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Editorial on the Research Topic
 Outbreak oracles: how AI's journey through COVID-19 shapes future epidemic strategy




In the wake of the coronavirus disease 2019 (COVID-19) pandemic, the convergence of artificial intelligence (AI), Big Data, and in silico simulation has emerged as a cornerstone in pandemic surveillance and public health informatics. As early as January 2020, AI-driven tools, such as BlueDot, flagged unusual pneumonia clusters in Wuhan days before the World Health Organization (WHO) public alert (Brownstein et al., 2009). Meanwhile, platforms like CORD-19 were developed to aggregate SARS-CoV-2 literature for rapid machine-driven synthesis (Wang et al., 2020). By mid-2021, AI-based forecasting models were routinely incorporated into national response dashboards, demonstrating that algorithmic surveillance could anticipate hospitalization peaks with a lead time of up to 2 weeks (Institute for Health Metrics and Evaluation, 2019). This transformative period witnessed AI's potential to reshape public health strategies, emphasizing its significance in future epidemic preparedness. However, challenges such as data privacy, algorithmic bias, and unequal access to technological infrastructure persist as obstacles to global adoption. Addressing these limitations is essential to ensure the inclusive and ethical deployment of AI in public health.

The primary objective of this Research Topic is to collate groundbreaking research and critical reviews that highlight AI's contributions during the COVID-19 era and its implications for future epidemic strategies. We aim to foster a comprehensive understanding of the pivotal AI-driven methodologies in the pandemic response and how these innovations can be harnessed for future health crises.

The Research Topic includes original research, technology, code, as well as perspective papers. We received 16 submissions, 9 of which, after a careful review process, were accepted for publication in this Research Topic.

Drawing on Johns Hopkins surveillance data from 34 countries, a study by Nesteruk(a) evaluates how demographic structure and surveillance intensity shaped the late-phase contours. Regression analyses of 2022–2023 COVID-19 incidence, mortality, and case–fatality rates reveal median age as the primary determinant: older populations recorded higher numbers of detected cases and deaths per million. Testing density displayed a strong association with incidence, yet when insufficient, it exaggerated fatality ratios.

Song et al. introduce K-Track-COVID, an R Shiny dashboard that unifies government APIs, WorldPop demographics, and KDCA line lists to render fine-grained maps, regional time series, and SEIRD/SVEIRD scenario forecasts for all 17 South Korean provinces. Interactive controls enable users to filter dates, strata, and health-system indicators, while an embedded stochastic simulator generates animations and tabular projections 100 days ahead. Compared with the WHO, Johns Hopkins University (JHU), and the Centers for Disease Control and Prevention (CDC) dashboards, K-Track-COVID uniquely couples hotspot analytics with modifiable epidemiological models, offering a transferable template for data-driven preparedness beyond COVID-19.

Barmak et al. advance explainable AI by introducing a transition-matrix framework that maps high-dimensional embeddings onto clinician-defined features, thereby rendering model outputs transparent without retraining. The authors formalize the mapping as a pseudo-inverse solution and implement a visual analytics pipeline that scales across modalities. Validation on the Massachusetts Institute of Technology-Beth Israel Hospital Electrocardiogram (MIT-BIH ECG) arrhythmia and ACDC cardiac-MRI datasets yields Cohen's κ of 0.89 and 0.80, respectively, demonstrating strong alignment with expert annotations while preserving diagnostic accuracy.

A study by Oliveira et al. presents a cohort study spanning eight Brazilian hospitals (n = 421) to develop low-cost triage models for COVID-19. Using 28 collected admission variables, the authors construct seven data subsets to explore missing data strategies and train 27 classical algorithms, as well as dense neural networks, under Monte Carlo cross-validation. A random forest achieved 80% accuracy (AUC: 0.91), while an SVC yielded 87% PPV with minimal false positives. Dyspnea, general condition, SpO2, age, and urea emerged as key predictors, underscoring the potential of pragmatic AI deployment in resource-constrained settings.

Nesteruk's(b) study generalizes the classical SIR framework by partitioning infectious and removed compartments into registered and unregistered subgroups and introducing a visibility coefficient β, which yields a five-equation system whose analytical solutions facilitate accelerated parameter estimation. Applying the model to two pertussis waves in England (2023–2024) under full case ascertainment, he reproduces the cumulative and daily incidence curves with a 17% 4-month predictive error.

Melnykova et al. developed an AI pipeline for analyzing and correcting post-traumatic dysarthric speech in military patients. Using the TORGO corpus, they benchmarked a mel-spectrogram CNN against an MFCC-based LSTM, achieving accuracies of 94% and 91%, respectively. The CNN achieves higher precision and recall for healthy and low-severity classes, whereas the LSTM performs better in detecting severe cases. Feature-saliency analysis highlights spectral cues guiding rehabilitation. Ensemble modeling and data augmentation are proposed to generalize across accents and noise, underscoring AI's promise for scalable speech therapy.

A study by Chaikovsky et al. investigates whether subtle quantitative alterations in serial 12-lead electrocardiograms (ECGs) predict outcomes in severe COVID-19. Among 26 intensive care unit (ICU) patients (six of whom died), the authors computed 240 waveforms and HRV metrics, summarized by a composite U-score. They paired them with NEWS and SpO2 for cluster and CART modeling. T-wave singular value decomposition (SVD), R-wave amplitude (lead II), and Q-wave amplitude (lead I) proved to be the most discriminative, yielding a three-split decision tree that classified survival with 96% cross-validated accuracy, highlighting ECG micrometrics as a practical bedside prognostic tool.

Lyimo et al. surveyed 76 Environmental Health Officers across Morogoro, Ilala, and Dodoma to assess their readiness for ML-based forecasting of waterborne diseases. With a 66% response rate, respondents displayed moderate ICT competence yet limited AI literacy: only 54% had previously encountered AI/ML and 64% rated their familiarity as low. While the majority recognized ML's potential to improve outbreak prediction, they flagged infrastructure gaps, poor data quality, and skill shortages as barriers.

The perspective article by Huaiyan et al. offers a comprehensive view on how digital technologies will redefine infectious disease practice in the aftermath of COVID-19. Surveying bioinformatics, AI, big data analytics, nanotechnology vaccines, blockchain, and telemedicine, the authors map converging trends in prevention, early diagnosis, therapy, and supply–chain governance, while highlighting the ethical imperatives of data sovereignty and algorithmic bias.

In the future, we urge the community to align AI outbreak tools with the Findability, Accessibility, Interoperability, and Reusability (FAIR) Data Principles and the WHO's Preparedness Strategy (2023), ensuring that models are not only performant but interoperable and equitable across low-resource settings (Wilkinson et al., 2016). By building on the lessons of COVID-19, where transparency, open data, and cross-disciplinary collaboration proved critical, the field should coalesce around a shared framework that accelerates innovation and trust in future AI-powered epidemic responses.
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Introduction: The population, governments, and researchers show much less interest in the COVID-19 pandemic. However, many questions still need to be answered: why the much less vaccinated African continent has accumulated 15 times less deaths per capita than Europe? or why in 2023 the global value of the case fatality risk is almost twice higher than in 2022 and the UK figure is four times higher than the global one?
Methods: The averaged daily numbers of cases DCC and death DDC per million, case fatality risks DDC/DCC were calculated for 34 countries and regions with the use of John Hopkins University (JHU) datasets. Possible linear and non-linear correlations with the averaged daily numbers of tests per thousand DTC, median age of population A, and percentages of vaccinations VC and boosters BC were investigated.
Results: Strong correlations between age and DCC and DDC values were revealed. One-year increment in the median age yielded 39.8 increase in DCC values and 0.0799 DDC increase in 2022 (in 2023 these figures are 5.8 and 0.0263, respectively). With decreasing of testing level DTC, the case fatality risk can increase drastically. DCC and DDC values increase with increasing the percentages of fully vaccinated people and boosters, which definitely increase for greater A. After removing the influence of age, no correlations between vaccinations and DCC and DDC values were revealed.
Discussion: The presented analysis demonstrates that age is a pivot factor of visible (registered) part of the COVID-19 pandemic dynamics. Much younger Africa has registered less numbers of cases and death per capita due to many unregistered asymptomatic patients. Of great concern is the fact that COVID-19 mortality in 2023 in the UK is still at least 4 times higher than the global value caused by seasonal flu.

KEYWORDS
COVID-19 pandemic dynamics, daily numbers of cases and deaths per capita, case fatality risk, mathematical modeling of infection diseases, statistical methods


Introduction

In the fourth year of the COVID-19 pandemic, the population and governments show much less interest in it. In particular, only 39% of countries reported at least one case to WHO in the period from 31 July to 27 August 2023.1 Thus accumulated numbers of cases CC and deaths DC per million show stabilization trends (COVID-19 Data, 2023) and can be used to estimate the impact of different factors on the pandemic dynamics and to answer some important questions. In particular, why the much less vaccinated African continent has accumulated 36 times less cases and 15 times less deaths per capita than Europe (see text footnote 1, COVID-19 Data, 2023, and lines 26 and 27 in Table 1)? Why in 2023 the global value of the case fatality risk is almost twice higher than in 2022 and the UK figure is four times higher than the global one (Nesteruk, 2023a)?


TABLE 1 Median age, accumulated numbers the COVID-19 cases and deaths per capita in 2021–2023.

[image: Data table with country or region names, median age, and accumulated numbers of confirmed COVID-19 cases and related deaths per million, from 2021 to 2023. The data is presented alongside specific footnotes indicating calculation sources.]

We will apply the linear and non-linear correlation analysis using accumulated relative characteristics: the numbers of cases and deaths per million (CC and DC), numbers of fully vaccinated people and boosters per hundred (VC and BC), tests per thousand (TC) available in files of John Hopkins University (JHU) (COVID-19 Data, 2023).

The impact of various factors on the COVID-19 pandemic dynamics was estimated in many papers. Some examples can be found in Byass (2020), Davies et al. (2020), Distante et al. (2020), Fanelli and Piazza (2020), Hamzah et al. (2020), Ng and Gui (2020), Chintala et al. (2021), Mohammadi et al. (2021), Nesteruk and Rodionov (2021, 2022a,b), Pardhan and Drydakis (2021), Rossman et al. (2021), Statsenko et al. (2021), Nesteruk (2021a, 2022), Nesteruk et al. (2022), and Nesteruk and Keeling (2023). In particular, CC values accumulated as of December 23, 2021 in Ukrainian regions and European countries showed no correlations with the size of population, its density, and the urbanization level, while DC and CFR = DC/CC values reduce with the increase of the urbanization level in European countries (Nesteruk et al., 2022). The increase of income (Gross Domestic Product per capita) leads to increase in CC, VC, BC, and TC values, but DC and CFR demonstrate opposite trend in European countries (Nesteruk and Rodionov, 2022b).

Many asymptomatic COVID-19 cases (Shang et al., 2022; Schreiber et al., 2023)2,3,4 can cause a big difference between visible and real pandemic dynamics (Nesteruk, 2021a,b,c). That is why the higher testing level can increase the numbers of registered cases. Sometimes the testing level is too low to reveal all the cases predicted by theory. Probably such situation occurred in Japan in summer 2022 (Nesteruk, 2023b). It was shown in Nesteruk (2022), that the test per case ratio TC/CC (or test positivity rate CC/TC) is very important characteristic to control the pandemic. Very strong correlation between CC and TC was revealed for values accumulated before August 1, 2022 in European and African countries (Nesteruk and Rodionov, 2022b). Since the TC values have stopped to be updated by JHU in different days of 2022 (Nesteruk and Rodionov, 2022b; COVID-19 Data, 2023), in this study, we will investigate a correlation between the averaged daily numbers of cases DCC and tests per capita DTC.

The severity of SARS-CoV-2 infection increases for older patients (Statsenko et al., 2021); almost half of the infected children can be asymptomatic (Fowlkes et al., 2022). With the use of the statistical analysis of 2020 datasets it was shown that younger populations have less clinical cases per capita and it was predicted that “without effective control measures, regions with relatively older populations could see disproportionally more cases of COVID-19, particularly in the later stages of an unmitigated epidemic” (Davies et al., 2020). This forecast was confirmed in Nesteruk and Keeling (2023) with the use of CC and DC datasets for 79 countries and regions including 10 so-called Zero-COVID countries.5 It was shown that 1-year increment in the median age yields 12,000–18,000 increase in CC values and 52–83 increase in DC values. In this study, we will investigate correlations between median age A and the averaged daily numbers of cases and deaths per capita DCC and DDC, respectively.

The high numbers of circulating SARS-CoV-2 variants6,7,8 and re-infected persons9 (Flacco et al., 2022; Guedes et al., 2023) raise questions about the effectiveness of vaccinations. In particular, many scientists are inclined to think that the pandemic will not be stopped only through vaccination (Lazarus et al., 2022). The non-linear correlations show that CC and DC values increase with the growth of the vaccination level VC, while CFR decreases (Nesteruk and Rodionov, 2022b). In this study, we will investigate correlations between VC and BC values registered in 2022 and 2023 and DCC, DDC, and CFR figures. We will try also to answer the question why the number of cases and death per capita are higher in more vaccinated countries.



Materials and methods

We will use the accumulated numbers of laboratory-confirmed COVID-19 cases CCi and deaths DCi per million, accumulated numbers of tests per thousand TCi, accumulated numbers of fully vaccinated people VCi and boosters BCi per hundred for 33 countries (shown in Tables 1, 2) and the world (i = 1, 2, .. , 34). The have chosen the countries with highest numbers of accumulated cases and death [according to the recent WHO reports (see text footnote 1)], some other countries and regions listed in COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) (COVID-19 Data, 2023) (version of file updated on September 28, 2023). Since Chinese statistics shows some contradictions (see, e.g., Nesteruk, 2023c or compare JHU files updated on September 28 and March 9, 2023), we have used only figures for Taiwan and Hong Kong. In particular, in Table 1 we show corresponding CCi and DCi values from the March-9-version of JHU file (not available on September 28). The CCi and DCi values for Taiwan and Hong Kong for 2023 we have calculated with the use of Worldometers.10,11,12,13 We ignore data from Ukraine and Russia to exclude the influence of military operations on the COVID-19 statistics. To take into account the average age of population, we have used the information about the median ages Ai from Earthly Data14 and Visual Capitalist15 (see Table 1).


TABLE 2 Accumulated numbers the tests per capita and percentage of fully vaccinated people and boosters in 2021-2023 (COVID-19 Data, 2023).

[image: Chart displaying accumulated COVID-19 tests per thousand, vaccination, and booster rates by country or region as of 2021 and 2022. It includes figures for the USA, Taiwan, Hong Kong, and others, along with specific data dates and total days for collected numbers. The chart details numbers of fully vaccinated people and boosters per hundred individuals on specific dates in 2022 and 2023. Note: some regions have "no data." Data includes global and economic group averages. Accompanied by footnotes explaining specific dates and values.]

To calculate the averaged daily numbers of cases DCC and deaths DDC per million in 2022 and 2023 we will use simple formulas:

[image: Mathematical equation showing DCC_sub_i_super_j equals the fraction where the numerator is CC_sub_i_super_j+1 minus CC_sub_i_super_j and the denominator is T_sub_j, for i ranging from 1 to 34 and j from 1 to 2.]

[image: Mathematical equation showing \( DDC_i^{(j)} = \frac{DC_i^{(j+1)} - DC_i^{(j)}}{T_j} \), where \( i = 1, 2, \ldots, 34 \) and \( j = 1, 2 \).]

where T1 =365 and T2 =252. The CFR values corresponding to 2022 and 2023 can be calculated as follows:

[image: The equation shows CFR subscript i superscript j equals in the numerator DC subscript i superscript j plus one minus DC subscript i superscript j divided by in the denominator CC subscript i superscript j plus one minus CC subscript i superscript j, where i equals one to thirty-four and j equals one, two.]

The total average [image: Text showing "CFR" subscripted by "i" with a dot above it.] levels (during the entire period of the COVID-19 pandemic) can be calculated for every country and region:

[image: The formula shown is for the calculation of \( \text{CFR}_i^* \), defined as \( \frac{\text{DC}_i^{(3)}}{\text{CC}_i^{(3)}} \), where \( i \) ranges from 1 to 34. This is equation number 4.]

To estimate the average daily numbers of tests per thousand, we will use the formula:

[image: \( DTC_i^{(j)} = \frac{TC_i^{(2)} - TC_i^{(1)}}{T_i^{(TC)}}; \quad i = 1, 2, \ldots, 34 \)  equation labeled as (5).]

Durations of corresponding periods of time [image: Mathematical notation showing \( T_i^{(\text{rc})} \).] are listed in Table 2. Unfortunately, the testing data is not available for many countries and regions.

We will use the linear regression to calculate the regression coefficients r and the optimal values of parameters a and b for corresponding best fitting straight lines (Draper and Smith, 1998):

[image: Equation of a line in slope-intercept form: \( y = a + bx \), labeled as equation (6).]

where explanatory variables x will be A, DTC, VC, and BC and dependent variables y will be DCC, DDC, CFR, DTC, VC, and BC.

We will use also the F-test for the null hypothesis that says that the proposed linear relationship (6) fits the data sets. The experimental values of the Fisher function can be calculated using the formula:

[image: The formula for F is: F equals the fraction where the numerator is r squared times n minus m, and the denominator is the product of one minus r squared and m minus one. This is equation 7.]

where n is the number of observations (number of countries and regions taken for statistical analysis); m=2 is the number of parameters in the regression equation (Draper and Smith, 1998). The corresponding experimental values F have to be compared with the critical values FC(k1, k2) of the Fisher function at a desired significance or confidence level (k1 = m−1, k2 = n−m, see, e.g., Appendix16). If F/FC(k1, k2) < 1, the correlation is not supported by the results of observations. The highest values of F/FC(k1, k2) correspond to the most reliable correlation.

We will use also non-linear regression:

[image: Equation formatted as y equals c times x raised to the power of gamma, labeled as equation eight.]

which can be reduced to the linear one by introducing new variables (Nesteruk and Rodionov, 2022b):

[image: Mathematical expression with two equations. Z is defined as the logarithm of y equals the logarithm of c plus gamma times w. W is defined as the logarithm of x. Equation number nine.]

Unfortunately, the testing data are almost not available in 2023, since the population and governments show much less interest in the COVID-19 pandemic. This fact and scattered dates of fixing the VC and BC values (see Table 2) complicate a full-fledged statistical analysis.



Results

The results of calculations with the use of Equations (1–5) are listed in Table 3 and shown in Figures 1–3 vs. median age, testing level DTC, percentage of fully vaccinated persons [image: Mathematical notation showing "V subscript C subscript i superscript (1)".] (for 2022) and [image: Mathematical expression showing capital V, C subscript i, with a superscript of open parenthesis 2 close parenthesis.](for 2023), and numbers of boosters per hundred [image: Mathematical expression showing "B C sub i superscript 1".] (for 2022) and[image: Mathematical expression displaying \( B C_{i}^{(2)} \).] (for 2023). The averaged daily numbers of cases decreased drastically in 2023 in comparison with corresponding values in 2022 (compare DCC (2) and DCC (1) values in Table 3 or “triangles” and “circles” in Figure 1, the only exception is Nigeria). The global figure of average daily cases has diminished 7.4 times in 2023 (see the last row of Table 3). Turkey has stopped to show new cases in 2023. USA, China, Japan do not report any COVID-19 cases and related deaths since May 15, 2023 (see text footnote 1).


TABLE 3 The results of calculations of average daily characteristics with the use of Equations (1–4).

[image: Table displaying COVID-19 statistics for various countries and regions for the years 2022 and 2023. It includes average daily case numbers, deaths per million, case fatality risks, and test numbers per thousand. Countries like the USA, Taiwan, India, and regions like the European Union are listed with specific data points. Each column provides metrics such as cases, deaths, and case fatality risk percentages for both years.]


[image: Scatter plot showing trends in average daily new COVID-19 cases per million against four variables: DTC, median age, VC, and BC, each represented by different colors and line styles. Different shapes represent data from various regions and time periods, with a legend indicating the specifics. Grid lines are present for clarity.]
FIGURE 1
 Averaged daily numbers of COVID-19 cases per million in 2022 (“circles”) and 2023 (“triangles”) vs. median age (blue) and levels of vaccinations (green), boosters (magenta) and testing (black). Best fitting lines are solid for 2023 and dashed for 2022. The UK data are located in red circles. The values corresponding to EU, continents and the world are duplicated by lager markers. Red curve represents the results of non-linear correlation (Equation 10).



[image: Scatter plot with various colored lines and markers showing the relationship between average daily number of deaths per million and different variables like DTC (black), median age (blue), VC% (green), and BC% (magenta). Each color represents data from different years, indicated in the legend, with markers such as circles, triangles, and squares.]
FIGURE 2
 Averaged daily numbers of COVID-19 related deaths per million in 2022 (“circles”) and 2023 (“triangles”) vs. median age (blue) and levels of vaccinations (green), boosters (magenta) and testing (black). Best fitting lines are solid for 2023 and dashed for 2022. The UK data are located in red circles. The values corresponding to EU, continents and the world are duplicated by lager markers. Red curve represents the results of non-linear correlation (Equation 11).



[image: Scatter plot showing core fatality risk (CFR) on the vertical axis against median age in years on the horizontal axis. Data points are color-coded with blue for DTC blocks, green for VC, and magenta for BC. Different symbols represent various years from 2012 to 2022, with a visible trend of decreasing core fatality risk as the median age increases. Annotations and a legend provide details on symbol colors and shapes for each year and variable.]
FIGURE 3
 Case fatality risks in 2022 (“circles”) and 2023 (“triangles”) vs. median age (blue) and levels of vaccinations (green), boosters (magenta) and testing (black). Best fitting lines are solid for 2023 and dashed for 2022. The dotted lines correspond to the correlations that are not supported at the significance level 0.01. The UK data are located in red circles. Red curve represents the results of non-linear correlation (Equation 12).


In 2023 the averaged daily numbers of deaths significantly decreased in all countries and regions (compare DDC (2) and DDC (1) values in Table 3 or “triangles” and “circles” in Figure 2), yielding 3.6 times decrease in global DDC figures (see the last row of Table 3). Seasonal global influenza mortality is between 294 and 518 thousand in the period from 2002 to 2011 (Paget et al., 2019). After dividing the presented figures over the world population 8,060.5 million (see text footnote 14) and 365 days, the corresponding averaged daily number of deaths per million DDC(infl) will range between 0.1 and 0.18. The global value of [image: Mathematical expression showing D, D, C raised to the power of two, subscript thirty-four.] = 0.1193 is comparable with the influenza mortality, but in 2023 in many countries (including the UK) the corresponding DDC(2) values are much higher than DDC(infl)(see Table 3).

The global case fatality risk in 2023 is approximately twice higher than in 2022 despite of the increase in percentages of fully vaccinated people and boosters (see the last rows of Tables 2, 3). In 2023 the CFR values were lower only in India, South Korea, Mexico, South Africa, Nigeria, Vietnam and Africa (compare corresponding columns in Table 3). There are countries with drastic growth of the CFR values in 2023 in comparison with 2022 (for example, almost seven times for the UK and Peru). In 2023 only Egypt, Peru and Iran have higher case fatality risks than in the UK (see Table 3; the markers corresponding to the UK are placed inside red circles in Figures 1–3).

There are countries with traditional high levels of CFR. To smooth temporarily fluctuations, the total average [image: Text showing "CFR" with a subscript "i" and a superscript asterisk.] values (during the entire period of the COVID-19 pandemic) were calculated with the use of Equation (4), listed in Table 3 and shown in Figure 3 by blue “stars.” The value [image: Mathematical notation showing CFR, with a superscript dot, and a subscript of one, one.] corresponding to the UK is only slightly higher than the global one. Many countries (e.g., the US, India, Mexico, Peru, Iran, Indonesia, Canada, South Africa, Egypt, Nigeria) have higher [image: CFR subscript i with a dot indicating a mathematical or scientific variable.] values.

To remove the influence of the seasonal factors in the UK, let us calculate the values of [image: Text showing "DCC subscript eleven superscript (one asterisk)".], [image: Mathematical notation displaying "DDC subscript eleven superscript (1*)" in stylized font.] and [image: Mathematical expression showing \( CFR_{11}^{(1 \star)} \).] for the period January 1, 2022–May 19, 2022 and the same values [image: Mathematical expression showing D C C subscript eleven with superscript parentheses two star.], [image: Mathematical notation showing DDC subscript eleven with superscript two asterisk.] and [image: Mathematical expression showing \( C_{11}^{R(2\ast)} \).] and for the period January 1, 2023–May 19, 2023 with the use of Equations (1–3) and JHU datasets:

	[image: Mathematical notation displaying "DCC" with a superscript of a prime symbol and the number eleven, and a subscript of the number eleven.] = (329,252.5–199,110)/139 = 936.28;
	[image: Mathematical expression: DDC subscript eleven superscript open parenthesis one star close parenthesis.] = (2,944.618–2,619.105)/139 = 2.34;
	[image: Mathematical notation showing "CFR" followed by a subscript "11" and a superscript "(1*)" above it.] = (2,944.618–2,619.105)/(329,252.5–199,110) = 0.0025;
	[image: Mathematical expression showing "DCC" with a superscript of two asterisk in parentheses and a subscript of eleven.] = (364,587.9–358,390.2)/139 = 44.59;
	[image: Mathematical expression showing "DDC subscript eleven, superscript two star".] = (3,370.043–3,201.28)/139 = 1.214;
	[image: Mathematical notation displaying CFR subscript eleven with a superscript of two stars.] = (3,370.043–3,201.28)/(364,587.9–358,390.2) = 0.0272.

In 2023 we can see huge decrease in the number of cases and moderate diminishing in the number of death. As the result, the case fatality risk in the beginning of 2023 exceeded the 2022 figure around 11 times. The reason could be explained by the fact that testing and reporting most cases we stopped in UK since April 2022. The only people who get recorded as cases are those that are tested in hospital, and even there not everyone with respiratory infections gets tested. The death data may include all those where COVID-19 is listed on the death certificate, which might even include those that have not tested positive but where the doctors suspect COVID-19.

It must be noted, the growth of CFR in the UK occurred in the period of increasing the vaccination and booster levels (COVID-19 Data, 2023):

[image: Table showing percentages for VC and BC on three dates. On December 31, 2021, VC is 70.26% and BC is 50.5%. On May 19, 2022, VC is 73.92% and BC is 58.67%. On September 11, 2022, VC is 79.71% and BC is 75.19%.]
To investigate possible correlations between DCC, DDC and CFR values and explanatory variables A, DTC, VC(1), VC(2), BC(1), and BC(2), the linear regression (Equation 6) and Fisher test were used. The results of calculations of optimal values of parameters a and b, correlation coefficients and experimental values of the Fisher function F (Equation 7) are listed in Table 4. The F values were compared with the critical ones FC(1, n−2) at the confidence level 0.01. The numbers of observations n are different for different correlations due to the absence of data for some countries and regions.


TABLE 4 Optimal values of parameters in Equation (1), correlation coefficients and the results of Fisher test applications.

[image: Table showing correlations between variables and COVID-19 statistics. It includes correlations for daily COVID-19 cases and deaths in 2022 and 2023, and case fatality risks for the same years. Columns list number of observations, correlation coefficient, optimal parameter values, and Fisher function values.]

Since many COVID-19 patients are asymptomatic (see text footnotes 2–4) (Nesteruk, 2021b,c, 2023b; Fowlkes et al., 2022), the high testing level (DTC or TC) could help to reveal more cases and COVID-19 related deaths. This trend was supported statistically (see rows 4 and 11 in Table 4 and black lines in Figures 1, 2). Nevertheless, the linear regression yields unacceptable non-zero values of parameter a, which mean that some cases and deaths could be revealed at zero testing level. To remove this discrepancy, the non-linear approach (Equations 8, 9) was applied for the same countries listed in Table 3 (n = 23).

Equations (10–12) represent the best fitting curves (see red lines in Figures 1–3), correlation coefficients and experimental values of the Fisher function:

[image: The equation shown is: DCC to the power of (1) equals 118.7499 times DTC to the power of 1.10479. The correlation coefficient r equals 0.81835, and variable F equals 42.58.]

[image: Mathematical expression reads: DDC to the power of 0.1 equals 0.4428336 times DTC to the power of 0.282829. Correlation coefficient, r, is 0.76624 and F-value is 29.86. Equation 11.]

[image: Equation showing CFR to the power of one equals 0.00372913 divided by DTC to the power of 0.278715, semicolon, r equals negative 0.46942, F equals 5.94, equation number twelve.]

The values of r2 and F for variables z and w are higher than for y and x [compare corresponding values in Equations (10–12) and rows 4, 11, and 18 in Table 4]. The relationships (10) and (11) are supported at significance level 0.001 FC(1, 21) = 14.6[FC(1, 21) = 14.6]. The similar very strong correlation between the numbers of cases and tests per capita accumulated in European and African countries as of August 1, 2022 was found in Nesteruk and Rodionov (2022b):

[image: Equation showing CC equals 80.099 times TC raised to the power 1.0725. Additional details include sample size n equals 89, correlation coefficient r equals 0.9496, and F equals 767.6.]

Nevertheless, 16 European countries with the highest testing level (TC > 3,000) have demonstrated no correlation between CC and TC even at the significance level 0.05 (Nesteruk and Rodionov, 2022b).

Only 5 countries and territories listed in Table 2 (Hong Kong, France, Italy, the UK, and Israel) had TC values higher than 3,000 in 2022. The DCC(1) values are rather high and vary from 436 to 1,241 in these countries (see Table 3). Nevertheless, many infectious persons were not detected. This is evidenced not only by the higher numbers of cases per capita in South Korea ([image: D C C subscript eight superscript one.]= 1,502.9, Table 3) at lower testing level (compare corresponding DTC values in Table 3), but also by the results of total testing in some countries and institutions, which revealed many previously unregistered COVID-19 patients (see text footnotes 2–4). Taking the maximum [image: Mathematical notation showing "DCC subscript eight superscript parenthesis j parenthesis".] values (corresponding to South Korea) as estimations real number of cases per capita in 2022 and 2023, we can calculate the visibility coefficients

[image: Mathematical equation with \( \beta_{i}^{(j)} = \frac{\text{DCC}_{i}^{(j)}}{\text{DCC}_{i}^{(0)}} \), where \( j = 1, 2 \) and \( i = 1, 2, \ldots, 34 \), labeled as equation (14).]

as the ratios of real and registered numbers of cases [similar relationship can be obtained using the accumulated numbers of cases per capita (Nesteruk and Rodionov, 2022b)]. For example, figures corresponding to the UK are[image: Mathematical expression showing beta subscript eleven superscript one.] = 3.4; [image: Equation showing the symbol for beta with subscript eleven and superscript two in parentheses.] = 13.9; Europe—[image: Beta subscript twenty-six with a superscript one.] = 2.6; [image: Beta symbol with subscript twenty-six and superscript two.] = 11.4, and Africa—[image: Beta subscript seven with a superscript of one.] = 248.4; [image: \( \beta^{(2)}_{27} \)] = 1,179.3.

An experimental estimation of the visibility coefficient can be obtained from the results of total testing in Slovakia [89.5% of population was tested on October 31–November 7, 2020 and a number of previously undetected cases, equal to about 1.63% of the population was revealed (see text footnotes 2, 3)]. Since the number of detected cases in Slovakia was approximately 1% of population (COVID-19 Data, 2023), we can estimate the visibility coefficient β ≈ 2.63 for that period. As of September 10, 2023 the ratio of CC values for South Korea and Slovakia [667,207.1/330,868.413 (COVID-19 Data, 2023)] yields the visibility coefficient 2.02. The results of a random testing in two kindergartens and two schools in Chmelnytskii (Ukraine) revealed the value of visibility coefficient 3.9 in December 2020 (see text footnote 4).

The generalized SIR models and algorithms of their parameter identification (Nesteruk, 2021b,d, 2023b) allowed theoretical estimating of the visibility coefficients. In particular, values from 3.7 to 20.4 were obtained for Ukraine (Nesteruk, 2021a,b) and 5.4 for Qatar (Nesteruk, 2021c) in different periods of the COVID-19 pandemic. The lack of appropriate testing did not allowed detecting the first SARS-CoV-2 cases, which probably appeared long before December 2019 (Weinberger et al., 2020). In particular, theoretical estimates give the date of the appearance of the first case at the beginning of August 2019 (Nesteruk, 2021d).

Dependence (12) can be accepted at significance level 0.05 [FC(1, 21) = 4.43; a similar equation can be obtained by dividing (11) over (10)] and shows that the case fatality risk increases with diminishing of the testing level even in the period of the high interest in the SARS-CoV-2 infection (as it was in 2022). In 2023, when the people paid attention to severe cases only and make tests correspondingly, CFR values can increase drastically. Therefore, one should probably not be afraid of a significant increase of the case fatality risk in the UK in 2023. Of much greater concern is the fact that COVID-19 mortality in this country ([image: Mathematical notation showing "DDC" with a subscript of eleven and a superscript of two.] = 0.7754, see Table 3) is still at least 4 times higher than the global value caused by seasonal flu (Paget et al., 2019).

Equations (10, 13) may give the illusion that the low number of cases per capita in Africa is due only to the low testing level typical for low-income countries (see Nesteruk and Rodionov, 2022b). The visibility coefficients and another characteristic—the ratio of the number of tests to the number of cases DTS—will allow us to understand the situation and draw the right conclusions. High DTS values mean that many persons surrounding the detected infectious patient (e.g., family members, colleagues, neighbors) were tested and isolated (this causes a decrease in the number of new infections, i.e., DCC). For example, very high tests per case ratios (DTS > 100) in Hong Kong in 2020 and 2021 allowed controlling the COVID-19 epidemic completely (Nesteruk, 2022) [the smoothed daily numbers of new cases per million did not exceed 20 (COVID-19 Data, 2023)]. After January 18, 2022, the daily numbers of new cases started to increase, but the daily numbers of tests remained almost constant yielding drastically diminishing of the daily tests per case ratio (Nesteruk, 2022) and very high DCC values in February-March 2022 (COVID-19 Data, 2023).

It follows from Equation (10) that the averaged daily test per case ratio:

[image: Equation showing \( DTS = \frac{1000 \cdot DTC}{DCC^{(1)}} = \frac{13.34}{[DCC^{(1)}]^{0.0962}} \).]

increases for countries with low DCC figures (in particular, for African ones, see Table 3). The similar relationship follows from Equation (13) for the accumulated characteristic TS = 1,000*TC/CC. For example, DTS values (calculated using the information available in Table 3) are equal to 26.9 (the UK); 39.4 (India); 123.5 (Nigeria); 4.3 (South Korea); 1.95 (Japan) and demonstrate that the probability to miss an infectious person due to the lack of tests is much higher in Japan or South Korea than in Nigeria or India. During the severe pandemic wave in Japan in summer 2022, the daily numbers tests probably were not enough to confirm COVID-19 in patients with symptoms (Nesteruk, 2023b).

Therefore, the reason for the low number of registered cases per capita in Africa or in India should not be found in insufficient testing, but in large values of the visibility coefficients (Equation 14), which attribute to large numbers of asymptomatic infections. Since the severity of SARS-CoV-2 infection increases for older patients (Davies et al., 2020; Statsenko et al., 2021) and almost half of the infected children can be asymptomatic (Fowlkes et al., 2022), the regions with older population are expected to have much higher accumulated numbers of cases per capita (Davies et al., 2020). It was shown that 1-year increment in the median age yields 12,000–18,000 increase in CC values (Nesteruk and Keeling, 2023). Rows 1 and 5 in Table 4 and blue lines in Figure 1 illustrate the same trend for DCC values. One-year increment in the median age increased DCC values by 39.8 in 2022 and by 5.8 in 2023.

The stronger correlations and same trends were obtained for the averaged daily numbers of deaths per capita DDC vs. median age of population A (see rows 8 and 12 in Table 4 and blue lines in Figure 2). One-year increment in the median age increases the DDC values by 0.0799 in 2022 and by 0.0263 in 2023. The characteristics calculated for large regions (EU, continents and the world) are very close to the best fitting blue lines (see large markers in Figures 1, 2). We can conclude that the young age of Africa (A27 = 18, see Table 1) is the main reason of very low numbers of cases and death per capita registered on this continent.

Opposite and much weaker age trends we can see for the case fatality risks (lines 15 and 19 in Table 4). The decrease of CFR values with increase of the age (supported only by the 2022 dataset) looks unexpected [especially taking into account the fact that in 2020 younger populations had less clinical cases per capita (Davies et al., 2020)]. Probably, the reason is better medical treatment in the reach countries with the high median age.

The numbers of cases and deaths per capita increase with increasing the percentages of fully vaccinated people and boosters (see rows 2, 3, 6, 7, 9, 10, 13, 14 in Table 4 and green and magenta best fitting lines in Figures 1, 2). Re-infections in vaccinated persons are common (Flacco et al., 2022; Guedes et al., 2023), but a very clear uprising trend with increasing VC and BC values is unexpected despite the similar result for smoothed daily numbers of cases reported in Nesteruk and Rodionov (2022a) (JHU datasets with 7-days-smoothing corresponding to September 1, 2021 and February 1, 2023 were used for statistical analysis). Obtained trends could be a result of age influence, since the most vaccinated countries have higher Ai values (see Tables 1, 2). We will discuss this correlation in the next Section. Another reason could be the introduction of special passports that removed restrictions for vaccinated persons. Many vaccinated people in countries with high VC and BC values started to visit crowded places, travel despite they can spread the infection. In many countries (in particular, in Ukraine) the vaccination procedure was associated with overcrowding in hospitals, which could contribute to the spread of the infection too.

As expected, the case fatality risks decrease with increasing the percentages of fully vaccinated people and boosters (see rows 16, 17, 20, 21 in Table 4 and green and magenta best fitting lines in Figure 3). Similar result was obtained in Nesteruk and Rodionov (2022a) with the use of JHU datasets for European and some other countries. In 2023, the decreasing trend was not supported by Fisher test. Probably, this is due to the more chaotic data. In particular, the different days correspond to [image: Mathematical notation showing V subscript C subscript i superscript (2).] and [image: The expression "B C subscript i superscript (2)".] values listed in Table 2, no CFR value can be calculated for Turkey.



Discussion

The explanatory variables A, DTC, VC(1), VC(2), BC(1), and BC(2), used in our analysis can be also dependent on each other. We have used the linear regression (Equation 6) and Fisher test to find correlations between DTC, VC(1), VC(2), BC(1), and BC(2) values and explanatory variable A. The results of calculations are listed in Table 5 and displayed in Figure 4. We can see strong correlations between VC(1), VC(2), BC(1), and BC(2) vs. median age of population A (see rows 2–5 in Table 5; green and magenta best fitting lines in Figure 4). The correlation between A and DTC is supported at the confidence level 0.05 (see the first row in Table 5 and the black best fitting line in Figure 4). The growth of the median age leads to the increase of testing level and the percentage of vaccinations and boosters. These correlations can be a result of higher incomes in aged countries and more vaccinations and boosters in older people.


TABLE 5 Correlations vs. the median age of populations and purified levels of vaccinations.

[image: Table showing correlations of different variables versus the median age of the population, and "purified" numbers of fully vaccinated and booster recipients per hundred. Columns include variable number, variable name, number of observations, correlation coefficient, optimal parameter values, experimental Fisher function values, critical Fisher function values, and F/Fc ratio. The data is segmented into three categories based on the correlation focus.]


[image: Scatter plot showing testing and vaccination levels against median age. Data points are categorized by different groups and years: DTC, VC 2022, VC 2023, BG 2022, and BG 2023. Trend lines indicate increasing levels as median age rises.]
FIGURE 4
 Levels of testing (black), vaccinations (green) and boosters (magenta) in 2022 (“circles”) and 2023 (“triangles”) vs. median age. Best fitting lines are solid for 2023 and dashed for 2022. The dotted line corresponds to the DTC correlation (supported at the significance level 0.05).


Now we can explain why the numbers of cases and deaths per capita can increase with increasing the percentages of fully vaccinated people and boosters (see rows 2, 3, 6, 7, 9, 10, 13, 14 in Table 4 and green and magenta best fitting lines in Figures 1, 2)? Values VC(1), VC(2), BC(1), and BC(2) are not independent and definitely increase with the age. On the other hand, DCC and DDC values also increase with growth of Ai (see rows 1, 5, 8, 12 in Table 4 and blue best fitting lines in Figures 1, 2). To remove the influence of age in correlations between vaccinations and DCC and DDC values, let us consider the “purified” variations of VC(1)and BC(1) (we limited ourselves only to 2022 with more reliable statistical data):

[image: Equations for VP and BP adjustments. VPi equals VCi superscript one minus the sum of 2.3288 and 1.8376 times Ai. BPi equals BCi superscript one minus the sum of 34.8469 and 2.2198 times Ai. Both for i equals one to thirty-four.]

To obtain the “purified” variations the percentages of vaccinations VPi and boosters BPi, we have excluded from variations VC(1)and BC(1) the values predicted by the by the best fitted lines listed in Table 5 (rows 2 and 4).

We have used the linear regression (Equation 6) and Fisher test to find correlations between DCC, DDC and CFR values and explanatory variables VP and BP. The results of calculations are listed in Table 5 (lines 6–11). No correlations were revealed at the confidence level 0.01. Thus, the vaccinations and booster themselves do not increase the numbers of cases and death per capita. No correlations between VC and the numbers of cases and deaths per capita accumulated in 15 European countries with the highest testing level as of August 1, 2022 were revealed at the confidence level 0.05 (Nesteruk and Rodionov, 2022b). The lack of decreasing trends and fact that severe pandemic waves occurred in countries with high vaccination levels [e.g., Israel, Hong Kong and Japan (Nesteruk, 2021a, 2022)] call into question the effectiveness of vaccinations due to coronavirus mutations (see text footnotes 5–8) and large numbers of re-infections (see text footnote 9, Flacco et al., 2022; Guedes et al., 2023).

As expected, the case fatality risks reduce for higher values of VP and BP (see lines 8, 11 in Table 5), but at lower confidence level than vs. VC(1)and BC(1) (see lines 16 and 17 in Table 4).



Conclusions

The averaged daily numbers of cases DCC and death DDC per million, case fatality risks DDC/DCC were calculated for 34 countries and regions with the use of John Hopkins University (JHU) datasets for numbers per capita accumulated in 2022 and 2023. Linear and non-linear approaches were used to find correlations with the averaged daily numbers of tests per thousand DTC, median age of population A, and percentages of vaccinations VC and boosters BC.

One-year increment in the median age yielded 39.8 increase in DCC values and 0.0799 DDC increase in 2022 (in 2023 these figures are 5.8 and 0.0263, respectively). With decreasing of testing level DTC the case fatality risk can increase drastically. DCC and DDC values increase with increasing the percentages of fully vaccinated people and boosters. Since VC and BC values definitely increase with at higher A, the corrected variations of VC and BC were introduced, which showed no correlations with DCC and DDC values.

The presented analysis demonstrates that age is a pivot factor in visible (registered) part of the COVID-19 pandemic dynamics. Much younger Africa has registered less numbers of cases and death per capita due to many unregistered asymptomatic patients. Of great concern is the fact that COVID-19 mortality in 2023 in the UK is still at least 4 times higher than the global value caused by seasonal flu.
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The COVID-19 pandemic has necessitated the development of robust tools for tracking and modeling the spread of the virus. We present ‘K-Track-Covid,’ an interactive web-based dashboard developed using the R Shiny framework, to offer users an intuitive dashboard for analyzing the geographical and temporal spread of COVID-19 in South Korea. Our dashboard employs dynamic user interface elements, employs validated epidemiological models, and integrates regional data to offer tailored visual displays. The dashboard allows users to customize their data views by selecting specific time frames, geographic regions, and demographic groups. This customization enables the generation of charts and statistical summaries pertinent to both daily fluctuations and cumulative counts of COVID-19 cases, as well as mortality statistics. Additionally, the dashboard offers a simulation model based on mathematical models, enabling users to make predictions under various parameter settings. The dashboard is designed to assist researchers, policymakers, and the public in understanding the spread and impact of COVID-19, thereby facilitating informed decision-making. All data and resources related to this study are publicly available to ensure transparency and facilitate further research.
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Introduction

Although the COVID-19 pandemic is no longer acute, its effects on health, economy, and society remain significant, highlighting the need to understand various aspects of its recovery and analyze its impacts (1). Governments and institutions worldwide are in need of sophisticated tools to track, understand, and manage the spread of the virus (1). Numerous epidemiological dashboards like those from the World Health Organization (WHO) (2), Johns Hopkins University’s (JHU) Center for Systems Science and Engineering (CSSE) (3), and the Centers for Disease Control and Prevention (CDC) (4, 5) provide valuable insights into global COVID-19 trends.

The WHO dashboard, for instance, offers daily global counts of cases, deaths, and vaccine distribution focusing more on the global scale. Similarly, the JHU CSSE Dashboard stands out for its geospatial representation and data granularity, focused on the United States (3). In addition to cases, deaths, and recoveries data, it has incorporated other metrics like case-fatality ratios and testing data. Although it offers three levels of administrative data granularity—countries, and states/provinces—this fine-grained detail is primarily available only for the United States. Furthermore, while the dashboard provides valuable data, its map representation is limited to the most recent date, without displaying changes over time (3). The CDC’s COVID-NET dashboard offers different topics to see specific data trends. These topics include rates by age group, sex, race, ethnicity, and clinical characteristics. While the data can be displayed in a graph or as a table, a map representation is not provided (4). Lastly, the Africa CDC’s COVID-19 Africa Hotspot Dashboard helps to identify countries that have growing or widespread outbreaks of COVID-19. It is tailored to be highly sensitive in detecting potential hotspots, acknowledging the trade-off in specificity (5).

Existing dashboards often lack forecasting capabilities, essential for policymakers and health professionals to prepare and strategize based on potential future trends. Most current tools fail to offer these predictive insights, highlighting a limitation that needs to be addressed. To address the limitations of current analytical tools, we present ‘K-Track-Covid,’ a web-based interactive dashboard developed with the R Shiny package (6). This dashboard offers insights into the epidemiological situation and features a robust forecasting function. Its predictive power comes from incorporating advanced mathematical models to forecast the pandemic’s trajectory, which we will outline briefly in the Methods section.

The ‘K-Track-Covid’ dashboard focuses on South Korea—a nation that has been at the forefront of proactive and robust public health interventions, such as comprehensive contact tracing and testing (7). This targeted approach allows the dashboard to delve into complexities often glossed over in more broad-scope dashboards (2, 3). Unlike global dashboards that provide periodic global snapshots, ‘K-Track-Covid’ allows for detailed examination of South Korea-specific data across various times, facilitating time- and location-based analyses. This feature supports stakeholders, from researchers to policymakers, in making informed decisions. ‘K-Track-Covid’ represents a significant advancement in digital epidemiological tools, offering a detailed lens on South Korea’s COVID-19 situation.

Furthermore, the ‘K-Track-Covid’ dashboard features a highly modular and scalable architecture, allowing easy customization to various countries or regions. The key to this adaptability is access to robust and reliable local data. With the integration of such data, the dashboard transforms into a versatile instrument for conducting detailed, localized COVID-19 analysis, regardless of location.

The dashboard offers four main functions: (1) it automatically updates COVID-19 data in South Korea, including case counts (confirmed and deceased), according to the available data released by the government. (2) It allows for daily and cumulative tracking, helping to project short and long-term trends. This feature is designed to resume full functionality should the government reinitiate the release of COVID-19 data. (3) The dashboard presents data at various geographical resolutions, enhanced with socio-demographic metrics such as medical resources and population profiles, for detailed spatial analyses. (4) Most notably, it integrates a mathematical model to forecast and visually illustrate the disease’s spread over time on a dynamic MP4 animated map. This unique feature allows users to anticipate hotspots and track regional progression, providing an engaging experience. This combination of features makes it a comprehensive tool for academics, policymakers, and the public interested in South Korea’s pandemic trajectory.

In a time of abundant yet complex data, ‘K-Track-Covid’ aims to be a reliable, user-friendly resource for all audiences. The remainder of this paper is structured to offer a detailed account of ‘K-Track-Covid.’ Following this Introduction, the Methods section will elucidate the technical architecture, data sources, and the overall structure of the dashboard. The Results section will focus on the dashboard’s functionalities, user engagement, and impact, including a comparison with other available dashboards to contextualize its utility and performance. In the Discussion, we will explore broader implications for pandemic management in South Korea, as well as the adaptability of such a tool for other regions or future public health crises.



Materials and methods


Data sourcing


Regional data

Data Sourcing is an essential part of our dashboard, ensuring accurate COVID-19 information for South Korea. We use an Application Programming Interface (API) from the South Korean government’s data portal, provided by the Korea Disease Control and Prevention Agency (KDCA) (8). To manage this data, we utilize R libraries, employing ‘httr’ (9) for Hyper Text Transfer Protocol (HTTP) requests and ‘xml2’ (10) for parsing Extensible Markup Language (XML) data. This combination ensures consistent and standardized data that is ready for analysis.

Our dataset covers the period from the pandemic’s start in early 2020 to September 2023, offering a broad temporal range for analysis. Initially, data updates occurred daily until May 2023, transitioning to weekly updates from that point forward. On September 1, 2023, the Korean government reclassified COVID-19 as a Class 4 infectious disease, leading to the discontinuation of regular updates to the provincial incidence data (8). We primarily use the daily data to ensure detailed analyses. This dataset spans all 17 of South Korea’s major administrative regions, like Seoul, Busan, and Daegu, covering metrics such as confirmed cases, deaths, and outbreak status per area. Such granularity provides a precise regional perspective on the pandemic, which is crucial for academic study and policymaking.

In addition to the COVID-19 data, we also incorporate regional socio-demographic data obtained from the Korean Statistical Information Service (KOSIS) (11). These data provide demographic insights such as age distribution, gender, and smoking rate, which are crucial for a nuanced understanding of the pandemic’s impact. Including KOSIS data enables a more comprehensive analysis, as socio-demographic factors are significant determinants of infection rates and health outcomes. This multi-dimensional approach not only informs targeted public health strategies but also enriches academic discourse on the effects of COVID-19 across diverse population strata within South Korea.



Spatial demographic data

Our dashboard enhances epidemiological analysis with spatial demographic data from WorldPop (12). This source offers detailed population density maps at 1 km × 1 km and 100 m x 100 m resolutions globally, useful for addressing census gaps and supporting UN agencies’ planning efforts. In ‘K-Track-Covid,’ this data helps analyze COVID-19 spread in relation to population densities and demographics, especially in densely populated areas like Seoul, Busan, and Daegu. Integrating these maps provides richer, more contextually informed insights, aiding in developing effective public health strategies.




Architecture

The ‘K-Track-Covid’ dashboard is developed using the RStudio Shiny framework for its reliability, user-friendliness, and advanced data handling capabilities. We employ key R packages for efficient operations: dplyr (13) and tidyverse (14) for data management, sf (15) and raster (16) for geospatial data, plotly (17) for interactive, and ggplot2 (18) for static visualizations. Geospatial interactivity is enhanced with leaflet (19) and leaflet. Extras (20). The architecture combines Shiny with shinydashboard (21) for web interactivity, dividing into a User Interface (UI) and a server-side function. While primarily R-based, we incorporate JavaScript, Cascading Style Sheets (CSS), and Hyper Text Markup Language (HTML) to augment functionality and design.



Dashboard structure

The ‘K-Track-Covid’ dashboard is structured based on three main tabs: Map, Regional Trend, and Simulation. Table 1 contains the description of each main tab.



TABLE 1 K-Track-Covid dashboard structure.
[image: Table displaying two columns: "Main tab" and "Description." Under "Main tab," the rows list "Map," "Regional Trend," and "Simulation." The corresponding "Description" entries describe the functionalities: Map uses a leaflet for geographical information, Regional Trend uses Plotly for visual analytics, and Simulation models COVID-19 scenarios with user parameters.]

The dashboard’s user interface is crafted for easy navigation, featuring dropdown menus for region selection, timeframe buttons, and interactive graphs and maps. Tooltips offer extra details when hovering over data points.

In the development phase of the ‘K-Track-Covid’ dashboard, we integrated a user feedback mechanism to refine and enhance the platform’s usability and functionality continually. This feedback mechanism, in the form of a user rating form, is modeled on the Mobile App Rating Scale (21), a validated tool for assessing the quality of health mobile apps. Our adaptation of this scale allows users to rate their experience across multiple dimensions: ease of use, reliability, quality, scope of information, and aesthetics. This approach enables us to gather actionable insights into the dashboard’s performance from the user’s perspective, guiding future improvements.


Map tab

The Map tab (Figure 1) in ‘K-Track-Covid’ employs Leaflet technology to create an interactive geospatial display. Situated on the left-hand side, a fixed yet draggable absolute panel hosts various control elements, such as a date range slider, a dropdown for overlay options, and selection boxes for additional output. The date range slider allows users to navigate different time periods, providing a temporal dimension often missing from other dashboards. When a user positions their cursor over a particular region on the map, the system displays detailed data about the region. This information can include metrics like daily cases and deaths, each available in raw counts, proportions, and per 100 k population formats.

[image: Map of South Korea highlighting COVID-19 daily cases as of February 18, 2023. It uses a color gradient from green to red, with green indicating 0 to 100 cases and red indicating over 2,000 cases. Northern areas are shaded red, indicating higher case numbers.]

FIGURE 1
 Overview of the K-Track-Covid dashboard’s Map tab.


One of the standout features of the Map tab is its capability to show the spread of the disease with the regional socio-demographic data, including the total number of beds, doctors, seniors, and foreigners per 1,000 people, alongside smoking rates and the total population segmented by age group and gender. Integrating these metrics allows for identifying hotspots and high-risk zones by setting thresholds on metrics like senior population percentages, smoking rates, and healthcare availability. Users can select these metrics to visualize risk levels across regions, enhancing resource allocation and intervention strategies. This feature complements existing COVID-19 data, offering a fuller risk assessment tool for public health decision-making.

The leaflet R package supports the dashboard’s geospatial visualizations, utilizing OpenStreetMap (22) for base maps. The interface has been enhanced with custom CSS styling for intuitive navigation and aesthetic appeal, improving the control panel’s functionality and user interaction with the map.



Regional trend tab

The Regional Trend tab (Figure 2) offers users a diverse range of time-series visualization options rendered using the plotly package (17). It provides a dynamic look at the temporal trends of COVID-19 metrics for individual regions within South Korea. Unlike the Map tab, which shows a single moment, the Regional Trend tab provides a comprehensive historical perspective, highlighting changes and trends in the pandemic’s progression across different regions. This approach helps identify patterns, seasonal variations, and outliers in data such as new cases, new deaths, and cumulative figures. The underlying data for these visualizations, drawn from KDCA, has been pre-processed to reflect accurate, region-specific statistics.

[image: Area chart showing the spread of COVID-19 by region from 2022 to 2023, with daily cases in Gyeonggi-do, Seoul, and Daegu. Peaks occur in early 2022. A legend indicates colors for each region. The interface includes options to select regions, outcomes, and plot types.]

FIGURE 2
 User interface and features of the Regional Trend tab.


The sidebar panel includes a region and an outcome selector dropdown, acting as auxiliary tools to refine the time-series plot according to user preferences. This feature allows users to concentrate on particular regions and outcomes, adding depth and offering a detailed view essential for scientific research and policy development. Consequently, the Regional Trend tab provides a deeper, time-sensitive insight into the pandemic’s effects across the varied landscapes of South Korea.



Simulation tab

The Simulation tab (Figure 3) stands out as a pivotal aspect of our dashboard, delivering simulations for projecting COVID-19 scenarios through shinyJS (23) for enhanced UI functionality. It includes a customization sidebar, allowing users to choose between the Susceptible-Exposed-Infectious-Recovered-Deceased (SEIRD) (24, 25) and Susceptible-Vaccinated-Exposed-Infectious-Recovered-Deceased (SVEIRD) (26, 27) models for forecasting. This capability lets users explore future pandemic trends and outcomes based on user-defined parameters, providing a dynamic, personalized simulation experience. This unique functionality, not found in similar tools, significantly enhances our dashboard’s analytical depth, offering a nuanced approach to disease spread prediction.

[image: COVID-19 simulation interface with settings for aggregation factor, epidemic model selection (SEIRD or SVEIRD), and model stochasticity (deterministic or stochastic). Parameters include vaccination rate (0.21), daily exposure rate (0.055), transition rates for exposed to infected (0.009), infected to recovered (0.065), and infected to dead (0.0015), and a distance parameter of fifteen kilometers. Options to use or upload seed data, set a simulation start date, and define number of iterations (three days) are provided, along with buttons to run or reset the simulation.]

FIGURE 3
 Initial overview of the Simulation tab, displaying the control panel and default outputs.


The SEIRD model enriches the traditional Susceptible-Infectious-Recovered (SIR) framework by integrating ‘exposed’ and ‘deceased’ compartments, allowing for a more detailed understanding of disease progression (28). Expanding upon the SEIRD framework, the SVEIRD model introduces a ‘vaccinated’ compartment to capture the dynamics of vaccination within the population (26). This addition allows for the simulation of vaccination outcomes alongside natural disease progression, providing a comprehensive view of potential interventions. A crucial aspect of both models is incorporating a weight function that calculates the impact of infectious individuals on susceptible individuals based on spatial distribution (29).

The dashboard also includes a feature for stochastic simulation, which introduces probabilistic variations to the model outcomes. This is facilitated by adjustable parameters such as transmission rate (β), recovery rate (σ), and the rate at which exposed individuals become infectious (γ). Users have the flexibility to customize their simulations further by uploading their seed data or utilizing pre-loaded datasets.

In the output section of the Simulation tab, users are provided with textual and tabular summaries that detail the selected epidemiological model’s characteristics. This section aims to offer a clear and structured understanding of the model’s implications without delving into the mathematical equations, focusing instead on the outcomes and interpretations crucial for public health planning and response strategies.





Results

The multi-dimensional analysis capabilities incorporated into our COVID-19 dashboard serve to elucidate various facets of the pandemic within South Korea. Our dashboard integrates epidemiological, temporal, and geographical data, offering insights that enhance our understanding of the virus’s spread and impact. This innovation is at the core of our project, and it significantly advances current methodologies for COVID-19 analytics. As highlighted in the Materials and Methods section, please be advised that since the Korean government’s cessation of regular updates of regional incidence data as of September 1, 2023, the Map tab and the Regional Trend tab report the results up to this date.

The ‘K-Track-Covid’ dashboard can be accessed online (https://k-track-covid.shinyapps.io/k-track-covid/, accessed on 12 April 2024). As demonstrated in Figure 1, the dashboard is designed to offer an intuitive and interactive user experience, divided into distinct modules accessible via individual tabs.


Map tab

As shown in Figure 4, the Map tab offers geospatial analytics across multiple levels, allowing users to explore daily case numbers or proportions and available hospital beds at the district level. It highlights at-risk populations, enhancing localized response strategies. The map facilitates temporal analysis through selectable date ranges and enables comparisons of current statistics against historical trends with data overlay. This integration provides a comprehensive view of tracking pandemic dynamics and healthcare capacity.

[image: Two maps of South Korea show data visualizations for May 15, 2023. The top map displays socio-demographic variables, specifically hospital beds per 1,000 people, with Chungcheongbuk-do highlighted showing 13.4 beds. The color scale ranges from green (fewer beds) to red (more beds). The bottom map illustrates COVID-19 daily cases, with Chungcheongbuk-do reporting 306 cases. The color scale ranges from green (fewer cases) to red (more cases). Both maps have interactive data sliders for date and thresholds.]

FIGURE 4
 Interactive features of Map tab.




Regional trend tab

The Regional Trend tab, illustrated in Figure 2, focuses on more localized data, presenting time-series data visualization at the regional level. Users can customize the visualizations through drop-down menus, choosing from different COVID-19 metrics like daily new cases, cumulative cases, and deaths. The analytics in this tab facilitate comparisons within regions, providing a clearer perspective on the pandemic’s localized impact as it unfolds over time.



Simulation tab

The Simulation tab, illustrated in Figure 3, describes the dashboard’s advanced features. It uses mathematical models to predict COVID-19. The tab allows for significant customization, including the ability for users to adjust parameters to meet specific analytical needs. A user manual is available to assist new users.


Input summary panel

Figure 5 provides a snapshot of the Input Summary panel. This panel delivers a comprehensive summary of all user-defined parameters. It serves as a legend and a quick reference, allowing users to verify their configurations before interpreting the simulations.

[image: Input summary table and a population density map of South Korea. The table lists variables like country, WorldPop raster dimensions, aggregation factor, compartmental model type, and other parameters. The map shows the 2020 UN-adjusted population count with color gradients representing different density levels across the country.]

FIGURE 5
 Input summary panel showing user-defined parameters.




Schematic diagram panel

The Schematic Diagram panel in Supplementary Figure S1 shows a graphical representation of the model’s structure. This diagram outlines the compartmental relationships and flows among Susceptible, Exposed, Infected, Recovered, and Deceased compartments, enhancing understanding of the model’s complexity.



Initial seed data panel

Figure 6 illustrates the initial seed data panel, which visually represents the model input. The seed data encompasses detailed location information, including the region and its corresponding latitude and longitude, followed by initial compartmental values such as vaccinated, exposed, infected, recovered, and deceased individuals. Users have the flexibility to either use the provided seed data or upload their own adjusted seed data. By uploading their own seed data, users can customize the initial conditions for each compartment, tailoring the model to specific regional dynamics.

[image: Table displaying initial seed data for various locations, including Busan, Chungcheongbuk-do, and others. Columns show latitude, longitude, initial vaccinated, exposed, infections, recovered, and dead. Page shows 10 of 17 entries.]

FIGURE 6
 Initial seed data represented by the first 10 rows.




MP4 animation panel

In Figure 7, the dashboard features an MP4 animation panel that visually demonstrates the epidemiological states’ progression from day one to day 100, covering the entire forecast period. This animation offers a dynamic representation of the model’s predictions over time, making the data more accessible and understandable. Additionally, the animation can be used to forecast and visually illustrate the disease’s spread across the timeframe. For convenience, users can download the animation by clicking on the vertical ellipsis in the right corner of the video.

[image: Three heat maps showing the 2020 UN-adjusted aggregated infected count for South Korea at a nine-square-kilometer resolution. Each map displays varying levels of infection intensity using a color gradient from blue, indicating low counts, to red, indicating high counts. The maps demonstrate the distribution of infections across different regions, with noticeable clusters of higher intensity in some areas. A color scale on the right of each map indicates the infection count range from zero to thirty-five. Maps are labeled with longitude and latitude for geographic reference.]

FIGURE 7
 MP4 animation showing the spread of the disease over time.




Output summary panel

The Output Summary panel in Supplementary Figure S2 is designed to present a comprehensive tabulation of the model’s predictions, generated based on user-defined inputs and parameters. This is particularly useful for expert users or researchers requiring precise data points for further analysis or reporting. In addition, having a tabular format enables easy data export into other statistical software for subsequent analyses.



Plot panel

The Plot panel (Supplementary Figure S3) within the Simulation tab serves as a visual analytics environment, offering a dynamic and interpretable representation of the model’s output metrics over time. Users can download the figure by clicking the ‘Save Image’ button.




Comparison to existing dashboards

Following the detailed exploration of the ‘K-Track-Covid’ dashboard’s features and capabilities, a comparative analysis is conducted to place its functionalities in context with four other leading COVID-19 dashboards. This comparison is summarized in a comprehensive table (Table 2) that delineates the available functions across all platforms, offering a clear side-by-side view of each dashboard’s unique features and shared capabilities. ‘K-Track-Covid’ provides a comprehensive toolset for regional and socio-demographic analysis with the unique addition of simulation capabilities. However, it underperforms in the global analysis compared to the WHO, JHU, and CDC dashboards. Its commitment to data accessibility and open-source development is on par with the leading dashboards, making it a strong contender in existing COVID-19 dashboards.



TABLE 2 Comparison with publicly available COVID-19 dashboards.
[image: Comparison table of five dashboards: WHO, JHU, COVID-NET, COVID-19 Africa, and K-Track-Covid. Categories include map representation, regional analysis, global analysis, socio-demographic analysis, simulation analysis, data accessibility, and open-source replicability. Marks indicate presence (O) or absence (X) of features.]




Discussion

Our study demonstrates the effectiveness of the ‘K-Track-Covid’ in analyzing COVID-19’s trajectory and impact in South Korea. Its interactive design and analytical capabilities make it useful for researchers, policymakers, and the public. Integrating regional, epidemiological, and spatial demographic data, the dashboard offers a complete view of the pandemic’s spread and effects in South Korea. This localized approach enables an in-depth understanding of COVID-19 dynamics within the country’s specific public health and societal context.

Global platforms like WHO and JHU provide valuable pandemic data on a global scale, while our ‘K-Track-COVID’ dashboard offers in-depth, temporal analysis specific to South Korea. Additionally, our dashboard enhances the socio-demographic analysis, similar to the COVID-NET approach, by displaying it on an interactive map, thus improving the identification of potential high-risk zones. Unlike other platforms, it integrates simulation models for forecasting, which is essential for proactive public health interventions. It also features hotspot identification similar to the COVID-19 Africa dashboard, with adjustable thresholds for cases or deaths to pinpoint emerging risk areas effectively.

An essential feature of ‘K-Track-Covid’ is its integration of socio-demographic data, enabling the identification of potential hotspots and high-risk zones. By incorporating metrics such as the regional distribution of healthcare resources and age demographics, users can pinpoint areas that may face medical constraints or have higher vulnerability. Utilizing these socio-demographic indicators enhances analytical depth and supports targeted interventions for regions needing immediate resources. Another feature of the dashboard is its applicability for future pandemic prevention, preparedness, and response. The Simulation tab can be adjusted to model various infectious diseases by modifying its parameters. For example, the dashboard could be recalibrated to track and analyze the spread of influenza. This flexibility allows health authorities to adapt our models for different infectious diseases rapidly. Furthermore, the tab uses spatial demographic data from WorldPop, which offers population density information at a 1 km by 1 km resolution, enabling an analysis of disease spread relative to population count.

Despite its contributions, we acknowledge the ‘K-Track-Covid’ dashboard’s limitations. Our current version of ‘K-Track-Covid’ is limited to COVID-19 in South Korea. However, it possesses the potential for broader applications. The dashboard can be adapted to model various infectious diseases by incorporating additional geographical and regional data. This adaptability is illustrated through the Map and Regional Trend tabs, which can be recalibrated for other diseases with the necessary data. Furthermore, with access to international geographical information, ‘K-Track-Covid’ could offer insights on a global scale, enhancing infectious disease management worldwide.

In the future, expanding the ‘K-Track-Covid’ dashboard to include other infectious diseases and broadening its scope to various countries is a promising avenue for research. This extension will enable a comprehensive analysis of disease spread and containment strategies across diverse geographic and demographic contexts. Moreover, by integrating real patient data with the enactment of regional policies, mainly through metrics like the Korea Stringency Index (KSI) (30), the dashboard can provide detailed insights into the effectiveness of various public health strategies. Such analysis is pivotal for refining pandemic preparedness and response, enabling the development of targeted, evidence-based policies. Future research will focus on leveraging the KSI to evaluate the relationship between policy stringency and infection trends, aiming to optimize public health interventions for better disease management and prevention.

In conclusion, ‘K-Track-Covid’ is an innovative tool in epidemiological analysis, offering comprehensive insights into the spread and impact of COVID-19 in South Korea. Its predictive capabilities and user-friendly interface make it an asset for a wide range of stakeholders. By facilitating a deeper understanding of the pandemic’s dynamics, ‘K-Track-Covid’ contributes significantly to informed decision-making in public health. As the global community continues to navigate the challenges of the COVID-19 pandemic and future public health crises, tools like ‘K-Track-Covid’ will be essential in guiding effective and timely responses.
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Modern artificial intelligence (AI) solutions often face challenges due to the “black box” nature of deep learning (DL) models, which limits their transparency and trustworthiness in critical medical applications. In this study, we propose and evaluate a scalable approach based on a transition matrix to enhance the interpretability of DL models in medical signal and image processing by translating complex model decisions into user-friendly and justifiable features for healthcare professionals. The criteria for choosing interpretable features were clearly defined, incorporating clinical guidelines and expert rules to align model outputs with established medical standards. The proposed approach was tested on two medical datasets: electrocardiography (ECG) for arrhythmia detection and magnetic resonance imaging (MRI) for heart disease classification. The performance of the DL models was compared with expert annotations using Cohen’s Kappa coefficient to assess agreement, achieving coefficients of 0.89 for the ECG dataset and 0.80 for the MRI dataset. These results demonstrate strong agreement, underscoring the reliability of the approach in providing accurate, understandable, and justifiable explanations of DL model decisions. The scalability of the approach suggests its potential applicability across various medical domains, enhancing the generalizability and utility of DL models in healthcare while addressing practical challenges and ethical considerations.
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1 Introduction

The rapid development of AI has made it important to explain the decisions made by AI systems, a concept known as explainable artificial intelligence (XAI) (Confalonieri et al., 2020). Within AI, machine learning (ML) encompasses various algorithms and models, including traditional ML methods and DL techniques. DL, a subset of ML, utilizes neural networks with multiple layers to model complex patterns in data. However, DL models often suffer from the “black box” problem, where their internal decision-making processes are not transparent, limiting their trustworthiness in critical applications like healthcare (Hassija et al., 2024).

It is also worth noting that XAI implements the “right to explanation” (Vredenburgh, 2022), that is, the right to have a clear explanation of the result of the algorithm’s work. This right applies to each of us when the algorithm’s decision directly affects a person. Such rights are already being developed, although the general «right to explanation» is still under discussion. In the information society, the “right to explanation” is becoming an extremely important concept, as digital technologies, AI, and ML will continue to be actively applied to solving various problems of human activity (Venkatesan et al., 2023; Longo et al., 2024).

Our study enhances the role of AI in resource distribution and strategic decision-making by making DL model decisions more interpretable for healthcare providers. This interpretability is crucial for effective decision-making and resource management in health crises like the COVID-19 pandemic (Zaoui et al., 2023). Moreover, the paper addresses the ethical, legal, and societal dimensions of AI by emphasizing transparency and trustworthiness in AI applications. The proposed methods ensure that AI decisions are accurate, understandable, and justifiable by establishing clear criteria and metrics. We define “understandable” as the degree to which healthcare professionals can comprehend the model’s decision-making process through interpretable features that are directly related to clinical knowledge. “Justifiable” refers to the model’s ability to provide explanations that are supported by clinical guidelines and empirical evidence. These criteria are quantitatively assessed using statistical metrics such as Cohen’s Kappa coefficient to measure agreement between model explanations and expert annotations, and by evaluating the consistency of the model’s decisions with established medical standards.

In this study, we aim to address the issue of explaining decisions made by AI. Previously, in Radiuk et al. (2024), we proposed an approach to explain the results of a DL model by mapping its decisions to those of a traditional ML model using a transition matrix. This approach requires both a DL model and a corresponding ML model trained on the same data. However, in practice, we often have a DL model without an equivalent ML model. In this case, we cannot apply the specified approach to explaining the decisions made by the DL model.

Therefore, the objective of this study is to apply our approach to the case of medical data processing, where there is no ML model corresponding to the DL model. Instead, we consider a set of features that are understandable to healthcare experts. Using these features, we propose interpreting the decisions obtained by the DL model. To fulfill the study’s goal, it is essential to develop a new scalable visual analytics approach. The scalability of our approach lies in its ability to be applied across different types of medical data and tasks without the need for retraining the DL model or developing new ML models for each case. By utilizing a transition matrix to bridge the DL model’s decision-making with expert-defined features, the method can be adapted to various medical signal and image processing applications. This adaptability allows for efficient extension to new datasets and clinical problems, thereby enhancing its practical utility in diverse healthcare settings. Finally, the main contribution of this work is the scalable approach to explain the results obtained by DL models, based on features understandable to healthcare experts for medical signal and image processing tasks.

The structure of the article is as follows. The following section presents an analysis of the current state of the problem under study. Section 3 describes the proposed scalable approach to presenting decisions made by DL models using features understandable to the physician, given the solution of medical signal and image processing problems. Section 4 presents the results of computational experiments and their interpretation. Finally, Section 5 concludes the results obtained and suggests further directions of this research.



2 State of the arts

In general, it is believed that XAI adheres to three principles: transparency, interpretation, and explanation (Phillips et al., 2021). We can talk about the inherent transparency of XAI if the developer can describe and explain how the model forms and updates parameters from statistical training data and how it makes predictions on new data (Pääkkönen and Ylikoski, 2021). By interpretation of XAI, we mean understanding how the AI model forms its output data and explaining its decisions to people (Räuker et al., 2023). Explanation in XAI is an important concept but without a clear definition. It is believed that AI explanation in a broad sense is a set of features that influenced the decision (i.e., classification or prediction) for a specific case (Notovich et al., 2023). If AI-based approaches meet these requirements, then they are said to provide the basis for justifying decisions, tracking and verifying them, and improving and researching new facts (Kim et al., 2023).

Explainable artificial intelligence issues are especially critical in areas such as medicine, defense, finance, and law, where it is important to understand AI decisions and trust them (Manziuk et al., 2021; Mora-Cantallops et al., 2024). Today there are many approaches that provide decent results in various tasks of such sensitive areas of human activity (Wang and Chung, 2021). In general, DL methods provide better results compared to traditional ML methods for solving problems with heterogeneous data (Krak et al., 2023). In particular, convolutional neural network (CNN) models (Radiuk et al., 2021) are state-of-the-art for computer vision tasks (Smith et al., 2021), and transformer models are state-of-the-art for natural language processing tasks (Khurana et al., 2023). However, as already mentioned, decisions made by DL methods are not always transparent and understandable.

The field of XAI is experiencing significant advancements, particularly in the development of methods to enhance the transparency of AI models in the healthcare domain. Researchers are actively exploring various approaches, including the construction of feature models and the use of manually crafted features to provide clearer explanations of AI decisions. As an example, Bassiouny et al. (2021) present an innovative approach to diagnosing neonatal lung diseases by training an object detection model, faster-RCNN, to identify seven key lung ultrasound features rather than making direct diagnostic predictions. This methodology enhances the interpretability of the results and keeps clinicians in control by providing annotated images to support their diagnostic decisions. The study demonstrates that the model surpasses single-stage detectors like RetinaNet, achieving high mean average precision, thus balancing performance with trustworthiness in medical practice.

In their review, Salahuddin et al. (2022) explore various interpretability methods for deep neural networks in medical image analysis, emphasizing that these methods aim to enhance transparency and trust in AI systems. They highlight that while these interpretability techniques provide valuable insights, they are often approximations and may not fully capture the true decision-making processes of the models, necessitating cautious application in clinical settings. In addition, Chan et al. (2022) developed and compared three ML models to predict long-term mortality in critically ill ventilated patients, finding that boosting algorithms and logistic regression achieved similar performance.

Similarly, Lu et al. (2023) propose a comprehensive workflow that includes a step where medical professionals label differential diagnosis features according to medical guidelines, effectively blacklisting irrelevant features extracted from electronic health records. This approach aims to “reduce workloads of clinicians in human-in-loop data mining” by focusing on feature oversight rather than full prediction, thus enhancing the trustworthiness and efficiency of the AI model.

In Moreno-Sánchez (2023), a heart failure survival prediction model is enhanced by integrating explainable AI techniques, aiming to balance predictive performance and interpretability. This approach provides transparency by explaining feature contributions to predictions, making the model’s decision-making process clearer for clinicians. Consequently, it fosters greater trust and practical adoption in clinical settings.

Pintelas et al. (2023) introduce a novel framework for 3D image recognition that utilizes interpretable features such as lines, vertices, and contours to enhance explainability. This approach is particularly promising for medical imaging, achieving performance comparable to state-of-the-art black-box models while maintaining transparency. However, the development of interpretable methodologies for 3D image segmentation remains an emerging area of research, with most existing techniques originally designed for 2D image classification tasks.

Based on the analysis of existing literature, we identified a lack of clear methodologies for constructing feature models that enhance the interpretability of DL models in medical applications. The primary goal of this study is to enhance the decision-making processes of DL models in processing medical signals and images by introducing a novel scalable approach that translates complex model outputs into interpretable features understandable to healthcare professionals.

The main scientific contributions of this work are:

	• We introduced a new scalable visual analytics approach that utilizes a transition matrix to bridge the DL model’s decision-making with interpretable features defined by experts.
	• Our approach systematically incorporates clinical guidelines and expert rules into the feature selection and model development process.
	• We applied and validated our approach on two distinct medical datasets–ECG signals for arrhythmia detection and MRI scans for heart disease classification–achieving strong agreement with expert annotations (Cohen’s Kappa coefficients of 0.89 and 0.80, respectively).



3 Materials and methods


3.1 Basic approach

In Radiuk et al. (2024), we addressed the problem of explaining decisions made by DL models by establishing a relationship between the features learned by a DL model and those used in a traditional ML model. This idea is illustrated in Figure 1.

[image: Diagram of a data processing workflow. The left section shows input data samples, including medical images, medical signals, and medical text. The middle section represents a training set of labeled samples. The right section depicts models with features, arranged in matrices with columns as features and rows as labeled samples, differentiated by clarity level.]

FIGURE 1
 The basic idea of our approach: The process of converting various medical data types–such as images, signals, and text–into a labeled training dataset, which is subsequently transformed into feature matrices where rows represent labeled samples and columns correspond to extracted features, organized by clarity for model development.


The process described above involves the formation of ML models, which have all the necessary features of understandable AI: transparency, interpretability, and explainability. Otherwise, these features (areas of attention) are formed according to certain algorithms (DL models) and, as a result, are not entirely clear, or not at all clear to the end user.

It is worth noting that there are also intermediate cases when the signs are “in the middle” between the indicated cases, such as:

	• Decomposition of understandable areas of attention into “incomprehensible” signs, both with the possibility of reverse transformation and without such possibility.
	• In addition to features understandable to the public of experts, there may be separate features (or combinations of previously obtained ones) that are understandable to more experienced experts or are based on intuition; here, for each specific case, the community decides whether these cases are transparent or not.

As a result of the above, let us have one training sample and two models with features. One model is built by the DL model, and the other model has features formed by an expert.

Next, we formalize the problem under consideration. We represent the features of the DL model in the form of matrix A of dimension m × k and the features of the other model in the form of matrix B of dimension m × l as follows:

[image: Matrix notation showing matrix A with m rows and k columns, represented by elements \(a^1_1, a^1_2, \ldots, a^1_k\) to \(a^m_1, a^m_2, \ldots, a^m_k\), labeled as equation (1).]

[image: A matrix \( B \) with dimensions \( m \times l \) filled with variable elements \( b \) indexed by row and column. It is designated as equation (2).]

where m is the number of vectors obtained from the training sample during DL model training, k represents the number of features, and l stands for the number of features.

We emphasize once again that the features formalized in formulas (1, 2) are obtained from the same training sample. We also note that in general k can be equal to, less than, or greater than l.

In practical problems that are modeled in this way, that is, in the presence of two mappings for the same objects for different sets of features, it is often necessary to express feature vectors of different dimensions through each other. In other words, consider the problem where for different matrices A and B it is necessary to find such a matrix T that the following equality holds:

[image: Equation in the image shows \( B = TA \) with the number three in parentheses on the right.]

where T is the transition matrix between matrices A and B.

Note that in linear algebra, formula (3) is a usual change of basis of a vector space, and if the condition m = k = l is met, finding matrix T is trivial, that is:

[image: Equation showing T equals B times A to the power of negative one, noted as equation four.]

For the case under consideration, m ≠ k ≠ l, the inverse matrix does not exist, and therefore it is proposed to apply a generalization of the inverse matrix—the pseudo-inverse matrix (Cvetković Ilić and Wei, 2017). We propose to find such a matrix T of dimension k × l, which provides the transition between matrices A and B:

[image: Equation showing "A T approximately equal to B" labeled as equation 5.]

Note that the approximation in formula (5) is established with respect to the Euclidean norm in the feature space of the matrices. It is proposed to find matrix T as follows:

[image: Mathematical expression showing T is approximately equal to A with a superscript plus symbol, B, followed by the number six in parentheses.]

In practice, it is proposed to define [image: Mathematical notation showing the letter "A" followed by a superscript plus sign.] using SVD decomposition (Kalman, 2002), even though other methods are described in Krak et al. (2020):

[image: The equation shows the pseudoinverse \(A^+\) of a matrix \(A\), expressed as \(A^+ = V \Sigma^+ U^T\).]

where [image: Matrix equation showing singular value decomposition: \( A = V \Sigma U^T \).] is the singular value decomposition of matrix A, the matrix [image: Greek letter Sigma with a superscript plus sign.] is formed by transposing the matrix Σ and replacing all its non-zero values of diagonal elements with inverse ones:

[image: Matrix equations for \(\Sigma^+\) and \(D^+\) are shown. \(\Sigma^+\) is expressed as a block matrix with conditions \(m \geq k\) and \(m < k\). \(D^+\) is a diagonal matrix with elements \(\sigma_i^+\), where \(\sigma_i^+\) is defined as \(1/\sigma_i\) if \(\sigma_i > 0\), and \(0\) if \(\sigma_i = 0\).]

Therefore, for an arbitrary row vector of features [image: Lowercase letter "a" with subscript "j" and superscript asterisk.], [image: Mathematical notation of "i equals one to k" with a bar over the letter i.], obtained by the model defined by matrix A, the corresponding row vector of features [image: Mathematical notation showing the variable "b" with a subscript "i" and a superscript asterisk.], [image: Equation displaying "j equals one comma l", with a horizontal line over the letter "l".], by the model defined by matrix B, is determined using the obtained transition matrix T as follows:

[image: The equation is: b sub i star equals a sub j star T. The indices i equals one to k, and j equals one to l. The equation is labeled as number eight.]

The approach described above by formulas (1–8) somehow correlates with approximation, that is, the description by one function, even given in tabular form, of a given form of another function, perhaps also in tabular form.

There are several approaches to data approximation. One of them consists in approximating a complex function with a simpler function, which is used for all tabular values, but it is not necessary that it passes through all points. This approach is also called curve fitting, which is sought to be carried out so that its deviation from the tabular data is minimal. The authors propose to use the transition matrix T according to formula (4) between two feature models, presented in the form of matrices, for the same set of input data as such a function.

Figure 2 briefly shows the main steps of the basic approach, first proposed in Radiuk et al. (2024) to obtaining the transition matrix T.

[image: Flowchart illustrating a process from input to output. Input includes Matrices A and B. The process involves three steps: Step 1 is analysis by visual analytics, Step 2 is the definition of matrix A⁺, and Step 3 is the definition of matrix T. The output is matrix T for interpreting the results of the deep learning model as human-expert features.]

FIGURE 2
 Diagram of the basic approach to derive the transition matrix T from input matrices A and B, involving three main steps: visual analytics of the matrices, defining matrix A+, and establishing matrix T, which serves to interpret DL model outputs in terms of human-expert features.


First, we extract two matrices, A from the DL model and B from the ML model, both representing the same data samples.

	Step 1: Use a visual analytics tool, either Principal Component Analysis (PCA) by Pearson (1901), or t-distributed Stochastic Neighbor Embedding (t-SNE) by Hinton and Roweis (2002), to map these high-dimensional feature vectors onto a two-dimensional plane.
	A dimensionality reduction technique is aimed at preserving the local structure of the data and reveal clusters, allowing us to visually compare the feature vectors from the DL model and the interpretable feature set. By ensuring their relative positions match across models, we facilitate the accurate computation of the transition matrix T.

Step 2: Compute the pseudo-inverse matrix [image: Letter "A" with a superscript plus sign.].

Step 3: Calculate the transition matrix T.

Finally, use matrix T to translate DL results into features understandable by the ML model.



3.2 The proposed scalable approach

To overcome the absence of a corresponding ML model, we propose a scalable approach that constructs matrix B using expert-defined interpretable features. This approach allows us to apply the transition matrix method to enhance the interpretability of DL models.

The proposed scalable approach is aimed at simplifying complex, hard-to-understand features from a DL model into a more user-friendly form, making the results easier to interpret. The extracted feature vector, which is the penultimate layer in a DL model, is transformed using a transition matrix T by formula (6) to produce results that are understandable to the end user.

Suppose there is an expert in the subject area of the problem under consideration (i.e., the end-user) who compiles an exhaustive list of features by which they determine the belonging of an object to a particular class. Further, for each feature from the list of features, the expert indicates the numerical intervals into which the value of the feature should fall for the classes under consideration. Finally, for each instance (object) from the training dataset, the value of each feature is calculated.

The values of features can be determined in several ways, namely:

	• Empirically, using the expert’s knowledge of the subject area of the problem under consideration.
	• Using formulas or statistical indicators that are understandable to the end user.
	• By visual representation (in various ways) of a fragment of a signal or image, in comparison with similar fragments from labeled training data.
	• Utilizing visual analytics.
	• Using ML models specially built for this case.
	• Using DL models specially built for this case.

The selection of interpretable features is guided by the following criteria:

• Clinical relevance: Features must be directly related to clinical indicators that healthcare professionals use for diagnosis and treatment decisions.

• Measurability: Features should be quantifiable using available tools or methods, ensuring consistent measurement across different samples.

• Distinctiveness: Selected features should provide unique information about the data, minimizing redundancy and multicollinearity.

• Expert Consensus: Features should be agreed upon by a panel of experts to reflect standard clinical understanding and practices.

Figure 3 shows the main steps of the method for constructing matrix B, according to the proposed scalable approach.

[image: Flowchart illustrating a five-step process from input to output. The input is a dataset. The process steps include: Step 1, compilation of a feature list; Step 2, definition of numerical intervals; Step 3, definition of techniques to obtain features; Step 4, validation of feature selection; Step 5, construction of matrix B. The output is matrix B.]

FIGURE 3
 Diagram that outlines the proposed sequential approach to constructing matrix B from an initial dataset, through steps including compiling a feature list, defining numerical intervals, selecting techniques to extract features, validating feature selection, and ultimately constructing matrix B based on the defined transition matrix from the deep learning model to the feature model.


Below we provide the following steps to build matrix B.

Input information: An expert panel in the subject area of the problem under consideration and the dataset on which the DL model was trained.

Step 1: Compilation of feature list. An expert panel comprising cardiologists and medical imaging specialists compiles a comprehensive list of interpretable features based on clinical guidelines, literature, and diagnostic practices. The goal is to cover all relevant aspects that could influence the classification while ensuring the features meet the criteria above.

Step 2: Definition of numerical intervals. For each feature, the experts define numerical intervals that correspond to different classes or pathological conditions. These intervals are based on clinical thresholds and empirical data, providing a clear delineation between classes.

Step 3: Definition of techniques to obtain features. We establish standardized methods for quantifying each feature:

	• Direct measurement: Using signal processing techniques or image analysis tools to extract quantitative values from the data.
	• Computational algorithms: Applying validated algorithms (e.g., peak detection algorithms for ECG) to automate feature extraction.
	• Statistical analysis: Employing statistical methods to calculate features such as mean values, variances, and ratios that are clinically significant.

Step 4: Validation of feature selection. The selected features undergo validation to ensure reliability and consistency:

• Pilot testing: Features are tested on a subset of the data to assess their discriminative power and measurement consistency.

• Inter-rater reliability: Multiple experts independently measure the features on the same samples to calculate agreement levels, using statistical metrics.

	• Refinement: Based on validation results, features may be refined, or additional features may be included to enhance interpretability and accuracy.

Step 5: Construction of matrix B. Using the validated methods, we extract feature values for each sample in the training set, forming matrix B. This matrix represents the data in terms of interpretable features aligned with expert understanding.

Output information: Matrix B.

It should be also noted that the scalability within the proposed scalable approach refers to the following characteristics:

	• Adaptability to various medical domains: The method can be efficiently extended to different types of medical data and DL models without substantial changes to the core methodology.
	• Ease of integration with expert-defined features: By utilizing a transition matrix and mapping DL outputs to interpretable features, the approach can be applied across different clinical problems with minimal adjustments.



3.3 Evaluation criterion

In this work, Cohen’s Kappa coefficient (κ) is used to evaluate the quality of the proposed approach. The κ coefficient is a reliable statistical indicator for evaluating inter-expert reliability for qualitative (categorical) elements. It quantifies the level of agreement between two experts beyond chance.

The formula for Cohen’s Kappa coefficient κ is as follows:

[image: Equation for kappa (κ) is depicted as kappa equals (P subscript o minus P subscript e) divided by (1 minus P subscript e), labeled as equation 9.]

where [image: The image shows the letter "P" with a subscript "o" in a mathematical or scientific context.] is the level of observed (empirical) agreement between two experts, and [image: It seems there was an error with displaying the image. Could you please upload the image again or provide a URL to the image?] is the level of expected (calculated) agreement between the same experts.

For the problem of binary classification of medical signals and/or images with a confusion matrix consisting of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), the elements of formula (9) have the following form:

[image: Equation showing the calculation for observed proportion \( P_o \), which is the sum of true positives (TP) and true negatives (TN) divided by the sum of true positives, false positives (FP), true negatives, and false negatives (FN).]

[image: Equation representing \( P_e \), probability of error, as \(\frac{{(TP + FP) \times (TP + FN) + (TN + FN) \times (TN + FP)}}{{(TP + FP + TN + FN)^2}}\), labeled as equation 11.]

In formula (10), [image: Mathematical notation showing the letter "P" with a subscript "o" in a stylized font.] is the proportion of cases in which the DL model and the human expert come to a consistent decision. Instead, in formula (11), [image: Mathematical expression showing the letter "P" with a subscript "e."] is calculated based on the marginal sum values of the decisions of the two experts.

The value of the κ coefficient according to formula (9) is in the range [−1;1], where 1 denotes perfect agreement, 0 stands for no agreement, and negative values reflect less agreement than expected by chance.




4 Results and discussion

Experimental evaluation of the proposed scalable approach was performed by solving two problems with DL models:

	• ECG analysis: Utilized a deep CNN based on the architecture proposed by Kovalchuk et al. (2024).
	• MRI analysis: Employed another deep CNN with a U-Net architecture for image segmentation and classification as described in Slobodzian et al. (2023).

Next, we present the results and discussion of the application of the proposed approach to explaining the decisions made by DL models.


4.1 Detection of pathologies of heart activity based on ECG

The proposed approach was validated by the constructed [image: Text "DL" with subscript "ECG" styled in italics.] model for the problem of detecting pathologies of heart activity (arrhythmias) based on ECG in Kovalchuk et al. (2024). Below we describe the training dataset, the [image: The text "DL" is followed by a subscript "ECG" in a serif font.] model, and the set of features that explained the decisions and results of the proposed approach (the value of κ).


4.1.1 Training dataset and DL model

The problem of detecting pathologies of heart activity (arrhythmias) based on ECG was solved using the reference dataset MIT-BIH Arrhythmia Database (MIT-BIH) (Moody and Mark, 2005). The training of the [image: Text displaying "DL_ECG" in a stylized font, with "ECG" slightly smaller and positioned as a subscript to "DL".] model was performed on 80% of the data from MIT-BIH. Given the annotations of the MIT-BIH set, the following classes/pathologies were selected for the classification problem:

	• Normal beat.
	• Premature ventricular contraction.
	• Paced beat.
	• Right bundle branch block beat.
	• Left bundle branch block beat.
	• Atrial premature beat.
	• Fusion of ventricular and normal beat.
	• Fusion of paced and normal beat.
	• Others.

Input information for training and testing the [image: Text displaying "DL" with subscript "ECG" in a serif font style.] model is presented as a triad of cardiac cycles—in the center is the main cardiac cycle, to which the previous and next cardiac cycles were added (Figure 4).

[image: Graph showing two electrocardiogram (ECG) traces labeled (a) and (b), both with multiple waveforms. Trace (a) features taller peaks and smoother curves, while trace (b) has irregular peaks with varying intervals.]

FIGURE 4
 This figure presents an ECG signal fragment displaying a triad of cardiac cycles, where panel (A) illustrates a heterogeneous appearance of the R peak, while panel (B) shows a homogeneous expression of the R peak across cycles.


In this work, the [image: Text showing the letters "DL" and "ECG" in subscript font format.] model was created based on the modified architecture from Kovalchuk et al. (2024). The classification accuracy for the training set was 99.95%, for the test set—99.13%.

The penultimate layer of the [image: Text showing "DL" in regular font size followed by "ECG" in subscript.] model contained 8,192 neurons, and the number of samples in the training sample was 52,180. Accordingly, the size of the [image: Italicized uppercase letter "A" with the subscript "ECG."] matrix was [image: The text "m subscript ECG" is shown in italics.] = 52,180—the number of objects from the training subsample of the MIT-BH dataset, [image: The image shows the mathematical notation \( k_{ECG} \).] = 8,192—the number of features formed by the [image: Text showing "DL" in regular font followed by "ECG" in italicized font.] model.



4.1.2 Features on ECG for explanation

For the experiment, we focused on detecting PVCs or Ventricular Extrasystole as defined by established clinical guidelines, such as the American Heart Association’s recommendations on ECG interpretation. Cardiologists integrated these guidelines to identify key ECG features for PVC detection, applying expert rules to enhance model explanations and performance:

	1. Absence of the P wave:

• Integration of clinical guidelines: According to clinical standards, the absence of a P wave preceding a QRS complex suggests ectopic ventricular activity, characteristic of PVCs.

• Expert rules applied: If the P wave is absent or not temporally associated with the QRS complex, it indicates a PVC.

• Method of measurement: Used the NeuroKit2 toolkit (Makowski et al., 2021) to detect P wave presence, ensuring compliance with guidelines for accurate P wave identification.

	1. Expanded and deformed QRS complex:

	• Integration of clinical guidelines: Clinical guidelines state that PVCs present with widened (≥120 ms) and abnormally shaped QRS complexes due to aberrant conduction pathways.
	• Expert rules applied: A QRS duration exceeding 120 ms with atypical morphology is indicative of a PVC.
	• Method of measurement: Employed a shallow neural network trained on data annotated per these guidelines to detect QRS abnormalities.

1. Full compensatory pause:

• Integration of clinical guidelines: A full compensatory pause following a PVC is a diagnostic criterion, where the sum of the pre-and post-PVC RR intervals equals twice the normal RR interval.

• Expert rules applied: Applied the rule that [image: The equation shows "RR sub prev plus RR sub next is approximately equal to 2 times RR sub n."], within a clinically acceptable tolerance.

	• Method of measurement: Calculated RR intervals using NeuroKit2, adhering to guidelines for RR interval measurement. In the following subsection, we provide a detailed description of the measurement process.

By integrating clinical guidelines and expert rules into feature selection and measurement, we enhanced the model’s explanations and performance, aligning the DL model’s outputs with clinical practice.



4.1.3 Statistical analysis for ECG classification

Given the significant amount of training and the significant time of experts regarding filling in the values of features, non-empirical methods of determining the value of features were used in this work.

For the “Absent P peak” feature, PCA was used. The application of PCA and the reduction of data dimension to 3 made it possible to make sure that the signal fragment with the presence and absence of P peaks is separate. Given this, the presence/absence of the P peak was determined using the Neurokit2.

Visualization of dimensionality reduction by PCA for the “Absent P peak” feature is shown in Figure 5.

[image: A 3D scatter plot showing clusters of red and blue data points. The axes represent three principal components labeled as Principal Component 1, Principal Component 2, and Principal Component 3. Blue points are densely clustered with red points interspersed, indicating two overlapping distributions.]

FIGURE 5
 The results of applying PCA to classify data based on the “Absent P peak” feature, showing data points distributed across three principal components for visualization of feature separation.


For the “Expanded and deformed QRS complex” feature, due to the complexity of its detection by other methods, it is proposed to use a specially trained neural network.

The “Full compensatory pause” feature. A compensatory pause is the time elapsed after an extrasystole until the occurrence of a normal contraction. Therefore, in the case when the extrasystole is located between other extrasystoles, this calculation is not performed and is calculated only for the last case of extrasystole in the sequence.

The presence or absence of this feature was checked as follows:

	• Using the Neurokit2 package, the average RR interval between normal cardiac cycles ([image: Mathematical notation showing "RR" with a subscript "n".]) was determined.
	• The interval between the R peak with extrasystole and the R peak of the previous cycle ([image: Text showing "RR" with "prev" in subscript.]) was determined.
	• The interval between the R peak with extrasystole and the R peak of the next normal cycle ([image: Stylized text showing "RR" with "next" in subscript.]t) was determined.

A full compensatory pause was determined under the following conditions:

[image: Equation showing RR subscript prev plus RR subscript next equals two times RR subscript n, followed by two times RR subscript n minus the sum of RR subscript prev and RR subscript next is less than tolerance.]

According to the above rules, the values of features were determined for each sample from the training set, and, in this way, matrix B was obtained. Further, according to formula (6), the transition matrix T was determined.

Coefficient [image: The text shows the Greek letter kappa, denoted by the symbol "κ", with a subscript "1".] was calculated to evaluate the agreement between the class annotations in the test set and the class predictions made by the [image: The text "DL" is in regular font, followed by "ECG" in a smaller subscript style.] model. Coefficient [image: The image shows the Greek letter kappa followed by the number two, with the two appearing as a subscript.]was calculated to determine the agreement between the class annotations obtained by the [image: Text displaying "DL" in normal font and "ECG" in subscript.] model and those obtained by the approximated feature values.

The resulting [image: The image shows a stylized letter "K" with a subscript "1".] was 0.98. To assess the precision of this estimate, a 95% confidence interval (CI) was computed, resulting in a CI of 0.96–1.00. Additionally, the associated p value was calculated to be <0.001, indicating that the observed agreement is highly unlikely to be due to chance. The high [image: The image displays a mathematical symbol, kappa subscript one (\(\kappa_1\)), indicating the first element or component in a series in mathematical or scientific notation.] value, combined with the narrow confidence interval, signifies an almost perfect agreement between the expert annotations and the [image: Text reading "DL" with "ECG" in subscript.] model’s predictions. This strong agreement is further supported by the p value, which confirms the statistical significance of the result.

The resulting [image: Greek letter kappa with a subscript two.] was 0.89, with a 95% CI of 0.85–0.93, and a p value of <0.001. This [image: Greek letter kappa with a subscript two in a small font size.] value indicates a strong agreement between the model’s predictions and the approximated feature-based annotations, although it is slightly lower than [image: The image shows the mathematical symbol K subscript 1.]. The slightly broader confidence interval reflects a bit more variability in the agreement, which could be attributed to the approximation process. Nonetheless, the p value still indicates that this agreement is highly significant, and the [image: The Greek letter kappa followed by the subscript number two.] value demonstrates that the expert’s features can reliably replicate the decisions made by the [image: Text shows "DL" in bold followed by "ECG" in smaller italicized font.] model.

The comparison between [image: The image shows the mathematical symbol "k" with a subscript "1" indicating a specific variable or constant in a formula or equation.] and [image: Italicized lowercase k followed by the subscript number two.], along with their respective confidence intervals and p-values, provide a comprehensive understanding of the model’s performance. The high [image: The text shows the Greek letter kappa with a subscript one.] value, coupled with a narrow confidence interval and a significant p-value, confirms the [image: Text showing "DL" followed by the subscript "ECG" in a serif font.] model’s capability to accurately classify ECG in alignment with expert annotations. The slightly lower, yet still strong, [image: Mathematical notation showing the Greek letter kappa with a subscript of two.] value suggests that while the approximated feature values can effectively mirror the model’s decisions, there is a slight decrease in agreement, which may warrant further investigation into the approximation methods, or the features used.




4.2 Detection of pathologies of heart activity based on MRI

The proposed scalable approach was also validated by the [image: Stylized text with "DL" in regular font and "MRI" in subscript italics.] model for the problem of detecting pathologies of heart activity based on MRIs (Slobodzian et al., 2023).

Next, we briefly describe the training dataset of MRIs, the [image: Text with "DL" in regular font followed by "MRI" in subscript and italics.] model, the set of features that explained the decisions, and the results of the proposed approach (the value of κ).


4.2.1 Training dataset and DL model

For the problem of detecting pathologies of heart activity based on MRIs, a modified dataset of the Automatic Cardiac Diagnosis Challenge (ACDC) (Bernard et al., 2018) was used. Samples of the ACDC set of 100 and 50 patients were used for training and testing the network, respectively. Given the annotations to the ACDC set, the following classes/pathologies were selected for classification:

	• Normal condition.
	• Dilated cardiomyopathy (DCM).
	• Hypertrophic cardiomyopathy (HCM).
	• Myocarditis (MINF).
	• Arrhythmogenic right ventricular cardiomyopathy (ARV).

An example of presenting input data to the DL model according to the ACDC dataset is illustrated in Figure 6.

[image: Two 3D renderings display layered structures with disks arranged in stacks. Image (a) shows disks in blue and green with some red sections. Image (b) presents a similar structure with more pronounced red areas. Both illustrations likely depict variations in a scientific or data-driven context.]

FIGURE 6
 A 3D visualization of segmented MRI data prepared for classification, with images from the ES phase in panel (A) and the ED phase in panel (B), while preserving MRI signal intensity values across layers for enhanced phase differentiation.


The [image: Text "DL" with subscript "MRI" in a serif font.] model was created based on the modified architecture from Slobodzian et al. (2023). The classification accuracy for the test set of MRIs was over 96.5%. The size of the [image: Italicized mathematical notation displaying the variable "A" with a subscript "MRI".] matrix was [image: The text displays "m" in italic font followed by "MRI" in subscript.] = 100 – the number of objects from the training subsample of the ACDC dataset, [image: Text rendering of a mathematical expression: \( k_{\text{MRI}} \).] = 1,024 – the number of features formed by the [image: The image contains the text "DL" in uppercase, followed by "MRI" in a smaller subscript font style.] model.



4.2.2 Features in MRI for explanation

For the classification task, 20 features were considered. At the same time, according to the features of identifying pathologies identified by the doctor, the following set of geometric features was formed for further classification:

• The ratio of the volume of the left ventricle to the volume of the right ventricle at the end of systole.

	• The volume of the left ventricle at the end of the systole.
	• The ratio of the volume of the left ventricle to the volume of the right ventricle at end-diastole.
	• The volume of the left ventricle at end-diastole.
	• The volume of the right ventricle at end-systole.
	• The volume of the right ventricle at end-diastole.
	• Ejection fraction of the left ventricle.
	• Ejection fraction of the right ventricle.
	• The ratio of myocardial volume to left ventricular volume at the end of systole.
	• Myocardial mass at the end of diastole.
	• Myocardial volume at the end of systole.
	• The ratio of myocardial mass to left ventricular volume at the end of diastole.
	• Maximum average myocardial wall thickness at end-diastole.
	• Maximum average myocardial wall thickness at end systole.
	• Mean standard deviation of myocardial wall thickness at end-systole.
	• Mean standard deviation of myocardial wall thickness at end-diastole.
	• Standard deviation of the standard deviation of myocardial wall thickness at end-diastole.
	• Standard deviation of the standard deviation of myocardial wall thickness at end-systole.
	• Standard deviation of mean myocardial wall thickness at end-diastole.
	• Standard deviation of mean myocardial wall thickness at end-systole.

For the interpretation task, we utilized 20 features selected based on clinical guidelines for diagnosing DCM, such as those provided by the American College of Cardiology and the European Society of Cardiology. Cardiologists integrated these guidelines and applied expert rules to identify key geometric features, enhancing model explanations and performance:

	1. Left ventricular end-diastolic volume (LVEDV):

• Integration of Clinical Guidelines: Elevated LVEDV is a primary diagnostic criterion for DCM according to clinical guidelines.

• Expert Rules Applied: An LVEDV exceeding clinically established thresholds, adjusted for body surface area, indicates DCM.

• Method of Measurement: Calculated LVEDV from segmented MRI images using volumetric analysis, following standardized protocols.

	1. Left ventricular ejection fraction (LVEF):

• Integration of Clinical Guidelines: Reduced LVEF (<45%) is a key indicator of systolic dysfunction in DCM patients.

• Expert Rules Applied: An LVEF below clinical thresholds signifies impaired cardiac function consistent with DCM.

• Method of Measurement: Derived from LVEDV and end-systolic volume (LVESV) using the formula:

[image: Formula showing LVEF equals left ventricular end-diastolic volume minus left ventricular end-systolic volume over left ventricular end-diastolic volume, multiplied by one hundred percent.]

	1. Myocardial mass at end-diastole:

• Integration of Clinical Guidelines: Changes in myocardial mass are significant in DCM diagnosis, as per clinical standards.

• Expert Rules Applied: Increased myocardial mass beyond normal ranges for a given body size indicates pathological remodeling associated with DCM.

• Method of Measurement: Estimated myocardial mass using standardized techniques, ensuring compliance with clinical measurement guidelines.

By incorporating clinical guidelines and expert rules into the feature selection and quantification process, we ensured that the features are clinically meaningful, thereby enhancing the interpretability and performance of the [image: Text showing "DL" written in regular font with "MRI" as a subscript.] model.



4.2.3 Statistical analysis for MRI classification

For further experiments, the DCM class was chosen. Since the volume of the training set was small, it did not take much time for experts to fill in the values of features. Cardiologists as experts determined the values of features for each sample from the training set and, in this way, matrix B was formed. Further, according to formula (6), the transition matrix T was determined.

For each object from the test set, the values of features were approximated according to formula (8). Subsequently, two key values of κ were also calculated to assess the agreement between the predictions [image: Text displaying "DL" with the subscript "MRI".] of and the expert annotations. These κ values provide a quantitative measure of the reliability and consistency of the [image: The text reads "DL" with a subscript "MRI".] model’s performance, and they were computed using formula (9).

Coefficient [image: The image displays the Greek letter kappa in lowercase, followed by a subscript number one.] was calculated to evaluate the agreement between the class annotations in the test set and the classifications made by the [image: Text displaying the letters "DL" with "MRI" as a subscript.] model.

Coefficient [image: The image shows the Greek letter kappa in lowercase, followed by the subscript number two.] was calculated to determine the agreement between the class annotations obtained by the [image: The text "DL" followed by "MRI" in subscript font style.] model and those obtained through the approximated feature values.

The resulting [image: Mathematical notation of the Greek letter "Kappa" with a subscript one.] value was 0.87, indicating a very good level of agreement. To further substantiate this finding, a 95% confidence interval was computed, yielding a range of 0.83–0.91. Additionally, the associated p-value was determined to be <0.001, confirming the statistical significance of this agreement. The relatively narrow confidence interval suggests that the [image: Greek letter kappa with a subscript one.] value is a stable estimate, and the low p-value strongly supports that the observed agreement is unlikely due to random chance. This high [image: Mathematical notation for K subscript 1.] value aligns well with the model’s overall performance, highlighting the [image: Text "DL" followed by the subscript "MRI".] model’s robust capability in accurately classifying MRI data per expert labels.

The resulting [image: Mathematical notation displaying the Greek letter kappa followed by a subscript two.] value was 0.80, with a 95% confidence interval of 0.76–0.84, and a p value of <0.001. This [image: Greek letter kappa followed by a subscript two.] value indicates a significant match, though slightly lower than [image: The symbol "K" with a subscript "1" indicating a variable or notation often used in mathematics or science to denote a constant or specific parameter.], reflecting a strong agreement but with slightly more variability. The broader confidence interval compared to [image: The image shows the mathematical notation "K" with a subscript "1".] suggests some degree of uncertainty, possibly arising from the approximation process or the inherent variability in the feature values. Nonetheless, the significant p value still confirms that this agreement is meaningful and not due to random variation.

The comparison between [image: The image shows the lowercase Greek letter kappa with a subscript one.] and [image: Lowercase Greek letter kappa followed by the subscript number two.], along with their respective confidence intervals and p-values, provides a detailed insight into the [image: Text "DL" with a subscript "MRI".] model’s performance and the reliability of the feature approximation approach. The [image: Mathematical symbol consisting of the Greek letter kappa followed by a subscript numeral two.] value of 0.87, with a narrow confidence interval and a highly significant p-value, underscores the strong alignment between the model’s predictions and expert annotations. Meanwhile, the slightly lower [image: The lowercase Greek letter kappa followed by the subscript number two.] value of 0.80 suggests that while the approximation method is effective, there is a minor decrease in agreement that could be attributed to the complexity of the MRI data or the approximation method itself.

Overall, the inclusion of these detailed statistical indicators, i.e., κ values, confidence intervals, and p values, adds robustness to the analysis, strengthening the reliability and validity of both [image: Text showing "DL" with subscript "MRI."] and [image: Text reading "DL" with a subscript "ECG" in italicized font.] model’s performance and the transparency of the proposed scalable approach.




4.3 Discussion and limitations of the proposed scalable approach

While the proposed scalable visual analytics approach has demonstrated high reliability and enhanced interpretability by showing strong agreement between the [image: Text reading "DL" with the subscript "ECG" in a serif font.] and [image: DL with subscript MRI is shown, suggesting a notation or acronym likely related to deep learning applications in MRI technology.] models and expert annotations, several practical challenges and limitations must be acknowledged when considering real-world healthcare applications.

Firstly, the heterogeneity inherent in real-world healthcare settings presents a significant limitation. Diverse patient populations, varying data quality, and differing clinical protocols across institutions can affect the generalizability and robustness of the model. Implementing the approach across multiple institutions may be challenging due to inconsistencies in data formats, acquisition techniques, and labeling standards. This diversity can lead to models that are tailored to specific datasets and may not perform effectively on unseen data from different sources or populations. Variations in patient demographics and disease prevalence can also impact on the model’s ability to generalize, potentially limiting its clinical utility. Addressing this drawback requires extensive validation and potential customization for each setting, which can be resource-intensive.

Secondly, integrating the proposed method into existing clinical workflows poses practical challenges. The approach requires careful planning to ensure it does not disrupt standard practices or burden healthcare professionals. Clinicians may need additional training to interpret the model outputs effectively, and the time required to compute interpretable features and generate explanations must be minimized to be practical in fast-paced clinical environments. This limitation could hinder the adoption of the approach, as any increase in workload or decrease in efficiency is a significant drawback in clinical settings where time and resources are limited. Future research should focus on streamlining the computation processes and developing user-friendly interfaces to facilitate seamless integration.

Data privacy and security concerns present another critical limitation. Utilizing patient data for model training and feature extraction raises significant privacy issues, and ensuring compliance with regulations such as HIPAA (Modifications to the HIPAA Privacy, Security, Enforcement, and Breach Notification Rules, 2013) or GDPR (European Parliament and Council of the European Union, 2016) is essential. There is a risk that the transparency provided by the approach may inadvertently reveal sensitive information or biases present in the data. This limitation is a significant drawback because it can lead to ethical and legal consequences if patient confidentiality is compromised. Implementing secure data handling protocols, anonymization techniques, and establishing ethical guidelines for the use of AI-generated explanations are necessary steps to mitigate these concerns.

The reliance on expert-defined features introduces potential biases and inconsistencies, which is another notable limitation. Creating a comprehensive and universally accepted list of interpretable features is challenging, as experts may have differing opinions on which features are most relevant. This subjectivity can lead to models that only partially capture the diversity of clinical presentations and may overlook subtle but significant patterns present in the data. Additionally, features may exhibit high multicollinearity, where multiple features are correlated with each other, reducing the clarity and effectiveness of the model’s explanations. This limitation can result in oversimplified diagnoses and potentially unreliable model explanations, which is a drawback for clinical decision-making. To resolve this, future research should incorporate data-driven feature selection methods alongside expert input, such as PCA, t-SNE or mutual information techniques, to identify relevant features that enhance the model’s robustness.

Consistency in determining numerical feature values is also a limitation. Experts may struggle to quantify features invariably, especially those requiring subjective assessment or intricate measurement protocols. This inconsistency can introduce variability into the training data, leading to potentially unreliable model explanations and affecting the model’s performance on new data. This is a drawback because it reduces trust in the system’s outputs and can hinder clinical adoption. Developing clear guidelines and automated measurement tools can reduce variability in feature quantification. Leveraging objective, reproducible measurement techniques minimizes reliance on subjective assessments, enhancing consistency across diverse users and settings.

The inherent complexity of DL models poses challenges for interpretability, despite using the transition matrix approach. High-dimensional feature spaces and nonlinear relationships make it challenging to interpret how input data influences the model’s predictions fully. This complexity can hinder the ability to provide clear and actionable explanations to healthcare professionals, which is a significant drawback since interpretability is crucial for trust and acceptance in clinical practice. Utilizing model-agnostic interpretability tools, such as SHapley Additive exPlanations (SHAP) values or Local Interpretable Model-agnostic Explanations (LIME), can provide insights into model predictions even in complex models. Simplifying model architectures where possible and focusing on key features can make interpretations more accessible to clinicians.

Finally, the scalability of our approach suggests its potential applicability to a wide range of medical domains beyond ECG and MRI analysis. By mapping complex DL model outputs to interpretable features defined by experts, the method can be adapted to other types of medical data, such as histopathology images, genomic data, or medical text analysis. For instance, in histopathology, features like cell morphology, tissue patterns, and staining intensities could be used to explain DL models classifying cancer subtypes. In genomics, gene expression levels, mutation frequencies, or pathway activations might serve a similar purpose. Moreover, the approach could help interpret DL models processing clinical notes in medical text analysis by linking model outputs to medically relevant terms and concepts.

Addressing these limitations requires a multidisciplinary effort involving clinicians, data scientists, ethicists, and policymakers. We can enhance the model’s robustness and interpretability by incorporating data-driven feature selection methods alongside expert input, implementing regularization techniques, and utilizing model-agnostic interpretability tools. Developing clear guidelines and automated tools for consistent feature quantification will improve reliability. Establishing ethical frameworks and ensuring compliance with data privacy regulations will mitigate legal and ethical concerns. Enhancing the scalability and generalization of the approach through flexible frameworks and adaptation techniques is essential for its practical implementation. Future research should focus on these areas to overcome the identified drawbacks and facilitate broader implementation of the approach in real-world healthcare applications.




5 Conclusion

In this study, we introduced a scalable approach designed to make DL model decisions more explainable by mapping them to interpretable features defined by healthcare experts. The criteria for selecting these features were clearly established, integrating clinical guidelines and expert rules to ensure that the features are clinically relevant, measurable, distinctive, and agreed upon by professionals. The approach was rigorously tested on two distinct medical datasets: ECG signals for detecting arrhythmias and MRI scans for classifying heart diseases. The DL models achieved Cohen’s Kappa coefficients of 0.89 for the ECG and 0.80 for the MRI datasets, demonstrating strong agreement with expert annotations. These results underscore the reliability of the proposed method in providing accurate, understandable, and justifiable explanations of DL model decisions.

Addressing potential limitations, our approach acknowledges the challenges of feature selection biases, generalization to unseen data, and interpretability in complex models. By incorporating data-driven feature selection methods alongside expert input–such as PCA, t-SNE or mutual information techniques–we can reduce biases and enhance the model’s robustness. Implementing regularization techniques, cross-validation, and testing on external datasets can improve generalizability. Utilizing model-agnostic interpretability tools like SHAP values or LIME can provide insights even in complex models, making interpretations more accessible to clinicians.

Overall, our scalable approach enhances the interpretability of DL models in medical applications by providing accurate, understandable, and justifiable explanations according to established medical standards. This positions the method as a valuable tool for integrating AI into diverse areas of healthcare, potentially improving diagnostics, treatment planning, and patient outcomes across various specialties while addressing practical challenges and ethical considerations.

Future work should focus on integrating clinical guidelines and expert rules more systematically into the feature selection and model development process. This integration will enhance model explanations and performance by ensuring that the features and model outputs align with established medical standards. Moreover, improving the feature selection process through standardized and automated methods, along with enhancing the scalability of the approach for adaptation to various medical datasets and clinical environments, will further strengthen the utility and applicability of the method in real-world healthcare settings.
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In 2019, COVID-19 began one of the greatest public health challenges in history, reaching pandemic status the following year. Systems capable of predicting individuals at higher risk of progressing to severe forms of the disease could optimize the allocation and direction of resources. In this work, we evaluated the performance of different Machine Learning algorithms when predicting clinical outcomes of patients hospitalized with COVID-19, using clinical data from hospital admission alone. This data was collected during a prospective, multicenter cohort that followed patients with respiratory syndrome during the pandemic. We aimed to predict which patients would present mild cases of COVID-19 and which would develop severe cases. Severe cases were defined as those requiring access to the Intensive Care Unit, endotracheal intubation, or even progressing to death. The system achieved an accuracy of 80%, with Area Under Receiver Operating Characteristic Curve (AUC) of 91%, Positive Predictive Value of 87% and Negative Predictive Value of 82%. Considering that only data from hospital admission was used, and that this data came from low-cost clinical examination and laboratory testing, the low false positive rate and acceptable accuracy observed shows that it is feasible to implement prediction systems based on artificial intelligence as an effective triage method.
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1 Introduction

Initiated in 2019, Coronavirus Disease (or COVID-19), a respiratory infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly spread worldwide, reaching pandemic status as early as March 2020 (Sott et al., 2022; Mohamed et al., 2020). According to the World Health Organization (WHO), by October 4, 2023, there were already 771,151,224 confirmed cases and 6,960,783 deaths globally (World Health Organization, 2023). COVID-19 is primarily characterized by pneumonia symptoms, including fever, fatigue, and dry cough. However, other symptoms such as gastrointestinal alterations, anosmia, or even ophthalmological changes can also be observed (Luo et al., 2022). Severe cases require intensive care, with the need for endotracheal intubation and mechanical ventilation, leading to death in extreme cases (Luo et al., 2022; Ou et al., 2020; Martono and Mulyanti, 2023; Fang et al., 2020).

The rapid increase in infection numbers highlighted the unpreparedness of healthcare systems, affecting even developed countries. There were shortages of qualified professionals (Buonsenso et al., 2021; Yoshioka-Maeda et al., 2020), medications (Kanji et al., 2020), equipment (Sandhu et al., 2022), and reagents for laboratory tests (Brinati et al., 2020; Arpaci et al., 2021). To address resource deficiencies, new strategies emerged, including changes in management approaches (Sott et al., 2022; Mohamed et al., 2020; Buonsenso et al., 2021; Yoshioka-Maeda et al., 2020), vaccine distribution (Mohamed et al., 2022), and the development of alternative techniques for treatments and diagnostics (Kanji et al., 2020; Brinati et al., 2020; Arpaci et al., 2021; Kim, 2022). Social impacts were also notable, including worsened economic situations, increased cases of domestic violence, and disruptions in the treatment of other diseases (Sott et al., 2022).

The global crisis and its devastating consequences, along with resource scarcity, have motivated the development of several artificial intelligence (AI) based tools. Algorithms have been implemented to assist in COVID-19 diagnosis, interpretation of imaging exams, prediction of case variations, drug and vaccine development, and prognosis prediction for infected patients (Brinati et al., 2020; Arpaci et al., 2021; Rahman et al., 2021; Yu et al., 2021; Isgut et al., 2023; Shakibfar et al., 2023; Wang et al., 2021; Napolitano et al., 2022; Ramírez-Del Real et al., 2022; Kamel et al., 2023).

Developing robust predictors of morbidity and mortality during a pandemic could aid in strategic healthcare planning, providing early indications, for example, of the need for hospitalization for a group of infected patients (Shakibfar et al., 2023). The quality of data used to construct a predictor is crucial, as incomplete, or poorly processed clinical data can introduce biases that hinder implementation (Isgut et al., 2023).

Being the first major pandemic of the digital era, an enormous amount of information has been collected (Isgut et al., 2023; Napolitano et al., 2022). With the goal of identifying risk factors most associated with COVID-19 severity, dozens of cohort studies, case–control studies, and case series have been conducted (Ou et al., 2020; Martono and Mulyanti, 2023; Fang et al., 2020). Based on this information, AI-based predictors of mortality and morbidity can be developed (Shakibfar et al., 2023).

Artificial Intelligence (AI) is a term that has been widely used in literature, but often with distinct definitions. This becomes more evident when this term is used in conjunction with Machine Learning (ML). Although there is no consensus, it is safe to define AI as a system that seeks to mimic human intelligence. ML, on the other hand, is considered a subset of AI and refers to systems capable of learning from datasets without explicit programming on how to make decisions (Kühl et al., 2022). Another frequently used concept is that of Artificial Neural Networks (ANNs), systems inspired by the functioning of the nervous system and capable of learning from presented data. ANNs can have various architectures and can be defined as a subset of ML (Wang et al., 2021; Haglin et al., 2019).

There are various ML methods, each more suitable for different tasks. Learning can be supervised, semi-supervised, or unsupervised, and tasks include classification, clustering, regression, localization, among others. In a classification task, such as predicting COVID-19 morbidity based on clinical data, several supervised algorithms can be used. These algorithms are called supervised because clinical data is presented with labels, i.e., in conjunction with the outcome for each patient (Uddin et al., 2019).

Within the family of supervised classification methods, different approaches can be taken, such as logistic regression, decision trees, support vector machines, Random Forest, artificial neural networks, among others. Each method has a different approach to data analysis, but they all work by finding parameters that minimize classification error. These parameters represent the learning acquired from data analysis (Uddin et al., 2019).

Artificial Neural Networks (ANNs) have gained popularity due to increased computer processing power and the availability of digital information. These algorithms are inspired by the functioning of the nervous system, where a network of artificial neurons can receive input data, such as laboratory test results, and deliver an output indicating the class to which the individual belongs—such as the presence or absence of a disease. This method involves successive nonlinear transformations to determine whether each unit (or artificial neuron) in the network will be activated, simulating neuronal depolarization (Grossi and Buscema, 2007; Rodvold et al., 2001; Buscema, 2002).

These artificial networks can learn input data patterns so well that they often memorize the labels of the presented data, resulting in overfitting and low generalization capacity for unseen data. Overfitting is a major challenge when developing a machine learning (ML)-based classifier because an overfitted system performs well on training data but poorly when used to classify new patients. An overfitted system can be likened to a doctor who correctly diagnoses only cases for which they have seen the answer before but struggles to recognize diseases in new patients. Various techniques are used to prevent overfitting, including controlling the neural network’s size, limiting learning iterations (early stopping), dropout regularization, and others (Grossi and Buscema, 2007; Rodvold et al., 2001; Buscema, 2002; Pansambal and Nandgaokar, 2023; Salehin and Kang, 2023).

Combining the extensive data collection carried out during the pandemic with artificial intelligence methods, several published studies aim at predicting patient outcomes for COVID-19. Fernandes et al. (2021) utilized data from 1,040 patients, incorporating laboratory, clinical, and demographic information. As in this study, only data collected at the time of hospital admission were considered; however, the data were collected from a single hospital. A total of 57 variables were used after excluding those with over 90% missing data and those with a correlation above 0.9. The implemented models demonstrated high predictive capability, with Area Under the Receiver Operating Characteristic Curve (AUC) values exceeding 0.91 in identifying various adverse outcomes.

Kwok et al. (2023) also achieved favorable results in developing a predictor for adverse outcomes in COVID-19 hospitalizations. Using retrospective data from 16 different hospitals, they trained ML models with 92 variables, achieving an AUC of 0.852 and an accuracy of 89%. Notably, they utilized the 6 variables that contributed most to the AI model to construct a new risk score.

In another retrospective study, this time including results from radiological examinations, Tenda et al. (2024) developed another predictor with an AUC of 0.815 in the dataset used to train the classifier and 0.770 in a dataset collected solely for model validation. In another study with retrospective multicenter data, Kamel et al. (2023) were able to predict progression to adverse outcomes. By comparing different subsets, they determined that hematological variables had the highest predictive capacity for outcomes, but the combination of all collected data resulted in better accuracy. Various tested algorithms showed 90% accuracy, with excellent sensitivity, specificity, and AUC.

Jimenez-Solem et al. (2021) also investigated the predictive capability of severe outcomes using ML. This study stands out for its analysis of different outcomes at various points during patient evaluation. Additionally, they performed external validation, demonstrating that these ML models can be utilized in patients with COVID-19.

Heldt et al. (2021) also achieved satisfactory results using only data collected during the initial moments of medical care. Additionally, Hao et al. (2022) analyzed similar outcomes and raised an important question regarding racial bias in the classifiers, with high false positive rates for hospitalization risk in Black patients.

We identified some research gaps in our literature review. The first observation relates to data collection methods. Most published studies relied on retrospective cohorts, which can introduce biases and confounding factors (Kamel et al., 2023). Additionally, most studies gathered data from a single healthcare center. Single-center studies may limit the generalizability of classification models (Kwok et al., 2023; Tenda et al., 2024; Hao et al., 2022). Possibly due to publication bias, the studies we reviewed did not thoroughly discuss data availability, as we noticed that a large portion of the analyzed variables were available for over 90% of study participants. These near-ideal datasets fail to reflect the reality of many healthcare systems during the health crisis, where multiple tests were not performed due to limited availability. This resource scarcity results in missing-not-at-random (MNAR) data, introducing biases and confounding factors that must be addressed (Isgut et al., 2023).

The main objective of this study is to assess the performance of ML algorithms as outcome predictors during COVID-19 hospitalization using only hospital admission data. Throughout this process, we aim to:

Evaluate the availability of data in real-world scenarios, particularly in resource-constrained environments where access to advanced diagnostic tests is limited, leading to a significant amount of missing data. To achieve this, we conducted a prospective multicenter cohort study, tracking patients admitted with suspected COVID-19 and collecting clinical, laboratory, and demographic information. This approach aimed to minimize the risk of bias and potential confounders typically associated with retrospective or single-center studies.

Discuss different methods for handling far from ideal datasets, with a great quantity of MNAR data and the potential biases they may introduce, covering the entire process from data preprocessing to AI model training.

Analyze the performance of classification algorithms on a dataset that has been preprocessed to reflect the clinical significance of variables, particularly by categorizing physical and laboratory examination results based on established reference values and grouping variables with similar medical significance to reduce sparsity.

Assess the capability of ML algorithms to triage hospitalized COVID-19 patients by predicting which individuals are likely to experience significant deterioration, such as requiring intubation, admission to the Intensive Care Unit (ICU), or facing a fatal outcome.

Assess the impact of different approaches to handling missing data, such as selecting variables with the highest completion rates while excluding subjects lacking data for all selected variables or using mean imputation.

Validate a methodology for the development of tools to assist in combating new diseases, starting from data collection, preprocessing, and experimenting with different algorithms.

The contributions of this research are multifaceted and include de following key points:

	1. The study demonstrates the feasibility of using ML algorithms to predict a severe outcome of COVID-19 based on hospital admission data. Utilizing data from a prospective multicenter cohort, the study achieved 80% accuracy and 91% AUC. By using only hospital admission data, we developed systems capable of making early predictions, enabling important conclusions to be drawn at the beginning of a patient’s hospitalization. This early identification of at-risk patients can significantly enhance triage processes and improve clinical decision-making, ultimately contributing to better patient outcomes.
	2. The article emphasizes the importance of data quality and preprocessing in developing AI predictors, addressing challenges posed by missing data and sparse variables, which are common in clinical studies, especially during crises in healthcare systems. The study employed mean imputation for missing data but acknowledged that other methods may yield better results, while utilizing medical knowledge-based strategies to group and reduce the dimensionality of sparse variables.
	3. The research compares the performance of various ML algorithms, including support vector machines, random forests, and dense neural networks, providing a comprehensive analysis of accuracy, sensitivity, specificity, and AUC for each algorithm. Although these techniques are well-established and widely used, the study focuses on their performance on this specific dataset, which has its limitations and underwent a different preprocessing approach.
	4. The study contributes to the literature on AI predictors for COVID-19 outcomes, particularly by utilizing data from prospective multicenter studies, which improves generalizability and applicability compared to single-center retrospective studies that may have limited external validity. Moreover, the prospective data ensures better quality control and reduces potential bias.
	5. This study develops predictive models using a dataset that mirrors the practical constraints faced by healthcare systems, particularly during times of crisis. Unlike studies that rely on idealized datasets and often overlook challenges in access to diagnostic tests and other resources, our approach incorporates these limitations directly. This enables the creation of models that are not only predictive but also adaptable to real-world healthcare environments where resources are constrained.
	6. The article underscores the necessity of integrating medical knowledge into the development and evaluation of AI systems, arguing that AI should complement rather than replace human expertise, while highlighting the importance of considering the feasibility, applicability, and clinical validity of AI predictors.
	7. Finally, the study provides a replicable methodology for developing morbidity and mortality predictors that can be applied to other diseases. This framework, from data collection and preprocessing to algorithm selection and evaluation, can be adapted to different clinical scenarios and contribute to advancing AI-based decision support tools in healthcare.



2 Methods

Our study involved several key steps in the methodology. Initially, we collected data from patients hospitalized with respiratory syndrome. Following data collection, we performed extensive preprocessing, which included cleaning the data and handling missing values. Subsequently, we composed a primary dataset along with various subsets tailored for specific analyses. These subsets were utilized to train different machine learning classifiers, enabling us to assess their performance and effectiveness in predicting outcomes related to the condition under investigation. Figure 1 illustrates this process.
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FIGURE 1
 Overview of the methodology, illustrating the steps involved in data collection, preprocessing, dataset composition, and the training of machine learning classifiers using various subsets.



2.1 Data collection

We conducted a prospective, multicenter, concurrent cohort study that included all patients over 18 years of age admitted for respiratory syndrome, with confirmed or suspected COVID-19, at one of the participating hospitals: University Hospital of Brasília (HUB), Brasília-DF, Brazil; Regional Hospital of Asa Norte (HRAN), Brasília-DF, Brazil; Hospital das Clínicas of the Federal University of Minas Gerais (UFMG), Belo Horizonte-MG, Brazil; Cassiano Antônio Moraes University Hospital (HUCAM), Vitória-ES, Brazil; João de Barros Barreto University Hospital of the Federal University of Pará (UFPA), Belém-PA, Brazil; University Hospital of the Federal University of São Francisco Valley (Univasf), Petrolina-PE, Brazil; University Hospital of the Federal University of Grande Dourados (UFGD), Dourados-MS, Brazil; and Tropical Diseases Hospital (HDT-UFT), Araquaína-TO, Brazil. The data collection period was from June 2020 to January 2021 and only pregnant patients were excluded from the study. Cases of respiratory syndrome were defined by the association of general symptoms such as dyspnea, decreased oxygen saturation, cyanosis, and/or radiographic lung changes.

Patients or their legal representatives authorized data collection through an informed consent form, where they were informed about all risks associated with the study, as well as the measures taken to ensure data privacy and protection. They were also notified that they could withdraw from the study at any time. To protect data privacy, identifying features were removed before preprocessing and training, with only an automatically assigned random identification number retained. Access to potentially identifying data was limited to a few team members who ensured its security. The study adhered to the ethical principles outlined in the Declaration of Helsinki and the Belmont Report, and it was approved by an independent ethics committee (Research Ethics Committee from the University of Brasília School of Medicine), under the Certificate of Ethical Appreciation Presentation number 31941420.4.1001.5558 and approval number 4.054.462. No additional interventions were performed beyond those necessary for the proper monitoring of hospitalized patients, such as blood tests and clinical examinations.

Clinical data were collected within the first 72 h of hospitalization, recording the initial clinical examination (including vital signs and identification of comorbidities), demographic information, imaging, and laboratory tests. These tests included Polymerase Chain Reaction (PCR) on sputum, nasal swabs, and serology for SARS-CoV-2, aiming to identify the presence of the coronavirus. After data collection, patients were divided into two groups: those with confirmed SARS-CoV-2 infection (either by PCR or serology) and patients with negative test results. All patients, whether COVID-19 positive or not, were further categorized into those who experienced severe complications and those who did not. Severe complications included patients requiring mechanical ventilation, endotracheal intubation, or ICU admission, as well as those who experienced cardiac arrest, severe sepsis, or who died.



2.2 Data preprocessing

For the development of severity prediction algorithms, the data underwent preprocessing. Due to resource scarcity during the pandemic, several tests could not be conducted on all patients, resulting in a high number of missing data points among individuals. Missing data or incompleteness is a challenge in various studies conducted during the pandemic (Isgut et al., 2023). Initially, variables collected in less than 50% of participants and constant variables (those with the same value for all participants) were removed. For example, the presence of jugular turgor, that wasn’t identified in any patient, was excluded.

When dealing with incomplete data, two approaches are possible (Isgut et al., 2023). The first involves excluding individuals who lack data for the algorithm’s variables of interest. The second approach is data imputation, where missing values are estimated to retain all individuals in the study. Various imputation methods exist; in this study, data were imputed using the means. For instance, the average hemoglobin value across all patients was used to fill in missing hemoglobin measurements for those who did not undergo the test. Both elimination and mean imputation approaches were employed in this work.

In addition to missing data, clinical conditions that were not observed in a significant number of subjects, sparse data, also pose challenges in developing predictors using data from clinical studies (Tipirneni and Reddy, 2022). Because these clinical variables are positive in a very small proportion of individuals, they do not provide much information to classifiers and increase complexity by adding to the data’s dimensionality. Several variables collected in our cohort, particularly prior diseases, symptoms, or physical examination findings, were positive in less than 1% of patients. Although they are sparse, these variables might be important to the prediction and eliminating them from the study might decrease system’s accuracy. To reduce data dimensionality without disregarding the importance of these alterations, we cataloged variables suitable for grouping or clustering based on medical knowledge. Thus, variables with similar clinical significance or those composing the same syndrome were combined using a logical “OR” operation, such that the grouping variable would be negative only if all the originating variables were also negative. With the operation, the union of previous Chronic Obstructive Pulmonary Disease, asthma or other chronic lung conditions resulted in a single variable of presence of pre-existing lung diseases. The same approach was applied to symptoms of Upper Respiratory Tract Infection, grouping presence of runny nose, postnasal drip, nasal congestion, sneezing, sore throat, difficulty swallowing and presence of facial sinus compression pain. Nonspecific viral infection symptoms were the union of muscle pain, dizziness, joint pain, skin lesions, diarrhea, abdominal pain, mental confusion, chills, enlarged lymph nodes, nausea, vomiting, loss of appetite and pale mucous membranes. Signs of pulmonary involvement were the union of presence of productive cough, chest pain, cyanosis, chest compression pain, respiratory effort, increased respiratory rate, irregular respiratory pattern, decreased chest expansion, snoring, wheezing, crackles, pinkish sputum, and pulmonary edema.

After this grouping, variables with low representation (less than 5% positive cases) were excluded from the analysis. Variables whose clinical meaning is related to another alteration, such as loss of taste and anosmia, were considered repeated and the ones with lower frequency of positive cases were removed. The distribution of variables for each class (or outcome) was not considered during variable selection to avoid bias in classifier analysis.

All numerical data was categorized. Age was categorized based on percentiles, using 0, 10, 25, 50, 75, 90 and 100% as separators. Thus, patients whose age falls at or below the 10th percentile will be assigned the value 0. Those whose age is above the 10th percentile, but equal or less than the 25th percentile will receive the value 1. Similarly, value 2 corresponds to ages between the 25th and 50th percentiles, and so on. This approach transforms age from years to a class ranging from 0 to 5.

The hemoglobin levels were categorized for female patients using the following intervals: greater than 0 and lower or equal to 6.5 g/dL; greater than 6.5 and lower or equal to 8 g/dL; greater than 8 and lower or equal to 10 g/dL; greater than 10 and lower or equal to 12 g/dL; greater than 12 and lower or equal to 16.5 g/dL; and above 16.5 g/dL. The same was done for male patients, but the value 12 was substituted to 13 g/dL and 16.5 to 18 g/dL. Consequently, a woman with a hemoglobin level of 8 g/dL was assigned category 1, while a man with a hemoglobin level of 13.7 g/dL was assigned category 4. This range of values was inspired by the National Health Institute (NSH) and National Cancer Institute (NCI) classifications for anemia and its severity.

Leukocytes, lymphocytes, platelets, and urea were categorized as low, normal, and high, also inspired by the reference values defined by the National Health Institute. Leukocytes were considered low when equal or lower than 4,000 cells/ mm3, high when higher than 11,000 cells/ mm3 and normal in between. For lymphocytes the lower boundary was 1 cell/mm3 and the higher was 4 cells/mm3. For platelets the values were 150,000 cells/mm3 and 400,000 cells/mm3, respectively, and for urea it was 15.02 mg/dL and 46.84 mg/dL.

Although measured upon patient admission, systolic and diastolic blood pressures were categorized using criteria inspired by the American Heart Association (AHA) classification for hypertension and hypotension. The range between 140 and 180 mmHg for systolic blood pressure was excluded (as there were only 2 cases above 180 mmHg). This classification approach was chosen solely to use the values as reference points, not for diagnosing or classifying arterial hypertension. Thus, the systolic pressure ranges were the following: greater than 0 and lower or equal to 90 mmHg; greater than 90 and lower or equal to 120 mmHg; greater than 120 and lower or equal to 130 mmHg; greater than 130 and lower or equal to 140 mmHg; and above 140 mmHg. For diastolic pressure, the ranges were: greater than 0 and lower or equal to 60 mmHg; greater than 60 and lower or equal to 80 mmHg; greater than 800 and lower or equal to 90 mmHg; greater than 90 and lower or equal to 120 mmHg; and above 120 mmHg.

The heart rate was categorized using 60 bpm as the cutoff value for bradycardia and 100 bpm as the cutoff value for tachycardia. The respiratory rate was defined as normal up to 16 breaths per minute (bpm), borderline between 16 and 20 bpm, elevated between 20 and 24 bpm, and very high above 24 bpm. Finally, oxygen saturation (SpO2) values equal to or below 88% were considered extremely low, between 88 and 92% inclusive as very low, between 92 and 96% inclusive as low, and above 96% as normal.

This categorization was performed to align the numerical values across different variables. For instance, hemoglobin levels varied around the number 10, while platelet counts ranged around 200,000. The difference in dynamic range and magnitude among variables could potentially lead to poorer performance in certain algorithms. Some algorithms might assign greater importance to specific variables not due to their predictive significance but based on their absolute values. Another approach that could have been used is normalization, which scales all numerical variables between 0 and 1. However, we opted for categorization because it also aligned numerical variables (such as laboratory test results) with categorical ones (such as overall health status). For example, the general condition at admission was classified as follows: 0: good, 1: mildly compromised, 2: moderately compromised, 3: severely compromised, and 4: critical. This categorization also considers how physicians analyze clinical examination results.



2.3 Dataset development

To assess the impact of eliminating individuals with missing data and imputation on algorithm training, we developed a dataset by selecting the 28 most complete variables—those collected from most patients. Using this dataset, we constructed 7 different subsets. One subset included all 421 patients and all 28 variables, with missing values imputed using the mean. In the remaining subsets, no imputation was performed, resulting in data loss due to incomplete records. These 6 subsets were created by varying the number of variables included, ranging from the 23 most complete variables to a set containing all 28 variables. The 7 subsets will be named A to G. The variables and number of subjects of each subset is described below:

	1. Subset A, 355 subjects. Contains 23 variables:
	a. Age.
	b. Hemoglobin.
	c. Leukocytes count.
	d. Lymphocytes count.
	e. Platelets count.
	f. Heart rate.
	g. SpO2.
	h. Absence of previous disease.
	i. Systemic Arterial Hypertension.
	j. Diabetes Mellitus.
	k. Obesity.
	l. Renal insufficiency.
	m. Fever.
	n. Dry cough.
	o. Headache.
	p. Weakness.
	q. Anosmia.
	r. Sex.
	s. Upper Respiratory Tract Infection signs.
	t. Dyspnea.
	u. Signs of pulmonary involvement.
	v. Presence of nonspecific viral infection symptoms.
	w. Pre-existing lung diseases.
	2. Subset B, 335 subjects. Contains 24 variables:
	a. All 23 variables from subset A.
	b. General condition at admission.
	3. Subset C, 309 subjects. Contains 25 variables:
	a. All 24 variables from subset B.
	b. Respiratory rate at admission.
	4. Subset D, 285 subjects. Contains 26 variables:
	a. All 25 variables from subset C.
	b. Systolic blood pressure at admission.
	5. Subset E, 285 subjects. Contains 27 variables:
	a. All 26 variables from subset D.
	b. Diastolic blood pressure at admission.
	6. Subset F, 246 subjects. Contains 28 variables:
	a. All 27 variables from subset E.
	b. Urea.
	7. Subset G, 421 subjects. Contains 28 variables:
	a. Same 28 variables from subset F, with data imputation to fill missing values.

The advantage of constructing the subsets in this manner lies in its consideration of data availability when selecting variables, thereby aiming to preserve the maximum number of individuals in the groups while minimizing the elimination of patients with missing data. By reducing the amount of missing data during classifier development, we aimed to mitigate the risk of bias introduced by MNAR data while preserving as much data as possible.

By focusing on the 28 most complete variables, we ensured that the selected variables could be collected across a wide range of patients, even during a healthcare system crisis. This approach suggests that these variables represent more readily available and easily applicable examinations, ultimately enhancing the applicability of the model in real-world clinical settings. Additionally, we aimed to evaluate the balance between maintaining more variables in the subset, which could potentially increase accuracy, and the loss of individuals due to elimination, which could reduce both accuracy and generalization.



2.4 Classifiers development

The data was then split into training and test groups, comprising 80 and 20% of the total patients, respectively. These subsets were used to train ML algorithms. Random selection between the groups can introduce bias in accuracy analysis; for instance, when individuals that are easier to classify end up in the test group, artificially inflating the system’s accuracy. To mitigate this impact, each algorithm underwent training through 5,000 simulations, with each simulation representing a random resampling of the groups and retraining from scratch. This validation technique, known as Monte Carlo Cross-Validation, shows more accurate result even with subsets containing over 1,000 observations (Shan, 2022). During each simulation, accuracy, sensitivity, specificity, negative predictive value, positive predictive value, F1-Score, and the AUC were calculated. The minimum and maximum values, mean, and standard deviation of each metric were evaluated. The libraries used for algorithm training were Lazy Predict 0.2.12, Scikit-Learn 1.2.0 (Buitinck et al., 2011), and Tensorflow 2.10.1 (Abadi et al., 2016), executed in Python 3.9.

The first step involved running 100 simulations using the LazyClassifier function from the Lazy Predict 0.2.12 library, which automates the training of 27 different ML-based algorithms. These algorithms include: Stochastic Gradient Descent Classifier (SGD), Linear Support Vector Classification (Linear SVC), Logistic Regression, Linear Discriminant Analysis, Ridge Classifier with Cross Validation (CV), Ridge Classifier, AdaBoost Classifier, Nearest Centroid, Gaussian Naïve Bayes, Passive Aggressive Classifier, Nu Support Vector Classification (NuSVC), Light Gradient Boosting Machine Classifier (LGBM classifier), Quadratic Discriminant Analysis, Support Vector Classification (SVC), XGBoost Classifier, Bernoulli Naïve Bayes, KNeighbors Classifier, Random Forest Classifier, Bagging Classifier, Perceptron, Extra Trees Classifier, Extra Tree Classifier, Calibrated Classifier with CV, Label Spreading, Label Propagation, Decision Tree Classifier, Dummy Classifier.

The mean accuracy for each algorithm across each subset was recorded. This data-driven approach allowed for a comprehensive analysis to identify the most effective algorithms. Only the seven algorithms that demonstrated the highest mean accuracy were selected for further investigation. Similarly, the single subset that yielded the best accuracy across all algorithms was chosen for use in subsequent steps.

With the selected subset and 7 best-performing algorithms, 5,000 new simulations were conducted using the Scikit-Learn 1.2.0 library. Additionally, the same subset was employed to train 11 distinct dense neural networks architectures. Those networks differ in terms of the number of layers, the number of units per layer, and the dropout rate. By randomly excluding some units, dropout distributes learning across connections and helps reduce overfitting, improving model generalization and neural network performance when faced with unseen data (Salehin and Kang, 2023). The neural networks were built, trained and evaluated using the Tensorflow 2.10.1 library. To test the architecture with best performance, 100 simulations were conducted for each network. The hidden layers of the tested architectures were the following:

1. Single layer: 32 units with 20% dropout.

2. Two-layer: First layer with 32 units and 20% dropout, followed by a second layer with 16 units and 20% dropout.

3. Three-layer: Sequential layers with 32 units (20% dropout), 16 units (20% dropout), and 8 units (20% dropout).

4. Single layer: 16 units with 20% dropout.

5. Single layer: 8 units with 20% dropout.

6. Two-layer: First layer with 8 units and 20% dropout, followed by a second layer with 4 units and 20% dropout.

7. Four-layer: Layers configured with 64 units (20% dropout), 32 units (20% dropout), 16 units (10% dropout), and a final layer of 8 units without dropout.

8. Single layer: 8 units without dropout.

9. Two-layer: First layer with 16 units without dropout, followed by a second layer with 8 units without dropout.

10. Three-layer: Layers arranged with 16 units (no dropout), 8 units (no dropout), and a final layer of 4 units without dropout.

11. Two-layer: First layer with 8 units without dropout, followed by a second layer with 4 units without dropout.

All neural networks were trained using the same subset and therefore shared the same input layer configuration. Their hidden layers uniformly utilized ReLU activation, while their output layers consisted of a single unit with Sigmoid activation. The training process employed Adam optimization and Binary Cross-Entropy as the loss function over 20 epochs. The architecture that yielded the highest validation accuracy was selected for an additional 5,000 simulations.




3 Results


3.1 Cohort outcomes analysis

Out of the 537 study participants, 421 were confirmed to have a diagnosis of COVID-19. Among them, 133 experienced an outcome classified as severe (31.5%). It’s important to note that a single patient may have had multiple severe outcomes during the follow-up period, but they were treated the same way as the ones that had a single severe outcome.



3.2 Demographic analysis

The demographic profile of patient groups that progressed with severe and non-severe forms was analyzed, as described in Tables 1, 2. It can be observed that there is a predominance of female patients, of mixed ethnicity, and aged over 50 years old.



TABLE 1 Gender, race, and marital status distributions.
[image: Table showing absolute risk of non-severe and severe outcomes categorized by gender, race, and marital status. In gender, males show a 28.09% severe risk, females 34.16%. In race, the mixed category has the highest representation with 33.45% severe risk. Marital status indicates that singles have a 30.77% severe risk, while married individuals face a 26.83% severe risk.]



TABLE 2 Age distribution.
[image: Table showing statistical data for non-severe, severe, and total categories. Mean: non-severe 55.60, severe 61.82, total 57.57. Median: non-severe 55, severe 62, total 57. Standard deviation: non-severe 15.35, severe 16.54, total 15.98. Blank/unfilled counts: non-severe 1, severe 0, total 1.]



3.3 Classifier results

During 100 simulations, the 7 subsets constructed in this study were used to train 27 ML algorithms using the Lazy Predict library. In each simulation, the training and test groups were randomly separated in an 80 to 20% ratio, respectively, and the accuracy of each simulation was computed. The average accuracy was then calculated for each classifier and each subset, resulting in the values shown in Table 3. It was possible to determine that the highest average accuracy was achieved with the Support Vector Classifier (SVC) for the 28-variable subset (subset F, without imputation), and the seven best classifiers for this subset were SVC, NuSVC, Random Forest Classifier, Ridge Classifier CV, Ridge Classifier, Extra Trees Classifier, and Linear Discriminant Analysis.



TABLE 3 Average accuracy after 100 simulations with each subset.
[image: Table showing average accuracy percentages for various classifiers across subsets A to G. Classifiers include XGBoost, Decision Tree, Logistic Regression, and others. Subsets A to F use subject elimination for missing data, while subset G uses mean imputation. Accuracy ranges from about 65% to 80.1%, with specific values for each classifier and subset listed.]

Using the Scikit-Learn library, these seven classifiers were employed for 5,000 new simulations, once again with random redistributions between the training and test groups (Monte Carlo cross-validation). This library combines algorithm implementations based on previous works. In these simulations, only subset F was used (which includes 28 variables and has no imputation). Evaluation metrics were computed to calculate the mean and margin of error for a 95% Confidence Interval (CI 95).

In addition to the previously mentioned algorithms, 11 different configurations of dense neural networks were tested on this subset through 100 simulations with random resampling of the training and test groups. These simulations facilitated the identification of the most effective topology or neural network configuration. The classifier’s error can be described as a function of the chosen hyperparameters, such as the number of layers and units per layer. The objective is to minimize this error; however, due to computational constraints, it’s not feasible to exhaustively test all possible combinations. Consequently, 11 configurations with slight variations were selected, and their average accuracies were computed. The optimal configuration emerged as one with a single hidden layer containing 32 units and a 20% dropout rate. This configuration was subjected to the same training regimen as the seven highest-performing classical ML classifiers, undergoing a Monte Carlo Cross-Validation with 5,000 simulations.

Table 4 describes the results of each algorithm after 5,000 trainings. Very similar values were observed among different algorithms, with a very small margin of error around the average accuracy (CI 95). The high specificity, combined with a significant positive predictive value of the SVC, indicates a high success rate when the algorithm classifies patients as severe. On the other hand, the Ridge Classifier, Ridge CV, and Linear Discriminant Analysis algorithms maintain accuracy while achieving better results in identifying patients who will not progress to the severe form. The neural network, however, exhibited low sensitivity and lower accuracy compared to the other methods. An important metric for classifier evaluation, the AUC, indicates that the tested classifiers had less satisfactory performance in distinguishing between classes. An exception was the Random Forest, with an average AUC of 0.91 and an average accuracy of 80%.



TABLE 4 Average performance metrics from 5,000 simulations using subset F (with 28 variables, no imputation).
[image: Table displaying performance metrics for various classifiers, including SVC, NuSVC, Random Forest, Extra Trees, Ridge, Linear Discriminant Analysis, and Artificial Neural Network. Metrics are accuracy, F1-score, positive and negative predicted value, sensitivity, specificity, and AUC with corresponding values and standard deviations.]

In a context of multiple hospitalized patients and resource scarcity, such as during the COVID-19 pandemic, the achieved predictive values would be extremely useful. The 87% positive predictive value attained by the SVC, coupled with a small number of false positives, allows for better resource allocation and interventions, such as surveillance or transfer to another healthcare unit. It is essential to note that only admission data were used for this analysis, and clinical follow-up during hospitalization, along with additional tests, could lead to patient reclassification and enhance system performance. Also, since the data originated from a prospective cohort, in newer studies the classifiers could be implemented during the cohort, guiding data collection toward most important variables.

Classifiers for COVID-19 severity prediction have been published with accuracies ranging from 74.4 to 95.20% and AUC values between 0.66 and 0.997 (Shakibfar et al., 2023; Wang et al., 2021). However, a significant portion of this research relied on data from retrospective and/or single-center studies, limiting the generalizability of the findings (Wang et al., 2021). In our work, we conducted a prospective multicenter study aimed at ensuring that this methodology can be applied in real-time during new episodes of public health crises.

The availability of data during public health crises poses significant challenges. Resource scarcity in various healthcare centers limits not only the number of clinical variables that can be collected but also the ability to leverage predictive models that require these variables. Previous studies often utilized data collected from healthcare services with greater resource availability, resulting in a higher number of tests performed and fewer missing data. This situation, however, does not reflect the reality of many healthcare centers in underdeveloped or developing countries. By utilizing only the most readily available variables in healthcare settings of different complexity levels, we enable the application of the predictor even in adverse situations.

Ramírez-Del Real et al. (2022) also achieved satisfactory results by using demographic, clinical, and laboratory data to predict COVID-19 mortality. Data were collected from healthy individuals who were subsequently monitored to evaluate outcomes if they contracted COVID-19. They achieved an accuracy of 90.41%, with positive and negative predictive values of 94.28 and 87.36%, respectively. This study suggests the possibility of identifying individuals more vulnerable to unfavorable outcomes even before contracting the disease.



3.4 Contributing features

After training, we selected the two models that demonstrated the best performance, Random Forest and SVC, to extract the features that contributed most significantly to the classification process. For the Random Forest model, we averaged the “feature importance” values for each variable across the 5,000 simulations. In the case of the SVC model, which was implemented using the Radial Basis Function kernel, we employed the Permutation Feature Importance technique, as implemented in Scikit-Learn. The Permutation Importance values for each variable were computed for each simulation, and we used the average values to identify the most significant features. To conclude our analysis, we performed logistic regression on the same subset used to train the models and calculated the p-values associated with each variable. These values are presented in Table 5.



TABLE 5 Feature importance and p-values for classification models.
[image: The table lists medical features, showing their importance scores in Random Forest (RF) and SVC, alongside p-values from logistic regression. Key features include patient condition, age, respiratory rate, and oxygen saturation. Importance values vary, with some features like oxygen saturation having significant p-values (< 0.05).]

The most statistically significant variables for predicting severe outcomes, with a p-value less than 0.05, included dyspnea, the patient’s general condition upon hospital admission, peripheral oxygen saturation, urea levels, platelet count, and signs of upper respiratory tract infection. In the Random Forest model, the most important features were dyspnea, general condition of the patient upon admission, age, oxygen saturation upon admission, respiratory rate upon admission, and urea. For the SVC model, the significant features included dyspnea, general condition of the patient upon admission, oxygen saturation upon admission, urea, age, and platelet count.

These results share some similarities with findings from previous studies, where age and platelet count were identified as significant predictors of prognosis in severely hospitalized patients (Martono and Mulyanti, 2023; Fang et al., 2020; Kamel et al., 2023). Additionally, other important features, such as different hematological variables, D-dimer and C-reactive protein, could further enhance the predictive power of the system. However, these tests were unavailable for a significant portion of the studied population.




4 Discussion

An extensive data preprocessing process was carried out to identify as many filling errors or duplicates as possible. Additionally, the variable selection process involved not only searching for better classifier performance but also minimizing the loss of individuals after data cleaning. Constructing seven different subsets, each encompassing varying numbers of variables and consequently individuals, allowed us to observe the effect on classifier outcomes.

When assessing the cost-effectiveness of using the developed classifiers, it is crucial to consider that laboratory tests and clinical evaluations are indispensable for proper inpatient monitoring. Therefore, the use of the classifier would not incur additional expenses beyond an informatics system capable of generating results. The utilization of these classifiers does not require additional tests beyond those essential for usual medical follow-up.

During preprocessing, a test was conducted to assess the impact of imputation for filling missing data. The method used was to fill in missing data with the means calculated for all individuals. In other words, those who did not have their hemoglobin measured received the average hemoglobin value from all individuals who had the test collected. Imputation enables certain machine learning algorithms that do not accept incomplete input information to be applied to all study participants. However, it was observed that mean imputation reduced classifier accuracy. It is understood that clinical data variables are not independent of each other, and therefore, alternative data imputation methods could yield better results. Through multivariate analysis, the tests collected for a specific individual could be used to estimate the missing values. For instance, hemoglobin, respiratory rate, and clinical signs of dyspnea could be utilized to estimate peripheral oxygen saturation (SpO2) for patients who could not undergo oximetry. Further dedicated studies are recommended to identify optimal clinical data imputation methods for classifier development.

It has been observed that reducing input variables, despite decreasing the loss of individuals (due to incompleteness or missing data) and the complexity of classifier systems, compromises the accuracy of classification systems. Throughout this work, experimentation was necessary to find the best solution for this problem. Tests with different subsets helped strike the right balance between individual losses and the amount of clinical data used. A high loss of individuals would hinder classifier learning, as well as the reliability and generalizability of results. The reliance on a large amount of clinical data, coupled with the inability of most algorithms to handle incompleteness, may indicate inferior performance compared to a trained professional. This reinforces the idea that AI should be viewed as a tool rather than a replacement for human expertise.

The high number of sparse variables collected during the cohort study draws some attention. Several variables were positive in less than 1% of study participants, such as the presence of arrhythmia or prior valvular disease. This characteristic poses a particular challenge when developing a classifier. The more variables used as input, the more complex the classifier becomes. Even if we imagine a simple questionnaire for diagnosing a specific disease, the more questions required for the diagnosis, the more challenging its implementation becomes, during real healthcare situations. Also, complex classifiers are more prone to overfitting, which reduces their ability to generalize to new data and patients (Pansambal and Nandgaokar, 2023; Salehin and Kang, 2023). Simultaneously, some clinical data, despite being rare, can serve as excellent markers for unfavorable outcomes in certain pathologies. Excluding these rare data points from the analysis could compromise the quality of the final analysis. Considering this, clinical knowledge of signs and symptoms, as potential severity predictors (Ou et al., 2020; Martono and Mulyanti, 2023; Fang et al., 2020), was considered during variable selection, along with combining different variables with the same clinical significance (such as a variable representing the presence of any prior lung disease).

Regarding AI-based classifiers, it is essential to consider that a significant class imbalance can hinder the development of classification systems (Isgut et al., 2023). In this study, approximately 69% of participants did not experience severe complications. Consequently, a classifier that labeled all individuals as “non-severe” would achieve a considerable accuracy rate. However, based on the results obtained, it is possible to affirm that satisfactory accuracy models were developed, particularly when classifying an individual as belonging to the “severe” group. This is evident from the high positive predictive value and specificity.

Specificity and sensitivity are crucial for determining the quality of a medical screening test. When both are high, it indicates a low rate of classification errors. Despite the low sensitivity of the developed classifiers, the high specificity suggests a small number of false positives. Few false positives are generally preferable, even at the expense of reduced sensitivity, especially when a positive test result could lead to unnecessary and dangerous interventions (Herman, 2006; Trevethan, 2017).

Using data collected from a multicenter study, it would not be inaccurate to assume that the developed system would have greater generalization capacity. This is because the study involved healthcare units with varying capabilities, technological density, and resource access. Consequently, the system could be used in both less-structured hospitals and more comprehensive units. It is also worth emphasizing that the data were collected from a prospective cohort, ensuring greater reliability regarding data quality, despite adding technical limitations, such as collecting all variables from all participants. No other studies were found that solely utilized clinically and demographically collected information in a prospective manner. Furthermore, due to its adaptation to real-world constraints and its inclusion of individuals from diverse socioeconomic backgrounds and demographic profiles, the developed system has greater practical usability and can span different levels of healthcare units.

In recent years, several studies have been published addressing the prediction of unfavorable outcomes in COVID-19 using AI systems (Kim, 2022; Yu et al., 2021; Shakibfar et al., 2023; Wang et al., 2021; Ramírez-Del Real et al., 2022; Kamel et al., 2023). One of the challenges encountered in the literature on ML and AI for disease diagnosis or prognosis evaluation is the choice of performance metrics. Few studies have reported positive and negative predictive values, and some have not even published sensitivity and specificity values (Wang et al., 2021). While a new clinical study is necessary to precisely determine these metrics using data from new, previously unseen patients, calculating these probabilities was considered essential to assess the viability of the classifiers. It is considered that AI-based algorithms for diagnosis should be evaluated similarly to new laboratory and imaging tests.

Other studies have also demonstrated satisfactory results by developing predictors that incorporate imaging exams, such as Computed Tomography (CT), alongside clinical data to classify COVID-19 severity (Yu et al., 2021). The cohort described in this study also collected bedside chest radiographies, which could be combined with clinical data to enhance results in future work. However, by utilizing only a few variables resulting from simple tests, the prediction system could be used even in healthcare units with low technological density. It is estimated that in 2020, only approximately 15% of Brazilian municipalities had access to Computed Tomography (Pereira and Tomógrafos, 2020).

This work considers healthcare systems with resource scarcity and the reality of developing and underdeveloped countries. Nevertheless, this methodology can be adjusted to meet the needs of different countries, such as including collaboration between various governments and organizations in data collection, as well as steering data collection toward more widely available tests.

It is important to emphasize that the objective of these AI-based systems is not to replace healthcare professionals but to assist in the triaging process during high-demand situations. By providing timely and accurate support, these systems can help alleviate the workload of medical staff, allowing them to focus on critical decision-making and patient care. The collaboration between AI and healthcare providers can enhance overall efficiency and effectiveness in delivering quality care.

This classifier was designed to operate specifically in moderate and severe cases of COVID-19 that required hospitalization. Mild cases of COVID-19 typically do not require the tests we used and often do not seek healthcare services. While this classification could potentially be applied to other respiratory diseases, further validation with new data will be necessary to confirm its effectiveness in those contexts. Ongoing research and data collection will be crucial to refining and adapting the classifier for broader applications in managing other diseases.



5 Conclusion and future work

It is understood that vaccination and the emergence of new SARS-CoV-2 variants alter the disease’s behavior and the number of severe complications. A reduction in severe COVID-19 cases has been observed in vaccinated individuals, while the transmission has increased with the emergence of new variants (Martono and Mulyanti, 2023). Consequently, collecting new data and updating classifiers becomes necessary.

Given its multidisciplinary nature, it is essential to emphasize the importance of going beyond preprocessing and classification algorithms by incorporating medical expertise. The fusion of medical and computational perspectives allows for a more comprehensive analysis of the feasibility, applicability, and validity of the classification system.

This work leaves a few gaps that must be addressed in future research before implementing this type of classification system in healthcare. Firstly, although mean imputation was utilized to manage missing data, more sophisticated techniques, such as multivariate analysis, may yield improved results. Secondly, the prevalence of numerous sparse variables – those that are positive in only a small proportion of patients – should be considered in future data collection efforts. By adjusting the form and method of data collection to focus on gathering more general information rather than numerous specific variables, we can reduce the complexity of the cohort study while addressing the challenges AI algorithms encounter with sparse data. Additionally, the study revealed challenges related to class imbalance, with a greater number of patients classified as “non-severe,” which may hinder the classifiers’ ability to accurately identify severe cases. This suggests the need for further exploration of sampling techniques or specialized algorithms. Moreover, it is essential to investigate the potential benefits of incorporating imaging data, such as chest X-rays or computed tomography scans, as well as the impact of vaccination and emerging SARS-CoV-2 variants on prediction accuracy. Finally, external validation using diverse datasets and assessing the performance of the developed system in prospective studies is crucial before it can be effectively implemented in clinical practice.

This study validated the methodology for developing predictors of morbidity and mortality, from data collection to training machine learning algorithms. This methodology can be applied to other diseases, especially those where outcomes depend on the interaction of multiple variables.
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To simulate hidden epidemic dynamics connected with asymptomatic and unregistered patients, a new general SIR model was proposed. For some cases, the analytical solutions of the set of 5 differential equations were found, which allow simplifying the parameter identification procedure. Two waves of the pertussis epidemic in England in 2023 and 2024 were simulated with the assumption of zero hidden cases. The accumulated and daily numbers of cases and the duration of the second wave were predicted with rather high accuracy. If the trend will not change, the monthly figure of 9 new pertussis cases (as it was in January–February 2023) can be achieved only in May 2025. The proposed approach can be recommended for both simulations and predictions of different epidemics.
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1 Introduction

Asymptomatic and unregistered cases are characteristic of almost all infectious diseases, in particular, SARS-CoV-2 (Mass coronavirus testing in Slovakia-a, 2020; Mass coronavirus testing in Slovakia-b, 2020; An experiment with mass testing for COVID-19 was conducted in Khmelnytsky, n.d.; Schreiber et al., 2023; Fowlkes et al., 2022; Shang et al., 2022) and pertussis (Craig et al., 2020) are no exception. The percentage of asymptomatic patients can be age dependent and lead to huge differences in registered numbers of cases for countries with young and old population (Davies et al., 2020; Nesteruk, 2024b; Nesteruk and Keeling, 2023). Some theoretical estimations of the visibility coefficient [image: Greek lowercase letter beta symbol, represented as a slanted, looped line with a tail extending below the baseline.]—the ratio of real infections to the registered ones can be found in Nesteruk (2024b), Nesteruk (2021e), Nesteruk (2021c), and Nesteruk (2021d). In this study we will use the concepts of the classical SIR (susceptible-infectious-removed) model (Kermack and McKendrick, 1927; Weiss, 2013; Daley and Gani, 2005; Keeling and Rohani, 2008; Cherniha, 2020; Mohammadi et al., 2021; Nesteruk, 2021a), its generalization for simulations of different epidemic waves (Nesteruk, 2021a; Nesteruk, 2021b; Nesteruk, 2023b) and procedures of parameter identification (Nesteruk, 2023b; Nesteruk, 2017). Numerous improvements of SIR model (see, e.g., Hethcote, 2000; Nakamura et al., 2020; Britton, 2004; Pesco et al., 2014; Nesteruk, 2023a) do not take into account the visibility coefficient.

The obtained theoretical results will be applied for simulations of the pertussis (whooping cough) epidemic in England in 2023 and 2024 (Confirmed cases of pertussis in England by month, n.d.). This disease increases the risk of infant fatality and became a serious problem in many countries including the developed ones (Pesco et al., 2014; Confirmed cases of pertussis in England by month, n.d.). Numerical differentiation of the monthly numbers of new cases revealed two waves of the epidemic in England (before and after November 2023) (Nesteruk, 2024a). Due to the absence of necessary amount of observations, SIR simulations were performed in Nesteruk (2024a) only for the first wave. In this study we will use the new approach for simulation of both waves of the pertussis epidemic and compare the predictions with the recent statistical data.



2 Differential equations and initial conditions

For every epidemic wave i, let us divide the compartment of infectious persons I(t) (t is time) into visible (registered) and hidden (invisible/asymptomatic and unregistered) parts [image: Equation showing I equals I superscript (v) plus I superscript (h).] and suppose that these persons are appearing according to the visibility coefficient [image: The mathematical expression beta sub i is greater than or equal to one.] and removing with rates [image: The expression displays mathematical notation: \(\rho_i^{(\nu)} I^{(\nu)}\).] and [image: The formula shows rho sub i superscript h multiplied by I superscript h.]. Then the general SIR model (Nesteruk, 2021a; Nesteruk, 2021b; Nesteruk, 2023b) takes the following form:

[image: The mathematical equation displays the derivative of S with respect to time t, represented as dS/dt, equal to negative alpha sub i times S times the sum of I superscript v and I superscript h. This is labeled as equation one.]

[image: Differential equation representing the rate of change of infected individuals over time in a vector-borne disease model. The equation includes parameters \(\alpha_i\), \(\beta_i\), \(\rho_i\), susceptible individuals \(S_i\), infected vectors \(I^{(v)}\), and infected hosts \(I^{(h)}\).]

[image: Differential equation labeled as equation 3, showing the derivative of \( I^{(h)} \) with respect to time \( t \). It equals \( \frac{(\beta_i - 1)\alpha_i}{\beta_i} \) times \( S \left( I^{(v)} + I^{(h)} \right) - \rho_i^{(h)} I^{(h)} \).]

[image: Differential equation showing dR superscript (v) over dt equals rho subscript i superscript (v) times I superscript (v), labeled as equation four.]

[image: Equation showing the derivative of \( R^{(h)} \) with respect to \( t \), equal to \( \rho_i^{(h)} I^{(h)} \). It is labeled equation (5).]

The compartment of removed persons R(t) is also divided into visible (registered) and hidden parts [image: Equation showing \( R = R^{(v)} + R^{(h)} \).]. Infection and removal rates ([image: The Greek letter alpha with a subscript lowercase i.], [image: The mathematical notation shows the Greek letter rho with subscript i and superscript v in parentheses.], [image: Mathematical notation showing the Greek letter rho subscript i with superscript h in parentheses.]) and the visibility coefficient [image: Greek letter beta with subscript i.] are supposed to be constant for every epidemic wave, i.e., for the time periods: [image: \( t_i^* \leq t \leq t_{i+1}^*, \, i = 1, 2, 3, \ldots \)]. Summarizing Equations 1–5 yields zero value of the derivative [image: Differential equation notation showing the derivative with respect to time of the sum of variables: S plus I superscript v plus I superscript h plus R superscript v plus R superscript h.]. Then the sum:

[image: Equation labeled 6 shows \( N_i = S + I^{(v)} + I^{(h)} + R^{(v)} + R^{(h)} \).]

must be constant for every epidemic wave. We will consider the value Ni to be an unknown parameter of the model corresponding to the i-th wave, which is not equal to the known volume of population and must be estimated by observations. There is no need to assume that before the outbreak all people are susceptible, since many of them are protected by their immunity, distance, lockdowns, etc. Thus, we will not reduce the problem to a 4-dimensional one. It means that the solution can be obtained by numerical integration of the set of 5 differential Equations 1–5. Nevertheless, there are some separate cases, when analytical solutions are possible (see next Section).

Taking into account Equation 6, the initial conditions for the set of Equations 1–5 at the beginning of every epidemic wave [image: The image shows the mathematical symbol \( t_i^* \), where the letter "t" is followed by the subscript "i" with an asterisk superscript.] can be written as follows:

[image: Mathematical expressions related to variables and rates in a model. Expressions include \(I^{(v)}(t_i^*) = I_{vi}\), \(I^{(h)}(t_i^*) = I_{hi}\), \(R^{(v)}(t_i^*) = R_{vi}\), \(R^{(h)}(t_i^*) = R_{hi}\). Another equation shows \(S(t_i^*) = N_i - I_{vi} - I_{hi} - R_{vi} - R_{hi}\), and it is marked as equation (7).]

If at moment [image: Lowercase letter "t" with a subscript "i" and a superscript asterisk symbol.] all previously infected persons are removed, we can take into account only cases starting to appear during i-th wave and use the initial conditions:

[image: \( I_{vi} = 1, \, I_{hi} = \beta_{i} - 1, \, R_{vi} = 0, \, R_{hi} = 0 \quad (8) \)]



3 Examples of analytical solutions

Let us introduce the functions corresponding to the accumulated numbers of visible and hidden cases:

[image: \( V^{(v)} = I^{(v)} + R^{(v)}, \, V^{(h)} = I^{(h)} + R^{(h)} \) equation labeled as (9).]

Then it follows from Equations 2–5 that

[image: Differential equations representing changes over time. The left equation: dV^(v)/dt equals αi/βi times S times (I^(v) + I^(h)). The right equation: dV^(h)/dt equals (βi−1)αi/βi times S times (I^(v) + I^(h)). Equations are denoted as (10).]

Dividing Equation 10 by Equation 1 yeilds:

[image: Differential equations for vertical and horizontal components depicted. \( \frac{dV^{(v)}}{dS} = -\frac{1}{\beta_i} \) and \( \frac{dV^{(h)}}{dS} = -\frac{(\beta_i - 1)}{\beta_i} \). Equation labeled as (11).]

and simple linear solutions taking into account initial Equation 7:

[image: The image shows a mathematical equation labeled as equation 12. It is: \( V^{(v)} = -\frac{S}{\beta_i} + \frac{N_i - I_{vi} - I_{hi} - R_{vi} - R_{hi}}{\beta_i} + I_{vi} + R_{vi} \).]

[image: Mathematical formula for \( V^{(h)} \) is shown: \( V^{(h)} = -\frac{(\beta_i - 1)S}{\beta_i} + \frac{(\beta_i - 1)(N_i - I_{wi} - I_{hi} - R_{wi} - R_{hi})}{\beta_i} + I_{hi} + R_{hi} \). Equation number is (13).]

Equations 12, 13 allow obtaining simple linear relationship:

[image: Equation showing \( V^{(h)} = (\beta_i - 1) V^{(v)} - (\beta_i - 1) (I_{vi} + R_{vi}) + I_{hi} + R_{hi} \).]

which demonstrates that the ratio of total accumulated cases [image: Mathematical equation representing \( V \) as the sum of \( V^{(v)} \) and \( V^{(h)} \).] to the registered ones:

[image: Equation labeled as 14. It presents a mathematical formula: V divided by V superscript (v) equals beta subscript i minus the fraction where the numerator is beta subscript i minus 1, times the quantity I subscript vi plus R subscript vi, minus I subscript hi minus R subscript hi, and the denominator is V superscript (v).]

is not constant and equals [image: Lowercase Greek letter beta with subscript i.] only approximately at large [image: Mathematical notation showing the Greek letter Nu with a superscript lowercase Greek letter Nu in parentheses.] numbers. Equation 14 limits the accuracy of the approach used in Nesteruk (2021e), Nesteruk (2021c), and Nesteruk (2021d).

Introducing

[image: Equation showing \(I = I^{(v)} + I^{(h)}\) and \(I^* = \rho_i^{(v)} I^{(v)} + \rho_i^{(h)} I^{(h)}\) labeled as equation 15.]

summarizing Equations 2, 3 and dividing by Equation 1 yield the following differential equation:

[image: The image shows a mathematical expression: \(\frac{dI}{dS} = -1 + \frac{I^*}{\alpha_i I S}\). Equation number (16) is indicated on the right.]

In 3 separate cases:

	I. [image: Equation showing \(\rho_i^{(v)} = \rho_i^{(h)} = \rho_i\), indicating equal values for \(\rho_i\) in different conditions labeled by superscripts \(v\) and \(h\).]
	II. [image: The mathematical expression shows \( I^{(v)} \gg I^{(h)}, I^{(v)} \approx I \).], [image: The equation shows rho sub i equal to rho sub i with a superscript v in parentheses.]
	III. [image: \( I^{(v)} \ll I^{(h)}, \, I^{(h)} \approx I \)], [image: Equation showing \(\rho_i = \rho_i^{(h)}\) where \(\rho_i\) represents a variable, and the superscript \(h\) indicates a specific condition or state.]

Equation 16 simplifies and has an analitycal solution taking into account the initial Equation 7:

[image: Differential equation depicting \(\frac{dI}{dS} \approx -1 + \frac{\rho_i}{\alpha_i S}\), labeled as equation 17.]

[image: Mathematical equation: \( I \approx S + N_i - R_{vi} - R_{hi} + \frac{\rho_i}{\alpha_i} \ln \frac{S}{N_i - I_{vi} - I_{hi} - R_{vi} - R_{hi}} \), labeled as equation (18).]

Equations 17, 18 exact in the case (I) and approximate in cases (II) and (III).

Putting Equation 18 into Equation 1 and integration yield:

[image: Mathematical equation showing \( F(S) \approx \alpha_i \left( t - t_i^* \right) \) followed by a reference number in parentheses, (19).]

[image: The image shows a mathematical equation labeled as equation 20. It defines \( F(S) \) as the integral from \( U = N_{i} - I_{wi} - I_{hi} - R_{wi} - R_{hi} \) to \( S \), of an expression involving a fraction and a logarithm. The expression includes the integral of an equation with terms \( U - N_{i} + R_{wi} + R_{hi} \) and a fraction with \( \rho_{i} \) over \( \alpha_{i} \) multiplied by the natural logarithm of \( \frac{U}{N_{i} - I_{wi} - I_{hi} - R_{wi} - R_{hi}} \), all with respect to \( dU \).]

It follows from Equations 1, 2, 15 that:

[image: The equation shows the derivative \( \frac{dI^{(v)}}{dS} = -\frac{1}{\beta_i} + \frac{\rho_i^{(v)} I^{(v)}}{\alpha_i S I} \) and is labeled as equation (21).]

Taking into account that

[image: The image shows a mathematical equation: \( \frac{dF}{dS} \approx -\frac{1}{SI} \).]

(see Equations 18, 20), the solution of the non-homogenous linear Equation 21 satisfying the first initial Equation 7 can be written as follows:

[image: Mathematical equation involving intensity I as a function of S, with variables ρ, F, α, and β. The expression includes exponential functions, integrals, and subscripts for various parameters. It is labeled equation 22.]

With the use of Equations 9, 15 it is possible to express other functions as follows:

[image: Mathematical equations involving functions I, V, and R. The first equation is I^(h)(S) is approximately equal to I(S) minus I^(v)(S). The second is R^(v)(S) is approximately equal to V^(v)(S) minus I^(v)(S). The third is R^(h)(S) is approximately equal to V^(h)(S) minus I^(h)(S).]

Then for every value of S, all unknown functions can be calculated with the use of Equations 12, 13, 18, 22, 23. Corresponding moments of time can be found with the use of Equations 19, 20. Thus, Equations 12, 13, 18–20, 22, 23 yield an approximate analytical solution of the set of differential Equations 1–5 with the initial Equation 7. In the case (I) and when [image: Equation showing \( I^{(v)} = I \).], this solution is exact. For [image: Mathematical expression showing I with superscript v in parentheses, followed by an equals sign and I without superscript.], there is no need in Equations 22, 23 and corresponding formulas obtained in Nesteruk (2021a), Nesteruk (2021b), Nesteruk (2023b) are also valid.



4 Examples of parameter identifications and predictions

The analytical solution simplifies the procedure of identification of unknown parameters, since there is no need in numerical integration of differential Equations 1–5. It particular, having the set of accumulated cases [image: \( V_{j}^{(v)} \)] registered at moments tj, we can calculate corresponding values Sj with the use of the linear Equation 12 for any values of unknown constant parameters appearing in Equations 1–7. Then Equation 20 allows calculating values Fj = F(Sj). Due to the linear relationship (Equation 19 shows that there is a linear dependence between time and the function F (Equation 20), which depends on the accumulated numbers of cases), standard linear regression formulas (Draper and Smith, 1998) can be used to calculate the correlation coefficient r and values of parameters [image: Lowercase Greek letter alpha with a subscript lowercase letter i.] and [image: The image shows the mathematical notation "t" with a subscript "i" and an asterisk symbol above the letter "t".]. The optimal values of model parameters (providing the best fitting between the theoretical [image: Mathematical notation representing \( V^{(v)}(t) \), where \( V \) is raised to the power of \( v \) and is a function of \( t \).] curves and the results of observations [image: The image shows the mathematical notation \( V_j^{(\nu)} \).]) correspond to the maximum value of the correlation coefficient r. Thus, the parameter identification problem can be reduced to the problem of searching the maximum of complicated but analytical function r. For [image: The equation shows I superscript v in parentheses equals I.] (a completely visible epidemic), such approach was successfully used to simulate and predict the dynamics of mysterious children disease (Nesteruk, 2017), COVID-19 pandemic (Nesteruk, 2021a; Nesteruk, 2021b; Nesteruk, 2023b) and the pertussis epidemic in England (Nesteruk, 2024a).

Let us illustrate the parameter identification procedure for two waves of the pertussis epidemic in England in 2023 and 2024 discussed in (Nesteruk, 2024a). The accumulated confirmed numbers of cases ([image: Mathematical notation showing \( V_j^{(\nu)} \), representing a variable \( V \) with subscript \( j \) and superscript \( \nu \) in parentheses.]) and corresponding moments of time tj are listed in Table 1 according to the official site of UK government [(Confirmed cases of pertussis in England by month, n.d.), version available on 10 August 2024, the last 4 figures were taken from 10 December 2024 version]. The values [image: \( V_j^{(v)} \) is a mathematical expression, where \( V \) is the main symbol with a subscript \( j \) and a superscript \( v \) enclosed in parentheses.] were used to calculate approximate daily numbers of new cases dV/dt at moments tj according to the Equation 1 from (Nesteruk, 2024a) (see the last column in Table 1).



TABLE 1 Accumulated numbers of confirmed pertussis cases in England in 2023 and 2024 and estimations of the average daily numbers of visible cases.
[image: Table displaying data from January 2023, including months, days, accumulated numbers of visible pertussis cases in England, and calculated daily numbers of new cases. Values range from 9 visible cases in month one to 15,309 in month twenty-two, with calculated numbers for daily new visible cases such as 0.35426 on day fifty-nine and 84.44247 on day four hundred eighty-six.]

Since the general problem contains 10 unknown parameters, their identification needs high performance computing and applying AI methods even for the analytical solution Equations 12, 13, 18–20, 22, 23. When this solution is approximate, the optimal values of parameters will contain discrepancies, which can reduce the accuracy of predictions. For our example, let us take the case of exact solution [image: Mathematical equation: \( I^{(v)} = I(\beta = 1) \).] and assume that at the beginning of every new epidemic wave all infectious persons from the previous waves are removed. Then we can use initial Equation 8, perform simulations and then add cases accumulated at moments when the monthly numbers of visible cases started to increase. For every wave we will have only four unknown parameters Ni, [image: Lowercase Greek letter alpha with a subscript i.], [image: Rho sub i superscript v in parentheses, a mathematical notation.] and [image: Mathematical expression featuring a lowercase italic t with subscript i and a superscript asterisk.]. Due to linear relation 19 and using linear regression, only two of these parameters are independent.

The first and second epidemic waves were simulated with the use of [image: The mathematical notation shows \(V_j^{(v)}\), where \(V\) is a variable, \(j\) is a subscript, and \(v\) is in parentheses as a superscript.] and tj corresponding to j = 3–9 and j = 11–18, respectively. The optimal values of parameters (corresponding to the maximum of correlation coefficients r = 0.999721131761662 (0.999822556136920)) are:

Ni = 50739.992 (3657890.47292358);

[image: Greek letter alpha with a subscript i.] =1.50488802805402e-05 (2.11266650706657e-06) [day]−1;

[image: The image shows the Greek letter rho with subscript i and superscript v in parentheses.]=0.752503596035381 (7.7088126606047) [day]−1;

[image: Mathematical notation displaying the symbol "t" with a subscript "i" and a superscript asterisk.]=89.1566573802040 (333.429529143536) days.

(figures in brackets correspond to the second wave). It should be noted that these optimal values are very different for the first and second waves and differ from the figures in Nesteruk (2024a) for the simulation of the first wave using observations with j = 1–10.

Using these optimal values in the analytical solution Equations 10, 12, 18–20, 22, 23 yielded the theoretical curves shown in Figure 1 (solid and dashed for the first and the second wave, respectively). The predicted values (see blue and black “crosses” for j = 19–22, July–October 2024) are in good agreement with the theoretical blue and black curves. To estimate the accuracy of 4-month prediction, let us take the accumulated number of visible cases [image: Mathematical expression showing "V" with a superscript "nu" in parentheses and a subscript "22".] =15,309 corresponding to the end of October 2024 (see Table 1) and compare with the theoretical value [image: Mathematical expression showing \( \nu^{(v)} \) evaluated at \( t = 670 \).]= 17,430 corresponding to the blue dashed line in Figure 1. After adding 505 cases accumulated at t10 and extracted for the simulation of the second wave (compare blue “crosses” and “circles” in Figure 1), we obtain the accuracy (17,935-15,309)/15,309 around 17%. Since the final number of visible cases decreases with the increase of the visibility coefficient (see the next Section), we can expect to obtain a lower theoretical value [image: Mathematical notation showing \( \nu(v) \) with a vertical line and a subscript \( t = 670 \).] and better accuracy after the real visibility coefficient will be calculated and taken into account. The accuracy of 17% is comparable with the long-time predictions for the first waves of the COVID-19 in different countries (Nesteruk, 2021a) and even for the case [image: Greek letter beta equals one.] is likely to allow healthcare professionals to develop the right strategy. The average daily numbers of new cases will be less than 1.0 only in March 2025. If trend will not change, the monthly figure of 9 new cases (as it was before starting the first wave, see Table 1) can be achieved only in May 2025.

[image: Graph showing theoretical curves and observations versus time in days, with zero as December 31, 2022. Curves represent various waves with color-coded lines: red for I wave, blue for II wave. Black crosses mark dY1/dt observations, and blue circles indicate V1 values from simulations. Time spans from 0 to 800 days on the x-axis.]

FIGURE 1
 Accumulated numbers of visible pertussis cases (blue curves, the first Equation 9); the average daily numbers of new cases (black curves, the first Equation 10); numbers of infectious persons (red curves, Equation 18). “Circles” represent the confirmed numbers of cases [image: Mathematical notation depicting \( V_{j}^{(v)} \), where \( j \) is a subscript and \( (v) \) is a superscript.] taken for identification of parameters of the first (j = 3–10) and second (j = 11–18) waves; blue “crosses” – all confirmed numbers of cases [image: Mathematical expression showing \( V_j^{(v)} \) with a subscript \( j \) and a superscript \( (v) \).] listed in Table 1; black “crosses” – results of calculations of approximate daily numbers of new cases at moments tj listed in the last column of Table 1.




5 Examples of exact solutions at different values of the visibility coefficient

The use of initial Equation 8 allows reducing the numbers of unknown parameters by 4. Then, Equations 12, 14 yield

[image: Equation showing \( V^{(v)} = \frac{N_i - S}{\beta_i} \). This is labeled as equation 24.]

[image: Mathematical equation: \( V = \beta_i V^{(v)} \), labeled as equation (25).]

According to Equation 25 the real accumulated numbers of new cases V are [image: Greek letter beta with subscript i.] times higher than visible figures [image: Mathematical notation showing the Greek letter Nu with the superscript of the Greek letter Nu in parentheses.] registered during the fixed epidemic wave, if all infectious patients were removed before this wave started.

In the case (I), i.e., equal removing rates for visible and hidden patients [image: The equation shows \( \rho_i^{(v)} = \rho_i^{(h)} = \rho_i \).], another simplification can be obtained with the use of Equation 18:

[image: The formula shown is: I equals negative S plus N sub i plus rho sub i over alpha sub i times the natural logarithm of S over N sub i minus beta sub i. It is equation number twenty-six.]

Assuming that spreading the infection stops when the real number of infectious I (visible and hidden) is less than 1.0, the corresponding final number of susceptible Sf can be obtained as a solution of the non-linear equation:

[image: Mathematical equation expressing Sf plus 1 equals Ni plus rho sub i over alpha sub i times the natural logarithm of Sf over the quantity Ni minus beta sub i. Equation number 27 is shown at the right.]

following from Equation 26 and allowing us to calculate the corresponding final accumulated numbers of visible and total cases with the use of Equations 24, 25.

Figure 2 represents the results of calculations for the optimal values of parameters corresponding to two pertussis waves in England (see previous Section) and the first COVID-19 pandemic waves in Austria and the UK (in brackets), (Nesteruk, 2021a):

Ni = 75176.032 (479782.4);

[image: Greek letter alpha with a subscript i.] =1.924971386379e-05 (9.1371956639e-07) [day]−1;

[image: The image shows the mathematical notation for \(\rho_i^{(v)}\), which represents a variable or parameter with subscript \(i\) and superscript or index \(v\).]=1.29635017900866 (0.330545378991741) [day]−1.

[image: Graph showing the relationship between the visibility coefficient and the final number of accumulated cases for pandemic waves. The x-axis represents the visibility coefficient, ranging from 1 to 10. The y-axis represents the final numbers of accumulated cases, ranging from 100 to 100,000. Various lines represent Pertussis I and II waves, and COVID-19 data for the UK and Austria, both real and visible cases, with each line distinguished by different colors and styles.]

FIGURE 2
 Solid curves represent final numbers of visible (registered) cases (Equations 24, 27) dashed ones–final numbers of all cases (registered and unregistered, Equations 25, 27). Back and blue lines correspond to the optimal values of parameters (listed in previous Section) for the first and second pertussis waves in England, respectively. Magenta and red curves show the results for the first COVID-19 waves in Austria and the UK (Nesteruk, 2021a), respectively.


Dashed lines demonstrate that the final accumulated numbers of all cases (Equations 25, 26) very slightly depend on the visibility coefficient. The final accumulated numbers of visible cases (Equations 24, 26) diminish with the increase of [image: Lowercase Greek letter beta subscript i, used often in mathematical and scientific contexts to denote variables or coefficients.] (see solid curves). The values of other parameters are fixed and correspond to the case [image: Greek lowercase letter beta with subscript i.]=1. The values [image: \( V_j^{(v)} \)] for j = 20, 21, 22, which are smaller then theoretical prediction for the second pertussis wave (compare blue “crosses” and the blue dashed line in Figure 1), reflect reducing the final value of [image: Mathematical notation showing the Greek letter Nu with a superscript v in parentheses.] for [image: Greek letter beta with subscript i.]>1. Nevertheless, good estimations of the visibility coefficient can be obtained only with the use of all parameters. Since removing rates can be different for symptomatic and asymptomatic patients, a general parameter identification procedure needs a numerical solution of the set of differential Equations 1–5 and huge numbers of calculations, which can be performed only with the use of high performance computing and AI methods. The full parameter sensitivity analysis will be considered in future research.

With the use of Equations 24, 10, 26 can be rewritten as follows:

[image: The equation shown is: I equals beta sub i V superscript v plus rho sub i over alpha sub i times the natural logarithm of the fraction with numerator N sub i minus beta sub i V superscript v and denominator N sub i minus beta sub i. This is labeled as equation 28.]

[image: Equation showing the rate of change of a variable \(V^{(v)}\) with respect to time \(t\). The expression is \(\frac{dV^{(v)}}{dt} = \frac{\alpha_i}{\beta_i} (N_i - \beta_i V^{(v)}) I\). It simplifies to \(\frac{dV}{dt} = \alpha_i (N_i - \beta_i V^{(v)}) I\). Numbered as equation (29).]

Figure 3 represents the calculations of real number of infectious I (visible and hidden, Equation 28) and visible and real numbers of new daily cases (Equation 29) versus accumulated numbers of visible cases [image: Greek letter nu with a superscript lowercase v in parentheses.] for different values of the visibility coefficient. Values of other parameters correspond to the second pertussis wave in England (listed in the previous Section).

[image: Graph depicting various curves representing infectious cases and new daily cases against accumulated visible cases. It includes curves for different beta values (β=3, β=2, β=1) and their corresponding derivatives. The x-axis shows accumulated visible cases, while the y-axis shows total infectious and new daily cases. Different line styles and colors distinguish beta values and their derivatives.]

FIGURE 3
 Solid, dashed and dotted curves represent calculations for values of the visibility coefficient 1; 2 and 3, respectively. Other values of parameters correspond to the second pertusis wave in England in 2023 and 2024 (listed in the previous Section). Red color corresponds to the real number of infectious persons (symptomatic and asymptomatic, Equation 28). Blue lines represent visible numbers of new daily cases; black ones - real (registered and hidden) numbers of new daily cases (Equations 28, 29).


The maximum values of infectious slightly increase with the increase of the visibility coefficient (compare red lines in Figure 3). The black and the solid blue curves show the same but more pronounced trend for the real numbers of new daily cases. The positions of the maxima on these lines are very close to ones on the red curves. Corresponding moments of time can be calculated with the use of Equations 19, 20, 24. Thus, the average daily numbers of visible cases reflects trends in real numbers of infectious persons (symptomatic and asymptomatic) and can be used to control epidemics. The numbers of new visible daily cases decrease with the increase of visibility coefficient (for fixed values of other parameters and [image: Mathematical equation showing \(\rho\) subscript \(i\) superscript \((v)\) equals \(\rho\) subscript \(i\) superscript \((h)\) equals \(\rho\) subscript \(i\).], see blue curves in Figure 3). The final numbers of visible cases demonstrate the same trend (see solid curves in Figure 2).



6 Conclusion

To simulate hidden epidemic dynamics connected with asymptomatic and unregistered patients, a new general SIR model was proposed containing 5 unknown functions. For some cases, the analytical solutions of the set of 5 differential equations were found which allow simplifying the parameter identification procedure. Two waves of the pertussis epidemic in England in 2023 and 2024 were simulated for the case of zero hidden cases. Observations of accumulated visible numbers of cases during 4 months revealed rather high accuracy of predictions. If trend will not change, the monthly figure of 9 new pertussis cases (as it was in January–February 2023) can be achieved only in May 2025. The proposed approach can be recommended both for preliminary simulations of different epidemics (supposing zero hidden cases) and for further research, using presented analytical solutions or numerical integration of differential equations. The theoretical estimations of numbers of hidden cases will allow healthcare professionals to know the real sizes of epidemics and to develop the right strategy without expensive mass testing.
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Subtle changes on electrocardiogram in severe patients with COVID-19 may be predictors of treatment outcome
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Background: Two years after the COVID-19 pandemic, it became known that one of the complications of this disease is myocardial injury. Electrocardiography (ECG) and cardiac biomarkers play a vital role in the early detection of cardiovascular complications and risk stratification. The study aimed to investigate the value of a new electrocardiographic metric for detecting minor myocardial injury in patients during COVID-19 treatment.
Methods: The study was conducted in 2021. A group of 26 patients with verified COVID-19 diagnosis admitted to the intensive care unit for infectious diseases was examined. The severity of a patient’s condition was calculated using the NEWS score. The digital ECGs were repeatedly recorded (at the beginning and 2–4 times during the treatment). A total of 240 primary and composite ECG parameters were analyzed for each electrocardiogram. Among these patients, 6 patients died during treatment. Cluster analysis was used to identify subgroups of patients that differed significantly in terms of disease severity (NEWS), SрО2 and integral ECG index (an indicator of the state of the cardiovascular system).
Results: Using analysis of variance (ANOVA repeated measures), a statistical assessment of changes of indicators in subgroups at the end of treatment was given. These subgroup differences persisted at the end of the treatment. To identify potential predictors of mortality, critical clinical and ECG parameters of surviving (S) and non-surviving patients (D) were compared using parametric and non-parametric statistical tests. A decision tree model to classify survival in patients with COVID-19 was constructed based on partial ECG parameters and NEWS score.
Conclusion: A comparison of potential mortality predictors showed no significant differences in vital signs between survivors and non-survivors at the beginning of treatment. A set of ECG parameters was identified that were significantly associated with treatment outcomes and may be predictors of COVID-19 mortality: T-wave morphology (SVD), Q-wave amplitude, and R-wave amplitude (lead I).
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1 Introduction

Experience with the pandemic has shown that the disease can pose a severe threat to the lives of patients. The main danger of the disease is acute respiratory syndrome and lung injury. However, patients may experience damage to other organs and systems: the cardiovascular system, the immune system, the liver and the kidneys. Myocardial injury occurred in at least 10% of unselected COVID-19 cases and up to 41% in critically ill patients or those with comorbidities (Cameli et al., 2020).

In the survivors, the majority showed long-term symptoms, now often referred to as long COVID-19 (Garg et al., 2021; Crook et al., 2021). One of the critical long-term clinical consequences of COVID-19 seems to be myocardial injury (Guzik et al., 2020; Italia et al., 2021; Akhmerov and Marbán, 2020).

Signs and symptoms of possible myocardial injury after COVID-19 may include severe fatigue, palpitations, chest pain, shortness of breath, postural orthostatic tachycardia syndrome (POTS) due to neurologic disturbances, post-exertional fatigue, and higher troponin levels (Lovell et al., 2022; Bandyopadhyay et al., 2020; Xie et al., 2022; Matsumori et al., 2022).

In addition, COVID-19 appears to cause severe myocarditis. It can affect the myocardium and pericardium, causing severe fatigue without other apparent symptoms (Lovell et al., 2022). Diagnosis of myocarditis is relatively inaccurate because both tests and diagnostic protocols lack accuracy. Some reports showed that symptoms persisted for an average of 47 days before being diagnosed by cardiac magnetic resonance (CMR) imaging (Ojha et al., 2021).

Therefore, it is extremely important to identify critical factors for assessing COVID-19 severity, predicting treatment outcomes, and optimizing individual treatment strategies (Izcovich et al., 2020; Fathi et al., 2021). It is known that 49 variables can provide valuable prognostic information about mortality and disease severity in patients with COVID-19 (Izcovich et al., 2020).

Numerous studies have confirmed that cardiac (Mueller et al., 2021) and other biomarkers may reflect cardiovascular injury and inflammation in COVID-19 and are strongly associated with poor prognosis and mortality (Battaglini et al., 2022; Wang et al., 2020). In addition, some electrocardiographic (Bergamaschi et al., 2021) and echocardiographic alterations (Long et al., 2021) appear to have prognostic implications for patients with COVID-19.

Several prognostic models have been developed to assess disease severity in patients with COVID-19 and predict mortality (Bertsimas et al., 2020; Pourhomayoun and Shakibi, 2021; Liang et al., 2020; Zhou et al., 2021; Yan et al., 2020; Kang et al., 2021).

Such classification models have usually been developed using various machine learning (ML) algorithms. For example, one neural network model has demonstrated 93% accuracy in predicting mortality based on patients’ physiological status, symptoms, and demographic information (Pourhomayoun and Shakibi, 2021).

A multivariable logistic regression model and an online risk calculator based on 10 clinical indicators were proposed to predict critical illness development among hospitalized patients with COVID-19 (Liang et al., 2020). A support vector machine (SVM) model based on 11 routine clinical parameters was developed to assess the severity of COVID-19 patients (Zhou et al., 2021).

An interpretable mortality prediction model for COVID-19 patients was proposed by Yan et al. (2020) where the XGBoost ML algorithm was used to select predictors. The interpretable decision tree and the decision rule for 3 biomarkers that predict the survival of individual patients with more than 90% accuracy were obtained.

It should be noted that in one of the ML models for predicting the severity of COVID disease, among the 33 analyzed signs and indicators, there was the cardiac functional grading (according to New York Heart Association functional classification) (Kang et al., 2021). However, this cardiac indicator was excluded from the model because of its weak positive correlation with the severity of COVID-19.

In this context, the advanced analysis of ECG is highly demanded. This is especially true for patients with a normal or slightly changed electrocardiogram, i.e., if the analysis did not reveal any “major” category according to the, for example, Minnesota coding system. The only way to increase the diagnostic value of ECG examination is to develop proper information technology (IT)—a combination of up-to-date methods and equipment bound into a chain that provides collection, storage, pre-processing, interpretation, conclusion and dissemination of information (Chaikovsky, 2020).

At the same time, the advancement of diagnostic methods, especially instrumental ones (i.e., methods of functional diagnostics), primarily entails a constant increase of their “distributive capacity”—the ability to detect more and more and subtler changes in the function examined by one method or another. Such opportunities emerge due to progress in technical measurement tools of a specific function and even more due to the development of informational technologies. In other words, due to the creation of new metrics—numerical parameters using which one can assess the aspects of the functioning of various human organs and systems that were inaccessible before.

As a result, new ways of improving the diagnostic accuracy of a particular method within its traditional application scenarios are discovered. Additionally, familiar methods find unconventional uses in new areas.

Everything mentioned above fully applies to the new informational technologies for cardiac electrical activity assessment developed at V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine.

The main goal set by the developers in this context was to make any electrocardiography informative. Routine ECG analysis is based on specific ECG syndromes or phenomena defined within one of the existing visual ECG analysis algorithms. However, in most cases, no ECG syndrome can be identified during the analysis of an individual electrocardiogram, at least not one that reflects cardiac pathology, i.e., belongs to the “major” category according to the Minnesota coding system, for example. During the routine analysis, one is forced to assign a single class to all these electrocardiograms—electrocardiograms with no primary ECG syndrome identified. However, the question arises: are all these electrocardiograms the same in terms of their relative “distance” to the “ideal” electrocardiogram of a healthy human? They are not. Depending on the myocardial condition, this “distance” can be further or closer. Moreover, there is a reasonable hypothesis that this “distance” reflects the likelihood of serious cardiovascular events. This is where routine analysis of an electrocardiogram is uninformative.

That is why the Universal Scoring system method and software for ECG scaling that can provide the quantitative evaluation of the slightest changes in ECG signal were developed (Chaikovsky, 2020; Chaykovskyy et al., 2019). This approach is based on, first of all, measuring the maximum number of ECG parameters and heart rate variability and, secondly, on positioning each parameter value on a scale between the absolute norm and extreme pathology. The suggested approach follows a popular Z-scoring ideology, where quantitative, usually point-based assessment of test results is determined using a unique scale containing data about intra-group test results variation. To calculate the Z-score mean, the test value of the group and its standard deviation are needed (Colan, 2013).

This study aimed to investigate the value of a new electrocardiographic metric for detecting subtle myocardial injury in patients during COVID-19 treatment. And also, to test the hypothesis about the prognostic value of myocardial injury on the treatment outcome.



2 Materials and methods


2.1 Study design and patient characteristics

The study was conducted in 2021. A total of 26 patients with confirmed COVID-19 were monitored while on treatment in the intensive care unit (ICU) of the Kyiv Clinical Hospital #4. The hospitalization duration ranged from 5 to 27 days. All the patients were initially in a severe condition.

The vital signs were documented to evaluate the course of the illness: heart rate, blood oxygen saturation, blood pressure, body temperature, and respiration rate. Based on them, the severity of a patient’s condition was calculated using a widely accepted NEWS score (Wang et al., 2020). Severe COVID-19 condition was defined as meeting NEWS aggregate score of 7 or over.

The process of patients’ enrollment is presented on Figure 1.

[image: Flowchart showing the evaluation process for 79 COVID-19 patients with NEWS score greater than or equal to seven admitted to the ICU between April 15, 2021, and May 31, 2021. Thirty-six were excluded without initial ECG. Forty-three had initial ECG evaluation. Exclusions include one patient transferred, four with no repeated ECG records, one with suspected acute coronary syndrome, three with NYHA class three, six with complete LBBB and RBBB, and two with pathological Q-waves. Twenty-six underwent serial ECG evaluation.]

FIGURE 1
 Flow-chart of the enrollment of COVID-19 patients with serial ECG evaluations.


Most patients had a history of chronic diseases, first of all CVD, but these diseases were in remission. Thus, only patients with no signs of instability in relation to heart disease and no gross changes in the electrocardiogram in accordance with Minnesota coding were included in the study. Based on this logic, as shown in Figure 1, four patients were excluded due to instability of their conditions in the context of comorbid heart diseases, and eight other patients were excluded because they had major pathological changes on the ECG according to Minnesota coding.

In 26 patients, an ECG in 12 leads by serial digital ECG device (Solvaig Ltd., Ukraine) was repeatedly recorded (at the beginning and several times during the treatment—from 2 to 4 times). Among these patients, six patients died during the treatment. The main characteristics of the patient’s condition were recorded several times. The integral indicators were used to calculate the patient’s severity according to the NEWS scale (National Early Warning Score) (Baker et al., 2021) and SAPS II (The Simplified Acute Physiology II Scale) (Allyn et al., 2016). А demographic and anthropometric values, clinical parameters and ICU characteristics are presented in Table 1.



TABLE 1 Patient characteristics at ICU admission.
[image: Table displaying various health parameters and their values, including average age, sex distribution, weight, height, BMI, and the presence of conditions like hypertension (84%), diabetes (34%), ischemic heart disease (69%), heart failure (42%), and pulmonary hypertension (100%). Other conditions listed include malignant disease, liver failure, and vascular disease, with their respective prevalence. The table also includes data on ICU admission symptoms, SAPS II score, and NEWS score. Values are shown with mean, standard deviation, median, and percentages.]



2.2 Statistical analysis

Data are presented as means ± standard deviation (SD) or median (interquartile range, IQR) for continuous variables, based on normality and as percentages for categorical variables. A two-sample t-test compared the baseline characteristics of subjects within each group with unequal variances for continuous variables. Mann–Whitney U test was performed for variables that were not normally distributed. Two-tailed p < 0.05 was considered statistically significant.

The expectation–maximization (EM) clustering algorithm with 10-fold cross-validation was used to identify homogeneous groups. Homogenous groups were formed based on disease severity and integral index of patients at the beginning of treatment. As a result, two subgroups were identified that were significantly different in the severity of the disease and the integral indicator of the state of the cardiovascular system of patients at the start of treatment. Repeated measures ANOVA was used to evaluate statistical differences in the main clinical parameters in these subgroups at the beginning and the end of treatment.

We used machine learning algorithms (CART) such as Decision Trees to construct a model for classifying patient mortality. Statistical analysis was performed using Statistica 12.0 software.




3 Results


3.1 Correlation and cluster analysis, changes of integral parameters in the course of treatment

Previous studies have shown heterogeneity in clinical manifestations, severity and outcomes in COVID-19 patients. Our task was to study the heterogeneity of patients, taking into account the vital signs, the severity of the disease, and the state of the cardiovascular system (CVS). In addition, it was necessary to determine the influence of these factors on the treatment outcome.

We calculated correlation coefficients for all monitoring data to study the relationship between the CVS state’s integral index and patients’ vital signs during treatment. Mean values and Spearman correlation coefficients for the vital signs and the composite index of ECG U-score are shown in Table 2.



TABLE 2 Mean values and Spearman’s correlation coefficients for vital signs and U-score composite ECG index.
[image: A table displaying statistical data for various health variables: heart rate, blood oxygen saturation, body temperature, NEWS score, SAPS II, and U-score. It includes mean values with standard deviation, along with correlation coefficients between variables. Notable correlation values are marked with an asterisk indicating significance at p < 0.05.]

As one can see, a weak but statistically significant correlation exists between U-score composite ECG index and blood oxygen saturation, body temperature and NEWS score (in the last two cases - negative correlation).

Table 3 shows the distribution of patients according to the NEWS score, indicating the heterogeneity group of patients at the beginning of treatment.



TABLE 3 The distribution of patient severity score at the beginning of treatment.
[image: Table displaying NEWS scores with corresponding number of cases and percentages. Scores: 3 (2 cases, 6.25%), 5 (2, 6.25%), 6 (2, 6.25%), 7 (8, 25%), 8 (13, 40.63%), 9 (3, 9.38%), 10 (2, 6.25%).]

To identify homogeneous subgroups (clusters), the sample of 26 patients was analyzed using EM cluster analysis with 10-fold cross-validation.

Hence, the problem of choosing the best parameters for clustering arises. In the general case, the task of selecting features for clustering consists of choosing the “best” set of features that helps to identify natural clusters according to the criterion. In our case, the criterion is the treatment outcome. Preliminary, feature dimensionality reduction methods were used to collapse features, in other words, to form composite features. Based on this logic, the electrocardiographic composite score called U-score, as well as composite scores NEWS and SAPS II for assessing the patient’s condition in the intensive care unit, were primarily selected as features for clustering. Then, SAPS II was rejected due to its minimal variations during treatment. In addition, the SpO2 value was chosen as a clustering parameter, since this independent feature is the most important vital sign in assessing the condition of patients with respiratory distress. Other vital signs such as HR, body temperature, as well age was also preliminarily investigated as potential parameters for clustering, but were rejected because the clusters resulting from the use of these parameters were clearly unrelated to the target criterion.

As a result, the NEWS score (as a categorial variable), SрО2 and U-score composite ECG index at the beginning of treatment have been taken for clusterization. NEWS and U-score were taken for clustering as the most integral indexes, and SpO2 - since this is the vital sign for patients in the ISU for COVID-19.

As a result, two subgroups significantly differing from each other in SpO2, NEWS score and U-score values were identified among these patients:

Cluster 1 included 19 patients with mean NEWS = 7.1, SрО2 = 84.3, U-score = 60.5.

Cluster 2 included 7 patients with mean NEWS = 8.3, SрО2 = 78.0, U-score = 49.8.

A diagram of standardized values of SpO2 and U-score is shown in Figure 2. As we can see, at the beginning of treatment, patients from cluster 1 have higher levels of oxygen and an integral ECG index compared to cluster 2. Сluster 2 (subgroup 2) is characterized by a combination of greater severity with low oxygen level and lower U-score (integral ECG index level).

[image: Line graph showing normalized means of two variables, SpO2 and U score, for two clusters. Cluster 1, in blue, starts higher and decreases. Cluster 2, in red, starts lower and also decreases.]

FIGURE 2
 Normalized means SpO2 and U-score in cluster 1 and cluster 2.


The average values of vital signs in the identified subgroups are shown in Table 4.



TABLE 4 Comparison of vital signs in cluster 1 and cluster 2 (t-test).
[image: Table comparing vital signs between two clusters with means and standard deviations. Cluster 1 (n=19) has lower averages in age, heart rate, and U-score compared to Cluster 2 (n=7). Statistically significant differences include age, SpO2, and U-score with p-values 0.047, 0.0001, and 0.046, respectively. Other values, such as breathing rate and body temperature, show no significant difference.]

In addition, the subgroup with a more severe course of the disease (cluster 2) significantly differs in the age of patients. In subgroup 2, patients are older but do not differ in physiological severity. They do not have a significant difference in the indicator of physiological severity SAPS II.

We studied the dynamics of the abovementioned main parameters (SpO2, NEWS, U-score) in two clusters throughout treatment using a repeated measures analysis of variance (RepANOVA). The changes of these parameters at the beginning (1) and by the end (2) of treatment are shown in Figures 3–5.

[image: Line graph showing two clusters' data points with error bars across NEWS1 and NEWS2 on the x-axis and DV_1 on the y-axis, ranging from 2 to 10. Cluster 1 (blue) decreases from NEWS1 to NEWS2, while Cluster 2 (red) remains relatively stable.]

FIGURE 3
 NEWS severity score changes due to treatment in clusters 1 and 2.


[image: Line graph displaying DV_1 on the y-axis against R1 categories 1 SpO2 and 2 SpO2 on the x-axis. Two clusters are shown: cluster 1 in blue and cluster 2 in red, both with error bars. Cluster 1 shows an upward trend from 1 SpO2 to 2 SpO2, starting around 87 and rising to about 92. Cluster 2 also shows an upward trend, starting around 80 and rising to approximately 85.]

FIGURE 4
 SpO2 changes due to treatment in clusters 1 and 2.


[image: Line graph with two clusters, one in blue and the other in red, representing scores on the y-axis labeled "DV_1" and x-axis labeled "R1" with subcategories "1 U score" and "2 U score". Error bars are displayed for both clusters, with blue consistently higher than red. Legends identify clusters.]

FIGURE 5
 U-score integral ECG index changes due to treatment in clusters 1 and 2.


As shown from the figures above, both subgroups show a decrease in NEWS severity score and an increase in SpO2 as a result of treatment, and these changes are statistically significant. The impact of therapy on main parameters in subgroups can be assessed by partial effect sizes (partial eta-squared, [image: Squared eta subscript p, represented as η squared p.]). The effect of increasing oxygen in each cluster is significant: cluster 1 R1 SpO2 [image: Statistical notation for partial eta squared, represented as the Greek letter eta with a squared superscript and subscript p.] = 0.73, p = 0.00001; cluster 2 [image: Statistical notation showing "eta squared subscript p."] = 0.72, p = 0.007.

In addition, the dynamics of severity reduction in the 1st subgroup is more pronounced. Sub NEWS partial eta-squared = [image: Mathematical notation showing the Greek letter eta with a subscript p and a superscript two.] = 0.7, p = 0.0001. Note that a decrease in the mean NEWS is not statistically significant in subgroup 2 (cluster 2 with severe baseline).

In addition, the dynamics of severity reduction in the 1st subgroup is more pronounced. Sub NEWS partial eta-squared = [image: Mathematical notation showing the Greek letter eta squared, subscript p.] = 0.7, p = 0.0001. Note that a decrease in the mean NEWS is not statistically significant in subgroup 2 (cluster 2 with severe baseline).

The U-score composite index has a positive tendency to increase. However, the wide dispersion observed indicates a heterogeneity of U-score changes. Note that in subgroup 2, with low initial levels of integral indicator and oxygen, the part of unfavorable outcomes (ratio deceased/survivors) is 3 out of 7, >3 out of 19 in subgroup 1.



3.2 Comparison of vital signs and ECG indicators in two groups by the outcome of treatment

Next, we studied the differences between patient groups formed according to treatment outcomes. The study group of 26 patients consisted of two classes according to the treatment outcome: 20 survivors and 6 non-survivors. Clinical data and ECG parameters at the beginning and end of treatment were compared between survivors (S) and non-survivors (D).

At the beginning of treatment, there were no significant differences between groups S and D in the vital signs (SAPS II, SpO2, NEWS score and U-score), except for the patient’s age and body temperature (Table 5).



TABLE 5 Comparison of mean vital signs between survivors and non-survivors (t-test).
[image: Table comparing ECG indicators between survivors and non-survivors. Indicators include SAPS II, age, SpO2, body temperature, NEWS, HR, and U-score with their means and standard deviations. P-values are shown, indicating significance for age (0.013) and body temperature (0.023).]

Then, an analysis was performed to identify any statistically significant differences among all partial ECG indicators constituting the U-score. The results of comparisons of ECG indicators in these groups at the beginning of treatment according to the t-test are shown in Table 6 and according to the Mann–Whitney U test in Table 7.



TABLE 6 Mean ECG indicators for survivors and non-survivors at the beginning of treatment (t-test).
[image: Table comparing ECG indicators between survivors (n = 20) and non-survivors (n = 6). T-wave morphology, P/QRS integrals ratio, integral of QRS complex, U-score based index, and R-wave amplitude are provided with mean ± standard deviation. Significant \(p\)-values include T-wave morphology (0.017), P/QRS integrals ratio (0.039), integral of QRS complex (0.025), U-score index (0.037), and R-wave amplitude (lead I, 0.036). Other values have non-significant \(p\)-values.]



TABLE 7 Chi-square statistics: outcomes—vital signs.
[image: Table showing vital signs at the beginning of treatment with corresponding Chi-square and p-values. Variables include Age (Chi-square: 13.09, p-value: 0.109), SAPS II, Body temperature, HR, BR, SpO₂, and NEWS, each with their respective values.]

At the beginning of the treatment, statistically significant differences were observed among the following parameter values:

	1. T-wave morphology (SVD);
	2. P/QRS integrals ratio;
	3. U-score based composite index of cardiovascular events risk;
	4. R-wave amplitude (μV) (lead I);
	5. Integral of QRS complex (lead I).

By the end of the treatment, statistically significant differences were observed, in addition to the severity of the disease, among the same ECG parameters and also in one of the fundamental heart rate variability indicators, RMSSD, which represents parasympathetic nervous system activity.



3.3 Vital signs and ECG indicators as treatment outcome predictors

In the last step of statistical treatment, we explored which parameters had the highest correlation with treatment outcomes using vital signs and the entire ECG and HRV dataset. We used univariate feature selection for classification based on the Chi-square statistical test (Tables 7, 8). Variables with higher Chi-square statistical values are then selected as predictors for classification.



TABLE 8 ECG indicators—treatment outcome predictors.
[image: Table showing treatment outcome predictors at the beginning of treatment with corresponding chi-square and p-values. Predictors include R-wave amplitude (mV and μV), T-wave morphology, Q-wave amplitude, ST segment shift, and U-score based index of cardiovascular events risk. Chi-square values range from 8.29 to 18.01. P-values range from 0.011 to 0.141.]

As follows from Table 8, vital signs at the beginning of treatment cannot be selected as treatment outcome predictors.

ECG indicators that significantly correlate with the treatment outcome class attribute and previously identified features (independent-group t-test) listed in Table 9 ranged p-value.



TABLE 9 The contribution (rank) of parameters to the survival classification model.
[image: Table showing parameters with their variable rank and importance. T-wave morphology has a rank of 100 and importance of 1.000. R-wave amplitude has a rank of 98 and importance of 0.977. Q-wave amplitude has a rank of 28 and importance of 0.278.]

After testing the features with several statistics, we applied the wrapping method to the extracted features. With this approach, we evaluate the effectiveness of a subset of features, considering the final result of the applied learning algorithm (increase in accuracy when solving the classification problem).

We used the CART machine learning algorithm (decision tree method) with 10-fold cross-validation to divide patients into two classes (S, D) according to the tested feature sets. As a result, a set of features with the highest classification accuracy (one classification error) was obtained. Figure 6 shows the optimal classification tree built based on three features.

[image: Flowchart illustrating a decision tree analysis. It begins with the "T wave morphology (SVD)" criterion, branching into two paths based on a value of sixty-eight point five. Subsequent nodes analyze "R wave amplitude II" and another "T wave morphology (SVD)" criterion, with thresholds labeled in various nodes. The legend indicates magenta lines for "S" and black lines for "D." Each node contains an ID and sample size (N value), with bar charts showing distribution.]

FIGURE 6
 The optimal decision tree for the treatment outcome prognosis.


Contribution of 3 ECG parameters to the resulting rules listed in Table 9. Classification accuracy—96%. One of the recovered patients was erroneously classified as deceased.

If one builds a tree using both parameters above and an additional attribute, NEWS score value, the result will be as shown in Figure 7. This tree has the same structure as the previous one. Still, it is right branch has an additional split determined by the NEWS score condition. In this case, the classification accuracy on the training set was 100%.

[image: Flowchart of a decision tree for classifying S and D using T wave morphology, R wave amplitude, and NEWS. It splits nodes based on these variables, visualizing decisions at each level.]

FIGURE 7
 Full tree for the survival classification according to ECG parameters and NEWS score.





4 Discussion

This study and our previous works showed that the combination of ECG and HRV parameters has the best diagnostic value (Chaikovsky et al., 2019; Chaikovsky et al., 2020; Apykhtin et al., 2018; Patrick Neary et al., 2014; Clarke et al., 2020; Chaikovsky et al., 2020).

Changes in individual ECG and HRV parameters demonstrate only certain aspects of the examined phenomenon. Moreover, they can occur in opposite directions. Therefore, to reach a particular conclusion, in our case concerning the degree of subtle myocardial injury, a specific summarizing index that would synthesize the effects of individual components is necessary. The calculation method of such an index can be implemented in different ways. However, it must always include such sequential steps as theoretical justification of the composite index for the particular task selection of data adequate to the problem at hand analysis of this data, including its normalization, using methods of multivariate statistics selection of the informative private indicators (including the exclusion of correlated parameters) and finally an actual construction of the composite index through the aggregation of private indicators. As was shown above, we have fulfilled all those steps. At the same time, it is crucial to consider that in addition to the composite index, various partial indicators are the most informative for detecting subtle changes in various clinical scenarios.

Usually, those are modern electrocardiographic indexes with a common pathophysiological basis. All of them assess the electrical homogeneity of the myocardium through different means, as the more heterogeneous the myocardium is from an electrical point of view (the higher the dispersion of the generated transmembrane action potentials in amplitude and length), the higher the likelihood of serious cardiovascular events. In our study, such a highly informative modern electrocardiographic index was the T-wave SVD.

The SVD of T-wave represents the complexity of ventricular repolarization. One major spatial component (eigenvector) can be identified when repolarization is uniform, as in normal individuals. Conversely, when the repolarization pattern becomes fragmented, the relative value of the smaller vectors increases proportionally. Such an approach allows a comparison between the morphology of the T-wave across the 12 leads and the quantification of T-wave abnormalities in an observer-independent way (Clarke et al., 2020).

A key element in conducting our original research was the integration of an advanced Hybrid Cloud Environment for Telerehabilitation (HCET) (Malakhov, 2024; Malakhov and Semykopna, 2024), developed at the Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine. Building on the concept of Research and Development Workstation Environments (RDWEs) (Palagin et al., 2018), HCET provides a robust, ontology-driven, service-oriented architecture that supports each stage of clinical research: from data collection and secure storage to real-time analysis and interpretation of results.

The HCET infrastructure (Malakhov, 2024) merges distributed hardware resources, specialized software platforms, and dedicated telemedicine modules, enabling seamless collaboration among multidisciplinary teams. Its three-layer model – Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) – ensures the flexible allocation and on-demand scaling of computational resources. At the core of the infrastructure is a high-performance server (HP ProLiant DL380p Gen8) running Ubuntu 22.04.3 LTS, configured with virtualization tools (KVM, LibVirt) to host multiple virtualized operating systems. This setup supports data-intensive applications and fosters reliable data processing pipelines.

Specifically, HCET facilitated several key steps in this study of ECG changes in severe COVID-19 patients:

Secure Data Acquisition and Management. Patient ECG data, along with relevant clinical parameters (e.g., NEWS scores), were collected in the ICU setting and securely transmitted to the HCET server. The platform’s integrated Electronic Health Record (EHR) managing module ensured proper storage, encryption, and retrieval of sensitive information, adhering to ethical and legal requirements for patient confidentiality.

Advanced Analytical Tool Integration. The HCET environment included support for Statistica 12.0 software, which was pivotal for our repeated-measures ANOVA, cluster analysis, and decision tree modeling. By leveraging the platform’s PaaS capabilities, researchers could seamlessly install, configure, and run Statistica within multiple virtual operating systems, optimizing both performance and collaborative workflows.

Interactive remote collaboration. Telemedicine components within HCET, such as the “Physician’s Digital Workplace” and “Patient’s Digital Cabinet,” enabled continuous interaction between clinicians, biomedical engineers, data scientists, and other stakeholders. This not only streamlined the process of updating patient records but also allowed real-time discussion of ECG findings, NEWS scores, and relevant biomarkers across geographically dispersed locations.

Machine Learning and Decision Support. Building on the RDWE principles, the cognitive subsystem of HCET (referred to as the information-analytical subsystem) supported iterative model development. Automated interactive systems—such as OntoChatGPT (Palagin et al., 2023)—facilitated the semantic and contextual analysis of text documents. Researchers also used the specialized MedRehabBot (Palagin et al., 2024) services to manage domain-specific ontologies, aiding in the consistent labeling and categorization of ECG parameters. This approach improved the accuracy of clustering methods (Kaverinskiy et al., 2024a; Kaverinskiy et al., 2024b) used to pinpoint subtle myocardial injury and strengthened the decision-tree models predicting COVID-19 mortality.

Scalability and future directions. As additional clinical evidence accumulates, HCET’s hybrid cloud setup ensures that resources can be dynamically scaled to accommodate larger patient cohorts, additional ECG recordings, and refined machine learning algorithms. Such scalability supports ongoing research into minor ECG changes, fostering deeper insights into myocardial injury, especially in post-COVID-19 care.

In essence, integrating the HCET platform into our experimental design bolstered every phase of this original research, from data stewardship to advanced statistical analyses. By uniting telemedicine, digital health, and cloud-based data processing services, HCET exemplifies how innovative hybrid cloud solutions can effectively support cutting-edge studies in physical medicine, rehabilitation, and beyond.

This work is the first study to assess minor electrocardiogram changes using the original scaling method in patients with COVID-19.

We reiterate that patients with unstable comorbid conditions and/or significant resting ECG abnormalities, as defined by Minnesota coding, were excluded from the study. This step was taken to ensure that any dynamic ECG changes observed would be attributed to COVID-19 rather than other underlying diseases. These findings underscore that our results may not be fully generalizable to individuals entirely free of comorbidities. Future research should expand recruitment to patients without these comorbidities to verify whether U-score based ECG changes exhibit similar predictive value.

Limitations of the study are the following: Firstly, the number of patients is relatively small. Secondly, no comparison of minor ECG changes with the levels of biomarkers of myocardial damage and inflammation was performed. Finally, the prognostic value of detected ECG changes regarding long-term COVID complications has yet to be analyzed.

Further larger-scale studies are planned to confirm and clarify the results.



5 Conclusion

The suggested ECG and HRV scaling method allow for registering and analyzing minor electrocardiogram changes during treatment. Modern ECG parameters used for advanced ECG analysis were the most informative. Contrary to this outline, the ECG analysis must be more informative for this task.

Two subgroups were identified that differed significantly in the severity of COVID-19 and the integral indicator of the cardiovascular system at the beginning of treatment. At the end of treatment, differences between subgroups remained. In the severe subgroup, there were 50 percent of deaths.

A comparison of potential predictors of mortality showed that at the beginning of treatment, there were no significant differences in vital signs between those who survived and those who died. In our study, the average age in the group of deceased patients was slightly higher, and the SAPS II score was not associated with the treatment outcome. A set of ECG parameters significantly associated with treatment outcome and may be predictors of treatment outcome were identified.

In addition to the U-score based composite index, partial indicators are the most informative for detecting subtle changes in various clinical scenarios, such as treatment outcome prediction. A decision tree for the survival classification of patients with COVID-19 was built based on the partial ECG parameters and NEWS score.

The obtained results allow us to create a combined decision rule that includes both the well-known NEWS-score and AI-based analysis of subtle ECG changes. Such a combined decision rule should have the highest possible predictive accuracy for COVID-19 Treatment Outcome. Further large-scale studies are needed to confirm these findings.

An important future direction involves utilizing innovative informatics infrastructures, such as the Hybrid Cloud Environment for Telerehabilitation (Malakhov, 2024; Malakhov and Semykopna, 2024), to manage and analyze large ECG datasets alongside clinical metrics. By delivering on-demand computational resources within an integrated platform, HCET enhances the scalability of machine learning pipelines for real-time ECG data processing.
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Introduction: This study evaluates the potential of machine learning (ML) to predict and manage weather-sensitive waterborne diseases (WSWDs) in selected Tanzanian districts, focusing on environmental health officers' (EHOs) knowledge and perceptions. It explores EHOs' familiarity with information and communication technology (ICT) and artificial intelligence (AI)/ML, alongside challenges and opportunities for integrating AI-driven public health solutions.
Methods: A census-style survey was conducted among EHOs in three district councils. A structured questionnaire, piloted in one district, was administered to 76 EHOs, achieving a 66% response rate. Data were analyzed using descriptive and inferential statistics to assess knowledge levels, perceptions, and gender-related differences.
Results: Most EHOs were moderately familiar with ICT; however, only 54% had prior exposure to AI/ML concepts, and 64% reported limited AI familiarity. Among the variables examined, only prior exposure to AI/ML concepts and self-reported familiarity with AI demonstrated statistically significant associations with gender. Despite this, the majority recognized AI/ML's potential to improve disease prediction accuracy. Key barriers to ML adoption include inadequate technical infrastructure, data quality issues, and a shortage of expertise. Opportunities identified included utilizing historical disease data, integrating AI with meteorological information, and using satellite imagery for surveillance.
Discussion: The study highlights frontline health workers' perceived barriers to ML adoption and suggests that gender influences awareness and engagement with AI and ML technologies. Strengthening technical capacity, improving data quality, and fostering cross-sector collaboration are critical for successful AI/ML integration. These insights offer a roadmap for resilience to WSWDs in developing countries like Tanzania through data-driven technologies.
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1 Introduction

The intersection of climate change and public health presents significant challenges, particularly in low-income countries like Tanzania, where water insecurity and waterborne diseases are prevalent (Mutono et al., 2021). Changes in rainfall patterns, rising temperatures, and extreme weather events driven by climate change exacerbate water quality issues, increasing the incidence of diseases such as cholera, diarrhea, and typhoid. In sub-Saharan Africa (SSA), including Tanzania, frequent extreme hydrological events—such as floods and droughts—result in water contamination and shortages, further compromising public health (Mutono et al., 2021; World-Bank, 2024). During flooding, runoff from pit latrines contaminates open-dug wells and rivers, heightening the risk of disease transmission (Mtwangi Limbumba et al., 2019; Mguni et al., 2016; Pantaleo et al., 2018). Conversely, droughts reduce access to clean water, creating hygiene challenges that foster environments conducive to disease outbreaks (Hunter et al., 2010; Howard et al., 2016).

The urban population in Tanzania is particularly vulnerable to these climate-sensitive diseases due to rapid urbanization and inadequate infrastructure development (Mshida et al., 2020). According to a report from WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation, and Hygiene (2018/2019), only 47% of the urban population in Tanzania has access to basic sanitation, and merely 23.5% has access to basic hygiene facilities (Mshida et al., 2020). This lack of access to safe water increases the risk of diseases such as amoebiasis, typhoid fever, and dysentery among the population, particularly affecting children under 5 years (WHO, 2024). Nearly 1.7 billion cases of childhood diarrheal disease occur globally each year, ranking as the third leading cause of death among children aged 1–59 months (Adedokun and Yaya, 2020). In Tanzania, inadequate water, sanitation, and hygiene (WASH) services contribute to over 31,000 annual deaths and result in economic losses exceeding USD 2.4 billion due to increased medical expenses and reduced productivity (World-Bank, 2024). Studies have shown a direct correlation between rising temperatures and increased disease risk. For instance, for every 1°C increase in temperature, the likelihood of cholera outbreaks can rise by 15%–29% (Trærup et al., 2011). Additionally, erratic rainfall patterns elevate the risk of water contamination, further endangering public health (Mboera et al., 2011). Children from poorer households in SSA, particularly those living in areas with unimproved sanitation, face a higher risk of contracting waterborne diseases (Flückiger and Ludwig, 2022; Demissie et al., 2021; Adedokun and Yaya, 2020).

In response to these challenges, technological advancements, particularly in artificial intelligence (AI) and machine learning (ML), offer promising solutions for predicting and managing outbreaks of waterborne diseases. Research highlights various applications of AI in health sectors of low- and middle-income countries, including epidemiological surveillance and disease prediction (Adigwe et al., 2024). ML algorithms have shown remarkable potential in analyzing large datasets to identify patterns that can forecast disease outbreaks, often detecting anomalies that traditional methods might overlook. Recent studies highlight the effectiveness of ML models, such as Random Forest and Support Vector Machines (SVMs), in predicting disease cases based on historical patient data, achieving up to 77% accuracy for typhoid prediction when key input features like age and medical history are incorporated (Hussain et al., 2023; Flückiger and Ludwig, 2022). Additionally, IoT-based systems for real-time water quality monitoring have demonstrated their utility in early detection of potential health risks (Nemade et al., 2024). ML techniques, including deep learning models such as Long Short-Term Memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997) and Convolutional Neural Networks (CNNs) (LeCun et al., 1998), have been widely applied in healthcare research for developing predictive and diagnostic models. For example, Jia et al. (2019) used LSTM models to predict typhoid outbreaks, while Guo et al. (2020) employed SVM models for hepatitis prediction.

Familiarity with AI/ML among EHOs is a critical factor in the practical implementation of these technologies for disease monitoring and prediction. In many low-resource settings, including regions in South Asia and sub-Saharan Africa, studies have emphasized the importance of local health professionals' digital literacy in influencing the success of AI-driven interventions (Rajkomar et al., 2019; Topol, 2019). For instance, a review by Rasheed et al. (2020) found that AI approaches significantly supported frontline workers and decision-makers during the COVID-19 pandemic by enhancing real-time diagnostics, optimizing resource allocation, and improving situational awareness, thereby reducing the burden on healthcare systems and improving response effectiveness. A study by Chettri et al. (2025) highlights that in the Indian healthcare sector, the integration of trustworthy AI systems faces challenges due to ethical and regulatory constraints, emphasizing the need for capacity building among healthcare workers to bridge this gap. Similarly, a scoping review by Botha et al. (2024) underscores the perceived threats posed by AI tools in healthcare, such as unpredictable errors and data privacy concerns, which can be mitigated through proper training and involvement of healthcare professionals in the deployment process. These insights underscore that the familiarity and acceptance of AI/ML among EHOs not only facilitates smooth adoption but also enhances the relevance and contextual accuracy of such tools in mitigating climate-sensitive health risks.

Despite the potential of these technologies, their application in Tanzania remains limited, with significant gaps in research, practical knowledge, and infrastructure. The Tanzanian government recognizes the importance of adopting digital health technologies, including AI and ML, as outlined in the Tanzania National Digital Health Strategy 2019–2021. However, more work is needed to build capacity and develop locally relevant AI-driven solutions for public health.

Given the high burden of climate-sensitive waterborne diseases and the growing impact of climate change on public health, this study aims to assess the knowledge, perceptions, challenges, and opportunities related to using ML in predicting these diseases among public health officers in Tanzania. The study contributes to providing insights for designing AI-based and data-driven approaches to strengthen public health resilience to climate-sensitive waterborne diseases in Tanzania. Specifically, the objectives are:

	1. To assess the knowledge of information and communication technology (ICT) and AI/ML among environmental health officers in selected study areas in Tanzania.
	2. To evaluate the perceptions of environmental health officers regarding the application of AI/ML in predicting climate-sensitive waterborne diseases.
	3. To identify the perceived challenges in integrating AI/ML into public health practices in Tanzania.

The rest of the paper is organized as follows: Section 2 outlines the data collection approach and analysis techniques. The Section 3 presents the key findings, followed by the Section 4, which interprets and compares these results. Finally, the Conclusions summarize key insights and propose future research directions.



2 Methods


2.1 Study area

The research was conducted across three district councils in Tanzania: Morogoro Municipal Council (MC), Ilala City Council (CC) (in Dar es Salaam), and Dodoma CC. These districts were selected as part of the larger ACHE project (AI for Climate and Health), which aimed to collect a comprehensive dataset on climate-sensitive waterborne diseases to support predictive machine learning models in public health in Tanzania. The ACHE project encompassed five district councils. Of the five councils engaged in the ACHE project, three were included in this study; Temeke was used for piloting the data collection tool, while Singida was excluded due to unavailability of EHOs during the data collection period, as many were on leave.

Morogoro MC is an urban district located in eastern Tanzania, with a population of ~471,000. Ilala District in Dar es Salaam is a highly urbanized and densely populated area, serving as a commercial and administrative hub, with a population exceeding 1.6 million. Dodoma City Council is situated in the central part of the country and serves as the national capital, has a population of around 765,000. These population statistics are according to the National Census report of 2022 [The United Republic of Tanzania (URT) et al., 2024]. Despite variations in their geographic locations and population sizes, EHOs across these districts operate under uniform national policy frameworks. They are recruited based on standardized qualifications in Environmental Health and share similar job descriptions and professional responsibilities across the country.

The survey reported in this paper was conducted concurrently with the ACHE project, not after its completion, meaning that prior experience in the project did not influence participant selection. Tanzania has relatively consistent climate conditions across districts, and the roles and responsibilities of EHOs are the similar nationally. For these reasons, the study findings remain broadly applicable to other Tanzanian districts beyond those included in this sample.

The dataset collected through the ACHE project is openly accessible via the Zenodo repository (Fue et al., 2025), to allow AI/ML researchers and data scientists to use it for training predictive ML models on climate-sensitive waterborne disease outbreaks. A detailed description of the dataset will be presented in a separate paper, while the initial baseline models developed using the data are also covered in another companion paper. This baseline survey focused on assessing the readiness and familiarity of EHOs with AI/ML, a crucial step before deploying ML-supported public health interventions.



2.2 Participants

The study focused on Environmental Health Officers (EHOs), for two reasons: their involvement in the projects data collection for open datasets for predictive ML; and their formal and daily duties, which include monitoring and controlling environmental hazards, enforcing public health regulations, conducting disease surveillance, and promoting community health initiatives to prevent and manage diseases. The selected districts comprised a total of 106 wards (as of December 2024), each ideally assigned one EHO. However, due to personnel shortages, some EHOs were responsible for multiple wards, resulting in a total of 76 EHOs available across the three councils. While participation in the study was voluntary, selection bias is unlikely to have been a major concern. The survey targeted all the available 76 EHOs who were actively serving across the three councils.



2.3 Sampling method

Due to the specialized expertise needed for this baseline study and the relatively small population size, the study did not employ a sample size calculation in its traditional sense; it aimed to include all the 76 EHOs who were actively on duty at the time of the study. Since this was a small, well-defined population, we aimed to include all EHOs rather than rely on sampling calculations. As such, clustering by study site was not considered relevant for sample size determination. This census-style approach was appropriate for capturing baseline knowledge and perceptions among the full workforce available in the selected areas. Since participation was voluntary in accordance with research ethics, which requires informed consent, only a subset of EHOs ultimately took part in the survey.



2.4 Data collection

Data was gathered using a structured questionnaire, which was administered in two formats: a printed version and an online version via Google Forms. The questionnaire was organized into five thematic sections. The first section collected demographic information, mainly sex, age group, and education level. The second section assessed the respondents' familiarity with and use of ICT tools in public health. The third section explored methods EHOs currently use to predict and manage weather-sensitive waterborne diseases. The fourth section assessed their knowledge of AI and ML, along with their percepectives on the applicability of these technologies in public health. The final section explored the perceived challenges of implementing AI and ML in public health in this context. To capture perceptions effectively, the questionnaire used Likert scale questions, ranging between 4-point and 5-point scales depending on the nature of the question.

The survey instrument was developed by the project team based on a thorough literature review and insights from preliminary fieldwork in Morogoro, where researchers are based. Although not adapted from an existing validated tool, the questionnaire underwent pilot testing in Temeke District with nine EHOs. Their feedback was used to refine the language, sequence, and content of several questions, including the addition of items targeting potential causative factors behind responses, particularly regarding experiences and attitudes toward AI/ML. These refinements enhanced relevance of the tool, comprehensiveness, and overall effectiveness in capturing the study's intended objectives. The survey was administered in English, as this is the official language of communication among EHOs in Tanzania.



2.5 Data analysis

The collected data was analyzed using both descriptive and inferential statistical methods, with Python scripts. Descriptive statistics were used to summarize demographic information and identify overall trends. For inferential statistics, the Chi-square test was applied to assess associations between nominal and ordinal variables, while Kendall's Tau was utilized to evaluate relationships among ordinal variables. Kendall's Tau was chosen due to the relatively small sample size.



2.6 Ethical clearance and research permit

The study adhered to all required ethical guidelines, obtaining official research clearance and permits before data collection commenced. Ethical approval was secured from Sokoine University of Agriculture (Research Clearance No. SUA/DPRTC/R/126/CoNAS/2/2023/3), while government research permits (Permit No. JC.156/254/01) were granted by the President's Office, Regional Administration, and Local Government Authorities (PO-RALG). In addition to these central approvals, further permissions were obtained at the regional and district levels. Specifically, at each region, authorization was sought from the Regional Administrative Secretary's (RAS) office, which formally introduced the research team to the respective district authorities. Following this, each district issued research clearance and introduction letters to the Ward Executive Officers (WEOs) and EHOs, requesting their cooperation and support during data collection.




3 Results


3.1 Demographics information

Questionnaires were distributed to all the 76 EHOs across the three councils. Of these, 50 were completed and submitted successfully, a response rate of 66%. Table 1 shows that the proportion of female and male EHOs responses to the questionnaire is 48 and 52% respectively. The distribution of respondents across the three councils is further illustrated in Table 2. Morogoro MC represented 50% of the total respondents, Dodoma CC represented 26%, and Ilala CC represented 24%. In Morogoro MC, the demographic breakdown revealed that 52% of respondents were male, while 48% were female. In Dodoma CC, the male population constituted 61%, while the female population accounted for 39%. In Ilala CC, the gender distribution among respondents showed that 33% were male, while 67% were female.


TABLE 1 Demographic characteristics of the respondents by frequency distribution.

[image: Table displaying data categorized by sex, education, and age group. Under sex: Female, 24, 48.0%; Male, 26, 52.0%. Education: Diploma, 38, 76.0%; Bachelor, 9, 18.0%; Certificate, 3, 6.0%. Age group: 18–30, 6, 12.0%; 31–40, 23, 46.0%; 41–50, 11, 22.0%; 51–60, 10, 20.0%.]


TABLE 2 Distribution of the respondents' gender per council.

[image: Table showing respondent distribution across councils. Morogoro MC: 25 total, 52% male, 48% female, 50% distribution. Dodoma CC: 13 total, 61% male, 39% female, 26% distribution. Ilala CC: 12 total, 33% male, 67% female, 24% distribution.]

Additionally, Table 1 shows the largest proportion of the respondents were in the age range of 31–40 (46%) whereas the smallest proportion was in the age range of 18–30 (12%). With regard to their education level, Table 1 shows that 76% of the EHOs had Diploma, 18% had Bachelor degree and 6% had Certificate. The education levels of respondents across the three councils are further elaborated in Table 3. Within the Morogoro CC, the data indicates that 4% of participants had a Certificate, 80% held a Diploma, and 16% attained a Bachelor's degree. In Dodoma CC, the educational qualifications were distributed as follows: 15% of individuals had a Certificate, 70% possessed a Diploma, and 15% attained a Bachelor's degree. Within the Ilala CC, it was observed that none of the participants possessed a Certificate, whereas 75% had attained a Diploma and 25% had completed a Bachelor's degree.


TABLE 3 Distribution of respondents' education levels per council.

[image: Table showing education levels by council. Morogoro MC: 25 total, 4% Certificate, 80% Diploma, 16% Bachelor. Dodoma CC: 13 total, 15% Certificate, 70% Diploma, 15% Bachelor. Ilala CC: 12 total, 0% Certificate, 75% Diploma, 25% Bachelor.]



3.2 The familiarity and usage of ICT tools and facilities among EHOs for public health

When asked to rate their familiarity with information and communication technology (ICT) tools, 46% of participants reported being moderately familiar, 32% felt very familiar (Table 4). Table 4 also shows a smaller proportion of respondents (14%), considered themselves somewhat familiar, while 4% each rated themselves as extremely familiar and not familiar at all. Regarding the frequency of using digital devices (computers, smartphones, tablets) for work-related tasks in the public health sector, Table 4 illustrates that 76% of respondents use these devices daily. Table 4 also shows that 16% use them occassionally in a week, 4% use them at least once a week, and the remaining 4% never use digital devices for public health activities. The study also shows that EHOs in the selected districts employ various ICT tools in public health initiatives. As presented in Figure 1, email and communication applications, such as WhatsApp, accounted for the highest usage at 92%. Statistical analysis software was used by 22% of respondents, health information systems by 12%, and mobile health applications by 10%.


TABLE 4 ICT familiarity and digital tools usage among EHOs by frequency distribution.

[image: Table displaying survey results on familiarity with ICT tools and usage frequency of digital devices for work in the public health sector. Familiarity levels: extremely familiar (4%), very familiar (32%), moderately familiar (46%), somewhat familiar (14%), not familiar (4%). Device usage: daily (76%), sometimes (16%), at least once a week (4%), never (4%).]


[image: Bar chart displaying percentages of different technologies. Health Information Systems: 12%, Mobile Health Apps: 10%, Statistical Analysis Software: 22%, Email and Communication Apps: 56%. Email and Communication Apps have the highest percentage.]
FIGURE 1
 ICT tools usage in public health activities.




3.3 Knowledge of AI and ML among EHOs

Table 5 reveals that 54% of the respondents had encountered the terms AI and ML before participating in the study, while 46% had not. On the other hand, Table 5 indicates that 64% were somewhat familiar with the concept of Artificial Intelligence, a notable 30% were not familiar at all, and only 6% were very familiar with the AI concept.


TABLE 5 AI/ML familiarity among EHOs by frequency distribution.

[image: Table showing survey results on familiarity with machine learning and artificial intelligence. For prior knowledge, 54% said "Yes" and 46% "No". Regarding familiarity, 64% are "Somewhat familiar", 30% "Not familiar", and 6% "Very familiar".]



3.4 EHOs observations on waterborne disease trends

To understand the relationship between weather-sensitive waterborne diseases and weather conditions, the EHOs were asked to identify prevalent waterborne diseases in their area and the associated weather patterns. Figure 2 shows that diarrhea and cholera are reported to be frequently observed during the wet/rainy seasons, with cholera (56%) having more peak occurrence, followed by diarrhea (46%). Cholera was reported to have a substantial decrease in occurrences during the dry season. Typhoid fever, categorized as a seasonal disease, has been reported in both wet (24%) and dry (46%) seasons, but it exhibits higher prevalence during the dry season.


[image: Bar chart showing the percentage occurrence of waterborne diseases: cholera, dengue, typhoid, amoebiasis, and diarrhea in rainy, dry, and all-time conditions. Diarrhea peaks in rainy periods, amoebiasis in dry, and amoebiasis is highest overall.]
FIGURE 2
 Perceived prevalence of waterborne diseases.




3.5 Key data sources for monitoring and predicting WSWB diseases

Understanding the data sources used by health professionals is essential for designing effective monitoring systems for weather-related health risks. In this study, respondents were asked to identify the primary data sources they use for tracking and predicting waterborne disease outbreaks in the areas of their jurisdictions in Tanzania. The findings reveal that historical disease incidence records are the most frequently used source, with 66% of respondents depending on them for monitoring and predicting weather-sensitive waterborne (WSWB) disease outbreaks (Figure 3). These records are primarily obtained from the DHIS2, a national health data reporting and monitoring system, as well as news reports on disease outbreaks. Additionally, 60% of respondents reported using sanitation data, while 56% relied on water quality monitoring data. Meteorological data are utilized by 14% of the respondents who reported relying on them for predicting WSWB diseases. However, despite the valuable environmental insights offered by remote sensing data, only 6% of respondents reported using this source.


[image: Bar chart showing the percentage of use for different data types in studies. Remote sensing data: 0%, Sanitation monitoring: 60%, Water quality monitoring: 50%, Historical disease incidence records: 69%, Meteorological data: 28%.]
FIGURE 3
 Key data sources for monitoring and prediction of waterborne diseases.




3.6 The potential of integrating AI and ML into existing WSWB disease prediction and management strategies

Regarding perceptions of AI/ML in enhancing the accuracy and timeliness of disease outbreak predictions amid changing climate patterns, 50% of respondents agreed, while 20% strongly agreed. Meanwhile, 26% were uncertain, and 4% disagreed, as shown in Table 6. When asked whether AI/ML could replace or complement traditional methods for predicting and managing waterborne diseases, the same Table 6 reveals that 40% believed AI/ML could serve as a full replacement. Additionally, 26% felt it could fully complement traditional methods, 22% believed it would provide partial support, and 12% thought it would not replace traditional approaches at all.


TABLE 6 Perceptions of EHOs on AI/ML by frequency distribution.

[image: Table presenting survey data on attitudes towards AI/ML in healthcare. Categories include contributions to disease outbreak predictions, replacement or complement to traditional methods, confidence in waterborne disease management, and trust in disease prediction. Percentages show varying levels of agreement, confidence, or knowledge. Each category is divided into groups with corresponding counts and percentages.]

Furthermore, Table 6 indicates that 58% of respondents expressed confidence in the reliability and accuracy of machine learning models for predicting waterborne diseases, while 18% were very confident, and 24% remained uncertain. In terms of healthcare professionals' trust in machine learning algorithms for disease prediction and management, 54% of respondents agreed, 20% strongly agreed, 24% were unsure, and 2% disagreed (Table 6).

EHOs identified multiple ways in which AI/ML could be integrated into existing disease prediction and management strategies (Figure 4). The most commonly selected approach, chosen by 54.3% of respondents, was utilizing AI/ML to analyze historical disease data. Similarly, 52.2% envisioned developing predictive models to enhance outbreak forecasting. Around 45.7% suggested integrating meteorological data, water quality data, and disease incidence records to provide a more comprehensive understanding of disease trends. Additionally, 41.3% saw AI-driven early warning systems as a valuable tool for proactive disease management. Approximately 30.4% supported using AI to detect sudden spikes in disease incidence in real time by analyzing data streams from various sources. Meanwhile, 28.3% highlighted the potential of incorporating satellite imagery with disease data to assess the relationship between land cover changes and outbreaks. Lastly, 19.6% envisioned AI automating routine tasks to improve efficiency in disease monitoring and response efforts.


[image: Bar chart illustrating various applications of data analysis in disease management. Automating routine tasks: 19.6%, integrating satellite imagery: 29.3%, detecting real-time disease spikes: 30.0%, early warning for outbreaks: 41.3%, merging meteorological and disease data: 41.7%, predictive models: 52.2%, analysis of historical disease data: 51.3%.]
FIGURE 4
 Different ways of integrating AI/ML in waterborne diseases prediction and management.




3.7 Demographic factors and their influence on AI perceptions and ICT usage

Table 7 explores how respondents' gender relates to various factors, including familiarity with ICT (ict_familiarity), usage of digital tools in public health (ict_usage), prior exposure to AI/ML terms (ai_ml_encounter), familiarity with AI (ai_familiarity), perceptions of AI/ML in predicting weather-sensitive waterborne diseases (ai_ml_prediction), belief in AI replacing traditional methods (ai_replace_traditional), and trust in ML decisions (ml_trust). Among these associations, only the relationships between sex and both prior exposure to AI/ML terms and AI familiarity were statistically significant (p = 0.049) and (p = 0.006), respectively. On the other hand, Table 8 examines whether age group (age_group) is associated with the same set of variables. The results indicate no statistically significant relationships between age and any of the tested factors. The low correlation coefficients suggest minimal association, while the high p-values indicate that any observed trends are likely due to chance. Since none of the associations reach statistical significance (p < 0.05), we cannot conclude that age influences AI/ML awareness, ICT familiarity and usage, or related perceptions in a meaningful way.


TABLE 7 Relationship between sex and other variables.

[image: Table displaying the relationship between "Sex" and various variables related to technology and AI, showing chi-square statistics and p-values: ICT familiarity (2.708, 0.608), ICT usage (2.872, 0.412), AI/ML encounter (3.862, 0.049), AI familiarity (10.337, 0.006), AI/ML prediction (5.566, 0.135), AI replaces traditional (3.688, 0.297), ML trust (3.474, 0.324).]


TABLE 8 Relationship between age group and other variables.

[image: Table showing relationships between age group and various variables related to technology. Variables include ICT familiarity, ICT usage, AI/ML encounter, AI familiarity, AI/ML prediction, AI replaces traditional, and ML trust. Kendall’s T and p-values are given for each variable. Values of Kendall's T range from -0.200 to 0.055, while p-values range from 0.107 to 0.726.]

Table 9 investigates how education level (education) correlates with ICT and AI-related variables. The findings reveal that education level is significantly associated with the use of ICT tools in public health (p = 0.012), indicating that individuals with higher education levels are more likely to use such tools. However, all other relationships show weak or negligible correlations and are not statistically significant.


TABLE 9 Relationship between education and other variables.

[image: Table showing the relationship between Education and various variables through Kendall's T and p-values. Variables include ICT familiarity (0.144, 0.271), ICT usage (0.341, 0.012), AI/ML encounter (-0.027, 0.845), AI familiarity (0.029, 0.831), AI/ML prediction (0.138, 0.293), AI replaces traditional (0.112, 0.387), and ML trust (0.128, 0.332).]



3.8 Challenges and opportunities for AI and ML adoption in public health

To evaluate the challenges and opportunities associated with integrating machine learning (ML) into Tanzania's public health sector, respondents highlighted several key barriers (see Figure 5). The most pressing challenge, cited by 58.3% of the participants, was the lack of technical infrastructure and expertise necessary for effective implementation. Data availability and quality were also major concerns, with 54.2% identifying these as critical obstacles.


[image: Bar chart showing challenges in implementing AI solutions. Categories include: Cost and Network (2.1%), Regulatory and legal frameworks (20.5%), Integration with existing systems (22.9%), Ethical and privacy concerns (33.3%), Resource constraints (41.7%), Acceptance and adoption (45.5%), Data availability and quality (51.2%), Infrastructure and expertise (58.3%).]
FIGURE 5
 Challenges for integration of AI/ML in waterborne disease prediction and management.


Other notable challenges include the acceptance and adoption of AI/ML technologies (45.8%) and resource constraints, such as funding and skilled personnel shortages (41.7%). Ethical and privacy concerns were raised by 33.3% of the respondents, while 22.9% pointed to difficulties in integrating AI/ML with existing public health systems. Regulatory and legal frameworks were also seen as potential barriers, with 20.8% recognizing the need for clearer guidelines and policies.

Although less frequently mentioned, network connectivity issues and financial costs were identified as potential hindrances by a small percentage (2.1%) of respondents. These findings highlight both the technical and socio-economic challenges that must be addressed to fully leverage AI/ML for public health improvements in Tanzania.




4 Discussion

The findings of this study offer important reflections on the feasibility of integrating machine learning (ML) into public health practices for managing weather-sensitive waterborne diseases (WSWDs) in Tanzania. The discussion focuses on the key thematic areas of ICT and AI/ML knowledge among environmental health officers (EHOs), their perceptions of AI/ML applications, and the critical challenges and opportunities that influence the adoption of these technologies.


4.1 Knowledge of ICT and AI/ML among EHOs

The study indicates that while EHOs have a reasonable level of familiarity with general ICT tools, their understanding of AI and ML remains limited. This knowledge AI and ML gap is a potential barrier to the successful adoption of AI-driven solutions in public health. The findings suggest that despite a moderate engagement with digital tools in their daily activities, many EHOs have not had significant exposure to AI/ML concepts, which may limit their ability to evaluate and implement such technologies effectively. One approach to bridging this gap is targeted training programs and continuous professional development opportunities to equip EHOs with the necessary competencies in AI/ML applications.

Targeted training programs have proven effective in enhancing digital competencies among health professionals, thereby facilitating the adoption of AI and ML technologies in public health. For instance, the Sustainable Healthcare with Digital Health Data Competence (Susa) project in Europe, funded by the EU's Digital Europe programme, aims to equip over 6,500 health professionals with advanced digital skills, including AI integration, through structured bachelor's and master's programs, as well as lifelong learning modules. This initiative illustrates the importance of involving healthcare workers early in the technology development process to ensure successful implementation (Cookson, 2025). Similarly, in African contexts, studies have highlighted that AI can significantly improve public health surveillance and disease monitoring. However, the lack of skilled health professionals remains a barrier, emphasizing the need for targeted training to harness AI's full potential (Tshimula et al., 2024).



4.2 Utilization of key data sources for efficient monitoring and prediction of WSWB diseases

EHOs rely on traditional methods to predict waterborne diseases, primarily through manual reviews of historical disease outbreak records and observable weather patterns, without the support of dedicated tools or systems. This approach limits the effective utilization of available data. EHOs specifically reported underutilization of key sources such as meteorological and remote sensing data. Lack of integrated systems or analytical tools that can process and interpret such data effectively, hindering the potential for more accurate and timely disease prediction. Meteorological data such as precipitation, temperature, and humidity are essential for identifying environmental variables that affect disease outbreaks (Chowdhury et al., 2018). Likewise, remote sensing data offers significant insights into changes in land cover, variations in water quality, and environmental risk factors, which are essential for early warning systems (Mashala et al., 2023; Deng et al., 2024). The limited utilization of these data sources could be due to a lack of tools or systems that utilize these data, which hinders the ccuracy of disease prediction and hinders the effectiveness of proactive interventions. Strengthening capacity-building initiatives is essential to promote the adoption of advanced analytical methods, such as ML algorithms, enabling the effective integration of diverse data types for comprehensive analysis and more accurate predictive modeling.



4.3 Perceptions of AI/ML in managing weather-sensitive waterborne diseases

EHOs generally express optimism about the role of AI and ML in enhancing disease prediction and management. However, this optimism is accompanied by uncertainties, particularly regarding the efficacy of AI/ML models in real-world settings. While some respondents view AI/ML as a potential replacement for traditional methods, others see it as a complementary tool that should be integrated cautiously. This divergence in perception underscores the need for clear implementation frameworks and capacity-building initiatives that illustrate how AI/ML can augment rather than replace existing public health strategies. Ensuring that these technologies are positioned as decision-support tools rather than automated replacements for human expertise will be crucial for fostering trust and facilitating adoption. This divergence in perception is not unique to our study area; similar sentiments have also been reported across low- and middle-income countries.

There are significant advancements in AI-driven health initiatives within low- and middle-income countries, with African nations such as Kenya, Nigeria, and Ghana leading the way. Nonetheless, most of these AI systems have remained confined to academic environments, mainly concentrating on model training, validation, and testing, without advancing to practical implementation (Ndagire et al., 2022; Baik et al., 2020). This underscores a notable disparity between the advancement of AI technologies and their limited uptake in the healthcare sector. The slow uptake of AI and other new technologies in healthcare, as expressed in literature, is largely due to varying perceptions among stakeholders. Some healthcare professionals worry that technology could threaten their independence, patient care, or be used as a means of administrative control. However, some view it as a means to improve patient engagement. Patients generally embrace technology because it gives them more choice in treatment (Safi et al., 2018; Mirugwe, 2024). Effective change management is crucial for technology adoption since insufficient inclusive engagement in technology creation sometimes causes resistance.



4.4 Gender and AI awareness

Among the various variables examined in relation to gender, only two, prior exposure to AI/ML terminology and self-reported familiarity with AI, demonstrated statistically significant associations. These findings suggest that gender plays a notable role in shaping awareness and engagement with artificial intelligence and machine learning. Specifically, one gender group appears more likely to have encountered or interacted with AI/ML concepts, which may reflect differences in access to relevant educational resources, workplace roles, or broader socio-cultural dynamics that influence exposure to digital technologies.

This observation aligns with existing literature highlighting persistent gender gaps in digital literacy and attitudes toward AI. For instance, Russo et al. (2025) reported that women tend to exhibit greater anxiety toward AI, hold less favorable attitudes, engage with the technology less frequently, and perceive themselves as having lower knowledge compared to men. These patterns are reflected in our sample, where female respondents reported lower familiarity and exposure. Moreover, as noted by Armutat et al. (2024), structural barriers, including gender stereotypes, unequal access to educational opportunities, and systemic discrimination, continue to limit women's participation in AI and other technology-driven fields.

The implications of these findings are significant for efforts to promote inclusive AI literacy and workforce development. Addressing gender disparities in AI knowledge and exposure requires targeted interventions, such as gender-sensitive training programs, outreach initiatives in underrepresented communities, and policies aimed at dismantling structural barriers in education and employment. Without deliberate efforts to close these gaps, the underrepresentation of women in AI-related domains may persist, ultimately limiting the diversity of perspectives and innovations in this rapidly evolving field.



4.5 Challenges and opportunities

Despite the potential of AI and ML, several significant challenges hinder their adoption in Tanzania. These challenges, if unaddressed, could limit the applicability, scalability, and sustainability of AI-driven public health interventions in Tanzania.

One of the most pressing challenges is the lack of infrastructure. Deploying AI/ML models effectively requires robust digital infrastructure, including reliable internet access, sufficient computational power, and a stable electricity supply—resources that remain insufficient in many parts of Tanzania. The absence of these foundational elements restricts the ability to run complex AI models in real time and limits opportunities for cloud-based computing solutions. Without substantial investments in digital infrastructure, AI/ML applications risk remaining confined to research settings without meaningful real-world impact. This also limits affect the deployment of Electronic Health Record Systems (EHRS) in Tanzanian primary healthcare facilities, according to Mwogosi (2024). Furthermore, the limited availability of AI/ML specialists in the public health sector means that even where infrastructure is available, there are few personnel with the necessary skills to develop, implement, and maintain AI-driven solutions. Addressing this issue requires incorporating AI/ML education into public health curricula and establishing continuous professional training programs tailored for EHOs and other key stakeholders. The second issue is data availability and quality, which also present significant barriers. Many public health decisions rely on historical disease records, which are often incomplete, inconsistent, or outdated. Additionally, the integration of diverse data sources—such as meteorological data, water quality indicators, and satellite imagery—remains underutilized. The absence of standardized data collection protocols and insufficient data-sharing mechanisms among institutions further exacerbate the challenge. Without high-quality, well-structured datasets with supporting infrastructure in place AI/ML models cannot be effectively trained to generate reliable predictions.

According to Yonazi (2012) and Muhunzi et al. (2024), poor data governance and insufficient investment in digital systems infrastructures hinder the use of big data analytics in healthcare in many developing nations. However, high-income countries have strong digital infrastructures to facilitate AI and machine learning in healthcare. Electronic health record systems are widely used in developed countries due to its standardization, interoperability, and immediate data availability (Slawomirski et al., 2023). The European Health Data Space's open data regulations and platforms have improved data accessibility and innovation (Hussein et al., 2023). The disparities underscore a notable digital divide, with high-income nations more equipped to utilize data-driven health solutions, whereas developing nations face the challenge of addressing essential infrastructure and data quality issues first. Despite these challenges, Arinze (2024) suggests that East African Open Data Initiatives may pave the way for more advanced digital health applications. Strengthening data governance frameworks and fostering collaborations between public health agencies and research organizations could improve data accessibility and the development of data-driven solutions in the health sector.

Beyond technical and data-related constraints, there are significant sociocultural and institutional challenges related to the acceptance and adoption of AI/ML in public health. Resistance to new technologies is common when professionals perceive them as disruptive or when their benefits are not clearly demonstrated. In many cases, EHOs may be skeptical of AI/ML-driven decision-making, particularly if these technologies are introduced without adequate stakeholder engagement. Ethical concerns, such as transparency in AI-driven decision-making and the risk of algorithmic biases, also contribute to hesitancy. To overcome these barriers, there is a need for structured implementation strategies that involve EHOs in the co-design of AI/ML systems, ensuring that these technologies align with their workflows and address real-world challenges in disease management. Therefore, a collective effort is needed to advance research on AI/ML applications for predicting and managing diseases such as WSWD, particularly in low- and middle-income countries (LMICs) such as Tanzania. Research should focus on collecting high quality data and developing AI/ML models that are optimized for resource-constrained environments, ensuring that these technologies are both accessible and applicable. Additionally, studies exploring strategies for capacity-building, infrastructure development, and ethical AI adoption will be essential for facilitating the successful integration of AI-driven solutions in public health.



4.6 Limitations of the study

While the findings of this study provide valuable insights into the readness and perceptions of EHOs ragrding AI/ML in public health, seral limitations must be acknowledged. First, the sample consisted of EHOs who participated in a specific data collection project (ACHE), which may introduce selection bias. Although their participation was not based on prior experience with AI/ML, their engagement in a broader health data initiative may reflect a more proactive or accessible segment of EHOs, potentially limiting generalizability to all EHOs across Tanzania.

Second, the survey instrument, while piloted and refined through feedback from EHOs in Temeke district, was not adapted from pre-existing validated tools. Although this iterative process improved clarity and relevance, the absence of a formally validated instrument introduces a degree of measurement bias.

Third, the survey was administered in Kiswahili, the national language, to ensure accessibility and reduce language-related misunderstandings. However, minor interpretation differences across regions may have influenced how some questions were perceived or answered.

Lastly, the study relied on self-reported data, which is subject to recall and social desirability biases. Future research should aim to expand the sample across more diverse districts and incorporate mixed-methods approaches—such as in-depth interviews and focus group discussions—to enrich and triangulate the findings.




5 Conclusion and future work

This study explored the knowledge, perceptions, and preparedness of Environmental Health Officers (EHOs) in selected Tanzanian districts regarding the application of machine learning (ML) in predicting weather-sensitive WSWDs. The findings reveal that while general ICT familiarity among EHOs is reasonably strong, there remains a substantial gap in awareness and understanding of AI and ML concepts. This gap presents a critical challenge for integrating ML-based systems into public health decision-making processes.

Importantly, the study highlights several perceived barriers to ML adoption from the perspective of frontline health workers, including limited technical skills, data quality concerns, and institutional readiness. While the study did not directly assess existing infrastructure or data systems, the perceptions gathered from EHOs offer valuable insights into the enabling conditions required for future ML applications.

Rather than presenting ML as an immediately deployable solution, this study emphasizes the importance of targeted capacity-building and policy support to prepare the public health workforce for digital transformation. Future research should complement these findings by examining actual data readiness, infrastructure capabilities, and the development of contextually appropriate ML models for low-resource settings. Pilot interventions, co-designed with health professionals, may also help bridge the gap between potential and practical implementation of ML for disease prediction and control.



Data availability statement

All relevant data are included within the article and its supplementary materials. Further inquiries regarding the generated and analyzed data from this study can be obtained from the corresponding author upon request.



Ethics statement

The studies involving humans were approved by (i) President's Office, Regional Administration, and Local Government Authorities and (ii) Sokoine University of Agriculture. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.



Author contributions

NL: Conceptualization, Writing – original draft, Data curation, Formal analysis, Visualization, Writing – review & editing, Supervision, Investigation. KF: Writing – review & editing. SM: Methodology, Writing – review & editing, Investigation. NK: Resources, Writing – review & editing, Project administration, Investigation. JT: Writing – original draft, Data curation, Formal analysis, Funding acquisition, Visualization, Supervision.



Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by a grant from Lacuna Fund, an initiative co-founded by The Rockefeller Foundation, Google.org, Canada's International Development Research Centre (IDRC), and GIZ on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ); and by Wellcome.



Conflict of interest

The authors declare that the research was conducted in the absence of commercial or financial relationships that could be construed as a potential conflict of interest.



Generative AI statement

The author(s) declare that Gen AI was used in the creation of this manuscript. The author(s) declare that generative AI tools, including ChatGPT, were used to assist with paraphrasing, improving clarity, and enhancing the flow of certain sections of this paper. All AI-assisted content was reviewed and refined by the author(s) to ensure accuracy and originality.



Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/frai.2025.1597727/full#supplementary-material



References
	 Adedokun, S. T., and Yaya, S. (2020). Childhood morbidity and its determinants: evidence from 31 countries in Sub-Saharan Africa. BMJ Glob. Health 5:e003109. doi: 10.1136/bmjgh-2020-003109
	 Adigwe, O. P., Onavbavba, G., and Sanyaolu, S. E. (2024). Exploring the matrix: knowledge, perceptions and prospects of artificial intelligence and machine learning in Nigerian healthcare. Front. Artif. Intell. 6:1293297. doi: 10.3389/frai.2023.1293297
	 Arinze E. D. (2024). A thorough examination of Open Data Initiatives in East Africa, focusing on how they improve the accessibility of data. Res. Invent. J. Sci. Exp. Sci. 3, 30–37.
	 Armutat, S., Wattenberg, M., and Mauritz, N. (2024). “Artificial intelligence: gender-specific differences in perception, understanding, and training interest,” in International Conference on Gender Research (Reading: Academic Conferences International Limited), 36–43. doi: 10.34190/icgr.7.1.2163
	 Baik, Y., Rickman, H. M., Hanrahan, C. F., Mmolawa, L., Kitonsa, P. J., Sewelana, T., et al. (2020). A clinical score for identifying active tuberculosis while awaiting microbiological results: development and validation of a multivariable prediction model in Sub-Saharan Africa. PLoS Med. 17:e1003420. doi: 10.1371/journal.pmed.1003420
	 Botha, N. N., Segbedzi, C. E., Dumahasi, V. K., Maneen, S., Kodom, R. V., Tsedze, I. S., et al. (2024). Artificial intelligence in healthcare: a scoping review of perceived threats to patient rights and safety. Arch. Public Health 82:188. doi: 10.1186/s13690-024-01414-1
	 Chettri, S. K., Deka, R. K., and Saikia, M. J. (2025). Bridging the gap in the adoption of trustworthy ai in Indian healthcare: challenges and opportunities. AI 6:10. doi: 10.3390/ai6010010
	 Chowdhury, F. R., Ibrahim, Q. S. U., Bari, M. S., Alam, M. J., Dunachie, S. J., Rodriguez-Morales, A. J., et al. (2018). The association between temperature, rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh. PLoS ONE 13:e0199579. doi: 10.1371/journal.pone.0199579
	 Cookson, C. (2025). EU project launched to prepare health workers for a digital future. Financial Times. Available online at: https://www.ft.com/content/a56ef5a3-f5d8-446d-ae9b-f503cce20de7
	 Demissie, G. D., Yeshaw, Y., Aleminew, W., and Akalu, Y. (2021). Diarrhea and associated factors among under five children in sub-saharan africa: evidence from demographic and health surveys of 34 sub-Saharan countries. PLoS ONE 16:e0257522. doi: 10.1371/journal.pone.0257522
	 Deng, Y., Zhang, Y., Pan, D., Yang, S. X., and Gharabaghi, B. (2024). Review of recent advances in remote sensing and machine learning methods for lake water quality management. Remote Sens. 16:4196. doi: 10.3390/rs16224196
	 Flückiger, M., and Ludwig, M. (2022). Temperature and risk of diarrhoea among children in Sub-Saharan Africa. World Dev. 160:106070. doi: 10.1016/j.worlddev.2022.106070
	 Fue, K., Nicodemus Lyimo, N., Telemala, J. P., Materu, S. F., and Kilatu, N. (2025). Tanzania Climate-sensitive Waterborne Diseases Dataset for Predictive Machine Learning: A Comprehensive Five-year Analysis of Health, Infrastructure, and Weather Data (2019–2023).
	 Guo, Y., Feng, Y., Qu, F., Zhang, L., Yan, B., Lv, J., et al. (2020). Prediction of hepatitis e using machine learning models. PLoS ONE 15:e0237750. doi: 10.1371/journal.pone.0237750
	 Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735
	 Howard, G., Calow, R., Macdonald, A., and Bartram, J. (2016). Climate change and water and sanitation: likely impacts and emerging trends for action. Annu. Rev. Environ. Resour. 41, 253–276. doi: 10.1146/annurev-environ-110615-085856
	 Hunter, P. R., MacDonald, A. M., and Carter, R. C. (2010). Water supply and health. PLoS Med. 7:e1000361. doi: 10.1371/journal.pmed.1000361
	 Hussain, M., Cifci, M. A., Sehar, T., Nabi, S., Cheikhrouhou, O., Maqsood, H., et al. (2023). Machine learning based efficient prediction of positive cases of waterborne diseases. BMC Med. Inform. Decis. Mak. 23:11. doi: 10.1186/s12911-022-02092-1
	 Hussein, R., Scherdel, L., Nicolet, F., and Martin-Sanchez, F. (2023). Towards the European health data space (EHDS) ecosystem: a survey research on future health data scenarios. Int. J. Med. Inform. 170:104949. doi: 10.1016/j.ijmedinf.2022.104949
	 Jia, W., Wan, Y., Li, Y., Tan, K., Lei, W., Hu, Y., et al. (2019). Integrating multiple data sources and learning models to predict infectious diseases in China. AMIA Summits Transl. Sci. Proc. 2019, 680–685.
	 LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791
	 Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K., and Ramudzuli, M. R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sens. 15:3926. doi: 10.3390/rs15163926
	 Mboera, L. E., Mayala, B. K., Kweka, E. J., and Mazigo, H. D. (2011). Impact of climate change on human health and health systems in Tanzania: a review. Tanzan. J. Health Res. 13, 407–426. doi: 10.4314/thrb.v13i5.10
	 Mguni, P., Herslund, L., and Jensen, M. B. (2016). Sustainable urban drainage systems: examining the potential for green infrastructure-based stormwater management for Sub-Saharan cities. Nat. Hazards 82, 241–257. doi: 10.1007/s11069-016-2309-x
	 Mirugwe, A. (2024). Adoption of Artificial Intelligence in the Ugandan Health Sector: A Review of Literature. Available at SSRN 4735326. doi: 10.2139/ssrn.4735326
	 Mshida, H., Malima, G., Machunda, R., Muzuka, A. N., Banzi, J., Gautam, O. P., et al. (2020). Sanitation and hygiene practices in small towns in Tanzania: the case of Babati district, Manyara region. Am. J. Trop. Med. Hyg. 103:1726. doi: 10.4269/ajtmh.19-0551
	 Mtwangi Limbumba, T., Herslund, L. B., and Kombe, W. J. (2019). The institutional challenges and opportunities for adopting landscape-based storm water management options in informal Settlements-Dar Es Salaam City. J. Sustain. Dev. 12, 46–55. doi: 10.5539/jsd.v12n2p46
	 Muhunzi, D., Kitambala, L., and Mashauri, H. L. (2024). Big data analytics in the healthcare sector: opportunities and challenges in developing countries. a literature review. Health Informatics J. 30:14604582241294217. doi: 10.1177/14604582241294217
	 Mutono, N., Wright, J. A., Mutembei, H., Muema, J., Thomas, M. L., Mutunga, M., et al. (2021). The nexus between improved water supply and water-borne diseases in urban areas in Africa: a scoping review. AAS Open Res. 4:27. doi: 10.12688/aasopenres.13225.1
	 Mwogosi, A. (2024). Revolutionizing primary health care in Tanzania: unravelling the contextual factors on electronic health record systems implementation for effective decision support. J. Sci. Technol. Policy Manag. doi: 10.1108/JSTPM-11-2023-0205. [Epub ahead of print].
	 Ndagire, E., Ollberding, N., Sarnacki, R., Meghna, M., Pulle, J., Atala, J., et al. (2022). Modelling study of the ability to diagnose acute rheumatic fever at different levels of the ugandan healthcare system. BMJ Open 12:e050478. doi: 10.1136/bmjopen-2021-050478
	 Nemade, B., Maharana, K. K., Kulkarni, V., Mondal, S., Ghantasala, G. P., Al-Rasheed, A., et al. (2024). IOT-based automated system for water-related disease prediction. Sci. Rep. 14:29483. doi: 10.1038/s41598-024-79989-6
	 Pantaleo, P. A., Komakech, H. C., Mtei, K. M., and Njau, K. N. (2018). Contamination of groundwater sources in emerging African towns: the case of Babati town, Tanzania. Water Pract. Technol. 13, 980–990. doi: 10.2166/wpt.2018.104
	 Rajkomar, A., Dean, J., and Kohane, I. (2019). Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358. doi: 10.1056/NEJMra1814259
	 Rasheed, J., Jamil, A., Hameed, A. A., Aftab, U., Aftab, J., Shah, S. A., et al. (2020). A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. Chaos Solitons Fract. 141:110337. doi: 10.1016/j.chaos.2020.110337
	 Russo, C., Romano, L., Clemente, D., Iacovone, L., Gladwin, T. E., Panno, A., et al. (2025). Gender differences and in artificial intelligence: the moderating role of artificial intelligence anxiety. Front. Psychol. 16:1559457. doi: 10.3389/fpsyg.2025.1559457
	 Safi, S., Thiessen, T., Schmailzl, K. J., et al. (2018). Acceptance and resistance of new digital technologies in medicine: qualitative study. JMIR Res. Protoc. 7:e11072. doi: 10.2196/11072
	 Slawomirski, L., Lindner, L., de Bienassis, K., Haywood, P., Hashiguchi, T. C. O., Steentjes, M., et al. (2023). Progress on Implementing and Using Electronic Health Record Systems: Developments in OECD Countries as of 2021. Organisation for Economic Co-operation and Development (OECD). doi: 10.1787/4f4ce846-en
	 The United Republic of Tanzania (URT) Ministry of Finance, Tanzania National Bureau of Statistics, President's Office - Finance and Planning, and Office of the Chief Government Statistician, Zanzibar. (2024). The 2022 Population and Housing Census Basic Demographic and Socio-economic Profile Report. Technical report, The United Republic of Tanzania, Tanzania.
	 Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56. doi: 10.1038/s41591-018-0300-7
	 Trærup, S. L., Ortiz, R. A., and Markandya, A. (2011). The costs of climate change: a study of cholera in tanzania. Int. J. Environ. Res. Public Health 8, 4386–4405. doi: 10.3390/ijerph8124386
	 Tshimula, J. M., Kalengayi, M., Makenga, D., Lilonge, D., Asumani, M., Madiya, D., et al. (2024). Artificial intelligence for public health surveillance in Africa: applications and opportunities. arXiv [Preprint]. arXiv:2408.02575. doi: 10.48850/arXiv.2408.02575
	 WHO (2024). WHO Bacterial priority Pathogens list, 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control antimicrobial Resistance. Geneva: World Health Organization.
	 World-Bank (2024). Global Economic Prospects, January 2024. Geneva: World Bank Publications.
	 Yonazi, J. J. (2012). Exploring facilitators and challenges facing ICT4D in Tanzania. J. e-Govern. Stud. Best Pract. 2012, 1–16. doi: 10.5171/2012.703053
	Copyright
 © 2025 Lyimo, Fue, Materu, Kilatu and Telemala. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.









 


	
	
ORIGINAL RESEARCH
published: 05 June 2025
doi: 10.3389/frai.2025.1388180








[image: image2]

Analysis and correcting pronunciation disorders based on artificial intelligence approach

Nataliia Melnykova*, Bohdan Pavlyk, Oleh Basystiuk and Stepan Skopivskyi


Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv, Ukraine

Edited by
 Dmytro Chumachenko, National Aerospace University, Ukraine

Reviewed by
 Shailesh Tripathi, University of Applied Sciences Upper Austria, Austria
 Sergiy Yakovlev, Lodz University of Technology, Poland

*Correspondence
 Nataliia Melnykova, melnykovanatalia@gmail.com 

Received 19 February 2024
 Accepted 24 February 2025
 Published 05 June 2025

Citation
 Melnykova N, Pavlyk B, Basystiuk O and Skopivskyi S (2025) Analysis and correcting pronunciation disorders based on artificial intelligence approach. Front. Artif. Intell. 8:1388180. doi: 10.3389/frai.2025.1388180
 

The main aim of this study is to employ artificial intelligence and machine learning methods to assess and correct pronunciation disorders in post-traumatic military patients, acknowledging the critical need for effective communication rehabilitation in individuals who have experienced trauma, such as head injuries or war-related incidents. Tasks include reviewing existing research, selecting appropriate machine learning methods, generating relevant training data, and implementing a software architecture tailored to analyze and correct pronunciation defects in this specific population. The analysis of machine learning methods led to the selection of two experimental models: a Convolutional Neural Network (CNN) utilizing mel-spectrograms for image-based sound representation and a Long Short-Term Memory (LSTM) network combined with mel-frequency cepstral coefficients, aiming to explore the effectiveness of sequential data processing in the context of pronunciation disorder classification in post-traumatic military patients. The results of the two models were compared based on the loss and accuracy functions of the training and validation data, error matrices, and such key metrics as precision, recall, and F1-score. Both models showed promising results in classifying dysarthria stages, but the CNN model performed slightly better in predicting all classes than the LSTM.
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1 Introduction

Technological evolution is relatively rapid, and now, many processes and duties performed by humans can be replaced by computers; in many professions, artificial intelligence can easily replace humans, including in medicine. In these difficult times, our country has faced many challenges that must be addressed immediately. One of the most critical tasks is to save the lives of every Ukrainian, for which the military suffers injuries on the battlefield that can last a lifetime. One of these problems can be a speech impediment. In such cases, automatic voice analysis could help the military rehabilitate faster. It will also be helpful for post-traumatic patients who have problems with speech for some reason.

The relevance of this topic is due to the problematic situation in the country, as pronunciation disorders can occur in military personnel who have suffered trauma, such as head injuries or war. This also supports the practical value, as research in this area can help military personnel who have suffered trauma to improve their pronunciation and make their speech more understandable to others.

This research aims to find practical solutions for developing a software module to provide analysis, selection of artificial intelligence tools, and verification of the effectiveness of machine learning methods in classifying stages of disease for post-traumatic patients.

The object of study is the process of analysis and correction of pronunciation in post-traumatic patients, and the subject is the voice parameters of post-traumatic military patients for speech defects and the artificial intelligence method for analysis and correction of pronunciation in post-traumatic patients.



2 Current research analysis

Artificial intelligence in medicine is already commonplace today, and this trend will continue to grow. The relevance of this topic can also be confirmed by the situation in our country, where every second counts.

The importance of this issue is associated with the following key factors:

	• Expansion of rehabilitation capabilities: Post-traumatic speech disorders are a significant problem that arises after various types of brain injuries (e.g., stroke or traumatic brain injury). Patients facing these problems often require long-term rehabilitation, and artificial intelligence can provide additional tools to support this process. AI-driven speech recognition systems can analyze patients’ speech patterns in real-time, identifying pronunciation errors and providing feedback (Abdulmajeed et al., 2022).
	• Accessibility and convenience: Artificial intelligence technologies can allow patients to engage in rehabilitation at a convenient time and place, improving their ability to recover (Lu et al., 2020).
	• Adaptability: Artificial intelligence can adapt to the individual needs of each patient, providing more personalized and effective interventions.
	• Monitoring and tracking progress: By using artificial intelligence methods, medical professionals can better track patients’ progress in real time, allowing them to adjust treatment plans as needed (Rastogi, 2020).
	• Resources: In a world with a constantly increasing number of patients and limited medical resources, artificial intelligence can be an effective means of maximizing the use of these resources.
	• Improvement of treatment outcomes: Artificial intelligence can help find new approaches to speech exercises that can accelerate recovery (Duda, 2025).
	• Classification of speech problems: Recognition and classification of different types of speech disorders are crucial elements in this field. Speech involves various aspects, including articulation, tempo, pitch, and rhythm. Artificial intelligence can assist in analyzing and classifying these complex speech characteristics. Such classification will enable medical professionals better to understand the specifics of the patient’s problem and tailor rehabilitation programs for maximum effectiveness (Deruty, 2025).

The PRISMA scheme was employed to systematically analyze the relevant literature, ensuring a comprehensive and transparent approach to source selection. This process provided a foundation for identifying key studies that address pathology detection through advanced analytical methods.

In article by Panek et al. (2015), issues related to pathology detection are addressed by creating a feature vector consisting of 28 different parameters obtained through voice signal analysis. Based on this, the accuracy and specificity of pathology detection using machine learning methods such as principal component analysis (PCA), kernel principal component analysis (kPCA), and auto-associative neural network are compared. The experimental results show that the PCA methodology effectively reduced the data, retaining 90% of the variance. However, PCA yielded slightly better results than PCA, albeit with a longer computation time due to the increased number of parameters.

In the subsequent article by Hossain and Muhammad (2016), a framework for big data in healthcare is proposed, utilizing voice pathology assessment (VPA) as an example. The VPA system employs two reliable functions, MPEG7 low-level audio and template derivative cepstral analysis, for processing voice or speech signals.

Combining Incremental Discriminant Analysis (IDP) functions and the Extreme Learning Machine (ELM) classifier yielded the most accurate (95%) and fastest (slightly over a second processing time) results. However, the limited training data and the narrow selection of voice samples are highlighted as drawbacks.

Verde et al.’s (2018) objective was to determine an algorithm that can differentiate between pathological and healthy voices with higher accuracy, which is necessary for implementing a practical and precise mobile healthcare system. Analyses were conducted on a large dataset of 1,370 voices selected from the Saarbrucken Voice database, with testing performed on both the entire dataset and three different subsets. Support Vector Machine (SVM) algorithm achieved the highest accuracy in detecting voice pathology (86%). However, the insufficient data processing speed (time from incoming data to decision received) is a drawback, which could be addressed using multiple machine learning methods.

Alhussein and Muhammad (2018) investigate a voice pathology detection system using deep learning on a mobile healthcare system. A mobile multimedia healthcare system was developed using smart mobile devices to record voices. In experiments with the SVD database, the system achieved 98.77% accuracy using the CaffeNet CNN model, followed by the SVM classifier. The lack of recognition speed indicator in the study is a drawback, as it is crucial for the system’s optimal performance.

Alhussein and Muhammad (2019) proposes using an intelligent healthcare system on a mobile platform utilizing deep learning. The smartphone records the client’s voice signal and sends it to a cloud server, which processes and classifies it as normal or pathological using a parallel convolutional neural network model. The decision on the signal is then transmitted to the doctor for a prescription. Experimental results on the SVD database showed that the proposed system achieved 95.5% accuracy, with over 95% accuracy in pathology classification. A 3-layer MLP fusion outperformed 2-layer MLP and ELM-based fusion. However, unlike the previous article, the absence of decision-finding speed is highlighted as another drawback.

In work by Al-Dhief et al. (2020), an extensive review of the latest methods and research frameworks of IoT and machine learning algorithms used in healthcare, particularly in voice pathology surveillance systems, is presented. This work outlines the latest strategies and research frameworks, discussing their applications in healthcare systems. It also identifies key challenges, such as data privacy concerns, system interoperability, and the computational limitations of IoT-enabled systems. The insights from this review are directly relevant to the current study, as they provide a foundational understanding of the broader context in which voice pathology detection frameworks operate. The authors also discuss the applications, challenges, and key issues of IoT and machine learning algorithms in healthcare.

Tuncer et al. (2020) aim to present a multi-class pathological voice classification using a novel multilevel texture feature extraction with an iterative feature selector. This simple and effective voice algorithm utilizes a multi-center and multi-threshold triple template (MCMTTP). A set of pathological voice data from SVD was used to create 8 cases, focusing on three disorders—cordectomy, frontal resection, and spastic dysphonia. This method achieved 100.0% classification accuracy and geometric mean (ideal classification) for the case of detecting frontal resection. The proposed MCMTTP and INCA-based methods demonstrated high efficiency. However, a limitation is identified as testing this solution only on three disorders, making it less universal and possibly compromising accuracy with increased data.

In article by Al-Dhief et al. (2021), a system for detecting and classifying voice pathology using the OSELM algorithm as a classifier and Mel-frequency cepstral coefficients (MFCC) as feature extraction is presented. Voice samples were taken from the Saarbrucken Voice database (SVD). This system comprises two parts of the database; the first part includes all voices in SVD with sentences and vowels /a/, /i/, and/u/ pronounced at high, low, and normal pitches. The second part uses voice samples of three common pathologies (cyst, polyp, and paralysis) based on the vowel /a/, produced with standard pitch. Experimental results demonstrate that the OSELM algorithm can distinguish healthy and pathological voices with a maximum accuracy of 91.17%.

Islam and Tarique (2022) introduces an algorithm for pathological voice detection based on a convolutional neural network (CNN) using a signal processing approach. The proposed algorithm extracts an acoustic characteristic called a chromatogram from voice samples and applies this feature to the CNN input for classification. Using chromatograms achieves higher accuracy than other unique characteristics (71% versus 85% accuracy). Different performance parameters, including precision, recall, and F1 score, also confirm the effectiveness of the proposed algorithm. A drawback could be the insufficient experimentation, specifically with chromatograms in combination with other machine learning methods, with only a convolutional neural network.

Nandi (n.d.) gathered recent research, voice pathology detection methods, machine learning, and deep learning methods (DL) used for data classification, presenting various applications, open challenges, and recommendations for future directions of IoT systems and artificial intelligence (AI) approaches in diagnosing voice pathology. Examples of machine learning methods such as Kay Pentax CSL Model, GMM, SVM, CNN, DPM, RNN, OSELM, ResNet50, Xception, and MobileNet are provided.

From the analysis of scientific sources and the relevance of the work, the topic of voice pathology detection is widespread and attracts considerable attention. The most effective methods for addressing this problem are convolutional neural networks (CNN) and Gaussian mixture models (GMM). However, there are several main drawbacks:

	• Insufficient sampling of voice data (for example, the existence of various accents can complicate program operation).
	• Slow training and recognition times.
	• Limited availability of universal datasets.

The above-mentioned drawbacks lie in finding a qualitative and comprehensive dataset for accurate model training and improving system performance times. Most articles do not provide comparative results of training and subsequent recognition speed by neural networks, so this factor needs to be considered for further selection of artificial intelligence tools.



3 Materials and methods


3.1 Machine learning models

Two neural models are being used in this paper. The first one is a convolutional neural network. The model is initialized as a sequential model. A sequential model is a linear stack of layers easily created by passing a list of layer instances to the constructor. The first layer is the 2D convolution layer (Conv2D). This layer creates a convolution kernel with the layer’s input data to generate the output tensor. The first argument, “32,” is the number of output filters in the convolution. The kernel size indicates the height and width of the 2D convolution window; here, it equals (3,3). The “real” activation function is applied to the original data. The next layer is the MaxPooling2D layer with a pool size of (2,2). This layer applies the maximum pooling operation to the input data, reducing its dimensionality. The Dropout layer with a dropout rate of 0.25 randomly “switches off” 25% of the neurons during each update during training, which helps prevent overtraining.

These layers (Conv2D, MaxPooling2D, Dropout) are repeated once more, but this time the Conv2D layer has 64 output filters. The Flatten layer converts the previous layer’s output into a one-dimensional array. This is necessary to enter the data into the fully connected layer (Dense). The Dense layer with 128 neurons performs a dot operation on the output data and layer weights and then adds the offset. This is a fully connected layer. Another Dropout layer with a rejection rate of 0.25 is added after the fully connected layer. The last layer, Dense with 4 neurons, uses the activation function “softmax,” which converts the output data into probabilities of 4 classes. The sum of these probabilities for all classes is 1 (see Figure 1).

[image: Diagram of a neural network architecture for image processing, showing layers including convolutional (gray), max pooling (red), fully connected (green and blue), and dropout (cyan) layers. The initial input size is 224x224x3, shrinking through layers to a final 1x1x2 output.]

FIGURE 1
 Visual representation of a convolutional neural network (CNN).


The Long Short-Term Memory (LSTM) model selected for the experiments is a recurrent neural network (RNN) designed to handle sequential data efficiently. LSTM is particularly well-suited for tasks involving time-dependent patterns, such as speech recognition, due to its ability to retain long-term dependencies in data. A schematic representation of the LSTM model is shown in Figure 2.

[image: Flowchart of a neural network model. Begins with an InputLayer of shape (None, 128, 1). Followed by LSTM layers with outputs of (None, 128, 128) and (None, 64), interspersed with Dropout layers. Ends with Dense layers using ReLU and softmax, outputting (None, 4).]

FIGURE 2
 Detailed diagram of the LSTM network.


This model includes seven layers:

	1. The first LSTM layer: This layer includes 128 LSTM units. LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN) that efficiently processes sequential data by retaining a “memory” of previous steps. In this model, the first LSTM layer returns the output for each time step, which is essential for the next LSTM layer.
	2. First Dropout layer: This layer applies a random dropout technique that helps reduce overtraining by randomly disconnecting a specified fraction (here, 30%) of the input neurons at each training step.
	3. The second LSTM layer: This layer contains 64 LSTM units. It receives sequential outputs from the previous LSTM layer. Only the last production in the time sequence is returned in this layer.
	4. Second Dropout layer: Similar to the first, this layer turns off 30% of the neurons to prevent overlearning.
	5. Dense layer: This layer contains 64 units and uses the ReLU (Rectified Linear Unit) activation function. The ReLU function is very popular in deep learning because it adds the necessary nonlinearity to the model without affecting the learning speed.
	6. The third Dropout layer: Another random dropout layer with a 30% level.
	7. Output dense layer: This layer has four units corresponding to the number of classes in the classification problem. The layer uses softmax’s activation function, which converts the output values into probable.



3.2 Audio feature representation

The Mel Frequency Cepstral Coefficients (MFCC) and Mel Spectrograms are characteristics derived from audio signals, and both are based on the Mel scale, a perceptual pitch scale closely related to human auditory perception. However, they represent an audio signal differently and are used for different purposes.


3.2.1 Data representation

A Mel spectrogram is a visual representation of an audio signal. It shows how the power spectrum of an audio signal is distributed at different frequencies over time. Each point on the Mel spectrogram corresponds to the power at a specific time and frequency.

MFCC is a numerical representation of an audio signal. It provides a compact representation of the power spectrum of an audio signal, focusing on the aspects most relevant to human perception. MFCC is typically represented as a sequence of feature vectors (one per time slot).



3.2.2 The process of feature extraction

Mel spectrogram: To compute the Mel spectrogram, the audio signal is segmented into short frames, the power spectrum for each frame is calculated, a group of Mel filters is applied to the power spectra, and then the logarithm of the filter group energies is taken.

MFCC: The process of calculating MFCC is similar to the process for Mel spectrograms, but there is one additional step. After logarithmizing the filter bank energies, a discrete cosine transform (DCT) is applied to decorelate the energies and reduce the dimensionality of the data.



3.2.3 Usage cases

Mel spectrograms are often used as input to convolutional neural networks (CNNs) for audio classification tasks because they provide a two-dimensional representation of an audio signal that can be viewed like an image.

MFCC: used as features in a wide range of audio and speech processing tasks, including speech recognition, speaker identification, and music genre classification. They are often used as input to models that can process sequential data.

After analyzing everything, we decided to experiment with two machine-learning models:

	– CNN using the mel-spectrogram, since in this case, there will be a representation of sound in the form of images, which the convolutional network can perfectly cope with the classification of
	– LSTM in combination with fine-frequency cepstral coefficients to test the model’s performance with sequential data.




3.3 Dataset

In this study, the TORGO dataset, designed explicitly for dysarthria research, was used from Kaggle. The TORGO dataset collected data from seven individuals with different forms and severities of dysarthria. Each speaker was asked to complete several speaking tasks, which included:1

	• Saying a set of regular phrases is commonly used in everyday speech and indicates how people with dysarthria say typical statements.
	• Reading a phonetically balanced set of sentences: this task uses a standardized text often used in speech and language research. By asking speakers to read this passage, researchers can collect data on how people with dysarthria produce a wide range of phonemes in a controlled context.
	• Single-word pronunciation: This task provides insight into how speakers pronounce individual words, which can be particularly useful for examining specific aspects of dysarthria that may be less apparent in continuous speech.

The disease classification in this dataset is shown in Table 1.



TABLE 1 Disease classes in the dataset.
[image: Table showing degrees of disease with corresponding data. "Healthy" includes codes FC03, FC04, MC03, FC01, MC05, MC01, MC02, MC04. "2nd degree" includes F03, F04, M03. "3rd degree" includes F01, M05. "4th degree" includes M01, M02, M04.]

The visualization of the disease classes is shown in Figure 3.

[image: Bar chart displaying counts of four types: "medium" with around 1000 (blue), "low" with about 3000 (orange), "healthy" with approximately 8000 (green), and "high" with near 2000 (red).]

FIGURE 3
 Bar chart showing the number of audio recordings of each stage of the disease.





4 Results

A software module was developed and implemented in Python to obtain the research results, widely used for machine learning development. Python has a rich ecosystem of scientific libraries, including powerful libraries for machine learning and data analysis, such as TensorFlow, PyTorch, ScikitLearn, Pandas, NumPy, and Matplotlib.

The research on the selected dataset (see text footnote 1) was conducted using CNN with mel-spectrograms and LSTM with MFCC.

CNNs use images as input, but they have been trained and evaluated on large datasets with various classes for good results. Examples of such sets are ImageNet (a database containing about 14 million images), Open Images (9 million images), and others.

Sound signals contain valuable information that changes over time, requiring models to account for long-term dependencies. One way to solve this problem is to combine CNNs with recurrent neural networks (RNNs), such as long-short-term memory (LSTM) networks. By integrating CNN and LSTM layers, CNN-LSTM networks can take advantage of the strengths of both architectures: efficiently extracting spatial features from spectrograms while capturing temporal dynamics.

Long short-term memory (LSTM) networks are recurrent neural networks (RNNs) widely used in sequence modeling tasks due to their ability to capture long-term dependencies. LSTMs solve the vanishing gradient problem that traditional RNNs face, allowing them to learn and store information in long sequences efficiently. A key point in the LSTM architecture is the inclusion of memory cells and gate mechanisms that regulate the flow of information. These mechanisms consist of three main gates: input, forgetting, and output.

	• The input gate determines the new information added to the memory cell. It takes the current input signal and the previous hidden state as input and passes them through a sigmoid activation function.
	• The forgetting gate controls the amount of information removed from the memory cell.
	• The output gate regulates the amount of information output from the memory cell. Like a forget-me-not gate, it takes the current input and the previous hidden state as inputs and passes them through a sigmoid activation function. The resulting activation output vector is multiplied element by element with the state of the memory cell and passed through the hyperbolic tangential activation function (tanh) to obtain the output of the LSTM block.

So, Figure 4 shows a plot of the loss function of the training and test data versus the epoch before the model. The training loss function decreases with each epoch, starting from a value of about 44 in the first epoch and reaching about 0.16 in the last epoch, the 10th epoch. This indicates that the model learns and improves its predictions with each epoch.

[image: Line graph titled "Train and Validation Loss" displaying the training and validation loss over epochs. The blue line represents train loss, starting high near forty-five and rapidly decreasing to near zero. The orange line shows validation loss, starting and remaining near zero across epochs.]

FIGURE 4
 Graph of the loss function of validation and training data versus epoch.


The loss function for validation also decreases with each epoch, but not as uniformly. It first decreases from 1.24 to 0.70 from epoch 1 to 2, then increases to 0.72 in epoch 3, and then decreases again to 0.49 in epoch 7. It then increases again to 0.57 in the 9th epoch and decreases to 0.52 in the 10th.

Such fluctuations in the loss on the validation set may indicate that the model has some level of overfitting, as it shows a more significant error on the validation set than on the training set. It can also result from noise in the data or heterogeneity in the validation set.

Nevertheless, the model improves overall as training and validation losses are reduced. The accuracy of the training data constantly increases from epoch to epoch, with a final accuracy of 0.946, while the accuracy of the validation data does not increase as smoothly.

Figure 5 shows the error matrix of the convolutional network. Based on it, the classifier made the most errors between the health and high classes, while the low class was the best predicted. Given the errors, the classifier showed promising results in classifying all classes.

[image: Confusion matrix showing classification results with four categories: healthy, low, medium, and high. Diagonal values represent correct predictions: healthy (183), low (203), medium (152), high (164). Off-diagonal values show misclassifications, with a range of 0 to 25. A color gradient from dark to light indicates frequency, aligned with the side legend.]

FIGURE 5
 Error matrix of convolutional neural network.


All classes have high precision, recall, and F1-score metrics scores. However, there are some differences. The ‘Healthy’ and ‘Low’ classes have high values for both the precision and recall parameters, which indicates that the model can correctly identify and predict these classes. On the other hand, although the precision parameter is high for the ‘Medium’ and ‘High’ classes, the recall is slightly lower compared to the ‘Healthy’ and ‘Low’ classes. This may indicate that the model has more difficulty correctly predicting these classes.

As for the LSTM model, the results of the experiments are presented below:

Figure 6 shows a graph of data loss. The model shows a decrease in the loss function with each epoch, both on the training and validation samples. This is a good indicator, showing that the model is learning and reducing prediction errors. The loss function on the training data decreases from 1.2001 in the first epoch to 0.2480 in the tenth epoch, and the loss function on the validation data gradually decreases, indicating that the model is also performing well on data it has not seen before.

[image: Line graph showing train loss and validation loss over epochs. The y-axis represents loss values, ranging from zero to 1.2, and the x-axis shows epochs from zero to ten. The blue line for train loss and the orange line for validation loss both decrease, with train loss reducing more steeply.]

FIGURE 6
 Validation and training data loss graph.


The accuracy of the training data starts at 46.11% in the first epoch and gradually increases with each epoch. The final accuracy is 90.94%. This shows that the model learns and improves its performance on the training data over time. The same is true for the validation data. In general, the model shows a positive trend in accuracy on both training and validation data, which indicates that the model is learning effectively and progressing in its task (see Figure 7).

[image: Confusion matrix illustrating classification results. True labels on the y-axis (healthy, high, medium, low) and predicted labels on the x-axis. Key values include 175 true positives for healthy and 193 for medium. Color gradient indicates frequency, with lighter shades for higher counts.]

FIGURE 7
 Error matrix of the LSTM classifier.


The classifier made the most errors between the health and high classes, while the medium class was the best predicted. Given the errors, the classifier performed exceptionally well in classifying all classes.



5 Discussion

As a result of the experiments, both models coped with the task quite well, showing promising results in model classification. Based on the training results of the LSTM and CNN models, we can make the following observations:

	– LSTM model accuracy:
	On the training set: 0.9094.
	On the validation set: 0.8652.
	The LSTM model achieves reasonably high accuracy in the training and validation datasets. This indicates the model’s ability to learn and generalize dependencies in the data. However, it is worth noting that the accuracy on the validation set is slightly lower than on the training set, which may indicate a slight overtraining of the model.
	– Accuracy of the CNN model:
	On the training set: 0.9460
	On the validation set: 0.8774.
	The CNN model also achieves high accuracy on the training and validation datasets. The accuracy values on the training set are impressive, which may indicate that the model can learn well on the dataset. The accuracy of the validation set is also high, which shows the model’s ability to generalize the learned relationships to new data.

If compare the model data, it allows the following conclusions:

– The LSTM model shows higher accuracy on the training set but lower accuracy on the validation set than the CNN model.

– The CNN model has higher accuracy on the validation set, which may indicate a better ability to generalize to new data.

– Both models achieve high accuracy values, which indicates their effectiveness in audio classification.

For analysis, the results of using two models are represented in Table 2.



TABLE 2 Combined results of model testing.
[image: Comparison table displaying performance metrics (precision, recall, F1-score) for CNN and LSTM models across four classes: Healthy, Low, Medium, and High. CNN scores range from 0.82 to 0.95, while LSTM scores vary from 0.76 to 0.91.]

Based on the test results in terms of metrics and error matrices, the following observations can be made:

– The CNN classifier has higher precision, recall, and F1-score values for the Healthy, Low, and Medium classes than the LSTM classifier.

	– The LSTM classifier has higher precision, recall, and F1-score for the High class than the CNN classifier.
	– Both classifiers generally demonstrate acceptable accuracy and efficiency in classifying audio data. However, there may be differences in performance for individual classes.
	– The best results are achieved for the Healthy and Low classes in both models, with high precision, recall, and F1-score parameters.
	– Both models have lower recall and F1-score for the High class, which may indicate problems in recognizing this class.
	– The LSTM classifier has a higher precision for the Medium and High classes than the CNN classifier but a lower recall for the Medium class.
	– The CNN classifier has a more stable accuracy for all classes than the LSTM classifier.
	– The two classifiers made the most errors between the Health and High classes, which indicates that they are not sufficiently different for these representations

However, each model made the fewest errors differently: CNN made the fewest mistakes in determining the Low class, and LSTM made the fewest mistakes in classifying the Medium stage.

Lower precision in medium and high cases indicates that the model produces a higher number of false positives, potentially leading to unnecessary treatments or interventions. On the other hand, lower recall suggests a higher number of false negatives, meaning critical conditions could go undetected. A detailed error analysis should be conducted to determine the characteristics of misclassified samples. This includes:

	• Identifying specific patterns or features that the model struggles with in medium and high cases.
	• Analyzing whether these misclassifications are due to insufficient training data, feature representation, or model limitations.
	• Evaluating cases where misclassifications occur more frequently (e.g., borderline cases between categories).

Future efforts will improve feature extraction and data preprocessing to address lower precision and recall in medium and high cases. Applying ensemble or hybrid models will provide the ability to make models more stable to a broader range of possible cases. We also see potential in extending the datasets, focusing on additional medium and high pathology samples, and augmenting them using synthetic data generation techniques. One of the essential parts of conducting future research and preparing production solutions is ethical considerations and applying fail-safe mechanisms, which will guide the minimization of missed diagnoses and ensure safe deployment.



6 Conclusion

This research aimed to address the critical issue of pronunciation disorders in post-traumatic military patients by applying artificial intelligence and machine learning. The study involved a comprehensive analysis of existing literature, selecting appropriate machine learning models, generating relevant training data, and implementing a specialized software architecture.

Two methods were used to transform the audio recordings: shallow spectrograms, which were used in conjunction with the CNN model, as this model works well with images, and shallow cepstral coefficients for the LSTM model, which works reasonably well with sequential numerical data.

The methods were evaluated and analyzed using loss and precision functions for training and validation data, error matrices, and precision, recall, and F1-score metrics. It can be concluded that both models coped quite well with the given task, showing overall accuracies of 94% (CNN) and 91% (LSTM).

Both classifiers generally demonstrate acceptable accuracy and efficiency in classifying audio data. However, there may be differences in performance for individual classes. The best results for both models’ Healthy and Low courses are achieved with high precision, recall, and F1-score parameters.

According to the results of the research and the indicators obtained from the selected metrics, it can be claimed that these methods are effective for the analysis and detection of this disease, which will perfectly classify the disease for further pronunciation correction.

The models proposed and used in this study were limited by the quality of the audio data and the computational resources available. This leads to its good effectiveness on the existing datasets, but it is not appropriate to apply to a wide range of datasets. In particular, noisy or incomplete recordings may slightly impact the performance of models. Moreover, the capability of both CNN and LSTM models to generalize different speech disorders or new data may need further validation. More testing with out-of-sample data will be essential to ensure robust performance across different patient groups.

The findings of this research underscore the potential of artificial intelligence and machine learning in addressing the rehabilitation needs of post-traumatic military patients with pronunciation disorders. Further research and refinement of the models could lead to enhanced practical applications and contribute significantly to the field of communication rehabilitation for individuals who have experienced trauma. The software module can be integrated into applications dealing with speech disorders.
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This study focuses on the development of the infectious diseases department in the post-pandemic era. It reviews the impact, transformation needs, and challenges brought by the pandemic to this field. By discussing the application prospects of emerging technologies such as bioinformatics, artificial intelligence, and big data in epidemic analysis, pathogen research, and medical services, this article demonstrates how interdisciplinary technologies can promote the digital transformation of the infectious diseases department. Meanwhile, it analyzes the development trends of technologies in disease prevention, early diagnosis, innovative treatment methods, and vaccine development. Through case studies and empirical analysis, it reveals the effectiveness of data-driven decision-making in optimizing the management of the infectious diseases department. The research findings indicate the development direction of the infectious diseases department in the post-pandemic era and provide theoretical guidance and technical references for related research and practice.
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1 Introduction

Globally, there is a growing focus on the development of the infectious diseases department. Especially after the pandemic, people pay more attention to the emerging technologies and trends in this field. With the continuous progress and innovation of science and technology, the infectious diseases department has also to improve professionalism. This article explores the emerging technologies and trends of the infectious diseases department in the post-epidemic era, aiming to provide readers with a comprehensive and in-depth understanding.

Facing unprecedented challenges, the infectious diseases department urgently needs the support of emerging technologies. The pandemic has had a huge impact on the global medical system and has also accelerated the innovation and transformation of medical technology. Therefore, it is necessary to deeply understand the new trends in the development of the infectious diseases department in the post-epidemic era and how emerging technologies can be applied in clinical practice (1, 2).

In addition to traditional treatment methods, emerging technologies are playing an increasingly important role in the field of infectious diseases. The application of technologies such as gene sequencing, artificial intelligence, and big data analysis has brought new possibilities for the diagnosis and treatment of infectious diseases. The continuous breakthroughs of these emerging technologies provide strong support for precision medicine in the infectious diseases department (3, 4).

By deeply exploring the emerging technologies and trends in the development of the infectious diseases department in the post-epidemic era, we can better grasp the development direction of this field and provide useful references for future clinical practice and scientific research. Driven by new technologies, the development of the infectious diseases department is bound to face more challenges and opportunities. We need to be fully prepared to meet the challenges of this new era (5–9).

In conclusion, the emerging technologies and trends in the development of the infectious diseases department in the post-epidemic era are the focus that the medical and scientific research fields urgently need to pay attention to. By deeply exploring and understanding these new technologies and trends, we can provide useful guidance and help for the future development of the infectious diseases department. It is hoped that this article can provide readers with new ideas and perspectives and trigger more discussions and reflections on the development of the infectious diseases department.



2 Overview of the post-epidemic era


2.1 Impact of the pandemic on the infectious diseases department

In the post-epidemic era, the infectious diseases department, as an important branch of the medical field, has received unprecedented attention and challenges. The impact of the pandemic on the infectious diseases department is self-evident. It has not only accelerated the development of medical technology but also put forward higher requirements and challenges. In this context, exploring the emerging technologies and trends in the development of the infectious diseases department in the post-epidemic era has become a hot topic in the medical community (10, 11).

Firstly, the outbreak of the pandemic has posed new challenges to the diagnosis and treatment model of the infectious diseases department. During the pandemic, the allocation and utilization of medical resources have changed dramatically. The traditional outpatient diagnosis and treatment method has been restricted, while new models such as telemedicine and intelligent diagnosis have emerged rapidly. These new technologies not only provide doctors with more diagnostic and treatment means but also offer patients more convenient medical treatment channels, greatly improving the diagnosis and treatment experience (12, 13).

Secondly, the pandemic has also spurred innovation and breakthroughs in the research field of the infectious diseases department. Facing the challenges of new pathogens, scientific researchers have taken rapid actions, accelerating the progress in vaccine research and development, pathogen monitoring, antiviral drug research, etc. Emerging gene-editing technologies, protein engineering technologies, etc. have opened up new fields for the research of the infectious diseases department and are expected to play an important role in future clinical treatments (3, 4).

In addition, the pandemic has promoted the in-depth integration of the infectious diseases department with other medical fields, forming a new pattern of multidisciplinary cooperation. In the process of fighting the pandemic, it has become a consensus that the infectious diseases department should cooperate closely with clinical medicine, public health, information technology, and other fields (2, 14). Many experts and scholars in the medical community have also called for strengthening the communication and cooperation between different fields to jointly respond to possible new challenges in the future.

In conclusion, the development of the infectious diseases department in the post-epidemic era is full of new opportunities and challenges. With the continuous breakthroughs and innovations of medical technology, the infectious diseases department will also embrace a more glorious development prospect. All of this would not be possible without the unremitting efforts of scientific researchers, the selfless dedication of medical staff, and the high-level attention and support of the whole society for the medical and health cause. May the future medical community work together to contribute more to the health and wellbeing of mankind.



2.2 Challenges in the post-epidemic era

As the global pandemic situation is gradually brought under control, people begin to pay attention to the challenges that may be faced in the post-epidemic era. The challenges in the post-epidemic era will involve the development of the infectious diseases department and require emerging technologies and trends to address them.

Firstly, one of the challenges in the post-epidemic era is the problem of pathogen mutation and drug resistance. The mutation of pathogens may lead to changes in the transmission ability or pathogenicity of infectious diseases, thus posing new challenges to prevention and control work. At the same time, the abuse of antibiotics has also led to an increase in drug-resistant bacteria, putting forward higher requirements for the treatment in the infectious diseases department. Therefore, it is necessary to strengthen the monitoring and research on pathogen mutation and drug resistance and seek new breakthroughs in treatment (15, 16).

Secondly, another challenge in the post-epidemic era may be the uneven distribution of medical resources. In the pre-epidemic era, the medical resources in some areas were seriously insufficient, resulting in difficulties in pandemic prevention and control work. In the post-epidemic era, the fair distribution of medical resources will become an important issue. Emerging technologies can make up for the shortage of medical resources through methods such as telemedicine and artificial-intelligence-assisted diagnosis, expand the coverage of medical services, and thus promote the fair distribution of medical resources (12, 17).

In addition, challenges in the infectious diseases department in the post-epidemic era may also include the formulation and implementation of infectious disease prevention and control policies. During the pandemic, different prevention and control policies were adopted in some areas, resulting in incoordination in pandemic prevention and control work. In the post-epidemic era, it is necessary to strengthen international cooperation, unify infectious disease prevention and control policies, and establish a more effective pandemic early-warning and response mechanism to deal with possible new infectious disease threats (2, 18).

In summary, the infectious diseases department faces many challenges in the post-epidemic era, but at the same time, it also breeds many new opportunities. With the help of emerging technologies and trends, we are confident that we can overcome these challenges, promote the development of the infectious diseases department, and make greater contributions to global public health security.



2.3 Transformation needs of the infectious diseases department

With the outbreak and global spread of the COVID-19 pandemic, the infectious diseases department faces huge transformation needs in the post-epidemic era. This article explores the challenges and development trends faced by the infectious diseases department during the transformation process, as well as the impact of emerging technologies on its development (11).

In the post-epidemic era, the infectious diseases department not only needs to conduct in-depth research and treatment of traditional diseases but also needs to deal with the challenges of emerging infectious diseases. With the acceleration of globalization, the spread speed and scope of infectious diseases are constantly expanding, which puts forward higher requirements for the infectious diseases department. Therefore, during the transformation process, the infectious diseases department needs to pay more attention to global cooperation and information sharing to deal with the challenges of emerging infectious diseases (10, 19).

Indeed, the transformation needs of the infectious diseases department not only come from the challenges of emerging infectious diseases but also from the continuous update of medical technology and medical models. With the progress of science and technology and the improvement of data analysis capabilities, the infectious diseases department can rely on emerging technologies such as big data and artificial intelligence to better achieve disease prediction, personalized treatment, and disease management (3, 18). Therefore, during the transformation process, the infectious diseases department needs to pay more attention to scientific and technological innovation and interdisciplinary cooperation to adapt to the continuous update of medical models and technologies (1).

In addition, the infectious diseases department also faces challenges in talent team construction and medical resource allocation during the transformation process. Traditional infectious diseases department doctors often need to have rich clinical experience and medical knowledge. However, with the change of the medical model and the progress of technology, infectious diseases department doctors also need to have the ability of interdisciplinary cooperation and information-based management. Therefore, during the transformation process, the infectious diseases department needs to pay more attention to talent cultivation and the rational allocation of medical resources to meet the needs of future medical development.

In conclusion, the infectious diseases department faces huge transformation needs in the post-epidemic era and needs to pay more attention to global cooperation, scientific and technological innovation, and talent team construction. Only by continuously adapting to the development of the times and the changes of the medical model can the infectious diseases department better deal with the challenges of emerging infectious diseases and achieve its own sustainable development (20, 21).




3 Overview of emerging technologies


3.1 Application of bioinformatics in epidemic analysis

Since the outbreak of the pandemic, bioinformatics technology has played an increasingly important role in epidemic analysis. Bioinformatics technology mainly reveals the laws of biological systems by analyzing large-scale biological data (3, 22).

In epidemic analysis, specialized tools are used for genomic analysis. For example, BLAST (Basic Local Alignment Search Tool) is used to compare pathogen sequences quickly, helping to identify similar pathogens and understand their relationships. MEGA (Molecular Evolutionary Genetics Analysis) is employed to construct phylogenetic trees, which are crucial for tracing the evolutionary paths of viruses. GATK (Genome Analysis Toolkit) is utilized to detect genomic variants, such as single-nucleotide polymorphisms that might be related to drug resistance (23).

Key datasets in this field include GISAID (Global Initiative on Sharing All Influenza Data), which as of 2024, hosts over 15 million viral genome sequences. This real-time data source is invaluable for tracking emerging virus variants (22). Another important dataset is NCBI GenBank, a comprehensive genetic data repository.

During the COVID-19 pandemic, researchers used GISAID data in conjunction with PhyloViZ software. By analyzing the data, they were able to map the global spread of the Omicron variant. They identified 32 spike protein mutations in the Omicron variant through this analysis, which were associated with immune escape. This provided crucial information for understanding the variant’s transmissibility and formulating targeted prevention and control strategies (3, 23).

Bioinformatics can also help scientific researchers conduct virus sequence alignment and evolutionary analysis in epidemic analysis. By comparing the gene sequences of different virus strains, we can reveal the origin, transmission routes, and mutation laws of the virus, providing support for epidemic tracing and epidemiological investigations. Through evolutionary analysis, we can also predict the mutation trend of the virus, providing a reference for subsequent epidemic prevention and control.

Furthermore, bioinformatics technology can also help scientific researchers conduct host genome analysis, revealing the host’s resistance mechanism to pathogens. Through the analysis of host genome data, we can discover gene mutations related to disease susceptibility, providing support for individualized prevention and control and drug research and development. At the same time, it can also reveal the interaction network between the host and the pathogen, providing in-depth understanding of the disease pathogenesis and pathophysiological process.

In conclusion, the application of bioinformatics in epidemic analysis has become an important tool in epidemic prevention and control and scientific research. With the continuous development and improvement of technology, it is believed that bioinformatics technology will play an even more important role in the infectious diseases department in the post-epidemic era, providing stronger support for mankind to overcome diseases.



3.2 Combined application of artificial intelligence and big data

In the post-epidemic landscape, the synergistic integration of artificial intelligence (AI) and big data has emerged as a transformative paradigm for infectious disease management. Machine learning algorithms, including random forest classifiers and long short-term memory (LSTM) networks, process heterogeneous datasets-such as electronic health records (EHRs), mobility trajectories, and epidemiological surveillance data-to inform evidence-based decision-making. For example, during Wuhan’s 2020 pandemic response, an LSTM-based predictive model analyzed real-time hospital admission data to forecast ICU bed demand with 94% accuracy, enabling proactive allocation of ventilators and critical care staff (18, 24). In New York, linear programming algorithms optimized the distribution of personal protective equipment (PPE), reducing stockout incidents by 45% while minimizing resource waste-an efficiency unattainable through traditional rule-based approaches (3, 16).

Diagnostically, the deep learning model CheXNet, trained on 150,000 chest X-rays, demonstrates an AUC of 0.93 in detecting COVID-19-associated ground-glass opacities, outperforming junior radiologists in early-stage lesion identification (13, 18). These applications underscore how AI-driven analytics, when coupled with big data, enhance diagnostic precision and operational agility, though challenges related to data privacy and algorithmic interpretability remain critical areas for improvement.




4 Analysis of technology development trends


4.1 Trends in disease prevention and early diagnosis technologies

With the aggravation and complication of disease transmission, the development of disease prevention and early diagnosis technologies has become an important direction of current medical scientific research. In the future, disease prevention and early diagnosis technologies will play an even more important role in the field of the infectious diseases department. This article analyzes and explores the development trends of disease prevention and early diagnosis technologies.

In terms of disease prevention, with the continuous breakthroughs and progress of gene-detection technologies, individualized prevention will become the future development trend. By obtaining and analyzing individual gene information, we can assess disease susceptibility and then develop personalized prevention plans. At the same time, with the wide application of artificial intelligence technology, intelligent prevention systems will become an important means of disease prevention. Through the analysis and mining of big data, intelligent prevention systems can timely detect the trends of disease outbreaks and take corresponding preventive measures in advance, thus effectively curbing the spread of diseases (17, 18).

In the aspect of early diagnosis technologies, early diagnosis technologies based on biomarkers will become the future development focus. Biomarkers are indicators that reflect the physiological state of the organism, the occurrence, and development process of diseases, and are of great significance for the early diagnosis of diseases. With the continuous development of biochemistry, bioengineering, and nanotechnology, more and more biomarkers are being discovered and applied to clinical diagnosis. At the same time, image-diagnosis technologies will also be further developed. Medical imaging technologies such as CT and MRI will play a more important role in early disease diagnosis.

In addition, miniaturized and portable diagnostic devices will also become a future development trend. With the continuous maturity of medical device technology, more and more portable diagnostic devices will be put into use, making early diagnosis more convenient and rapid. These devices can play important roles in clinical diagnosis, home healthcare, and other fields and are of great significance for the early screening and diagnosis of diseases (25–27).

In conclusion, the development of disease prevention and early diagnosis technologies in the field of the infectious diseases department is of great significance. In the future, individualized prevention, intelligent prevention systems, the application of biomarkers, the development of image-diagnosis technologies, and the use of miniaturized and portable diagnostic devices will become the main development trends, providing more effective means and technical support for the early diagnosis and prevention of diseases.



4.2 New trends in treatment methods and vaccine research and development

During the pandemic, new trends in treatment methods and vaccine research and development have become the focus of attention. With the continuous progress of science and technology, the emergence of emerging technologies has brought new hope for the development of the infectious diseases department. In the exploration of emerging technologies and trends in the development of the infectious diseases department in the post-epidemic era, new trends in treatment methods and vaccine research and development have received much attention.

Firstly, gene-editing technology shows great potential in the treatment of infectious diseases. Through gene-editing technology, scientists can accurately repair or modify genes in patients’ bodies, thereby achieving the goal of treating infectious diseases (23, 28). For example, using the CRISPR gene-editing technology, scientific researchers have successfully developed treatment methods for certain viruses, providing new options for the shortcomings of traditional treatment methods.

Secondly, the field of vaccine research and development is also constantly exploring new technologies and methods. In addition to traditional vaccine research and development methods, vaccine research and development based on genetic engineering technology has become a hot topic. Using genetic engineering technology, scientists can precisely design virus antigens, thus developing more effective vaccines. In addition, the application of nanotechnology has also brought new breakthroughs to vaccine research and development. Nanoparticle vaccines can improve the stability and immunogenicity of vaccines, injecting new vitality into vaccine research and development (4, 22).

In addition, immunotherapy, as an emerging treatment method, has also received increasing attention. Immunotherapy resists infectious diseases by regulating the patient’s immune system and has the characteristics of strong pertinence and few side effects. Currently, immunotherapy has achieved remarkable results in the treatment of certain infectious diseases, bringing new hope for the treatment in the infectious diseases department.

In the new trends of treatment methods and vaccine research and development, the continuous innovation of science and technology has opened up a new situation for the development of the infectious diseases department. With the continuous emergence of new technologies such as gene-editing technology, genetic engineering technology, and immunotherapy, we have reason to believe that in the post-epidemic era, the infectious diseases department will embrace a brighter development prospect. To sum up, the new trends in treatment methods and vaccine research and development will become an important driving force for the development of the infectious diseases department, bringing new hope for humanity to fight against infectious diseases.



4.3 The trend of digital transformation of medical service models

In the exploration of emerging technologies and trends in the development of the infectious diseases department in the post-epidemic era, the trend of digital transformation of medical service models has become a highly concerned topic (12, 13). Digital transformation has become a trend in the medical field, which transforms medical services from the traditional offline model to a more convenient and efficient online model. Driven by digital transformation, medical service models present a series of new characteristics and trends.

Firstly, with the rapid development of the Internet and mobile Internet technologies, medical services have gradually shifted online. Patients can make appointments, consult doctors online, and purchase medicines through mobile apps or websites. The emergence of this online medical service model has greatly improved the convenience and efficiency of medical services (6, 19). Patients no longer need to queue up; they can meet their medical needs at home, which is undoubtedly a blessing for busy modern people.

Secondly, digital transformation has also promoted the application of medical big data. The digital transformation of medical service models enables the collection and analysis of a large amount of medical data (18, 29). These data can not only help doctors better understand patients’ conditions and needs but also provide valuable reference materials for medical scientific research. Through the analysis of big data, early warning and accurate diagnosis of diseases can be achieved, improving the quality and efficiency of medical services.

In addition, under the trend of digital transformation, telemedicine services have gradually become an emerging medical model. Patients can remotely consult experts via video or phone. This model not only provides patients with a wider range of choices but also offers doctors more working methods. Especially during the pandemic, telemedicine services have become an important medical means, providing patients with a safe and convenient way to seek medical advice.

Finally, digital transformation has promoted the development of smart medicine. By introducing technologies such as artificial intelligence and big data analysis, smart medical systems can achieve a series of intelligent medical services, such as medical record management, diagnostic assistance, and surgical robots, providing patients with more accurate and safer medical services (32, 33).

To sum up, the digital transformation of medical service models has become a new trend in the medical field and will continue to develop in the future. Digital transformation not only provides patients with more convenient and efficient medical services but also brings new opportunities and challenges to the development of the medical industry. We look forward to more innovations and progress in medical services brought about by digital transformation.




5 Case studies and empirical analyses


5.1 Application cases of interdisciplinary technologies in epidemic management

The COVID-19 pandemic highlighted the necessity of interdisciplinary solutions in epidemic management, with technologies like unmanned aerial vehicles (UAVs) and blockchain demonstrating tangible real-world impacts. In Rwanda, Zipline’s drone logistics network revolutionized vaccine delivery by transporting over 2 million COVID-19 doses to remote clinics between 2020 and 2022, reducing delivery times from 48 h to 30 min and improving vaccination coverage by 40% (11, 12). This innovation mitigated geographical barriers, offering a scalable model for resource distribution in underserved regions.

Blockchain technology also emerged as a cornerstone for supply chain transparency. IBM’s Blockchain Platform tracked 1.2 million COVID-19 test kits across 20 countries in 2021, reducing logistics delays by 60% and ensuring end-to-end traceability of cold-chain storage conditions (2, 24). By eliminating manual discrepancies and enhancing accountability, such decentralized systems set a new benchmark for global medical resource management during public health crises.



5.2 Practices of emerging technologies in the research of difficult cases

In the post-epidemic era, the development of the infectious diseases department faces new opportunities and challenges. Studying difficult cases has always been one of the important tasks of the infectious diseases department, and emerging technologies are gradually becoming powerful tools for studying difficult cases. This article explores the practices of emerging technologies in the research of difficult cases, hoping to provide some new ideas and directions for the development of the infectious diseases department.

Firstly, gene sequencing technology is playing an increasingly important role in the research of difficult cases. Through the sequencing and analysis of patients’ genomes, we can discover some rare gene variations or mutations that may be related to the occurrence of patients’ diseases. The development of gene sequencing technology provides new ideas and methods for the diagnosis and treatment of difficult cases (3, 23).

Secondly, single-cell sequencing technology provides a brand-new perspective for the research of difficult cases. Traditional gene sequencing technology usually only obtains gene expression information at the population level, while single-cell sequencing technology can reveal the gene expression profile of a single cell, helping us better understand the mechanism of disease occurrence and development. Through single-cell sequencing technology, we can discover some important information hidden in traditional sequencing data, providing more accurate basis for the diagnosis and treatment of difficult cases.

In addition, the application of artificial intelligence technology has gradually become a new hotspot in the research of difficult cases. Artificial intelligence technology can help doctors discover some potential laws or characteristics through the analysis of a large amount of medical data, providing auxiliary decision-making for the diagnosis and treatment of difficult cases. At the same time, artificial intelligence technology can also help doctors screen cases and conduct risk assessments, improving the diagnostic efficiency and accuracy of difficult cases.

Then, the application of evolutionary algorithms and machine learning technologies also brings new opportunities for the research of difficult cases. Through the analysis and modeling of case data, evolutionary algorithms and machine learning technologies can help doctors discover some potential causes or pathological mechanisms, providing more clues and directions for the diagnosis and treatment of difficult cases. At the same time, these technologies can also help doctors conduct risk assessments and predictions of cases, guiding clinical decision-making and the formulation of treatment plans.

Finally, the practices of emerging technologies in the research of difficult cases still face some challenges and limitations, which require us to conduct further in-depth research and exploration. For example, the high cost and complex operation of emerging technologies may limit their promotion and application in clinical practice. At the same time, ethical and privacy issues of emerging technologies also need to be carefully considered and resolved. Therefore, while promoting the practices of emerging technologies in the research of difficult cases, we need to strengthen standardization and management to ensure their safety and effectiveness in clinical practice.

To sum up, the practices of emerging technologies in the research of difficult cases will bring new opportunities and challenges to the development of the infectious diseases department. We need to constantly explore and innovate to better apply emerging technologies to the diagnosis and treatment of difficult cases and provide better protection for patients’ health and quality of life.



5.3 Data-driven auxiliary decision-making analysis in the infectious diseases department

This article focuses on data-driven auxiliary decision-making analysis in the infectious diseases department and explores the application and trends of this emerging technology in the development of the infectious diseases department in the post-epidemic era through case studies and empirical analyses.

In the context of highly developed information technology, traditional decision-making analysis in the infectious diseases department is gradually developing toward a data-driven direction. Data-driven auxiliary decision-making analysis in the infectious diseases department will analyze information such as the transmission laws of pathogens and the disease dynamics of patients through big data technology, providing a more scientific and accurate basis for decision-making in the infectious diseases department (3, 18, 29).

Taking an infectious diseases department hospital as an example, through in-depth mining and analysis of the data of the infectious diseases department of this hospital, some valuable laws and trends have been discovered. Firstly, data analysis shows that the transmission of a specific pathogen has certain seasonal patterns, which is of great significance for hospital infection control. Secondly, by analyzing patients’ condition data and medication situations, some new treatment plans and strategies have been discovered, which play a positive role in improving treatment effects and reducing medical costs. In addition, the data also shows the flow trajectories and contact networks of the patient group, providing new ideas and methods for the prevention and control work of the infectious diseases department (30).

Data-driven auxiliary decision-making analysis in the infectious diseases department can not only improve medical quality and efficiency but also help hospitals better respond to sudden infectious disease events. After the outbreak of the pandemic, data analysis can timely discover the transmission laws and mutation situations of pathogens, providing important bases for formulating targeted prevention and control strategies. At the same time, through the analysis of the behavior trajectories and spatial distributions of the patient group, it is possible to better trace and manage close contacts, effectively curbing the spread of the epidemic.

To sum up, data-driven auxiliary decision-making analysis in the infectious diseases department is an emerging technology and trend in the development of the infectious diseases department in the post-epidemic era. Through case studies and empirical analyses, we can see the important role and great potential of this technology. In the future, with the continuous development of information technology and the continuous accumulation of medical data, data-driven auxiliary decision-making analysis in the infectious diseases department will be more deeply and widely applied in the field of the infectious diseases department, making greater contributions to the health cause of mankind.




6 Ethical implications of emerging technologies

The adoption of advanced technologies in infectious disease management necessitates a robust ethical framework to balance innovation with societal and regulatory considerations (2, 7, 18).


6.1 Data ownership and equity

Disputes over genomic data sovereignty, particularly among indigenous communities in regions like the Amazon Basin, highlight the need for equitable governance models. Frameworks such as the NIH Genomic Data Sharing Policy aim to ensure that communities contributing biological data receive fair benefits from research, yet challenges persist in achieving global consensus on data ownership and benefit-sharing mechanisms (10, 24).



6.2 AI Bias and transparency

AI algorithms trained on homogenous datasets may exhibit diagnostic biases, as evidenced by a 2022 study showing 18% higher false-negative rates in COVID-19 screening models for African populations due to limited genetic diversity in training data (18, 31). Tools like SHAP (SHapley Additive exPlanations) have become essential for auditing model decisions, enabling researchers to identify and rectify biased outputs. Transparency in AI decision-making is crucial to fostering trust among healthcare providers and patients alike.



6.3 CRISPR ethics and dual use

Gene-editing technologies such as CRISPR raise significant ethical concerns regarding unintended genetic modifications and potential dual-use risks. The WHO Governance Framework for Human Genome Editing (2023) advocates strict oversight of clinical trials involving heritable gene edits, emphasizing the need for public participation and scientific responsibility to prevent misuse and ensure ethical deployment (4, 7).




7 Comparative table highlighting novel contributions

The following table contextualizes the manuscript’s key technological advancements within the landscape of prior approaches, enhancing clarity on its scholarly contributions (Table 1).



TABLE 1 Comparative analysis of emerging technologies in infectious disease management.
[image: Table comparing prior approaches and novel insights in five technology themes: bioinformatics, AI-driven resource allocation, nanoparticle vaccines, blockchain in healthcare, and telemedicine. Innovations include real-time data integration, AI models for resource redistribution, nanotechnology for vaccine stability, decentralized blockchain systems for transparency, and AI-driven triage systems. Each theme lists prior methods and advancements, highlighting efficiency improvements and technological impacts.]



8 Conclusion

The COVID-19 pandemic has underscored the pivotal role of emerging technologies in transforming infectious disease management. From bioinformatics enabling real-time pathogen genomics to AI optimizing resource allocation, these innovations have demonstrated efficacy in addressing post-pandemic challenges. However, ethical considerations-including data sovereignty, AI bias mitigation, and CRISPR governance-remain imperative to ensure responsible and inclusive technological advancement.

Looking forward, interdisciplinary collaboration and global coordination are essential to harnessing the full potential of these technologies. By integrating novel tools with robust ethical frameworks, the infectious diseases department can build resilience, enhance diagnostic precision, and deliver patient-centered care in an era marked by evolving public health threats.
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region endinumberofidays T;TC) vaczﬁ::zéeigdpgggf per per hundred as of:
7cV) Date in P Date in July 1. 3 July 1.2022  July 1. 2023
2021 2022 2022‘,(:’(1) ( BCE” BCE.Z)
1 USA 2,155.384 Dec 31 2,708.533 Jun 18 169 67.33 69.47% 37.91 40.08%
2 Taiwan 208248 Dec 31 545749 Jun 22 173 81.52 87 72.89 106.4
3 Hong Kong 4,615.889 Dec 31 6,594.993 May 24 144 86.21 90.81 60.36 9491
4 India 481597 Dec 31 609.938 Jun 21 172 64.58 67.17 315 16.04
5 France 2,908.831 Dec 31 4,126.754 Jun 18 169 78.14 7844 58.86 70.34
6 Germany 1,108.669 Dec 26 1,574.021 Jun 12 168 76.04 76.24%° 68.6 77.72%°
7 Brazil 308.411 Dec 31 330912 March 11 70 7852 81.82'7 49.7 587"
8 South Korea 874.47 Dec 31 1,934578 Jun 15 166 85.48 85.64% 73.01 79.76'
9 Japan 224641 Dec 31 42937 Jun 22 173 82.6 83.42 64.04 141.722
10 Italy 2,365.578 Dec 31 3,795.998 Jun 22 173 8114 81.22 69.66 80.88
11 UK 5,845.841 Dec 31 7,480.121 May 19 139 74.36 75.1910 59.26 59.81°
12 Turkey 1,403.53 Dec 31 1,924.668 May 31 151 62218 62.31° 43.226 48.54"%
13 Mexico 95.052 Dec 31 122.879 Jun 18 169 6.7 64.19" 4165 44731
14 Peru 646.299 Dec 31 859.283 April 05 95 8144 8421 6141 90.41
15 Iran 477494 Dec 31 594.485 Jun 01 152 65.342 66.15% 31112 32272
16 Indonesia 155.199 Dec 31 217.363 March 21 80 61.18% 63.48%7 17.86% 24,9977
17 Canada 1,380.218 Dec 31 1,629.606 Jun 06 157 81.79 826 57.41 79.141%
18 South Africa 357.471 Dec 31 431.667 Jun 22 173 31.83 35.13% 579 7.36%
19 Egypt No data 109.415 May 01 33.6° 38.15% 5.03° 13.7124
20 Israel 3,637.259 Dec 31 5,573.137 Jun 22 173 65.09 6519 5645 61.03%!
21 Nigeria 17.916 Dec26 2474 Jun 22 178 9.6 31.94' 0544 5.63'¢
2 Australia 2,120241 Dec 31 2,830,525 Jun 22 173 82.7 82.7'% 62.19 75.6'5
23 New Zealand 1,087.221 Dec 31 1,416.09 Jun 23 174 79.34 80.66" 52,95 68.81'
24 Vietnam 765.759 Dec 30 880.538 Jun 20 172 81.677 87.55% 57.03 59.05%
25 European Union No data No data 72.56 72.86 52.15 62.09
26 Europe No data No data 65.26 6621 40.44 48.22
27 Africa No data No data 17.89 3136 21 64
28 Asia No data No data 70.16 7322 28.35 38.23
29 North America No data No data 63.72 65.7 37.23 419
30 South America No data No data 74.75 77.12 47.5 58.31
31 High income No data No data 73.18 74.3 51.83 66.37
countries
32 Upper middle No data No data 77.15 78.74 4555 49.97
income countries
33 Lower middle No data No data 53.28 59.36 9.17 1935
income countries
34 The world No data No data 60.07 64.66 26.58 3493
Figures corresponding to different days in 2022:
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27 Africa 605 0358 005689 0001425 0.00941 0.00398 0.0197 =
28 Asia 11021 2186 0.1613 0.08303 000146 0.00380 0.00543 =
29 North America 25282 3277 14811 03544 000586 001082 00129 -
30 South America 168.68 18.68 09360 01311 0.00555 0.00702 00197 =
31 High income countries 590.15 69.68 15920 04223 000270 0.00606 0.00682 =
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o o edian age A ated bers of co ed D-19 A ated be OVID ed dea
egio ea ERIE ases pe OVID-19 Data pe OVID-19 Da
oothote
4) A Decembe Decembe eptembe Decembe Decembe eptembe
0) o) 0 D D 0 D
1 USA 38.5 158,249.8 293,865.4 305,763.9 2,421.163 3,199.789 3,331.912
2 Taiwan 423 712.707 370,284.7 428,515.6 35575 638.377 795.2*
3 Hong Kong 45.6 1,689.041 350,605 389,150.1** 28.442 1,576.608 1,895.5%
4 India 287 24,583.31 31,526.41 31,751.74 339.465 374479 375.414
5 France 417 134,773 587,831.2 603,427.6 1,921.267 2,501.554 2,599.316
6 Germany 47.8 841,31.66 446,707.5 461,051.1 1,411.686 1,987.985 2,098.829
7 Brazil 332 103,401.9 168,602.6 175,183.5 2,874.028 3,221.972 3272712
8 South Korea 432 12,259.77 560,818.7 667,207.1 108.558 622.822 693.495
9 Japan 48.6 13,987.61 234,809.8 272,715.7 148.388 463.995 602.606
10 Ttaly 46.5 101,315.8 426,312.9 440,207.7 2,324.744 3,130.08 3,242.127
11 UK 40.6 199,110 358,390.2 366,026.1 2,619.105 3,201.28 3,396.691
12 Turkey 322 110,635.4 199,255.1 199,255.1 962.067 1,188.394 1,188.394
13 Mexico 29.3 31,644.64 57,030.53 60,217.33 2,382.841 2,599.908 2,623.915
14 Peru 29.1 67,181.25 130,816.2 132,711.8 5,949.676 6,407.655 6,504.19
15 Iran 317 69,934.03 85,386.89 85,993 1,485.84 1,633.891 1,652.796
16 Indonesia 311 15,472.59 24,391.22 24,730.83 523.025 582.981 587.721
17 Canada 41.8 54,674.47 116,834.2 122,158 779.054 1,268.284 1,382.081
18 South Africa 28.8 57,543.97 67,595.88 67,995.81 1,520.372 1,712.495 1,712.946
19 Egypt 24.1 3,466.327 4,644.856 4,649.271 195.756 223.461 223714
20 Israel 30.4 146,252.2 491,245.2 511,817.9 874.061 1,235.475 1,340.353
21 Nigeria 18.6 1,105.114 1,219.221 1,311.295 13.865 14.437 14.437
22 Australia 37.5 14,004.71 412,017.8 442,814.2 93.325 680.587 900.471
23 New Zealand 372 2,650.961 396,786 458,570.6 9.836 449.541 635259
24 Vietnam 319 17,632.27 117,379.7 118,378.2 329.922 439.835 440.039
25 European Union 44.4 119,091.4 397,673.6 408,494.6 2,033.132 2,668.518 2,763.03
26 Europe 42 116,033.4 325,338.4 334,708.4 2,102.787 2,700.244 2,788.427
27 Africa 18 6,904.119 9,111.662 9,201,963 160.421 181.186 181.545
28 Asia 31 17,928.47 58,153.69 63,664.54 266.155 325.065 345.988
29 North America 35 106,779.6 199,059.8 207,318.4 2,040.378 2,580.998 2,670.316
30 South America 31 91,280.98 152,849.9 157,558.3 2,730.093 3,071.714 3,104.744
31 High income No data 107,262 322,668.1 340,229.5 1,632.993 2,214.069 2,320.501
countries
32 Upper middle No data 33,103.88 89,499.82 96,734.09 871.032 1,016.661 1,055.513
income countries
33 Lower middle No data 19,114.67 28,098.46 28,385.07 345.868 387.735 390.133
income countries
34 The world 305 35792.14 91,468.7 96,645.07 686.398 842.509 872.575

*Values calculated with the use of Worldometers (see text footnotes 10, 11).

**Values calculated with the use of Worldometers (see text footnotes 12, 13).
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Variables Mean + SD
HR (heart rate) 80.05 % 1198
$p0; (blood oxygen saturation) 8646 £4.76
Body temperature (°C) 37.17£0.66
NEWS score 6.14+224
SAPSTI 235£614
U-score 59.49 £ 10.66

SD, standard deviation, *p < 0.05.

1.00

-0.24*
~0.10
010
0.06

-1

-0.24%

~0.64*
-012

0.28%

~0.10

~0.2¢4%

100

0.46*

-0.52¢

-0.22¢

NEWS
0.10
—0.64%
0.46%
1.00
-025

—0.25*

SAPS I
006
-0.12
-052
-025
100

-017

~0.11

0.28*

~0.22¢

~0.25%

-017

100





OPS/images/frai-07-1482141/frai-07-1482141-e088.jpg





OPS/images/frai-08-1561079/frai-08-1561079-t001.jpg
Parameter Value

Age (years) 63141
Sex (female) 10 (38.47%)
Sex (male) 16 (61.53%)
Weight (kg) 80441665
Length (cm) 166.59.09
BMI (kg/m?) 284865
Hypertension 22 (834%)
Diabetes mellitus 9(34%)
Ischemic heart disease 18 (69%)
Heart failure 11(42%)
Pulmonary embolism 11 (42%)
Pulmonary hypertension 26 (100%)
Malignant disease 3(11.5%)
Liver failure 2(7.6%)
Vascular disease 4(15.3%)
Days with symptoms at ICU admission 115 (5-27)
SAPSII 25(9-35)
NEWS. 7.34(3-10)

Data are presented as (mean  standard deviation), median (interquartile range) and
numbers (percentages). ICU: Intensive care unit. BMI, body mass index; SAPS I Simplified
Acute Physiology Score 1l; NEWS, National Early Warning Score.
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Category

Percentage

(%)

Rate your familiarity with Extremely 2 4.0

using information and familiar

communication technology »

(ICT) tools Very familiar 16 320
Moderately 23 46.0
familiar
Somewhat 7 14.0
familiar
Not familiar 2 4.0
atall

How frequently do youuse | Daily 38 76.0

digital devices (computers, )

smartphones, tablets) for Sometimes 8 160

work-related tasks in the At least once 5 40

public health sector? ik
Never 2: 4.0
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Morogoro 25 4 80 16
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Council Female% %

Distribution
of the

respondents
per council

Morogoro 25 52 48 50

MC

Dodoma 13 61 39 26

cc

Ilala CC 12 33 67 24
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Category = Group Count Percentage (%)
Sex Female 24 48.0
Male 26 52.0
Education Diploma 38 76.0
Bachelor 9 18.0
Certificate 3 6.0
Age group 18-30 6 12.0
31-40 23 46.0
41-50 11 220
51-60 10 20.0
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Importance RF

Importance SVC

p-values (logistic

regression)

General condition of the patient upon admission
Age (years)

Number of leukocytes (number/mm’)

Number of lymphocytes (number/mm’)
Number of platelets (number/mm’)

Urea (mg/dL)

Systolic blood pressure upon admission (mmHg)
Diastolic blood pressure upon admission (mmHg)
Heart rate upon admission (bpm/min)
Respiratory Rate UPON admission (breaths/min)
Oxygen saturation upon admission (%)

No pre-existing conditions

Hypertension

Diabetes mellitus

Obesity

Kidney failure

Fever

Dry cough

Headache

Weakness.

Anosmia

Gender

Signs of upper respiratory tract infection (URTI)
Dyspnea

Signs of pulmonary involvement

Constitutional symptoms

Previous pulmonary diseases

Hemoglobin (g/dL)

01158

0.0696

0.0324

0.0185

0.0388

0.0478

0.0435

0.0396

0.0302

0.0559

0.0621

0.0203

0.0247

0.0306

0.0086

0.0045

00221

00218

00201

00162

0.0103

00215

0.0239

01334

0.0214

0.0226

0.0070

0.0368

0.0298

0.0040

0.0009

0.0015

0.0037

0.0108

-0.0022

0.0013

0.0031

0.0027

0.0144

0.0002

~0.0006

0.0032

~0.0008

~0.0001

0.0017

~0.0009

0.0033

0.0004

0.0002

~0.0009

0.0034

0.0656

—0.0006

0.0002

~0.0007

~0.0005

The table displays features, their importance in Random Forest, importance in SVC, and p-values from logistic regression.

<005

0.1607

0.7348

03840

<005

<005

00365

0.4980

04154

0.7092

<005

0.4987

0.2366

0.1365

0.6146

0.6052

01207

00562

00757

03476

05427

0.4630

<005

<005

0.7351

0.7766

01377

0.7695
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Classifier Accuracy ~ Fl-score  Positive Negative  Sensitivity  Specificity

predicted predicted

value value
sve 0.79:+0.0014 0.54+0.0031 0.87£0.0036 0.78:+0.0016 040 +0.0031 0.97 +0.0008 0.79£0.0020
Nusve 0.79:+0.0015 0.56+0.0032 0.83+0.0037 0.79:+0.0018 0.4+ 0,0036 0,96 +0.0010 0.78:+0.0022
Random forest classifier ~ 0.80 +0.0014 0.58+0.0031 0.81£0.0039 0.79:+0.0017 046+ 0.0034 0.95+0.0011 0.91:+0.0014
Extra trees classifier 0.79+0.0014 0.57£0.0031 0.77£0.0039 0.79:+0.0017 047 £0.0035 0.94+0.0012 0.78:+0.0019
Ridge classifier CV. 0.80:+0.0015 0.63+0.0028 0.75+0.0037 0.82:+0.0017 0,56+ 0.0034 091400014 0.77:+0.0020
Ridge classifier 0.78:+0.0015 0.62+0.0028 0.69:+0.0038 0.82:£0.0017 0.57:+0.0033 0.88+0.0016 0.77:+0.0020

Linear discriminant
) 0.78:+0.0015 0.61 00027 0.67:+0.0036 082400017 0.58+0.0034 0.87+0.0017 0.77:+0.0020
analysis

Artificial neural network | 0.76 + 0.0016 0.45+0.0034 081 +0.0050 076+ 0.0018 0.33+0.0033 0.96 +0.0012 0.77£0.0018
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Average accuracy per subset

Classifier © D B

XGBoost classifier 74.62% 77.25% 77.27% 77.32% 77.63% 77.20% 7287%
Decision tree classifier 70.13% 70.13% 69.94% 70.19% 70.82% 71.44% 66.07%
Logistic regression 74.83% 7751% 78.06% 77.63% 77.65% 77.72% 75.02%
AdaBoost classifier 73.77% 77.22% 7587% 76.32% 76.30% 76.32% 7272%
Bagging clasifier 75.14% 77.33% 7821% 77.54% 77.84% 77.08% 7455%
Linear discriminant analysis 74.70% 77.90% 78.76% 78.16% 78.40% 78.38% 75.46%
Linear SVC. 74.80% 77.63% 7832% 77.68% 77.77% 77.34% 75.09%
sve 7630% 79.12% 79.90% 79.44% 80.12% 80.78% 77.27%
Passive aggressive classifier 67.48% 67.96% 7024% 7093% 69.42% 69.94% 67.05%
NusvC 75.07% 78.84% 79.52% 79.09% 79.75% 80.14% 76.35%
Nearest centroid 68.04% 70.99% 7195% 71.04% 70.58% 71.54% 69.78%
LGBM classifier 74.49% 77.33% 77.23% 78.26% 78.40% 77.46% 7336%
Ridge classifier 74.68% 78.45% 78.84% 78.32% 7851% 78.74% 75.52%
Ridge classifier CV 74.75% 78.42% 78.84% 7835% 7877% 79.04% 7575%
Random forest classifier 76.20% 78.97% 80.18% 79.30% 8033% 80.10% 76.74%
Gaussian NB 70.03% 7170% 7294% 71.00% 71.56% 71.78% 69.52%
Calibrated classifier CV 74.41% 77.88% 78.08% 76.67% 77.68% 76.90% 75.65%
Bernoulli NB 73.07% 7436% 76.16% 75.68% 7484% 76.10% 7264%
Extra trees classifier 74.83% 77.72% 7861% 78.49% 79.51% 79.56% 75.60%
Quadratic discriminant analysis 71.46% 7251% 7331% 72.04% 70.96% 68.82% 70.29%
Extra tree classifier 65.07% 69.19% 70.56% 68.60% 67.40% 67.74% 6591%
Label spreading 67.75% 70.66% 74.06% 73.26% 7335% 74.24% 67.69%
Label propagation 67.72% 70.70% 7403% 73.26% 7335% 74.24% 67.68%
KNeighbors classifier 73.00% 76.34% 77.65% 75.82% 75.70% 75.80% 73.19%
Perceptron 68.89% 70.13% 7135% 70.82% 69.85% 70.80% 67.05%
SGD classifier 68.28% 7154% 72.08% 72.18% 71.98% 7138% 68.38%
Dummy dlassifier 68.68% 70.76% 7L16% 69820 7130% 69.56% 68320

Subsets A-F address missing data through subject elimination, while subset G uses mean imputation.
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Non seve Total
Mean 5560 6182 5757
Median 55 53 57
Standard deviation 1535 1654 15.98

Blank/unfilled 1 0 1
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