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Biomarkers for immune Checkpoint 
inhibitors in Melanoma
Shigehisa Kitano1,2*, Takayuki Nakayama1 and Makiko Yamashita1

1 Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan, 2 Division of Cancer 
Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan

Immune checkpoint inhibitors have now become a standard therapy for malignant 
melanoma. However, as immunotherapies are effective in only a limited number of 
patients, biomarker development remains one of the most important clinical challenges. 
Biomarkers predicting clinical benefit facilitate appropriate selection of individualized 
treatments for patients and maximize clinical benefits. Many biomarkers derived from 
tumors and peripheral blood components have recently been reported, mainly in retro-
spective settings. This review summarizes the recent findings of biomarker studies for 
predicting the clinical benefits of immunotherapies in melanoma patients. Taking into 
account the complex interactions between the immune system and various cancers,  
it would be difficult for only one biomarker to predict clinical benefits in all patients. Many 
efforts to discover candidate biomarkers are currently ongoing. In the future, verification, 
by means of a prospective study, may allow some of these candidates to be combined 
into a scoring system based on bioinformatics technology.

Keywords: biomarker, immune checkpoint inhibitor, malignant melanoma, cytotoxic T-lymphocyte-associated 
antigen 4, programmed death-1

iNTRODUCTiON

In recent years, immune checkpoint inhibitors have increasingly been applied to the clinical develop-
ment of cancer immunotherapy. For malignant melanoma, ipilimumab, a humanized monoclonal 
antibody (mAb) that blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and nivolumab, 
as well as pembrolizumab, a humanized mAb that blocks programmed death-1 (PD-1) on primed 
T  cells, have been approved and are now used as standard therapies. Several clinical trials have 
investigated new agents, alone and in combination, for use in the treatment of advanced malignant 
melanoma. However, immunotherapies are effective in only a limited number of patients and severe 
immune-related adverse events (irAEs) develop in some patients. Biomarkers predicting clinical 
benefit support appropriate the selection of individualized treatments for patients and maximize 
clinical benefits. Thus, one of the most important tasks for advancing this form of therapy is to iden-
tify “baseline (pretreatment)” biomarkers predicting responses or toxicities. In general, biomarkers 
are mainly divided into two functional categories, “prognostic” and “predictive.” A prognostic 
biomarker can be defined based on the effects of patient or tumor biology on the patient’s clinical 
outcome. This includes patients at high risk for disease relapse who may thus derive benefit from 
earlier treatments. On the other hand, a predictive biomarker is defined by the effects of treatment, 
including tumor response and improvements in overall survival (OS), disease-free survival (DFS), 
and progression-free survival (PFS). Many biomarker candidates have been identified, to date, in 
retrospective settings. This review summarizes recent findings of biomarker studies designed to 
identify means of predicting the clinical benefits of immunotherapies in melanoma patients, focus-
ing on three categories: tumor tissue, peripheral blood, and others (Table 1).
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TaBle 1 | Biomarkers for metastatic melanoma patients treated with immune 
checkpoint inhibitor therapy.

Tumor (microenvironment) Reference

Immunohistochemistry (IHC)
Programmed death-ligand 1 (PD-L1) expression on tumor cells (1–4)
PD-L1 expression on immune cells (5–7)
Programmed death-1 expression on T cells (25)
Infiltration of CD8+ cells (37–41)
Infiltration of CD4+ cells (40)
Regulatory T cells (Tregs) (29, 30)
Myeloid-derived suppressor cells (MDSC) (31–35)
Tumor-associated macrophages (M2) (36)
Gene profiling (expression/mutation/amplification)
Tumor mutation burden (9–14)
Number of somatic mutations (non-synonymous mutations) (10, 11, 15–19)
Activation of IFN-γ signaling (21, 22)
Amplification of WNT/β-catenine signaling (23)
Janus kinase (JAK) 1/JAK2 loss-of-function mutations (25, 26)

Peripheral blood

Number of lymphocytes (42, 43)
Number of Tregs (38, 44, 45)
Number of MDSCs (46–50)
Number of proliferating CD8+ T cells (52–57)
Number of memory CD4+ T cells (58–60)
Concentrations of cytokines (e.g., IL-6, IL-8, IL-10, and TGF-β) (62–64)
Concentration of VEGF (66)
PD-L1 expression on circulating tumor cells (8)
Soluble PD-L1 (67)

Others

Microbiome (68–70)
Fatty acids (71)
Vitiligo and rash (72–75)
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treated with anti-PD-1 antibody (nivolumab) and anti-CTLA-
4-antibody (ipilimumab), there was a correlation with a good 
response in non-small lung cancer patients treated with these 
drugs (6, 7). On the other hand, Schott et al. reported that PD-L1 
expression on “circulating” tumor cells might also be a potential 
biomarker (8). They suggested circulating tumor cells to possibly 
be precursors of metastatic disease, with PD-L1 expression allow-
ing stratification according to the anticipated response to therapy. 
Further study is needed to determine the clinical significance of 
PD-LI expression.

Genes: Mutation-Burden and Gene-
expression
Melanoma is characterized by having one of the highest muta-
tion burdens of any cancer (9, 10). These somatic mutations gene-
rate immunogenic-neoantigens recognized as tumor-antigens, 
possibly triggering effective anti-tumor immune responses 
(11–13). Genomic analysis revealed that a high mutational 
load at baseline may predict better survival but not treatment 
responses (13), and the mutation burden after PD-1 therapy was 
reportedly decreased in melanoma patients who responded to 
treatment (14).

Genes harboring significant mutations included BRAF, 
CDKN2A, NRAS, PTEN, and TP53 in cutaneous melanoma, 
BRAF, NRAS, NF1, and KIT in acral melanoma (hands and 
feet), and SF3B1 in mucosal melanoma (internal body surfaces) 
(15–17). The BRAF mutation was the most common, being 
detected in approximately half of metastatic melanoma patients.  
In the current treatment of melanoma, only BRAF V600 mutations 
are regarded as being molecular markers applicable to treatment 
decision-making strategies (10, 18). Several studies of CTLA-4 
and PD-1 therapy have revealed that BRAF V600E mutations do 
not correlate with either the response to CTLA-4 therapy or the 
resulting OS, whereas the correlation with the response of melano-
mas to PD-1 therapy was significant (11, 19). On the other hand, 
inactivation of CDKN2A and/or PTEN is regarded as an important 
mechanism underlying resistance and/or durable responses to 
BRAF-inhibitor-based therapy, but is not currently taken into 
consideration in the clinical decision-making process (10).

Previous sequence studies, such as The Cancer Genome Atlas  
study, used exome and low-pass whole-genome sequencing (WGS). 
In 2017, Hayward et  al. reported the first large, high-coverage  
WGS study of melanomas (cutaneous, acral, and mucosal sub-
types), including analysis of the non-coding region. Their report 
showed that the number of mutations in the non-coding region  
was detected as a number equivalent to that in the coding region,  
and that the most common mutations in the non-coding region 
were in the TERT promoter upstream from the initiation codon 
(69% of all melanomas and 86% of cutaneous melanomas) (17). 
Moreover, Ishida et  al. preliminarily reported a correlation bet-
ween HLA-A*26 alleles and the response to anti-PD-1 (nivolumab) 
therapy in Japanese patients with metastatic melanoma (20). 
HLA accounts for some of the individual differences in antigen- 
specific immune responses, and might provide useful informa-
tion for devising individualized immunotherapeutic regimens. 
The associations of these new findings with clinical responses to 
immunotherapies merit further investigation.

BiOMaRKeRS iN TUMOR TiSSUe

PD-l1 expression on Tumor Cells
Programmed death-ligand 1 (PD-L1) expression has been inves-
tigated as a potential biomarker for PD-1 or the PD-L1 inhibitor. 
In phase I trials, PD-L1 expression on tumor cells correlated with 
the response to anti-PD-1 antibody (1). Given these promis-
ing results, several companies developed PD-L1 companion 
diagnostic tests for anti-PD-1/PD-L1 antibody and patients with 
PD-L1-positive tumors were considered to be good candidates 
for anti-PD-1/PD-L1 antibody treatment. In fact, the U.S. Food 
and Drug Administration has approved pembrolizumab, an anti-
PD-1 antibody, for the treatment of PD-L1-positive non-small 
cell lung cancer (NSCLC) and gastric cancer. However, there are 
several problems while using PD-L1 expression as a biomarker 
for immunotherapy. First, PD-L1 expression levels show hetero-
geneity within tumors (2). Second, PD-L1 is a dynamic marker 
that can be affected by treatment and local inflammation (3). 
Third, the optimal threshold level of PD-L1 expression remains 
uncertain (4). In fact, some PD-L1 negative patients also derive 
benefit from treatment with an anti-PD-1/PD-L1 inhibitor.

Interestingly, PD-L1 expression on tumor infiltrating immune 
cells may be more predictive of responsiveness to anti-PD-1 
antibody than the level of PD-L1 expression by the tumor (5). 
Furthermore, while PD-L1 expression on tumor cells did not 
tend to be related to the response rate in melanoma patients 
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On the other hand, there have been several investigations of 
the gene expressions on tumor tissues, for their value in predict-
ing responses to immune checkpoint inhibitors. Immunohis to-
chemistry and gene profiling assays have suggested the presence of 
a “T-cell-inflamed tumor microenvironment,” with an abundance 
of chemokines and an IFN-γ signature, to correlate with the 
clinical efficacy of immune checkpoint inhibitors in melanoma 
patients (21, 22). Numerous studies have revealed the molecular 
mechanisms underlying lack of T-cell infiltration and resistance of 
melanomas to immune checkpoint therapy, such as the melanoma- 
intrinsic active WNT/β-catenin-signaling pathway (23) and 
enrichment for mutations in PTEN (24), loss-of-function muta-
tions in Janus kinase (JAK1)/JAK2 (which are involved in IFNγ 
signaling), and β2 microglobulin (an MHC class I subunit) (25, 26).

Tumor infiltrating lymphocytes (Tils)
Tumor infiltrating lymphocytes, such as T  cells, macrophages, 
and various types of immune suppressive cells, are considered 
to be the most important players in the regulation of anti-
tumor immune responses. Several studies have demonstrated 
an increase in the TIL number to correlate with good clinical 
responses and a higher survival rate of patients with melanoma 
and various other cancers (27, 28).

In melanoma patients, immune suppressive cells, such as 
regulatory T cells (Tregs) (29, 30), monocytic myeloid-derived 
suppressor cells (m-MDSCs) (31–35), and tumor-associated 
(activated) macrophages (TAM; M2) (36), were reportedly 
increased in number and thereby inhibited effector T cells, result-
ing in an increase in tumor growth.

In contrast, a number of investigators have reported the quan-
tity of infiltrating CD8+CD45RO+ effector memory T cells to be 
clearly associated with longer DFS and OS, for many cancer types 
including melanoma (37–39). Recently, Wei et al. comprehensively 
profiled the effects of CTLA-4/PD-1-targeted immunotherapy on 
tumor infiltrating immune cells. Their study revealed that PD-1 
blockade and CTLA-4 blockade both led to a subset of exhausted-
like CD8+ T  cells (CD45RO+PD-1+T-bet+EOMES+). They also 
showed that CTLA-4 blockade induced the expansion of an ICOS+ 
Th1-like CD4 effector population (CD45RO+PD-1loTBET+ and 
CD69+) in melanoma patients. These observations suggested that 
these two immunotherapies target specific subsets of exhausted-
like CD8+ T  cells, but drive different cellular mechanisms to 
induce tumor rejection (40). Moreover, Canale et  al. described 
high expression of CD39 on CD8+ infiltrating T  cells as being 
increased in melanoma lesions. CD39 is the immunosuppres-
sive enzyme termed ATP ectonucleotidase, and CD39highCD8+  
T  cells reportedly exhibit features of cellular exhaustion, such 
as reduced production of tumor necrosis factor and interleukin  
(IL)-2, as well as expressions of co-inhibitory receptors (41).

BiOMaRKeRS iN PeRiFeRal BlOOD

Peripheral Blood Mononuclear Cells 
(PBMCs)
Blood biomarkers have most frequently been analyzed for cor-
relations with clinical responses to immunotherapies. Baseline 

and/or post-treatment changes in absolute counts of white blood 
cells, lymphocytes, eosinophils, neutrophils, and monocytes, as 
well as ratios of neutrophils or monocytes to lymphocytes may 
both be promising and routinely available blood markers that 
have shown associations with responses to immune checkpoint 
inhibitors (11, 42, 43).

Recently, several studies have raised the possibility of cir-
culating immune cells as predictive biomarkers for immune 
checkpoint inhibitors. The frequency of circulating Tregs is 
reportedly associated with disease progression and poor patient 
survival for many carcinomas treated with immunotherapy 
(38, 44, 45). Numerous studies have found that high levels of 
circulating m-MDSCs in various forms of cancer, including 
melanoma, correlate with poor survival (46–48). In patients 
treated with anti-PD-1 antibody, m-MDSCs were reported to be 
a blood cytology marker showing significant correlations with 
all outcome parameters (49, 50). However, human MDSCs have 
yet to be clearly characterized both biologically and phenotypi-
cally. A very recent study demonstrated that the frequency of 
CD14+CD16-HLA-DRhi monocytes predicts both PFS and OS of 
melanoma patients treated with anti-PD-1 antibody, based on 
analysis employing high-dimensional single-cell mass cytom-
etry (51). This CD14+ population including MDSCs might be 
useful as a predictive and/or prognostic biomarker for cancer 
patients receiving immunotherapy, but further investigation is 
needed to clarify the phenotype and biological characteristics of 
this diverse population of cells.

On the other hand, several studies examining circulating 
T  cells have shown the involvement of CD8+ T  cells, such as 
the proliferating (Ki67+) CD8+ effector-like T cells, in NSCLC 
patients receiving PD-1-therapy (52), and neoantigen-specific 
circulating CD8+ T  cells in melanoma (53, 54). The latter are 
CD8+ T cells expressing PD-1. In addition, two complementary 
reports showed that CD28, a member of the same family as PD-1 
(including CTLA-4 and ICOS), expressed on CD8+ T cells is a 
key molecule in PD-1-targeted therapy (55). Hui et al. showed 
that “CD28 is the primary target of PD-1 signaling,” using a 
cell-free membrane reconstitution system. Their report revealed 
that PD-1 was phosphorylated in response to PD-L1 ligation, 
thereby preferentially inducing dephosphorylation of CD28 
(but not the T cell receptor), resulting in the inhibition of T cell 
proliferation (56). On the other hand, Kamphorst et al. found 
that, in lung cancer patients, proliferating Ki67+PD-1+CD8+ 
T  cells were increased in peripheral blood, and subsequently 
activated (CD38+, HLA-DR+) and mostly expressed CD28 
(57), implying that CD28 signaling is associated with rescue 
of the exhausted CD8+ T  cells in PD-1 targeted therapies. 
These findings are reasonable and it is interesting that CD28, 
belonging to the same family as PD-1, is a key molecule in 
PD-1-targeted therapy, although its applicability as a predictive/
prognostic biomarker in melanoma patients is as yet unclear. 
Moreover, whether other family members, including CTLA-4 
and ICOS, have similar features in immune checkpoint therapy, 
remains unknown. Elucidating these issues might reveal novel 
useful biomarkers for use alone and/or in combination with 
PD-1-targeted therapy. Another interesting, and potentially 
important, finding of these studies is that proliferating CD8+ 
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effector-like T cells were reportedly increased following PD-1-
targeted therapy.

Several recent studies, focusing on circulating CD4+ T cells, 
found that increases in central memory CD4+ T cells (CD27+, 
FAS−, CD45RA−, and CCR7+) (58), and IL-9-producing CD4+  
T helper (Th9) cells (59), correlated with good clinical responses 
of melanoma patients to anti-PD-1 therapy. Moreover, in lung 
cancer patients treated with nivolumab, the frequencies of 
CD62LlowCD4+ T  cells and Tregs (CD25+Foxp3+CD4+) in pre-
treatment PBMC were reported to correlate significantly with 
clinical responses (60). Their ASCO presentation outlined the 
major differences in pre-existing immunity, among patients 
showing a partial response, stable disease, or progressive disease, 
in response to anti-PD-1 Ab, as reflected by the status of CD4+ 
T cells, i.e., the balance between primed effector and Tregs. These 
recent reports raised the possibility that, in peripheral blood, not 
only T cell exhaustion but also activation of effector CD8+ T cells 
and increases in memory T cells appear to be highly important, 
and not only phenotyping markers but also functional molecules 
can serve important roles as prognostic and/or predictive factors 
for immune checkpoint inhibitors. Although peripheral blood 
analysis may provide valuable insights into the responses of can-
cer patients to immune checkpoint inhibitors, more investigation 
is needed before these biomarkers can be applied in clinical 
settings.

OTHeRS

Soluble Factors (Serum/Circulating 
Factors)
Lactate dehydrogenase was frequently investigated in previ-
ous studies and showed significant correlations with OS and 
PFS, whereas there were no correlations with responses to 
treatments (61). Recently, several studies have revealed that 
serum cytokine levels to correlate with responses to immune 
checkpoint inhibitors. Sanmamed et  al. showed serum IL-8 
levels to be highly correlated with tumor burden changes in 
metastatic melanoma and NSCLC patients during treatment 
with anti-PD-1/anti-CTLA-4 therapy (62, 63), and Yamazaki 
et al. reported that pretreatment serum IFN-γ, IL-6, and IL-10 
levels were significantly higher in those with tumor progression 
among patients with advanced melanoma given nivolumab 
(64). In addition, in patients with metastatic melanoma receiv-
ing nivolumab, the activity of soluble CD73, which is an enzyme 
that hydrolyzes extracellular AMP to adenosine, in blood was 
shown to be significantly associated with clinical outcomes (65). 
Moreover, Frankhauser et  al., studying metastatic melanoma 
patients, reported gene expression of vascular endothelial 
growth factor-C (VEGF-C) to correlate markedly with both 
CCL21 and T  cell inflammation, and that serum VEGF-C 
concentrations were associated with both T  cell activation/
expansion and clinical responses to checkpoint blockade (66).

Soluble PD-l1 (sPD-l1)
Pretreatment sPD-L1 levels reportedly correlate with progression 
of advanced melanoma treated with anti-CTLA-4 or anti-PD-1 

antibody. Although changes in circulating sPD-L1 in the early 
phase after starting treatment did not distinguish responders from 
non-responders, patients who had increased circulating sPD-L1 
after 5  months of treatment tended to show partial responses 
(67). The biology of sPD-L1 remains unclear and merits further 
research.

Microbiome
A vast number of microbes colonize the human body. This 
colonization is associated with many diseases, including various 
malignancies. During the past decade, the advent of metagen-
omic sequencing that combines next-generation DNA sequenc-
ing technologies with computational analyses has allowed us to 
analyze the relationships between the microbiome and various 
cancers. Recent studies have suggested that the gut microbiome 
may affect the efficacy of immune checkpoint inhibitors and, 
consequently, that changing the gut microbiome of a mouse or 
even a human patient might make tumors more responsive to 
immune checkpoint inhibitors. This possibility was first evalu-
ated using preclinical models. Vétizou et  al. showed that the 
efficacy of anti-CTLA-4 therapy was diminished in a germ-free 
mouse model. In addition, the use of broad-spectrum antibio-
tics to eliminate gut microbiota altered the anti-tumor effect of 
anti-CTLA-4 therapy (68). Sivan et al. reported that Bifidobacte­
rium counts decreased in parallel with the anti-tumor effects 
of anti-PD-L1 therapy in a mouse model (69). Furthermore, 
Gopalakrishnan et al. indicated that anti-PD-1 immunotherapy 
in melanoma patients may be modulated by the gut microbiome. 
These researchers reported significantly higher alpha diversity 
and a relative abundance of Ruminococcaceae bacteria in the gut 
microbiome of responders (70). These findings indicated that 
specific organisms comprising the gut microbiome enhanced 
anti-tumor responses in patients treated with immune check-
point inhibitors. Although the gut microbiome is a potential 
predictive marker of immunotherapy, a larger prospective study 
is needed to confirm these results.

Fatty acids
Kim et al. investigated cellular metabolome and lipidome altera-
tions related to melanoma metastasis. Their analysis showed a 
progressive increase in phosphatidylinositol species with satu-
rated and monounsaturated fatty acyl chains, as the metastatic 
potential of the melanoma cells rose, highlighting these lipids  
as possible biomarkers (71).

vitiligo and Rash
Immune checkpoint inhibitors have a rather unique adverse 
event profile, generally described as irAEs, which are most com-
monly observed in the skin, the gastrointestinal tract, the lungs, 
the liver, endocrine system, and other organs. Cutaneous irAEs 
are much more common adverse events in patients with mela-
noma than in those with other solid tumors. Although vitiligo 
is attributed to an autoantibody to melanocytes, the etiology of 
vitiligo is not understood in detail. Vitiligo occurrence has long 
been speculated to be related to tumor shrinkage in melanoma 
patients (72). Vitiligo develops in 13–26% of patients treated 
with nivolumab (73, 74), though grade III/IV disease is rare. 
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Recent studies have shown vitiligo and rash to be associated 
with a significant OS improvement in metastatic melanoma 
patients treated with immune checkpoint inhibitors (73–75). 
Furthermore, Nakamura et al. suggested that the occurrence of 
vitiligo might not be regarded as an early marker of good clini-
cal response because the mean time to vitiligo occurrence was 
approximately 5 months after starting nivolumab (73). The onset 
times of vitiligo vary considerably depending on the type of drug 
administered and patient features. Thus, when we use cutane-
ous irAEs as a biomarker for immune checkpoint inhibitors, we 
should take into consideration the characteristics of each drug.

CONClUSiON

Numerous candidate biomarkers are currently the focus of 
research, based mainly on retrospective analyses. Most notably, 
tumor mutation burden, intratumoral or immune cell expres-
sions of PD-L1, and CD8+ T  cell infiltration into the tumor 
have been documented in several cohorts. For example, not 
only melanoma but also lung carcinoma, one of the carcinomas 
which also has a high mutation burden, shows good clinical 
responses to PD-1/PD-L1 therapy. In lung carcinoma, mutation 
burden, TIL accumulation, and/or PD-L1 expression on tumor 
cells correlated with good clinical responses. However, renal 
cell carcinoma is also reportedly responsive to PD-1 therapy, 

despite having a low mutation burden, while TIL accumulation 
and PD-L1 expression did not correlate with treatment effective-
ness. These observations suggest that these factors are not always 
applicable to predicting clinical benefits. Taking into account the 
complex interactions between the immune system and malig-
nancies via cell surface molecules, such as immune checkpoint 
molecules, humoral factors, including proteins, cytokines, and 
so on, it is not unreasonable to speculate that a single biomarker 
would not allow clinical benefits to be predicted in all patients.  
In the near future, by applying bioinformatics technology, sev-
eral biomarkers might be combined to produce a useful scoring 
system, depending on the type of cancer, the stage, individual 
treatments, and the timing of intervention. Recent advance-
ments in assay technology, such as mass cytometry (CyTOF), 
multicolor IHC, multiplex gene analyzer, and so on (Figure 1), 
have the potential to provide an abundance of biological and/
or phenotypical observations in a range of environments. Now 
is the time to discover the candidate biomarkers which might 
comprise such a future scoring system. Finally, needless to say, 
a prospective study on a large patient population is essential.

aUTHOR CONTRiBUTiONS

SK: conception/design of the manuscript. SK, TN, and MY: writ-
ing of the manuscript.

FiGURe 1 | Various assay systems for identifying biomarkers. Several biomarkers derived from the tumor microenvironment, peripheral blood biology, and other 
factors have been proposed as distinct biomarkers of responses to immune checkpoint blockade therapy. Recently, there have been innovative advancements  
in assay technology that have made it possible to comprehensively profile the biology and phenotype of the tumor-microenvironment, peripheral blood, and other 
factors. It would be very difficult, however, for a single biomarker to predict clinical responses and/or serve as a patient selection criterion, though multifactorial 
biomarkers including these and other novel findings might have great value for predicting clinical responses and/or patient prognosis.
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New Therapies and immunological 
Findings in Cutaneous T-Cell 
Lymphoma
Kazuyasu Fujii*

Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan

Primary cutaneous lymphomas comprise a group of lymphatic malignancies that occur 
primarily in the skin. They represent the second most common form of extranodal 
non-Hodgkin’s lymphoma and are characterized by heterogeneous clinical, histological, 
immunological, and molecular features. The most common type is mycosis fungoides 
and its leukemic variant, Sézary syndrome. Both diseases are considered T-helper cell 
type 2 (Th2) diseases. Not only the tumor cells but also the tumor microenvironment can 
promote Th2 differentiation, which is beneficial for the tumor cells because a Th1 environ-
ment enhances antitumor immune responses. This Th2-dominant milieu also underlies 
the infectious susceptibility of the patients. Many components, such as tumor-associated 
macrophages, cancer-associated fibroblasts, and dendritic cells, as well as humoral 
factors, such as chemokines and cytokines, establish the tumor microenvironment 
and can modify tumor cell migration and proliferation. Multiagent chemotherapy often 
induces immunosuppression, resulting in an increased risk of serious infection and poor 
tolerance. Therefore, overtreatment should be avoided for these types of lymphomas. 
Interferons have been shown to increase the time to next treatment to a greater degree 
than has chemotherapy. The pathogenesis and prognosis of cutaneous T-cell lymphoma 
(CTCL) differ markedly among the subtypes. In some aggressive subtypes of CTCLs, 
such as primary cutaneous gamma/delta T-cell lymphoma and primary cutaneous 
CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma, hematopoietic stem cell 
transplantation should be considered, whereas overtreatment should be avoided with 
other, favorable subtypes. Therefore, a solid understanding of the pathogenesis and 
immunological background of cutaneous lymphoma is required to better treat patients 
who are inflicted with this disease. This review summarizes the current knowledge in the 
field to attempt to achieve this objective.

Keywords: cutaneous T-cell lymphoma, mycosis fungoides, Sézary syndrome, primary cutaneous CD30+ T-cell 
lymphoproliferative disorders, adult T-cell leukemia/lymphoma

OveRview OF CUTANeOUS T-CeLL LYMPHOMAS (CTCLs)

Non-Hodgkin lymphomas can occur at extranodal sites in approximately 27% of cases, with 
the gastrointestinal tract and skin being the first and second most common sites of extranodal 
involvement (1). Most nodal non-Hodgkin lymphomas are B-cell derived, which is in contrast to 
the approximately 75–85% of primary cutaneous lymphomas that are T-cell derived (2–6). The 
incidence of CTCLs has been increasing (7); consequently, 4–8 people per million currently suf-
fer from these cancers (8, 9). CTCL represents a series of skin-based neoplasms of T-cell origin, 
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FigURe 1 | Clinical findings of mycosis fungoides/Sézary syndrome.  
(A) Patches, (B) plaques, (C) and nodules on the plaque. Written informed 
consent was obtained from each patient.

TABLe 1 | List of primary CTCLs.

Study group Frequency, % Disease-specific

DACLg2 SeeR165 JSCS6
5-year survival2, %

Mycosis fungoides 61.5 54.1 51.7 88
Sézary syndrome 3.5 1.2 2.3 24
Primary cutaneous CD30+ T-cell lymphoproliferative disorders 26.0 14.4 14.3

Lymphomatoid papulosis 16.1 4.5 100
Primary cutaneous anaplastic large-cell lymphoma 9.9 9.4 95

Adult T-cell leukemia/lymphomaa 0.1 20.0
Subcutaneous panniculitis-like T-cell lymphoma 1.2 0.8 2.3 82
Primary cutaneous gamma/delta T-cell lymphoma 0.9 0.3 NR
Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorderb 2.7 1.7 75
Hydroa vacciniforme-like lymphoproliferative disorderb

Primary cutaneous acral CD8+ T-cell lymphomab

Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma 1.0 0.4 18
Peripheral T-cell lymphoma, NOSa 3.2 29.4 6.9 16

Total no. of CTCL 1,469 2,750 1,451

NR, not reached; CTCL, cutaneous T-cell lymphoma.
aA portion of these diseases is considered as primary CTCL.
bProvisional entity in World Health Organization classification (2016).
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predominantly comprised of peripheral CD4+ T-cells. There are 
12 distinct CTCL subtypes (Table  1), with mycosis fungoides 
(MF) being the most common (10). Primary cutaneous CD30+ 
T-cell lymphoproliferative disorders are the second most com-
mon, except in some countries in the Pacific where adult T-cell 
leukemia/lymphoma (ATL) ranks second (6, 11).

MF/SÉZARY SYNDROMe (SS)

Mycosis fungoides and SS constitute the most common types of 
primary CTCLs. MF is characterized by erythematous patches, 
plaques, or tumors on the skin (Figure 1), with the involvement 
of lymph nodes, blood, and viscera also possible. MF can mimic 
benign inflammatory skin disorders, such as atopic dermatitis or 
psoriasis; thus, it is not unusual for MF to remain undiagnosed 
for years. Although MF is typically an indolent disorder, the 
disease may progress toward or exhibit de novo more advanced 
forms including tumors and erythroderma (>80% of the body 
surface area showing patches/plaques without overt leukemia). 
This can lead to lymph node or organ involvement, accompanied 
by increased morbidity and mortality. Patients are classified as 
having either early-stage (patches/plaques) or advanced-stage 
(tumors, erythroderma, lymph node, and/or visceral involve-
ment) (12, 13). SS is the leukemic form of the disease, in which 
erythroderma is accompanied by measurable levels of malignant 
lymphocytes with cerebriform nuclei [i.e., Sézary cells (SC)] in 
the blood. Typical SC counts would be ≥1,000/μL, with a CD4/
CD8 ratio of ≥10 and a loss of one or more T-cell antigens 
(CD4+CD7− > 30% or CD4+CD26− > 40%). Furthermore, CD30 
expression is associated with a significantly reduced disease- 
specific survival and is often associated with histologically detect-
able large cell transformation, hallmarking a more aggressive 
clinical course (14).

In the past, SS has been considered a leukemic and aggressive 
variant of MF. However, a recent study determined that MF and 
SS arose from distinct T-cell subsets: SS from central memory 

T-cells and MF from skin-resident effector memory T-cells (15). 
CD158k/killer cell immunoglobulin-like receptor 3DL2 repre-
sents a specific marker for the evaluation of SC (16); in particular, 
CD4+ CD158k+ lymphocytes in blood from patients with SS cor-
respond to the malignant clonal cell population (17). In addition, 
immunohistological finding of CD158k in affected skin is reported 
to distinguish SS from MF (18). Clonal malignant T-cells from 
the blood of patients with SS coexpress the lymph node homing 
molecules C–C motif chemokine receptor 7 (CCR7)/CD197 and 
CD62L/l-selectin, as well as the CD27 differentiation marker, a 
characteristic of central memory T-cells. This is consistent with the 
clinical presentation of peripheral blood disease, lymphadenopa-
thy, and diffuse erythroderma of the skin. In contrast, T-cells from 
MF skin lesions do not express CCR7, l-selectin, and CD27, but 
strongly express CCR4 and cutaneous lymphocyte antigen (CLA)/
CD162, characteristics of skin-resident effector memory T-cells. 
This difference in the putative origins between SS (central memory 
T-cell-derived) and MF (tissue-resident memory-derived) can 
explain their distinct clinical behaviors; central memory T-cells 
are long-lived, apoptosis-resistant cells that can be found in the 
peripheral blood, lymph nodes, and skin, whereas skin-resident 
memory T-cells remain in the skin and do not enter the general 

13

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


Fujii Cutaneous T-Cell Lymphoma

Frontiers in Oncology | www.frontiersin.org June 2018 | Volume 8 | Article 198

circulation. That MF and SS are derived from different T-cell 
precursors is also supported by comparative genomic hybridiza-
tion and gene-expression profiling, demonstrating that the CTCL 
genotypes are distinct (19, 20). Overall, MF is characterized by 
gains on chromosomes 1 and 7 and losses on chromosome 9, 
whereas SS is characterized by gains on chromosomes 8 and 17 
and losses on chromosome 10. A multiplatform genomic analysis 
of patients with SS detected (1) activating CCR4 and caspase 
recruitment domain-containing protein 11 (CARD11) mutations 
in nearly one-third of patients; (2) deletion of zinc finger E-box 
binding homeobox 1 (ZEB1), encoding a transcriptional repres-
sor essential for T-cell differentiation, in over one-half of patients; 
and (3) overexpression of interleukin 32 (IL-32) and interleukin-2 
receptor subunit gamma in nearly all patients (21).

ROLeS OF CHeMOKiNeS iN 
DeveLOPMeNT OF SKiN PATHOLOgY

Malignant T-cells are suggested exhibit phenotypes of mature 
CD4+ memory T-cells, along with type 2 or 17 (Th2 or Th17 
(22)) T-helper cell phenotypes, or be comprised of FOXP3 
regulatory T-cells (Treg) (23, 24). Many chemokines are also 
reportedly expressed in the affected skin of patients with CTCL, 
suggesting that chemokine–receptor interactions play important 
roles in disease progression (25). Chemokine receptor expres-
sion on tumor cells in MF varies with disease stage. In the patch 
and plaque stages of MF, most infiltra ting cells express CXC 
chemokine receptor (CXCR) 3/CD183 in the affected skin (26). 
CXCR3 binds three distinct ligands, namely CXC chemokine 
ligand (CXCL) 9/monokine induced by gamma interferon 
(MIG), interferon-gamma-inducible protein-10 (CXCL10/
IP-10), and interferon-inducible T  cell alpha chemoattractant 
(CXCL11/ITAC)/IP-9; all are expressed in the affected skin in 
the patch and plaque stages of MF (27–29). Various cell types 
express these chemokines including keratinocytes, dermal 
fibroblasts, and Langerhans cells. In the early stages of MF, expres-
sion of CXCL9, CXCL10, and CXCR3 is believed to be important 
for recruitment and accumulation of tumor cells in the skin  
(25, 28). However, later in the tumor stage, the tumor cells increase 
in size and tend to express CCR4 instead of CXCR3 (30). The 
expression levels of CXCL9 and CXCL10 also tend to be lower in 
the affected skin of patients with MF during the tumor stage than 
during the patch and plaque stages (31). Moreover, CCR6/CD196 
and its ligand CCL20/macrophage inflammatory protein (MIP)-
3α are upregulated in advanced CTCL (32). Tumor MF cells 
exhibit high levels of CCR7 (33), which is considered to be associ-
ated with loss of epidermotropism and migration to peripheral 
lymph nodes, which constitutively synthesize the CCR7 ligands, 
CCL19 and 21 (34). CCR7 is also expressed at high levels in SC 
(35), as mentioned in Section “MF/Sézary syndrome (SS)”.

Circulating SC and skin-infiltrating cells in SS also express 
CCR4 (30, 35, 36). CCR4-expressing T-cells were found in CTCL 
lesions along with high expression of two CCR4 ligands, namely 
CC chemokine ligand (CCL) 17/thymus and activation-regulated 
chemokine and CCL22/macrophage-derived chemokine (30). 
CCL17 is expressed by endothelial cells and keratinocytes in the 
affected skin of patients with MF and SS (30, 37). During the 

tumor stage of MF, serum CCL17 levels are much higher than 
those during the patch/plaque stages (37), suggesting the impor-
tance of CCL17–CCR4 interactions in tumor cell trafficking to the 
skin of these patients. CCL22 is expressed by dendritic-like cells 
and keratinocytes (30, 37). Serum CCL22 levels are significantly 
higher in patients with MF than in healthy controls or patients 
with psoriasis vulgaris (37).

CC chemokine ligand 27/cutaneous T  cell attracting 
chemokine is a CCR10 ligand that is constitutively produced 
by activated keratinocytes in various diseases (38). CCR10 
is expressed on the tumor cells of MF and SS (35, 39). Strong 
immunostaining of CCL27 has been observed in the affected skin of 
patients with MF compared to that of unaffected individuals (39, 
40). Serum CCL27 levels and the number of circulating CCR10+ 
CD4+ cells are both increased in patients with MF compared to 
that of control patients (39). Therefore, CCR10–CCL27 interac-
tions may also contribute to the migration of lymphoma cells to 
the affected skin in MF and SS. In addition to CCR4 and CCR10, 
expression of the receptor for CXCL12/stromal cell-derived 
factor 1, CXCR4, is observed in SC (36). CXCL12 is a chemoat-
tractant for CXCR4-positive cells and is strongly expressed in the 
affected skin of patients with MF (41) and SS (36). Therefore, 
CXCL12–CXCR4 interactions may also facilitate the recruitment 
of lymphoma cells to the skin.

Th2-DOMiNANT MiCROeNviRONMeNT

As the microenvironment in early-stage MF consists of non-
malignant Th1  cells and CD8+ tumor-infiltrating T  cells, MF 
and SS are considered Th2-type diseases, which are frequently 
accompanied by eosinophilia and high serum levels of IgE. In the 
early 1990s, peripheral blood mononuclear cells in patients with 
SS and non-leukemic CTCL were reported to be Th2 dominant 
(42, 43). In 1994, mRNA for Th2 cytokine was detected in the 
skin of patients with MF (44). T-cell clones from patients with 
SS were identified thereafter to have Th2-like properties (45). 
However, in the early stages of MF, affected skin and peripheral 
blood T-cells express a profile of Th1 cytokines (46, 47). The Th2 
phenotype appears to be caused by leukemic T-cells, as cultur-
ing benign T-cells away from malignant clones reduces Th2 and 
enhances Th1 responses (48). The Th2-dominant microenviron-
ment is advantageous for tumor cells, because interferon (IFN)-γ- 
producing Th1 cells enhance immune responses against the tumor. 
Indeed, IFN-γ has been shown to be effective for CTCL treat-
ment (49, 50). Adenoviral-mediated gene therapies that increase 
expression of IFN-γ have also been used successfully in CTCL 
(51–53). CTCL cells can inhibit T-cell proliferation and suppress 
dendritic cell (DC) maturation by secretion of Th2 cytokines 
(54). Skin and nasal colonization with Staphylococcus aureus is 
common in patients with MF/SS; in particular, a Th2-dominant 
microenvironment may underlie this susceptibility to infection 
(55). Infections of S. aureus and sepsis also frequently occur in 
patients with CTCL (56). Accordingly, the major cause of death in 
patients with erythrodermic MF and SS is intravenous line sepsis, 
with S. aureus often being the causative microorganism (57).

In early-stage MF, signal transducers and activators of tran-
scription (STAT) 4, the activation of which is required for Th1 
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differentiation, are overexpressed by IL-12 signaling via JAK2/
TYK2 (58). In later stages, IL-2 and IL-15 signaling via JAK1 and 
JAK3 kinases activates STAT5, which increases the expression 
of oncogenic miR-155 (59) and subsequently inhibits STAT4 
expression (60), resulting in a switch from Th1 to Th2 phenotype 
in malignant T cells. Downregulation of STAT4 is also induced 
by deficiencies in IL-12 expression (58, 61) and lack of the IL-12R 
β2 chain (58). During this switch, the expression of STAT6 is 
often upregulated in CTCL (60). STAT5 activation is seen in both 
early and late stages. Specifically, in the late stage, constitutive 
STAT5 activation is induced by cytokine-independent JAK1/
JAK3 signaling (59). In the advanced stage, such constitutive 
STAT3 activation, which increases survival and resistance to 
apoptosis and promotes Th2 and Th17 phenotypes, is induced 
by an IL-21 autocrine signaling loop (62), the presence of IL-7 
and IL-15 in the microenvironment (63), and/or constitutive 
cytokine-independent activation of JAK1 and JAK3 signaling 
(64, 65). Moreover, GATA3, a transcriptional regulator of Th2-
cells, is overexpressed in SC via proteasome dysregulation (66).

CANCeR-ASSOCiATeD FiBROBLASTS

Fibroblasts are crucial components of the tumor microenviron-
ment, promoting the growth and invasion of cancer cells through 
various mechanisms (67). The fibroblasts in the affected skin of 
patients with advanced CTCL promote a Th2-dominant micro-
environment by augmenting Th2 and attenuating Th1 immune 
responses. Increased expression of CCL26/eotaxin-3 is observed 
in the dermal fibroblasts, keratinocytes, and endothelial cells of 
the affected skin of patients with advanced MF (68). In addition, 
serum CCL26 and CCL11/eotaxin-1 levels were shown to be higher 
in patients with CTCL than in healthy control patients, which 
correlated with serum soluble interleukin-2 receptor (sIL-2R)  
levels. However, CCR3/CD193, a receptor for CCL26 and other 
ligands, is not expressed on lymphoma cells in MF or SS (69). 
Because mRNA for CCR3 is detected in affected skin (68) and 
CCR3 is expressed on eosinophils and subpopulations of Th2 
cells (70, 71), CCL26 and CCL11 are believed to support the Th2-
dominant microenvironment in MF and SS disease lesions (25).

Periostin constitutes an extracellular matrix protein that is 
expressed in several cancers (72); it is prominent in the stromal 
area during the patch and plaque stages of MF, but decreases dur-
ing the tumor stage (73). Fibroblasts are reportedly the source of 
periostin in MF (74). IL-4 and IL-13 can induce periostin secretion 
by dermal fibroblasts, periostin mediates thymic stromal protein 
(TSLP) production by keratinocytes, and TSLP subsequently 
activates immature myeloid DCs, which modulate Th2 immune 
responses via CCL17 production (75). Serum (76) and plasma 
(77) TSLP levels are increased in patients with CTCL, suggesting 
that TSLP contributes to the Th2-dominant microenvironment 
in MF lesions. TSLP also induces the growth of CTCL cells (74). 
Therefore, periostin can directly stimulate the growth of CTCL 
tumor cells in addition to inducing a Th2-dominant environment 
in CTCL tumors.

Expression of herpesvirus entry mediator (HVEM)/CD270, 
a member of the tumor necrosis factor-receptor superfamily, 
on dermal fibroblasts in the affected skin of patients with MF 

and SS is decreased as the disease progresses. In addition, low 
HVEM expression on dermal fibroblasts in the affected skin 
of patients with advanced CTCL attenuates the expression of 
Th1 chemokines, resulting in Th2-dominant microenviron-
ments. This occurs because the interaction between HVEM 
and tumor necrosis factor superfamily member 14 (also termed 
LIGHT)/CD258 on dermal fibroblasts increases the secretion of 
CXCL9–11, which are chemokines that recruit CXCR3-positive 
Th1 cells (29).

TUMOR-ASSOCiATeD MACROPHAgeS 
(TAMs)

Macrophages constitute a major component of the leukocyte 
infiltrate in the tumor microenvironment (78), in which they 
are termed TAMs. TAMs usually comprise polarized M2 mac-
rophages that contribute to an immune-suppressive environment 
and promote tumor cell growth (79). CD163 is recognized as a 
marker for TAMs. As with many malignancies (80), the presence 
of M2 macrophages in the affected skin of patients with MF has 
been correlated with patient prognosis (81, 82), and the presence 
of M2 macrophages has been correlated with lymph node staging 
(83); this suggests that TAMs play a significant role in MF patho-
genesis. Serum sCD163 levels in patients with CTCL are signifi-
cantly higher than those in normal controls and they significantly 
correlate with serum sIL-2R levels. TAMs are believed to play a 
role in the formation of CTCL by secreting various chemokines 
(73, 82, 84). Periostin-stimulated macrophages produce CXCL5 
and CXCL10 (73), which correlates with MF tumor formation 
in a xenograft CTCL mouse model (84). CCL18/alternative 
macrophage activation-associated CC chemokine 1/MIP-4 is 
secreted by M2 macrophages (85) and binds to its receptor  
(i.e., CCR8) on Th2 cells (86). The expression of CCR8 on MF or 
SS tumor cells has not been reported, although the mRNA expres-
sion of CCR8 is known to be upregulated in patients with SS (21). 
TAMs are known to express CCL18 in the skin of patients with 
CTCL (87, 88). Serum CCL18 levels were significantly higher in 
patients with CTCL than in healthy controls, and these levels sig-
nificantly correlated with modified severity-weighted assessment 
scores, serum sIL-2R, lactate dehydrogenase, Th2 cytokines, and 
chemokines (88). Furthermore, high serum levels of CCL18 were 
associated with poor patient prognosis (88). In the affected skin 
of patients with MF/SS, TAMs highly express CD30, which is the 
target of the anti-CD30 antibody–drug conjugate, brentuximab 
vedotin (89).

DeNDRiTiC CeLLS

Dendritic cells are antigen-presenting cells with a unique 
capacity to induce primary immune responses (90). By secret-
ing Th2 cytokines, CTCL cells can suppress the maturation of 
DCs (54). Notably, IL-10 downregulates DC functions and may 
promote tolerance by skin DCs, rather than immune defense 
(91). Immature DCs can induce tolerance by presenting anti-
gens to T-cells without appropriate costimulation. A significant 
increase in various DC subsets is seen in the affected dermis of 
patients with MF/SS, with the majority being immature CD209/
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DC-specific ICAM-3 grabbing non-integrin (DC-SIGN)-positive 
DCs. Increases in CD208/DC-lysosome-associated membrane 
glycoprotein-positive DCs (i.e., mature DCs) and CD303/blood 
dendritic cell antigen 2-positive DCs (i.e., plasmacytoid DCs) 
are also observed, but the numbers of cells expressing CD208 
or CD303 are few, suggesting that many DCs in the dermis of 
CTCL lesions are immature. Increased number of immature DCs 
in CTCL lesions may be important for immunological tolerance 
against malignant T-cells (92). However, some CD208-positive, 
mature DCs may attempt to mount an immune response against 
the cancer cells, as mature CD208-positive DCs are elevated in 
the skin draining lymph nodes of patients with MF (83).

OTHeR KeY PLAYeRS

The keratinocytes in the affected skin of patients with MF/SS 
release multiple chemokines including CCL17, CCL26, CCL27, 
CXCL9, and CXCL10, which help to attract T-cells to the epider-
mis, as mentioned above. Nerve growth factor (NGF) expression 
is also elevated in the affected skin of patients with SS, which 
stimulates the sprouting of nerve fibers. NGF is associated with 
the severity of pruritus in atopic dermatitis (93), and serum NGF 
levels are elevated in patients with SS (94). The enhanced expres-
sion of NGF is supposedly associated with pruritus in SS.

Mast cells also serve as critical stimulators of the tumor micro-
environment (95). Patients with CTCL have increased number 
of mast cells in their affected skin and this correlates with disease 
progression (96). Moreover, in a model of cutaneous lymphoma, 
tumor growth in mast cell-deficient mice was significantly 
decreased. Therefore, mast cells represent key players in the 
development of CTCL.

Th22 cells, which produce IL-22 but not IFN-γ, IL-4, or IL-17, 
express CCR6, CCR4, and CCR10, thus enhancing skin infiltra-
tion. IL-22 mediates host defenses against bacterial infection (97).  
The affected skin of patients with MF/SS expresses high levels of 
IL-22 and low levels of IL-17 (32). A case of SS reportedly also had 
high IL-22 expression that was modulated by systemic bacterial 
infections (98). The serum levels of IL-22 and IL-22-induced 
CCL20 are increased in patients with MF/SS and are associated 
with disease severity (32); this suggests an important role of IL-22 
in establishing the tumor microenvironment in MF and SS.

Myeloid-derived suppressor cells (MDSCs) are also recog-
nized as key players in tumor immune escape mechanisms (99). 
The progression from early patch/plaque lesions to tumors in 
MF is related to an increase in MDSCs (100). Therefore, MDSCs 
play a role in MF progression by decreasing antitumor immune 
responses.

T-cell exhaustion via immune checkpoints also constitutes an 
important factor underlying tumor survival. The expression levels 
of PD-1 (101, 102), PD-L1 (102), CTLA-4 (103), and ICOS (104) 
have been described at different stages of the disease, suggesting 
a role for immune checkpoint inhibitor therapies.

TReATMeNT

There is currently no cure for CTCL, thus treatment is aimed pri-
marily at improving symptoms and quality of life and maintaining  

remission. Therapies are tailored to the individual patient, 
based on age, performance status, extent of disease burden, rate 
of disease progression, and prior treatments (105). A typical 
MF progression starts at the patch and plaque stage and then 
advances to dermal-based tumors over many years. Effective 
immune control in the initial disease stages can slow disease 
progression. Hughes et al. reported that chemotherapy shortens 
the median time until the next treatment in patients with MF/
SS (106). Multiagent chemotherapy often induces immunosup-
pression, which leads to an increased risk of infection and poor 
tolerance (107). Therefore, chemotherapy should be limited until 
all other options are exhausted. In comparison, IFN and histone 
deacetylase inhibitors afford greater times to next treatment than 
those from chemotherapy.

Both IFN-α and IFN-γ represent effective clinical treatments 
for CTCLs, including MF, via their cytotoxic and immunological 
effects on tumor-associated T-cells (108–110). A meta-analysis 
suggested that the overall response rate (ORR) to IFN-α was 70% 
(109). In all stages of MF, IFN-α achieves a superior time to next 
treatment compared to that of chemotherapy (106). IFN-γ shifts 
the Th2-dominant tumor microenvironment to a Th1 environ-
ment, as mentioned above. IFN-α2a and IFN-γ have been shown 
to decrease the expression and production of CCL17 and CCL18 
and increase those of CXCL10 and CXCL11. Furthermore, 
subcutaneous administration of IFN-α increased the number 
of CXCL11-producing cells in the affected skin of patients with 
advanced MF (111).

Toll-like receptor (TLR) agonists induce anticancer effects by 
stimulating the innate immune system. Imiquimod is a topical 
immunomodulator that stimulates Th1 responses by activating 
TLR7 on plasmacytoid DCs, which leads to the production of 
IFN-α, IL-12, and tumor necrosis factor-α (112). The effectiveness 
of topical imiquimod has been reported in early-stage (113–115),  
folliculotropic, and tumor-stage MF (116). Resiquimod, a 
TLR7/8 agonist, is also effective for early-stage MF (117). TLR8 is 
expressed by myeloid-derived DCs, which are the most abundant 
DCs in human skin. Resiquimod, but not imiquimod, potently 
activates these cells (118).

The acetylation of histones plays a critical role in gene 
expression regulation (119). Histone acetylation and deacety-
lation control gene transcription and are mediated by histone 
acetyltransferases and deacetylases, respectively. Histone 
deacetylase inhibitors enhance the acetylation of histones 
and non-histone proteins and can induce apoptosis (120). 
Histone deacetylase inhibitors are potential therapeutic agents 
for the treatment of lymphoid neoplasms (121–124). Pruritus 
relief has also been reported with these inhibitors (121, 122, 
124–126), supposedly through the reduction in the levels of 
IL-31-expressing T-cells (127).

Brentuximab vedotin (mentioned above) is an antibody–
drug conjugate, in which an anti-CD30 monoclonal antibody 
is linked with the anti-tubulin agent, monomethyl auristatin 
E (128). Brentuximab vedotin is effective in the treatment of 
CD30-positive relapsed/refractory Hodgkin’s lymphoma (129) 
and anaplastic large cell lymphoma (130). In a phase II study 
for MF/SS with variable CD30 expression levels, an ORR of 70% 
was observed with brentuximab vedotin (127). In addition, a 
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Eroded tumor is seen on the right thigh. Written informed consent was 
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significant improvement in objective response was observed in a 
randomized, phase III clinical trial (131).

Mogamulizumab, a defucosylated humanized anti-CCR4 
antibody that was first approved for relapsed ATL, as described 
in further detail in Section “Adult T-cell leukemia/lymphoma,” 
is also effective for CTCL including MF/SS (132, 133), and 
approved for relapsed or refractory CCR4-positive CTCL. In 
addition, an anti-CD158k monoclonal antibody, IPH4102, has 
also recently been developed (134), for which clinical studies in 
CTCL are ongoing (135). Lenalidomide (136), bortezomib (137), 
and immune checkpoint blockade are also under investigation.

PRiMARY CUTANeOUS CD30+ T-CeLL 
LYMPHOPROLiFeRATive DiSORDeRS

Primary cutaneous CD30+ T-cell lymphoproliferative disorders 
(PC CD30+ T-LPD) constitute the second most common form 
of CTCL, representing approximately 30% of all cutaneous 
lymphomas (2). They comprise a spectrum of diseases from 
lymphomatoid papulosis (LyP) to primary cutaneous anaplastic 
large-cell lymphoma (PCALCL) (138). The expression of CD30, a 
cytokine receptor belonging to the tumor necrosis factor receptor 
superfamily, by atypical T-cells is the common immunopheno-
type of this disorder.

Primary cutaneous anaplastic large-cell lymphoma is charac-
terized by large T-cells with prominent nuclear pleomorphisms 
along with CD30 expression by more than 75% of the tumor 
cells (2). A single tumor or a group of firm nodules is seen clini-
cally (Figure 2). PCALCL was established as a distinct form of 
ALCL because its clinical course, phenotype, and genotype are 
significantly different from those of systemic ALCL, including 
ALK-positive and ALK-negative forms (139–141). Moreover, 
IFN regulatory factor-4 translocations are reported to be specific 
for PCALCL (142). In contrast to that of systemic ALCL, the 
prognosis of PCALCL is reportedly excellent (143), with the 
exception of cases in Japan that appear to have a less favorable 
prognosis (144). PCALCL arising on the legs tends to produce 
poorer outcomes (145). The typical histology of PCALCL is a 

circumscribed nodular infiltrate of cohesively arranged large 
lymphoid cells that extends into the deep dermis or hypodermis. 
Neutrophil-rich and eosinophil-rich variants have been noted 
and appear to be associated with immunodeficiency (146).  
The abundant infiltration of neutrophils can be explained by  
the release of IL-8, a potent neutrophil chemoattractant, from the 
tumor cells (147).

The tumor cells in PCALCL possess an activated T-cell phe-
notype and express CD2, CD4, and CD45RO, with a loss of CD2 
and CD5 occurring variably. CD3 may be lacking or expressed 
at lower levels owing to genetic alterations in the T-cell receptor 
(TCR) coding regions on chromosome 1 in the tumor cells (148). 
Additionally, CD25/IL-2R, CD71, human leukocyte antigen–
antigen D related, and CLA/CD162, as well as cytotoxic proteins, 
such as T-cell intracellular antigen 1 (TIA-1), granzyme B, and 
perforin, are expressed in half of PCALCL cases. PCALCL is often 
negative for epithelial membrane antigen, which differentiates 
it from systemic ALCL. Numerous quantities of TAMs are also 
present.

As opposed to MF/SS, the tumor cells of PCALCL express 
CCR3. CCL11, a CCR3 ligand, is also expressed by PCALCL cells 
and is detected in the connective tissue cells in the tumor. The 
CCR3+ tumor cells abundantly express IL-4 but not IFN-γ (69). 
The expression of both CCL11 and CCR3 on the tumor cells can 
lead to homotypic aggregation, which can be observed as cohe-
sive clusters of tumor cells, a characteristic finding in ALCL (149).  
As CCR3 is also expressed on eosinophils and subpopulations 
of Th2 cells (70, 71), CCR3+ cells secreting CCL11 and IL-4 may 
produce a Th2-dominant microenvironment, which is suitable 
for tumor growth.

Lymphomatoid papulosis was first described by the der-
matologist, Warren L. Macaulay, as a chronic recurrent, self-
regressing papulonodular skin eruption with histologic features 
of a malignant lymphoma (138). Five histological variants (types 
A to E) are recognized as original variants in the updated World 
Health Organization classification of 2016 (10). LyP type A is the 
most common subtype, accounting for 75% of LyP cases (150). 
Type A is characterized by wedge-shaped dermal infiltrates with 
scattered large CD30+ cells. Histiocytes, eosinophils, and neutro-
phils comprise the background inflammatory cells. Type B shows 
epidermotropic infiltrates of small to medium-sized lymphocytes 
with variable CD30 expression and atypical chromatin-dense 
nuclei. Type C shows nodular cohesive infiltrates of large CD30+ 
pleomorphic or anaplastic lymphocytes. Type D shows epidermo-
tropic infiltrates of atypical, small to medium-sized pleomorphic 
CD8+ cytotoxic cells (151). Type E shows angioinvasive infil-
trates of mainly medium-sized pleomorphic CD30+ cells (152). 
Vascular occlusion by atypical lymphocytes and/or thrombi, 
hemorrhage, ulceration, and extensive necrosis are observed. 
LyP can persist for years or decades, but is not life-threatening  
(143, 153). However, some patients with LyP can develop second-
ary lymphoid neoplasms, in particular MF, Hodgkin’s lymphoma, 
and cutaneous or nodal CD30+ ALCL (140, 146, 154). Surgical 
excision or radiation therapy is the recommended therapy for 
solitary or grouped lesion(s) of PCALCL, whereas methotrex-
ate is the most prescribed therapy for multifocal lesions (138). 
The brentuximab vedotin (128) has been granted breakthrough 
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therapy designation; in addition, bexarotene, a retinoid X 
receptor-specific agonist, has also been shown to be effective for 
both PCALCL (ORR: 50%) and LyP (ORR: 60%) in clinical trials 
(155). HDAC inhibitors (156), crizotinib, an ALK inhibitor (157), 
and anti-PD-1 are under investigation.

ADULT T-CeLL LeUKeMiA/LYMPHOMA

Adult T-cell leukemia/lymphoma is a distinct T-cell malignancy 
caused by human T-lymphotropic virus type I (HTLV-1). 
HTLV-I infections are endemic in many parts of the world 
including southwest Japan, the Caribbean basin, and parts of 
central Africa and South America. Neoplastic T-cells are usually 
CD4+CD25+CCR4+ (158). The general characteristics of ATL are 
lymphadenopathy, hepatosplenomegaly, hypercalcemia, abnor-
mal peripheral blood lymphocytes with multilobulated nuclei, 
and skin lesions (Figure 3).

There are four clinical subtypes of ATL (159): acute, lym-
phoma, chronic, and smoldering, based on peripheral blood 
involvement, organ complications, and laboratory examinations. 
Patients with ATL can be stratified into two groups: aggressive, 
which consists of the acute, lymphoma, and unfavorable chronic 
types, and indolent, which consists of the favorable chronic and 
smoldering types. The chronic type is separated into the favorable 
and unfavorable subgroups according to significant prognostic 
factors. This stratification is important for treatment selection, 
with most patients with aggressive ATL being given systemic 
chemotherapy, whereas those with indolent ATL are given topical 
therapy or are placed on observation.

Cutaneous involvement is frequently observed in patients with 
ATL at 30–70% (160, 161), regardless of ATL subtype. Cutaneous 
manifestation in the smoldering type of ATL has been suggested 
to reflect poor prognosis (162), and cutaneous ATL was recently 
proposed to include the lymphoma type as an extranodal vari-
ant (163). The majority of skin lesions are caused by the direct 
invasion of ATL tumor cells, forming various types of eruptions 
(164). In addition to these primary invasive lesions, patients with 
ATL may present with secondary inflammatory or infectious 
lesions (165). Compared to those of peripheral blood tumor cells, 
skin-infiltrating ATL tumor cells exhibit enhanced characteris-
tics, such as increased expression of chemokine receptors. The 

interaction between chemokines and chemokine receptors drives 
T-cell migration and activation, which plays a critical role in the 
pathogenesis of various neoplastic and inflammatory disorders. 
ATL cells produce several chemokines including CCL3/MIP-1α, 
CCL4/MIP-1β (166), CCL2/monocyte chemoattractant pro-
tein-1 (MCP-1) (167), and CCL1/I-309 (168), as well as several 
chemokine receptors, including CCR4 (158, 169), CCR7 (170), 
and CCR8/CDw198 (168). Overexpression of chemokine CCL1 
and its receptor, CCR8, contributes to autocrine anti-apoptotic 
effects ATL cells (168). Increased CCR7 expression is associated 
with lymphoid organ infiltration (170).

Adult T-cell leukemia/lymphoma cells not only express CCR4 
but also its ligands, CCL17 and CCL22 (171). Neoplastic T-cells 
that highly express the Th2 chemokine receptor, CCR4, are found  
in the peripheral blood and affected skin of patients with ATL. 
In CTCL, extravasation of lymphoma cells into the skin is medi-
ated by CCL17 and CCL22 released from epidermal cells (30). 
In contrast, one of the major sources of CCL17 in the affected 
skin of patients with ATL is the tumor cell itself (171). Moreover, 
CCL17 and CCL22 can also attract CCR4-expressing Treg cells, 
which may further suppress cytotoxic T-cells and prevent tumor 
immunosurveillance of the ATL cells (165). As ATL cells share 
the CD4+CD25+CCR4+ phenotype with Treg cells, ATL cells 
have been postulated as being Treg cells. In addition to CD25 
and CCR4, ATL cells express CTLA-4 and FoxP3, both of which 
are expressed in Treg cells (172, 173). However, whether ATL cells 
can function as Treg cells is controversial because tumor cells pos-
sess very limited regulatory ability (174).

Th17 cells play an important role in cutaneous innate immu-
nity. Th17-derived cytokines stimulate keratinocytes to produce 
antimicrobial peptides (175). ATL tumor cells can reduce the 
number and/or function of Th17 cells. Studies have shown that 
cellular immune responses are greatly impaired in patients with 
ATL, and ATL cells have been shown to secrete immunosuppres-
sive cytokines such as IL-10 and transforming growth factor-β1 
in vitro. In particular, ATL cells, as well as Treg or Th2 cells resid-
ing in the blood, produce IL-10, thereby suppressing Th17 activ-
ity (176). IL-17 enhances the synthesis of various antimicrobial 
peptides, such as human β-defensin 2, LL-37 (177), and S100A7, 
in keratinocytes. These peptides are active against fungi, such as 
those causing ringworm (178). More than 60% of patients with 
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ATL have tinea pedis/unguium/corporis, candidiasis, or other 
cutaneous fungal infections (165). Other skin infections may 
occur in these patients in addition to superficial fungal infections. 
It has been reported that scabies is sometimes superimposed on 
the skin lesions of patients with ATL (179).

Programmed cell death (PD)-1/CD279 constitutes a cell surface 
receptor that suppresses the immune system. PD-1 expression on 
HTLV-1-specific cytotoxic T-cells is dramatically upregulated in 
HTLV-1 carriers and patients with ATL (180). PD-1 is expressed 
at high levels on CD4+ neoplastic and non-neoplastic cells, but 
not on CD8+ cells (181). Because normal CD4+ T-cells can be 
infected with HTLV-1, they can sometimes express PD-1, leading 
to immunosuppression. Moreover, it is noteworthy that PD-L1 is 
expressed in ATL cells (181). Expression of both PD-1 and PD-L1 
by the ATL cells suggests a self-destructive state of the tumor cells. 
However, it may be more important that the PD-L1 expressed 
by the tumor cells suppresses the function of PD-1-expressing 
normal CD4+ T-cells, resulting in immune evasion. Of note, 25% 
of patients with ATL have structural variations in the 3’-region of 
the gene for PD-L1, which leads to marked elevations of aberrant 
PDL1 transcripts (182).

The fact that the tumor cells express CCR4 provides a thera-
peutic strategy for ATL. The anti-CCR4 monoclonal antibody 
mogamulizumab markedly enhances antibody-dependent cel-
lular cytotoxicity and has been approved for the treatment of 
patients with CCR4-positive ATL, peripheral T-cell lymphoma, 
and CTCL. In a phase II trial of patients with relapsed CCR4-
positive ATL, the ORR was 50%, with a complete response rate 
of 30% (183). Mogamulizumab is more effective against the 
peripheral blood tumor cells than those in the skin and lymph 
nodes. Cutaneous adverse reactions (CARs) are frequently 
observed during treatment (183, 184) and are supposedly 
indicative of favorable prognoses in ATL (185); a reduction in 
Treg by mogamulizumab is believed to induce CARs (186, 187). 
Recently, pretransplantation mogamulizumab has been reported 
to increase the risk of severe acute graft-versus-host disease  
(188, 189), and non-relapse mortality is significantly higher in 
patients with pretransplantation mogamulizumab. Therefore, 
mogamulizumab should be carefully considered and monitored 
for patients with ATL who are eligible for allogeneic hematopoi-
etic stem-cell transplantation.

PANNiCULiTiS-LiKe T-CeLL LYMPHOMA

Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) 
with α/β phenotype and SPTCL with γ/δ phenotype have been 
recognized as unique entities, considering their clinical, histo-
logical, and immunological characteristics (2, 190, 191). The 
term SPTCL is now used exclusively for cases with the α/β T-cell 
phenotype, whereas those of the γ/δ T-cell phenotype have been 
reclassified as primary cutaneous gamma/delta T-cell lymphoma 
(PCGD-TCL) (2). The differential diagnosis of these two diseases 
is important, as each has a different prognosis and therapeutic 
strategy. In addition, both entities should be differentiated from 
other types of malignant lymphoma with preferential subcutane-
ous involvement and from other forms of lobular panniculitis, 
especially lupus panniculitis (192, 193).

SUBCUTANeOUS PANNiCULiTiS-LiKe 
T-CeLL LYMPHOMA

Patients with SPTCL present clinically with multiple nodules or 
deeply seated plaques without ulceration. The skin lesions usu-
ally involve the legs, arms, and trunk. Systemic symptoms, such 
as pyrexia, fatigue, and weight loss, and laboratory abnormalities, 
including cytopenia and elevated liver function tests, are com-
monly observed. Hemophagocytic syndrome (HPS) is observed 
in <20% of patients (194). Dissemination to extracutaneous 
sites rarely occurs. As many as 20% of patients have associated 
autoimmune disease, which is commonly systemic lupus erythe-
matosus (194).

The histopathological findings in SPTCL are dense, nodular, 
or diffuse subcutaneous infiltrates with a pattern similar to 
lobular panniculitis. The epidermis is not typically involved. The 
rimming of individual fat cells by neoplastic T-cells is a curious 
finding, although it is not diagnostic (193). The neoplastic T-cells 
are interspersed with small reactive lymphocytes and many his-
tiocytes, whereas other inflammatory cells, including neutrophils 
and eosinophils, as well as the plasma cells and plasmacytoid DCs 
that are common in lupus panniculitis (195, 196), are usually 
lacking (193). High-throughput sequencing of the TCR genes can 
assist in the diagnosis of SPTCL (192). The neoplastic cells have a 
mature CD3+CD4−CD8+ T-cell phenotype and express cytotoxic 
proteins, such as granzyme B, TIA-1, and perforin (194). Although 
the exact mechanisms that neoplastic cells utilize to migrate into 
the hypodermis are still mostly unknown, CCR5 expression on 
neoplastic cells and its ligands, CCL3, CCL4, and CCL5, which 
can be secreted from immunologically activated adipocytes, may 
contribute to the pathogenesis of SPTCL (197, 198).

The differential diagnosis of SPTCL includes both PCGD-
TCL and lupus panniculitis. Differentiation is critical because 
PCGD-TCL with panniculitis-like features generally has a poor 
prognosis and requires systemic chemotherapy. In contrast, 
SPTCL has an excellent prognosis, especially in the cases without 
HPS (194). Both SPTCL and PCGD-TCL have nodular skin 
lesions with panniculitis-like features and rimming of fat cells. 
In contrast to that of SPTCL, PCGD-TCL involves ulceration of 
the hypodermis, dermis, and/or epidermis (194). Expression of 
βF1, but not TCRγ/δ or CD56, is useful to differentiate between 
SPTCL and PCGD-TCL.

Multiagent chemotherapy is not recommended as a first-line 
treatment for SPTCL without HPS. Systemic corticosteroids 
or other immunosuppressive agents, such as cyclosporine or 
methotrexate, are preferred, which is also the case with relaps-
ing disease (199–201). Oral bexarotene has also shown good 
response rates (202).

PRiMARY CUTANeOUS gAMMA/DeLTA 
T-CeLL LYMPHOMA

Primary cutaneous gamma/delta T-cell lymphoma is a lym-
phoma composed of a clonal proliferation of mature, activated 
γ/δ T-cells with a cytotoxic phenotype. Most patients present 
with deep dermal or subcutaneous plaques or tumors, either with 
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or without epidermal ulceration and necrosis (194, 203, 204). 
The skin lesions are often generalized and involve the extremi-
ties. Some patients may present with a single tumor, or scaly 
patches/plaques, clinically resembling early-stage MF (204). The 
involvement of mucosal and other extranodal sites is frequently 
noted, although lymph nodes, spleen, and bone marrow are 
rarely involved (204, 205). Most patients present with systemic 
symptoms including B symptoms. PCGD-TCL is frequently 
accompanied by HPS, particularly in patients with panniculitis-
like tumors (194, 203). Chronic antigenic stimulation has been 
hypothesized to be involved in the pathogenesis of PCGD-TCL 
(206). PCGD-TCL is also associated with opportunistic infec-
tions in patients with congenital or acquired immunosuppres-
sion and autoimmunity (207–209).

The lymphoid infiltrates have a variable histological pattern and 
may be epidermotropic, dermal, and/or subcutaneous (203, 204).  
In contrast to that of SPTCL, a pure panniculitic pattern is rarely 
observed (204), and variable patterns can be found in skin biopsies 
obtained from different sites or different parts of the same biopsy 
(190, 203, 204). Lichenoid or vascular interface dermatitis-like 
patterns of epidermal infiltration may occur, which may be 
associated with intraepidermal vesiculation and necrosis (204). 
Panniculitis-like lesions may show the rimming of fat cells 
observed in SPTCL. Angiocentricity, angiodestruction, and tis-
sue necrosis may be seen. Hemophagocytosis may be present, 
especially in cases with HPS. The tumor cells have a characteristic 
phenotype of TCR γ/δ+, βF1−, CD3+, CD2+, CD5−, and CD56+, 
with a strong expression of cytotoxic proteins. PCGD-TCL with 
subcutaneous panniculitis-like infiltrate preferentially derives 
from the V2 subtype (205). PCGD-TCL is resistant to multiagent 
chemotherapy. The effectiveness of hematopoietic stem cell trans-
plantation has been reported in some patients with PCGD-TCL 
(204, 210, 211).

PRiMARY CUTANeOUS CD4+ SMALL/
MeDiUM T-CeLL LYMPHOPROLiFeRATive 
DiSORDeR

Primary cutaneous small/medium-sized T-cell lymphoma 
(PCSM-TCL) has recently been reclassified as primary cutaneous 
small/medium-sized T-cell lymphoproliferative disorder (PCSM-
TCLPD) because of its indolent behavior and uncertain malig-
nancy (10). PCSM-TCL was originally associated with a favorable 
5-year survival rate of 60–80% (2). However, fatal outcomes have 
not been documented in subsequent reports (212, 213).

Primary cutaneous small/medium-sized T-cell lymphopro-
liferative disorder characteristically presents with a single lesion 
on the head, neck, or upper arms, but rarely presents as multiple 
papules, plaques, or tumors (212, 214). Histopathologically, 
PCSM-TCLPD is characterized by many small- to medium-sized 
CD3+CD4+CD8− T-cells, with a small number of large CD4+ 
pleomorphic T-cells and variable admixtures of CD8+ T-cells, 
B-cells, histiocytes, plasma cells, and eosinophils (2).

The few, large pleomorphic CD4+ T-cells in PCSM-TCLPD 
express PD-1, BCL6, and CXCL13 (215), all of which are 
expressed on a particular germinal center T-cell subset, termed 

follicular helper T (TFH) cells. TFH cells are important in 
germinal center formation and plasma cell development. The 
expression of PD-1, BCL6, and CXCL13 by these large CD4+ 
T-cells suggests that PCSM-TCLPD originates from TFH cells 
(215). PD-1 is typically expressed by atypical cells in PCSM-TCL 
and pseudo-T-cell lymphomas (216). The clinical presentation, 
pathological features, and immunohistochemical findings 
of PCSM-TCLPD are very similar to those of pseudo-T-cell 
lymphomas (217, 218). The demonstration of a T-cell clone 
and loss of pan-T-cell antigens are useful diagnostic criteria 
for PCSM-TCL (218). The staining pattern for nuclear factor of 
activated T-cells, cytoplasmic 1 is also reported to be useful for 
the differential diagnosis between PCSM-TCLPD and pseudo- 
T-cell lymphomas (219), where NFAT1c nuclear staining indi-
cates PCSM-TCLPD and cytoplasmic staining indicates pseudo-
T-cell lymphoma. The cytoplasmic staining pattern is also seen 
in MF, ALCL, and LyP. The clinical behavior of PCSM-TCLPD 
is almost always indolent, with most patients showing localized 
disease. Treatment with local therapies, such as excision or radia-
tion therapy, is often curative (214, 220, 221).

HYDROA vACCiNiFORMe-LiKe 
LYMPHOPROLiFeRATive DiSORDeR 
(HvLL)

Typical hydroa vacciniforme (HV) is characterized by light-
induced herpetiform vesiculopapules on the sun-exposed areas. 
The eruptions form crusts and then heal to leave varicelliform 
scars. Systemic symptoms are absent, and the disease usually 
improves spontaneously in adolescence and young adulthood 
(222). Routine laboratory tests are normal. Since the first report 
in 1986 (223), peculiar HV-like eruptions have been recognized 
in children mainly from Asia and Central and South America. 
HVLL was included for the first time in the 2008 World Health 
Organization classification of tumors of hematopoietic and lym-
phoid tissues (224). HVLL is defined as an Epstein–Barr virus 
(EBV)-positive CTCL that occurs in children and less often in 
young adults (225). Unlike typical HV, HVLL eruptions become 
more severe with age, presenting with marked facial edema and 
vesiclopapules followed by ulceration and crusting. Systemic 
symptoms, including high-grade fever and liver damage, are 
usually present. Hepatosplenomegaly and lymphadenopathy are 
frequently observed during the acute phase. The lesions are asso-
ciated with EBV infection and frequently possess monoclonal 
rearrangements of the TCR genes (226, 227). Although the skin 
lesions are not limited to sun-exposed areas, there is an increased 
occurrence during the summer. Most cases have a CD8+ T-cell 
phenotype (228), whereas a small number of cases have been 
reported to have a natural killer-cell phenotype (229, 230). 
Regardless of cell-type derivation, the lymphoid cells are positive 
for cytotoxic markers, such as granzyme B and TIA-1 (231).

SeveRe MOSQUiTO BiTe ALLeRgY

An associated cutaneous disorder is a severe allergy/hypersen-
sitivity to mosquito bites (232). It is defined as an EBV+ NK-cell 
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lymphoproliferation that is characterized by high fever, ulcers, 
skin necrosis, and deep scarring, with the potential to progress 
into overt NK/T-cell lymphoma or aggressive NK-cell leukemia 
in the protracted clinical course (233). Severe mosquito bite 
allergy was included for the first time in the 2017 World Health 
Organization classification of tumors of hematopoietic and 
lymphoid tissues (234).

PRiMARY CUTANeOUS ACRAL CD8+ 
T-CeLL LYMPHOMA

Primary cutaneous acral CD8+ T-cell lymphoma is character-
ized as a solitary, slow-growing nodule without prior patches 
or plaques (235), but with precedence of bilateral, symmetrical 
disease and recurrent disease (236). Most cases appear on the ear, 
although other peripheral locations, such as the nose, hands, and 
feet, have been noted (237).

Primary cutaneous acral CD8+ T-cell lymphoma and PCSM-
TCLPD are often indistinguishable morphologically. Moreover, 
the overt clinical features of both diseases are similar, such as 
targeting adults, a preference for the face and neck, solitary 
tumors without ulceration, and an indolent behavior. However, 
T follicular markers, such as CD10, Bcl-6, PD-1, and CXCL13, 
which are expressed on neoplastic cells of PCSM-TCLPD, are 
negative in primary cutaneous acral CD8+ T-cell lymphoma 
(236). Granzyme B expression is also typically negative in the 
latter (238). The clinical course for primary cutaneous acral 
CD8+ T-cell lymphoma is invariably indolent; cutaneous relapse 
may occur, but there have been no reports of progression to 
extracutaneous sites, and overtreatment should be avoided 
(238). Localized therapy, such as topical steroids, radiotherapy, 
and surgical excision, or careful monitoring, is preferred. IFN, 

psoralen-ultraviolet A phototherapy, and methotrexate have 
been used for patients with multifocal cutaneous disease (238).

PRiMARY CUTANeOUS CD8+ 
AggReSSive ePiDeRMOTROPiC 
CYTOTOXiC T-CeLL LYMPHOMA

Primary cutaneous CD8+ aggressive epidermotropic cytotoxic 
T-cell lymphoma (PCAETCL) is characterized by disseminated, 
rapidly developing papules, plaques, and nodules with central 
ulceration or necrosis. PCAETCL may spread to other visceral 
organs including the lungs, testes, central nervous system, and 
oral mucosa (239–241); it carries an overall poor prognosis. 
However, the lymph nodes are rarely involved. Histological find-
ings demonstrate prominent epidermotropism, with necrotic 
keratinocytes and ulceration (240). Dermal infiltrates consist 
of atypical lymphocytes, often extending into the deep dermis 
and subcutaneous fat. Adnexal invasion is frequently observed 
(242). Blistering, angiocentricity, angioinvasion, riming of 
adipocytes, and destruction of adnexal structures may be seen 
(240). Cells invariably demonstrate CD8+CD4− phenotypes and 
usually express CD3, β-F1, and TIA-1. CD45RA is expressed 
in the majority of cases (239). T-cell clonality is usually dem-
onstrated. Conventional therapies for CTCL are ineffective and 
multiagent chemotherapies have unsatisfactory outcomes (240). 
Hematopoietic stem cell transplantation is a reasonable treatment 
choice for PCAETCL (243).
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The recent emergence of cancer immunotherapies initiated a significant shift in the clinical 
management of metastatic melanoma. Prior to 2011, melanoma patients only had palli-
ative treatment solutions which offered little to no survival benefit. In 2018, with immuno-
therapy, melanoma patients can now contemplate durable or even complete remission. 
Treatment with novel immune checkpoint inhibitors, anti-cytotoxic T-lymphocyte protein 
4 and anti-programmed cell death protein 1, clearly result in superior median and long-
term survivals compared to standard chemotherapy; however, more than half of the 
patients do not respond to immune checkpoint blockade. Currently, clinicians do not 
have any effective way to stratify melanoma patients for immunotherapies. Research 
is now focusing on identifying biomarkers which could predict a patient’s response 
prior treatment initiation (or very early during treatment course), in order to maximize 
therapeutic efficacy, avoid unnecessary costs, and undesirable heavy side effects for 
the patient. Given the rapid developments in this field and the translational potential 
for some of the biomarkers, we will summarize the current state of biomarker research 
for immunotherapy in melanoma, with an emphasis on omics technologies such as 
next-generation sequencing and mass cytometry (CyTOF).

Keywords: melanoma, immunotherapy, biomarkers, next-generation sequencing, review literature as topic

Immunotherapy has revolutionized the management of metastatic melanoma. Prior to 2011, the 
median survival for metastatic melanoma was 9 months, compared to greater than 18 months in 
2017 (1). Patients now benefit from novel immune checkpoint inhibitors (ICIs), anti-cytotoxic 
T-lymphocyte protein 4 (CTLA-4) and anti-programmed cell death protein 1 (PD-1). From the 
latest survival data of the Checkmate 067 trial, progression-free survival (PFS) for ipilimumab is 
2.9  months, for nivolumab 6.9  months, and for the combination of nivolumab and ipilimumab 
11.5  months. Overall survival (OS) of the ipilimumab group was 19.9 and 37.6  months for the 
nivolumab group. Median OS was not reached in the combination nivolumab and ipilimumab group 
with a minimum follow-up time of 36  months (2–6). Although OS is extended, not all patients 
benefit from immunotherapy. Response rates for ipilimumab range from 11% to 19% (4, 5) and 
for pembrolizumab or nivolumab from 33% to 44% (2, 6, 7). These new ICIs clearly show superior 
median and long-term survivals compared to standard chemotherapy; however, more than half 
of the patients do not respond to immune checkpoint blockade. Currently, there are no clinically 
approved biomarkers to aid in patient selection in melanoma. In this review, we seek to delineate the 
current state of biomarker research for immunotherapy in melanoma, with an emphasis on omics 
technologies such as next-generation sequencing (NGS) and mass cytometry (CyTOF). Given the 
urgent clinical need for such biomarkers, we decided to focus on human studies only, which we think 
are more clinically relevant.
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iMMUNe CHeCKPOiNTS

CTLA-4 and PD-1 are two immune checkpoints regulating 
immune homeostasis. CTLA-4 is a negative regulator of T-cell 
priming that acts to control naïve T-cell activation by competing 
with the co-stimulatory molecule CD28 for binding to shared 
ligands CD80 and CD86 on antigen-presenting cells (APCs) in 
the lymph node (8). Ipilimumab, a monoclonal antibody against 
CTLA-4, was the first agent approved for the treatment of unre-
sectable or metastatic melanoma that showed an OS benefit in a 
randomized phase III trial (4). PD-1 is a T-cell exhaustion marker 
which is upregulated by T-cells upon activation during priming 
or expansion and binds to one of two ligands: programmed cell 
death 1-ligand 1 (PD-L1) and -ligand 2 (PD-L2) (9–11). Pem-
brolizumab and nivolumab are monoclonal antibodies against 
PD-1 that have both shown OS benefit in randomized phase III 
trials and are approved for the treatment of metastatic mela-
noma (2, 7). Furthermore, nivolumab and pembrolizumab have 
both improved OS compared with ipilimumab in metastatic 
melanoma patients that are naïve to both agents. Combination 
therapy with ipilimumab and nivolumab has demonstrated 
additional clinical activity with objective response rates ranging 
from 50% to 60% and improved OS compared to ipilimumab 
alone. Although ipilimumab, nivolumab, and pembrolizumab 
have significantly improved the survival of melanoma patients, 
there are major toxicities associated with the use of these drugs 
[reviewed in Ref. (12)]. Grade 3 and higher adverse events are 
seen in about 20% of patients treated with ipilimumab, in 15% of 
patients treated with nivolumab, and in 50% of patients treated 
with the combination of both drugs (6). As these therapies 
result in objective responses for only a subset of patients, there 
is a crucial need to identify biomarkers that can potentially 
predict the efficacy of anti-CTLA-4 or anti-PD-1 treatment 
or identify a specific subset of patients who may benefit from 
immunotherapy. A summary of current potential biomarkers 
for immunotherapies in metastatic melanoma patients is listed 
in Figure 1.

CLiNiCAL BiOMARKeRS

Approved markers for melanoma monitoring have not sub-
stantially evolved over the past decade. Clinicians have mainly 
used the TNM staging system as a diagnostic and prognostic 
indicator. In 2009, lactate dehydrogenase (LDH) was shown 
to be an independent predictor of survival in melanoma and 
was therefore added to the AJCC guidelines (13). Accelerated 
metabolism in cancer cells requires increased glycolysis that cre-
ates a high amount of LDH as a byproduct, which is therefore a 
robust proxy to assess tumor burden (14). It is the only accepted 
serum biomarker with prognostic value for OS in melanoma (15). 
In the context of immunotherapies, elevated LDH is a negative 
prognostic marker for patients treated with ipilimumab (16) and 
with pembrolizumab (17, 18). However, subgroup analysis of 
anti-PD-1 treated cohorts recently pointed out that LDH level is 
not correlated with the duration of response (KEYNOTE-006). 
Indeed, once patients show response to the treatment, the LDH 
level is not associated with the duration of the remission period. 

As described by Diem et al. in a study specifically assessing the 
role of LDH as a marker for anti-PD-1 therapy, LDH is never-
theless a useful marker to monitor disease progression and help 
treatment decisions (19).

Another well-known marker to monitor melanoma is S100, 
which is a good indicator of advanced clinical disease stage (20). 
S100 was shown to be predictive of response to anti-CTLA-4 
(16). However, similar to LDH, S100 seems to mainly be a proxy 
of disease stage, able to highlight very ill patients who are more 
unlikely to respond to the treatment due to the high tumor 
burden of the disease, but not actually able to predict response 
to immunotherapies. The same is true for the number of organs 
involved, which was another potential marker, proposed by Diem 
et al., to stratify patients prior to anti-CTLA-4 therapy (21).

C-reactive protein (CRP) was described as a negative prog-
nostic factor for anti-CTLA-4 treatment (22). Unlike LDH and 
S100, CRP is directly related to immune response. However, it is a 
general marker of inflammation and is not specific to melanoma, 
ergo, an increase in CRP levels may also be the result of any other 
ongoing infection (23). For anti-PD-1 therapy, intra-tumoral 
PD-L1 expression, evaluated by immunohistochemistry, has been 
assessed as a predictive biomarker. The results have been incon-
clusive due to a lack of standards for PD-L1 “positivity”. Different 
antibodies and different evaluation criteria have been used for 
PD-L1 expression in clinical trials. Some studies have used a >5% 
cutoff (Checkmate-066 and Checkmate-067), whereas others have 
used >1% cutoff (KEYNOTE-006). In the Checkmate-066 trial, 
both PD-L1 negative and positive patients had better outcomes 
than chemotherapy-treated patients, suggesting that PD-L1 
status was not a relevant stratification marker (2). More research 
will be needed to standardize the assessment of PD-L1 expression 
for it to become a biomarker for anti-PD-1 therapy in melanoma. 
Blood markers which hold the most potential toward predicting 
response to immunotherapies are immune cell populations. 
Indeed, they are either themselves part of or directly influencing 
the immune response against the tumor. The different findings 
related to blood cytology as a biomarker for immunotherapy in 
melanoma are summarized in Figure 1. Briefly, for anti-CTLA-4 
treatment, absolute neutrophil count, absolute lymphocyte count, 
neutrophil to lymphocyte ratio, absolute eosinophil count, relative 
lymphocyte count (RLC), absolute monocyte count, antibodies 
against NY-ESO1, T-regulatory cell count, and myeloid-derived 
suppressor cell (MDSC) count have been described as predic-
tive biomarkers. In anti-PD-1-treated patients, RLC, relative 
eosinophil count (REC), and MDSC count seem to hold some 
predictive potential prior to treatment initiation. In addition, 
increased serum levels of TGFβ and increased frequency of 
Th9 cells in the peripheral blood were detected in responders to 
nivolumab prior to therapy initiation (24). Unfortunately, most 
of the studies were performed on small cohorts and the results 
have not been verified in larger prospective trials (25). Although 
guidelines have been published about how to best perform bio-
marker studies (26), most research groups have different evalu-
ation criteria. In this review, we sought to document the most 
relevant biomarkers associated with immunotherapy outcome in 
melanoma patients. For a systematic review of clinical biomarkers,  
see Ref. (18).
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BiOMARKeRS FROM NeXT-GeNeRATiON 
SeQUeNCiNG

Whole exome (WES) and RNA sequencing (RNAseq) are power-
ful tools for evaluating the genomic landscape of a tumor. WES 
only captures the exonic gene regions, so it enriches for muta-
tions in coding regions, while RNAseq can provide the entire 
transcriptome of a sample and is useful for establishing gene 
signatures for specific cohorts within a patient group. In terms of 
immunotherapy, WES has been useful in determining mutational 
load and discovering neoantigens in melanoma tumors (27). 
Melanoma has one of the highest mutation rates of all cancers 
(28–30) and has a high probability for neoantigen generation. 
Neoantigens are the result of somatic mutations which translate 
into a mutated protein that is detected and presented by APCs. 
Neoantigens are an attractive target for immunotherapy as they 
are only expressed by the tumor and not by the normal tissue. 
Many studies have utilized WES and RNAseq to evaluate the 
mutation profile and gene expression changes in patients treated 
with anti-CTLA-4 and anti-PD-1, with the aim to find biomark-
ers to predict response.

Snyder et al. performed WES on 64 patients treated with anti-
CTLA-4 (31). This study was the first to associate mutational bur-
den to clinical benefit and they also defined a neoantigen signature 
associated with clinical benefit. They concluded that, although 
patients with high mutation burden are more likely to respond to 
anti-CTLA-4, the types of neoantigen the patient expresses will 
ultimately determine their response. Van Allen et al. performed 
WES on 110 patients and RNAseq on 40 patients treated with 
anti-CTLA-4 (32). They could confirm that mutational load 
is associated with clinical benefit to anti-CTLA-4 treatment. 
Neoantigen load was also measured and this parameter was also 
significantly associated with response; however, they could not 
detect the neoantigen signature seen in the study performed by 
Snyder and colleagues. They concluded that clinically beneficial 
neoantigens are most likely private events (specific to each 
individual) and recurrent neoantigens (consistent in the general 
population) are quite rare. Van Allen and colleagues also analyzed 
the transcriptome in a subset of these patients and found that 
expression of cytolytic markers, such as granzyme A and perforin, 
were beneficial for response. Expression of CTLA-4 and PD-L2 
was also associated with clinical benefit. Riaz et  al. performed 
WES on 174 patients treated with anti-CTLA-4 therapy (33). 
They discovered 48 patients with mutations in SERPINB3 or 
SERPIN4 and observed that those patients were more likely to 
be responders. Patients with SERPINB3 or SERPINB4 mutations 
also had higher mutational loads. Friedlander et al. performed a 
quantitative polymerase chain reaction (PCR) study on periph-
eral blood from 360 patients receiving anti-CTLA-4 therapy (34). 
From a panel of 169 genes, they established a 15 gene signature 
that was predictive and prognostic for response and 1-year OS 
to anti-CTLA-4 treatment. The 15 genes are ITGA4, LARGE, 
CDK2, TIMP1, DPP4, NRAS, ERBB2, NAB2, ADAM17, RHOC, 
TGFB1, CDKN2A, HLADRA, MYC, and ICOS.

In order to elucidate resistance mechanisms and biomarkers 
of response to treatment, Hugo et  al. used WES (38 patients) 
and RNAseq (28 patients) on a set of melanoma patients treated 

with anti-PD-1 (35). Mutational load did not have a significant 
association to response to anti-PD-1 therapy and neoantigen load 
was not significantly correlated with response either. Nonetheless, 
mutational load was associated with OS suggesting that other fac-
tors influence response to anti-PD-1 and survival. BRCA2 muta-
tions occurred in 30% of the responders to anti-PD-1. RNAseq 
analysis uncovered a co-enrichment of 26 gene signatures in 9 of 
the 13 non-responding patients, which the authors termed innate 
anti-PD-1 resistance (IPRES) signature. They validated the IPRES 
signature on three other datasets and found over-representation 
in anti-PD-1 non-responding samples.

In a small study of four patients treated with anti-PD-1, Zaretsky 
et al. used WES on patients that developed new lesions under anti-
PD-1 therapy. They discovered that the progressive tumors acquired 
JAK1, JAK2, or B2M loss of function mutations. JAK1 and JAK2 
mutations cause insensitivity to interferon gamma-induced arrest 
and B2M mutations led to a loss of MHC class 1 expression (36). In 
a follow-up study, Shin et al. performed WES on 23 patients before 
anti-PD-1 treatment (37). In their cohort, mutational load had no 
association to response and one of the non-responders had a loss of 
function mutation in JAK1. This study confirms the role of JAK1 as 
a marker for innate and adaptive resistance to anti-PD-1, although 
it might be a rare occurrence.

Roh et al. performed WES on sequential biopsies of patients 
treated with anti-CTLA-4 and then anti-PD-1. Thirty patients 
had WES at baseline, 3 on anti-CTLA-4 treatment, 25 at anti-
CTLA-4 progression, 18 on anti-PD-1 treatment, and 12 at 
anti-PD-1 progression. Overall, they found that mutation burden 
was not associated with response, but high copy number loss was 
associated with poor response (38). In the regions with recurrent 
copy number loss, PTEN was one of the notable tumor suppressor 
genes suggesting that it could be a driver of resistance mechanisms 
to immunotherapy. Another study also observed that PTEN loss 
was associated with resistance to anti-CTLA-4 therapy (39).

Johnson et  al. performed targeted panel sequencing on 
65 patients treated with anti-PD-1 therapy. In their cohort, 
mutational load was associated with response to anti-PD-1 and 
patients with high mutational load (>23.1 mutations/MB) had 
longer PFS and OS compared to the intermediate mutational 
load group (3.3–23.1 mutations/MB) and the low mutation 
load (<3.3 mutations/MB) group. They observed more frequent 
BRCA2 mutations in responders than in non-responders (5/32 
vs. 2/33). LRP1B mutations were significantly enriched in the 
responder group (11/32) compared to the non-responder group 
(1/33). LRP1B mutated patients also had a higher mutational load 
compared to LRP1B wild-type patients.

Riaz et al. performed WES on 68 patients treated with anti-
PD-1 that had previously progressed on anti-CTLA-4 therapy (35 
patients) or were naïve to anti-CTLA-4 (33 patients). Mutational 
load was associated with clinical benefit in the anti-CTLA-4-
naïve group, but not the anti-CTLA-4-resistant group. No single 
gene mutations were significantly associated with response or 
resistance to therapy. Decreased mutational and neoantigen load 
during therapy was associated with response in both anti-CTLA-
4-naïve and anti-CTLA-4-resistant groups. RNAseq analysis of 
the pretreatment samples showed an enrichment in T-cell acti-
vation and lymphocyte aggregation pathways. These signatures 
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indicate an immunologically active tumor, or “hot tumor,” and 
all patients with complete response or partial response in the 
anti-CTLA-4-resistant group had the “hot tumor” signature, 
although not all responders in the anti-CTLA-4-naïve group had 
the “hot tumor” signature. Riaz et al. also investigated the early 
effects of anti-PD-1 treatment (29 days after start) by RNAseq and 
uncovered a global increase in immune checkpoint genes such as 
PD-1, CTLA-4, CD274 (PD-L1), ICOS, and LAG3 in all samples. 
For responders, the significant pathways included inflammatory 
response and cytokine-mediate signaling pathways.

Finally, Davoli et  al. investigated the role of aneuploidy in 
response to immunotherapy (40). They analyzed the copy number 
data from 5,255 tumor/normal samples, representing 12 cancer 
types from The Cancer Genome Atlas project, and found that for 
most tumors, there was a positive correlation between aneuploidy 
severity and mutational load. They also found that tumors with 
high levels of aneuploidy showed elevated expression of cell cycle 
and cell proliferation markers, as well as a reduced expression of 
markers for cytotoxic immune cell infiltrates. Aneuploidy levels 
were a stronger predictor of markers of cytotoxic immune cell 
infiltration than tumor mutational load. To correlate aneuploidy 
with response to immunotherapy, they used data from Snyder 
et al. and Van Allen et al. (31, 32) and found in both datasets that 
high levels of aneuploidy correlated with poorer survival.

BiOMARKeRS FROM T-CeLL ReCePTOR 
(TCR) PROFiLiNG

Antigen detection by T-cells is by definition dependent on tumor-
specific T-cell generation and clonal amplification. In the context 
of immunotherapies, which aim at enhancing the recognition of 
the cancer cell by the immune system, there is an obvious rational 
basis for examining the T-cell repertoire in order to shed light 
on the specific mode of action of the drug and find potential 
biomarkers of response.

The main challenge when analyzing TCR repertoire is its 
immense diversity. The TCR is a heterodimer comprised of two 
chains αβ or δγ. The β and δ chains, are generated by the random 
rearrangement of a variable region (V), a diversity region (D), and 
a joining region (J) with a constant region (C). The α and γ chains, 
consists of segments from the V, J, and C regions. Additional com-
plexity is introduced by random addition or deletion of nucleo-
tides at the junction sites of V, D, and J. The theoretical limit of the 
TCR repertoire is in the range of 1015, which is several magnitudes 
higher than the total amount of T-cells in the body, approximately 
4 ×  1011 (41). The estimated number for the TCR repertoire is 
in the order of 106 to 108 (42). Most of the studies mainly assess 
the complementarity-determining region 3 (CDR3) from β 
chain, which is considered an acceptable proxy for estimating 
diversity since it is the most variable region of the receptor and 
that αβT-cells represent about 90% of all T-cells (43). Due to the 
advances in NGS, it is possible now to identify each individual 
TCR sequence in the CDR3 region (44). Multiplex PCR is one of 
the widely used methods to amplify the CDR3 region. Primers 
for the J alleles or the constant region of the TCR α and β chains 
are used together with a mix of primers for all known V alleles.  

A drawback of multiplex PCR is that it is limited to known V alleles. 
As a result, for TCR discovery experiments, other methods such as 
targeted enrichment—a technique where RNA baits capture the 
TCR receptor, usually the CDR3 region—are preferred. Since bait 
capture takes into account mismatches, it allows for discovery of 
new alleles and TCR receptors. In the context of immunotherapy, 
TCR repertoire analysis is useful for determining if the tumor-
reactive clones have undergone activation and clonal expansion. 
In an adequate immune response, the tumor-specific T-cells will 
represent a significant proportion of the whole repertoire and 
therefore be assessable at the level of the whole TCR population.

In 2014, Robert et al. compared pre- to post-treatment periph-
eral blood mononuclear cell (PBMC) samples from melanoma 
patients treated with anti-CTLA-4 (45). The results from deep 
sequencing of the multiplex PCR for the TCR Vβ CDR3 region 
showed that 19 out of 21 patients had an increased number of 
unique clonotype (richness). There was no significant difference 
in the V or J segment usage and no difference in the total of 
unique sequences between responders and non-responders. The 
number of unique productive sequences in the top 25% of clones 
showed a particularly high increase in diversity after treatment. 
Those changes were not associated with peripheral lymphocyte 
count; however, CD8+ tumor-infiltrating cells showed a posi-
tive correlation with the TCR repertoire diversity. Finally, they 
showed that patients experiencing more toxicities had more 
diverse sequences post treatment. Overall, this study reports that 
anti-CTLA-4 treatment increases TCR repertoire diversity in an 
unspecific manner. Subsequently, the same group performed a 
similar study on 9 anti-PD-1-treated patients and compared the 
results (46). Unlike the effect of anti-CTLA-4, anti-PD-1 therapy 
does not increase TCR repertoire complexity, on the contrary, 4/9 
samples show a decrease >15% in the absolute number of unique 
sequences and only one had an increase >15%. Those results 
suggest that the mode of action of the two drugs is considerably 
different.

Cha et  al. shed more light on the potential mechanism of 
anti-CTLA-4; their study assessed the changes in TCR repertoire 
between baseline and 4 weeks of treatment in PBMCs from 21 
melanoma patients (47). They confirmed that anti-CTLA-4 treat-
ment induces a significant change in the clonotypes frequency 
compared to healthy donors. They showed that the diversification 
is the result of a higher gain of new clonotypes and lower loss of 
existing ones. The number of therapy-induced expanding clones 
are not different between the responders and the non-responders, 
which is in line with what Robert et  al. described. However, 
patients who survived longer exhibited less clonotypic changes 
overtime, they maintained the most abundant clones which 
were present at baseline and also had fewer clones significantly 
decreasing in frequency. Finally, they also demonstrated that the 
clones expanding in response to therapy are largely non-naïve 
T-cells, suggesting that patients who respond to the therapy 
already have pre-primed T-cells in circulation before the onset of 
anti-CTLA-4 treatment.

In light of these findings, Postow et al. hypothesized that the 
shape of the TCR repertoire prior to treatment initiation may 
influence the likelihood of a response to the treatment (48). Twelve 
baseline PBMC samples from 4 responders and 8 non-responders 
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to anti-CTLA-4 were analyzed for richness and evenness of the 
TCR repertoire. In this small cohort, they first showed that 
patients who responded to the treatment have more similar VJ 
usage among each other than compared to the VJ usages in the 
non-responders. Furthermore, low richness or evenness of the 
TCR repertoire was significantly associated with a poor response 
to anti-CTLA-4. That is, a TCR repertoire composed of less unique 
clones (less diverse) or skewed toward a few specific clones (very 
clonal) is predictive of a non-response to the treatment.

The detection of clonally expanded tumor-specific T-cell in 
the blood indicates that the immune system mounted an immune 
response against a foreign entity, which could be the tumor. 
However, it is not certain that the activated T-cells would be able 
to home to the tumor efficiently and be able to kill the cancer 
cells. Therefore, it is also important to assess the immune status 
at the tumor site.

Tumeh et al. performed a very elegant study exploiting tumor 
samples from melanoma patients prior and during anti-PD-1 
treatment (49). By qualitative and quantitative immunohisto-
chemistry, they revealed that, at baseline, patients who eventually 
respond to the therapy, have more CD8+ T-cells at the invasive 
margin of the tumor compared to non-responders. This popula-
tion increases and migrates toward the center of the tumor during 
treatment in responders. They showed that an efficient response 
to anti-PD-1 therapy requires pre-existing CD8+ T-cells, which 
are most likely tumor specific. To confirm this theory, they 
sequenced the TCR Vβ region of tumor baseline samples and 
found that responders indeed had a more clonal TCR repertoire. 
On treatment, samples of responders showed significantly more 
clonal expansion than non-responders.

Johnson et al. used NGS to assess differences between baseline 
samples of responders and non-responders to anti-PD-1 therapy 
(50). They assessed mutational load as well as specific mutations 
differentially occurring in responders and non-responders. They 
also investigated the TCR repertoire clonality of 42 samples 
and did not find any association with response. However, it is 
important to mention that times of sample acquisition were not 
immediately before and after treatment. The timing was quite 
broad, the study allowed the inclusion of samples collected over 
12 months before start of treatment and also after treatment initia-
tion. When the analysis was performed only on samples obtained 
within 4 months of treatment initiation, the non-responder group 
was only represented by five samples, including one potential 
outlier. Nonetheless, they noticed a trend toward higher clonality 
at baseline in patients who eventually responded to the therapy.

Inoue et al. analyzed the TCR repertoire of 10 pre- and post- 
anti-PD-1 tumor samples (51). They noticed that the clonotypes 
with a read frequency >0.5% at baseline significantly increased 
after treatment in responders. The calculation of the diversity 
index highlighted a slight decrease in tumors of responders com-
pared to non-responders, which suggests oligoclonal expansion 
of certain TCR clones.

More recently, Roh et al. published a complementary analysis 
on a cohort of patients for which they performed TCR sequenc-
ing (38). They analyzed tumor samples from melanoma patients 
treated sequentially with anti-CTLA-4 and anti-PD-1 via WES and 
TCR sequencing. The TCR clonality assay revealed that there was 

no significant difference between responders and non-responders, 
pre- or on-treatment with anti-CTLA-4. A subpopulation of the 
patients (n = 8) received anti-CTLA-4 followed by anti-PD-1 after 
progression. All three responders to anti-CTLA-4 followed by anti-
PD-1 showed an increase in TCR clonality during anti-CTLA-4 
treatment. In addition, higher TCR clonality was seen in the 
responders prior to treatment and on treatment with anti-PD-1.

Riaz et al. investigated the evolution of melanoma tumors and 
their microenvironment under anti-PD-1 therapy (52). Patients 
who had previously progressed on anti-CTLA-4 and were naïve 
to anti-CTLA-4 were included in the study. They performed TCR 
sequencing on 34 samples pre- and 4  weeks post- anti-PD-1 
treatment. There were no statistically significant differences 
in the baseline samples of either group. On anti-PD-1 therapy, 
the anti-CTLA-4-pretreated group had increased TCR richness 
associated with response, whereas the anti-CTLA-4-naïve group 
had decreased TCR evenness associated with response. In line 
with Roh et al., pretreatment with anti-CTLA-4 seems to increase 
the expansion of tumor-specific T-cell cells, which are addition-
ally expanded during anti-PD-1 treatment.

MASS CYTOMeTRY (CyTOF)

The advent of CyTOF has allowed a more comprehensible analy-
sis of the whole immune system and will be an important asset for 
immune oncology (53). The basic principle of CyTOF is similar 
to conventional flow cytometry. The assay quantifies multiple 
protein expression markers at the single-cell level. In contrast 
to flow cytometry, the detection is not achieved by fluorophore 
excitation, but by stable mass isotope quantification. The transi-
tion isotope bound to the antibodies are analyzed by a time of 
flight mass spectrometer. CyTOF has some advantages over flow 
cytometry, namely, the high purity of the metal isotopes reduces 
background noise, eliminating spectral spillover and cellular 
autofluorescence associated with conventional flow cytometry. It 
also enables the detection of more markers in the same experi-
ment, theoretically up to a hundred. Multiple samples can be 
analyzed at the same time thanks to a barcoding strategy (up 
to 20), and therefore reduce inter-sample variation. CyTOF has 
primarily been used to analyze peripheral blood from patients 
undergoing immunotherapy. A better characterization of the 
precise mode of action of those drugs is crucial to help overcom-
ing and predicting resistance as well as contributing to optimal 
development of future combination therapies.

In 2015, Das et  al. analyzed peripheral blood from mela-
noma patients undergoing immunotherapy with anti-CTLA-4, 
anti-PD-1, or the combination of the two (54). Samples were 
collected at baseline and after 3 weeks of treatment. In this early 
study, CyTOF was mainly used to further characterize the cell 
population of interest previously identified by flow cytometry. The 
analysis revealed that the Ki67+ cells, increasing after combina-
tion treatment, have a transitional memory T-cell-like phenotype. 
Additional experiments were performed using other techniques 
than CyTOF, which lead the authors to conclude that anti-PD-1 
and anti-CTLA-4 have distinct effects on the immune system.

In the context of a clinical trial assessing the safety of combin-
ing radiotherapy and immunotherapy in melanoma patients, 
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Hiniker et  al. analyzed baseline and follow-up PBMC samples 
from 9 patients (3 progressive disease, 6 complete response/
partial response) (55). CyTOF analysis revealed that the level 
of CD8+ T-cells expressing IL-2 were higher at baseline and in 
the follow-up samples of responding patients. The same was true 
for central memory CD8+ T-cell levels. However, the cytokine 
production was not significantly different from the population 
seen in non-responding patients, thereby suggesting that the cells 
are not functionally different from the non-responders.

The first study to use CyTOF as a main technique for analyzing 
human melanoma patient samples was performed by Wistuba-
Hamprecht et  al. in early 2017 (56). The analysis consisted 
in performing CyTOF on 28 PBMC samples from stage IV 
melanoma patients who received different courses of treatments. 
A higher frequency in the APC-like population had a positive 
association with OS, whereas a higher frequency in the MDSC-
like population showed negative association with OS. Overall, an 
equal abundance of MDSC- and APC-like cells is associated with 
better survival. The analysis of the T-cell compartment revealed 
that there was a clear interpatient heterogeneity in the CD4+ and 
CD8+ T-cell compartments compared to the other compartments 
which have more homogenous frequencies between patients. 
Only one αβT-cell population had some prognostic potential: 
a higher level of early differentiated CD4+ T-cell was correlated 
with poorer OS. In the natural killer cell compartment, a highly 
cytotoxic cell population tends to correlate with better OS. 
Finally, a comprehensive analysis of immune signatures of all 
the melanoma-associated phenotypes identified a specific cluster 
with high prognostic capacity, performing even better than LDH. 
This cluster is significantly associated with poor OS and repre-
sented by an overall lower diversity across all the compartments, 
and especially in the myeloid compartment.

Takeuchi et  al. investigated the effect of immunotherapy 
in melanoma patients by comparing PBMCs from 4 different 
patients receiving anti-PD-1 (2 responders and 2 non-responders) 
(57). The panel was composed of 35 markers and they used high-
dimensional clustering to analyze the data. The main finding in 
this paper is that CD4+ and CD4+CD8+ cell populations increase 
during therapy. CD4+CD27+FAS− central memory T-cell were 
shown to expand in a higher proportion in responders than in 
non-responders. These results were validated in a separate cohort 
(n = 4).

More recently, Krieg et  al. performed a comprehensive 
analysis, assessing the correlation between baseline peripheral 
immune signature and response to anti-PD-1 in melanoma 
patients (58). The cohort was composed of 20 patients from whom 
baseline and on treatment samples were obtained. They used an 
optimized immune marker panel and a customized, interactive 
bioinformatics pipeline in order to identify potential predictive 
biomarkers. Three different CyTOF panels were used: one for the 
phenotypic characterization of lymphocytes, one to assess the 
T-cell functions, and the third one to characterize monocytes, 
which consisted of 30, 26, and 25 markers, respectively. By per-
forming hierarchical clustering of all the samples pooled together, 
they identified a differential marker expression in responders 
compared to non-responders. Further analysis, and validation in 
an independent, blinded cohort by conventional flow cytometry, 

revealed that, at baseline, responders had a higher frequency of 
classical monocytes and lower frequency of lymphocytes com-
pared to the non-responders.

OUTLOOK

The development of high-throughput technologies such as NGS 
and CyTOF have allowed researchers and clinicians to evaluate 
hundreds to tens of thousands of genes from a bulk tumor to a 
single-cell level. NGS is an invaluable tool for analyzing mutations 
and copy number profiles, gene expression changes and gene sig-
natures, epigenetic alterations, the TCR repertoire, and single-cell 
gene expression changes. The recent development of CyTOF has 
also allowed the analysis of many markers at a single-cell level. In 
the context of immunotherapy, these high dimensional datasets 
will enhance the discovery of novel biomarkers, prognostic mark-
ers, and resistance mechanisms.

Next-generation sequencing biomarker discovery for anti-
CTLA-4 treatment have uncovered that mutational load and 
neoantigen load are the most informative for response and OS, 
but they are not perfect biomarkers as some non-responders may 
also present with high mutational load. Aneuploidy could also 
help foresee response to anti-CTLA4 since it was highlighted as an 
independent predictor in a multivariate Cox model which included 
mutational load. Copy number analysis could as well be informa-
tive as loss in chromosome 10 was shown to be a poor prognostic 
marker in two studies. Many of these studies also analyzed tumor 
samples upon progression and found no recurrent genetic muta-
tion, which could mean that resistance to anti-CTLA-4 is patient 
specific. In the context of anti-PD-1 treatment, mutational load 
is not a clear informative marker for response. As anti-PD-1 is 
a relatively new therapy, no large cohort studies with over 100 
patients for NGS biomarker discovery have yet been performed. 
There are single patient examples showing that genes involved 
in the JAK–STAT pathway or antigen presentation could be 
predictive biomarkers for anti-PD-1 treatment. Loss of function 
mutations in JAK1, JAK2, and B2M are negative biomarkers for 
response and are involved in resistance to anti-PD-1 treatment in 
individual cases, but these mutations do not seem to be recurrent. 
RNAseq analysis from several studies suggest that tumors with 
high immune activity are more likely to respond to anti-PD-1. To 
better stratify patients for anti-CTLA-4 or anti-PD-1 treatment, a 
combinatorial approach investigating WES, copy number varia-
tion, and RNAseq would be needed.

Overall, most studies support that anti-CTLA-4 and anti-
PD-1 modulate TCR repertoire clonality upon treatment. This 
strengthens the notion that tumor-specific T-cell populations 
are affected by CTLA-4 or PD-1 inhibition. In summary, most 
studies support that anti-CTLA-4 induces an expansion of 
clones in a non-specific manner and, therefore, broadens the 
TCR repertoire. On the other hand, anti-PD-1 seems to favor 
the proliferation of fewer specific clones giving rise to a more 
skewed repertoire, thereby suggesting that the baseline TCR 
repertoire of the patients plays a role in the response to the treat-
ment. However, for the moment, those predictions arise mainly 
from early on-treatment evaluations that examined the evolution 
of the repertoire from baseline, as we are not yet able to precisely 
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pinpoint the tumor-specific clones that, once clonally expanded, 
will facilitate tumor elimination. It is also important to highlight 
that the mode of action of the current immunotherapies are still 
debated and we do not fully comprehend their overall impact 
on different immune cell subpopulations. As a result, it is dif-
ficult to assess the global impact of the drugs on the immune 
response by investigating specific mechanisms individually. This 
is why high-throughput techniques discussed here are powerful 
emerging tools, which will allow us to elucidate this problem 
by looking at numerous markers simultaneously. The more we 
increase our knowledge of exact mechanisms, the better we 
will be able to exploit the therapies by using them in a targeted/
patient-specific manner. Interesting work by Twyman-Saint et al. 
combining anti-CTLA-4, anti-PD-1 and radiotherapy, underpins 
this assertion (59).

To our knowledge, despite the great potential held by CyTOF 
technology, to date, no research was published on the analysis of 
human melanoma tumor samples in the context of immunothera-
pies. One should however expect to see more forthcoming data, 
thanks to a novel exciting add-on technology that is starting to 
emerge. Indeed, a new laser system can be coupled to the CyTOF 
device which allows for imaging mass cytometry (60). That is, 
the detection of metal-labeled antibodies, as in standard CyTOF 
analysis, but performed on tissue sections by using multiplexed 
ion beam imaging. This state of the art technology will allow, not 
only to assess a high range of markers at the same time, but also 
to obtain spatial resolution and warrant a very comprehensive 
analysis of the cell–cell interaction in the tumor microenviron-
ment. New developments of the system should soon facilitate 

the analysis of tumor samples in a similar fashion, while gaining 
spatial resolution to better interrogate the role of spatial interac-
tions in immunotherapy response (with high throughput) (61).

In conclusion, the use of NGS and CyTOF has great potential 
to discover novel biomarkers for immunotherapy and the studies 
discussed above show exciting promises, but need to be further 
validated before clinical application. New prospective trials with 
large cohorts could include these technologies as a biomarker 
discovery platform and could validate many of these findings. In 
parallel, new algorithms to integrate multiple high dimensional 
datasets are being developed for a combinatorial biomarker 
approach, which could use these existing datasets as a training 
model. As NGS is becoming a standard service in many clinics, 
the development of next generation biomarkers should ultimately 
improve the stratification of patients for immunotherapy and 
thereby extend OS for these patients.
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Melanoma, a skin cancer associated with high mortality rates, is highly radio- and che-
motherapy resistant but can also be very immunogenic. These circumstances have led to 
a recent surge in research into therapies aiming to boost anti-tumor immune responses 
in cancer patients. Among these immunotherapies, neutralizing antibodies targeting the 
immune checkpoints T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell 
death protein 1 (PD-1) are being hailed as particularly successful. These antibodies have 
resulted in dramatic improvements in disease outcome and are now clinically approved 
in many countries. However, the majority of advanced stage melanoma patients do not 
respond or will relapse, and the hunt for the “magic bullet” to treat the disease continues. 
This review examines the mechanisms of action and the limitations of anti-PD-1/PD-L1 
and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently 
available to patients and further explores the future avenues of their use in melanoma 
and other cancers.

Keywords: immunotherapy, cancer, melanoma, side effects, biomarkers, immune checkpoint inhibitors, mode of 
action

iNTRODUCTiON

In recent years, there has been a steep rise in the development and implementation of anti-cancer 
immunotherapies. The approval of anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
and anti-programmed cell death protein 1 (PD-1) antibodies for human use has already resulted 
in significant improvements in disease outcomes for various cancers, especially melanoma. Unlike 
radio- and chemotherapy, which aim to directly interfere with tumor cell growth and survival, 
immunotherapies target the tumor indirectly by boosting the anti-tumor immune responses that 
spontaneously arise in many patients.

Abbreviations: ctDNA, circular tumor DNA; CTLA-4, T-lymphocyte-associated protein 4; DCs, dendritic cells; IPRES, innate 
anti-PD-1 resistance; LDH, lactate dehydrogenase; NK, natural killer cells; PD-1, programmed cell death protein 1; IDO, 
indoleamine 2,3-dioxygenase; IL-12, interleukin 12; TGF-β, tumor growth factor-β; Tregs, regulatory T cells; MDSCs, myeloid-
derived suppressor cells; VISTA, V-domain Ig suppressor of T cell activation; ITIM, immunoreceptor tyrosine-based inhibition 
motif; IFN-γ, interferon; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; LAG-3, lymphocyte-activation 
protein 3; TIGIT, T-cell immunoreceptor with Ig And ITIM domains; TNF-α, tumor necrosis factor-α; ICOS, inducible 
co-stimulatory molecule; IFN-γ, interferon-γ; BTLA, B- And T-lymphocyte-associated protein; CSF-1R, colony stimulating 
factor-1 receptor; GM-CSF, granulocyte-macrophage colony-stimulating factor; Breg, regulatory B cell.
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TAbLe 1 | Overview of T cell surface receptors associated with immune inhibition and dysfunction.

Receptor expressing cells Ligands Ligand-expressing cells

Programmed cell death protein 1 
(PD-1) (11)

CD4 (activated/exhausted, follicular), CD8 (activated/
exhausted), B cells, dendritic cells (DCs), monocytes, 
mast cells, Langerhans cells

PD-L1, PD-L2 Antigen-presenting cells,  
CD4+ T cells, non-lymphoid 
tissues, some tumors

T-lymphocyte-associated protein 4 
(CTLA-4) (15)

CD4 (activated/exhausted, Tregs), CD8 (activated/
exhausted), some tumors

CD80, CD86 Antigen-presenting cells

lymphocyte-activation protein 3 
(LAG-3) (15)

CD4 (including Treg and exhausted), CD8 (including 
exhausted), natural killer cells (NK)

MHC class II, LSECtin Antigen-presenting cells, liver, 
some tumors

T-cell immunoglobulin and mucin-
domain containing-3 (TIM-3) (16)

CD4 (Th1, Th17, Treg), CD8 (including exhausted and 
Tc1), DC, NK, monocyte, macrophages

Galectin-9, phosphatidyl serine,  
high mobility group protein B1, 
Ceacam-1

Endothelial cells, apoptotic  
cells, some tumors

T-cell immunoreceptor with Ig And 
ITIM domains (TIGIT) (16)

CD4 (including Treg, follicular helper T cells),  
CD8, NK

CD155 (PVR), CD122 (PVRL2, 
nectin-2)

APCs, T cells, some tumors
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CANCeRS evADe AND iNHibiT iMMUNe 
ReSPONSeS

In order to understand the modes of action of immune checkpoint 
inhibitors, it is important to understand the dynamic interplay 
between cancers and the immune system during the course of 
the disease.

Cancer cells are genetically unstable, which contributes to 
their uncontrolled proliferation and the expression of antigens 
that can be recognized by the immune system. These antigens 
include normal proteins overexpressed by cancer cells and novel 
proteins that are generated by mutation and gene rearrange-
ment (1). Cytotoxic CD8+ T cells are immune cells that are par-
ticularly effective at mediating anti-tumor immune responses. 
These cells may learn to recognize the tumor-specific antigens 
presented on major histocompatibility complex (MHC) class 
I molecules and thereby perform targeted tumor cell killing. 
CD8+ T  cells become licensed effector cells after appropriate 
stimulation by antigen-presenting cells that have collected 
antigens at the tumor site. Apart from the antigen peptides 
embedded on the MHC molecules, antigen-presenting cells 
must provide costimulatory signals through surface receptors 
(such as CD28) and cytokines [such as interleukin (IL)-12] for 
effective T cell stimulation (2).

Tumor cells adopt a variety of mechanisms to avoid 
immune recognition and immunomediated destruction. 
Established tumors are often thought to arise through the 
selection of clones that are able to evade the immune system, a 
process known as immunoediting (3). Tumor cells may evade 
immune recognition directly by downregulating features that 
make them vulnerable such as tumor antigens or MHC class 
I (4–6). Alternatively, tumors may evade immune responses 
by taking advantage of negative feedback mechanisms that 
the body has evolved to prevent immunopathology. These 
include inhibitory cytokines such as IL-10 and tumor growth 
factor (TGF)-β, inhibitory cell types such as regulatory T cells 
(Tregs), regulatory B  cells (Bregs), and myeloid-derived 
suppressor cells (MDSCs), metabolic modulators such as 
indoleamine 2,3-dioxygenase (IDO), and inhibitory receptors 
such as PD-1 and CTLA-4 (7, 8).

iMMUNe eXHAUSTiON CONTRibUTeS TO 
iMMUNe DYSFUNCTiON iN CANCeR

Inhibitory receptors, also known as immune checkpoints, 
and their ligands can be found on a wide range of cell types. 
They are essential for central and peripheral tolerance in that 
they counteract simultaneous activating signaling through 
co-stimulatory molecules. Inhibitory receptors may act dur-
ing both immune activation and ongoing immune responses. 
During chronic inflammation in particular, T cells are known 
to become exhausted and to upregulate a wide range of non-
redundant inhibitory receptors that limit their effectiveness, 
such as PD-1, CTLA-4, T-cell immunoglobulin and mucin-
domain containing-3 (TIM-3), lymphocyte-activation gene 
3 (LAG-3), or T-Cell immunoreceptor with Ig And ITIM 
domains (TIGIT) [See Table 1 (9–11)]. Originally described 
in the context of chronic viral infections, where the host fails 
to clear the pathogen, it is now apparent that exhausted T cells 
can also occur in cancer (12, 13). It is believed that, under 
these conditions, persistent high antigenic load leads to the 
T  cells upregulating the inhibitory receptors, whose signal-
ing subsequently leads to a progressive loss of proliferative 
potential and effector functions and in some cases to their 
deletion (14).

Exhaustion is therefore both a physiological mechanism 
designed to limit immunopathology during persistent infection 
and a major obstacle for anti-tumor immune responses (17). 
It should be noted that expression of inhibitory markers is not 
always a sign of immune exhaustion, because the receptors 
may be expressed individually during conventional immune 
responses (18).

THe iMMUNe CHeCKPOiNT ReCePTOR 
CTLA-4

The anti-CTLA-4 blocking antibody ipilimumab was the first 
immune checkpoint inhibitor to be tested and approved for 
the treatment of cancer patients (19, 20). CTLA-4 (CD152) is 
a B7/CD28 family member that inhibits T  cell functions. It is 
constitutively expressed by Tregs but can also be upregulated by 
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other T cell subsets, especially CD4+ T cells, upon activation (21). 
Exhausted T cells are also often characterized by the expression 
of CTLA-4 among other inhibitory receptors. CTLA-4 is mostly 
located in intracellular vesicles and is only transiently expressed 
upon activation in the immunological synapse before being 
rapidly endocytosed (22).

CTLA-4 mediates immunosuppression by indirectly dimin-
ishing signaling through the co-stimulatory receptor CD28. 
Although both receptors bind CD80 and CD86, CTLA-4 does 
so with much higher affinity, effectively outcompeting CD28 
(23). CTLA-4 may also remove CD80 and CD86 (including 
their cytoplasmic domains) from the cell surfaces of antigen-
presenting cells via trans-endocytosis (24), therefore reducing 
the availability of these stimulatory receptors to other CD28-
expressing T cells. Indeed, this process is an important mecha-
nism by which Tregs mediate immune suppression on bystander 
cells (25).

By limiting CD28-mediated signaling during antigen pres-
entation, CTLA-4 increases the activation threshold of T  cells, 
reducing immune responses to weak antigens such as self- and 
tumor antigens. The central role that CTLA-4 plays in immu-
nological tolerance is exemplified by experiments in mice that 
lack the CTLA-4 gene globally or specifically in the Forkhead 
box P3 (FoxP3)+ Treg compartment. These animals develop 
lymphoproliferative disorders and die at a young age (25, 26). 
Similarly, polymorphisms within the CTLA-4 gene are associated 
with autoimmune diseases in humans (27). CTLA-4 signaling has 
been shown to dampen immune responses against infections and 
tumor cells (28, 29).

THe iMMUNe CHeCKPOiNT  
ReCePTOR PD-1

The surface receptor PD-1 (CD279) was first discovered on a 
murine T  cell hybridoma and was thought to be involved in 
cell death (30). It has since become clear, however, that PD-1, 
which is homologous to CD28, is primarily involved in inhibi-
tory immune signaling, and is an essential regulator of adaptive 
immune responses (31). In both humans and mice some T cell 
populations constitutively express PD-1; one example is fol-
licular helper T  cells (32). Although most circulating T  cells 
do not express the receptor, they can be induced to do so 
upon stimulation, through the T cell receptor (TCR) complex 
or exposure to cytokines such as IL-2, IL-7, IL-15, IL-21, 
and transforming growth factor (TGF)-β (33, 34). Other cell 
types, such as B cells, myeloid dendritic cells, mast cells, and 
Langerhans cells, can also express PD-1 which may regulate 
their own and bystander cell functions under pathophysiologi-
cal conditions (35–38). PD-1 has two ligands: PD-L1 (B7-H1; 
CD274) and PD-L2 (B7-DC; CD273). Both can be found on 
the surface of antigen-presenting cells (such as dendritic cells, 
macrophages, and monocytes), but are otherwise differentially 
expressed on various non-lymphoid tissues (39, 40). Interferon 
(IFN)-γ is the main trigger known to cause PD-L1 and PD-L2 
upregulation (41).

PD-1 bears an immunoreceptor tyrosine-based inhibition 
motif (ITIM) and an immunoreceptor tyrosine-based switch 
motif (ITSM) motif on its intracellular tail. The intracellular 
signaling events initiated upon PD-1 engagement are best 
described in T  cells and are illustrated in Figure  1. In these 
cells, engagement of PD-1 causes tyrosine residues to become 
phosphorylated, starting an intracellular signaling cascade that 
mediates the dephosphorylation of TCR proximal signaling 
components (9, 42–44). Among these, CD28 has recently been 
found to be the primary target (45). In the presence of TCR 
stimulation, CD28 provides critical signals that are important for 
T cell activation. By interfering with early TCR/CD28 signaling 
and associated IL-2-dependent positive feedback, PD-1 signaling 
therefore results in reduced cytokine production [such as IL-2, 
IFN-γ, and tumor necrosis factor (TNF)-α], cell cycle progres-
sion, and pro-survival Bcl-xL gene expression, as well as reduced 
expression of the transcription factors involved in effector func-
tions such as T-bet and Eomes (42, 43, 46, 47). PD-1 activity is 
therefore only relevant during simultaneous T cell activation, as 
its signal transduction can only come into effect during TCR-
dependent signaling (39, 41, 48). Details about PD-1 signaling 
in other cell types that bear this receptor, such as B cells, remain 
to be elucidated.

Overall, PD-1 is crucial for the maintenance of peripheral 
tolerance and for containing immune responses to avoid immu-
nopathology. Mice deficient in the receptor initially appear 
healthy, but develop autoimmune diseases such as lupus-like 
proliferative glomerulonephritis and arthritis with age and 
exacerbated inflammation during infections (18, 31, 49, 50). 
Humans with genetic polymorphisms in the PD-1 locus also 
have an increased likelihood of developing various autoimmune 
diseases (51, 52).

CTLA-4, PD-1, AND THeiR LiGANDS  
iN CANCeR

CTLA-4 may be expressed in tumor lesions on infiltrating Tregs 
or exhausted conventional T cells as well as tumor cells themselves 
(53, 54). Despite the immunosuppressive role of CTLA-4, its 
association with disease prognosis is not clear; however, it should 
be noted that only a few studies have described the prognostic 
value of CTLA-4 levels in the tumor site. So far, the expression of 
CTLA-4 on tumors has been associated with decreased survival 
in nasopharyngeal carcinoma (54) and increased survival in non-
small cell lung cancer (53).

PD-1 can be upregulated transiently during stimulation 
and constitutively during chronic immune activation (17). The 
inhibitory receptor has been detected on both circulating tumor-
specific T cells and tumor-infiltrating lymphocytes, where it was 
associated with decreased T cell function in humans and mice (13, 
29, 55–57). Other cell types may also upregulate PD-1 in tumor 
lesions. PD-1-positive dendritic cells, for example, have been iden-
tified in hepatocellular carcinoma where they exhibited a reduced 
ability to stimulate T cells (37). Another study identified a popula-
tion of tumor-infiltrating PD-1-expressing regulatory B cells that 
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FiGURe 1 | Programmed cell death protein 1 (PD-1) mediated intracellular signaling events during T cell activation. (1) Upon T cell activation, the extracellular 
receptors PD-1, CD28, and the T cell receptor (TCR) complex (including CD4 or CD8) bind their ligands PD-L1 or PD-L2, CD80 or CD86, and major 
histocompatibility complex (MHC) class I or II, respectively. This brings all the receptors into close proximity with each other at the immunological synapse and allows 
them to interact with each other. (2) The Src kinase Lck (P56Lck), which is bound to the intracellular tail of CD4 and CD8, can now phosphorylate the tyrosine 
residues on the intracellular tails of PD-1 and CD28 as well as the CD3ζ chain of the TCR/CD3 complex. (3a) Phosphorylation of the immunoreceptor tyrosine-
based switch motif (ITSM) motif on the intracellular tail of PD-1 allows recruitment of the Src homology region 2 domain-containing phosphatase 2 (SHP-2), resulting 
in the activation of SHP-2 phosphatase activity. SHP-1 may also bind PD-1 but to a lesser extent than SHP-2. (3b) Simultaneously, the phosphorylated tail of CD28 
is now able to recruit PI-3K and Grb2 among other signaling molecules. (4) Through close proximity at the immunological synapse, PD-1-associated SHP-2 can 
dephosphorylate the cytoplasmic tail of CD28, and to a lesser extent that of the CD3ζ chain, therefore preventing the recruitment of further downstream signaling 
molecules associated with these molecules. SHP-2 may also dephosphorylate PD-1, causing auto-regulation of this inhibitory pathway. (5) CD28 provides critical 
signals alongside TCR stimulation, and the abrogated binding of PI3K and Grb2 to this receptor therefore leads to decreased signaling in pathways important for 
IL-2 production, survival, proliferation, and certain effector functions. In the absence of its ligands, PD-1 is not recruited to the immune synapse and can therefore 
not interfere with activation signaling. (6) The inhibitory receptor CTLA-4 primarily restricts CD28 signaling indirectly by reducing the availability of CD80 and CD86, 
to which it binds with a much higher affinity than the co-stimulatory receptor CD28. Sources (43–45).
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produced IL-10; higher proportions of these cells were correlated 
with worse disease outcome in hepatocellular carcinoma patients 
(58). Tumor-associated macrophages were also recently shown to 
express PD-1 in both mice and humans with colorectal cancer and 
to impair macrophage phagocytosis (59).

Both cancer cells and tumor-infiltrating immune cells 
(such as macrophages) may express PD-L1 and upregulate it 
in response to IFN-γ (60). PD-L1 expression may therefore be 
indicative of active anti-tumor immune responses and may also 
actively contribute to local immunosuppression. The relation-
ship between PD-1 or PD-L1 expression at the tumor site and 
disease outcome is thus not consistent among all tumor types 
and patients. High PD-1 and/or PD-L1 may correlate with 
poor prognosis in some cancers (including melanoma, renal 
cell carcinoma, esophageal, gastric, and ovarian cancers) and 

with improved prognosis in others (such as angiosarcoma and 
gastric cancer) (55, 60–65).

eFFiCACY AND MODe OF ACTiON OF 
CHeCKPOiNT iNHibiTORS

Both CTLA-4 and PD-1 checkpoint inhibitors have resulted in 
increased patient survival in a number of studies, including stud-
ies on melanoma, renal cell carcinoma, squamous cell carcinoma, 
and non-small cell lung cancer, when compared to conventional 
chemotherapies (summarized in Table  2). In melanoma, anti-
PD-1 treatment was more effective in patients with smaller 
tumors (66). A direct comparison between the two checkpoint 
inhibitors in a Phase III clinical trial found better response (44%) 
and survival rates (6.9 months progression-free survival) among 
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TAbLe 2 | Treatment outcome of clinical trials for immune checkpoint inhibitors in various cancer types.

Target Drug Condition Treatment regimen Treatment in 
control group

Objective 
response 
rate

Complete 
response 
rates

Overall 
survival 
(months)

Progression-
free survival 
(months)

Grade 
3–5 
adverse 
events

Participants 
treated (and 
controls)

Reference

Programmed 
cell death 
protein 1 (PD-
1) signaling

PD-1 Nivolumab  
(IgG4a)

Melanoma (stage III/IV) 3 mg/kg/2 weeks (vs combination 
therapy)

43.7% 8.9% n/a 6.9 16.3% 316 (67)

Renal cell carcinoma 
(metastatic)

3 mg/kg/2 weeks 10 mg/day 
Everolimus

25% (4% 
control)

1% (<1% 
control)

25.0 (19.6 
control)

4.6 (4.4 
control)

19% (27% 
control)

406 (397 
control)

(68)

Hodgkin’s lymphoma 
(relapsed/refractory)

3 mg/kg/2 weeks n/a 87% 17% n/a 86% at 
24 weeks

22% 23 (69)

Squamous-cell carcinoma 
of the head and neck 
(recurrent)

3 mg/kg/2 weeks Single-agent 
systemic therapy 
(methotrexate, 
docetaxel, or 
cetuximab)

13.3% 
(5.8% 
control)

2.5% 
(0.8% 
control)

36.0%/1 year 
(16.6% 
control)

19.7% at 
6 months 
(9.9% control)

13.1% 
(35.1%)

240 (121 
control)

(70)

Non-small cell lung cancer 3 mg/kg/2 weeks Docetaxel 19% (12% 
control)

1% (<1% 
control)

12.2 (9.4 
control)

2.3 (4.2 
control)

10% (54% 
control)

292 (290 
control)

(71)

3 mg/kg/2 weeks Docetaxel 20% (9% 
control)

1% (0% 
control)

9.2 (6 control) 3.5 (2.8 
control)

7% (55% 
control)

135 (137 
control)

(72)

Ovarian cancer 
(platinum-resistant)

1 or 3 mg/kg/2 weeks n/a 15% 10% 20 3.5 40% 20 (62)

Pembrolizumab  
(IgG4a)

Melanoma (stage III/IV) 10 mg/2 weeks or 
3 weeks

(vs ipilimumab) 33.7–32.9% 5.0–6.1% n/a 5.5–4.1 13.3–
10.1%

279–277 (73)

Merkel cell carcinoma 2 mg/kg/3 weeks n/a 56% 16% n/a 65% at 
6 months

15% 26 (74)

Non-small cell lung cancer 2 mg/kg/3 weeks
10 mg/kg/3 weeks
10 mg/kg/2 weeks

n/a 19.4% n/a 12 3.7 9.5% 495 (75)

200 mg/2 weeks  
(PD-L1 + patients only)

Platinum-based 
chemotherapy

44.8 (27.8% 
control)

n/a 80.2% at 
6 months 
(72.4% 
control)

10.3 (6 
control)

26.6% 
(53.3% 
control)

154 (154 
control)

(76)

2 or 10 mg/kg/3 weeks 
(PD-L1 + patients only)

Docetaxel 18/18% 
(9% control)

0/0% (0% 
control)

10.4/12.7 
(8.5 control)

3.9/4.0 (4.0 
control)

13/16% 
(35% 
control)

345/346 (343 
control)

(77)

Progressive metastatic 
colorectal cancer

10 mg/kg/every 2 weeks n/a 40/0% 0/0% >5 months/5 >5/2.2 41% 
overall

10/18 (78)

Pidilizumab  
(IgG1)

B cell lymphoma (after 
autologous stem cell 
transfer)

1.5 mg/42 days n/a 51% 34% 85% at 
16 months

72% at 
16 months

n/a 66 (79)
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Target Drug Condition Treatment regimen Treatment in 
control group

Objective 
response 
rate

Complete 
response 
rates

Overall 
survival 
(months)

Progression-
free survival 
(months)

Grade 
3–5 
adverse 
events

Participants 
treated (and 
controls)

Reference

Follicular lymphoma 
(relapsed)

3 mg/kg/4 weeks 
(+ rituximab)

n/a 66% 52% n/a n/a 0% 29 (80)

PD-L1 Atezolizumab  
(IgG1)

Non-small cell lung cancer 
(stage III–IV)

1,200 mg/3 weeks Docetaxel 18% (16% 
control)

2% (<1% 
control)

15.7 (10.3 
control)

2.8 (4 control) 15% (43% 
control)

425 (425 
control)

(81)

Urothelial carcinoma 
(locally advanced and 
metastatic)

1,200 mg/3 weeks n/a 23% 9% 15.9% 2.7 16% 119 (82)

T-lymphocyte-
associated 
protein 4 
(CTLA-4) 
signaling

CTLA-
4

Ipilimumab  
(IgG1) 

Melanoma (stage III/IV) 10 mg/kg plus 
decarbazine

Decarbazine 
alone

15.2% 
(10.3% 
control)

1.6% 
(0.8% 
control)

11.2 (9.1 
control)

n/a 56.3% 
(27.5%)

250 (252 
control)

(83)

3 mg/kg/3 weeks (vs 
Pembrolizumab)

11.9% 1.4% n/a 2.8 19.9% 278
315

(73)

3 mg/kg/3 weeks (vs combination 
with nivolumab)

19% 2.2% n/a 2.9 27.3% 311 (67)

Tremelimumab  
(IgG2)

Melanoma (stage III/IV) 15 mg/kg/90 days chemotherapy 
(temozolomide 
or dacarbazine)

10.7% 
(9.8% 
control)

3% (2% 
control)

12.6% (10.7 
control)

20.3% at 
6 months 
(18.1% 
control)

52% (37% 
control)

328 (327 
control)

(84)

Combination 
therapy

Nivolumab +  
 Ipilimumab

Melanoma (stage III/IV) 3 mg/kg/2 weeks 
Nivolumab
3 mg/kg/3 weeks 
Ipilimumab

(vs single) 57.6% 11.5% n/a 11.5 55% 314 (67)

Non-small cell lung cancer Nivo + Ipi: 1 + 3 or 
3 + 1 mg/ml

Nivolumab alone 23/19% 
(10% 
control)

2/0% (0%) 7.7/6 (4.4) 2.6/1.4 (1.4 
control)

30/19% 
(13% 
control)

61/54 (98 
control)

(85)

n/a: not available.
Where the median values for overall or progression-free survival were not reached within the time frame of a study and the percentage of patients surviving for a given time frame are shown instead.
The anti-PD-L1 antibodies avelimumab and durvalumab are currently undergoing early-stage clinical trials and therefore no data has yet been published on their efficacy.
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patients treated with the anti-PD-1 antibody nivolumab than 
among those treated with the anti-CTLA-4 antibody ipilimumab 
(19% and 2.8  months). Combined administration of both 
nivolumab and ipilimumab resulted in even higher response rates 
(58%) and survival (11.5 months) (67).

Both CTLA-4 and PD-1 act independently as brakes on CD3/
CD28-dependent signaling, suggesting that underlying immune 
responses are required for checkpoint inhibitor treatment to take 
effect (66). Indeed, as mentioned in the previous section, both 
PD-1 and CTLA-4 blockades are more effective in tumors that 
are infiltrated by T cells or that have high mutation rates and are 
therefore more immunogenic prior to treatment (86–88).

The direct immunological consequences of anti-PD-1 and 
anti-CTLA-4 treatments have mostly been investigated in T cells 
(Figure 2). It is thought that the blockade of CTLA-4 most likely 
impacts the stage of T cell activation in the draining lymph nodes 
when CTLA-4 expressing Tregs remove CD80/CD86 from the 
surface of antigen-presenting cells, thereby reducing their abil-
ity to effectively stimulate tumor-specific T cells (24). CTLA-4 
blockade may also take effect at the tumor site as exhausted 
CTLA-4-expressing T  cells and Tregs can accumulate within 
the tumor microenvironment (29, 53). PD-1-expressing tumor-
infiltrating T cells can be disabled by PD-L1 on the surfaces of 
tumor cells or other infiltrating immune cells, and blocking 
antibodies targeting PD-1 signaling are therefore thought to 
mainly affect the effector stage of the immune response (13, 
55–57). Since other cell types (such as dendritic cells and B cells) 
can also be influenced by PD-1 signaling, inhibition of the PD-1/
PD-L1 pathway may also have T cell-independent effects, whose 
impact on immune responses during checkpoint inhibitor 
therapy remain to be elucidated (36, 58).

Type I immune responses, which include IFN-γ produc-
tion and cytotoxic T  cell functions, are important for effective 
anti-tumor immune responses and are associated with better 
responses to anti-CTLA-4 and anti-PD-1 treatments. Indeed, 
mouse models have shown that local IFN-γ upregulation is essen-
tial for anti-PD-1-mediated tumor regression (89). Similarly, 
IFN-γ and the cytotoxic granule component granzyme B were 
increased in regressing lesions of melanoma patients after anti-
PD-1 treatment (90). Tumors in patients treated with anti-PD-1 
who initially responded and then relapsed showed mutations that 
caused a subsequent loss in MHC class I surface expression (to 
avoid cytotoxic T cell recognition) or in IFN-γ response elements 
(6). Th9 CD4+ T  cells have also been suggested to play a role 
according to a recent study that detected a significant increase in 
Th9 cell frequency in patients responding to anti-PD-1 treatment 
(91, 92).

It may be tempting to speculate that immune checkpoint 
inhibitors specifically boost the function of T cells belonging to 
the effector memory compartment, as these cells readily express 
cytotoxic molecules such as perforin and granzyme B. However, 
these cells lack the co-stimulatory receptor CD28 through 
which both PD-1 and CTLA-4 inhibit T cell function (93). Two 
recent studies have shown that it is indeed CD28-expressing 
cells rather than already terminally differentiated effector cells 
that respond to PD-1 blockade with a proliferative burst and 
differentiation (94, 95).

The characteristics of a tumor itself may also influence immune 
checkpoint inhibitor efficacy. The mutational burden of tumor 
cells may increase their antigenicity but may also enhance their 
ability to evade treatment-induced immune responses. Indeed, 
a recent study identified a melanoma gene signature associated 
with innate anti-PD-1 resistance, which included upregulation 
of genes associated with angiogenesis, wound healing, mesen-
chymal transitioning, cell adhesion, and extracellular matrix 
remodeling (96).

Commensal bacteria may also play a role in influencing the 
efficacy of immune checkpoint inhibitors. Anti-CTLA-4 treat-
ment was found to be ineffective in mice reared under sterile 
conditions and to induce a shift in the gut flora of conventionally 
reared mice. Further experiments showed that the presence of 
certain bacterial strains, in particular Bacteroides fragilis, pro-
moted Th1 polarization in the animals and was associated with 
an improved anti-tumor immune response (97). Importantly, 
antibiotic treatment was also associated with reduced responses 
to anti-PD-1/PD-L1 treatments in cancer patients, possibly 
by altering the normal gut flora. Good treatment response 
among patients was instead associated with the presence of the 
commensal Akkermansia muciniphila, which also improved 
anti-PD-1 treatment responses in mice by allowing increased 
recruitment of CCR9 + CXCR3 + CD4 + T lymphocytes into 
the tumor (98).

TReATMeNT-ReLATeD ADveRSe eveNTS 
AND THeiR MANAGeMeNT

PD-1 and CTLA-4 prevent autoimmunity and limit immune 
activation to prevent bystander damage under physiological 
conditions. Inhibition of these receptors through therapeutic 
antibodies for the treatment of cancer is therefore associated with 
a wide range of side effects that resemble autoimmune reactions. 
Rates of severe side effects vary greatly by study and treatment 
(see Table  2). Clinical trials that directly compared different 
types of immune checkpoint inhibitors and their combination 
noted that more patients experienced side effects when treated 
with anti-CTLA-4 (27.3%) compared to anti-PD-1 (16.3%). Even 
more patients were affected when treated with a combination of 
both (55%) (67).

Almost all patients treated with immune checkpoint 
inhibitors experience mild side effects such as diarrhea, fatigue, 
pruritus, rash, nausea and decreased appetite. Severe adverse 
reactions include severe diarrhea, colitis, increased alanine ami-
notransferase levels, inflammation pneumonitis, and interstitial 
nephritis (67, 73, 99). There have also been reports of patients 
experiencing exacerbation of pre-existing autoimmune condi-
tions such as psoriasis (91, 92, 100) or developing new ones such 
as type 1 diabetes mellitus (101). Particularly severe side effects 
may require cessation of treatment, although these patients may 
still respond thereafter (102). Interestingly, certain treatment-
related auto-immune reactions such as rash and vitiligo have 
been shown to correlate with better disease prognosis (103), 
suggesting an overlap between auto-immune and anti-tumor 
immune responses.

45

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FiGURe 2 | The role of programmed cell death protein 1 (PD-1) and T-lymphocyte-associated protein 4 (CTLA-4) in the priming and effector phases of anti-tumor 
immune responses. For T cell priming, dendritic cells (DCs) sample antigen at the tumor site and transport it to the draining lymph nodes, where they present the 
antigens on their major histocompatibility complex (MHC) molecules to T cells. T cells become activated if their T cell receptors recognize and bind the antigen on 
MHC complexes and their CD28 costimulatory receptors bind CD80 and CD86 on DCs. CTLA-4 upregulation on T cells or bystander Tregs can interfere with the 
CD28 signal, as the former receptor binds CD80 and CD86 with higher affinity. Once activated, T cells migrate to the tumor site in order to kill malignant cells. 
Tumors or bystander cells such as macrophages may, however, upregulate PD-L1 and therefore obstruct T cell function by inducing inhibitory intracellular signaling. 
Anti-CTLA-4 blocking antibody may therefore restore T cell priming in the lymph nodes, and the PD-1 signaling blockade may enable T cell effector function at the 
tumor site. Additionally, other cell types such as Breg cells and DCs in the tumor microenvironment may express PD-1 and therefore be affected by PD-1 blockade. 
PD-1 and CTLA-4 blockade may also affect T helper cell profiles directly or by influencing the microbiota.
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biOMARKeRS OF ANTi-PD-1/CTLA-4 
TReATMeNT eFFiCACY

Biomarkers are needed both before and during treatment to 
identify the patients most or least likely to respond to immune 
checkpoint inhibitor treatments in order to reduce inappropriate 

drug exposure. Treatment response is defined as a reduction in 
tumor size during the course of treatment. A number of factors 
associated with disease prognoses in untreated patients are also 
linked to immune checkpoint inhibitor response rates (Table 3). 
For example, patients with smaller tumors or low serum lactate 
dehydrogenase (LDH) levels at baseline have a better prognosis 
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TAbLe 3 | Biomarkers associated with favorable responses to immune checkpoint inhibitors.

Pre-treatment Post-treatment

Tumor Tumor size and distribution (66) Reduction in tumor size
High mutation burden but no innate anti-PD-1 resistance (IPRES) gene  
signature (78, 86, 87, 96)
PD-L1 expression on tumor cells (only confirmed by some but not all  
studies) (67, 108)

Tumor-infiltrating immune cells Presence of CD8 + T cells inside the tumor or at the tumor margin (88) Proliferation of intratumoral CD8 + T cells (88)
PD-L1 expression by infiltrating cells (77)
Increased Th1- and CTLA-4-associated gene expression (77).

Circulation High relative lymphocyte counts (109) Increased levels of ICOS + T cells (110)
High relative eosinophil counts (109) Low neutrophil-to-lymphocyte ratio (110)
High serum TGF-β levels (91, 92) High levels of Th9 cells
Low serum LDH levels (66, 109) A reduction in serum LDH levels (104)
Low levels of ctDNA (107) A reduction in ctDNA (107)

Host genome Presence of HLA-A*26 allele (111)
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and are also more likely to respond to anti-PD-1 treatment (66). 
A reduction in LDH levels after treatment is also associated with 
improved response (104). Circulating tumor DNA (ctDNA), 
which contains melanoma-associated mutations and can be 
released by dead tumor cells, can be detected in the serum of 
some patients. CtDNA levels correlate strongly with tumor bur-
den and progression (105, 106). A recent study in advanced stage 
melanoma patients treated with anti-PD-1 (alone or in combina-
tion with anti-CTLA-4) showed high treatment response rates in 
individuals that were ctDNA negative prior to or after treatment 
(107), making serum ctDNA an attractive biomarker before and 
during immune checkpoint treatment.

For anti-PD-1 treatments, expression of PD-L1 within the 
tumor microenvironment has been an obvious biomarker candi-
date. Although PD-L1 expression on tumor cells was correlated 
with treatment efficacy in melanoma patients (67, 108), it was not 
in patients with squamous cell carcinoma, non-small cell lung 
cancer and Merkel cell carcinoma (70, 72, 74). Interestingly, one 
study assessing the role of PD-L1 in both cancer cells and tumor-
infiltrating immune cells found that only in the latter context was 
anti-PD-L1 treatment efficiency correlated with PD-L1 expres-
sion (77).

The presence of neoantigens on mutated tumor cells boosts 
anti-tumor immunogenicity and improves treatment efficacy. 
High genetic disparity between tumor cells and host cells is 
therefore an indicator of checkpoint inhibitor treatment efficacy. 
This was particularly noted in anti-CTLA-4-treated melanoma 
patients whose tumors displayed neo-antigens (87) and similarly 
in anti-PD-1-treated patients with colorectal cancers or non-small 
cell lung cancers that were mismatch-repair deficient or had high 
mutation rates, respectively (78, 86). Although overall mutational 
burden is associated with improved response to anti-PD-1 treat-
ment, reduced responses were detected in melanoma patients 
whose tumors displayed the IPRES gene signature (96). Antigen 
presentation by the host may also play a role during anti-PD-1 
treatment, as patients with the HLA-A*26 were more than twice 
as likely to respond than patients negative for the allele (111).

Other pre-treatment immunological factors associated with 
improved treatment responses include high eosinophil and 

lymphocyte blood counts, an abundance of CD8+ T cells infil-
trating the tumor or present at the tumor margin, and increased 
serum TGF-β levels in melanoma patients treated with anti-PD-1 
(88, 91, 92, 109). Increased Th1 and CTLA-4 (but not FoxP3) 
gene expression levels were also noted in responder patients 
with various solid tumors (including melanoma) treated with 
anti-PD-L1 (77).

A number of post-treatment immunological observations 
have also been associated with improved immune-checkpoint 
inhibitor responses. For example, patients more likely to respond 
to anti-CTLA-4 treatment had increased numbers of inducible 
co-stimulatory molecule (ICOS) expressing T  cells and lower 
neutrophil-to-lymphocyte ratios (110). An increase in CD8+ 
T  cell proliferation within the tumor lesion and an increased 
frequency of Th9 cells in the patients’ circulation were also associ-
ated with treatment response (88, 91, 92).

Taken together, many of these studies indicate that immune 
checkpoint inhibitors are most effective in patients who 
already display anti-tumor immune processes prior to therapy. 
However, not all biomarkers listed here may be equally effective, 
and patients may still respond to treatment despite contrary 
biomarker-based predictions. Further, accessing tumor tissue 
may be difficult in many patients, especially after treatment, and 
less invasive blood-based “liquid biopsies” may therefore be more 
appropriate. Importantly, it has been shown that investigating 
several biomarkers in combination can improve treatment pre-
dictions (109). Although the recently discovered ctDNA seems 
to be a particularly promising biomarker candidate, more studies 
are needed to identify more effective biomarkers or biomarker 
combinations, in order to devise the most appropriate treatment 
strategy for each patient.

LiMiTATiONS OF iMMUNe CHeCKPOiNT 
iNHibiTORS

Although immune checkpoint inhibitor treatment may be effec-
tive initially, many patients will eventually relapse and develop 
tumor progression. A number of studies have therefore sought 
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to understand the mechanisms by which anti-PD-1 and anti-
CTLA-4 treatments lose their efficacy.

The selection pressure caused by checkpoint inhibitor treat-
ment may give rise to tumor cells that can evade immunomedi-
ated recognition and deletion through new pathways. Tumor cells 
from patients refractory to anti-PD-1 treatment, for example, 
were recently shown to have acquired mutations making them 
less susceptible to T  cell-mediated killing via loss of IFN-γ 
response elements or MHC class I (6).

Anti-PD-1 or anti-CTLA-4 treatment may also cause upregu-
lation of other inhibitory receptors. For example, patients with 
melanoma or prostate cancer exhibited upregulation of the 
inhibitory receptor V-domain Ig suppressor of T cell activation 
(VISTA) on various tumor-infiltrating immune cells after anti-
CTLA-4 treatment (112). Another study noted the upregulation 
of the inhibitory receptor TIM-3 (but not VISTA) on the surface 
of T  cells in anti-PD-1-treated mice with lung cancer as well 
as TIM-3 upregulation on T  cells in adenocarcinoma patients 
refractory to PD-1 treatment (113).

Most recently, a study revealed another unexpected resistance 
mechanism to anti-PD-1 therapy in mice whereby tumor-
associated macrophages removed the therapeutic antibody from 
the surface of the T cells in vivo, thus making them once again 
susceptible to inhibitory signaling through the receptor. This 
phenomenon could be partially overcome by administration of 
Fc-receptor blocking agents prior to treatment (114). A better 
understanding of the mechanisms limiting the effectiveness of 
immune checkpoint inhibitors will therefore allow improvement 
of future treatments.

FUTURe AveNUeS: eXPANDiNG THe 
iMMUNe CHeCKPOiNT iNHibiTOR 
TReATMeNT RePeRTOiRe

PD-1 and CTLA-4 blocking agents are not effective in all patients, 
and even those patients who do respond initially can relapse, 
highlighting the need for improved or alternative treatments. 
Alternative inhibitory receptors have been identified that may 
also be targeted for anti-tumor immune therapy. These include 
the TIM-3, LAG-3, TIGIT, and B- And T-Lymphocyte-Associated 
Protein (BTLA) receptors associated with T  cell exhaustion as 
well as VISTA, a receptor found on tumor-infiltrating myeloid 
cells, whose inhibition promoted anti-tumor immune responses 
in murine models, and CD96, which has been shown to inhibit 
NK cell activity in murine cancer models (115–117).

Combinations of immune checkpoint inhibitors with each 
other or with other treatments are also being explored. Indeed, 
the combination of anti-CTLA-4 with anti-PD-1 treatments 
showed superior efficacy compared to individual administra-
tion, but was also associated with an increase in side effects. 
The tryptophan-metabolizing enzyme IDO inhibits T  cell 
function, and combining IDO-blocking agents together with 
immune checkpoint inhibitors has shown promising results in 
mice and is also currently undergoing clinical trials in humans 
(105, 118). Macrophages may also interfere with anti-tumor 
immunity or even directly restrict therapeutic antibodies (114). 

Their depletion through a Colony stimulating factor-1 receptor 
(CSF-1R) inhibitor is therefore being explored in clinical trials 
together with anti-PD-1, after having shown efficacy in a glioblas-
toma mouse model (119). Anti-tumor T  cell function induced 
by PD-1 blockade in mice could also be improved by a targeted 
increase in mitochondrial function (120).

Because immune checkpoint inhibitors work by removing 
brakes on the immune system rather than directly boosting 
immune function, patients may also benefit from combination 
therapies that include immunostimulatory substances. Mouse 
melanoma models, for example, have shown that the combination 
of anti-CTLA-4 with cytokines such as granulocyte-macrophage 
colony-stimulating factor (GM-CSF) or with agonistic antibod-
ies targeting costimulatory receptors such as CD40, increased 
tumor rejection in a synergistic manner (121, 122). The geneti-
cally modified herpes simplex virus talimogene laherparepvec is 
designed to replicate in tumor cells and to release GM-CSF, thus 
attracting immune cells into the tumor environment. The virus 
has been tested in recent clinical trials in combination with either 
CTLA-4 or PD-1 in advanced-stage melanoma patients, resulting 
in increased treatment response rates compared to the immune 
checkpoint inhibitors alone (123, 124).

Even modulation of the gut microbiome may improve 
immune checkpoint inhibitor-based therapies. Administration 
of intestinal Bifidobacteria alone was associated with reduced 
tumor growth in a murine B16 melanoma model by promoting 
dendritic-cell mediated CD8+ T cell responses. Importantly, the 
administration of these bacteria also added to the therapeutic 
effect of anti-PD-1 treatment in these mice (125). In a similar 
study, administration of B. fragilis to sterile mice treated with 
anti-CTLA-4 resulted in reduced tumor growth, most likely by 
inducing a favorable shift toward Th1 responses (97). Studies in 
humans were further able to link the presence of fecal A. mucin-
iphila, Ruminococcaceae, and Faecalibacterium to a favorable out-
come to anti-PD-1 treatment (98, 126) Together, these findings 
suggest that human patients too may benefit from appropriate 
management of their intestinal flora while undergoing immune 
checkpoint inhibitor treatment.

A wide range of promising new avenues are therefore currently 
being explored, although their clinical efficacy remains to be 
confirmed by ongoing and future clinical trials.

CONCLUDiNG ReMARKS

Although PD-1 and CTLA-4 targeting therapies have been able 
to increase average life expectancy for cancer patients, mortality 
remains high among advanced-stage patients, highlighting the 
need for further innovation in the field. Both anti-PD-1 and anti-
CTLA-4 therapies appear to be more effective in patients with 
pre-existing anti-tumor immunity, suggesting that, in patients 
without such immunity, these drugs are unable to mediate anti-
tumor immune responses de novo. However, as our understand-
ing of the mechanisms of these drugs improves, avenues are being 
opened to improve their use not only by specifically targeting 
those patients who are most likely to respond through appropri-
ate biomarker screening procedures, but also by pairing currently 
used immune checkpoint inhibitors with other complimentary 
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Cutaneous squamous cell carcinoma (SCC) is one of the common cancers in 
Caucasians, accounting for 20–30% of cutaneous malignancies. The risk of metastasis 
is low in most patients; however, aggressive SCC is associated with very high mortality 
and morbidity. Although cutaneous SCC can be treated with surgical removal, radiation 
and chemotherapy singly or in combination, the prognosis of patients with metastatic 
SCC is poor. Recently, the usage of immune checkpoint blockades has come under 
consideration. To develop effective therapies that are less toxic than existing ones, it 
is crucial to achieve a detailed characterization of the molecular mechanisms that are 
involved in cutaneous SCC pathogenesis and to identify new drug targets. Recent 
studies have identified novel molecules that are associated with SCC carcinogene-
sis and progression. This review focuses on recent advances in molecular studies 
involving SCC tumor development, as well as in new therapeutics that have become 
available to clinicians.

Keywords: cyclin-dependent kinase, mitochondria, Drp1, PD-1 antibody, epidermal growth factor receptor

iNTRODUCTiON

In light of today’s demographic aging, skin cancer is becoming more prevalent. Cutaneous squa-
mous cell carcinoma (SCC) is one of the most common cancers in Caucasian populations, and its 
prevalence is increasing (1). Cutaneous SCC accounts for 20–30% of cutaneous malignancies (2, 3). 
The risk of metastasis is low in most patients (2); however, aggressive SCC is associated with high 
morbidity and mortality (4). Although cutaneous SCC can be treated with surgery, radiation, and 
chemotherapy singly, or in combination, the prognosis of patients with metastatic SCC is almost 
always poor (3, 5). Today, chemotherapy with cisplatin alone or combined with 5-FU is being 
conducted with positive responses (6–9). However, the National Comprehensive Cancer Network 
Guidelines describe the evidence regarding systemic therapies for distant metastatic cutaneous 
SCC as limited. Recently, clinical trials on epidermal growth factor receptor (EGFR) inhibitors and 
immune checkpoint blockers have shown promising results as treatments for SCC (10–12). This 
review focuses on recent advances in molecular studies related to SCC tumor development and on 
new therapeutics that have become available.

ReCeNT PROGReSS iN CUTANeOUS SCC THeRAPeUTiCS

Novel Targeted Therapies
Cutaneous SCC overexpresses EGFR; thus, EGFR is a promising target for therapies. Cetuximab, 
an EGFR inhibitor, has been administered to cutaneous SCC patients. In some phase II studies, 
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there have been good responses to cetuximab in patients with 
locally advanced or regional SCC types (10, 13–15). However, 
in distant metastatic diseases, it has been reported as ineffec-
tive. Also, tyrosine kinase inhibitors have been used to disrupt 
EGFR pathways. Case reports on gefetinib and imatinib have 
described slightly positive responses in cutaneous SCC patients 
(16, 17). Also, a single-arm phase II clinical trial has shown 
gefetinib to demonstrate modest antitumor activity in meta-
static or locoregionally recurrent cutaneous SCC, with limited 
adverse events (18). Furthermore, bortezomib, a selective 
inhibitor of the 26S proteasome, may have antitumor effects 
in cutaneous SCC, although the mechanisms have not been 
clarified (19).

Biological Modifiers
30 years ago, isotretinoin was reported to have efficacy as a treat-
ment for local advanced cutaneous SCC alone or in combination. 
Interferons have also been used for local cutaneous SCC. A phase 
II study on bio-chemotherapy with interferons, retinoids, and 
cisplatin showed a positive response in 67% of locally advanced 
SCC cases (20). However, the efficacy against metastatic cases 
remains unclear.

Cytotoxic Chemotherapy
Regrettably, recent advances in cytotoxic chemotherapy have 
been limited. Capecitabine, an oral prodrug of 5-FU, has been 
used to treat cutaneous SCC (21). In head and neck SCC cases, 
intra-arterial chemotherapy has been conducted as a neoadjuvant 
therapy (22). To date, in cutaneous SCC, no obvious evidence for 
positive responses has been reported, even though some cases 
have been described in limited detail (23).

immune Checkpoint inhibitors
Recently, the US FDA approved PD-1 inhibitors (immune 
checkpoint inhibitors) for head and neck SCCs with continued 
progression during or after platinum chemotherapy (24, 25). 
For cutaneous SCC, several case reports have shown immune 
checkpoint inhibitors to have promising results. Patients with 
advanced cutaneous SCC responded to anti-PD-1 (nivolumab 
and pembrolizumab), and anti-CTLA-4 (ipilimumab) agents 
(26–29).

Radiation with Chemotherapies or 
immunotherapies
Platinum-based chemotherapy has been combined with local 
radiation. Cisplatin-based chemotherapy combined with concur-
rent radiation showed better results than cisplatin only (13, 30). 
Neoadjuvant chemotherapies before radiation were also reported  
to have promising results (31). Recently, the abscopal effect during 
radiation therapy after the administration of immune checkpoint 
inhibitors has been spotlighted. This effect is a phenomenon in 
which local radiotherapy is associated with the regression of 
metastatic cancer at a distance from the irradiated site (32). To 
date, abscopal effects have been observed in melanoma patients 
but not in cutaneous SCC. It is not clear whether these effects 
will occur in cutaneous SCCs; however, combined therapies of 

immune checkpoint inhibitors and radiation might have a syn-
ergistic effect.

Other Candidates
Human Papilloma Virus (HPV) in Cancer Cells
Until recently, the role of HPV in cutaneous SCC was not well 
defined. However, a meta-analysis has found evidence that 
HPV is associated with cutaneous SCC (33). This systematic 
review indicated that cutaneous SCC harbors HPV more than 
normal skin does. Furthermore, an increase in HPV prevalence 
has been observed in SCC tumors from immunosuppressive 
patients. A study using an animal model showed that the 
interaction between UVB and HPV infection strongly promotes 
the development of cutaneous SCC (34). Furthermore, several 
targeted therapies for HPV-associated head and neck SCC have 
been tried (35); thus, HPV might be a promising target for 
cutaneous SCC as well.

MicroRNAs (miRs) in Cancer Cells
MicroRNAs are short, non-coding RNAs that suppress the 
expression of target genes. miRs can regulate various gene 
targets, and they play a crucial role in biological mechanisms 
(36). Certain miRs are associated with the onset and progres-
sion of cancers, suggesting that miRs could be targets for cancer 
therapies. In cutaneous SCC, several miRs are reported to be 
overexpressed or downregulated (36). miR-21 and miR-31  
are upregulated in cutaneous SCC. The targets of these miRs 
are PDCD4/GRHL3/PTEN and RhoTBT1, respectively  
(36, 37). To inhibit the undesirable effects of up-regulated miRs, 
the administration of complementary nucleic acids might be 
a potential cancer therapy. By contrast, miR-1, miR-34a, and 
miR-124 are downregulated in cutaneous SCC (36). These 
miRs target important molecules of cell proliferation, which 
tend to be activated in cancer cells. Thus, promoting the 
over-expression of these miRs could be an option for cancer 
therapies. Furthermore, various miR delivery systems have 
been developed. Cheng et  al. reported on pHLIP-mediated 
miR delivery methods, in which miRs could be transported 
across plasma membranes under the acidic conditions found 
in solid tumors (38). As such, miRs are also promising targets 
for cutaneous SCC as well as other tumors.

Cyclin-Dependent Kinase (Cdk) 16 in Cancer Cells
Recently, Cdk4/Cdk6 inhibitor (palbociclib) showed promis-
ing results for metastatic breast cancer (39, 40). Some Cdks 
are overexpressed in cutaneous SCC; thus, Cdk inhibitors may 
become a novel therapy option. Among Cdks, we have focused 
on cyclin-dependent kinase 16 (Cdk16) (also known as PCTK1, 
PCTAIRE1) and investigated its molecular functions. Cdk16 
is a member of the Cdk family (41). Molecular functions for 
CDK16 are reported to vesicular transport (42) and spermato-
genesis (43).

To investigate the role of Cdk16 in cancerous cells, we 
performed gene-knockdown experiments targeting Cdk16 
(44–47). In cell lines of cutaneous SCC, prostate cancer, breast 
cancer, cervical cancer, and melanoma, knockdown of Cdk16 
inhibited cancer cell proliferation, and induced apoptosis over 
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FiGURe 1 | Model of the tumorigenic role of cyclin-dependent kinase 16 
(Cdk16). In normal tissue (left), Cdk16 is required for spermatogenesis and 
neuron differentiation. In cancer cells, including cutaneous squamous cell 
carcinoma (SCC) cells (right), Cdk16 phosphorylates p27 at Ser10, thereby 
promoting p27 ubiquitination/degradation, which leads to cell cycle 
progression and decreased levels of apoptosis. An unknown mechanism 
may also exist in the Cdk16–apoptosis pathway. Lipid nanoparticle-mediated 
siRNA (LNP-siRNA) therapy against Cdk16 recently succeeded in a murine 
xenograft model.

FiGURe 2 | Diagram of dynamin-related protein 1 (Drp1) function in 
cutaneous squamous cell carcinoma (SCC) cells. MAPK signaling activates 
Drp1 via the phosphorylation of Drp1. The overexpression of Drp1 induces 
mitochondrial fission, which results in cell growth and assists cell cycle.
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time. But, no role for Cdk16 was observed in the proliferation 
of non-transformed cells (IMR-90 and HaCaT cells). To iden-
tify target molecules of Cdk16, we performed yeast two-hybrid 
screens with human Cdk16 protein as bait. We identified 
tumor suppressor p27 as a Cdk16 interactor and demonstrated 
that Cdk16 phosphorylates p27 at Ser10 by in  vitro kinase 
assays (46). The knockdown of Cdk16 modulated p27 (Ser10) 
phosphorylation, leading to p27 accumulation in cancerous 
cells. In tumor xenografts of cutaneous SCC cells, the induc-
ible conditional knockdown of Cdk16 suppressed tumor 
growth (47).

To evaluate the clinical importance of Cdk16, we also studied 
primary tumor samples In primary tumors from the patients 
with breast, prostate, cutaneous basal, or SCCs, Cdk16 was 
expressed more highly in cancer lesions than in normal tissues 
(46–48). In prostate cancers, a comparison of Cdk16 immu-
nostaining with Gleason grade revealed lower expression levels 
in well-differentiated tumors than in less- differentiated tumors 
(46). In breast cancers, Cdk16 expression was elevated in in situ 
carcinomas and invasive cancers relative to the expression in 
normal mammary epithelium. The significantly higher levels of 
Cdk16 protein that are seen in invasive cancers are associated 
with higher histologic grades (46). Moreover, we showed that 
gene knockdown of Cdk16 sensitizes cancer cells to TNF-family 
cytokines, such as Fas-ligand and TNF-related apoptosis-
inducing ligand (49).

To advance in  vitro results on Cdk16 silencing, we inves-
tigated the in  vivo therapeutic potential by using siRNA 
encapsulated with lipid nanoparticles (LNP) (50). Therapy of 
Cdk16 siRNA was performed using colorectal cancer HCT116 
cells and melanoma A2058 cells. Treatment with Cdk16 siRNA-
LNP reduced tumor volume and weight significantly. TUNEL 
staining showed increased apoptosis of cancer cells treated with 
Cdk16 siRNA.

These findings show an expected role for Cdk16 in regulat-
ing p27 expression and tumor proliferation (Figure  1). We 
observed these functions for Cdk16 in various cancer cells 
(cutaneous SCCs; basal cell carcinomas; prostate, breast, 
and cervical cancers; and melanomas). This implies that the 
p27 regulation by Cdk16 is a common machinery in human 
cancers.

Dynamin-Related Protein 1 (Drp1) in Cancer Cells
We have also focused on the mitochondria-associated molecule 
Drp1 (51). Drp1 regulates mitochondrial fission. Recently, 
it was found to be associated with cancer cell proliferation in 
melanoma and lung cancer (52, 53). Disrupted mitochondrial 
networks induce cell cycle arrest and apoptosis (53, 54). Also, 
Drp1 has been reported as a prognostic factor in several 
malignancies, such as lung adenocarcinomas and glioblastomas 
(55, 56). Based on these previous studies, we investigated the 
role of Drp1 in cutaneous SCCs. Drp1 gene-knockdown SCC 
cells showed lower cell proliferation than control cells, as 
assessed by cell counting and clonogenic assays. DNA content 
Cell Cycle analysis showed Drp1 knockdown to cause G2/M 
phase arrest. Morphologically, the depletion of Drp1 resulted 
in an elongated mitochondrial network. The MEK inhibitor, 

PD325901, inhibited cell proliferation, as well as inhibiting 
the phosphorylation of ERK1/2 and Drp1 (Ser616). PD325901 
also caused the dysregulation of the mitochondrial network. In 
tumor xenografts of DJM1 SCC cells, the knockdown of Drp1 
suppressed tumor growth in  vivo. Clinically, the expression 
levels of Drp1 were higher in cutaneous SCC specimens than 
in normal epidermis, and those levels correlated positively with 
advanced clinical stages. Our data reveal a pivotal function for 
Drp1 in mediating tumor growth, mitochondrial fission, and cell 
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cycle in cutaneous SCCs (Figure 2), suggesting that Drp1 could 
be a novel target for cutaneous SCC therapies.

CONCLUDiNG ReMARKS

In the past 10  years, novel therapeutic agents for cutaneous 
SCC have been developed. EGFR inhibitors and immune 
checkpoint inhibitors have shown particularly promising results. 
Furthermore, these novel treatments can be used a monothera-
pies or in combination with radiation; thus dermatologists and 
oncologists will be able to choose better treatments depending on 
conditions of the patient and the stage of the disease. Also, novel 
targeting molecules and inhibitors have been developed.
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Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer with frequent metas-
tasis and death. MCC has a mortality rate of 30%, making it more lethal than malignant 
melanoma, and incidence of MCC has increased almost fourfold over the past 20 years 
in the USA. MCC has long been considered to be an immunogenic cancer because it 
occurs more frequently in immunosuppressed patients from organ transplant and HIV 
infection than in those with immunocompetent. Chronic UV light exposure and clonal 
integration of Merkel cell polyomavirus (MCPyV) are two major causative factors of 
MCC. Approximately 80% of MCC are associated with MCPyV, and T cells specific for 
MCPyV oncoproteins are present in the blood and tumors of patients. Several studies 
have shown that a subset of MCCs express PD-1 on tumor-infiltrating lymphocytes and 
express PD-L1 on tumor cells, which suggests an endogenous tumor-reactive immune 
response that might be unleashed by anti-PD-1 or anti-PD-L1 drugs.

Keywords: PD-1, PD-L1, Merkel cell carcinoma, Merkel cell polyomavirus, Uv

BACKGROUND

Merkel cell carcinoma (MCC) is a rare but highly aggressive neuroendocrine skin cancer, which 
was described for the first time in 1972 as trabecular carcinoma of the skin (1). Based on the ultra-
structural proof of neuroendocrine granules and the expression of CK20 and CD56 (2–4), Merkel 
cells were considered to be the source of MCC. However, the cells of origin of MCC remain a con-
troversial issue. Recent studies have suggested the origin of MCC may reside in epidermal/dermal 
stem cells in the dermis (5) or in precursor B cells (6, 7). The incidence of MCC is rising steadily 
and more than one-third of patients die of MCC, making it twice as lethal as malignant melanoma 
(8). Risk factors for MCC include fair skin, chronic sun exposure, chronic immune suppression, and 
advanced age (9–12). In the USA, age-adjusted incidence increased from 0.15 to 0.44 per 100,000 
from 1986 to 2004 (13). Consistent with other UV-related skin cancers, incidence rate of MCC in 
Queensland, Australia is higher than those in the rest of the world (age-adjusted incidence of 1.6 per 
100,000) (14). The incidence of MCC in Asia is thought to be low, although no population-based data 
are available (15, 16). The majority of MCC is associated with Merkel cell polyomavirus (MCPyV), 
while the remaining is triggered by UV-mediated mutations (17, 18). MCPyV DNA integrates into 
the host genome of approximately up to 80% of MCCs in the northern hemisphere, whereas its pres-
ence is much lower in other geographic regions such as Australia (~30%) (17, 19). Since several lines 
of evidence indicate the outstanding immunogenicity of MCC, irrespective of MCPyV integration, 
immune modulating treatment strategies are particularly attractive. Promising results from immune 
checkpoint inhibitor therapy in first and second line are now available, which expands the treatment 
armamentarium for MCC patients.

CLiNiCAL AND HiSTOLOGiCAL FeATUReS

Merkel cell carcinoma presents as a firm, painless, rapidly enlarging, red-violet cutaneous nodule 
with a smooth surface. The most frequently affected site is the head and neck region (50%), followed 
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by the trunk (30%) and the limbs (10%), although MCC may 
arise in any body site, including the mucosae (20–22). Heath 
et al. developed the AEIOU acronym to define the clinical fea-
tures associated with MCC: asymptomatic/lack of tenderness, 
expanding rapidly, immune suppression, older than age 50, 
and UV-exposed site on a person with fair skin. In a study of 
195 patients, 89% presented with three or more of the AEIOU 
characteristics (23). MCC originates in the dermis and only occa-
sionally exhibits an epidermal involvement. Histopathological 
characteristics of MCC include a monotonous population of 
tumor cells with large prominent nuclei and scant cytoplasm 
(24). Immunohistochemically, MCC is positive for EMA, CK20 
with a perinuclear dot staining pattern, and neuroendocrine 
markers including synaptophysin and chromogranin (3, 25–27). 
Metastatic pulmonary small cell carcinoma can be excluded 
when the tumor cells prove negative for TTF-1 (28). Unknown 
primary MCC, which usually presents clinically positive nodal 
disease with unidentified primary tumor, are likely to have a sig-
nificantly improved survival compared to those with concurrent 
primary tumor (29–32). Recent reports showed that unknown 
primary MCC had higher tumor mutational burden and lower 
association with MCPyV than those with known primary (33), In 
addition, nodal tumors from unknown primary MCC contained 
abundant UV-signature mutations (33), suggesting underlying 
immunological mechanism between regression of primary 
tumor and better prognosis of unknown primary MCC.

eTiOLOGY

Like Kaposi’s sarcoma, immunocompromised patients with T-cell 
dysfunction are more likely to be affected by MCC. For example, 
patients with AIDS have an incidence rate that is 11–13 times 
greater compared with the general population (11), and solid 
organ transplant recipients are 5–10 times more likely to develop 
MCC (34, 35). Also, case reports have described spontaneous 
regression of MCC tumors after biopsy or an improvement in 
immune function, further indicating a link to the immune system 
(36–39). These data collectively suggested that MCC may be 
linked to a pathogen and in 2008, MCPyV was discovered, and 
it is now clear that this virus plays a key role in the majority of 
MCC cases (17).

Merkel cell polyomavirus is a member of the polyomavirus 
family comprised of non-enveloped, double-stranded circular 
DNA viruses. MCPyV-specific antibodies have been detected 
in 9% of children under 4 years of age, 35% of teenagers, and 
80% of individuals 50 years or older (40), suggesting that it may 
be part of the cutaneous microbiome (41). Interestingly, despite 
this high prevalence, MCPyV has not been shown to cause any 
disease other than MCC (42). MCPyV-related oncogenesis 
requires integration of the viral genome into the host-genome 
and mutation of the large T (LT) antigen that is required for viral 
DNA replication (43). Indeed, MCPyV isolated from MCCs, 
in contrast with MCPyV from non-tumor sources, present 
mutations that are responsible for the premature truncation of 
the MCV LT helicase (43, 44). These mutations do not affect 
the Rb binding domain, but eliminate the capacity of the viral 
DNA to replicate. In this way, the virus loses its capability to 

replicate in MCC tumor cells, but continues to express motifs 
that may potentially lead to uncontrolled proliferation (43, 45). 
Prognostic significance of tumor viral status is still controver-
sial, but the largest cohort study so far including 282 MCC cases 
(281 cases with available clinical data) showed that, relative 
to MCPyV-positive MCC patients, MCPyV-negative MCC 
patients had significantly increased risk of disease progression 
(hazard ratio = 1.77, 95% confidence interval = 1.20–2.62) and 
death from MCC (hazard ratio =  1.85, 95% confidence inter-
val =  1.19–2.89) in a multivariate analysis including age, sex, 
and immunosuppression (46).

Merkel cell carcinoma development is also linked to expo-
sure to UV radiation, and primary MCC lesions preferentially 
develop on sun-exposed skin (20, 21). The incidence of MCC 
was determined to be 100-fold greater in patients who under-
went PUVA treatment (47). MCPyV-negative MCC is among 
the most mutated of all solid tumors, including melanoma (18, 
48–50). These mutations are mostly UV-signature mutations, 
such as p53 and Rb, commonly resulting in loss of functional 
protein expression (18, 49). The high mutational burden in 
MCC correlates to frequent amino acid changes and large 
numbers of UV-induced neoantigens (49). Despite significant 
genetic differences, both MCPyV-positive and -negative MCC 
exhibit nuclear accumulation of oncogenic transcription fac-
tors such as NFAT, phosphorylated CREB, and phosphorylated 
STAT3, indicating commonly deregulated pathogenic mecha-
nisms (50).

TReATMeNT

For patients with locoregional MCC, wide excision and/or com-
plete lymph node dissection and/or adjuvant radiation therapy is 
usually recommended (51). Sentinel lymph node biopsy should 
be considered for patients with clinically nodal negative patients, 
although its impact on overall survival is still unclear (51–53).

Although cytotoxic chemotherapy (carboplatin or cisplatin 
plus etoposide) has been commonly used to treat patients with 
advanced MCC, responses are rarely durable and few studies 
have shown a survival benefit (54–57). Early studies showed that 
levels of intratumoral CD8+ T cells serve as predictors of MCC-
specific survival, with 100% survival reported for patients with 
the highest level of CD8+ infiltrate compared to 60% survival in 
those with little or no CD8+ infiltration (58, 59). Then MCPyV 
oncoprotein-specific cells were found to be present in MCC 
patient blood and enriched in their tumors (60), whose frequency 
appears to increase with tumor burden (61). Importantly, signs of 
dysfunction were evident in MCPyV-specific CD8+ T cells from 
patients, as they expressed both PD-1 and Tim3, suggesting func-
tional exhaustion (61). MCPyV-negative MCC is also associated 
with high levels of T-cell infiltrates (18). Although both MCPyV-
positive and -negative tumor cells express PD-L1, the expression 
levels of PD-L1 in virus-positive tumors seem to be higher than 
those in virus-negative tumors (18, 62). These findings, therefore, 
provide rationale for immunotherapy targeting the PD-1 pathway 
in advanced MCC.

A multicenter, phase 2, non-controlled clinical trial studied 
pembrolizumab (anti-PD-1 Ab) 2  mg/kg every 2  weeks in 
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26 patients with advanced MCC who had not received prior 
systemic therapy. The objective response rate (ORR) to pem-
brolizumab among the 25 patients with at least one evaluation 
during treatment was 56% including a 16% complete response 
(CR) rate. Of the 14 responsive patients, the response dura-
tion ranged from at least 2.2  months to at least 9.7  months. 
Overall, the trial had an estimated progression free survival 
(PFS) of 67% at 6  months. Pembrolizumab was effective in 
both MCPyV-positive and -negative tumors (ORR 62 and 44%, 
respectively, not significantly different) (63). The preliminary 
data from this trial led to pembrolizumab being listed as a 
treatment option for disseminated disease in the 2017 NCCN 
guidelines for MCC (64).

A multicenter, international, open-label, phase 2 clinical trial 
studied avelumab (anti-PD-L1 Ab) in 88 patients with distant 
metastatic disease who had previously received at least one line 
of chemotherapy. This trial found an ORR of 33% with a CR rate 
of 11%. At 6  months, PFS was 40% and the estimated PFS at 
1 year was 30%. As with pembrolizumab, avelumab was found 
to be effective in both MCPyV-positive and -negative tumors 
(ORR 26 and 35%, respectively, not significantly different) (65). 
Based on these results, FDA granted an accelerated approval for 
avelumab as first-line treatment of patients with metastatic MCC 
in March 2017. In the avelumab trial, a trend toward a higher 
response rate was observed in patients with fewer lines of prior 
treatment, which along with the pembrolizumab data strongly 
suggest that immunotherapy targeting the PD-1 pathway should 
be considered for first-line treatment in patients with advanced 
MCC.

An international, single arm, open-label trial of nivolumab 
(anti-PD-1 Ab) 240  mg/body every 2  weeks included both 
patients who had and those who had not received prior chemo-
therapy (36 and 64%, respectively) is ongoing (NCT02488759; 

CheckMate358). In this study, 15 of 22 patients (68%) had objec-
tive responses, and PFS at 3 months was 82%. Responses occurred 
in 10 of 14 treatment-naive patients including 3 CR, in 5 of 8 
patients including 5 partial responses with 1–2 prior systemic 
therapies (63%) (Table 1). Based on the preliminary data from 
this trial, nivolumab was listed along with avelumab and pem-
brolizumab as a treatment option for disseminated disease in the 
2018 NCCN guidelines for MCC (51).

CONCLUSiON

Advanced MCC is generally considered to be sensitive to chemo-
therapy, but responses are transient, offering a median PFS of 
only 3 months (55). On the other hand, although no randomized 
trials compare chemotherapy with immunotherapy, data from 
treatment with immune checkpoint inhibitors are promising with 
responses both in MCPyV-positive and -negative MCC, although 
nearly half of patients do not derive durable benefit from these 
drugs. Now that avelumab has been approved for treatment of 
advanced MCC in the USA, EU, and Japan, the spectrum of cur-
rent therapy for patients with MCC is changing. Several clinical 
trials of immune checkpoint inhibitors (anti-PD-1, PD-L1, and 
CTLA-4 Abs) administered as monotherapy or in combination 
with other agents or modalities are ongoing (Table 1) and may 
provide further treatment options for patients with advanced 
MCC in the near future.
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TABLe 1 | Ongoing clinical trials in MCC (http://ClinicalTrials.gov).

NCT identifier Title Phase intervention

NCT03071406 Randomized Study of Nivolumab + Ipilimumab ± SBRT for Metastatic Merkel Cell Carcinoma 2 Nivolumab
Ipilimumab
SBRT

NCT02643303 A Phase 1/2 Study of In Situ Vaccination with Tremelimumab and IV Durvalumab Plus PolyICLC in 
Subjects with Advanced, Measurable, Biopsy-Accessible Cancers

1/2 Durvalumab
Tremelimumab
Poly ICLC

NCT02488759 An Investigational Immuno-therapy Study to Investigate the Safety and Effectiveness of Nivolumab, and 
Nivolumab Combination Therapy in Virus-Associated Tumors (CheckMate358)

1/2 Nivolumab
Ipilimumab
BMS-986016
Daratumumab

NCT02584829 Localized Radiation Therapy or Recombinant Interferon Beta and Avelumab with or without Cellular 
Adoptive Immunotherapy in Treating Patients with Metastatic Merkel Cell Carcinoma

1/2 Avelumab
Merkel cell polyomavirus TAg-
specific polyclonal autologous 
CD8-positive T cells
Interferon beta, RT

NCT03271372 Adjuvant Avelumab in Merkel Cell Cancer (ADAM) 3 Avelumab

NCT02196961 Adjuvant Therapy of Completely Resected Merkel Cell Carcinoma with Immune Checkpoint Blocking 
Antibodies Versus Observation (ADMEC-O)

2 Ipilimumab
Nivolumab
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Yosuke Ishitsuka1, Rei Watanabe1 and Manabu Fujimoto1

1 Dermatology, University of Tsukuba, Tsukuba, Ibaraki, Japan, 2 Dermatology, Tokyo Metropolitan Komagome Hospital, 
Tokyo, Japan, 3 Dermatology, Tohoku University, Sendai, Japan

The most widely accepted treatment for cutaneous angiosarcoma (CAS) is wide local 
excision and postoperative radiation to decrease the risk of recurrence. Positive surgical 
margins and large tumors (T2, >5  cm) are known to be associated with poor prog­
nosis. Moreover, T2 tumors are known to be associated with positive surgical margins. 
According to previous reports, the majority of CAS patients in Japan had T2 tumors, 
whereas less than half of the patients in the studies from western countries did so. 
Consequently, the reported 5­year overall survival of Japanese CAS patients without 
distant metastasis was only 9%, lower than that for stage­IV melanoma. For patients 
with T2 tumors, management of subclinical metastasis should be considered when plan­
ning the initial treatment. Several attempts to control subclinical metastasis have been 
reported, such as using adjuvant/neoadjuvant chemotherapy in addition to conventional 
surgery plus radiation. Unfortunately, those attempts did not show any clinical benefit. 
Besides surgery, new chemotherapeutic approaches for advanced CAS have been intro­
duced in the past couple of decades, such as paclitaxel and docetaxel. We proposed 
the use of chemoradiotherapy (CRT) using taxanes instead of surgery plus radiation for 
patients with T2 tumors without distant metastasis and showed a high response ratio 
with prolonged survival. However, this prolonged survival was seen only in patients who 
received maintenance chemotherapy after CRT, indicating that continuous chemother­
apy is mandatory to control subclinical residual tumors. With the recent development 
of targeted drugs for cancer, many potential drugs for CAS are now available. Given 
that CAS expresses a high level of vascular endothelial growth factor (VEGF) receptor, 
drugs that target VEGF signaling pathways such as anti­VEGF monoclonal antibody and 
tyrosine kinase inhibitors are also promising, and several successful treatments have 
been reported. Besides targeted drugs, several new cytotoxic anticancer drugs such 
as eribulin or trabectedin have also been shown to be effective for advanced sarcoma. 
However, most of the clinical trials did not include a sufficient number of CAS patients. 
Therefore, clinical trials focusing only on CAS should be performed to evaluate the effec­
tiveness of these new drugs.

Keywords: cutaneous angiosarcoma, concurrent chemoradiotherapy, maintenance chemotherapy, adjuvant 
chemotherapy, taxanes, eribulin, pazopanib, angiosarcoma of the scalp

63

http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00046&domain=pdf&date_stamp=2018-03-02
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
https://doi.org/10.3389/fonc.2018.00046
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:fujisan@md.tsukuba.ac.jp
https://doi.org/10.3389/fonc.2018.00046
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00046/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00046/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00046/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00046/full
http://loop.frontiersin.org/people/455185
http://loop.frontiersin.org/people/441507
http://loop.frontiersin.org/people/521287
http://loop.frontiersin.org/people/518998


Fujisawa et al. New Treatment Options for CAS

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 46

BACKGROUND

According to the Surveillance, Epidemiology, and End Results 
Program database, the number of patients with sarcoma 
recorded between 2010 and 2014 was only 1/100 of the num-
ber of patients with carcinoma in the same period. Moreover, 
angiosarcoma accounts for only 1% of all sarcomas, so patients 
with angiosarcoma constitute only 1 in 10,000 of all patients with 
malignant neoplasms (1–3). Although the incidence of angio-
sarcoma has increased in the past couple of decades, it is around 
0.5 per 1,000,000 persons, or fewer than 200 new patients, per 
year in the United States (3). Owing to this rarity, most previous 
publications have been case reports or small case series, mak-
ing it difficult to interpret the results because of the selection 
bias and small number of patients included in those studies. 
Furthermore, because of this rarity, no randomized phase-3 
study has been conducted, especially for angiosarcoma, and 
consequently, no clinical trial-proven standardized treatment 
has thus far been established. Although complete removal of the 
tumor was believed to be essential, as it is for other sarcomas  
(4, 5), some reports have suggested that wide-margin surgery 
will not deliver favorable results (6, 7). In this review, we will 
summarize the clinical features and current treatments of angio-
sarcoma and discuss the possibility of new therapeutic options 
for this rare disease.

CLiNiCAL PReSeNTATiON

Angiosarcoma develops in various soft tissues and organs, but 
the most commonly affected site is the skin [cutaneous angio-
sarcoma (CAS)] (8–10). According to an analysis of 434 cases of 
CAS, 62.1% of them developed in the head and neck, 24.4% in 
the trunk, 10.6% in the extremities, and 2.7% in other locations 
(11). CAS commonly occurs in the scalp and typically presents as 
an enlarging bruise-like purpura in the head and neck region and 
may be associated with ulceration and/or a tumor. Sometimes 
patients develop a thick blood crust. These head and neck CAS 
commonly develops in older men (12–14), whereas the second-
ary CAS, lymphedema-associated CAS [so-called Stewart-Treves 
syndrome (15)] and radiation-associated CAS (11, 16), usually 
develops within the lymphedema site and irradiated field >5 years 
after the surgery and radiation, respectively (12, 16).

Stewart-Treves syndrome was originally reported as lym-
phedema that developed after radical mastectomy and lymph 
node dissection (15), but in the past 15  years, we have never 
encountered Stewart-Treves syndrome that developed after the 
surgery for mammary carcinoma. Instead, in the same period, 
we experienced three cases of Stewart-Treves syndrome that 
developed in the lower limb after treatment for uterine carcinoma 
(17). This may be explained by the fact that the number of patients 
receiving conservative treatment for mammary carcinoma has 
increased, and as a consequence, the prevalence of Stewart-
Treves syndrome in the upper extremity has decreased (18). On 
the other hand, the occurrence of radiation-induced CAS in the 
breast is likely to increase given that the prognosis for mammary 
carcinoma is gradually improving and radiation is more often 
used to treat (16).

While the incidence of Stewart-Treves syndrome is not well 
known, it has been reported to be about 1/10 to 1/20 of all 
CAS (19–22). Similarly, the cumulative incidence of radiation-
associated CAS 15  years after radiotherapy for breast carci-
noma was reported to be 0.9 per 1,000 patients (23), meaning 
less than 1 occurrence per 10,000 irradiated patients per year.  
In this review, considering its rarity and etiological difference, 
we will focus mainly on primary CAS, the narrow sense of  
CAS (24).

Distant metastasis could occur within a month of primary 
surgery, but typically it occurs on average after a year (4, 5). 
The most common site of metastasis is the lung, followed by 
the lymph nodes, bone, and liver (4, 5, 25). Interestingly, lung 
metastasis often presents as pneumothorax, which may require 
urgent medication (26, 27).

DiAGNOSiS AND STAGiNG

Patients with typical presenting symptoms can be diagnosed clini-
cally, but the precise pathological diagnosis should be performed 
by an expert pathologist. The histologic features of angiosarcoma 
can vary between patients and even within the same patient. 
When the tissue specimens are taken from well-differentiated 
areas, the tumor cells usually form vessel-like structures and 
may be difficult to differentiate from normal vessels. However, 
the tumor vessels tend to form independent or separate networks 
with anastomoses (28). Other features such as cellular atypia, 
mitoses, and formation of multilayer endothelium can be helpful 
for diagnosis. On the other hand, in poorly differentiated areas, 
the tumor cells show sheet-like growth with hemorrhage and 
necrosis, which have fewer features than do vascular tumors. 
In such cases, positive staining for endothelial markers such as 
CD31, CD34, von Willbrand factor, and vascular endothelial 
growth factor (VEGF) are useful (29). Also, lymphatic endothelial 
markers such as D2-40 are positive for most superficial angiosar-
comas (28).

The staging of CAS is based on the TNM staging system  
of the American Joint Committee on Cancer (AJCC) (Table 1). 
The tumor grade based on the pathologic features is included in 
the staging. In brief, localized disease is classified as stage I or 
II; nodal spread or T2 tumor with histologic grade 3, as stage 
III; and distant disease, as stage IV. However, because there is no 
standardized treatment algorithm for each stage, staging of CAS 
has little clinical benefit in the treatment decision.

PROGNOSiS AND FACTORS ASSOCiATeD 
wiTH SURvivAL

Generally, soft-tissue sarcomas have a 50–60% survival rate (30), 
whereas the 5-year survival rate for angiosarcoma is <40% (12, 25,  
31, 32). Several factors are reportedly associated with poor 
survival: older age (25, 32), worse performance status (33, 34), 
larger tumor size (5, 8, 20, 32, 35–40), positive margin status 
(31, 32, 38, 41, 42), higher histologic type or grade (32, 37, 41, 
43, 44), scalp as the primary location (5, 36, 45), deeper location 
of the tumor (20, 31), and presence of distant metastasis (33, 38, 
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TABLe 2 | Reported factors associated with poor survival determined by studies with >50 patients in CAS.

N Age Tumor size Pathological feature Margin Location Others

Albores­Saavedra et al. (11) 434 >50 N.S. Head and neck
Deeper location

Lymph node metastasis
Distant metastasis

Perez et al. (40) 88 N.S. >5 cm N.S.

Holden et al. (36) 72 N.S. >5 cm
>10 cm

N.S. N.S.

Guadagnolo et al. (5) 70 >5 cm
Satellitosis

N.S. Surgery alone

Patel et al. (25) 55 >70 N.S. N.S. N.S. Without multimodality  
or radiation therapy

N.S., not significant; PS, performance status.
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TABLe 1 | AJCC TNM staging system for soft tissue sarcoma.

 

 0 1 2  

T classification   Size<=5cm Size>5cm  

a: superficial tumor, b: deep tumor (divided by superficial fascia)  

N classification  
No nodal 

metastasis  

Nodal 

metastasis  
  

M classification  
No distant 

metastasis  

Distant 

metastasis  
  

Stage T N M Histologic grade  

I  
A 1a/b 

0 
0 

1 or not assessed 
B 2a/b 

II  
A 1a/b 2 or 3 

B 2a/b 2 

III  
2a/b 3 

Any  1 
Any  

IV  Any  Any  1 

Histologic grading is defined as follows: (1) Differentiation: score from 1 to 3, (2) Mitotic 
count: score from 1 to 3, and (3) Tumor necrosis: score from 0 to 2.
Sum (1) to (3) and determine grade as follows.
Gx: not assessed.
G1: total score of 2 or 3.
G2: total score of 4 or 5.
G3: total score of >5.

41, 46). On the other hand, the following factors were associ-
ated with favorable prognosis: surgery (20, 34), multimodal 
therapy (5, 39, 41) and postoperative radiotherapy (34, 36, 41, 43,  
47, 48). The studies that included more than 50 patients with 
CAS only are summarized in Table 2. According to these five 
studies, tumor size seems to be a consistently poor prognostic 
factor; indeed, patients with tumors larger than 10 cm all died 
of the disease (35, 36).

A study by Sinnamon et al. (32) of 821 angiosarcomas included 
211 cases of primary CAS in the head and neck. In their cohort, 
all cases of metastatic disease were excluded and all the patients 
received surgical treatment. They scored the following factors and 
classified the risk from low (total score 0–1), intermediate (total 
score 2–3), and high (total score 4–7): age > 70 as 1, black ethnicity 
as 1, histologic tumor grade 3 as 1, tumor size 3–7 cm as 1, tumor 
size larger than 7 cm as 2, microscopic residual tumor as 1, and 
macroscopic residual tumor as 2. By using this model, patients 
at high risk had a median overall survival of only 1.6 years with 
a hazard ratio of 5.65 when compared with patients at low risk. 

This result clearly indicates that these factors strongly correlate 
with poor survival.

Reports from Japan and from western countries showed 
differences in survival. In the study from Japan of 260 
cases of CAS, the 5-year overall survival among patients 
who could receive surgery was <20% (49) (median overall 
survival: < 20 months), whereas in the studies from western 
countries, it was 31–51% (5, 11, 25, 31, 40). CAS patients in 
Japan had equivalent survival to the “high risk” group reported 
by Sinnamon et  al. (32), with a median overall survival of 
1.6 years. This difference might be explained by the fact that the 
tumor size in Japanese patients is generally large: in the study 
of 260 CAS cases, 44% of the patients had tumors of at least 
10  cm (originally, described as tumors larger than 100  cm2) 
(49), whereas tumors larger than 5 cm (T2) constituted only 
18–38% of the patients in the studies from western countries 
(5, 11, 25, 40). Our multicenter study, which included only 
Japanese patients, was also T2 dominant: only 3 of 28 patients 
(11%) had a T1 tumor (19). In the meta-analysis by Hwang 
et al., which included 128 cases from seven studies (50), the 
median overall survival in the T1 group was significantly 
longer than that in the T2 group (31.4 months and 17.3 months, 
respectively: P <  0.001). Collectively, Japanese CAS patients 
have larger primary tumors than do CAS patients in western 
countries, and consequently, the survival of Japanese CAS 
patients is shorter.

TReATMeNT

Current Treatment Options
Surgery
Radical surgery with no residual tumor cell on the margin  
(R0 resection) is generally the primary goal of sarcoma treatment. 
In every review or set of guidelines, surgery with R0 resection is 
recommended as the goal of CAS treatment (28). In a system-
atic review by Shin et al. (51), absence of surgery was shown to 
correlate with poor survival; Trofymenko et  al. (52) reported 
similar result in a study using 764 cases of CAS extracted from 
the National Cancer Database in the United States. Therefore, 
there is little doubt that surgery is one of the best choice for the 
management of CAS.
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TABLe 3 | Chemotherapy options and their effect for angiosarcoma.

Agent Patients N Response/median survival (months)

Anthracyclines Pooled analysis of 11 clinical trials for angiosarcoma from all sites
Young et al. (58)

108 Response ratio: 25% for all sites
PFS: 4.9, OS: 9.9

Paclitaxel Retrospective review of angiosarcoma from all sites
Italiano et al. (71)

34 Response ratio: 29.5% for all sites

68 Response ratio: 53% for all sites Response ratio: 78% for CAS

ANGIOTAX study: phase­2 study including angiosarcoma from all sites
Penel et al. (70)

30 Response ratio: 18% for all sites Response ratio: 89% for CAS

ANGIOTAX plus study: phase­2 study comparing paclitaxel with/without 
bevacizumab from all sites (showing paclitaxel arm only)
Ray­Coquard et al. (74)

24 Response ratio: 45.8% for all sites
PFS: 6.6, OS: 19.5

Retrospective study for head/neck CAS
Fata et al. (69)

9 Response ratio: 89% for CAS

Docetaxel Retrospective study for CAS
Nagano et al. (101)

9 Response ratio: 67% for CAS

Gemcitabine Retrospective study with angiosarcoma from all sites
Stacchiotti et al. (76)

25 Response ratio: 64% for all sites
PFS: 7, OS: 17

PFS, progression-free survival; OS, overall survival; CAS, cutaneous angiosarcoma.

suggested the use of minimal surgery as part of the management 
of CAS (6, 56), such as for those cases with a diffuse lesion pattern 
involving vital structures, recurrent disease, or metastasis.

Chemotherapy
The chemotherapeutic options currently available for angiosar-
coma are listed in Table 3. Chemotherapy using anthracyclines 
alone or in combination with ifosfamide have been used for 
unresectable and metastatic angiosarcoma (35, 57, 58). However, 
anthracyclines have cardiac toxicity which make it difficult to 
apply in older patients. Taxanes, which inhibit tubulin elonga-
tion, were introduced in the 1990s as a novel cytotoxic drug 
and have become accepted as standardized treatment options 
in various kinds of cancers such as those of the breast (59), lung 
(60), stomach (61), and uterus (62), because of their high effi-
cacy. Although several clinical studies have shown that taxanes 
are of little benefit for sarcomas (63, 64), the angiosarcomas 
included in those clinical studies showed antitumor activity 
(64). Taxanes not only have a direct antitumor effect but also 
have been shown to exert an antiangiogenic effect (65, 66), 
which is thought to be suitable for the treatment of vascular 
tumors. Indeed, taxanes were shown to be effective for the treat-
ment of Kaposi sarcoma (67, 68).

In 1999, Fata et al. (69) achieved a response ratio of 89% by 
using paclitaxel monotherapy for the treatment of head and neck 
CAS. Later, Penel et al. (70) conducted the first phase-2 trial for 
metastatic or locally advanced angiosarcoma, which included 30 
patients treated with paclitaxel. In that clinical trial, the progres-
sion-free survival rate after 4 months was 45%, and the median 
overall survival was 8 months. Considering that the patients with 
distant metastasis consisted of 74% of the study population and 
36% of them had had previous systemic chemotherapy, this result 
was encouraging. Italiano et al. (71) showed, albeit in a retrospec-
tive study, that paclitaxel achieved an equivalent outcome to that 
of anthracyclines in the treatment of advanced angiosarcoma 
despite the patients treated with paclitaxel being a decade older 
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Although no standardized treatment recommendation has 
been established, a margin of less than 1 cm is associated with 
poor survival (49). The depth of the resection has not been 
well discussed, but generally if the tumor does not extend into 
the deep fascia, a resection layer including the deep fascia is 
adequate. If the tumor directly invades into the deep fascia, 
removal of the underlying structures, e.g., the periosteum 
or even the outer shell of the skull, is required to obtain R0 
resection.

Unfortunately, it is common to see positive microscopic (R1) 
or macroscopic (R2) margins even after a wide surgical margin 
from the visible tumor border has been obtained (4, 8, 31,  
36, 41). Pawlik et  al. (4) reported that in their series of 29 
patients, 18 (62.1%) had an initial diagnosis of T1 (<5  cm) 
tumor, but 11 of those tumors turned out to be T2 (>5  cm) 
after surgical pathology evaluation of the resected tumor. The 
clinical margin of the tumor in CAS is difficult to determine 
because it often develops as a multifocal tumor and presents 
as a skip lesion. Moreover, when CAS develops near important 
structures such as the eye, surgical removal with an adequate 
margin is impossible. As a consequence, the rate of local recur-
rence after treatment is high reportedly ranging from 26 to 
100% (5, 9, 25, 41). Lahat et  al. (53) reported 32 of 44 cases 
of locally recurrent angiosarcoma treated with surgery, 70% of 
which achieved complete removal of the recurrent tumor, with 
a 5-year overall survival of 44%.

To reduce local recurrence, postoperative radiotherapy 
covering a wide area with a >50 Gy dose has been reported by 
several studies to be effective not only for local control but also 
for overall survival (4, 5). Currently, wide local excision followed 
by radiation is the most accepted treatment for CAS (28, 54, 55); 
however, despite such mutilating multimodal treatment, survival 
of patients, especially of those with large tumors, is still unsatis-
factory (19, 32).

Other than radical surgery, palliative surgery might have role in 
patients with large tumors to reduce the tumor load. Some reports 
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than those treated with anthracyclines (67.4 and 57.4 years old, 
respectively). Collectively, taxanes can achieve a similar level 
of antitumor effect to that achieved by anthracyclines, but with 
less toxicity, and therefore, a recent report (72) suggested using 
taxanes as the first-line treatment for CAS with unresectable or 
distant disease. Indeed, we reported (17, 73) successful treatment 
results using taxanes as the first-line therapy for primary CAS.

Because both taxanes have been reported to be effective, 
the decision about which taxane to use as the first-line might 
be difficult. In this review, we recommend paclitaxel as the 
first-line treatment since paclitaxel has been evaluated in dif-
ferent phase-2 studies (70, 74), whereas docetaxel has not yet 
been evaluated in a prospective study. However, docetaxel still 
has a role as a second-line therapy in patients refractory to 
paclitaxel (75).

Gemcitabine has been reported to be effective for sarcomas 
both as a single agent (76, 77) and in combination with docetaxel 
(78, 79). Several case series (77, 80) have been reported in which 
gemcitabine for the treatment of angiosarcoma was used with 
favorable outcomes. Moreover, albeit in a study based on a ret-
rospective pooled analysis (76), gemcitabine showed an overall 
response rate of up to 68% for angiosarcoma (76). If this agent 
is used as monotherapy, the toxicity profile is better than that of 
anthracyclines but still has a significant incidence of bone mar-
row suppression.

Radiation
Radiation is usually delivered after surgery for better local con-
trol (28, 54, 55). However, dismal outcome have been reported 
when radiation was used as monotherapy (5, 38, 43). Therefore, 
radiation monotherapy is generally used for palliation, not for 
curative intent because of frequent recurrence, as high as 100% 
in previous studies (25, 36, 42, 43). On the other hand, Ogawa 
et al. (34) reported that in their cohort of 25 patients who received 
radiation monotherapy with curative intent, 11 of the 14 patients 
(79%) who received >70Gy achieved local control, whereas only 
3 of the 11 patients (27%) who received <70  Gy did. A study 
by Scott et al. (81) of 41 patients treated with radiation recom-
mended at least 60–65 Gy for the postoperative tumor bed and 
70–75 Gy for patients who receive radiation monotherapy. Others 
(82) suggested that improved delivery of radiation might achieve 
higher efficacy. Since no prospective study has been conducted 
to evaluate the role of radiation as the first-line therapy, radiation 
monotherapy is still difficult to use as curative intent therapy 
for primary disease. We will discuss combination radiation and 
chemotherapy in the next section.

New Treatment Options
Chemoradiotherapy (CRT)
The use of chemotherapy and radiation (CRT) concurrently or 
concomitantly is one of the standardized treatment methods for 
several cancers: esophageal (83), head and neck (84), rectal (85), 
and cervical (86). Chemotherapeutic agents such as 5-fluoro-
uracil (84, 85), cisplatin (87), gemcitabine (88), and taxanes 
(89, 90) are expected to act not only as cytotoxic but also as 
radiosensitizing agents. Therefore, CRT may sometimes cause 
higher toxicity than does monotherapy but can be justified by 

its high antitumor effect, and in most cases, such side effects are 
manageable. Besides, although many cancer treatments intro-
duced CRT as one of the key treatments, it was an uncommon 
method among cutaneous malignancies. In such a situation, 
we started to use cisplatin and 5-fluorouracil concurrently 
with radiation for the management of unresectable/metastatic 
cutaneous squamous cell carcinoma with the same protocol 
used in the head and neck and reported successful treatment 
results (91–93).

As described previously, a Japanese retrospective study of 
CAS (49) revealed that the median overall survival of patients 
with non-metastatic localized CAS who received surgery was 
less than 20 months, but this finding was not surprising because 
we have reported a similar dismal outcome (13.5 months) (19).  
We suspected that increased expression of VEGF during the 
wound healing process (94) caused by mutilating surgery might 
cause progression of residual angiosarcoma because angiosar-
coma has been reported to express a VEGF receptor (95–97).  
As discussed in the previous section, tumor size is the most com-
mon factor for poor prognosis, which is commonly related to a 
positive surgical margin. Therefore, it is convincing to consider 
that such subclinical residual tumors could be expanded by VEGF 
released by surgery.

In such a situation, a retrospective study (47) of use of chemo-
therapy (anthracyclines) and radiation for five head and neck  
CAS (four scalp and one lip, three of them with high-grade 
tumors) was reported and achieved a median overall survival of 
27.0  months, which was better than the reported median sur-
vival of face and scalp CAS (<20 months) (6, 36, 45). However, 
there was a concern related to use of anthracyclines for older 
CAS patients for whom the drug might not be tolerable. On the 
other hand, taxanes have a better toxicity profile, and therefore, 
we expected that older CAS patients could tolerate it. Moreover, 
taxanes are known as radiosensitizers (89, 90), and therefore, 
possibly an ideal agent for CRT for the treatment of CAS.

The reported cases of CAS treated with CRT are described in 
Table 4. Because the study by Mark et al. (47) did not describe 
the timing of the chemotherapy, we could not determine whether 
they used chemotherapy concurrently or concomitantly with 
radiation. In the study by Miki et  al. (98), 5 of the 12 patients 
who received docetaxel, the schedule was adjusted so that the 
drug was administered concurrently only on the first and last 
weeks of radiation. Another seven patients received docetaxel 
for 2–6 weeks during radiation in accordance with patient status. 
All the patients in the other two studies received chemotherapy 
and radiation concurrently (19, 98, 99). Most of the arms are 
composed of scalp CAS, which correlated with poor survival. The 
response to CRT was 82% (98) and 94% (19), with a statistically 
higher median overall survival than that of surgery followed by 
radiation in both studies. Representative photographs of patients 
who received CRT are presented in Figures 1A–D.

Concurrent CRT brings severe side effects than when each 
treatment is delivered as monotherapy. In our study, 78% of 
the patients who received concurrent CRT had CTCAE grade-4 
neutropenia, but the neutropenia was made manageable by 
use of granulocyte-colony stimulating factor and no treated-
related death was observed (19). In the study by Miki et  al. 
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TABLe 4 | Study using chemotherapy and radiation therapy for CAS.

Study N Patients tumor location/size Treatment RT dose Response/pattern of failure Median OS (months)

Mark et al. (47) 5 Scalp: 4 and Face: 1
Size not described

Anthracyclines 30–76.2 Gy Response ratio: N.D.
Local: 2/5
Distant: 2/5

27.0

4 Scalp: 1 and Face: 3
Size not described

Surgery 50–65 Gy Local: 1/4
Distant: 0/4

Not reached

Rhomberg et al. (99) 1 Scalp/face: 1
T2

Razoxane
Vindesine

35–66 Gy CR
Alive without failure

41

Miki et al. (98) 11
Scalp: 16 and Face: 1
T1: 1 and T2: 15

Docetaxel 70 Gy Response ratio: 82%
Local: 4
Distant: 5
Both: 4

33.7

]*

5 Surgery/IL-2 22.7

Our study (19) 16
Scalp: 14, and Extremity: 2

T1: 2 and T2: 14

Docetaxel

<65Gy:12
≧65Gy:16

Response ratio: 94%

Local: 6

Distant: 7

Not reached

]**

12 Scalp: 10, extremity: 2

T1: 2 and T2: 10

Surgery Only 1 patient still alive 15.0

*P < 0.05.
**P < 0.01.
OS, overall survival; CAS, cutaneous angiosarcoma; N.D., not described; IL-2: interleukin-2.
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(98), all the patients developed grade 1–3 dermatitis but healed 
uneventfully.

Taking these finding together, CRT using taxanes could 
achieve satisfactory antitumor activity with good tolerability 
and might bring better survival than does conventional surgery 
followed by radiation especially for CAS of the scalp. Although 
the use of taxanes concurrently might bring severe side effects, 
we suggest concurrent CRT to gain maximum antitumor effect as 
long as the side effects are tolerable and manageable.

Maintenance Chemotherapy
To prevent locoregional and distant failure after response to 
chemotherapy, some previous report continued chemotherapy 
to maintain the response. Gambini et al. (100) achieved complete 
remission of radiation-induced angiosarcoma after treatment 
with paclitaxel and maintained the response for 4  years by 
maintenance therapy with intervals of no longer than 3 weeks. 
Interestingly, they had local recurrence twice when the treatment 
was delayed, but in both instances, a new complete remission 

was rapidly achieved with the same treatment and the patients 
remained disease-free at the time of their report. Nagano et al. 
(101) reported nine CAS patients treated with docetaxel, eight 
of whom continued docetaxel for 3–22 months (Table 5). None 
of the patients developed distant metastasis during maintenance 
chemotherapy. Rhomberg et al. (99) treated nine patients with 
angiosarcoma (five with thyroid, one with left ventricle, one with 
bladder, and one with scalp/face) with concurrent CRT using 
razoxane and vindesine. Complete remission of the tumor was 
obtained in six patients, five of whom received maintenance 
chemotherapy for 6 weeks to a year. Of those five patients, two 
developed recurrence but only one developed it during the 
maintenance chemotherapy.

In our study (19), 16 CAS patients were treated with concur-
rent CRT and 9 of them received maintenance chemotherapy. 
Locoregional relapse was seen in three of the nine patients who 
received maintenance chemotherapy, whereas it was seen in 
four of the seven patients who did not receive it. On the other 
hand, only two of the nine patients who received maintenance 

TABLe 5 | Maintenance chemotherapy after primary therapy.

Study N Tumor location Primary 
chemotherapy

RT dose Maintenance 
chemotherapy and duration 

(months)

Pattern  
of failure

Median OS 
(months)

Nagano et al., 2007 (101) 9 Scalp: 6, Face: 1
Neck: 1, Leg: 1

Docetaxel – Docetaxel 3–22
MD: 13.5

Local: 4
Distant: 0

Not described

Rhomberg et al. 2009 (99) 5 Thyroid: 4, Scalp/
face: 1

Razoxane
Vindesine

35–66 Gy
MD: 56 Gy

Razoxane
Vindesine

6 weeks­36
MD: 12

Local or  
distant: 2

27.0

Our study
2014

9 Scalp: 7, Limb: 2

Docetaxel

48–80 Gy
MD: 70 Gy

Docetaxel 3–50
MD: 12.5

Local/LN: 3
Distant: 2

Not reached

]**
7 Scalp: 7 52.5–70.4 Gy

MD: 70 Gy
Not done Local: 4

Distant: 5
21.0

** P < 0.01.
RT, radiotherapy; MD, median; OS, overall survival.
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FiGURe 1 | Representative cases of CAS treated by concurrent CRT.
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chemotherapy developed distant metastasis, whereas five of the 
seven patients who did not receive maintenance chemotherapy 
did develop distant metastasis (P <  0.05). A study by Ito et al. 
(75) showed that 19 patients who received maintenance chemo-
therapy using taxanes had significantly better survival than did 24 
patients who received maintenance chemotherapy without taxa-
nes (P < 0.0024) Collectively, maintenance chemotherapy after 
remission obtained by CRT seems to suppress tumor regrowth 
and development of distant metastasis. However, there is no 
consensus as to how long this maintenance chemotherapy should 
be continue. Further investigation is needed to determine the 
optimal length of maintenance chemotherapy.

Adjuvant/Neoadjuvant Chemotherapy
The use of adjuvant chemotherapy after complete removal of the 
tumor is attractive because we experience many CAS patient who 
develop distant metastasis even though there is no locoregional 
failure. However, anthracycline-based adjuvant chemotherapy 
did not show any survival benefit in soft tissue sarcomas (102). 
Indeed, we could not see any survival benefit in CAS patients by 
using taxanes after surgery and radiation (7). Similarly, adjuvant 
chemotherapy did not show a clear benefit among angiosarcoma 
patients treated with anthracyclines, paclitaxel, and other com-
binations (5, 6, 41, 44).

Some groups reported the use of chemotherapy before surgery 
(neoadjuvant chemotherapy) but did not show any survival 
benefit in face CAS (103) or in head and neck CAS (5). However, 
a certain percentage of patients who received neoadjuvant 
chemotherapy could achieve a complete response (60% in face 
CAS (103)) and did not require definitive surgery. Thus, the effect 
of neoadjuvant chemotherapy is difficult to interpret.

Since no large prospective study has been conducted to 
evaluate the value of adjuvant and neoadjuvant chemotherapy, 
those previous studies should be read with caution. However, 
the largest retrospective analysis of CAS including 821 patients 

indicated that both adjuvant and neoadjuvant therapy after 
surgery did not show any survival benefit on univariate and 
multivariate analyses (32). Further prospective study is required 
to evaluate the role of adjuvant/neoadjuvant chemotherapy  
for CAS.

New Drugs
Anti-VEGF Drugs
Angiosarcomas express VEGFR (95, 97, 104), and overexpres-
sion of VEGF converted slow-growing vascular endothelial 
tumors to fast-growing malignant tumors in a mouse model and 
formed invasive angiosarcoma in immunodeficient mice (105). 
Conversely, blockade of the VEGF/VEGFR pathway inhibited 
tumor growth in  vitro (106). Therefore, it is reasonable for 
the treatment to target the VEGF/VEGFR signaling pathway. 
Several studies using anti-VEGF monoclonal antibody (beva-
cizumab) have shown antitumor activity in angiosarcomas: 4 
of 30 patients treated with bevacizumab had a partial response, 
with a mean time to progression of 26 weeks (107), and 2 of 2 
patients treated with bevacizumab and radiation had a complete 
response (108).

On the basis of this background, Ray-Coquard et al. (74) con-
ducted a non-comparative, open-label, randomized phase-2 trial 
to explore the activity and safety of bevacizumab and paclitaxel 
therapy for patients with advanced angiosarcoma. Fifty patients 
were randomized and assigned to two arms: (1) the paclitaxel 
alone or (2) the paclitaxel and bevacizumab arm. From the 
findings, they concluded that there is no benefit from adding 
bevacizumab to paclitaxel (median overall survival: 19.5 versus 
15.9 months).

Other than monoclonal antibody, two small-molecule multi- 
tyrosine kinase inhibitors that can inhibit the VEGF/VEGFR 
signaling pathway have been used for the treatment of angiosar-
coma patients: sorafenib (109) and pazopanib (110). A phase-2 
trial including 37 patients with recurrent or metastatic angiosar-
coma treated with sorafenib showed a response ratio of 14% with 
median progression-free survival of 3.8 months (111). No clinical 
trial to evaluate pazopanib activity in angiosarcoma has been 
conducted. In a case series using pazopanib for the treatment 
of taxane-resistant CAS, two of five patients achieved a partial 
response with median progression-free survival of 94 days (112). 
On the other hand, a case series of eight CAS patients treated with 
pazopanib did not show any benefit (113). Although we do not 
have enough conclusive evidence, the current first-line treatment 
should still be taxanes and anti-VEGF pathway therapy should be 
considered as the second- and third-line therapy.

Eribulin Mesylate
Eribulin mesylate suppresses microtubule polymerization and 
sequesters tubulin into nonfunctional aggregates, which is a 
mechanism distinct from those of other tubulin-targeting drugs 
such as taxanes (114). A phase-3 study comparing dacarbazine 
and eribulin in patients with advanced liposarcoma or leiomyo-
sarcoma showed improved survival in patients treated with eribu-
lin (115). This phase-3 study did not include angiosarcoma, and 
therefore, we do not have any evidence on the effect of eribulin for 
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angiosarcoma. However, both taxanes and eribulin target micro-
tubule polymerization, and eribulin binds to a different site of the 
microtubule (116), indicating that it may be effective for patients 
who become resistant to taxanes. Albeit in a case report, eribulin 
was shown to be effective for a patient who became resistant 
to docetaxel (117). Currently, we are conducting a prospective, 
observational clinical study to evaluate eribulin in patients with 
CAS who became resistant to taxanes (UMIN000023331); patient 
enrollment for this study is expected to be completed in 2018.

Checkpoint Inhibitors
Recent development of checkpoint inhibitors in melanoma treat-
ment dramatically improved the survival of advanced melanoma. 
Melanoma with higher expression of programmed death receptor 
ligand-1 (PD-L1) correlated with a better treatment outcome 
when using anti-PD-1 antibody (118). This result supports the 
notion of a proposed immune escape mechanism by tumor cells 
using their PD-L1 expression on the cell surface to bind PD-1 
on cytotoxic T cells and attenuate the immune response (119). 
Interestingly, our study group showed that CAS with PD-1 positive 
cell infiltration and tumor site PD-L1 expression correlated with 
survival (120). This result raises the possibility of using anti-PD-1 
antibody for the treatment of CAS. To the best of our knowledge, 
there is no on-going or planned clinical trial to use checkpoint 
inhibitors for advanced angiosarcoma (clinicaltrials.gov).

CURReNT ReCOMMeNDATiON AND 
FUTURe PeRSPeCTive

The treatment of CAS, especially T2 tumors of the scalp, is still 
challenging. The surgical approach seems to be difficult because 
such tumors usually have an unclear border and often have 
skip lesions that make it difficult to determine the “true” tumor 
border. As patients with tumors larger than 10 cm were reported 
to have a catastrophic prognosis (35, 36), the current standard 
wide-margin resection followed by wide-field radiation might 
be palliative rather than curative (6). Radical surgery can reduce 
the tumor load; however, surgery-based treatment cannot target 
“subclinical” metastasis, which may have already occurred by 

the time of diagnosis. Therefore, we strongly recommend start-
ing systemic chemotherapy along with primary tumor therapy. 
CRT can achieve this task: systemic administration of taxanes 
can target subclinical metastases and also act as a radiosensi-
tizer that will enhance the effect of radiation therapy against 
the primary tumor. Although neoadjuvant chemotherapy and 
adjuvant chemotherapy may also achieve this task, to the best 
of our knowledge, no study has shown the superiority of this 
strategy.

Collectively, we suggest considering concurrent CRT using 
taxanes when we encounter CAS of the scalp with a T2 tumor. We 
also recommend maintenance chemotherapy even if complete 
remission of the tumor has been achieved. On the other hand, for 
T1 CAS with a clear tumor border, the current standard surgery 
followed by radiation might be sufficient to obtain a successful 
result. However, these recommendations are based on a small 
number of retrospective studies. CRT and maintenance chemo-
therapy should be evaluated with prospective clinical studies to 
confirm the superiority of this strategy.

Moreover, we currently do not have many options for when the 
tumor becomes resistant to taxanes. We have already launched 
a clinical study to evaluate eribulin mesylate as the second-line 
treatment after taxane-failure. Several clinical studies are now 
ongoing or planned to evaluate the effect of multi-kinase inhibi-
tors such as sorafenib or pazopanib (clinicaltrials.gov). We hope 
the treatment of CAS will be dramatically improved, as it has for 
melanoma, in the near future.
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Extramammary Paget’s disease (EMPD) is a rare, slow-growing, cutaneous adenocar-
cinoma that usually originates in the anogenital area and axillae outside the mammary 
glands. EMPD mostly progresses slowly and is often diagnosed as carcinoma in situ; 
however, upon becoming invasive, it promptly and frequently metastasizes to regional 
lymph nodes, leading to subsequent distant metastasis. To date, several chemotherapy 
regimens have been used to treat metastatic EMPD; however, they present limited 
effect and patients with distant metastasis exhibit a poor prognosis. Recently, basic and 
translational investigative research has elucidated factors and molecular mechanisms 
underlying the promotion of metastasis, which can lead to targeted therapy-based 
emerging treatment strategies. Here, we aim to discuss current therapies and their 
limitations; advancements in illustrating mechanisms promoting invasion, migration, 
and proliferation of EMPD tumor cells; and future therapeutic approaches for metastatic 
EMPD that may enhance clinical outcomes.

Keywords: metastatic extramammary Paget’s disease, HeR2–Pi3K/eRK signaling, lymphangiogenesis, CXCR4–
stromal cell-derived factor-1 axis, CD163+M2 macrophage, receptor activator of nuclear factor kappa-B ligand–
RAnK signaling, mismatch-repair deficient, anti-PD-1 antibody

invASive eXTRAMAMMARY PAGeT’S DiSeASe (eMPD) 
THeRAPeUTiC CHALLenGe: PRevenTinG AnD TReATinG 
TUMOR MeTASTASiS

Extramammary Paget’s disease is a rare, slow-growing, cutaneous adenocarcinoma that manifests 
as an erythematous, eczematous plaque outside the mammary gland, occasionally accompanied by 
hypopigmented patches. EMPD affects apocrine gland-rich sites such as the anogenital area and 
axillae. Despite requiring broad local resection for the treatment of a primary lesion because of 
the frequent microscopic extensions and less common satellite lesions beyond the clinical tumor 
border (1), the prognosis of patients with EMPD is usually good because tumor cells are in the 
radial growth phase for a prolonged duration, and a majority of cases are treated in the stage of 
carcinoma in situ (2).

However, once EMPD invades into the dermis and becomes invasive EMPD, tumor cells gain 
high metastatic potential, leading to the development of lymph node (LN) metastasis even in patients 
with dermal microinvasion (3). Besides, over one-third of patients with LN metastasis consequently 
develop distant metastasis (4). To date, several chemotherapeutic regimens (Table 1), such as low-
dose 5-fluorouracil (5-FU)/cisplatin (FP), FECOM (5-FU, epirubicin, carboplatin, vincristine, and 
mitomycin C), docetaxel monotherapy, S-1 monotherapy, docetaxel and S-1 combination therapy, 
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TABLe 1 | Current systemic therapy for metastatic extramammary Paget’s disease in case studies and case reports.

Reference no. of 
patients

Treatment Type of response Outcome (months)

Tokuda et al. (5) 22 Low-dose FP (5-FU, cisplatin) CR (1/22), PR (12/22), SD (6/22), 
PD (3/22)

PFS: median 5.2, OS: median 12.0

Oashi et al. (6) 7 FECOM (5-FU, epirubicin, carboplatin, vincristine, 
mitomycin C)

PR (4/7), unevaluable (3/7) PFS: median 6.5, OS: median 9.4

Yoshino et al. (7) 13 Docetaxel PR (8/13), SD (3/13), PD (2/13) PFS: median 7.1, OS: median 16.6
Mikoshiba et al. (8) 1 S-1 PR PFS: 36
Kato et al. (9) 2 S-1 PR PFS: 5, 11+
Matsushita et al. (10) 1 Docetaxel + S-1 PR PFS: 15+
Ogata et al. (11) 1 Docetaxel + S-1 PR PFS: 12+
Egashira et al. (12) 2 Docetaxel + S-1 CR (1/2), PR (1/2) PFS: 12, 10, OS: 26, 23
Hirai and Funakoshi (13) 2 PET (cisplatin, epirubicin, paclitaxel) PR (2/2) PFS: 14+, 12+
Karam et al. (24) 1 Trastuzumab PR PFS: 12
Wakabayashi et al. (27) 1 Trastuzumab PR PFS: 12+
Barth et al. (28) 1 Trastuzumab CR PFS: 12+
Takahagi et al. (25) 1 Trastuzumab + paclitaxel PR PFS: 17, OS: 25
Hanawa et al. (26) 1 Trastuzumab + paclitaxel PR PFS: 13
Ichiyama et al. (29) 1 Trastuzumab + paclitaxel PR PFS: 24+
Yoneyama et al. (45) 1 Bicalutamide + leuprolide acetate PR PFS: 6, OS:14

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; PFS, progression-free survival; OS, overall survival; +, ongoing response; 5-FU, 
5-fluorouracil.
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and PET (cisplatin, epirubicin, and paclitaxel), have been used to 
treat metastatic EMPD (5–13); however, few patients overcome 
tumor recurrence despite tumors in over half of patients’ initially 
responding to these regimens. In addition, the overall survival 
(OS) starts declining from 10 months after starting chemotherapy 
(7), and patients with EMPD with distant metastasis exhibit a 
poor prognosis with the median OS of 1.5 years and 5-year sur-
vival rate of 7% (4). Hence, exploring novel therapeutic strategies 
to prevent and treat metastatic EMPD is imperative.

Metastasis is a multistage process that comprises tumor cell 
invasion, venous/lymphatic intravasation, transit in the vessels, 
venous/lymphatic extravasation, and proliferation at a new site 
(14). Recently, some studies have identified that the protein 
expression of molecules involved in proliferation and survival, 
including HER2 and mTOR, in the Paget cell (tumor cell of EMPD) 
is associated with invasiveness, metastasis, and OS (15–17).  
Similarly, translational research studies have demonstrated that 
cytokines, chemokines, and immune cells in EMPD confer favo-
rable microenvironment for Paget cells to invade, migrate, and 
proliferate, thereby promoting metastasis (18–21). The results of 
current study support that the involvement of both Paget cells and 
tumor microenvironment factors is essential for metastasis; thus, 
the understanding of both aspects provides opportunities for the 
treatment of metastatic EMPD.

HeR2–Pi3K/eRK SiGnALinG in eMPD

In the past, several EMPD studies have focused on investigating 
the HER2–PI3K/ERK signaling in EMPD because it is charac-
terized by the presence of Paget cells, large round, vacuolated, 
pale-staining cells, as mammary Paget’s disease (MPD) and the 
clinical success in targeting aberrant receptor tyrosine kinase 
signaling pathways in breast cancer. Both immunohistochemis-
try and fluorescence in situ hybridization studies of primary and 

LN metastatic lesions have revealed the HER2 overexpression 
(HER2 score of 3+ or 2+) in 15–58% of patients with EMPD 
and that all cases with a HER2 score of 3+ had amplified ERBB2, 
the gene encoding HER2 (16, 22). Of note, a HER2 score of 3+ 
or 2+ was significantly more common in patients with deeply 
invasive EMPD that those with in  situ/superficial invasive (in 
which tumor invasion was limited to the papillary dermis) 
EMPD and was correlated with numerous LN metastases (16). 
Furthermore, about 90% of patients exhibited no difference in 
the HER2 protein overexpression and ERBB2 gene amplification 
between primary tumors and corresponded LN metastasis (23), 
suggesting that HER2’s contribution to the pathogenesis and 
progression in a subset of metastatic EMPD and implying the 
possibility that HER2 blockade disrupts the progression of both 
primary and metastatic lesions of this population. In corrobora-
tion with the hypothesis, six case reports determined that both 
primary and metastatic lesion of HER2-overexpressed EMPD 
responded well and attained partial or complete response for 
6 months to 2 years by anti-HER2 antibody, trastuzumab alone, 
or trastuzumab with paclitaxel (Table  1) (24–29). A phase 2 
study of trastuzumab with docetaxel for HER2-positive unre-
sectable or metastatic EMPD (UMIN000021311) is ongoing 
based on these results.

HER2 activates several signaling pathways such as the RAS–
RAF–MEK–ERK pathway and PI3K–AKT–mTOR pathway, 
which accelerate cell growth and increase cell survival (30). A 
study demonstrated that 28 and 56% of HER2-overexpressed 
EMPD cases presented high expression of phosphorylated ERK 
and phosphorylated AKT, respectively, with high Ki-67 labeling 
index (31). However, the high expression of phosphorylated ERK 
and phosphorylated AKT was also noted in 30 and 33% of EMPD 
patients without the HER2 overexpression, respectively, but with 
high Ki-67 labeling index (31). In addition, other studies have 
demonstrated that Ki-67, as well as mTOR, was expressed at 
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significantly higher levels in invasive cases than carcinoma in situ 
cases (17, 32). Furthermore, the DNA sequencing of EMPD study 
revealed that 19% of cases comprised mutant RAS or RAF genes 
and 35% of cases had mutations in PIK3CA (which encodes the 
catalytic subunit of PI3K) or AKT1 that activate those pathways 
(33). In particular, cases with mutations in both RAS/RAF and 
PIK3CA/AKT1 signaling pathways were sporadic, and a mutu-
ally exclusive pattern was observed (33). Overall, these results 
highlight that not only HER2 but also the activation of down-
stream molecules in the RAS–RAF–MEK or PI3K–AKT–mTOR 
pathways could contribute to the progression of EMPD. Notably, 
all mutations detected in RAF were BRAF V600E that can be 
inhibited by vemurafenib or dabrafenib, the Food and Drug 
Administration (FDA)-approved drugs for metastatic melanoma 
(33). In addition, multiple drugs targeting the RAS–RAF–MEK 
and PI3K–AKT–mTOR pathways have passed through clinical 
trials and are used for other cancers. Hence, multiple treatment 
options exist for developing novel therapeutics that target patients 
with metastatic EMPD with the aberrant RAS–RAF–MEK or 
PI3K–AKT–mTOR signaling (Figure 1A).

The HER family comprises four type 1 transmembrane 
tyrosine kinase receptors, HER1 (or EGFR), HER2, HER3, and 
HER4 (34). Of these, HER2 dimerizes with other members of 
the HER family, and the dimerization of HER2:HER3 dimers 
was proven to be the most oncogenic receptor pairing that 
activates the RAS–RAF–MEK and PI3K–AKT–mTOR pathways 
in HER2-positive breast cancer cells (35). Hence, pertuzumab, 
an anti-HER2 antibody that inhibits dimerization with HER1, 
HER3, and HER4, in combination with trastuzumab and doc-
etaxel attained a significantly longer progression-free survival 
and OS in untreated HER2-positive metastatic breast cancer 
compared to trastuzumab plus docetaxel alone; the former regi-
men is now preferred as the first-line treatment of patients with 
HER2-positive metastatic breast cancer (36, 37). However, the 
expression of HER1, HER3, and HER4 has never been detected 
in EMPD as well as in MPD, and targeting the dimerization of 
HER2 is unlikely to prove clinical significance in HER2-positive 
metastatic EMPD (38, 39).

HORMOne ReCePTORS SiGnALinG  
in eMPD

Signaling through hormone receptors contributes to the tumor 
development and progression in some cancer types such as 
breast cancer. More than two-thirds of breast cancers express 
estrogen receptor (ER), and research has proved that ER-targeted 
therapy reduces relapse and improves the OS in advanced breast 
cancer (40). However, MPD expresses ER only in 10% of cases 
despite being one of the types of breast cancer. Similarly, EMPD 
also demonstrates a low ER-positive rate at 4% (41). In fact, both 
MPD and EMPD exhibit a high androgen receptor (AR)-positive 
rate at 54–90%. In addition, another study reported that the AR 
expression intensity was significantly higher in invasive EMPD 
than noninvasive EMPD (41–43). Furthermore, the expression 
intensity of 5α-reductase and 17β-hydroxysteroid dehydroge-
nase type 5, enzymes producing androgen, was higher in invasive 

EMPD than noninvasive EMPD, suggesting the possibility of 
androgen amplification and the association of the androgen–AR 
signaling with the progression of EMPD (Figure 1A) (43, 44). In 
corroboration with the hypothesis, one case report demonstrated 
that the combined androgen blockade (CAB) therapy by bicalu-
tamide (an anti-androgen drug) and leuprolide acetate (LH–RH 
agonist), used in the treatment of prostate cancer, can signifi-
cantly reduce multiple bone metastases of EMPD (45). Although 
the effect of CAB lasted only for 6 months, it did not cause severe 
bone marrow suppression; hence, androgen-deprivation therapy 
could be one of the potential therapeutic approaches for meta-
static EMPD.

LYMPHAnGiOGeneSiS AnD ePiTHeLiAL–
MeSenCHYMAL TRAnSiTiOn (eMT)  
OF PAGeT CeLLS in eMPD

The clinical manifestation of erythematous, eczematous plaque 
of EMPD indicates the presence of vasodilation and hyperemia 
in the dermis of EMPD lesion. In fact, the histology of in situ 
and invasive EMPD lesions demonstrates a prominent enlarge-
ment and formation of several lymphatic and blood vessels in 
the dermis compared to those of healthy skin or other skin 
cancers such as melanoma (18). The immunohistochemical 
analysis established the expression of VEGF-A in Paget cells, as 
well as macrophages, and VEGF-C was also expressed in Paget 
cells (18). Both VEGF-A and VEGF-C are renowned cytokines 
related to angiogenesis and lymphangiogenesis, and evidence 
suggests that the generation of new blood and lymphatic vessels 
is crucial in cancer metastasis (46). Intriguingly, the immuno-
histochemical analysis also revealed that lymphatic endothelial 
cells (LECs) in a primary lesion express stromal cell-derived fac-
tor-1 (SDF-1), and N-cadherin-positive Paget cells co-expresses 
CXCR4, a specific ligand of SDF-1 (18). Notably, N-cadherin, 
vimentin, and snail are molecules that are upregulated in the 
EMT, a process through which epithelial cells lose their polarity, 
cell–cell adhesion, and E-cadherin expression, and TGF-β1 can 
induce EMT (47). A functional in  vitro study using a human 
squamous carcinoma cell line corroborated with human patho-
logical findings and revealed that snail increases the CXCR4 
expression on tumor cells in the presence of TGF-β1 and the 
EMT process augments tumor cell migration through the 
CXCR4–SDF-1 axis (Figure 1B) (18). Furthermore, the CXCR4 
expression of Paget cells in the primary lesion correlated with 
the presence of LN metastasis and reduced the disease-specific 
survival (18, 48). Likewise, the N-cadherin and vimentin expres-
sion of Paget cells in the primary lesion also correlated with the 
reduced OS (18). Hence, these findings implicate a crucial role 
of lymphangiogenesis and EMT of Paget cells in promoting LN 
metastasis of EMPD, and blocking the CXCR4–SDF-1 axis can 
be a novel option of adjuvant therapy for patients with CXCR4-
positive invasive EMPD to prevent LN metastasis. Furthermore, 
the blockade of mutated PIK3CA or AKT1 might be an effec-
tive adjuvant therapy because the DNA sequencing of EMPD 
revealed a correlation of PIK3CA and AKT1 mutations with 
E-cadherin hypermethylation (33).
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FiGURe 1 | Signaling pathways involved in the progression of extramammary Paget’s disease. (A) The aberrant activation of HER2, molecules involved in the 
RAS–RAF–MEK–ERK signaling or PI3K–AKT–mTOR signaling promote the proliferation and survival of Paget cells. Likewise, the androgen–androgen receptor (AR) 
signaling can induce the proliferation and survival of Paget cells. Red, Food and Drug Administration-approved drugs for other cancers that target aspects of this 
pathway. (B) The interaction of Paget cells with lymphatic endothelial cells (LECs) through the CXCR4–stromal cell-derived factor-1 (SDF-1) signaling or with 
CD163+Arg1+ M2 macrophages through the receptor activator of nuclear factor kappa-B ligand (RANKL)–RANK signaling facilitates metastasis of Paget cells.
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THe ROLe OF ReCePTOR ACTivATOR  
OF nUCLeAR FACTOR KAPPA-B LiGAnD 
(RAnKL)–RAnK inTeRACTiOn in THe 
TUMOR MiCROenviROnMenT OF eMPD

Although the aberrant activation of a signaling pathway in tumor 
cells and lymphangiogenesis mediates the progression of EMPD, 
the role of other cells, especially immune cells, in the tumor 
microenvironment of EMPD remains unclear. Histologically, 
EMPD exhibits abundant lymphocyte infiltration. The number 
of CD8+ T cell infiltration in noninvasive and invasive EMPD is 
similar; however, the number of CD8+ T  cell-expressing gran-
ulysin and perforin is relatively lower in invasive EMPD than 
that of noninvasive EMPD, signifying the presence of stronger 
immunosuppression in the tumor microenvironment of invasive 
EMPD than noninvasive EMPD (49). Reportedly, invasive EMPD 
comprises a significantly higher number of CD163+Arg1+ M2 
macrophages, an immunosuppressive macrophage, compared to 
noninvasive EMPD (49).

The RANKL and its receptor, RANK signaling, exerts num erous 
effects on immunity and promotes the survival of conventional 
dendritic cells and T-cell priming, thereby generating active 
immune responses (50). By contrast, it controls the number of 
regulatory T cells (Tregs) and induces tolerance against antigens 
(51). In EMPD lesions, Paget cells profoundly express RANKL 
with matrix metalloproteinase-7, which cleaves RANKL to 
release a soluble form (sRANKL), facilitating interaction with 
nearby cells expressing RANK (19). Remarkably, RANK is 
primarily expressed in CD163+Arg1+ M2 macrophages, and 
in vitro studies using monocyte-derived M2 macrophages have 
demonstrated that these cells produce CCL17 and promote the 
migration of CCR4-expressed CD4+ T  cells, which comprise 
effector CD4+ T cells and Tregs when treated with sRANKL (20). 
In line with the in  vitro experiment, CCL17 was co-expressed 
on the CD163+Arg1+ M2 macrophages in invasive EMPD (20). 
Furthermore, a study has reported that effector Tregs comprising 
a robust immunosuppressive effect profoundly express CCR4 
(52) and that increased numbers of Tregs were related to more 
extensive cases of vulvar EMPD and disease recurrence (53). 
These studies highlight the crucial role of CD163+Arg1+ M2 
macrophage and Tregs in establishing an immunosuppressive 
microenvironment in invasive EMPD by the RANKL–RANK 
interaction that promotes EMPD progression and causes poor 
prognosis (Figure 1B).

Reportedly, RANKL binds to RANK on osteoclasts and serves 
as a critical factor for regulating bone remodeling, and the activa-
tion of the RANKL–RANK signaling augments bone metastasis 
of various cancer types such as breast cancer (50). Based on this 
notion, a study demonstrated that denosumab, the anti-RANKL 

antibody, significantly delayed the appearance of skeletal-related 
events compared to bisphosphonates in patients with breast can-
cer with bone metastasis, thereby initiating its use to treat various 
metastatic bone tumors (54). Bone has been known as one of the 
most common site, where EMPD develops distant metastasis 
(55, 56). Based on these findings, denosumab seems not only 
useful for patients with metastatic EMPD and bone metastasis 
but also might be effective from the early stage to prevent the 
progression of invasive EMPD. Furthermore, since RANKL is 
related to immunosuppression of the EMPD microenviron-
ment, denosumab could be a potential to enhance the efficacy of 
immunotherapy.

iMMUnOTHeRAPY FOR MeTASTATiC 
eMPD

Although the response rate is 20–35% in solid cancers, immu-
notherapy with anti-PD-1 antibody is a prominent therapeutic 
approach for cancers. This is because it can induce a durable 
response in a majority of responders for more than 2 years, which 
is uncommon with the molecular targeted therapy (57–60). The 
biomarkers that define anti-PD-1 antibody responders remain 
unclear; however, it was recently revealed that cancer with DNA 
mismatch-repair (MMR) gene mutations, so called “mismatch-
repair-deficient cancer,” significantly responded better to anti-
PD-1 antibody than MMR proficient cancer (61). In addition, it 
was reported that an anti PD-1 antibody induced robust antitumor 
immunity and attained durable disease control in heavily treated 
patients with colorectal cancer with MMR-deficient or microsat-
ellite instability-high (MSI-H) status (62). Overall, these results 
propose that the MMR status or MSI-H is a useful biomarker 
to predict the clinical benefit of anti-PD-1 antibody, serving as 
the basis for the FDA’s approval of an anti-PD-1 antibody for 
unresectable or metastatic MMR-deficient or MSI-H cancers, 
irrespective of cancer’s original location.

The MMR pathway affects removal and correction of DNA 
base mismatches that arise either during DNA replication or 
caused by DNA damage (63). A mutation of genes involved in 
MMR, MLH1, PMS1, MSH2, and MSH6 predispose to several 
tumorigenic conditions, such as Lynch syndrome, and cause 
cancer cells to display MSI-H (63). Although inactivation of 
MMR elevates the mutational burden, thereby promote carcino-
genesis, a recent in vivo functional analysis revealed that it also 
leads to dynamic mutational profiles, resulting in the persistent 
renewal of mutation-associated neoantigens (MANAs) triggering 
durable immunosurveillance that can be further enhanced by an 
anti-PD-1 antibody. By contrast, MMR proficient cells exhibited 
stable mutational load and MANA profiles over time, which was 
consistent with the results of clinical trials (61, 64, 65).
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Extramammary Paget’s disease has long been recognized to 
pose a high risk of developing secondary cancer. Reportedly, 
14–32% of cases have also been diagnosed with other primary 
cancers (66, 67). Kang et  al. hypothesized that MMR gene 
mutations could be associated with the high occurrence of 
secondary cancer in EMPD and investigated the MMR status 
and the presence of gene mutation in MLH1, PMS1, MSH2, and 
MSH6 in 20 patients with EMPD (68). Their results revealed 8 
of 20 cases (40%) with germline MMR genes missense muta-
tions. Of these 8 cases with MMR genes mutations, 1 and 4 cases 
exhibited MSI-high or MSI-lo, respectively, whereas none of the 
other 12 cases without MMR genes mutations exhibited MSI. 
Furthermore, their sequencing analysis of MLH1 and MSH2 
gene for 172 samples identified germline and somatic mutations 
of MLH1 or MSH2 in 34.3 and 13.4% of cases, respectively.  
Of these, MLH1 V384D (15.7%) and MLH1 R217C (4.1%) were 
top two germline mutations, and these detection rates were 
significantly higher than healthy controls. Furthermore, the 
functional in vitro assay revealed that MLH1 V384D and MLH1 
R217C mutations had 50–60% MMR efficiency than wild-type 
MLH1. Although having high tumor mutational burden does 
not always associate with improved survival and clinical trials 
should be conducted to evaluate the survival benefit, these find-
ings suggest that there is a decent percentage of MMR-deficient 
EMPD, which has an impaired MMR machinery, in EMPD and 
this subset of patients might achieve a durable response by anti-
PD-1 immunotherapy.

COnCLUSiOn

Metastatic EMPD is an aggressive skin adenocarcinoma with 
poor prognosis. Since current chemotherapeutic regimens are 
only moderately effective, improving clinical outcomes is impera-
tive. The basic and translational research to date has provided 
an insight into the mechanisms promoting metastasis of EMPD 
that provide potential therapeutic targets for new drug develop-
ment. Seemingly, Paget cells augment the ability of proliferation 
and survival by activating the RAS–RAF–MEK–ERK signaling, 
PI3K–AKT–mTOR signaling, or androgen–AR signaling. In 
addition, the interaction of Paget cells with other cells, such as 
LECs and CD163+Arg1+ macrophages in a tumor through the 
CXCR4–SDF-1 signaling and RANKL–RANK signaling, respec-
tively, could establish a favorable tumor microenvironment to 
promote metastasis of Paget cells. Furthermore, recent genomic 
analysis of MMR has revealed that a decent percentage of EMPD 
comprises MMR-deficient EMPD cases that might achieve 
durable clinical response by an anti-PD-1 antibody. Hence, we 
are now beginning to understand multiple aspects involved in the 
pathogenesis of metastatic EMPD, and these findings will be sure 
to lead to better treatments for patients with metastatic EMPD 
in the future.
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Tumor-associated macrophages (TAMs) and regulatory T  cells (Tregs) are significant 
components of the microenvironment of solid tumors in the majority of cancers. TAMs 
sequentially develop from monocytes into functional macrophages. In each differenti-
ation stage, TAMs obtain various immunosuppressive functions to maintain the tumor 
microenvironment (e.g., expression of immune checkpoint molecules, production of 
Treg-related chemokines and cytokines, production of arginase I). Although the main 
population of TAMs is immunosuppressive M2 macrophages, TAMs can be modulated 
into M1-type macrophages in each differential stage, leading to the suppression of tumor 
growth. Because the administration of certain drugs or stromal factors can stimulate 
TAMs to produce specific chemokines, leading to the recruitment of various tumor- 
infiltrating lymphocytes, TAMs can serve as targets for cancer immunotherapy. In this 
review, we discuss the differentiation, activation, and immunosuppressive function of 
TAMs, as well as their benefits in cancer immunotherapy.

Keywords: tumor-associated macrophages, immunosuppression, M2 polarization, chemokines, angiogenetic 
factors, regulatory T cells

iNTRODUCTiON

Tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) are significant components 
of the tumor microenvironment (1, 2). TAMs express immune checkpoint modulators [e.g., B7 fam-
ily, B7-homolog family including programmed death ligand 1 (PD-L1)] (3) that directly suppress 
activated T cells. In addition, TAMs produce various chemokines that attract other immunosup-
pressive cells such as Tregs, myeloid-derived suppressor cells (MDSCs), and type 2 helper (Th2) 
T cells, which maintain the immunosuppressive factors of the tumor microenvironment (1, 2, 4). 
Moreover, TAMs also produce matrix metalloproteinases (MMPs), which play critical roles in tissue 
remodeling associated with various physiological processes such as morphogenesis, angiogenesis, 
tissue repair, local invasion, and metastasis (1, 5, 6). TAMs have been detected in various skin cancers 
such as melanoma, squamous cell carcinoma (SCC), extramammary Paget’s disease (EMPD), Merkel 
cell carcinoma, basal cell carcinoma, and mycosis fungoides (MFs) (1, 2, 7–15) (Table 1). Because the  
stromal factor on each cancer stem cell is an important factor for TAM stimulation, leading to 
the induction of specific TAM phenotypes, investigating the immunomodulatory stromal cells in  
the tumor microenvironment is important for establishing the appropriate immunotherapy for each 
type of cancer (1, 8, 9, 16, 17). In addition, it may be possible to repolarize TAMs into anti-tumor 
macrophages, such as M1-phenotype macrophages, to suppress tumor progression by modifying 
the profiles of tumor-infiltrating lymphocytes (TILs) (7, 18, 19). Thus, TAMs could be a target for 
immunotherapy in skin cancers (1, 2). In this review, we discuss the differentiation, activation, and 
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FigURe 1 | Differentiation of M2-polarized tumor-associated macrophages. 
The multiple steps of the development of monocytes into fully functional 
macrophages.

TAble 1 | Tumor-associated macrophages in skin cancer: mouse and human models.

Cancer species Mouse (reference) Human (reference) Depletion Reprogrammed biomarkers

Malignant melanoma (3, 7, 13, 19, 20, 22, 39, 51, 62, 63, 64, 65) (7, 35, 59, 60) (13, 65) (5, 19, 20, 22, 35, 39) (3, 59, 60, 61)
Cutaneous squamous cell carcinoma (23, 24, 32) (11, 12, 34) (23) (24, 32) (11, 12)
Merkel cell carcinoma – (14, 36) (14, 36)
Extramammary Paget’s disease – (8, 17) (17) (8)
Basal cell carcinoma (26) (15) (26) (15)
Dermatofibrosarcoma protuberans – (5) (5)
Cutaneous T cell lymphoma (25) (9, 18, 28, 29, 30, 31, 57) (25) (18, 57) (9, 28, 29, 30)
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immunosuppressive function of TAMs, as well as their benefit in 
cancer immunotherapy.

DiFFeReNTiATiON AND ACTivATiON  
OF TAMs iN TUMORS

Tumor-associated macrophages are characterized by their 
heterogeneity and plasticity, as they can be functionally repro-
grammed to polarized phenotypes by exposure to cancer-related 
factors, stromal factors, infections, or even drug interventions 
(1, 2, 7, 9, 11, 17, 19). Because TAMs sequentially differentiate 
from monocytes into functional macrophages through multiple 
steps, they have heterogeneity and plasticity in cancer (Figure 1). 
Monocytes recruited from the circulation differentiate into tissue 
macrophages by macrophage colony-stimulating factor (M-CSF), 
and are primed with several cytokines such as interferon 
gamma (IFN-γ), interleukin 4 (IL-4), and IL-13 (2). Thereafter, 
macrophages change their functional phenotype in response to 
environmental factors or even tumor-derived protein stimulation 
(2, 8, 17). In skin cancer, for example, targeting the M-CSF recep-
tor with anti-CSF short interfering RNA (siCD115) in TAMs led 
to modulation of the TIL profile, resulting in growth suppression 
of B16 melanoma in vivo (20). In the second phase of priming, 
type I IFN (IFN-α, IFN-β) and type II IFN (IFN-γ) modulate 
the production of chemokines from TAMs, suggesting that these 
cytokines repolarize TAMs in several skin cancers (7, 18). Cancer 
stromal factors such as soluble receptor activator of nuclear factor 
kappa-B ligand (RANKL) derived from cancer cells could be a 
third mode of stimulation that activates mature M2 macrophages 
to produce a series of chemokines that recruit immunosuppres-
sive cells such as Tregs and Th2, leading to maintenance of the 
tumor microenvironment (8, 10, 17). These reports suggest that 
each of these three differentiation steps could serve as a target for 
immunotherapies.

ROleS OF TAMs iN MAiNTAiNiNg  
THe iMMUNOSUPPReSSive 
MiCROeNviRONMeNT

Chemokines from TAMs Determine  
the immunological Microenvironment  
in Tumors
Chemokines play crucial roles in determining the profiles of TILs 
in the tumor microenvironment, and the profiles of chemokines 

from TAMs are determined by stromal factors of each skin cancer 
(1). For example, immune cells in the tumor microenvironment 
determine the aggressiveness of melanoma (21). In metastatic 
melanoma, periostin (POSTN) is expressed in the region sur-
rounding melanoma cell nests in metastatic melanoma lesions 
that develop at the wound site (16). In addition, TAMs are promi-
nent in the tumor stroma in melanoma (7, 19, 22), and POSTN 
stimulates CD163+ macrophages to produce several specific 
cytokines including Treg-related chemokines [chemokine ligand 
17 (CCL17), CCL22] (9). Because CCL17 and CCL22 from 
TAMs attracts Tregs to the tumor site in melanoma (7, 21, 22), 
repolarization of TAMs by immunomodulatory reagents such as 
IFN-β and imiquimod are useful for suppressing tumor growth 
in melanoma (7, 22). The downregulation of CCL22 production 
was also observed in B16F10 melanoma mouse treated with 
classical cytotoxic anti-melanoma drugs such as dacarbazine, 
nimustine hydrochloride, and vincristine, all of which have been 
used in the adjuvant setting for advanced melanoma for the 
last 30 years (19). Other reports have suggested that a series of 
chemokines (CCL17, CXCL10, CCL4, and IL-8) in cerebrospinal 
fluid may be useful for predicting brain metastasis in melanoma 
patients (21). Together, these reports suggest the significance of 
chemokines from TAMs that can be induced by POSTN in the 
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tumor stroma to induce melanoma-specific TILs in patients with 
melanoma.

Tumor-associated macrophages in non-melanoma skin can-
cer also secrete an array of chemokines in lesional skin to regulate 
the tumor microenvironment (1). In EMPD, for example, solu-
ble RANKL released by Paget cells increases the production of 
CCL5, CCL17, and CXCL10 from RANK+ M2 polarized TAMs  
(8, 10, 17), suggesting that Paget cells can determine the immu-
nological microenvironment by the stimulation of TAMs. The 
results of this study led to the hypothesis that denosumab, a full 
human monoclonal antibody for RANKL, has therapeutic effects 
in invasive EMPD. In cutaneous squamous cell carcinoma (cSCC), 
according to its heterogeneity of differentiation of cancer cells, 
TAMs in cSCC heterogeneously polarized from M1 to M2 (11). 
Indeed, Petterson et al. (11) reported that CD163+ TAMs not only 
express CCL18 (11), an M2 chemokine involved in remodeling of 
the tumor microenvironment but are also colocalized with phos-
phorylated signal transducer and activator of transcription 1 (11), 
suggesting the heterogeneous activation states of TAMs. Although 
the exact stimulator of cSCC is unknown, the depletion of TAMs 
such as antibody-mediated depletion (e.g., anti-CSF1R Ab)  
or bisphosphonate could be a useful therapy for unresectable 
cSCC (23–26).

Not only solid tumors but also hematopoietic malignancies 
in the skin contain CD163+ TAMs (25, 27–29), which produce 
chemokines that direct to specific anatomic sites to form metas-
tases (25). Indeed recently, Wu et al. (9) used a human xenograft 
CTCL cell model to demonstrate that chemokines from TAMs 
play crucial roles in tumor formation in MF lesions. In another 
report, it was shown that the cancer stroma of MF containing 
POSTN and IL-4 might stimulate TAMs to produce chemokines 
that correlate with tumor formation in MF (25), and that 
chemokines from TAMs can be modified by immunomodula-
tory agents such as IFN-α and IFN-γ, leading to their therapeutic 
effects (18). Furthermore, CCL18 produced by TAMs in MF at the 
invasive margin of the tumor promote the recruitment of CTCL 
cells, leading to cancer progression (30). These reports suggest 
the significance of chemokines from TAMs for the development 
of CTCL.

Direct Suppressive Function of TAMs
Immunomodulatory costimulatory molecules, such as B7 
homologs, play representative roles in the direct cell-mediated 
suppressive mechanism of TAMs. Recently, several reports have 
suggested that the expression of PD-L1 (also known as B7H1) 
in TAMs is necessary for antigen-specific tolerance induction  
(1, 3, 31) in tumor-bearing hosts. For example, the expression 
of PD-L1 on TAMs is augmented by autocrine IL-10 from 
M2-polarized TAMs stimulated by specific antigens (31). 
Another report showed that the decrease of IL-10 in MDSCs led 
to the downregulation of PD-L1 expression in MDSC in a mouse 
melanoma model (3). Linde et  al. (32) reported that IL-10-
polarized TAMs into M2 phenotypes in the presence of IL-4 
and vascular endothelial growth factor A (VEGF-A) in cSCC. 
These reports suggest that IL-10 upregulates PD-L1 expression 
on TAMs, inducing immunosuppression in the tumor micro-
environment in the skin. Arginase 1 is one of the key factors 

for the suppressive function of TAMs. Its expression is widely 
detected in immature and functional M2 macrophages (1, 8, 17), 
leading to suppression of T cell activity by l-arginine catabolism 
(33). Indeed, CD163+ TAMs expresses arginase 1 in several skin 
cancers such as EMPD and SCC (8, 34). More recently, Pico 
de Coaña et  al. (35) reported the additional immunomodula-
tory effects of ipilimumab on granulocytic MDSCs, which are 
circulating macrophages in tumor-bearing hosts, suggesting the 
crosstalk between Tregs and granulocytic MDSCs through the 
CTLA4/B7 homolog pathway and the significance of the direct 
suppressive function of TAMs (35).

Angiogenetic Factors from TAMs
Tumor-associated macrophages produce angiogenetic factors 
such as VEGF, platelet-derived growth factor, and transforming 
growth factor β, or by expressing MMPs to induce neovascu-
larization (10, 28, 32, 36–38). Linde et  al. (32) reported that 
VEGF-A augments the recruitment of TAMs at a tumor site by 
promoting neovascularization in a mouse skin tumor model 
(32). In a human skin cancer model, Werchau et al. (36) reported 
that VEGF-C expressed by TAMs contributes to lymphangi-
ogenesis and the progression of Merkel cell carcinoma (36). In 
angiosarcoma, TAMs express MMP9, which might be a target 
for amino bisphosphonate (37). Another report suggested that 
inhibition of the VEGF/VEGF receptor pathway inhibits M2 
polarization in TAMs, leading to reduced vascular density and 
tumor growth in MCA205 mouse sarcoma (38). In addition, 
more recently, Yamada et  al. (39) reported that the expression 
of MGF-E8 on mesenchymal stromal cells plays crucial roles in 
inducing M2 macrophage polarization, leading to suppression 
of tumor growth by the reduction of VEGF expression in TAMs 
in B16F10 melanoma. These reports indicate the significance 
of VEGF produced by M2 macrophages in tumor progression, 
and show that both VEGF and MMPs are key markers for M2 
macrophages in skin cancers (11, 40, 41). For example, in a 
melanoma model, osteopontin signaling promoted macrophage 
recruitment by the secretion of prostaglandin E2 and MMP-9 
from TAMs, leading to angiogenesis and tumor progression (41). 
These reports suggest that MMPs play crucial roles in tumor 
progression. MMPs can also be produced by TAMs upon stimula-
tion of stromal proteins in skin cancer (9, 10). For example, the 
stimulation of POSTN augments the production of MMP1 and 
MMP12 from monocyte-derived immature M2 macrophages 
(9). Because POSTN is abundant in the tumor stroma of MF and 
dermatofibrosarcoma protuberans (DFSP) (5, 9), and because 
substantial numbers of CD163+ TAMs have been detected in the 
POSTN-rich area in the lesional skin of skin tumors (5, 9), the 
production of MMP1 and MMP12 is prominent in the lesional 
skin of MF and DFSP. Notably, as reported by Livtinov et al. (42), 
among the MMPs, only MMP12 is a risk factor for CTCL progres-
sion, as determined by transcriptional profiling (42). RANKL is 
expressed in skin cancers of apocrine origin such as EMPD and 
apocrine carcinoma (8, 37), and is released in its soluble form. 
Because monocyte-derived M2 macrophages produce MMP1 
and MMP25 by RANKL stimulation, TAMs in skin cancer of apo-
crine origin produce MMP1 and MMP25 at the tumor site (37). 
These reports suggest that TAMs stimulated by tumor stromal 
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factors play roles in the carcinogenesis of these skin cancers, and 
might be targets for molecular-targeted therapy in the future.

CliNiCAl beNeFiTS OF TAMs

The effects of Anticancer Drug for TAMs
Because TAMs comprise the immunosuppressive microenviron-
ment at the tumor site, they may be optimal therapeutic targets 
in cancer (1, 2, 4, 43–46). For example, Rogers et al. (44) reported 
the immunomodulatory effects of bisphosphonate on TAMs in 
patients with breast and prostate cancers upon the repolarization 
of TAMs into tumoricidal macrophages (44). More recently, sev-
eral reports have also focused on the immunomodulatory effects 
of chemotherapeutic reagents on TAMs (19, 47, 48). For example, 
a non-cytotoxic dose of paclitaxel decreased MDSCs and even 
blocked the immunosuppressive potential of MDSCs in a mouse 
melanoma model (47). More recently, Fujimura et al. (19) reported 
the immunomodulatory effects of cytotoxic anti-melanoma 
drugs, dacarbazine, nimustine hydrochloride, and vincristine, on 
TAMs both in vitro and in vivo by inhibition of STAT3 signals 
(19). The authors concluded that their immunomodulatory effects 
could explain their antitumor effects in postoperative melanoma 
patients. Peplomycin administered through a superficial tempo-
ral artery using an intravascular indwelling catheter, which can 
cause dose-independent interstitial pneumonia (49), decreased 
the number of TAMs and Tregs in cSCC on the lips, leading to 
an increase in the number of immunoreactive cells at the tumor 
sites (50), and possible autoimmune-like interstitial pneumonia  
(49, 50). More recently, not only cytotoxic chemotherapeutic 
drugs but also low molecular weight compounds were reported 
to co-localize with TAMs at tumor sites. Indeed, Hu-Lieskovan 
et al. (13) reported that single-agent dabrafenib increased TAMs 
and Tregs in melanoma, which decreased with the addition of 
trametinib, leading to the synergistic effects of immune check-
points inhibitors with dabrafenib and trametinib combination 
therapy. In another report, the anti-macrophage receptor with col-
lagenous structure was reported to polarize TAMs into proinflam-
matory phenotypes to induce anti-melanoma immune response 
in B16 melanomas (51). In addition, Gordon et al. (52) reported 
that inhibition of PD-1/PD-L1 in  vivo increased macrophage 
phagocytosis, reduced tumor growth, and prolonged the survival 
of macrophages. In another report, increasing expression levels of 
PD-L1 in TAMs, 2 months after the administration of anti-PD-1 
Abs in patients with advanced melanoma, was correlated with the 
response to immunotherapy (53), suggesting that PD-L1 expres-
sion in TAMs could be a biomarker that predicts the effectiveness 
of anti-PD-1 Ab therapy. Because the anti-PD-1 Abs nivolumab 
and pembrolizumab are widely used to treat advanced cancer, 
including melanoma (53), one target of anti-PD-1 Abs in patients 
with advanced melanoma could be an immunomodulatory effect 
on TAM, which, in turn, might be correlated with both their effec-
tiveness and the development of adverse events. TAMs produce 
not only chemokines that directly recruit immunosuppressive 
cells to the tumor microenvironment but also produce cytokines 
that stimulate other stromal cells such as fibroblasts to produce 
chemokines (54, 55). Indeed, Young et  al. (54) reported that 
IL-1β from TAMs stimulate fibroblasts to produce CXCR2 ligand, 

which plays crucial roles in recruiting granulocytic MDSCs to 
tumor sites (55, 56). The authors concluded that CXCR2 agonists 
in combination with anti-CD115 Abs could suppress B16F10 
melanoma in vivo by inhibiting the recruitment of granulocytic 
MDSCs and depletion of immature TAMs (56). Interestingly, the 
antihuman CD115 Ab, emactuzumab, decreased the number of 
CD163+ CD206+ M2 macrophages in patients with melanoma 
by depleting immature TAMs before the IL-4 stimulation phase 
(57). Together, these reports suggest that anti-CXCR2 agonists in 
combination with emactuzumab might induce the antimelanoma 
immune response by reducing the number of M2 polarized TAMs. 
These reports suggest the significance of assessing the effects of 
chemotherapeutic drugs on TAMs (13, 19, 47, 49, 50).

TAMs as a biomarker for Disease Activity 
and Adverse events
As described above, because TAMs produce tumor-specific 
chemokines by the stimulation of stromal factors, chemokines 
might serve as biomarkers that reflect disease activity. For example, 
TAMs produced CCL18 in the lesional skin of CTCL (26), which 
reflect disease severity and prognosis (58). Immunomodulatory 
reagents such as IFNs and imiquimod reduce CCL22 from TAMs, 
leading to the therapeutic effects of them in mouse B16F10 mela-
noma models (7, 22). CCL5, which induces Th2 cells from naive 
T cells (59), reflects the cancer stage and disease progression in 
gastric cancers (60). Another TAM-associated factor, sCD163, 
could be a useful biomarker for cancer treatment, as it is an activa-
tion marker for CD163+ tissue macrophages that is present in the 
serum as a result of proteolytic shedding (61). Serum sCD163 
levels increase in autoimmune diseases such as atherosclerosis, 
rheumatoid arthritis, moyamoya disease, pemphigus vulgaris, 
and bullous pemphigoid (62–64), and reflect disease activity (61). 
Therefore, as we previously reported, sCD163 is a possible marker 
for predicting immune-related adverse events caused by immune 
checkpoints inhibitors (64, 65). These reports suggested that the 
production derived from TAMs could be a biomarker for cancer 
treatment in the future.

CONClUDiNg ReMARKS

Although several studies have suggested that high numbers of 
TAMs in tumor-bearing individuals are associated with a poor 
prognosis, making them useful as prognostic markers in cancer, 
further studies are needed to quantify their impact in different 
cancers.
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The global health burden associated with melanoma continues to increase while treat-
ment options for metastatic melanoma are limited. Nevertheless, in the past decade, the 
field of cancer immunotherapy has witnessed remarkable advances for the treatment 
of a number of malignancies including metastatic melanoma. Although the earliest 
observations of an immunological antitumor response were made nearly a century ago, 
it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic 
option, in particular for cutaneous melanoma. As such, melanoma remains the focus of 
various preclinical and clinical studies to understand the immunobiology of cancer and 
to test various tumor immunotherapies. Here, we review key recent developments in 
the field of immune-mediated therapy of melanoma. Our primary focus is on therapies 
that have received regulatory approval. Thus, a brief overview of the pathophysiology 
of melanoma is provided. The purported functions of various tumor-infiltrating immune 
cell subsets are described, in particular the recently described roles of intratumoral 
dendritic cells. The section on immunotherapies focuses on strategies that have proved 
to be the most clinically successful such as immune checkpoint blockade. Prospects 
for novel therapeutics and the potential for combinatorial approaches are delineated. 
Finally, we briefly discuss nanotechnology-based platforms which can in theory, acti-
vate multiple arms of immune system to fight cancer. The promising advances in the 
field of immunotherapy signal the dawn of a new era in cancer treatment and warrant 
further investigation to understand the opportunities and barriers for future progress.

Keywords: melanoma, immunotherapy, immune checkpoint blockade, tumor microenvironment, adoptive T cell 
transfer, programmed cell death protein 1, tumor-infiltrating lymphocyte, tumor-infiltrating dendritic cell

MeTASTATiC MeLANOMA

Malignant melanoma is a highly aggressive cancer and accounts for the majority (60–80%) of 
deaths from skin cancer (1, 2). Non-melanoma skin cancers, including basal cell carcinomas and 
squamous cell carcinomas, have much lower metastatic potential and associated mortality than 
melanoma (3). Melanoma arises from pigment-producing cells called melanocytes that are found 
primarily in the skin and the eyes and to a lesser extent, in a wide range of body tissues (2, 4, 5). 
Melanocytes originate from the embryonic neural crest and migrate to the epidermis where they 
mature and produce melanin that is subsequently transferred to neighboring keratinocytes (6, 7). 
Melanin plays a crucial role in protecting the skin from ultraviolet (UV) solar radiation (6, 8). 
Neoplasia of melanocytes varies from benign melanocytic naevi to malignant melanomas (4, 5). 
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Malignancies can arise from any of the tissues where melanocytes 
are present but by far the most common type is cutaneous mela-
noma, comprising over 90% of all melanoma cases (5, 9). Hence, 
the central focus of this review will be on cutaneous melanoma. 
Due to the recent advances in tumor immunotherapy, a number 
of novel cancer treatment strategies have emerged. As such, this 
review will discuss the development of cancer immunotherapy 
in the context of melanoma and highlight potential avenues for 
further research.

epidemiology
Melanoma is a fairly common cancer with an estimated 
global incidence rate of 3 per 100,000 (9–11). In 2015, it was 
reported that there were approximately 352,000 new cases of 
melanoma worldwide with an age-standardized incidence rate 
of 5 cases per 100,000 persons (12). There were nearly 60,000 
deaths worldwide due to melanoma (12). The incidence rate is 
observed to be higher in males than in females and is associ-
ated with a younger median age (~57 years) at diagnosis than 
other solid tumors (~65 years) (9, 10, 12). The three regions 
with the highest incidence of melanoma were found to be 
Australasia (54%), North America (21%), and Western Europe 
(16%) (12). Furthermore, it is particularly concerning that the 
global incidence rates of melanoma continue to rise. In 2005, 
there were roughly 225,000 new cases of melanoma but in 
2015, that number climbed to roughly 352,000 cases, repre-
senting a 56% increase (13). A large-scale cohort study from 
39 countries showed that while incidence rates for melanoma 
are beginning to stabilize in North America and Australia, 
they are continuing to rise in Southern and Eastern Europe 
(11). Therefore, melanoma constitutes a significant burden of 
disease worldwide and warrants both novel treatments and 
prevention strategies.

Pathophysiology and Clinical Subtypes
The exact etiology of melanoma development is not well under-
stood (4). However, there has been tremendous study on the 
histological and molecular profiles of the various subtypes of 
melanoma (14–16). Overall, it has been observed that melanomas 
which arise from skin that is chronically sun-damaged (CSD) 
occur in anatomical locations such as the head and neck. By con-
trast, non-CSD melanomas are found in anatomical regions that 
suffer only limited sun exposure such as the trunk and extremities 
(4). Overall, non-CSD melanomas also have lower mutational 
loads than CSD melanomas (4, 16). A significant number of 
melanomas are usually associated with benign neoplasms of 
melanocytes. These lesions are termed naevi (commonly called 
moles), and an increased presence of naevi is deemed a risk 
factor for melanoma (2, 4). These lesions include benign naevi, 
dysplastic naevi, which display atypical cellular characteristics, 
and non-invasive melanoma in situ (4, 17). Melanoma in situ is by 
definition confined to the epidermis and if resected entirely, has a 
100% survival rate (17). The current staging system for melanoma 
is the one used by the American Joint Committee on Cancer 
(AJCC) and relies upon analysis of the tumor (T), the number 
of metastatic nodes (N), and the presence of distant metastases 

(M) (18, 19). These are then grouped to provide clinical stages of 
the cancer, ranging from 0 to stage IV (19). Stage IV melanoma 
is classified as metastatic melanoma due to the presence of dis-
tant metastases, while stage III is only marked by metastases in 
regional lymph nodes (LN) (20).

Historically, malignant melanoma was divided into four major 
histological subtypes but due to the complexity of the disease, 
a fraction of melanomas cannot be completely classified into 
either subtype (15, 21, 22). Moreover, as this classification system 
is reliant on clinical and morphological features, it yields little 
prognostic value but serves as a useful strategy in identifying the 
various histological forms of the disease (22). The four primary 
subtypes of melanoma are as follows: (i) superficial spreading 
melanoma (SSM), (ii) nodular melanoma (NM), (iii) lentigo 
maligna melanoma (LMM), and (iv) acral lentiginous melanoma 
(ALM) (14, 22). However, in recent years, a number of novel clini-
cal subtypes have also been defined. These include desmoplastic 
melanoma (DM), melanoma arising from a blue naevus and per-
sistent melanoma (22). The five common histogenic subtypes of 
melanoma warrant further description here. A pictorial overview 
of the clinical manifestation and histopathology of melanoma is 
presented in Figure 1.

Superficial Spreading Melanoma
Superficial spreading melanomas are the most common sub-
type representing between 50 and 70% of all cases (14, 23). They 
occur in relatively younger patients (~50 s) and present on ana-
tomical regions such as the trunk, back, and extremities (22). 
SSM presents as a flat or a slightly elevated lesion with varying 
pigmentation (24). Histologically, SSM is marked by atypical 
melanocytes with nested or single cell upward migration (22). 
Malignant melanocytes display lateral spreading throughout 
the epidermis, poor circumscription, and increased melaniza-
tion in the cytoplasm (14, 22).

Nodular Melanoma
Nodular melanomas are a fairly common subtype of melanoma 
(15–35%) that can present most commonly on the head and neck 
as a growing nodule that shows ulceration (22–24). Histologically, 
NMs show similarities to SSMs but differ in that they show 
distinct circumscription. They do not display radial growth but 
aggressive vertical growth evidenced by large dermal nests and 
sheets of atypical melanocytes (14, 22).

Lentigo Maligna Melanoma
Lentigo maligna melanomas present almost exclusively on the 
sun-exposed upper extremities or head and neck of elderly 
people (mostly octogenarians) (22). It is relatively uncommon 
(5–15%), and topically can be seen as patch of discolored 
skin showing variegated coloring (23, 24). Lentigo maligna 
(Hutchinson’s freckle) is the term for the in  situ melanoma 
phase, and a small percentage of these patients progress to 
invasive LMM (23). Histologically, the skin exhibits extensive 
solar damage resulting in an atrophic epidermis and len-
tiginous (back-to-back) proliferation of melanocytes, which 
are hyperchromatic (22). Multinucleated (starburst form) 
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FiguRe 1 | Clinical and histological presentation of melanoma.  
(A) Superficial spreading melanoma (SSM), (B) nodular melanoma (NM),  
(C) acrolentiginous melanoma (ALM), (D) H&E stain of NM depicting 
asymmetrical nodular tumor infiltrates in the upper dermis. Nests of  
atypical cells are visible in the dermis and at the dermoepidermal junction.  
(e) Immunohistochemical staining for Melan-A reveals red stained atypical 
tumor cells in the dermis and epidermis (Images courtesy of RH).
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melanocyte cells and solar elastosis are also hallmarks of this 
type of melanoma (14).

Acral Lentiginous Melanoma
Acral lentiginous melanomas are a fairly uncommon subtype 
(5–10%) and occur primarily in non-Caucasian populations 
such as people of African or Japanese descent (23). They pre-
sent on acral sites such as palms, soles of the feet, or under 
the nails. On the skin they present as slow growing patches 
with variegated pigmentation (22). Histologically, this subtype 
displays single cells or nests of melanocytes along the der-
mal–epidermal junction, and the association of lymphocyte 
infiltrates can be used as a diagnostic marker for this subtype 
of melanomas (14, 22).

Desmoplastic Melanoma
Desmoplastic melanoma is a rare form of melanoma compris-
ing 4% of primary melanomas and defined by the histological 
features observed in its dermal component (22, 25). It occurs 

primarily on the head and neck region in elderly individuals 
and is associated with higher probability of recurrence but a 
lower incidence of metastasis (25). Histologically, it is char-
acterized by spindle-shaped melanocytes and a desmoplastic 
stroma, i.e., new collagen formation, and usually appears to be 
amelanotic (22, 25).

Risk Factors and Driver Mutations
Melanoma occurs via a complex interplay of genetic and environ-
mental risk factors. The primary environmental risk factor of 
concern is UV solar radiation as well as, UV rays from tanning 
beds (26, 27). Individual risk factors include the increased 
presence of melanocytic naevi, skin complexion, and in certain 
cases, family history of melanoma (26, 28). Melanomas display 
one of the highest mutational burdens among solid tumors 
(25). Thus, the molecular profiles that are associated with vari-
ous subtypes of melanoma are the subject of current studies. 
In particular, it is crucial to distinguish “driver” mutations, or 
mutations that confer a survival advantage, from “passenger” 
mutations, which have negligible or no contribution to tumor 
growth (29). Understanding the mutational landscapes of 
a cancer allows for the development of targeted therapies 
that can significantly improve clinical outcomes. A massive 
study conducted by researchers of The Cancer Genome Atlas 
Network, was reported in 2015, and determined the first-ever 
comprehensive genomic classification system for cutaneous 
melanomas (30). These four distinct subtypes were based on 
the pattern of the major significantly mutated genes, i.e., BRAF, 
RAS, neurofibromin 1 (NF1), and triple wild type (WT), which 
denotes a lack of mutations in the three aforementioned genes 
but is associated with higher copy number and structural rear-
rangement abnormalities. These subtypes do not correlate with 
outcome but may help delineate the genomic changes associated 
with melanoma thereby providing potential molecular targets 
(30). Of further interest was the observation that immune gene 
expression, and immune cellular infiltrates did correlate with 
patient survival (30). As the studies of the major genomic aber-
rations in melanoma have been extensively reviewed elsewhere, 
this section will describe a number of the most common driver 
mutations seen in cutaneous melanoma [BRAF, NRAS, NF1, 
microphthalmia-associated transcription factor (MITF), and 
PTEN] (4, 15, 25, 28, 31).

BRAF
Nearly 60% of melanoma cases have mutations in BRAF (v-raf 
murine sarcoma viral oncogene homolog B) (25, 32). Thus, a 
brief overview of BRAF signaling is warranted. BRAF codes for 
a serine/threonine protein kinase constituting part of the RAS–
rapidly accelerated fibrosarcoma (RAF)–mitogen-activated pro-
tein kinase kinase (MEK)–extracellular signal-regulated kinase 
(ERK) [mitogen-activated protein kinase (MAPK)] pathway, 
which is activated by the binding of extracellular growth fac-
tors to receptor tyrosine kinases (32). This binding leads to the 
activation of RAS (named for Rat sarcoma) family of GTPases 
(proteins that bind and hydrolyze guanosine triphosphate to 
guanosine diphosphate, i.e., GTP to GDP), which recruit and 
activate RAF serine/threonine protein kinases, which in turn 
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activate MEK resulting finally in the phosphorylation of ERK 
(32–35). The activation of ERK leads to downstream signaling 
and activation of transcription factors that mediate cell differen-
tiation, growth, and inhibit cell death (33, 36).

BRAF is one of three mammalian RAF isoforms, and one 
that has the highest basal kinase activity and thus is the most 
common isoform mutated in human cancers that include mela-
noma but also hairy cell leukemia, papillary thyroid cancer and 
colorectal cancer (CRC) (33, 36). The missense mutation, 
V600E, results in a substitution from valine to glutamic acid 
at the 600th amino acid position and represents the majority 
(80%) of all BRAF activating mutations in melanoma (25, 28). 
Other BRAF mutations include V600K (valine–lysine) and 
V600R (valine–arginine). BRAF-activating mutations result in 
constitutively active MEK signaling leading to tumor progres-
sion. In vitro, the V600E mutation confers 500-fold higher 
activity in BRAF than normal and promotes the transforma-
tion of melanocytes to melanoma (37). BRAFV600E mutations 
are also found in benign naevi indicating that alone, these 
mutations may not be sufficient for tumor progression (38). 
The presence of these mutations has led to the development 
and approval of two BRAF inhibitors (BRAFi) for melanoma 
treatment, namely, vemurafenib (Genentech/Plexxikon) and 
dabrafenib (GlaxoSmithKline) as well as, a MEK inhibitor 
trametinib (GSK) (33, 39).

NRAS
The second most common type of driver mutations in melano-
mas occur in NRAS (neuroblastoma RAS viral v-ras oncogene) 
and are found in 15–20% of melanoma patients (28). The most 
common mutation in NRAS occurs at codon 61 resulting in 
the replacement of glutamine by lysine or arginine, thereby 
resulting in a constitutively active RAS (38). This leads to 
upregulation of both the MAPK and phosphatidylinositol 3′ 
kinase (PI3K) pathways and results in increased cell prolif-
eration and invasiveness (25). NRAS mutant melanomas have 
increased thickness and display high rates of mitosis (25). 
NRAS mutations are also found in benign congenital nevi (28). 
NRAS and BRAF activations rarely occur in the same mela-
noma, albeit NRAS mutations being observed in patients with 
advanced BRAF tumors who had failed BRAFi therapy and 
which therefore may mechanistically contribute to resistance 
to BRAFi treatment (28). Efforts to target NRAS have focused 
on downstream inhibitors for the MAPK pathway and include 
the MEK inhibitor binimetinib, which is undergoing clinical 
trials (25).

Neurofibromin 1
Neurofibromin 1 encodes a large protein of more than 2,800 
amino acids with multiple functional domains (40). It contains 
several functional domains with one domain bearing resem-
blance to the catalytic region of GTPase-activating protein. 
This is the most well-characterized domain of NF1 and acts 
as a negative regulator for RAS by converting the active RAS-
GTP to the inactive RAS-GDP, thus playing the role of a tumor 
suppressor gene (40, 41). Germline mutations in NF1 lead to 
a genetic syndrome called neurofibromatosis type 1 (NF1), a 

relatively frequent genetic condition with an incidence of 1 in 
3,000, resulting in a higher predisposition to multiple tumors 
arising from various cell types (40). The incidence of melanoma 
in patients with neurofibromatosis type 1 is very low. However, 
NF1 somatic mutations are found in a range of cancers, and 
it is the third common driver mutation in melanoma found 
in nearly 14% of tumors (25, 41). Mutations in NF1 are more 
commonly observed on skin with chronic UV exposure and in 
elderly patients (40). NF1 inactivating mutations were found in 
48% of a cohort of wild-type BRAF and NRAS melanomas and 
are often associated with mutations in other RAS-related genes 
such as RAS p21 protein activator 2 (RASA2), PTPN11, and 
SPRED1 (25, 40). Recent studies have also shown that NF1 may 
be a unique driver mutation in DMs as NF1 loss-of-function in 
DM is more common than for other histogenic subtypes (25). 
Due to the crucial role of NF1 upstream of RAS/MAPK and 
PI3K/mTOR pathways, NF1 mutant tumors have been targeted 
with tyrosine kinase inhibitors (e.g., imatinib), MEK inhibitors 
(trametinib), and mTOR inhibitors (sirolimus), but to date, 
none of these agents have been reported in treatment of NF1 
mutant melanomas (40).

Microphthalmia-Associated Transcription Factor
Microphthalmia-associated transcription factor is a helix-
loop-helix leucine zipper transcription factor required for 
differentiation, proliferation, and survival of melanocytes and 
thus, its expression is also necessary for melanoma survival  
(42, 43). MITF also plays an important antiapoptotic function 
in melanoma cells by activating the expression of genes such as 
BLC2A1, BCL2, and BIRC7 (43). MITF is observed to be ampli-
fied in 20% of metastatic melanomas and is associated with 
poor survival (25). MITF is regulated by the MAPK pathway 
and in particular, BRAFV600E causes induction of MITF through 
the transcription factor BRN2 (N-Oct-3) (25). Alternately, 
increased ERK signaling can also target MITF for degradation 
(44). Finally, MITF is also purported to contribute to BRAFi 
resistance through the regulation of the BCL2A1 antiapoptotic 
gene (44). Although targeting of MITF directly may not be 
viable, the use of histone deacetylase (HDAC) inhibitors can 
reduce MITF expression. Hence, the HDAC inhibitor panobi-
nostat in combination with decitabine and chemotherapy is 
being studied in clinical trials for metastatic melanoma treat-
ment (25).

PTEN
Phosphatase and tensin homolog (PTEN) is a commonly 
mutated gene in melanoma and PTEN mutations were found in 
14% of all melanoma samples from the TCGA genome classifica-
tion study mentioned above (25, 30). PTEN codes for a phos-
phatase which targets phosphatidylinositol (3,4,5)-triphosphate  
and thus plays a crucial role in the aforementioned PI3K–Akt 
pathway (45). PTEN silencing therefore results in dys-
regulated apoptosis, cell cycle progression and migration, 
contributing to tumorigenesis (25, 45). It has been observed 
that PTEN mutations are more frequent in metastatic 
melanomas as opposed to early stage primary tumors (25). 
The loss of PTEN also interferes with genetic stability, thus 
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sensitizing PTEN-deficient cells to polyadenosine diphosphate 
ribose polymerase (PARP) inhibitors (46). Currently, there  
are no PARP inhibitor trials underway for the treatment of 
metastatic melanoma (46).

Current Treatments for Malignant 
Melanoma
The multiple clinical approaches to the treatment of early 
and advanced melanoma are reviewed elsewhere (18, 20, 47). 
As previously mentioned, the median survival associated 
with metastatic melanoma (stage IV) remains very poor, 
and the 10-year survival for all patients is under 10% (47). 
Melanoma treatments involve the use of surgery, radiation or 
systemic therapy (which includes immunotherapy) (18, 20). 
For most primary melanomas, surgical excision of the tumor 
remains the standard-of-care therapy. Biopsy and histological 
examination of the sentinel LN is an important component of 
melanoma staging and has been found to be a strong prognos-
tic measure (18, 20). When surgical excision is not an option, 
primary lentigo maligna may also be treated with radiation 
or cryotherapy (20). The treatment modalities for metastatic 
melanoma are more complex as most single or even combina-
tion therapies are only successful in a subset of patients (18, 
48). For patients with oligometastatic disease, surgery remains 
a primary treatment (18, 48). Melanoma is considered a 
relatively radiation-resistant cancer type, but radiation therapy 
continues to be utilized for patients with brain metastases (47, 48).  
Systemic therapy includes chemotherapy, targeted therapy, and 
immunotherapy (18, 47). Studies with various agents, includ ing 
combination chemotherapy approaches, have shown that it has 
limited efficacy in melanoma (18, 47). The major chemotherapy 
drugs that have been used to treat melanoma including the 
alkylating agents dacarbazine, temozolomide, and nitrosoureas 
such as fotemustine and carmustine (47). Platinum analogs 
(e.g., cisplatin) and antimicrotubular agents such as vinblastine 
and paclitaxel have also shown modest efficacies in patients with 
metastatic melanoma (47). Recently, clinical studies have been 
performed using biochemotherapy, which combines cytotoxic 
drugs with immunotherapies such as interleukin-2 (IL-2) and 
IFNα (interferon alpha), and despite showing increased response 
rates these patients did not experience prolonged overall sur-
vival (OS) (18). In patients with recurrent metastatic melanoma 
in the limb, high doses of the cytotoxic drug melphalan and 
recently, tumor necrosis factor (TNF) and IFNγ are given to the 
patient via isolated limb perfusion to reduce systemic toxicity 
(48). A significant improvement in melanoma treatment was 
observed using targeted therapies, which pharmacologically 
inhibit key mutations in melanoma. These include the BRAFi 
drugs vemurafenib and dabrafenib, and the MEK inhibitor 
trametinib (39). Targeted therapies for melanoma have been 
expertly reviewed elsewhere (39, 49). The major clinically 
approved immunotherapies for melanoma include adjuvant 
treatments such as IL-2 and interferon alfa (18, 48). A few clini-
cal groups have had success with adoptive T cell therapy in a 
subset of patients (50). Finally, immune checkpoint blockade 
(ICB) with antibodies targeted to cytotoxic T  lymphocyte 

antigen-4 (CTLA-4) (ipilimumab) and programmed cell death 
protein 1 (PD-1) (nivolumab and pembrolizumab) has resulted 
in significant improvements in clinical outcomes for a propor-
tion of melanoma patients (39). Targeting the ligand for PD-1 
(i.e. PD-L1) is also being studied in clinical trials (51, 52). This 
review will summarize the evolution of immunotherapies in the 
context of melanoma and discuss novel opportunities to sig-
nificantly enhance tumor immunotherapy. To assess the results 
of clinical studies, it is pertinent to mention some of the key 
measures used in clinical trials and criteria defined within the 
RECIST (Response Evaluation Criteria in Solid Tumors) (53). 
OS is defined as the time from randomization of the treatment 
subject to time of death due to any cause, while the more utilized 
progression-free survival (PFS) metric, denotes time from ran-
domization until tumor progression or death (54). The overall 
objective response rate (ORR) is a measure of the percentage of 
patients who have had either a partial response (PR) or complete 
response (CR) to treatment (54). PR is defined as a decrease 
of at least 30% in the sum of the diameters of the target tumor 
lesions while CR indicates the disappearance of all target lesions 
(53). Finally, progressive disease (PD) is defined as at least a  
20% increase in the sum of the target lesions’ diameters while 
stable disease (SD) denotes a state where the lesions do not 
shrink enough to signal PR or increase sufficiently to indicate 
PD (53). Thus, these parameters provide an objective methodol-
ogy to measure the results of a treatment (53, 54).

iMMuNOBiOLOgY OF MeLANOMA

Cancer immunoediting
Over the past decade, cancer immunotherapy has emerged as 
a vital new approach to cancer treatment (55, 56). The earliest 
evidence of the involvement of the immune response in fight-
ing cancer was observed over a century ago. In 1893, William 
Coley, a surgeon in New York published a report describing 
tumor regression in a number of patients treated with cultures 
of the bacterium Streptococcus pyogenes (57, 58). However, the 
immunological basis of these results was not yet known and 
the approach did not gain wide acceptance in the medical field. 
Nevertheless, subsequent observations in murine models led to 
the formulation of the “cancer immunosurveillance” hypothesis 
by Macfarlane Burnet and Lewis Thomas in the middle of the 
century (59, 60). The hypothesis posited that lymphocytes 
played a protective role by continuous recognition and elimina-
tion of malignant cells (61). Currently, the concept of “cancer 
immunoediting” is forwarded as a comprehensive depiction 
of the continuous interplay between tumors and the immune 
system (62, 63). Cancer immunoediting posits the existence 
of three distinct phases, namely, elimination, equilibrium, and 
escape (63, 64). In the elimination phase, innate and adaptive 
immune mechanisms eradicate neoplastic cells before they 
become clinically detectable cancers (64). This phase has not 
been directly observed in vivo but the increased susceptibility to 
developing cancer in immunodeficient mouse models provides 
evidence of the existence of this stage of immunoediting (64). 
Further observations in humans such as the increased risks of 
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cancers in patients with immunodeficiencies or undergoing 
immunosuppression for organ transplantation, as well as cases 
of spontaneous tumor regression lend further proof to this 
paradigm (64,  65). During the equilibrium stage, rare cancer-
ous cells that were not destroyed during the elimination phase, 
are kept in check by the immune system while influencing 
the immunogenicity of the tumor (62). This state results in a 
form of tumor dormancy and is considered to last a long time, 
potentially lasting the lifetime of an individual. Furthermore, 
this phase enacts a selective pressure on the tumor cells, allow-
ing those with the potential to evade the immune system to 
escape immune control and manifest as clinical disease (62, 
64). A landmark study in 2007 demonstrated the existence of 
the equilibrium phase in vivo. Using a carcinogenic compound 
(3′-methylcholanthrene -MCA), the authors were able to study 
stable tumor masses at the site of MCA injection (66). When 
treated with a cocktail of antibodies targeting CD4, CD8, and 
IFNγ, 60% of the mice developed rapidly growing tumors. 
Furthermore, the authors demonstrated that these rapidly grow-
ing tumors resembled “unedited” tumors from MCA-injected 
RAG−/− mice (mice lacking recombination activation gene 
RAG1) (66). Finally, it was shown that this equilibrium state 
required components of adaptive immunity (IL-12, IFNγ, CD4+, 
and CD8+ cells) but not key components of innate immunity 
such as NK cell recognition and effector functions (66). Thus, 
while the immune system is capable of controlling cancerous 
cells during the equilibrium phase, it also drives the selection 
of cells that are able to evade immune attack and develop into a 
progressively growing tumor. This stage is known as the escape 
phase of immunoediting. This escape is made possible due to a 
number of potential mechanisms which have been reviewed in 
detail (61, 63, 65). Briefly, the cells can evade immune detection 
by reducing the expression of immunogenic tumor antigens or 
by reducing major histocompatibility complex class I (MHC I) 
(62, 64). Another route of escape involves decreased susceptibil-
ity to immune-mediated cytotoxicity through upregulation of 
oncogenes and anti-apoptotic mediators (64). Finally, tumor 
cells harbor the potential to modulate the immune system by 
producing immunosuppressive cytokines such as transforming 
growth factor beta (TGFβ) and vascular endothelial growth 
factor (VEGF). Moreover, tumor cells can recruit regulatory 
immune cells [e.g., regulatory T  cells (Treg)] or engage in 
adaptive immune resistance via the expression of immune 
checkpoint ligands such as programmed death-ligand 1 (PD-L1) 
(64). Finally, the notion of “reverse immunoediting” has been 
proposed as some cancers can cause the selective depletion of 
specific high-avidity cytotoxic T cell (CTL) clones via hitherto 
unknown mechanisms and thus actively shape the immune 
repertoire of the host (67). The pathways used by tumor cells 
to escape the immune system are therefore studied extensively 
to devise immunotherapeutic approaches for cancer treatment.

immune Response to Melanoma
The immune response to tumor cells is currently one of the 
major areas of research in biomedical science. An overview of 
antitumor immune response is provided by the concept of the 
cancer-immunity cycle as described by Chen and Mellman (68). 

It commences with the release of tumor antigens that are pre-
sented by antigen-presenting cells (APC), primarily den dritic 
cells (DC), to T cells in the LN (Figure 2). This is followed by 
the trafficking of T cells including CD8+ cytotoxic T lymphocytes 
(CTL), to the tumor where they can recognize and kill malignant 
cells, thereby releasing more cancer antigens (68). However, 
at each step, there are negative regulators that can disrupt the 
cancer-immunity cycle and allow progression of the tumor (68). 
One of the primary aims of cancer immunotherapy is therefore 
to ensure a sustained T cell response against the tumor (55). The 
complex biology of the interactions between tumor cells and 
the innate and adaptive immune system has been extensively 
reviewed elsewhere (68–72). Thus, the primary focus of this 
section will be to provide a basic primer to cancer immunology 
and in particular, to the biological and therapeutic significance 
of the major types of immune cells in the tumor microenviron-
ment (TME) in melanomas. For the purposes of this review, the 
populations of interest are tumor-infiltrating lymphocytes (TIL), 
tumor-infiltrating dendritic cells (TIDC), and tumor-infiltrating 
natural killer (NK) cells. The cancer-specific roles of tumor-
associated macrophages (TAM), NKT  cells, the more recently 
described myeloid-derived suppressor cells (MDSC), and non-
NK innate lymphoid cell subsets (ILC) have been thoroughly 
reviewed elsewhere (73–77).

Tumor Antigens
As tumors arise from a host’s own tissue, immune recognition 
of these cells is hindered by the fact that a majority of poten-
tially autoimmune cells are deleted during central (thymic) and 
peripheral mechanisms of self-tolerance (78). However, as early 
as 1943, it was observed that mice could immunologically reject 
chemically induced tumors (79). In the late 1970s, the ability to 
grow CTL cultures using IL-2 allowed for screening of tumor-
derived DNA libraries to characterize tumor antigens (79). In 
1988, the gene coding for a murine tumor antigen (P91A) was 
cloned (80). Shortly afterward, the first human tumor antigen 
gene was identified in melanoma, namely, MAGEA1 (melanoma 
antigen family A, 1) and was found to be expressed in various 
types of tumors (81). Interestingly, the gene was not observed 
to be expressed in normal tissue except for trophoblastic cells 
and male germline cells (79). Since then, several tumor antigens 
have been discovered, and their underlying biology has been 
the subject of much study (82, 83). There are several types of 
tumor antigens, but they have been broadly classified into three 
major categories. The first category includes antigens that are 
caused by non-synonymous mutations, or are encoded by viral 
genes in tumors of viral etiology (83). These are labeled tumor-
specific antigens (TSA) or “neoantigens” (83, 84). Alternately, 
tumor-associated antigens (TSA) are usually expressed at low 
levels in normal tissues but are found to be overexpressed 
in cancer cells such the surface receptor, human epidermal 
growth factor 2 (HER2 or ERBB2) in breast cancer, and other 
malignancies (85). Finally, cancer/testis antigens (CTA) such 
as the aforementioned MAGE family of proteins are expressed 
in several tumor types and only in normal germline cells such 
as trophoblasts, ovaries and the testes (82, 83). The advent of 
high-throughput next-generation sequencing technology has 
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FiguRe 2 | Schematic of the roles dendritic cells (DC) play in antitumor immune response. DC take up and process tumor-associated/tumor-specific 
antigens (TAA/TSA) from dying tumor cells, undergo maturation, and migrate to tumor draining lymph nodes (LN) where they can present antigen to 
lymphocytes. Tumor-specific T cells then egress from the LN and infiltrate the tumor. Effector CD8+ cytotoxic T lymphocytes play a major role in killing tumor 
cells, leading to further release of TAA/TSA for DC uptake and subsequent presentation. Inset panel: Costimulatory and inhibitory interactions at the 
antigen-presenting cell (APC)–T cell immunological synapse. The activation of T cells by APC is tightly regulated by multiple ligand–receptor interactions. 
TCR binds to cognate antigen (AG) in the context of their specific MHC. Costimulatory molecules such as CD80 (B7.1) and CD86 (B7.2) on APC can either 
bind to CD28 on T cells resulting in downstream activation of T cell effector genes or to cytotoxic T lymphocyte antigen-4 (CTLA-4) resulting in inhibition. 
Further T cell activation is achieved through cytokines. Programmed cell death protein 1 (PD-1) is another immune checkpoint receptor and is expressed  
on activated T cells. The primary ligand for PD-1 (PD-L1) is expressed on APC and on some tumor cells, and upon binding to PD-1 acts to inhibit T cell 
activation.
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allowed for relatively low-cost detection of somatic mutations 
in tumor cells. There are currently several approaches being 
formulated to tailor individualized immunotherapies for 
patients on the basis of their expression of tumor neoantigens 
(83). Although currently personalized approaches are highly 
expensive, it is posited that with the continuing reduction of 
sequencing costs and using combinatorial treatments, it may 
be possible to even target tumors that are non-responsive to 
immunotherapy (83). Since their discovery, tumor antigens 
have been used for multiple purposes in cancer treatment. They 
have been used as diagnostic markers, cancer vaccines, and as 
targets for adoptive T cell therapy (82, 86, 87). In general, most 
tumor antigens elicit a weak immune response against cancer 
and have been tested clinically in combination with adjuvants 
or additional treatments (87). To date, cancer vaccination or 
adoptive transfer targeting specific tumor antigens has not 
shown major survival advantages in melanoma (48, 88). The 
three major types of tumor antigens that have been described 
and used in melanoma immunotherapy are discussed below. 
A majority of described melanoma antigens are restricted to 
human leukocyte antigen A2 (HLA-A2) (89).

MAGE Family
The MAGE (melanoma antigen) family is divided into two major 
groups type I MAGEs and type II MAGEs. The type I MAGE 

subfamily consists of 25 functional genes located on the X chro-
mosome in the regions MAGEA, MAGEB, and MAGEC (82, 90). 
These genes are classified as CTAs and are expressed in melanoma 
as well as other cancer types such as colon cancer, non-small 
cell lung cancer (NSCLC), and breast cancers (90). Conversely, 
type II MAGE genes are expressed in several types of normal 
tissue and are not X chromosome restricted. Both type I and 
type II MAGEs contain the MAGE homology domain (90). Due 
to the extensive homology between the MAGE proteins, there 
is a lack of antibodies that recognize specific MAGE antigens. 
In several cancer types, nuclear and cytoplasmic staining using 
widely reactive anti-MAGE antibodies have been performed and 
although the functions of MAGE proteins are not known, there 
is some evidence that they play a role in cell cycle progression 
and apoptosis (91). The MAGE family of proteins may serve 
as useful targets for immunotherapy. After encouraging results 
from Phase I/II studies, the DERMA phase III clinical trial aimed 
to assess a vaccine using MAGE-A3 protein in combination with 
an immunostimulant, in melanoma patients following tumor 
resection (92). However, in 2016 the trial was ended as it failed to 
show efficacy (NCT 00796445). Nevertheless, the lack of MAGE 
family gene expression in normal tissue and their overexpression 
in cancer cells is one of the key reasons they remain attractive 
targets for future immunotherapy treatments. Other CTAs 
observed in melanoma include the B-M antigen-1 (BAGE) and 
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G antigen (GAGE) family of proteins, and their functions are 
currently being studied (86).

NY-ESO-1
NY-ESO-1 (New York esophageal squamous cell carcinoma-1) is 
a CTA that is also located on chromosome X and is expressed in 
a wide range of malignancies (93). In normal cells, this antigen 
is primarily expressed on spermatogonia and at very low levels 
in pancreas, liver, and placenta (93). A homolog of NY-ESO-1, 
LAGE-1 has also been reported and is expressed in a wide variety 
of human cancer types. The biological functions of both proteins 
are unknown (93). NY-ESO-1 is a highly immunogenic tumor 
antigen and is able to elicit a detectable antibody response. In 
human melanoma, it is observed in a large frequency of mela-
noma patients (46%) and some studies indicate that its expression 
may be higher in metastatic lesions (93, 94). Due to its expression 
in a large fraction of melanomas, immunotherapy trials continue 
to be conducted using the NY-ESO-1 antigen as part of a tumor 
vaccine, or more recently using adoptively transferred lympho-
cytes with recombinant TCRs specific for NY-ESO-1 (95, 96). The 
adoptive transfer trial resulted in objective responses in 55% of 
treated melanoma patients but the most efficacious strategy for 
targeting NY-ESO-1 in melanoma immunotherapy remains to be 
determined.

Melanoma Differentiation Antigens
A number of TAA in melanoma that are recognized by both CD4+ 
and CD8+ T lymphocytes are on proteins specifically expressed 
on melanocytes and involved in melanocyte-specific functions 
(86, 97). These TAA are located in melanosomes, the organelles in 
which melanin is synthesized. Moreover, their role in oncogenesis 
is not known (86). These antigens include tyrosinase, tyrosinase-
related proteins 1 and 2 (TRP-1 and TRP-2), Melan-A (MART-1), 
and gp100 (pmel17) (82, 97). Tyrosinase and TRP-1/-2 are copper 
and zinc containing metalloenzymes with homology at several 
sequences and they play crucial roles in melanin synthesis (98). 
Tyrosinase is the key enzyme in melanin synthesis and is located 
on the membrane of melanosomes. It is observed in over 80% 
of primary and metastatic melanomas (86). The exact function 
of TRP-1 (gp75) remains unclear, but it is purported to play a 
role in stabilizing tyrosinase (98). TRP-2 is a DOPAchrome 
tautomerase and its overexpression is believed to contribute to 
the chemoresistance and radiotherapy resistance of metastatic 
melanoma (86, 97). Melan-A (melanoma antigen recognized 
by T  cells-1 or MART-1) is a single domain transmembrane 
protein of 118 amino acids found primarily in melanosomes, 
endoplasmic reticulum, and trans-Golgi network (86, 99). 
MART-1 is crucial for the expression, trafficking, and stability of 
the protein gp100 (pmel17) (99). It is expressed in all melanocytic 
naevi, and a majority of primary and metastatic melanomas 
(86). It has been observed that significantly higher frequencies 
(100- to 1,000-fold) of naive CTL are found against a specific 
MART-1 peptide (Melan-A26–35) compared to other antigens in 
normal (non- cancerous) individuals who express HLA-A2 (79). 
However, T cell recognition of MART-1 does not necessarily result 
in improved clinical outcomes (97). Finally, the protein gp100 
(premelanosomal protein-pmel17), is a transmembrane protein 

that has a role in melanosome biogenesis and melanin polymeri-
zation (86). The gp100 gene was found to be widely expressed in 
malignant melanoma at all stages but was significantly reduced 
in normal melanocytes (100). HMB-45, a mouse monoclonal 
antibody (mAb) to gp100, is used for diagnostic purposes to 
distinguish non-melanocytic from melanocytic tumors (99). All 
of the aforementioned differentiation antigens are recognized 
by CD4+ and CD8+ T cells, while TRP-1, TRP-2, tyrosinase, and 
gp100 can also elicit antibody responses (97). Thus, these antigens 
are considered to be useful targets for melanoma immunotherapy 
(86). The B16 syngeneic transplant model, obtained initially from 
C57BL/6 mice, is one of the most widely utilized models in mela-
noma research (101). The most obvious advantage of this model 
is that it expresses murine homologs of the melanoma differentia-
tion antigens (tyrosinase, gp100, MART-1, TRP-1, and TRP-2) 
(102). Melanocyte differentiation antigens continue to be used 
in a number of clinical studies in combination with various adju-
vants and immunostimulants such as granulocyte-macrophage 
colony-stimulating factor (GM-CSF), but none of the studies 
have to date shown significant improvements in OS in melanoma 
patients (87, 103, 104). Due to the multiple mechanisms of tumor 
immune escape, it remains particularly difficult to sustain a pro-
longed response to cancer antigens. However, recently the use of 
nanoparticles (NP) containing mRNA encoding the melanoma 
antigens, NY-ESO-1, tyrosinase, MAGE-A3, and a novel CTA 
TPTE (a transmembrane phosphatase), has shown early clinical 
promise in a pilot study of three patients (105). To be successful, 
future immunotherapy trials will need to not only consider the 
tumor antigens to be used but also the delivery vector, the format 
(RNA, DNA or protein), and the appropriate adjuvants.

Tumor-Infiltrating Lymphocytes
A cardinal feature of cancer is the immunosuppressive TME 
(106, 107). As the disease progresses, T cells in the TME exhibit a 
phenotype analogous to that seen in chronic viral infection known 
as T cell exhaustion (108). T cell exhaustion denotes a state of 
hyporesponsiveness to antigen with reduced cytokine secretion 
and cytotoxic function (108, 109). Nevertheless, the overwhelm-
ing majority of studies in human patients have demonstrated a 
correlation between TIL and better disease outcomes in cancers 
(110, 111). An exception to this observation is that FOXP3 expres-
sion, a marker of Treg that has been shown to correlate to poor 
prognosis in various types of human cancer (112, 113). The term 
TIL was first described by Wallace Clark, who was instrumental 
in developing the first histological classifications for melanoma as 
mentioned above (114, 115). TIL have been described in primary 
tumors, tumor-bearing LN, and in metastases of melanoma and 
various other cancer types (114). The range of immune cells that 
infiltrate a tumor, i.e., the “immune contexture” of a tumor is 
heterogeneous and consists of various types of T  lymphocytes, 
B  cells, NK  cells, macrophages, and DC (111, 114). In 1989, 
Clark published a classification of the three major patterns of 
lymphocyte infiltration that are commonly used today (115). The 
brisk pattern is indicated by interposed lymphocytes between 
tumor cells that may be diffusely present throughout the tumor 
nodule or along the advancing (basal) periphery of the nodule 
(114, 115). The non-brisk pattern delineates a scattered multifocal 
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presence of lymphocytes throughout the vertical growth phase 
of the nodule. Finally, an absent pattern is associated with a 
lack of lymphocytes in the tumor, or if they are present, their 
lack of interaction with melanoma cells (115). In recent years, 
various groups have attempted to further classify TIL or propose 
novel grading schemes, but the Clark model remains widely 
accepted and highly reproducible (114). In a recently published 
report, it was shown that melanoma tumors with brisk TIL pat-
terns in primary melanoma H&E tissue, even in the absence 
of immunohistochemistry for specific markers, was associated 
with increased OS in patients versus tumors with non-brisk and 
absent patterns (116). The importance of TIL has been used to 
establish a novel classification system for cancer based on an 
“Immunoscore,” which relies upon the quantitation of CD3 and 
CD8 lymphocytes with the additional marker CD45RO used 
to mark memory T cells. The “Immunoscore” was found to be 
superior to the conventional AJCC TNM system for prognosis of 
stage I–III colorectal cancer (CRC) (117). Similar approaches are 
now being tested for immunoscoring of melanoma but have not 
been tested in large patient cohorts (118).

An additional feature observed in cancer, and other situa-
tions of chronic inflammation is the formation of tertiary lym-
phoid structures (TLS—also called tertiary lymphoid organs)  
(119, 120). These TLS can range from loose aggregates of various 
immune cells to complex structures that resemble secondary 
lymphoid organs such as LN. They consist of T cell-rich regions 
containing mature DC expressing DC-LAMP (lysosomal associ-
ated membrane protein), B cells, and high endothelial venules, 
which play a role in immune cell extravasation and production 
of key chemokines (120). In 2012, Messina et al. reported that a 
gene expression profile consisting of 12 chemokines could accu-
rately predict the histological presence of LN-like TLS in stage 
IV melanoma (primary tumors and metastases), and the TLS 
correlated strongly with improved overall patient survival (121). 
Other studies have shown that the presence of TLS is a positive 
prognostic indicator in melanoma and a range of other cancer 
types including breast carcinoma, CRC, and pancreatic cancer 
(120). Thus, these results suggest that lymphocyte infiltration 
mediates a protective immune response to cancer.

However, many tumors are not T  cell inflamed, and the 
mechanisms underlying T  cell infiltration into the tumor are 
poorly understood (89, 122). In the context of melanoma, a recent 
study compared all major classes of melanoma tumor antigens 
between T  cell inflamed and non-T  cell inflamed tumors and 
found that there were no differences between both groups in 
terms of antigen load (123). Rather it was shown that non-T cell 
inflamed melanomas displayed reduced gene expression associ-
ated with Batf3-dependent, CD141+ DC (123). Furthermore, 
studies have pointed to the ability of tumors to interfere with 
chemokines that recruit leukocytes to tumors. Finally, the abnor-
mal tumor vasculature may express reduced adhesion molecules 
required for homing and directly or indirectly suppress T cells by 
expression of molecules such as PD-L1, PD-L2, VEGF, and TGFβ 
(122). Once T cells infiltrate the TME, they are acted upon by a 
range of immunoregulatory mechanisms that prevent complete 
eradication of the tumor (72). These can be tumor-specific escape 
mechanisms or the recruitment of suppressive immune cells. For 

instance, mutations in BRAF or PTEN loss are associated with 
increased T cell inhibition by production of IL-1 and VEGF (72). 
Furthermore, conserved immunoregulatory mechanisms are also 
at play within the TME the production of immunosuppressive 
mediators [TGFβ and indoleamine 2,3 dioxygenase (IDO)], and 
the recruitment of regulatory myeloid and lymphoid cell popula-
tions (72). Another important consideration is that although, 
CD8+ T  cells are canonically considered the primary cytotoxic 
cells involved in tumor eradication, CD4+ T  cells can also kill 
tumor cells (89). However, the precise mechanisms of CD4+ 
antitumor immunity are not well described, and the role of CD4+ 
T cell infiltration in the TME has not been explored significantly 
with the exception of FOXP3+CD4+ Treg (72, 89). A recently con-
cluded meta-analysis demonstrated that FOXP3+ Treg infiltrates 
were predominantly associated with worse OS in a review of over 
17 types of cancer (124). In most tumors, such as cervical, renal, 
breast cancers, and melanoma, FOXP3+ Treg infiltrates correlated 
with shorter OS whereas they were associated with improved sur-
vival in patients with colorectal, head and neck, and esophageal 
cancers (124). In recent years, several studies have described 
the heterogeneity in FOXP3-expressing cell populations (125). 
In 2016, Saito et al. showed that human CRCs could be distin-
guished by the extent of infiltration of two distinct FOXP3+CD4+ 
T  cell populations (126). Type A CRCs had low frequencies 
(<9.8%) while Type B had comparatively higher frequencies 
(>9.8%) of infiltrating non-suppressive FOXP3loCD45− T  cells. 
Infiltration by these non-suppressive T cells was correlated with 
the presence of intestinal bacteria, in particular Fusobacterium 
nucleatum within the tumor (126). Furthermore, Type B CRCs 
were marked by high mRNA expression of IL12A and TGFB1 
compared with Type A and tumors with high expression of these 
mRNAs exhibited significantly longer disease-free survival versus 
low expressing tumors. Thus, FOXP3+ T cell infiltration must be 
considered in combination with other immune signatures while 
determining the immune status of a tumor. In addition to T cells, 
the roles of B cells in the TME are being currently explored as they 
have both APC and effector lymphocyte functions (127). Studies 
in melanoma have demonstrated that CD20+ infiltrating B cells 
are found in most tumors and higher levels of these infiltrates 
correlated with improved patient survival (127). Furthermore, 
B cells are known to produce IgG antibodies that can recognize 
tumor cells and within a murine model of organ transplanta-
tion have been observed to promote chronic allograft rejection 
through antigen presentation rather than their antibody secreting 
functions (127, 128). Finally, recent studies have also focused on 
the roles of putative regulatory B  cells in the context of trans-
plantation and autoimmunity, as these cells can produce potent 
immunosuppressive mediators such as IL-10 and TGFβ (129). 
The multiple immunoregulatory mechanisms that effect TIL are 
the targets of a majority of current immunotherapies. However, 
as the aforementioned observations indicate, there are several 
functionally redundant pathways that allow for immunological 
escape of tumors in immunocompetent individuals. Thus, to be 
successful, the field of immunotherapy must move toward combi-
natorial and multipronged approaches for tumor treatment. This 
involves investigation of the mechanisms of innate immune cells 
such as NK cells, TAM, and TIDC within the TME.
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Tumor-Infiltrating Dendritic Cells
Despite their discovery over 40 years ago, the exact mechanisms 
underlying DC dysfunction in cancer remain poorly understood 
(107). In both mice and humans, DC are classified into two 
major subsets comprised of conventional or cDC, and plasma-
cytoid DC (pDC) (130). In non-steady state conditions such as 
cancer or autoimmune disease, inflammatory DC derived from 
monocytes have also been described in humans and in mice 
(130, 131). Despite the fact that nearly all DC subsets express 
the surface marker CD11c, there are unique transcription factors 
and surface proteins that characterize the major DC subsets in 
human and mice. These markers have been extensively reviewed 
in the literature, but further study is needed to accurately profile 
each subset (130, 132, 133). DC canonically present extracellular 
antigens on MHC class II while intracellular or self-antigens 
are presented on MHC class I (134). However, murine and 
human DC also possess the capacity to cross-present antigens 
of extracellular origin on MHC class I to activate CD8+ CTL 
(135, 136). In humans, the primary cross-presenting DC subset 
is characterized by CD141 (BDCA-3) while in mice this subset 
is marked by surface expression of CD8α or CD103 (137). The 
mechanistic roles played by various DC subsets in both tumor 
progression and the response to treatment are a key area of 
research for cancer immunotherapy with little consensus as 
to their frequencies and functions (102, 107). In 2008, it was 
reported that knocking out Batf3 in mice eliminated CD8α+ 
DC, and consequently it was demonstrated that these mice were 
incapable of cross-presenting antigen or rejecting highly immu-
nogenic fibrosarcomas (138). Although pDC are purportedly not 
efficient at cross-presentation, studies have shown their capacity 
to mediate direct tumor killing and to activate NK cells via the 
production of type I IFN (139). Despite the key roles played by 
TIDC in promoting antitumor responses, generally TIDC are 
skewed in both phenotype and function toward an immunosup-
pressive role in the microenvironment (107). These alterations 
in TIDC have been mechanistically studied in murine models 
(107, 140). The TME has been reported to induce a “paralyzed” 
state in TIDC resembling an immature phenotype with reduced 
expression of costimulatory CD80 and CD86 molecules and a 
diminished capacity to present antigens (107). This induction 
is a result of various immunosuppressive factors such as VEGF, 
TGFβ, IDO produced by tumor cells as well as by other cells in 
the TME (72, 107). Furthermore, DC paralysis in mouse models 
has been observed to be associated with upregulation of immune 
checkpoint receptors such as PD-1 and T cell immunoglobulin 
and mucin-domain containing-3 (TIM-3), which was reported 
to interact with the alarmin protein high mobility group box 1 
(HMGB1) resulting in reduced DC sensing of tumor-derived 
nucleic acids (107). TIDC with immature and paralyzed phe-
notypes themselves suppress immune cells in the TME through 
various mechanisms such as but not limited to, expression 
of inhibitory molecules (PD-L1), production of regulatory 
cytokines such as IDO and induction of Tregs (107, 141).

As previously noted, there has been significant research on TIL 
in melanoma. On the other hand, the mechanistic roles of TIDC 
in melanoma are not well studied. Melanoma is of particular 
interest due to the fact that skin contains multiple DC subsets. 

The five major DC subsets found in human skin are Langerhans 
cells, CD14+ DC, CD1c+ DC, CD1a+ DC, and CD141+ DC (133). 
The correlations between various TIDC subsets and disease 
outcome, their association with other cells and specific functions 
have not yet been fully elucidated (102). However, recently it 
was demonstrated that intratumoral CD103+ DC in mice were 
crucial for trafficking of melanoma tumor antigen to LN and 
were dependent on surface expression of CCR7 (142). Enhanced 
CCR7 mRNA expression in human melanoma samples was also 
correlated to increased T  cell infiltrates and improved patient 
outcomes (142). In general, it is observed that there are higher 
frequencies of TIDC in the peritumoral region than within the 
tumor (102). These peritumoral DC include arguably the most 
mature population of DC-LAMP+CD83+fascin+ cells (102). In 
fact, DC-LAMP expression is associated with positive prognosis 
in not only melanoma but also lung, breast, and metastatic CRC 
(120). On the other hand, CD123+ pDC that do in principle pos-
sess the capacity to promote antitumor responses are found to 
be associated with early relapse and poor prognosis in human 
melanoma (102, 143). It was shown in both ex vivo patient sam-
ples and in that a humanized melanoma mouse model that pDC 
in melanoma are directed toward a TH2 promoting phenotype 
by induction of the molecules OX-40L (TNFSF4) and ICOSL 
(inducible T cell costimulator ligand), which then drive tumor 
progression (143). To comprehensively characterize TIDC in 
melanoma, it is crucial to obtain genomic data to appropriately 
distinguish and profile TIDC subsets. Pyfferoen et al. performed 
transcriptomic profiling of DC in a murine model of lung carci-
noma and demonstrated that TIDC had significantly increased 
expression of PD-L1, acquisition of TAM surface markers and a 
pro-metastatic microRNA signature (144). To date, similar stud-
ies have not been performed in human melanoma. There have 
been several studies in murine models that have demonstrated 
the therapeutic reprogramming of TIDC (107). Thus, manipula-
tion of TIDC represents a hitherto unexplored target for future 
melanoma immunotherapies. Many of the same agents that have 
been shown to induce DC activation and maturation in  vitro 
have been tested for direct targeting of DC in  vivo (133, 145). 
For instance, direct administration of BCG has been utilized for 
the treatment of bladder cancer for over 30  years although its 
precise mechanisms of action in vivo are still under study (146). 
Direct modulation of DC in vivo using DC maturation agents and 
mAbs is a highly desirable goal in tumor immunotherapy. This 
is due to the excessive costs, safety considerations, and practical 
limitations of using cellular products (147). As such, the identi-
fication of both targetable DC receptors and maturation stimuli 
continues to be an active area of research interest. In particular, 
targeting antigen-coupled antibodies to DC C-type lectin recep-
tors (CLRs) such as DEC205 (CD205), Clec9A, and DC-SIGN in 
murine and in vitro studies resulted in effective CD4+ and CD8+ 
T cell responses (145, 148). Additional receptors such as XCR1 
(expressed entirely on CD141+ DC) are also being studied for 
their effects on DC function (133). Clinical trials for multiple 
cancer types are presently underway to investigate the efficacy of 
anti-DEC205 conjugated to the cancer–testis antigen NY-ESO-1, 
which is also used for melanoma immunotherapy (133, 149). 
Recently, a series of seminal papers have shown the importance of 
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the cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase 
(cGAS) in promoting antitumor immunity (150–152). DNA 
introduced to the cytosol as a result of viral infections or cellular 
damage is a potent immune activator that leads to the production 
of type I IFN (153). Upon detection of DNA by cGAS, it catalyzes 
the production of cGAMP that binds to the adaptor protein 
stimulator of interferon genes (STING) ultimately resulting in the 
production of type I IFN (153). In 2014, Woo et al. demonstrated 
in a mouse model that tumor-derived DNA was responsible for 
inducing IFNβ production and the consequent activation of APC 
and CD8+ T  cells versus melanoma in  vivo (150). Alternately, 
mice deficient in STING failed to reject these tumors highlighting 
the crucial role played by this pathway in the immune response 
to cancer (150, 151). In a more recent paper, Wang et al. showed 
the role of cGAMP in mediating the effects of ICB (152). It was 
reported that in mice lacking either cGAS or STING, PD-L1 
blockade did not result in significant shrinkage of tumor volume 
or increase in survival compared with WT mice. Moreover, 
intramuscular injection of cGAMP in combination with PD-L1 
significantly enhanced survival, compared with PD-L1 or cGAMP 
alone (152). Finally, it was also shown that cGAMP treatment 
of BMDC enhanced expression of DC activation markers and 
increased DC antigen cross-presentation. Another molecule that 
has recently gained interest for its effects on DC is IL-32. In 2012, 
Schenk et al., identified an IL-32-dependent mechanism for DC 
differentiation in response to nucleotide-binding oligomerization 
domain containing protein (NOD2) activation through its ligand 
muramyl dipeptide (154). DC obtained from IL-32 differentiation 
were found to express higher levels of MHC class I and CD86, 
as well as, present antigen to CD8+ T cells more effectively than 
GM-CSF differentiated DC (154). These studies highlight the 
multiple pathways that may be targeted to generate effective DC 
in vivo, which is essential for antitumor immunity.

NK Cells
Natural killer cells were characterized over 40 years and are the 
first population of ILC to be described and studied (155, 156). 
NK cell defects lead to enhanced susceptibility to viruses and 
many forms of cancer in humans and in mouse models (156). 
NK cell functions are modulated by a number of surface recep-
tors that provide either NK activating or inhibitory signals (156, 
157). NK cells are broadly defined as CD3−CD56+ in humans 
and CD3−NK1.1+ in mice while both murine and human 
NK  cells express the surface receptor NKp46 (CD335) (156). 
In humans, NK  cells are further divided into CD16+CD56dim 
which predominate in blood, and CD16−CD56bright populations 
(156). Canonically, NK cells can recognize tumor cells that have 
downregulated MHC class I molecules or upregulated induced 
stress molecules (155, 156). NK cells can also bind to antibod-
ies bound to tumor antigens and mediate antibody-dependent 
cellular cytotoxicity (156). As with CD8+ CTL, NK cells mediate 
their cytotoxic functions through perforin and granzymes, as 
well as, by expressing death mediating ligands such as FasL 
(CD95L) and TRAIL (TNF-related apoptosis inducing ligand) 
(156). Activated NK  cells also produce IFNγ, among other 
cytokines, which leads to recruitment of other immune cell 
populations (156).

The roles of NK  cells in the TME are currently not fully 
described (155, 157). Several studies have indicated that NK cell 
infiltration is generally a positive prognostic factor in various 
types of cancer (155). In the context of melanoma, the roles of 
NK cells are an important venue of research. Analysis of several 
melanoma cell lines indicated that a high percentage of mela-
noma cells possess ligands for a NK activating receptors such as 
NKG2D and DNAM1, while ligands have also been identified 
for NK-bound NCR (natural cytotoxicity receptors) such as 
NKp30 (157). Melanoma cells are also known to have decreased 
MHC class I expression as a mechanism to escape CD8+ T cells, 
thus making them targets for NK  cells (157). Despite these 
observations, melanoma immunoediting leads to tumor escape 
from NK  cells via multiple mechanisms (157). Melanoma 
immunoediting by NK cells increases expression of MHC I, or 
downregulates NK ligands supported by the decreased expres-
sion of MICA reported in metastatic versus primary melanoma 
(157). IDO and prostaglandin E2 (PGE2) produced by melanoma 
cells act directly to inhibit NK cells while increased expression of 
ligands to regulatory receptors such as TIGIT modulate NK cell 
activity (157). In light of these observations, it will be important 
to identify NK populations that have persistent antitumor activ-
ity and characterize their phenotypes to better understand the 
mechanism involved in effective NK immunity. Recently, it was 
reported that tumor-bearing/infiltrated LN in melanoma patients 
contained twice as many NK cells as ipsilateral tumor-free LN 
(158). These tumor-infiltrated LN also contained a population 
of highly cytotoxic CD56dimKIR+CCR7+ NK cells that may have 
prognostic potential for melanoma (158). Conversely, mela-
noma, breast, and colon cancers were found to be infiltrated by 
CD56bright NK subsets, which are similar to decidual NK  cells 
during pregnancy thus implying a potentially regulatory role for 
this subset (159). NK cells remain an important target for immu-
notherapy. Along with T cells, NK cells were used early on for 
adoptive cell transfer therapy of melanoma in the 1980s and both 
autologous and allogeneic NK cell adoptive transfers are being 
studied in clinical trials (156, 157). Currently, two antibodies 
for the blockade of NK checkpoints are under clinical develop-
ment, namely, lirilumab (anti-KIR-studied in combination with 
ipilimumab) and IPH2201 (anti-NKG2A) for various types of 
cancers including melanoma (157). However, further study of 
NK  cells in the melanoma TME is required to understand the 
several mechanisms of immune escape from NK cells and CD8+ 
CTL and thus devise, rational combinatorial immunotherapies.

MeLANOMA iMMuNOTHeRAPY

In 2013, the journal Science hailed cancer immunotherapy as 
the breakthrough of the year (56). This was in recognition of the 
promising clinical responses that can be achieved by directing 
the immune system to fight cancer. Despite highly encouraging 
advances, current immunotherapies only result in clinical benefit 
for a subset of patients (160, 161). Thus, there is a significant sci-
entific effort to understand the tumor cell-intrinsic and extrinsic 
mechanisms of resistance to immunotherapy (162). The three 
major mechanisms of resistance to immunotherapies have been 
conceptualized as follows. Primary resistance denotes a clinical 
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TABLe 1 | Key immunotherapeutics and their primary mechanisms of action.

Treatment Clinically tested agents Mechanism(s) of action Reference

immune activating mAbs

αCTLA-4 Ipilimumab (Yervoy®)  – Blockade of T cell checkpoint receptor
 – Depletion of intratumoral Treg

(160, 167)

αPD-1 Nivolumab (Opdivo®), pembrolizumab (Keytruda®)  – Blockade of T cell checkpoint receptor (167, 168)
αPD-L1 Atezolizumab, durvalumab, avelumab  – Blockade of inhibitory checkpoint ligand expressed on 

immune cells and tumor cells
(167, 169)

αCD137 (4-1BB) Urelumab  – Agonist of T cell costimulatory receptor (170)
αKIR Lirilumab  – Blockade of NK cell inhibitory receptor (157, 171)
αLAG-3 BMS986016  – Blockade of T cell surface inhibitory molecule (167)

Adoptive T cell therapy
TIL Ex vivo expanded TIL  – Infusion of pool of antitumor T cells (50, 172)
Engineered T cells Transgenic TCR or CAR bearing T lymphocytes  – Infusion of engineered T cells specific for tumor antigens (50, 173)

vaccines
Cell-based vaccines Tumor cells or activated DC/APC  – Induction of tumor-specific adaptive immunity (87, 174, 175)
Peptide vaccines Various tumor antigen peptides/lysates + adjuvant  – Induction of tumor-specific adaptive immunity (165, 176)
Oncolytic viral vaccines Talimogene laherparepvec (T-VEC/Imlygic™)  – Viral induction of tumor cell lysis and adjuvant  

mediated host immune activation
(177, 178)

Cytokines
Interleukin-2 Aldesleukin (Proleukin®)  – Activates and expands T cells (179, 180)
Interferon alpha Interferon alfa 2b (Intron® A, Sylatron™)  – Activates multiple facets of immunity and has direct  

effects on tumor cells
(181, 182)

An overview of current immunotherapy approaches and their proposed mechanisms of action as discussed in this review.  
Trade names are provided for drugs that have received clinical approval in melanoma. References provided for further description of each approach.
KIR, killer-cell immunoglobulin-like receptor; DC, dendritic cells; APC, antigen-presenting cell; TCR, T cell receptor; CAR, chimeric antigen receptor;  
TIL, tumor-infiltrating lymphocyte; NK, natural killer; Treg, regulatory T cells.
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setting where the initial immunotherapy is unsuccessful. This 
can be due to adaptive resistance which defines a mechanism 
whereby there are initial antitumor immune responses but are 
inhibited by adaptation and immune escape of the tumor (162). 
Clinically, adaptive resistance may be seen as primary resistance, 
mixed responses or acquired resistance. Acquired resistance 
describes a clinical scenario where the tumor initially responded 
to immunotherapy but has eventually progressed and acquired 
resistance to the therapy (162). To overcome resistance to various 
forms of immunotherapy, it will be important to understand the 
mechanisms that allow tumor cells to escape immune attack. 
The clinical experience with melanoma immunotherapies has 
shown significant promise and there is increasing evidence that 
a multipronged approach may be required to ensure durable 
responses in a majority of patients. This section describes the 
major immunotherapies that have already been developed or are 
under clinical development for the treatment of metastatic mela-
noma (summarized in Table 1). Advances in immunotherapy for 
other types of cancers, as well as, the use of mAbs to specifically 
target tumors have been previously reviewed in detail (163–166).

early Advances in Melanoma 
immunotherapy
As previously noted, the mechanistic basis for Coley’s observa-
tions remained unknown for some time and during this time, 
surgery, radiation treatment, and cytotoxic chemotherapy 
became the primary means of cancer treatment. However, in 
the context of melanoma, two major forms of immunotherapy 
witnessed encouraging breakthroughs starting in the 1980s and 

led to renewed interest in the entire field. These breakthroughs 
occurred in systemic cytokine therapy with IL-2 and adoptive cell 
transfer using TIL (183). In 1985, Rosenberg et al., demonstrated 
in C57BL/6 mice that intraperitoneal injections of recombinant 
IL-2 were capable of significantly attenuating pulmonary metas-
tases from tumors generated by the MCA-105 and -106 syngeneic 
sarcoma and B16 syngeneic melanoma lines (184). Retrospective 
analyses of metastatic melanoma patients who had been treated 
with IL-2 demonstrated an ORR of 16% and represented a signifi-
cant advance in the treatment (185). IL-2 received FDA approval 
in 1998 for metastatic melanoma. However, as systemic treatment 
of IL-2 resulted in various toxicities, several groups have shifted 
to intralesional administration of IL-2, which resulted in CR 
rates of between 41 and 76% in various trials (48). In parallel 
to the successes achieved with IL-2, Rosenberg and colleagues 
reported the first successful use of adoptive T cell transfer for 
the treatment of solid cancers (186). Patients were treated with 
IL-2 and autologous TIL expanded from surgically resected 
melanomas. Objective responses were observed in 60% (9/15) 
of treated patients (186). Subsequently, in 2002, this approach 
was combined with lymphodepletion prior T  cell transfer and 
demonstrated enhanced responses in patients (50). Currently, 
adoptive cell therapy (ACT) using TIL remains one of the most 
effective therapies for metastatic melanoma (183).

immune Checkpoint Blockade
Drugs that mediate ICB by targeting the inhibitory receptors 
CTLA-4 and PD-1 (Figure  2 inset panel) have been shown to 
induce durable responses in subsets of patients with various types 
of cancer including melanoma, NSCLC, and renal cell cancer 
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(RCC) (187–190). Furthermore, antibodies targeted to the PD-1 
ligand, PD-L1, are undergoing clinical trials and have resulted 
in objective responses for multiple cancer types (51, 191). To 
date, the FDA has approved four mAbs for ICB therapy: (1) ipili-
mumab (αCTLA-4); (2) nivolumab (αPD-1); (3) pembrolizumab 
(αPD-1); and (4) atezolizumab (αPD-L1) (192). They have been 
approved for various advanced and metastatic cancers ranging 
from unresectable or metastatic melanoma to urothelial carci-
noma (atezolizumab) (168, 192). Currently, only ipilimumab, 
nivolumab, and pembrolizumab have received FDA approval for 
melanoma (167). Due to the fact that checkpoint receptors play 
important roles in regulating autoimmunity, the major toxicities 
associated with the use of ICB drugs include a range of autoim-
mune symptoms labeled immune-related adverse events (IRAEs) 
(193). The incidence of IRAEs is quite high, ranging from 70% 
in patients treated with αPD-1/αPD-L1 antibodies to as high 
as 90% in patients treated with αCTLA-4 and require careful 
management in the clinic with immunosuppressive medications 
(193). As ICB results in objective responses for only a subset of 
patients, there is a crucial need to identify biomarkers that can 
potentially predict the efficacy of a particular ICB treatment or 
designate a particular subset of patients who may benefit from 
ICB therapy (194).

CTLA-4
Cytotoxic T  lymphocyte antigen-4 (also termed cytotoxic 
T-lymphocyte-associated protein 4), is a crucial regulator of 
T cell activation and ipilimumab, a human IgG1 mAb targeted 
to this molecule was the first ICB drug to show clinical efficacy 
in advanced melanoma and a number of other cancer types 
(48, 195). CTLA-4 plays a key role in T  cell immunity and its 
molecular biology has been recently reviewed elsewhere (167, 
196). However, to understand the clinical role of CTLA-4 block-
ade, a brief summary of its mechanism of action is warranted. 
Naive T cells are modulated by APC through the interaction of 
multiple surface receptors in a region referred to as the “immu-
nological synapse” (197). Canonically, naive T  cells require 3 
signals for complete activation (Figure 2 inset panel) (198). The 
engagement of the TCR by peptide antigen presented in the 
context of MHC, provides the first signal of T  cell activation 
(signal 1) (198, 199). T cells require further signaling from the 
binding of costimulatory molecules on T cells such as CD28, to 
its respective ligands CD80/86 on APC (signal 2). Finally, the 
complete activation requires cytokines (IL-2) binding to their 
cognate receptors on T cells (Signal 3) (199). As an evolutionary 
checkpoint to autoimmunity, activated T  cells induce surface 
CTLA-4 expression, which binds with greater affinity to CD80/86 
and mediates T  cell inhibition and cell cycle arrest (195, 200). 
CTLA-4 is also expressed constitutively on Treg (167). The crucial 
role of CTLA-4 in maintaining tolerance is demonstrated by the 
severe multiorgan autoimmune pathologies and early mortality 
(3–4  weeks) observed in CTLA-4−/− mice (201). Humans with 
heterozygous germline muta tions in CTLA-4 also exhibit autoan-
tibodies, increased intra-organ lymphocyte infiltration and other 
symptoms of immune dysregulation (167).

In 2010, Hodi et  al. demonstrated the clinical efficacy of 
ipilimumab in patients with stage III and IV unresectable and 

metastatic melanoma whose tumors were refractory to prior 
treatments (187). The treatment subjects received ipilimumab 
alone, ipilimumab plus the peptide gp100 or gp100 alone. 
Patients receiving ipilimumab alone or ipilimumab plus gp100 
had significantly increased median OS compared with those 
receiving gp100 alone (roughly 10 versus 6  months) (187). 
Currently, ipilimumab has only received FDA approval for 
melanoma. However, a number of studies have shown modest 
responses to ipilimumab in other tumor types such as metastatic 
RCC and NSCLC, and it continues to be studied in clinical trials 
as combination therapy with PD-1/PD-L1 (discussed below)  
(160, 167). As mentioned previously, a number of immunological 
toxicities (IRAEs) are commonly observed to occur in patients 
treated with ipilimumab primarily in the skin, GI tract, and the 
endocrine system and in some rare cases result in deaths (193). 
The frequency of severe toxicities (grade 3 or 4) in the prelimi-
nary phase III trials of ipilimumab was demonstrated to be 20%, 
but this value was not significantly higher than the toxicities 
associated with many chemotherapy or targeted therapy drugs 
(163, 195). Most IRAEs can be resolved within 6–12 weeks of 
steroid therapy but for steroid-resistant adverse events, patients 
can also be treated with immunosuppressive antimetabolite 
drugs such as azathioprine and mycophenolate mofetil (193). 
Novel CTLA-4 blockade agents including modified versions 
of ipilimumab are also currently under study for a number of 
advanced solid tumors with the aim of improving safety profiles 
and tumor-specific delivery (202).

PD-1/PD-1 Ligand (PD-L1)
The most clinically successful agents for ICB to date target the 
inhibitory PD-1/PD-L1 axis (169, 195). The transmembrane 
receptor PD-1 (CD279) plays a crucial role in regulating 
antigen-specific T  cell responses (169, 203). PD-1 is not only 
expressed on activated effector T  cells but also on NK  cells, 
B  cells, macrophages, and Tregs (167, 203). Similar to the 
activating co-receptor CD28, PD-1 is acted upon by two 
distinct ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, 
CD273) (203). Whereas PD-L2 expression has hitherto been 
observed only on professional APC (including B cells), PD-L1 
is expressed on various tissue types such as epithelial tissue, 
vascular endothelium, stromal cells as well as tumor cells and 
virus-infected cells (167, 203). The induction of PD-L1 expres-
sion is generally in response to pro-inflammatory cytokines such 
as interferons, TNF-α, and VEGF (167, 169). PD-1 does not, 
as its name implies, directly induce cell death. The binding of 
PD-1 to its ligands instead serves to attenuate T cell activation 
by recruiting the tyrosine phosphatase SHP-2, which interferes 
with signaling downstream of the TCR and leading to decreased 
T cell growth and reduced cytokine production (203). However, 
PD-1 signaling can also reduce the expression of antiapoptotic 
genes while upregulating proapoptotic gene expression thus 
impairing T cell survival (167).

PD-1-deficient mice do not display as severe a phenotype as 
CTLA-4−/− mice, developing glomerulonephritis and arthritis 
in a C57BL/6 background and autoantibody induced dilated 
cardiomyopathy in BALB/c mice as they age (204, 205). This 
is arguably due to the more direct inhibitory and Treg-related 
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functions of CTLA-4, whereas PD-1 serves to limit T  cell 
activation indirectly and prevent peripheral autoimmunity 
(169). As noted previously, in certain conditions of persistent 
antigen exposure such as in chronic viral infections or in cancer, 
T cells are observed to develop a dysfunctional or “exhausted” 
phenotype (72, 167). Such T cells are also marked by elevated 
expression of PD-1 and other inhibitory receptors such as TIM-3 
and LAG3 (72). Furthermore, PD-L1 and/or PD-L2 are both 
observed to be expressed on a number of tumor-infiltrating APC 
and tumor cells themselves, not only as a result of cytokines but 
also due to alternative factors such as gain of chromosomes car-
rying PD-L1 and PD-L2 or the signaling of the epidermal growth 
factor pathway (167). Recent studies have shown that APC and 
tumor cells bearing PD-L1 play additive non-redundant roles in 
the suppression of antitumor immunity (206). Thus, blockade of 
the PD-1/PD-L1 axis remains a critical area of interest in tumor 
immunotherapy with studies on its efficacy in nearly 20 types of 
solid tumors and hematological cancers (169).

In the context of melanoma, nivolumab, and pembrolizumab, 
both of which target PD-1 have been shown to have significant 
clinical efficacies (160, 169, 195). In 2012, results from a phase I 
study comparing various doses of nivolumab in NSCLC, pros-
tate cancer, CRC, renal cell carcinoma, and melanoma patients 
were reported (188). The highest activity was demonstrated in 
melanoma patients where the cumulative response rate (for all 
doses) was 28% compared with 27% for renal carcinoma and 18% 
for NSCLC (188). In the same year, an αPD-L1 antibody (BMS-
963559) was tested in advanced cancers ranging from melanoma 
to RCC and was shown to have comparatively low response 
rates (6–17%) (191). A number of recently concluded trials have 
also demonstrated the potency of pembrolizumab. The large 
multicenter phase II trial KEYNOTE-002 examined the efficacy 
and safety of pembrolizumab in patients who had progressed on 
ipilimumab therapy, and in patients with BRAF mutations, those 
who had received either BRAF or MEK inhibitor treatment (207). 
Patients received either two separate doses of pembrolizumab 
(2 or 10  mg/kg) or chemotherapy of the investigators choice 
(carboplatin, dacarbazine, paclitaxel, and temozolomide). The 
results were highly encouraging as the 6-month PFS was shown 
to be 38% (10 mg/kg) and 34% (2 mg/kg) in the pembrolizumab 
group compared with only 16% in the chemotherapy group (207). 
Similar efficacy over investigator choice chemotherapy (32 versus 
11%) has also been reported from an open-label phase III trial of 
nivolumab in patients who had progressed on ipilimumab (195). 
Furthermore, pembrolizumab was shown to have significantly 
higher activity than ipilimumab in patients with advanced mela-
noma. Robert et al. compared two dosing schedules (every 2 or 
3 weeks) of pembrolizumab to ipilimumab and reported 6-month 
PFS in the range of 46–47% (response rates of roughly 33%) for 
the pembrolizumab group versus 26.5% (RR of 11.9%) for the 
ipilimumab-treated patients (208). Finally, in a phase III trial of 
nivolumab in previously untreated advanced melanoma patients 
(without BRAF mutations), ICB therapy was demonstrated to 
have significantly higher efficacy compared with dacarbazine 
with a 1 year survival rate of 72.9% in the nivolumab  treated 
group versus 42% in the dacarbazine group (189). The suc-
cesses of αPD-1 in melanoma treatment have also been 

observed (albeit at lower rates) in a range of other cancer types  
(167, 169). Furthermore, the rate of grade 3 or 4 treatment related 
adverse events is lower in patients receiving PD-1 blockade 
therapy versus ipilimumab which is similar to the decreased 
severity of autoimmune pathologies observed in PD-1 versus 
CTLA-4 knockout mice (169, 193). In contrast to PD-1 blockade 
antibodies, the αPD-L1 agent atezolizumab (MPDL3280A) has 
thus far received FDA approval only for urothelial bladder cancer 
and lung cancer (169, 209). Recently, studies have further compli-
cated the role of PD-L1 by demonstrating that it binds to CD80 on 
T cells and provides another inhibitory signal (210). Thus, further 
studies are warranted to determine the role of PD-L1 in T cell 
inhibition in tumors and investigate which tumor types may 
benefit most from PD-L1 versus PD-1 blockade. A large number 
of clinical trials are currently underway targeting PD-1/PD-L1 
as well as novel combination approaches (169). As previously 
mentioned, further study will be required to determine biomark-
ers of response to ICB and further mechanistic knowledge will 
be necessary to design effective combinatorial immunotherapies. 
Four clinical biomarker profiles for ICB treatment have already 
been proposed based on the presence of PD-L1 and TIL (211). 
The tumor are characterized as type I (PD-L1+TIL+), type II 
(PD-L1−TIL−), type III (PD-L1+TIL−), and type IV (PD-L1−TIL+) 
(211). In melanoma, where the data are most complete, the major-
ity of patients are either type I (~38%) or type II (~41%). Type I 
patients are deemed to be the best responders to PD-1 blockade 
whereas type II tumors are estimated to have very poor prognosis 
due to their lack of immune cell infiltrates (211). Currently, the 
mechanisms that regulate the immune composition of a tumor 
are not well understood and there is a significant interest in 
treatments that can convert T cell non-inflamed (non-infiltrated) 
tumors to T cell inflamed (infiltrated) tumors (212).

Combinatorial Checkpoint Blockade
Despite the tremendous successes of ICB, to date, only a sub-
set of patients achieve durable clinical responses (160, 167). 
However, the potency of immune checkpoint therapies has 
ushered in a new era of cancer treatment by offering the pos-
sibility of combining these drugs with conventional cancer treat-
ments such as radiation, chemotherapy, and targeted molecular 
therapy (e.g., BRAF/MEK inhibitors). The prospects for such 
combination treatments in melanoma and other cancer types, 
as well as the clinical findings to date using such approaches 
have been expertly reviewed this year (213–215). The primary 
focus of this section will be to discuss the approaches involving 
combination checkpoint blockade therapies for melanoma that 
have demonstrated efficacy thus far. Nevertheless, it is pertinent 
to note that currently there are no clinical data to distinguish 
between ICB or BRAFi/MEKi targeted therapy as first line 
treatment for melanoma and a clinical trial (NCT02224781) is 
being conducted to provide direct com parisons between clinical 
outcomes in patients receiving checkpoint blockade drugs fol-
lowing targeted therapies and vice versa (215).

The success of combined ipilimumab and nivolumab has also 
been recently reported in a number of clinical trials. In 2015, 
Postow et  al. reported the results of a study where previously 
untreated patients with metastatic melanoma received either 
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ipilimumab in combination with nivolumab or with placebo pre-
ceding a subsequent treatment with nivolumab or placebo (216). 
The ORR was 61% in the combination treatment group versus 
11% in the ipilimumab plus placebo group. Moreover, nearly 
22% of patients treated with combination therapy achieved 
CR compared with none of the patients given ipilimumab and 
placebo (216). In the same year, results were published from a 
phase III trial in 945 patients with unresectable stage III or IV 
melanoma treated with nivolumab alone, nivolumab plus ipili-
mumab, or ipilimumab alone. The median PFS was 11.5 months 
for the combination group, 6.9 months for the nivolumab group, 
and 2.9  months for the ipilimumab group (217). However, 
serious (grade 3 or 5) treatment related adverse events in the 
combination treatment group were significantly higher reaching 
55% compared with 27% for the ipilimumab group (217). These 
studies also indicate the superiority of combinatorial checkpoint 
blockade over monotherapy leading to the approval of ipilimumab 
and nivolumab dual therapy for melanoma in the USA, while its 
efficacy in other tumor types continues to be investigated (218). 
The successful use of combined checkpoint blockade has also 
sparked clinical interest in additional immune checkpoints some 
of which are undergoing preclinical or clinical investigation (167, 
169, 218). A target of particular interest is the CD4 homolog lym-
phocyte activation gene-3 (LAG-3), which is expressed on Treg, 
effector CD4+ and CD8+ T cells, NK cells, B cells, and pDC and 
which also binds to MHC class II (167, 219). LAG-3 is an impor-
tant negative regulator of CD4+ and CD8+ T cells and is required 
for Treg activity (219). The αLAG-3 antibody BMS986016 is 
currently being examined in a clinical trial (NCT01968109) for 
several advanced tumors both as a monotherapy and in combi-
nation with nivolumab (167). Another immune checkpoint that 
has exciting potential for tumor immunotherapy is TIGIT (T cell 
immunoreceptor with immunoglobulin and ITIM domain) 
(167). TIGIT is expressed by activated T cells, NK cells and is 
also expressed on highly functional subsets of Treg (219, 220). 
TIGIT has two ligands, namely, CD155 (poliovirus receptor, 
PVR) and CD112 (PVRL2) that are expressed on APC as well as 
on tumor cells (167). Likewise, TIGIT is reportedly expressed on 
TIL (219). The immunoregulatory functions of TIGIT are only 
recently beginning to be described (221). TIGIT can bind to 
CD155 on DC resulting in increased IL-10 and decreased IL-12 
secretion (167). Ligation of TIGIT on Treg results in the expres-
sion of fibrinogen-like protein 2 (Fgl2), a Treg effector molecule 
that has broad immunosuppressive effects such as mediating 
Th1 and Th17 phenotype suppression in favor of Th2 (167, 222).  
In human melanoma, tumor-specific CD8+ T cells in peripheral 
circulation and CD8+ TIL were found to express both TIGIT and 
PD-1 and furthermore, TIGIT was upregulated in response to 
PD-1 blockade (223). Thus, the described functions of TIGIT 
further complicate our understanding of the immune response 
to αPD-1 treatment and provides further proof of the need 
of combinatorial approaches to overcome current barriers 
to ICB treatment. The positive results associated with ICB 
treatment have also renewed interest in a parallel treatment 
approach involving the development of agonistic antibodies for 
T cell costimulatory molecules such as CD137 (4-1BB), GITR 
(glucocorticoid-induced TNFR family related gene), and OX40 

(CD134) many of which are currently undergoing clinical trials 
in combination with nivolumab (167, 169, 218). In 2016, early 
results were showcased for the antibody urelumab (αCD137) in 
combination with nivolumab (202). In melanoma, the ORR was 
observed to be 50% in patients who had not previously received 
checkpoint blockade therapy and was found to be independent 
of tumor PD-L1 status (202). Thus immune agonistic antibod-
ies have revealed a plethora of novel possibilities for cancer 
treatment. Future studies will involve analyses of various com-
binations aimed at developing immunotherapies tailored to the 
specific tumor immune microenvironment (224).

Adoptive Cell Therapy
Adoptive cell therapy involves the use of ex vivo manipulated 
cells transferred directly to patients to mediate antitumor immu-
nity (50, 172). Thus far, the majority of clinical research in ACT 
has been conducted using autologous tumor-specific T  cells 
(TIL) harvested and cultured from resected melanoma tissue  
(161, 173). Other cell types such as NK  cells have also been 
investigated since the 1980s for their use in adoptive transfer 
therapy but have yet to be as widely studied as T cells (156). Thus, 
the primary focus of this section will be on studies with T cell 
ACT. The benefits of this approach are that it allows for the ex 
vivo expansion of tumor-specific cells that are not modulated by 
the immunosuppressive TME and can be administered in suffi-
cient numbers to induce tumor regressions (50). As mentioned 
previously, this field was pioneered by Rosenberg and colleagues 
using autologous TIL from patients with metastatic melanoma 
and resulted in durable antitumor responses (186). Since that 
time, developments in molecular biology allowed for the eluci-
dation of various tumor antigens and the development of geneti-
cally engineered T  cell products with tumor-specific TCR or 
chimeric antigen receptors (CARs) (50, 225). To date, successful 
ACT through TIL transfer has been largely limited to melanoma 
although it is currently being studied in metastatic HPV-
associated cancer and has been demonstrated to induce potent 
prophylactic clinical responses in HSCT recipients against 
Epstein–Barr virus-associated lymphoproliferative disorders 
(225). Lymphodepletion before TIL therapy has been shown to 
significantly augment clinical response, and although its precise 
mechanisms of action are not well understood, it is posited to 
complement TIL transfer by eliminating suppressive Treg and 
myeloid cells (50). In patients treated with autologous TIL 
therapy post lymphodepletion, the group of Rosenberg and col-
leagues at the NCI (Bethesda, MD, USA) has reported OR rates 
of 55% (226). These results are similar to those observed in 
patients from other centers that perform ACT using TIL such as 
MD Anderson (Houston, TX, USA) with an ORR of 48% in their 
patient cohort and Ella Cancer Institute (Raman Gat, Israel) with 
an ORR of 40% (50, 227). Overall, TIL therapy is not reported to 
be associated with severe adverse events, and the major toxic side 
effects are associated with the lymphoablative conditioning regi-
mens (226). The primary hematological pathologies observed 
are anemia and thrombocytopenia necessitating transfusion in 
these patients, while patients in cohorts that receive TIL and IL-2 
may report to develop grade 3 and 4 non-hematological toxici-
ties (228). Currently, the predominant clinical form of ACT for 
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melanoma is TIL therapy (50, 173). Nevertheless, there is also 
significant clinical interest in the use of highly specific T cells 
expressing TCRs specific to tumor antigens. These T cells can be 
generated through in vitro selection and expansion of specific 
antitumor clones (173). However, engineered T  cells bearing 
conventional antitumor alpha beta TCRs or CARs have gener-
ated significant interest in the field of adoptive cell therapies 
(229). CARs are artificial receptors that were developed to cir-
cumvent the requirement of MHC–TCR interactions as many 
tumor cells downregulate MHC expression to escape the immune 
system (173). CARs consist of an extracellular ligand-binding 
domain constructed with immunoglobulin heavy and light 
chain variable regions fused through a transmembrane domain 
to intracellular CD3 zeta signaling chains in addition to CD28 or 
CD137 costimulatory domains for induction of complete T cell 
activation (50, 229). Currently, CAR T cells have demonstrated 
efficacy only in B cell malignancies using anti-CD19 CARs, to 
achieve response rates of up to 90% (173). However, a number of 
studies are currently underway investigating the use of CAR 
T cells in solid tumors (173). On the other hand, studies using 
transgenic tumor-specific TCRs have been tested in melanoma 
with the first proof-of-concept study being performed in 2006 
using T cells transduced with a TCR against the melanoma dif-
ferentiation antigen MART-1 (230). This early study showed 
evidence of clinical activity in only 2 out of 17 patients but a 
more recent report by Chodon et al. (231) demonstrated that 
MART-1 specific T cells in combination with MART-1 pulsed 
DC vaccine were able to induce tumor regression in 9 out of 13 
studied patients (231). Thus, combining ACT with other immu-
notherapies may unveil potentially novel synergistic treatments 
that can overcome the current barriers to ACT. A number of 
clinical trials using ACT in conjunction with checkpoint block-
ade agents (nivolumab-NCT02652455) or targeted therapy 
(vemurafenib-NCT01659151) are being tested in patients with 
melanoma (173). A number of salient factors warrant considera-
tion when discussing the merits of ACT immunotherapies for 
cancer. First, it is pertinent to mention that ACT requires ex vivo 
manipulation of cells, which is both expensive and labor inten-
sive (173). Therefore ACT currently remains limited to a few 
specialized centers around the world (50). Furthermore, engi-
neered T  cells have the potential to induce stronger toxicities 
versus conventional TIL due to their clonal specificity toward a 
single antigen. This is a particular concern with TCRs targeted 
to antigens that are shared by tumor and normal tissue resulting 
in an immune activation versus the target but not necessarily 
against the tumor (on-target, off-tumor toxicity) (173). This 
effect has been observed in a number of trials. In a study treating 
patients with T cells bearing transgenic TCRs specific to MART-1 
and gp100, several patients developed toxicities in the skin, ears, 
and eyes due to the presence of melanocytes in these organs 
(232). This effect has also been seen in other tumor types such as 
metastatic renal cancer where in a recent report, 4 out of 12 
patients treated with CAR T cells specific to carbonic anhydrase 
IX (CAIX), developed liver toxicity due to the presence of this 
antigen in the bile duct (233). Thus, strategies will need to be 
developed to overcome such off-target effects of engineered 
lymphocytes and in the case of the aforementioned CAIX trial, 

hepatic T cell mediated toxicity was significantly lowered by 
treatment with blocking anti-CAIX antibodies (233). Although 
early studies showed that MART-1 and gp100 are among the 
major tumor antigens recognized by anti-melanoma TIL, recent 
advances in whole-exome sequencing offer the potential to 
reveal novel antigens (i.e. neoantigens) resulting from mutations 
that may be highly immunogenic but also safe due to their 
absence from the rest of the body (50). Another concerning 
immune-related toxicity observed in CAR and conventional 
T cell therapy is cytokine release syndrome, which presents as a 
systemic multisymptomatic inflammation causing fever, hypo-
tension, and tachycardia (173). In terms of efficacy, a key concern 
using CAR T  cells is that while they have shown remarkable 
results for hematological cancers, solid tumors are more difficult 
to treat and have a highly suppressive TME (173, 229). 
Nevertheless, advances in lymphocyte engineering have allowed 
for the conceptualization of a number of novel types of CAR 
T cells which can be switched on conditionally, or lack check-
point molecules to prevent suppression. These novel CARs may 
have high utility for solid cancers and have been reviewed 
expertly elsewhere (229). Similarly, a novel type of molecule that 
has recently gained attention is a bispecific antibody construct 
that can bind to CD3 thus activating T cells as well as, a tumor 
antigen and is termed a bispecific T cell engager (BiTE®) (234). 
The anti-CD19 BiTE® blinatumomab was approved by the FDA 
after showing activity in acute lymphoblastic leukemia but to 
date, none of the tested BiTE® constructs tested in solid tumors 
have exhibited noteworthy antitumor responses (234). Novel 
developments in the field of genomic sequencing as well as T cell 
engineering have allowed for the conceptualization of highly 
personalized ACT treatment for cancer. Nevertheless, as dis-
cussed previously, without breakthroughs in ex vivo cell handling 
and automation, this therapy will remain highly costly and be 
limited to a few centers of excellence around the world.

Cancer vaccines
Vaccination for infectious disease represents a landmark of 
human medical achievement. Cancer vaccines seek to activate 
the immune system, in particular the T cells, to attack the tumor 
with the presentation of the tumor antigen in combination with 
an adjuvant (176). The vaccines may be univalent incorporating 
a single target antigen or polyvalent, consisting of allogeneic 
whole cells, or autologous tumor lysates (48). To date, none of the 
vaccine combinations tested in established tumors have shown 
the same efficacy as checkpoint blockade or ACT (165, 176).  
A number of studies have shown modest increases in clinical 
activity such as the study by Schwartzentruber et  al. in 2011 
that showed that patients with advanced melanoma treated 
with IL-2 and a gp100 peptide vaccine fared better than patients 
treated with IL-2 alone (median OS 18 versus 11  months, 
respectively) (48, 235). Nevertheless, cancer vaccination for 
solid tumors becomes particularly challenging due to the 
immunosuppressive TME and a constantly evolving tumor 
geared toward immune escape (165). In the past 30  years, as 
research unveiled the crucial role of DC in antigen processing 
and T cell activation, DC-targeted vaccines also became a major 
focus of cancer vaccination research (161). DC are considered 
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to be ideal tools for inducing effective anticancer immunity due 
to their central role in antigen presentation and their ability to 
produce crucial effector cytokines (174, 236). The use of DC as 
anticancer vaccines has been comprehensively reviewed else-
where (133, 145, 174, 237). Generally, this approach involves 
the generation of DC from isolated patient PBMC, which 
are then loaded with antigen and reinfused into the patient 
(161). Clinically a widely accepted DC maturation protocol 
involves the use of a cocktail containing TNFα, IL-1β, IL-6, and 
PGE2, resulting in the upregulation of MHC class I and II and 
costimulatory molecules (133). Other approaches in the clinic 
have used mixtures of prophylactic vaccines (which contain 
TLR agonists) containing Bacillus Calmette–Guerin (BCG)-
SSI, Influvac, and Typhim (133, 238). DC maturation can also 
be induced by targeting the costimulatory receptor CD40 with 
CD40L (which is expressed by a range of immune cells but its 
most functionally important expression is on activated T cells 
in vivo) or anti-CD40 mAbs, resulting in the upregulation of 
costimulatory molecules and production of IL-12 (133, 237, 
239). Currently, there is no gold standard in terms of maturation 
cocktails for DC and novel combinations continue to be tested 
both preclinically and in clinical trials (174). GVAX® (Cell 
Genesys, San Francisco, CA, USA) are a cell product composed 
of irradiated autologous or allogeneic, tumor cells engineered to 
produce GM-CSF (240). GVAX® vaccines were shown to elicit 
antitumor immune responses in a number of early clinical stud-
ies (241). However, a phase III trial using allogeneic GVAX® in 
prostate cancer observed that this approach was not superior to 
current treatments (241). In melanoma, the GVAX® approach 
has not shown significant clinical activity including a recent 
study by Lipson et  al. that demonstrated that although mela-
noma GVAX® was safely tolerated, it did not result in mark-
edly increased anti-melanoma responses in peripheral blood 
T cells (175, 241). These early and currently ongoing studies 
demonstrate the difficulty of using cell-based approaches for 
cancer vaccination. Currently, Sipuleucel-T (Provenge®) is 
the only cell-based vaccine to be approved by the FDA for its 
observed clinically significant but modest increases in the OS 
of patients with prostate cancer (174). No such vaccine has yet 
received FDA approval for melanoma (161). In 2013, Carreno 
et al. reported the use of an autologous CD40L/IFNγ-matured 
DC vaccine pulsed with gp100-derived peptides and capable of 
producing IL-12 (242). In six out seven patients, this treatment 
successfully induced immune responses with three out of the six 
responding patients exhibiting tumor remissions (242). Despite 
these encouraging results, a number of concerns with cancer 
vaccination still exist, in particular with the choice of target 
antigen as tumors continue to continuously evade the immune 
response while novel mutated epitopes may not be sufficient for 
inducing potent antitumor T cell responses (161). Thus, there 
has been a significant clinical interest in the use of oncolytic 
viral vaccines for directly inducing cell death in tumors (48, 
161). This approach attempts to harness the specificity of some 
oncolytic viruses for tumor cells as well as the induction of 
tumor cytolysis as an immune activating stimulus against non-
infected tumor cells (177, 161). The first viral product to receive 
FDA approval is talimogene laherparepvec (T-VEC) which is 

a construct derived from herpes simplex virus 1 with deleted 
ICP34.5 and ICP47 genes and coding for human GM-CSF 
(177). In 2015, T-VEC was the first virotherapy that showed 
durable antitumor responses in patients with melanoma (178). 
Over 400 patients were treated with intralesional T-VEC or 
subcutaneous GM-CSF, and median OS was demonstrably 
higher in the T-VEC group versus the GM-CSF group (23 
versus 19 months, respectively) (178). Moreover, the durable 
response rates and overall response rates were also higher in 
the T-VEC group than in the GM-CSF group with very limited 
toxicities associated with T-VEC treatment (178). As a result 
of these findings, the field of cancer vaccine research has been 
energized, and currently trials are underway to examine poten-
tial combination approaches using ICB in combination with 
oncolytic vaccine regimens to induce a long-lasting antitumor 
immune response (39, 161). The major limitation of the T-VEC 
approach is that it was found to be more effective in patients 
with less advanced (stage III and locally metastatic) melanoma 
than in patients with visceral metastatic disease (178, 161). 
Thus, in patients with established and advanced tumors, cancer 
vaccination approaches at best provide part of the solution for 
complete cure. With the complex immunoregulatory pathways 
that are established in advanced tumors, it may be difficult 
to achieve continued DC stimulation and activation through 
vaccines. Thus, a number of studies have begun to investigate 
the targeting of DC in vivo as crucial for the success for future 
immunotherapies (133). The success of T  cell checkpoint 
therapy has already demonstrated the utility of treatments that 
mediate in vivo activation of antitumor immunity. Although a 
number of other cell types such as NK cells and MDSC have 
recently gained interest as targetable populations, DC remain 
a primary cell of interest for in vivo targeted immunotherapy 
due to their crucial roles as APC and in cytokine production 
(237, 243, 244).

Nanoparticles as Multifunctional 
immunotherapeutics
The past two decades have witnessed significant advances in 
our understanding of tumor immunology and the development 
of immunotherapeutic drugs (56, 163). In parallel, improve-
ments in the field of nanomedicine provides us with a number 
of opportunities that can be used in combination with modern 
immunotherapies to enhance their antitumor efficacy (245–248). 
The primary advantage to NP is the supreme versatility in 
their design as their size, shape, constituent biomaterials, and 
surface modifications can be tailored for specific uses in tumor 
immunotherapy (Figure  3) (245, 247). Liposomes are self-
assembling nanosized vesicles comprised of phospholipids and 
cholesterol arranged in one or more lipid bilayers enclosing an 
aqueous core (246, 249). Liposome-encapsulated drugs have been 
demonstrated to have reduced systemic toxicity profiles owing 
to improved pharmacokinetics and biodistribution (247, 249). 
Liposomal doxorubicin (Doxil) first received FDA approval in 
1995, and even though it did not enhance OS, it is associated 
with improved toxicity profiles (247). This is of particular use for 
immunotherapy as many powerful adjuvants such as IL-2 and 
IFN-α have serious toxic side effects (161). In 2012, Park et al. 
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FiguRe 3 | Multifunctional nanoparticles (NP) in cancer treatment. NP can be tailored to specific applications in tumor immunotherapy using versatile designs of 
various sizes, constituent biomaterials, and surface modifications. The surface of NP can be functionalized with specific polymers and antibodies to increase their 
targeting to certain types of cells. Liposomes are self-assembling nanosized vesicles comprised of phospholipids and cholesterol arranged in one or more lipid 
bilayers enclosing an aqueous core. NP such as liposomes can be used as platforms for the simultaneous delivery of multiple agents, such as (A) 
immunotherapeutics, e.g., anti-PD-L1 and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4), to enhance the function of tumor-specific effector T cells; (B) 
tumor-associated antigens (TAA) and adjuvant targeted to dendritic cells (DC) to promote their function; (C) chemotherapeutics and targeted release thereof, for 
instance, using thermosensitive NP, to promote cancer cell death.
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demonstrated the utility of a biodegradable liposome and solid 
polymer hybrid gel as a dual delivery platform for IL-2 as well 
as an inhibitor of the immunoregulatory cytokine TGF-β (250). 
Treatment with this platform showed no significant toxicity in 
treated animals and more importantly delayed tumor growth 
was mediated via increased intratumoral NK and CD8+ T  cell 
infiltration (250). Thus, NP can not only deliver drugs but also 
serve as platforms for simultaneous delivery of multiple agents. 
In the context of immunotherapy, NP can deliver tumor antigens, 
nucleic acids, and adjuvants (246, 248). There has also been 
research in the field of artificial APC NP platforms that present 
antigen loaded MHC I in combination with antibodies to the 
T cell costimulatory molecule CD28 (246). Finally, the surfaces of 
NP can be functionalized with specific polymers and antibodies 
to increase their targeting to certain types of cells (245). Even 
without direct targeting, systemically treated NP can accumulate 
at tumor sites due to “leaky” tumor vasculature (247). Earlier this 
year, Koshy et al. reported the antitumor potency of liposome-
encapsulated cGAMP (251). The authors showed that cationic 
liposome loaded with cGAMP resulted in passive lung-specific 
delivery in metastatic B16F10 melanoma lung tumors leading 
to pronounced antitumor activity and the formation of immune 
memory (251). Currently, a number of unique immunotherapeu-
tic NP are being investigated in Phase I–III clinical trials (247). 
However, to date no directly DC-targeted NP formulation has 

reached clinical trials. As DC play central roles in priming 
antitumor immunity as well as directly influencing the immune 
infiltration of T cells into cancer (212), NP targeted to DC war-
rant inclusion in future combinatorial immunotherapies (252).  
In 2016, Kranz et  al. developed a strategy to deliver RNA-NP 
to DC in a pilot study with three melanoma patients (105). 
The RNA encoded for the melanoma antigens NY-ESO-1, 
MAGE-A3, tyrosinase, and TPTE (transmembrane phosphatase 
with tensin homology) and resulted in IFNα and antigen-specific 
T  cell responses in all three patients (105). This approach was 
administered systemically and was not found to be associated 
with any adverse effects. This study thus opens a new field of 
DC-targeted, highly potent immunotherapies for cancer. NP are 
biodegradable, relatively cost-effective (compared with ex vivo 
manipulated cells) (133) and highly multifunctional platforms for 
enhancing modern immunotherapies or developing independent 
DC-targeted treatments (247).

SuMMARY

Currently, the field of immunotherapy is one of the most promis-
ing avenues of research in the quest to develop long-term broadly 
acting treatments for cancer (55, 161, 253). The possibilities for 
synergistic combinations with radiation, chemotherapy, and 
small molecule targeted treatments have also unveiled countless 

105

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Sadozai et al. Advances and Perspectives in Immunotherapy of Melanoma

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1617

possibilities for tailoring individualized therapies in the drive 
towards “precision medicine” (213, 214, 254). However, evo-
lutionary checkpoints against autoimmunity and the fact that 
cancer arises from self-tissue presents a particularly challenging 
landscape for developing multitargeted immunotherapies that 
are cost-effective, safe, and efficacious. Conceptually, there are 
four general facets of tumor immunity that must be achieved for 
successful immunotherapy (253). These are the removal of immu-
nosuppressive cues, the induction of immunogenic cell death in 
tumors, improved activity of APC and increased T cell effector 
functions (253). In addition to a comprehensive overview of the 
immune contexture of a tumor, other host specific factors such as 
genetics and individual microbiota must be further dissected to 
determine their interplay with immunotherapeutic agents (255). 
In recent years, advances in high-throughput techniques such 
as next-generation sequencing and mass cytometry (CyTOF) 
have enabled highly detailed phenotyping of cancer (256, 257). 
However, there is still an unmet need for bioinformatics plat-
forms and deep-learning algorithms that can assist biologists with 
mining and analyzing such massive datasets (258). Finally, due 

to the need to finely target various facets of tumor immunology 
in immunotherapy, NP technology may become indispensable as 
the delivery vectors and the platforms upon which these multi-
functional therapeutics are designed (248).
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Melanoma is a highly aggressive form of skin cancer that frequently metastasizes to 
vital organs, where it is often difficult to treat with traditional therapies such as surgery 
and radiation. In such cases of metastatic disease, immunotherapy has emerged in 
recent years as an exciting treatment option for melanoma patients. Despite unprec-
edented successes with immune therapy in the clinic, many patients still experience 
disease relapse, and others fail to respond at all, thus highlighting the need to better 
understand factors that influence the efficacy of antitumor immune responses. At the 
heart of antitumor immunity are dendritic cells (DCs), an innate population of cells that 
function as critical regulators of immune tolerance and activation. As such, DCs have the 
potential to serve as important targets and delivery agents of cancer immunotherapies. 
Even immunotherapies that do not directly target or employ DCs, such as checkpoint 
blockade therapy and adoptive cell transfer therapy, are likely to rely on DCs that 
shape the quality of therapy-associated antitumor immunity. Therefore, understanding 
factors that regulate the function of tumor-associated DCs is critical for optimizing both 
current and future immunotherapeutic strategies for treating melanoma. To this end, 
this review focuses on advances in our understanding of DC function in the context 
of melanoma, with particular emphasis on (1) the role of immunogenic cell death in 
eliciting tumor-associated DC activation, (2) immunosuppression of DC function by 
melanoma-associated factors in the tumor microenvironment, (3) metabolic constraints 
on the activation of tumor-associated DCs, and (4) the role of the microbiome in shaping 
the immunogenicity of DCs and the overall quality of anti-melanoma immune responses 
they mediate. Additionally, this review highlights novel DC-based immunotherapies for 
melanoma that are emerging from recent progress in each of these areas of investiga-
tion, and it discusses current issues and questions that will need to be addressed in 
future studies aimed at optimizing the function of melanoma-associated DCs and the 
antitumor immune responses they direct against this cancer.

Keywords: dendritic cell, tumor, cancer immunotherapy, melanoma, immune suppression, immunogenic cell 
death, immunometabolism, microbiome

iNTRODUCTiON

Melanoma is responsible for ~10,000 deaths in the United States and ~55,000 deaths worldwide each 
year, making it the cause of over 75% of skin cancer-related deaths (1, 2). Importantly, data collected 
by the SEER Program show that melanoma incidence rates have continually risen the last 40 years 
(3), and a recent study projects melanoma incidence to continue increasing through at least 2022 
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(4). In the U.S. alone, annual costs for treatment and productivity 
losses associated with melanoma are near $3.3 billion (5). These 
numbers are even more staggering when considering the U.S. 
ranks only third in melanoma incidence worldwide (6), thus 
highlighting the need to address melanoma as a global public 
health concern.

Although it is the least common form of skin cancer, mela-
noma is by far the most lethal due to its propensity to metastasize 
to several vital organs, including the brain, lungs, liver, and other 
visceral organs (7). While surgical removal of primary melano-
mas is highly successful in eradicating disease prior to metastasis, 
many melanoma patients are not diagnosed until later stages of 
malignant disease. In these cases, surgery is often not possible or 
is largely ineffective (8). Moreover, traditional therapies such as 
chemotherapy and radiation also exhibit limited efficacy against 
malignant melanoma and are characterized by variable response 
rates, lack of durable responses, toxicity, and minimal impact 
on survival (9, 10). In recent years, important insights into the 
basic biology of melanoma progression have led to the develop-
ment of several targeted therapies that have shown promise in 
the treatment of metastatic melanoma patients. In particular, 
vemurafenib, trametinib, dabrafenib, and other inhibitors of the 
BRAF–MEK signaling pathway that is hyperactive in melanoma 
patients bearing BRAFV600 mutations have proven superior to 
traditional chemotherapy in terms of both antitumor activity 
and clinical outcome (11–13). Unfortunately, drug resistance 
to BRAF or MEK inhibitors often develops within the first year 
of treatment and is accompanied by disease progression in 
many melanoma patients (14–16). While combination therapy 
with BRAF–MEK inhibitors delays melanoma progression 
and improves overall survival as compared to monotherapy, 
development of multi-drug resistance still leads to disease 
relapse in many patients (17, 18). A similar story has unfolded 
with regard to even the most promising immunotherapies for 
melanoma. Checkpoint blockade therapies with monoclonal 
antibodies targeting inhibitory receptors such as CTLA-4 and 
PD-1 on CD8+ T  lymphocytes have been developed to over-
ride cell intrinsic mechanisms that limit overstimulation of 
T cells and have dramatically improved both antitumor T cell 
function and clinical responses in melanoma patients. Both 
monotherapy and combinatorial approaches with nivolumab 
(anti-PD-1), pembrolizumab (anti-PD-1), and ipilimumab 
(anti-CTLA-4) have been promising, with reports of complete 
and objective responses in as high as 22 and 61% of melanoma 
patients, respectively (19–26). Despite these successes, though, 
many melanoma patients do not respond to these therapies, 
and others often experience disease relapse in as early as the 
first few months of treatment (27–29). Likewise, adoptive cell 
transfer (ACT) therapies that employ either naturally occurring 
tumor-infiltrating lymphocytes or genetically engineered T lym-
phocytes have produced complete tumor regression in as high as 
25% of melanoma patients, though many other patients receive 
no clinical benefit from these regimens (30, 31). Therefore, while 
recent advances in the treatment of metastatic melanoma are 
encouraging, it is critical that we continue to explore strategies 
that will expand treatment options and optimize clinical out-
come for patients with this disease.

Dendritic cells (DCs) have long been appreciated for their 
roles in the induction and maintenance of antitumor immune 
responses and are known to be critical regulators of both antitu-
mor immune activation and immune tolerance. This dichotomy 
is highlighted by the variable outcomes of early trials employ-
ing DC-based therapies in melanoma patients. While tumor 
vaccines targeting host antigen (Ag)-presenting cells in  situ or 
utilizing exogenous tumor Ag-loaded DC induced immunogenic 
responses that correlated with clinical benefits in a modest per-
centage of patients (32–35), many patients exhibited no clinical 
response to these therapies, and some immunization maneuvers 
even led to diminished tumor-specific T cell responses and the 
induction of immune tolerance, thereby potentially exacerbating 
disease progression (36, 37). Lessons learned from these first-
generation cancer vaccines guided second-generation vaccina-
tion strategies that aimed to improve upon previous failures by 
(1) targeting tumor Ag to particular DC subsets in  situ or (2) 
employing maturation cocktails to promote the immunostimu-
latory activity of exogenously generated monocyte-derived 
DCs. In addition to pulsing these latter DCs with recombinant 
synthetic peptides or tumor cell lysates, other approaches for 
tumor Ag loading onto exogenous DCs were also explored, 
including RNA/DNA electroporation and fusion of tumor cells 
to DCs. Details of these approaches have been described more 
extensively in recent reviews (38–40), and their translation to the 
clinic is highlighted in a recent Trial Watch (41). In brief, despite 
the improved immunogenicity of many of these approaches, they 
have unfortunately not been met with the success of checkpoint 
blockade and ACT therapies, and objective response rates have 
rarely exceeded 15%. Nevertheless, significant efforts in recent 
years have further improved our understanding of factors that 
regulate DC function in the context of cancer, and insights from 
this work have suggested novel strategies for improving the 
immunogenicity of both endogenous and exogenous DC. At the 
same time, advances in genetic engineering and other approaches 
that enable the manipulation of DC function are spearheading 
the translation of this basic research on DC immunobiology 
into novel clinical applications. Together, these findings have 
reinvigorated the pursuit of cutting-edge approaches that take 
advantage of the potential of DC as potent stimulators of robust, 
targeted antitumor immune responses, offering great promise for 
the future of DC-based cancer immunotherapies.

NeXT-GeNeRATiON DC-BASeD 
iMMUNOTHeRAPY FOR MeLANOMA

Although first- and second-generation DC vaccines, as well as 
other tumor Ag-based vaccines, have not yielded significant 
clinical benefit in a large percentage of melanoma patients to 
date, their relatively good safety profiles and ability to induce 
antitumor immune responses in some patients have encouraged 
the pursuit of next-generation melanoma vaccines that aim to 
improve upon the previous limitations of DC-based immu-
notherapy for this cancer. A major focus of one class of next-
generation DC vaccines is the utilization of naturally occurring 
DC subsets, which differs from the artificial ex vivo generation 
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of monocyte-derived and CD34+ precursor-derived DC that 
predominated both first- and second-generation DC vaccination 
protocols. Though large clinical trials are needed to define which 
DC subsets provide optimal therapeutic efficacy in particular 
settings, early trials with plasmacytoid DC (pDC) and CD1c+ 
myeloid DC (mDC) have both shown promise in melanoma 
patients. Intranodal injection of pDC that had been activated 
and pulsed with melanocyte differentiation Ag-derived peptides 
into tumor-free lymph nodes of patients with distant metastatic 
melanoma-induced Ag-specific CD8+ T cell responses in nearly 
50% of patients, and although the sample size was too small to 
make definitive assessments of clinical efficacy, a comparison 
of clinical outcomes for these patients versus matched control 
patients undergoing dacarbazine chemotherapy suggest vac-
cination benefits for both progression-free survival and overall 
survival (42). Likewise, immunization of stage IIIc/IV melanoma 
patients with autologous, peptide-pulsed CD1c+ mDC promoted 
Ag-specific CD8+ T cell responses in 33% of tested patients and 
induced long-term progression-free survival (12–35 months) in 
nearly 30% of patients (43). Other next-generation vaccination 
approaches currently being explored include immunization 
with tumor-specific neoantigens (either alone or loaded onto 
DC) that promote responses against mutated tumor-specific 
epitopes (44–46) as well as maneuvers that induce local or 
systemic activation of endogenous, tumor Ag-presenting DC 
(47, 48). These next-generation DC-based vaccines and the ways 
in which they might be incorporated as part of combinatorial 
regimens into the current cancer immunotherapy landscape that 
is being dominated by checkpoint blockade and ACT therapies 
have recently been reviewed more thoroughly elsewhere (49). 
Importantly, optimization of these next-generation approaches 
going forward will require careful consideration of the many 
factors that have emerged as regulators of DC function in the 
context of cancer. In this regard, this review highlights recent 
advances in our understanding of factors that influence DC 
function in melanoma immunity, including the immunogenicity 
of tumor cell death, immunosuppressive networks within the 
tumor microenvironment, tumor-altered immunometabolism, 
and microbiome-associated regulation of DC function and 
DC-mediated antitumor immunity. Additionally, particular 
focus is given to therapeutic strategies building on this knowledge 
that aim to improve the quality of next-generation DC-based 
immunotherapies for the treatment of melanoma.

iNDUCTiON OF iMMUNOGeNiC CeLL 
DeATH (iCD) AS A MeANS OF 
PROMOTiNG DC-MeDiATeD ANTiTUMOR 
iMMUNiTY

iCD and DC Activation
As one of the primary mediators of immune surveillance, DC 
function as key sentinels that aim to maintain homeostasis 
within the body, invoking immune tolerance in the steady state 
and immune activation in times of stress, such as that which 
occurs during a pathogenic infection. In the steady state, DCs 
exist as immature, inactivated cells that are highly phagocytic but 

tolerogenic in nature, expressing low levels of the costimulatory 
molecules and proinflammatory cytokines/chemokines neces-
sary to invoke immune activation and effector cell recruitment 
to peripheral tissues. On the other hand, upregulation of these 
cell surface and soluble immunostimulatory molecules during 
DC maturation and activation promotes the induction of adap-
tive immunity capable of eliminating a particular source of Ag 
(50). While it was originally thought that DC maturation and 
activation status, and in turn the ability of DC to induce immune 
tolerance versus activation, was dictated solely by self/non-self 
discrimination (51), more recently, it has become appreciated 
that regardless of how self or foreign a source of Ag is, it is the 
microenvironmental cues within host tissues that are critical 
in driving the “friend or foe” decision made by DC upon Ag 
encounter (52). In this way, immature DC that encounter and 
phagocytose cells dying naturally from normal turnover can 
remove this cellular debris without risking aberrant autoimmune 
activation, while those that encounter cells dying from infection 
or other forms of stress (such as those ultimately imposed on at 
least some of the cancer cells within a growing tumor) receive 
“danger signals” that promote their maturation, activation, and 
ability to stimulate immune responses to combat the source of 
“danger.” In the context of cancer, several of these “danger sig-
nals” have now been identified as damage-associated molecular 
patterns (DAMPs) (53). These include cell surface calreticulin 
and other endoplasmic reticulum (ER) chaperones exposed fol-
lowing the unfolded protein response, autophagy-mediated or 
conventional secretion of ATP, interleukin-1β (IL-1β) secretion 
as a result of inflammasome signaling, release of high-mobility 
group box 1 (HMGB1), and cell surface exposure/release of 
annexin A1, though this latter protein has been shown to promote 
both DC activation (54) and inhibition (55) in different settings, 
and its role as a DAMP is controversial. Nucleic acids released 
from dying tumor cells are another well-characterized DAMP 
that may signal through cytoplasmic sensors such as RIG-I or the 
TLR7/8/9-MyD88 pathway to stimulate DC. Additionally, their 
induction of type I IFN secretion by dying tumor cells can also 
lead to autocrine signals that trigger release of chemokines such 
as CXCL10 that promote recruitment of immune cell popula-
tions to the tumor (53, 56). Ultimately, it is the engagement of 
these types of DAMPs by pattern recognition receptors on DC 
that “alerts” these cells to an ICD and in turn promotes their 
stimulation of immune reactivity against “dangerous” immuno-
gens (Figure 1). With this revised understanding of “danger/no 
danger” discrimination as the key regulator of immune activa-
tion, inducers of ICD in cancer have become a major area of 
investigation because of their potential to promote DC-mediated 
antitumor immunity.

Chemotherapy-Driven iCD and its 
Potential for Activation of endogenous 
Tumor-Associated DC
In recent years, a number of anticancer regimens have been 
investigated for their ability to induce ICD and enhance 
DC-based cancer immunotherapies (57–61). Interestingly, while 
it was once thought to be at odds with cancer immunotherapy 
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FiGURe 1 | The influence of immunogenic versus non-immunogenic tumor cell death on dendritic cell (DC) maturation/activation and DC-mediated antitumor 
immunity. Non-immunogenic tumor cell death does not elicit DC maturation or activation, leaving DC in an immature state in which they either (1) fail to “sense” 
tumor cell death and therefore do not acquire tumor antigen (Ag) for presentation to naïve T lymphocytes or (2) acquire tumor Ag through phagocytosis and induce 
T cell tolerance. On the other hand, immunogenic tumor cell death, which can be elicited by various physical, chemical, and biological modalities, results in the 
release of damage-associated molecular patterns (DAMPs) that are recognized by pattern recognition receptors on DC, resulting in the delivery of “danger” signals 
that promote the maturation and activation of DC capable of stimulating antitumor T cell activation.
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because of its non-specific targeting of rapidly dividing cells 
(which could include not only tumor cells but also lymphocytes 
engaged in an antitumor immune response), chemotherapy has 
recently been revisited as a means of promoting ICD of tumor 
cells. Indeed, a number of chemotherapeutic agents approved 
for the treatment of various cancers, including doxorubicin, 
oxaliplatin, mitoxantrone, and others, are now known to 
induce ICD of some tumor cells (62). Dacarbazine is the only 
FDA-approved chemotherapeutic agent for the treatment of 
melanoma, and though its use in isolation has not produced 
clinical benefits of major significance (63), it has been shown to 
promote the efficacy of a peptide-based vaccine for melanoma 
patients by enhancing repertoire diversity of Melan-A-specific 
CTL (64, 65), suggesting that the benefit of dacarbazine as part 
of combinatorial therapy may be derived from its induction of 
melanoma ICD. Likewise, mitoxantrone has been implicated in 
ICD in an inducible murine model of Braf-driven melanoma, 
where the antitumor effects of this chemotherapeutic were 
both autophagy- and T  lymphocyte-dependent (66). Studies 
with other chemotherapeutic agents have demonstrated either 
direct immunogenicity of killed melanoma cells or expression/

release of ICD biomarkers by melanoma cells exposed to a 
particular drug. In the B16-OVA model, the immunogenicity 
of doxorubicin-induced cell death was shown to be dependent 
on DC, as depletion of these cells by diphtheria toxin treatment 
of mice carrying the diphtheria toxin receptor transgene under 
control of the CD11c promoter prevented the accumulation of 
OVA257-specific CD8+ T  cells that otherwise occurred in the 
lymph node draining the injection site. Although the OVA Ag in 
this model is more akin to a completely foreign oncoviral tumor 
Ag, this same study demonstrated in a humanized model of the 
B16-F10 murine melanoma cell line that tumor cells treated with 
doxorubicin and then injected into HLA-A2 transgenic hosts also 
conferred significant protection against a subsequent challenge 
with live tumor cells (67). Similarly, CD8+ T cell responses were 
also elicited against endogenous gp100 Ag in mice immunized 
with oxilaplatin-treated, but not live, B16-F10 cells (68). Others 
have also shown that lysates from oxaliplatin-treated B16-F10 
melanoma cells were found to be immunogenic, conferring par-
tial protection against subsequent challenge with live tumor cells, 
and this chemotherapy-driven immunogenicity was associated 
with markers of ICD that include cell surface calreticulin and 
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release of ATP and HMGB1 (69). Proinflammatory cytokines/
chemokines and cell surface heat shock protein 90 (HSP90) are 
ICD biomarkers expressed by the human A375 melanoma cell 
line following treatment with melphalan, an alkylating agent 
whose toxicity against A375 cells promoted DC maturation 
in vitro. Similar effects in the murine B78 model were also associ-
ated with bona fide immunogenicity in vivo, as vaccination with 
melphalan-treated tumor cells conferred complete protection 
against re-challenge with live cells in 40% of mice. Interestingly, 
this vaccination effect was independent of HSP90 expression 
and could be augmented by coating of melphalan-treated tumor 
cells with recombinant calreticulin, which was not otherwise 
detectable on the cell surface (70). Together, these data highlight 
(1) the potential for artificial delivery of DAMPs to enhance 
the immunogenic nature of chemotherapy-killed tumor cells 
but also (2) a need to better understand the role of specific ICD 
markers in conferring antitumor immunogenicity. Importantly, 
it should also be emphasized that the immunogenic potential of 
many of these chemotherapeutic agents has been evaluated only 
in prophylactic settings, and in order to achieve clinical translat-
ability it will be necessary going forward to determine whether 
the immunogenicity of these regimens confers any therapeutic 
benefit against established tumors.

Although the expression/release of ICD biomarkers often 
correlates with bona fide immunogenicity, as was shown to be 
the case in many of the aforementioned studies, detection of 
these markers alone is not sufficient to predict immunogenic-
ity of dying tumor cells. For instance, although mafosfamide 
treatment induces HMGB1 release from both EG7 lymphoma 
cells and B16-F10 melanoma, this cyclophosphamide derivative 
promotes vaccine-verified ICD only in EG7 lymphoma (71). 
In fact, rather than simply failing to induce immunogenicity 
in melanoma, cyclophosphamide has actually been suggested 
to promote immune suppression. Studies in the Ret transgenic 
melanoma model show that although low-dose cyclophospha-
mide induced cell surface calreticulin on skin tumor-derived 
Ret cells and enhanced the in  vitro maturation of co-cultured 
DC, this treatment alone did not produce any survival benefit 
in tumor-bearing animals and even led to an accumulation of 
myeloid-derived suppressor cells (MDSC) in primary tumors 
(72). This is in contrast to the adjuvant effect that cyclophospha-
mide has on a DC vaccine in the MC38 colon carcinoma model, 
where its contribution to tumor growth inhibition correlates 
with an increase in cytotoxic effector infiltration of tumors and a 
decrease in both regulatory T cells (Tregs) and MDSC (73). Such 
tumor-specific differences in responsiveness to chemotherapeu-
tic agents remain poorly understood and underscore the need to 
gain new insights into factors that influence tumor cell sensitivity 
to chemotherapy-driven ICD. Moreover, discrepancies in ICD 
biomarker expression and genuine ICD following tumor cell 
exposure to chemotherapy drugs highlight both the importance 
of vaccination assays as a means of verifying bona fide ICD as well 
as the significance of future studies that are necessary to evaluate 
the immunologic effects of DAMPs, both individually and in 
combination, on DC and DC-mediated immune responses so 
that optimal strategies for promoting robust antitumor immu-
nity can be realized.

Non-Chemotherapeutic induction of iCD 
As a Means to enhance Activation of 
endogenous and exogenous DC
While the aforementioned studies suggest potential utility for 
chemotherapy-driven ICD in promoting the immunogenicity 
of endogenous DC, whether this mode of ICD induction can be 
successful in enhancing the vaccination efficacy of exogenous DC 
is less clear. Combination therapy with cyclophosphamide and 
an autologous tumor Ag-pulsed DC vaccine has shown promise 
in a phase II study enrolling metastatic melanoma patients with 
progressive disease, but although cyclophosphamide’s effect was 
shown not to be the result of Treg depletion, whether its adjuvant 
effect was the result of ICD induction is not clear (74). Another 
recent phase I study has demonstrated that intratumoral injection 
of IFNα-differentiated unloaded autologous DC 1 day following 
dacarbazine treatment is associated with induction of tumor-
specific CD8+ T cell responses and stabilization of disease in a 
small cohort of stage IV melanoma patients (75). Despite these 
hints of success, though, there is concern by many investigators 
that multiple cycles of chemotherapy are incongruent with the 
potential immunologic benefits of DC vaccination due to the 
lymphoablative effects of such drugs. Moreover, chemotherapeu-
tic induction of ICD in tumor cells prior to Ag loading of DC 
during the production of vaccines has the potential for cytotoxic-
ity against DC and could lead to the unintended administration 
of residual chemotherapeutics to vaccinated patients (49).

A number of non-chemotherapeutic interventions that over-
come these limitations have been investigated for their ability 
to induce ICD of melanoma. Various antimicrobial/oncolytic 
peptides have been shown to trigger DAMP release by killed 
melanoma cells and promote antitumor immune responses (76, 
77). Oncolytic virus therapies that take advantage of the tumori-
cidal potential of measles virus, vaccinia virus, and reovirus have 
all been shown to induce melanoma ICD as well. Specifically, 
studies with these oncolytic viruses have shown that infected 
human melanoma cells or tumor-conditioned media from these 
cells promote the maturation of mDC in vitro (78–80), and Zhang 
et al. have shown in a murine model that an oncolytic adenovirus 
co-expressing IL-12 and GM-CSF enhances the immunogenicity 
and antitumor efficacy of a bone marrow-derived DC (BMDC) 
vaccine (81). Although ICD in the context of targeted therapy 
for melanoma has not been thoroughly investigated, one study 
has shown that vemurafenib can promote cell surface exposure 
of calreticulin and HSP90 on various human melanoma cell 
lines. This same study also demonstrated that MEK inhibition 
could trigger exposure of these ICD biomarkers on the surface 
of vemurafenib-resistant melanoma cells, and tumor cells pre-
treated with these targeted drugs were able to promote the matu-
ration of co-cultured DC (82). Based on these findings, it will 
be of interest going forward to assess how cancer immunization 
strategies might be coupled with targeted therapy to invoke anti-
melanoma immune responses following drug-induced tumor 
cell death, an outcome that could result in immune-mediated 
eradication of tumor cells that might otherwise eventually 
acquire drug resistance. Finally, physical modalities that disrupt 
tumors, such as radiation, photodynamic therapy (PDT), high 
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TABLe 1 | Inducers of immunogenic cell death (ICD) in melanoma.

Model system iCD biomarker(s) Bona fide iCDa Reference

Chemotherapies
Doxorubicin B16-F10 Not determined Yes (67)
Oxilaplatin B16-F10 Calreticulin, ATP, high-mobility group box 1 (HMGB1) Yes (68, 69)
Melphalan A375 IL-8, CCL2, heat shock protein 90 (HSP90) Not tested (70)

B78 HSP90 Yes
Lidamycin B16-F1 Calreticulin Yes (207)
R2016 heterocyclic quinone B16-F10 Calreticulin, HMGB1, HSP60, HSP70, HSP90 Not tested (208)
Ginsenoside Rg3 B16-F10 Calreticulin, HSP60, HSP70, HSP90 Not tested (209)

Antimicrobial/oncolytic peptides
LTX-315 B16-F1 HMGB1 Not tested (76)
LTX-401 B16-F1 HMGB1, ATP, cytochrome c Not tested (77)

Oncolytic viruses
Measles virus Primary melanoma cells IL-6, IL-8 Not tested (78)

Mel888, Mel624, MeWO, SkMel28 IL-6, IL-8, type I IFN, HMGB1
Vaccinia virus SK29-MEL HMGB1, calreticulin (strain-dependent) Not tested (79)
Reovirus (type 3 Dearing strain) Mel888, Mel624, MeWO, SkMel28 Proinflammatory cytokines (cell line-dependent) Not tested (80)

Targeted therapies
Vemurafenib A375, 451-LU, M1617 Calreticulin, HSP90 Not tested (82)
U0126 (MEK inhibitor) A375, 451-LU, M1617 Calreticulin, HSP90 Not tested (82)
Bortezomib A375, 451-LU, M1617 Calreticulin, HSP90 Not tested (82)

Physical modalities
Hyperthermia ± ionizing radiation B16-F10 HMGB1, HSP70 Not tested (210)

aBona fide ICD can be verified only in murine tumor models, as it is determined by vaccination assays in which tumor cells killed by a particular agent in vitro are tested for their ability 
to invoke protective immunity against subsequent re-challenge with live tumor cells. ICD biomarkers are indicated only if detected in a context appropriate for ICD (i.e., cell surface 
calreticulin and heat shock proteins, secreted ATP and HMGB1, etc.).
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hydrostatic pressure, and hyperthermia, have been investigated 
for their ability to induce ICD-mediated activation of DC. Many 
of these approaches have been incorporated into DC vaccination 
setups and are currently being assessed in clinical trials for pros-
tate cancer, ovarian cancer, and head and neck squamous cell 
carcinoma (83). However, melanoma resistance to many of these 
modalities has made their incorporation into combinatorial 
DC-based therapies a particular challenge. Melanoma’s relative 
resistance to radiotherapy is well-documented (84), and many 
melanomas are also resistant to PDT as a result of optical inter-
ference by melanin in pigmented tumors, the antioxidant effect 
of melanin, sequestration of photosensitizers in melanosomes, 
and other mechanisms (85). Nevertheless, interest remains in (1) 
exploring strategies that might sensitize melanoma cells to these 
physical modalities and (2) identifying particular patient popu-
lations whose melanomas might be more susceptible to these 
types of physical disruptions. For instance, there is evidence that 
depigmented melanomas are more susceptible to PDT, meaning 
that at least a subset of melanoma patients might benefit from 
PDT/DC-based combination therapies, and interventions that 
result in even temporary depigmentation of melanomas have 
the potential to increase the percentage of patients who may 
benefit from such combinatorial regimens (86). Along with the 
diverse repertoire of ICD inducers known to be effective against 
melanoma (Table 1), ongoing efforts to refine the use of physi-
cal modalities for tumor destruction will increase the array of 
weapons that exhibit not only direct antitumor activity but also 
the ability to boost immune reactivity against living melanoma 
cells, thus doubling the impact of therapy. Importantly, further 

optimization of therapeutic strategies with these and newly dis-
covered ICD inducers in the future offers promise for enhancing 
not only naturally generated antitumor immune responses in 
melanoma patients but also DNA/RNA- and peptide/protein-
based melanoma vaccines whose immunogenicity relies on 
endogenous DC to process and present Ag to tumor-specific 
T  lymphocytes. Moreover, as is already being done with some 
of the aforementioned inducers of melanoma ICD, investigat-
ing how ICD inducers might maximize the immunogenicity of 
exogenous DC, either through ex vivo activation of these cells 
prior to immunization or through in vivo maintenance of their 
immunogenicity following infusion, will likely improve the qual-
ity and outcome of antitumor immune responses achieved by DC 
vaccines in future melanoma patients.

iNTeRFeRiNG wiTH 
iMMUNOSUPPReSSive NeTwORKS THAT 
iMPAiR THe FUNCTiON OF TUMOR-
ASSOCiATeD DC

Melanoma-Associated Suppression  
of DC Differentiation
A significant body of evidence now exists demonstrating that 
tumor cells as well as other immunosuppressive cell populations 
that accumulate within the tumor microenvironment produce a 
variety of factors that alter the function of DC (87). In the context 
of melanoma, such factors have been shown to interfere with the 
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development of DC from hematopoietic precursors, to suppress 
the maturation and activation of already-differentiated DC, and 
to induce the differentiation of regulatory DC with tumor-pro-
moting functions. In terms of DC development, hyperactivation 
of the STAT3 and MAPK signaling pathways has been observed 
in progenitors that fail to differentiate into DC in the presence of 
melanoma-derived factors (88), and several groups have identi-
fied specific inhibitors contributing to melanoma-associated sup-
pression of DC differentiation. Cyclooxygenase (COX)-derived 
prostanoids in primary melanoma-conditioned media have been 
shown to inhibit the differentiation of DC from both mono-
cytes and CD34+ progenitors (89). Likewise, gangliosides from 
human melanoma tumors impair the differentiation of DC from 
monocytic precursors and promote the apoptosis of monocyte-
derived DC (90). A similar apoptotic effect of melanoma-derived 
gangliosides has also been observed on epidermal Langerhans 
cells (91). In addition to inhibiting the generation and viable 
maintenance of distinct DC subtypes, melanoma-derived factors 
can also skew the differentiation of DC precursors toward other 
myeloid populations with immunosuppressive function. For 
instance, TGFβ1 in B16-F10 tumor-conditioned media is capable 
of preventing DC differentiation from bone marrow precursors 
and instead drives MDSC differentiation through upregulation of 
the Id1 transcriptional regulator (92). COX-2-driven prostaglan-
din E2 (PGE2) in supernatants of cultured human melanoma cell 
lines can also promote MDSC differentiation from monocytes 
(93). Alternatively, macrophages capable of suppressing CD4+ 
and CD8+ T  cell proliferation have been differentiated from 
monocytes cultured in conditioned media from both metastatic 
and non-metastatic human melanoma cell lines (94), and IL-10, 
which can be secreted at high levels by melanomas (95), has been 
shown to promote the trans-differentiation of monocyte-derived 
DC into tolerogenic CD14+ BDCA3+ macrophage-like cells simi-
lar to those known to be enriched in melanoma metastases (96). 
As immunosuppressive M2-like tumor-associated macrophages 
often accumulate in melanoma-bearing hosts (97–99), it is inter-
esting to speculate that these cells may arise from an influence of 
tumor-derived factors on the differentiation of DC in vivo as well. 
Taken together, these influences of melanoma-derived factors on 
DC differentiation cannot only interfere with Ag presentation 
and the induction of anti-melanoma immune responses, but they 
can also lead to active suppression of such immune responses 
against melanoma.

Melanoma-Associated Suppression  
of DC Maturation and Activation
In addition to its influence on the differentiation of DC, mela-
noma has also been shown to modulate the maturation/activa-
tion of already-differentiated DC as well. Importantly, although 
the presence of mature DC within tumors and tumor-draining 
lymph nodes is a positive prognostic factor in melanoma patients, 
immature DC are often enriched in both melanoma lesions and 
tumor-draining lymph nodes of hosts with progressive disease 
(100–104), thus highlighting the significance of DC matura-
tion status as a key determinant of the immunologic control of 
melanoma progression. Immune dysfunction stemming from 
melanoma-associated effects on DC maturation and activation 

may result from defects in Ag processing and presentation (103, 
105, 106) as well as diminished expression of costimulatory 
molecules and immunostimulatory cytokines, such as IL-12 
(107–109). While an immature phenotype of tumor-associated 
DC may reflect a simple failure of tumor cells to support DC 
maturation and activation, active regulation of these processes by 
melanoma-derived factors has also been documented by several 
investigators. We have shown that tumor-conditioned media from 
murine melanoma cell lines suppresses costimulatory molecule 
expression and alters cytokine/chemokine expression profiles of 
multiple LPS-treated DC lines (110, 111), and our recent work has 
extended these observations to tissue-resident DC as well (99). 
This latter study has shown that the extent to which DC func-
tion is altered by melanoma-derived factors is tumor-dependent, 
such that LPS-induced costimulatory molecule expression on 
splenic DC-stimulated ex vivo as well as on lung tissue-resident 
DC in mice harboring melanoma lung metastases is suppressed 
by the rapidly progressing B16-F1 melanoma but not the poorly 
tumorigenic D5.1G4 melanoma. Moreover, we found that altera-
tions to cytokine/chemokine expression profiles by DC in these 
systems also correlated with melanoma tumorigenicity and were 
partially driven by tumor-derived TGFβ1 and VEGF-A. Others 
have reported that immature tumor-infiltrating DC isolated from 
B16-F0 tumors are refractory to ex vivo stimulation with a cock-
tail of maturation stimuli but can be induced to undergo matu-
ration following stimulation in the presence of an anti-IL-10R 
neutralizing antibody (112). Recently, Zelenay et  al. employed 
CRISPR-Cas9 gene editing technology to demonstrate that COX-
derived PGE2 in a BRAFV600E melanoma cell line also suppresses 
costimulatory molecule expression on CD103+ and CD103−, 
CD11b+ tumor-infiltrating DC as well as IL-12p40 expression by 
the CD103+ DC subset (113). In addition to these studies that 
have elucidated roles for extrinsic tumor-derived factors in the 
regulation of DC maturation and activation, studies from oth-
ers have provided insights into dysregulated signaling pathways 
within tumor-associated DC that impact these processes as well. 
Upregulation of β-catenin, which has been reported in DC that 
mature but that fail to fully activate and secrete proinflammatory 
cytokines (114), has been observed both in DC from lymph nodes 
draining B16-F10 tumors and in splenic DC cultured with B16-
F10-conditioned media, and its induction in tumor-associated 
DC suppresses their ability to cross-prime CD8+ T  cells (115). 
Similarly, impaired DC activation as measured by IL-12 secretion 
has been associated with hyperactivation of both the STAT3 and 
MAPK signaling pathways in monocyte-derived DC exposed to 
conditioned media or tumor lysates from human melanomas (108, 
116). Most recently, upregulation of the microRNA miR148-a in 
tumor-associated DC was shown to impair TLR-mediated matu-
ration by suppressing expression of the DNA methyltransferase 
DNMT1, which in turn led to hypomethylation of the Socs1 gene 
and upregulation of the SOCS1 TLR signaling suppressor (117).

Melanoma-Associated induction  
of Regulatory DC Function
Beyond limitations on the Ag processing/presentation and 
maturation/activation capacity of DC that can preclude induc-
tion of antitumor immunity and lead to tumor immune tolerance, 
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respectively, melanoma-derived factors have also been shown 
to trigger development of regulatory DC with various tumor-
promoting functions. Such DCs have been shown to contribute 
to tumor angiogenesis (118), the development and recruitment 
of immunosuppressive Tregs (119–121), and the direct suppres-
sion of CD4+ and CD8+ T cells (122, 123). Importantly, several 
studies have now provided mechanistic insights into both the 
induction of regulatory DC and the tumor-supporting activities 
mediated by these cells. One study has reported upregulation 
of the PD-L1 co-inhibitor that dampens CD8+ T  cell effector 
function on tumor-infiltrating DC in the B16-F10 model (124). 
Another study has shown that melanoma-derived IL-10 and 
other unidentified factors contribute to an IL-12low, IL-10high 
phenotype in monocyte-derived DC capable of inducing CD4+ 
CD25+ FOXP3+ Treg development (125), and tumor-derived 
IL-6, VEGF, and TGFβ1 have all been implicated in the induc-
tion of IL-12low, IL-10high DC in the spontaneous Ret murine 
melanoma model (126). Differentiation of IL-10-producing 
regulatory DC has also been shown to be driven by autocrine 
IL-6/IL-10 signaling through STAT3 in DC, which is initiated 
by melanoma-derived factors that activate the TLR2 signaling 
pathway in these cells (127). Additionally, Treg expansion in 
melanoma can also be driven by TGFβ1-producing regulatory 
DC (128). Still others have found that regulatory DCs produce 
enzymes that diminish the availability of metabolites crucial for 
T cell activation, thereby inducing metabolic suppression of anti-
melanoma immunity. In particular, mDC that were imprinted by 
ER stress in melanoma cells suppressed CD8+ T cell proliferation 
via secretion of the arginine-depleting enzyme arginase I (123), 
and melanoma-educated regulatory DCs have also been found 
to suppress CD4+ T cell proliferation in an arginase-dependent 
manner (122). Likewise, tryptophan catabolism by indoleamine 
2,3-dioxygenase (IDO)-producing regulatory pDC recovered 
from melanoma-draining lymph nodes is associated both with 
suppression of CD8+ T cells (129) and with activation of CD4+ 
Tregs (130). In addition to this IDO-mediated regulation of 
anti-melanoma immunity, regulatory pDC have also been shown 
to drive TH2 and Treg differentiation of CD4+ T  cells through 
cell–cell interactions via OX40L and ICOSL, respectively (131).

Strategies to Overcome Melanoma-
Associated Dysregulation of DC Function
While the previously described studies highlight diverse mecha-
nisms by which melanoma may subvert DC-mediated antitumor 
immunity, insights into melanoma-altered DC function have 
suggested novel strategies for improving DC-based immuno-
therapies for this cancer (Figure 2). To overcome the paucity and 
poorly immunogenic nature of DC within melanoma lesions, 
strategies to increase tumor infiltration by DC and promote their 
activation in situ have shown promise in murine melanoma mod-
els. Salmon et al. recently demonstrated that systemic administra-
tion of Flt3L expanded and mobilized CD103+ DC progenitors 
from the bone marrow and led to the accumulation of immature 
CD103+ DC within tumor masses, and subsequent injection of 
polyI:C intratumorally induced local maturation of these cells and 
enhanced their ability to recruit and activate melanoma-specific 

effector CD8+ T cells, leading to tumor regression (47). Similar 
findings were recently reported by Sánchez-Paulete et  al., who 
demonstrated that Flt3L-mobilized Batf3-dependent DC acti-
vated by poly-ICLC synergized with anti-CD137 and anti-PD-1 
monoclonal antibody therapy to promote Ag-specific CD8+ T cell 
cross-priming and tumor control (132). Likewise, Tzeng et  al. 
found that administration of IFNα (as well as other DC matura-
tion stimuli) after treatment of melanoma-bearing mice with a 
combination therapy that mediates tumor Ag release enhanced 
the cross-presentation and cross-priming activities of CD8α+ DC 
in tumor-draining lymph nodes (133). Importantly, although this 
maneuver led to complete regression of established tumors in a 
large percentage of mice, minimal benefit was observed when IFNα 
was administered either before or concomitantly with combina-
tion therapy, as the loss of phagocytic capacity that accompanied 
CD8α+ DC maturation at these early times limited the ability of 
these cells to acquire tumor Ag later released as a result of therapy. 
These data thus highlight the importance of treatment schedule 
and the temporal programming of DC maturation/activation in 
combinatorial approaches that rely on endogenous DC to trigger 
therapy-associated antitumor immune responses. Early clinical 
studies demonstrating that it is also possible to directly manipu-
late the frequency and maturation status of endogenous DC in 
melanoma patients have also reinforced the need for optimizing 
strategies to maximize the immunogenicity of these cells. For 
instance, local administration of a mix of CpG-B and GM-CSF at 
the site of primary melanoma excision resulted in the maturation 
of both pDC and conventional DC as well as an increase in the 
frequency of cross-presenting BDCA3+ CD141+ DC in sentinel 
lymph nodes, and this approach enhanced the frequency of 
melanoma Ag-specific CD8+ T cells in these nodes and reduced 
the frequency of lymph node metastasis (134, 135). At the same 
time, though, this approach also enhanced the suppressive activ-
ity of CD4+ Tregs in sentinel lymph nodes, suggesting that further 
optimization of this regimen may enable more robust antitumor 
immunity and even better clinical results. The identification of 
optimal DC stimulation cocktails and the implementation of 
combinatorial regimens that offset the deleterious activities of 
in situ-stimulated DC are therefore critical areas of investigation 
that may drive the development of more efficacious anti-mela-
noma immune therapies in the future. Moreover, advances in 
targeted delivery of therapeutics to endogenous DC, such as those 
that have already been achieved with IDO siRNA-encapsulated 
mannosed liposomes (136) and polypeptide micelle-based 
nanoparticles incorporating an miRNA148-a inhibitor (117), 
will enable selective reprogramming of melanoma-associated 
DC into potent stimulators of antitumor immune responses and 
likely improve the outcome of immunotherapy for melanoma 
patients going forward.

In contrast to strategies aimed at improving the immuno-
genicity of endogenous melanoma-associated DC, approaches 
to enhance the immunostimulatory capacity of exogenous DC 
have also improved the efficacy of many melanoma vaccines. For 
example, strategies that provide immune stimulating support 
for exogenous DC, such as the introduction of IL-6 or IL-21 
transgenes into BMDC (137, 138) or the co-administration of 
oncolytic adenovirus engineered to express immune stimulators 
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FiGURe 2 | Melanoma-associated dendritic cell (DC) dysfunction and therapeutic interventions to enhance DC-mediated anti-melanoma immune responses. 
Melanoma interferes with the function of DC by numerous mechanisms, including induction of DC apoptosis, blocking/altering DC development from hematopoietic 
precursors, suppressing DC maturation/activation, and driving the differentiation of tumor-promoting regulatory DC (left). Insights into these mechanisms of 
melanoma-altered DC dysfunction have informed strategies to augment DC-mediated anti-melanoma immune responses. These strategies include approaches that 
mobilize and stimulate endogenous DC, interventions that impede the production or action of immunosuppressive factors released by melanoma and associated 
cells in the tumor microenvironment, and regimens that employ exogenous DC that have been manipulated to resist suppressive elements and stimulate robust 
antitumor immunity (right).
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such as IL-12 and GM-CSF (64, 119), have been shown to sig-
nificantly improve vaccine efficacy, resulting in complete regres-
sion of established melanomas in some cases. Combinatorial 
approaches that aim to neutralize the effects of tumor-derived 
factors on exogenously administered DC, such as local siRNA-
mediated silencing of TGFβ1 at the tumor site (139), have also 
been effective. Alternatively, manipulation of exogenous DC prior 
to immunization by gene-silencing approaches can promote the 
immunostimulatory capacity of these cells in two ways. First, 
silencing the expression of genes involved in signaling pathways 
that limit the immunostimulatory function of melanoma-associ-
ated DC can prevent their immunosuppression by tumor-derived 

factors. In this regard, vaccines employing SOCS1-silenced DC 
improve the control of established B16 melanoma (140, 141), a 
finding that offers exciting proof-of-principle for this approach 
and that suggests the silencing of other immunosuppressive sign-
aling molecules often dysregulated in melanoma-altered DC, such 
as STAT3 and β-catenin, may also improve the antitumor efficacy 
of DC vaccines for melanoma. Second, silencing the expression of 
suppressive factors known to be released by melanoma-induced 
regulatory DC can prevent conversion of exogenous DC from 
immune activating cells to immunosuppressive ones. Indeed, vac-
cination of mice with IDO-silenced DC confers partial protection 
against B16 melanoma (142), and a recent case report has revealed 
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immunologic and clinical benefits of an IDO-silenced DC vac-
cine in a melanoma patient (143). Similarly, in vitro studies have 
shown that IL-10-silenced human mDC are better able to elicit 
CTL activation against an antigenic epitope of MART-1 (144), 
suggesting that immunization with such DCs might improve 
antitumor immunity in melanoma patients as well. Altogether, 
these and related strategies for improving the function of DCs 
in the context of melanoma offer exciting promise for DC-based 
immunotherapies designed to overcome melanoma-imposed 
limitations on these cells and the antitumor immune responses 
they mediate.

OveRCOMiNG MeTABOLiC 
CONSTRAiNTS ON DC FUNCTiON wiTHiN 
THe TUMOR MiCROeNviRONMeNT

Metabolic Reprogramming of DC and 
Tumor Cells
The emerging role of immunometabolism in the regulation of DC 
function in recent years has revealed new mechanisms by which 
tumors may subvert DC-mediated antitumor immunity. Indeed, 
beyond the aforementioned mechanisms of tumor-associated 
immunosuppression of DC, metabolic suppression of DC in 
the tumor microenvironment is now recognized as a significant 
barrier to DC function, which is controlled by key metabolic 
pathways regulating the bioenergetic and biosynthetic needs 
of these cells. While immature DC in the steady state rely on 
fatty acid oxidation and oxidative phosphorylation (OXPHOS) 
as their primary modes of metabolism, TLR-stimulated DC 
undergo a metabolic switch to aerobic glycolysis within minutes 
of the maturation and activation process (145). This early switch 
to glycolytic metabolism provides a source of carbon for the 
pentose phosphate pathway and tricarboxylic acid (TCA) cycle, 
both of which produce intermediates for fatty acid synthesis 
needed to support the expansion of membrane mass for the ER 
and Golgi apparatus, thus allowing DC to meet the demands of 
protein synthesis, transport, and secretion that are associated 
with maturation/activation (146). Long-term commitment to 
glycolytic metabolism in activated DC then fuels ATP production 
and survival in the face of decreasing mitochondrial metabolism, 
which results from OXPHOS inhibition by nitric oxide in inflam-
matory DC (147) and from autocrine type I IFN induction of the 
HIF1α transcription factor that blocks mitochondrial respiration 
in conventional DC (148). Interestingly, metabolic suppression 
of tumor-associated DC is often a consequence of metabolic 
reprogramming in tumor cells themselves, which are driven by 
the activation/deactivation of oncogenes/tumor suppressor genes 
and harsh environmental conditions (such as hypoxia) to switch 
from OXPHOS to glycolysis as the primary mode of metabolism, 
in this case to support the energy and biosynthetic demands of 
rapidly proliferating cells. Indeed, even under normoxic condi-
tions, tumor cells are reprogrammed for a primarily glycolytic-
based mode of energy production (aerobic glycolysis, otherwise 
known as the “Warburg effect” in tumor cells), thus allowing 
intermediates of the glycolytic pathway to function as important 
metabolites for macromolecule biosynthesis by mitochondria no 

longer relied as heavily upon for OXPHOS (149–151). Therefore, 
as metabolically reprogrammed tumors grow, their increasing 
demand for glucose consumption contributes to an environment 
that is metabolically hostile to infiltrating DC and other immune 
cell populations, with competition for limiting nutrients and 
accumulation of toxic metabolic byproducts released by tumor 
cells into the extracellular space both impairing immune system 
function.

Metabolic Suppression of DC in the 
Context of Melanoma
In melanoma, metabolic rewiring for glycolysis may be driven 
by multiple signaling pathways, including BRAF-driven MAPK 
hyperactivation that negatively regulates OXPHOS (152) and 
PI3K/AKT/mTOR/HIF1α signaling that positively regulates 
glycolysis (153). These signaling pathways induce expression 
of glucose transporters as well as enzymes that favor glycolytic 
metabolism, such as lactate dehydrogenase A (LDHA) that con-
verts the glycolysis end-product pyruvate into lactic acid, thus 
diverting pyruvate from utilization in the TCA cycle as fuel for 
OXPHOS (154). Importantly, depletion of glucose in the tumor 
microenvironment by melanomas exhibiting high glycolytic 
activity may impair glycolysis, and in turn ATP production, 
in tumor-infiltrating DC. Such effects may alter the AMP:ATP 
ratio in DC and lead to AMP-mediated activation of the nutri-
ent/energy sensor AMPK (155), which is known to promote 
OXPHOS and suppress mTOR and HIF1α signaling (156–158), 
thus further contributing to the negative regulation of glycolysis 
in these cells. Beyond the effects of glucose deprivation in the 
tumor microenvironment on DC function, buildup of lactic acid 
in the extracellular space of glycolytically active melanomas can 
also suppress DC. In this regard, melanoma-derived lactic acid 
inhibits the differentiation of monocyte-derived DC and sup-
presses IL-12 production by previously differentiated monocyte-
derived DC stimulated with LPS in  vitro (159). Although the 
mechanism by which lactic acid influences tumor-associated 
DC function has yet to be elucidated, there is speculation that 
altered membrane transport in the lactate-rich tumor microen-
vironment might contribute to its suppressive effect (160, 161). 
Because lactate is transported passively by facilitated diffusion 
through monocarboxylate transporters, high levels of extracel-
lular lactate within the tumor microenvironment might promote 
import of melanoma-derived lactic acid into DC while at the 
same time precluding export of lactic acid produced within DC 
also undergoing aerobic glycolysis, leading to a buildup of lactate 
within DC that impairs the glycolytic flux necessary to maintain 
an activated phenotype. Alternatively, lactate was recently shown 
to inhibit macrophage activation by binding to the GPR81 lactate 
receptor and suppressing TLR signaling (162), and it is possible 
that this pathway might also contribute to lactate-associated 
suppression of DC stimulated by tumor-derived DAMPs. Finally, 
evidence is emerging that suppression of glycolysis in DC is not 
merely a consequence of the metabolic limitations imposed by 
glycolytically active tumor cells, as tumor-derived immunosup-
pressive cytokines have also been shown to alter DC metabolism. 
For instance, IL-10 was found to suppress the metabolic switch 
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to aerobic glycolysis in LPS-stimulated DC by antagonizing 
TLR ligand-mediated hypophosphorylation of AMPK (145). 
Similarly, IL-10 is known to promote Socs3 gene expression 
(163), and melanoma-associated DC have been found to exhibit 
SOCS3-mediated inhibition of the M2 pyruvate kinase (PKM2) 
that catalyzes conversion of phosphoenolpyruvate into pyruvate 
in the final step of glycolysis (164).

In addition to the key role played by glycolytic metabolism in 
the activation of DC, the metabolism of fatty acids has also been 
shown to be an important regulator of DC function. Although 
lipid synthesis is important for ER and Golgi biogenesis during 
DC activation, the accumulation of lipids in DC in the context 
of cancer is often associated with immune dysfunction. In 
particular, Herber et  al. demonstrated that several species of 
triglycerides accumulate in DC cultured with various tumor 
explant supernatants, including that of B16-F10 melanoma, and 
that high lipid content in tumor-associated DC impaired tumor 
Ag processing and cross-presentation (165). Interestingly, 
DC cultured with tumor-derived supernatant also exhibited 
increased expression of the scavenger receptor MSR1, suggest-
ing that the accumulation of lipids in these DCs might arise from 
tumor-derived factors that promote DC uptake of fatty acids in 
the form of lipoproteins, as triglycerides are typically not taken 
up by DC but can be synthesized from lipoprotein precursors 
within cells. Subsequent studies revealed that lipid accumulation 
in tumor-associated DC defective in cross-presentation resulted 
from an increase in polyunsaturated fatty acids, particularly 
linoleic acid and to a lesser extent arachidonic acid, and that 
DC isolated from tumor-bearing mice or exposed to tumor 
explant supernatants in  vitro exhibited significantly higher 
levels of oxidized free fatty acids and oxidatively truncated 
triglycerides (166). Of note, these DC did not exhibit oxidation 
of phospholipids that would be a major component of ER and 
Golgi membranes. These data may therefore explain the appar-
ent discrepancy between the need for DC to undergo de novo 
lipogenesis to support ER and Golgi biogenesis during activation 
and the dysfunction that results from lipid accumulation in the 
context of tumors, suggesting that it is the nature and oxidation 
status of the fatty acids accumulating in tumor-associated DC 
that is detrimental to their function. Indeed, oxidized fatty acids 
have been shown to inhibit DC maturation through binding 
and activation of the peroxisome proliferator-activated receptor 
PPARγ, which promotes fatty acid synthesis and storage (167). 
Additionally, others have reported that lipid peroxidation by 
reactive oxygen species within tumor-associated DC yields 
byproducts that upregulate the ER stress sensor XBP1, which 
activates genes involved in the biosynthesis and accumulation 
of triglycerides known to be linked with DC dysfunction (168). 
Altogether, these studies reveal the complex regulation of lipid 
metabolism that controls DC function, and they highlight how 
factors in the tumor microenvironment can alter this process to 
ultimately promote tumor immune escape.

While alterations to glycolysis and lipid metabolism impair 
tumor-associated DC function by influencing how major macro-
molecules necessary for cell survival and activation are utilized, 
other metabolites that frequently accumulate in the tumor 
microenvironment are also known to compromise the function 

of DC and DC-mediated immune responses. Adenosine is a par-
ticularly well-characterized metabolite that accumulates in the 
extracellular space of many tumors, including melanoma (169). 
Although ATP released from tumor cells may serve as a DAMP 
to promote DC activation (see Induction of Immunogenic Cell 
Death (ICD) as a Means of Promoting DC-Mediated Antitumor 
Immunity), melanoma cells often express on their surface the 
CD39 and CD73 ectonucleotidases that hydrolyze ATP into 
adenosine (170–172), thereby leading to its buildup in the tumor 
microenvironment. In addition to its role in the suppression of 
T cell signaling (173) and immunosuppressive activity of Tregs 
(174), adenosine has also been shown to impair DC function. 
In vitro studies with LPS-stimulated human monocyte-derived 
DCs have shown that adenosine promotes IL-10 secretion while 
suppressing IL-12 and TNFα secretion as well as the capacity of 
DC to promote TH1 differentiation (175). Others have shown that 
DC differentiated from monocytic precursors in the presence of 
adenosine acquire several tumor-promoting functions that are 
dependent on signaling through the A2B adenosine receptor. 
These pro-tumor functions include increased expression of 
angiogenic factors, immunosuppressive cytokines, and proteins 
that disrupt immunometabolism such VEGF, TGFβ, IDO, and 
arginase 2, among others (176). In the context of melanoma, 
in vivo studies in B16-F10 tumor-bearing mice have shown that 
adenosine signaling through the A2A adenosine receptor on DC 
is associated with a slight decrease in MHC II and IL-12 expres-
sion and a significant increase in the expression of IL-10 (177). 
Interestingly, recent studies have shown that adenosine receptor 
signaling in DC also promotes accumulation of intracellular 
cAMP (178), suggesting that adenosine may ultimately suppress 
DC activation by influencing AMPK activity and decreasing gly-
colytic metabolism in these cells. Finally, whereas melanoma cells 
are one of the major sources of adenosine in the tumor micro-
environment, immunoregulatory metabolites that compromise 
DC function may also be produced by other cell types known to 
infiltrate tumors. For instance, arginase I-producing cells such as 
MDSC produce ornithine as a byproduct of arginine metabolism, 
and ornithine decarboxylation yields polyamines that enhance 
IDO-1 expression in DC, thus conditioning these cells for 
immunosuppressive activity (179). Even melanoma-associated 
DC themselves can contribute immunosuppressive metabolites 
to the extracellular milieu of progressive tumors. Specifically, 
melanoma-induced activation of β-catenin signaling in DC from 
tumor-draining lymph nodes promotes expression of enzymes 
involved in vitamin A metabolism, leading to DC secretion of 
the vitamin A metabolite retinoic acid that in turn promotes 
differentiation of immunosuppressive Tregs (120). Collectively, 
these studies highlight the metabolically hostile nature of the 
tumor microenvironment that must be overcome in order for 
DC to elicit and maintain effective antitumor immune responses.

Metabolic interventions to Promote DC 
Function in the Context of Melanoma
Just as insights into melanoma-associated immune suppres-
sion of DC have informed therapeutic strategies to enhance 
the immunogenicity of these cells, so too have insights into the 
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FiGURe 3 | Alterations to tumor cell and dendritic cell (DC) metabolism in the context of melanoma and therapeutic strategies to overcome metabolic suppression 
of melanoma-associated DC. DC function in the context of melanoma is compromised by constraints on metabolic pathways essential to DC maturation and 
activation. Metabolic suppression of DC in the tumor microenvironment arises from nutrient depletion and the buildup of toxic waste that results from metabolic 
rewiring of melanoma cells for aerobic glycolysis. Uptake of peroxidized lipids within the tumor microenvironment also promotes DC dysfunction, leading to an 
accumulation of oxidized lipids in DC that impairs cross-presentation of tumor antigen. Additionally, tumor cell release of immunosuppressive metabolites such as 
adenosine that signal through DC inhibit the antitumor function of these cells. Mechanistic insights into these phenomena have identified novel targets for therapies 
designed to interfere with metabolic pathways in melanoma cells or to prevent tumor-altered metabolism of melanoma-associated DC. Pharmacologic interventions 
or tissue-specific gene-silencing approaches that target factors upregulated by melanoma cells have direct antitumor effects and are also likely to improve DC 
function indirectly by creating a more hospitable metabolic microenvironment. Similarly, DC-targeted delivery of therapeutics that prevent uptake of suppressive 
metabolites or that block metabolic pathways associated with tolerogenicity can improve the immunostimulatory function of endogenous DC, and manipulation of 
exogenous DC to resist the induction of metabolic suppression can improve the efficacy of DC vaccines. Bold arrows and type designate metabolic pathways, 
metabolites, intermediates, and processes that are elevated in melanoma cells and tumor-altered DC. Arrows and type not in bold represent those that are 
downregulated in these cells. Red inhibition symbols highlight proteins and metabolic pathways that have been successfully targeted in melanoma cells and DC in 
preclinical studies, as described in the text. Red inhibition symbols with red question marks indicate targets that have been associated with both immune activating 
and immune suppressing functions in different models and whose inhibition may therefore be appropriate only in certain contexts, as is discussed in more detail in 
the text.
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metabolic suppression of melanoma-associated DC (Figure 3). 
To overcome the immune dampening effects of retinoic acid 
signaling, a retinoic acid receptor α antagonist has been used to 
enhance the efficacy of a peptide-pulsed DC vaccine against B16 
melanoma. In addition to enhancing DC production of IL-12 
and lowering DC production of TGFβ and IL-10, this antagonist 
reduced the number of FOXP3+ IL-10+ Tregs that infiltrated 
tumors (180). Pharmacologic inhibition of the β-catenin/TCF 
pathway that promotes melanoma-associated DC production 
of retinoic acid has also been shown to reduce the expression 
of vitamin A-metabolizing genes in DC isolated from tumor-
draining lymph nodes, and the antitumor activity associated with 
this inhibition correlated with reduced Treg and increased effec-
tor CD8+ T cell infiltration of subcutaneous melanomas (120). 
Likewise, inhibition of adenosine in the tumor microenvironment 

may be approached in a number of ways to prevent its deleteri-
ous effects on DC function. Pharmacological antagonists of the 
A2B receptor block the effects of adenosine on DC differentia-
tion in vitro, and DC from both A2A and A2B receptor knockout 
mice are resistant to the suppressive effects of adenosine (176, 
177). Therefore, neutralization of adenosine signaling in DC via 
pharmacologic agents or gene-silencing approaches that knock 
down expression of adenosine receptors on either endogenous or 
exogenous DC might improve the antitumor immunogenicity of 
these cells. Alternatively, strategies that interfere with the CD73 
ectonucleotidase on melanoma cells have already been shown to 
improve antitumor immunity in preclinical models (169, 181), 
and this outcome is likely due to a reduction in the immunoregu-
latory effects of adenosine on multiple immune cell populations, 
including DC.
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In addition to overcoming the suppressive effects of extracellu-
lar metabolites on DC in the tumor microenvironment, maneuvers 
that interfere with the metabolism of macromolecules in mela-
noma cells and/or DC may also restore metabolic and immune 
function in tumor-associated DC. Pharmacologic regulation of 
lipid levels in DC using an inhibitor of acetyl-CoA carboxylase 
that blocks fatty acid synthesis improved the antitumor efficacy of 
a peptide vaccine against B16-F10 melanoma (165). It is also pos-
sible to regulate lipid levels in DC by targeting the MSR1 scavenger 
receptor that promotes lipid uptake or the IRE1α/XBP1 pathway 
that triggers triglyceride synthesis in tumor-associated DC. To 
this point, immunization of tumor-bearing mice with MSR1 
gene-silenced BMDC improved vaccine-induced CD8+ T  cell 
responses against multiple melanoma antigens and enhanced 
immunologic control of established B16 melanomas in both sub-
cutaneous and lung metastasis models (182). Likewise, targeted 
delivery of nanoparticles encapsulating siRNA has been used to 
silence in tumor-associated DC the expression of either XBP1 or 
the IRE1α endoribonuclease that cleaves Xbp1 mRNA into a form 
that encodes functional protein during ER stress. In a murine 
model of ovarian cancer, this approach reduced triglyceride lev-
els in tumor-associated DC, augmented the activation of tumor 
Ag-specific T  cells, and improved tumor immune control and 
overall survival of tumor-bearing mice (168). As triglycerides are 
also known to accumulate in dysfunctional melanoma-associated 
DC (165), silencing of IRE1α or XBP1 expression in these cells 
might also improve DC-mediated immune responses against 
this cancer in certain contexts. It is worth noting, however, that 
overexpression of XBP1 in BMDC actually improves DC survival, 
activation, and T cell stimulatory capacity, leading to enhanced 
immune control of established B16 melanoma following vac-
cination (183). Additionally, in an inducible BRAFV600E/PTEN-
driven melanoma model, a DNA vaccine that promotes XBP1 
expression in endogenous DC conferred CD8+ T cell-mediated 
immune control of small established tumors (184). While tumor 
microenvironment-specific differences in these ovarian cancer 
and melanoma models may explain differences in the impact of 
XBP1 on DC function, it is also possible that these discrepancies 
are due to differences in the particular DC under study, including 
the endogenous/exogenous nature of these cells and the extent of 
ER stress in the DC in which XBP1 is active. It is interesting to 
speculate that in DC which have not previously been exposed to 
the hostile tumor microenvironment (i.e., exogenous BMDC) or 
which are found in the context of early stage tumors and have not 
yet accumulated the types of fatty acids associated with immune 
dysfunction, XBP1 promotes DC immunogenicity by protecting 
these cells against ER stress as they increase protein synthesis dur-
ing their activation. On the other hand, in endogenous DC that 
have incorporated significant polyunsaturated fatty acids within 
the microenvironment of late-stage tumors, XBP1 activation may 
lead to the generation of oxidized triglycerides that impair DC 
function. Future studies will be necessary to test this hypothesis 
and define the parameters under which XBP1 activation versus 
inactivation in DC is appropriate for optimizing the antitumor 
activity of these cells.

Finally, glycolytic metabolism in both melanoma cells and 
DC can be targeted to enhance the immunostimulatory capacity 

of DC. Recent studies have demonstrated that silencing of the 
GLUT1 glucose transporter or the CD147 gene product that 
regulates its expression in melanoma cell lines impairs the 
growth and metastasis of transplanted tumors (185, 186). In 
addition to having direct antitumor effects, interfering with gly-
colysis in melanoma cells may have pro-immune consequences 
as well, resulting in enhanced DC-mediated antitumor immune 
responses by increasing glucose availability and decreasing lactic 
acid concentration in the tumor microenvironment. Therefore, 
targeting glucose transporters and other enzymes (such as 
LDHA) that are involved in glycolytic metabolism in melanoma 
cells is a potentially attractive therapeutic option for the treat-
ment of melanoma. While selective targeting of such therapies 
specifically to tumor cells might be difficult for some cancer 
types and could lead to compromised function of DC and other 
immune cell populations that also rely on glycolysis for induction 
and maintenance of an activated phenotype, the identification of 
tissue-specific genes in melanoma (such as those involved in the 
melanin deposition pathway) opens up the possibility of DNA-
based therapies in which siRNA/shRNA expression is driven off 
of tissue-specific promoters active only in melanoma cells. Such a 
strategy would overcome issues with selective delivery of siRNA/
shRNA to tumor cells and instead would rely on selective activa­
tion of a gene-silencing therapeutic specifically in melanoma cells. 
Alternatively, it is also possible to minimize the reliance of DC on 
glycolysis as the sole bioenergetic mode of metabolism during 
activation. Although signaling through mTOR is associated with 
a metabolic switch to aerobic glycolysis during DC activation as 
described above, this switch results less from a preference for 
glycolytic metabolism and more from a requirement for glyco-
lysis as a means of generating ATP in the face of mitochondrial 
suppression by reactive oxygen species. Interestingly, it has been 
reported that inhibition of mTOR in DC does not preclude 
ATP synthesis in these cells and instead extends the lifespan of 
activated DC by reducing reactive oxygen species and preserving 
mitochondrial function, thus allowing flexibility in the metabolic 
pathways utilized by DC for bioenergetic purposes (187). Indeed, 
multiple groups have shown that interfering with mTOR function 
in BMDC enhances vaccine-induced CD8+ T cell responses and 
immunologic control of established B16 melanomas (188, 189). 
Together, these data highlight how metabolic interventions may 
shift the profile of tumor-associated DC from tolerogenic to 
immunogenic, and they suggest great promise for metabolism-
based therapies, either alone or in combination with immuno-
therapies, in the treatment of melanoma.

MODULATiNG THe MiCROBiOMe TO 
AUGMeNT DC-MeDiATeD ANTiTUMOR 
iMMUNiTY

Gut Microbiome influences on Natural 
Antitumor immunity to Melanoma
As data have emerged demonstrating that the microbiota and 
dysbiosis play significant roles in both cancer progression and 
the efficacy of anticancer therapies (190), there has been consid-
erable interest in understanding how the microbiome regulates 
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the quality of antitumor immune responses. In the context of 
melanoma, altering the composition of the gut microbiota has 
been shown to impact both natural and therapy-associated 
antitumor immunity, and in many cases, regulation of these 
responses has been associated with microbial influences on DC 
activation. Antibiotic treatment with a mixture of ampicillin, 
vancomycin, and neomycin sulfate (which leads to a decreased 
frequency of gut bacteria belonging to the Bacteroidetes phylum 
and an increased frequency of gut bacteria belonging to the 
Firmicutes phylum) prior to B16-F10 challenge enhances tumor 
outgrowth and is associated with defects in natural antitumor 
immunity that include a decrease in the frequency of DC among 
tumor-infiltrating leukocytes and a reduced expression of genes 
associated with DC maturation and immune activation within 
tumor tissue (191). Addition of metronidazole to the aforemen-
tioned cocktail of antibiotics yields a different type of gut dysbio-
sis in treated mice (decreased frequency of both Firmicutes and 
Bacteroidetes phyla members and increased frequency of mem-
bers of the Proteobacteria phylum), and this alteration also leads 
to impaired immune control of B16-F10 lung metastases (192). 
This latter effect results from an antibiotic-associated decrease 
in IL-17+ γδT  cells in the lungs of treated mice. Although the 
mechanism by which microbial dysbiosis influences γδT  cell 
function remains to be elucidated in this model, the authors 
speculated that a lack of DC stimulation by PAMPs in antibiotic-
treated mice could contribute to the observed decrease in gene 
expression in the lungs of IL-6 and IL-23, cytokines known to 
activate IL-17 production by γδT cells.

Gut Microbiome influences on Therapy-
Associated immunity to Melanoma
The first study to report microbial influences on the outcome of 
immune therapy for cancer demonstrated that the therapeutic 
benefit of total body irradiation prior to adoptive T cell transfer 
arises in part from activation of the innate immune system fol-
lowing radiation-induced damage to the GI tract and subsequent 
translocation of gut microbiota (Enterobacter cloacae, Escherichia 
coli, Lactobacillus, and Bifidobacterium) to mesenteric lymph 
nodes (193). In addition to mobilizing the gut microbiome, total 
body irradiation also led to elevated serum LPS levels and an 
increase in the absolute number of CD86hi DC in the spleen and 
lymph nodes, which in turn correlated with enhanced activa-
tion of adoptively transferred gp100-specific CD8+ T  cells and 
improved control of established B16-F10 tumors. Interestingly, 
when mice were administered the broad-spectrum antibiotic 
ciprofloxacin beginning two days prior to irradiation, microbial 
translocation to lymph nodes was not observed, nor was any 
elevation in serum LPS levels. Likewise, the immunologic and 
antitumor benefits of DC and CD8+ T cell activation were also 
abrogated following ciprofloxacin depletion of gut microbiota. 
Additional experiments with the LPS-blocking antibiotic poly-
myxin B as well as TLR4−/− mice revealed that the therapeutic 
effect of gut microbiota translocation following total body 
irradiation resulted from LPS stimulation of innate immune 
cells that support the activation of adoptively transferred CD8+ 
T cells. In related work, Iida et al. showed that treating mice with 

a cocktail of antibiotics (vancomycin, imipenem, and neomycin) 
abrogated the antitumor effects of combination immunotherapy 
with anti-IL-10 receptor antibody and intratumoral CpG-
oligodeoxynucleotides (ODN) in B16-F10 tumor-bearing mice 
(194). Though the mechanistic basis for these findings was not 
further studied in the B16 melanoma model, the authors reported 
analogous findings in the MC38 colon adenocarcinoma model, 
where antibiotic treatment decreased both the frequency of TNF-
producing tumor-infiltrating DC (and other leukocytes) as well as 
CD86 expression and IL-12p40 production by tumor-associated 
DC. Similar results were also observed following combination 
immunotherapy of germ-free MC38-bearing mice, suggesting 
that commensal microbes are necessary to prime DC and other 
myeloid cell populations for inflammatory cytokine production 
in response to this immune therapy.

More recently, the microbiome has been shown to influence 
DC function and antitumor immunity in the context of check-
point blockade therapies for melanoma as well. In the B16-SIY 
melanoma model, the success of α-PD-L1 Ab therapy was 
shown to rely on the presence within the intestinal microbiota 
of Bifidobacterium species that enhance the antitumor effects of 
therapy (195). Specifically, the presence of natural Bifidobacterium 
species in C57Bl/6 mice from The Jackson Laboratory (JAX) or 
the introduction of Bifidobacterium species by oral gavage into 
C57Bl/6 mice from Taconic (TAC), which do not naturally harbor 
these bacteria, correlated with tumor-specific CD8+ T cell respon-
siveness to α-PD-L1 Ab therapy and tumor control. Of note, the 
presence of intestinal Bifidobacterium species in these mice was 
also associated with an increase in the frequency of intratumoral 
DC expressing high levels of MHC class II, and genome-wide tran-
scriptional profiling of these cells revealed elevated expression of 
several genes known to play roles in DC maturation, Ag process-
ing and presentation, costimulation, and chemokine-mediated 
recruitment of immune effectors. Moreover, DC isolated from 
lymphoid tissues of JAX mice and Bifidobacterium-fed TAC mice 
induced higher levels of IFNγ production by CD8+ T cells than 
did DC from untreated TAC mice that had not been exposed to 
Bifidobacterium species. In other work investigating microbial 
influences on checkpoint blockade therapy, pretreatment of mice 
with a cocktail of broad-spectrum antibiotics blocked the efficacy 
of α-CTLA-4 Ab therapy for established Ret murine melanomas 
(196). Interestingly, in mice not treated with antibiotics, CTLA-4 
blockade promoted T  cell-mediated destruction of intestinal 
epithelial cells and was associated in general with a decrease 
in Bacteroidales and Burkholderiales member species and an 
increase in Clostridiales member species in the feces, suggesting 
that induction of immunity to members of the Bacteroidales 
and Burkholderiales orders may be linked to the induction of 
antitumor T cell responses. In this regard, antibiotic-treated or 
germ-free mice that otherwise failed to exhibit any antitumor 
effects following α-CTLA Ab therapy were able to control 
tumors when fed with Bacteroides thetaiotaomicron, Bacteroides 
fragilis, Burkholderia cepacia, or a combination of B. fragilis and 
B. cepacia shortly after therapy, and this response was associated 
with enhanced maturation of intratumoral DC and TH1 immune 
responses in tumor-draining lymph nodes. Moreover, fecal 
transplantation studies in which feces from ipilimumab-treated 
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metastatic melanoma patients clustered by stool microbial com-
position were transferred to germ-free mice two weeks prior to 
tumor challenge and α-CTLA-4 Ab therapy supported a role for 
Bacteroides species in promoting responsiveness to therapy. In 
these studies, feces from only one cluster of melanoma patients 
promoted colonization of immunogenic B. thetaiotaomicron 
and B. fragilis in mice, and these animals were the only fecal 
transplant recipients to mount effective antitumor responses 
following α-CTLA-4 Ab treatment. While these data suggest that 
the presence of commensal Bacteroides species in the gut may be a 
useful prognostic indicator for identifying patients most likely to 
benefit from checkpoint blockade therapy, it should be noted that 
confounding data on the influence of Bacteroides species on ther-
apeutic efficacy in metastatic melanoma patients have emerged 
from recent clinical studies. Indeed, in a prospective study of 
metastatic melanoma patients receiving ipilimumab therapy, a 
high proportion of baseline gut Bacteroides actually correlated 

with poor clinical benefit, whereas long-term benefit (progres-
sion-free and overall survival) was associated with enrichment of 
Faecalibacterium species and other Firmicutes phylum members 
(unclassified Ruminococcaceae, Clostridium XIVa, and Blautia) 
(197). Similarly, Bacteroidales family members were found to be 
enriched in the gut microbiome of metastatic melanoma patients 
classified as non-responders to α-PD-1 therapy, while responders 
were found to exhibit greater microbial diversity in the gut and 
enrichment of members belonging to the Clostridiales order 
(198). It is possible that the differences reported in these clinical 
studies versus the study by Vetizou et al. (196) are due either to 
species-specific differences between mouse and man or to biased 
reconstitution of gut microbiota following fecal transplantation 
from humans to mice. However, it is worth noting that another 
clinical study comparing the baseline gut microbiota of responders 
versus non-responders to various checkpoint blockade regimens 
reported data from melanoma patients similar to that described 

FiGURe 4 | Multifactorial influences on the function of melanoma-associated dendritic cells (DC). A variety of complex factors contribute to the immunoregulation of 
DC in the context of melanoma. Elements that control the immunogenicity of tumor cell death, the balance of immunostimulatory versus immunosuppressive signals 
in the tumor microenvironment, metabolic influences on DC function, and the microbiome all interact to dictate the immune stimulatory capacity of melanoma-
associated DC. Mechanistic insights into each of these layers of DC immune regulation provide opportunities for therapeutic interventions to enhance the 
immunogenicity and antitumor function of melanoma-associated DC as described in more detail in the text.
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by Vetizou et al.—that is, that enrichment of Bacteroides species 
correlated positively with patient response to therapy (199). 
In this most recent study, gut microbiome diversity was not 
significantly different in responders versus non-responders, but 
metagenomic shotgun sequencing analysis of pretreatment fecal 
samples identified enrichment of particular species in respond-
ing patients that was unique for each therapeutic regimen under 
study. When comparing responders versus non-responders to 
all checkpoint blockade regimens under study, both Bacteroides 
caccae and Streptococcus parasanguinis were enriched in the gut 
microbiomes of responders. When analyzing patients respond-
ing to ipilimumab/nivolumab combination therapy, Firmicutes 
phylum members (Faecalibacterium prausnitzii and Holdemania 
filiformis) and the Bacteroidetes phylum member B. thetaiotaomi­
cron were enriched in responders. Finally, the Firmicutes phylum 
member Dorea formicigenerans was enriched in responders to 
therapy with pembrolizumab. Based on these collective data, 
it is clear that additional studies with larger cohorts of patients 
are necessary to resolve these early discrepant findings and 
determine how particular gut microbiota regulate both natural 
antitumor immune responses as well as responsiveness to various 
tumor immunotherapies. Additionally, as evidence is accumulat-
ing that the gut microbiome also influences immunometabolism 
(200) as well as the metabolism and antitumor activity of chemo-
therapeutic drugs (201), future studies are needed to investigate 
how particular microbial species and their metabolites regulate 
chemotherapy-driven ICD and the function of DC and other 
immune cell populations in the context of melanoma. Together, 
these insights will be important for the optimization of strategies 
to manipulate the gut microbiome in ways that enhance antitumor 
immune reactivity while also minimizing adverse events such as 
therapy-associated colitis (202).

The Role of the Skin Microbiome in 
immunity to Melanoma?
While a number of studies have been initiated to gain insights 
into the gut microbiome’s influence on the progression of mela-
noma and other cancers, little is currently known about how the 
skin microbiome might impact immunologic protection from 
either the development of primary melanomas or the recurrence 
of melanoma in the skin or surrounding/distant tissues. To date, 
only one study has compared the skin microbiome of cutane-
ous melanomas and benign melanocytic nevi (203). While the 
cutaneous microbial diversity of melanomas was found to be 
slightly lower than that of melanocytic nevi, these differences did 
not reach statistical significance, and no differences were found 
in the relative abundance of bacterial genera between patients 
from these groups. However, the limited sample size of this study 
(15 cutaneous melanoma cases versus 17 melanocytic nevi cases) 
precludes any strong conclusions that the skin microbiome has no 
impact on melanoma progression or anti-melanoma immunity 
in the skin. With regard to microbial influences on cutaneous 
immunity, others have reported associations between the skin 
microbiome and patient susceptibility to inflammatory skin 
conditions such as atopic dermatitis (204), and dysbiosis of the 
skin microflora has recently been linked to autoimmune vitiligo 

as well (205, 206). As vitiligo results from immune-mediated 
destruction of melanocytes, microbial species that influence 
this process may be of particular relevance to melanoma. In this 
light, a recent study comparing bacterial communities in lesional 
versus non-lesional skin of vitiligo patients revealed a decrease in 
microbial diversity in vitiliginous lesions, and intra-community 
network analyses showed that Actinobacterial species predomi-
nate the microbial interaction network of non-lesional skin, while 
members of the Firmicutes phylum exhibit the highest degree of 
interactions in lesional skin (205). Future studies will be necessary 
to determine the cause–effect relationship of these alterations in 
cutaneous microbial communities during cases of vitiligo and 
whether such alterations might also impact immune reactivity 
against melanoma cells. Answers to these questions and others 
that address how the cutaneous microbiota might influence the 
maturation/activation of Langerhans cells and other skin-resident 
DC populations may suggest microbial interventions that support 
the promotion of robust, DC-mediated anti-melanoma immune 
responses. Coupled with an improved understanding of the gut 
microbiome’s influence on DC-mediated immune responses 
against melanoma, these findings may identify appropriate 
dietary modifications, prebiotic/probiotic supplements, antibi-
otic regimens, and/or fecal transplantation strategies that can be 
implemented to support DC-based and other immune therapies 
for the treatment of melanoma.

CONCLUSiON AND FUTURe DiReCTiONS

As highlighted throughout this review, DC function at the center 
of antitumor immunity and play major roles in determining 
immune activation versus tolerance against cancer. Regulation 
of immunity to melanoma by DC is controlled by a variety of 
intrinsic and extrinsic factors, and it is the collective interplay 
between these factors that ultimately shape the quality of 
DC-mediated antitumor immune responses (Figure 4). Advances 
in our understanding of the ways in which DC function is influ-
enced by ICD, immunosuppressive networks within the tumor 
microenvironment, tumor-altered immunometabolism, and 
the microbiome have provided crucial insights into the immu-
noregulation of tumor-associated DC, and these insights have 
informed novel strategies for improving the immunogenicity of 
DC in the context of melanoma and other cancers. Some of these 
strategies have already reached patients and have improved the 
immunologic control of melanoma, and many others have shown 
great promise in murine models and in preclinical settings. It 
will therefore be exciting to follow the translation of these and 
related strategies for enhancing the immunostimulatory function 
of melanoma-associated DC into the clinic in the future. As we 
continue to build on these findings, the challenge going forward 
will be to dissect the complex interplay between the regulatory 
mechanisms discussed herein and discern how these diverse 
factors act in concert to control DC function. In this regard, in 
what ways does the microbiome impact the induction of ICD 
in melanoma cells? Can particular microbes provide metabolic 
support for DC by removing toxic byproducts from the tumor 
microenvironment, and how do microbe-derived metabolites 
themselves contribute to the metabolic milieu and its influence 
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