.e., one lets
the model run for a time T before one starts to analyze its
dynamics. The rationale behind this is that the model over
time loses its dependence on (arbitrarily set) initial conditions
of its dynamic variables, and reaches its inherent steady-state
dynamics. In the example studied here, only the response for
T > 5 ms is analyzed. Figure 4B shows that the Hodgkin-
Huxley model then has a negligible sensitivity to the initial
membrane potential (V0) and initial activation states of the Na+

channel (m0) and K+ channel (n0), but maintains a sensitivity
to the initial Na+ inactivation state (h0) through most of the
simulation. Such a dependence on the initial condition of a
state variable is typically unwanted and indicates that the model
should have had more time to settle in before its response was
analyzed.

Frontiers in Neuroinformatics | www.frontiersin.org 19 August 2018 | Volume 12 | Article 49166

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 4 | The uncertainty quantification and sensitivity analysis of the Hodgkin-Huxley model, parameterized so it has a resting potential of 0 mV. The model was

exposed to a continuous external stimulus of 140 µA/cm2 starting at t = 0, and we examined the membrane potential in the time window between t = 5 and 15 ms.

(A) Mean, standard deviation and 90% prediction interval for the membrane potential of the Hodgkin-Huxley model. (B) First-order Sobol indices of the uncertain

parameters in the Hodgkin-Huxley model. The yellow line indicates the peak of the first action potential, while the cyan line indicates the minimum after the first action

potential.

4.3. Multi-Compartmental Model of a
Thalamic Interneuron
In the next case study, we illustrate how Uncertainpy can be used
on models implemented in NEURON (Hines and Carnevale,
1997). For this study, we select a previously publishedmodel of an

interneuron in the dorsal lateral geniculate nucleus (dLGN) of the
thalamus (Halnes et al., 2011). Since the model is implemented
in NEURON, the original model can be used directly with
Uncertainpy by using the NeuronModel class. The code

for this case study is found in uncertainpy/examples/

interneuron/.
In the original modeling study, seven active ion channels

were tuned (by trial and error) to capture the responses of
thalamic interneurons to different current injections (Halnes
et al., 2011). Here, we consider one of the stimulus conditions

used in the original study, and examine how sensitive the
interneuron response is to uncertain ion-channel conductances.
The conductances in the original model are listed in Table 3, and
we assume they have uniform distributions in the interval ±10%
around their original values.

The uncertainty quantification of the membrane potential

in the soma of the interneuron is seen in Figure 5A. The

variance (or standard deviation) indicates that the neuronal

response varies strongly between the different parameterizations.
To illustrate the variety of response characteristics hiding in

the statistics in Figure 5A, four selected example simulations
are shown in Figure 5B, all obtained by drawing the uncertain
parameters from intervals ±10% around their original values. In
line with the discussion in section 2.7, the qualitative differences
between the responses indicate that a feature-based analysis

TABLE 3 | Uncertain parameters in the thalamic interneuron model.

Parameter Value Unit Variable Meaning

gNa 0.09 S/cm
2 gna Max Na+-conductance in

soma

gKdr 0.37 S/cm
2 gkdr Max direct-rectifying

K+-conductance in soma

gCaT 1.17× 10−5
S/cm

2 gcat Max T-type

Ca2+-conductance in

soma

gCaL 9× 10−4
S/cm

2 gcal Max L-type

Ca2+-conductance in

soma

gh 1.1× 10−4
S/cm

2 ghbar Max conductance of a

non-specific

hyperpolarization

activated cation channel in

soma

gAHP 6.4× 10−5
S/cm

2 gahp Max afterhyperpolarizing

K+-conductance in soma

gCAN 2× 10−8
S/cm

2 gcanbar Max conductance of a

Ca2+-activated

non-specific cation

channel in soma

For simplicity, we limited the analysis to only explore sensitivity to ion channel
conductances, although the original model had some additional free parameters.

is more informative than a point-to-point comparison of the
voltage traces.

Since we examine a spiking neuron model, we want to use
the features in the SpikingFeatures class for the feature-
based analysis. SpikingFeatures needs to know the start

Frontiers in Neuroinformatics | www.frontiersin.org 20 August 2018 | Volume 12 | Article 49167

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 5 | Uncertainty quantification of the interneuron model. (A) The mean, standard deviation, and 90% prediction interval for the membrane potential of the

interneuron model. (B) Four selected model outputs for different sets of parameters. The interneuron received a somatic current injection between 1, 000 ms < t <

1, 900 ms, with a stimulus strength of 55 pA.

and end times of the stimulus to be able to calculate certain
features.When we initialize NeuronModelwe therefore specify
the stimulus_start (set to 1,000 ms) and stimulus_end
(set to 1,900 ms) arguments. Additionally, the interneuronmodel
uses adaptive time steps, meaning we have to useinterpolate
=True (which is the default option of NeuronModel). We also
specify the path to the folder where the neuron model is stored
(for this example, it is path="interneuron_modelDB/"
). As before, we use polynomial chaos expansions with point
collocation to compute the statistical metrics for the model
output and all features.

Figure 6 shows the sensitivity of the features in
SpikingFeatures to the various ion-channel conductances
(see section 3.4.3 for definitions of the features). For illustrative
purposes, only the first-order Sobol indices are shown (although
Uncertainpy by default calculates all statistical metrics from
sections 2.2 and 2.3).

A feature-based sensitivity analysis such as in Figure 6 gives
valuable insight into the role of various biological mechanisms
in determining the firing properties of a neuron. Some of the
results confirm what we would expect from a general knowledge
of neurodynamics. For example, it is not surprising that the spike
rate (A), the number of action potentials elicited throughout
the simulation (E), and the action-potential amplitude (F) are
most sensitive to the Na+ channel conductance gNa, given the
well-established role of the Na+ channel in action-potential
generation. Likewise, given the role of the K+ channel in
repolarizing the neuron after an action potential, it is not
surprising that the action-potential width (D) is predominantly
sensitive to gKdr.

The third most important parameter identified in this
sensitivity analysis is the T-type Ca2+ conductance (gCaT), known
to be important for burst firing in thalamic interneurons (Zhu
et al., 1999; Halnes et al., 2011; Allken et al., 2014). T-type Ca2+

channels are typically activated when the membrane potential
makes a sudden step from low to high values, such as at the
stimulus onset. Upon activation, T-type Ca2+ channels then
evoke Ca2+ spikes which may act to boost the initial response of
a neuron to an external stimulus. This explains why the timing
of the first spike (C) has such a high sensitivity to gCaT. Bursts
are typically more pronounced under other stimulus conditions
than the one used in the current simulations, but in some cases,
the Ca2+ spike was large enough to evoke small, initial bursts
of action potentials (see example simulations in Figure 5B, II–
IV, where the initial responses are small bursts of two action
potentials). The additional action potentials in neurons that elicit
bursts serve to explain why the spike rate (A) and total number
of action potentials (G) also are highly sensitive to gCaT.

A perhaps less expected result is that the depth of the
afterhyperpolarization (G) (voltage dip following an action
potential) has such a low sensitivity to the two K+ channels (gKdr
and gAHP) in the model, as these are the channels that have
a direct effect on the hyperpolarization of the neuron. As for
many of the features in Figure 6, there are complex interactions
between several mechanisms and the limited analysis considered
here can only hint at the possible underlying relationships.
Part of the explanation may be that the afterhyperpolarization
current (gAHP) is Ca2+ activated, and is more limited by the
availability of Ca2+ than by its own maximum conductance.
This could serve to explain the high sensitivity to the Ca2+

channel gCaT. Furthermore, the high sensitivity to gNa implies
that the Na+ channel also is open during the down-stroke of
the action potential, and counteracts the hyperpolarizing K+

currents.
As Figure 6 indicates, the variances of the

SpikingFeatures are predominantly explained by the three
model parameters gNa, gKdr and gCaT, with some contributions
from gCaL, gAHP and negligible impact from the remaining

Frontiers in Neuroinformatics | www.frontiersin.org 21 August 2018 | Volume 12 | Article 49168

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 6 | The sensitivity for features of the interneuron model. First-order Sobol indices for features of the thalamic interneuron model. (A) Spike rate, that is,

number of action potentials divided by stimulus duration. (B) Accommodation index, that is, the normalized average difference in length of two consecutive interspike

intervals. (C) Time before first spike, that is, the time from stimulus onset to first elicited action potential. (D) Average AP width is the average action potential width

taken at midpoint between the onset and peak of the action potential. (E) Number of spikes, that is, the number of action potentials during stimulus period.

(F) Average AP overshoot is the average action-potential peak voltage. (G) Average AHP depth, that is, the average minimum voltage between action potentials.

parameters gh and gCAN. However, one should be cautious about
generalizing insights found in an unexhaustive analysis such as
the one presented here. Firstly, the presented analysis explores
the sensitivity to variations within a ±10% range around the
original parameter values, and thus spans a relatively local region
of the parameter space. Additionally, this choice of distributions
is a rather arbitrary choice and is unlikely to capture the
actual uncertainty distributions. In reality, the uncertainty or
biological variability, or both, in some of the parameters may

have very different distributions, and an analysis that takes this
into account could yield different results. Secondly, the above

analysis was limited to a single stimulus protocol (a positive
current step pulse of moderate magnitude to the soma), and
a different stimulus protocol could activate a different set of
neural mechanisms. For example, gh denotes the conductance
of a hyperpolarization-activated cation current, which would
need a negative current injection to activate. It is therefore

not surprising that our analysis shows zero sensitivity to this
parameter.

Thirdly, the SpikingFeatures class contains a limited
number of features, and other features (e.g., from the more
comprehensive EfelFeatures class) can be sensitive to the
parameters that were observed to be of less importance in the
current example. We do not here consider additional features,
stimulus protocols, or uncertainty distributions in the analysis,
as the main purpose of this case study was to demonstrate the use
of Uncertainpy on a detailed multi-compartmental model.

4.4. Recurrent Network of
Integrate-and-Fire Neurons
In the last case study, we use Uncertainpy to perform a feature-
based analysis of the sparsely connected recurrent network of
integrate-and-fire neurons by Brunel (2000). We implement
the Brunel network using NEST inside a Python function, and

Frontiers in Neuroinformatics | www.frontiersin.org 22 August 2018 | Volume 12 | Article 49169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

TABLE 4 | Parameters in the Brunel network for the asynchronous irregular (AI)

and synchronous regular (SR) state.

Parameter Range SR Range AI Variable Meaning

η [1.5, 3.5] [1.5, 3.5] eta External rate relative to

threshold rate

g [1, 3] [5, 8] g Relative strength of

inhibitory synapses

D [1.5, 3] [1.5, 3] delay Synaptic delay (ms)

Each parameter has a uniform distribution within the given range.

create 10,000 excitatory and 2,500 inhibitory neurons, with
properties as specified by Brunel (2000). Each neuron has
1,000 randomly chosen connections to excitatory neurons and
250 randomly chosen connections to inhibitory neurons (a
connection probability of ǫ = 0.1). The weight of the excitatory
synapses (amplitude of excitatory synaptic current) is J =

0.1 mV.We simulate the network for 1,000 ms, record the output
from 20 of the excitatory neurons, and start the recording after
100 ms. The code for this case study is found in uncertainpy
/examples/brunel/.

Three more parameters are needed to specify the Brunel
model: (i) the external input rate (νext) relative to the threshold
rate (νthr) given as η = νext/νthr, (ii) the relative strength of the
inhibitory synapses compared to the excitatory synapses g, and
(iii) the synaptic delay D. Depending on these parameters, the
Brunel network may be in several different activity states. For the
current case study we limit our analysis to two of these states,
the synchronous regular (SR) state, where the neurons are almost
completely synchronized, and the asynchronous irregular (AI)
state, where the neurons fire mostly independently at low rates.

We create two sets of model parameters, one for the SR
state and one for the AI state. For each set we assume that the
uncertainties of the parameters η, g and D are characterized
by uniform probability distributions within the ranges shown in
Table 4. The parameter ranges are chosen so that all parameter
combinations within the set give model behavior corresponding
to one of the states. Two selected model results representative
of the network in both states are shown in Figure 7, which
illustrate the differences between the two states. Figure 7 shows
the recorded spike trains for the Brunel network in the SR state
between 200 ms and 300 ms of the simulation. The results in
this time window exemplifies network behavior during the entire
simulation after spiking has started. Since the firing rate is very
high in this state, only results for a limited time window are
shown. Figure 7B shows the recorded spike trains for the Brunel
network in the AI state for the entire simulation period.

We use the features in NetworkFeatures to examine
features of the network dynamics. Of the 13 built-in network
features in NetworkFeatures, we here only focus on two:
the average interspike interval and the pairwise Pearson’s
correlation coefficient. These features are well suited to highlight
the differences between the AI and SR network states, and to
investigate how the details of the network dynamics depend on
the model parameters within each of the states. We perform an

uncertainty quantification and sensitivity analysis of the model
and all features for each of the network states using polynomial
chaos with point collocation. As for the previous examples we
used the default polynomial order of p = 4 which was observed
to be sufficient to achieve convergence, that is, the results did not
change much when increasing p beyond 4.

We also explored the alternative situation where the excitatory
synaptic weight J was included as a fourth uncertain parameter
(with a similar relative spread as for the other uncertain
parameters in Table 4). Here we observed that at least p = 7
(using the default number of collocation nodes) was needed
to obtain accurate results. This illustrates that the required
polynomial order, and by extension the required number of
samples Ns, to get accurate results is problem dependent.

4.4.1. Average Interspike Interval
The average interspike interval is the average time it takes from a
neuron produces a spike until it produces the next spike, averaged
over all recorded neurons. The uncertainty quantification and
sensitivity analysis of the average interspike interval of the Brunel
network are shown in Figure 8. The average interspike interval
is seen to differ strongly between the SR and AI states. In
the high-firing SR state (Figure 8A), the mean of the average
interspike interval is low, with a comparatively low standard
deviation reflecting the synchronous firing in the network. We
can observe this in Figure 7A, where the interspike intervals are
short and do not vary much (i.e., very little standard deviation).
In the comparatively low-firing AI state (Figure 8B), the mean
of the average interspike interval is high, with a large standard
deviation, reflecting the irregular firing in the network seen in
Figure 7B.

The two states were also found to be different in terms of
which parameters the average interspike interval is sensitive to.
In the SR state the network is predominantly sensitive to the
synaptic delay D. This reflects that in this state the neurons
get very strong synaptic inputs so that the firing rate is mainly
determined by the delay. In the AI state, the network is more
balanced and “variance-driven”, and the dynamics are to a large
degree determined by the relative strength of the inhibitory
synapses compared to the excitatory synapses g (Brunel, 2000).
Thus the average interspike interval is observed in Figure 7B to,
not surprisingly, be most sensitive to g. In the AI state the average
interspike interval is quite long (∼60 ms) so that an uncertainty
in the synaptic delay of a couple of milliseconds (cf. Table 4) has
little influence. Thus very little sensitivity to D is observed in this
state.

4.4.2. Correlation Coefficient
The pairwise Pearson’s correlation coefficient is a measure of
how synchronous the spiking of a network is. This correlation
coefficient measures the correlation between the spike trains of
two neurons in the network. In Figure 9 we examine how this
correlation depends on parameter uncertainties by plotting the
mean, standard deviation, and first-order Sobol indices for the
pairwise Pearson’s correlation coefficient in the SR and AI states.

As expected from examining Figure 7, the mean pairwise
Pearson’s correlation coefficient in the SR state (Figure 9A) is

Frontiers in Neuroinformatics | www.frontiersin.org 23 August 2018 | Volume 12 | Article 49170

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 7 | Example model results for the Brunel network. (A) The recorded spike train for the Brunel network in the synchronous regular state between 200 and 300

ms of the simulation. (B) The recorded spike trains for the Brunel network in the asynchronous irregular state for the entire simulation period. The network has 10, 000

excitatory and 2, 500 inhibitory neurons, with properties as specified by Brunel (2000). Each neuron has 1, 000 randomly chosen connections to excitatory neurons

and 250 randomly chosen connections to inhibitory neurons. We simulate the network for 1, 000 ms, record the output from 20 of the excitatory neurons, and start

the recording after 100 ms.

FIGURE 8 | The average interspike interval for the Brunel network in the two states. Mean, standard deviation, 90% prediction interval, and first-order Sobol indices of

the average interspike interval of the Brunel network in the synchronous regular state (A), and asynchronous irregular state (B). The 90% prediction interval is

indicated by the 5th and 95th percentiles, i.e., 90% of the average spike intervals are between P5 and P95.

much higher than in the AI state (Figure 9D). The first-order
Sobol indices further show that the degree of synchronicity is
by far most sensitive to the synaptic delay D when the network
is in the SR state (Figure 9C), and most sensitive to the relative
strength of inhibitory synapses g when the network is in the AI
state (Figure 9F).

Thus, for both features investigated here (the average
interspike interval and the mean pairwise Pearson’s correlation
coefficient), the conclusions regarding model sensitivity are the
same. The SR state of the Brunel network is most sensitive to the

synaptic delayD, while the AI state is most sensitive to the relative
strength of inhibitory synapses g.

4.5. Comparing the Quasi-Monte Carlo
Method to Polynomial Chaos Expansions
To compare the efficiency of the polynomial chaos expansions
and the quasi-Monte Carlo method, we calculate the errors of
the uncertainty quantification for the Hodgkin-Huxley model
(section 4.2) using a varying number of model evaluations. The

Frontiers in Neuroinformatics | www.frontiersin.org 24 August 2018 | Volume 12 | Article 49171

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 9 | The pairwise Pearson’s correlation coefficient for the Brunel network in the two states. Mean (A,D), standard deviation (B,E), and first-order Sobol indices

(C,F) for the pairwise Pearson’s correlation coefficient of the Brunel network in the synchronous regular (A–C) and asynchronous irregular (D–F) states.

code for this comparison can be found in uncertainpy/

examples/mc_vs_pc.
As efficiency measure we use the number of model evaluations

Ns, since model evaluation generally is the computationally most
costly step. We examine two versions of the Hodgkin-Huxley
model to see how the efficiency of the two methods varies
with the number of uncertain parameters. We use a reduced
model with the three maximum conductances ḡNa, ḡK, and
ḡL as uncertain parameters, and a complete model where all
eleven parameters are uncertain. As in section 4.2, we assume
each of these parameters to have a uniform distribution in the
range ±10% around their original value. We use polynomial
chaos expansions with the point-collocation method, where the
number of evaluations equals the number of collocation nodes.

As error measure we use the average of the absolute relative
error over time, which we simply will refer to as the error:

εX =
1

T

∫

|X − Xestimate|

X
dt, (22)

where “estimate” indicates the results from either the quasi-
Monte Carlo method or the polynomial chaos expansions. T is
the total simulation time in themodel, disregarding the first 5 ms.
X is either the mean E[Y], variance V[Y], or first-order Sobol
indices Si averaged over all parameters i.

Since an analytical solution for the Hodgkin-Huxley model is
not available, we use the quasi-Monte Carlo method with 200,000
model evaluations to calculate the “exact” E[Y] and V[Y], and
100000(d + 2) (where d is the number of uncertain parameters)
model evaluations to calculate Si. The quasi-Monte Carlomethod
is based on random sampling, so we calculate the average error
of 50 re-runs for the quasi-Monte Carlo method, to get a more
precise result.

The error of the mean, variance, and first-order Sobol indices
of the twomethods for the two variants of themodel are shown in
Figure 10. We clearly see that the polynomial chaos expansions
are much faster than the quasi-Monte Carlo method for both test
cases, that is, much fewer model evaluations Ns are needed to
achieve a certain error.

Figure 10 shows the error for the Hodgkin-Huxley model
with three uncertain parameters. In this case, the quasi-Monte
Carlo method requires more than 200 times as many model
evaluations as the polynomial chaos expansions to calculate the
mean with an error of ∼ 10−5, and more than 2,500 times as
many model evaluations to calculate the Sobol indices with an
error of∼ 0.5.

Figure 10B shows the error for the Hodgkin-Huxley model
with eleven uncertain parameters. By comparing with the results
for three uncertain parameters, we observe that polynomial chaos
expansions scale worse with the number of uncertain parameters
than the quasi-Monte Carlo method. However, polynomial chaos
expansions are still superior in regards to the required number
of model evaluations. For the full Hodgkin-Huxley model,
the quasi-Monte Carlo method needs more than ten times as
many model evaluations as the polynomial chaos expansions to
calculate the mean with an error of ∼ 2 · 10−5. For the first-
order Sobol indices the quasi-Monte Carlo method gives an error
of more than 30 even after 65, 000 evaluations. In contrast, the
polynomial chaos expansions give an error of 0.26 after only
2, 732 model evaluations.

4.6. Additional Examples
Additional examples for uncertainty quantification of the
Izikevich neuron (Izhikevich, 2003), a reduced layer 5 pyramidal
cell (Bahl et al., 2012), and a Hodgkin-Huxley model with shifted

Frontiers in Neuroinformatics | www.frontiersin.org 25 August 2018 | Volume 12 | Article 49172

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

FIGURE 10 | The error of the mean, variance and (average) first-order Sobol indices for the quasi-Monte Carlo method (QMC) and polynomial chaos expansions (PC)

used on the Hodgkin-Huxley model. The average of the absolute relative error over time of the mean (Equation 3), variance (Equation 4), and first-order Sobol indices

(Equation 7) (averaged over all parameters i) of the Hodgkin-Huxley model with three (A) and eleven (B) uncertain parameters. The mean, variance and first-order

Sobol indices are calculated using the quasi-Monte Carlo method with 50 re-runs, and polynomial chaos expansion with point collocation. The “exact” solutions are

found using the quasi-Monte Carlo method with Ns = 200000 model evaluations to calculate the mean and variance, and Ns = 100000(d + 2) model evaluations

(where d is the number of uncertain parameters) to calculate the Sobol indices.

voltage (Sterratt et al., 2011) are found in uncertainpy/

examples/.

5. DISCUSSION

A major challenge with models in neuroscience is that they
tend to contain several uncertain parameters whose values
are critical for the model behavior. In this paper we have
presented Uncertainpy, a Python toolbox which quantifies how
uncertainty in model parameters translates into uncertainty
in the model output and how sensitive the model output is
to changes in individual model parameters. Uncertainpy is
tailored for neuroscience applications by its built-in capability for
recognizing features in the model output.

The key aim of Uncertainpy is to make it quick and easy
for the user to get started with uncertainty quantification
and sensitivity analysis, without any need for detailed prior
knowledge of uncertainty analysis. Uncertainpy is applicable
to a wide range of different model types, as illustrated
in the example applications. These included an uncertainty
quantification and sensitivity analysis of four different models:
a simple cooling coffee-cup model (section 4.1), the original
Hodgkin-Huxley model for generation of action potentials
(section 4.2), a multi-compartmental NEURON model of a
thalamic interneuron (section 4.3), and a NEST model of a
sparsely connected recurrent (Brunel) network of integrate-
and-fire neurons (section 4.4). These analyses were mainly
performed to illustrate the use of Uncertainpy, but also revealed
both expected and unexpected features of the example models.
However, we did not put any effort into estimating realistic
distributions for the parameter uncertainties. The conclusions

should therefore be treated with caution; see result sections for
a detailed discussion.

To our knowledge, Uncertainpy is the first toolbox to
use polynomial chaos expansions to perform uncertainty
quantification and sensitivity analysis in neuroscience.
Compared to the (quasi-)Monte Carlo method, polynomial
chaos expansions dramatically reduce the number of model
evaluations needed to get reliable statistics when the number
of uncertain parameters is relatively low, typically smaller than
about 20 (Xiu and Hesthaven, 2005; Crestaux et al., 2009; Eck
et al., 2016). This was also observed in the present study where
we in section 4.5 found that polynomial chaos expansions require
one to three orders of magnitude fewer model evaluations than
the quasi-Monte Carlo method when applied to the Hodgkin-
Huxley model with three or eleven uncertain parameters. This
gain in efficiency is especially important for models that require
a long simulation time, where uncertainty quantification using
the (quasi-)Monte Carlo method could require an unfeasible
amount of computer time.

5.1. Application of Uncertainpy
Uncertainpy is a computationally efficient Python toolbox
that enables uncertainty quantification and sensitivity analysis
for computational models. It is tailored toward neuroscience
applications by its built-in capability for calculating characteristic
features of the model output. While Uncertainpy has a broad
applicability, as demonstrated in this paper, certain limitations
exist. The first, and perhaps most obvious, is that Uncertainpy
does not deal with the problem of obtaining the distributions of
the uncertain parameters.

It is also typically not obvious which model is best suited to
describe a particular system. For example, when we construct

Frontiers in Neuroinformatics | www.frontiersin.org 26 August 2018 | Volume 12 | Article 49173

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

a neural model we first have to decide which mechanisms (ion
channels, ion pumps, synapses, network connectivity, etc.) to
include in the model. Next, we select a set of mathematical
equations that describe these mechanisms. Such choices are
seldom trivial, and no methods for resolving this structural
uncertainty aspect of modeling are included in Uncertainpy.
Nevertheless, quantitative measures such as those obtained with
Uncertainpy may still give valuable insight in the relationship
between model parameters and model output, which can guide
experimentalists toward focusing on accurately measuring the
parameters most critical for the model output. Additionally,
it can guide modelers by identifying mechanisms that can be
sacrificed for model reduction purposes.

The accuracy of the quasi-Monte Carlo method and
polynomial chaos expansions is problem dependent and is
determined by the number of samples, as well as the polynomial
order for polynomial chaos expansions. It is therefore a
good practice to examine if the results from the uncertainty
quantification and sensitivity analysis have converged (Eck et al.,
2016). A simple method for checking the convergence is to
change the number of samples or polynomial order, or both,
and examine the differences between the results. We can be
reasonably certain that the results are accurate once these
differences are small enough.

5.2. Further Development of Uncertainpy
There are several ways that Uncertainpy can be further
developed. If a model or features of a model are irregular,
Uncertainpy performs an interpolation of the output to get
the results on the regular form needed in the uncertainty
quantification and sensitivity analysis. Currently, Uncertainpy
only has support for interpolation of one-dimensional output
(vectors), but this aspect can be improved.

The screening method available in Uncertainpy is unable
to take interactions between parameters into account. More
advanced screening methods able to do this exist (Morris, 1991;
Campolongo et al., 2007) and could be implemented.

The built-in feature library in Uncertainpy can easily be
expanded by adding additional features. The number of built-in
simulators (at present NEST and NEURON) can also easily be
extended. We encourage the users to add custom features and
models through Github pull requests.

5.3. Outlook
In many fields of the physical sciences, the model parameters that
go into simulations are known with high accuracy. For example,
in quantum mechanical simulations of molecular systems, the
masses of the nuclei and electrons, as well as the parameters
describing their electrical interaction, are known so precisely
that uncertainty in model parameters is not an issue (Marx and
Hutter, 2009). This is not the case in computational biology
in general, and in computational neuroscience in particular.
Model parameters of biological systems often have an inherent
variability and some may even be actively regulated and change
with time. They can therefore not be precisely known. We thus
consider uncertainty quantification and sensitivity analysis to be
particularly important in computational biology.

Uncertainpy was developed with the aim of enabling such
analysis, that is, to provide an easy-to-use tool for precise
evaluation of the effect of uncertain model parameters on model
predictions. Being an open-source Python toolbox, we hope that
Uncertainpy can be further developed through a joint effort
within the neuroscience community.

AUTHOR CONTRIBUTIONS

ST, GH, and GE conceived of and designed the project. ST
designed, wrote, tested, and documented the software and
performed analysis of the examples. ST, GH, and GE wrote and
revised the paper.

FUNDING

This work was funded by the Research Council of Norway
(DigiBrain, project no: 248828).

ACKNOWLEDGMENTS

Wewould like to acknowledge the vital contribution to the vision
of this work by Hans-Petter Langtangen, who regretfully passed
away before he could see the work completed. We would also
like acknowledge the help from Jonathan Feinberg in teaching
the basics of polynomial chaos expansions, as well as how to
use Chaospy. Additionally, we would like to thank Svenn-Arne
Dragly, Milad H. Mobarhan, and Andreas Våvang Solbrå for
valuable discussions and feedback.

REFERENCES

Achard, P., and De Schutter, E. (2006). Complex parameter

landscape for a complex neuron model. PLoS Comput. Biol. 2:e94.

doi: 10.1371/journal.pcbi.0020094

Allken, V., Chepkoech, J.-L., Einevoll, G. T., and Halnes, G. (2014). The subcellular

distribution of T-type Ca2+ channels in interneurons of the lateral geniculate

nucleus. PLoS ONE 9:e107780. doi: 10.1371/journal.pone.0107780

Babtie, A. C., and Stumpf, M. P. H. (2017). How to deal with parameters for

whole-cell modelling. J. R. Soc Interface 14. doi: 10.1098/rsif.2017.0237

Bahl, A., Stemmler, M., Herz, A., and Roth, A. (2012). Automated optimization of

a reduced layer 5 pyramidal cell model based on experimental data. J. Neurosci.

Methods 210, 22–34. doi: 10.1016/j.jneumeth.2012.04.006

Beck, M. B. (1987). Water quality modeling: a review of the analysis of uncertainty.

Water Resour. Res. 23, 1393–1442.

Beer, R. D., Chiel, H. J., and Gallagher, J. C. (1999). Evolution and analysis of model

CPGs for walking: II. General principles and individual variability. J. Comput.

Neurosci. 7, 119–147.

Bhalla, U. S., and Bower, J. M. (1993). Exploring parameter space in detailed single

neuronmodels: simulations of the mitral and granule cells of the olfactory bulb.

J. Neurophysiol. 69, 1948–1965.

Blomquist, P., Devor, A., Indahl, U. G., Ulbert, I., Einevoll, G. T., and

Dale, A. M. (2009). Estimation of thalamocortical and intracortical network

models from joint thalamic single-electrode and cortical laminar-electrode

recordings in the rat barrel system. PLoS Comput. Biol. 5:e1000328.

doi: 10.1371/journal.pcbi.1000328

Frontiers in Neuroinformatics | www.frontiersin.org 27 August 2018 | Volume 12 | Article 49174

https://doi.org/10.1371/journal.pcbi.0020094
https://doi.org/10.1371/journal.pone.0107780
https://doi.org/10.1098/rsif.2017.0237
https://doi.org/10.1016/j.jneumeth.2012.04.006
https://doi.org/10.1371/journal.pcbi.1000328
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

Blot, A., and Barbour, B. (2014). Ultra-rapid axon-axon ephaptic inhibition

of cerebellar Purkinje cells by the pinceau. Nat. Neurosci. 17, 289–295.

doi: 10.1038/nn.3624

Blue Brain Project (2015). efel. Available online at: https://github.com/BlueBrain/

eFEL (Accessed June 16, 2018).

Borgonovo, E., and Plischke, E. (2016). Sensitivity analysis: a review of recent

advances. Eur. J. Oper. Res. 248, 869–887. doi: 10.1016/j.ejor.2015.06.032

Brodland, G. W. (2015). How computational models can help unlock biological

systems. Semin. Cell Dev. Biol. 47–48, 62–73. doi: 10.1016/j.semcdb.2015.07.001

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.

doi: 10.1023/A:1008925309027

Campolongo, F., Cariboni, J., and Saltelli, A. (2007). An effective screening design

for sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518.

doi: 10.1016/j.envsoft.2006.10.004

Collette, A. (2013). Python and HDF5. Sebastopool, CA: O’Reilly.

Crestaux, T., Le Maître, O., and Martinez, J. M. (2009). Polynomial chaos

expansion for sensitivity analysis. Reliabil. Eng. Syst. Saf. 94, 1161–1172.

doi: 10.1016/j.ress.2008.10.008

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Cambridge, MA: The MIT Press.

De Schutter, E., and Bower, J. M. (1994). An active membrane model of the

cerebellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol.

71, 401–419.

Degenring, D., Froemel, C., Dikta, G., and Takors, R. (2004). Sensitivity analysis for

the reduction of complex metabolism models. J. Process Control 14, 729–745.

doi: 10.1016/j.jprocont.2003.12.008

Dragly, S.-A., Hobbi Mobarhan, M., Lepperød, M. E., Tennøe, S., Fyhn,

M., Hafting, T., et al. (2018). Experimental directory structure (exdir):

an alternative to hdf5 without introducing a new file format. Front.

Neuroinformatics 12:16. doi: 10.3389/fninf.2018.00016

Druckmann, S., Banitt, Y., Gidon, A. A., Schürmann, F., Markram, H., and Segev,

I. (2007). A novel multiple objective optimization framework for constraining

conductance-based neuron models by experimental data. Front. Neurosci. 1,

7–18. doi: 10.3389/neuro.01.1.1.001.2007

Eck, V. G., Donders, W. P., Sturdy, J., Feinberg, J., Delhaas, T., Hellevik, L. R.,

et al. (2016). A guide to uncertainty quantification and sensitivity analysis for

cardiovascular applications. Int. J. Numer. Methods Biomed. Eng. 32:e02755.

doi: 10.1002/cnm.2755

Edelman, G. M., and Gally, J. A. (2001). Degeneracy and complexity

in biological systems. Proc. Natl. Acad. Sci. U.S.A. 98, 13763–13768.

doi: 10.1073/pnas.231499798

Einevoll, G. T. (2009). Sharing with Python. Front. Neurosci. 3, 334–335.

doi: 10.3389/neuro.01.037.2009

Feinberg, J., and Langtangen, H. P. (2015). Chaospy: an open source tool for

designing methods of uncertainty quantification. J. Comput. Sci. 11, 46–57.

doi: 10.1016/j.jocs.2015.08.008

Ferson, S., and Ginzburg, L. R. (1996). Different methods are needed to propagate

ignorance and variability. Reliabil. Eng. Syst. Saf. 54, 133–144.

Ferson, S., Joslyn, C. A., Helton, J. C., Oberkampf, W. L., and Sentz, K. (2004).

Summary from the epistemic uncertainty workshop: Consensus amid diversity.

Reliab. Eng. Syst. Saf. 85, 355–369. doi: 10.1016/j.ress.2004.03.023

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P. L., et al.

(2014). Neo: an object model for handling electrophysiology data in multiple

formats. Front. Neuroinformatics 8:10. doi: 10.3389/fninf.2014.00010

Glen, G., and Isaacs, K. (2012). Estimating Sobol sensitivity

indices using correlations. Environ. Model. Softw. 37, 157–166.

doi: 10.1016/j.envsoft.2012.03.014

Goldman, M. S., Golowasch, J., Marder, E., and Abbott, L. F. (2001).

Global structure, robustness, and modulation of neuronal models. J. Neurosci.

21, 5229–5238. doi: 10.1523/JNEUROSCI.21-14-05229.2001

Golowasch, J., Goldman, M. S., Abbott, L. F., and Marder, E. (2002). Failure

of averaging in the construction of a conductance-based neuron model. J.

Neurophysiol. 87, 1129–1131. doi: 10.1152/jn.00412.2001

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R.,

and Sethna, J. P. (2007). Universally sloppy parameter sensitivities

in systems biology models. PLoS Comput. Biol. 3, 1871–1878.

doi: 10.1371/journal.pcbi.0030189

Halnes, G., Augustinaite, S., Heggelund, P., Einevoll, G. T., and Migliore,

M. (2011). A multi-compartment model for interneurons in the

dorsal lateral geniculate nucleus. PLoS Comput. Biol. 7:e1002160.

doi: 10.1371/journal.pcbi.1002160

Halnes, G., Liljenström, H., and Århem, P. (2007). Density dependent

neurodynamics. Biosystems 89, 126–134. doi: 10.1016/j.biosystems.2006.06.010

Halnes, G., Ulfhielm, E., Eklöf Ljunggren, E., Kotaleski, J. H., and Rospars, J. P.

(2009). Modelling and sensitivity analysis of the reactions involving receptor,

G-protein and effector in vertebrate olfactory receptor neurons. J. Comput.

Neurosci. 27, 471–491. doi: 10.1007/s10827-009-0162-6

Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of

environmental models. Environ. Monit. Assess. 32, 135–154.

Hammersley, J. M. (1960). Monte carlo methods for solving multivariable

problems. Ann. N. Y. Acad. Sci. 86, 844–874.

Hay, E., Schürmann, F., Markram, H., and Segev, I. (2013). Preserving axosomatic

spiking features despite diverse dendritic morphology. J. Neurophysiol. 109,

2972–2981. doi: 10.1152/jn.00048.2013

Herman, J., and Usher, W. (2017). SALib: an open-source python library for

sensitivity analysis. J. Open Source Softw. 2:97. doi: 10.21105/joss.00097

Hines,M. L., and Carnevale, N. T. (1997). TheNEURONSimulation Environment.

Neural Comput. 9, 1179–1209.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544.

Homma, T., and Saltelli, A. (1996). Importance measures in global sensitivity

analysis of nonlinear models. Reliabil. Eng. Syst. Saf. 52, 1–17.

Hora, S. C. (1996). Aleatory and epistemic uncertainty in probability elicitation

with an example from hazardous waste management. Reliabil. Eng. Syst. Saf.

54, 217–223.

Hosder, S., Walters, R., and Balch, M. (2007). Efficient sampling for non-intrusive

polynomial chaos applications with multiple uncertain input variables. in 48th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference (Honolulu, HI).

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian

thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598.

doi: 10.1073/pnas.0712231105

Kiureghian, A. D., and Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter?

Struct. Saf. 31, 105–112. doi: 10.1016/j.strusafe.2008.06.020

Koch, C., and Segev, I. (eds.) (1998).Methods in Neuronal Modeling: From Ions to

Networks, 2nd Edn. Cambridge, MA: MIT Press.

Kuchibhotla, K. V., Gill, J. V., Lindsay, G. W., Papadoyannis, E. S., Field, R. E.,

Sten, T. A., et al. (2017). Parallel processing by cortical inhibition enables

context-dependent behavior. Nat. Neurosci. 20, 62–71. doi: 10.1038/nn.4436

Leamer, E. (1985). Sensitivity analyses would help. Am. Econ. Rev. 75, 308–313.

Lemieux, C. (2009).Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series

in Statistics. Dordrecht: Springer.

Marder, E., and Goaillard, J. M. (2006). Variability, compensation and

homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574.

doi: 10.1038/nrn1949

Marder, E., and Taylor, A. L. (2011). Multiple models to capture the

variability in biological neurons and networks. Nat. Neurosci. 14, 133–138.

doi: 10.1038/nn.2735

Marino, S., Hogue, I. B., Ray, C. J., and Kirschner, D. E. (2008). A methodology

for performing global uncertainty and sensitivity analysis in systems biology. J.

Theor. Biol. 254, 178–196. doi: 10.1016/j.jtbi.2008.04.011

Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez,

C. A.,et al. (2015). Reconstruction and simulation of neocortical microcircuitry.

Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Marx, D., and Hutter, J. (2009). Ab initio Molecular Dynamics: Basic Theory and

Advanced Method. Cambridge, UK: Cambridge University Press.

McKerns, M. M., Strand, L., Sullivan, T., Fang, A., and Aivazis, M. A. G. (2012).

Building a framework for predictive science. CoRR, (Scipy):1–12.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Frontiers in Neuroinformatics | www.frontiersin.org 28 August 2018 | Volume 12 | Article 49175

https://doi.org/10.1038/nn.3624
https://github.com/BlueBrain/eFEL
https://github.com/BlueBrain/eFEL
https://doi.org/10.1016/j.ejor.2015.06.032
https://doi.org/10.1016/j.semcdb.2015.07.001
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1016/j.ress.2008.10.008
https://doi.org/10.1016/j.jprocont.2003.12.008
https://doi.org/10.3389/fninf.2018.00016
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.1002/cnm.2755
https://doi.org/10.1073/pnas.231499798
https://doi.org/10.3389/neuro.01.037.2009
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1016/j.ress.2004.03.023
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.1016/j.envsoft.2012.03.014
https://doi.org/10.1523/JNEUROSCI.21-14-05229.2001
https://doi.org/10.1152/jn.00412.2001
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1371/journal.pcbi.1002160
https://doi.org/10.1016/j.biosystems.2006.06.010
https://doi.org/10.1007/s10827-009-0162-6
https://doi.org/10.1152/jn.00048.2013
https://doi.org/10.21105/joss.00097
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.1038/nn.4436
https://doi.org/10.1038/nrn1949
https://doi.org/10.1038/nn.2735
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1126/science.1254642
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tennøe et al. Uncertainpy: Uncertainty Quantification in Python

Morris, M. D. (1991). Factorial sampling plans for preliminary computational

experiments. Technometrics 33, 161–174.

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and

Davison, A. P. (2015). Python in neuroscience. Front. Neuroinformatics 9:11.

doi: 10.3389/fninf.2015.00011

Mullins, J., Ling, Y., Mahadevan, S., Sun, L., and Strachan, A. (2016). Separation of

aleatory and epistemic uncertainty in probabilistic model validation. Reliabil.

Eng. Syst. Saf. 147, 49–59. doi: 10.1016/j.ress.2015.10.003

Najm, H. N. (2009). Uncertainty quantification and polynomial chaos techniques

in computational fluid dynamics. Annu. Rev. Fluid Mech. 41, 35–52.

doi: 10.1146/annurev.fluid.010908.165248

Narayan, A., and Jakeman, J. (2014). Adaptive Leja sparse grid constructions

for stochastic collocation and high-dimensional approximation. SIAM J. Sci.

Comput. 36, A2952–A2983. doi: 10.1137/140966368

NeuralEnsemble (2017). Elephant - electrophysiology analysis toolkit. Available

online at: https://github.com/NeuralEnsemble/elephant (Accessed June 16,

2018).

Oberkampf, W. L., DeLand, S. M., Rutherford, B. M., Diegert, K. V., and Alvin,

K. F. (2002). Error and uncertainty in modeling and simulation. Reliabil. Eng.

Syst. Saf. 75, 333–357. doi: 10.1016/S0951-8320(01)00120-X

O’Donnell, C., Gonçalves, J. T., Portera-Cailliau, C., and Sejnowski, T. J. (2017).

Beyond excitation/inhibition imbalance in multidimensional models of neural

circuit changes in brain disorders. eLife 6:e26724. doi: 10.7554/eLife.26724

Oliphant, T. E. (2007). Python for scientific computing.Comput. Sci. Eng. 9, 10–20.

doi: 10.1109/MCSE.2007.58

Peyser, A., Sinha, A., Vennemo, S. B., Ippen, T., Jordan, J., Graber, S., et al. (2017).

Nest 2.14.0.

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity from

disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/nn1352

Rifkin, R. M., and Lippert, R. A. (2007). Notes on Regularized Least Squares.

Cambridge, MA: Massachusetts Institute of Technology.

Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. Ann. Math.

Stat. 23, 470–472.

Rossa, A., Liechti, K., Zappa, M., Bruen, M., Germann, U., Haase, G., et al.

(2011). The COST 731 Action: a review on uncertainty propagation in

advanced hydro-meteorological forecast systems. Atmos. Res. 100, 150–167.

doi: 10.1016/j.atmosres.2010.11.016

Saltelli, A. (2002a). Making best use of model valuations to compute

sensitivity indices. Comput. Phys. Commun. 145, 280–297.

doi: 10.1016/S0010-4655(02)00280-1

Saltelli, A. (2002b). Sensitivity analysis for importance assessment. Risk Anal. 22,

579–590. doi: 10.1111/0272-4332.00040

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola,

S. (2010). Variance based sensitivity analysis of model output. Design and

estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270.

doi: 10.1016/j.cpc.2009.09.018

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.

(2007). Global Sensitivity Analysis. The Primer. Chichester, UK: Wiley.

Schulz, D. J., Goaillard, J.-M., and Marder, E. (2007). Quantitative expression

profiling of identified neurons reveals cell-specific constraints on highly

variable levels of gene expression. Proc. Natl. Acad. Sci. U.S.A. 104, 13187–

13191. doi: 10.1073/pnas.0705827104

Sharp, D., and Wood-Schultz, M. (2003). Qmu and nuclear weapons certification:

What’s under the hood? Los Alamos Sci. 28, 47–53.

Smolyak, S. (1963). Quadrature and interpolation formulas for tensor products of

certain classes of functions. Dokl. Akad. Nauk SSSR 148, 1042–1045.

Snowden, T. J., van der Graaf, P. H., and Tindall, M. J. (2017). Methods of model

reduction for large-scale biological systems: a survey of current methods and

trends. Bull. Math. Biol. 79, 1449–1486. doi: 10.1007/s11538-017-0277-2

Sobol, I. M. (1967). On the distribution of points in a cube and the

approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7,

86–112.

Sobol, I. M. (1990). Sensitivity analysis for nonlinear mathematical models.

Matematicheskoe Modelirovanie 2, 112–118.

Sterratt, D., Graham, B., Gillies, A., and Willshaw, D. (2011). Principles of

Computational Modelling in Neuroscience. Cambridge, UK: Cambridge

University Press.

Stieltjes, T. J. (1884). Quelques recherches sur la théorie des quadratures dites

mécaniques. Ann. Sci. ’École Normale Supérieure 1, 409–426.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions.

Reliab. Eng. Syst. Saf. 93, 964–979. doi: 10.1016/j.ress.2007.04.002

Taylor, A. L., Goaillard, J.-M., and Marder, E. (2009). How multiple conductances

determine electrophysiological properties in a multicompartment model. J.

Neurosci. 29, 5573–5586. doi: 10.1523/JNEUROSCI.4438-08.2009

Tobin, A.-E. (2006). Endogenous and half-center bursting in morphologically

inspired models of leech heart interneurons. J. Neurophysiol. 96, 2089–2106.

doi: 10.1152/jn.00025.2006

Torres Valderrama, A.,Witteveen, J., Navarro,M., and Blom, J. (2015). Uncertainty

propagation in nerve impulses through the action potential mechanism. J.

Math. Neurosci. 5:3. doi: 10.1186/2190-8567-5-3

Turanyi, T., and Turányi, T. (1990). Sensitivity analysis of comprex kinetic systems.

Tools and applications. J. Math. Chem. 5, 203–248.

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron

model optimization techniques: A review. Biol. Cybern. 99, 241–251.

doi: 10.1007/s00422-008-0257-6

Wang, H., and Sheen, D. A. (2015). Combustion kinetic model uncertainty

quantification, propagation and minimization. Prog. Energy Combust. Sci. 47,

1–31. doi: 10.1016/j.pecs.2014.10.002

Xiu, D. (2010).Numerical Methods for Stochastic Computations: A Spectral Method

Approach. Princeton, NJ: Princeton University Press.

Xiu, D., and Hesthaven, J. S. (2005). High-order collocation methods for

differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139.

doi: 10.1137/040615201

Yildirim, B., and Karniadakis, G. E. (2015). Stochastic simulations of ocean

waves: an uncertainty quantification study. Ocean Model. 86, 15–35.

doi: 10.1016/j.ocemod.2014.12.001

Zhu, J. J., Uhlrich, D. J., and Lytton, W. W. (1999). Burst firing in identified rat

geniculate interneurons. Neuroscience 91, 1445–1460.

Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models.

IET Syst. Biol. 5, 336–346. doi: 10.1049/iet-syb.2011.0015

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Tennøe, Halnes and Einevoll. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 29 August 2018 | Volume 12 | Article 49176

https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.1016/j.ress.2015.10.003
https://doi.org/10.1146/annurev.fluid.010908.165248
https://doi.org/10.1137/140966368
https://github.com/NeuralEnsemble/elephant
https://doi.org/10.1016/S0951-8320(01)00120-X
https://doi.org/10.7554/eLife.26724
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1038/nn1352
https://doi.org/10.1016/j.atmosres.2010.11.016
https://doi.org/10.1016/S0010-4655(02)00280-1
https://doi.org/10.1111/0272-4332.00040
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1073/pnas.0705827104
https://doi.org/10.1007/s11538-017-0277-2
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1523/JNEUROSCI.4438-08.2009
https://doi.org/10.1152/jn.00025.2006
https://doi.org/10.1186/2190-8567-5-3
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.1016/j.pecs.2014.10.002
https://doi.org/10.1137/040615201
https://doi.org/10.1016/j.ocemod.2014.12.001
https://doi.org/10.1049/iet-syb.2011.0015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 1

ORIGINAL RESEARCH
published: 21 August 2018

doi: 10.3389/fninf.2018.00054

Edited by:
Sharon Crook,

Arizona State University, United States

Reviewed by:
Qihong Zou,

Peking University, China
Veena A. Nair,

University of Wisconsin-Madison,
United States

*Correspondence:
Jue Wang

juefirst@163.com
Yu-Feng Zang

zangyf@hznu.edu.cn

Received: 28 February 2018
Accepted: 03 August 2018
Published: 21 August 2018

Citation:
Zhao N, Yuan L-X, Jia X-Z, Zhou X-F,
Deng X-P, He H-J, Zhong J, Wang J

and Zang Y-F (2018) Intra-
and Inter-Scanner Reliability

of Voxel-Wise Whole-Brain Analytic
Metrics for Resting State fMRI.

Front. Neuroinform. 12:54.
doi: 10.3389/fninf.2018.00054

Intra- and Inter-Scanner Reliability of
Voxel-Wise Whole-Brain Analytic
Metrics for Resting State fMRI
Na Zhao1,2, Li-Xia Yuan3, Xi-Ze Jia1,2, Xu-Feng Zhou1,2, Xin-Ping Deng1,2, Hong-Jian He3,
Jianhui Zhong3, Jue Wang1,2* and Yu-Feng Zang1,2*

1 Center for Cognition and Brain Disorders, Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou,
China, 2 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China, 3 Center for Brain
Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical
Engineering and Instrumental Science, Zhejiang University, Hangzhou, China

As the multi-center studies with resting-state functional magnetic resonance imaging
(RS-fMRI) have been more and more applied to neuropsychiatric studies, both intra- and
inter-scanner reliability of RS-fMRI are becoming increasingly important. The amplitude
of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality
(DC) are 3 main RS-fMRI metrics in a way of voxel-wise whole-brain (VWWB) analysis.
Although the intra-scanner reliability (i.e., test-retest reliability) of these metrics has
been widely investigated, few studies has investigated their inter-scanner reliability. In
the current study, 21 healthy young subjects were enrolled and scanned with blood
oxygenation level dependent (BOLD) RS-fMRI in 3 visits (V1 – V3), with V1 and V2
scanned on a GE MR750 scanner and V3 on a Siemens Prisma. RS-fMRI data were
collected under two conditions, eyes open (EO) and eyes closed (EC), each lasting
8 minutes. We firstly evaluated the intra- and inter-scanner reliability of ALFF, ReHo, and
DC. Secondly, we measured systematic difference between two scanning visits of the
same scanner as well as between two scanners. Thirdly, to account for the potential
difference of intra- and inter-scanner local magnetic field inhomogeneity, we measured
the difference of relative BOLD signal intensity to the mean BOLD signal intensity of the
whole brain between each pair of visits. Last, we used percent amplitude of fluctuation
(PerAF) to correct the difference induced by relative BOLD signal intensity. The inter-
scanner reliability was much worse than intra-scanner reliability; Among the VWWB
metrics, DC showed the worst (both for intra-scanner and inter-scanner comparisons).
PerAF showed similar intra-scanner reliability with ALFF and the best reliability among all
the 4 metrics. PerAF reduced the influence of BOLD signal intensity and hence increase
the inter-scanner reliability of ALFF. For multi-center studies, inter-scanner reliability
should be taken into account.

Keywords: inter-scanner reliability, intra-scanner reliability, ALFF, PerAF, ReHo, voxel-wise whole-brain analysis

INTRODUCTION

With its advantages of being non-invasive, fairly good spatial as well as temporal resolution, and
very similar design across studies, resting-state functional magnetic resonance imaging (RS-fMRI)
of blood oxygenation level dependent (BOLD) technique is promising for clinical research to reveal
abnormal spontaneous brain activity. Therefore, intra- and inter-scanner reliability is essential in
RS-fMRI studies.

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2018 | Volume 12 | Article 54177

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00054
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2018.00054
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00054&domain=pdf&date_stamp=2018-08-21
https://www.frontiersin.org/articles/10.3389/fninf.2018.00054/full
http://loop.frontiersin.org/people/479102/overview
http://loop.frontiersin.org/people/459031/overview
http://loop.frontiersin.org/people/345980/overview
http://loop.frontiersin.org/people/369051/overview
http://loop.frontiersin.org/people/10458/overview
http://loop.frontiersin.org/people/117024/overview
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 2

Zhao et al. Intra- and Inter-Scanner Reliability

In recent years, the intra-scanner reliability (i.e., test-
retest reliability) of many metrics in RS-fMRI has been
investigated, such as the amplitude of low frequency fluctuations
(ALFF) (Zuo et al., 2010a; Li et al., 2012; Zuo and Xing,
2014; Somandepalli et al., 2015; Zou et al., 2015), regional
homogeneity (ReHo) (Li et al., 2012; Zuo et al., 2013;
Somandepalli et al., 2015), seed-based functional connectivity
(FC) (Shehzad et al., 2009; Patriat et al., 2013; Pannunzi
et al., 2017), group-level dual regression independent component
analysis (drICA) (Zuo et al., 2010b), voxel-mirrored homotopic
connectivity (VMHC) (Zuo et al., 2010c), graph theory (Wang
et al., 2011; Braun et al., 2012; Tomasi and Volkow, 2014;
Andellini et al., 2015; Aurich et al., 2015). Generally, most
of these metrics showed moderate to high intra-scanner
reliability.

While many studies have investigated the intra-scanner
reliability of RS-fMRI metrics, only one article, to the best
of our knowledge, studied the inter-scanner reliability of
BOLD RS-fMRI. Jann and colleagues scanned BOLD RS-
fMRI data on two same type of scanners (3T Siemens TIM
Trio) with identical scanning parameters (Jann et al., 2015).
They identified five networks with ICA and computed
voxel-wise intra-class correlation (ICC) coefficient within
each network. The authors found moderate to high inter-
scanner reliability. One limitation for ICA is that only a
limited number networks are analyzed. In practice, to map
the inter-scanner reliability of every voxel in the whole
brain, i.e., “voxel-wise whole-brain” (VWWB) analysis, is
needed.

Amplitude of low frequency fluctuation, ReHo, and degree
centrality (DC) are three most commonly used methods of
VWWB analysis (Zang et al., 2015). The intra-scanner reliability
or test-retest reliability of the three metrics have been widely
investigated (Zuo et al., 2010a; Li et al., 2012; Liao et al.,
2013). However, the inter-scanner reliability of the three metrics
has not been thoroughly studied yet. Therefore, the main
purpose of the current study was to systematically measure the
intra- and inter-scanner reliability of the 3 RS-fMRI metrics.
Lower reliability might be due to either random variance
or systematic difference. To investigate potential systematic
difference between each pair of visits, we performed paired t-tests.
Furthermore, since magnetic field inhomogeneity between
different scanners could lead to the difference of relative BOLD
signal intensity (i.e., voxel-level intensity relative to the mean
intensity of the whole brain), so we also aimed to investigate
to what extent the inter-scanner reliability was influenced
by the difference of relative BOLD signal intensity between
scanners.

According to the algorithms deriving the three metrics, the
relative BOLD signal intensity will affect the three metrics
differently. ReHo value and DC value are standardized at
voxel-level, i.e., voxel-level ReHo value is from 0 to 1 and
DC value of each voxel is −1 ∼ +1. Therefore, ReHo and
DC value may not be substantially dependent on the BOLD
signal intensity. But, as shown in our previous study (Jia et al.,
2017), voxel-level ALFF absolute value is highly dependent on
the BOLD signal intensity. Existing solutions include dividing

ALFF of each voxel by the global mean ALFF of the whole
brain, namely mALFF in the REST software (Song et al.,
2011), Z-standardization (minus mean and then divided by the
standard deviation of the whole brain) (Yan et al., 2013), and
so on. Magnetic field inhomogeneity will affect the mALFF
value in the corresponding areas. Therefore, in our previous
study, we proposed PerAF, i.e., percent amplitude of fluctuation
as a contrast to mean BOLD signal of a single time series,
as standardization procedure within a time series (Jia et al.,
2017). PerAF could be further standardized by global mean
PerAF, i.e., mPerAF (Jia et al., 2017). In the current study,
we hypothesized that mPerAF would increase the inter-scanner
reliability.

MATERIALS AND METHODS

Participants
Twenty-one healthy participants (21.8 ± 1.8 years old, 11
females) with no history of neurological or psychiatric disorders
were recruited. The present study was approved by the Ethics
Committee of the Center for Cognition and Brain Disorders
(CCBD) at Hangzhou Normal University (HZNU). Written
informed consent was obtained from each subject prior to
participation.

Data Acquisition
All subjects were scanned 3 times, with the first two visits (V1,
V2, approximately 2 weeks apart) on one GE 3T scanner (MR-
750, GE Medical Systems, Milwaukee, WI), located at the CCBD
of HZNU. The third visit (V3, about 8 months after V2) was on
a Siemens 3T scanner (Prisma, Siemens Healthineers Erlangen,
Germany), located at the center for Brain Imaging Science and
Technology of Zhejiang University (ZJU). All the raw data will be
publicly accessed at https://www.nitrc.org/.

For scans on GE scanner, a gradient echo echo-planar
imaging (EPI) pulse sequence was used for BOLD images with
following parameters: repetition time (TR) = 2000 ms; echo time
(TE) = 30 ms; flip angle (FA) = 90◦; 43 slices with interleaved
acquisition; matrix = 64 × 64; field of view (FOV) = 220 mm;
acquisition voxel size = 3.44 mm × 3.44 mm × 3.20 mm.
Moreover, a high resolution T1 anatomical scan was scanned for
the spatial normalization (176 sagittal slices, thickness = 1 mm,
TR = 8.1 ms, TE = 3.1 ms, FA = 8◦, FOV = 250 mm).

For scans on Siemens scanner, the BOLD EPI parameters
including TR, TE, FA, slice number, acquisition matrix, and
FOV were the same as those obtained from the GE. A high
resolution T1 anatomical image was also scanned (176 sagittal
slices, thickness = 1 mm, TR = 1800ms, TE = 2.28 ms, FA = 8◦,
FOV = 250 mm).

For each visit, all the participants underwent two 8-min RS-
fMRI sessions, during which they were asked to relax with either
EO or EC, not to think of anything in particular, and not to fall
asleep. The order of the two sessions was counter-balanced across
subjects. To minimize head movement, straps and foam pads
were used to fix the head comfortably during scanning.

Frontiers in Neuroinformatics | www.frontiersin.org 2 August 2018 | Volume 12 | Article 54178

https://www.nitrc.org/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 3

Zhao et al. Intra- and Inter-Scanner Reliability

Data Preprocessing
Analysis of the RS-fMRI data was performed using DPABI 4.3
toolbox (DPABI_V2.31) (Yan et al., 2016), and Resting-State
fMRI Data Analysis Toolkit (RESTplus1.12). The preprocessing
included the following procedures: (1) removal of the first 10
volumes; (2) slice timing correction; (3) head motion correction;
(4) coregistration of T1 image to the averaged EPI image;
(5) spatial normalization to standard Montreal Neurological
Institute (MNI) space using “Dartel+segment”; (6) regression of
head motion effects with the Friston-24 parameter model. All the
subject’s head motion were lower than our criteria of 2 mm and
2◦. Additionally, regression of head motion, white matter (WM)
and cerebrospinal fluid (CSF) was also performed, and the results
were presented in the Supplementary Material; (7) removal of
linear trends.

mALFF Calculation
Before ALFF calculation, spatial smoothing (Gaussian kernel of
full-width half maximum, FWHM = 6 mm) was performed.
Then, with the Fast Fourier Transform (FFT), the time courses
of RS-fMRI signal were converted to frequency domain. The
averaged square root across a frequency band of 0.01 – 0.08 Hz
was calculated as ALFF (Zang et al., 2007). For standardization
purpose, ALFF of each voxel was divided by the global mean
ALFF, and a mALFF map was obtained.

mPerAF Calculation
PerAF refers to the percentage of BOLD fluctuation relative to
the mean BOLD signal intensity (Jia et al., 2017) of a given time
series. After spatial smoothing (Gaussian kernel of full-width half
maximum, FWHM = 6 mm) and a band-pass filtering (0.01 –
0.08 Hz), PerAF was calculated. We calculated PerAF as follows
(Jia et al., 2017):

PerAF =
1
n

n∑
i=1

∣∣∣∣Xi − µ

µ

∣∣∣∣× 100% (1)

µ =
1
n

n∑
i=1

Xi (2)

where, Xi is the BOLD signal intensity of the ith time points, n is
the total number of time points of a given time series, and µ is the
mean intensity of that time series.

Finally, PerAF of each voxel was divided by the global
mean PerAF with the Resting-State fMRI Data Analysis Toolkit
(RESTplus1.1, see text footnote 2). Hence, a mPerAF map was
obtained.

mReHo Calculation
Before ReHo calculation, band-pass filtering (0.01 – 0.08 Hz) was
performed. ReHo was calculated by using Kendall coefficient of
concordance (KCC) as the following formula (Zang et al., 2004):

w =
∑n

i=1 (Ri)2
− n

(
R̄i
)2

1
12K

2
(
n3 − n

) (3)

1http://rfmri.org/dpabi
2http://www.restfmri.net

where w is the KCC (ranged from 0–1) of given 27 nearest
neighboring voxels was assigned to the center voxel. K is the
number neighboring voxels (here, K = 27,including the center
voxel), R̄i is the mean rank across nearest neighbors (27 voxels) at
the ith time point, n is the total number of time points of the time
series. For standardization purpose, each voxel’s ReHo value was
divided by the global mean ReHo, and hence a mReHo map was
obtained. Spatial smoothing (FWHM = 6 mm) was performed
after the ReHo calculation.

mDC Calculation
Before DC calculation, band-pass filtering (0.01 – 0.08 Hz) was
performed. DC represents the functional strength of a given voxel
with all voxels in the brain. We calculated the Pearson correlation
of the time series of a given voxel with that of each voxel in
the whole brain. It should be noted that a previous study has
shown that binary DC and weighted DC were highly similar (Liao
et al., 2013). Then binary Pearson correlation coefficient was used
with a threshold of 0.25. Then the summed value was assigned to
that given voxel. Voxel-wise whole-brain DC map was obtained.
For standardization purpose, each voxel’s DC was divided by the
global mean DC, then a mDC map was obtained (Zuo et al.,
2012). Then, spatial smoothing was performed (FWHM = 6 mm).

Relative BOLD Signal Intensity
Relative BOLD signal intensity in the current study was the voxel-
level signal intensity relative to the mean signal intensity of the
whole brain. After normalization, the BOLD signal intensity of
each voxel in the mean EPI image (over 230 time points) was
divided by the global mean BOLD signal intensity of that image.
Hence, a relative BOLD signal intensity image was obtained.

Intra-Class Correlation Coefficient (ICCs)
The intra-scanner (i.e., V1 vs. V2) and inter-scanner (i.e., V1 vs.
V3 and V2 vs. V3) reliability of the metrics including of mALFF,
mReHo, mDC, and mPerAF were estimated using ICC for EO
and EC, respectively, in a way of VWWB analysis according to
the following equation (Shrout and Fleiss, 1979):

ICC =
MSb−MSw

MSb+ (K − 1)MSw
(4)

where, MSb represents between-subject effect, MSw represents
within-subject effect, and K is the number of sessions.

To view the regions with moderate or higher reliability, a
threshold of ICC > = 0.4 was used to generate ICC maps. Further,
a histogram of all voxels of each ICC map was plotted to visually
compare the intra- or inter-scanner reliability among metrics
and between EO and EC conditions. In addition, the ICC was
again calculated while regressing out head motion, WM and CSF.
The results with regression were very similar with the results of
without regression (see the Supplementary Material).

Paired t-Test Between Each Pair of Visits
To investigate the difference of each pair of visits, we performed
paired t-test on mALFF, mReHo, mDC, mPerAF, and relative
BOLD signal intensity maps (i.e., voxel-level intensity relative

Frontiers in Neuroinformatics | www.frontiersin.org 3 August 2018 | Volume 12 | Article 54179

http://rfmri.org/dpabi
http://www.restfmri.net
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 4

Zhao et al. Intra- and Inter-Scanner Reliability

FIGURE 1 | The intra- and inter-scanner reliability of mALFF, mPerAF, mReHo and mDC of eyes open (EO) and eyes closed (EC). The Z coordinates were from –36
to +52 with a step of 8 mm. ICC: intra-class correlation. V: visit.

to the mean intensity of the whole brain). In addition, to
account for confounding effects, head motion, WM and CSF were
regressed out in the preprocessing stage. Further, sex, age, and
interval days between each pair of visits were taken as covariates
when performing paired t-tests. The results with regression were
very similar with the results of without regression (see the
Supplementary Material). It should be noted that the purpose
of the paired t-test was to find potential differences. Therefore,
a voxel level p < 0.05 was used without multiple comparison
correction.

RESULTS

Intra- and Inter-Scanner Reliability
Maps of intra- and inter-scanner reliability of the VWWB metrics
were shown in Figure 1. The reliability histograms were shown

in Figures 2, 3. The number of voxels with ICC > = 0.4 for
each metric in each condition was shown in Table 1. Overall,
the intra-scanner reliability was higher than the inter-scanner
reliability of all the 4 VWWB metrics under both EO and EC
conditions. Moreover, gray matter showed higher both intra- and
inter-scanner reliability than the WM for all the 4 VWWB metrics
(Figure 1).

Summarized comparisons of reliability were as follows:

(I) Intra-scanner reliability > inter-scanner reliability (for all
metrics) (Figure 2 and Table 1);

(II) Intra-scanner reliability: mPerAF ≈ mALFF > mReHo
> mDC (Figure 2 and Table 1);

(III) Inter-scanner reliability: mPerAF > mALFF > mReHo >
mDC (Figure 2 and Table 1);

(IV) EO≈ EC (all metrics) (Figure 3 and Table 1).

Frontiers in Neuroinformatics | www.frontiersin.org 4 August 2018 | Volume 12 | Article 54180

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 5

Zhao et al. Intra- and Inter-Scanner Reliability

FIGURE 2 | The comparison of reliability histogram among metrics of EO and EC. Intra-scanner reliability: (A,D); Inter-scanner reliability: (B,C,E,F). ICC: intra-class
correlation. V: visit.

Intra- and Inter-Scanner Difference
The inter-scanner difference appears larger than the intra-
scanner difference for all the four metrics (Figure 4).

As for the intra-scanner difference of mALFF under EO, a few
clusters in the right hemisphere showed significant lower mALFF
for V1 than V2 (Figure 4). As for the inter-scanner difference,
V1 and V2 showed significantly higher mALFF than V3 in large
part of the inferior and anterior brain regions, while showed
significantly lower mALFF than V3 in large part of superior and
posterior brain regions. By visual inspection, the inter-scanner
difference patterns were similar for V1-V3 and V2-V3 under both
EO and EC (Figure 4). The relative BOLD signal intensity (i.e.,
voxel-level intensity relative to the mean intensity of the whole
brain) in some brain areas also showed significant intra-scanner
difference (Figure 4). Specifically, the right hemisphere of V1
showed lower relative BOLD signal intensity than V2, while the
left hemisphere showed higher relative BOLD signal intensity for
V1 than V2, under both EO and EC (Figure 4).

Notably, as shown in Figure 4, the inter-scanner differences of
the relative BOLD signal intensity were very similar with that of
inter-scanner mALFF differences (V1 vs. V3 and V2 vs. V3), but
not with that of mReHo or mDC.

DISCUSSION

Reliability of Metrics
The results of moderate to high intra-scanner reliability (i.e., test-
retest reliability) of mALFF, mPerAF, mReHo, and mDC were
consistent with previous studies (Zuo et al., 2010c, 2012, 2013;
Li et al., 2012; Somandepalli et al., 2015; Jia et al., 2017). Zuo and
Xing (2014) systematically investigated the test-retest reliability

(i.e., intra-scanner reliability) of ALFF, ReHo and DC. They
found that DC displayed the worst reliability, being consistent
with our findings. As for comparison between ALFF and ReHo,
Zuo and Xing found slightly better test-retest reliability of ReHo
than ALFF, while Somandepalli and colleagues found that the
reliability of ALFF was slightly greater than ReHo (Somandepalli
et al., 2015). We also found slightly better reliability of ALFF than
ReHo. In summary, ALFF and ReHo shows similar reliability,
while both ALFF and ReHo shows much higher reliability
than DC.

Our previous study had suggested that the number of voxels
with ICC > 0.5 of mPerAF were slightly larger than that of
mALFF (number of voxels for short-term reliability: 46336 vs.
44089 voxels; long-term reliability: 31248 vs. 30866 voxels) (Jia
et al., 2017). In the current study, we found that the mALFF
was similar to mPerAF in intra-scanner reliability, but mPerAF
was better than mALFF in inter-scanner reliability (Figure 2
and Table 1). For standardization purpose, ALFF was usually
divided by the mean ALFF of the entire brain, i.e., mALFF (Zang
et al., 2007). Such standardization procedure seemed work well
for different scanning sessions in the same scanner. However,
as shown in Figure 4, the relative BOLD signal, i.e., the mean
BOLD signal divided by that of the entire brain, was significantly
different between the Siemens and GE scanners. The spatial
pattern of mALFF difference between the two scanners was
very similar with the spatial pattern of relative BOLD signal
difference (Figure 4). As compared with mALFF, mPerAF has
two stages of standardization (Jia et al., 2017). The first stage is
percent amplitude of fluctuation at single voxel or signal time
series level. The second stage is similar as that of mALFF, i.e.,
divided by the mean PerAF of the entire brain. While the intra-
scanner reliability was almost the same for mALFF and mPerAF,

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2018 | Volume 12 | Article 54181

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 6

Zhao et al. Intra- and Inter-Scanner Reliability

FIGURE 3 | The comparison of reliability histogram between EO and EC. Intra-scanner reliability: (A,D,G,J); Inter-scanner reliability: (B,C,E,F,H,I,K,L). ICC:
intra-class correlation. V: visit.

TABLE 1 | The number of voxels with ICC > = 0.4 (with head motion regression).

The number of voxels with ICC > = 0.4 (with head motion regression)

V1 vs. V2 (intra-scanner) V1 vs. V3 (inter-scanner) V2 vs. V3 (inter-scanner)

mALFF EO 53992 28553 29057

EC 53946 29917 31105

mPerAF EO 53896 37072 39002

EC 42670 38421 42158

mReHo EO 39018 18157 17058

EC 37366 21867 20422

mDC EO 26763 13311 9608

EC 24030 16410 10541

ICC: intra-class correlation. EO: eyes open. EC: eyes closed. V: visit.

the inter-scanner reliability of mPerAF was slightly higher than
mALFF. By simulation, it was shown that the ALFF was affected
by the mean value of BOLD signal intensity, but PerAF was
not (Jia et al., 2017). The relative BOLD signal intensity of
the two visits on the same scanner was very similar, however,

was very different for the two visits on two different scanners.
The better inter-scanner reliability of mPerAF over mALFF
suggests that mPerAF could calibrate the variation brought by
the difference of relative BOLD signal intensity of different
scanners.

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2018 | Volume 12 | Article 54182

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 7

Zhao et al. Intra- and Inter-Scanner Reliability

FIGURE 4 | The intra- and inter-scanner difference of mALFF, mPerAF, mReHo and mDC of EO and EC (p < 0.05, uncorrected). The Z coordinates were from –36 to
+52 with a step of 8 mm. V: visit.

Frontiers in Neuroinformatics | www.frontiersin.org 7 August 2018 | Volume 12 | Article 54183

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 8

Zhao et al. Intra- and Inter-Scanner Reliability

Reliability of Eyes Open (EO) vs. Eyes
Closed (EC) Conditions
In RS-fMRI studies, EO, EC, and EO with fixation (EO-F) are
three widely used awake conditions. Although Fox and colleagues
reported that the FC pattern of the default mode network (DMN)
was very similar across the three conditions (Fox et al., 2005), Yan
et al. (2009) found that the local activity (including ALFF) and
the FC were significantly different among the three conditions
in the DMN as well as in the sensorimotor cortex and visual
cortex. The difference between EO and EO-F was not as big
as the difference between EO and EC with or without fixation
(Yan et al., 2009). Therefore, similar to a few previous studies
(Liu et al., 2013; Yuan et al., 2014; Zou et al., 2015), the current
study included only EO and EC conditions but did not include
EO-F condition. However, Patriat and colleagues investigated
the test-retest reliability of the three conditions and concluded
that, overall, EO-F had the highest test-retest reliability of FC
(Patriat et al., 2013). It should be noted that Patriat and colleagues
only investigated networks with significant connectivity, but not
the whole brain. Future study should pay attention on the test-
retest reliability of the VWWB metrics, i.e., mALFF, mPerAF,
mReHo, and mDC of RS-fMRI with all three conditions (EO,
EC, and EO-F). But it should keep in mind that EO-F is, at
least as compared with EO and EC, a certain task condition. It
requires the participant to cooperate as much as possible during
scanning. While such cooperation might be easily achievable for
young adult volunteers, it might be a cognitive burden for other
participants, especially patients. Therefore, for a patient study, it
should be cautious to use only EO-F as the RS-fMRI scanning
condition.

As for the comparison of test-retest reliability between EO
and EC, Zou and colleagues reported that EO showed slightly
higher test-retest reliability than EC for mALFF (Zou et al., 2015).
In the current study, we found that EO and EC showed very
similar reliability, both for intra-scanner (i.e., test-retest) and
inter-scanner comparisons.

ICC vs. Paired t-Test
Most reliability studies of RS-fMRI have utilized ICC. But lower
ICC could be due to both random variance and systematic
variance. Therefore, we performed paired t-test between each pair
of two visits. As expected, we found very significant between-
scanner differences for all metrics. The brain regions showing
significant between-scanner differences were largely overlapped
with the brain regions showing lower inter-scanner reliability,
especially in the WM. Such systematic difference was the most
prominent for mALFF. As discussed in the section of “4.1.
Reliability of metrics”, it might be due to the computational
limitation of mALFF. To some extent, mPerAF reduced such
systematic difference. We therefore recommend mPerAF over
mALFF in future studies.

We found small systematic difference by intra-scanner paired
t-test for mALFF, mPeAF, mReHo, and mDC. The areas showing
lower ICC did not show significant difference by the paired t-test.
It means the lower ICC in these areas might be due to random
variance between the two visits on the same scanner.

Limitations
There were a few limitations. First, because we intended to
investigate both intra- and inter-scanner reliability, the order
of the two visits of inter-scanner reliability was unable to be
randomized. If a study aims to investigate only the inter-
scanner reliability, the order of the two visits should be
counter-balanced. Second, the current study only investigated
VWWB metrics of RS-fMRI. Future studies should also
investigate the inter-scanner reliability of other metrics. Third,
in order to keep consistent among metrics in our study, we
used the same standardization procedure of “dividing global
mean value” for all metrics. However, it has been reported
that the standardization procedure could affect the test-retest
reliability of ALFF, ReHo, and DC differently (Yan et al., 2013).
Therefore, the standardization procedure should be further
investigated.

CONCLUSION

The inter-scanner reliability was much lower than intra-scanner
reliability. For all the 4 metrics of RS-fMRI, mDC showed
the lowest intra- and inter-scanner reliability. mPerAF showed
similar intra-scanner reliability as mALFF, but showed increased
inter-scanner reliability over mALFF. We thus recommend using
mPerAF for future studies. Measurements under eyes open and
eyes closed conditions showed very similar reliability. Paired
t-test may provide additional information for studies on either
intra-scanner or inter-scanner reliability.

AUTHOR CONTRIBUTIONS

NZ, JW, and Y-FZ analyzed the data and wrote the paper.
L-XY collected and processed the data. X-ZJ, X-FZ, and X-PD
processed the data. JZ and H-JH collected the data. All authors
designed the experiments.

FUNDING

This work was supported by the Natural Science Foundation
of China (Nos. 81520108016, 81661148045, 81701776, and
31471084) and Y-FZ was partly supported by “Qian Jiang
Distinguished Professor” program.

ACKNOWLEDGMENTS

We are grateful to Dong-Qiang Liu and Yuan-Yuan Li for the
help of the data collection.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00054/full#supplementary-material

Frontiers in Neuroinformatics | www.frontiersin.org 8 August 2018 | Volume 12 | Article 54184

https://www.frontiersin.org/articles/10.3389/fninf.2018.00054/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2018.00054/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-12-00054 August 20, 2018 Time: 12:5 # 9

Zhao et al. Intra- and Inter-Scanner Reliability

REFERENCES
Andellini, M., Cannatà, V., Gazzellini, S., Bernardi, B., and Napolitano, A. (2015).

Test-retest reliability of graph metrics of resting state MRI functional brain
networks: a review. J. Neurosci. Methods 253, 183–192. doi: 10.1016/j.jneumeth.
2015.05.020

Aurich, N. K., Filho, J. O. A., da Silva, A. M. M., and Franco, A. R.
(2015). Evaluating the reliability of different preprocessing steps to estimate
graph theoretical measures in resting state fMRI data. Front. Neurosci. 9:48.
doi: 10.3389/fnins.2015.00048

Braun, U., Plichta, M. M., Esslinger, C., Sauer, C., Haddad, L., Grimm, O.,
et al. (2012). Test-retest reliability of resting-state connectivity network
characteristics using fMRI and graph theoretical measures. NeuroImage 59,
1404–1412. doi: 10.1016/j.neuroimage.2011.08.044

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and Raichle,
M. E. (2005). From the cover: the human brain is intrinsically organized into
dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102,
9673–9678. doi: 10.1073/pnas.0504136102

Jann, K., Gee, D. G., Kilroy, E., Schwab, S., Smith, R. X., Cannon, T. D., et al. (2015).
Functional connectivity in BOLD and CBF data: SIMILARITY and reliability of
resting brain networks. NeuroImage 106, 111–122. doi: 10.1016/j.neuroimage.
2014.11.028

Jia, X. Z., Ji, G. J., Liao, W., Lv, Y. T., Wang, J., Wang, Z., et al. (2017). Percent
amplitude of fluctuation: a simple measure for resting-state fMRI signal at single
voxel level. bioRxiv [Preprint]. doi: 10.1101/214098

Li, Z., Kadivar, A., Pluta, J., Dunlop, J., and Wang, Z. (2012). Test-retest stability
analysis of resting brain activity revealed by BOLD fMRI. J. Magn. Res. Imag.
36, 334–354. doi: 10.1016/j.biotechadv.2011.08.021.Secreted

Liao, X., Xia, M., Xu, T., Dai, Z., Cao, X., Niu, H., et al. (2013). Functional brain
hubs and their test–retest reliability: a multiband resting-state functional MRI
study. NeuroImage 83, 969–982. doi: 10.1016/j.neuroimage.2013.07.058

Liu, D., Dong, Z., Zuo, X., Wang, J., and Zang, Y. (2013). Eyes-open/eyes-closed
dataset sharing for reproducibility evaluation of resting state fMRI data analysis
methods. Neuroinformatics 11, 469–476. doi: 10.1007/s12021-013-9187-0

Pannunzi, M., Hindriks, R., Bettinardi, R. G., Wenger, E., Lisofsky, N.,
Martensson, J., et al. (2017). Resting-state fMRI correlations: from link-wise
unreliability to whole brain stability. NeuroImage 157, 250–262. doi: 10.1016/
j.neuroimage.2017.06.006

Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E.,
et al. (2013). The effect of resting condition on resting-state fMRI reliability and
consistency: a comparison between resting with eyes open, closed, and fixated.
NeuroImage 78, 463–473. doi: 10.1016/j.neuroimage.2013.04.013

Shehzad, Z., Kelly, A. M. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q.,
et al. (2009). The resting brain: unconstrained yet reliable. Cereb. Cortex 19,
2209–2229. doi: 10.1093/cercor/bhn256

Shrout, P. E., and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater
reliability. Psychol. Bull. 86, 420–428. doi: 10.1037/0033-2909.86.2.420

Somandepalli, K., Kelly, C., Reiss, P. T., Zuo, X. N., Craddock, R. C., Yan, C. G.,
et al. (2015). Short-term test-retest reliability of resting state fMRI metrics in
children with and without attention-deficit/hyperactivity disorder. Dev. Cognit.
Neurosci. 15, 83–93. doi: 10.1016/j.dcn.2015.08.003

Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C.-Z., et al. (2011).
REST: a Toolkit for resting-state functional magnetic resonance imaging data
processing. PLoS One 6:e25031. doi: 10.1371/journal.pone.0025031

Tomasi, D., and Volkow, N. D. (2014). Mapping small-world properties through
development in the human brain: disruption in schizophrenia. PLoS One
9:e96176. doi: 10.1371/journal.pone.0096176

Wang, J.-H., Zuo, X.-N., Gohel, S., Milham, M. P., Biswal, B. B., and He, Y. (2011).
Graph theoretical analysis of functional brain networks: test-retest evaluation
on short- and long-term resting-state functional MRI data. PLoS One 6:e21976.
doi: 10.1371/journal.pone.0021976

Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous
brain activity in the default mode network is sensitive to different resting-state
conditions with limited cognitive load. PLoS One 4:e5743. doi: 10.1371/journal.
pone.0005743

Yan, C. G., Craddock, R. C., Zuo, X. N., Zang, Y. F., and Milham, M. P. (2013).
Standardizing the intrinsic brain: Towards robust measurement of inter-
individual variation in 1000 functional connectomes. NeuroImage 80, 246–262.
doi: 10.1016/j.neuroimage.2013.04.081

Yan, C. G., Wang, X., Di, Zuo, X. N., and Zang, Y. F. (2016). DPABI: data processing
& analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351.
doi: 10.1007/s12021-016-9299-4

Yuan, B. K., Wang, J., Zang, Y. F., and Liu, D. Q. (2014). Amplitude differences in
high-frequency fMRI signals between eyes open and eyes closed resting states.
Front. Hum. Neurosci. 8:503. doi: 10.3389/fnhum.2014.00503

Zang, Y., Jiang, T., Lu, Y., He, Y., and Tian, L. (2004). Regional homogeneity
approach to fMRI data analysis. Neuroimage 22, 394–400. doi: 10.1016/j.
neuroimage.2003.12.030

Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007).
Altered baseline brain activity in children with ADHD revealed by resting-state
functional MRI. Brain Dev. 29, 83–91. doi: 10.1016/j.braindev.2006.07.002

Zang, Y. F., Zuo, X. N., Milham, M., and Hallett, M. (2015). Toward a meta-analytic
synthesis of the resting-state fMRI literature for clinical populations. BioMed
Res. Int. 2015, 3–5. doi: 10.1155/2015/435265

Zou, Q., Miao, X., Liu, D., Wang, D. J. J., Zhuo, Y., and Gao, J. H. (2015).
Reliability comparison of spontaneous brain activities between BOLD and CBF
contrasts in eyes-open and eyes-closed resting states. NeuroImage 121, 91–105.
doi: 10.1016/j.neuroimage.2015.07.044

Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F.,
et al. (2010a). The oscillating brain: complex and reliable. NeuroImage 49,
1432–1445. doi: 10.1016/j.neuroimage.2009.09.037

Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O.,
et al. (2012). Network centrality in the human functional connectome. Cereb.
Cortex 22, 1862–1875. doi: 10.1093/cercor/bhr269

Zuo, X. N., Kelly, C., Adelstein, J. S., Klein, D. F., Castellanos, F. X., and Milham,
M. P. (2010b). Reliable intrinsic connectivity networks: test-retest evaluation
using ICA and dual regression approach. NeuroImage 49, 2163–2177. doi: 10.
1016/j.neuroimage.2009.10.080

Zuo, X. N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S., Bangaru, S.,
et al. (2010c). Growing together and growing apart: regional and sex differences
in the lifespan developmental trajectories of functional homotopy. J. Neurosci.
30, 15034–15043. doi: 10.1523/JNEUROSCI.2612-10.2010

Zuo, X. N., and Xing, X. X. (2014). Test-retest reliabilities of resting-state
FMRI measurements in human brain functional connectomics: a systems
neuroscience perspective. Neurosci. Biobehav. Rev. 45, 100–118. doi: 10.1016/
j.neubiorev.2014.05.009

Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., et al. (2013).
Toward reliable characterization of functional homogeneity in the human
brain: preprocessing, scan duration, imaging resolution and computational
space. NeuroImage 65, 374–386. doi: 10.1016/j.neuroimage.2012.10.017

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Zhao, Yuan, Jia, Zhou, Deng, He, Zhong, Wang and Zang. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 9 August 2018 | Volume 12 | Article 54185

https://doi.org/10.1016/j.jneumeth.2015.05.020
https://doi.org/10.1016/j.jneumeth.2015.05.020
https://doi.org/10.3389/fnins.2015.00048
https://doi.org/10.1016/j.neuroimage.2011.08.044
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1016/j.neuroimage.2014.11.028
https://doi.org/10.1016/j.neuroimage.2014.11.028
https://doi.org/10.1101/214098
https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted
https://doi.org/10.1016/j.neuroimage.2013.07.058
https://doi.org/10.1007/s12021-013-9187-0
https://doi.org/10.1016/j.neuroimage.2017.06.006
https://doi.org/10.1016/j.neuroimage.2017.06.006
https://doi.org/10.1016/j.neuroimage.2013.04.013
https://doi.org/10.1093/cercor/bhn256
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1016/j.dcn.2015.08.003
https://doi.org/10.1371/journal.pone.0025031
https://doi.org/10.1371/journal.pone.0096176
https://doi.org/10.1371/journal.pone.0021976
https://doi.org/10.1371/journal.pone.0005743
https://doi.org/10.1371/journal.pone.0005743
https://doi.org/10.1016/j.neuroimage.2013.04.081
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.3389/fnhum.2014.00503
https://doi.org/10.1016/j.neuroimage.2003.12.030
https://doi.org/10.1016/j.neuroimage.2003.12.030
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1155/2015/435265
https://doi.org/10.1016/j.neuroimage.2015.07.044
https://doi.org/10.1016/j.neuroimage.2009.09.037
https://doi.org/10.1093/cercor/bhr269
https://doi.org/10.1016/j.neuroimage.2009.10.080
https://doi.org/10.1016/j.neuroimage.2009.10.080
https://doi.org/10.1523/JNEUROSCI.2612-10.2010
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neuroimage.2012.10.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

REVIEW
published: 05 November 2018
doi: 10.3389/fninf.2018.00068

Frontiers in Neuroinformatics | www.frontiersin.org 1 November 2018 | Volume 12 | Article 68

Edited by:

Arjen van Ooyen,
VU University Amsterdam,

Netherlands

Reviewed by:

Astrid A. Prinz,
Emory University, United States

Richard C. Gerkin,
Arizona State University, United States

Michael Schmuker,
University of Hertfordshire,

United Kingdom

*Correspondence:

Jochen Martin Eppler
j.eppler@fz-juelich.de

Received: 15 March 2018
Accepted: 12 September 2018
Published: 05 November 2018

Citation:

Blundell I, Brette R, Cleland TA,
Close TG, Coca D, Davison AP,

Diaz-Pier S, Fernandez Musoles C,
Gleeson P, Goodman DFM, Hines M,
Hopkins MW, Kumbhar P, Lester DR,

Marin B, Morrison A, Müller E,
Nowotny T, Peyser A, Plotnikov D,
Richmond P, Rowley A, Rumpe B,

Stimberg M, Stokes AB, Tomkins A,
Trensch G, Woodman M and

Eppler JM (2018) Code Generation in
Computational Neuroscience: A
Review of Tools and Techniques.

Front. Neuroinform. 12:68.
doi: 10.3389/fninf.2018.00068

Code Generation in Computational
Neuroscience: A Review of Tools and
Techniques
Inga Blundell 1, Romain Brette 2, Thomas A. Cleland 3, Thomas G. Close 4, Daniel Coca 5,

Andrew P. Davison 6, Sandra Diaz-Pier 7, Carlos Fernandez Musoles 5, Padraig Gleeson 8,

Dan F. M. Goodman 9, Michael Hines 10, Michael W. Hopkins 11, Pramod Kumbhar 12,

David R. Lester 11, Bóris Marin 8,13, Abigail Morrison 1,7,14, Eric Müller 15, Thomas Nowotny 16,

Alexander Peyser 7, Dimitri Plotnikov 7,17, Paul Richmond 18, Andrew Rowley 11,

Bernhard Rumpe 17, Marcel Stimberg 2, Alan B. Stokes 11, Adam Tomkins 5, Guido Trensch 7,

Marmaduke Woodman 19 and Jochen Martin Eppler 7*

1 Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA
BRAIN Institute I, Jülich, Germany, 2 Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France, 3Department of
Psychology, Cornell University, Ithaca, NY, United States, 4Monash Biomedical Imaging, Monash University, Melbourne, VIC,
Australia, 5Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom,
6Unité de Neurosciences, Information et Complexité, CNRS FRE 3693, Gif sur Yvette, France, 7 Forschungszentrum Jülich,
Simulation Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich Aachen Research
Alliance, Jülich, Germany, 8Department of Neuroscience, Physiology and Pharmacology, University College London, London,
United Kingdom, 9Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom,
10Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, United States, 11 Advanced Processor
Technologies Group, School of Computer Science, University of Manchester, Manchester, United Kingdom, 12 Blue Brain
Project, EPFL, Campus Biotech, Geneva, Switzerland, 13Centro de Matemática, Computação e Cognição, Universidade
Federal do ABC, São Bernardo do Campo, Brazil, 14 Faculty of Psychology, Institute of Cognitive Neuroscience,
Ruhr-University Bochum, Bochum, Germany, 15 Kirchhoff-Institute for Physics, Universität Heidelberg, Heidelberg, Germany,
16Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex,
Brighton, United Kingdom, 17 RWTH Aachen University, Software Engineering, Jülich Aachen Research Alliance, Aachen,
Germany, 18Department of Computer Science, University of Sheffield, Sheffield, United Kingdom, 19 Institut de Neurosciences
des Systèmes, Aix Marseille Université, Marseille, France

Advances in experimental techniques and computational power allowing researchers

to gather anatomical and electrophysiological data at unprecedented levels of detail

have fostered the development of increasingly complex models in computational

neuroscience. Large-scale, biophysically detailed cell models pose a particular set

of computational challenges, and this has led to the development of a number of

domain-specific simulators. At the other level of detail, the ever growing variety of

point neuron models increases the implementation barrier even for those based on the

relatively simple integrate-and-fire neuron model. Independently of the model complexity,

all modeling methods crucially depend on an efficient and accurate transformation of

mathematical model descriptions into efficiently executable code. Neuroscientists usually

publish model descriptions in terms of the mathematical equations underlying them.

However, actually simulating them requires they be translated into code. This can cause

problems because errors may be introduced if this process is carried out by hand, and

code written by neuroscientists may not be very computationally efficient. Furthermore,

the translated code might be generated for different hardware platforms, operating

system variants or evenwritten in different languages and thus cannot easily be combined

or even compared. Two main approaches to addressing this issues have been followed.

The first is to limit users to a fixed set of optimized models, which limits flexibility. The

186

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00068
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00068&domain=pdf&date_stamp=2018-11-05
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.eppler@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00068
https://www.frontiersin.org/articles/10.3389/fninf.2018.00068/full
http://loop.frontiersin.org/people/489478/overview
http://loop.frontiersin.org/people/2474/overview
http://loop.frontiersin.org/people/7130/overview
http://loop.frontiersin.org/people/121568/overview
http://loop.frontiersin.org/people/937/overview
http://loop.frontiersin.org/people/264471/overview
http://loop.frontiersin.org/people/569544/overview
http://loop.frontiersin.org/people/2215/overview
http://loop.frontiersin.org/people/2473/overview
http://loop.frontiersin.org/people/396/overview
http://loop.frontiersin.org/people/542510/overview
http://loop.frontiersin.org/people/571889/overview
http://loop.frontiersin.org/people/57993/overview
http://loop.frontiersin.org/people/172002/overview
http://loop.frontiersin.org/people/13504/overview
http://loop.frontiersin.org/people/2480/overview
http://loop.frontiersin.org/people/28940/overview
http://loop.frontiersin.org/people/222839/overview
http://loop.frontiersin.org/people/348808/overview
http://loop.frontiersin.org/people/110411/overview
http://loop.frontiersin.org/people/407227/overview
http://loop.frontiersin.org/people/255/overview
http://loop.frontiersin.org/people/185930/overview
http://loop.frontiersin.org/people/38496/overview
http://loop.frontiersin.org/people/455237/overview
http://loop.frontiersin.org/people/2466/overview

Blundell et al. Code Generation in Computational Neuroscience

second is to allow model definitions in a high level interpreted language, although this

may limit performance. Recently, a third approach has become increasingly popular:

using code generation to automatically translate high level descriptions into efficient

low level code to combine the best of previous approaches. This approach also greatly

enriches efforts to standardize simulator-independent model description languages. In

the past few years, a number of code generation pipelines have been developed in

the computational neuroscience community, which differ considerably in aim, scope and

functionality. This article provides an overview of existing pipelines currently used within

the community and contrasts their capabilities and the technologies and concepts behind

them.

Keywords: code generation, simulation, neuronal networks, domain specific language, modeling language

1. INTRODUCTION

All brains are composed of a huge variety of neuron and
synapse types. In computational neuroscience we use models
for mimicking the behavior of these elements and to gain an
understanding of the brain’s behavior by conducting simulation
experiments in neural simulators. These models are usually
defined by a set of variables which have either concrete values
or use functions and differential equations that describe the
temporal evolution of the variables.

A simple but instructive example is the integrate-and-fire
neuron model, which describes the dynamics of the membrane
potential V in the following way: when V is below the spiking
threshold θ , which is typically at around −50mV, the time
evolution is governed by a differential equation of the type:

d

dt
V = f (V)

where f is a function that is possibly non-linear.
Once V reaches its threshold θ , a spike is fired and V is set

back to EL for a certain time called the refractory period. EL is
called the resting potential and is typically around−70mV. After
this time the evolution of the equation starts again. An important
simplification compared to biology is that the exact course of
the membrane potential during the spike is either completely
neglected or only partially considered in most models. Threshold
detection is rather added algorithmically on top of the modeled
subthreshold dynamics.

Two of the most common variants of this type of model are
the current-based and the conductance-based integrate-and-fire
models. For the case of the current-based model we have the
following general form:

d

dt
V(t) =

1

τ
(EL − V(t))

+
1

C
I(t)+ F(V(t)).

Here C is the membrane capacitance, τ the membrane time
constant, and I the input current to the neuron. Assuming that
spikes will be fixed to temporal grid points, I(t) is the sum of

currents generated by all incoming spikes at all grid points in time
ti ≤ t scaled by their synaptic weight plus a piecewise constant
function Iext that models an external input:

I(t) =
∑

i∈N,ti≤t

∑

k∈Sti

Ik(t − ti)+ Iext(t)

St is the set of synapses that deliver a spike to the neuron at time
t and Ik is the current that enters the neuron through synapse k.
F is some non-linear function of V that may be zero.

One concrete example is the simple integrate-and-fire neuron
with alpha-shaped synaptic input, where F(V) ≡ 0, Ik(t) =
e

τsyn
te−t/τsyn and τsyn is the rise time, which is typically around

0.2–2.0 ms.
When implementing such models in neural simulators their

differential equations must be solved as part of the neuron
model implementation. One typical approach is to use a numeric
integrator, e.g., a simple Euler method.

For a simulation stepsize h and some given approximation
Vt of V(t), using an Euler method would lead to the following
approximation Vt+h of V(t + h):

Vt+h = Vt + h(
1

τ
(EL − Vt)+

1

C
I(t)).

Publications in computational neuroscience mostly contain
descriptions of models in terms of their mathematical equations
and the algorithms to add additional behavior such as the
mechanism for threshold detection and spike generation.
However, if looking at a model implementation and comparing
it to the corresponding published model description, one often
finds that they are not in agreement due to the complexity and
variety of available forms of abstractions of such a transformation
(e.g., Manninen et al., 2017, 2018). Using a general purpose
programming language to express the model implementation
even aggravates this problem as such languages provide full
freedom for model developers while lacking the means to guide
them in their challenging task due to the absence of neuroscience
domain concepts.

Furthermore, the complexity of the brain enforces the use of a
heterogeneous set of models on different abstraction levels that,
however, need to efficiently cooperate upon execution. Model

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2018 | Volume 12 | Article 68187

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

compositionality is needed on the abstract mathematical side as
well as on the implementation level.

The use of problem-tailored model description languages and
standardized simulators is often seen as a way out of the dilemma
as they can provide the domain-specificity missing in a general
programming language, however often at the cost of restricting
the users in their freedom to express arbitrary algorithms.

In other words, engineering complex software systems
introduces a conceptual gap between problem domains and
solution domains. Model driven development (MDD; France and
Rumpe, 2007) aims at closing this gap by using abstract models
for the description of domain problems and code generation
for creating executable software systems (Kleppe et al., 2003).
Early MDD techniques have been already successfully applied
in computer science for decades (Davis et al., 2006). These
techniques ensure reduced development costs and increased
software quality of resulting software systems (Van Deursen
and Klint, 1998; Fieber et al., 2008; Stahl et al., 2012). MDD
also provides methodological concepts to increase design and
development speed of simulation code.

It turns out that MDD is not restricted to the software
engineering domain, but can be applied in many science and
also engineering domains (Harel, 2005; Topcu et al., 2016).
For example, the Systems Biology Markup Language (SBML;
Hucka et al., 2003) from the domain of biochemistry enables
modeling of biochemical reaction networks, like cell signaling
pathways, metabolic pathways, and gene regulation, and has
several software tools that support users with the creation,
import, export, simulation, and further processing of models
expressed in SBML.

MDD works best if the underlying modeling language fits
to the problem domain and thus is specifically engineered for
that domain (Combemale et al., 2016). The modeling language
must provide modularity in several domains: individual neurons
of different behavior must be modeled, time, and geometric
abstractions should be available, composition of neurons to large
networks must be possible and reuse of neuronmodels or neuron
model fragments must be facilitated.

In the context of computational neuroscience (Churchland
et al., 1993) the goal ofMDD is to transform complex and abstract
mathematical neuron, synapse, and network specifications into
efficient platform-specific executable representations. There is no
lack of neural simulation environments that are able to simulate
models efficiently and accurately, each specializing on networks
of different size and complexity. Some of these simulators (e.g.,
NEST, Gewaltig and Diesmann 2007) have included optimized
neural and synaptic models written in low-level code without
support for more abstract, mathematical descriptions. Others
(e.g., NEURON with NMODL, Hines and Carnevale, 1997, see
section 2.7) have provided a separate model description language
together with tools to convert these descriptions into reusable
model components. Recently, such support has also been added
to the NEST simulator via NESTML (Plotnikov et al., 2016,
see section 2.4). Finally, other simulators (e.g., Brian, Goodman
2010, see section 2.1; The Virtual Brain, see section 2.10) include
model descriptions as integral parts of the simulation script,
transparently converting these descriptions into executable code.

These approaches to model descriptions have been
complemented in recent years by various initiatives creating
simulator-independent model description languages. These
languages completely separate the model description from
the simulation environment and are therefore not directly
executable. Instead, they provide code generation tools to
convert the descriptions into code for target environments such
as the ones mentioned above, but also for more specialized
target platforms such as GPUs (e.g., GeNN, Yavuz et al., 2016,
see section 2.2), or neuromorphic chips like SpiNNaker or
the BrainScaleS System (see section 3). Prominent description
languages include NineML (Raikov et al., 2011, see section
2.6), NeuroML (Goddard et al., 2001; Gleeson et al., 2010),
and LEMS (Cannon et al., 2014). These languages are often
organized hierarchically, for example LEMS is the low-level
description language for neural and synaptic models that can
be assembled into a network with a NeuroML description (see
section 2.5). Another recently developed description language,
SpineML (Richmond et al. 2014, see section 2.8) builds upon
LEMS descriptions as well.

A new generation of centralized collaboration platforms like
Open Source Brain and the Human Brain Project Collaboratory
(see section 3) are being developed to allow greater access to
neuronal models for both computationally proficient and non-
computational members of the neuroscience community. Here,
code generation systems can serve as a means to free the user
from installing their own software while still giving them the
possibility to create and use their own neuron and synapse
models.

This article summarizes the state of the art of code generation
in the field of computational neuroscience. In section 2, we
introduce some of the most important modeling languages and
their code generation frameworks. To ease a comparison of the
different technologies employed, each of the sections follows
the same basic structure. Section 3 describes the main target
platforms for the generation pipelines and introduces the ideas
behind the web-based collaboration platforms that are now
becoming available to researchers in the field. We conclude by
summarizing the main features of the available code generation
systems in section 4.

2. TOOLS AND CODE GENERATION
PIPELINES

2.1. Brian
All versions of the Brian simulator have used code generation,
from the simple pure Python code generation for some model
components in its earliest versions (Goodman and Brette, 2008,
2009), through the mixed Python/C++ code generation in later
versions (Goodman, 2010), to the exhaustive framework in its
latest version (2.x) that will be described here. It now uses a
consistent code generation framework for all model components,
and allows for multiple target languages and devices (Stimberg
et al., 2012–2018a, 2014). Brian 2 had code generation as a major
design goal, and so the user model, data model, and execution
model were created with this in mind (Figure 1).

Frontiers in Neuroinformatics | www.frontiersin.org 3 November 2018 | Volume 12 | Article 68188

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

FIGURE 1 | Brian model structure. Brian users define models by specifying equations governing a single neuron or synapse. Simulations consist of an ordered

sequence of operations (code blocks) acting on neuronal or synaptic data. A neuronal code block can only modify its own data, whereas a synaptic code block can

also modify data from its pre- or post-synaptic neurons. Neurons have three code blocks: one for its continuous evolution (numerical integration), one for checking

threshold conditions and emitting spike events, and one for post-spike reset in response to those events. Synapses have three code blocks: two event-based blocks

for responding to pre- or postsynaptic spikes (corresponding to forward or backward propagation), and one continuous evolution block. Code blocks can be provided

directly, or can be generated from pseudo-code or differential equations.

2.1.1. Main Modeling Focus
Brian focuses on modeling networks of point neurons, where
groups of neurons are described by the same set of equations (but
possibly differ in their parameters). Depending on the equations,
such models can range from variants of the integrate-and-fire
model to biologically detailed models incorporating a description
of multiple ion channels. The same equation framework can also
be used to model synaptic dynamics (e.g., short- and long-term
plasticity) or spatially extended, multi-compartmental neurons.

2.1.2. Model Notation
From the user point of view, the simulation consists of
components such as neurons and synapses, each of which
are defined by equations given in standard mathematical
notation. For example, a leaky integrate-and-fire neuron evolves
over time according to the differential equation dv/dt =
−v/τ . In Brian this would be written as the Python string
'dv/dt=-v/tau : volt' in which the part after the colon
defines the physical dimensions of the variable v. All variables
and constants have physical dimensions, and as part of the
code generation framework, all operations are checked for
dimensional consistency.

Since all aspects of the behavior of a model are determined
by user-specified equations, this system offers the flexibility
for implementing both standard and non-standard models. For

example, the effect of a spike arriving at a synapse is often
modeled by an equation such as vpost ← vpost + w where vpost is
the postsynaptic membrane potential and w is a synaptic weight.
In Brian this would be rendered as part of the definition of
synapses as Synapses(..., on_pre='v_post += w'). However,
the user could as well also change the value of synaptic or
presynaptic neuronal variables. For the example of STDP, this
might be something like Synapses(..., on_pre='v_post+=w

; Am+=dAm; w=clip(w+Ap, 0, wmax)'), where Am and Ap are
synaptic variables used to keep a trace of the pre- and post-
synaptic activity, and clip(x, y, z) is a pre-defined function
(equivalent to the NumPy function of the same name) that
returns x if it is between y and z, or y or z if it is outside this
range.

2.1.3. Code Generation Pipeline
The code generation pipeline in Brian is illustrated in Figure 2.
Code generation will typically start with a set of (potentially
stochastic) first order ordinary differential equations. Using an
appropriate solver, these equations are converted into a sequence
of update rules. As an example, consider the simple equation
dv/dt = −v/τ mentioned above. Brian will detect that the
equation is linear and can be solved exactly, and will therefore
generate the following update rule: v_new = v_old * exp(-dt/

tau).

Frontiers in Neuroinformatics | www.frontiersin.org 4 November 2018 | Volume 12 | Article 68189

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

Brian code:

G = NeuronGroup(1, 'dv/dt = -v/tau : 1')

“Abstract code” (internal pseudo-code representation)

_v = v*exp(-dt/tau)

v = _v

C++ code snippet (scalar part)

const double dt = _ptr_array_defaultclock_dt[0];

const double _lio_1 = exp((-dt)/tau);

C++ code snippet (vector part)

double v = _ptr_array_neurongroup_v[_idx];

const double _v = _lio_1*v;

v = _v;

_ptr_array_neurongroup_v[_idx] = v;

Compilable C++ code excerpt:

// scalar code

const double dt = _ptr_array_defaultclock_dt[0];

const double _lio_1 = exp((-dt)/tau);

for(int _idx=0; _idx<_N; idx++)

{

// vector code

double v = _ptr_array_neurongroup_v[_idx];

const double _v = _lio_1*v;

v = _v;

_ptr_array_neurongroup_v[_idx] = v;

}

FIGURE 2 | Brian code generation pipeline. Code is transformed in multiple stages: the original Brian code (in Python), with a differential equation given in standard

mathematical form; the internal pseudocode or “abstract code” representation (Python syntax), in this case an exact numerical solver for the equations; the C++ code

snippets generated from the abstract code; the compilable C++ code. Note that the C++ code snippets include a scalar and vector part, which is automatically

computed from the abstract code. In this case, a constant has been pulled out of the loop and named _lio_1.

Such strings or sequences of strings form a sort of
mathematical pseudocode called an abstract code block. The user
can also specify abstract code blocks directly. For example, to
define the operation that is executed upon a spike, the user might
write 'v_post += w' as shown above.

From an abstract code block, Brian transforms the statements
into one of a number of different target languages. The simplest is
to generate Python code, using NumPy for vectorized operations.
This involves relatively few transformations of the abstract
code, mostly concerned with indexing. For example, for a reset
operation v ← vr that should be carried out only on those
neurons that have spiked, code equivalent to v[has_spiked] =

v_r is generated, where has_spiked is an array of integers with
the indices of the neurons that have spiked. The direct C++ code
generation target involves a few more transformations on the
original code, but is still relatively straightforward. For example,
the power operation ab is written as a**b in Python, whereas
in C++ it should be written as pow(a, b). This is implemented
using Python’s built-in AST module, which transforms a string
in Python syntax into an abstract syntax tree that can be iterated.
Finally, there is the Cython code generation target. Cython is a

Python package that allows users to write code in a Python-like
syntax and have it automatically converted into C++, compiled
and run. This allows Python users to maintain easy-to-read code
that does not have the performance limitations of pure Python.

The result of these transformations is a block of code in a
different target language called a snippet, because it is not yet
a complete compilable source file. This final transformation is
carried out by the widely used Python templating engine Jinja2,
which inserts the snippet into a template file.

The final step is the compilation and execution of the source
files. Brian operates in one of two main modes: runtime or
standalonemode. The default runtime mode is managed directly
by Python. Source files are compiled into separate Python
modules which are then imported and executed in sequence by
Brian. This allows users to mix arbitrary pure Python code with
compiled code, but comes with a performance cost, namely that
each function call has an associated Python overhead. For large
numbers of neurons this difference is relatively little because
the majority of time is spent inside compiled code rather than
in Python overheads (which are a fixed cost not depending
on the number of neurons). However, for smaller networks

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2018 | Volume 12 | Article 68190

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

that might need to be run repeatedly or for a long duration,
these overheads can be significant. Brian therefore also has the
standalone mode, in which it generates a complete C++ project
that can be compiled and run entirely independently of Python
and Brian. This is transparent for the users and only requires
them to write set_device('cpp_standalone') at the beginning
of their scripts. While this mode comes with the advantage
of increased performance and portability, it also implies some
limitations as user-specified Python code and generated code
cannot be interspersed.

Brian’s code generation framework has been designed in a
modular fashion and can be extended on multiple levels. For
specific models, the user might want to integrate a simulation
with hand-written code in the target programming language, e.g.,
to feed real-time input from a sensor into the simulation. Brian
supports this use case by allowing references to arbitrary user-
defined functions in the model equations and statements, if its
definition in the target language and the physical dimensions
of its arguments and result are provided by the user. On a
global level, Brian supports the definition of new target languages
and devices. This mechanism has for example been used to
provide GPU functionality through the Brian2GeNN interface
(Nowotny et al., 2014; Stimberg et al., 2014–2018b), generating
and executing model code for the GeNN simulator (Yavuz et al.,
2016).

2.1.4. Numerical Integration
As stated above, Brian converts differential equations into a
sequence of statements that integrate the equations numerically
over a single time step. If the user does not choose a specific
integration method, Brian selects one automatically. For linear
equations, it will solve the equations exactly according to their
analytic solution. In all other cases, it will chose a numerical
method, using an appropriate scheme for stochastic differential
equations if necessary. The exact methods that will be used by this
default mechanism depend on the type of the model. For single-
compartment neuron and synapse models, the methods exact,
euler, and heun (see explanation below) will be tried in order, and
the first suitable method will be applied. Multicompartmental
neuron models will chose from the methods exact, exponential
euler, rk2, and heun.

The following integration algorithms are provided by Brian
and can be chosen by the user:

• exact (named linear in previous versions): exact integration for
linear equations

• exponential euler: exponential Euler integration for
conditionally linear equations

• euler: forward Euler integration (for additive stochastic
differential equations using the Euler-Maruyama method)

• rk2: second order Runge-Kutta method (midpoint method)
• rk4: classical Runge-Kutta method (RK4)
• heun: stochastic Heun method for solving Stratonovich

stochastic differential equations with non-diagonal
multiplicative noise.

• milstein: derivative-free Milstein method for solving stochastic
differential equations with diagonal multiplicative noise

In addition to these predefined solvers, Brian also offers a simple
syntax for defining new solvers (for details see Stimberg et al.,
2014).

2.1.5. Data and Execution Model
In terms of data and execution, a Brian simulation is essentially
just an ordered sequence of code blocks, each of which can
modify the values of variables, either scalars or vectors (of fixed or
dynamic size). For example, N neurons with the same equations
are collected in a NeuronGroup object. Each variable of the
model has an associated array of length N. A code block will
typically consist of a loop over indices i = 0, 1, 2, . . . ,N − 1
and be defined by a block of code executing in a namespace
(a dictionary mapping names to values). Multiple code objects
can have overlapping namespaces. So for example, for neurons
there will be one code object to perform numerical integration,
another to check threshold crossing, another to perform post-
spike reset, etc. This adds a further layer of flexibility, because
the user can choose to re-order these operations, for example
to choose whether synaptic propagation should be carried out
before or after post-spike reset.

Each user defined variable has an associated index variable
that can depend on the iteration variable in different ways.
For example, the numerical integration iterates over i =
0, 1, 2, . . . ,N− 1. However, post-spike reset only iterates over the
indices of neurons that spiked. Synapses are handled in the same
way. Each synapse has an associated presynaptic neuron index,
postsynaptic neuron index, and synaptic index and the resulting
code will be equivalent to v_post[postsynaptic_index[i]] +=

w[synaptic_index[i]].
Brian assumes an unrestricted memory model in which all

variables are accessible, which gives a particularly flexible scheme
that makes it simple to implement many non-standard models.
This flexibility can be achieved for medium scale simulations
running on a single CPU (the most common use case of Brian).
However, especially for synapses, this assumption may not be
compatible with all code generation targets where memory
access is more restrictive (e.g., in MPI or GPU setups). As a
consequence, not all models that can be defined and run in
standard CPU targets will be able to run efficiently in other target
platforms.

2.2. GeNN
GeNN (GPU enhanced Neuronal Networks) (Nowotny, 2011;
Knight et al., 2012-2018; Yavuz et al., 2016) is a C++ and NVIDIA
CUDA (Wikipedia, 2006; NVIDIA Corporation, 2006-2017)
based framework for facilitating neuronal network simulations
with GPU accelerators. It was developed because optimizing
simulation code for efficient execution on GPUs is a difficult
problem that distracts computational neuroscience researchers
from focusing on their core research. GeNN uses code generation
to achieve efficient GPU code while maintaining maximal
flexibility of what is being simulated and which hardware
platform to target.

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2018 | Volume 12 | Article 68191

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

2.2.1. Main Modeling Focus
The focus of GeNN is on spiking neuronal networks. There are no
restrictions or preferences for neuron model and synapse types,
albeit analog synapses such as graded synapses and gap junctions
do affect the speed performance strongly negatively.

1 class MyIzhikevich : public NeuronModels::

Izhikevich

2 {

3 public:

4 DECLARE_MODEL(MyIzhikevich, 5, 2)

5 SET_SIM_CODE(

6 "if ($(V) >= 30.0) {\n"

7 " $(V)=$(c);\n"

8 " $(U)+=$(d);\n"

9 "}\n"

10 "$(V) += 0.5*(0.04*$(V)*$(V)+5.0*$(V)+140.0-$(

U)+$(I0)+$(Isyn))*DT;\n"

11 "$(V) += 0.5*(0.04*$(V)*$(V)+5.0*$(V)+140.0-$(

U)+$(I0)+$(Isyn))*DT;\n"

12 "$(U) += $(a)*($(b)*$(V)-$(U))*DT;\n");

13 SET_PARAM_NAMES({"a", "b", "c", "d", "I0"});

14 };

15 IMPLEMENT_MODEL(MyIzhikevich);

16

17 void modelDefinition(NNmodel &model)

18 {

19 initGeNN();

20 model.setName("SynDelay");

21 model.setDT(1.0);

22 model.setPrecision(GENN_FLOAT);

23

24 // INPUT NEURONS

25 //==============

26 MyIzhikevich::ParamValues input_p(// Izhikevich

parameters - tonic spiking

27 0.02, // 0 - a

28 0.2, // 1 - b

29 -65, // 2 - c

30 6, // 3 - d

31 4.0 // 4 - I0 (input current));

32 MyIzhikevich::VarValues input_ini(// Izhikevich

variables - tonic spiking

33 -65, // 0 - V

34 -20 // 1 - U);

35 model.addNeuronPopulation<MyIzhikevich>("Input",

500, input_p, input_ini);

36

37 // OUTPUT NEURONS

38 //===============

39 NeuronModels::Izhikevich::ParamValues output_p(

// Izhikevich parameters - tonic spiking

40 0.02, // 0 - a

41 0.2, // 1 - b

42 -65, // 2 - c

43 6 // 3 - d);

44 NeuronModels::Izhikevich::VarValues output_ini(

// Izhikevich variables - tonic spiking

45 -65, // 0 - V

46 -20 // 1 - U);

47 PostsynapticModels::ExpCond::ParamValues

postExpOut(

48 1.0, // 0 - tau_S: decay time constant

for S [ms]

49 0.0 // 1 - Erev: Reversal potential);

50 model.addNeuronPopulation<NeuronModels::

Izhikevich>("Output", 500, output_p,

output_ini);

51

52 // INPUT-OUTPUT SYNAPSES

53 //=========================

54 WeightUpdateModels::StaticPulse::VarValues

inputOutput_ini(

55 0.03 // 0 - default synaptic conductance);

56

57 model.addSynapsePopulation<WeightUpdateModels::

StaticPulse, PostsynapticModels::ExpCond>

58 ("InputOutput", SynapseMatrixType::

DENSE_GLOBALG, 6, "Input", "Output", {},

59 inputOutput_ini, postExpOut, {});

60 model.finalize();

61 }

The code example above illustrates the nature of the GeNN
API. GeNN expects users to define their own code for neuron
and synapse model time step updates as C++ strings. In the
example above, the neurons are standard Izhikevich neurons
and synaptic connections are pulse coupling with delay. GeNN
works with the concept of neuron and synapse types and
subsequent definition of neuron and synapse populations of these
types.

2.2.2. Code Generation Pipeline
The model description provided by the user is used to generate
C++ and CUDA C code for efficient simulation on GPU
accelerators. For maximal flexibility, GeNN only generates the
code that is specific to GPU acceleration and accepts C/C++
user code for all other aspects of a simulation, even though
a number of examples of such code is available to copy and
modify. The basic strategy of this workflow is illustrated in
Figure 3. Structuring the simulator framwork in this way allows
achieving key goals of code generation in the GPU context. First,
the arrangement of neuron and synapse populations into kernel
blocks and grids can be optimized by the simulator depending
on the model and the hardware detected at compile time. This
can lead to essential improvements in the simulation speed. The
approach also allows users and developers to define a practically
unlimited number of neuron and synapse models, while the
final, generated code only contains what is being used and the
resulting executable code is lean. Lastly, accepting the users’ own
code for the input-output and simulation control allows easy
integration with many different usage scenarios, ranging from
large scale simulations to using interfaces to other simulation
tools and standards and to embedded use, e.g., in robotics
applications.

2.2.3. Numerical Integration
Unlike for other simulators, the numerical integration methods,
and any other time-step based update methods are for GeNN
in the user domain. Users define the code that performs the
time step update when defining the neuron and synapse models.
If they wish to use a numerical integration method for an
ODE based neuron model, users need to provide the code
for their method within the update code. This allows for
maximal flexibility and transparency of the numerical model
updates.

However, not all users may wish to use the C++ interface of
GeNN or undertake the work of implementing the time step

Frontiers in Neuroinformatics | www.frontiersin.org 7 November 2018 | Volume 12 | Article 68192

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

FIGURE 3 | Schematic of the code generation flow for the GPU simulator framework GeNN. Neural models are described in a C/C++ model definition function

(“ExampleModel.cc”), either hand-crafted by a user or generated from a higher-level model description language such as SpineML or Brian 2 (see main text). The

neuron model description is included into the GeNN compiler that produces optimized CUDA/C++ code for simulating the specified model. The generated code can

then be used by hand-crafted or independently generated user code to form the final executable. The framework is minimalistic in generating only optimized

CUDA/C++ code for the core model and not the simulation workflow in order to allow maximal flexibility in the deployment of the final executable. This can include

exploratory or large scale simulations but also real-time execution on embedded systems for robotics applications. User code in blue, GeNN components in gray,

generated CUDA/C++ code in pink.

updates for their neuron models from scratch. For these users
there are additional tools that allow connecting other model APIs
to GeNN. Brian2GeNN (Nowotny et al., 2014; Stimberg et al.,
2014–2018b) allows to execute Brian 2 (see section 2.1 Stimberg
et al., 2014) scripts with GeNN as the backend and there is a
separate toolchain connecting SpineCreator and SpineML (see
section 2.8; Richmond et al., 2014) to GeNN to achieve the same.
Although there can be a loss in computing speed and the range of
model features that can be supported when using such interfaces,
using GPU acceleration through Brian2GeNN can be as simple
as issuing the command set_device('genn') in a Python script
for Brian 2.

2.3. Myriad
The goal of the Myriad simulator project (Rittner and
Cleland, 2014) is to enable the automatic parallelization and
multiprocessing of any compartmental model, particularly those
exhibiting dense analog interactions such as graded synapses and
mass diffusion that cannot easily be parallelized using standard
approaches. This is accomplished computationally via a shared-
memory architecture that eschewsmessage-passing, coupled with
a radically granular design approach that flattens hierarchically
defined cellular models and can subdivide individual isometric

compartments by state variable. Programmatically, end-user
models are defined in a Python-based environment and
converted into fully-specified C99 code (for CPU or GPU) via
code generation techniques that are enhanced by a custom
abstract syntax tree (AST) translator and, for NVIDIA GPUs,
a custom object specification for CUDA enabling fully on-card
execution.

2.3.1. Main Modeling Focus
Myriad was conceived as a strategy to enable the parallelization
of densely integrated mechanisms in compartmental models.
Under traditional message-passing approaches to parallelization,
compartment states that update one another densely–e.g., at
every timestep—cannot be effectively parallelized. However,
such dense analog interactions are common in compartmental
models; examples include graded synapses, gap junctions, and
charge or mass diffusion among adjacent compartments. In
lieu of message passing, Myriad uses a shared memory strategy
with barrier synchronization that parallelizes dense models as
effectively as sparsely coupledmodels. This strategy imposes scale
limitations on simulations based on available memory, though
these limitations are being somewhat eased by new hardware
developments.

Frontiers in Neuroinformatics | www.frontiersin.org 8 November 2018 | Volume 12 | Article 68193

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

2.3.2. Model Notation
The core of Myriad is a parallel solver layer designed so
that all models that can be represented as a list of isometric,
stateful nodes (compartments), can be connected pairwise by
any number of arbitrary mechanisms and executed with a
high degree of parallelism on CPU threads. No hierarchical
relationships among nodes are recognized during execution;
hierarchies that exist in user-defined models are flattened during
code generation. This flat organization facilitates thread-scaling
to any number of available threads and load-balancing with very
fine granularity to maximize the utilization of available CPU
or GPU cores. Importantly, analog coupling mechanisms such
as cable equations, Hodgkin-Huxley membrane channels, mass
diffusion, graded synapses, and gap junctions can be parallelized
in Myriad just as efficiently as sparse events. Because of this,
common hierarchical relationships in neuronal models, such as
the positions of compartments along an extended dendritic tree,
can be flattened and the elements distributed arbitrarily across
different compute units. For example, two nodes representing
adjacent compartments are coupled by “adjacency” mechanisms
that pass appropriate quantities of charge and mass between
them without any explicit or implicit hierarchical relationship.
This solver comprises the lowest layer of a three-layer simulator
architecture.

A top-level application layer, written in idiomatic Python 3
enriched with additional C code, defines the object properties
and primitives available for end-user model development. It
is used to specify high-level abstractions for neurons, sections,
synapses, and network properties. The mechanisms (particles,
ions, channels, pumps, etc.) are user-definable with object-based
inheritance, e.g., channels inherit properties based on their
permeant ions. Simulations are represented as objects to facilitate
iterative parameter searches and reproducibility of results. The
inheritance functionality via Python’s native object system allows
access to properties of parent component and functionality can
be extended and overridden at will.

The intermediate interface layer flattens and translates the
model into non-hierarchical nodes and coupling mechanisms
for the solver using AST-to-AST translation of Python code
to C. Accordingly, the top-level model definition syntax
depends only on application-layer Python modules; in principle,
additional such modules can be written for applications outside
neuroscience, or to mimic the model definition syntax of
other Python-based simulators. For the intended primary
application of solving dense compartmental models of neurons
and networks, the models are defined in terms of their cellular
morphologies and passive properties (e.g., lengths, diameters,
cytoplasmic resistivity) and their internal, transmembrane,
and synaptic mechanisms. State variables include potentials,
conductances, and (optionally) mass species concentrations.
Equations for mechanisms are arbitrary and user-definable.

2.3.3. Code Generation Pipeline
To achieve an efficient parallelization of dense analog
mechanisms, it was necessary to eschew message-passing.
Under message-based parallelization, each data transfer between
compute units generates a message with an uncertain arrival

time, such that increased message densities dramatically increase
the rollback rate of speculative execution and quickly become
rate-limiting for simulations. Graded connections such as analog
synapses or cable equations yield new messages at every timestep
and hence parallelize poorly. This problem is generally addressed
by maintaining coupled analog mechanisms on single compute
units, with parallelization being limited to model elements
that can be coupled via sparse boolean events, such as action
potentials (Hines and Carnevale, 2004). Efficient simulations
therefore require a careful, platform-specific balance between
neuronal complexity and synaptic density (Migliore et al., 2006).
The unfortunate consequence is that platform limitations drive
model design.

In lieu of message passing, Myriad is based on a uniform
memory access (UMA) architecture. Specifically, every
mechanism reads all parameters of interest from shared
memory, and writes its output to shared memory, at every
fixed timestep. Shared memory access, and a global clock that
regulates barrier synchronization among all compute units
(thereby coordinating all timesteps), are GPU hardware features.
For parallel CPU simulations, the OpenMP 3.1+ API for shared-
memory multiprocessing has implicit barrier and reduction
intrinsics that provide equivalent, platform-independent
functionality. Importantly, while this shared-memory design
enables analog interactions to be parallelized efficiently, to take
proper advantage of this capacity on GPUs, the simulation
must execute on the GPU independently rather than being
continuously controlled by the host system. To accomplish
this, Myriad uses a code generation strategy embedded in its
three-layer architecture (see section 2.3.2). The lowest (solver)
layer is written in C99 for both CPUs and NVIDIA GPUs
(CUDA). The solver requires as input a list of isometric nodes
and a list of coupling mechanisms that connect pairs of nodes, all
with fully explicit parameters defined prior to compilation (i.e.,
execution of a Myriad model requires just-in-time compilation
of the solver). To facilitate code reuse and inheritance from
the higher (Python) layers, a custom-designed minimal object
framework implemented in C (Schreiner, 1999) supports on-
device virtual functions; to our knowledge this is the first of
its kind to execute on CUDA GPUs. The second, or interface,
layer is written in Python; this layer defines top-level objects,
instantiates the node and mechanism dichotomy, converts the
Python objects defined at the top level into the two fully-specified
lists that are passed to the solver, and manages communication
with the simulation binaries. The top, or application layer, will
comprise an expandable library of application-specific modules,
also written in Python. These modules specify the relevant
implementations of Myriad objects in terms familiar to the end
user. For neuronal modeling, this could include neurite lengths,
diameters, and branching, permeant ions (mass and charge),
distributed mechanisms (e.g., membrane channels), point
processes (e.g., synapses), and cable equations, among other
concepts common to compartmental simulators. Additional
top-layer modules can be written by end users for different
purposes, or to support different code syntaxes.

Execution of a Myriad simulation begins with a
transformation of the user-specified model definition into

Frontiers in Neuroinformatics | www.frontiersin.org 9 November 2018 | Volume 12 | Article 68194

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

two Python lists of node and mechanism objects. Parameters are
resolved, and the Python object lists are transferred to the solver
layer via a custom-built Python-to-C pseudo-compiler (pycast;
an AST-to-AST translator from Python’s native abstract syntax
tree (AST) to the AST of pycparser (a Myriad dependency),
facilitated by Myriad’s custom C object framework). These
objects are thereby rendered into fully explicit C structs which
are compiled as part of the simulation executable. The choice
of CPU or GPU computation is specified at execution time via
a compiler option. On CPUs and compliant GPUs, simulations
execute using dynamic parallelism to maximize core utilization
(via OpenMP 3.1+ for CPUs or CUDA 5.0+ on compute
capability 3.5+ GPUs).

The limitation of Myriad’s UMA strategy is scalability. Indeed,
at its conception, Myriad was planned as a simulator on the
intermediate scale between single neuron and large network
simulations because its shared-memory, barrier synchronization-
dependent architecture limited the scale of simulations to those
that could fit within the memory of a single high-speed chassis
(e.g., up to the memory capacity of a single motherboard or
CUDA GPU card). However, current and projected hardware
developments leveraging NVIDIA’s NVLink interconnection bus
(NVIDIA Corporation, 2014) are likely to ease this limitation.

2.3.4. Numerical Integration
For development purposes, Myriad supports the fourth-order
Runge-Kutta method (RK4) and the backward Euler method.
These and other methods will be benchmarked for speed,
memory requirements, and stability prior to release.

2.4. NESTML
NESTML (Plotnikov et al., 2016; Blundell et al., 2018; Perun et al.,
2018a) is a relatively new modeling language, which currently
only targets the NEST simulator (Gewaltig and Diesmann, 2007).
It was developed to address the maintainability issues that
followed from a rising number of models and model variants
and ease the model development for neuroscientists without a
strong background in computer science. NESTML is available
unter the terms of the GNU General Public License v2.0 on
GitHub (https://github.com/nest/nestml; Perun et al., 2018b) and
can serve as a well-defined and stable target platform for the
generation of code from other model description languages such
as NineML (Raikov et al., 2011) and NeuroML (Gleeson et al.,
2010).

2.4.1. Main Modeling Focus
The current focus of NESTML is on integrate-and-fire neuron
models described by a number of differential equations with the
possibility to support compartmental neurons, synapse models,
and also other targets in the future.

1 neuron iaf_curr_alpha:

2

3 initial_values:

4 V_m mV = E_L

5 end

6

7 equations:

8 shape I_alpha = (e / tau_syn) * t * exp(-t /

tau_syn)

9 I pA = convolve(I_alpha, spikes)

10 V_m' = -1/tau * (V_m - E_L) + I/C_m

11 end

12

13 parameters:

14 C_m pF = 250pF # Capacity of

the membrane

15 Tau ms = 10ms # Membrane time

constant.

16 tau_syn ms = 2ms # Time constant

of synaptic current.

17 ref_timeout ms = 2ms # Duration of

refractory period in ms.

18 E_L mV = -70mV # Resting

potential.

19 V_reset mV = -70mV - E_L # Reset

potential of the membrane in mV.

20 Theta mV = -55mV - E_L # Spike

threshold in mV.

21 ref_counts integer = 0 # counter for

refractory steps

22

23 end

24

25 internals:

26 timeout_ticks integer = steps(ref_timeout) #

refractory time in steps

27 end

28

29 input:

30 spikes <- spike

31 end

32

33 output: spike

34

35 update:

36 if ref_counts == 0: # neuron not refractory

37 integrate_odes()

38 if V_m >= Theta: # threshold crossing

39 ref_counts = timeout_ticks

40 V_m = V_reset

41 emit_spike()

42 else

43 ref_counts = -1

44 end

45

46 end

47

48 end

The code shown in the listing above demonstrates the key
features of NESTML with the help of a simple current-based
integrate-and-fire neuron with alpha-shaped synaptic input as
described in section 1. A neuron in NESTML is composed of
multiple blocks. The whole model is contained in a neuron
block, which can have three different blocks for defining model
variables: initial_values, parameters, and internals. Variable
declarations are composed of a non-empty list of variable names
followed by their type. Optionally, initialization expressions can
be used to set default values. The type can either be a plain data
type such as integer and real, a physical unit (e.g., mV) or a
composite physical unit (e.g., nS/ms).

Differential equations in the equations block can be used to
describe the time evolution of variables in the initial_values

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2018 | Volume 12 | Article 68195

https://github.com/nest/nestml
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

block. Postsynaptic shapes and synonyms inside the equations
block can be used to increase the expressiveness of the
specification.

The type of incoming and outgoing events are defined in
the input and output blocks. The neuron dynamics are specified
inside the update block. This block contains an implementation
of the propagation step and uses a simple embedded procedural
language based on Python.

2.4.2. Code Generation Pipeline
In order to have full freedom for the design, the language is
implemented as an external domain specific language (DSL; van
Deursen et al., 2000) with a syntax similar to that of Python.
In contrast to an internal DSL an external DSL doesn’t depend
syntactically on a given host language, which allows a completely
customized implementation of the syntax and results in a design
that is tailored to the application domain.

Usually external DSLs require the manual implementation
of the language and its processing tools. In order to avoid this
task, the development of NESTML is backed by the language
workbench MontiCore (Krahn et al., 2010). MontiCore uses
context-free grammars (Aho et al., 2006) in order to define the
abstract and concrete syntax of a DSL. Based on this grammar,
MontiCore creates classes for the abstract syntax (metamodel)
of the DSL and parsers to read the model description files and
instantiate the metamodel.

NESTML is composed of several specialized sublanguages.
These are composed through language embedding and a
language inheritance mechanism: UnitsDSL provides all data
types and physical units, ExpressionsDSL defines the style of
Python compatible expressions and takes care of semantic checks
for type correctness of expressions, EquationsDSL provides
all means to define differential equations and postsynaptic
shapes and ProceduralDSL enables users to specify parts of the
model in the form of ordinary program code. In situations
where a modeling intent cannot be expressed through language
constructs this allows a more fine-grained control than a purely
declarative description could.

The decomposition of NESTML into sublanguages enables an
agile and modular development of the DSL and its processing
infrastructure and independent testing of the sublanguages,
which speeds up the development of the language itself.
Through the language composition capabilities of the MontiCore
workbench the sublanguages are composed into the unified DSL
NESTML.

NESTML neurons are stored in simple text files. These are
read by a parser, which instantiates a corresponding abstract
syntax tree (AST). The AST is an instance of the metamodel and
stores the essence of the model in a formwhich is easily processed
by a computer. It completely abstracts the details of the user-
visible model representation in the form of its concrete syntax.
The symbol table and the AST together provide a semantic
model.

Figure 4 shows an excerpt of the NESTML grammar and
explains the derivation of the metamodel. A grammar is
composed of a non-empty set of productions. For every
production a corresponding class in the metamodel is created.

Based on the right hand side of the productions attributes
are added to this class. Classes can be specified by means of
specifications of explicit names in the production names of
attributes in the metamodel.

NEST expects a model in the form of C++ code, using an
internal programming interface providing hooks for parameter
handling, recording of state variables, receiving and sending
events, and updating instances of the model to the next
simulation time step. The NESTML model thus needs to be
transformed to this format (Figure 5).

For generating the C++ code for NEST, NESTML uses the
code generation facilities provided by theMontiCore workbench,
which are based on the template engine Freemarker (https://
freemarker.apache.org/). This approach enables a tight coupling
of the model AST and the symbol table, from which the code
is generated, with the text based templates for the generation of
code.

Before the actual code generation phase, the AST undergoes
several model to model transformations. First, equations and
shapes are extracted from the NESTML AST and passed to an
analysis framework based on the symbolic math package SymPy
(Meurer et al., 2017). This framework (Blundell et al., 2018)
analyses all equations and shapes and either generates explicit
code for the update step or code that can be handled by a solver
from the GNU Scientific Library (https://gnu.org/software/gsl/).
The output of the analysis framework is a set of model fragments
which can again be instantiated as NESTML ASTs and integrated
into the AST of the original neuron and replace the original
equations and shapes they were generated from.

Before writing the C++ code, a constant folding optimization is
performed, which uses the fact that internal variables in NESTML
models do not change during the simulation. Thus, expressions
involving only internal variables and constants can be factored
out into dedicated expressions, which are computed only once in
order to speed up the execution of the model.

2.4.3. Numerical Integration
NESTML differentiates between different types of ODEs. ODEs
are categorized according to certain criteria and then assigned
appropriate solvers. ODEs are solved either analytically if they are
linear constant coefficient ODEs and are otherwise classified as
stiff or non stiff and then assigned either an implicit or an explicit
numeric integration scheme.

2.5. NeuroML/LEMS
NeuroML version 1 (NeuroML1 henceforth; Goddard et al.,
2001; Gleeson et al., 2010) was originally conceived as a
simulator-agnostic domain specific language (DSL) for building
biophysically inspired models of neuronal networks, focusing on
separating model description from numerical implementation.
As such, it provided a fixed set of components at three broad
layers of abstraction: morphological, ion channel, and network,
which allowed a number of pre-existing models to be described
in a standardized, structured format (Gleeson et al., 2010). The
role of code generation in NeuroML1 pipelines was clear—
the agnostic, abstract model definition needed to be eventually
mapped into concrete implementations (e.g., code for NEURON;

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2018 | Volume 12 | Article 68196

https://freemarker.apache.org/
https://freemarker.apache.org/
https://gnu.org/software/gsl/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

FIGURE 4 | Example definition of a NESTML concept and generation of the AST. (Left) A production for a function in NESTML. The lefthandside defines the name of

the production, the righthandside defines the production using terminals, other productions and special operators (*, ?). A function starts with the keyword

function followed by the function’s name and an optional list of parameters enclosed in parentheses followed by the optional return value. Optional parts are

marked with ?. The function body is specified by the production (Block) between two keywords. (Right) The corresponding automatically derived meta-model as a

class diagram. Every production is mapped to an AST class, which is used in the further language processing steps.

FIGURE 5 | Components for the code generation in NESTML. (Top) Source model, corresponding AST, and helper classes. (Middle) Templates for the generation of

C++ code. The left template creates a C++ class body with an embedded C++ struct, the right template maps variable name and variable type using a helper class.

The template on the left includes the template on the right once for each state variable defined in the source model. (Bottom) A C++ implementation as created from

the source model using the generation templates.

Carnevale and Hines, 2006; GENESIS; Bower and Beeman, 1998)
in order for the models to be simulated.

Nevertheless, the need for greater flexibility and extensibility
beyond a predefined set of components and, more importantly,
a demand for lower level model descriptions also described
in a standardized format (contrarily to NeuroML1, where for
example component dynamics were defined textually in the
language reference, thus inaccessible from code) culminated in a

major language redesign (referred to asNeuroML2), underpinned
by a second, lower level language called Low Entropy Model
Specification (LEMS; Cannon et al., 2014).

2.5.1. Main Modeling Focus
LEMS can be thought of as a meta-language for defining domain
specific languages for networks (in the sense of graphs), where
each node can have local dynamics described by ordinary

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2018 | Volume 12 | Article 68197

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

differential equations, plus discrete state jumps or changes in
dynamical regimes mediated by state-dependent events—also
known asHybrid Systems (van der Schaft and Schumacher, 2000).
NeuroML2 is thus a DSL (in the computational neuroscience
domain) defined using LEMS, and as such provides standardized,
structured descriptions of model dynamics up to the ODE level.

2.5.2. Model Notation
An overview of NeuroML2 and LEMS is depicted in Figure 6,
illustrating how Components for an abstract cell model
(izhikevichCell) and a synapse model (expOneSynapse) can
be specified in XML (i.e., in the computational neuroscience
domain, only setting required parameters for the Components),
with the definitions for their underlying models specified in

LEMS ComponentTypes which incorporate a description of the
dimensions of the parameters, the dynamical state variables and
behavior when certain conditions or events occur.

Besides providing more structured information describing a
given model and further validation tools for building new ones
(Cannon et al., 2014), NeuroML2-LEMS models can be directly
parsed, validated, and simulated via the jLEMS interpreter
(Cannon et al., 2018), developed in Java.

2.5.3. Code Generation Pipeline
Being derived from LEMS, a metalanguage designed to generate
simulator-agnostic domain-specific languages, NeuroML2 is
prone to be semantically different at varying degrees from
potential code generation targets. As discussed elsewhere in the

FIGURE 6 | NeuroML2 and LEMS. NeuroML2 is a language which defines a hierarchical set of elements used in computational models in neuroscience in the following

broad categories: Networks, Cells, Synapses, Morphologies, Ion Channels, and Inputs. These provide the building blocks for specifying 3D populations of cells, both

morphologically detailed and abstract, connected via a variety of (plastic) chemical and electrical synapses receiving external spike or current based stimuli. Examples

are shown of the (truncated) XML representations of: (blue) a network containing two populations of integrate-and-fire cells connected by a single projection between

them; (green) a spiking neuron model as described by Izhikevich (2003); (yellow) a conductance based synapse with a single exponential decay waveform. On the

right the definition of the structure and dynamics of these elements in the LEMS language is shown. Each element has a corresponding ComponentType definition,

describing the parameters (as well as their dimensions, not shown) and the dynamics in terms of the state variables, the time derivative of these, any derived variables,

and the behavior when certain conditions are met or (spiking) events are received. The standard set of ComponentType definitions for the core NeuroML2 elements

are contained in a curated set of files (Cells.xml, Synapses.xml, etc.) though users are free to define their own ComponentTypes to extend the scope of the language.

Frontiers in Neuroinformatics | www.frontiersin.org 13 November 2018 | Volume 12 | Article 68198

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

present article (sections 2.1 and 2.4), code generation boils down
to trivial templatemerging or string interpolation once the source
and target models sit at comparable levels of abstraction (reduced
“impedance mismatch”), implying that a number of semantic
processing steps might be required in order to transform
LEMS/NeuroML2 into each new target. Given LEMS/NeuroML2’s
low-level agnosticism—there is always the possibility that it will
be used to generate code for a yet-to-be-invented simulator—
NeuroML2 infrastructure needs to be flexible enough to adapt to
different strategies and pipelines.

This flexibility is illustrated in Figure 7, where NeuroML2
pipelines involving code generation are outlined. Three main
strategies are discussed in detail: a procedural pipeline starting
from jLEMS’s internal structures (Figure 7P), which as the first
one to be developed, is the most widely tested and supports
more targets; a pipeline based on building an intermediate
representation semantically similar to that of typical neuronal
modeling / hybrid-system-centric numerical software, which
can then be merged with templates (as decoupled as possible
from LEMS internals) for each target format (Figure 7T);
and a customizable language binding generator, based on an
experimental compiler infrastructure for LEMS which provides
a rich semantic model with validation and automatic generation
of traversers (Figure 7S)—akin to semantic models built by
language workbenches such as MontiCore, which has been
employed to build NESTML (section 2.4).

2.5.3.1. jLEMS runtime and procedural generation
The jLEMS simulator was built alongside the development of
the LEMS language, providing a testbed for language constructs
and, as such, enables parsing, validating, and interpreting of
LEMS documents (models). LEMS is canonically serialized as
XML, and the majority of existing models have been directly
developed using this syntax. In order to simulate the model,
jLEMS builds an internal representation conforming to LEMS
semantics (Cannon et al., 2014). This loading of the LEMS XML
into this internal state is depicted as a green box in the P (middle)
branch of Figure 7. Given that any neuronal or general-purpose
simulator will eventually require similar information about the
model in order to simulate it, the natural first approach to code
generation from LEMS involved procedural interaction with this
internal representation, manually navigating through component
hierarchies to ultimately fetch dynamics definitions in terms of
Parameters,DerivedVariables, and routing events. Exporters from
NeuroML2 to NEURON (both hoc and mod), Brian1 and SBML
were developed using these techniques (end point of Figure 7 P),
and can be found in the org.neuroml.export repository (Gleeson
et al., 2018).

Even if all the information required to generate code
for different targets is encoded in the jLEMS intermediate
representation, the fact that the latter was designed to support a
numerical simulation engine creates overheads for the procedural
pipeline, typically involving careful mixed use of LEMS / domain

FIGURE 7 | Multiple pipelines involving code generation for NeuroML2 and LEMS. Purely Procedural (P) and intermediate representation/Template-based (T)

pipelines, both stemming from the internal representation constructed by jLEMS from parsed LEMS XML documents. S: Generation of customizable language

bindings via construction of LEMS Semantic model and merging with templates.

Frontiers in Neuroinformatics | www.frontiersin.org 14 November 2018 | Volume 12 | Article 68199

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

abstractions and requiring repetitive application of similar
traversal/conversion patterns for every new code generator.
This regularity suggested pursuing a second intermediate
representation, which would capture these patterns into a further
abstraction.

2.5.3.2. Lower-level intermediate representation/templating
Neuronal simulation engines such as Brian, GENESIS, NEST and
NEURON tend to operate at levels of abstraction suited to models
described in terms of differential equations (e.g., explicit syntax
for time derivatives in Brian,NESTML andNEURON nmodl), in
conjunction with discontinuous state changes (usually abstracted
within “event handlers” in neuronal simulators). Code generation
for any of those platforms from LEMS model would thus
be facilitated if LEMS models could be cast at this level of
abstraction, as most of the transformations would consist of one-
to-onemappings which are particularly suited for template-based
generation. Not surprisingly, Component dynamics in LEMS
are described precisely at the hybrid dynamical system level,
motivating the construction of a pipeline (Figure 7 T) centered
around an intermediate representation, termed dLEMS (Marin
et al., 2018b), which would facilitate simplified code generation
not only for neuronal simulators (dLEMS being semantically
close to e.g., Brian andNESTML) but also for ODE-aware general
purpose numerical platforms like Matlab or even C/Sundials
(Hindmarsh et al., 2005).

Besides reducing development time by removing complex
logic from template bodies—all processing is done on the
semantic model, using a general purpose language (Java in the
case of jLEMS backed pipelines) instead of the templating DSL,
which also promotes code reuse—this approach also enables
target language experts to work with templates with reduced
syntactic noise, shifting focus from processing information on
LEMS internals to optimized generation (e.g., more idiomatic,
efficient code).

2.5.3.3. Syntax oriented generation/semantic model

construction
Both the procedural and template-based pipelines (Figure 7 P,T)
described in the preceding paragraphs stem from the jLEMS
internal representation data structure, which is built from both
the LEMS document and an implementation of LEMS semantics,
internal to jLEMS. To illustrate the interplay between syntax and
semantics, consider for example the concept of ComponentType
extension in LEMS, whereby a ComponentType can inherit
structure from another. In a LEMS document serialized as
XML, the “child” ComponentType is represented by an XML
element, with an attribute (string) containing the name of the
“parent.” Syntactically, there is no way of determining that this
string should actually represent an existing ComponentType, and
that structure should be inherited—that is the role of semantic
analysis.

The P and T pipelines rely heavily on APIs for traversing,
searching, and transforming a semantic model. They have been
implemented on top of the one implemented by jLEMS—
even though it contains further transformations introduced to
ease interpretation of models for numerical simulation—the

original purpose of jLEMS. Given that both code generation and
interpretation pipelines depend on the initial steps of parsing
the concrete syntax (XML) and building a semantic model with
novel APIs, a third “semantic” pipeline (Figure 7 S) is under
development to factor out commonalities. Starting with LEMS
definitions for a domain-specific language—in the particular case
of NeuroML2, a collection of ComponentTypes spanning the
domain of biophysical neuronal models—a semantic model is
produced in the form of domain types for the target language,
via template-based code generation. Any (domain specific, e.g.,
NeuroML2) LEMS document can then be unmarshalled into
domain objects, constituting language bindings with custom
APIs that can be further processed for code generation or used
in an interpreter.

Any LEMS-backed language definition (library of
ComponentTypes) can use the experimental Java binding
generator directly through a Maven plugin we have created
(Marin and Gleeson, 2018). A sample project where domain
classes for NeuroML2 are built is available (Marin et al., 2018a),
illustrating how to use the plugin.

2.5.3.4. Numerical integration
As a declarative model specification language, LEMS was
designed to separate model description from numerical
implementation. When building a model using LEMS—or any
DSL built on top of it such as NeuroML2—the user basically
instantiates preexisting (or creates new and then instantiates)
LEMS ComponentTypes, parameterizing and connecting them
together hierarchically. In order to simulate this model, it
can either be interpreted by the native LEMS interpreters
(e.g., jLEMS, which employs either Forward-Euler or a 4th
order Runge-Kutta scheme to approximate solutions for ODE-
based node dynamics and then performs event detection and
propagation) or transform the models to either general-purpose
languages or domain-specific simulators, as described above for
each code generation pipeline.

2.5.4. General Considerations and Future Plans
Different code generation strategies for LEMS based domain
languages —such as NeuroML2—have been illustrated. With
LEMS being domain and numerical implementation agnostic,
it is convenient to continue with complementary approaches to
code generation, each one fitting different users’ requirements.
The first strategy to be developed, fully procedural generation
based on jLEMS internal representation (P), has lead to the
most complex and widely tested generators to date—such as
the one from NeuroML2 to NEURON (mod/hoc). Given that
jLEMS was not built to be a high-performance simulator,
but a reference interpreter compliant with LEMS semantics,
it is paramount to have robust generation for state-of-the art
domain-specific simulators if LEMS-based languages are to be
more widely adopted. Conversely, it is important to lower the
barriers for simulator developers to adopt LEMS-based models
as input. These considerations have motivated building the
dLEMS/templating based code generation pipeline (T), bringing
LEMS abstractions into a representation closer to that of most
hybrid-system backed solvers, so that simulator developers can

Frontiers in Neuroinformatics | www.frontiersin.org 15 November 2018 | Volume 12 | Article 68200

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

relate to templates resembling the native format, with minimal
interaction with LEMS internals.

The semantic-model/custom API strategy (S) is currently at
an experimental stage, and was originally designed to factor out
parsing/semantic analysis from jLEMS into a generic compiler
front end-like (Grune et al., 2012) standalone package. This
approach was advantageous in comparison with the previous
XML-centric strategy, where bindings were generated from
XML Schema Descriptions manually built and kept up-to-
date with LEMS ComponentType definitions—which incurred
in redundancy as ComponentTypes fully specify the structure
of a domain document (Component definitions). While it is
experimental, the modular character of this new infrastructure
should contribute to faster, more reusable development of code
generators for new targets.

2.6. NineML, Pype9, 9ML-Toolkit
The Network Interchange for NEuroscience Modeling
Language (NineML) (Raikov et al., 2011) was developed by
the International Neuroinformatics Coordinating Facility
(INCF) NineML taskforce (2008–2012) to promote model
sharing and reusability by providing a mathematically-explicit,
simulator-independent language to describe networks of point
neurons. Although the INCF taskforce ended before NineML
was fully specified, the component-based descriptions of
neuronal dynamics designed by the taskforce informed the
development of both LEMS (section 2.5; Cannon et al., 2014) and
SpineML (section 2.8; Richmond et al., 2014), before the NineML
Committee (http://nineml.net/committee) completed version 1
of the specification in 2015 (https://nineml-spec.readthedocs.io/
en/1.1).

NineML only describes the model itself, not solver-specific
details, and is therefore suitable for exchanging models between
a wide range of simulators and tools. One of the main aims
of the NineML Committee is to encourage the development
of an eco-system of interoperable simulators, analysis packages,
and user interfaces. To this end, the NineML Python Library
(https://nineml-python.readthedocs.io) has been developed to
provide convenient methods to validate, analyse, and manipulate
NineML models in Python, as well as handling serialization to
and from multiple formats, including XML, JSON, YAML, and
HDF5. At the time of publication, there are two simulation
packages that implement the NineML specification using code
generation, PYthon PipelinEs for 9ml (Pype9; https://github.
com/NeuralEnsemble/pype9) and the Chicken Scheme 9ML-
toolkit (https://github.com/iraikov/9ML-toolkit), in addition to
a toolkit for dynamic systems analysis that supports NineML
through the NineML Python Library, PyDSTool (Clewley, 2012).

2.6.1. Main Modeling Focus
The scope of NineML version 1 is limited to networks of
point neurons connected by projections containing post-synaptic
response and plasticity dynamics. However, version 2 will
introduce syntax to combine dynamic components (support
for “multi-component” dynamics components, including their
flattening to canonical dynamics components, is already
implemented in the NineML Python Library), allowing neuron

models to be constructed from combinations of distinct ion
channel and concentration models, that in principle could be
used to describe models with a small number of compartments.
Explicit support for biophysically detailed models, including
large multi-compartmental models, is planned to be included
in future NineML versions through a formal “extensions”
framework.

2.6.2. Model Notation
NineML is described by an object model. Models can be written
and exported in multiple formats, including XML, JSON, YAML,
HDF5, Python, and Chicken Scheme. The language has two
layers, the Abstraction layer (AL), for describing the behavior
of network components (neurons, ion channels, synapses, etc.),
and the User layer, for describing network structure. The AL
represents models of hybrid dynamical systems using a state
machine-like object model whose principle elements are Regimes,
in which the behavior of the model state variables is governed
by ordinary differential equations, and Transitions, triggered
by conditions on state variable values or by external event
signals, and which cause a change to a new regime, optionally
accompanied by a discontinuous change in the values of state
variables. For the example of a leaky integrate-and-fire model
there are two regimes, one for the subthreshold behavior of
the membrane potential, and one for the refractory period. The
transition from subthreshold to refractory is triggered by the
membrane potential crossing a threshold from below, and causes
emission of a spike event and reset of themembrane potential; the
reverse transition is triggered by the time since the spike passing
a threshold (the refractory time period). This is expressed using
YAML notation as follows:

1 NineML:

2 '@namespace': http://nineml.net/9ML/1.0

3 ComponentClass:

4 - name: LeakyIntegrateAndFire

5 Parameter:

6 - {name: R, dimension: resistance}

7 - {name: refractory_period, dimension: time}

8 - {name: tau, dimension: time}

9 - {name: v_reset, dimension: voltage}

10 - {name: v_threshold, dimension: voltage}

11 AnalogReducePort:

12 - {name: i_synaptic, dimension: current,

operator: +}

13 EventSendPort:

14 - {name: spike_output}

15 AnalogSendPort:

16 - {name: refractory_end, dimension: time}

17 - {name: v, dimension: voltage}

18 Dynamics:

19 StateVariable:

20 - {name: refractory_end, dimension: time}

21 - {name: v, dimension: voltage}

22 Regime:

23 - name: refractory

24 OnCondition:

25 - Trigger: {MathInline: t > refractory_end

}

26 target_regime: subthreshold

27 - name: subthreshold

28 TimeDerivative:

Frontiers in Neuroinformatics | www.frontiersin.org 16 November 2018 | Volume 12 | Article 68201

http://nineml.net/committee
https://nineml-spec.readthedocs.io/en/1.1
https://nineml-spec.readthedocs.io/en/1.1
https://nineml-python.readthedocs.io
https://github.com/NeuralEnsemble/pype9
https://github.com/NeuralEnsemble/pype9
https://github.com/iraikov/9ML-toolkit
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

29 - {variable: v, MathInline: (R*i_synaptic

- v)/tau}

30 OnCondition:

31 - Trigger: {MathInline: v > v_threshold}

32 target_regime: refractory

33 StateAssignment:

34 - {variable: refractory_end, MathInline:

refractory_period + t}

35 - {variable: v, MathInline: v_reset}

36 OutputEvent:

37 - {port: spike_output}

38 Dimension:

39 - {name: capacitance, m: -1, l: -2, t: 4, i: 2}

40 - {name: current, i: 1}

41 - {name: resistance, m: 1, l: 2, t: -3, i: -2}

42 - {name: time, t: 1}

43 - {name: voltage, m: 1, l: 2, t: -3, i: -1}

By design, the model description is intended to be a purely
mathematical description of the model, with no information
relating to the numerical solution of the equations. The
appropriate methods for solving the equations are intended to
be inferred by downstream simulation and code generation tools
based on the model structure and their own heuristics. However,
it is possible to add optional annotations to NineML models
giving hints and suggestions for appropriate solver methods.

2.6.3. Code Generation Pipelines
A number of tools have been developed to perform simulations
from NineML descriptions.

The NineML Python Library (https://github.com/INCF/
nineml-python) is a Python software library which maps the
NineML object model onto Python classes, enabling NineML
models to be expressed in Python syntax. The library also
supports introspection, manipulation and validation of NineML
model structure, making it a powerful tool for use in code
generation pipelines. Finally, the library supports serialization of
NineML models to and from multiple formats, including XML,
JSON, YAML, and HDF5.

Pype9 (https://github.com/NeuralEnsemble/pype9.git) is a
collection of Python tools for performing simulations of NineML
models using either NEURON or NEST. It uses the NineML
Python library to analyze the model structure and manipulate
it appropriately (for example merging linked components into
a single component) for code generation using templating.
Compilation of the generated code and linking with the simulator
is performed behind the scenes.

PyDSTool (http://www2.gsu.edu/~matrhc/PyDSTool.htm) is
an integrated environment for simulation and analysis of
dynamical systems. It uses the NineML Python library to read
NineML model descriptions, then maps the object model to
corresponding PyDSTool model constructs. This is not code
generation in any classical sense, although it could be regarded
as generation of Python code. This is noted here to highlight the
alternative ways in which declarative model descriptions can be
used in simulation pipelines.

9ML toolkit (https://github.com/iraikov/9ML-toolkit) is a
code generation toolkit for NineML models, written in Chicken
Scheme. It supports the XML serialization of NineML as well as a
NineML DSL based on Scheme. The toolkit generates executable

code from NineML models, using native Runge-Kutta explicit
solvers or the SUNDIALS solvers (Hindmarsh et al., 2005).

2.7. NEURON/NMODL
NEURON’s (Hines and Carnevale, 1997) usefulness for research
depends in large part on the ability of model authors to extend
its domain by incorporating new biophysical mechanisms with
a wide diversity of properties that include voltage and ligand
gated channels, ionic accumulation and diffusion, and synapse
models. At the user level these properties are typically most
easily expressed in terms of algebraic and ordinary differential
equations, kinetic schemes, and finite state machines. Working
at this level helps the users to remain focused on the biology
instead of low level programming details. At the same time,
for reasonable performance, these model expressions need to be
compiled into a variety of integrator and processor specific forms
that can be efficiently integrated numerically. This functionality
was made available in the NEURON Simulation Environment
version 2 in 1989 with the introduction of the NEURON Model
Description Language translator NMODL (Hines and Carnevale,
2000).

2.7.1. Main Modeling Focus
NEURON is designed to model individual neurons and networks
of neurons. It is especially suited for models where cable
properties are important and membrane properties are complex.
The modeling focus of NMODL is to desribe channels, ion
accumulation, and synapses in a way that is independent of
solution methods, threads, memory layout, and NEURON C
interface details.

2.7.2. Model Notation
The example in Listing 1 shows how a voltage-gated current can
be implemented and demonstrates the use of different language
constructs. About 90 different constructs or keywords are defined
in the NMODL language. Named blocks in NMODL have the
general form of KEYWORD { statements }, and keywords are
all upper case. The principle addition to the original MODL
language was a NEURON block that specifies the name of the
mechanism, which ions were used in the model, and which
variables were functions of position on neuron trees. The SUFFIX
keyword identifies this to be a density mechanism and directs all
variable names declared by this mechanism to include the suffix
_kd when referred to externally. This helps to avoid conflicts
with similar names in other mechanisms. The mechanism has a
USEION statement for each of the ions that it affects or is affected
by. The RANGE keyword asserts that the specified variables are
functions of position. In other words, each of these variables can
have a different value in each neural compartment or segment.

The UNITS block defines new names for units in terms of
existing names in the UNIX units database. The PARAMETER
block declares variables whose values are normally specified by
the user as parameters. The parameters generally remain constant
during a simulation but can be changed. The ASSIGNED block
is used for declaring two kinds of variables that are either given
values outside the mod file or appear on the left hand side of
assignment statements within the mod file. If a model involves

Frontiers in Neuroinformatics | www.frontiersin.org 17 November 2018 | Volume 12 | Article 68202

https://github.com/INCF/nineml-python
https://github.com/INCF/nineml-python
https://github.com/NeuralEnsemble/pype9.git
http://www2.gsu.edu/~matrhc/PyDSTool.htm
https://github.com/iraikov/9ML-toolkit
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

differential equations, algebraic equations, or kinetic reaction
schemes, their dependent variables or unknowns are listed in
the STATE block. The INITIAL block contains instructions to
initialize STATE variables. BREAKPOINT is a MODL legacy
name (that perhaps should have been renamed to “CURRENT”)
and serves to update current and conductance at each time
step based on gating state and voltage values. The SOLVE
statement tells how the values of the STATE variables will be
integrated within each time step interval. NEURON has built-
in routines to solve families of simultaneous algebraic equations
or perform numeric integration which are discussed in section
2.7.4. At the end of a BREAKPOINT block all variables should
be consistent with respect to time. The DERIVATIVE block
is used to assign values to the derivatives of STATE variables
described by differential equations. These statements are of the
form y′ = expr, where a series of apostrophes can be used to
signify higher-order derivatives. Functions are introduced with
the FUNCTION keyword and can be called from other blocks
like BREAKPOINT,DERIVATIVE, INITIAL, etc. They can be also
called from the NEURON interpreter or other mechanisms by
adding the suffix of the mechanism in which they are defined,
e.g., alpha_kd(). One can enable or disable unit checking for
specific code blocks using UNITSON or UNITSOFF keywords.
The statements between VERBATIM and ENDVERBATIM will
be copied to the translated C file without further processing.
This can be useful for individual users as it allows addition of
new features using the C language. But this should be done
with great care because the translator program does not perform
any checks for the specified statements in the VERBATIM
block.

2.7.3. Code Generation Pipeline
NEURON has supported code generation with NMODL since
version 2 released in 1989. Figure 8 shows the high level
workflow of the source-to-source compiler that converts an
NMODL description to a C file. The first step in this translation
is lexical analysis which uses the lex/flex based lexical analyzer
or scanner. The scanner reads the input NMODL file, recognizes
lexical patterns in the source and returns tokens. These tokens
are used by the next step called syntax analysis or parsing. The
yacc/bison tool is used to generate the parser. Syntactic analysis
is needed to determine if the series of tokens returned by the
lexer are appropriate in a language—that is, whether or not the
source statement has the right shape/form. For full syntactic
analysis, the parser works with the lexer to generate a parse tree.
However, not all syntactically valid sentences are meaningful and
hence semantic analysis is performed. This analysis can catch
errors like the use of undefined variables and incorrect uses
of integration methods. During these steps, symbol tables are
constructed and meta information about the model is stored in
global data structures. This information is then used during the
code printing step which writes C code to a file. These translation
steps automatically handle details such as mass balance for each
ionic species, different integration methods, units consistency,
etc.

The output of the translator (a C file) is compiled and
linked with the NEURON library to produce an executable.

1 NEURON {

2 SUFFIX kd

3 USEION k READ ek

WRITE ik

4 RANGE gkbar, gk, ik

5 }

6

7 UNITS {

8 (S) = (siemens)

9 (mV) = (millivolt)

10 (mA) = (milliamp)

11 }

12

13 PARAMETER {

14 gkbar = 0.036 (S/

cm2)

15 }

16

17 ASSIGNED {

18 v (mV)

19 ek (mV)

20 gk (S/cm2)

21 }

22

23 STATE {

24 n

25 }

26

27 INITIAL {

28 n = alpha(v)/(alpha

(v) + beta(v))

29 }

30

31 BREAKPOINT {

32 SOLVE states METHOD

cnexp

33 gk = gkbar * n^4

34 ik = gk * (v - ek)

35 }

36

37 DERIVATIVE states {

38 n' = (1-n)*alpha(v)

- n*beta(v)

39 }

40

41 FUNCTION alpha(Vm (mV

)) (/ms) {

42 LOCAL x

43 UNITSOFF

44 x = (Vm+55)/10

45 if (fabs(x) > 1e

-6) {

46 alpha = 0.1*x

/(1 - exp(-

x))

47 }else{

48 alpha = 0.1/(1

- 0.5*x)

49 }

50 UNITSON

51 }

52

53 FUNCTION beta(Vm (mV)

) (/ms) {

54 UNITSOFF

55 beta = 0.125*exp

(-(Vm+65)/80)

56 UNITSON

57

58 VERBATIM

59 /* C language

code */

60 ENDVERBATIM

61 }

Listing 1 | NMODL example of voltage-gated potassium current.

This achieves conceptual leverage and savings of effort not only
because the high-level mechanism specification is much easier to
understand and farmore compact than the equivalent C code, but
also because it spares the user from having to bother with low-
level programming issues like how to “interface” the code with
other mechanisms and with NEURON itself.

Over the years, the lexical analyzer and parser portions
of the translator have been reasonably stable. The syntax
extension needed to distinguish between density mechanisms
and mechanisms localized to single points on a neuron, and
the syntax extension needed to handle discrete spike event
coupling to synapses, consisted of straightforward additions
to the parser without any changes to the syntax. On the
other hand, there have been a number of dramatic and far
reaching changes in the processing of the parse tree and C
code output as NEURON has evolved to make use of object
oriented programming, variable step integrators (CVODE and
IDA), threads, different memory layouts, and neural network
simulations. In order to improve efficiency and portability on
modern architectures like Intel Xeon Phi and NVIDIA GPUs,
the core engine of the NEURON simulator is being factored
out into the CoreNEURON simulator (Kumbhar et al., 2016).

Frontiers in Neuroinformatics | www.frontiersin.org 18 November 2018 | Volume 12 | Article 68203

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

This simulator supports all NEURONmodels written inNMODL
and uses a modified variant of the NMODL translator program
called mod2c. This code generator supports memory layouts
like Array-of-Structure (AoS) and Structure-of-Array (SoA) for
efficient vectorization and memory access patterns. In order to
support heterogeneous CPU/GPU platforms, mod2c generates
code using the OpenACC programming model (Wikipedia,
2012).

2.7.4. Numerical Integration
The equations specified in the DERIVATIVE block are integrated
using the numerical method specified by the SOLVE statement in
the BREAKPOINT block. NEURON provides different methods
for fixed step integration that include cnexp, derivimplicit which
are appropriate for systems with widely varying time constants
(stiff systems). The cnexp integration method is appropriate
for mechanisms described by linear ODEs (including Hodgkin-
Huxley-style channel models). This is an implicit integration
method and can produce solutions that have second order
precision in time. The derivimplicit integration method solves
nonlinear ODEs and ODEs that include coupled state equations.
This method provides first-order accuracy and is usable with
general ODEs regardless of stiffness or non-linearity. If kinetic
schemes are used, they get translated into equations and use the
sparse solver, which produces results with first-order precision
in time. It is important to note that independent of integration
method selection, the high-level membrane description remains
unchanged.

2.8. SpineML
The Spiking Neural Mark-up Language (SpineML) is a declarative
XML based model description language for large scale neural
network models (Richmond et al., 2014), based on the NineML
syntax (see section 2.6; Raikov et al., 2011) and using the common
model specification syntax of LEMS for components (section 2.5;
Cannon et al., 2014). The declarative and simulator independent
syntax of SpineML is designed to facilitate code generation to a
number of simulation engines.

SpineML expands the NineML syntax, integrating new layers
to support the ability to create and execute neural network
experiments using a portable XML format. Primarily, two new
layers have been added, a Network layer and an Experiment layer.
These additions maximize the flexibility of described models,
and provide an easy mapping for code-generation for complete
networks.

Figure 9 details the structural overlap between the NineML
and the SpineML formats. A three layer modeling approach
is used to specify: components (e.g., neurons, synapses, etc.),
a network connectivity pattern, and an experimental layer
containing simulation specifications such as runtime conditions,
population inputs and variable recording.

2.8.1. Main Modeling Focus
The syntax is designed primarily for the specification of large
scale networks of point neurons but also has the flexibility to
describe biologically constrained models consisting of non-
standard components (such as gap junctions).The modeling
focus is specifically designed around point neurons with

arbitrary dynamics, expressed as any number of differential
equations. Different behavioral regimes can be specified to
allow expressive modeling of phenomena such as explicit
refectory periods. As such, SpineML can represent much
more complex neurons than Leaky Integrate and Fire, but
is less well suited to multi-compartmental models such
as Hodgkin-Huxley neurons. A SpineML project consists
of three types of XML files: component files, the network
file, and the experiment file (see Figure 10). Together these
files describe a whole experiment, including component
dynamics, network connectivity and experimental inputs and
outputs.

2.8.2. Model Notation
The Component Layer encodes the individual computational
modules (usually neuronal cells) of a simulation through the
ComponentClass definition. The component level syntax of
SpineML is directly derived from theNineML “abstraction” using
LEMS, differing in two cases: the syntax for describing ports,
and that SpineML units and dimensionality are combined into
a single SI attribute.

1 <?xml version="1.0"?>

2 <SpineML xsi: ... >

3 <ComponentClass type="neuron_body" name="LeakyIAF

">

4 <Dynamics initial_regime="integrating">

5 ... regime ...

6 <StateVariable dimension="mV" name="V"/>

7 </Dynamics>

8 <AnalogReducePort dimension="mA" name="I_Syn"

reduce_op="+"/>

9 <AnalogSendPort name="V"/>

10 <Parameter dimension="nS" name="C"/>

11 <Parameter dimension="mV" name="Vt"/>

12 <Parameter dimension="mV" name="Er"/>

13 <Parameter dimension="mV" name="Vr"/>

14 <Parameter dimension="MOhm" name="R"/>

15 </ComponentClass>

16 </SpineML>

Listing 2 | A SpineML Component representation of a leaky integrate-and-fire

neuron. The definition of regimes has been moved to a separate listing.

SpineML components specify parameters, state variables,
regimes, and ports. Parameters are static variables of the model
which are referenced by time derivatives, state assignments and
triggers. Along with state variables, parameters have both a name
and a dimension consisting of an SI unit. Ports are defined
to enable communication channels between components, and
can be Send or Receive Ports. Ports are further divided onto
Analog ports, for continuous variables, Event ports for events
such as a spike, and Impulse ports for events with a magnitude.
Listing 2 shows an example definition of a leaky integrate-
and-fire component in SpineML. The component defines the
State Variable V, Parameters C, Vt, Er, Vr, R, an output
AnalogueSendPort V and an input AnalogueReducePort I_Syn.

The component defines the State-like “regimes” that change
the underlying dynamics in response to events and changing
conditions, as shown in Listing 3. A regime contains a time
derivative, a differential equation that governs the evolution of
a state variable. A regime can have transitions which change the

Frontiers in Neuroinformatics | www.frontiersin.org 19 November 2018 | Volume 12 | Article 68204

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

FIGURE 8 | NMODL code generation workflow in NEURON/CoreNEURON targeting CPU/GPU.

FIGURE 9 | A comparison of the SpineML and NineML specification. The SpineML syntax is a proposed extension to the NineML modeling format which provides a

complete syntax for describing models of spiking point neuron models with varying biological complexity. The SpineML syntax extends NineML and allows full

simulator support for all three layers of components, networks and experiments (Adapted from Richmond et al., 2014).

current regime when a condition is met, that can further trigger
events such as spiking outputs. State variables are referenced in
the time derivatives, transitions, and conditions.

1 <Regime name="integrating">

2 <TimeDerivative variable="V">

3 <MathInline>((I_Syn) / C) + (Vr - V) / (R*C)<

/MathInline>

4 </TimeDerivative>

5 <OnCondition target_regime="integrating">

6 <StateAssignment variable="V">

7 <MathInline>Vr</MathInline>

8 </StateAssignment>

9 <Trigger>

10 <MathInline>V > Vt</MathInline>

11 </Trigger>

12 </OnCondition>

13 </Regime>

Listing 3 | Integration regime for a leaky integrate-and-fire neuron.

Frontiers in Neuroinformatics | www.frontiersin.org 20 November 2018 | Volume 12 | Article 68205

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

FIGURE 10 | The modular dynamics within the three layers of SpineML. The figure shows the connectivity of a Neuron and Synapse, including WeightUpdates and a

PostSynapse model. A ComponentClass described within the component layer defines the dynamical behavior of neurons, synapses, and neuromodulators. A

ComponentClass updates state variables and emits outputs, by evolving differential equations, inputs, and aliases (parameters and state variables). Input and Output
ports create an interface which enable each component instance to be connected to other instances within the network layer. The experiment layer defines network

inputs such as spike sources or current injections (Taken from Richmond et al., 2014).

The Network Layer description allows instances of
components to be connected via ports using high level
abstractions such as populations and projections. The complete
object model of the network layer can be found in Richmond
et al. (2014).

The high-level network syntax defines networks in terms of
Populations and Projections defining Synapse components for
WeightUpdates and PostSynapse primitives. A population can
contain one or more Projections to a named target Population,
and each Projection can contain one or more Synapses which are
associated with a connectivity pattern and sets of WeightUpdate
and PostSynapse components.

A population property defines the instantiated state variable
or parameter values of a named component. Property values
can be described by a fixed value for all instances, statistical
distributions, or as explicit value lists.

Population ports link the pre-synaptic and postsynaptic
population, and can be analog, event based, or impulse. SpineML
provides a special case, the AnalogueReducePort, which allows
multiple postsynaptic values to be reduced using summation.

High-level abstractions of populations and projections
simplify the descriptions of point-based networkmodels allowing
for a convenient mapping matching the abstraction of many
simulators during code generation. However, projection based
connectivity is not suitable for describing concepts such as gap
junctions and neuromodulation. To address this the high-level
object model has been extended to form an additional low-level

schema. A low-level network allows the direct connection of
components via Inputs and Groups of component instances. This
provides a great deal of flexibility but requires simulators to
support the connections of general computational components
outside of the more common population projection abstraction
level.

The Experiment Layer is the final phase of specifying a model
and describes a simulation to be conducted. The syntax of the
experimental layer is similar to the SED-ML experiment design
language (Waltemath et al., 2011) but adds essential support
for experiment inputs. It specifies the network model to be
simulated, the period of simulation and the numerical integration
scheme, the definition of model inputs, simulation inputs, and
outputs.

2.8.3. Code Generation Pipeline
A SpineML model can be mapped to a specific simulation engine
using translation through code generation. Code generation
for SpineML has been primarily provided through the use of
XSLT templates. XSLT is an established method for document
translation to HTML or other XML document formats. As there
is no limit for the output file type generated from an XSLT
template, it is suitable for any form of plain text file generation
including native simulator source code generation. An XSLT
processor works by recursively querying XML nodes using XPath
expressions, and applying a template to process the content of
each node. For simulator specific code, a model is processed

Frontiers in Neuroinformatics | www.frontiersin.org 21 November 2018 | Volume 12 | Article 68206

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

by querying experiment, network layer, and component layer
documents recursively using the branching and control elements
of XSLT to generate plain text. As XSLT can be used as a fully
functional programming language, it offers many advantages
over a custom templating language, enabling complex control
and data structures to inform the template output.

Code generation templates have been developed for a
reference simulator, BRAHMS (Mitchinson et al., 2010): a multi-
threaded simulation engine, DAMSON: a multi-processor multi-
threaded event-driven form of C designed for emulating and
compiling code for the SpiNNaker hardware architecture (Plana
et al., 2007), GeNN: a GPU simulator for spiking neural systems
(Yavuz et al., 2016), and a number of other simulators via PyNN
(Figure 11).

Whilst SpineML models can be generated by hand, the use
of a declarative common format allows independent tools to be
generated for model design and creation using SpineML as a
common storage format. Currently SpineCreator (Cope et al.,
2017) provides a powerful GUI for SpineML generation with
hooks into dynamic code generation and simulation output
analysis.

Recently libSpineML has been released to add support for
direct SpineML representation in Python, by deriving Python
data structures from SpineML schema documents. This provides
a convenient, programmatic wrapping to enable a new route
for code generation from pythonic objects. Recent developments

have demonstrated component level GPU code generation for the
Neurokernel simulation platform (Givon and Lazar, 2016) using
libSpineML and libSpineML2NK (Tomkins et al., 2016).

The libSpineML library enables SpineML objects to be
imported, programmatically modified, and exported using a set
of Python classes derived from the three SpineML layer schemata.

The libSpineML2NK library utilizes a general purpose
SpineML-aware neuron model in the Neurokernel framework.
By processing the libSpineML representation, the generic
componentmodel interfaces with the Neurokernel compute layer
to dynamically allocate and manage GPU memory and manage
network communication. Each SpineML component can then
be converted to a NVIDIA CUDA kernel by translating the
libSpineML object into a series of generic CUDA statements.
Listing 3 shows an excerpt of a generated NVIDIA CUDA kernel,
representing the integrating regime of a leaky integrate-and-fire
SpineML component.

1 // Assign State Variables to temporary variables

2 C= g_C[i];

3 Vt= g_Vt[i];

4 Er= g_Er[i];

5 Vr= g_Vr[i];

6 R= g_R[i];

7 V= internal_g_V[i];

8

9 // Assign inputs to temporary values

10 I_Syn= g_I_Syn[i];

FIGURE 11 | A tool-chain for simulation through code generation using the SpineML modeling syntax. The SpineML modeling syntax is composed of three layers,

structured according to an XML Schema. Models can be generated manually using XML editors or using graphical user interface (GUI) tools. Translation of a model to

any simulator is achieved by using a simulator specific set of XSLT templates, or Python libraries, to generate simulator code or native simulator model descriptions.

Simulator code then logs results in a standardized format which can be used for plotting and analysis (Adapted from Richmond et al., 2014).

Frontiers in Neuroinformatics | www.frontiersin.org 22 November 2018 | Volume 12 | Article 68207

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

11

12 // Encode Time Differential

13 V = V+ (dt * (((I_Syn) / C) + (Er - V) / (R*C)));

14

15 // Encode OnConditions

16 if(V > Vt){ V = Vr;}

17

18 g_V[i]= V; // final outputs

Listing 4 | Neurokernel CUDA kernel.

2.8.4. Numerical Integration
SpineML does not explicitly solve any equations itself, but allows
differential equations to be defined within behavioral regimes.
The Experimental layer allows the definition of a preferred
integration method to be used to solve these, but does not impose
any specific implementation. If simulators do not support the
defined integration scheme, it is anticipated that runtimewarning
should be raised, and a default integration scheme should be
used as a fall back. All current simulators support forward Euler
integration.

2.9. SpiNNaker
The SpiNNaker toolchain differs from the other tools described
in this article in that it does not run on general purpose
hardware, but only supports the SpiNNaker neuromorphic
hardware system as a simulation backend (Furber et al., 2013).
The SpiNNaker software is open source and freely available. Its
most recent release is version 4.0.0 (Stokes et al., 2007a) which
has documentation on how to add new neuron models and new
plasticity rules (Stokes et al., 2007b). The SpiNNaker software
will run on any Python 2.7 installation, but requires access to
a SpiNNaker hardware platform. Free access to a large-scale
SpiNNaker machine is possible via the collaboration portal of the
Human Brain Project (see section 3).

2.9.1. Main Modeling Focus
All versions of the neural software supported on SpiNNaker
expect users to describe their spiking neural networks using
PyNN (Davison et al., 2009), which is then translated
automatically into distributed event-driven C code running on
the SpiNNaker hardware platform. The degree of code generation
within SpiNNaker software is limited to the compilation of the
PyNN network description to generate the neural and synaptic
data structures for each core to execute. The models themselves
are written in hand-crafted C code for the SpiNNaker platform,
and attempt to balance a reasonable trade-off between: numerical
accuracy, space-utilization and execution efficiency. To support
this, Python classes translate the appropriate parameters between
the user script and the platform data structures, including the
reading back of results.

The decision to support hand crafted code results partly from
the structure of the PyNN language which enforces a basic set of
neuron and synapse models that end users can use to describe
their spiking neural networks, and therefore hand crafting the
code that represents these neuron models and synapses makes
a sensible starting point. The other reason for supporting hand
crafted code is the time required to build a software system for

translating general differential equations into code that is small,
fast and accurate enough to run on the platform, particularly
noting the lack of a floating point unit on the processor. The
current toolchain has been in existence for nearly five years and
handles the entire process of mapping, running and extracting
data from a spiking neural network that could potentially consist
of up to one billion neurons and one trillion synapses on a unique
architecture and therefore hand crafted code was the simplest
approach to execute.

Currently if an end-user requires a neuron model outside
those supported by PyNN or one that is not currently
implemented in the SpiNNaker software support for PyNN, it will
need to be hand crafted. This consists of writing both a Python
class, a C code block that can update the state of the new neuron
model or synapse on a time-step basis, and finally a Makefile
that joins the components together to represent the new neuron
model. The SpiNNaker software stack currently supports the
following PyNN models: IfCurExp, IfCondExp, IfCurDuelExp,
IzhikevichCurExp, IzhikevichCondExp, SpikeSourceArray, and
SpikeSourcePoisson.

The Python class is used to explain to the SpiNNaker software
what SpiNNaker hardware resources the model will require
and any parameters needed by the C code representing the
model to run on the SpiNNaker platform. The way the Python
class describes its requirements is through a set of components,
each of which have parameters that need to be transferred to
the executable C code and therefore require some memory to
store. Each component represents a different part of the overall
logic required for a neuron model. The components currently
available from within the SpiNNaker software stack are shown in
Figure 12. According to that figure, a IfCurExp model contains

FIGURE 12 | SpiNNaker Python model components. The threshold types
govern logic for determining if the neuron should spike given a membrane

potential; the synapse type describes how the weight from a synapse changes

over time; the input type governs the logic to change from a weight to current;

an additional input type allows the addition of more current to a neuron given a

membrane potential; the neuron type encapsulates the equations for

processing the current and determining the membrane potential at each time

step.

Frontiers in Neuroinformatics | www.frontiersin.org 23 November 2018 | Volume 12 | Article 68208

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

a static threshold type, an exponential synapse type, a leaky
integrate-and-fire neuron type, a current based input type and no
additional input type.

Each Python component requires some functions to be
implemented for the tool chain to be able to use it. For a
threshold type, for example, it needs to fill in a function called
get_threshold_parameters() which returns a list of parameters
needed by the C code for it to execute the neuron model.

The C code used to represent the PyNN neuron model is
also split into the same component types as the Python class,
but whereas the Python class is used to define what resources
were to be used and what parameters are needed by the C
code, the C code interfaces require C code functions to be
implemented which are used by the boiler plate code that ties all
the components together, whilst also handling the event driven
nature of SpiNNaker C code.

From the end user’s perspective, adding a new neuron model
requires the creation of new components of the same types
required in the Python class and filling in the functions required
by that component. For example, a new threshold type in the C
code would require a C code which fills in the following functions
and structures:

• The threshold_type_t struct, which contains the parameters
in the order the Python component listed them.

• The threshold_type_is_above_threshold() function, which
has a neuron membrane potential and the threshold_type_t
structure for the given neuron as inputs and should return a
Boolean dictating if the neuron has spiked given the inputs.

Finally, the end user needs to fill in a template Makefile
which compiles the C components into executable C code that
can run on the SpiNNaker platform. An example is shown
in Listing 5 where the components NEURON_MODEL_H,
INPUT_TYPE_H, THRESHOLD_TYPE_H, SYNAPSE_TYPE_H
represent the same components discussed previously and the
SYNAPSE_DYNAMICS represents the type of logic used for
learning (or if the synapses supported are to be static).

1 APP = $(notdir $(CURDIR))

2 BUILD_DIR = build/

3

4 NEURON_MODEL = $(SOURCE_DIR)/neuron/models/

neuron_model_lif_impl.c

5 NEURON_MODEL_H = $(SOURCE_DIR)/neuron/models/

neuron_model_lif_impl.h

6 INPUT_TYPE_H = $(SOURCE_DIR)/neuron/input_types/

input_type_current.h

7 THRESHOLD_TYPE_H = $(SOURCE_DIR)/neuron/

threshold_types/threshold_type_static.h

8 SYNAPSE_TYPE_H = $(SOURCE_DIR)/neuron/

synapse_types/synapse_types_exponential_impl.h

9 SYNAPSE_DYNAMICS = $(SOURCE_DIR)/neuron/plasticity

/synapse_dynamics_static_impl.c

10

11 include ../Makefile.common

Listing 5 | The IfCurExp Makefile for SpiNNaker.

2.9.2. Code Generation Pipeline
The simulation description consists of a collection of PyNN
Populations and Projections, where Populations represent a

collection of neurons of a given model_class, that embodies a
specific neuron model and synapse type that itself embodies a
specific set of equations. For example, the PyNN IfCurExpmodel
embodies the mathematical equations for a leaky integrate-and-
fire neuron (Gerstner and Kistler, 2002) with instantaneous-
rise-exponential-decay synapses. The Projections represent the
physical synapses between neurons of two populations.

New models therefore are represented by a new type of
Population and the SpiNNaker software supports a template for
creating a new neuron model and how to add this into a standard
PyNN script (Rowley et al., 2017).

In terms of data and execution, a SpiNNaker simulation
consists of a set of distinct stages as shown in Figure 13, and
described here (a more detailed description of these stages can
be found in Stokes et al., 2007a):

1. The PyNN script description of the neural network is
converted into a graph where each vertex contains a number
of neurons/atoms, referred to as an application graph.

2. The software then maps the application graph onto the
SpiNNaker machine, which in itself consists of a set of
operations:

(a) The application graph is converted into processor sized
chunks, referred to as a machine graph, where each vertex
can be executed on a SpiNNaker processor.

(b) The mapping phase decides which SpiNNaker processor
will execute eachmachine vertex.

(c) The mapping phase continues with allocating routing keys
to each neuron that can spike during the simulation. This
is used by the router on the SpiNNaker chip to determine
where each packet is to be sent.

(d) For the packets from neurons a path to take through the
SpiNNaker machine is computed, ensuring that each spike
packet reaches all of the destination neurons to which it is
connected.

(e) The routing paths and the routing keys generated are
converted into the routing table rules needed by each router
on the SpiNNaker machine to ensure the packets are sent to
the correct locations.

(f) Chips that have a direct connection back to the host
machine are configured to control the communication of
spikes back to the host, if required.

3. The parameters needed by the neuron models are collected
and written down to the memory on the SpiNNaker chips.

4. The compiled executable files that represent the neuron
models are loaded along with the router data and the tag
information. This stage also handles the control logic that
ensures the simulation only runs for the requested duration,
and ensures that all the data can be recorded without running
out of SDRAM on the SpiNNaker chips by periodically
pausing the simulation and extracting the recorded data.

5. The remaining result data and provenance data are extracted
from the SpiNNaker machine, and handed back to the PyNN
script where the end user can process the results, or change
parameters before continuing the execution for a further
period. The provenance data is used by the SpiNNaker
software to verify that the simulation completed without any

Frontiers in Neuroinformatics | www.frontiersin.org 24 November 2018 | Volume 12 | Article 68209

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

FIGURE 13 | The SpiNNaker software flow. The system starts by utilizing a PyNN script, which is then mapped onto SpiNNaker core sized chunks which are placed

and routed on the SpiNNaker machine. The neuron parameters, synapse data, and binaries are loaded onto the machine and executed, with host based runtime

functionality to support the executing simulation.

issues (such as dropped packets within the communication
fabric, or if the simulation lost synchronization), and if any
issues were detected, these are reported to the end user.

2.9.3. Numerical Integration
The SpiNNaker software framework does not currently provide
any support for solving differential equations. Instead, the user
must provide C code that updates the state of each neuron at each
time step based on the state at the previous time step. The neuron
is broken down in to component parts, allowing the combination
of various existing components, making the development effort
easier. The components are:

1. The synapse type. This component controls the flow through
the synapses of the neuron. The user can define state variables
for each “synapse type” that they wish to define; for example
this might include an “excitatory” and an “inhibitory” synapse.
This component is called once per time step to: add in the
combined weight of several spikes that have been received at
each synapse type; to update any state; and finally to read the
combined excitatory and inhibitory synaptic contributions to
the neuron at the current time step.

2. The input type. The main purpose of this component is to
convert the synaptic input received from the synapse type
component into a current, optionally using the membrane
voltage of the neuron. This is usually chosen to be either
“current” (in which case the value is just passed on directly)
or “conductance” (whichmakes use of themembrane voltage),
but it can be changed to other things depending on the need
of the user.

3. The neuron model. This component controls the internal
state of the neuron body. At each time step, this receives the
excitatory and inhibitory currents, as converted by the input
type component, and updates its state. The neuron model
supports being asked for its membrane voltage (which is used
for recording the state, as well as for passing on to the other
components). Note also that the neuron model is told when
it has spiked, and does not determine this internally (see
below). At this point it can perform any non-linear updates
as determined by the user.

4. The threshold model. This component uses the membrane
voltage as generated by the neuron model to decide whether
the neuron has spiked. This could for example be simply a
static value, or it could be stochastic.

Frontiers in Neuroinformatics | www.frontiersin.org 25 November 2018 | Volume 12 | Article 68210

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

For a discussion on the solving of differential equations within
the fixed-point numerical framework available on SpiNNaker
(Hopkins and Furber, 2015). Once the user has written their
components, they then write a Makefile which combines these
with the rest of the provided neuron executable, as shown in
Listing 5; this handles the rest of the processing required to
execute the neuron model, such as the sending and receiving of
spikes, the recording of variables and spikes, as well as handling
any plasticity. Spike Time Dependent Plasticity rules can also be
generated by the user by providing timing update rules (such
as a Spike Pair rule which uses the time between pairs of pre-
and post-synaptic spikes to determine how much the synaptic
weight is to change) and weight update rules (such as additive,
where a fixed value is added to or subtracted from the weight, or
multiplicative where the existing weight is taken into account).
This splitting again allows an easy way to combine the various
components through the use of a common interface.

Though the components of the SpiNNaker neuron software
make it easy to combine components, they do also somewhat
restrict the rules that can be written to the component interfaces.
Thus we are planning on providing a more general framework
for the neuron models and plasticity models that allows the
combination of the components internally; we will then also
provide an packaging which still supports the existing component
model to ensure that existing components still work. The more
general framework will make it easier to support code generation,
as the rules will not generally be split into the components in this
fashion.

The general interface for describing neuronmodels will utilize
differential equations, such as that provided by Brian (see section
2.1; Goodman and Brette, 2008, 2009). Initially this would
provide support for general linear systems, and the Adaptive
Exponential model only. The reason for adopting this position
is that SpiNNaker-1 has the limitation of expensive division and
integer (or fixed-point) arithmetic only; both of these problems
are eliminated in the new SpiNNaker-2 hardware, which is based
on the ARM Cortex-M4F core, and thus has hardware support
for single precision float and both floating-point and integer
division.

The obvious approach to linear ODE systems is to reduce the
equations to Matrix Form. For example, having the system of
equations:

dv

dt
= a(0,0)v+ a(0,1)u+ b0

du

dt
= a(1,0)v+ a(1,1)v+ b1

allows to express this in matrix form as:

ẋ(t) = Ax(t)+ b

where

A =

(

a(0,0)v a(0,1)
a(1,0) a(1,1)

)

b =

(

a0
a1

)

x(t) =

(

v(t)
u(t)

)

With this formulation the forward evolution of the system at time
t can be expressed as:

x(t) = etAx0 + tφ1(tA)(b)

where φ1(A) = (eA − I)A−1 and x0 = x(0). These matrix
exponential calculations can be performed on the host computer
using the SciPy routine scipy.linalg.expm, provided that
the coefficients in the ODE system remain fixed and that they are
not subject to user modification part way through a simulation.

Actual SpiNNaker execution of the solver is a simple matrix
multiplication as shown above. It can be performed as a series
of fused-multiply-adds. On SpiNNaker (both SpiNNaker-1 and
SpiNNaker-2) this can be done with with 32 × 32 operations
using internal 64 bit accumulators. The key challenge on the
current SpiNNaker hardware is to solve non-linear systems using
a minimal use of division and only a limited dynamic range for
the variables of the ODE system so that the algorithms do not step
outside of the range of the fixed-point number system.

2.10. TVB-HPC
The Virtual Brain (TVB, Sanz Leon et al., 2013) is a large-
scale brain simulator programmed in Python.With a community
of thousands of users around the world, TVB is becoming a
validated, popular and standard choice for the simulation of
whole brain activity. TVB users can create simulations using
neural mass models which can produce outputs for different
analysis modalities. TVB allows scientists to explore and analyze
simulated and experimental data and contains analytic tools for
evaluating relevant scientific parameters in light of that data.

2.10.1. Main Modeling Focus
Neural mass models (NMMs) are mathematical tools for
describing the ensemble behavior of groups of neurons through
time. These models contain a set of internal states which describe
the system and a set of coupled differential equations which
define how the states of the system evolve. An instance of these
models in TVB and their implementation is called a “node.”
The model output consists of a set of observables identifying
states of interest for other nodes. Nodes are linked to each other
using a coupling function. This coupling defines the effect of
input coming from other nodes. Usually the coupling involves
weighting the incoming signals by a factor and then applying
a simple function. The weights for coupling may be derived
from probabilistic tractography and the diffusion-weighted MRI
images of an individual.

Certain system observables can be post-processed to produce
simulated BOLD, EEG or EMG signals, among others. These
signals can be fed into an analysis step where a measure of system
“fitness” with respect to an empirical signal is computed. The
number of open degrees of freedom of the NMMs generates a
vast parameter space to explore if one wants to fit the model
parameters to a specific output. The nature of this workflow
enables the iterative modification and exploration of parameters
in this admissible space. The problem is embarrassingly parallel
(computationally) with respect to the parameter sets to be
explored and can be highly parallelized with respect to the node

Frontiers in Neuroinformatics | www.frontiersin.org 26 November 2018 | Volume 12 | Article 68211

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

computation for most NMM kernels. Adaptive approaches can
be used to optimize the behavior of the models with respect to
fitness functions which can relate to the essential characteristics
of the higher level signals. Fitness functions can incorporate
extended aspects of empirical data, enabling inference of neural
mass model parameters through exploration of parameter space.

A general description of the simulation can be seen in
Figure 14.

The current implementation of TVB is written in Python
using NumPy with limited large-scale parallelization over
different paramaters. The objective of the TVB-HPC project
is enable such large-scale parallelizating by producing a high-
level description of models in all stages in the simulation
workflow which can then be used to automatically generate
high-performance parallel code which could be deployed on
multiple platforms. In particular, this allows reifying data flow
information. With this approach, neuroscientists can define
their pre-processing kernels, coupling, neural mass models,
integration schemes, and post processing kernels using a unique
interface and combine them to create their own workflows. The
result is a framework that hides the complexity of writing robust
parallel code which can run either on GPUs or on CPUs with
different architectures and optimizations from the end user.

2.10.2. Model Notation
The TVB-HPC library is written in Python and makes use of
a generic set of classes to define models in an agnostic way,
independent of the final target implementation.

In additional to predefined models, TVB-HPC has a built
in BaseModel class for defining neural mass models and
a BaseCoupling class for defining coupling kernels through
inheritance. The BaseModel class defines the following set of
attributes:

• State: Internal states of the model.
• Auxex: Auxiliary mathematical expressions which are used for

internal calculations in the model.
• Input: Input coming from other neural masses into this neural

mass.
• Drift: A set of equations which evolve the model from a state

at time t − 1 to time t.
• Diffs: Differentiable variables in the system.
• Observ: Transformations of state variables which are defined

as observable or coupled.
• Const: Constant values specifically defined for a each model.
• Param: Parameters provided to an specific model.
• Limit: Minimum and maximum within which the state values

must be wrapped to ensure mathematical consistency.

A general NMM inherits from the BaseModel class.
As an example, the following listing shows the implementation

of the widely used Kuramoto (Kuramoto, 1975) and the
Hindmarsh-Rose-Jirsa Epileptor (Naze et al., 2015) models from
TVB using the TVB-HPC interface. These two models have been
chosen due to their differing levels of complexity.

1 class Kuramoto(BaseModel):

2 "Kuramoto model of phase synchronization."

3 state = 'theta'

4 limit = (0, 2 * numpy.pi),

5 input = 'I'

6 param = 'omega'

7 drift = 'omega + I',

8 diffs = 0,

9 obsrv = 'theta', 'sin(theta)'

10 const = {'omega': 1.0}

11

12 def _insn_store(self):

13 yield from self._wrap_limit(0)

14 yield from super()._insn_store()

15

16 class HMJE(BaseModel):

17 "Hindmarsh-Rose-Jirsa Epileptor model of

seizure dynamics."

18 state = 'x1 y1 z x2 y2 g'

19 limit = (-2, 1), (20, 2), (2, 5), (-2, 0), (0,

2), (-1, 1)

20 input = 'c1 c2'

21 param = 'x0 Iext r'

22 drift = (

23 'tt * (y1 - z + Iext + Kvf * c1 + ('

24 ' (x1 < 0)*(-a * x1 * x1 + b * x1)'

25 '+ (x1 >= 0)*(slope - x2 + 0.6 * (z -

4)**2)'

26 ') * x1)',

27 'tt * (c - d * x1 * x1 - y1)',

28 'tt * (r * (4 * (x1 - x0) - z + Ks * c1))',

29 'tt * (-y2 + x2 - x2*x2*x2 + Iext2 + 2 * g -

0.3 * (z - 3.5) + Kf * c2)',

30 'tt * ((-y2 + (x2 >= (-0.25)) * (aa * (x2 +

0.25))) / tau)',

31 'tt * (-0.01 * (g - 0.1 * x1))'

32)

33 diffs = 0, 0, 0, 0.0003, 0.0003, 0

34 obsrv = 'x1', 'x2', 'z', '-x1 + x2'

35 const = {'Iext2': 0.45, 'a': 1.0, 'b': 3.0, '

slope': 0.0, 'tt': 1.0, 'c':

36 1.0, 'd': 5.0, 'Kvf': 0.0, 'Ks': 0.0,

'Kf': 0.0, 'aa': 6.0, 'tau':

37 10.0, 'x0': -1.6, 'Iext': 3.1, 'r':

0.00035}

The classes for the coupling kernels are generated in an analogous
manner.

2.10.3. Code Generation Pipeline
Loopy (Klöckner, 2014) is a Python library which aids in the
automatic generation of parallel kernels for different target
hardware platforms. It includes targets for CUDA, OpenCL,
Numba, Numba + CUDA, C, and ISPC. Parallel code in Loopy
is generated by enclosing a set of instructions in independent
execution domains. The dimensions of a domain is specified
using variables named inames in Loopy terminology which
represent the number of parallel instances that one can process
at the same time for the given set of instructions. Notably,
Loopy performs and retains explicit data flow metadata about
instructions, which enables, for example, nearly automatic kernel
fusion. Small, simple kernels can be written and combined using
a data flow which defines how variable values are fed from one
kernel to the next as input. This allows the creation of complex
kernels with assured data dependencies while allowing for unit
testing of small component kernels.

Loopy automatically analyzes the data structures and their
access patterns within a domain. The user can specify types

Frontiers in Neuroinformatics | www.frontiersin.org 27 November 2018 | Volume 12 | Article 68212

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

FIGURE 14 | Interaction between the different computational stages in a neural mass model simulation. The raw connectivity from sources such as diffusion tensor

imaging is pre-processed to produce a connectivity map between brain regions defined by a parcellation scheme. The connectivity map is fed into a network kernel

composed of a coupling, neural mass and integration kernel. The coupling kernel combines the simulated system’s current state with the connectivity data to

compute the input to each node for the current time step. For each node, the NMM kernel computes the state changes which are fed into the integration kernel to

compute the final state at the end of the current time step. The resulting observables are fed back to the coupling kernel and forward to a post-processing kernel to

compute derived signals such as BOLD or EEG data for comparison to experimental results. Since there are no dependencies between distinct instances of the

network kernel, this data flow can be parallelized over each set of model parameters.

and ranges for values and access limits to the data structures to
control data handling. Loopy assembles the computation within a
loop-like environment where each iteration is independent. Code
can then be produced for a target platform in the target’s specific
language.

The BaseModel class has functions which translate the
information provided in the attributes of a model instance in
several steps which ensures the repeatable, coherent and robust
generation of code. The steps to follow in order to generate the
code are as follows:

1. The kernel’s data structures are generated.
2. The kernel domain is defined by setting the limits of the

desired iname variable. The domain is the main loop within
which the parallelization will take place, and the iname is
the variable which identifies different instances of parallel
executions of this loop.

3. Types for the attributes of the model are specified. Loopy can,
in most cases, guess the nature of variables and attiributes, but
the user can explicitly state these types as to avoid confusion
in the code generation.

4. Expression for constants and distribution of the values for the
input, states and parameters are generated.

5. A set of auxiliary expressions which aid the data manipulation
inside the kernel may be generated.

6. Expressions to expose and store values for observables
(variables which can be accessed after the simulation is done)
are generated.

7. Pymbolic (a lightweight SymPy alternative, designed for code
generation tasks) is used to translate the set of symbolic
expressions representing the drift, diffs, and observables in the
next step.

8. The output is wrappedwithin certain limits to avoid numerical
inaccuracies.

9. The final code for a given kernel is generated.

Loopy provides several levels of information about the generated
kernel including dependency analysis and scheduling achieved

based on the access patterns of the inames to the data structures.
An example of the output produced for a test kernel can be seen
in the listings below.

1 ---

2 KERNEL: loopy_kernel

3 ---

4 #In this section, Loopy describes the arguments

that the kernel needs in order to be called.

5 #The type, either defined or infered by Loopy, is

output.

6 #Also the shape of the variables and their scope.

7 ARGUMENTS:

8 lengths: GlobalArg, type: np:dtype('float32'),

shape: (node), dim_tags: (N0:stride:1)

9 node: ValueArg, type: np:dtype('int32')

10 rec_speed_dt: ValueArg, type: np:dtype('float32')

11 state: GlobalArg, type: np:dtype('float32'), shape

: (node), dim_tags: (N0:stride:1)

12 sum: GlobalArg, type: np:dtype('float32'), shape:

()

13 theta_i: ValueArg, type: np:dtype('float32')

14 weights: GlobalArg, type: np:dtype('float32'),

shape: (node), dim_tags: (N0:stride:1)

15 ---

16 #The domain, defines the main loop inside which

the parallelization will take place

17 # and over which variable (INAME)

18 DOMAINS:

19 [node] -> { [j_node] : 0 <= j_node < node }

20 { : }

21 ---

22 INAME IMPLEMENTATION TAGS:

23 j_node: forceseq

24 ---

25 #Defines temporary variables required for

computation

26 TEMPORARIES:

Frontiers in Neuroinformatics | www.frontiersin.org 28 November 2018 | Volume 12 | Article 68213

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

27 dij: type: np:dtype('float32'), shape: () scope:

auto

28 wij: type: np:dtype('float32'), shape: () scope:

auto

29 ---

30 #This is the most important section of the summary

that Loopy generates.

31 #It defines how each instruction is mapped to the

domain and the dependencies of the

instructions.

32 #Based on this, a parallel kernel can be build it

there are not dependencies between

instructions

33 # with different values of the INAME in the domain

.

34 INSTRUCTIONS:

35 |->|-> [j_node] wij <- weights[

j_node] # insn

36 |_||-> [j_node] dij <- lengths[

j_node]*rec_speed_dt

37 # w1,no_sync_with

=insn@any:

w1@any:w2@any

38 if (wij != 0.0)

39 |_|_ [j_node] sum <- sum + wij*

sin(state[j_node] + (-1)*theta_i)

40 # w2,no_sync_with

=insn@any:

w1@any:w2@any

41 if (wij != 0.0)

42 ---

Loopy’s debug output elucidate the quantitative kernel analysis.
Notably, this includes complete information on the kernel’s input
(“ARGUMENTS”: datatype, shape, strides), sequence & dataflow
of instructions (“INSTRUCTIONS”), as well as temporary
variables (“TEMPORARIES”: type, shape, scope of allocation),
and finally the loop domains, including their mapping to
hardware domains (“INAME IMPLEMENTATION TAGS”) such
as local or global work group.

As a concrete use case of TVB-HPC, a kernel which
includes the whole workflow described in Figure 14 is presented.
The following example shows the generation of a merged
kernel including the coupling, the neural mass model and the
integration step:

1 osc = model.Kuramoto()

2 osc.dt = 1.0

3 osc.const['omega'] = 10.0 * 2.0 * np.pi / 1e3

4 cfun = coupling.Kuramoto(osc)

5 cfun.param['a'] = pm.parse('a')

6 scm = scheme.EulerStep(osc.dt)

7 knl = transforms.network_time_step(osc, cfun, scm)

The target code generated for Numba+ CUDA:

1 @ncu.jit

2 def loopy_kernel_inner(

3 n, nnz, row, col, dat, vec, out):

4 if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0 and

-1 + -512*bIdx.x + -1*tIdx.x + n >= 0:

5 acc_j = 0

6 jhi = row[1 + tIdx.x + bIdx.x*512]

7 jlo = row[tIdx.x + bIdx.x*512]

8 for j in range(jlo, -1 + jhi + 1):

9 acc_j = acc_j + dat[j]*vec[col[j]]

10 out[tIdx.x + bIdx.x*512] =

11 (tIdx.y + bIdx.y*512)*acc_j

12

13 def loopy_kernel(

14 n, nnz, row, col, dat, vec, out):

15 loopy_kernel_inner[((511 + n) // 512,

16 (511 + n) //

512),

17 (512, 512)]

18 (n, nnz, row, col, dat, vec,

out)

and for Numba:

1 from __future__ import division, print_function

2

3 import numpy as _lpy_np

4 import numba as _lpy_numba

5

6 @_lpy_numba.jit

7 def loopy_kernel(n, nnz, row, col, dat, vec, out):

8 for i in range(0, -1 + n + 1):

9 jhi = row[i + 1]

10 jlo = row[i]

11 for k in range(0, -1 + n + 1):

12 acc_j = 0

13 for j in range(jlo, -1 + jhi + 1):

14 acc_j = acc_j + dat[j]*vec[col[j]]

15 out[i] = k*acc_j

and for CUDA:

1 // edited for readability

2 extern "C" __global__ void __launch_bounds__(16)

loopy_kernel(

3 uint const n, uint const nnz,

4 uint const *__restrict__ row, uint

const *__restrict__ col,

5 float const *__restrict__ dat, float

const *__restrict__ vec, float *

__restrict__ out) {

6 float acc_j;

7 int jhi;

8 int jlo;

9

10 if (-1 + -4 * ((int32_t) blockIdx.y) + -1 * ((

int32_t) threadIdx.y) + n >= 0

11 && -1 + -4 * ((int32_t) blockIdx.x) + -1 *

((int32_t) threadIdx.x) + n >= 0)

12 {

13 acc_j = 0.0f;

14 jhi = row[1 + 4 * ((int32_t) blockIdx.x) + ((

int32_t) threadIdx.x)];

15 jlo = row[4 * ((int32_t) blockIdx.x) + ((

int32_t) threadIdx.x)];

16 for (int j = jlo; j <= -1 + jhi; ++j)

17 acc_j = acc_j + dat[j] * vec[col[j]];

18 out[4 * ((int32_t) blockIdx.x) + ((int32_t)

threadIdx.x)]

19 = (((int32_t) threadIdx.y) + ((int32_t)

blockIdx.y) * 4.0f) * acc_j;

20 }

21 }

and for OpenCL:

1 // edited for readability

2 #define lid(N) ((int) get_local_id(N))

3 #define gid(N) ((int) get_group_id(N))

4

Frontiers in Neuroinformatics | www.frontiersin.org 29 November 2018 | Volume 12 | Article 68214

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

5 __kernel void __attribute__ ((reqd_work_group_size

(1, 1, 1))) loopy_kernel(

6 uint const n, uint const nnz,

7 __global uint const *__restrict__ row,

__global uint const *__restrict__

col,

8 __global float const *__restrict__ dat

, __global float const *

__restrict__ vec,

9 __global float *__restrict__ out)

10 {

11 float acc_j;

12 int jhi;

13 int jlo;

14

15 for (int i = 0; i <= -1 + n; ++i)

16 {

17 jhi = row[1 + i];

18 jlo = row[i];

19 for (int k = 0; k <= -1 + n; ++k)

20 {

21 acc_j = 0.0f;

22 for (int j = jlo; j <= -1 + jhi; ++j)

23 acc_j = acc_j + dat[j] * vec[col[j]];

24 out[i] = k * acc_j;

25 }

26 }

27 }

2.10.4. Numerical Integration
The ordinary differential equations defined using the BaseModel
class (coupling kernels containing only functions) are generally
solved using a standard Euler method in TVB-HPC as a proof
of concept. It is also possible for a user to define stochastic
ODEs. The integration method for those ODEs can be set to
the Euler Maruyama method, stochastic Heun or other schemes
available in TVB in addition to custom methods provided by the
user.

3. HARDWARE AND SOFTWARE
PLATFORMS

All code generation pipelines introduced in section 2 target one
or more hardware platforms, on which the generated code can
be executed. In this section, we summarize the most prominent
hardware platforms and give an overview of collaboration
portals, from which the code generation pipelines and the
hardware platforms are available with minimal setup overhead
for the scientists aiming to use them.

3.1. Classical Processors and Accelerators
Classical von Neumann-architecture computers, dominate the
hardware platforms used in the neurosciences. Small spiking
neuronal networks or multi-compartmental cells up to a few
thousand neurons or compartments are easily simulated on a
single central processing unit (CPU) of a modern computer.
CPUs allow for maximum flexibility in neural modeling and
simulation, but the vonNeumann architecture, where instruction
fetch and data operation are separated from each other, limits
the performance of such a system—this is referred to as the
von Neumann bottleneck. Even with advanced highly parallel

petascale supercomputers available today, the simulation of
neural networks are orders of magnitude slower than realtime,
hindering the study of slow biological processes such as learning
and development.

Graphical processing units (GPUs) are an alternative that can
provide better simulation efficiency. A GPU is a co-processor
to a CPU, designed to efficiently perform operations that are
typical for graphics processing, such as local transformations
on large matrices or textures. Because of the structure of
graphics operations, it lends itself to a single instruction- multiple
data (SIMD) parallel processing approach. Massively parallel
GPUs can be repurposed to also accelerate the execution of
non-graphics parallel computing tasks, which is referred to as
general purpose GPU (GPGPU) computing. The simulation of
spiking neuronal networks is well suited for the computing
paradigm of GPGPUs, because independent neurons and
synapses need to be updated with the same instructions following
the SIMD paradigm. However, efficiently propagating spikes
in such a network is non-trivial and becomes the main
bottleneck for computation performance in large networks
(Brette and Goodman, 2012). Implementing the parallelism
requires expert knowledge in GPU programming, constituting
a large entry barrier for neuroscientists and modelers. After an
initial enthusiasm amongst the developers of leading simulators,
such as Brian (Goodman and Brette, 2009), GENESIS (Bhalla
and Bower, 1993), NEST (Gewaltig and Diesmann, 2007), or
NEURON (Hines and Carnevale, 1997), the development of
GPU accelerator support has often stalled due to the underlying
complexities. Instead, novel GPU based simulators, such as
ANNarchy (Vitay et al., 2015), CARLsim (Nageswaran et al.,
2009), Cortical Network Simulator (CNS; Mutch et al., 2010),
GeNN (see section 2.2 Yavuz et al., 2016), Myriad (see section 2.3
Rittner and Cleland, 2014), NeMo (Fidjeland et al., 2009), were
created, each with their own particular focus.

To further accelerate computation and increase efficiency,
dedicated hardware architectures beyond the von Neumann
model are of interest. Efficiency and flexibility are contrary
and cannot both be achieved same time. FPGAs offer a good
balance between the generality of CPUs/GPGPUs and physically
optimized hardware. An FPGA is a freely programmable and
re-configurable integrated circuit device. This paves the way
to new computing architecture concepts like dataflow engines
(DFE). Following this approach, in principle, application logic is
transformed into a hardware representation. In particular, for a
neural network simulation, this could be a computation primitive
or special function, a neuron model or even an entire neural
network or simulation tool (Cheung et al., 2016; Wang et al.,
2018). Currently no tools or workflows exist to directly derive an
FPGA design from a neural model description. Closing this gap
is a topic of research.

Given the multitude of programming paradigms and
architectural designs used on modern CPU-, GPGPU-, and
FPGA-based systems and their complexity, it is impossible
for a novice programmer in the field of neuroscience to write
efficient code manually. Code generation is thus often the only
way to achive satisfactory performance and system resources
utilization.

Frontiers in Neuroinformatics | www.frontiersin.org 30 November 2018 | Volume 12 | Article 68215

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

3.2. Neuromorphic Hardware
Another approach to surpassing the von Neumann architectures
in terms of energy consumption or simulation speed is using
physically optimized hardware. For hardware architectures
focusing on brain-inspired analog computation primitives the
term “neuromorphic” has been coined byMead (1990). However,
nowadays the term neuromorphic computing is used in a much
broader sense and also refers to digital systems and even von
Neumann architectures optimized for spiking neural networks.

Inspired by the original principle, a large part of the
neuromorphic hardware community focuses on physical models,
i.e., the analog or mixed-signal implementations of neurons
and synapses on a CMOS substrate (cf. Indiveri et al., 2011).
Biological observables like the membrane voltage of the neurons
are represented as voltages in the silicon neuron implementation
and evolve in a time-continuous and inherently parallel manner.
One particular example is the BrainScaleS system, which
represents a combination of von Neumann and mixed-signal
neuromorphic computing principles. Compared to the biological
model archetype, the BrainScaleS implementation operates in
accelerated time: characteristic model time constants are reduced
by a factor of 103 − 104 (Aamir et al., 2017; Schmitt et al., 2017).
In addition, an embedded processor provides more flexibility,
especially with respect to programmable plasticity (Friedmann
et al., 2017).

Digital implementations range from full-custom circuits, e.g.,
Intel Loihi (Davies et al., 2018), IBM TrueNorth (Merolla et al.,
2014), to optimized von Neumann architectures. One particular
example is the SpiNNaker system which is based on standard
ARM processors and a highly-optimized spike communication
network (Furber et al., 2013). The biggest system constructed to
date consists of 600 SpiNNaker boards wired together in a torus
shaped network. Each SpiNNaker board contains 48 SpiNNaker
chips, where each SpiNNaker chip contains 128 MiB of on-board
memory, a router for communicating between chips and up to 18
ARM968E-S (ARM Limited, 2006) processors, each consuming
around 1W when all processors are active.

3.3. Collaboration Platforms
The great variety of code generation pipelines introduced in the
previous sections allows neuroscientists to chose the right tool
for the task in many modeling situations. However, setting up
the pipelines and getting them to play nicely with the different
hardware platforms can be a challenging task. In order to ease
this task, several collaboration platforms were created in the past
years.

The Open Source Brain platform (OSB, http://www.
opensourcebrain.org) is intended to facilitate the sharing
and collaborative development of models in computational
neuroscience. It uses standardized representations of models
saved in NeuroML (section 2.5) and shared on public GitHub
(https://github.com) repositories to allow them to be visualized
in 3D inside a browser, where the properties of the cells and
networks can be analyzed.

In addition to viewing the NeuroML models, users who
have registered and logged in to the OSB website can run
simulations of the models (potentially having edited some of
the parameters of the model through the web interface). The

NeuroML representation is sent to the OSB server, which uses
the code generation options includedwith the jNeuroML package
(section 2.5) to create simulator specific code which can be
executed. Currently there are options to execute the model using
jNeuroML (limited to point neuron models), the NEURON
simulator directly, or in NEURON via the NetPyNE package
(http://www.netpyne.org), which allows network simulations to
be distributed over multiple processing cores. More simulation
platforms are in the process of being added.

The default execution location is to run the simulation on
the OSB servers directly, but there is an option to package the
simulations and send to theNeuroscience Gateway (NSG, https://
www.nsgportal.org) platform. NSG links to the supercomputing
facilities of the Extreme Science and Engineering Discovery
Environment (XSEDE), and using this option, NetPyNE based
simulations can be run on up to 256 cores. The simulation results
are retrieved by OSB and can be displayed in the browser without
the user needing to access or log in to NSG or XSEDE directly.

The Human Brain Project (HBP) Collaboratory collects
the tools developed in the project in one place and allows
neuroscientists to organize their work into collaborative scientific
workspaces called collabs. It provides common web services and
a central web-based portal to access the simulation, analysis and
visualization software. A central web-accessible storage location
and provenance tracking for imported and generated data allow
to build on the work of others while making sure that prior work
is properly referenced and cited. Moreover, the Collaboratory
provides access to the BrainScaleS and SpiNNaker neuromorphic
hardware systems and to several European supercomputers, for
which users, however, have to provide their own compute time
grants.

The main interface to the underlying tools are Jupyter
notebooks, which can be used as collaborative workbenches
for Python-based scientific collaboration between different users
and teams of the system. In addition to interactive instruction,
automation and exploration, the notebooks are also used for
documentation and to allow neuroscientists to easily share ideas,
code and workflows. For live interaction, the system integrates a
web chat system.

In the context of the HBP Collaboratory, neuronal description
languages and code generation also serve as a means to isolate
users from the system in the sense that they can still provide
their own model specifications but do not require direct access
to compilers on the system. The generation of suitable source
code for the target system (i.e., supercomputers or neuromorphic
hardware systems) can be handled transparently behind the
scenes and the final model implementation can again be made
available to all users of the system. Getting access to the HBP
Collaboratory requires an HBP Identity Account, which can be
requested at https://collab.humanbrainproject.eu.

4. DISCUSSION

4.1. Summary
The focus of each of the different code generation approaches
presented in this article is defined by at least one scientific use
case and the supported target platforms. Due to the diversity of
requirements in computational neuroscience, it is obvious that

Frontiers in Neuroinformatics | www.frontiersin.org 31 November 2018 | Volume 12 | Article 68216

http://www.opensourcebrain.org
http://www.opensourcebrain.org
https://github.com
http://www.netpyne.org
https://www.nsgportal.org
https://www.nsgportal.org
https://collab.humanbrainproject.eu
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

there can’t be just a single solution which the community would
settle on. This review shows that many use cases have already
been covered to variable extents by existing tools, each working
well in the niche it was created for. As all of the reviewed software
packages and tools are available under open source licenses and
have active developer communities, it is often easier to extend the
existing solutions by support for new use cases instead of creating
new solutions from scratch. The following table summarizes the
main properties of the different tools:

Models Platforms Techniques

Brian (2.1) Point and multicompartmental neurons;

plastic and static synapse models

CPUs; GPUs via GeNN AST transformations; Symbolic model

analysis; Code optimization

GeNN (2.2) Models that can be defined by timestep

update code snippet; mostly point neurons

and synapses with local update rules

GPUs and CPUs Direct code generation by a C++ program

Myriad (2.3) Compartmental neurons; arbitrary synapse

models

CPUs; GPUs Custom object models; AST

transformations

NESTML (2.4) Point neurons CPUs via NEST Custom grammar definitions; AST

transformations; model equation analysis

NeuroML/LEMS (2.5) Point and multicompartmental neurons;

plastic and static synapse models

CPUs via NEURON and Brian;

SBML

Procedural generation; template-based

generation; semantic model construction

NineML (2.6) Models defined by a hybrid dynamical

system; mostly point neurons and

synapses with local update rules

CPUs via NEURON, NEST and

PyNN

symbolic analysis; template-based

generation

NEURON/NMODL (2.7) Point and multicompartmental neurons;

plastic and static synapse models; linear

circuits; reaction-diffusion; extracellular

fields; spike and gap junction coupled

networks

CPUs; GPUs via CoreNEURON Custom grammar; parse tree

transformations; GUI Forms

SpineML (2.8) Models defined by a timestep update

code snippet; mostly point neurons and

synapses with local update rules; generic

inputs support compartments and

non-spiking components

CPU via BRAHMS and

PyNN; GPU via GeNN and

Neuorkernel

XSLT code templates and libSpineML

SpiNNaker (2.9) Common point neuron models with either

static of plastic synapses

SpiNNaker Hand crafted modular source code,

loaded through a complex mapping

process from a graph representation

TVB-HPC (2.10) Neural mass models CPUs; GPUs AST transformations

5. CONCLUSION

In order to integrate and test the growing body of data in
neuroscience, computational models have become increasingly
complex during recent years. To cope with this complexity
and unburden users from the task of manually creating
and maintaining model implementations, code generation has
become a popular approach. However, even though all code
generation pipelines presented in this article try to reduce the
users’ load, they differ considerably when it comes to which
aspects they simplify for the user. While, for example, NeuroML
(section 2.5) and NineML (section 2.6) aim for simulator
independence, and their associated code generation tools do
not at present perform heavy transformations on the equations
contained in a model specification, NESTML (section 2.4) targets
only NEST and analyzes the equations and tries to find the most
accurate and efficient solver for them. Myriad (section 2.3) on
the other hand has a focus on the automatic parallelization of

multicompartment cells on CPU and GPGPU systems but only
provides two built-in solvers. The emphasis for Brian (section
2.1) is on the simplest possible user syntax and flexibility of the
code generation process (e.g., easily incorporating user-defined
functions).

One important use case of code generation in computational
neuroscience is the separation of users from the underlying
hardware system and corresponding libraries. The fact
that platform specific code is generated from a higher-level

description instead of directly written by the user allows model
implementations to be generated for multiple simulators and
certain parts of the execution system to be exchanged without
any need for changes in the original model description. On
web-based science portals like the Open Source Brain or the
Human Brain Project Collaboratory (section 3) this aspect can
prevent the execution of arbitrary code by users, which increases
the overall security of the systems.

AUTHOR CONTRIBUTIONS

IB, JE, AM, and DP are the authors of NESTML and have
coordinated the work on this article and written the section
about NESTML. TN is the creator of GeNN and has written
passages on GPU platforms and related simulators. RB, DG, and
MS are the authors of Brian and wrote the section on Brian.

Frontiers in Neuroinformatics | www.frontiersin.org 32 November 2018 | Volume 12 | Article 68217

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

AS, DL, and AR are the authors of the SpiNNaker software and
have written the SpiNNaker section. GT has written passages
on classical processors and accelerators, EM has written the
passages about neuromorphic hardware. JE and PG wrote the
section about collaboration platforms. AD and TGC participated
in the development of the NineML specification and the Python
NineML library, and wrote the section on NineML, Pype9, and
9ML-toolkit. TGC developed PyPe9. PR, AT, CF, and DC have
written the section on SpineML and GPU code generation. PR
is an author of SpineML and AT is the author of libSpineML.
BM and PG are core NeuroML and LEMS developers, and
have written the section on NeuroML/LEMS. MH is the author
of NMODL and wrote the NMODL section together with PK
who contributes to the development of the code generator for
CPU/GPU architectures. MW, SD-P, and AP have written the
section on how automatic code generation is being used to
enhance the performance of workflows from The Virtual Brain.
The final version of the article was written and edited jointly by
all authors.

FUNDING

The work by AM, DP, IB and JE on NESTML and the
work by GT is funded by the Excellence Initiative of the
German federal and state governments and the Jülich Aachen

Research Alliance High-Performance Computing, the Initiative
and Networking Fund of the Helmholtz Association, and the
Hemholtz Portfolio Theme Simulation and Modeling for the
Human Brain. AD, AM, AS, AR, DL, DP, IB, JE, and GT
received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 720270 and 785907 (Human Brain Project SGA1 and
SGA2). TN was also funded by the EPSRC (grants EP/J019690/1,
EP/P006094/1). RB and MS were supported by Agence Nationale
de la Recherche (ANR-14-CE13-0003). DC, PR, andAT gratefully
acknowledge that this work was funded by BBSRC under
grant number BB/M025527/1 and The Open Science Prize. PR
is also supported by EPSRC Grant EP/N018869/1. NMODL
related code generation work is supported by NIH grant
R01NS11613, European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement No. 720270
(Human Brain Project SGA1), and ETH Board Funding to the
Blue Brain Project. AP and SD-P would like to thank the funding
received from the German Federal Ministry of Education and
Research (D-USA Verbund: Mechanistische Zusammenhänge
Zwischen Struktur und funktioneller Dynamik im Menschlichen
Gehirn, project no. 01GQ1504B). BM was supported by the
São Paulo Research Foundation (FAPESP), grant 2017/04748-
0. BM, and PG were supported by the Wellcome Trust
(086699/101445).

REFERENCES

Aamir, S. A., Müller, P., Kriener, L., Kiene, G., Schemmel, J., and Meier, K.

(2017). “From LIF to AdEx neuron models: accelerated analog 65-nm CMOS

implementation,” in IEEE Biomedical Circuits and Systems Conference (BioCAS)

(Turin).

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,

Techniques, and Tools, (2nd Edn). Boston, MA: Addison-Wesley Longman

Publishing Co., Inc.

ARM Limited (2006). Arm968e-s Technical Reference Manual.

Bhalla, U. S., and Bower, J. M. (1993). “Genesis: a neuronal simulation system,” in

Neural Systems: Analysis and Modeling (New York, NY), 95–102.

Blundell, I., Plotnikov, D., Eppler, J. M., and Morrison, A. (2018). Automatically

selecting a suitable integration scheme for systems of differential equations

in neuron models. Front. Neuroinform. 12:50 doi: 10.3389/fninf.2018.

00050

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS - Exploring Realistic

Neural Models With the GEneral NEural SImulation System, 2nd Edn. New

York, NY: Springer.

Brette, R., and Goodman, D. F. (2012). Simulating spiking neural networks on

GPU. Network 23, 167–182. doi: 10.3109/0954898X.2012.730170

Cannon, R. C., Cantarelli, M., Osborne, H., Marin, B., Quintana, A., and Gleeson,

P. (2018). jLEMS v0.9.9.0. doi: 10.5281/zenodo.1346161

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,

et al. (2014). LEMS: a language for expressing complex biological models in

concise and hierarchical form and its use in underpinning NeuroML 2. Front.

Neuroinform. 8:79. doi: 10.3389/fninf.2014.00079

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge, MA:

Cambridge University Press.

Cheung, K., Schultz, S. R., and Luk, W. (2016). Neuroflow: a general purpose

spiking neural network simulation platform using customizable processors.

Front. Neurosci. 9:516. doi: 10.3389/fnins.2015.00516

Churchland, P. S., Koch, C., and Sejnowski, T. J. (1993). “What is computational

neuroscience?” in Computational Neuroscience, ed E. Schwartz (Cambridge:

MIT Press), 46–55.

Clewley, R. (2012). Hybrid models and biological model reduction with PyDSTool.

PLoS Comput. Biol. 8:e1002628. doi: 10.1371/journal.pcbi.1002628

Combemale, B., France, R., Jézéquel, J.-M., Rumpe, B., Steel, J., and Vojtisek,

D. (2016). Engineering Modeling Languages: Turning Domain Knowledge Into

Tools. Chapman & Hall; Boca Raton, FL: CRC Innovations in Software

Engineering and Software Development Series.

Cope, A. J., Richmond, P., James, S. S., Gurney, K., and Allerton, D. J. (2017).

Spinecreator: a graphical user interface for the creation of layered neural

models. Neuroinformatics 15, 25–40. doi: 10.1007/s12021-016-9311-z

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Davis, A., Dieste, O., Hickey, A., Juristo, N., and Moreno, A. M. (2006).

“Effectiveness of requirements elicitation techniques: empirical results

derived from a systematic review,” in Requirements Engineering, 14th IEEE

International Conference (Los Alamos, NM), 179–188.

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2009). PyNN: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). “NeMo:

A platform for neural modelling of spiking neurons using GPUs,” in 20th

IEEE International Conference on Application-specific Systems, Architectures

and Processors (ASAP) (Boston, MA), 137–144.

Fieber, F., Huhn, M., and Rumpe, B. (2008). Modellqualität als indikator

für softwarequalität: eine taxonomie. Inform. Spektr. 31, 408–424.

doi: 10.1007/s00287-008-0279-4

France, R., and Rumpe, B. (2007). “Model-driven development of complex

software: a research roadmap,” in 2007 Future of Software Engineering, FOSE

’07 (Washington, DC: IEEE Computer Society), 37–54.

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier, K. (2017).

Demonstrating hybrid learning in a flexible neuromorphic hardware system.

IEEE Trans. Biomed. Circ. Syst. 11, 128–142. doi: 10.1109/TBCAS.2016.2579164

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the spinnaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Frontiers in Neuroinformatics | www.frontiersin.org 33 November 2018 | Volume 12 | Article 68218

https://doi.org/10.3389/fninf.2018.00050
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.5281/zenodo.1346161
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.1371/journal.pcbi.1002628
https://doi.org/10.1007/s12021-016-9311-z
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1007/s00287-008-0279-4
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/TC.2012.142
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge: Cambridge University Press.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Givon, L. E., and Lazar, A. A. (2016). Neurokernel: an open source

platform for emulating the fruit fly brain. PLoS ONE 11:e0146581.

doi: 10.1371/journal.pone.0146581

Gleeson, P., Cannon, R. C., Cantarelli, M., Marin, B., and Quintana, A. (2018).

Available online at: org.neuroml.exportv1.5.3

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). NeuroML: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., and Beeman,

D. (2001). Towards NeuroML: model description methods for collaborative

modelling in neuroscience. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1209–

1228. doi: 10.1098/rstb.2001.0910

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Goodman, D. F. (2010). Code generation: a strategy for neural network simulators.

Neuroinformatics 8, 183–196. doi: 10.1007/s12021-010-9082-x

Goodman, D. F., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3,

192–197. doi: 10.3389/neuro.01.026.2009

Grune, D., Van Reeuwijk, K., Bal, H. E., Jacobs, C. J., and Langendoen, K. (2012).

Modern Compiler Design. New York, NY: Springer Science & Business Media.

Harel, D. (2005). A Turing-like test for biological modeling. Nat. Biotechnol.

23:495. doi: 10.1038/nbt0405-495

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R.,

Shumaker, D. E., et al. (2005). SUNDIALS: Suite of nonlinear and

Differential/Algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396.

doi: 10.1145/1089014.1089020

Hines, M., and Carnevale, N. (2004). Discrete event simulation in

the NEURON environment. Neurocomputing 58–60, 1117–1122.

doi: 10.1016/j.neucom.2004.01.175

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hines, M. L., and Carnevale, N. T. (2000). Expanding NEURON’s

repertoire of mechanisms with NMODL. Neural Comput. 12, 995–1007.

doi: 10.1162/089976600300015475

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point

neural ode solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/NECO_a_0

0772

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,

et al. (2003). The Systems Biology Markup Language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi: 10.1093/bioinformatics/btg015

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Schaik, A. V.,

Etienne-Cummings, R., Delbruck, T., et al. (2011). Neuromorphic

silicon neuron circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.

00073

Izhikevich, E. M. (2003). Simple model of spiking neurons. Trans. Neural Netw. 14,

1569–1572. doi: 10.1109/TNN.2003.820440

Kleppe, A. G., Warmer, J., and Bast, W. (2003).MDA Explained: The Model Driven

Architecture: Practice and Promise. Boston, MA: Addison-Wesley Longman

Publishing Co., Inc.

Klöckner, A. (2014). “Loo.py: transformation-based code generation for GPUs and

CPUs,” in Proceedings of ARRAY 14: ACM SIGPLAN Workshop on Libraries,

Languages, and Compilers for Array Programming (Edinburgh: Association for

Computing Machinery).

Knight, J., Yavuz, E., Turner, J., and Nowotny, T. (2012-2018). genn-team/genn:

GeNN 3.1.1 (Version 3.1.1).Available online at: https://doi.org/10.5281/zenodo.

1221348 (Accessed July 3, 2018).

Krahn, H., Rumpe, B., and Völkel, S. (2010). Monticore: a framework for

compositional development of domain specific languages. Int. J. Softw. Tools

Technol. Transf. 12, 353–372. doi: 10.1007/s10009-010-0142-1

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al.

(2016). Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations.

Cham: Springer International Publishing, 363–380.

Kuramoto, Y. (1975). “Self-entrainment of a population of coupled non-

linear oscillators,” in International Symposium on Mathematical Problems in

Theoretical Physics (New York, NY: Springer), 420–422.

Manninen, T., Aćimović, J., Havela, R., Teppola, H., and Linne, M. L. (2018).

Challenges in reproducibility, replicability, and comparability of computational

models and tools for neuronal and glial networks, cells, and subcellular

structures. Front. Neuroinform. 12:20. doi: 10.3389/fninf.2018.00020

Manninen, T., Havela, R., and Linne, M. L. (2017). Reproducibility and

comparability of computational models for astrocyte calcium excitability.

Front. Neuroinform. 11:11. doi: 10.3389/fninf.2017.00011

Marin, B., and Gleeson, P. (2018). Lems-Domogen-Maven-Plugin: Release 0.1.

doi: 10.5281/zenodo.1345750

Marin, B., Gleeson, P., and Cantarelli, M. (2018a). neuroml2model: Release 0.1.

doi: 10.5281/zenodo.1345752

Marin, B., Gleeson, P., and Cantarelli, M. (2018b) som-codegen: Release 0.1.

doi: 10.5281/zenodo.1345748

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78:16291636.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M.,

et al. (2017). Sympy: symbolic computing in python. PeerJ Comput. Sci. 3:e103.

doi: 10.7717/peerj-cs.103

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. (2006).

Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–129.

doi: 10.1007/s10827-006-7949-5

Mitchinson, B., Chan, T., Chambers, J., Pearson, M., Humphries, M., Fox, C., et al.

(2010). Brahms: Novel middleware for integrated systems computation. Adv.

Eng. Inform. 24, 49–61. doi: 10.1016/j.aei.2009.08.002

Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS: A GPU-Based Framework for

Simulating Cortically-Organized Networks. Technical Report MIT-CSAIL-TR-

2010-013/CBCL-286. Cambridge, MA: Massachusetts Institute of Technology.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.

(2009). A configurable simulation environment for the efficient simulation of

large-scale spiking neural networks on graphics processors. Neural Netw. 22,

791–800. doi: 10.1016/j.neunet.2009.06.028

Naze, S., Bernard, C., and Jirsa, V. (2015). Computational modeling of seizure

dynamics using coupled neuronal networks: factors shaping epileptiform

activity. PLoS Comput. Biol. 11:e1004209. doi: 10.1371/journal.pcbi.10

04209

Nowotny, T. (2011). Flexible neuronal network simulation framework

using code generation for nvidia cuda. BMC Neurosci. 12:P239.

doi: 10.1186/1471-2202-12-S1-P239

Nowotny, T., Cope, A. J., Yavuz, E., Stimberg, M., Goodman, D. F., Marshall,

J., et al. (2014). SpineML and Brian 2.0 interfaces for using GPU

enhanced Neuronal Networks (GeNN). BMC Neurosci. 15(Suppl. 1):P148.

doi: 10.1186/1471-2202-15-S1-P148

NVIDIA Corporation (2006-2017). CUDA. Available online at: https://developer.

nvidia.com/about-cuda (Accessed January 24, 2018).

NVIDIA Corporation (2014). NVIDIA NVLink High-Speed Interconnect:

Application Performance. Technical Report. NVIDIA Corporation white paper.

Perun, K., Rumpe, B., Plotnikov, D., Trensch, G., Eppler, J. M., Blundell, I., et al.

(2018a). Reengineering NestML with Python and MontiCore. Master Thesis,

RWTH Aachen University. doi: 10.5281/zenodo.1319653

Perun, K., Traeder, P., Eppler, J. M., Plotnikov, D., Ippen, T., Fardet, T., et al.

(2018b). nest/nestml: PyNestML. doi: 10.5281/zenodo.1412607

Plana, L. A., Furber, S. B., Temple, S., Khan, M., Shi, Y., Wu, J., et al. (2007). A

gals infrastructure for a massively parallel multiprocessor. IEEE Design Test

Comput. 24, 454–463. doi: 10.1109/MDT.2007.149

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe, B.

(2016). “NESTML: a modeling language for spiking neurons,” in Modellierung

2016, 2.-4. März 2016 (Karlsruhe), 93–108.

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., et al.

(2011). NineML: the network interchange for ne urosciencemodeling language.

BMC Neurosci. 12:P330. doi: 10.1186/1471-2202-12-S1-P330

Richmond, P., Cope, A., Gurney, K., and Allerton, D. J. (2014). From

model specification to simulation of biologically constrained networks of

Frontiers in Neuroinformatics | www.frontiersin.org 34 November 2018 | Volume 12 | Article 68219

https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pone.0146581
org.neuroml.exportv1.5.3
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1098/rstb.2001.0910
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1007/s12021-010-9082-x
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1038/nbt0405-495
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1016/j.neucom.2004.01.175
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/089976600300015475
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.5281/zenodo.1221348
https://doi.org/10.5281/zenodo.1221348
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.3389/fninf.2018.00020
https://doi.org/10.3389/fninf.2017.00011
https://doi.org/10.5281/zenodo.1345750
https://doi.org/10.5281/zenodo.1345752
https://doi.org/10.5281/zenodo.1345748
https://doi.org/10.1126/science.1254642
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1016/j.aei.2009.08.002
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.1371/journal.pcbi.1004209
https://doi.org/10.1186/1471-2202-12-S1-P239
https://doi.org/10.1186/1471-2202-15-S1-P148
https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
https://doi.org/10.5281/zenodo.1319653
https://doi.org/10.5281/zenodo.1412607
https://doi.org/10.1109/MDT.2007.149
https://doi.org/10.1186/1471-2202-12-S1-P330
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Blundell et al. Code Generation in Computational Neuroscience

spiking neurons. Neuroinformatics 12, 307–323. doi: 10.1007/s12021-013-

9208-z

Rittner, P., and Cleland, T. A. (2014). Myriad: a transparently parallel GPU-

based simulator for densely integrated biophysical models. Soc. Neurosci.

Washington, DC.

Rowley, A., Stokes, A., and Gait, A. (2017). Spinnaker New Model Template Lab

Manual. doi: 10.5281/zenodo.1255864

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,

McIntosh, A. R., et al. (2013). The Virtual Brain: a simulator of primate brain

network dynamics. Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Güttler, M., Hartel, A., et al. (2017).

“Neuromorphic hardware in the loop: Training a deep spiking network on the

brainscales wafer-scale system,” in Proceedings of the 2017 IEEE International

Joint Conference on Neural Networks (Los Alamos, NM).

Schreiner, A. (1999). Object-Oriented Programming in ANSI C. Toronto: Pearson

Education Canada.

Stahl, T., Efftinge, S., Haase, A., and Völter, M. (2012). Modellgetriebene

Softwareentwicklung: Techniken, Engineering, Management. Heidelberg:

dpunkt Verlag.

Stimberg, M., Goodman, D. F., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi: 10.3389/fninf.2014.00006

Stimberg, M., Goodman, D. F. M., and Brette, R. (2012–2018a). Brian (Version

2.0). Zenodo. doi: 10.5281/zenodo.654861

Stimberg, M., Nowotny, T., and Goodman, D. F. M. (2014–2018b). Brian2GeNN.

doi: 10.5281/zenodo.1346312

Stokes, A., Rowley, A., Brenninkmeijer, C., Fellows, D., Rhodes, O., Gait, A.,

et al. (2007a). Spinnaker Software Stack. Available online at: https://github.

com/SpiNNakerManchester/SpiNNakerManchester.github.io/tree/master/

spynnaker/4.0.0

Stokes, A., Rowley, A., Brenninkmeijer, C., Fellows, D., Rhodes, O., Gait, A.,

et al. (2007b). Spinnaker Software Stack Training Documentation. Available

online at: https://github.com/SpiNNakerManchester/SpiNNakerManchester.

github.io/blob/master/spynnaker/4.0.0/NewNeuronModels-LabManual.pdf

Tomkins, A., Luna Ortiz, C., Coca, D., and Richmond, P. (2016).

From GUI to GPU: a toolchain for GPU code generation for large

scale drosophila simulations using SpineML. Front. Neuroinform.

doi: 10.3389/conf.fninf.2016.20.00049

Topcu, O., Durak, U., Oguztüzün, H., and Yilmaz, L. (2016). Distributed

Simulation, A Model Driven Engineering Approach. Basel: Springer

International Publishing.

van der Schaft, A., and Schumacher, H. (2000). An Introduction to Hybrid

Dynamical Systems:. Lecture Notes in Control and Information Sciences.

London: Springer.

Van Deursen, A., and Klint, P. (1998). Little languages: Little

maintenance? J. Softw. Mainten. 10, 75–92. doi: 10.1002/(SICI)1096-908X

(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages:

an annotated bibliography. SIGPLAN Not. 35, 26–36. doi: 10.1145/352029.3

52035

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a code

generation approach to neural simulations on parallel hardware. Front.

Neuroinform. 9:19. doi: 10.3389/fninf.2015.00019

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K.,

et al. (2011). Reproducible computational biology experiments with SED-ML

- The Simulation Experiment Description Markup Language. BMC Syst. Biol.

5:198. doi: 10.1186/1752-0509-5-198

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An fpga-based

massively parallel neuromorphic cortex simulator. Front. Neurosci. 12:213.

doi: 10.3389/fnins.2018.00213

Wikipedia (2006). NVIDIA CUDA. Available online at: https://en.wikipedia.org/

wiki/CUDA (Accessed April 20, 2017).

Wikipedia (2012). OpenACC. Available online at: https://en.wikipedia.org/wiki/

OpenACC (Accessed May 14, 2017).

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep

18854

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Blundell, Brette, Cleland, Close, Coca, Davison, Diaz-Pier,

Fernandez Musoles, Gleeson, Goodman, Hines, Hopkins, Kumbhar, Lester, Marin,

Morrison, Müller, Nowotny, Peyser, Plotnikov, Richmond, Rowley, Rumpe, Stimberg,

Stokes, Tomkins, Trensch, Woodman and Eppler. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 35 November 2018 | Volume 12 | Article 68220

https://doi.org/10.1007/s12021-013-9208-z
https://doi.org/10.5281/zenodo.1255864
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.5281/zenodo.654861
https://doi.org/10.5281/zenodo.654861
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/tree/master/spynnaker/4.0.0
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/tree/master/spynnaker/4.0.0
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/tree/master/spynnaker/4.0.0
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/blob/master/spynnaker/4.0.0/NewNeuronModels-LabManual.pdf
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/blob/master/spynnaker/4.0.0/NewNeuronModels-LabManual.pdf
https://doi.org/10.3389/conf.fninf.2016.20.00049
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
https://doi.org/10.1145/352029.352035
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1186/1752-0509-5-198
https://doi.org/10.3389/fnins.2018.00213
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/OpenACC
https://en.wikipedia.org/wiki/OpenACC
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 26 November 2018
doi: 10.3389/fninf.2018.00081

Frontiers in Neuroinformatics | www.frontiersin.org 1 November 2018 | Volume 12 | Article 81

Edited by:

Robert Andrew McDougal,
Yale University, United States

Reviewed by:

Christoph Metzner,
University of Hertfordshire,

United Kingdom
Nicolas P. Rougier,

Inria Bordeaux - Sud-Ouest Research
Centre, France

Pras Pathmanathan,
United States Food and Drug
Administration, United States

Jason N. MacLean,
University of Chicago, United States

*Correspondence:

Guido Trensch
g.trensch@fz-juelich.de

Received: 11 April 2018
Accepted: 22 October 2018

Published: 26 November 2018

Citation:

Trensch G, Gutzen R, Blundell I,
Denker M and Morrison A (2018)

Rigorous Neural Network Simulations:
A Model Substantiation Methodology

for Increasing the Correctness of
Simulation Results in the Absence of

Experimental Validation Data.
Front. Neuroinform. 12:81.

doi: 10.3389/fninf.2018.00081

Rigorous Neural Network
Simulations: A Model Substantiation
Methodology for Increasing the
Correctness of Simulation Results in
the Absence of Experimental
Validation Data
Guido Trensch 1*, Robin Gutzen 2, Inga Blundell 2, Michael Denker 2 and Abigail Morrison 1,2,3

1 Simulation Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Jülich Research
Centre, Jülich, Germany, 2 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and
JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 3 Faculty of
Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany

The reproduction and replication of scientific results is an indispensable aspect of good

scientific practice, enabling previous studies to be built upon and increasing our level

of confidence in them. However, reproducibility and replicability are not sufficient: an

incorrect result will be accurately reproduced if the same incorrect methods are used.

For the field of simulations of complex neural networks, the causes of incorrect results

vary from insufficient model implementations and data analysis methods, deficiencies

in workmanship (e.g., simulation planning, setup, and execution) to errors induced

by hardware constraints (e.g., limitations in numerical precision). In order to build

credibility, methods such as verification and validation have been developed, but they

are not yet well-established in the field of neural network modeling and simulation,

partly due to ambiguity concerning the terminology. In this manuscript, we propose a

terminology for model verification and validation in the field of neural network modeling

and simulation. We outline a rigorous workflow derived from model verification and

validation methodologies for increasingmodel credibility when it is not possible to validate

against experimental data. We compare a published minimal spiking network model

capable of exhibiting the development of polychronous groups, to its reproduction on the

SpiNNaker neuromorphic system, where we consider the dynamics of several selected

network states. As a result, by following a formalized process, we show that numerical

accuracy is critically important, and even small deviations in the dynamics of individual

neurons are expressed in the dynamics at network level.

Keywords: reproducibility, verification and validation, model validation, SpiNNaker, fixed-point numeric, spiking

network models

221

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00081
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00081&domain=pdf&date_stamp=2018-11-26
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:g.trensch@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00081
https://www.frontiersin.org/articles/10.3389/fninf.2018.00081/full
http://loop.frontiersin.org/people/455237/overview
http://loop.frontiersin.org/people/453511/overview
http://loop.frontiersin.org/people/489478/overview
http://loop.frontiersin.org/people/39100/overview
http://loop.frontiersin.org/people/13504/overview

Trensch et al. Rigorous Neural Network Simulations

1. INTRODUCTION

Even for domain experts, it is often difficult to judge the
correctness of the results derived from a neural network
simulation. The factors that determine the correctness of the

simulation outcome are manifold and often beyond the control
of the modeler. It is therefore of great importance to develop
formalized processes and methods, i.e., a systematic approach,
to build credibility. This applies not only to the modeling,
implementation, and simulation tasks performed in a particular

study, but also to their reproduction in a different setting.
Although appropriate methods exist, such as verification and
validation methodologies, they are not yet well-established in
the field of neural network modeling and simulation. One
reason may lie in the rapid rate of development of new neuron
and synapse models, impeding the development of common
verification and validation methods, another is likely to be that
the field has yet to absorb knowledge of these methodologies
from fields in which they are common practice. This latter point
is exacerbated by partly contradicting terminology around these
areas.

In this study, we propose a reasonable adaptation of the
existing terminology for model verification and validation and
apply it to the field of neural network modeling and simulation.

We introduce the concept ofmodel verification and substantiation
and apply it to the issue of reproducibility on a worked
example. Specifically, we quantitatively compare a minimal

spiking network model capable of exhibiting the development
of polychronous groups, as described in Izhikevich (2006), to
its reproduction on the SpiNNaker (a contraction of Spiking
Neural Network Architecture) neuromorphic system (Furber
et al., 2013). The Izhikevich (2006) study is highly cited as an
account of how spike patterns emerge from network dynamics,
and contains a number of non-standard features in its conceptual
and implementational choices that make it a particularly
illustrative example for the verification process. The choice of a
network reproduction implemented on SpiNNaker as a target for
comparison is motivated by the fact that SpiNNaker is subject
to rather different constraints from typical simulation platforms,
in particular the restriction to fixed-point arithmetic, and so
demonstrates interestingly different verification problems. With
this process we demonstrate the value of software engineering
methodologies, such as refactoring, for verification tasks.

Moreover, this study contributes to a question that is
intensively debated in the neuromorphic community: how do
hardware constraints on numerical precision affect individual
neuron dynamics and, thus, the results obtained from a
neural network simulation? We compare the neuronal and
network dynamics between the original and the SpiNNaker
implementation, and our results show that numerical accuracy
is critically important; even small deviations in the dynamics of
individual neurons are expressed in the dynamics at network
level.

This study arose within a collaboration using the same initial
study to examine different aspects of rigor and reproducibility
in spiking neural network simulations, which we describe briefly
here to motivate the scope of the current study. Firstly, a frequent

source of errors in a neural network simulation is unsuitable
choices of numerics for solving the system of ordinary differential
equations underlying the selected neuron model. In section 3.4.2
we focus on the issues of time step and data type; the question
of which solver to use is addressed in Blundell et al. (2018b),
who present a stand-alone toolbox to analyze the system of
equations and automatically select an appropriate solver for
it. Secondly, a key aspect of our study is the reproduction of
the network described in Izhikevich (2006) on SpiNNaker, as
described in sections 3.1.2 and 3.4.1. The difficulties of creating
such a reproduction are comprehensively examined by Pauli
et al. (2018). Their investigation of the features of source code
that support or diminish the reproducibility of a network model
is based on reproducing the Izhikevich (2006) study in the
NEST simulator (Gewaltig and Diesmann, 2007). In addition
to developing a checklist for authors and reviewers of network
models, they demonstrate that the reported results are extremely
sensitive to implementation details. Finally, in order to determine
whether two simulations are producing results of acceptable
similarity, we employ a statistical analysis of spiking activity. This
is summarized in section 3.2.2; the complete description and
derivation of this analysis can be found in our companion paper
(Gutzen et al., 2018).

2. TERMINOLOGY

2.1. Reproducibility and Replicability
Reproducibility and replicability are indispensable aspects of
good scientific practice. Unfortunately, the terms are defined in
incompatible ways across and even within fields.

In psychology, for example, reproducibility may mean
completely re-doing an experiment, whereas replicability refers
to independent studies that yield similar results (Patil et al.,
2016). For computational experiments, where the outcome is
usually deterministic1, reproducibility is understood as obtaining
the same results by a different experimental setup conducted by a
different team (Association for Computing Machinery, 2016; see
also Plesser, 2018). Although attempts were made to help resolve
the ambiguity in the terminology by explicitly labeling the terms
or by attempting to inventory the terminology across disciplines
(Barba, 2018), the problem persists. Plesser (2018) gives a brief
history of this confusion.

In this study, we follow the definitions suggested by
the Association for Computing Machinery (Association for
Computing Machinery, 2016):

Replicability (Different team, same experimental setup) The
measurement can be obtained with stated precision by a
different team using the same measurement procedure, the
same measuring system, under the same operating conditions,
in the same or a different location on multiple trials. For
computational experiments, this means that an independent
group can obtain the same result using the authors own
artifacts.

1In analog neuromorphic systems the outcome is not only determined by the

initial conditions. Chip fabrication tolerances and thermal noise add a stochastic

component.

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2018 | Volume 12 | Article 81222

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

Reproducibility (Different team, different experimental setup)
The measurement can be obtained with stated precision by
a different team, a different measuring system, in a different
location on multiple trials. For computational experiments, this
means that an independent group can obtain the same result
using artifacts which they develop completely independently.

To be more specific about the terminology of reproducibility,
in this study we aim for results reproducibility (Goodman et al.,
2016; see also Plesser, 2018).

Results reproducibility Obtaining the same results from the
conduct of an independent study whose procedures are as closely
matched to the original experiment as possible.

2.2. Model Verification and Validation
The critical question for all modeling tasks is whether the model
provides a sufficiently accurate representation of the system being
studied. Evaluating the results of a modeling effort is a non-trivial
exercise which requires a rigorous validation process.

The term validation, or more generally verification and
validation also require a precise definition, as they have different
meanings in different contexts. In software engineering, for
example, verification and validation is the objective assessment
of products and processes throughout the life cycle. Its purpose
is to help the development organization build quality into
the system (Bourque and Fairley, 2014). With respect to
the development of computerized models, verification and
validation are processes that accumulate evidence of a model’s
correctness or accuracy for a specific scenario (Thacker et al.,
2004).

As a cornerstone for establishing credibility of computer
simulations, the Society for Computer Simulation (SCS)
formulated a standard set of terminology intended to
facilitate effective communication between model builders
and model users (Schlesinger et al., 1979). This early
definition is very general and often does not do justice to
a particular modeling domain. Therefore, domain specific
adaptations to the terminology can be found, but having
fundamentally the same meanings. For the field of neural
network modeling and simulation we propose the terminology
shown in Figure 1B, amended from Thacker et al. (2004).
While Thacker et al. (2004) uses the terms reality of interest,
conceptual model, and computerized model, we prefer the
terms system of interest, mathematical model, and executable
model. The terms are more explicit and better express
the underlying intent. In particular, due to the empirical
challenges of neurobiology, spiking neural network models
are often not based on a specific biological network that
could be considered “reality” and from which ground truth
behavior can be recorded, in contrast to, for example, the
air flow around a wing. The term “system of interest”
recognizes that the process of verification and validation
can also be applied to systems without concrete physical
counterparts.

The essence of the introduced terminology is the division of
the modeling process into three major elements as illustrated in
Figures 1A,B.

Reality or system of interest is an “entity, situation, or
system which has been selected for analysis.” The conceptual
or mathematical model is defined as a “verbal description,
equations, governing relationships, or natural laws that purport
to describe reality or the system of interest” and can be
understood as the precise description of the modeler’s
intention (Schlesinger et al., 1979). The formulation of the
conceptual or mathematical model is derived in a process
called analysis andmodeling and its applicability is motivated
in a process termed qualification or confirmation. However,
the conceptual or mathematical model by itself is not able to
simulate the system of interest. By means of applying software
engineering and development efforts, it has to be implemented
as a computerized or executable model.

By separating the understanding of a model into a mathematical
and an executable model, this terminology also illustrates the
difference between verification and validation.

Verification describes the process of ensuring that the
mathematical model is appropriately represented by the
executable model, and improving this fit.

Model verification is the assessment of a model implementation.
Neural network models are mathematical models that are written
down in source code as numerical algorithms. Therefore, it is
useful to define two indispensable assessment activities:

Source code verification tasks confirm that the functionality
it implements works as intended.
Calculation verification tasks assess the level of error that
arises from various sources of error in numerical simulations
as well as to identify and remove them (Thacker et al., 2004).

This process mainly involves the quantification and
minimization of errors introduced by the performed calculations.
Only when the executable model is verified it can be reasonably
validated.

The validation process evaluates the consistency of the
predictive simulation outcome with the system of interest.

The validation process aims at the agreement between
experimental data that defines the ground truth for the system of
interest and the simulation outcomes. This evaluation needs to
take into consideration the domain of intended application of the
mathematical model as well as its expected level of agreement,
since any model is an abstraction of the system of interest and
only intended to match to a certain degree and for certain
prescribed conditions.

2.3. Model Verification and Substantiation:
Model Assessment in the Absence of
Experimental Data
For neural network simulations, the ground truth of the
system of interest can be provided by empirical measurements
of activity data, for example single unit and multi-unit
activity gathered by means of electrophysiological recordings.
However, there are a number of reasons why this data may
prove inadequate for validation. Firstly, depending on the

Frontiers in Neuroinformatics | www.frontiersin.org 3 November 2018 | Volume 12 | Article 81223

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

A B

FIGURE 1 | Interrelationship of the basic elements for modeling and simulation. In order to be able to apply the terminology, introduced by Schlesinger et al. (1979) for

modeling and simulation processes (A), to numerical models for neural network simulations, a less generic terminology is more expedient. We propose the

terminology shown in (B) which we have adapted slightly from Thacker et al. (2004). While Thacker et al. (2004) uses the terms reality of interest, conceptual model,
and computerized model, we prefer the terms system of interest, mathematical model, and executable model as they better express the underlying intent. The model

distinguishes between modeling and simulation activities (black solid arrows), and assessment activities (red dashed arrows).

specification of the system of interest, such data can be scarce.
Secondly, even for comparatively accessible areas and assuming
perfect preprocessing (e.g., spike sorting), single cell recordings
represent a massive undersampling of the network activity.
Thirdly, for a large range of computational neuroscientific
models, the phenomenon of interest cannot be measured in a
biological preparation: for example, any model relying on the
plasticity of synapses within a network.

Consequently, for many neuronal network models, the most
that the modeler can do with the available experimental data
is to check for consistency, rather than validate in the strong
sense. Thus, we are left with an incomplete assessment process.
However, circumstantial evidence to increase the credibility
of a model can be acquired by comparing models and their
implementations against each other with respect to consistency
(Thacker et al., 2004; Martis, 2006). Such a technique can be
meaningful in accumulating evidence of a model’s plausibility
and correctness even if none of the models is a “validated model”
that may act as a reliable reference.

To avoid ambiguity with the existing model verification and
validation terminology, we propose the term “substantiation.”

Substantiation describes the process of evaluating and
quantifying the level of agreement of two executable models.

Model verification and substantiation are then processes
that accumulate circumstantial evidence of a model’s
correctness or accuracy by a quantitative comparison of
the simulation outcomes from validated or non-validated
model implementations. The interrelationship of the modeling,
simulation, and assessment activities are shown in Figure 2. To
this end, the modeler has to define reasonable acceptance criteria
that define the limits within which the process can be executed.

In this study, we will demonstrate the usefulness of such an
approach.

2.4. Application of Terminology to Neural
Network Modeling and Simulation
Applying the given terminology to the domain of neural
network modeling and simulations, we will use the terms as
follows. Replication means using the author’s own model, which
may consist of the model source code, scripts for network
generation and simulation execution as well as additional
software components in a particular version (e.g., if a specific
simulation software is used). A replication should aim for bit-
identicality. Although computers are deterministic, this is not
always feasible, for example, if the seed of the pseudorandom
number generator has not been recorded, or the generated
trajectory of pseudorandom numbers is dependent on the
software version or the underlying hardware. Beyond this,
replicable models should have the property of delivering exactly
the same result in successive simulations on the same hardware.
When using random number generators, this entails setting a
seed.

A reproduction (or specifically, results reproduction) is then
the re-implementation of the model in a different framework,
e.g., expressing a model as a stand-alone script using neural
simulation tools, such as NEURON (Hines and Carnevale,
1997), Brian (Goodman and Brette, 2008), NEST (Gewaltig
and Diesmann, 2007), or the SpiNNaker neuromorphic system
(Furber et al., 2013), and getting statistically the same results.

Applying the terminology defined in this section, one can
say: in this study, we replicate a published model and create
a reproduction of the model on the SpiNNaker neuromorphic
system. In an iterative process of model substantiation, we arrive

Frontiers in Neuroinformatics | www.frontiersin.org 4 November 2018 | Volume 12 | Article 81224

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

FIGURE 2 | Model verification and substantiation workflow. The workflow

shown can be thought of as the combination of two separate model

verification and validation processes (Figure 1) without the backward

reference to the system of interest, i.e., the validation of the model. In this

concept, the consistency of the simulation outcomes of two executable

models that share the same system of interest and mathematical model is

evaluated, in an assessment activity we term “substantiation.” Modeling and

simulation activities are indicated by black solid arrows, whereas assessment

activities are indicated by red dashed arrows.

at the point that both executable models are verified, and in good
agreement with one another.

3. MODEL VERIFICATION AND
SUBSTANTIATION OF THE IZHIKEVICH
POLYCHRONIZATION MODEL: THE
REPRODUCTION OF SELECTED
NETWORK STATES ON SPINNAKER

3.1. Definition of the Model Verification and
Substantiation Methodology Entities
For the purposes of demonstrating a rigorous model verification
and substantiation methodology, we define as our system of
interest the mammalian cortex. A mathematical and executable
model of this system was proposed by Izhikevich (2006), who
demonstrated that this model exhibits the development of
polychronous groups. The mathematical model is described in
detail in section 3.1.1, the corresponding executable model,

referred to in the following as the C model, constitutes one
target of the verification and substantiation process illustrated in
Figure 2. For the other target, we reproduce the mathematical
model on the SpiNNaker neuromorphic system (Furber et al.,
2013); the resultant executable model is referred to as the
SpiNNaker model (see section 3.1.2).

3.1.1. Mathematical Model

3.1.1.1. Network topology
The network connectivity is illustrated in Figure 3. A population
of 800 excitatory neurons makes random connections to itself
and to a population of 200 inhibitory neurons using a fixed out-
degree of 100. Excitatory synaptic connections are initially set to
a strength of wij = 6.0 and a conduction delay Dij drawn from
a uniform integer distribution such that Dij ∈ [1, 2, . . . , 20] ms.
The inhibitory population is connected with the same out-degree
to the excitatory population only, forming connections with a
fixed synaptic strength and delay, wij = −5.0,Dij = 1 ms.

3.1.1.2. Component dynamics
Each neuron in the network is described by the simple neuron
model presented in Izhikevich (2003), which can reproduce a
variety of experimentally observed firing statistics:

v̇ = 0.04v2 + 5v+ 140− u+ I (1)

u̇ = a(bv− u) (2)

if v ≥ 30 mV, then

{

v← c

u← u+ d
. (3)

Equations (1)–(3) describe the time evolution of the
membrane voltage v(t) and the threshold dynamic variable
u(t) of a single neuron. For the polychronization model,
excitatory neurons are parameterized to show regular-
spiking: (a, , b, c, d) = (0.02, 0.2, −65.0, 8.0), and inhibitory
neurons are parameterized to exhibit fast-spiking: (a, b, c, d) =
(0.1, 0.2,−65.0, 2.0).

The excitatory connections are plastic and evolve according to
an additive spike-timing-dependent plasticity (STDP) rule:

w←

{

w+ A+ · exp(−1t/τ+) :1t ≥ 0
w− A− · exp(1t/τ−) :1t < 0

(4)

where τ+ = τ− = 20 ms, A+ = 0.1 mV, A− = 0.12 mV, and
1t is the difference in time between the last post-synaptic
and pre-synaptic spikes, i.e., positive on occurrence of a post-
synaptic spike and negative on occurrence of a pre-synaptic
spike. However, the rule has an unusual variant: synaptic weight
changes are buffered for one biological second and then the
weight matrix is updated for all plastic synapses simultaneously.
Thus, synaptic weights are constant for long periods, causing the
network dynamics to break down into epochs.

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2018 | Volume 12 | Article 81225

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

FIGURE 3 | Network architecture. The minimal spiking network exhibiting polychronization as decribed in Izhikevich (2006). The input to the network is a constant

current of Iext = 20 pA into a single neuron, which is randomly selected in each simulation time-step. Please see section 3.1.1 for a detailed description of the

mathematical model.

3.1.2. Executable Models

3.1.2.1. C model
The original network model and its analysis form a stand-alone
application. Several implementations are available for download
from the author’s website2: a MATLAB implementation
(spnet.m) and two versions of a C/C++ implementation
(spnet.cpp, poly_spnet.cpp). They differ slightly in algorithms
and functionality and thus do not exhibit bit-identical behavior.
All implementations use a grid-based simulation paradigm
with a resolution of 1 ms. Threshold detection according to
Equation (3) is performed only at the grid points. For numerical
integration of the ODE system consisting of the Equations
(1) and (2) a Forward Euler method is used. From the two
available versions of the C/C++ implementation we selected
the computationally more precise variant poly_spnet.cpp that
makes use of double precision data types and also implements
the analysis, i.e., algorithms for detecting polychronous
groups.

3.1.2.2. SpiNNaker model
The SpiNNaker neuromorphic system is a massively parallel
multi-core computing system designed to provide a real-time
simulation platform for large neural networks (Furber et al.,
2013). The largest available system is a half-million core
machine3. The real-time capability is achieved at an simulation
resolution of h = 1 ms using a grid-based simulation paradigm.
This is analog to the integration scheme and simulation
paradigm used in the original C model implementation. For
our study, we use a SpiNN-3 development board that houses
4 SpiNNaker chips, each containing 18 ARM968 processing
cores (Temple, 2011a). For simulation control and cross-
development, the SpiNN-3 board must be connected to a host

2https://www.izhikevich.org/publications/spnet.htm
3http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/Access/

system, which then communicates with the board via Ethernet-
based UDP packets (Temple, 2011b). The SpiNNaker software
stack (Rowley et al., 2017b) supports the implementation of
neural network simulations in PyNN4. In addition, it offers
several neuron and synapse models as well as a template
that enables user to develop custom neuron and synapse
models using the event-driven programming model employed
by SpiNNaker kernel (Rowley et al., 2017a), available for
download from the SpiNNaker repository on GitHub5. The
SpiNNaker model used in this study was developed from
scratch, making use of this template to produce the various
Izhikevich neuron model implementations presented in this
manuscript.

3.2. Definition of the Model Substantiation
Assessment
In the absence of specific biological data to define the
ground truth for the system of interest, we are left with
the simulation outcomes of the two executable models. Here,
we consider the dynamics of five selected network states
in the C model. The dynamics is assessed by applying
statistical analysis methods to the spike train activity data
(see section 3.2.2). For an in-depth treatment of the analysis
methods used for comparison, see the companion study
(Gutzen et al., 2018). Note that we do not use the emergence
of polychronous groups or their statistics to define the
ground truth, as this turns out to be rather sensitive to
details not only of the mathematical model, but also of the
implementational choices used to generate the executable model.
For a comprehensive investigation of this aspect, see Pauli et al.
(2018).

4PyNN is a common interface for neural network simulators (Davison et al., 2009).
5https://github.com/SpiNNakerManchester/sPyNNaker8NewModelTemplate

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2018 | Volume 12 | Article 81226

https://www.izhikevich.org/publications/spnet.htm
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/Access/
https://github.com/SpiNNakerManchester/sPyNNaker8NewModelTemplate
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

A

B

C

FIGURE 4 | The experimental set-up for the simulations. (A) To create the reference data, the C model is executed (with STDP) and the connectivity matrix AAA and

delay matrix DDD are saved. Then five times are selected, for which the weight matrixWWW(ti) is recorded. Along with the input stimulus to the network III(t), these matrices

determine five network states for later comparison. These initial conditions are then set for an implementation of the C model (B) and for the SpiNNaker model (C),

both without STDP. This results in the network spiking activity recordings SCi (WWW(ti), t) and SNMi (WWW(ti), t) for five simulation runs for the C model and the SpiNNaker

model, respectively.

3.2.1. Experimental Set-Up
In order to generate the network activity data for the comparison
tasks carried out in the model substantiation process, we perform
the following steps, illustrated in Figure 4.

First, for a given realization (i.e., an implementation and
selection of a random seed) for the C model, we execute the
model for a duration6 of 5 h. During this time we select five times
ti, i = (1, 2, . . . , 5) (here: after 1, 2, 3, 4, and 5 h), at which we save
the weight matrixWWW(ti), containing the current strength of each
synapse according to the STDP rule described in section 3.1.1.
In addition, we save the connectivity matrix AAA, the delay matrix
DDD and the first 60 s’ worth of the random series of neurons to
which an additional stimulus is provided, III(t). This procedure is
illustrated in Figure 4A.

In a second step, we switch STDP off in the C model.
In five consecutive simulation runs, we initialize the network
with AAA,DDD, III, and the respective WWW(ti), and record the resultant
spiking activity SCi (WWW(ti), t) over 60 s, as illustrated in
Figure 4B. These activity recordings define five dynamic
states of the network at different stages of its evolution,
constituting the reference data (i.e., fulfilling the role that
ground truth data plays in a classical model validation
assessment).

6This refers to the simulated time and not to the run time of the simulation.

Finally, we repeat the second step using the SpiNNaker model
(see Figure 4C), resulting in corresponding network activity
recordings SNMi (WWW(ti), t). To perform the model substantiation
assessment, the spiking data SCi and SNMi are analyzed and
compared as described in section 3.2.2.

Note that although the parameters and properties of
the polychronization model remain untouched, model
implementations do change in successive iterations
of the verification and substantiation process as
described below; consequently, so do the reference
data.

3.2.2. Analysis of Network Spiking Activity
Besides a verification on the level of the dynamics of an
individual neuron, we assess the degree of similarity between
the different implementations of the Izhikevich polychronization
model on the descriptive level of the population dynamics (cf.
also, Gutzen et al., 2018). As issues such as the choice of 32/64-
bit architecture, floating-point/fixed-point arithmetic, compiler
options influencing the evaluation order of expressions or the
choice of pseudorandom numbers and the corresponding seed
should not be considered part of the mathematical model,
it is legitimate and expected that different implementations
will not yield an exact spike-by-spike correspondence (but see
Pauli et al., 2018 for a counterexample). We therefore resort

Frontiers in Neuroinformatics | www.frontiersin.org 7 November 2018 | Volume 12 | Article 81227

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

to testing for equivalence of statistical features extracted from
the population dynamics. These tests are conducted in an
automated, formal framework that conducts statistical analysis
of parallel spike trains using the standardized implementations
found in the Electrophysiology Analysis Toolkit7 (Elephant,
RRID:SCR_003833) as its backend. We stress the importance
of using a common tool to extract the statistical features for
both simulation outcomes in the substantiation procedure in
order to prevent distortions in the substantiation outcome due
to discrepancies in the implementations of the substantiation
procedure itself. In addition, making use of methods provided by
such open-source projects greatly contributes to the correctness
and replicability of the results.

When choosing the measures by which to compare the
network activity, it is essential to assess diverse aspects of the
dynamics. Besides widely used standard measures to characterize
the statistical features of spike trains or the correlation between
pairs of spike trains, this may also include additional measures
that reflect more specific features of the network model (e.g.,
spatio-temporal patterns). Here, we apply tests that compare
distributions of three statistical measures extracted from the
population dynamics: the average firing rates, the local coefficient
of variation as a measure of spike time regularity (Shinomoto
et al., 2003), and the pairwise correlation coefficients between
all pairs of parallel spike trains (bin width: 2 ms). They can be
regarded as forming a hierarchical order and evaluate different
aspects of the network dynamics: rates consider the number of
observed spikes, whilst ignoring their temporal structure; the
local coefficient of variation considers the serial correlations
inherent in a spike train, whilst ignoring the relationship between
spike trains; the cross correlation considers coordination across
neurons.

It should be noted that, as shown later in this study, this
conceptual hierarchy does not imply a hierarchy of failure, i.e., a
correspondence on the highest level (here: cross correlation) does
not automatically imply correspondence of the other measures.
Therefore, it is imperative to independently evaluate each
statistical property.We evaluate the similarity of the distributions
of these measures between simulations using the effect size
(Cohen’s d), i.e., the normalized difference between the means of
the distributions (Cohen, 1988). In addition to the substantiation
tests selected for the current study, more intricate comparisons
can evaluate the correlation structure and dynamical features of
the network activity in greater detail, outlined in our companion
study (Gutzen et al., 2018).

3.3. Definition of the Model Verification and
Substantiation Workflow
As stated above, model substantiation evaluates the
level of agreement between executable models and their
implementations, but is not conclusive whether the model itself
is correct, i.e., an appropriate description of an underlying
biological reality. It is therefore out of scope of this study to
evaluate any neuroscientific aspects of the model described in
Izhikevich (2006).

7http://neuralensemble.org/elephant

Derived from the concept of model verification and
substantiation (Figure 2), the workflow in Figure 5 depicts
a condensed illustration of the activities performed in this
study. We execute the workflow several times whilst subjecting
the C and SpiNNaker model implementations to various
implementation and verification activities. The latter can be
divided into two categories: source code verification and
calculation verification.

The purpose of source code verification is to confirm that the
functionality it implements works as intended (Thacker et al.,
2004). Unlike commercially developed production software,
scientific source code is used to draw scientific conclusions
and, thus, it should act as an available reference (Benureau and
Rougier, 2017).

The purpose of calculation verification is to assess the level
of error that arise from various sources of error in numerical
simulations as well as to identify and remove them. The types
of errors that can be identified and removed by calculation
verification are, e.g., errors caused by inadequate discretization
and insufficient grid refinement as well as errors by finite
precision arithmetic. Insufficient grid refinement is typically the
largest contributor to error in calculation verification assessment
(Thacker et al., 2004).

3.4. Application of the Method
The model verification and substantiation process we describe
in this study required three iteration cycles, named Iteration I,
II, and III, until an acceptable agreement was achieved. Figure 6
shows a complete and detailed breakdown of the activities, which
were shown in more general form in Figure 5.

In the following, we describe for each iteration the verification
activities that identified issues with the executable models, and
the consequent adaptations to the C and SpiNNaker model
implementations. The substantiation activity performed at the
end of each iteration is marked in Figure 6 with I, II, and III,
respectively; the results for each one are given in Figure 7. A
full description of these and further substantiation activities is
provided in our companion study (Gutzen et al., 2018).

In order to be able to reproduce the findings of this work
and our companion study (Gutzen et al., 2018), all source code
and simulation data is available online. The model source codes,
simulation scripts and the codes used in the verification activities
are available on GitHub8 (doi: 10.5281/zenodo.1435831). The
simulation data and scripts used for the quantitative comparisons
of statistical measures in the substantiation task can be found on
GIN9.

3.4.1. Iteration I
In the first iteration, our main focus is source code verification.
For the C model, this takes the form of assessing and
improving source code quality, whereas for the SpiNNaker model
implementation we carry out functional testing.

8https://github.com/gtrensch/RigorousNeuralNetworkSimulations
9https://web.gin.g-node.org/INM-6/network_validation

Frontiers in Neuroinformatics | www.frontiersin.org 8 November 2018 | Volume 12 | Article 81228

https://scicrunch.org/resolver/RRID:SCR_003833
http://neuralensemble.org/elephant
https://doi.org/10.5281/zenodo.1435831
https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://web.gin.g-node.org/INM-6/network_validation
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

FIGURE 5 | Model verification and substantiation workflow as it was conducted. The figure depicts in a condensed form the instantiation of the model verification and

substantiation workflow (Figure 2) introduced in section 2.3 and carried out in this study.

3.4.1.1. C model
The poly_spnet.cpp source code hides the algorithms—
which seem to be derived from MATLAB programming
paradigms—behind hard-to-read source code. To improve
the readability, understand the algorithms, and find potential
programming and implementation errors, we subjected
the source code to a refactoring10 and code inspection
task.

We fully reworked the source code by following clean
code heuristics (Martin and Coplien, 2009). Code sections
concerned with the analysis and not part of the model
itself were removed from the source code, kept separately
and were only used for functional testing. Whilst going

10Refactoring—a software engineering method from the area of software

maintenance—is source code transformation which reorganizes a program

without changing its behavior. It improves the software structure and the

readability, and so avoids the structural deterioration that naturally occurs when

software is changed Sommerville, 2015.

through this iterative refactoring and code inspection
process, we made sure that the model remained bit-
identical after every iteration, i.e., ensuring replicability
(see section 2).

In order to support the experimental setup and make the
substantiation activities possible, we added functionality that
allows network states to be saved and reloaded. For producing
the network activity data for use in substantiation, i.e., the
quantitative comparisons of statistical measures, we also switched
off STDP (see also section 3.2.1). For convenient functional
testing and debugging purposes, the implementation was adapted
to allow the polychronization model to be down-scaled to a 20
neuron test network. This size was selected to be small enough
for convenient manual debugging, whilst large enough to exhibit
spiking behavior and have a non-trivial connectivity matrix.

Performing the refactoring task not only helped understand
the Cmodel implementation and algorithms, which is essential, it
also laid the foundation for the implementation of the SpiNNaker
model.

Frontiers in Neuroinformatics | www.frontiersin.org 9 November 2018 | Volume 12 | Article 81229

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

FIGURE 6 | Model verification and substantiation iterations and activities conducted. The activities carried out as part of the model verification and substantiation

process, which we briefly outlined in Figure 5, can be further broken down to a more detailed view. The diagram represents this iterative process in a linear fashion,

where three iterations have been conducted. The model substantiation activity performed at the end of each iteration is marked with I, II, and III, which corresponds to

the results summary shown in Figure 7.

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2018 | Volume 12 | Article 81230

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

FIGURE 7 | Model substantiation assessment based on spike data analysis. Histograms (70 bins each) of the three characteristic measures computed from 60 s of

network activity after the fifth hour of simulation: Left, firing rates (FR); middle, local coefficients of variation (LV); right, pairwise correlation coefficients (CC). For FR and

LV, each neuron enters the histogram, for CC each neuron pair. Results are shown for three iterations (rows) of the substantiation process of the C model (dark colors)

and SpiNNaker model (light colors), cf. Figure 6. On the far right, the difference between the respective distributions is quantified by the effect size: the graph shows

the mean and standard deviation effect size calculated for each of the five network states (after 1, 2, 3, 4, and 5 h of simulation).

3.4.1.2. SpiNNaker model
For the initial iteration of the SpiNNaker model, we used
the Explicit Solver Reduction (ESR) implementation of the
Izhikevich model provided by the SpiNNaker software stack
(Hopkins and Furber, 2015). For network creation, simulation
control and execution as well as for functional testing, we
developed PyNN scripts that allowed us to conveniently
perform the simulation, the verification tasks, and substantiation
activities. Additional development work was required to
circumvent a few restrictions of the SpiNNaker system and its
software stack, namely:

The SpiNNaker framework does not allow external current

injection: During each 1 ms simulation time-step, an external
current of Iext = 20 pA is injected into a randomly selected
neuron. This current injection is emulated by two spike source
arrays forming one-to-one connections to the two populations
of the polychronization network. Those connections use static
synapses, translating an external spike event into an injected
current.

The amount of data that needs to be held on the SpiNN-3

board during simulation may become too large for 60 s

simulation time: To limit the amount of data, we divided a
single simulation run into 60 cycles. At the end of each cycle, the
simulation is halted for data exchange, and then resumed.

We used three approaches to functionally test the PyNN
scripts and to verify the implementation of the neuron
model:

Manual low level debugging on the SpiNNaker system to

verify the correctness of state variables, program flow and

algorithms: The SpiNNaker system offers a low level command
line debugging tool called ybug and the SpiNNaker kernel
also allows log information to be sent to an internal i/o-
buffer. The buffer is read at simulation termination and
accessible with ybug. We used this basic debugging technique
to verify the internal states of the neuron model, the
correctness of injected current values as well as to verify the
correctness of the program flow of the algorithms that we
implemented.

Verification of the neuron dynamics using a PyNN test script

applying an external constant current to individual neurons

and recording the state variables: We recorded the dynamics of
individual neurons resulting from an injected constant current
and compared the data with the results obtained from a
stand-alone C console application that implements the same
algorithms.

Functional testing with a small (20 neuron) version

of the polychronization network: We used a down-scaled
version of the polychronization network (16 excitatory and

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2018 | Volume 12 | Article 81231

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

4 inhibitory neurons) to verify the functional correctness
of the simulation setup. As the connectivity matrix was
derived from simulations of the C model, it further served
for testing the functionality added to support the activities
carried out during the substantiation process, e.g., the
export of the connectivity matrix created by simulation
runs of the C model and its import into the SpiNNaker
simulation.

3.4.1.3. Substantiation
We simulated the models to generate the data for the quantitative
comparisons of the statistical measures, as described in sections
3.2.1 and 3.2.2, respectively. The results are summarized in
the top row of Figure 7. This reveals a substantial mismatch,
most dominantly visible in the distribution of the firing
rates (FR) and the pairwise correlation coefficients (CC). This
mismatch, as quantified by the effect size, is consistently observed
for all five reference network states. Therefore, we conclude
that the models do not show an acceptable agreement and
the substantiation assessment failed at the end of Iteration
I. Although the effect size is a very simple measure which
only takes into account the means and standard deviations
of the distributions, it provides an intuitive quantification of
differences which is unbiased by the sample size. However,
since the effect size can not detect discrepancies in the
distribution shape, a visual inspection is essential and additional
comparison methods, such as hypothesis tests, may be needed.
In Figure 7 we only show the measures computed from 60 s
of network activity after the fifth hour. For a visual inspection
of the computed measures from the network states after 1,
2, 3, 4, and 5 h of simulation, see Figures S1–S5 in the
Supplementary Material.

3.4.2. Iteration II
The substantial discrepancies revealed by the model
substantiation assessment performed in Iteration I suggests
that there are numerical errors in one or both of the executable
models. In the second iteration, we therefore focus on calculation
verification. To this end, monitoring functionality was included
to record the minimal, maximal, and average values of the
model state variables. We find that the largest contributors
to error are the choice of solver for the neuronal dynamics,
the detection of spikes, and the fixed-point arithmetic on
SpiNNaker.

3.4.2.1. Numeric integration scheme and precise threshold

detection
When working with systems of ordinary differential equations
(ODEs), it is important to make sensible decisions regarding
the choice of a numeric integration scheme. To achieve accurate
approximations of their solutions one must take into account
not only the form of the equation but also the magnitude of
the variables occurring in them (Dahmen and Reusken, 2005).
Depending on these parameters, some ordinary differential
equations can become stiff, i.e., requiring excessively small time
steps for an explicit numerical iteration scheme (i.e., one that
only uses the values of variables at preceding time-steps) to

FIGURE 8 | Above threshold evolution of the state variable v(t). The
approximation in the evolution of v(t) in the Equation (1) when using the

semi-implicit symplectic Forward Euler method with a fixed-step size of

h/2 = 0.5 ms (the red dotted line), where h refers to the 1 ms simulation

time-step, causes v(t) values to be well above the threshold and, thus,

producing a propagating error over time. This is expressed in delayed spike

times. The black solid line shows the evolution of v(t) around threshold for a

regular-spiking type Izhikevich neuron stimulated with a constant current of

Iext = 5 pA. For integration, the same Forward Euler method was used but

with an integration step size of h/100 = 0.01 ms. The steep slope at threshold

requires a precise threshold detection to prevent a numeric overflow.

achieve acceptable accuracy and avoid numeric instabilities. Such
equation systems require the use of an implicit scheme (i.e.,
one that finds a solution by solving an equation involving
both the current values of variables and their later values).
However, this method is computationally more expensive,
entailing unnecessarily long run-times when applied to non-
stiff systems (Strehmel and Weiner, 1995). The ODEs used
to model neuronal behavior are often non-stiff, so that an
explicit numerical iteration scheme is sufficient (Lambert,
1992).

The Izhikevich ODE system (Equations 1–3) is an example
of such a non-stiff model, see Blundell et al. (2018b). Thus, in
principle, the choice of an explicit method, namely the Forward
Euler method, albeit in a semi-implicit symplectic variant,
which is used in the C model, is correct. Nevertheless, the
numerical integration scheme must be applied correctly, i.e., the

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2018 | Volume 12 | Article 81232

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

step size must be chosen according to the desired maximum
error. The (relatively large) selected step sizes of h = 0.5 ms for
the integration of the membrane potential (Equation 1), and
h = 1.0 ms for the recovery variable are not only questionable
because nomotivation is given for why two different step sizes are
chosen for the same system of equations, but more importantly
because no error estimate is implemented to guarantee that the
integration scheme does in fact give a reasonable approximation
of the solution of the ODE system. The algorithm of the
original C model implementation is shown in Listing 1. Note
the symplectic, or semi-implicit Forward Euler scheme, i.e.,
the update of u is based on an already updated value for
v. In an unorthodox approach, the variable v is integrated
in two 0.5 ms steps whilst u is integrated in one 1 ms
step.

EVERY MILLISECOND:
{

NEURON STATE UPDATE:
{
// for numerical stability
// 2 integration steps within 1 ms
v = v + 0.5 * ((0.04 * v + 5.0) * v

+ 140.0 - u + I)
v = v + 0.5 * ((0.04 * v + 5.0) * v

+ 140.0 - u + I)
u = u + a * (b * v - u)

}

THRESHOLD DETECTION:
{
IF(v >= 30.0)
{

v = c
u = u + d

}
}

}

Listing 1 | C model: algorithm of updating the neuronal dynamics (given as

pseudocode) as implemented in the original C model. The algorithm

implements a fixed-step size semi-implicit symplectic Forward Euler method.

The spike onset of a regular-spiking Izhikevich neuron appears
as a steep slope at threshold, and, due to the grid-constrained
threshold detection in the C model, leads to values of v(t)
which can be two orders of magnitude higher than the threshold
value θ = 30 mV (Equation 3). In the C model, we observed
values of v(t) ≤ 1700. Figure 8 graphically illustrates the error
caused by this approximation. The value of u(t) (Equation 2),
which describes the threshold dynamics, evolves continuously,
thus, verror will induce an error to the threshold dynamic
which propagates over time delaying all subsequent spike
events.

Moreover, for efficiency, SpiNNaker uses fixed-point
numerics. Numbers are held as 32-bit fixed-point values in a
s16.15 representation, limited in range. Large values of v(t)
can lead to a fixed-point overflow, as discussed in greater
detail below, which may then produce spike artifacts. The
likelihood of this is even further increased by the fact that
this value appears as a power of two in Equation (1). To
demonstrate this, we adapted the algorithm shown in Listing
1 and added an additional integration step (see Listing 2).
The neuronal activity, shown in Figure 9, exhibits spiking
artifacts in the form of bursts of spikes with high spike
rates.

EVERY MILLISECOND:
{
NEURON STATE UPDATE:
{

REPEAT 3 TIMES:
{

v = v + 0.333 * ((0.04 * v + 5.0) * v
+ 140.0 - u + I)

u = u + 0.333 * a * (b * v - u)
}

}

THRESHOLD DETECTION:
{

IF(v >= 30.0)
{

v = c
u = u + d
deliverSpikeEvent()

}
}

}

Listing 2 | SpiNNaker model: an algorithm of updating the neuronal dynamics

(given as pseudo code). The algorithm is similar to the implementation shown

in Listing 1 but uses three fixed size integration steps. The additional step

increases the likelihood that large values of v(t) are squared. This

implementation may cause a numeric overflow.

The SpiNNaker software stack (Rowley et al., 2017b) provides
an Izhikevich neuron model implementation optimized for
efficiency for fixed-point processors, such as ARM. The
implementation follows a new approach called Explicit Solver
Reduction (ESR), described in Hopkins and Furber (2015): “for
merging an explicit ODE solver and autonomous ODE into one
algebraic formula, with benefits for both accuracy and speed.”
The SpiNNaker system is designed for simulations in biological
real-time. The real-time capability is achieved at an integration
step size of h = 1 ms which then corresponds to the simulation
time-step, i.e., the same integration step size as the C model.
At higher resolution, i.e., smaller integration time-steps, the
simulation time increases accordingly. The SpiNNaker ESR
implementation, at the same integration step size, does not
exhibit such artifacts, but fails in in adequately reproducing
the network states, as can be seen in the model substantiation
assessment for Iteration I (top row of Figure 7).

In general, higher accuracy can be obtained by using smaller
step sizes. However, for this model, using smaller steps to
integrate whilst restricting spike detection and reset to a 1 ms
grid results in a steep slope in the evolution of the membrane
potential above threshold which rapidly reaches values that can
not be represented with double precision (compare red dotted
curve and black solid curve in Figure 8). We therefore propose
a solution that combines a simple fixed-step size symplectic
Forward Euler ODE solver and an exact off-grid threshold
detection, while a spike event is still forced to a grid point.
To be more specific, within each 1 ms simulation time-step h,
the equations evolve in steps of h/16. The number of internal
integration steps was chosen for two reasons. First, as a power
of two, it can be represented in s16.15 without numerical error.
Second, it represents a good compromise between the increased
computational cost of smaller steps, and the increased overshoot
in the membrane potential for larger steps. The algorithm is
given as pseudo code in Listing 3. Please note the multiplication
with 0.0625, avoiding a costly division. Spikes can be detected

Frontiers in Neuroinformatics | www.frontiersin.org 13 November 2018 | Volume 12 | Article 81233

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

FIGURE 9 | Spike artifacts caused by fixed-point overflow. Large values of v(t) can cause an overflow of the fixed-point data type, which may result in short

spike-trains with higher rates (marked by blue boxes). Simulations on SpiNNaker using fixed-step size symplectic Forward Euler with an integration step size of

h/3 = 0.333 ms and without precise threshold detection. (h refers to the simulation time-step of 1 ms).

(and the dynamics reset) after every internal step, however,
as with the C model, spikes are emitted on the simulation
grid with a resolution of 1 ms. Multiple spike events within
one simulation time-step are thus potentially possible, but are
merged into a single event. However, this seems to be a
very rare event. Pauli et al. (2018) demonstrated that there
was only a very slight change in average firing rate for this
network model between a simulation locked to a 1 ms grid,
as used here, and one carried out at a higher resolution of
0.1 ms. We thus consider this effect to be negligible in the
following.

EVERY MILLISECOND:
{

NEURON STATE UPDATE:
{
REPEAT 16 TIMES:
{

v = v + 0.0625 * ((0.04 * v + 5.0) * v
+ 140.0 - u + I)

u = u + 0.0625 * a * (b * v - u)

IF(v >= 30.0)
{

v = c
u = u + d
SET spikeEventHasOccurred

}
}

}

THRESHOLD DETECTION:
{
IF(spikeEventHasOccurred)
{

deliverSpikeEvent()
}

}
}

Listing 3 | SpiNNaker model: an improved algorithm of updating the neuronal

dynamics (given as pseudo code) that uses a fixed-step size symplectic

Forward Euler method and precise threshold detection.

To assess the accuracy of our proposed solver and that of
the implementation provided by the SpiNNaker framework, we
performed single neuron simulations and compared the resultant
membrane potentials to that produced by a Runge-Kutta-
Fehlberg(4, 5) (rkf45) solver implementation from the GNU

Scientific Library (GSL)11. The explicit Runge-Kutta-Fehlberg(4,
5)method is a good general-purpose integrator, and, compared to
a simple Forward Euler, of a higher order. To serve as a reliable
reference, the rkf45 algorithm was parametrized to integrate with
an absolute error of 10−6. The results are shown in Figure 10.
Note that not only do the spike times for both the fixed-step
size Euler and the ESR solvers lag behind the rkf45 solver, but
due to the accumulation of verror, the lag becomes larger during
the course of the simulation, here reaching around 20 ms in a
simulation of 500 ms duration containing five spikes. As the
errors occur at spike times, higher spike rates lead to larger
deviations. Thus, the course of the membrane potential of the
fast-spiking type neuron is less accurate than for the regular-
spiking type neuron. This applies also to an increasing injected
current I, as this also leads to higher spike rates (data not shown).
As the firing rate increases, the ESR lags more, such that fewer
spikes are generated in the given time window. Our results show
that even though the fixed-step size Euler scheme is simpler than
ESR, it is a more accurate match to the single neuron dynamics.

3.4.2.2. Fixed-point numeric precision
Hardware floating point units are expensive in chip area, and
thus lower the power efficiency of the system. Consequently,
SpiNNaker stores numbers, i.e., membrane voltages and other
neuron parameters, as 32-bit signed fixed-point values (Furber
et al., 2013). Since the meaning of an n-bit binary word depends
entirely on its interpretation, we can divide an n-bit word into an
integer part i and a fractional part f by defining a binary point
position. Calculations are then performed as if the numbers are
simple two’s complement integers. SpiNNaker uses a so called
s16.15 representation, that is, a 32-bit signed fixed-point format
with i = 16, f = 15 and a sign bit. The value range is small in
comparison to a single or double precision data type. For the si.f
data types the value range is defined by:

−2i ≤ x ≤ +2i − 2−f . (5)

11https://www.gnu.org/software/gsl/

Frontiers in Neuroinformatics | www.frontiersin.org 14 November 2018 | Volume 12 | Article 81234

https://www.gnu.org/software/gsl/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

A B

FIGURE 10 | Spike timing: comparison of different ODE solver implementations. Membrane potential v(t) recorded for a regular-spiking (A) and fast-spiking (B)

Izhikevich neuron, stimulated with a constant current of Iext = 5 pA. The dynamics are solved by the original SpiNNaker ESR ODE solver implementation (blue dashed

curves); a fixed-step size symplectic Forward Euler approach with precise threshold detection (h/16 = 0.0625 ms) (green solid curves); and, for comparison, a

reference implementation of the GSL rkf45 ODE solver with an absolute integration error of 10−6 (black dotted curves). Both the SpiNNaker ESR and the fixed-step

size Forward Euler implementations show considerable lags in the spike timing compared to the rkf45 reference implementation. While for the regular-spiking neuron

(A) the SpiNNaker implementations have much the same accuracy, the fixed-step size Forward Euler approach with precise spike timing shows a substantial

improvement over the ESR implementation for the fast-spiking neuron (B).

The SpiNNaker s16.15 data type therefore ranges from
−216 = −65536 to 216 − 2−15 = 65535.999969482.

This data type does not saturate on SpiNNaker (Hopkins and
Furber, 2015). This means that in case of a fixed-point overflow,
the value wraps around producing a negative number. In
neural network simulations this might be seen as spike artifacts,
as demonstrated in Figure 9. Another aspect of fixed-point
arithmetic and an additional source of numerical inaccuracy
is that not every number can be accurately represented. For
example: although small, the error in the s16.15 representation
of the constant value 0.04 in Equation (1) induces a noticeable
delay in the spike timing.
To represent a number in si.f , its value is shifted f bits to the left,
i.e., multiplied by 2f . For the constant value 0.04 in Equation (1)
this yields:

0.04 · 215 = 1310.72(s16.15)

The compiler stores the value as a 32-bit word while truncating
the fraction:

0x0000051E

If the value is converted back, this leads to:

1310(s16.15) · 2
−15
= 0.03997802

This loss in precision is significant. At the level of the dynamics
of individual neurons, this difference is expressed in terms of
delayed spike times. The following example may illustrate this:
for the sake of simplicity we assume a membrane potential of

v(t0) = −75 mV while u(t0) = 0 and I(t0) = 0. The expected
value for v(t1) in the Equation (1) is:

0.04 · 75 · 75+ 5 · (−75)+ 140 = −10.0000000

The same calculation in s16.15 leads to:

0.03997802 · 75 · 75+ 5 · (−75)+ 140 = −10.1236357

This slightly more negative value of v(t) causes the threshold
crossing to occur later and affects the dynamics on the network
level.

The effect can be mitigated if critical calculations are
performed with higher precision numbers, whereby the order of
operations also plays a role. If, for example, the constant value
0.04 in Equation (1) is represented in s8.23, the numerical error
can be reduced.

0.04 · 223 = 335544.32(s8.23)

If the value which is truncated by the compiler is converted back,
we then get:

335544(s8.23) · 2
−23
= 0.039999962

If now the same calculation as in the beginning is performed, the
result is significantly more precise.

0.039999962 · 75 · 75+ 5 · (−75)+ 140 = −10.00021375

Frontiers in Neuroinformatics | www.frontiersin.org 15 November 2018 | Volume 12 | Article 81235

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

The disadvantage, however, is the limited value range of the s8.23
representation which is:

−28 = −256 to 28 − 2−23 = 255.999999881

The simple fixed-step size symplectic Forward Euler method
together with a precise threshold detection presented above
ensures that values stay within limits. Furthermore, we point
out that a s8.23 data type is not available on SpiNNaker, i.e.,
it is not supported by the ARM C compiler. To let the value
335544.32(s8.23) appear as a s16.15 constant we can write:

335544.32(s16.15) = 10.24 · 215

In order to return to the original value, a right-shift operation of
8 bits is then required.

10.24 · 2−8 = 0.04

In this context, the order in which the operations are carried out
is also very important. For example, multiplying 10.24 with the
power of two of the membrane potential may cause an overflow
of the s16.15 data type. Combining all this leads to the following
sequence of operations for the Equation (1).

v̇ = ((10.24 · v) · 0.00390625)) · v+ 5 · v+ 140− u+ I (6)

In order to prevent the compiler from optimizing the code and
perhaps arranging the operations in an inappropriate order, the
critical calculations in the Equation (6) are placed in separate
lines. This is shown as pseudo code in Listing 4. Note that
suppressing optimization in this way works for the ARM C
compiler, but can not be generalized. We verified this through
an analysis of the generated assembler source code.

EVERY MILLISECOND:
{

NEURON STATE UPDATE:
{
REPEAT 16 TIMES:
{

A = 10.24 * v
A = A * 0.00390625
A = A * v
B = 5.0 * v + 140.0 - u + I

v = v + 0.0625 * (A + B)
u = u + 0.0625 * a * (b * v - u)

IF(v >= 30.0)
{

v = c
u = u + d
SET spikeEventHasOccurred

}
}

}

THRESHOLD DETECTION:
{
IF(spikeEventHasOccurred)
{

deliverSpikeEvent()
}

}
}

Listing 4 | SpiNNaker model: the same algorithm (given as pseudo code) as

shown in Listing 3, but adds fixed-point conversion to the constant 0.04.

The above also applies to the Izhikevich neuron model
parameters a and b which add an error to u(t). Further, the
example ignored that the state variables v(t) and u(t) are
themselves fixed-point values that add numerical inaccuracy.

In the course of the implementation of the SpiNNaker
Izhikevich neuron model, and the adaptations of the model
during the verification and substantiation process, we added
fixed-point data type conversion to all constant values involved
in critical calculations, that is the constant value 0.04 in the
Equation (1) and the neuron model parameters a and b.

To investigate the consequences of data type conversion
for critical parameters on the accuracy of the solution
of the dynamics, we simulated regular-spiking and fast-
spiking Izhikevich neurons with and without fixed-point
data type conversion, and compared the development of the
membrane voltages to a Runge-Kutta-Fehlberg(4, 5) (rkf45)
solver implementation of the GNU Scientific Library (GSL), thus,
using the same verification method as before when choosing
the integration scheme. The results are shown in Figure 11.
For both neuron parameterizations, we achieved a substantial
improvement in the spike timing. Compared to results for
the regular-spiking neuron, in which the solver employing
data type conversion is very close to the rkf45-reference, our
implementation still lags behind the rkf45-reference for the fast-
spiking neuron. This can be explained by the overshoot in v(t)
at threshold crossing, that, even if it is small, still exists, and
propagates over time—and the more spikes emitted, the larger
the error becomes.

3.4.2.3. Substantiation
As the C model was adapted during Iteration II, we can no
longer speak of a replication. Therefore, before performing the
model substantiation assessment, we needed to check whether
the results of the modified model are compatible with the
original, i.e., whether or not result reproducibility is preserved.
We evaluated the development of polychronous groups in the
modified C model using the analysis provided in Izhikevich
(2006). We found that the number of polychronous groups was
reduced by about 34%. Thus the network still shows the behavior
reported in the original manuscript (Izhikevich, 2006), albeit in a
weakened form. As it was demonstrated in Pauli et al. (2018) that
the number of groups developed by the C model varies strongly
with implementation details, including the solver algorithm of
the neuron model, we consider this result to be within our
acceptance criteria.

We then performed the model substantiation assessment
as described in section 3.2 for the C and SpiNNaker models
incorporating the refined neuron model implementations
described above. Note that this included re-generating the
reference data, due to the changes in the neuron model
implementation.

The result of the network activity data analysis and its
comparison is shown in the middle row of Figure 7. Our new
ODE solver, implemented in both models, leads to a good match
in the firing rates (FR) and the pairwise correlation coefficients
(CC). We note, though, that the distributions are shifted from
those expressed by the C implementation in Iteration I. The

Frontiers in Neuroinformatics | www.frontiersin.org 16 November 2018 | Volume 12 | Article 81236

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

A B

FIGURE 11 | Spike timing: with and without fixed-point data type conversion. The graphs show the development of the membrane voltages v(t) with (green solid line)

and without (red dashed line) fixed-point data type conversion for a regular-spiking type (A) and a fast-spiking type (B) Izhikevich neuron, that is stimulated with a

constant current of Iext = 5pA. For the ODE solver, the fixed-step size symplectic Forward Euler implementation with precise threshold detection was used

(h/16 = 0.0625 ms). This is shown in comparison to a reference implementation of the GSL rkf45 ODE solver with an absolute integration error of 10−6 (black dotted

line). For both neuron types, a substantial improvement in the spike timing can be seen.

shift of cross-correlation to lower values may well account for
the smaller number of polychronous groups developed. Both the
firing rates and the cross correlations also show small effect sizes
after this iteration. In case of the CC distributions, the effect
size has to be interpreted with care, as it assumes Gaussian-
like distributions which is clearly violated by the bimodality of
the CC distributions. Nevertheless, in combination with visual
inspection and additional comparison measures, its application
here provides a useful discrepancy quantification.

A discrepancy can still be seen between the distributions
of the coefficients of variation (LV). The distribution for the
SpiNNaker model is shifted toward lower values, indicating a
higher degree of regularity than that of the C model. This is
confirmed by the consistently high effect size obtained for the
five reference network states. Therefore, we conclude that there
is still a disagreement in the executable models, and that model
substantiation assessment has not been achieved at the end of
Iteration II.

3.4.3. Iteration III
The slight discrepancy in regularity observed in Iteration II
allowed us to identify systematic differences in spike timing
between the two models, hinting at an error in the numerical
integration of the single neuron dynamics. Indeed, the visual
comparison of the dynamics of individual neurons on SpiNNaker
with a stand-alone C application that implements an identical
fixed-step size symplectic Forward Euler ODE solver, revealed
a small discrepancy in the sub-threshold dynamics, leading to
a fixed delay in the spike timing. We identified an issue in the
precise threshold detection algorithm as to be the cause.

3.4.3.1. Substantiation
The result that we achieved after resolving the issue and
repeating the SpiNNaker simulations is shown in the bottom
row of Figure 7. We observe a close match of all three
distributions, consistently across the five reference network
states. The comparison is not perfect, with the distribution of
firing rates showing the largest discrepancy with only a subtle
shift toward higher firing rates for the SpiNNaker simulation.
The small discrepancies between the two implementations are
quantified by the effect size, and demonstrate that we have
achieved a considerable reduction of the mismatch as a result of
the model verification and substantiation process. All effect sizes
are classified in the range of small to medium according to Cohen
(1988). While further iterations of the model implementation
in the verification and substantiation process (see section 4
for suggestions) may further improve the effect size scores, for
our purposes, we find the remaining mismatch in the range of
acceptable agreement. We therefore conclude that the executable
models are in close agreement at the end of Iteration III.

4. DISCUSSION

In this study, we introduced the concept of model verification
and substantiation. In conjunction with the work presented
in Gutzen et al. (2018), we demonstrated the application of
a rigorous workflow assessing the level of agreement between
the C implementation of the spiking network model proposed
by Izhikevich (2006) and a reproduction of its underlying
mathematical model on the SpiNNaker neuromorphic system.
The choice of this network was motivated by its unorthodox
implementation choices, examined in greater detail in Pauli et al.

Frontiers in Neuroinformatics | www.frontiersin.org 17 November 2018 | Volume 12 | Article 81237

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

(2018). These issues make it a particularly illustrative example
for a reproduction on the SpiNNaker neuromorphic system and
to demonstrate various aspects of source code and calculation
verification.

After three iterations of the proposed workflow we concluded,
on the basis of the substantiation assessment, that the executable
models are in acceptable agreement. This conclusion is
predicated on the domain of application and the expected level
of agreement that we defined for three characteristic measures of
the network activity. We emphasize that these definitions are set
by the researcher: further iterations would be necessary, if, for
example, we set a level of agreement requiring a spike-by-spike
reproduction of the network activity data, as applied by Pauli et al.
(2018).

We speculate that the remaining mismatch in the statistical
measures at the end of Iteration III can be explained by the
reduced precision in the representation of the synaptic weights
on the SpiNNaker system. This source of error is introduced by
the conversion of the double precision weight matrix exported
from the Cmodel and converted into a fixed-point representation
when imported into the simulation on the SpiNNaker system.
The absolute values of the synaptic weights after conversion are
always smaller than its double origin, thus, negative weights
increase, contributing to larger firing rates on SpiNNaker (see
Iteration III in Figure 7). Another potential source of error,
in terms of calculation verification, is related to the grid
based simulation paradigm, i.e., the simulation time-step, with
which spike events are delivered. Both the original C model
implementation and the SpiNNaker system use a simulation
time-step of 1 ms, which is larger than commonly used in spiking
neural network simulations. Since both models are affected, the
substantiation assessment can not give us further insight.

Although some of the verification tasks we applied, such
as functional testing, are closely tied to model implementation
details, the methodology presented in this work is transferable
to similar modeling tasks, and could be further automated.
The quantitative comparison of the statistical measures carried
out in the substantiation was performed using the modular
framework NetworkUnit12 (NetworkUnit, RRID:SCR_016543),
an open source Python module, presented in the companion
study to this work (Gutzen et al., 2018). NetworkUnit facilitates
the formalized application of standardized statistical test metrics
that enable the quantitative validation of network models on the
level of the population dynamics.

The model substantiation methodology we propose has
a number of advantages. Firstly, from the point of view
of computational neuroscience, simulation results should be
independent of the hardware, at least on the level of statistical
equivalence. In practice, implementations may be sensitive to
issues such as 32/64-bit architecture or compiler versions. Thus,
the underlying hardware used to simulate a model should be
considered part of the model implementation. Applying our
proposed model substantiation methodology allows a researcher
an opportunity to discover and correct such weaknesses in
the implementation. Secondly, in the case of new types of

12https://github.com/INM-6/NetworkUnit

hardware, such as neuromorphic systems, the methodology used
here can help to build confidence and uncover shortcomings.
In the particular example investigated here, we were able to
demonstrate that the numerical precision is a critical issue
for the model’s accuracy. Integrating the model dynamics at
1ms resolution using 32-bit fixed-point arithmetic available on
SpiNNaker (Furber et al., 2013) does not adequately reproduce
the dynamics of the corresponding C model with floating
point arithmetic. We propose an alternative integration strategy
that does adequately reproduce the dynamics, but the more
general point is that this study demonstrates how the use of
a rigorous model substantiation methodology can contribute
to fundamental open questions in neuromorphic computing,
such as the required level of precision in the representation
of variables. Finally, in neuroscience, models often function
as discovery tools and hypothesis generators in cases where
experimental data, against which amodel could be validated, does
not exist. Performing a substantiation assessment is an option
to accumulate circumstantial evidence for a model’s plausibility
and self-consistency, although it cannot reveal whether a model
reflects reality.

Beyond our introduction of the term substantiation, we have
adopted the ACM (Association for Computing Machinery, 2016)
terminology for reproducibility and replicability, as it seemsmost
appropriate for our purposes. Alternative definitions exist, and
terminology for research reproducibility is an ongoing theme of
a controversial debate. The application of methodologies from
model verification and validation (Thacker et al., 2004) to the
field of neural network modeling and simulation can be of great
value, but we have suggested some adaptations that, in our
view, fit the domain better. In particular, the terms mathematical
model and executable model, that we propose instead of using the
terms conceptual model and computerized model, are intended
to yield better separation of the entities they describe, so that,
for example, implementation details are not falsely understood
to belong to the mathematical model. This is important, as the
classic “one model—one code” relationship does not typically
apply to spiking neuron network models. Instead, they are
implemented using general purpose neural simulation tools such
as NEURON (Hines and Carnevale, 1997), Brian (Goodman and
Brette, 2008), or NEST (Gewaltig and Diesmann, 2007), which
can run many different models. In addition, model simulation
codes may be partially generated by other tools (Blundell et al.,
2018a). This scenario abstracts the implementation details away
from the modeler, who can focus on analysis and modeling,
and has the further advantage that individual components
(such as neuron models) can be separately verified, and may
subsequently serve as reliable references. We hope that our
proposed terminology will help to pave the way to a more
formalized approach for model verification and validation in the
domain of neural network simulation.

In this study, we applied a number of standard methods
from software engineering. This discipline is concerned with the
application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software
(Bourque and Fairley, 2014). Such methods include, for example,
the application of clean code heuristics, test driven development,

Frontiers in Neuroinformatics | www.frontiersin.org 18 November 2018 | Volume 12 | Article 81238

https://scicrunch.org/resolver/RRID:SCR_016543
https://github.com/INM-6/NetworkUnit
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

continuous integration and agile development methodologies,
with the common goal of building quality into software. The
formalized model verification and substantiation workflow that
we presented in this work should be seen in this context.

We note that software engineering methods, whilst critical
for developing high quality software, are underutilized in
computational science in general, and in computational
neuroscience in particular. For the network model investigated
here, it is important to emphasize that the awareness of software
engineering methodology was even less widespread at the
time of publication, and so the yardsticks for source code
quality applicable by today’s standards should be considered
in their temporal distance. Credit must in any case be given
for the unusual step of publishing the source code, allowing
scientific transparency and making studies such as the current
one, and that of Pauli et al. (2018), possible. Following
formalized processes, such as the one described here, further
aids transparency and comprehensibility, and reduces the risk
of incorrect conclusions. Moreover, simulation tools as well as
neuromorphic hardware platforms can benefit from formalized
and automated verification and validation procedures, such
that their reliability can be inherited by user-developed models
that are simulated using those tools and frameworks. Most
importantly, such standardized procedures are designed not to
place an additional burden on researchers, but rather to open up
simple avenues for computational neuroscientists to increase the
rigor and reproducibility of their models.

In conclusion, we argue that the methods of software
engineering, including the model verification and substantiation
workflow presented here, as well as verification and validation
methodologies in general, need to become a mainstream
aspect of computational neuroscience. Simulation and analysis
tools, frameworks and collaboration platforms are part of
the research infrastructure on which scientists base their
work, and thus should meet high software development
standards. The consideration of the application of software
engineering methodologies to scientific software development
should start at the funding level, such that an assessment of the
software engineering strategy is part of the evaluation of grant
applications. Likewise, journals should become more selective
with their acceptance of studies, and reject those for which
no demonstration has been made of an attempt to verify the
calculations. The use of standard tools goes a significant way

to fulfilling this criterion, to the extent that the standard tools
themselves are developed with a rigorous testing and verification
methodology.

AUTHOR CONTRIBUTIONS

GTdevised the project, themain conceptual ideas and workflows.
GT performed the verification tasks, the implementation of
the models and their refinement, and performed the numerical
simulations. RG and MD designed the statistical analysis which
was then carried out by RG. RG and MD have written the
passage on analysis of spiking activity and contributed to
the terminology section. IB contributed expertise on numeric
integration. AM gave scientific and theoretical guidance. GT, RG,
MD, and AM established the terminology. All authors provided
critical feedback and helped shape the research, analysis, and
manuscript.

FUNDING

This work was supported by the Helmholtz Association through
the Helmholtz Portfolio Theme Supercomputing and Modeling
for the Human Brain and the Initiative and Networking Fund,
also by the European Union’s Horizon 2020 Framework Program
for Research and Innovation under Grant Agreement No. 720270
(Human Brain Project SGA1) and 785907 (Human Brain Project
SGA2).

ACKNOWLEDGMENTS

We are greatful to Dimitri Plotnikov, Sandra Diaz, Alexander
Peyser, Jochen Martin Eppler, Sonja Grün, Michael von Papen,
Pietro Quaglio, Robin Pauli, and Philipp Weidel for the fruitful
discussions throughout the project. We would especially like to
thank Fahad Kahlid for his comments on an earlier version of
the manuscript, and to our colleagues in the Simulation Lab
Neuroscience for continuous collaboration.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00081/full#supplementary-material

REFERENCES

Association for Computing Machinery (2016). Artifact Review and Badging.

Available online at: https://www.acm.org/publications/policies/artifact-review-

badging(Accessed March 14, 2018).

Barba, L. A. (2018). Terminologies for reproducible research. arXiv

[Preprint]:1802.03311.

Benureau, F. C. Y., and Rougier, N. P. (2017). Re-run, repeat, reproduce, reuse,

replicate: transforming code into scientific contributions. Front. Neuroinform.

11:69. doi: 10.3389/fninf.2017.00069

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.

(2018a). Code generation in computational neuroscience: a review of tools and

techniques. Front. Neuroinform. 12:68. doi: 10.3389/fninf.2018.00068

Blundell, I., Plotnikov, D., Eppler, J., and Morrison, A. (2018b). Automatically

selecting a suitable integration scheme for systems of differential equations in

neuron models. Front. Neuroinform. 12:50. doi: 10.3389/fninf.2018.00050

Bourque, P., and Fairley, R. E., (eds.). (2014). SWEBOK: Guide to the Software

Engineering Body of Knowledge. Los Alamitos, CA: IEEE Computer Society.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York,

NY: Lawrence Erlbaum Associates.

Dahmen, W., and Reusken, A. (2005). Numerik für Naturwissenschaftler. Berlin;

Heidelberg: Springer.

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski,

D., et al. (2009). Pynn: a common interface for neuronal network

simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.01

1.2008

Frontiers in Neuroinformatics | www.frontiersin.org 19 November 2018 | Volume 12 | Article 81239

https://www.frontiersin.org/articles/10.3389/fninf.2018.00081/full#supplementary-material
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2018.00050
https://doi.org/10.3389/neuro.11.011.2008
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch et al. Rigorous Neural Network Simulations

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the spinnaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Goodman, S. N., Fanelli, D., and Ioannidis, J. P. A. (2016). What

does research reproducibility mean? Sci. Transl. Med. 8:341ps12.

doi: 10.1126/scitranslmed.aaf5027

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.

(2018). Reproducible neural network simulations: statistical methods for model

validation on the level of network activity data. Front. Neuroinform. 12:90.

doi: 10.3389/fninf.2018.00090

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural

ode solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/NECO_a_00772

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural

Comput. 18, 245–282. doi: 10.1162/089976606775093882

Lambert, J. D. (1992). Numerical Methods for Ordinary Differential Systems. New

York, NY: Wiley.

Martin, R. C., and Coplien, J. O. (2009). Clean Code: A Handbook of Agile Software

Craftsmanship. Upper Saddle River, NJ: Prentice Hall.

Martis, M. S. (2006). Validation of simulation based models: a theoretical outlook.

Electron. J. Bus. Res. Methods 4, 39–46.

Patil, P., Peng, R. D., and Leek, J. (2016). A statistical definition for reproducibility

and replicability. bioRxiv [Preprint]. doi: 10.1101/066803

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing

polychronization: a guide to maximizing the reproducibility of spiking network

models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Plesser, H. E. (2018). Reproducibility vs. replicability: a brief history of a

confused terminology. Front. Neuroinform. 11:76. doi: 10.3389/fninf.2017.

00076

Rowley, A. G. D., Stokes, A. B., and Gait, A. D. (2017a). Spinnaker New Model

Template Lab Manual. Manchester. Available online at: https://github.com/

SpiNNakerManchester/SpiNNakerManchester.github.io/blob/master/spynnak

er/4.0.0/NewNeuronModels-LabManual.pdf (Accessed March 14, 2018).

Rowley, A. G. D., Stokes, A. B., Knight, J., Lester, D. R., Hopkins, M., Davies, S.,

et al. (2017b). PyNN on SpiNNaker Software 4.0.0. doi: 10.5281/zenodo.1255864

Schlesinger, S., Crosbie, R. E., Gagn, R. E., Innes, G. S., Lalwani, C.,

Loch, J., et al. (1979). Terminology for model credibility. Simulation 32,

103–104.

Shinomoto, S., Shima, K., and Tanji, J. (2003). Differences in spiking

patterns among cortical neurons. Neural Comput. 15, 2823–2842.

doi: 10.1162/089976603322518759

Sommerville, I. (2015). Software Engineering, 10th Edn. Pearson Education.

Strehmel, K., andWeiner, R. (1995).Numerik gewöhnlicher Differentialgleichungen.

Wiesbaden: B.G. Teubner.

Temple, S. (2011a). AppNote 1 - SpiNN-3 Development Board. Available online at:

http://spinnakermanchester.github.io/docs/spinn-app-1.pdf (Accessed March

14, 2018).

Temple, S. (2011b).AppNote 4 - SpiNNaker Datagram Protocol (SDP) Specification.

Available online at: http://spinnakermanchester.github.io/docs/spinn-app-4.

pdf (Accessed March 14, 2018).

Thacker, B., Doebling, S., Hemez, F., Anderson, M., Pepin, J., and Rodriguez, E.

(2004). Concepts of Model Verification and Validation. Los Alamos National

Laboratory.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Trensch, Gutzen, Blundell, Denker and Morrison. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 20 November 2018 | Volume 12 | Article 81240

https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1101/066803
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fninf.2017.00076
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/blob/master/spynnaker/4.0.0/NewNeuronModels-LabManual.pdf
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/blob/master/spynnaker/4.0.0/NewNeuronModels-LabManual.pdf
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/blob/master/spynnaker/4.0.0/NewNeuronModels-LabManual.pdf
https://doi.org/10.5281/zenodo.1255864
https://doi.org/10.1162/089976603322518759
http://spinnakermanchester.github.io/docs/spinn-app-1.pdf
http://spinnakermanchester.github.io/docs/spinn-app-4.pdf
http://spinnakermanchester.github.io/docs/spinn-app-4.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

TECHNOLOGY REPORT
published: 12 December 2018
doi: 10.3389/fninf.2018.00089

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2018 | Volume 12 | Article 89

Edited by:

Andrew P. Davison,
FRE3693 Unit de Neuroscience,
Information et Complexit (UNIC),

France

Reviewed by:

Timothée Masquelier,
Centre National de la Recherche

Scientifique (CNRS), France
Jonathan Binas,

Montreal Institute for Learning
Algorithm (MILA), Canada

*Correspondence:

Hananel Hazan
hananel@hazan.org.il
Daniel J. Saunders

djsaunde@cs.umass.edu

Received: 20 June 2018
Accepted: 13 November 2018
Published: 12 December 2018

Citation:

Hazan H, Saunders DJ, Khan H,
Patel D, Sanghavi DT, Siegelmann HT

and Kozma R (2018) BindsNET: A
Machine Learning-Oriented Spiking
Neural Networks Library in Python.

Front. Neuroinform. 12:89.
doi: 10.3389/fninf.2018.00089

BindsNET: A Machine
Learning-Oriented Spiking Neural
Networks Library in Python
Hananel Hazan*, Daniel J. Saunders*, Hassaan Khan, Devdhar Patel, Darpan T. Sanghavi,

Hava T. Siegelmann and Robert Kozma

Biologically Inspired Neural and Dynamical Systems Laboratory, College of Computer and Information Sciences, University of
Massachusetts Amherst, Amherst, MA, United States

The development of spiking neural network simulation software is a critical component

enabling the modeling of neural systems and the development of biologically inspired

algorithms. Existing software frameworks support a wide range of neural functionality,

software abstraction levels, and hardware devices, yet are typically not suitable for

rapid prototyping or application to problems in the domain of machine learning. In

this paper, we describe a new Python package for the simulation of spiking neural

networks, specifically geared toward machine learning and reinforcement learning. Our

software, called BindsNET1, enables rapid building and simulation of spiking networks

and features user-friendly, concise syntax. BindsNET is built on the PyTorch deep

neural networks library, facilitating the implementation of spiking neural networks on fast

CPU and GPU computational platforms. Moreover, the BindsNET framework can be

adjusted to utilize other existing computing and hardware backends; e.g., TensorFlow

and SpiNNaker. We provide an interface with the OpenAI gym library, allowing for

training and evaluation of spiking networks on reinforcement learning environments. We

argue that this package facilitates the use of spiking networks for large-scale machine

learning problems and show some simple examples by using BindsNET in practice.

Keywords: GPU-computing, spiking Network, PyTorch, machine learning, python (programming language),

reinforcement learning (RL)

1. INTRODUCTION

The recent success of deep learning models in computer vision, natural language processing, and
other domains (LeCun et al., 2015) have led to a proliferation ofmachine learning software packages
(Jia et al., 2014; Abadi et al., 2015; Chen et al., 2015; Tokui et al., 2015; Al-Rfou et al., 2016; Paszke
et al., 2017). GPU acceleration of deep learning primitives has been a major proponent of this
success (Chetlur et al., 2014), as their massively parallel operation enables rapid processing of layers
of independent nodes. Since the biological plausibility of deep neural networks is often disputed
(Stork, 1989), interest in integrating the algorithms of deep learning with long-studied ideas in
neuroscience has been mounting (Marblestone et al., 2016), both as a means to increase machine
learning performance and to bettermodel learning and decision-making in biological brains (Wang
et al., 2018).

1BindsNET code is available at https://github.com/Hananel-Hazan/bindsnet. To install the version of the code used

for this paper, use pip install bindsnet=0.2.2. Benchmarking code for this paper can be found in the

examples/benchmark directory.

241

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00089
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00089&domain=pdf&date_stamp=2018-12-12
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hananel@hazan.org.il
mailto:djsaunde@cs.umass.edu
https://doi.org/10.3389/fninf.2018.00089
https://www.frontiersin.org/articles/10.3389/fninf.2018.00089/full
http://loop.frontiersin.org/people/21086/overview
http://loop.frontiersin.org/people/423381/overview
http://loop.frontiersin.org/people/1770/overview
http://loop.frontiersin.org/people/185262/overview
https://github.com/Hananel-Hazan/bindsnet

Hazan et al. BindsNET: SNN Library for Machine Learning

Spiking neural networks (SNNs) (Maass, 1996, 1997; Kistler
and Gerstner, 2002) are sometimes referred to as the “third
generation” of neural networks because of their potential to
supersede deep learning methods in the fields of computational
neuroscience (Wall and Glackin, 2013) and biologically plausible
machine learning (ML) (Bengio et al., 2015). SNNs are also
thought to be more practical for data-processing tasks in
which the data has a temporal component since the neurons
which comprise SNNs naturally integrate their inputs over time.
Moreover, their binary (spiking or no spiking) operation lends
itself well to fast and energy efficient simulation on hardware
devices.

Although spiking neural networks are not widely used as
machine learning systems, recent work shows that they have
the potential to be. SNNs are often trained with unsupervised
learning rules to learn a useful representation of a dataset, which
may then be used as features for supervised learning methods
(Diehl and Cook, 2015; Kheradpisheh et al., 2016; Ferr et al.,
2018; Hazan et al., 2018; Saunders et al., 2018). Trained deep
neural networks may be converted to SNNs (Rueckauer et al.,
2017; Rueckauer and Liu, 2018) and implemented in hardware
while maintaining good image recognition performance (Diehl
et al., 2015), demonstrating that SNNs can in principle
compete with deep learning methods. In similar lines of work
(Hunsberger and Eliasmith, 2015; Lee et al., 2016; O’Connor
and Welling, 2016; Huh and Sejnowski, 2017; Mostafa, 2018;
Wu et al., 2018), the popular back-propagation algorithm (or
variants thereof) has been applied to differentiable versions
of SNNs to achieve competitive performance on standard
image classification datasets, providing additional evidence in
support of the potential of spiking networks for ML problem
solving. Finally, ideas from reinforcement learning can be
used to efficiently train spiking neural networks for object
classification or other tasks (Florian, 2007; Mozafari et al.,
2018).

The membrane potential (or voltage) of a spiking neuron
is often described by ordinary differential equations. The
membrane potential of the neuron is increased or decreased
by presynaptic inputs, depending on their sign and strength.
In the case of the leaky integrate-and-fire (LIF) model (Kistler
and Gerstner, 2002) and several other models, the neuron is
constantly decaying to a rest potential vrest . If a neuron integrates
enough input and reaches its threshold voltage vthr , it emits a
spike which travels to downstream neurons via synapses, its post-
synaptic effect modulated by synaptic strengths, and its voltage is
reset to some value vreset . Synapses between neurons can also have
their own dynamics, which are modified by prescribed learning
rules or external reward signals.

Several software packages for the discrete-time simulation of
SNNs exist, with varying levels of biological realism and support
for hardware platforms. Many such solutions, however, were not
developed to target ML applications, and often feature abstruse
syntax resulting in steep learning curves for new users. Moreover,
packages with a large degree of biological realism may not be
appropriate for problems in ML, since they are computationally
expensive to simulate and may require a large degree of hyper-
parameter tuning. Real-time hardware implementations of SNNs

exist as well, but cannot support the rapid prototyping that some
software solutions can.

Motivated by the foregoing shortcomings, we present the
BindsNET spiking neural networks library, which is developed
on top of the popular PyTorch deep learning library (Paszke
et al., 2017). At its core, the software allows users to build,
train, and evaluate SNNs composed of groups of neurons
and their connections. The learning of connection weights is
supported by various algorithms from the biological learning
literature (Hebb, 1949; Markram et al., 1997). A separate module
provides an interface to the OpenAI gym (Brockman et al.,
2016) reinforcement learning (RL) environments library from
BindsNET. A Pipeline object is used to streamline the
interaction between spiking networks and RL environments,
removing many of the messy details from the purview of the
experimenter. Still other modules provide functions such as
loading of ML datasets, encoding of raw data into spike train
network inputs, plotting of network state variables and outputs,
and evaluation of SNN as ML models.

The paper is structured as follows: we begin in section 2
with an assessment of the existing SNN simulation software
and hardware implementations. In section 3, the BindsNET
library is described in details, emphasizing the motivation of
creating each software module, describing their functionalities,
and they way the inter-operate when solving a specific task. Code
snippets and simple case studies are introduced in section 4 to
demonstrate the breadth of possible BindsNET applications.
Desirable directions and features of future developments are
listed in 5, while potential research impacts are assessed in
section 6.

2. REVIEW OF SNN SOFTWARE
PACKAGES

2.1. Objectives of SNN Simulations
In the last two decades, neural networks have become
increasingly prominent in machine learning and artificial
intelligence research, leading to a proliferation of efficient
software packages for their training, evaluation, and deployment.
On the other hand, the simulation of the “third generation”
of neural networks (SNNs) has not been able to reach its
full potential, due in part to their inherent complexity and
computational requirements. However, spiking neurons excel
at remembering a short-term history of their activation and
feature efficient binary communication with other neurons, a
useful feature in reducing energy requirements on neuromorphic
hardware. Spiking neurons exhibit more properties from their
biological counterpart than the computing units utilized by
deep neural networks, which may constitute an important
advantage in terms of practical computational power or ML
performance.

Researchers that want to conduct experiments with networks
of spiking neurons for ML purposes have a number of options
for SNN simulation software. Many frameworks exist, but each is
tailored toward specific application domains. In this section, we
describe the existing relevant software libraries and the challenges

Frontiers in Neuroinformatics | www.frontiersin.org 2 December 2018 | Volume 12 | Article 89242

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

associated with each, and contrast these with the strengths of our
package.

We believe that the chosen simulation framework must be
easy to develop in, debug, and run, and, most importantly,
support the level of biological complexity desired by its
users. We express a preference to maintain consistency in
development by using a single programming language, and for
it to be affordable or an open source project. We describe
whether and how these aspects are realized in each competing
solution.

2.2. Comparison of State-of-Art Simulation
Packages
Many spiking neural network frameworks exist, each with
a unique set of use cases. Some focus on the biologically
realistic simulation of neurons, while others on high-level spiking
network functionality. To build a network to run even the
simplest machine learning experiment, one will face multiple
difficult design choices: Which biological properties should the
neurons and the network have? e.g., how many GABAergic
neurons or NMDA/AMPA receptors should be used, or what
form of synaptic dynamics? Many such options exist, some
of which may or may not have a significant impact on the
performance of an ML system.

Several prominent SNN simulation packages are compared
in Table 1. For example, NEST (Gewaltig and Diesmann,
2007), BRIAN (Stimberg et al., 2014), and ANNarchy (Vitay
et al., 2015) focus on accurate biological simulation from sub-
cellular components and biochemical reactions, to complex
models of single neurons, all up to the network level. Other
popular biologically realistic platforms are NEURON (Carnevale
and Hines, 2006), Genesis (Cornelis et al., 2012). These
simulation platforms target the neuro-biophysics community
and neuroscientists that wish to simulate multicompartment
neuron models, in which each compartment is a different part of
the neuron with different functionalities, morphological details,
and shape. These packages are able to simulate large SNNs
on various types of systems, from laptops all the way up to
HPC systems. However, each simulated component must be
homogeneous, meaning that it must be built with a single type
of neuron and a single type of synapse. If a researcher wants
to simulate multiple types of neurons utilizing various synapse
types, it may be difficult in these frameworks. For a more
detailed comparison of development time, model performance,
and varieties of models of neurons available in these libraries see
(Tikidji-Hamburyan et al., 2017).

A major benefit of the BRIAN, ANNarchy, NEST, and
NEURON packages is that, besides the built-in modules for
neuron and connection objects, the programmer is able
to specify the dynamics of neurons and connections using
differential equations. This eliminates the need to manually
specify the dynamic properties of each new neuron or
connection object in code. The equations are compiled into
fast C++ code in the case of ANNarchy, vectorised and
linear algebraic operations using NumPy and Basic Linear
Algebra Subprograms (BLAS) in the case of BRIAN2, and

to a mix of Python and native C-like language (hoc) (Hines
et al., 2009) which are responsible for SNN simulation in
the case of NEURON. In addition, in the NEST package, the
programmer can combine pre-configured objects (which accepts
arguments) to create SNNs. In all of these libraries, significant
changes to the operation of the network components requires
modification of the underlying code, a difficult task which
gets in the way of fast network prototyping and breaks the
continuity of the programming. At this time, BindsNET does
not support the solution of arbitrary differential equations
describing neural dynamics, rather, for simplicity, several
popular neuron types are provided for the user to chose
from.

Frameworks such as NeuCube (Kasabov, 2014) and Nengo
(Bekolay et al., 2014) focus on high-level behaviors of spiking
neural networks and may be used for machine learning
experimentation. NeuCube supports rate coding-based spiking
networks, and Nengo supports simulation at the level of
spikes, firing rates, or high-level, abstract neural behavior.
NeuCube attempts to map spatiotemporal input data into
three-dimensional SNN architectures; however, it is not an
open source project, and therefore is somewhat restricted in
scope and usability. Nengo is often used to simulate high-level
functionality of brains or brain regions, as a cognitive modeling
toolbox implementing the Neural Engineering Framework
(Stewart, 2012) rather than a machine learning framework.
Nengo is an open source project, written in Python, and supports
a Tensorflow (Abadi et al., 2015) backend to improve
simulation speed and exploit some limited ML functionality.
It also has options for deploying neural models on dedicated
hardware platforms; e.g., SpiNNaker (Plana et al., 2011).
CARLsim (Beyeler et al., 2015) and NeMo (Fidjeland et al.,
2009) also focus on the high-level aspects of SNNs and are thus
good candidates for applications in machine learning. Both allow
the simulation of large spiking networks built with Izhikevich
neurons (Izhikevich, 2003) with realistic synaptic dynamics as
their fundamental computational unit, and support accelerated
computation with GPU hardware. Like the frameworks before,
low-level simulation code is written in C++ for efficiency,
but programmers can interact with them with a simulator-
independent PyNN Python library (Davison et al., 2008), or in
MATLAB or Java.

The GeNN (GPU-enhanced neuronal networks) library Yavuz
et al. (2016) is an environment that enables simulation of SNNs
on CPUs or NVIDIA GPUs via code generation technology.
Networks are defined in a C-style API, and the code for
simulating them (on CPU or GPU) are automatically generated
by GeNN. The recent BRIAN2genn package Stimberg et al.
(2018) (in beta release) can be used to convert network
models written in BRIAN2 to run on NVIDIA GPUs using
the GeNN library, by invoking BRIAN2’s set_device()

function to execute code in an external framework. Although
this platform targets both CPUs and GPUs (a central feature
of the BindsNET library), it requires an (often costly)
intermediate code generation step between network prototyping
and deployment (see Figure 11 for an illustration of this issue). It
is also difficult to intervene on the generated code when running;

Frontiers in Neuroinformatics | www.frontiersin.org 3 December 2018 | Volume 12 | Article 89243

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

TABLE 1 | Comparison between spiking neural network simulation libraries.

Simulator Affiliation Open source Simulation OpenMP GPU Programming languages

ANNarchy Chemnitz University Yes Clock- Yes Yes C++

Germany driven with Python interface

(Py)NEST University of Freiburg Yes Hybrid Yes No C++

Germany with Python interface

CARLsim University of California Yes Clock- Yes Yes C++

Irvine, CA, US driven with PyNN support

NeMo Imperial College Yes Clock- Yes Yes C++

London, UK driven with Python & PyNN support

PyNN Open Community Yes Various Yes Yes Python

Interface only

Nengo AI University of Waterloo Yes Clock- Partially Yes C++

Canada driven with Python wrapper

SpiNNaker Manchester University Yes Event- No No C++ with

UK driven PyNN & sPyNNaker support

Brian 2 Ecole Normale Superieure Yes Clock- Yes No C++

Paris, France driven with Python wrapper

Brain2GeNN University of Sussex Yes Clock- Yes Yes C++

(GeNN) UK driven with Python wrapper

NeuCube Auckland University No ? ? ? MATLAB

New Zealand

BindsNET University Massachusetts Yes Clock- Yes Yes C++

Amherst, US driven with Python wrapper

e.g., clamping synapses if certain criteria are met, or changing
learning rates as the simulation progresses.

Many of the above packages are written in more than one
programming language: the core functionality is implemented in
a lower-level language (e.g., C++) to achieve good performance
with low overhead, and the code exposed to the user of the
package is written in a higher-level language (e.g., Python or
MATLAB) to enable fast prototyping. If such frameworks are
not tailored to the needs of a user, have steep learning curves,
or aren’t flexible enough to create a desired model, the user may
have to program in both high- and low-level languages to make
changes to the required internal components. The authors have
encountered this difficulty with the BRIAN2 library in particular,
since certain segments of simulation functionality is regulated to
generated code, which is difficult or impossible to modify while,
for example, training a SNN for a machine learning task. This
issue is likely to appear in similar software frameworks; e.g.,
GeNN and ANNarchy.

BindsNET relies on PyTorch for its matrix computations in
order to perform efficient simulation of spiking neural networks.
Without changing the details of the mathematical operations,
BindsNET can in principle be connected to various hardwares,
e.g., FPGA, ASIC, DSP, or ARM, to execute the simulations.
One may design an API to compile spiking networks created
in BindsNET to run on designated hardware instead of using
PyTorch as the simulation workhorse. In this way, BindsNET
can be seen as a bridge between the software and hardware
domains, enabling researchers to rapidly test software prototypes

on CPUs or GPUs, and eventually deploy the simulation to fast,
energy efficient dedicated hardware. At the moment, no such API
exists, but may be added in a future release of the library.

3. PACKAGE STRUCTURE

A summary of all the software modules of the BindsNET

package is included in Figure 1.
Many BindsNET objects use the torch.Tensor data

structure for computation; e.g., all objects supporting the Nodes
interface use Tensors to store and update state variables such
as spike occurrences or voltages. The Tensor object is a multi-
dimensionalmatrix containing elements of a single data type; e.g.,
integers or floating points numbers with 8, 16, 32, or 64 bits of
precision. They can be easily moved between devices with calls
to Tensor.cpu() or Tensor.cuda(), and can target GPU
devices by default with the statement
torch.set_default_tensor_type(’torch.cuda.

FloatTensor’).

3.1. SNN Simulation
BindsNET provides a Network object (in the network

module) which is responsible for the coordination of one or
many Nodes and Connections objects, and supports the
use of Monitors for recording the state variables of these
components. A time step parameter dt is the sole (optional)
argument to the Network constructor, which controls the
temporal resolution of simulation. The run(inpts, time)

Frontiers in Neuroinformatics | www.frontiersin.org 4 December 2018 | Volume 12 | Article 89244

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 1 | Depiction of the BindsNET directory structure and description of major software modules.

function implements synchronous updates (for a number of
time steps time

dt
) of all network components. This function

calls get_inputs() to calculate pre-synaptic inputs to all
Nodes instances (alongside user-defined inputs in inpts)
as a subroutine. A reset_() method invokes resetting
functionality of all network components, namely for resetting
state variables back to default values. Saving and loading of
networks to and from disk is implemented, permitting re-use of
trained connection weights or other parameters.

The Nodes abstract base class in the nodes module
specifies the abstract functions step(inpts, dt) and
reset_(). The first is called by the run() function
of a Network instance to carry out a single time step’s
update, and the second resets spikes, voltages, and any other
recorded state variables to default values. Implementations of
the Nodes class include Input (neurons with user-specified
or fixed spikes) McCullochPittsNodes (McCulloch-Pitts
neurons), IFNodes (integrate-and-fire neurons), LIFNodes

Frontiers in Neuroinformatics | www.frontiersin.org 5 December 2018 | Volume 12 | Article 89245

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

(leaky integrate-and-fire neurons), and IzhikevichNodes

(Izhikevich neurons). Other neurons or neuron-like computing
elements may be implemented by extending the Nodes abstract
class. Many Nodes object support optional arguments for
customizing neural attributes such as threshold, reset, and
resting potential, refractory period, membrane time constant,
and more. It should be noted that some Nodes objects’ behavior
does not depend on the dt parameters; for example, the
McCullochPittsNodes object has no memory of previous
time steps (stateless), and yet it may still be embedded in a SNN
simulation.

The topology module is used to specify interactions
between Nodes instances, the most generic of which is
implemented in the Connection object. The Connection
is aware of source (pre-synaptic) and target (post-synaptic)
Nodes, as well as a matrix of weights w of connections
strengths. By default, connections do not implement any
learning of connection weights, but do so through the inclusion
of an update_rule argument. Several canonical learning
rules from the biological learning literature are implemented
in the learning module, including Hebbian learning
(Hebbian), a variant of spike-timing-dependent plasticity
(STDP) (PostPre), and less well-known methods such as
reward-modulated STDP (MSTDP). The optional argument
norm to the Connection specifies a desired sum of weights
per target neuron, which is enforced by the parent Network
during each call of run(). A SparseConnection object is
available for specifying connections where certain weights are
fixed to zero; however, this does not yet available for learning
functionality due to a lack of adequate support for sparse
Tensor in the PyTorch library. The Conv2dConnection

object implements a two-dimensional convolution operation
(using PyTorch’s torch.nn.conv2d function) and
supports all update rules from the learning module. The
LocallyConnectedConnection implements a two-
dimensional convolutional layer without shared weights; i.e.,
each input region is associated with a different set of filter weights
(Bruna et al., 2013; Saunders et al., 2018).

3.2. Machine and Reinforcement Learning
BindsNET is being developed with machine and reinforcement
learning applications in mind. At the core of these efforts is
the learning module, which contains functions which can
be attached to Connection objects to modify them during
SNN simulation. By default, connections are instantiated
with no learning rule. The Hebbian rule (“fire together,
wire together”) symmetrically strengthens weights when pre-
and post-synpatic spikes occur temporally close together,
and the PostPre rule implements a simple form of STDP
in which weights are increased or decreased according to
the relative timing of pre- and post-synaptic spikes, with
user-specified (possibly asymmetric) learning rates. The reward-
modulated STDP (MSTDP) and reward-modulated STDP
with eligibility trace (MSTDPET) rules of Florian (2007) are
also implemented for use in basic reinforcement learning
experiments. In general, any learning rule can be used with
any connection types and other network components, but it

is up to the researcher to choose the right method for their
experiment.

The datasets module provides a means to download,
pre-process, and iterate over machine learning datasets. For
example, the MNIST object provides this functionality for the
MNIST handwritten digits dataset. Several other datasets are
supported besides, including CIFAR-10, CIFAR-100, (Krizhevsky
and Hinton, 2009) and Spoken MNIST. The samples from a
dataset can be encoded into spike trains using the encoding
module, currently supporting several functions for creating spike
trains from non-negative data based on different statistical
distributions and biologically inspired transformations of stimuli.
Encoding functions include poisson(), which converts data
representing firing rates into Poisson spike trains with said firing
rates, and rank_order(), which converts data into single
spikes per neuron temporally ordered by the intensity of the input
data (Thorpe and Gautrais, 1998). Spikes may be used as input to
SNNs, or even to otherML systems. A submodule preprocess
of datasets allows the user to apply various pre-processing
techiques to raw data; e.g., cropping, subsampling, binarizing,
and more.

The environment module provides an interface into
which a SNN, considered as a reinforcement learning agent, can
take input from and enact actions in a reinforcement learning
environment. The GymEnvironments object comprises
of a generic wrapper for gym (Brockman et al., 2016) RL
environments and calls its reset(), step(action),
close(), and render() functionality, while providing
a default pre-processing function preprocess() for
observations from each environment. The step(action)

function takes an action in the gym environment, which
returns an observation, reward value, an indication of
whether the episode has finished, and a dictionary of (name,
value) pairs containing additional information. Another
object, DatasetEnvironment, provides a generic
wrapper around objects from the datasets module,
allowing these to be used as a component in a Pipeline

instance (see section 3.3). The environment.action

module provides methods for mapping one or more
network layers’ spikes to actions in the environment;
e.g., select_multinomial() treats a (normalized)
vector of spikes as a probability distribution from which to
sample an action for the environment’s similarly-sized action
space.

Simple methods for the evaluation of SNNs as machine
learning models are implemented in the evaluation

module. In the context of unsupervised learning, the
assign_labels() function assigns data labels to neurons
corresponding to the class of data on which they spike most
during network training (Diehl and Cook, 2015). These labels
are to classify new data using methods like all_activity()
and proportion_weighting() (Hazan et al., 2018). We
have recently added logreg_fit and logreg_predict

methods for fitting and predicting on categorical data with
the logistic regression implementation borrowed from the
scikit-learn library (Pedregosa et al., 2011). We plan to
add additional “read-out” methods in the near future, such

Frontiers in Neuroinformatics | www.frontiersin.org 6 December 2018 | Volume 12 | Article 89246

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

as k-nearest neighbor (KNN) and support vector machines
(SVMs).

A collection of network architectures is defined in the
models module. For example, the network structure of Diehl
and Cook (2015) is implemented by the DiehlAndCook2015
object, which supports arguments such as n_neurons,
excite, inhib, etc. with reasonable default values.

3.3. The Pipeline Object
As an additional effort to ease prototyping of machine
learning systems comprising spiking neural networks, we have
provided the Pipeline object to compose an environment,
network, an encoding of environment observations, and a
mapping from network activity to the environment’s action
space. The Pipeline also provides optional arguments
for visualization of the environment and network state
variables during network operation, skipping or recording
observations on a regular basis, the length of the simulation
per observation (defaults to 1 time step), and more. The
main action of the pipeline can be explained as a four-
step, recurring process, implemented in the pipeline step()
function:

1. An action is selected based on the activity of one or more of
the network’s layers during the last one or more time steps

2. This action is used as input to the environment’s step()
function, which returns a new observation, a scalar reward,
whether the simulation has finished, and any additional
information particular to the environment

3. The observation returned from the environment is converted
into spike trains according to the user-specified encoding
function (either custom or from the encodingmodule) and
request simulation time

4. The spike train-encoded observation is used as input to the
network.

Alongside the required arguments for the Pipeline object
(network, environment, encoding, and action), there
are a few keyword arguments that are supported, such as
history and delta. The history_length argument
indicates that a number of sequential observations are to
maintained in order to calculate differences between current
observations and those stored in the history data structure.
This implies that only new information in the environment’s
observation space is delivered as input to the network on each
time step. The delta argument (default 1) specifies an interval
at which observations are stored in history. This may be
useful if observations don’t change much between consecutive
steps; then, we should wait some delta time steps between
taking observations to expect significant differences. As an
example, combining history_length = 4 and delta =

3 will store observations {0, 3, 6, 9}, {3, 6, 9, 12}, {6, 9, 12, 15},
etc. A few other keyword arguments for handling console output,
plotting, andmore exist and are detailed in the Pipeline object
documentation.

A functional diagram of the Pipeline object is depicted in
Figure 2.

FIGURE 2 | A functional diagram of the Pipeline object. The four-step

process involves an encoding function, network computation, converting

network outputs into actions in an environment’s action space, and a

simulation step of the environment. An encoding function converts non-spiking

observations from the environment into spike inputs to the network, and a

action function maps network spiking activity into a non-spiking quantity: an

action, fed back into the environment, where the procedure begins anew.

Other modules come into play in various supporting roles: the network may

use a learning method to update connection weights, or the environment

may simply be a thin wrapper around a dataset (in which case there is no

feedback), and it may be desirable to plot network state variables during the

reinforcement learning loop.

3.4. Visualization
BindsNET contains useful visualization tools that provide
information during or after network or environment simulation.
Several generic plotting functions are implemented in the
analysis.plotting module; e.g., plot_spikes() and
plot_voltages() create and update plots dynamically
instead of recreating figures at every time step. These functions
are able to display spikes and voltages with a single call. Other
functions include plot_weights() (displays connection
weights), plot_input() (displays raw input data), and
plot_performance() (displays time series of performance
metric). Other visualization libraries in the Python ecosystem
such as matplotlib can be used to plot network state variables
or other data as users of BindsNET may require for more
complicated use cases not covered by the plottingmodule.

The analysis.visualization module contains
additional plotting functionality for network state variables
after simulation has finished. These tools allow experimenters
to analyze learned weights or spike outputs, or to summarize
long-term behaviors of their SNN models. For example, the
weights_movie() function creates an animation of a
Connection’s weight matrix from a sequence of its values,
enabling the visualization of the trajectory of connection weight
updates.

3.5. Adding New BindsNET Features
To extend BindsNET, one can extend certain abstract objects
found in the package with the desired functionality. In the
following, we discuss how new neuron models, connection
types, and learning rules can be custom-defined by users
and developers of BindsNET. Other BindsNET objects (e.g.,
Monitors, Datasets, etc.) can be defined in a similar fashion.

3.5.1. Neuron Models
The abstract class Nodes implements functionality that is
common to all neuron types. It defines the abstract functions

Frontiers in Neuroinformatics | www.frontiersin.org 7 December 2018 | Volume 12 | Article 89247

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

step() and reset_(), which one can choose to override in
child classes, or to One can define a new Nodes object by writing
a class of the form:

class NewNodes(Nodes):

def __init__(self, n, shape, traces, ...):

...

def step(self, inpt, dt):

...

def reset_(self):

...

All three functions typically call the similarly-named Nodes

abstract class functions, but it is possible to completely
re-define the functions as needed. The abstract base class
AbstractInput is also available for defining node types
with user-defined inputs (e.g., for simulating constant current
injection with the RealInput object).

At present, BindsNET does not automatically solve state
variable dynamics equations (as does, for example, the BRIAN
simulator Goodman and Brette, 2009); instead, the user must
define the neuron difference equation themselves in the body of
the step() function. We implement Euler integration as part
of our emphasis on efficient computation. Automatic solution
of dynamics equations may be added in a future release of
BindsNET.

3.5.2. Connection Types
The class AbstractConnection implements functionality
common to all connection objects. It defines the abstract
methods compute(s), update(dt), normalize(),
and reset_(). Users of BindsNET can define their own
connection types by creating a class that inherits from
AbstractConnection. To define a new connection
object, one must write a class of the form:

class NewConnection(AbstractConnection):

def __init__(self, source, target, **kwargs):

...

def compute(self, s):

...

def update(self, dt, **kwargs):

...

def normalize(self):

...

def reset_(self):

...

3.5.3. Learning Rules
The abstract class LearningRule defines functions
common to all learning rules. It defines the abstract method
update(dt), used to update a connection’s synapse strengths
in some fashion. Typically, this method makes use of pre-
and post-synaptic neuron spikes and / or spike traces in order
to calculate some local learning rule; e.g., PostPre STDP.
However, users of BindsNET may want to construct learning
rules than depend on non-local information; e.g., the MSTDP
and MSTDPET rules require a reward keyword argument to
modulate the sign and strength of synapse weight updates. To
define a new learning rule, one can write a class as follows:

class NewLearningRule(LearningRule):

def __init__(self, connection, nu, weight_decay):

...

def update(self, dt, **kwargs):

...

4. EXAMPLES OF USING BINDSNET TO
SOLVE MACHINE LEARNING TASKS

We present some simple example scripts to give an impression of
how BindsNET can be used to build spiking neural networks
implementing machine learning functionality. BindsNET is
built with the concept of encapsulation of functionality to make
it faster and easier for generalization and prototyping. Note in
the examples below the compactness of the scripts: fewer lines
of code are needed to create a model, load a dataset, specify
their interaction in terms of a pipeline, and run a training loop.
Of course, these commands rely on many lines of underlying
code, but the user no longer has to implement them for each
experimental script. If changes in the available parameters are
not enough, the experimenter can intervene by making changes
in the underlying code in the model without changing language
or environment, thus preserving the continuity of the coding
environment.

4.1. Unsupervised Learning
The DiehlAndCook2015 object in the models module
implements a slightly simplified version of the network
architecture discussed in Diehl and Cook (2015). A minimal
working example of training a spiking neural network to learn,
without labels, a representation of the MNIST digit dataset
is given in Figure 3, and state variable-monitoring plots are
depicted in Figure 4. The Pipeline object is used to hide the
messy details of the coordination between the dataset, encoding
function, and network instance. Code for additional plots or
console output may be added to the training loop for monitoring
purposes as needed.

The main goal of the present paper is to introduce the
BindsNET software framework, while a systematic evaluation of
the implementation and comparison with other SNN platforms
is the objective of ongoing or future studies. Nevertheless, it is
important to show that BindsNET measures up to its peers.
To illustrate the performance of BindsNET, here we introduce
some preliminary results; further details are given in Saunders
et al. (2018) and Hazan et al. (2018). In the case of MNIST
dataset, BindsNET’s classification performance reaches 95%,
which is on a par with the BRIAN-based implementations
reported in Diehl and Cook (2015). Moreover, BindsNET’s
flexible platform allowed extensive exploration of learning rules
and hyper-parameters, and we have shown that our approach
can reach or exceed BRIAN’s accuracy with smaller SNNs.
Moreover, as training progresses, the accuracy of our approach
using BindsNET increases rapidly at the early stage of learning,
using much less examples than alternative methods (Hazan et al.,
2018). Again, in the present work we do not aim at a systematic
evaluation of the solutions based on BindsNET, but the initial
results are promising, and extensive work is in progress.

Frontiers in Neuroinformatics | www.frontiersin.org 8 December 2018 | Volume 12 | Article 89248

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 3 | Accompanying plots to the unsupervised training of the DiehlAndCook2015 spiking neural network architecture. The network is able to learn

prototypical examples of images from the training set, and on a test images, the excitatory neuron with the most similar filter should fire the most. This network

structure is able to achieve 95% accuracy on the MNIST digits (Diehl and Cook, 2015; Hazan et al., 2018). (A) Raw input and “reconstructed” input, computed by

summing Poisson-distributed spike trains over the time dimension. (B) Spikes from the excitatory and inhibitory layers of the DiehlAndCook2015 model. (C)

Voltages from the excitatory and inhibitory layers of the DiehlAndCook2015 model. (D) Reshaped 2D label assignments of excitatory neurons, assigned based on

activity on examples from the training data. (E) Reshaped 2D connection weights from input to excitatory layers. The network is able to learn distinct prototypical

examples from the dataset, corresponding to the categories in the data.

4.2. Supervised Learning
We used a simple two-layer spiking neural network to implement
supervised learning of the Fashion-MNIST image dataset (Xiao
et al., 2017). An minimal example of training a spiking network
to classify the data is given in Figure 5, with plotting outputs
depicted in Figure 6. A layer of 100 excitatory neurons is split
into 10 groups of size 10, one for each category. On each input
example, we observe the label of the data and clamp a randomly
selected excitatory neuron from its group to spike on every time
step. This forces the neuron to adjust its filter weights toward the
shape of current input example.

4.3. Reinforcement Learning
A three layer SNN is built to compute on spikes encoded from
Breakout observations. The input layer takes the spike encoding
of a 80x80 image which has been downsampled and binarized
from the observations from the GymEnvironment. The output
layer consists of 4 neurons which correspond to the 4 possible
actions for the Breakout game. The result of this computation
is spiking activity in the output layer, which are converted into
actions in the game’s action space by using a softmax function on
the sum of the spikes in the output layer. The simulation of both
the network and the environment are interleaved and appear
to operate in parallel. The SNN combined with the softmax
function gives a stochastic policy for the RL environment and

the user may apply any reinforcement learning algorithm to
modify the parameters of the SNN to change the policy. For
a more complete view of the details involved in constructing
an SNN and deploying a GymEnvironment instance, see
the script depicted in Figure 7 and accompanying displays in
Figure 8.

4.4. Reservoir Computing
Reservoir computers are typically built from three parts: (1) an
encoder that translates input from the environment that is fed to
it, (2) a dynamical system based on randomly connected neurons
(the reservoir), and (3) a readout mechanism. The readout is
often trained via gradient descent to perform classification or
regression on some target function. BindsNET can be used to
build reservoir computers using spiking neurons with little effort,
and machine learning functionality from PyTorch can be co-
opted to learn a function from states of the high-dimensional
reservoir to desired outputs. Code in for defining and simulating
a simple reservoir computer is given in Figure 9, and plots
to monitor simulation progress are shown in Figure 10. The
outputs of the reservoir computer on the CIFAR-10 natural
image dataset are used as transformed inputs to a logistic
regression model. The logistic regression model is then trained
to recognize the categories based on the features produced by the
reservoir.

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2018 | Volume 12 | Article 89249

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 4 | Unsupervised learning of the MNIST handwritten digits in BindsNET. The DiehlAndCook2015 model implements a simple spike timing-dependent

plasticity rule between input and excitatory neuron populations as well as a competitive inhibition mechanism to learn prototypical digit filters from raw data. The

DatasetEnvironment wraps the MNIST dataset object so it may be used as a component in the Pipeline. The network is trained on one pass through the

60K-example training data for 350ms each, with state variables (voltages and spikes) reset after each example.

4.5. Benchmarking
In order to compare several competing SNN simulators, we
devised a simple simulation and benchmarked our software on
it against other, similar frameworks. We simulated a network
with a population of n Poisson input neurons with firing rates
(in Hertz) drawn randomly from U(0, 100), connected all-to-
all with a equally-sized population of leaky integrate-and-fire
(LIF) neurons, with connection weights sampled from N (0, 1).
We varied n systematically from 250 to 10,000 in steps of
250, and ran each simulation with every library for 1,000ms
with a time resolution dt = 1.0. We tested BindsNET (with

CPU and GPU computation), BRIAN2, PyNEST (the Python
interface to the NEST SLI interface that runs the C++ NEST core
simulator), ANNarchy (with CPU and GPU computation), and
BRIAN2genn (the BRIAN2 front-end to the GeNN simulator).
The Nengo and NEURON simulators were considered, but in
both cases, we were unable to implement the benchmarked
network structure. This speaks to the expressiveness or relative
difficulty of using these competing simulation libraries as
compared to BindsNET. Several packages, including BRIAN

and PyNEST, allow the setting of certain global preferences;
e.g., the number of CPU threads, the number of OpenMP

Frontiers in Neuroinformatics | www.frontiersin.org 10 December 2018 | Volume 12 | Article 89250

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 5 | A two-layer spiking neural network (a RealNodes object connected all-to-all with a IFNodes object) is trained with an approximated stochastic gradient

descent algorithm using the Fashion-MNIST image dataset. The back-propagation algorithm operates on the summed_inputs to the groups of Nodes, while

predictions are made based on the output layer’s spiking activity.

Frontiers in Neuroinformatics | www.frontiersin.org 11 December 2018 | Volume 12 | Article 89251

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 6 | Accompanying plots for the supervised training of a simple two-layer spiking neural network on the Fashion-MNIST dataset. The set of 10 28× 28 tiled

weights shown in (a) each correspond to a different class of Fashion-MNIST data. The plot of the input neurons’ activity in (b) is simply the scaled input data, constant

over the simulation length. This network architecture trained with stochastic gradient descent (SGD) achieves 85% test accuracy on this dataset. (A) Weights from the

supervised spiking neural network trained on the Fashion-MNIST dataset. Each 28 × 28 region corresponds to the filter responsible for detecting a unique category of

data. One can make out the profile of objects depicted in the filters; e.g., shirts, sneakers, and trousers. (B) Real-valued input activity and spikes from the input and

output layers of the two-layer network, respectively.

processes, etc. We chose these settings for our benchmark study
in an attempt to maximize each library’s speed, but note that
BindsNET requires no setting of such options. Our approach,
inheriting the computational model of PyTorch, appears to
make the best use of the available hardware, and therefore makes
it simple for practicioners to get the best performance from their
system with the least effort.

All simulations run on Ubuntu 16.04 LTS with Intel(R)
Xeon(R) CPU E5-2687W v3 @ 3.10GHz, 128Gb RAM @
2133MHz, and two GeForce GTX TITAN X (GM200) GPUs.
Python 3.6 is used in all cases except for simulation with
ANNarchy, which requires Python 2.7. Clock time was recorded
for each simulation run. The results are depicted in Figure 11.

As can be noticed in the Figure 11, PyNEST simulation runs
are cut off for n > 2.5K, and ANNarchy (on CPUs) for n >

5K, due to the fact that, after this point, their simulation time far
outstrips those of the other libraries. With small networks (n <

2.5K), the CPU-only version of the BindsNET simulation is
faster than the BRIAN2 simulation; yet, this relationship reverses
as the number of simulated neurons grows. However, in larger
networks (n > 1.5K), the GPU-only BindsNET simulator is
faster than BRIAN2, and is competitive in simulation time in
the case of smaller networks. The BRIAN2genn simulator is
very fast, with near-constant simulation time of approximately
0.2s; however, it requires a roughly 25s compilation period, no
matter the network size, before simulation can begin. Somewhat
similarly, simulation with ANNarchy using GPU computation
is rather fast, but requires an super-linear increase in compilation
time as the size of the network grows.

Therefore, BindsNET constitutes a speed-competitive
alternative to several popular existing SNN simulation libraries.
Although our benchmark study is far from comprehensive,
it demonstrates a particular use case for which BindsNET

is perhaps preferable to other methods; i.e., in the case of
feedforward networks with all-to-all connectivity. Similar studies
can be done to assess its performance relative to the competition
in other SNN architectural regimes. We expect that, in different
applications, other libraries will perform better in terms of speed
or memory usage, and it is up to the experimenter to choose
the best software for the simulation task. As stated previously,
our approach is best for rapid prototyping and testing of SNNs
on CPUs and GPUs alike, which is demonstrated in part by the
foregoing benchmark analysis. In particular, a major advantage
of using the BindsNET library for GPU computation is that
it requires no compilation step intermediate between network
definition and simulation, as opposed to the BRIAN2genn and
ANNarchy libraries. This is well-suited to machine learning
experimentation, which often requires many iterations of model
building and hyper-parameter tuning that may be hindered by
re-compilation before each attempt.

5. ONGOING DEVELOPMENTS

BindsNET is still at an early stage of development, and thus
there is much room for future work and improvement. Since
it is an open source project and because there is considerable
interest in the research community in using SNNs for machine
learning purposes, we are optimistic that there will be numerous
community contributions to the library. Indeed, we believe that
public interest in the project, along with the strong support of the
libraries on which it depends, will be an important driving factor
in its maturation and proliferation of features. We mention some
specific implementation goals:

• Additional neuron types, learning rules, datasets,
encoding functions, etc. Added features should take

Frontiers in Neuroinformatics | www.frontiersin.org 12 December 2018 | Volume 12 | Article 89252

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 7 | A spiking neural network that accepts input from the BreakoutDeterministic-v4 gym Atari environment. The observations from the environment

are downsampled and binarized. The history and delta keyword arguments are used to create difference images before they are converted into

Bernoulli-distributed vectors of spikes, one per time step. The output layer of the network has 4 neurons in it, each representing a different action in the Breakout

game. An action is selected at each time step using the select_softmax feedback function, which treats the summed spikes over each output layer neuron as a

probability distribution over actions.

Frontiers in Neuroinformatics | www.frontiersin.org 13 December 2018 | Volume 12 | Article 89253

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 8 | Accompanying plots for a custom spiking neural network’s which interacts with the BreakoutDeterministic-v4 reinforcement learning

environment. Spikes of all neuron populations are plotted, and the Breakout game is rendered, as well as the downsampled, history- and delta-altered

observation, which is presented to the network. The performance of the network on 100 episodes of Breakout is also plotted. (note: The absence of spikes in the

Input layer is due to the the large size of the layer and the way matplotlib library handles it. It is not a bug in our code). (A) Raw output from the Breakout game,

provided by the OpenAI gym render() method. (B) Pre-processed output from breakout game environment used as input to the SNN. (C) Spikes from the Input,

Hidden, and Output layers of the spiking neural network. (D) The reward distribution of the initialized network on 100 episodes of Breakout.

priority based on the needs of the users of the
library.

• Specialization of machine learning and reinforcement learning
algorithms for spiking neural networks. These may take
the form of additional learning rules, or more complicated
training methods that operate at the network level rather than
on individual synapses.

• Tighter integration with PyTorch. Much of PyTorch’s
neural network functions are useful in the spiking neural
network context (e.g., Conv2dConnection), and will
benefit from inheriting from them.

• Automatic conversion of deep neural network models
implemented in PyTorch or specified in the ONNX format
to near-equivalent spiking neural networks (as in Diehl et al.,
2015).

• Performance optimization: improving the performance of
library primitives will save time on all experiments with
spiking neural networks. A high-priority feature is the use of
sparse spike vectors and connection weights for efficient linear
algebra operations.

• Automatic smoothing of SNNs: approximating spiking
neurons as differentiable operations (Hunsberger and
Eliasmith, 2015) will enable the use of backpropagation
to train networks easily transferable to SNNs. The
torch.autograd automatic differentiation library
(Paszke et al., 2017) can then be applied to optimize the
parameters of spiking networks for ML problems.

6. DISCUSSION

Wehave presented theBindsNET open source package for rapid
biologically inspired prototyping of spiking neural networks with
a machine learning-oriented approach. BindsNET is developed
entirely in Python and is built on top of other mature Python
libraries that lend their power to utilize multi-CPU ormulti-GPU
hardware configurations. Specifically, the ML tools and powerful
data structures of PyTorch are a central part of BindsNET’s
operation. BindsNET may also interface with the gym library
to connect spiking neural networks to reinforcement learning

Frontiers in Neuroinformatics | www.frontiersin.org 14 December 2018 | Volume 12 | Article 89254

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 9 | A recurrent neural network built from 625 spiking neurons accepts inputs from the CIFAR-10 natural images dataset. An input population is connected

all-to-all to an output population of LIF neurons with weights draw from the standard normal distribution, which has voltage thresholds drawn from N (−52, 1) and is

recurrently connected to itself with weights drawn from N (0, 12). The reservoir is used to create a high-dimensional, temporal representation of the image data, which

is used to train and test a logistic regression model created with PyTorch.

Frontiers in Neuroinformatics | www.frontiersin.org 15 December 2018 | Volume 12 | Article 89255

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

FIGURE 10 | Plots accompanying another reservoir computing example, in which an input population of size equal to the CIFAR-10 data dimensionality is connected

to a population of 625 LIF neurons, which is recurrently connected to itself. (A) Spikes recorded from the input and output layers of the two layer reservoir network. (B)

Voltages recorded from the output of the two layer reservoir network. (C) Raw input and its reconstruction, computed by summing Poisson-distributed spike trains

over the time dimension. (D) Weights from input to output neuron populations, initialized initialized from the distribution N (0, 1). (E) Recurrent weights of the output

population, initialized from the distribution N (0, 12).

FIGURE 11 | Benchmark comparison results from a number of SNN

simulation frameworks. Variability in benchmarked times is likely due to

randomness in the simulation and fluctuations in CPU load.

environments. In sum, BindsNET represents an additional
and attractive alternative for the research community for the
purpose of developing faster and more flexible tools for SNN
experimentation.

BindsNET comprises a spiking neural network simulation
framework that is easy to use, flexible, and efficient. Our library
is set apart from other solutions by its ML and RL focus; complex

details of the biological neuron are eschewed in favor of high-
level functionality. Computationally inclined researchers may be
familiar with the underlying PyTorch functions and syntax,
and excited by the potential of the third generation of neural
networks for ML problems, driving adoption in both ML and
computational neuroscience communities. This combination of
ML programming tools and neuroscientific ideas may facilitate
the further integration of biological neural networks andmachine
learning. To date, spiking neural networks have not been widely
applied in ML and RL problems; having a library aimed at such is
a promising step toward exciting new lines of research.

Researchers interested in developing spiking neural networks
for use in ML or RL applications will find that BindsNET
is a powerful and easy tool to develop their ideas. To that
end, the biological complexity of neural components has been
kept to a minimum, and high-level, qualitative functionality has
been emphasized. However, the experimenter still has access to
and control over groups of neurons at the level of membrane
potentials and spikes, and connections at the level of synapse
strengths, constituting a relatively low level of abstraction. Even
with such details included, it is straightforward to build large
and flexible network structures and apply them to real data. We
believe that the ease with which our framework allows researchers
to reason about spiking neural networks as ML models, or as
RL agents, will enable advancements in biologically plausible
machine learning, or further fusion of ML with neuroscientific
concepts.

Although BindsNET is similar in spirit to the Nengo

(Bekolay et al., 2014) neural and brain modeling software in that
both packages can utilize a deep learning library as a “backend”

Frontiers in Neuroinformatics | www.frontiersin.org 16 December 2018 | Volume 12 | Article 89256

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

for computation, Nengo optionally uses Tensorflow in a
limited fashion while BindsNET uses PyTorch by default, for
all network simulation functionality (with the torch.Tensor
object). Additionally, for users that prefer the flexibility and
the imperative execution of PyTorch, BindsNET inherits
these features and is developed with many of the same design
principles in mind. BindsNET has advantages with respect
to other simulation libraries using GPU computation, which
require costly compilation steps between network building
and deployment. BindsNET does not need these expensive
intermediate steps as it uses “eager” execution of PyTorch
regardless of the actual simulation hardware.

Hardware platforms for spiking neural network computations
have advantages over software simulations in terms of
performance and power consumption. For example, SpiNNaker
(Plana et al., 2011) combines cheap, generic, yet dedicated CPU
boards together to create a powerful SNN simulation framework
in hardware. Other platforms (e.g., TrueNorth Akopyan et al.,
2015, HRL, and Braindrop) involve the design of a new chip.
A novel development is Intel’s Loihi platform for spike-based
computation, outperforming all known conventional solutions
(Davies et al., 2018). Other solutions are based on programmable
hardware, like FPGAs which transform neural equations
to configurations of electronic gates in order to speed up
computation. More specialized hardware such as ASIC and
DSP can be used to parallelize and therefore accelerate the
calculations. In order to conduct experiments in the hardware
domain, one must usually learn a specific programming language
targeted to the hardware platform, or carefully adapt an existing
experiment to the unique hardware environment under the
constraints as enforced by chip designers. In either case, this is
not an ideal situation for researchers who want rapid prototyping
and testing. BindsNET platform introduces a flexibility, which

can be exploited in future hardware developments, in particuliar
in machine learning problems.

BindsNET is a simple yet attractive option for those looking
to quickly build flexible SNN prototypes backed by an easy-
to-use yet powerful deep learning library. It encourages the
conception of spiking networks as machine learning models
or reinforcement learning agents, and is one of the first of its
kind to provide a seamless interface with machine learning and
reinforcement learning environments. The library is supported
by several mature and feature-full open source software projects,
and benefits from their growth and continuous improvements.
Considered as an extension of the PyTorch library, BindsNET
represents a natural progression from second generation neural
networks to third generation SNNs.

AUTHOR CONTRIBUTIONS

HS and RK initiated the research, produced the conceptual
framework, and coordinated the ongoing development efforts.
RK and HH conceived and design principles of the BindsNET
package. HH and DJS wrote the BindsNET code and the initial
version of the manuscript. DJS lead the efforts to create a
standardized BindsNET code according to Python specification.
HK and DTS helped with improving and testing the BindsNET
code. All authors contributed to the revisions and producing the
final manuscript.

ACKNOWLEDGMENTS

This work has been supported in part by Defense Advanced
Research Project Agency Grant, DARPA/MTO HR0011-16-l-
0006 and by National Science Foundation Grant NSF-CRCNS-
DMS-13-11165.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.Available

online at: tensorflow.org

Akopyan, F., Sawada, J., Cassidy, A. S., Alvarez-Icaza, R., Arthur, J. V., Merolla, P.,

et al. (2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aid. Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas,

N., et al. (2016). Theano: a Python framework for fast computation of

mathematical expressions. arXiv e-prints:abs/1605.02688.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a python tool for building large-scale functional brain

models. Front. Neuroinformat. 7:48. doi: 10.3389/fninf.2013.00048

Bengio, Y., Lee, D., Bornschein, J., and Lin, Z. (2015). Towards biologically

plausible deep learning. CoRR:abs/1502.04156.

Beyeler, M., Carlson, K. D., Chou, T.-S., Dutt, N. D., and Krichmar, J. L. (2015).

“Carlsim 3: a user-friendly and highly optimized library for the creation of

neurobiologically detailed spiking neural networks,” in 2015 International Joint

Conference on Neural Networks (IJCNN) (Killarney), 1–8.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.

(2016). Openai gym. CoRR, abs/1606.01540.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and

locally connected networks on graphs. CoRR:abs/1312.6203.

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

University Press.

Chen, T., Li, M., Li, Y., Lin,M.,Wang, N.,Wang,M., et al. (2015). Mxnet: A flexible

and efficient machine learning library for heterogeneous distributed systems.

CoRR:abs/1512.01274.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., et al.

(2014). cudnn: Efficient primitives for deep learning. CoRR:abs/1410.0759.

Cornelis, H., Rodriguez, A. L., Coop, A. D., and Bower, J. M. (2012).

Python as a federation tool for genesis 3.0. PLoS ONE 7:e29018.

doi: 10.1371/journal.pone.0029018

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H.,

et al. (2018). Loihi: a neuromorphic manycore processor with on-

chip learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.1121

30359

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Müller, E.,

Pecevski, D., et al. (2008). Pynn: a common interface for neuronal

network simulators. Front. Neuroinformat. 2:11. doi: 10.3389/neuro.11.01

1.2008

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing. in 2015 International Joint Conference on Neural Networks (IJCNN),

1–8.

Frontiers in Neuroinformatics | www.frontiersin.org 17 December 2018 | Volume 12 | Article 89257

http://www.tensorflow.org
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1371/journal.pone.0029018
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/fncom.2015.00099
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Hazan et al. BindsNET: SNN Library for Machine Learning

Ferr, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature

learning with winner-takes-all based stdp. Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Fidjeland, A., Roesch, E. B., Shanahan, M., and Luk, W. (2009). “Nemo: a

platform for neural modelling of spiking neurons using gpus,” 2009 20th

IEEE International Conference on Application-specific Systems, Architectures

and Processors, 137–144.

Florian, R. V. (2007). Reinforcement learning through modulation of spike-

timing-dependent synaptic plasticity. Neural Comput. 19, 1468–1502.

doi: 10.1162/neco.2007.19.6.1468

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D. F. M., and Brette, R. (2009). The Brian simulator. Front. Neurosci.

3:192-7. doi: 10.3389/neuro.01.026.2009

Hazan, H., Saunders, D. J., Sanghavi, D. T., Siegelmann, H. T., and Kozma, R.

(2018). “Unsupervised learning with self-organizing spiking neural networks,”

IEEE/INNS International Joint Conference on Neural Networks (IJCNN2018)

(Rio de Janeiro), 493–498.

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory.

New York, NY: Wiley.

Hines, M., Davison, A., and Muller, E. (2009). Neuron and python. Front.

Neuroinformat. 3:1. doi: 10.3389/neuro.11.001.2009

Huh, D., and Sejnowski, T. J. (2017). Gradient Descent for Spiking Neural

Networks. ArXiv e-prints.

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with lif neurons.

CoRR:abs/1510.08829.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014).

Caffe: Convolutional architecture for fast feature embedding. arXiv [Preprint]

arXiv:1408.5093.

Kasabov, N. K. (2014). Neucube: a spiking neural network architecture for

mapping, learning and understanding of spatio-temporal brain data. Neural

Netw. 52, 62–76. doi: 10.1016/j.neunet.2014.01.006

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T.

(2016). Stdp-based spiking deep neural networks for object recognition.

CoRR:abs/1611.01421.

Kistler, W. M., and Gerstner, W. (2002). Spiking Neuron Models. Single Neurons,

Populations, Plasticity. Cambridge, UK: Cambridge University Press.

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features from

Tiny Images. Master’s thesis, Department of Computer Science, University of

Toronto.

LeCun, Y., Bengio, Y., and Hinton, Y. (2015). Deep learning. Nature 521, 436–444.

doi: 10.1038/nature14539

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Maass, W. (1996). Lower bounds for the computational power of networks of

spiking neurons. Neural Comput. 8, 1–40. doi: 10.1162/neco.1996.8.1.1

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an

integration of deep learning and neuroscience. Front. Comput. Neurosci. 10:94.

doi: 10.3389/fncom.2016.00094

Markram, H., Luebke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking

neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

doi: 10.1109/TNNLS.2017.2726060

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2018). First-spike based visual categorization using reward-

modulated stdp. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190.

doi: 10.1109/TNNLS.2018.2826721

O’Connor, P., and Welling, M. (2016). Deep spiking networks.

CoRR:abs/1602.08323.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in pytorch,” in NIPS-W, (Long Beach, CA).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830.

Plana, L. A., Clark, D. M., Davidson, S., Furber, S. B., Garside, J. D.,

Painkras, E., et al. (2011). SpiNNaker: design and implementation of a gals

multicore system-on-chip. J. Emerg. Technol. Comput. Syst. 7, 17:1–17:18.

doi: 10.1145/2043643.2043647

Rueckauer, B., and Liu, S. (2018). “Conversion of analog to spiking neural networks

using sparse temporal coding,” in 2018 IEEE International Symposium on

Circuits and Systems (ISCAS) (Florence), 1–5.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Saunders, D. J., Siegelmann, H. T., Kozma, R., and Ruszinkó, M. (2018). “Stdp

learning of image features with spiking neural networks,” in IEEE/INNS

International Joint Conference on Neural Networks (IJCNN2018) (Rio de

Janeiro), 4906–4912.

Stewart, T. C. (2012). A Technical Overview of the Neural Engineering Framework.

Technical report, Centre for Theoretical Neuroscience.

Stimberg, M., Goodman, D., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinformat.

8:6. doi: 10.3389/fninf.2014.00006

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2018). Brian2genn: a

system for accelerating a large variety of spiking neural networks with graphics

hardware. bioRxiv.

Stork, D. G. (1989). “Is backpropagation biologically plausible?,” in International

1989 Joint Conference on Neural Networks, vol.2 (Washington, DC), 241–246.

Thorpe, S., and Gautrais, J. (1998). “Rank order coding,” in Proceedings of the

Sixth Annual Conference on Computational Neuroscience : Trends in Research,

1998: Trends in Research, 1998, CNS ’97 (New York, NY: Plenum Press),

113–118.

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-Ghazawi, T. A.

(2017). Software for brain network simulations: a comparative study. Front.

Neuroinformat. 11:46. doi: 10.3389/fninf.2017.00046

Tokui, S., Oono, K., Hido, S., and Clayton, J. (2015). “Chainer: a next-

generation open source framework for deep learning,” in Proceedings of

Workshop on Machine Learning Systems (LearningSys) in The Twenty-ninth

Annual Conference on Neural Information Processing Systems (NIPS). Available

online at: http://learningsys.org/papers/LearningSys_2015_paper_33.pdf

Vitay, J., Dinkelbach, H., and Hamker, F. (2015). Annarchy: a code generation

approach to neural simulations on parallel hardware. Front. Neuroinformat.

9:19. doi: 10.3389/fninf.2015.00019

Wall, J., and Glackin, C. (2013). Spiking neural network connectivity and its

potential for temporal sensory processing and variable binding. Front. Comput.

Neurosci. 7:182. doi: 10.3389/fncom.2013.00182

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z.,

et al. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nat.

Neurosci. 22, 860–868. doi: 10.1038/s41593-018-0147-8

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. CoRR:abs/1708.07747.

Yavuz, E., Turner, J. P., and Nowotny, T. (2016). Genn: a code generation

framework for accelerated brain simulations. Sci. Reports 6:18854.

doi: 10.1038/srep18854

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Hazan, Saunders, Khan, Patel, Sanghavi, Siegelmann and Kozma.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 18 December 2018 | Volume 12 | Article 89258

https://doi.org/10.3389/fncom.2018.00024
https://doi.org/10.1162/neco.2007.19.6.1468
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1016/j.neunet.2014.01.006
https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1162/neco.1996.8.1.1
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1145/2043643.2043647
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.3389/fninf.2017.00046
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.3389/fncom.2013.00182
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 19 December 2018
doi: 10.3389/fninf.2018.00090

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2018 | Volume 12 | Article 90

Edited by:

Robert Andrew McDougal,

Yale University, United States

Reviewed by:

Richard C. Gerkin,

Arizona State University, United States

Tadashi Yamazaki,

University of Electro-Communications,

Japan

Salvador Dura-Bernal,

SUNY Downstate Medical Center,

United States

Boris Marin,

Universidade Federal do ABC, Brazil

*Correspondence:

Robin Gutzen

r.gutzen@fz-juelich.de

Received: 18 June 2018

Accepted: 14 November 2018

Published: 19 December 2018

Citation:

Gutzen R, von Papen M, Trensch G,

Quaglio P, Grün S and Denker M

(2018) Reproducible Neural Network

Simulations: Statistical Methods for

Model Validation on the Level of

Network Activity Data.

Front. Neuroinform. 12:90.

doi: 10.3389/fninf.2018.00090

Reproducible Neural Network
Simulations: Statistical Methods for
Model Validation on the Level of
Network Activity Data

Robin Gutzen 1,2*, Michael von Papen 1, Guido Trensch 3, Pietro Quaglio 1,2, Sonja Grün 1,2

and Michael Denker 1

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain

Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 Theoretical Systems Neurobiology,

RWTH Aachen University, Aachen, Germany, 3 Simulation Lab Neuroscience, Jülich Supercomputing Centre, Institute for

Advanced Simulation, JARA, Jülich Research Centre, Jülich, Germany

Computational neuroscience relies on simulations of neural network models to bridge

the gap between the theory of neural networks and the experimentally observed activity

dynamics in the brain. The rigorous validation of simulation results against reference data

is thus an indispensable part of any simulation workflow. Moreover, the availability of

different simulation environments and levels of model description require also validation

of model implementations against each other to evaluate their equivalence. Despite

rapid advances in the formalized description of models, data, and analysis workflows,

there is no accepted consensus regarding the terminology and practical implementation

of validation workflows in the context of neural simulations. This situation prevents

the generic, unbiased comparison between published models, which is a key element

of enhancing reproducibility of computational research in neuroscience. In this study,

we argue for the establishment of standardized statistical test metrics that enable the

quantitative validation of network models on the level of the population dynamics. Despite

the importance of validating the elementary components of a simulation, such as single

cell dynamics, building networks from validated building blocks does not entail the validity

of the simulation on the network scale. Therefore, we introduce a corresponding set

of validation tests and present an example workflow that practically demonstrates the

iterative model validation of a spiking neural network model against its reproduction on

the SpiNNaker neuromorphic hardware system. We formally implement the workflow

using a generic Python library that we introduce for validation tests on neural network

activity data. Together with the companion study (Trensch et al., 2018), the work presents

a consistent definition, formalization, and implementation of the verification and validation

process for neural network simulations.

Keywords: spiking neural network, SpiNNaker, validation, reproducibility, statistical analysis, simulation

259

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00090
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00090&domain=pdf&date_stamp=2018-12-19
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:r.gutzen@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00090
https://www.frontiersin.org/articles/10.3389/fninf.2018.00090/full
http://loop.frontiersin.org/people/453511/overview
http://loop.frontiersin.org/people/576992/overview
http://loop.frontiersin.org/people/455237/overview
http://loop.frontiersin.org/people/306784/overview
http://loop.frontiersin.org/people/8155/overview
http://loop.frontiersin.org/people/39100/overview

Gutzen et al. Reproducible Neural Network Simulations

1. INTRODUCTION

Computational neuroscience is driven by the development of
models describing neuronal activity on different temporal and
spatial scales, ranging from single cells (e.g., Koch and Segev,
2000; Izhikevich, 2004) to spiking activity in mesoscopic neural
networks (e.g., Potjans and Diesmann, 2014; Markram et al.,
2015), to whole-brain activity (e.g., Sanz Leon et al., 2013;
Schmidt et al., 2018). In order to quantify the accuracy and
credibility of the models they must be routinely validated
against experimental data. In light of the scarcity of available
experimental data, both on the level of structure as well as on the
level of activity, making these data available to the community
is a high priority for today’s neuroscience. This task is being
addressed, in particular, by coordinated, large-scale efforts such
as the Allen Brain Institute1 and the Human Brain Project2.
However, it is of equal importance that models are delivered in
a comprehensible and reproducible form, and that validation is
based on standardized statistical tests.

Although there is no general consensus on how models
should be described and delivered (Nordlie et al., 2009), a
number of frameworks support researchers in documenting
and implementing models beyond the level of custom-written
code in standard high-level programming languages. These
frameworks include guidelines for reproducible network model
representations (Nordlie et al., 2009; McDougal et al., 2016),
domain-specific model description languages (e.g., Gleeson
et al., 2010; Plotnikov et al., 2016), modeling tool-kits
(e.g., BMTK3, NetPyNE4), and generic network simulation
frameworks (Davison et al., 2008). To share these models, but
also data, with the community several databases and repositories
have emerged and are commonly used for this purpose,
for example GitHub5, OpenSourceBrain6, the Neocortical
Microcircuit Collaboration Portal7 (Ramaswamy et al., 2015),
the G-Node Infrastructure (GIN)8, ModelDB9, NeuroElectro10

(Tripathy et al., 2014), or CRCNS 11 (Teeters et al., 2008).
The statistical validation of models, however, lacks a

standardized approach and supporting software tools. Thus, it
is usually open to the authors to define to which degree the
simulation outcome is supposed to match the experimental
data. In consequence of this ad hoc approach, we identify three
difficulties encountered with published models:

1. Models are only tested qualitatively instead of quantitatively.
For example, the spike trains resulting from the simulation are
visually classified (e.g., Voges and Perrinet, 2012), but without
calculating specific statistics to quantify the features of the

1https://www.alleninstitute.org
2https://www.humanbrainproject.eu
3https://github.com/AllenInstitute/bmtk
4https://github.com/Neurosim-lab/netpyne
5https://github.com
6http://opensourcebrain.org
7https://bbp.epfl.ch/nmc-portal
8https://gin.g-node.org
9https://senselab.med.yale.edu/modeldb
10https://neuroelectro.org
11https://crcns.org

activity. This lack of concrete numbers and detailed records of
how the numbers are calculated prevents a direct comparison
to other models.

2. The information provided in a publication on the details of
how the specific statistical analysis is performed and thus
how a model is validated is not sufficient to reproduce the
validation scenario.

3. Models are only compared to a single experimental data set
using a specific statistical measure. Moreover, the choices of
data sets and measures are biased to address specifically the
scientific aim of the publication. However, the absence of
a standardized procedure to base the validation on a broad
set of data sets and statistical measures limits the degree to
which confidence in the model is quantified in a context
detached from the research conducted in the publication at
hand. Moreover, it prevents the direct comparison between
published models and their re-use in related studies.

Generic attempts to overcome these difficulties and formalize
the validation process include the development of the Python

module SciUnit (Omar et al., 2014; Sarma et al., 2016), and
the description of workflows for the validation of models (Senk
et al., 2017; Kriegeskorte and Douglas, 2018; van Albada et al.,
2018). In this study, we build on these efforts in order to

introduce a workflow and supporting software to quantitatively
compare and validate spiking network models. The provided

workflow and software include all necessary analysis steps to
ensure reproducibility of the validation process, including the
details of extracting the statistical measures.

The validation of spiking neural networks can be performed
on two principle levels, which we refer to as “single-cell”
and “network” validation. The single-cell scenario assumes that

validation of the smallest elements of the circuit leads to realistic
emergent dynamics on the network scale (Markram et al.,

2015; Reimann et al., 2015). However, the link between the
dynamics of the smallest elements and that of larger composite

systems is intrinsically complex. Therefore, we argue that the
validation process should also include complementary network-

level validation, which involves the quantitative comparison
of several mono- and bivariate and sometimes higher-order
statistics of the spiking activity to capture the complete dynamics
of the system.

The advantage of single-cell validation is that the cellular
activity, e.g., cellular response to current input, can be well

measured in different labs and even under slightly different
experimental settings. Network-level validation, on the other

hand, is hindered by several aspects. Experimentally, such

dynamics can usually only be measured in-vivo, which involves
more sophisticated experiments than single-cell recordings.
Moreover, the large variability between measured systems, e.g.,
different subjects, can be very large. Such sources of uncertainty
need to be taken into account when interpreting the assessed
quantitative agreement of the simulation outcome with the
experimental reference data.

In this study, we first discuss the concept of validation
and introduce the related terminology in Sections 2.1, 2.2. In
Sections 2.3 we describe in detail the particular scenario of

Frontiers in Neuroinformatics | www.frontiersin.org 2 December 2018 | Volume 12 | Article 90260

https://www.alleninstitute.org
https://www.humanbrainproject.eu
https://github.com/AllenInstitute/bmtk
https://github.com/Neurosim-lab/netpyne
https://github.com
http://opensourcebrain.org
https://bbp.epfl.ch/nmc-portal
https://gin.g-node.org
https://senselab.med.yale.edu/modeldb
https://neuroelectro.org
https://crcns.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

model-to-model validation, which is the basis of a concrete
worked example used for illustration during the remainder of
the manuscript. In that example, we quantify the statistical
difference between two implementations of the same model,
namely the polychronization model (Izhikevich, 2006) and
its reproduction on the SpiNNaker neuromorphic hardware
system (cf., companion study Trensch et al., 2018). The models,
the test statistics, and the formal workflow used for this
validation are described in Section 3. In Section 4 we detail
how the interplay of different network-level validation tests
leads to a quantitative assessment of the SpiNNaker model.
Finally, we discuss in Section 5 the conditions under which
the models are in acceptable agreement, i.e., for what kind of
applications the models are interchangeable. We further discuss
the applicability of the proposed workflow for other validation
scenarios.

2. VALIDATION OF NEURAL NETWORK

SIMULATIONS

In this section we explore the conceptual background of
validation in the context of neural network models by first
relating and adapting previously introduced terminology to our
domain, and discussing how to draw valid conclusions from
this workflow. We then introduce the concept of network-level
validation in computational neuroscience; the validation of a
simulation on the basis of measures derived from the collective
dynamics exhibited by the model. Finally, we discuss the special
case of model-to-model validation; the validation of one model
implementation against another implementation of the same or
a related model.

2.1. The Concept of Validation
When considering model simulations and their evaluation, it is
important to precisely define the terminology and to be clear
about the interpretation of the results in order to judge the
validity and the scope of applicability of the model. For all
practical purposes, in modeling one should be concerned with
its testable correctness relative to the given system of interest,
because only this process justifies its use as the basis for analytic
reasoning and prediction making. A central aspect in model
evaluation is its validation, that is, the process of assigning
credibility to a model. Establishing the absolute validity of a
model is inherently impossible, as a model is by design an
abstraction and simplification of reality (Balci, 1997; Sterman,
2000). Nevertheless, the more aspects of the model are covered
by validation tests, the more confidence may be placed into
the model in terms of the features exhibited within the limits
of an accuracy determined by an acceptable agreement. Thus,
there is not a single test that is sufficient for a model to be
validated (Forrester and Senge, 1980), and the outcome of a
validation process should not be understood as a definite verdict
about its validity but as a quantitative evaluation of usefulness
and accuracy. This quantification may typically be given in
the form of a score, which is either a normalized measure of
agreement, or a probability value based on observed evidence

FIGURE 1 | Schematic view of the model simulation environment introduced

by Schlesinger (1979). The figure and terminology is adapted from Thacker

et al. (2004), and defines the relationships between the system of interest,

mathematical model, and executable model as confirmation, verification, and

validation. Modeling and simulation activities are indicated by black solid

arrows, whereas assessment activities are indicated by red dashed arrows.

Figure amended from Trensch et al. (2018).

and a priori assumptions and beliefs (Carnap, 1968). With the
help of such quantified credibility measures, it becomes possible
to understand which aspects are well represented by a model,
and in consequence, how to weigh and interpret its predictions.
Notably, a model thus has a range of applications and a level
of description defined by the credibility measures. Stretching
the model beyond its intended purpose to a wider range of
application would therefore require additional validation tests.

In 1979 the Technical Committee on Model Credibility
of the Society of Computer Simulation established a widely
recognized description of a model verification and validation
environment. We adapt this terminology to the field of neural
network modeling, in line with our companion study (Trensch
et al., 2018). The validation setup is separated into three basic
elements (see Figure 1). The system of interest can be defined
as “an entity, situation, or system which has been selected for
analysis” (Schlesinger, 1979), and constitutes the references
against which validations are carried out. When specifying this
system of interest it is important to also explicitly define the
boundaries in which the modeling is expected to be adequate.
The modeling effort itself is separated into the definition of the
conceptual model, and its implementation as a computerized
model. The conceptual model is an abstract description formed
by analysis and observation of the system of interest. In the
case of network simulations, the conceptual model takes on
the form of a mathematical model describing the dynamics of
neurons, the connectivity structure, and other dynamic features
of the simulation (e.g., inclusion of neuromodulatory effects).
An implementation of the conceptual mathematical model in a

Frontiers in Neuroinformatics | www.frontiersin.org 3 December 2018 | Volume 12 | Article 90261

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

computer software or in hardware, on the other hand, results
in a computerized, or more concretely for neural simulation, an
executable model.

In the context of the formalism laid out by Schlesinger
(1979) and refined by Thacker et al. (2004) and others (e.g.,
Sargent, 2013; Murray-Smith, 2015), validation has a precise
definition. Indeed, despite some minor discrepancies, the various
definitions of verification and validation agree on the essential
aspects. Here we summarize the definitions adapted to neural
network modeling and simulation as presented in detail in
our companion study (Trensch et al., 2018) in an effort to
present a formal terminology for the validation framework
developed in this study. The process of ensuring that the
executable model is a correct realization of the mathematical
model is termed “verification.” In contrast, the comparison of the
predictions generated by the computerized model to the system
of interest considering its intended domain of applicability is
the process called “validation.” Together with the process of
“confirmation,” which attributes plausibility to the mathematical
model as a useful description of the system of interest, these three
attributes form a circle that typically receives multiple iterations
consisting of improvements of the mathematical model and its
implementation as an executable model. While our companion
study (Trensch et al., 2018) investigates primarily the verification
step, this study addresses the complementary validation process.

In practice, the conceptual steps are likely to be highly
intertwined. In particular, for validation there are two principal
scenarios in which a failed validation step impacts the
verification. In a first scenario, a validation of the model
may lead to an unacceptable discrepancy, which by its
nature and appearance, triggers a verification step to detect
a previously undetected deficiency of the implementation. In
a second scenario, the validation is followed by a further
sophistication of the underlying mathematical model. This
process of sophistication can be performed either by ignoring the
validation outcome, or by explicitly considering it. In the former
case, the structure of the mathematical model is evaluated based
on modeling the constituent features of the system of interest
alone. In the latter case, the model is altered with the explicit
aim to improve the validation result, guided by intuition of the
scientist on how features and parameters of the mathematical
model will influence its output in a simulation, or even supported
by a brute–force parameter scan.

This latter type of approach is no longer a true validation
step, as it represents a “fitting,” “calibration,” or “optimization”
procedure of the model in order to generate a particular
desired output behavior. An example of such a procedure is
the automatic fitting of single neuron models to experimental
data, as performed using tools such as bluepyopt (Van Geit
et al., 2016). However, one should consider that, first, as a result
of fitting the mathematical model may be altered in ways that
are no longer motivated by the underlying system of interest,
and second, the fitting is not unbiased in that, by definition, it
improves the validation of certain features of the model at the
cost of those not included in the fitting procedure. Manipulating
a parameter until an observable is within the expected margin
of error generally reduces the predictive power of the model.

Therefore, validation shall never result in the adaptation of the
model the way it is done for fitting. In contrast to validation,
fitting parameters within biological reasonable bounds is legit
and common practice in a data-driven modeling approach. Even
though such calibration and validation seem very similar in
practice, they need to be clearly separated. Consequently, models
that are calibrated by use of a particular data set require a second
data set to perform a rigorous validation test (Thacker et al.,
2004).

Since the publication of the depiction of the validation
process shown in Figure 1 many derived diagrams have been
employed which emphasize additional aspects, for example,
the uncertainties in experiment and simulation and their
quantification. Other, more complex diagrams point out that
model validation is an ongoing and iterative process within
a larger workflow of modeling and experimentation (Murray-
Smith, 2015). Notable is the explicit inclusion of the validation
of experimental data (Sargent, 2013). Both the model building
process and the validation rely on experimental data. These data
need to be adequate and correct to ensure that the validation is
actually meaningful.

2.2. Network-Level Validation
There exists a large repertoire of tests and methods to validate
a neural network model. The choice depends on the model,
its intended use, the nature of the data, and the system of
interest. Outside of neuroscience, however, efforts to group
validation methods into phases and extract common schemes
date back four decades (Forrester and Senge, 1980). These phases
include validation on the basis of the model’s structure (e.g.,
model dimensionality and complexity, or the model’s behavior
in boundary cases as a result of the model simplification), its
behavior (e.g., predictive qualities of the executable model, or its
robustness under parameter variations or noise), and its response
under policy changes (i.e., whether the behavior of the system
of interest under change of external policies are reflected by the
model, such as when changing the experimental paradigm in a
neuroscientific experiment).

In the context of neural network models in neuroscience,
one common approach is to start the process of validating the
model in an iterative fashion from the level of the smallest
elements of the network, for example, the validation of single
neuron responses or synapse behavior to experimental data
under application of a constant current injection (see e.g.,
Markram et al., 2015). This single-cell validation is based on the
reasoning that when the basic building blocks of a system are
validated the resulting system composed of many of the validated
building blocks should consequently also perform appropriately.
The validation of a larger, or even the entire, system is carried out
only once all previous validation tests of the sub-elements have
passed with reasonable agreement.

However, the link from the function of the smallest elements
to the function of larger composite systems is in general not
known, i.e., itself part of the modeling. The difficulty is inherent
to multiscale models where emergent properties of a system
interact with the dynamics of the constituting elements (Noble,
2006). Nonlinear effects and sensitivity of individual neurons and

Frontiers in Neuroinformatics | www.frontiersin.org 4 December 2018 | Volume 12 | Article 90262

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

circuits of connected neurons to parameter changes (Marder and
Taylor, 2011) prevent a conclusive prediction of the behavior
of the complete model system. Moreover, in models where the
individual cells or sub-circuits are simplified and abstracted (e.g.,
Potjans and Diesmann, 2014), the focus is placed on the question
to what extent global features of the dynamics emerge from the
network structure as opposed to the details of the elements (e.g.,
Schmidt et al., 2018). The advantage of simplified neuron models
is that their dynamics can be mathematically approximated (for
recent examples see Ostojic et al., 2009; Renart et al., 2010;
Litwin-Kumar and Doiron, 2012; Schuecker et al., 2015; Bos
et al., 2016) enabling a better understanding of the governing
mechanisms. Despite their relative simplicity, networks of such
model neurons reproduce many dynamical features observed in
experimental data (Shadlen and Newsome, 1998; Renart et al.,
2010), e.g., the characteristic firing patterns of cortical layers
(Potjans and Diesmann, 2014). For such models, the success of
single-cell validation is necessarily limited to the single-cell level.

Therefore, we propose network-level validation as a
complementary approach that validates the collective dynamics
of a network model using the statistical properties of the
network spiking activity. Network-level validation is an essential
complement to single-cell validation. First, the network dynamics
is likely to be a sensitive indicator for critical weaknesses of the
model and offers the possibility to detect these early on in the
model development process. Second, network-level validation
techniques can be applied to abstracted classes of models. Thus,
network models with different premises may be compared
and validated in a similar manner, including models which lay
their emphasis on macroscopic properties of the network. For
example, the network dynamics emerging from the interaction of
rate neurons can be validated in the same way as spiking neuron
based network models using appropriate rate-based validation
methods.

2.3. Model-to-Model Validation
So far, we considered a scenario in which a model is compared
to experimental observations. However, there are circumstances
in which a model is the object of reference. This model could
be another implementation of the model under scrutiny, an
alternative model, or a different simulation run of the same
model. In the following, we explore such validation scenarios,
which we collectively term “model-to-model” validation.

One possible scenario is the need to demonstrate the
equivalence of alternative implementations of the same
model. These implementations could, for example, be
realized by different simulation engines, for example NEST
(RRID:SCR_002963; Gewaltig and Diesmann, 2007), BRIAN
(RRID:SCR_002998; Goodman and Brette, 2009), and NEURON
(RRID:SCR_005393; Carnevale and Hines, 2006) all having
overlapping domains of application. Here, the implementation
of a model must take into account the specific features and
limitations of a given simulation engine, e.g., the numerical
precision. Thus, the choice of a simulator may influence the
simulation outcome. Fortunately, there are efforts to overcome
the simulator specificity, for example in form of the simulator
independent modeling language PyNN (RRID:SCR_002715;

Davison et al., 2008). Nevertheless, this approach remains
dependent on the degree to which the target simulator adheres
to the PyNN model description.

The comparison between one model and another which is
known to be more accurate (e.g., by means of an independent
verification process or by validation against experimental data)
may also be considered a validation technique in the sense that
the latter model is defined as a reference (Martis, 2006). Testing
against another model which is already rigorously validated can
be described as a “cross-validation.” In the special case where
two non-validated implementations based on the same model
are used in the model-to-model validation, we are left with
an incomplete model assessment process, where there is no
direct relation back to the system of interest. Consequently, we
use the term “substantiation” instead (Figure 2), in order to
not mistake this process for the validation of the model itself,
which still requires conventional validation testing including
experimental data. Trensch et al. (2018) describes substantiation
as “the process of evaluating and quantifying the level of agreement
of two executable models.” An example of such a situation is
the use of validation techniques to disambiguate the effects
of implementing a given model using different integration
strategies or different simulation engines (van Albada et al.,
2018).

Another application of a model-to-model validation is to
check for the robustness of a given model with respect to a
specific parameter change (see e.g., De Schutter and Bower,
1994). This parameter change may involve a random seed
that controls the stochastic input to a model or other model
parameters that are based on experimental observations. Such
variation of model parameters can assess if a feature of the
model behavior robustly emerges from the simulation and is
reproducible. The check for robustness is important because
experimentally based model parameters are usually observed
with a given uncertainty and there are methods to map the
influence of this measurement uncertainty to the model output
(UncertainPy12, Tennøe et al., 2018). For a reasonable sensitivity
analysis of the model, however, multiple simulation runs are
needed to represent the multidimensional parameter space
(Saltelli, 2002; Marino et al., 2008; Zi, 2011; Borgonovo and
Plischke, 2016).

Lastly, model-to-model validation is a useful tool in
accompanying model development. The flexibility and coverage
of a model’s dynamics when testing a model against experimental
data is often limited due to the scarcity and specificity of available
experimental data. Thus, model-to-model testing provides the
opportunity to validate the model outcome in a larger space
of dynamical regimes not necessarily covered by available
data.

The statistical methods presented in this study are generally
suitable for model assessment, i.e., model validation against
experimental data and model-to-model validation, including
substantiation scenarios. To emphasize this generality, the term
validation is used throughout the entire manuscript, even if the
worked example considers substantiation.

12https://github.com/simetenn/uncertainpy

Frontiers in Neuroinformatics | www.frontiersin.org 5 December 2018 | Volume 12 | Article 90263

https://scicrunch.org/resolver/RRID:SCR_002963
https://scicrunch.org/resolver/RRID:SCR_002998
https://scicrunch.org/resolver/RRID:SCR_005393
https://scicrunch.org/resolver/RRID:SCR_002715
https://github.com/simetenn/uncertainpy
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

FIGURE 2 | Model verification and substantiation workflow. The workflow

shown is an adaption of the verification and validation processes (Figure 1) for

the comparison of two executable models (i.e., a model-to-model validation

test). The executable models share the same system of interest and the same

mathematical model, but differ in the model implementation (e.g., by using

different simulation engines). We propose the term “substantiation” instead of

“validation” to indicate that this assessment activity cannot evaluate the

accuracy of the model with respect to its system of interest. Modeling and

simulation activities are indicated by black solid arrows, whereas assessment

activities are indicated by red dashed arrows. Figure amended from Trensch

et al. (2018).

3. METHODS

3.1. Methods for Network-Level Validation
For network validation one usually cannot expect a spike-to-
spike equivalence between the simulated spiking activity and the
experimental data or between two models. Even for different
implementations of the same model, the computation depends
on the capabilities and limitations of the computer hardware and
the exact details of the computer environment (Glatard et al.,
2015). Therefore, the simulation outcomes must be compared
statistically in order to quantify the level of similarity. In
the following we outline a number of measures of increasing
complexity that capture a broad range of network activity
dynamics.

Mono- and multivariate measures can, in a sense, be
regarded as forming a hierarchical order. Monovariate statistics
consider only the single unit activity, irrespective of other
units’ behavior, while multivariate statistics consider how

the pairwise or higher-order activity of units is coordinated
within the system. Nevertheless, it should be noted that this
conceptual hierarchy does not imply a hierarchy of failure, i.e.,
a correspondence on the highest order does not automatically
imply correspondence of lower order measures. Therefore, it is
imperative to independently evaluate each statistical property.

3.1.1. Monovariate Measures
We characterize activity of single neurons in the network using
the distributions of several monovariate measures. The level of
network activity can be estimated by the average firing rate

FR = nsp/T, (1)

where nsp denotes the number of spikes during an observation
interval of length T. The inter-spike intervals are defined by

ISIi = ti+1 − ti, (2)

where ti denote the ordered spike times of a neuron. The
distribution of ISIi is used to characterize the temporal structure
of the single spike trains. Ameasure particularly suited to analyze
the regularity of the spike intervals is the local coefficient of
variation

LV =
1

n− 1

n−1
∑

i= 1

3(ti − ti+1)
2

(ti + ti+1)2
, (3)

which is equal to 1 for a Poisson process (Shinomoto et al., 2003).

3.1.2. Bivariate Measures
For pairwise statistics we analyze the cross-correlation function

Rxy(τ) =
〈

x(t)y(t + τ)
〉

=
1

N

N
∑

t= 1

x(t)y(t + τ) , (4)

where 〈·〉 denotes the temporal average (Tetzlaff and Diesmann,
2010). It quantifies correlations between spike counts of two
binned spike trains, x(t) and y(t), for a range of lags τ given
N bins. Subtracting the average spike counts µx =

〈

x(t)
〉

and
µy =

〈

y(t)
〉

yields the covariance function

Cxy(τ) =
〈(

x(t)− µx

) (

y(t + τ)− µy

)〉

= Rxy(τ)− µxµy . (5)

Normalizing the covariance function by the standard deviations
σx =

√
Cxx(τ = 0) of the processes, one obtains the cross-

correlation coefficient function

ρxy(τ) =
Cxy(τ)

σxσy
. (6)

The Pearson correlation coefficient is given by ρxy(τ=0) (Perkel
et al., 1967). The matrix of correlation coefficients, C, evaluates
the non-delayed (i.e., zero-lag) correlation of spikes. The activity
on different scales can be analyzed applying different bin sizes.
Here we use binned spike trains on a fine temporal scale (Pearson
correlations denoted by CC, using a bin width of 2 ms) and on
a coarse scale (Pearson correlations denoted by RC, using a bin

Frontiers in Neuroinformatics | www.frontiersin.org 6 December 2018 | Volume 12 | Article 90264

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

width of 100 ms). The correlations on coarser scales are often
referred to as rate correlation. In particular, RC is able to capture
characteristic population-wide fluctuations of network activity
that are often observed on the associated temporal scales (see e.g.,
the stripy asynchronous irregular state in Voges and Perrinet,
2012).

Since the particular model used as an example in the present
study was originally conceived to exhibit a spatiotemporal
arrangement of the spiking activity (polychronous groups), we
analyze in addition potential delayed correlations by considering
the cross-correlation coefficient function ρxy(τ). We select a bin
width of 2 ms and calculate the sum of the cross-correlation
coefficient function for lags up to 100 ms, corresponding to an
interval of [−1;1] bins around 0 with 1 = 50:

Pxy =

1
∑

τ =−1

ρxy(τ) (7)

in order to quantify the fine temporal correlation including
potential lagged correlations.

3.1.3. Correlation Structure
Eigenvectors of the correlation matrix capture the correlation
structure of network activity (Friston et al., 1993; Peyrache et al.,
2010). Consider the eigendecomposition of the symmetric, zero-
lag correlation matrix according to

Cvi = λivi, (8)

where λi are eigenvalues and vi are eigenvectors. Due to the
symmetry of the real valued matrix C it follows that λi ≥ 0 and
eigenvectors vi are real and orthogonal to each other. A large
eigenvalue corresponds to an intra-correlated group of neurons,
whose activity explains a large amount of variance in the system,
and relates to dominant features in the correlation structure.
The loadings of the corresponding eigenvector vi identify the
neurons constituting such groups. Consequently, a suitable
sorting algorithm, for example hierarchical clustering, exposes
intra-correlated groups as block like features of the correlation
matrix. Here, we use the scipy (RRID:SCR_008058; v1.0.0)
implementation scipy.cluster.hierarchy.linkage() with method=
“ward” and otherwise default settings.

To quantify to which degree the correlation structure of two
simulation outcomes (1 and 2) is similar, one may flatten the
upper triangular matrices of the correlation matrices C1 and C2

into vectors c1 and c2, respectively. This omits duplicate entries
due to symmetry and the unity auto-correlation on the diagonal.
The normalized scalar product

0 ≤
|c1 · c2|

‖c1‖ ‖c2‖
≤ 1 (9)

then constitutes a measure of similarity. A value of 1 denotes two
identical vectors and a value of 0 two perpendicular vectors. The
order of pairwise correlation coefficients in the two vectors c1 and
c2 needs to be identical, i.e., the similarity measure is sensitive
to the labeling of the neurons. Therefore, it should only be

applied to compare two network simulations of the same neuron
population. Accordingly, reordering the neuron population of
one network statistically decreases the similarity measure of
any existing structured correlation matrices while preserving
the value for non-structured, e.g., homogeneous, correlation
matrices. As a test statistic, the distribution of the normalized
scalar product is not known and depends on the distribution of
cross-correlation coefficients in c1 and c2. The significance of the
similarity measure is therefore estimated by means of surrogate
data. The associated null distribution is computed by randomly
shuffling the neuron order of one network 10, 000 times.

3.1.4. Spatiotemporal Patterns
The evaluation of the correlation structure presented so far
considers only pairwise measures. Nevertheless the spiking
activity of complex networks may include higher-order
interactions. Several methods for the detection of higher-order
correlation have been developed in recent years (for a review see
Quaglio et al., 2018) that do not make any specific assumption
about the underlying connectivity and are thus well suited as
statistical measures for model validation. Here, we focus on the
SPADE (Spike Pattern Detection and Evaluation) method (Torre
et al., 2013; Quaglio et al., 2017). SPADE is a statistical method
designed to detect spatiotemporal spike patterns, i.e., temporally
precise spike sequences, including synchronous spiking activity.
The method is composed of two main steps: (a) using Frequent
Itemset Mining to detect repeated spike sequences in parallel
spike trains, and (b) selecting the sequences that occur often
enough to be significant with respect to the null hypothesis
of independent firing. The features of the patterns (neurons
forming the sequences, number and time of occurrences, lags
between the spikes forming the sequence, statistical significance
of the pattern) characterize the network activity in terms of
higher-order statistics.

3.1.5. Statistical Comparison of Distributions
Consider two sample distributions with means µi and standard
deviations σi. Here, such sample distributions represent the
neuron-wise or pairwise evaluation of one of the measures
described above. According to Hedges (1981), the effect size

d =
µ1 − µ2

σ
, (10)

characterizes the difference of the mean values where

σ =

√

(n1 − 1)σ 2
1 + (n2 − 1)σ 2

2

(n1 + n2 − 2)
(11)

is the pooled standard deviation and the ni specify the number of
samples entering each distribution. In the case of equal sample
sizes the definition is equivalent to Cohen (1988, p. 67). In
case of multiple simulation runs, we calculate the average effect
size of the respective measures. This is possible because the
simulations are independent and there is no systematic trend
of the measures for the evolving network states. Calculating
the effect size assumes that both distributions are Gaussian.
Even though this assumption is not fulfilled for every measure,

Frontiers in Neuroinformatics | www.frontiersin.org 7 December 2018 | Volume 12 | Article 90265

https://scicrunch.org/resolver/RRID:SCR_008058
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

we calculate the effect size as a simple quantification of the
difference between the non-normal distributions. Note, that for
non-normal distributions a small effect size does not necessarily
indicate similarity because there might still be a mismatch in
the shape of the distribution. In these cases additional tests are
needed to give a more complete evaluation. Candidates are the
scalar product measure to compare correlation structures, and
statistical hypothesis tests.

The present work employs hypothesis tests to assess the
equality of the means (two-sample Student’s t-test) and the
equality of the distributions (Kolmogorov-Smirnov test, Mann-
Whitney U test). This quantifies the discrepancy in the results
by a p-value. The two-sample t-test is only applicable to normally
distributed data, while the latter two tests are non-parametric and
thereby applicable to any form of distribution. The Kolmogorov-
Smirnov test computes the supremum of the difference of the
two cumulative distribution functions, while the Mann-Whitney
U test compares the rank sums of the jointly sorted samples. In
general, when applying hypothesis tests the interpretation of the
p-values as a similarity assessment must also take into account
potential biases and dependencies, e.g., on the sample size, and
the simulation time (Cohen, 1994).

3.2. Implementation of Validation Tests in a

Modular Framework
Rigorous validation testing requires that test results are not
affected by details of the actual testing procedure. This translates
to performing the extraction of test statistics and its evaluation
with the exact same methods for both data sources entering
the test. In a more complex scenario, this also includes
finding an appropriate mapping between the data sources, for
instance when comparing a large-scale simulation of spiking
activity to experimental data taken from few electrodes only.
Ultimately, validation methodologies should be standardized
within the neuroscientific community to ensure consistency
of the validation scores across different validation cycles of
related models or data sets. The starting point for drafting a
common base for validation testing is the formalization of the
validation workflow for the individual research domains. For
network-level validation of spiking activity data we created this
formalization as the open-source Python module NetworkUnit13

(RRID:SCR_016543). All quantitative comparisons of statistical
measures of this study are carried out in this framework and
the workflow to reproduce the findings of this study using
NetworkUnit is available online as a Jupyter notebook14.

NetworkUnit focuses on the statistical comparison of
measures characterizing spiking neural network models. It is
based on the Python package SciUnit (RRID:SCR_014528; Omar
et al., 2014), which provides a generic basis for the testing of
models, employing similar concepts to those of unit testing in
software engineering. SciUnit consists of three base classes for
models, tests, and scores. The model class defines the model to be
validated and, if needed, handles its execution. The test defines
which measure, or feature, is to be extracted from the model,

13https://github.com/INM-6/NetworkUnit
14https://web.gin.g-node.org/INM-6/network_validation

and defines against which experimental data the model is to be
validated. Finally, the score defines the validation method to be
applied and quantifies the result of the validation cycle. Models
and tests are connected via their capabilities, e.g., a definition
of what types of data output a model provides, and what type
of data input the test requires to extract its measure. Figure 3
schematically depicts the interplay of these components and the
class hierarchy for the cases of validation of a model against
experimental data or substantiation against another model.

For the analysis presented in this paper, the components in
Figure 3 can be understood as follows: the basic underlying
capability is the class ProducesSpikeTrains as all analyzed
measures are based on the spike times. The SpiNNaker
model is implemented as the sim_model that is to be
validated. It could either be validated against experimental data
(exp_data), or substantiated against another instance of the
model (sim_model_B), e.g., the original implementation as
illustrated in our worked example. The test statistics we use
in XYTest are the distributions of the measures presented in
Section 3.1, e.g., firing rate or correlation coefficient. All these
tests involve the comparison of distributions, so they are derived
from a corresponding BaseTest (and potentially additional
base tests). Some statistics, e.g., the correlation coefficient,
depend on additional parameters (controlled by Params) such
as the binsize. The ScoreType in our case are statistical
hypothesis tests or the effect size.

The test instance uses spike trains from the model and
the experimental data or, as in our case, from the reference
model implementation to generate a “prediction” and an
“observation,” respectively. The calculation of features on activity
data is performed using the Electrophysiology Analysis Toolkit15

(Elephant, RRID:SCR_003833). Both observation and prediction
are passed on to the score class, which evaluates their statistical
congruence, e.g., in form of a two-sample t-test. Finally, the judge
function of the test instance returns the results, for example the
p-value of the statistical hypothesis test. This design formalizes
the generation of the results and makes them reproducible. The
modular design of model and test classes enables the reuse
of existing tests which facilitates the comparison of results of
different models.

In practice, performing a single test for validating a
model does not sufficiently capture the model behavior
to comprehensively quantify it and document the model’s
scientific applicability. Thus, a whole range of validation
tests is usually performed, which may in some cases differ
only in details or may depend on a parameter. Instead of
rewriting the test definition each time, it is more feasible to
make use of class-based inheritance as indicated in Figure 3

(BaseTest→XYTest→XYTest_paramZ). All specific tests
derive from the sciunit.Test base class. They add and
overwrite the required functionality, as for example generating
the prediction by calculating the correlation coefficients from
spike trains. Because there may be a lot of different tests
making use of correlation coefficients (for example, calculating
correlations on different time scales), it is recommended

15http://python-elephant.org

Frontiers in Neuroinformatics | www.frontiersin.org 8 December 2018 | Volume 12 | Article 90266

https://scicrunch.org/resolver/RRID:SCR_016543
https://scicrunch.org/resolver/RRID:SCR_014528
https://github.com/INM-6/NetworkUnit
https://web.gin.g-node.org/INM-6/network_validation
https://scicrunch.org/resolver/RRID:SCR_003833
http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

FIGURE 3 | Illustration of a typical test design within NetworkUnit. The blue boxes indicate the components of the implementation of the validation test, i.e.,

classes, class instances, data sets, and parameters. The relation between the boxes are indicated by annotated arrows. The basic functionality is shown by green

arrows. The difference in the test design for comparing against experimental data (validation) and another simulation (substantiation) is indicated by yellow and red

arrows, respectively. The relevant functionality of some components for the computation of test score is indicated by pseudo-code. The capability class

ProducesProperty contains the function calc_property(). The test XYTest has a function generate_prediction() which makes use of this capability,

inherited by the model class, to generate a model prediction. The initialized test instance XYTest_paramZ makes use of its judge() function to evaluate this model

prediction and compute the score TestScore. The XYTest can inherit from multiple abstract test classes (BaseTest), which is for example used with the

M2MTest to add the functionality of evaluating multiple model classes. To make the test executable it has to be linked to a ScoreType and all free parameters need

to be set (by a Params dict) to ensure a reproducible result.

to implement first an abstract generic test class to handle
correlations. This abstract test class cannot be accessed explicitly
by a user but only acts as a parent class for the actual
executable test class, which, e.g., implements the test for a
specific choice of the bin size. This class-based inheritance
guarantees that all tests build on the same implementation
and workflow.

In this study we concentrate on model-to-model validation.
In this scenario, the test instance compares the prediction of
two model instances and accordingly needs to accept two model
instances as input. For that scenario, SciUnit provides the test
class TestM2M, in which the experimental data (exp_data) in
Figure 3 are replaced by a second model class (sim_model_B).

3.3. Substantiation of the Izhikevich

Polychronization Model
In a companion study, Trensch et al. (2018) demonstrate
a rigorous model substantiation workflow. In a first step,
the authors replicate a published minimal spiking network
model, capable of exhibiting the development of polychronous

groups of spiking neurons (Izhikevich, 2006), referred to in
the following as the “polychronization model.” In a further
step, the study details the iterative processes of implementation,
verification, and substantiation of the original implementation
of the polychronization model against a reproduction on the
SpiNNaker neuromorphic system. Trensch et al. focus on the
refinement of the implementations and their verification, i.e., the
source code verification and calculation verification, and address
the question of the degree of numerical precision required on
neuromorphic systems. This is complemented by this study
focusing on the details of the corresponding substantiation
process, the testing for equivalence of statistical features of
the collective dynamics in five selected network states. This
section summarizes the polychronization model description, the
simulation setup, and the model substantiation procedure of
Trensch et al. (2018).

3.3.1. Polychronization Model
We chose the polychronization model (Izhikevich, 2006) to
demonstrate a rigorous model substantiation process. The

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2018 | Volume 12 | Article 90267

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

choice was motivated by a number of non-standard features
in its conceptual and implementation choices that make it
an illustrative example for the source code and calculation
verification process conducted in a complementary study
(Trensch et al., 2018) and, particularly, for an reproduction
on the SpiNNaker (Furber et al., 2013) neuromorphic system.
The model exposes essential aspects in the formalization and
simulation of neural networks as it produces a rich repertoire of
network dynamics. Note that we do not evaluate the emergence
of polychronous groups, as this turns out to be rather sensitive
to details of the implementation choices. For a comprehensive
investigation of this aspect, see Pauli et al. (2018). The original
model is implemented in the C programming language and is
available for download from the website of the author16.

The polychronization model consists of 1,000 neurons with
four times more excitatory than inhibitory neurons. Each
neuron is described by the model specified in Izhikevich (2003).
In accordance with the definitions by Izhikevich, excitatory
neurons are parameterized to exhibit regular spiking, and
inhibitory neurons to show fast spiking behavior. The neurons
are connected randomly with a fixed out-degree of 100, where
inhibitory neurons only form connections to the excitatory
population. Each excitatory connection is assigned a fixed delay
drawn from a discrete uniform distribution between 1 and
20 ms in intervals of 1 ms and all inhibitory connections
are assigned a delay of 1 ms. Synaptic weights are initialized
with an initial value of 6 for excitatory and −5 for inhibitory
connections. The original model uses dimensionless variables,
however, currents can be interpreted in units of pA. The network
is driven by random input realized by an external current
pulse of 20 pA injected into one randomly chosen neuron
in each time step. The simulation time step is 1 ms, within
which multiple intermediate steps are calculated, depending
on the implementation (Trensch et al., 2018). The stimulated
spiking activity in the network modifies the connection weights
according to a spike-timing-dependent plasticity (STDP) rule.
Synaptic weight changes are buffered for one biological second
and then the weight matrix is updated for all plastic synapses
simultaneously. We leave out a detailed description of the
implementation of plasticity here because it is not of relevance
for the remainder of the study as it considers only the dynamics
after freezing the learned connectivity matrix, and refer to Pauli
et al. (2018).

3.3.2. Simulation Setup
Trensch et al. (2018) consider for the validation task the dynamics
of the original C implementation of the polychronization model
in five arbitrarily selected network states. Figure 4 illustrates the
setup of the simulation. Analyzing five network states within
one simulation process instead of the outcome of multiple
different simulations with different random seeds is motivated
by the findings of Pauli et al. (2018) who show that the model
may converge into two distinctly different activity states. By
analyzing the sample activity at different training times within
one simulation this ambiguity problem for the analysis is

16https://www.izhikevich.org/publications/spnet.htm

bypassed. In order to generate the network activity data for the
statistical analysis and to save the network states, the authors
perform the following three steps:

1. Execute the C implementation with STDP for 5 h of biological
time. During this simulation run, save the network state at five
points in time ti, i = (1, 2, ..., 5) after 1, 2, 3, 4, and 5 h. The
network state is defined by the weight matrixW(ti) containing
the current strength of each synapse, the connectivity matrix
A, and the delay matrix D. Additionally, record the first 60s of
the random series of neurons to which the external stimulus is
applied (I(t), Figure 4A).

2. Switch off STDP in the C implementation. Re-initialize the
network model with A, D, I, and the respective W(ti) for the
five simulation runs i = (1, 2, ..., 5). In each run record the
network spiking data SCi over 60 s (illustrated in Figure 4B).

3. Repeat step (2) with the implementation on the SpiNNaker
neuromorphic system (NM) of the polychronization model to
obtain the spiking data SNMi .

The spiking data SCi and SNMi are then subject to the statistical
analysis and comparison described in detail in the present work.
Note that for the sake of simplicity only the excitatory population
is considered in the following validation, yet the results for the
inhibitory population do not differ qualitatively.

3.3.3. Substantiation Workflow
The complementary study (Trensch et al., 2018), which details
the activities of implementation, verification and validation
conducted in the course of the substantiation process, presents
three iterations of the entire workflow. In the following, we
summarize the actions taken in these iterations. As each of the
iterations demonstrates a different aspect of validation testing,
the present study refers to the corresponding iteration where
suitable.

First, the original C implementation of the polychronization
model (Izhikevich, 2006) underwent a source code verification,
inspection and refactoring task, while paying attention to
preserving bit identity, i.e., bit-wise replicability, of the
simulation outcome. A reproduction of the polychronization
model was implemented on the SpiNNaker neuromorphic
system using the Izhikevich neuron model implementation
provided by the SpiNNaker software stack, using the Explicit
Solver Reduction (ESR) implementation of the dynamics
described in Hopkins and Furber (2015). The substantiation of
a choice of statistical features exposed discrepancies. This led
the authors to the definition of verification tasks, in terms of
calculation verification, to verify the accuracy of the numerical
algorithms and computations.

The second iteration carried out these verification activities.
As a result, the ODE solver implementation for both, the
SpiNNaker and the C model, was replaced by a semi-
implicit fixed-step size forward Euler scheme. Additionally, the
revised implementations include a precise threshold detection,
and for some critical calculations an optimized fixed-point
representation for improving the numerical precision of
computations.

Frontiers in Neuroinformatics | www.frontiersin.org 10 December 2018 | Volume 12 | Article 90268

https://www.izhikevich.org/publications/spnet.htm
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

A

B

C

FIGURE 4 | Design of the simulation setup. The time line is annotated by the variables saved or loaded at specific time points of the simulation for the three types of

simulations used in the substantiation scenario. (A) Generation of the five initial network states used to simulate data. At the start (t = 0 s) of running the C

implementation of the polychronization model (with STDP) the connectivity matrix A and delay matrix D are saved. At the following times ti , the weight matrix W(ti) is

saved. The random input stimulus to the network I(t) is recorded for the duration of the simulation. (B) Generation of data from the five simulations of the C

implementation (without STDP) for use in the validation tests based on the random input I(t) and the five sets of initial conditions (A, D, W(ti)) recorded in (A),

respectively. The network spiking activity SC
i
(W(ti), t) is recorded for 60 s. (C) Identical setup as in (B), but for the SpiNNaker implementation without STDP, where

SNM
i

(W(ti), t) denotes the simulation result. The data from (B,C) are subject to validation testing based on their statistical features (red dotted lines). Figure amended

from Trensch et al. (2018).

The third iteration is concerned with a shift that was observed
in the LVs but not in the other monovariate measures such
as the firing rate. The formalized workflow of verification and
validation uncovered this shift to be caused by an implementation
issue leading to a small systematic lag in spike timing. Each
iteration thus constitutes a refinement of the implementation step
with a subsequent verification assessment and a substantiation
(utilizing NetworkUnit) as depicted in Figure 2. A short
summary of the specific changes in each iteration is depicted
in Table 1. The model source codes, simulation scripts and
the codes used in the verification activities, developed in our
companion study, are available on GitHub17.

4. RESULTS

In this section we present the results of the various validation
tests of the SpiNNaker implementation against the C simulation
of the polychronization model. Pauli et al. (2018) expose
that the model dynamics is sensitive to small changes in
model parameters and numerics. Accordingly, we do not

17https://github.com/gtrensch/RigorousNeuralNetworkSimulations

(doi: 10.5281/zenodo.1435831)

expect a spike-to-spike equivalence between the SpiNNaker
neuromorphic system, which makes use of 32-bit fixed-point
numerics, and the C implementation, employing floating-point
numerics. Hence, any comparison needs to rest on statistical
measures. Following the results of the various validation tests
of the SpiNNaker implementation against the C simulation, in
Section 4.1 we show that the application of validation tests
during model development and implementation quantifies and
guides the progress. Section 4.2 demonstrates the importance
of incorporating multiple measures in the validation of network
activity, since the agreement of a higher order statistical measure
does not entail the agreement of measures of lower order.
As the last step of the validation process Section 4.3 uses
a selection of test measures and scores to comprehensively
validate the SpiNNaker model implementation against the
C implementation.

4.1. Comparison of Network Activity During

Implementation
The modeler already benefits from the use of quantitative
statistical comparisons for model validation during the iterative
process of model implementation. Based on our example, we
demonstrate this by the improvements of the implementation on

Frontiers in Neuroinformatics | www.frontiersin.org 11 December 2018 | Volume 12 | Article 90269

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://doi.org/10.5281/zenodo.1435831
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

TABLE 1 | Summary of the development steps of the model implementations.

C model SpiNNaker model

Iteration I Uses a semi-implicit

fixed-step size forward Euler

ODE-solver with step size

1 ms

(i) Uses the SpiNNaker Explicit

Solver Reduction (ESR)

implementation of the Izhikevich

neuron model

(ii) Uses Izhikevich’s algorithm for

the neural dynamics

(iii) Uses a more exact fixed-step

size forward Euler ODE-solver

with step size 1 ms.

Iteration II Uses a 1/16 ms step size

and a more precise

detection of threshold

crossing

Uses a 1/16 ms step size and a

more precise detection of

threshold crossing

Applies fixed-point conversion

for critical calculations

Iteration III Remains unchanged Resolves an implementation

issue

with the threshold detection

The iterative development of the simulation codes is based on a replication of Izhikevich’s

original implementation. The steps (ii) and (iii) represent incremental improvements in

between iterations I and II. ODE, ordinary differential equation.

SpiNNaker obtained in three iterative steps denoted by i–iii in
Figure 5 (see also Table 1). The results shown are taken from 60
s of simulated data starting from the network state after 5 h of
biological time.

Figure 5A displays the spiking data of the C implementation
(corresponding to iteration I in Trensch et al., 2018) compared
to the three consecutive steps of the SpiNNaker implementation.
Step i denotes the initial SpiNNaker implementation using an
Explicit Solver Reduction (ESR) algorithm for the Izhikevich
neuron dynamics (see iteration I in Trensch et al., 2018).
In step ii this algorithm is replaced by a reimplementation
of the neuron dynamics described in Izhikevich (2006). Step
iii improves this algorithm, by applying a fixed step size
forward Euler method (see iteration II in Trensch et al.,
2018). Step i does not exhibit the strong fluctuation of the
population activity (visible as vertical stripes in the raster
plot) that are present in the C simulation. The following
SpiNNaker simulation steps ii and iii, in contrast, do exhibit
these fluctuations. As expected, none of the SpiNNaker
simulations show a spike-to-spike equivalence with the C
implementation.

In order to assess the statistical agreement between the C and
SpiNNaker simulations during implementation development, we
compare the distributions of FRs, LVs, and pairwise CCs using
the effect size defined in Section 3.1.5. The results are shown in
Figure 5B for the 9 comparisons (3 steps, 3 measures). Visually,
the agreement between the C and the SpiNNaker simulations
improves with each step of the SpiNNaker implementation. This
is also quantitatively confirmed by the effect size displayed in
Figure 5C. This information guides the modeler in assessing
the model improvement in the iteration steps. The effect size
declines with each iteration step consistently for all measures.
However, despite the good visual agreement of the raster
plots for the final step, the discrepancy in the distributions

of firing rates is still considerable. There remains also a
shape mismatch between the distributions of CCs (step iii,
Figure 5B).

The distribution of the sum of the cross-correlation coefficient
of the SpiNNaker simulation (step iii, Figure 5D) is much
broader than the distribution obtained from the C simulation
and also shows a much larger tail, while the distribution for
the C simulations is close to a Gaussian. The corresponding
correlation matrix (Figure 5E) for SpiNNaker reveals that the
largest values as well as the smallest values causing the deviation
are arranged in horizontal and vertical lines. The correlation
matrix for the C simulation, on the other hand, does not show
similar outliers. The line structure uncovers individual neurons
that are highly correlated or anti-correlated (within a ±100 ms
delay window) to a large number of other neurons. Further
investigation reveals 8 particular neurons, that in the following
we refer to as overactive neurons. These overactive neurons
not only cause the long tail in the distribution of integral
correlations P, but also exhibit larger firing rates than the rest of
the population. This suspicious behavior motivates a closer look
at their spiking activity revealing occasional episodes with firing
rates of 1 kHz for several hundred milliseconds (see Figure 5F

for an illustration of such episodes). Subsequent analysis and
review of the source code determines an implementation issue
of the neural dynamics as the origin of the problem. The
episodes in question are triggered by an overflow of a fixed-
point variable in the calculation of themembrane potential. Thus,
the validation process reveals a mismatch in the dynamics that
provides valuable information to guide a subsequent verification
step.

4.2. Differential Effects on Statistical

Measures
Next, we investigate the statistical properties of spiking
activity for the SpiNNaker implementation resulting from
the next iteration step that addresses the overflow discussed
above. Briefly, the refinements of the SpiNNaker and the
C code are the employment of an improved forward Euler
ODE solver, a precise detection of threshold crossings, and
a more accurate fixed-point representation on SpiNNaker
(for details, see Table 1 and iteration II in Trensch et al.,
2018).

In Figure 6 the distributions of mean firing rates and
correlation coefficients show a good agreement in terms of effect
sizes and an overall better visual agreement of the shapes of
the distributions (Figure 5B, bottom row). The LV distributions,
however, exhibit a clear shift toward lower values not present
in the previous iteration, reflected by an increased mean
effect size. The spiking activity in the SpiNNaker simulations
is therefore considerably more regular despite similar mean
firing rates and pairwise correlations as the C simulation.
Thus, Figure 6 illustrates a situation where the refinement of
an implementation improves two statistical measures while
it worsens a third. The implementation process needs to be
accompanied by the simultaneous consideration of multiple
statistics.

Frontiers in Neuroinformatics | www.frontiersin.org 12 December 2018 | Volume 12 | Article 90270

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

FIGURE 5 | Comparison of the C simulation with simulations of three consecutive stages of the SpiNNaker implementation. (A) Raster plot of the spiking network

activity (800 excitatory neurons) of the C simulation (bottom, blue) and three stages of the SpiNNaker implementation; i, ii, and iii (top, shades of green). The top and

right histograms show the population spike counts in 60 ms bins and the mean firing rates, respectively. (B) Distributions of firing rates (FR, left), local coefficients of

variation (LV, middle), and correlation coefficients (CC, right) for the C and SpiNNaker simulations. Each row (subsequent implementation steps: i, ii, iii) represents a

specific SpiNNaker simulation (green) that differs in the underlying neuron model implementation. Data shown for the C simulation (blue) are identical in the three rows.

(C) The difference between the distributions is quantified by the effect size with error bars indicating the 95% confidence interval. In step iii the effect sizes for the FR,

LV, and CC measure are 0.90, 0.05, and 0.36, respectively. (D) Distributions of the sum of the cross-correlation coefficient (Pxy , Equation 7) in logarithmic

representation for C and SpiNNaker (implementation step iii). (E) Color coded correlation matrices for the sum of the cross-correlation coefficient in implementation

step iii. The symmetric matrices display results for the subset of 100 excitatory neurons with highest spike rates in the SpiNNaker simulation. (F) Raster plot of 8

overactive neurons in the SpiNNaker simulation (implementation step iii) showing episodes of 1 kHz spiking (emphasized by red markers). The top and right

histograms show the population spike counts in 60 ms bins and the mean firing rates for the entire recording, respectively.

Frontiers in Neuroinformatics | www.frontiersin.org 13 December 2018 | Volume 12 | Article 90271

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

2 4 6

FR (Hz)

0

50

co
un

t

0.5 1.0

LV

0

50

100

0.00 0.05

CC

0

2

4

×10
4

C

SpiNNaker

FR LV CC

0.0

0.5

1.0

eff
ec

t
si
ze

FIGURE 6 | Comparison of statistical measures after model refinement. The panels show from left to right the distributions of FR, LV, and CC of the C and SpiNNaker

simulation after the first refinement of the implementations by Trensch et al. (2018) for the network state after t5 = 5 h (same display as in Figure 5B). The histogram

on the right visualizes the effect size in the three statistical measures (mean and standard deviation across all five network states t1, t2, . . . , t5). The numerical values

are FR: 0.077± 0.025, LV: 1.28± 0.086, and CC: 0.074± 0.006 respectively.

4.3. Comprehensive Assessment and

Higher-Order Collective Properties
The refinement of the last iteration is the correction of the
threshold detection algorithm of the SpiNNaker implementation,
while the C simulation remains unchanged (for details, see
Table 1 and iteration III in Trensch et al., 2018). At this point,
the effect sizes of the statistical measures decreased substantially,
suggesting the inclusion of further measures of the collective
properties of the system into the validation. In this way we obtain
an impression of how far the present measures constrain the
dynamics of the system and to what extent higher-ordermeasures
of interest for the experimentalist are preserved.

Figure 7 shows the three distributions considered in previous
iterations (FR, LV, and CC; cf. Figures 5B, 6) and in addition
the distributions of the ISIs, the RC, and the eigenvalues (λ) of
the rate correlation matrices. According to the interpretation of
Cohen (1988), the comparisons of all six measures exhibit effect
sizes of small to medium size.

Compared to the previous iteration (Section 4.2), the
LV of the SpiNNaker implementation better matches the C
implementation. The firing rates, however, now show a small but
systematic shift to larger rates compared to the C simulation.
Despite a slight increase in the effect size for firing rates and
correlation coefficients, the overall agreement in terms of the
effect sizes improves due to the improved match of the LV
distributions. The distributions of ISIs appear log-normal and
are well matched. The higher peak in the distribution for the
SpiNNaker simulation results from the increased firing rates in
the SpiNNaker simulation.

The SpiNNaker simulations also show a small shift to larger
RC. For the C and SpiNNaker simulations the corresponding
distributions of eigenvalues (λ) of the rate correlation matrices
are similar. Both distributions have a single eigenvalue that is
considerably larger than the rest. Therefore, one single mode
explains a large part of the total variance of the population
activity. This largest eigenvalue, however, is considerably larger
for the SpiNNaker simulation. This indicates that the intermittent
increases of population activity observed in SpiNNaker are larger

in terms of amplitude compared to the C simulation (see e.g., the
oscillations described by Bos et al., 2016).

We test for equivalent sample distributions of all six measures
shown in Figure 7 using the non-parametric Kolmogorov-
Smirnov test and the Mann-Whitney U test for all 5 network
states. We also apply the parametric Student’s t-test to those
measures which are approximately Gaussian distributed (FR, LV,
RC, log(ISI)). All tests reject their null hypotheses with p-values
clearly below a 5% significance level (without correction for
multiple comparisons). The only exception are the eigenvalue
distributions, which yield p-values between 0.17 and 0.96 for the 5
network states. In conclusion, all but the eigenvalue distributions
are statistically different.

Figure 8 displays the rate-correlationmatrices of all excitatory
neurons for the C and SpiNNaker simulation. The clustering
arranges large correlation values close to the diagonal in the C
result. A similar arrangement is not visible for the SpiNNaker
result. Vice versa, a similar behavior is observed if the SpiNNaker
data are used to cluster the neurons (not shown).

The similarity of the correlation structure is further quantified
using the normalized scalar products of the RCs for the C and
SpiNNaker simulation in the 5 network states, as described in
Section 3.1.3. The resulting values range from 0.176 to 0.209.
We assess the significance of the similarity by comparing the
SpiNNaker data to 10,000 surrogate matrices computed by
random permutations of the neuron identities. The mean of
the surrogate scalar products reflecting structurally independent
correlations range from 0.081 to 0.108. The observed score of the
two implementations is thus at least 43 standard deviations away
from the corresponding surrogatemean and indicates a similarity
of correlation structures clearly beyond chance.

In addition to mono- and bivariate statistics we analyze the
spiking activity for both C and SpiNNaker simulation with
SPADE (Quaglio et al., 2017) to detect spatiotemporal patterns
(STPs) as potential dynamic signatures of the underlying network
connectivity. In order to have the largest possible sample of
patterns we consider all repeated spike sequences irrespective of
their significance. This is justified as we are not interested in the

Frontiers in Neuroinformatics | www.frontiersin.org 14 December 2018 | Volume 12 | Article 90272

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

2.5 5.0

FR (Hz)

0

50

100
co
un
t

0.2 0.4 0.6 0.8 1.0

LV

0

50

100

10
1

10
3

ISI

0

2

4

6

8

×10
3

FR LV ISI

0.0

0.2

0.4

eff
ec
t
si
ze

0.00 0.02 0.04

CC

0

2

4

co
un
t

×10
4

−0.2 0.0 0.2

RC

0

1

2

3

×10
4

0 10 20

λ

10
0

10
1

10
2

C

SpiNNaker

CC RC λ

0.0

0.1

0.2

eff
ec
t
si
ze

FIGURE 7 | Distributions of characteristic measures of network activity simulated with C and SpiNNaker after the final step of refinement. The top row shows single

neuron statistics FR, LV, and the ISIs (same display and data specification as in Figure 5B). The histograms of ISIs are displayed using semi-logarithmic scaling. The

bottom row shows pairwise statistics and network properties, namely the CC using 2 ms bins, the rate correlation (RC) using 100 ms bins, and the eigenvalues (λ) of

the RC matrices displayed on the vertical axis using a logarithmic scaling. Right: effect size using the same display as in Figure 6. The effect sizes for the tested

measures are FR: 0.41± 0.08, LV: 0.28± 0.09, ISI: 0.14± 0.03, CC: 0.17± 0.03, RC: 0.14± 0.02, and λ: < 8× 10−17, respectively.

C

ra
te

co
rr

el
at

io
n

SpiNNaker

−0.16

−0.08

0.00

0.08

0.16

FIGURE 8 | Rate-correlation matrices for the C and SpiNNaker simulations of the network state after 5 h. Matrix elements show the RCs (color bar) of all pairs the 800

excitatory model neurons in the simulation computed from 60 s of data. The order of the neuron ids in both symmetric matrices is determined by hierarchical

clustering (Ward’s variance minimization algorithm, details see Section 3.1.3) of the C matrix. Auto-correlations are set to 0 to not stretch the color scale.

significance of the results of the C and SpiNNaker simulation but
in the comparison of the respective pattern formation. Figure 9
summarizes two characterizations of pattern occurrence: the total
number of patterns and the temporal lags between the spikes
forming a specific STP. While SpiNNaker shows a larger total
number of patterns, the lag distributions are qualitatively similar
in both simulations. Furthermore the power spectrum of the
spiking activity pooled across all neurons (Figure 9C) exposes
a clear peak around 35 Hz for both SpiNNaker and C, which
explains the large number of lags around 27 ms in the patterns’

lags distribution (Figure 9B). The phenomenon is enhanced in
the SpiNNaker simulations, which exhibit both a larger average
firing rate and a larger power around 35 Hz, explaining the larger
number of spatiotemporal patterns.

5. DISCUSSION

The study describes a workflow for the systematic, formalized
and reproducible validation of network models based on the
statistical comparison of the emerging neuronal activity. We

Frontiers in Neuroinformatics | www.frontiersin.org 15 December 2018 | Volume 12 | Article 90273

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

A B C

FIGURE 9 | Frequency and structure of spatiotemporal spike patterns. (A) Bar diagram of the number of patterns detected using the SPADE method (Quaglio et al.,

2017) in the two simulations. Displayed are the mean and standard deviation of the results for the 5 network states. The spike times of all 800 excitatory neurons are

discretized by 3 ms bins and only spike sequences that repeated 3 or more times, are formed by at least 5 spikes, and with a temporal length between first and last

spike shorter than 60 ms are considered. (B) Normalized distributions of the temporal lags between any two spikes involved in one of the patterns. The results for

each of the 5 network states are displayed as a separate distribution. (C) Power spectra of the population activity in each network state. The spectra are calculated by

Welch’s method with a 100 Hz sampling frequency and a 1 Hz frequency resolution (window overlap: 50%). In all panels, data from the C and SpiNNaker simulations

are indicated in blue and green, respectively.

show that a statistical approach is required, as not only
the explicit model parameters but also the properties of the
simulation engine affect the simulation outcome, leading in
general to simulations that are not identical in their spike times.
A quantitative comparison of model vs. experiment and of model
vs. model is beneficial not only as a final validation but also guides
the development process. The tests applied in our workflow
span from monovariate (e.g., firing rates) to bivariate (e.g.,
correlation coefficients) to higher-order (e.g., spike patterns)
statistical measures. Eachmeasure of the spiking statistics reflects
only a certain aspect of network activity. Therefore, the validation
is enriched by including multiple measures to capture a broad
range of network dynamics. The presented workflow is available
online in an executable format with the intent to serve as a
template and building block for validation tasks in computational
neuroscience.

In conjunction with work presented in (Trensch et al.,
2018) we assess as an example the implementation of
the polychronization model by Izhikevich (2006) in the
programming language C and on the neuromorphic hardware
SpiNNaker. As the aim of this comparison is to validate the
implementation of this model on SpiNNaker, we perform a
model substantiation technique, where the C simulation assumes
the role of the reference model.

Initially, the quantitative comparison of characteristic
measures of the population dynamics (Section 4.1) exposes
an artifact. The artifact originates from an overflow of
the SpiNNaker fixed-point data type that is caused by an
inappropriate detection of threshold crossing (see Trensch et al.,
2018, for details) leading to several overactive neurons that
sporadically enter phases in which they fire in every simulation
time step. Thus, rigorous validation testing in the iterative model
development process is useful already in early stages because it
uncovers mismatches also in simple measures and complements
the model verification.

Further refinement of the ODE solvers for both model
implementations leads to an improved agreement of FR and
CC, but increases the discrepancy of the distributions of LVs
between the C and SpiNNaker implementation (Figure 6). This
intermediate result emphasizes the importance of considering
multiple statistics in parallel throughout the validation process as
each statistic highlights different dynamic characteristics of the
underlying model. The example also demonstrates that statistics
of higher order (here pairwise correlations) are not necessary
informative of differences in the network activity captured
by lower order statistics (here monovariate LV). Therefore, a
sufficient agreement in the statistics of a given order does not
imply sufficient agreement in the statistics of lower order.

Subsequent analysis traces the discrepancy in the LV measure
back to a software issue causing a small delay in spike timing.
Solving this issue in the final iteration step leads to a satisfactory
agreement between the C and SpiNNaker implementations in
terms of the effect sizes of the different statistical measures
(Section 4.3). An analysis of the spatiotemporal structure of
the spiking activity in the network shows that the temporal
structure (lag distributions) of spike patterns found in the data is
qualitatively similar for the two implementations. However, the
dominant elements of the correlation structure (in the sense of
strong intra-correlated groups of neurons) cannot be attributed
to the same neurons in the two simulations (Figure 8). Statistical
hypothesis tests for equality of the mean (t-test) and equality
of the distributions (Kolmogorov-Smirnov, Mann-Whitney U
test) failed for all statistics except the distribution of eigenvalues.
Taken together, the complexity of these findings emphasizes the
importance of using multiple statistical tests to obtain a complete
understanding of the validation outcome.

Quantifying the similarity between the simulations is not
the final step of validation. It has to be evaluated whether
or not this similarity (or, range of accuracy) represents an
acceptable agreement with respect to the intended application of

Frontiers in Neuroinformatics | www.frontiersin.org 16 December 2018 | Volume 12 | Article 90274

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

the respective models. This evaluation requires consideration of
the requirements and intentions of the application. Conversely,
the statistical agreement obtained in the validation process
defines the applicability and accuracy of the model. Following
the latter approach, this study quantifies the accuracy of
the SpiNNaker implementation. Strong requirements for the
SpiNNaker simulations, such as an equal number of patterns
found with SPADE or the statistical equivalence of the calculated
distributions as assumed by the null hypothesis of typical two-
sample tests, can so far not be fulfilled. This means that
the acceptable agreement is not yet reached for analyses with
strong statistical requirements. With the intention of achieving a
qualitative reproduction of Izhikevich’s polychronization model,
however, we can state that the final model implementation on
SpiNNaker is in acceptable agreement with the corresponding
C simulation. An alternative end of the iterative validation
loop occurs when remaining discrepancies are understood and
result from the intrinsic limitations of the underlying simulation
technology (e.g., the SpiNNaker neuromorphic hardware and its
software stack). Particularly, experimental electrophysiological
recordings often contain considerable variability (see e.g., Arieli
et al., 1996; Mochizuki et al., 2016; Riehle et al., 2018, for trial-to-
trial and subject-to-subject variability). Therefore, the acceptable
agreement for a model to explain relevant experimental data
may in some cases be formulated less strictly, e.g., in terms of
effect sizes that reflect the typical variability between multiple
equivalent data sets.

The framework implemented by NetworkUnit can also be
used for such a quantitative comparison of two experimental data
sets. To illustrate this, we developed a second worked example
showing the statistical quantification of the difference between
two published experimental data sets (Brochier et al., 2018)
obtained in the motor cortex of two macaque monkeys. The
detailed and fully documented analysis can be found online18.
In summary, we find that the spike statistics, evaluated on the
basis of the FR, ISI, and LV measures, are significantly different
between the two monkeys, but exhibit effect sizes below 1.
However, care must be taken in interpreting such comparisons of
experimental data due to the large number of factors contributing
to the observed variability.

The question of the required accuracy in the representation of
parameters of the model (e.g., synaptic weights) could be further
investigated using the tools presented in the work. Thus, further
development of the neuromorphic hardware while continuously
reapplying the verification and validation tests outlined in this
paper and in Trensch et al. (2018) may lead to a more accurate
implementation that will widen the range of applications.

The statistical tests and tools for quantitative comparison
are realized within the open source framework of the Python
module NetworkUnit. It is based on SciUnit, a module designed
for scientific model validation (Omar et al., 2014). The aim
of NetworkUnit is to provide a battery of tests applicable to
compare network activity from spiking neural network models.
As such, its intent is to provide a formal structure and

18https://web.gin.g-node.org/INM-6/network_validation/src/master/

NetworkUnit_examples.ipynb

standard implementations for validation tests to simplify even
complex validation scenarios, such as the successful port of
the cortical microcircuit model (Potjans and Diesmann, 2014)
to SpiNNaker described by van Albada et al. (2018). Indeed,
the process of defining validation workflows and corresponding
performance indices to evaluate accuracy and usefulness has
common practice in other computational disciplines, such
as climate research (Feichter, 2011), and represents a core
component in large-scale modeling efforts, such as the Human
Brain Project.

The presented workflow and the tests can be easily adapted
to a range of other validation and substantiation scenarios,
including the comparison to experimental data, to other models,
but also the quantitative comparison of different experimental
data sets, e.g., to test for inter-subject consistency. Network-
level validation is in principle not even restricted to a specific
format of activity. Since we here evaluate a spiking network
model all tests of this study are based on the model capability
to produce spike trains. However, the evaluation of models
which predict continuous activity signals such as LFP, MEG,
or EEG, is equally tractable using tests that are based on
the corresponding capability (i.e., to produce corresponding
signals). NetworkUnit can be further extended to include
different statistical measures and statistical hypothesis tests
in order to account for user-specific validation scenarios of
simulated and/or experimental results. Other examples include
the separate analysis of subpopulations such as inhibitory
and excitatory units and the question of how the biophysical
complexity of neuron models influences the emerging network
dynamics. A note of care, however, has to be issued concerning
the interpretation of tests performed on subpopulations of a
network, where its quantified evaluation will most likely be
contingent on the detailed dynamics exhibited by the other
populations.

The continued evolution of such concepts and software
components to rigorously define and formalize the validation
process is a key step to increase the confidence in models
developed by the neuroscience community, and ultimately leads
not only to more replicability, but also true reproducibility of
scientific findings.

SOFTWARE AND DATA RESOURCES

The data and the code to perform the analysis presented in
this study can be found at https://web.gin.g-node.org/INM-6/
network_validation (doi: 10.12751/g-node.85d46c). Validation
testing was performed using the NetworkUnit Python module
available at https://github.com/INM-6/NetworkUnit. All data
analysis, including the SPADE method, was performed using the
Elephant Python package http://python-elephant.org.

AUTHOR CONTRIBUTIONS

RG, MvP, GT, SG, and MD designed the study. RG and PQ
performed the analysis. GT performed the simulations and
implemented the model. RG, MvP, and PQ wrote the software

Frontiers in Neuroinformatics | www.frontiersin.org 17 December 2018 | Volume 12 | Article 90275

https://web.gin.g-node.org/INM-6/network_validation/src/master/NetworkUnit_examples.ipynb
https://web.gin.g-node.org/INM-6/network_validation/src/master/NetworkUnit_examples.ipynb
https://web.gin.g-node.org/INM-6/network_validation
https://web.gin.g-node.org/INM-6/network_validation
https://doi.org/10.12751/g-node.85d46c
https://github.com/INM-6/NetworkUnit
http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

for performing the validations. RG, MvP, PQ, GT, SG, and MD
contributed to writing of manuscript.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under Specific Grant Agreements No. 720270
(Human Brain Project SGA1) and 785907 (Human Brain Project
SGA2). Additionally, the project is funded by the Helmholtz
Association Initiative and Networking Fund under project
number ZT-I-0003.

ACKNOWLEDGMENTS

We would like to thank Andrew Davison, Shailesh Appukuttan,
and Lungsi Sharma for their insightful discussions on
the concepts of validation and the implementation of a
corresponding software module and in particular Shailesh
Appukuttan for integrating the M2MTest functionality into
the SciUnit package. We also thank Robin Pauli and Philipp
Weidel for their helpful insights into the properties and behavior
of the polychronization model. We thank Markus Diesmann
for providing extensive, valuable feedback in preparing the
manuscript.

REFERENCES

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of ongoing

activity: explanation of the large variability in evoked cortical responses. Science

273, 1868–1871. doi: 10.1126/science.273.5283.1868

Balci, O. (1997). “Verification validation and accreditation of simulation

models,” in Proceedings of the 29th Conference on Winter Simulation,

WSC ’97 (Washington, DC: IEEE Computer Society), 135–141.

doi: 10.1145/268437.268462

Borgonovo, E., and Plischke, E. (2016). Sensitivity analysis: a review of recent

advances. Eur. J. Operat. Res. 248, 869–887. doi: 10.1016/j.ejor.2015.

06.032

Bos, H., Diesmann, M., and Helias, M. (2016). Identifying anatomical origins

of coexisting oscillations in the cortical microcircuit. PLoS Comput. Biol.

12:e1005132. doi: 10.1371/journal.pcbi.1005132

Brochier, T., Zehl, L., Hao, Y., Duret, M., Sprenger, J., Denker, M., et al.

(2018). Massively parallel recordings in macaque motor cortex during an

instructed delayed reach-to-grasp task. Sci. Data 5:180055. doi: 10.1038/sdata.

2018.55

Carnap, R. (1968). “Inductive logic and inductive intuition,” in The Problem

of Inductive Logic vol. 51 of Studies in Logic and the Foundations

of Mathematics, ed I. Lakatos (Amsterdam, NL: Elsevier), 258–314.

doi: 10.1016/S0049-237X(08)71047-4

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

Cambridge University Press.

Cohen, J. (1988). Statistical Power Analysis for the The Behavioral Sciences.

Mahwah, NJ: L. Erlbaum Associates.

Cohen, J. (1994). The earth is round (p<.05). Am. Psychol. 49, 997–1003.

doi: 10.1037/0003-066X.49.12.997

Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2008). PyNN: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/neuro.11.011.2008

De Schutter, E., and Bower, J. M. (1994). An active membrane model of the

cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol.

71, 375–400. doi: 10.1152/jn.1994.71.1.375

Feichter, J. (2011). “Sharing reality with algorithms: the earth system,” in From

Science to Computational Sciences: Studies in the History of Computing and

Its Influence on Today’s Sciences, ed G. Gramelsberger (Zürich: Diaphanes),

209–218.

Forrester, J. W. and Senge, P. M. (1980). “Tests for building confidence in system

dynamics models,” in System Dynamics, TIMS Studies in Management Sciences

Vol. 14, (New York, NY: North-Holland) 209–228.

Friston, K., Frith, C., Liddle, P., and Frackowiak, R. (1993). Functional

connectivity: the principal-component analysis of large (pet) data sets. J. Cereb.

Blood Flow Metab. 13, 5–14. doi: 10.1038/jcbfm.1993.4

Furber, S., Lester, D., Plana, L., Garside, J., Painkras, E., Temple, S.,

et al. (2013). Overview of the spinnaker system architecture.

IEEE Trans. Comp. 62, 2454–2467. doi: 10.1109/TC.

2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., et al.

(2015). Reproducibility of neuroimaging analyses across operating systems.

Front. Neuroinformatics 9:12. doi: 10.3389/fninf.2015.00012

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,

M., et al. (2010). Neuroml: a language for describing data driven models of

neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815

Goodman, D. F. M., and Brette, R. (2009). The Brian simulator. Front. Neurosci.

3:192–197. doi: 10.3389/neuro.01.026.2009

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of

effect size and related estimators. J. Educ. Behav. Stat. 6, 107–128.

doi: 10.3102/10769986006002107

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural

ODE solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/neco_a_00772

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw.

14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. (2004). Which model to use for cortical spiking neurons? IEEE

Trans. Neural Netw. 5, 1063–1070. doi: 10.1109/TNN.2004.832719

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural

Comput. 18, 245–282. doi: 10.1162/089976606775093882

Koch, C., and Segev, I. (2000). The role of single neurons in information

processing. Nat. Neurosci. 3, 1171–1177. doi: 10.1038/81444

Kriegeskorte, N., and Douglas, P. K. (2018). Cognitive computational

neuroscience. Nat. Neurosci. 21, 1148–1160. doi: 10.1038/s41593-018-0210-5

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability

in balanced cortical networks with clustered connections. Nat. Neurosci. 15,

1498–1505. doi: 10.1038/nn.3220

Marder, E., and Taylor, A. L. (2011). Multiple models to capture the

variability in biological neurons and networks. Nat. Neurosci. 14, 133–138.

doi: 10.1038/nn.2735

Marino, S., Hogue, I. B., Ray, C. J., and Kirschner, D. E. (2008). A methodology

for performing global uncertainty and sensitivity analysis in systems biology. J.

Theor. Biol. 254, 178–196. doi: 10.1016/j.jtbi.2008.04.011

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,

Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical

microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Martis, M. S. (2006). Validation of simulation based models: a theoretical outlook.

Electr. J. Busin. Res. Methods 4, 39–46.

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility in

computational neurosciencemodels and simulations. IEEE Trans. Biomed. Eng.

63, 2021–2035. doi: 10.1109/TBME.2016.2539602

Mochizuki, Y., Onaga, T., Shimazaki, H., Shimokawa, T., Tsubo, Y., Kimura, R.,

et al. (2016). Similarity in neuronal firing regimes across mammalian species.

J. Neurosci. 36, 5736–5747. doi: 10.1523/JNEUROSCI.0230-16.2016

Murray-Smith, D. J. (2015). Testing and Validation of Computer Simulation

Models. Cham: Springer. doi: 10.1007/978-3-319-15099-4

Noble, D. (2006). The Music of Life: Biology Beyond the Genome. Oxford: Oxford

University Press.

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible

descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456.

doi: 10.1371/journal.pcbi.1000456

Frontiers in Neuroinformatics | www.frontiersin.org 18 December 2018 | Volume 12 | Article 90276

https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1145/268437.268462
https://doi.org/10.1016/j.ejor.2015.06.032
https://doi.org/10.1371/journal.pcbi.1005132
https://doi.org/10.1038/sdata.2018.55
https://doi.org/10.1016/S0049-237X(08)71047-4
https://doi.org/10.1037/0003-066X.49.12.997
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.1038/jcbfm.1993.4
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.3102/10769986006002107
https://doi.org/10.1162/neco_a_00772
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1038/81444
https://doi.org/10.1038/s41593-018-0210-5
https://doi.org/10.1038/nn.3220
https://doi.org/10.1038/nn.2735
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1523/JNEUROSCI.0230-16.2016
https://doi.org/10.1007/978-3-319-15099-4
https://doi.org/10.1371/journal.pcbi.1000456
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Gutzen et al. Reproducible Neural Network Simulations

Omar, C., Aldrich, J., and Gerkin, R. C. (2014). “Collaborative infrastructure

for test-driven scientific model validation,” in Companion Proceedings of the

36th International Conference on Software Engineering - ICSE Companion 2014,

(New York, NY: ACM) 524–527. doi: 10.1145/2591062.2591129

Ostojic, S., Brunel, N., and Hakim, V. (2009). How connectivity, background

activity, and synaptic properties shape the cross-correlation between spike

trains. J. Neurosci. 29, 10234–10253. doi: 10.1523/JNEUROSCI.1275-09.2009

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing

polychronization: a guide to maximizing the reproducibility of spiking

network models. Front. Neuroinformatics 12:46. doi: 10.3389/fninf.2018.

00046

Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967). Neuronal spike trains and

stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440.

doi: 10.1016/s0006-3495(67)86597-4

Peyrache, A., Benchenane, K., Khamassi, M., Wiener, S. I., and Battaglia, F. P.

(2010). Principal component analysis of ensemble recordings reveals cell

assemblies at high temporal resolution. J. Comput. Neurosci. 29, 309–325.

doi: 10.1007/s10827-009-0154-6

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Rumpe, B., and Morrison, A.

(2016). “NESTML: a modeling language for spiking neurons,” inModellierung

2016, vol. P-254 of Lecture Notes in Informatics (LNI), eds A. Oberweis and

R. Reussner (Karlsruhe: Gesellschaft für Informatik e.V. (GI)), 93–108.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Quaglio, P., Rostami, V., Torre, E., and Grün, S. (2018). Methods for identification

of spike patterns in massively parallel spike trains. Biol. Cybern. 112, 57–80.

doi: 10.1007/s00422-018-0755-0

Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M., and Grün, S. (2017).

Detection and evaluation of spatio-temporal spike patterns in massively

parallel spike train data with spade. Front. Comput. Neurosci. 11:41.

doi: 10.3389/fncom.2017.00041

Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S. R., Antille, N.,

Arsever, S., et al. (2015). The neocortical microcircuit collaboration portal:

a resource for rat somatosensory cortex. Front. Neural Circuits 9:44.

doi: 10.3389/fncir.2015.00044

Reimann, M. W., King, J. G., Muller, E. B., Ramaswamy, S., and Markram, H.

(2015). An algorithm to predict the connectome of neural microcircuits. Front.

Comput. Neurosci. 9:120. doi: 10.3389/fncom.2015.00120

Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al.

(2010). The asynchronous state in cortical circuits. Science 327, 587–590.

doi: 10.1126/science.1179850

Riehle, A., Brochier, T., Nawrot, M., and Grün, S. (2018). Behavioral context

determines network state and variability dynamics in monkey motor cortex.

Front. Neural Circuits 12:52. doi: 10.3389/fncir.2018.00052

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Anal. 22,

579–590. doi: 10.1111/0272-4332.00040

Sanz Leon, P., Knock, S., Woodman, M., Domide, L., Mersmann, J., McIntosh, A.,

et al. (2013). The virtual brain: a simulator of primate brain network dynamics.

Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Sargent, R. G. (2013). Verification and validation of simulation models. J. Simul.

7, 12–24. doi: 10.1057/jos.2012.20

Sarma, G. P., Jacobs, T. W., Watts, M. D., Ghayoomie, S. V., Larson, S. D., and

Gerkin, R. C. (2016). Unit testing, model validation, and biological simulation.

F1000Research 5:1946. doi: 10.12688/f1000research.9315.1

Schlesinger, S. (1979). Terminology for model credibility. Simulation 32, 103–104.

doi: 10.1177/003754977903200304

Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada, S. J.

(2018). Multi-scale account of the network structure of macaque visual cortex.

Brain Struct. Funct. 223, 1409–1435. doi: 10.1007/s00429-017-1554-4

Schuecker, J., Diesmann, M., and Helias, M. (2015). Modulated escape from

a metastable state driven by colored noise. Phys. Rev. E 92:052119.

doi: 10.1103/PhysRevE.92.052119

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Davison, A., Lester, D. R., et al.

(2017). “A collaborative simulation-analysis workflow for computational

neuroscience using HPC,” in High-Performance Scientific Computing. JHPCS

2016, vol. 10164 of Lecture Notes in Computer Science, eds E. Di Napoli, M.-A.

Hermanns, H. Iliev, A. Lintermann, and A. Peyser (Cham: Springer), 243–256.

doi: 10.1007/978-3-319-53862-4_21

Shadlen, M. N., and Newsome, W. T. (1998). The variable discharge of cortical

neurons: implications for connectivity, computation, and information coding.

J. Neurosci. 18, 3870–3896. doi: 10.1523/jneurosci.18-10-03870.1998

Shinomoto, S., Shima, K., and Tanji, J. (2003). Differences in spiking

patterns among cortical neurons. Neural Comput. 15, 2823–2842.

doi: 10.1162/089976603322518759

Sterman, J. D. (2000). Business Dynamics. System Thinking and Modeling

for a Complex World. Boston, MA: McGraw-Hill Education.

doi: 10.1016/S0022-3913(12)00047-9

Teeters, J. L., Harris, K. D., Millman, K. J., Olshausen, B. A., and Sommer, F. T.

(2008). Data sharing for computational neuroscience. Neuroinformatics 6,

47–55. doi: 10.1007/s12021-008-9009-y

Tennøe, S., Halnes, G., and Einevoll, G. T. (2018). Uncertainpy: a Python

toolbox for uncertainty quantification and sensitivity analysis in computational

neuroscience. Front. Neuroinformatics 12:49. doi: 10.3389/fninf.2018.00049

Tetzlaff, T., andDiesmann,M. (2010). “Dependence of spike-count correlations on

spike-train statistics and observation time-scale,” in Analysis of Parallel Spike

Trains, eds S. Rotter and S. Grün (Berlin: Springer), 103–127.

Thacker, B. H., Doebling, S. W., Hemez, F. M., Anderson, M. C., Pepin, J. E., and

Rodriguez, E. A. (2004). Concepts of Model Verification and Validation. Los

Alamos, NM: Tech. rep., Los Alamos National Lab.

Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., and Grün, S. (2013).

Statistical evaluation of synchronous spike patterns extracted by frequent item

set mining. Front. Comput. Neurosci. 7:132. doi: 10.3389/fncom.2013.00132

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).

Rigorous neural network simulations: a model substantiation methodology for

increasing the correctness of simulation results in the absence of experimental

validation data. Front. Neuroinform. 12:81. doi: 10.3389/fninf.2018.00081

Tripathy, S. J., Savitskaya, J., Burton, S. D., Urban, N. N., and Gerkin, R. C. (2014).

NeuroElectro: a window to the world’s neuron electrophysiology data. Front.

Neuroinformatics 8:40. doi: 10.3389/fninf.2014.00040

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,

A. B., et al. (2018). Performance comparison of the digital neuromorphic

hardware SpiNNaker and the neural network simulation software NEST

for a full-scale cortical microcircuit model. Front. Neurosci. 12:291.

doi: 10.3389/fnins.2018.00291

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,

E. B., et al. (2016). BluePyOpt: leveraging open source software and

cloud infrastructure to optimise model parameters in neuroscience. Front.

Neuroinformatics 10:17. doi: 10.3389/fninf.2016.00017

Voges, N., and Perrinet, L. (2012). Complex dynamics in recurrent cortical

networks based on spatially realistic connectivities. Front. Comput. Neurosci.

6:41. doi: 10.3389/fncom.2012.00041

Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models.

IET Syst. Biol. 5, 336–346. doi: 10.1049/iet-syb.2011.0015

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Gutzen, von Papen, Trensch, Quaglio, Grün andDenker. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 19 December 2018 | Volume 12 | Article 90277

https://doi.org/10.1145/2591062.2591129
https://doi.org/10.1523/JNEUROSCI.1275-09.2009
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.1016/s0006-3495(67)86597-4
https://doi.org/10.1007/s10827-009-0154-6
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1007/s00422-018-0755-0
https://doi.org/10.3389/fncom.2017.00041
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fncom.2015.00120
https://doi.org/10.1126/science.1179850
https://doi.org/10.3389/fncir.2018.00052
https://doi.org/10.1111/0272-4332.00040
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.12688/f1000research.9315.1
https://doi.org/10.1177/003754977903200304
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1103/PhysRevE.92.052119
https://doi.org/10.1007/978-3-319-53862-4_21
https://doi.org/10.1523/jneurosci.18-10-03870.1998
https://doi.org/10.1162/089976603322518759
https://doi.org/10.1016/S0022-3913(12)00047-9
https://doi.org/10.1007/s12021-008-9009-y
https://doi.org/10.3389/fninf.2018.00049
https://doi.org/10.3389/fncom.2013.00132
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.3389/fninf.2014.00040
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.3389/fncom.2012.00041
https://doi.org/10.1049/iet-syb.2011.0015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org | +41 21 510 17 00

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Reproducibility and Rigour in Computational Neuroscience
	Table of Contents
	Editorial: Reproducibility and Rigour in Computational Neuroscience
	1. Introduction
	2. Topic Overview
	3. Outlook
	Author Contributions
	Funding
	References

	Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into Scientific Contributions
	Introduction (R0)
	Re-runnable (R1)
	Repeatable (R2)
	Reproducible (R3)
	Reusable (R4)
	Replicable (R5)
	Conclusion
	Author Contributions
	Supplementary Material
	References

	Reproducibility vs. Replicability: A Brief History of a Confused Terminology
	Author Contributions
	Acknowledgments
	References

	Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in Neuroscience
	Introduction
	Reproducibility and Replicability
	Good Practices Contributing to Simulation Credibility
	Verification and Validation (V&V)
	Verification
	Validation

	Aspects of Good Practice for Credibility
	Software Aspects
	Developing Credible Mechanism-Oriented Multiscale Models: Procedure and Process

	Role of the Community
	Use of Simulation in Medical Education
	Use of Modeling in Clinical Domains of Brain Disease
	Simulation of Multi-Target Pharmacology
	Personalized Medicine Simulation for Epilepsy

	Actionable Recommendations and Conclusions
	Model Configuration Management
	Verify and Validate Models
	Share Models and Data
	Define Context of Use and Simulation Requirements
	Translation of Computational Neuroscience Models for Clinical and Medical Education Use

	Author Contributions
	Funding
	Acknowledgments
	References

	Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures
	1. Introduction
	2. Material and Methods
	2.1. Simulation Tools
	2.1.1. Simulation Tools for Biochemical Reactions
	2.1.2. Simulation Tools for Neurodevelopment
	2.1.3. Simulation Tools for Neuronal Networks

	2.2. Models
	2.2.1. Neuronal Signal Transduction Models
	2.2.2. Astrocyte Models
	2.2.3. Spiking Neuronal Network Models

	3. Results
	3.1. Evaluation of Simulation Tools
	3.1.1. Simulation Tools for Biochemical Reactions
	3.1.2. Simulation Tools for Neurodevelopment
	3.1.3. Simulation Tools for Spiking Neuronal Networks

	3.2. Evaluation and Comparison of Computational Models
	3.2.1. Neuronal Signal Transduction Models
	3.2.2. Astrocyte Models
	3.2.3. Spiking Neuronal Network Models
	3.2.4. Summary of Reproducibility and Replicability Studies

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation
	Introduction and Related Work
	General Form of Network Dynamics
	Control Theory for Network State Trajectories

	Connectivity Generation in Neural Networks
	In Situ Visualization and Steering of Connectivity Generation
	Simulation Instrumentation
	Visualization System Overview
	Control Panel
	Region Selector
	Activity Plot
	Connectivity Plot
	Color Editor
	Manipulation of Structural Plasticity Parameters
	Loading and Saving Network States

	Results
	Two Population Model
	Whole Brain Simulation
	Usage of the Tool
	Implementing Further Use Cases
	Simulating on a Supercomputer

	Discussion and Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References

	FindSim: A Framework for Integrating Neuronal Data and Signaling Models
	INTRODUCTION
	METHODS AND RESULTS
	General Approach
	Model Development and Parameterization Pipeline
	Experiment Specification and Mapping
	Example of Data Flow Through the Pipeline
	Cross-Experiment Model Reproducibility

	DISCUSSION
	Big Models and Biological Problems
	Correctness of Big Models
	Big Data and Big Models
	Scalability

	DATASETS
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES

	Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics
	1. Introduction
	2. Objectives
	3. Examples
	3.1. Potassium Diffusion in ECS
	3.1.1. Region
	3.1.2. Species
	3.1.3. Reactions

	3.2. Cortical Spreading Depression
	3.2.1. Cerebral Edema

	4. Implementation Details
	4.1. Model Specification Aids Reproducibility
	4.2. Finite-Volume Alternating Direction Implicit Method
	4.3. Just-in-Time Compiled Reactions
	4.4. Parallel Implementation

	5. Verification and Validation
	5.1. Comparison With Analytic Results
	5.2. Conservation of Mass
	5.3. FiPy Comparison

	6. Discussion
	6.1. Large Volume Averaged Approach
	6.2. Multiple Uses of Extracellular Reaction-Diffusion Simulation
	6.3. Future Development

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	A. Heterogeneous Tortuosities and Volume Fractions
	A.1. Tortuosity
	A.2. Volume Fraction
	A.3. Tortuosity and Volume Fraction

	B. Analytic Solution for Validation

	Parameter Optimization Using Covariance Matrix Adaptation—Evolutionary Strategy (CMA-ES), an Approach to Investigate Differences in Channel Properties Between Neuron Subtypes
	Introduction
	Methods
	Overview
	Model Specification
	Experimental Data
	Fitness Function
	Parameter Optimization

	Results
	Declarative Model Specification
	Parameter Optimization Using CMA-ES
	Approach to Identifying Mechanisms Underlying Difference Between Cell Types

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Reproducing Polychronization: A Guide to Maximizing the Reproducibility of Spiking Network Models
	1. Introduction
	2. Methods
	2.1. Polychronization Network Model
	2.2. Preparing the Polychronization Network Model for Replication
	2.2.1. NEST

	2.3. Experiments
	2.3.1. YAML
	2.3.2. Polychronous Group Finding Algorithm
	2.3.3. Activity Metrics
	2.3.4. Snakemake

	2.4. Workflow

	3. Results
	3.1. Replicating the Polychronization Network Model
	3.2. Identical Reproduction
	3.2.1. Initial Iteration
	3.2.2. Final Iteration

	3.3. Qualitative Reproduction
	3.4. Generalizing Reproduction
	3.4.1. Stimulus
	3.4.2. Plasticity Model
	3.4.3. Connectivity
	3.4.4. Neuron Integration and Resolution

	3.5. Definition of Polychrony
	3.6. Recommendations
	3.6.1. Make Code Available and Executable
	Recommendation: share the code
	Recommendation: provide an installation guide
	Recommendation: use a version control system
	Recommendation: provide provenance tracking

	3.6.2. Make Code Comprehensible and Testable
	Recommendation: modularize the code
	Recommendation: encapsulate the code
	Recommendation: write flexible code
	Recommendation: provide tests
	Recommendation: comment the code
	Recommendation: parameterize meaningfully and consistently
	Recommendation: use parameter files
	Recommendation: use tables to communicate parameters

	3.6.3. Reduce Risk of Implementation Dependencies
	Recommendation: use standard tools
	Recommendation: use standard numerics
	Recommendation: perform multiple realizations
	Recommendation: test model robustness

	4. Discussion
	4.1. Relationship of the Reproducibility Guideline to Scientific Quality
	4.2. Limitations of the Reproducibility Guideline
	4.3. Alternative Methods for Detecting Polychronous Groups

	5. Conclusion and Outlook
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience
	Significance Statement
	1. Introduction
	2. Theory on Uncertainty Quantification and Sensitivity Analysis
	2.1. Problem Definition
	2.2. Uncertainty Quantification
	2.3. Sensitivity Analysis
	2.4. (Quasi-)Monte Carlo Method
	2.5. Polynomial Chaos Expansions
	2.6. Dependency Between Uncertain Parameters
	2.7. Feature-Based Analysis

	3. User Guide for Uncertainpy
	3.1. The Uncertainty Quantification Class
	3.2. Models
	3.2.1. The Model Class
	3.2.2. Defining a Model Function
	3.2.3. Defining a Post-process Function
	3.2.4. NEURON Model Class
	3.2.5. NEST Model Class

	3.3. Parameters of the Model
	3.4. Features
	3.4.1. Feature Functions
	3.4.2. Feature Pre-processing
	3.4.3. Spiking Features
	3.4.4. eFEL Features
	3.4.5. Network Features

	3.5. Uncertainty Calculations in Uncertainpy
	3.5.1. Quasi-Monte Carlo Method
	3.5.2. Polynomial Chaos Expansions

	3.6. Data Format
	3.7. Visualization
	3.8. Technical Aspects

	4. Example Applications
	4.1. Cooling Coffee Cup
	4.1.1. Cooling Coffee Cup With Independent Parameters
	4.1.2. Cooling Coffee Cup With Statistically Dependent Parameters

	4.2. Hodgkin-Huxley Model
	4.3. Multi-Compartmental Model of a Thalamic Interneuron
	4.4. Recurrent Network of Integrate-and-Fire Neurons
	4.4.1. Average Interspike Interval
	4.4.2. Correlation Coefficient

	4.5. Comparing the Quasi-Monte Carlo Method to Polynomial Chaos Expansions
	4.6. Additional Examples

	5. Discussion
	5.1. Application of Uncertainpy
	5.2. Further Development of Uncertainpy
	5.3. Outlook

	Author Contributions
	Funding
	Acknowledgments
	References

	Intra- and Inter-Scanner Reliability of Voxel-Wise Whole-Brain Analytic Metrics for Resting State fMRI
	Introduction
	Materials and Methods
	Participants
	Data Acquisition
	Data Preprocessing
	mALFF Calculation
	mPerAF Calculation
	mReHo Calculation
	mDC Calculation
	Relative BOLD Signal Intensity
	Intra-Class Correlation Coefficient (ICCs)
	Paired t-Test Between Each Pair of Visits

	Results
	Intra- and Inter-Scanner Reliability
	Intra- and Inter-Scanner Difference

	Discussion
	Reliability of Metrics
	Reliability of Eyes Open (EO) vs. Eyes Closed (EC) Conditions
	ICC vs. Paired t-Test
	Limitations

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Code Generation in Computational Neuroscience: A Review of Tools and Techniques
	1. Introduction
	2. Tools and Code Generation Pipelines
	2.1. Brian
	2.1.1. Main Modeling Focus
	2.1.2. Model Notation
	2.1.3. Code Generation Pipeline
	2.1.4. Numerical Integration
	2.1.5. Data and Execution Model

	2.2. GeNN
	2.2.1. Main Modeling Focus
	2.2.2. Code Generation Pipeline
	2.2.3. Numerical Integration

	2.3. Myriad
	2.3.1. Main Modeling Focus
	2.3.2. Model Notation
	2.3.3. Code Generation Pipeline
	2.3.4. Numerical Integration

	2.4. NESTML
	2.4.1. Main Modeling Focus
	2.4.2. Code Generation Pipeline
	2.4.3. Numerical Integration

	2.5. NeuroML/LEMS
	2.5.1. Main Modeling Focus
	2.5.2. Model Notation
	2.5.3. Code Generation Pipeline
	2.5.3.1. jLEMS runtime and procedural generation
	2.5.3.2. Lower-level intermediate representation/templating
	2.5.3.3. Syntax oriented generation/semantic model construction
	2.5.3.4. Numerical integration

	2.5.4. General Considerations and Future Plans

	2.6. NineML, Pype9, 9ML-Toolkit
	2.6.1. Main Modeling Focus
	2.6.2. Model Notation
	2.6.3. Code Generation Pipelines

	2.7. NEURON/NMODL
	2.7.1. Main Modeling Focus
	2.7.2. Model Notation
	2.7.3. Code Generation Pipeline
	2.7.4. Numerical Integration

	2.8. SpineML
	2.8.1. Main Modeling Focus
	2.8.2. Model Notation
	2.8.3. Code Generation Pipeline
	2.8.4. Numerical Integration

	2.9. SpiNNaker
	2.9.1. Main Modeling Focus
	2.9.2. Code Generation Pipeline
	2.9.3. Numerical Integration

	2.10. TVB-HPC
	2.10.1. Main Modeling Focus
	2.10.2. Model Notation
	2.10.3. Code Generation Pipeline
	2.10.4. Numerical Integration

	3. Hardware and Software Platforms
	3.1. Classical Processors and Accelerators
	3.2. Neuromorphic Hardware
	3.3. Collaboration Platforms

	4. Discussion
	4.1. Summary

	5. Conclusion
	Author Contributions
	Funding
	References

	Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data
	1. Introduction
	2. Terminology
	2.1. Reproducibility and Replicability
	2.2. Model Verification and Validation
	2.3. Model Verification and Substantiation: Model Assessment in the Absence of Experimental Data
	2.4. Application of Terminology to Neural Network Modeling and Simulation

	3. Model Verification and Substantiation of the Izhikevich Polychronization Model: The Reproduction of Selected Network States on SpiNNaker
	3.1. Definition of the Model Verification and Substantiation Methodology Entities
	3.1.1. Mathematical Model
	3.1.1.1. Network topology
	3.1.1.2. Component dynamics

	3.1.2. Executable Models
	3.1.2.1. C model
	3.1.2.2. SpiNNaker model

	3.2. Definition of the Model Substantiation Assessment
	3.2.1. Experimental Set-Up
	3.2.2. Analysis of Network Spiking Activity

	3.3. Definition of the Model Verification and Substantiation Workflow
	3.4. Application of the Method
	3.4.1. Iteration I
	3.4.1.1. C model
	3.4.1.2. SpiNNaker model
	3.4.1.3. Substantiation

	3.4.2. Iteration II
	3.4.2.1. Numeric integration scheme and precise threshold detection
	3.4.2.2. Fixed-point numeric precision
	3.4.2.3. Substantiation

	3.4.3. Iteration III
	3.4.3.1. Substantiation

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python
	1. Introduction
	2. Review of SNN Software Packages
	2.1. Objectives of SNN Simulations
	2.2. Comparison of State-of-Art Simulation Packages

	3. Package structure
	3.1. SNN Simulation
	3.2. Machine and Reinforcement Learning
	3.3. The Pipeline Object
	3.4. Visualization
	3.5. Adding New BindsNET Features
	3.5.1. Neuron Models
	3.5.2. Connection Types
	3.5.3. Learning Rules

	4. Examples of Using BindsNET to Solve Machine Learning Tasks
	4.1. Unsupervised Learning
	4.2. Supervised Learning
	4.3. Reinforcement Learning
	4.4. Reservoir Computing
	4.5. Benchmarking

	5. Ongoing Developments
	6. Discussion
	Author Contributions
	Acknowledgments
	References

	Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data
	1. Introduction
	2. Validation of Neural Network Simulations
	2.1. The Concept of Validation
	2.2. Network-Level Validation
	2.3. Model-to-Model Validation

	3. Methods
	3.1. Methods for Network-Level Validation
	3.1.1. Monovariate Measures
	3.1.2. Bivariate Measures
	3.1.3. Correlation Structure
	3.1.4. Spatiotemporal Patterns
	3.1.5. Statistical Comparison of Distributions

	3.2. Implementation of Validation Tests in a Modular Framework
	3.3. Substantiation of the Izhikevich Polychronization Model
	3.3.1. Polychronization Model
	3.3.2. Simulation Setup
	3.3.3. Substantiation Workflow

	4. Results
	4.1. Comparison of Network Activity During Implementation
	4.2. Differential Effects on Statistical Measures
	4.3. Comprehensive Assessment and Higher-Order Collective Properties

	5. Discussion
	Software and Data Resources
	Author Contributions
	Funding
	Acknowledgments
	References

	Back Cover

