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A generalized isogeometric
boundary element method for the
uncertain analysis of infinite
domain two-dimensional acoustic
problems

Yan Yang1,2, Ruijin Huo3,4*, Xiaohui Yuan3 and Wenbo Wu5

1College of Architectural and Civil Engineering, Huanghuai University, Zhumadian, China, 2Henan
International Joint Laboratory of Structural Mechanics and Computational Simulation, Huanghuai
University, Zhumadian, China, 3College of Architecture and Civil Engineering, Xinyang Normal University,
Xinyang, China, 4Henan Unsaturated Soil and Special Soil Engineering Technology Research Center,
Xinyang Normal University, Xinyang, China, 5School of Mechanical and Electric Engineering, Guangzhou
University, Guangzhou, China

The key aim of this paper is to provide a new nth generalized order perturbed
isogeometric fast multistage technique of boundary elements to compute the
propagation of time harmonics in an infinite region. Structural geometry and
boundary integral equations are constructed by using non-uniform rational
B-splines. The source of system uncertainty is believed to be the incident
plane wave number’s unpredictability. The actual field, depending on the input
random variables, is simulated using the extended nth-order perturbation
method. The field and kernel values for boundary integral formulas are
generated via the nth-order generalized series of Taylor expansions using
perturbation parameters. The fast multipole method (FMM) is utilized to speed
up the process. The effectiveness and correctness of the proposed algorithm are
verified by Monte Carlo simulations (MCs) with numerical examples.

KEYWORDS

uncertainty analysis, isogeometric boundary element method, perturbation method,
Helmholtz formula, finite difference method

1 Introduction

Numerous areas are affected practically by wave propagation in an unlimited domain
[1–8]. Although a lot of efforts have been put into modeling this issue, it focuses on
deterministic systems. The parameters obtained from laboratory experiments and
measurements are essentially random. In order to take into account the influence of
these uncertainties on the system response, it is advisable to incorporate some
uncertainty analysis techniques into various theoretical and computational
methodologies, such as Monte Carlo simulation (MCs) [9–11], the stochastic spectrum
methods [12, 13], and the perturbation technique [14–18]. Among them, MCs is the most
common and simplest method, but its accuracy is largely based on the quantity of samples,
resulting in high-level computational costs [19–21]. Therefore, MCs is often used as a
reference solution to validate other probabilistic methods [22–24]. The stochastic spectrum
method is more efficient and takes advantage of generality, but it is still difficult to apply to
large-scale problems. Perturbation is the most effective method, but it is mainly limited to
linear problems.
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Because numerical analysis frequently uses the finite element
method (FEM), stochastic analysis with FEM is extensively
studied. For example, spectral stochastic FEM is investigated by
[12]. The stochastic FEM with the perturbation method is
presented in [14–17]. Kamiński puts forward the generalized
second-order and nth-order stochastic perturbation techniques
[25, 26], which provide results with high computational accuracy.
A smoothed finite element approach based on generalized

perturbation for stochastic analysis is proposed in [22] to
effectively maintain accuracy and withstand mesh distortion,
especially in irregular mesh.

Despite its versatility, the finite element method is not easy to
use when simulating wave scattering in unbounded media. A
significant issue arises because the unbounded domain must be
truncated into a sizable bounded domain enclosed by an artificial
border using the finite element method. In addition, there are

FIGURE 1
Curve of the amplitude of the field function of an infinite cylinder with a wave number k: (A) first-order, (B) second-order, (C) third-order, (D) fourth-
order, (E) fifth-order, and (F) sixth-order derivatives.

TABLE 1 Relative errors εerr in first- and second-order derivatives of the field function of an infinite cylinder.

Wave number First-order derivative Second-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.06243 0.00650 0.00065 0.05555 0.00577 0.00058

0.4 0.03560 0.00367 0.00037 0.03297 0.00339 0.00034

0.6 0.01883 0.00193 0.00019 0.01641 0.00168 0.00017

0.8 0.00906 0.00092 0.00009 0.00632 0.00065 0.00006

1.0 0.00528 0.00053 0.00005 0.00312 0.00031 0.00003

1.2 0.00533 0.00053 0.00005 0.00466 0.00046 0.00005

1.4 0.00587 0.00059 0.00006 0.00620 0.00062 0.00006

1.6 0.00498 0.00050 0.00005 0.00507 0.00051 0.00005

1.8 0.00360 0.00036 0.00004 0.00322 0.00033 0.00003
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specific methods that must be used to estimate the boundary
conditions at infinity. In contrast, known alternatively as the
method of moments (MOM) in electromagnetic fields [27, 28],
the boundary element method (BEM) is preferred for infinite
domain problems [29–34]. Boundary element method has
advantages such as reduced dimensionality calculation, and
boundary element method only discretizes the surface of the
structure and naturally satisfies the boundary conditions at
infinity. The creation of an asymmetrical, thick coefficient matrix,
resulting in higher memory needs and processing complexity, is a
common drawback of the boundary element approach. Some fast-
solving algorithms are proposed, such as the fast direct solution

method [35], adaptive cross approximation method [36], and fast
multipole method (FMM) [37]. Another unavoidable disadvantage
of the boundary element method is the need to precisely calculate
the singular integral. The singularity subtraction technique is
successfully utilized to remove the boundary integrals’
singularity [38].

Isogeometric analysis (IGA), first suggested by Hughes and
others [39], has developed into a key numerical approach in
recent years. In traditional numerical analysis, grids must be
constructed using computer-aided design (CAD), which is time-
consuming and necessitates a sizable amount of human
involvement. The basis functions that have given rise to CAD are

TABLE 2 Relative errors εerr in third- and fourth-order derivatives of the field function of an infinite cylinder.

Wave number Third-order derivative Fourth-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.05188 0.00539 0.00054 0.04482 0.00462 0.00046

0.4 0.02973 0.00306 0.00031 0.02651 0.00272 0.00027

0.6 0.01311 0.00135 0.00014 0.00917 0.00096 0.00010

0.8 0.00261 0.00028 0.00003 0.00213 0.00020 0.00002

1.0 0.00015 0.00001 0.00000 0.00393 0.00040 0.00004

1.2 0.00395 0.00039 0.00004 0.00338 0.00032 0.00003

1.4 0.00696 0.00070 0.00007 0.00848 0.00085 0.00008

1.6 0.00526 0.00053 0.00005 0.00553 0.00056 0.00006

1.8 0.00266 0.00027 0.00003 0.00178 0.00018 0.00002

FIGURE 2
Infinite cylindrical field function derivative distribution cloud: (A) first-order, (B) second-order, (C) third-order, (D) fourth-order, (E) fifth-order, and
(F) sixth-order derivatives.
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used by IGA to solve systems of partial differential equations, such as
PHT-splines, which are hierarchy T-meshes over quadratic splines
[40], and non-uniform rational B-splines (NURBS) [41, 42]. IGA
eliminates the need for gridding while maintaining geometric
precision. IGA has been widely employed in numerous domains,
including uncertainty analysis, since its beginnings. A nth-order
generalized perturbation isometric approach that is a steady-state
heat transfer analysis simulation with material uncertainties was
created by Rojas et al. [43]. Ding et al. [24] studied the nth-order
perturbation method based on IGA to simulate the geometric
uncertainty of shell structure. Cao et al. [44] used uncertainty
analysis to solve the equi-geometric bi-reciprocal finite element
for non-Fourier transient heat transfer problems. Chen et al. [45,
46] proposed an effective deep learning method based on IGA

samples for the quantification of multivariable uncertainty issues
with the interplay of vibration and sound. IGA was first put forth in
relation to finite element methods before being expanded to
boundary element method [47]. Boundary units and CAD are
compatible since they both employ boundary notation. The
boundary element also satisfies the boundary criteria at infinity,
making it highly accurate and efficient for modeling the spread of
waves across infinite domains, such as the sound [27] and
electromagnetic field [48].

The generalized nth-order perturbation based on the isogeometric
boundary element method (IGABEM) is proposed to assess the
uncertainty of the propagation of time harmonics in an infinite
region. The fact that the coefficient matrix in the boundary
element system is an asymmetric complete matrix, which raises
computing complexity and storage needs, is a characteristic
drawback of the boundary element system. Therefore, we avoid
directly calculating the coefficient matrix in the equation of
boundary integrals of components of the nth order; instead, we
apply the fast multipole method suggested in [37] to quicken the
computation of multiplication of vectors in matrices. As a result,
uncertainty analysis using isogeometric boundary elements is more
effective. This increases how well uncertainty analysis works based on
isogeometric border elements. Another disadvantage of the boundary
element is the existence of singular integrals in the equation, which
requires careful calculation. In order to address this issue, the
singularity of the boundary integral is generally eliminated using
the singular subtraction approach suggested in [38].

The remainder of this paper is organized as follows: a technique
of extending nth order perturbation is introduced in Section 2 that

TABLE 3 Expectation of the field function of an infinite cylinder with different
coefficients of variation.

Order Coefficient of variation (γ)

0.05 0.07 0.09 0.11 0.13 0.15

2 0.19735 0.22034 0.25100 0.28932 0.33531 0.38897

4 0.19903 0.22681 0.26868 0.32879 0.41229 0.52542

6 0.19911 0.22740 0.27133 0.33759 0.43629 0.58204

8 0.19911 0.22744 0.27163 0.33909 0.44198 0.59991

10 0.19911 0.22744 0.27167 0.33939 0.44358 0.60661

MCSs 0.19911 0.22744 0.27167 0.33939 0.44358 0.60661

FIGURE 3
Curve of the standard deviation of the field function with derivatives for an infinite cylinder: (A) γ = 0.05, (B) γ = 0.07, (C) γ = 0.09, (D) γ = 0.11, (E) γ =
0.13, and (F) γ = 0.15.
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employs equations for boundary integrals using random coefficients
from the Taylor series. The equal geometric boundary element
approach is described in Section 3. Section 4 provides three
numerical instances that might be used to verify the suggested
uncertainty analysis technique, followed by the conclusions in
Section 5.

2 2D acoustic scattering using an
isogeometric BEM based on
perturbation method

Consider a two-dimensional domain enclosed by a boundary Γ.
The symbolΩ represents the limitless domain outside the structural
surface. WithinΩ, the medium is a uniform ideal fluid. So the sound
pressure satisfies the following wave equation:

∇2P m, t( ) − 1
c2f

∂2P m, t( )
∂t2

� 0,∀m ∈ Ω, (1)

where ∇2 represents the Laplacian operator, P(m, t) represents the
sound pressure at point m in the middle of the sound field at time t,
and c2f represents the wave velocity. The sound pressure is
expressed as

P m, t( ) � p m( )e−iωt, (2)
where p(m) represents the sound pressure value independent of
time, i � ���−1√

represents an imaginary number, 2πf represents the
circular frequency, and e−iωt represents the time-dependent terms.
Then, the Helmholtz governing differential equation based on the
sound pressure is obtained as follows:

∇2p m( ) + k2p m( ) � 0,∀m ∈ Ω, (3)

FIGURE 4
The apical shape is a cross-sectional view of the upright and
T-shaped acoustic barriers.

FIGURE 5
Curve plot of the amplitude of the rectangular field function oscillations as a function of the wave number k: (A) first-order, (B) second-order, (C)
third-order, (D) fourth-order, (E) fifth-order, and (F) sixth-order derivatives.
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where k � ω
��ϵμ√

denotes the wave number of the medium Ω. The
boundary integral formula of the scalar Helmholtz formula can be
obtained as

c m( )p m; k( ) + ∫
Γ
R m, y; k( )p y; k( )dΓ y( )

� ∫
Γ
G m, y; k( )q y; k( )dΓ y( ) + pinc m; k( ). (4)

If the source point is represented by m and the field point is
represented by y, the coefficient c(m) is determined by the
geometric features at point m. c(m) equals 1/2 when the
boundary is smooth at m. The symbol ∫ in Eq. 4 represents the
integral in the sense of Cauchy principal value. It implies that the
integral does not include the case where m = y. q(y; k) � ∂p(y;k)

∂n(y)
represents the acoustic flux, and pinc(m; k) is the sound pressure
present at location m of the incident wave. The Green functions in
media are defined as G(m, y; k) and are expressed as

G m, y; k( ) � i
4
H 1( )

0 kr( ), (5)

where Hn
(1) is the first kind of the nth-order Hankel function and

r = ‖m − y‖ is the Euclidean distance between the source location
and the field point. R(m, y; k), representing the variations of the
Green’s functions G(m, y; k) with regard to the standard n(y), is
given by

R m, y; k( ) � ∂G m, y; k( )
∂n y( ) � −ik

4
H 1( )

1 kr( ) r[ ] · n̂ y( )
r

. (6)

It is important to note that the non-uniqueness issue arises when
solving outer boundary-value issues using Eq. 4. This issue may be
solved using the Burton–Miller formulation [49, 50]; it is derived by
combining Eq. 4 with its standard derivation while considering the
outside standard at the location specified in Eq. 4. This secondary
formulation is written as

c m( )q m; k( ) + ∫
Γ

∂R m, y; k( )
∂n m( ) p y; k( )dΓ y( )

� ∫
Γ

∂G m, y; k( )
∂n m( ) q y; k( )dΓ y( ) + ∂pinc m; k( )

∂n m( ) , (7)

TABLE 4 Relative errors εerr of the first- and second-order derivatives of the rectangular field function.

Wave number First-order derivative Second-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.06702 0.00649 0.00065 0.02994 0.00282 0.00028

0.4 0.05976 0.00632 0.00064 0.03453 0.00359 0.00036

0.6 0.00376 0.00049 0.00005 0.01789 0.00158 0.00016

0.8 0.03049 0.00324 0.00033 0.31533 0.04217 0.00436

1.0 0.04514 0.00473 0.00048 0.03853 0.00407 0.00041

1.2 0.00351 0.00043 0.00004 0.01186 0.00107 0.00011

1.4 0.02602 0.00251 0.00025 0.05911 0.00569 0.00057

1.6 0.07236 0.00691 0.00069 0.04941 0.00476 0.00047

1.8 0.04845 0.00512 0.00052 0.07659 0.00809 0.00081

TABLE 5 Relative errors εerr of the third- and fourth-order derivatives of the rectangular field function.

Wave number Third-order derivative Fourth-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.05134 0.00527 0.00053 0.04413 0.00460 0.00046

0.4 0.02880 0.00297 0.00030 0.04405 0.00444 0.00044

0.6 0.01015 0.00104 0.00010 0.04222 0.00436 0.00044

0.8 0.03797 0.00377 0.00038 0.01865 0.00192 0.00019

1.0 0.02573 0.00269 0.00027 0.00963 0.00097 0.00010

1.2 0.01860 0.00173 0.00017 0.00983 0.00098 0.00010

1.4 0.05031 0.00503 0.00050 0.00214 0.00014 0.00001

1.6 0.01398 0.00132 0.00013 0.04818 0.00464 0.00046

1.8 0.05969 0.00585 0.00058 0.01217 0.00092 0.00009

Frontiers in Physics frontiersin.org06

Yang et al. 10.3389/fphy.2023.1325930

10

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1325930


where

∂G m, y; k( )
∂n m( ) � −ik

4
H 1( )

1 kr( ) r[ ] · n̂ m( )
r

,

∂R m, y; k( )
∂n m( ) � ik

4r
H 1( )

1 kr( ) n̂ m( ) · n̂ y( )[ ]−
ik2

4
H 1( )

2 kr( ) r · n̂ m( )[ ] r · n̂ y( )[ ]
r2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

The linear mixture formulas of Eqs 4, 7 are generated as

c m( ) p m; k( ) + αq m; k( )( )
+ ∫

Γ
R m, y; k( ) + α

∂R m, y; k( )
∂n m( )[ ]p y; k( )dΓ y( )

� ∫
Γ
G m, y; k( ) + α

∂G m, y; k( )
∂n m( )[ ]q y; k( )dΓ y( ) + qinc m; k( ),

(9)
where qinc(m; k) � pinc(m; k) + α ∂pinc(m;k)

∂n(m) . Its coupling coefficient
α = i/k for kP1, and α = i for k < 1.

2.1 nth-order generalized perturbation

In thiswork, thewave number k is used as a random input parameter.
Given the unpredictability of this input parameter k, every variable and
functions of state are extended using a Taylor series to approximate to
their expected values. This is done by expanding the Taylor series
around the point k0, which serves as the expected value of k. The
expansion of p, q, G, and R functions with Δk = k − k0 can be written as

p k( ) � p k0( ) + εp 1( ) k0( )Δk + 1
2
ε2p 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnp n( ) k0( ) Δk[ ]n,

q k( ) � q k0( ) + εq 1( ) k0( )Δk + 1
2
ε2q 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnq n( ) k0( ) Δk[ ]n,

G k( ) � G k0( ) + εG 1( ) k0( )Δk + 1
2
ε2G 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnG n( ) k0( ) Δk[ ]n,

R k( ) � R k0( ) + εR 1( ) k0( )Δk + 1
2
ε2R 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnR n( ) k0( ) Δk[ ]n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

FIGURE 6
Rectangular field function derivative distribution cloud image: (A) first-order, (B) second-order, (C) third-order, (D) fourth-order, (E) fifth-order, and
(F) sixth-order derivatives.

TABLE 6 Expectation of the rectangular field function with different
coefficients of variation.

Order Coefficient of variation (γ)

0.05 0.07 0.09 0.11 0.13 0.15

2 2.51572 2.72498 3.00399 3.35274 3.77126 3.89473

4 2.61297 3.09856 4.02484 5.63080 5.85923 5.87458

6 2.64064 3.30692 4.96601 5.92546 6.43758 6.58376

8 2.64658 3.31456 4.96826 5.92549 6.48424 6.58479

10 2.66128 3.31625 3.31625 5.92634 6.51458 6.58342

MCs 2.66128 3.31625 3.31625 5.92634 6.51458 6.58342
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The derivation of the boundary integral in Eq. 9 involves a nth-
order expansion, which is written as

c m( ) p n( ) m( ) + αq̂ n( ) m( )[ ]
� ∑n

s�0

n

s
( )∫

Γ
G s( ) m, y( )q̂ n−s( ) y( ) − R s( ) m, y( )p n−s( ) y( )[ ]dΓ y( )

+ α∑n
s�0

n

s
( )∫

Γ

∂G s( ) m, y( )
∂n m( ) q̂ n−s( ) y( ) − ∂R s( ) m, y( )

∂n m( ) p n−s( ) y( )[ ]dΓ y( )
+ p̂ n( )

inc m( ).
(11)

To obtain a clear and simple expression corresponding to the
sth-order derivative of the kernel function, as given in Eq. 11, we
must first compute the product of the Hankel function. The Hankel
function exhibits the following recursive feature:

dH 1( )
n z( )
dz

� n

z
H 1( )

n z( ) −H 1( )
n+1 z( ). (12)

The Hankel function’s formula corresponding to the sth-
order derivatives can be derived by repeatedly differentiating the
aforementioned equation with respect to the variable z, as
follows:

H 1( )
n z( )[ ] s( ) � ∑s

ℓ�1
H 1( )

n z( )[ ] s−ℓ( ) −1( )ℓ+1 s − 1( )!
zℓ s − ℓ( )! − H 1( )

n+1 z( )[ ] s−1( )
.

(13)
Additionally, the functions zH(1)

1 (z) and z2H(1)
2 (z) that define

the kernel’s sth-order derivative are obtained as

zH 1( )
1 z( )[ ] s( ) � s H 1( )

1 z( )[ ] s−1( ) +z H 1( )
1 z( )[ ] s( )

,

z2H 1( )
2 z( )[ ] s( ) � s s−1( ) H 1( )

2 z( )[ ] s−2( ) +2sz H 1( )
2 z( )[ ] s−1( ) +z2 H 1( )

2 z( )[ ] s( )
, s>1

2z H 1( )
2 z( )[ ] s−1( ) +z2 H 1( )

2 z( )[ ] s( )
, s� 1.

⎧⎪⎨⎪⎩
(14)

Assuming z = k‖m − y‖ and z0 = k0‖m − y‖, the kernel operations
for the sth-order derivative in Eq. 11 are deduced using Eqs 13, 14.

G s( ) m, y; k0( ) � irs

4
H 1( )

0 z0( )[ ] s( )
,

R s( ) m, y; k0( ) � −ir
s−1( )

4
∂r

∂n y( ) z0H
1( )

1 z0( )[ ] s( )
,

∂G s( ) m, y; k0( )
∂n m( ) � −ir

s−1( )

4
∂r

∂n m( ) z0H
1( )

1 z0( )[ ] s( )
,

∂R s( ) m, y; k0( )
∂n m( ) � ir s−2( )

4
n̂ m( ) · n̂ y( )[ ] z0H

1( )
1 z( )[ ] s( )

︸���������������︷︷���������������︸
R s( )
1

− ir s−2( )

4
∂r

∂n m( )
∂r

∂n y( ) z20H
1( )
2 z( )[ ] s( )

︸���������������︷︷���������������︸
R s( )
2

,

(15)

where r = ‖m − y‖, ∂r
∂n(m) � [m−y]·n̂(m)

‖m−y‖ , and ∂r
∂n(y) � [m−y]·n̂(y)

‖m−y‖ .

3 BEM with isogeometric fast multipole

3.1 Irrational B-splines which is not uniform

In isogeometric analysis, geometric and physical fields are
approximated using NURBS basis functions. A knot vector,

FIGURE 7
Plot of amplitude and standard deviation of the rectangular field function with different derivatives: (A) γ= 0.05, (B) γ = 0.07, (C) γ = 0.09, (D) γ= 0.11,
(E) γ = 0.13, and (F) γ = 0.15.
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which is a collection of non-decreasing real values, generates a
non-uniform rational B-splines (NURBS) curve as follows: Ξ = [ξ0,
ξ1, . . . , ξn+p+1]with ξa ∈ R, where p is the rank of the polynomial, n
is the basic function or control point count, and a is the node index.
The recursive formulation of the B-spline basis function Na,p is
written as

Na,0 ξ( ) � 1 if ξa ≤ ξ < ξa+1,
0 otherwise,

{ (16)

and for p = 1, 2, 3, . . .,

Na,p ξ( ) � ξ − ξa
ξa+p − ξa

Na,p−1 ξ( ) + ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1 ξ( ). (17)

FIGURE 8
Plot of the amplitude of the T-shaped field function as a function of the wave number k: (A) first-order, (B) second-order, (C) third-order, (D) fourth-
order, (E) fifth-order, and (F) sixth-order derivatives.

TABLE 7 Relative errors εerr of the third- and fourth-order derivatives of the T-shaped field function.

Wave number First-order derivative Second-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

2.0 0.007834 0.000783 0.000078 0.001723 0.000232 0.000024

2.2 0.007082 0.000717 0.000072 0.002750 0.000295 0.000030

2.4 0.003411 0.000347 0.000035 0.004442 0.000450 0.000045

2.6 0.006644 0.000647 0.000065 0.016573 0.001619 0.000161

2.8 0.011907 0.001199 0.000120 0.019420 0.001978 0.000198

3.0 0.005590 0.000582 0.000059 0.011636 0.001184 0.000119

3.2 0.006634 0.000628 0.000062 0.004184 0.000443 0.000045

3.4 0.024425 0.002377 0.000237 0.008932 0.000865 0.000086

3.6 0.005213 0.000675 0.000068 0.001565 0.000209 0.000021

3.8 0.021712 0.002208 0.000221 0.011006 0.001105 0.000111
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The basis functions for B-splines exhibit some advantageous
characteristics, including locality, point non-negativeness, linear
independence, and simplicity of numerical analysis. NURBS is
created using a B-spline and control point weights:

Ba,p ξ( ) � Na,p ξ( )wa

W ξ( ) , (18)

with

W ξ( ) � ∑n
a�0

waNa,p ξ( ), (19)

where wa stands for a weight connected to each control point and
Ba,p(ξ) stands for NURBS basis functions. Consequently, the NURBS
curve point x(ξ) is calculated as

x ξ( ) � ∑n
a�0

Ba,p ξ( )Pa, (20)

TABLE 8 Relative errors εerr of first- and second-order derivatives of the T-shaped field function.

Wave number Third-order derivative Fourth-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

2.0 0.046993 0.004742 0.000475 0.074230 0.007397 0.000740

2.2 0.015218 0.001519 0.000152 0.028162 0.002809 0.000281

2.4 0.016825 0.001702 0.000170 0.019696 0.001991 0.000199

2.6 0.024099 0.002391 0.000239 0.005452 0.000510 0.000051

2.8 0.020400 0.002077 0.000208 0.015680 0.001545 0.000154

3.0 0.019244 0.001935 0.000194 0.032066 0.003234 0.000324

3.2 0.015844 0.001623 0.000162 0.027878 0.002859 0.000287

3.4 0.002134 0.000170 0.000016 0.004899 0.000550 0.000056

3.6 0.006509 0.000677 0.000068 0.011701 0.001157 0.000116

3.8 0.004120 0.000407 0.000041 0.006975 0.000710 0.000071

FIGURE 9
Distribution of T-shaped field functions under different derivatives: (A) first-order, (B) second-order, (C) third-order, (D) fourth-order, (E) fifth-order,
and (F) sixth-order derivatives.
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where Pa refers to the ath command point.

3.2 Discretizations

The coefficients of the derivative of the pressure of sound and
flux fields on the boundary, as given in Eq. 11, have been
interpolated applying NURBS basis functions utilizing the IGA
technique, as follows:

p n( ) ξ( ) � ∑nf
a�0

Ba,pf ξ( )p n( )
a , q n( ) ξ( ) � ∑nf

a�0
Ba,pf ξ( )q n( )

a , (21)

where nf indicates the amount of integration points, pf denotes the
order of the polynomial, and p(n)

a and q(n)a represent the worldwide

derivative sound pressure and flow characteristics associated with
the ath control point, respectively.

Because the Kronecker delta condition is not satisfied with
NURBS basis functions, p(n)

a and q(n)a do not represent a field
and flux within the boundary’s derivative values. As a result,
the collocation points must be rebuilt. In this study, the Greville
abscissa method is utilized, and collocation points are created
in the parameter space, as demonstrated in the following
equation:

ξ̂a �
ξfa+1 + ξfa+2 +/ + ξfa+pf

pf
, a � 0, 1, . . . , nf. (22)

The discretized versions of isogeometric BEM are obtained by
substituting Eq. 21 into Eq. 11.

c x ξ̂a( )( )∑nf
κ�0

Bκ ξ̂a( ) p n( )
κ + αq n( )

κ( )
� ∑n

s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

G s( )Bκ ξ( )J ξ( )dξ[ ]q n−s( )
κ

−∑n
s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

R s( )Bκ ξ( )J ξ( )dξ[ ]p n−s( )
κ

+ α∑n
s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

∂G s( )

∂n x( )Bκ ξ( )J ξ( )dξ[ ]q n−s( )
κ

− α∑n
s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

∂R s( )

∂n x( )Bκ ξ( )J ξ( )dξ[ ]p n−s( )
κ

+ q n( )
inc x ξ̂a( )( ), (23)

TABLE 9 Expectation of the T-shaped field function with different coefficients
of variation.

Order Coefficient of variation (γ)

0.05 0.07 0.09 0.11 0.13 0.15

2 1.56901 1.79665 2.10017 2.47957 2.93485 3.46601

4 1.58434 1.85556 2.26115 2.83879 3.63561 4.70813

6 1.58523 1.86226 2.29143 2.93976 3.91071 5.35732

8 1.58588 1.87181 2.30270 2.94463 3.92112 5.36010

10 1.58599 1.87181 2.30270 2.94463 3.92112 5.36010

MCs 1.58599 1.87181 2.30270 2.94463 3.92112 5.36010

FIGURE 10
The curvewhere the standard deviation of a T-shaped field function changeswith the derivative: (A) γ=0.05, (B) γ=0.07, (C) γ=0.09, (D) γ=0.11, (E)
γ = 0.13, and (F) γ = 0.15.
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where a = 0, 1, . . . , nf. The period of time between two non-
repeating intersections is represented by the NURBS element [ξe,
ξe+1], Ne indicates the number of NURBS elements, and J(ξ)
indicates the Jacobian.

Thematrix representation of the discretization of the boundary
value integral equations using the nth-order derivative is as
follows:

∑n
s�0

n!

s! n − s( )!
�R s( )p n−s( ) − �G

s( )q n−s( )[ ] � q n( )
inc . (24)

By rearranging each term and applying the boundary conditions,
the equations can be solved as follows:

Ax � B. (25)
Taking the incident wave into consideration, x = p(n) is an

unknown quantity on the boundary of the matrix. A � �R0, which is
an asymmetrical dense matrix. B is a known vector obtained by the
matrix multiplication of vector operations.

B � ∑n
s�0

n!

s! n − s( )!
�G

s( )q n−s( ) −∑n
s�1

n!

s! n − s( )! �R
s( )p n−s( ) + q n( )

inc . (26)

Eq. 25 can be solved with n = 0 to obtain the field vector p0 result.
Next, the field’s initial derivative value concerning the random
number is determined by substituting p0 into Eq. 25 with n = 1.
By analogy, it is possible to determine the value of a field derivative
for any order. Finally, the following two equations can be used to
determine the expectation and variance of the field at these border
points:

E u k( )( ) � ∫+∞

−∞
u k( )ρ k( ) dk (27)

and

V u k( )( ) � ∫+∞

−∞
u k( ) − E u k( )( )[ ]2ρ k( ) dk. (28)

Where ρ(k) represents the probability density function, and the
field variable of is represented by u of p, q, G or R, and u(k)
represents the k-fold density of probability function.

It is crucial to remember that the kernel functions’
derivatives of the boundary integral, as given in Eq. 11, are
singular. Singular integrals of this nature require special
treatment. Such integrals may be explicitly and directly
derived utilizing the Hadamard finite-part integral and
Cauchy principal value methods.

The singularity of Eq. 24 is up to the second order. Therefore, a
numerical instance of spline order 2 can thus be accepted.

3.3 Accelerating using the fast multipole
method

Applying the FMM will accelerate the matrix–vector product of
isogeometric finite elements in Eq. 11. The key core of FMM is to
form a tree structure and delineate the boundary integrals. The
original boundary integral is divided into a near-field part and a far-

field part, and the near-field part is generally calculated using
conventional BEM, while the far-field part is calculated using
accelerated FMM-based BEM. In the stochastic analysis involved
in this work, the presence of higher-order derivatives of the Green’s
function can make the fast algorithm more complex and difficult to
implement. The detailed calculation procedure is as follows:

G x, y( ) � i
4

∑+∞
~m�−∞

O ~m ycx
��→( )I− ~m ycy

��→( ), (29)

where yc is the unfolding point around y and the functions O ~m and
I ~m are defined as

O ~m z( ) � i ~mH 1( )
~m

kr( )ei ~mθ,

I ~m z( ) � −i( ) ~mJ ~m kr( )ei ~mθ,
(30)

where J ~m denotes a Bessel function of order ~m and (r, θ) is the
polar coordinate of the vector z. The random input variable is
repeatedly used to distinguish Eq. 29 from the following
equation.

G s( ) x, y( ) � i
4
∑s
ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

O ℓ( )
~m

ycx
��→( )I s−ℓ( )

− ~m
ycy
��→( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (31)

Substituting Eq. 31 into Eq. 11, the integral equation can be
expressed as follows:

∫Γfar
G s( ) x, y( )Φ n−s( ) y( ) − R s( ) x, y( )ψ n−s( ) y( )[ ]dΓ y( )

� ∑s
ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

O ℓ( )
~m

ycx
��→( )M ~m,s−ℓ yc( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

∫Γfar

∂G s( ) x, y( )
∂n x( ) Φ n−s( ) y( ) − ∂R s( ) x, y( )

∂n x( ) ψ n−s( ) y( )[ ]dΓ y( )
� ∑s

ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

∂O ℓ( )
~m

ycx
��→( )

∂n x( ) M ~m,s−ℓ yc( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(32)

where Γfar stands for a subsection of the structural boundary located
away from the source point x and M ~m,j−ℓ(yc) is the multipole
moment of (j − ℓ) at the expansion point yc, which is denoted as
follows:

M ~m,s−ℓ yc( )� i
4
∫

Γfar
I s−ℓ( )
− ~m

ycy
��→( )Φ n−s( ) y( )− ∂I s−ℓ( )

− ~m
ycy
��→( )

∂n y( ) ψ n−s( ) y( )⎡⎢⎣ ⎤⎥⎦dΓ y( ).
(33)

Substituting Eq. 21 into Eq. 33, the discrete formula for the
multipole moment is expressed as follows:

M ~m,s−ℓ yc( ) � i
4
∑Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

I s−ℓ( )
− ~m

Bκ ξ( )J ξ( )dξΦ n−s( )
κ[

−∫ξe+1

ξe

∂I s−ℓ( )
− ~m

∂n y ξ( )( )Bκ ξ( )J ξ( )dξψ n−s( )
κ

⎤⎥⎦. (34)

The calculation of the residual coefficients and translations, such
as local-to-local, multipole-to-local, and multipole-to-multipole
translations, is independent of the geometric representation and
approximation of the field variables. So we can refer to [51] to

Frontiers in Physics frontiersin.org12

Yang et al. 10.3389/fphy.2023.1325930

16

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1325930


establish the continuum formulation of FMM for BEM, and the far-
field integral equation could be written as

∫Γfar
G s( ) x, y( )Φ n−s( ) y( ) − R s( ) x, y( )ψ n−s( ) y( )[ ]dΓ y( )

� ∑s
ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

I ℓ( )
− ~m

x1x
��→( )L ~m,s−ℓ x1( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

∫Γfar

∂G s( ) x, y( )
∂n x( ) Φ n−s( ) y( ) − ∂R s( ) x, y( )

∂n x( ) ψ n−s( ) y( )[ ]dΓ y( )
� ∑s

ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

∂I ℓ( )
− ~m

x1x
��→( )

∂n x( ) L ~m,s−ℓ x1( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(35)

where L ~m,s−ℓ(x1) is the local moment of (s − ℓ) of the unfolding point
x1, as detailed in [51].

It is important to note that the number of terms ~m used in Eq. 31
should be truncated. An increase in the number of expansion terms
usually not only results in higher precision but also consumes more
memory and time. The formula ~M � kd + c · log(kd + π) is provided
in [52], where the parameter ~M is the number of truncations, c is a
constant, and d is the size of the cell. When c = 5, there is a good
balance between precision and performance, and it will be used in the
following calculations [52]. The solution summary of geometric
boundary element methods was studied in detail by [53]. The
results of the study show that the solution time is improved when
a corresponding higher order of convergence is reached in geometric
boundary element methods. Therefore, it is the key parameter of the
fast multipole isogeometric boundary element method.

4 Scattering by an infinite cylinder

Uncertainty analysis is used in this section using an example of
acoustic dispersion from an endless cylinder. The existing direct
uncertainty analysis approaches are first used to compare the
derivative values with arbitrary ordering, and the global finite
difference method (FDM) is established by

ψ′ x( ) � ψ x + Δx( ) − ψ x( )
Δx , (36)

where Δx represents the minor disruption connected to x.
Several scenarios are taken into consideration in order to

research the impact of perturbation Δx on the values of
derivatives of field functions of every order, as illustrated in
Figure 1. The image contrasts the magnitude of the field
function’s sixth-order derivative at various wave numbers k. Even
for high-order derivatives, FDM and direct uncertainty analysis are
trustworthy methods. The derivative value increases under a
particular wave number as the field function’s derivative number
increases. Additionally, this behavior can be observed in real-world
engineering applications.

Their relative errors under various Δx values are given to further
analyze FDM and the accuracy of the initial uncertainty analysis.
The estimated findings are shown in Tables 1, 2, which compare the
relative errors εerr of the direct uncertainty analysis method (DSM)
and FDM.

εerr �
ψ DSM( ) − ψ FDM( )
∣∣∣∣∣ ∣∣∣∣∣

ψ FDM( )
∣∣∣∣∣ ∣∣∣∣∣ , (37)

where ψ(DSM) and ψ(FDM) indicate the direct calculation approach
and the finite difference method of solving the problem,
respectively.

Tables 1, 2 show that, as the disturbance Δx reduces, the relative
inaccuracy gradually diminishes. The relative errors of the various
field function derivatives are typically limited to a relatively low
number, which confirms the algorithm’s accuracy.

Subsequently, the infinite cylinder’s field function sensitivity
distribution, as shown in Figure 2, facilitates a straightforward check
of the algorithm’s accuracy at a wave number k = 1. The fact is that
the distributions resulting from applying DSM and FDM were
substantially consistent, as shown in Figure 2, confirming the
accuracy of the algorithm used in this work once more.

The uncertainty of an infinite cylinder model is then examined
using the perturbation method, where the value of the random
variable k is set to be the wave number with a Gaussian distribution.
The standard deviation is set in the range of σ ∈ [0.05, 0.15], the
corresponding disruption parameter ε is 1, and the wave number k’s
average value μ is 1. The perturbation method with various order
expansion terms is used to compare the first two probability
moments of the field function at a position (10,0) with those of
MCs. Here, the control group for MCs consists of 500 sample points
produced utilizing a random number generator. The responses of
500 sampling points were obtained by repeatedly solving
500 inferior geometric fast multipole BEM equations using the
isogeometric fast multipole BEM group. In actuality, this phase is
time-consuming.

The predicted value of the field function for various γ = σ/μ
coefficients of variation is shown in Table 3. The table shows that as
the order of expansion increases, the perturbation method’s output
approaches that of MCs. The field function’s standard deviation is
shown in Figure 3 along with several coefficients of variation. Similar
to this, the closer the outcome of the perturbation method is to MCs,
the higher the order. We can also discover that this affects the
perturbation method’s computational convergence. The Taylor
expansion’s restriction causes the convergence to decline as the γ

value increases.

4.1 Sound barrier structure

This section presents the noise distribution in the sound shadow
area under two simple top shapes. The top shape is an upright
rectangle, where the height of the linear sound source from the
ground is 1 m, the distance from the sound barrier is 10.5 m, the
width of the bottom of the sound barrier is 0.2 m, and the vibration
frequency of the sound barrier is 100 Hz, as shown in Figure 4. All
surfaces are assumed to be rigid surfaces, so the amount of
attenuation of the diffracted sound waves determines the sound
barrier’s ability to reduce noise. Due to the total reflection of the
ground, this analysis is used to solve a two-dimensional semi-space
sound field problem. In the study of the sound barrier structure, the
boundary element method only needs to be discretized by a grid
instead of discretizing the infinite ground, which shows that the
boundary element method has great advantages in calculating the
sound field problem in an infinite domain. The vertical sound
barrier boundary is discretized into 100 constant boundary units.
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4.1.1 Rectangular model
We regard the input parameter as random—the wave number

that adheres to the Gaussian distribution. Figure 5 studies the first,
second, and third and fourth, fifth, and sixth variations of the field
function with respect to random parameters at the position (10, 0).
The derivative amplitude of the field function is calculated using
FDM DSM. The steps of FDM are set at Δk = 10−2k, Δk = 10−3k,
Δk = 10−4k, and Δk = 10−5k. The results of FDM and the direct
uncertainty analysis approach are comparable, as shown in
Figure 5.

Their relative errors under various Δx values are given to further
investigate the accuracy of FDM and the explicit uncertainty analysis
technique. The relative error εerr values of the direct uncertainty
analysis approach and FDM are provided in Tables 4, 5. They show
that when the disruptions Δx increase, the relative error steadily
reduces. The fact that the relative errors of the various field function
derivatives are maintained at a relatively low level confirms the
algorithm’s accuracy.

We look at the sensitivity field function’s distribution
around the infinite cylinder when the wave number k = 1 to
more easily ascertain the algorithm’s accuracy, as shown in
Figure 6. It shows that the distribution generated by the direct
technique for uncertainty analysis is essentially consistent with
that obtained by FDM, further demonstrating the algorithm’s
accuracy.

Then, using a rectangular model with the number of waves k
considered to be a Gaussian-distributed random quantity, we
analyzed uncertainty using the perturbation method. The relevant
interference parameter ε is set to 1, the mean value of the number of
waves k is set to 1, and the normal deviation is set in the range of
σ ∈ [0.05, 0.15]. Comparisons are made between the probability
moments acquired by MCs and the first two probability moments
of the field function at a position (10, 0) generated by the perturbation
method with extensions of various orders. The predicted value of the
field function for various coefficients of variation γ = σ/μ is shown in
Table 6. It shows that as the order of expansion increases, the
perturbation method’s results approach those of the MCs. The
predicted value and standard deviation of the field function for the
extension are displayed in Figure 7.

The predicted value and standard deviation of the field function
for the extension are displayed in Figure 7. The figure illustrates that,
as the expansion term lengthens, the results of the two probability
moments calculated using this approach closely approximate to
those of MCs. In addition, poor convergence results from an
increase in the coefficient of variation γ.

4.1.2 T-shaped model
Similar to the aforementioned rectangular model in this paper,

we consider the input parameters to be random parameters and treat
the computation of the derivative amplitudes of the treated field
functions in the same way. That is, the following figure shows the
variation in the first- to sixth-order derivative random parameters of
the field function for the position point (10, 0), and the comparison
of the results of FDM and the direct deterministic analysis method is
shown in Figure 8. Then, the accuracy of FDM and direct
uncertainty analysis techniques is further analyzed by their
relative errors at different Δx. The relative errors, as shown in
Tables 7, 8, indicate a decreasing trend with increasing Δx.

We also investigate the distribution of the sensitivity field
function around the infinite cylinder when the wave number is 1,
as shown in Figure 9. This result further demonstrates the accuracy
of the algorithm. Using a T-shaped model with a Gaussian-
distributed random quantity with a wave number k, the
uncertainty is analyzed using the perturbation method, the
relevant disturbance parameter ε is set to 1, the mean value μ is
also set to 1, and the normal deviation is set in the range of
σ ∈ [0.05, 0.15]. By comparing the probability moments obtained
under the perturbation method with those obtained by MCs, the
predicted values of the field function under different coefficients of
variation γ = σ/μ are shown in Table 9, and the predicted values and
standard deviations of the extended field function are shown in
Figure 10.

By analyzing these two numerical examples, Figures 7, 10
illustrate that as the expansion term lengthens, the results of the
two probability moments calculated using this approach closely
approximate to those of MCs. In addition, poor convergence results
from an increase in the coefficient of variation γ.

5 Conclusion

The generalized nth-order perturbation approach is used in this
study to analyze the uncertainty around sound wave propagation in
an infinite domain. IGABEM enhances the precision and
effectiveness of the stochastic perturbation method through the
seamless integration of CAD and numerical analysis.
Furthermore, it mainly uses NURBS to construct structural
geometry and discretize the boundary integral equation. We
discover that the isogeometric BEM simulation, which uses an
exact geometric representation compared to a traditional
Lagrange-based BEM simulation, is often more accurate. The
investigation of the immediate uncertainty approach and finite
difference method proves accurate for larger derivatives, which
confirms the validity of the suggested algorithm. In addition, we
compare this method with other derivatives generated by the global
finite difference method. Under a specific wave number, the
derivative value increases as the field function’s derivative order
increases. Additionally, this phenomenon can be utilized in real-
world engineering applications. The result of uncertainty
qualification shows that with the increase in the extended order
term, the predicted value of field functions based on this technique is
comparable to the anticipated value of MCSs, demonstrating the
accuracy of the suggested methodology. The existing strategy has
some drawbacks. When the unpredictability of the input random
variable is high, capturing its statistical characteristics adequately
can be challenging. While improving computation accuracy by
modifying the order of the Taylor expansion, it also increases the
cost of the calculation. In the future, we can extend the perturbation
method to deal with three-dimensional acoustic scattering problems
as well as target objects with more complex geometries, which will
not only increase the complexity of the problem but also expand its
range of applications. Uncertainty analysis of acoustic scattering
problems at different frequencies can also be investigated to gain a
more comprehensive understanding of the properties of acoustic
wave propagation. This is essential for solving multi-frequency
acoustic scattering problems and for practical applications.
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FEM/Wideband FMBEM coupling
based on subdivision isogeometry
for structural-acoustic design
sensitivity analysis

Xiuyun Chen1, Yajun Huang2, Zhongbin Zhou1 and Yanming Xu1*
1Henan International Joint Laboratory of Structural Mechanics and Computational Simulation, School of
Architecture and Civil Engineering, Huanghuai University, Zhumadian, China, 2College of Intelligent
Construction, Wuchang University of Technology, Wuhan, China

A computer simulation approach known as the isogeometric (IGA) method may
directly use the surface information of geometricmodel. In 3D computer graphics,
Loop subdivision surfaces are a common method for creating complicated
shapes. In this study, we propose a coupling algorithm that utilizes Loop
subdivision surfaces and a direct differentiation method for the computation of
acoustic-fluid-structure interaction and the performance of structural-acoustic
sensitivity analysis. This algorithm combines the finite element method (FEM) and
wideband fast multipole boundary element method (FMBEM). Because of that the
proposed method is of a great ability of integrating the numerical calculation and
computer-aided modeling, the current technique can deliver results quickly and
accurately. The numerical prediction of the effects of vibrating structures with
arbitrary shape within sound field is made feasible by the FEM/Wideband FMBEM
technique. Calculation examples are provided to show the applicability and
effectiveness of the suggested method.

KEYWORDS

loop subdivision surfaces, IgA, fluid-structure interaction, design sensitivity analysis,
direct differentiation method

1 Introduction

The elastic structures in heavy fluid resulting in acoustic radiation or scattering is a
common issue in underwater acoustics. It is possible to give the analytical solutions of the
issues with acoustic fluid-structure interaction phenomenon while the structure is with
simple boundary conditions and geometry [1,2]. However, as it comes for real-world issues
which usually have complex geometries, providing an analytical solution becomes harder
and even impossible, thus effective simulation techniques are needed.

FEM is extensively utilized to study the dynamic behavior of issues involving fluid-
structure interactions, acoustics, and structures. The FEM has several drawbacks for
modeling infinite domains, though. Because it offers good accuracy and simple mesh
generation, BEM has been widely employed to calculate acoustic issues. The Sommerfeld
radiation condition [3] is met, especially for external acoustic issues. The Galerkin technique
has been frequently used in BEM implementation to solve the boundary integral problem
numerically [4]. However, the collocation approach, has historically been popular in the
engineering field. Hence, the coupled FEM/BEM technique [5,6] is suitable for studying
fluid-structure interaction problems. However, the high computational expense remains a
challenge when performing coupling analysis of underwater structural-acoustic problems
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using the FEM/Conventional BEM (CBEM) algorithm. This is
primarily because CBEM generates a dense and non-symmetric
coefficient matrix. Many techniques have been used to speed up the
integral problem solution, including fast multipole method (FMM),
the adaptive cross approximation methodology and fast direct
solver. Martinsson and Rokhlin [7,8] introduced the fast direct
solver, which works well for issues requiring moderately ill-
conditioned matrices and immediately builds a compressed
factorization of the matrix inverse. The adaptive cross
approximation methodology [9], developed by Bebendorf and
Rjasanow, has the capability to generate blockwise low-rank
approximations from the BEM matrices. This methodology is
particularly suitable for problems that require a large number of
iterations. FMM [10–12] has been developed to reduce memory
requirements while speeding up the solving of the CBEM system of
equations. In reality, the Helmholtz equation has two versions of the
Fast Multipole Method (FMM), namely, the original FMM and the
diagonal form. However, it is well-known that both of these versions
tend to fail outside of their optimal frequency ranges in some
manner. On the other hand, the aforementioned issues can
potentially be resolved by utilizing wideband FMM [13–18]. This
advanced technique combines the original FMM with the diagonal
form FMM, leading to more efficient solutions. Therefore, the
challenges related to large-scale fluid-structure interaction
problems can be effectively resolved through the utilization of the
coupling approach based on FEM/fast multipole boundary element
method (FEM/FMBEM) [19–23]. Furthermore, this study proposes
the utilization of the FEM/Wideband FMBEM coupling method to
tackle the intricate problems associated with fluid-structure
interactions.

Through the use of appropriate software, FEM and BEMmay be
implemented—a process known as computer-aided engineering
(CAE). Nowadays, industry 4.0 and digital twin technologies are
being developed with the use of CAE simulation. Themodels created
by CAD software must, however, be transformed into simulation-
ready models as part of the preprocessing stage used by modern
CAE. The CAE’s most time-consuming manual intervention phase,
the geometric model data transfer stage produces geometry
inaccuracies. The integration of geometric modeling and
numerical simulation using isogeometric analysis [24–26] with
boundary element method (IGABEM) [27,28] is suggested as a
solution to this issue. By using IGABEM, geometric mistakes and
time-consuming preprocessing steps may be avoided and numerical
simulation can be carried out straight from the precise models. Since
its inception, IGABEM has been used to address a variety of issues,
including those related to elastic mechanics [27–30], potential issues
[15], wave-resistance [31], fracture mechanics [32,33],
electromagnetics [34–39], and structural optimization [40–46].

In addition to the benefits already discussed, IGABEM offers
significant benefits for modelling acoustics issues. Numerous
engineering fields have found extensive use for acoustics,
including noise control, underwater navigation using sonar,
ultrasound imaging for medical purposes, seismology,
electroacoustic communications, etc. Numerous numerical
simulation techniques have significant challenges when it comes
to acoustics for that the sound wavemay travel through semi-infinite
domains. By shifting the acoustic field from a semi-infinite domain
to the boundary of the domain, IGABEM can get around this

problem. Simpson [16,47] applied IGABEM to acoustics.
Acoustic optimization [37,48,49] with IGABEM was studied.

In the framework of the IGABEM, several sorts of geometric
modeling approaches have been extensively researched. The ability
to build multi-resolution geometries with complex forms and
topologies makes the subdivision surface approach among them
very promising [51–56]. There are two types of subdivision surfaces:
Catmull-Clark and Loop method. Structure-acoustic interaction
[1,57,58] and acoustic optimization [59–63] were both addressed
using IGABEM based on Loop subdivision surfaces. The goal of the
current effort is to merge Loop subdivision surfaces with IGABEM
for sensitivity analysis. Additionally, we’ll speed up the solution
process using wideband FMM.

Designers are increasingly considering passive noise management
by altering the geometry of the construction. Particularly for thin shell
structures, this structural-acoustic optimization has considerable
promise for minimizing radiated noise [64]. Acoustic design
sensitivity analysis is a crucial component in the process of acoustic
design and optimization, as it allows for understanding the effect of
geometry changes on the acoustic performance. In a comprehensive
review by Marburg [65], advancements in structural-acoustic
optimization for passive noise reduction were discussed. The global
finite difference method (FDM) has been extensively employed for
structural-acoustic optimization due to its ease of implementation
[66–69]. However, this approach doesn’t work so well, particularly
while considering several design elements simultaneously. To get over
this issue, employ the adjoint variable approaches [70,71] or the direct
differentiationmethod [72]. The sensitivity analysis for interaction issues
is widely recognized as the most time-consuming step in gradient-based
optimization. In our study, we aim to accelerate the calculation process
by employing a direct differentiation approach for structural-acoustic
sensitivity analysis in the FEM/Wideband FMBEM method.

In this study, we propose the incorporation of wideband
FMBEM in the coupling of structural-acoustic sensitivity analysis
and present the formulation for sensitivity analysis in the coupled
FEM/BEM analysis. We advocate for the adoption of coupled FEM/
Wideband FMBEM to address fluid-structure interaction problems
and conduct structural-acoustic sensitivity analysis. To eliminate the
geometry inaccurices, Loop subdivision scheme is applied to the
sensitivity analysis of an underwater fluid-structure coupling
problem. Through the computation of various numerical
examples, we have demonstrated the accuracy and effectiveness
of the proposed strategy.

2 Structural-acoustic coupling
deduction

2.1 Subdivision scheme

In computer animation and graphics, it is of great advantages of
using Subdivision surfaces [73,74] since their emergence in the
1970s. They may also be accessed in most industrial CAD solid
modeling applications. Subdivision surfaces are frequently
mentioned as a technique for continually fine-tuning and
smoothing a control mesh so a smooth limit surface could be
produced. They may also be regarded as the extension of splines
to arbitrarily linked meshes for FEM and BEM.
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A rough polygon mesh is transformed into a smooth surface
using subdivision techniques. The creation of a smooth surface using
subdivision method—which is usually classified as interpolating
schemes—involves a constrained, repeating refinement process
that starts with an initial control mesh. Due to the refinement
characteristic inherited from splines, all control meshes generated
during subdivision refinement accurately represent the same spline
surface.

The structural-acoustic coupling analysis in this study is carried
out utilizing the Loop subdivision scheme [59]. The quadrisection
refinement of a triangular mesh in a construction of loop subdivision
is shown in Figure 1. A vertex’s valence is the edges number that link
it. When N = 6, a vertex is considered regular, and when N ≠ 6, it is
considered irregular. Each triangle is split into four smaller triangles
by adding a new vertex at the middle of each edge. As indicated in
Eqs 1, 2, the positions of new vertices and edge points may be
determined from the previous level.

xk+1
iv � 5

8
xk
iv +

3
8N

∑N
i�1

xk
i , (1)

xk+1
ie � 3

8
xk
1 +

1
8
xk
2 +

3
8
xk
3 +

1
8
xk
4, (2)

where

In reality, there are too many nodes, making it impossible to
achieve smooth surfaces with few subdivisions. Another method for
creating limit surfaces for any degree of refinement is to create an
elementwise map using linear combinations of Box-splines basis
functions on triangular control meshes. For further details, please
refer to Chen et al.[59].

2.2 BEM analysis

∇2p x( ) + k2p x( ) � 0, (3)
p x( ) � �p x( ) x ∈ Γp,
q x( ) � ∂p x( )

∂n x( ) � iρω�v x( ) x ∈ Γq,
p x( ) � zv x( ) x ∈ Γz,

(4)

FIGURE 1
Templates for vertex and edge points with regular and irregular shapes.

iv is the i-th vertex point

i.e., is the i-th edge point

Frontiers in Physics frontiersin.org03

Chen et al. 10.3389/fphy.2023.1333198

23

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1333198


where

Equation 3 describes a acoustic wave which is time-harmonic in
the Helmholtz equation, and Eq. 4 serves as an expression for the
boundary conditions. A boundary integral equation (BIE) specified
on the Γ can be created from Eqs 3–5.

c x( )p x( ) + ∫
Γ
F x, y( )p y( )dΓ y( ) � ∫

Γ
G x, y( )q y( )dΓ y( ), (5)

where

Equations 6, 7 gives the expression of Green’s function for
acoustic problems in two and three dimensional problems,
respectively.

G x, y( ) � i

4
H 1( )

0 kr( ), (6)

G x, y( ) � eikr

4πr
, (7)

r � y − x
∣∣∣∣ ∣∣∣∣.

When the boundary Γ is smooth around the source point x, the
derivative of the integral representation in Eq. 5 with respect to the
outer normal can be expressed as Eq. 8.

1
2
q x( ) + ∫

Γ

∂F x, y( )
∂n x( ) p y( )dΓ y( ) � ∫

Γ

∂G x, y( )
∂n x( ) q y( )dΓ y( ). (8)

It is common knowledge that applying a single Helmholtz
boundary integral equation to issues involving external boundary
values may be challenging due to nonuniqueness. In order to
effectively solve the nonuniqueness problem, the Burton-Miller
approach [75]—which is a linear combination of Eqs 5, 8—is
used in this study. The computation of the singular boundary
integrals introduced by Eqs 5, 8 can also be performed directly
and efficiently using the Cauchy principal value and the Hadamard
finite part integral method [72].

If the boundary Γ is divided into elements, the system can be
obtained [76] and can be expressed as Eq. 9 by assembling the
equations for collocation points located in the center of each
element.

Hp � Gq + pi, (9)
where

2.3 FEM analysis

The complete structural-acoustic simulation approach was
described by Fritze et al. [6], and related expressions are supplied
here. The structure response is determined by analyzing of
frequency-response under the assumption that a harmonic load
performs on the structure. Equation 10 derives the linear system of
structural-acoustic equation.

K + iωC − ω2M( )u � f (10)
where

It is crucial to take into account that, because of damping, the
steady-state response may have the same frequency as the applied
load but a different phase angle. To handle non-harmonic
imposed loads, the time-dependent forces can be examined in
the frequency domain, enabling the use of Eq. 10. To address the
effect of acoustic pressure on structural surfaces, a coupling
matrix is introduced. This matrix facilitates the transfer of the
structural nodal load from the fluid effect to the fluid nodal
pressure. Then, Eq. 11 could be used to express the
complete excitation, combining the acoustic load and the
structural load.

p is sound pressure

k is wave number

n is external normal direction of the boundary

q is normal derivative of p

i is imaginary unit, i � ���−1√

ρ is structural density

ω is frequency of the incoming force

v is normal velocity

z is acoustic impedance

Γp is Dirichlet boundary condition

Γq is Neumann boundary condition

Γz is Robin boundary condition

() is known function given on the border

x is source point

y is field point

c(x) is 1/2 if the boundary Γ is smooth in the vicinity of the source point x

p(x) is intensity of the incoming wave at source point x

p(y) is sound pressure at field point y

G(x, y) is Green’s function

q(y) is normal derivative of p(y)

F(x, y) is normal derivative of G(x, y)

H is the coefficient matrix of the vector p

G is the coefficient matrix of the vector q

pi is the nodal pressure caused by the incoming wave

K is stiffness matrix

i is imaginary unit, i � ���−1√

ω is excitation frequency of the harmonic load

C is damping matrix

M is mass matrix

u is nodal displacement vector

f is complete excitation
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f � Csfp + fs,
Csf � ∫Γint

NT
s nNfdΓ, (11)

where

The structural nodal load from the fluid effect is directed to fluid
nodal pressure via the coupling matrix Csf. The nodal displacement
could then be obtained from Eq. 10, as shown in Eq. 12.

u � K + iωC − ω2M( )−1f . (12)

2.4 FEM-BEM coupling analysis

The exact formulas of FEM/BEM modeling were published by
Fritze et al. [6], and related expressions are supplied in this part. The

continuity constraint over the interaction surface—as shown in Eq.
13—connects the governing equations as illustrated in the above
section. Then, the normal velocity v may be written as a function
with the displacement u, according to Eq. 14.

q � −iωρv, (13)
v � iωS−1Cfsu, (14)
S � ∫Γint

NT
f NfdΓ,

Cfs � CT
sf .

We can get Eq. 15 by inserting Eqs 13, 14 into Eq. 9.

Hp � ω2ρGS−1Cfsu + pi. (15)
Equations 10, 11, 15 can be connected to form a equation system, as
shown in Eq. 16.

K + iωC − ω2M −Csf

−ω2ρGS−1Cfs H
[ ] u

p
{ } � fs

pi
{ }. (16)

The direct iterations on Eq. 16 converge rather slowly, and
directly solving the system equation would demand far more
computational power and storage space. We present the
following method as an alternative to utilizing an iterative solver
to resolve the above non-symmetric linear equation. The coupled
boundary element equation (6) shown in Eq. 17 may be obtained by
putting Eq. 12 into Eq. 15.

Hp − GWCsfp � GWfs + pi,
W � ω2ρS−1CfsA

−1,
A � K + iωC − ω2M.

(17)

By using a sparse direct solver, the equation linear system in Eq. 17
could be solved. To speed up the solution, FMM and the Generalized
Minimum Residual (GMRES) iterative solver are used.

In this study, Loop subdivision is introduced in the model
discretization in order to realize the FEM-BEM coupling and the
ensuing sensitivity analysis.

3 Sensitivity analysis for shape design

Finding the optimum design parameters specifying the
intended form of the given structure under specified
restrictions is the aim of shape optimization. Calculating the
gradients of stated cost functions is done using shape design
sensitivity analysis. The direction in which to look for the best
values of the design variables may then be decided using the
acquired gradients. As a result, the first and most crucial phase
in the design and optimization of acoustic shapes is often
acoustic form sensitivity analysis [72,77]. The direct method
utilizes the chain rule of differentiation to compute the
sensitivity of the performance function. This process begins
with determining the sensitivity of the variables before
proceeding to compute the performance function sensitivity.
Because it is so directly tied to the analytical process, this
strategy is quite popular.

By differentiating Eqs 5, 8 with respect to any arbitrary design
variable, assuming that the boundary Γ is smooth around the source
point x, we can derive Eqs 18, 19.

FIGURE 2
The sphere model and its mesh plot. (A) The sphere model. (B)
Mesh of the sphere model.

Csf is coupling matrix

p is fluid nodal pressure

Csfp is acoustic load

fs is structural load

Ns is interpolation function for structural domain

Nf is interpolation function for fluid domain

n is external normal direction of the structural surface

Γ is interaction surface between the structural and fluid domains
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FIGURE 3
Sound pressure and sensitivity at (10,0,0) for spherical shell
model. (A) Sound pressure at (10,0,0). (B) Sensitivity to radius at
(10,0,0). (C) Sensitivity to thickness at (10,0,0).

FIGURE 4
Sound pressure and sensitivity at (20,0,0) for spherical shell
model. (A) Sound pressure at (20,0,0). (B) Sensitivity to radius at
(20,0,0). (C) Sensitivity to thickness at (20,0,0).
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1
2
_p x( ) � ∫Γ

_G x, y( )q y( ) − _F x, y( )p y( )[ ]dΓ y( )
+∫Γ G x, y( ) _q y( ) − F x, y( ) _p y( )[ ]dΓ y( )
+∫Γ G x, y( )q y( ) − F x, y( )p y( )[ ]d _Γ y( ).

(18)

1
2
_q x( ) � ∫Γ

_∂G x,y( )
∂n x( ) q y( ) − _∂F x,y( )

∂n x( ) p y( )[ ]dΓ y( )
+∫Γ

∂G x, y( )
∂n x( ) _q y( ) − ∂F x, y( )

∂n x( ) _p y( )[ ]dΓ y( )
+∫Γ

∂G x, y( )
∂n x( ) q y( ) − ∂F x, y( )

∂n x( ) p y( )[ ]d _Γ y( ).
(19)

For two dimensional problems, we have Eq. 20.

_G x, y( ) � −ik
4
H 1( )

1 kr( ) _r,

_F x, y( ) � −ik
4
H 1( )

1 kr( ) _yj − _xj( )nj y( )
r

+ r,j _nj y( )⎡⎢⎣ ⎤⎥⎦
+ik

2

4
H 1( )

2 kr( ) _rr,jnj y( ),
_r � r,j _yj − _xj( ).

(20)

For three dimensional problems, we have Eq. 21.

_G x, y( ) � − eikr

4πr2
1 − ikr( ) ∂r

∂yi
_yi − _xi( ),

_F x, y( ) � eikr

4πr3
3 − 3ikr − k2r2( ) ∂r

∂n y( ) ∂r

∂yj
− 1 − ikr( )nj y( )[ ] _yj − _xj( )

− eikr

4πr2
1 − ikr( ) ∂r

∂yi
_ni y( ),

_r � r,j _yj − _xj( ).
(21)

The singular boundary integrals introduced by Eqs 18, 19 can be
computed directly and efficiently using the Cauchy

FIGURE 6
The submarine model.

FIGURE 5
Sound pressure and sensitivity at (40,0,0) for spherical shell
model. (A) Sound pressure at (40,0,0). (B) Sensitivity to radius at
(40,0,0). (C) Sensitivity to thickness at (40,0,0).
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principal value and the Hadamard finite part integral
method [72].

By differentiating Eq. 17 with respect to the design variable, the
sensitivity analysis for shape design using the coupling FEM-BEM
can yield Eq. 22.

H _p − GWCsf _p � _GX + GY − _Hp,
X � W Csfp + f s( ),
Y � _W Csfp + f s( ) +W _Csfp + _fs( ),
_W � ω2ρ _S−1CfsA

−1 + S−1 _CfsA
−1 + S−1Cfs

_A−1( ).
(22)

Since the matrices are full and asymmetric, it takes a lot of
computing time to directly solve Eq. 22 using conventional BEM.
However, it is possible to speed up the computational process using
FMM and GMRES. The matrix-vector products in Eqs 17, 22 are
accelerated using wideband FMM, and the FEM-BEM coupling
formula and the associated sensitivity equation are solved using the
iterative solver GMRES.

4 Numerical examples

Several numerical tests are conducted to examine the validity
and dependability of the established methodology in this section. In
each case, the FEM uses shell elements whereas the discontinuous
linear boundary elements are applied for acoustic analysis. All
calculations are performed using a customized internal Fortran
95/2003 algorithm.

4.1 Sphere with an incoming sound wave

This section examines the sound field of an thin
spherical shell that is centered at location (0, 0, 0), while
accounting for an incoming sound wave with an amplitude
of 1.0 in positive x direction, as shown in Figure 2. The
following are the materials and geometrical elements used in
this example.

FIGURE 8
Sound pressure and sensitivity at point (100,0,0) for submarine
model. (A) Sound pressure at (100,0,0). (B) Sensitivity to thickness at
(100,0,0).

FIGURE 7
Sound pressure and sensitivity at point (50,0,0) for submarine
model. (A) Sound pressure at (50,0,0). (B) Sensitivity to thickness at
(50,0,0).
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Figure 3 gives the results at position (10, 0, 0). Figure 3A displays
the analytical and numerical solutions. The GMRES implementation
with the wideband FMM technique is employed to accelerate the

solution of linear systems without preconditioning. The discretized
thin-shell model consists of 25,392 elements. The wideband FMM
approach keeps the high accuracy of BEM, as the numerical and
analytical answers present the good agreement which can seen in the
figure.

Figures 3B, C shows, respectively, how sensitive the
structure’s surface is to sound pressure in relation to the
radius and thickness of the sphere. Basically, these graphs
demonstrate a good agreement between the analytical and
numerical results. Figure 3 shows that the sound pressure
sensitivity grows significantly at resonance peaks, and the
lower frequency range is crucial for this spherical shell
model because the sound pressure there is substantially
higher and more responsive to thickness and radius.

FIGURE 9
Sound pressure and sensitivity at point (150,0,0) for submarinemodel. (A) Sound pressure at (150,0,0). (B) Sensitivity of sound pressure to thickness at
(150,0,0).

Radius 4.0 m

thickness 0.04 m

elasticity modulus 2.10 × 1011 Pa

Poisson’s ratio 0.3

structural density 7.86 × 103 kg/m3

fluid density 1.00 × 103 kg/m3

sound velocity in water 1.482 × 103 m/s
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The results are shown in Figures 4, 5, respectively, for the
positions (20, 0, 0) and (40, 0, 0). The curves for the same
physical quantity at various locations, as shown in Figures 3, 4,
5—Figures 3A, 4A, 5A for sound pressure, Figures 3B, 4B, 5B for
sensitivity to radius, and Figures 3C, 4C, 5C for sensitivity to
thickness—all show a similar pattern of fluctuation.

4.2 Submarine model under an incoming
sound wave

This section focuses on the underwater submarine model’s
scattering sound field when influenced by an incoming plane
wave [78]. The plane wave propagates predominantly along the
x-axis and has an incidence wave amplitude of 1.0 Pa. The thickness
of the submarine model is 0.01 m, and the sub has a length of 9.2 m.
The origin of the coordinate is in the middle of the axial length of the
submarine, and the x-axis is along the axial length of the submarine.
The submarine model constructed using Loop subdivision scheme is
shown in Figure 6, which has a total of 19,016 elements.

Several calculation points are selected. Figure 7A gives the sound
pressure changing with frequency at point (50, 0, 0) and Figure 7B
illustrates the changing of its sensitivity to thickness. These two data
demonstrate that the lower frequency range, given the existing
material and geometrical parameters, is a vital region for this
submarine model, as the sound pressure is noticeably greater and
more sensitive to thickness there.

The computation of sound pressure at location (100, 0, 0) and
(150, 0, 0) is shown in Figures 8A, 9A, respectively. Figures 8B, 9B
depicts the sensitivity of sound pressure at point (100, 0, 0) and (150,
0, 0) to shell thickness, respectively. Figures 7A, 8A, 9A show
comparable patterns in the sound pressure curves at the places
(50, 0, 0), (100, 0, 0), and (150, 0, 0). As seen in Figures 7B, 8B, 9B,
the sensitivity of sound pressure at (50, 0, 0), (100, 0, 0), and (150, 0,
0) also demonstrates a similar pattern. Additionally, and in line with
predictions, the sound pressure and its sensitivity to thickness both
decline with increasing distance from the structure.

5 Conclusion

The simulation of acoustic-structure interaction and sensitivity
analysis are conducted using a coupling approach that combines the
Finite Element Method (FEM) and Boundary Element Method
(BEM). FEM is applied to model structural elements of the issue.
To eliminate the need for meshing the acoustic domain, the
boundary of the structure being analyzed is discretized using the
BEM. FMM is applied to expedite the matrix-vector output.
IGABEM enables direct structural-acoustic interaction and
sensitivity analysis from CAD models without the requirement

for meshing, thereby eliminating any geometric errors. For
coupled structural-acoustic systems, equations are derived for the
sound pressure sensitivity. To prove the accuracy and practicality of
the recommended strategy, calculation examples are given. The
recommended method may be used to quantitatively predict how
design parameters would affect the sound field in real-world
scenarios.

Reduced order isogeometric boundary element methods for
CAD-integrated shape optimization of electromagnetic scattering.
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Research examining a spatial
autocorrelation imaging method
based on stationary
characteristics of microtremors

Qingling Du1,2*, Yanhui Pan1, Kuanyao Zhao1 and Denghui Gao1

1School of Architectural Engineering, Huanghuai University, Zhumadian, China, 2Henan International
Joint Laboratory of Structural Mechanics and Computational Simulation, Huanghuai University,
Zhumadian, China

The spatial autocorrelation method is an important method for extracting the
velocity dispersion curve from microtremor data. However, site data typically
cannot strictly meet spatial and temporal stationary feature, and this greatly
affects the accuracy of the calculation results of thismethod. Therefore, based on
the cosine similarity theory, this study deduces the applicability of the spatial
autocorrelation method to unidirectional Rayleigh surface waves and again
verifies the applicability of this method to spatially and temporally stationary
Rayleigh waves. The numerical simulation results demonstrate that the velocity
dispersion curve can be extracted from a one-way Rayleighwave using the spatial
autocorrelation method to obtain an accurate geological profile, whereas the
superposition of finite groups of Rayleigh waves in different directions cannot
yield an accurate geological profile. In this study, we quantitatively analyzed the
impact of the spatial autocorrelation method on the extraction of the velocity
dispersion curve when the signal could not meet the characteristics of temporal
and spatial stationarity through numerical simulation. The results reveal that the
velocity-dispersion curve can be accurately extracted only when the signal
satisfies both spatial and temporal stationarity. When a signal is closer to the
spatial and temporal stationary characteristics, this indicates that a more accurate
velocity dispersion curve can be extracted. These results provide a reference for
improving the calculation accuracy of spatial autocorrelation methods.

KEYWORDS

microtremors, Rayleigh wave, numerical simulation, SPAC method, velocity dispersion

1 Introduction

Microtremors are ubiquitous in nature and include various linearly polarized waves
(body and longitudinal waves) and elliptically polarized Rayleigh surface waves [1–6]. It has
been observed that the Rayleigh surface waves in the far field are dominant, and the spectral
characteristics are closely related to the site changes [7]. This study provides a feasible basis
for geological exploration using micromotion Rayleigh surface waves. The micro-motion
signal contains rich information, including wide-frequency Rayleigh waves from 0.1 Hz to
tens of Hz, and the detection depth can also reach from a few meters to several thousand
meters. Therefore, researchers have begun to study the application of microtremor Rayleigh
wave signals in the context of geological engineering exploration. Seismic exploration using
a micromotion signal is termed the micromotion method and is also known as the
microtremor method. It is used to deduce the geological structure by studying the
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frequency spectrum, velocity dispersion, and particle motion of the
wave in the microtremors signal of the surface of the Earth. This
enables the micro-motion signal to be widely used in site evaluation,
engineering geophysics, and large-scale research examining the crust
and mantle such as the frequency wavenumber method (F-K), the
spatial correlation method (SPAC), the horizontal and vertical
component Purby method (HVSR), and others [8–13].

The spatial autocorrelation method is important for extracting
geological structural information using micromotion signals. This
method was first proposed by Aki (1957). The basic principle of this
method is to assume that the background noise fields incident in
different directions around the array possess stationary random
characteristics and the same phase velocity at the same frequency.
Under this assumption, the cross-correlation of the spatial
coordinates of the noise signal (vertical component) is received
by two stations at different positions, and the azimuth average of the
station pairs at different positions and the same distance is then
calculated to obtain the spatial autocorrelation coefficient after the
azimuth average. The spatial autocorrelation coefficient was used to
fit the zero-order Bessel function of the first type, to calculate the
phase velocity at different frequencies, and to obtain the dispersion
curve of the surface wave. However, in theory, this method requires
that geophones be uniformly distributed around the circumference,
and this cannot be achieved in actual data acquisition [3]. In 1983,
Okada and Sakajiri studied the collection and arrangement of spatial
autocorrelation methods and demonstrated the rationality of a
regular triangular arrangement. These research results promote a
leap in the spatial autocorrelation method in practical applications
[14]. Cho et al. analyzed the feasibility of the spatial autocorrelation
method in 2008 and studied the error caused by the influence factors
on the correlation coefficient, thus providing a theoretical basis for
optimizing the results of the method [15]. In 1973, Cox et al.
demonstrated the equivalence relationship between the spatial
autocorrelation coefficient and the time-domain cross-correlation
spectrum in Aki’s spatial autocorrelation formula method [16].
Horike, Matsushima, Okada, Tokimatsu, and others studied the
method of spatial autocorrelation to extract the velocity dispersion
curve from the microtremor signal [17–22]. Okada introduced a
theoretical derivation of microtremor spatial autocorrelation and its
application in a literature review published in 2003 [22]. Asten
studied the inversion of spatial autocorrelation velocity dispersion
and the effects of array mode and signal incidence direction on
velocity dispersion [23–25]. Luo studied the application of a spatial
autocorrelation method to extract velocity dispersion from one-way
Rayleigh surface waves [26]. However, it is difficult to arrange
circular arrays in complex terrain sites. To adapt SPAC to more
complex site conditions, Ling and Okada proposed the extended
spatial auto-correlation (ESPAC) method in 1993, improved the
SPAC method geophone array, allowed the diversity of array
layouts, and designed linear array, T-type, and L-type geophone
arrays [27]. Ohori (2002) and Parolai used the ESPAC method to
detect underground structures and achieved good results [28–30].
Although its effect is not as accurate as that of the circular array, it
can make the geophone array shape not limited to the circular array
and promote further development of the spatial sub-correlation
method. Cho et al. used numerical simulations to study the
characteristics of the spatial autocorrelation method in the case
of a full-wave field. These results imply a possible improvement in

the accuracy of the microtremor array survey analysis for velocity-
structure interference by applying the full-wave theory to the peak
phase velocity [31]. Ikeda et al. corrected the correlation coefficient
using the imaginary portion of the signal to improve the accuracy of
the velocity dispersion curve and achieved good results in field data
applications [32, 33].

Although this method has been extensively studied by many
scholars and is widely used in engineering, most of the research
focuses on improving the accuracy of the velocity dispersion curve
using methods such as virtual spectral density, the number of
circular geophones, nested geophones, changing the shape of
geophones, joint active source exploration, and further mining of
useful information in the microtremor signal. However, many
problems remain associated with this method. The fundamental
reason for this is that the theoretical assumption of this method is
that the micromotion signal possesses the characteristics of space
and time stability, and the geophones are densely distributed in the
circumference. However, these two preconditions cannot be strictly
met in practical applications. Skaji studied the time-stationary
characteristics of a microtremor signal using the frequency
distribution of the amplitude of the microtremor signal and its
autocorrelation coefficient. The research demonstrates that
microtremor data with a sampling time of 10 min are stable over
time, but stationary characteristics cannot be maintained when the
sampling time is greater than 3 hours. Additionally, the noise
interference between nearby and other vehicles breaks the
stationary state. The spatial stability must consider the spatial
interval of data acquisition [7]. Toks et al. (1964) observed that
the micromotion signal in the range of 1–6s s contains multiple
directional signal sources, and the short-period micromotion signal
was unstable for more than 5 or 10 min. It can be observed that the
conditions required for the microtremor signals of different
frequency bands to meet the stationary characteristics are
different [34]. This causes the velocity dispersion curve extracted
using this method to be erroneous.

In summary, research examining spatial autocorrelation
methods has primarily focused on arrangement, data acquisition,
and joint inversion. Although current research focused on spatial
autocorrelation is fruitful and has been applied to some practical
projects, the problem of the accuracy of the velocity–dispersion
curve extraction of this method has still not been perfectly solved.
This significantly limits the application of this method in
engineering. However, few studies have been conducted
examining the influence of the time- and space-stationary
characteristics of data on the velocity dispersion curve. Based on
the cosine similarity theory and numerical simulations, this study
analyzes the influence mechanism of time and space stationarity on
the spatial autocorrelation method to extract the velocity dispersion
curve from the perspective of theory and simulation, thus providing
a reference for further research on the calculation accuracy and
application range of this method.

2 Methods

In this study, the spatial autocorrelation method was derived
based on the cosine similarity theory that measures the similarity
between two vectors using the cosine value of their angle. The
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similarity between the two vector directions can be determined using
the cosine of the angle between the two vectors. When two vectors
possess the same direction, the cosine similarity value is 1, and when
the angle between two vectors is 90°, the cosine similarity is zero.
When two vectors point in opposite directions, the cosine similarity
value is −1. This result is independent of the vector length and is
related only to the direction of the vector. This method of measuring
the vector similarity is also applicable to multi-dimensional vectors.

As any signal of finite length is discretized into finite points
when received, this study addresses each segment of the signal as a
multi-dimensional vector, and the cosine similarity of the two
vectors can be expressed by formula (1).

cos θ( ) � ∑n
k�1x1kx2k�������∑n

k�1x1k2
√ �������∑n

k�1x2k2
√ (1)

The more similar the two vectors, the smaller the angle is
between them. The larger the absolute value of the cosine, the
more negative is the value, and the two vectors are negatively
correlated. The inner product of the vector is expressed as follows:

cos θ( ) � X · Y
X| | · Y| | (2)

Where, X � (x1,x2,/xn,) and Y � (y1,y2,/yn,).
If vectors X and Y are points on functions f(t) and g(t),

respectively, the sampling rate is sufficient. Eq. 1 can be written as:

cos θ( ) � ∑n
k�1f(tk)g(tk)���������∑n

k�1f(tk)2
√ ���������∑n

k�1f(tk)2
√ (3)

The definite integral of function f(x) in the definition domain
(a, b) can be expressed as follows:

lim
n→+∞

∑n

i�1f a + i
n

b − a( )[ ] b − a
n

� ∫b

a
f x( )dx (4)

According to the definition of the definite integral, when the
sampling interval is infinite and the number of sampling points n
tends to infinity, the summation formula can be expressed as a
definite integral:

cos θ( ) �
lim
n→+∞

T
n∑n

k�1f(tk)g(tk)
lim
n→+∞

����������
T
n∑n

k�1f(tk)2
√ ����������

T
n∑n

k�1g(tk)2√

�
∫−T

2

T
2 f t( )g t( )dt����������∫−T

2

T
2 f t( )2dt

√ ��������∫T

0
g t( )2dt

√ (5)

According to the Fourier transform, any seismic wave signal can be
obtained by the harmonic superposition of different frequencies and
amplitudes. We first assume that f(t) � cos (ωt), g(t) �
cos (ωt + Δδ) is a function on [-T/2, T/2],We then assume thatf(t) �
cos (ωt) and g(t) � cos (ωt + Δδ) are two functions on the interval
[-T/2, T/2]. These two functions are cosine waves with different phases
that propagate in the same direction. At this time, the cosine similarity
of functions f (t) and g (t) can be rewritten from Formula (5) as follows:

cos θ( ) �
∫T

2

−T
2
cos ωt( ) cos ωt + Δδ( )dt��������������∫−T

2

T
2 cos ωt( )2dt

√ ������������������∫−T
2

T
2 cos ωt + Δδ( )2dt

√ (6)

We can simplify Equation 6 to yield:

cos θ( ) �
∫T

2

−T
2
cos ωt( ) cos ωt + Δδ( )dt������������

∫T
2

−T
2
cos ωt( )2dt

√ �����������������∫T
2

T
2 cos ωt + Δδ( )2dt

√

�
cos Δδ( ) · t

2 + 1
4ωsin

2 ωt( )( )∣∣∣∣∣T2−T
2

− sin Δδ( ) · 1
2ωsin

2 ωt( ))∣∣∣∣∣T2−T
2��������������

t
2 + 1

4ωsin
2 ωt( )∣∣∣∣T2−T

2

√ �������������������
t
2 + 1

4ωsin
2 ωt + Δδ( )∣∣∣∣T2−T

2

√

� cos Δδ( ) (7)

The integral in formula (7) is only related to vector θ,
specifically:

cos θ( ) � cos Δδ( ) (8)

It can be observed from Equation 8 that when the functions
f(t) and g(t) are regarded as vectors, θ is the angle of the
n-dimensional vector, and cos(θ) is the vector similarity. If the
functions f(t) and g(t) are regarded as two cosine functions,
θ is the phase difference between two cosine functions.
According to the above conclusion, if the functions f(t) and
g(t) are regarded as the signals of cosine waves received by two
points A and B on the free surface of a homogeneous half space
assuming that the distance between two points A and B is
x, the wave propagation velocity in the medium of the half-
space is v, and the wave propagates along direction AB. The
following equation can be established based on the phase
difference:

θ � ωx
v

� 2πf x
v

(9)

Any signal in nature can be regarded as a superposition of
multiple sinuses or cosines of different frequencies. Eq. 6
represents the similarity of the single-frequency harmonic

signals, and 1
T∫T

2

−T
2
f(t)g(t)dt represents the energy spectrum

of the two single-frequency signals. The energy of a single
frequency is the energy spectral density, and the power is the
power spectral density. Therefore, if signals f(t) and g(t) are

FIGURE 1
Plane wave and circular geophones array.
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broadband signals containing more than one frequency, (6) can
be rewritten as follows:

cos θ f( )( ) � ∫T
2

−T
2
f t( )g t( )dt���������

∫T
2

−T
2
f t( )2dt

√ ����������
∫T

2

−T
2
g t( )2dt

√

�
1
T∫T

2

−T
2
f t( )g t( )dt����������

1
T∫T

2

−T
2
f t( )2dt

√ ����������
1
T∫T

2

−T
2
g t( )2dt

√ (10)

The numerator and denominator correspond to the spectral
density functions. The left side of (10) is the correlation coefficient of
signals f(t) and g(t). This is also a formula for calculating the

velocity of Rayleigh surface waves in one-dimensional arrangement
according to the spatial autocorrelation method.

Two-dimensional spatial geophones are arranged in a circular
manner, and a triangular arrangement as an example is presented
in Figure 1.

When a unidirectional plane Rayleigh surface wave is
transmitted, if there are only two AB geophones arranged along
the wave propagation direction, the velocity dispersion curve can be
calculated according to (11).

cos
2πf R
v

( ) �
∫T

2

−T
2
f t( )g t( )dt���������∫T

2

−T
2
f t( )2dt

√ ����������∫T
2

−T
2
g t( )2dt

√ � ρ f( ) (11)

FIGURE 2
Homogeneous half-space model.

FIGURE 3
Arrangement of source and geophone. (A) Arrangement of geophone; (B) arrangement of source.

TABLE 1 Elastic parameters of medium.

Media properties Longitudinal wave velocity VP(m/s) Shear wave velocity VS(m/s) Density ρ (g/cm3)

Media 1,000 m/s 530 m/s 2000 g/cm3
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As presented in the figure, when AB is not arranged along the
wave propagation direction, Eq. 11 cannot accurately provide the
velocity dispersion curve. For the plane Rayleigh surface wave signal,
the signal received at point B is the same as that at point B Therefore,
the following formula can be used to calculate the velocity dispersion
curve from the signals at points B and D:

ρB f ,φ( ) � cos
2πf
v

Rcos φ( )( ) (12)

When the geophones are uniformly and densely arranged on the
circumference, the data of each point on the circumference can be
processed in the samemanner as for that of B. The following formula
can be obtained by averaging the results of all the points:

ρ f( ) � 1
2π

∫2π

0
ρ f ,φ( )dφ � 1

2π
∫2π

0
cos

2πf
v

Rcos φ( )( )dφ
� J0

2πf R
v

( ) (13)

This conclusion is the same as that of the spatial autocorrelation
method under the conditions of spatial and temporal stationarity in
which the formula for calculating the correlation coefficient is as follows:

ρ r, f( ) � π

2
∫2π

0

Re S r, θ, f( )[ ]�������������
Sr r, f( )S0 0, f( )√ dθ, (14)

Where Sr(r, f) and S0(0, f) are the self-power spectrum of the
seismic record at the circumference and center, respectively, and
S(r, θ, f) is the cross power spectrum of the seismic record on the
circumference and the seismic record at the center of the circle.

A single-direction Rayleigh surface wave is calculated using a
circular spatial autocorrelation array. When the signal meets the
spatial and temporal stationary characteristics, the spatial

autocorrelation method can be used to calculate the dispersion
curve. However, in actual received signals, it is difficult to meet the
requirements of time and space stationarity in many cases. Therefore,
this study considers a situation in which the signal does not meet the
stationarity characteristics in the later numerical simulation portion of
the paper. It is likely that a precise spatial autocorrelation exploration
can be realized by combining stationary and nonstationary signals.

3 Numerical simulation

The finite element method has a wide range of applications in
the simulation of acoustic and seismic wave propagation [35–38].
This section primarily focuses on three aspects that include the
establishment of a numerical model, the extraction of the velocity
dispersion curve of a single group of Rayleigh waves in a
homogeneous half-space, and the extraction of the velocity
dispersion curve of multiple Rayleigh waves.

3.1 Numerical model

First, the numerical models and parameters used in the velocity-
dispersion simulation are introduced. Considering the far-field
characteristics of the microtremor signal, a plane-wave source
was used for numerical simulation. Each plane-wave source is
composed of a linear array of point sources. According to
Huygens’ principle, the wavefront of a Rayleigh wave radiated by
a linear array of point sources is of the plane type. In this study, the
plane-wave field was simulated in this manner. The model grid was
divided into 2m, and the 20 Hz dominant frequency of the Rick
wavelet was selected as the source. The circular array radius of the
geophones was 2m, and 15 survey lines were set with each side-line

FIGURE 4
Arrangement of source and geophone. (A) the vertical section wave field; (B) the horizontal section wave field.
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FIGURE 6
Multi-direction Rayleigh surface wave simulation results of the homogeneous half-space model. (A) vertical component seismic records of single
circular array; (B) the vertical velocity profile of the centerline; (C) the horizontal velocity profile at 20m from the free surface.

FIGURE 5
Single source simulation results of homogeneous half-space model; (A) vertical component seismic records of single circular array; (B) the vertical
velocity profile of the centerline; (C) the velocity horizontal slice at 20m from the free surface.
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4m apart. The basic model is presented in Figure 2 and indicates
only a circular geophone array on the central side.

This study primarily focused on two aspects that included the
velocity profile characteristics of the half-space model and the
influence of the multi-directional Rayleigh surface wave on the
spatial autocorrelation method to extract the velocity dispersion
curve. According to different research contents, different sources
and geophone distributions were set in this study as presented in
Figure 3. All of the data related to the velocity profile in this study are
derived from the layout in Figure 3A. Among them, Rayleigh surface
wave data with two propagation directions were additionally loaded
with linear sources as presented in Figure 3A. Relevant research data
for the velocity dispersion curve of a single array were derived from
the layout presented in Figure 3B. The multi-source data revealed a
continuous increase in linear sources around the circular array as
presented in Figure 3B. The vertical distance between the linear
sources and the circular array was the same. The difference in the
wave arrival times was determined by adjusting the shooting time.
Table 1 presents the elastic parameters of the half-space model.

3.2 Application analysis of numerical
simulation

First, the wave field distribution and velocity dispersion
characteristics of a single-source Rayleigh wave inhomogeneous
half-space were analyzed. To clearly reveal the distribution of the

wave field excited by a plane source in a homogeneous half-space, we
extracted snapshots of the vertical wave field along the central line
and the horizontal wave field on the free surface as presented in
Figure 4. The vertical wave field snapshot (Figure 4A) clearly
distinguishes the S wave (shear waves), P wave (longitudinal
waves), and R wave (Rayleigh surface waves) after 0.2s. After
0.35s, the reflected wave of P wave reflected from the bottom
boundary appears below. To prevent the interference caused by
boundary reflection, the operation time was set to be less than the
time required for the reflected wave to reach the ground. Figure 4B
presents a snapshot of the wave field in the horizontal section. The P
and R waves can also be clearly distinguished after 0.2s. As the
energy of the P wave is weak, and the diffusion speed is faster than
that of the Rayleigh surface wave, the color code in the figure is
shallow. The wave field distribution of the plane-wave source in the
homogeneous model is clearly presented.

According to the needs of the experiment, the sampling
interval of the homogeneous half-space model data was
0.0005s, the sampling time was 0.7s, and the seismic records
of 15 survey lines were obtained. Figure 5A presents the data of an
array in the central line, whereR1, R2, and R3 are the three
vertical component seismic records uniformly distributed on the
circumference of the array, and R0 is the vertical component
seismic record at the center of the circle. It can be observed from
the seismic records that there was no interference (similar to the
coda and refraction waves) before and after the
primary wave peak.

FIGURE 7
Same direction Rayleigh surface wave with different time intervals. (A) a single-array Rayleigh wave vertical component seismic record with an
interval of 0.253s; (B) the spectrum diagram of four groups of seismic records; (C) the velocity dispersion curve of each group of seismic records.
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Next, we analyzed the velocity dispersion of the homogeneous
half-space data. According to this theory, the spatial autocorrelation
method calculates the velocity dispersion curve using the
relationship between the correlation coefficient and the first zero-
order Bessel function. A velocity-dispersion curve can be obtained if
an accurate correlation coefficient is obtained. The correlation
coefficient and velocity dispersion curve were calculated using
(13) and 14, respectively.

The spatial autocorrelation method was used to calculate the
velocity-dispersion curve of each measuring point in the
15 measuring lines. The corresponding velocity profile was
obtained by collecting the dispersion curves. Figure 5B presents
the vertical velocity profile obtained from the seismic records of the
central line. The depth of the profile was converted to a half
wavelength. Figure 5C presents the calculation results of the
seismic records of the 15 survey lines and the construction of a
horizontal section with a half-wavelength of 20 m. The two sections
clearly reflect the homogeneous properties of the half-space. The
calculated Rayleigh wave velocity was also consistent with the
theoretical Rayleigh wave velocity, where Vs .= 490 m/s. This
indicates that the spatial autocorrelation method can be used to
calculate the velocity dispersion curve of a single set of Rayleigh
waves and that the seismic records obtained by the numerical
simulation software and method are reliable.

When the micromotion signal satisfies the spatial and temporal
stationary characteristics, the velocity dispersion curve obtained by

the spatial autocorrelation method can truly reflect the velocity
property of the medium, and the theoretical and practical
applications have been verified. The above numerical simulation
verified that a single-plane Rayleigh surface wave can also reflect the
medium properties of a homogeneous half-space. However, the
composition of the surface waves of microtremor signals is
complex and typically contains multiple sets of surface waves.
Therefore, considering the superposition of two sets of Rayleigh
surface waves as an example, this study uses a numerical simulation
method to study a situation in which the signal contains two sets of
Rayleigh surface waves with mutually perpendicular propagation
directions. Two sets of plane sources were set in the homogeneous
half-space model with one along the central line direction and the
other perpendicular to the central line direction. The simulation
results are presented in Figure 6.

Figure 6A presents the vertical component of the seismic record
of one of the circular array geophones. Both the vertical (Figure 6B)
and horizontal velocity profiles (Figure 6C) exhibit obvious high-
and low-velocity anomalies. As the alternation of high- and low-
velocity anomalies is relatively evident with frequency, the
anomalies in the fixed-frequency wave velocity distribution
profile (Figure 6C) were more evident than were those in the
vertical profile (Figure 6B). However, regardless of the horizontal
or vertical velocity profiles, the velocity distribution was significantly
different from the theoretical velocity distribution of the
homogeneous half-space model. This also indicates that the

FIGURE 8
Rayleigh surface waves with different propagation directions at the same time interval. (A) a single array Rayleigh wave vertical component seismic
record with opposite propagation direction; (B) frequency spectrum of four groups of seismic records; (C) velocity dispersion curve of each group of
seismic records.

Frontiers in Physics frontiersin.org08

Du et al. 10.3389/fphy.2024.1351018

40

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1351018


credibility of the velocity dispersion curve extracted by the spatial
autocorrelation method is significantly reduced when the Rayleigh
surface wave superposition in different directions does not satisfy
the stationary condition.

From the above numerical simulation experiment results, it can
be observed that a single set of Rayleigh surface waves can accurately
extract the velocity dispersion curve through the spatial
autocorrelation method, but the nonstationary superposition of
multiple sets of Rayleigh surface waves may affect the calculation
of the velocity dispersion curve. The following section discusses the
influence of nonspatial and time-stationary signals superimposed by
multiple groups of surface waves on the velocity dispersion curve of
the spatial autocorrelation method.

4 Analysis of influencing factors of the
velocity dispersion curve

When the micromotion signal meets the requirements of spatial
and temporal stationarity, the spatial autocorrelation method can be
used to calculate the velocity dispersion curve, and this has been
confirmed by Aki’s theory and has been widely applied by many
scholars [10]. Concurrently, through the theoretical derivation and
simulation results in the previous section, it can be observed that the
spatiotemporal autocorrelation method is also valid when only a
single-plane Rayleigh wave is accepted by a circular array. However,
many scholars have demonstrated that it is difficult for ground

pulsation signals to satisfy stationary characteristics in space and
time. It is necessary to consider the length and spatial distance of a
section of the signal, particularly for surrounding cities and high-
speed railways, as some frequency-band signals exhibit obvious
directionality. In these cases, the traditional spatial
autocorrelation method cannot be used to calculate the velocity-
dispersion curve. Specifically, when the Rayleigh surface wave
superposition in different directions in the signal does not satisfy
the spatial and temporal stationary characteristics, the velocity
dispersion cannot accurately analyze the characteristics of
the medium.

This section primarily studies the situation in which the signal
does not meet the stationary characteristics of space and time and
contains multiple sets of Rayleigh surface waves as well as the
influence of the non-stationary state of the microtremor signal
on the spatial autocorrelation method to extract the velocity
dispersion curve. The stationary characteristics of time and space
are primarily reflected in the arrival time interval and propagation
direction of different waves in the signal. Focusing on these two
characteristics, two groups and multiple groups of Rayleigh wave
superpositions were discussed. As the purpose of the experiment was
to analyze the influence of the characteristics of the signal itself on
the velocity dispersion curve, all the experimental data were from the
homogeneous model. There was no interference caused by the
difference in geological structure, and only the Rayleigh surface
wave was retained by filtering when processing the data. The
experimental half-space model is presented in Figure 2 and

FIGURE 9
Reverse Rayleigh surface wave superposition at different time intervals. (A) a single-array Rayleigh wave vertical component seismic record with an
interval of 0.253s; (B) frequency spectrum of four groups of seismic records; (C) velocity dispersion curve of each group of seismic records.
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Figure 3B As the data were too large, only a single circular array was
arranged in the center of the model in this section. The array
comprises four sensors. The following describes the numerical
experimental analysis process and research results presented in
this section.

4.1 Two groups of Rayleigh wave
superposition

This section primarily considers the influence of two groups of
Rayleigh surface waves superimposed at different time intervals or in
different directions on the spatial autocorrelation velocity-
dispersion curve. First, the influence of two sets of Rayleigh
waves propagating in the same direction on the velocity-
dispersion curve was studied. In this study, the same source was
used for two consecutive shots within 2s with time intervals of 0.25,
0.251, 0.252, and 0.253s to obtain four sets of data. Each dataset
contained two Rayleigh surface waves that propagated in the same
direction. One group of seismic records is presented in Figure 7A,
and Figure 7B presents the spectral distribution of the
seismic records.

Figure 7A presents four vertical-component seismic records of
the circular array and center point, including two groups of co-
propagating Rayleigh surface waves. It can be observed from

Figure 7B that the effective frequency band of seismic records is
10 Hz–30 Hz, and there is a zigzag fluctuation that is caused by the
time-shift characteristic of Fourier transform. Coherent phase
cancellation occurred when the Rayleigh wave Fourier transform
was superimposed. The velocity-dispersion curve was calculated
using four sets of data as presented in Figure 7C The blue, black, red,
and green curves in the figure correspond to the velocity dispersion
curves of the two sets of seismic records with arrival intervals of 0.25,
0.251, 0.252, and 0.253s for the Rayleigh surface waves in the data. It
can be observed from the figure that within the effective frequency
band, the four curves are almost identical, and this can reflect the
Rayleigh surface wave velocity of 490 m/s in the homogeneous half-
space model. This also demonstrates that the superposition of two
Rayleigh surface waves in the same direction does not affect the
spatial autocorrelation method used for calculating the
velocity–dispersion curve. The arrival times of the two sets of
Rayleigh surface waves did not affect the velocity dispersion.

Next, we studied the influence of the superposition of two sets of
Rayleigh surface waves in different directions on the dispersion
curve. We fixed a plane source and continuously adjusted the angle
between the other source and the fixed source to obtain four groups
of seismic records of two Rayleigh surface wave superpositions with
the angles of 0°, 45°, 90°, and 180° in the propagation direction.

Figure 8A presents a single array Rayleigh wave vertical
component seismic record with the same time interval and

FIGURE 10
Multiple sets of Rayleigh surfacewaves in different directions with equal time intervals. (A) the single array Rayleigh wave vertical component seismic
record when 24 groups of waves are superpositioned; (B) the spectrum diagram of four groups of seismic records; (C) the velocity dispersion curve of
each group of seismic records.
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opposite propagation direction, and Figure 8B corresponds to the
spectrum of two groups of superimposed Rayleigh wave propagation
directions with included angles of 0°, 45°, 90°, and 180°, respectively.
It can be observed that the spectrum of four groups of seismic
records is completely consistent, thus indicating that the coherent
cancellation of the spectrum of Rayleigh wave superposition is only
related to the time interval. The four curves (blue, black, red, and
green, respectively) represent the velocity dispersion curves when
the propagation directions of two groups of Rayleigh surface waves
differ by 0°, 45°, 90°, and 180°. Experiments confirmed that the
velocity dispersion curve of the superposition of two groups of
Rayleigh surface waves in the same direction is consistent with the
theoretical velocity. When the propagation directions of the two
groups of superimposed Rayleigh surface waves differed, the
velocity-dispersion curve periodically fluctuated around the
theoretical value. As presented in Figure 8C, the fluctuation
became increasingly intense with an increase in the difference in
direction. The experimental results demonstrate that Rayleigh
surface wave superposition in different directions affects the
velocity dispersion curve, and the degree of influence is related to
the included angle of the propagation direction.

Taking Rayleigh surface waves with opposite propagation
directions as an example, the effect of time interval on the
velocity dispersion curve of two groups of Rayleigh surface waves
with different propagation directions was studied. The plane sources
were set at the left and right ends of the model, and a circular array of
geophones was placed in the middle of the model. After the left

source was fired, the right source was fired with delays of 0.25, 0.251,
0.252, and 0.253 s. Four groups of seismic records are simulated as
presented in Figure 9A Figure 9B presents the spectra of the
corresponding seismic records. The spectral curves exhibit
periodic fluctuations. With a change in the time interval,
fluctuations appear and correspond to translation.

The blue, black, red, and green curves presented in Figure 9C
correspond to the velocity dispersion curves extracted from the two
sets of seismic records at intervals of 0.25, 0.251, 0.252, and 0.253s
for the Rayleigh surface wave in the data, respectively. The figure
indicates that the four groups of dispersion curves possess the same
fluctuation amplitudes and similar fluctuation trends. The difference
in time interval caused the wave to shift along the horizontal
direction. The results revealed that when two groups of Rayleigh
surface waves with different propagation directions were
superimposed, the arrival time interval of the Rayleigh surface
waves affected the velocity dispersion curve. Concurrently, it was
also observed that a higher frequency resulted in a higher fluctuation
frequency of the influence, and the internal influence mechanism
requires further study.

The above experimental results reveal that the superposition of
Rayleigh surface waves propagating in the same direction does not
affect the spatial autocorrelation method to extract the velocity
dispersion curve. If the two groups of waves are superimposed by
Rayleigh surface waves propagating in different directions, the
velocity dispersion curve fluctuates periodically around the
theoretical value, and the size of the time interval between the

FIGURE 11
Multiple sets of Rayleigh surface waves in the same direction at different time intervals. (A) a single array vertical component seismic record with
4 groups of Rayleigh surface wave intervals superimposed at different times; (B) the spectrum diagram of three groups of seismic records; (C) the velocity
dispersion curve of each group of seismic records.
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two Rayleigh surface waves also affects the velocity dispersion curve.
The wave phase of the dispersion curve changes with a change in the
time interval.

4.2 Multi-group Rayleigh surface wave
superposition

This section discusses the effects of changing the time interval
and spatial distribution of the source on the velocity dispersion curve
when multiple groups of Rayleigh surface waves are
superpositioned. First, the influence of increasing the number of
Rayleigh waves at equal time intervals on the velocity-dispersion
curve was analyzed. A circular array of geophones was placed in the
middle of the model, and four, eight, and 24 sources were loaded in
different directions. The sources are evenly distributed. Each source
was shot at equal time intervals of 0.25s. The seismic records of four,
eight, and 24 groups of Rayleigh surface wave superposition with
uniform distribution in the direction and equal time intervals were
obtained. The seismic records of the 24 groups of Rayleigh surface-
wave superpositions are presented in Figure 10A Figure 10B
presents the spectral distribution of each group of seismic
records. The figure indicates that the superposition spectrum of
the Rayleigh surface waves in different directions exhibits coherent
cancellation, and the effect of coherent cancellation increases with
an increase in the number of equally spaced Rayleigh surface waves.

This demonstrates that increasing the number of Rayleigh surface
wave overlays in different directions at equal time intervals
strengthens coherent cancellation in the fixed frequency band.

The four curves presented in Figure 10C (black, red, blue, and
green) correspond to the velocity dispersion curves recorded by
equal-interval superposition of Rayleigh surface waves in directions
1, 4, 8, and 24, respectively. It can be observed from the figure that by
increasing the number of Rayleigh surface waves in different
directions, the dispersion curve still fluctuates violently.
Specifically, the emphasis on the average of the source direction
cannot eliminate the volatility of the velocity dispersion.
Additionally, a comparison of the velocity dispersion and
spectrum distribution reveals that the fluctuation period of the
velocity versus dispersion curve is consistent with the period of
coherent cancellation, and the underlying reason requires
further study.

Next, we studied the effect of the superposition of multiple
Rayleigh surface waves at equal intervals and different intervals on
the extraction of velocity dispersion curves. First, by simulating four
shots of the same plane source at equal time intervals of 2s, we
obtained the same direction and equal interval multiple groups of
Rayleigh surface wave superposition seismic records. Then, the
source shooting time was changed such that the time interval
between each shot was different, and the seismic records of
multiple groups of Rayleigh surface wave superpositions in the
same direction and at different time intervals are presented in

FIGURE 12
Multiple sets of Rayleigh surfacewaves with different time intervals and directions. (A) a single array vertical component seismic recordwith 4 groups
of different Rayleigh wave intervals superimposed; (B) the spectrum diagram of five groups of seismic records; (C) the velocity dispersion curve of each
group of seismic records.
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Figure 11A. Figure 11B presents the spectrum distribution diagram.
By comparing the spectral distribution in the figure, it can be
observed that the coherent cancellation effect of the seismic
records at the same interval is significantly stronger than that of
the superposition at different intervals for the same four groups of
Rayleigh surface waves. When the time interval of the four groups of
Rayleigh surface waves was changed, the coherent cancellation effect
of the spectrum was significantly weakened, and the effect became
more obvious when the number of different interval waves was
further increased.

Figure 11C presents the velocity-dispersion curve extracted
from the four groups of Rayleigh surface-wave superposition
records in the same direction and at different intervals. It can be
observed from the figure that the velocity dispersion curve is
approximately equal to the theoretical value, regardless of if the
time interval is the same. When multiple Rayleigh surface waves
in the same direction are superimposed, the frequency
distribution is coherently cancelled; however, this does not
affect the velocity dispersion curve. Therefore, it cannot be
observed that changing the superposition time interval will
affect the velocity dispersion curve.

The experimental results of multiple groups of Rayleigh
surface wave superposition indicate that increasing the
number of Rayleigh surface waves at equal time intervals does
not eliminate the influence of Rayleigh surface wave
superposition in different directions on the spatial
autocorrelation extraction of the velocity dispersion curve.
With an increase in the number of Rayleigh surface waves, the
fixed-frequency coherence cancellation becomes more severe,
and the effect of coherent cancellation will be weakened with
the increase in Rayleigh surface waves at different time intervals.

4.3 Analysis of the joint effect of time interval
and propagation direction

The influence of Rayleigh surface wave superposition on the
spatial autocorrelation velocity dispersion curve was analyzed from
the perspective of the Rayleigh surface wave time interval and
direction distribution. Different directions led to periodic
fluctuations in the velocity dispersion curve, and a change in the
time interval led to a shift in the dispersion curve along the
frequency direction. Changing only one of the variables cannot
eliminate the influence of the Rayleigh wave superposition on the
velocity dispersion curve.

This section considers the influence of changes in the time
interval and direction distribution on the velocity dispersion curve.
The experiment continuously increased the number of uniformly
distributed Rayleigh surface waves, changed the time interval of
arrival of the two waves, gradually simulated the uniform
characteristics of the microtremor signal in the spatial direction
and arrival time, and studied the influence of the microtremor signal
on the spatial autocorrelation velocity dispersion curve when
stationary and non-stationary. The seismic records of 4, 8, 64,
and 128 groups of Rayleigh surface wave superpositions were
simulated by increasing the number of sources and adjusting the
source shooting interval. Figure 12A presents the seismic records of
the 128 groups of Rayleigh surface-wave superpositions. These

seismic records consider the direction of Rayleigh surface waves
and the shooting time interval simultaneously so that the seismic
records gradually meet the uniform distribution of source space and
time. Figure 12B presents the spectral distributions of the five groups
of seismic records. It can be seen from the figure that between 15 Hz
and 30 Hz, the spectrum gradually tends to become uniform with
the change in the number of superimposed waves and the time
interval. This is due to the observation that the signal tends to be
stable in space and time with a change in the number of
superimposed waves and time interval.

Figure 12C presents the corresponding velocity dispersion
curve. The velocity dispersion curve (black) corresponding to the
non-stack seismic records is close to the theoretical Rayleigh wave
velocity of 490 m/s. From the change trends of the four groups of
dispersion curves (red, blue, green, and green), we can see that the
fluctuation amplitude of the velocity dispersion curve gradually
decreases with an increase in the number of waves and change in
time. The velocity dispersion curve gradually approached the
theoretical velocity value. This influence gradually increases from
low to high frequencies as predicted. An accurate velocity dispersion
curve can be obtained when the amount of data increases to a
certain amount.

In summary, the superposition of Rayleigh surface waves in the
same direction did not affect the extraction of the spatial
autocorrelation velocity dispersion curve. Different propagation
directions cause periodic fluctuations in the dispersion curve, and
the degree of influence changes with changes in the Rayleigh surface
wave propagation direction. The arrival time interval of Rayleigh
surface waves also affects the dispersion curve. Increasing the
number of Rayleigh waves with equal time intervals alone
strengthened the coherent cancellation of a fixed frequency but
did not eliminate the influence on the dispersion curve.
Simultaneously, gradually increasing the number of Rayleigh
surface waves in different directions and changing their arrival
time interval of Rayleigh surface waves will gradually reduce the
periodic fluctuation of the velocity dispersion curve caused by
Rayleigh surface wave superposition.

5 Conclusion and discussion

This study focuses on the application of the spatial
autocorrelation method to seismic wave exploration from two
perspectives that include theory and numerical simulation. First,
the spatial autocorrelation method was theoretically deduced based
on cosine similarity theory. The results demonstrated that single-
group or spatially and temporally stable Rayleigh surface waves can
be accurately extracted from the velocity dispersion curve using this
method. The spatial autocorrelation method was applied to extract
the velocity dispersion curve of a single set of Rayleigh surface-wave
seismic data from the homogeneous model. It was observed that the
velocity profile of a single set of Rayleigh surface waves clearly
reflected the homogeneous property of the half-space, and the
calculated velocity was consistent with the theoretical Rayleigh
wave velocity. This indicates that the spatial autocorrelation
method can use a single set of Rayleigh waves to calculate the
velocity dispersion curve. When mutually perpendicular Rayleigh
surface waves are superimposed, the velocity distribution of the
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velocity dispersion profile is extremely chaotic, and it is unable to
accurately distinguish the structural characteristics of the
homogeneous half space. Thus, the non-stationary multiple sets
of Rayleigh surface waves may not be applicable to the spatial
autocorrelation method.

Based on the characteristics of spatial and temporal
stationarity, the influence of the superposition of multiple
Rayleigh surface waves on the extraction of the spatial
autocorrelation velocity dispersion curve was also studied. The
results reveal that the calculated velocity-dispersion curve is not
affected by the spatial and temporal stationarity characteristics
when the Rayleigh surface wave is superimposed in the same
direction. When Rayleigh surface waves in different directions
are superimposed, they are affected by the propagation direction
and time interval of the waves. Increasing the number of Rayleigh
surface waves in different directions or at different time intervals
in one direction did not reduce their impact on the velocity
dispersion curve. With an increase in the direction and different
time intervals, the signal gradually satisfies the stationary
characteristics, and the velocity dispersion curve returns to the
theoretical value. This indicates that the non-stationary
microtremor signal cannot be used to accurately calculate the
velocity dispersion curve through the spatial autocorrelation
method. A more stable microtremor signal results in a more
accurate velocity dispersion curve. The conclusions of this study
further broaden the application range of the spatial
autocorrelation method and improve the accuracy of the
velocity dispersion curve extraction method.
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Research on intrusion and large
arch bulge in lining structure for
highway’s mudstone tunnel
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Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific
Research Institute, Wuhan, China, 3CCCC Second Highway Consultants Co., Ltd., Wuhan, China

During the construction of a highway in northwest China, large deformation of
mudstone caused severe deformation of and damage to sidewalls, initial support,
and secondary lining to various extents. To reveal the causes of mudstone’s large
deformation in the tunnels of this highway, a comprehensive study was
conducted by using engineering geological survey, on-site monitoring and
measurement, indoor rock mechanics test, numerical simulation, and
macroscopic analysis. For the problem of large deformation of this highway’s
tunnel section from YK209 + 500m to YK210 + 030 m, the 3D finite difference
method FLAC3D was used to simulate the large deformation of the wall rock and
compare the deformation of the tunnel and themechanical characteristics of the
lining structure under different conditions by means of inverse analysis of the
rheological characteristics of themudstone and simulation of the softening of the
mudstone in water. The research results provide a reference and basis for the
construction design of similar mudstone tunnel projects. For the management of
tunnel deformation, it is recommended to enhance the tunnel’s drainage
measures, thereby mitigating the intensification of mudstone softening when
exposed to water.

KEYWORDS

highway tunnel, Mudstone, viscoelastic plastic, large deformation, intrusion
limit, Softening

1 Introduction

The large deformation of tunnel rock has always been a key scientific issue in
geotechnical engineering. In recent years, scholars have conducted extensive research on
the microscopic and macroscopic mechanisms. Fan et al. [1] investigated the large
deformation patterns in multi-sectional tunnels within stratified mudstone. Liu et al. [2]
analyzed the large deformation characteristics of Tertiary soft rock tunnels. The impact of
groundwater effects on large deformations in deep-buried slate tunnels was explored by Sun
et al. [3]. Ma et al. [4] studied the drum failure mechanism in sandstone and shale rock
tunnels. The deformation and failure characteristics of weathered sandstone rock tunnels
were discussed by Wang et al. [5]. Zhou et al. [6] analyzed the destructive impact of loess
mudstone landslides on high-speed rail tunnels. A computational method for large tunnel
deformations was proposed by Wang et al. [7]. Chen et al. [8] explored the failure
mechanism in single-oblique alternating soft and hard rock tunnels. Meng et al. [9]
used D-InSAR monitoring to analyze the causes of large deformations in tunnels. The
collapse mechanism of tunnels in soft-hard interlayered rock was investigated by Liu et al.
[10]. Chen et al. [11] analyzed the squeezing deformation in high geostress stratified soft
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rock tunnels. The nonlinear deformation mechanism in high-stress
soft rock roadways was discussed by Zheng et al. [12]. Yang et al.
[13] studied the fracturing damage behavior in mudstone. The
construction technology for large-span intersections in soft rock
was explored by Li et al. [14]. Lastly, Bao et al. [15] analyzed the large
deformation mechanism in deep brittle rock tunnels based on the
evolution of microcracks. The geometric finite element simulation of
crack propagation under pressure by Chen Leilei et al. provided
some inspiration for the modeling and simulation of large
deformation in this paper [16–30]. Mainly focused on the
changes in the mechanical properties and mineral composition of
rocks after water exposure, current researches rarely devote
themselves to the relationship between soft rock deformation and
the surrounding environment to establish models and field
experiments for comparison and analysis, and study in a multi-
dimensional way to develop a systematic and in-depth research on
the relationship between the large deformation mechanism of
mudstone and the macroscopic deformation behavior of seepage
tunnels. This study extensively investigates the significance of
mudstone tunnel lining structures through finite element
analysis, particularly emphasizing the understanding and
prevention of substantial deformation in tunnels. Such an
exploration is vital for ensuring the stability and safety of
underground engineering projects. The analysis underscores the
criticality of addressing these deformations, which are pivotal in
maintaining the integrity of subterranean structures.

In this paper, we take a tunnel section of a highway in northwest
China as our research object and carry out on-site monitoring and
experiments, data analysis, model building analysis, and conjecture
and experiments of tunnel deformation mechanism. We explore the
causes of large deformation of wall rock during excavation of this
tunnel section and hope to provide references for the planning,
survey, design, construction and design of support structures for
tunnel in similar geological conditions.

2 Project overview

2.1 Basic geological conditions

The tunnel is located in an area of eroded and accumulated loess
with relatively huge variations in altitude as well as outstanding rises and
slopes. The elevation of the tunnel is about 1248–1536 m. The attitude
of rock is 44°–28°∠30°. Joint planes occur near YK209 + 734. Two
groups of relatively smooth planes occur, namely, J1: 7°∠30° and J2:
13°∠86°. Special rock and soil structures in the tunnel area are mainly
collapsible loess and expansive rock. According to the statistics of
saturated compressive strength in detailed survey, the mudstone in this
area is extremely soft rock. Boreholes made in the arch at YK209 +
650 and YK209 + 845 reveal groundwater, while groundwater is not
found in other boreholes. The water level revealed by these boreholes
shows that the distribution of groundwater in the tunnel is uneven.

2.2 Engineering issues

Large deformation was found in the YK209 + 500-YK210 +
030 section of the tunnel in 2019 as shown in Figure 1.

Such large deformation includes: 1) bulges and cracks occur in
the left foot of the invert arch. Boreholes in the invert arch found
outstanding bulges in the back-filled part of the left half of the arch,
separation in the range of 50–100 cm from the side wall, and
bending of steel bars inside the invert arch. The maximum
height of a bulge of the invert arch exceeds 60 cm. 2) intrusions
occur in the lining structure from the left arch foot to the right arch
waist. Most intrusions reaches 15 cm. The highest intrusion reaches
26.1 cm, and there are more intrusions on the left side of the line
structure than on the right side.

3 Mudstone physical and mechanical
tests and ground stress tests

The hydraulic fracturing method was used to test the initial
ground stress of the surrounding rock. The hydrofracturing method
offers several distinct advantages: It enables deep measurement
capabilities; The data compilation process does not necessitate
the inclusion of rock elasticity parameters, thereby reducing
errors caused by inaccurate parameter estimations; A wide stress
distribution on the rock walls, attributed to the lengthy pressurized
borehole section, mitigates the limitations associated with point
stress conditions and heterogeneous geological factors; The method
is characterized by its simplicity of operation and short testing
duration. The principle underlying the hydrofracturing method for
stress testing involves the use of expandable rubber packers. These
packers isolate a borehole section at a predetermined depth, into
which a liquid is then pumped to apply pressure. The in situ stress is
determined by analyzing the characteristic pressure values from the
pressure curve during the fracturing process.

The ground stress test was carried out in the section of the tunnel
where outstanding deformations occur. In the test area, the maximum
horizontal principal stress is 1.0–2.2°MPa, the minimum horizontal
principal stress is 0.7–1.8°MPa, and the vertical stress is 5.1–5.9 MPa.
On the whole, the stress field shows that the dead-weight stress is larger
than the horizontal stress, indicating that the ground stress field in this
area is dominated by dead-weight stress.

FIGURE 1
Monitoring large deformation sections.

Frontiers in Physics frontiersin.org02

Li et al. 10.3389/fphy.2024.1345581

49

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1345581


4 Analysis of tunnel wall rock
deformation monitoring data

As shown in Figure 2, in the YK209 + 500-YK209 + 850 section of
the tunnel, 36 observation sections are arranged with an interval of
10 m. The monitoring period commenced upon the completion of the
initial lining and ends upon the pre-application of the secondary lining.
The monitoring period of a section ranges from 18 days to 41 days.

It can be seen from Figure 3 that the settlement displacement of
the arch at a measuring point increases in an nonlinear way with
time. When the monitoring starts, the settlement displacement rate
is relatively huge. In the first 3 days, the displacement rate is
15–32 mm/d, and the value reduces slightly to about 2.5–20 mm/
d between the 4th and 20th days. As the time goes by, the value

reduces further. On the 25th day of monitoring, the settlement
displacement rate is less than 2.0 mm/d.

As can be seen from Figure 4, 5, during the secondary lining stage,
the settlement displacement of the arch top in the YK209 + 511-YK209
+ 841 section is mostly between 5 and 40mm, and the average value is
about 32.0 mm. Figure 5 reveals that the highest bulges on the invert
arch ismostly 300–650°mm, themaximumdeformation is 702°mm, the
minimum is 28°mm, and the average is 319.5 mm. After the secondary
lining is done, the settlement displacement of the arch top is still time-
dependent. On the whole, the bulges of the invert arch is larger, and the
deformation of the surrounding rock at the bottom shows strong
rheological properties. The deformation velocity of the invert arch
gradually flattens, and the displacement gradually stabilizes as the
time goes by.

FIGURE 2
Time spent watching various monitoring areas.

FIGURE 3
Variation curve of average section vault settling movement over time.
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FIGURE 4
Tunnel top arch settlement displacement curve along different pile numbers.

FIGURE 5
The temporal shift of the elevation arch process curve.

FIGURE 6
Burgers creeping viscoelastic-plastic model σ is the rock stress, EM, EK, ηM, and ηK are the rock’s elastic modulus, viscoelastic modulus, Maxwell
viscosity coefficient, and Kelvin viscosity coefficient, respectively, σf is the yield strength of the rock, and εM, εK, and εP are the strain and plastic strain of the
Maxwell body and Kelvin body.

Frontiers in Physics frontiersin.org04

Li et al. 10.3389/fphy.2024.1345581

51

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1345581


5 Study on the mechanism of large
deformation damage of mudstone

Considering mudstone’s water-softening property and obvious
rheological characteristic, we applied the numerical simulation to
the tunnel at different support stages by using FLAC3D to study the
deformation mechanism, structural stress characteristics and creep
development law of the tunnel’s surrounding rock, and to explore
the mechanism of their large deformation.

5.1 Rock viscous-elastic-plasticity
constitutive model

In the study, a creep-viscoplastic model, which comprises the
Burgers model and Mohr Coulomb model is used. The former,
which simulates the time-dependent creep characteristics of rock
and soil, can reflect the attenuating creep stage and stable creep
stage of a material after loading. The latter considers viscoelastic-
plastic stress deviation characteristics and the elastic-plastic volume
change of a material. It is assumed that the viscoelastic strain rate
component and plastic strain rate component act together in series. The
viscoelastic component corresponds to the Burgers model (composing
Kyle style and Magswell body in series), while the plastic component is
consistent with the Mohr-Coulombmodel. When the stress is less than
the yield stress, the viscoelastic deformation of the model equals to the
creep equation of the Burgers model, and when the stress is greater than
the yield stress, the plastic flow deformation shall also be governed by
the Mohr-Coulomb criterion.

To ensure the effectiveness of the finite element model used in
this study, a creep-viscoplasticity model was adopted, providing a
comprehensive and reliable method for simulating and analyzing
the behavior of geotechnical materials, as illustrated in Figure 6. The
validity of the model was confirmed by calibrating its parameters
using experimental data, thereby ensuring the consistency of the
model’s predictive results with actual scenarios.

The plasticity criterion uses a composite criterion combining
Mohr-Coulomb shear damage and tensile damage, where the yield
function of the Mohr-Coulomb criterion is:

fs � σt − σ3Nϕ + 2c
���
Nϕ

√
(1)

The maximum tensile stress criterion yield function is:

ft � σt − σ3 (2)

Where c is the cohesive force of the material, φ is the friction angle,
Nϕ � (1 + sin ϕ)/(1 − sin ϕ), σt is the tensile strength, σ1 and σ3 are
the minimum and maximum principal stress (pressure is negative).

5.2 Model generalization and calculation
conditions

The model’s boundary of both tunnels are 68 m away from the
center line. Its top is 60 m away from the center of the tunnel and the
bottom is 50 m away from the central point. The model’s length is
20 m along the axis of the tunnel. In the simulation, the number of
units is 151,800 and the number of nodes is 161,637 as shown in

Figure 7. The diameter of the excavation in the mudstone is 12.38m,
while its inner diameter behind the lining is 10.86m, and its buried
depth is about 237 m.

The design lining structure of this tunnel is SVb: I20a steel
I-beam, spacing 100cm, 26 cm C25 shotcrete,Φ6 double layer mesh,
3.5 m long R25 hollow grouting anchors, spacing 75 cm × 100 cm,
50 cm C30 reinforced concrete lining and 10.25 m × 5 m design
building limit of the main cavern.

The designed lining structure of the tunnel is SVb: I20a I-steel,
spacing 100cm; 26 cm-thick C25 shotcrete, Φ6 double-layer steel
mesh, 3.5 m-long R25 hollow grouting anchor, spacing 75°cm ×
100°cm; 50 cm-thick C30 reinforced concrete lining. The designed
limitation of the main tunnel is 10.25°m × 5 m.

With reference to mudstone’s laboratory test results and the values
of physical and mechanical parameters adopted in tunnel projects in
Gansu province contained in previous literature, the values of physical
andmechanical parameters of mudstone in natural and saturated states
used in this study are as shown in Tables 1–3.

5.3 Inversion of the rheological parameter
of mudstone

It is complicated to determine the rheological parameters of the
tunnel’s surrounding rock. In this paper, the numerical calculation
and on-site deformation monitoring data were used for curve fitting
to inverse the mudstone’s rheological parameters. The inversion
results of the rheological parameters of mudstone in natural state are
as shown in Table 4.

The time-based curve of mudstone’s rheological inversion and
monitoring displacement is as shown in Figure 8. The deformation
around the tunnel mostly occurs in the initial support. At first, the
maximum deformation rate around the tunnel is about 18 mm/d. In
the first 10°days, the deformation rate is relatively large, basically in
the range of 7.0–18.0 mm/d. As the time elapses, the deformation
rate decreases gradually. The rate decreased to 2.0–7.0 mm/d
between the 11th and 20th days. By the 40th day, the rate was
basically less than 1 mm/d. At this time, the deformation around the
hole tends to be stable.

After the initial lining of the tunnel is done, the second lining
will be applied after the deformation of the surrounding rock is
basically stable. As can be seen from Figure 9, the long-term
deformation of the lining structure is about 1.2–1.5 mm.
Displacements in all directions are all towards the center of the
tunnel, and these displacements and their values on both sides of the
vertical line are basically symmetrical. Both the top arch and the
invert arch deform downward under the action of dead weight. The
lining stress is small. The maximum compressive stress is about
0.6°MPa, the tensile stress is about 0.2°MPa, and the relatively large
stress appears in the arch feet on both sides of the arcs.

5.4 Deformation and stress state hole cycle
after softening of water seepage in the
wall rock

The groundwater was not exposed during tunnel excavation.
However, as the time goes by, the groundwater seeped along
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mudstone cracks after the excavation for invert arch in some
sections, and then some unstable deformations occur such as
cracks in the invert arch and convergence in the tunnel’s wall
rock. During the on-site investigation, the groundwater was also
found in the boreholes in the problematic sections and in the slots of

the invert arch, but the groundwater distribution was uneven. The
infiltration of groundwater is the root cause of problems in
the tunnel.

The development of structural planes such as joints and cracks
in the problematic section leads to the breakage of the rock mass.

FIGURE 7
Numerical model.

TABLE 1 Laboratory test results of rock physical characteristics.

Sampling depth Rocks Particle densityg/cm3 Water content/% Water filling rate/% Porosity/%

5.8 ~ 62.4 m Mudstone 2.23 7.87 8.62 17.81

2.22 8.43 9.52 19.45

2.23 8.80 7.43 15.21

Average value 2.22 8.37 8.52 17.49

8.4 ~ 71.0 m Mudstone 2.18 9.60 9.46 18.83

2.28 10.46 7.46 15.40

2.01 8.83 12.38 22.90

Average value 2.16 9.63 9.77 19.04

TABLE 2 Laboratory test results for rock mechanical properties.

Sampling depth Rocks Uniaxial
compressive
strength/MPa

Modulus of deformation/GPa Elastic modulus/GPa Poisson ratio

Nature Saturate Nature Nature Nature

5.8 ~ 62.4 m Mudstone 8.43 1.58 1.41 1.69 0.30

6.75 0.97 1.13 1.35 0.30

5.06 0.52 0.84 1.01 0.30

Average value 6.75 1.02 1.13 1.35 0.30

8.4 ~ 71.0 m Mudstone 8.44 2.23 1.41 1.69 0.30

6.42 5.42 1.07 1.28 0.30

3.80 3.35 0.63 0.76 0.31

Average value 6.22 3.67 1.04 1.24 0.30

Mudstone cores from the ground stress test for the tunnel in the project were taken and tested for physical and mechanical properties. The results are as shown as Tables 1 and Table 2.
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The groundwater in a changed environment slowly seeps into the
surrounding rock and results in the gradual immersion and
softening of the surrounding rock and its weaker strength, as
shown in Figure 10. After the completion of the tunnel structure,

the natural discharge of groundwater along the cracks is blocked,
and the groundwater is mainly concentrated in the rock pillar area
about 30 m between the left and right tunnels and at the bottom of
the tunnel. Mudstone is also a kind of rock prone to interact with

TABLE 3 Values of the physical and mechanical characteristics of mudstone.

Mudstone Modulus of
deformation/MPa

Poisson ratio Gravity
kN/m3

Cohesion/
kPa

φ/° Tensile
strength/kPa

Nature 800 0.32 22 200 30 50

Saturate 300 0.35 23 60 25 15

TABLE 4 Mudstone rheological parameters taking values.

Mudstone EM(GPa) Ek (GPa) ηk (GPa.d) ηm (GPa.d)

Nature 2.4 0.25 0.18 1,000

FIGURE 8
Monitoring and inverting the displacement time graph at measurement point A.

FIGURE 9
Long-term displacement vector of the liner after lining application.
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water. Under the action of water, the growth and expansion of
macroscopic fissures is the main reason for the rapid deterioration of
the main physical and mechanical parameters of mudstone. Under
the same confining pressure, the higher the water content of
mudstone is, the more obvious the aging characteristic is.

In order to accurately express the research results, a number of
measuring points are installed in the lining’s top arch, arch shoulder,
arch waist and invert arch. The measuring points #1 - #9 are evenly
distributed on the invert arch. The buried measuring points #10-#20
are on #3’s vertical line. The distance between #3, #10 - #19 are in an
interval of 2 m while that between #19 and #20 is 5 m. The distance
between #3 and #20 is 25 m. The layout of these measuring points
are as shown in Figure 11.

The measuring point A, on the top of the lining arch, has a
downward displacement of about 58.9 mm. The measuring points B
and C has a downward displacement of 140.1 mm and 29.3 mm
respectively and a horizontal convergence deformation of about
48 mm. The downward displacements of D and E are 173.4 mm and
23.0 mm respectively while their horizontal convergence
deformation is about 95.5 mm. Intrusions on the left side of the
second lining of the tunnel is obvious. Most of them are more than
10 cm, and the maximum intrusion is more than 20 cm. The
deformation of the tunnel in the problematic section is
characterized by the arch’s downward displacement, convergence
at the waist on both sides, and inclined bulges on the invert arch with
the ones on the left higher than those on the right. It can be seen that
the plastic flow caused by water-softening of the rock pillar
mudstone is the main factor of the large deformation of the tunnel.

As shown in Figure 12, when the mudstone on the left side of the
tunnel is saturated with and softened by water, its strength is
obviously weakened, and the surrounding rock produces a large

squeezing deformation on the left side of the supporting structure.
The deformation of the left arch foot and the left arch bottom of the
lining is about 250–470°mm, and the deformation of the left arch is
about 150–300 mm.

As shown in Figure 13, among the nine measuring points arranged
on the bottom of the invert arch, themeasuring point #3, which is about
2.0 m away from the left arch foot, has the largest bulge displacement of
383 mm. The bulge displacement of the left arch foot is about 30mm,
while the right arch foot sinks slightly, and the downward displacement
is about 12 mm. The deformation along the measuring point #3’s
vertical line shows that the upward displacement of the floor along such
line gradually decreases. The rheological effect of the shallow
surrounding rock of the invert arch is obvious, and the time-based
curve of mudstone softening and creep deformation rate increases at
first, and then decreases to zero gradually.

The lining structure as a whole is in a compressed state, and the
compressive stress concentration is high at both ends of the arch foot
and bottom plate. The maximum compressive stress near the left
and right arch feet are 17.0°MPa and 20.0 MPa respective. And it is
2.0–9.0 MPa at the bottom of the arch, 5.0–8.5 MPa at the left arch,
about 4.0–11.0 MPa at the right arch, and about 7.0–13.0 MPa at the
top of the arch.

The uneven deformation around the tunnel caused by mudstone
softening acts on the lining structure. The latter bears large
deformation pressure, and the force is unevenly distributed due
to the difference of deformation. Looking at the overall stress of the
lining structure, the stress on the arch foot and the arch top is larger,
and the tension at the lower part of the left arch waist is obvious,
which is easy to cause the tension crack and damage of the lining
structure in the stress concentration and tension stress area of
the arch foot.

FIGURE 10
Analyzing the mechanisms of tunnel displacement.

FIGURE 11
Location of tunnel lining measurement points.
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6 Conclusion

The main results of this paper are as follows:

1) The tunnel’s problematic section of large deformation
is located in the core of the wide and gentle

syncline. Due to the tectonic action, the joints and cracks
are developed and the rock mass is broken, and the
unloading of tunnel excavation leads to the opening
and expansion of the primary cracks in the left and
right rock pillars. At the same time, the pore
groundwater in the overlying loess seeps down along the

FIGURE 12
Mudstone softening-related tunnel displacement vector.

FIGURE 13
Arch Feature Displacement. (A) Elevation Shift Comparison. (B) Feature Points Uplift. (C) Rheology Curve (Point 3#). (D) Deformation Rate Curve
(Point 3#).

Frontiers in Physics frontiersin.org09

Li et al. 10.3389/fphy.2024.1345581

56

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1345581


joints and cracks and invades the surrounding rock of
the tunnel.

2) Mudstone has strong hydrophilicity and weak expansibility,
which will lead to increase and expansion of macroscopic
fissures, a sharp decrease in physical and mechanical
characteristics. Mudstone’s aging deformation
characteristics become more obvious as the content of
water increases. Further research indicates a close
interplay between the softening mechanisms of the
surrounding rock and changes in stress distribution.
Particularly in water-sensitive rocks such as mudstone,
the permeation of moisture leads to a reduction in the
strength of the surrounding rock and a redistribution of
stress, thereby exacerbating the instability of rock layers
around tunnels.

3) Computational comparative analysis reveals that the depth of
the tunnel and stress levels exert a relatively significant
influence on the unloading deformation of the surrounding
rock, the magnitude of time-dependent deformation, and the
convergence time. Conversely, the impact of swelling forces is
comparatively minor, and they are not the primary controlling
factors for substantial deformation and cracking of the lining
in the surrounding rock.

When preparing suggestions for the treatment of a tunnel, it
is necessary to improve the interception and drainage measures
of the tunnel to ensure smooth drainage. It is also necessary to
strengthen the weak surrounding rock at a certain depth around
the tunnel in order to improve the strength and anti-deformation
ability of rock mass. It is also recommended to strengthen the
stress and strain monitoring of the tunnel lining and the
monitoring of drainage facilities, and dynamically track and
analyze the long-term stability of the tunnel by means of real-
time monitoring, so as to provide security for the normal
operation of the tunnel.
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As an environmentally friendly alternative to ordinary concrete, slag concrete is
subject to limitations such as drying shrinkage and micro-cracking during its
promotion and application. In order to address these challenges, steel fibers,
known for their excellent tensile, shear, crack-resistance, and toughness
properties, have been introduced to enhance the ductility of alkali-activated
slag concrete. This study utilized steel fiber content as a variable and produced
eight steel fiber-reinforced alkali-activated slag concrete beams to investigate
their flexural mechanical properties. By exploring the influence of steel fiber
content variation on the mechanical behavior of alkali-activated slag concrete
beams and conducting validation through finite element analysis, the study
unveiled the impact of steel fibers on the performance of alkali-activated slag
concrete beams. The research findings demonstrate a significant enhancement
in the flexural mechanical properties of alkali-activated slag concrete beams with
the addition of steel fibers, leading to a reduction in surface cracking and an
improvement in the durability of the elements. The outcomes of this study hold
crucial theoretical implications for the widespread application of steel fiber-
reinforced alkali-activated slag concrete.

KEYWORDS

alkali-activated slag concrete, steel fiber, flexural mechanical properties, toughness
performance, finite element method

1 Introduction

Resource scarcity and environmental pollution have always been prominent concerns in
contemporary human society. As a crucial component in the construction process, cement
is manufactured and consumed on a substantial scale annually. Traditional cement
production, employing the “two grinding and one burning” process, not only depletes
considerable energy resources but also generates significant quantities of harmful gases like
NOx, SO2, and greenhouse gases like CO2 during clinker calcination, thereby exerting a
severe impact on the natural environment [1–3]. According to statistical data provided in
2022 by China’s Ministry of Ecology and Environment, the cement industry’s emissions of
particulate matter and nitrogen oxides account for 20.9% and 17.3% of the total industrial
emissions in the country, respectively, while CO2 emissions constitute approximately 13.0%
of the overall national emissions, resulting in substantial environmental consequences.
Consequently, the adoption of novel and eco-friendly structural materials as substitutes for
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conventional concrete is imperative [4, 5]. Therefore, the
development of innovative and sustainable construction materials
is not only a leading trend in the field of civil engineering materials
but also a critical objective within the current global resource and
energy development strategies.

In recent years, alkali-activated slag concrete has emerged as an
environmentally-friendly substitute for ordinary Portland cement
(OPC) concrete [6–8]. As a novel, energy-efficient, and eco-friendly
building material, alkali-activated slag cement maximizes the utilization
of industrial waste and by-products, such as fly ash and granulated blast
furnace slag, thus achieving optimal secondary utilization of industrial
waste. In comparison to ordinary Portland cement, alkali-activated slag
cement significantly reduces the energy consumption and
environmental pollution associated with raw material production [9,
10]. The raw material production process of alkali-activated slag
concrete is straightforward, characterized by low energy
consumption and high utilization of industrial solid waste. Relative
to ordinary Portland cement concrete, alkali-activated slag concrete
demonstrates excellent mechanical and durability properties, including
high strength, freeze-thaw resistance, and corrosion resistance [11].

However, alkali-activated slag concrete does have certain
drawbacks that limit its widespread adoption and application.
These include its sensitivity to environmental factors, short
setting time [12], high carbonation rate, and susceptibility to steel
bar corrosion [13]. It is also prone to potential alkali-aggregate
reaction [14], shrinkage, and the formation of micro-cracks due to
significant drying shrinkage [15, 16]. These issues have a significant
impact on the promotion and application of alkali-activated slag
concrete. The occurrence of micro-cracks caused by drying
shrinkage can gradually worsen over time, leading to the
corrosion of internal steel bars. This ultimately affects the
durability and safety of structural components [17]. Durability is
a critical functional requirement for building structures. Therefore,
effectively addressing the excessive formation of micro-cracks
resulting from the drying shrinkage of alkali-activated slag
concrete is crucial for improving thematerial’s durability during use.

Steel fibers, as the most common fiber material, possess excellent
tensile, shear, crack resistance, and toughness properties. The addition
of steel fibers in concrete matrix materials can enhance the concrete’s
resistance to permeability, shrinkage, and deformation, as well as reduce
the width of cracks during normal structural usage [18]. Therefore, it is
possible to incorporate steel fibers into alkali-activated slag concrete to
mitigate its drying shrinkage behavior and improve post-cracking
behavior, toughness, and ductility [19, 20]. Relevant studies have
been conducted in this regard. For instance, Qin et al. [21] found
that steel fibers enhance the toughness of alkali-activated slag concrete.
However, excessive steel fibers tend to aggregate and do not distribute
uniformly in the concrete, leading to increased internal defects. Serdar
et al. [22] investigated the influence of steel fiber content and length on
the properties of alkali-activated slag mortar. The results showed that
with increasing steel fiber content and length, the drying shrinkage
decreases gradually, while the compressive and flexural strengths
increase. Gülsßan [23] studied the influence of nano-silica and steel
fibers on the workability and mechanical performance of self-
consolidating geopolymer concrete. The findings suggested that the
incorporation of nano-silica and steel fibers negatively affects
workability but significantly improves the flexural performance of
geopolymer concrete.

Steel fiber alkali-activated slag concrete demonstrates potential
applications in the construction industry similar to those of standard
Portland cement concrete. However, a comprehensive evaluation of its
mechanical and load-bearing performance in structural components
necessitates extensive component testing and adherence to applicable
regulations. Regrettably, the existing literature on the use of steel fiber
alkali-activated slag concrete in structural components is limited,
requiring further research to provide theoretical references for its
application and promotion. Therefore, the objective of this study is
to investigate the flexural mechanical properties of steel fiber alkali-
activated slag concrete beams by varying the steel fiber content. This
research endeavor will explore the influence of different steel fiber
contents on the mechanical performance of steel fiber alkali-activated
slag concrete beams and validate these findings through finite
element analysis.

2 Experimental

2.1 Materials

Milled steel fibers were selected for use, with a length (Lf) of
36 mm, a width of 2.3 mm, and a thickness of 0.6 mm. The effective
diameter df is 1.08 mm, and the length-to-diameter ratio (Lf/df) is
27.07. The tensile strength is 700 MPa.

The slag is sourced from Xinxing Cement Plant in Henan Province,
China. According to the standard “Ground granulated blast furnace slag
powder for use in cement and concrete” (GB/T 18046-2000), its physical
properties were tested and itwas classified as an S95 grade. The density of
the slag was determined to be 3.27 g/cm3 and the specific surface area
was calculated to be 434.6 m2/kg. Scanning electronmicroscopy revealed
that the slag particles were irregularly shaped blocks.

The fly ash is sourced from Yangluo Power Plant in Wuhan,
China. According to the standard “Fly ash for use in cement and
concrete” (GB/T 1596-2005), its physical properties were tested. The
density of the fly ash was determined to be 2.187 g/cm3. Scanning
electron microscopy revealed that the fly ash particles were spherical
in shape with a regular structure.

The activator solution is a mixture of sodium hydroxide, water
glass (sodium silicate), and water, with a mass ratio of 100 kg/m3:
10.36 kg/m3: 90.35 kg/m3. The modulus of the water glass in the
solution was determined to be 2.93 using the titration method. The
role of sodium hydroxide is to adjust the modulus of the water glass,
which was subsequently adjusted to 1.6. Water, on the other hand, is
used to regulate the moisture content of the activator solution,
resulting in a final moisture content of 73.5%.

The fine aggregate is sourced from the Xinxiang River in China.
Its physical properties were tested according to “Standard for
Quality and Testing of Sand and Stone for Ordinary Concrete”
(JGJ 52-2006). The apparent density of the sand was determined to
be 2,600 kg/m3, and the fineness modulus was found to be 2.99,
belonging to Zone II medium sand.

The coarse aggregate is sourced from the Xinxiang quarry in
China, with a particle size less than 20 mm. Its physical properties
were tested according to the standard “Standard for Quality and
Testing of Sand and Stone for Ordinary Concrete” (JGJ 52-2006).
The apparent density of the stone was determined to be
2,700 kg/m3.
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2.2 Test beams

A total of 8 steel fiber reinforced alkali-activated slag concrete
(SFRASC) beams were produced, with steel fiber dosages (Vf) of
0.0%, 0.5%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, and 1.4%, respectively.
The test specimens were numbered SFRASC-X (1-8). The cross-
sectional dimensions of the test beams were 120 mm × 200 mm, and
the beam length was 2000 mm. The bottom reinforcement was

with a cross-sectional area of 402 mm2 and a reinforcement
ratio of 2.0%. The formwork was supported by stirrups and
tied with hoop steel. The thickness of the protective layer
was 25 cm, and the shear-to-span ratio of the beam was 3.6. The
beams’ reinforcement diagram is shown in Figure 1. The concrete
mix ratio of the test beam is shown in Table 1.

2.3 Measuring point layout

The displacement was measured using a dial gauge, with a
total of 5 displacement measurement points placed at the beams’
support top surface, mid-span (L/2), and mid-span (L/3),

respectively. The theoretical value of the mid-span displacement
was calculated as the difference between the measured mid-span
displacement and the average displacement measured at the supports.
Strain gauges of type BE120-5AA were placed on the surface of the
bottom reinforcing steel bars, while strain gauges of type BX120-50AA
were placed on the surface of the positive cross-sectional side at the
mid-span of the beam, with a spacing of 45 mm. The bottom-most
strain gauge was situated 10 mm away from the bottom of the beam,
and the topmost strain gauge was positioned 10 mm away from the
top of the beam. Strain gaugeswere also placed on the concrete surface
in the neutral axis of the support’s shear web, aligned in the direction
of tensile stress trace, as per the layout indicated in the test specimen
arrangement diagram shown in Figure 2. Cracks were tested in the
pure bending section and the bending-shear zone using a reading
microscope of type MG10085-1.

2.4 Test standards

The test was conducted in accordance with the relevant
provisions of the “Standard Test Methods for Concrete

FIGURE 1
Reinforcement diagram of the test beams’.

TABLE 1 Mix proportion design of steel fiber reinforced AASC (kg/m3).

GGBS Fly
ash

Fine
aggregate

Coarse
aggregate

Activator
solution

Steel
fiber

Solution to powder
ratio

Water to solid
ratio

280 120 615 1,260 248 0.00 0.62 0.46

FIGURE 2
Measuring point layout of the test beams’.
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Structures” (GB/T 50152-2012). Preloading: the specimen was
preloaded to 5 kN and then unloaded to 0 kN, repeated twice.
Formal loading: the loading was carried out in a stepwise
manner, with each load level set at 5 kN. After the completion of
each loading stage, the load was held for approximately 5 min,
during which data were recorded, and the surface cracks on the
beam were marked using a marker pen. As the cracking load value
approached, the load increment for each stage was reduced to 1 kN
to ensure accurate measurement of the cracking load. Once the
specimen cracked, the load for each stage was readjusted to 5 kN.
The test was concluded when the measured deflection of the beam
reached L/50 of the span, indicating the beam had reached its
ultimate bearing capacity limit state. Experimental loading device
diagram of the beams’ is shown in Figure 3.

3 Results and discussion

3.1 Load results and analysis

The results of the tests for the normal section cracking load (Pcr),
mid span cracking moment (Mfcr

0), diagonal section cracking load
(P’cr), diagonal section cracking shear force (Vcr), ultimate load (Pu),
ultimate moment (Mfu

0) are presented in Table 2. As shown in the
experimental results in Table 2, the addition of steel fibers
significantly enhances the load-carrying capacity of the concrete
beams. The function of steel fibers in steel fiber-reinforced concrete

is to effectively improve the mechanical and durability properties of
the concrete by utilizing their high strength and toughness [24]. The
addition of steel fibers effectively enhances the tensile stress and
crack resistance of the concrete, thereby preventing cracking and
fracture [25, 26], and consequently improving the overall flexural
performance and load-bearing capacity of steel fiber reinforced
alkali-activated slag concrete beams.

The theoretical value of the positive section bending load-bearing
capacity of the test beam was calculated according to the formula
specified in the “Technical Code for Fiber Reinforced Concrete
Structures” (CECS38:2004). The comparison between the theoretical
calculation and the test result is shown in Figure 4. From the figure, it is
evident that the test results exhibit a reasonable level of agreement with
the theoretical calculations. The theoretical calculation curve appears to
be smoother in comparison, whereas the test curve shows some
fluctuations. These variations can be attributed to multiple factors,
including test conditions, the testing process, and the characteristics of
the test specimens themselves. The ratio of the average test value to the
average calculated value is found to be 1.0218, with a standard deviation
of 0.0106 and a coefficient of variation of 0.0104. These results indicate
that the calculation formula for determining the positive section bearing
capacity of the beam, as specified in the guidelines, is equally applicable
to steel fiber alkali slag concrete beams. These values suggest a relatively
small deviation from the theoretical calculations, further supporting the
reliability and suitability of the formula for this type of concrete beam.

3.2 Deflection results and analysis

The load-deflection curves for the tested beams are presented in
Figure 5. The load-deflection curve can be divided into three stages. In
Stage I, there is a linear relationship between load and deflection. In Stage
II, cracking occurs in the beam, causing the load to transfer abruptly
from the concrete to the reinforcing steel bars. This results in a decrease
in effective height, stiffness, and an increase in the rate of deflection. A
clear inflection point can be observed between Stage I and Stage II.
Finally, in Stage III, the load remains constant, but the displacement
increases rapidly as the beam reaches its ultimate limit state.

Analysis of the eight load-deflection curves reveals that the
difference in stiffness among the beams in Stage I is not
significant. In Stage II, it is noticeable that the increase in
deflection rate for beams containing steel fibers is lower than
that for the non-fiber reinforced specimens. This suggests that

FIGURE 3
Experimental loading device diagram of the beams’.

TABLE 2 Test results of the beams.

Test piece number Pcr(kN) Mfcr
0 (kN·m) P’cr (kN) Vcr(kN) Pu(kN) Mfu

0 (kN·m)

SFRASC-1 15.8 4.74 45.2 22.6 89.4 26.82

SFRASC-2 19.5 5.85 50.0 25.0 96.4 28.92

SFRASC-3 22.1 6.63 55.2 27.6 100.2 30.06

SFRASC-4 21.2 6.36 57.4 28.7 101.2 30.38

SFRASC-5 22.8 6.84 60.7 30.35 103.8 31.14

SFRASC-6 23.7 7.11 63.1 31.55 107.0 32.10

SFRASC-7 24.4 7.32 65.7 32.85 108.0 32.40

SFRASC-8 25.3 7.59 67.5 33.75 111.5 33.45
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the addition of steel fibers contributes to the ductility of steel fiber
alkali slag concrete beams. For instance, at a load of 60kN, the
mid-span deflection of the SFRASC-1, SFRASC-2, SFRASC-4,
and SFRASC-8 beams were 6.57 mm, 6.21 mm, 6.1 mm, and
5.41 mm, respectively.

Moreover, as the steel fiber content increases, the load capacity
gradually increases. For steel fiber content below 1.1%, the deflection
curve of the test specimen experiences a horizontal development
phase followed by a drop. For steel fiber content greater than 1.1%,
the deflection curve is without a downward phase. This provides
further evidence of the positive impact of steel fibers on the ductility
of steel fiber alkali slag concrete beams.

Overall, the results highlight the potential of steel fibers to
enhance the mechanical and structural properties of concrete.
The findings also have significant implications for the design and
construction of durable infrastructure.

3.3 Crack results and analysis

Figure 6 illustrates the expansion of surface cracks on the lateral
side of eight tested beams. The numerical values in the figure
correspond to the load conditions at which cracks become
noticeable. Observing the figure, it can be seen that once the load
reaches the cracking load for the normal section, an initial vertical
crack manifests in the middle of the beam span within the normal
section. Subsequently, as the load further increases, the vertical crack
progressively extends upward while simultaneously widening.

Upon reaching the cracking load for the diagonal section,
diagonal cracks emerge in a 45° direction from the neutral axis of
the beam’s support region. As the load continues to rise, these
diagonal cracks gradually propagate towards both the support and
loading positions. As the beam approaches failure, the load
stabilizes, yet the crack width experiences a rapid expansion.

Analysis of the surface crack distribution reveals that an increase
in steel fiber content leads to a significant reduction in beam surface
cracks. This positive outcome can be primarily attributed to the
beneficial effects of steel fibers, including crack bridging and
improved crack resistance [27, 28].

As the bending process of the test beam progresses, the increase
in the number of surface cracks corresponds to a continuous
increase in both the width and height of each crack. The
magnitude of crack width stands out as a pivotal factor
influencing the load-bearing capacity of the test beam. During
the bending test, cracks predominantly manifest in the pure
bending section, particularly in the lower extremity where tensile
stress reaches its peak. Consequently, the maximum crack width is
chiefly observed in the pure bending section, a phenomenon that
becomes particularly conspicuous during the bending failure of a
concrete beam. The load versus maximum crack width relationship
of the test beam is portrayed in Figure 7 based on the test findings.

Figure 7 illustrates that the inclusion of steel fibers in the test
beam delayed cracking and substantially reduced the maximum
crack width under equivalent loads. Initially, when the test beam
undergoes cracking, the longitudinal tensile steel bars remain
unyielding. At this stage, the crack development is constrained
not only by the bond strength between the ribbed longitudinal
bars and the concrete, but also by the interaction of steel fibers with
the concrete on either side of the crack. The subsequent increase in
maximum crack width is considerably slower. For instance, at a load
of 40 kN, test beams with steel fiber contents of 0% and 1.0%
exhibited maximum crack widths of 0.20 mm and 0.16 mm,
respectively, marking a 20% reduction. Additionally, the tensile
longitudinal reinforcement’s effectiveness in restraining crack
propagation diminishes drastically in alkali slag concrete beams
upon yielding, leading to a notable surge in maximum crack width
for SFASC1 beams. However, steel fiber alkali slag concrete beams
demonstrate a bridging effect at crack sites, impeding crack
propagation and resulting in a slower increase in maximum
crack width after tensile longitudinal reinforcement yield. At a
load of 80 kN, test beams with steel fiber contents of 0% and
1.0% displayed maximum crack widths of 0.50 mm and 0.30 mm,
respectively, representing a 40% reduction.

In accordance with the theoretical calculation method for
determining the maximum crack width of beams outlined in the
Technical Specification for Fiber Reinforced Concrete Structures

FIGURE 4
Comparative analysis of ultimate bending moment test and
theoretical calculation values.

FIGURE 5
Load-deflection curves for the tested beams.
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FIGURE 6
Development and distribution of surface cracks during the bending process of SFRASC-1, SFRASC-2, SFRASC-3, SFRASC-4, SFRASC-5, SFRASC-7,
and SFRASC-8.

Frontiers in Physics frontiersin.org06

Yuan et al. 10.3389/fphy.2024.1361605

64

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1361605


(CECS38:2004), the maximum crack widths for each test beam
under various load levels were computed. The resulting theoretical
and experimental values are presented in Table 3 for comparative
analysis. Where the P is the load of the test, ωfmax and ωfmax

c is
experimental and theoretical values of crack width respective.

Based on the results presented in Table 3, certain disparities exist
between the experimental values and the theoretical calculations,
primarily due to the influence of steel fiber content on crack width.
To account for this effect, the formula for computing the maximum
crack width, as specified in the guidelines, is revised with the
incorporation of the steel fiber crack reduction coefficient γ. The
modified formula is shown as Eq. 1.

ωfmax � γωmax 1 − βcwλf( ) (1)

In the revised formula, the symbol ωfmax represents the
maximum crack width of the fiber-reinforced concrete beams,
while ωmax refers to the corresponding calculation formulas
provided in the “Code for Design of Concrete Structures”
(GB50010-2010). Additionally, λf denotes the characteristic
parameters of steel fibers, and βcw represents the coefficient that
accounts for the influence of steel fibers on the crack width of
structural components. Specifically, for bending components, the
value of βcw is set to 0.35. Linear regression is employed to compute
the average ratio between the experimental value and the calculated
value of the steel fiber crack reduction coefficient γ. The calculation
formula is shown as Eq. 2.

γ � 0.3682Vf + 1.578 (2)

Figure 8 displays the comparison curve between the computed
results obtained from the modified formula and the experimental
data. The figure reveals a high level of concordance between the
calculated outcomes and the empirical values, signifying the
potential theoretical relevance of these calculations in real-world
engineering scenarios.

3.4 Strain results and analysis

The surface strain analysis conducted on the lateral side of the
beam demonstrates that the cross-section of the beam adheres to
the assumption of having a flat section throughout the stress
process. This study exclusively presents the surface strain test
results for specimens with 0% and 1% steel fiber content. Figure 9
exhibits the surface strain distribution along the height of the
beam cross-section on the normal section side of the specimen.
The cracking load of the two test beams is observed to manifest at
distances of 6.7 mm and 14.1 mm above the beam’s centerline,
respectively. The inclusion of steel fibers enhances the tensile
strength of alkali slag concrete. By virtue of the static equilibrium
principle, beams containing steel fibers exhibit a relatively
diminished height for the relative compression zone. This
experimental finding aligns with theoretical expectations. With
an incremental increase in the applied load, the position of the
neutral axis progressively shifts upwards, and the strain on the
lateral surface of the beam exhibits a linear descent along the
beam’s height.

Figure 10 illustrates the relationship between the strain of the
longitudinal steel bars at the bottom of the test beam and the applied
load. It can be categorized into three distinct stages, analogous to the
load-deflection curve. In Stage I, which corresponds to low load
levels, a linear relationship between strain and load is observed,
indicating the specimen’s elastic behavior. Stage II marks the second
phase, wherein a clear inflection point manifests at the intersection
of Stages I and II. This inflection point signifies the onset of concrete
cracking, resulting in the instantaneous transfer of tension from the
beam’s bottom to the longitudinal steel bars and a redistribution of
stress within the beam section. The inclusion of steel fibers mitigates
the inflection point phenomenon in specimens, leading to a gradual
increase in the strain of the longitudinal steel bars with subsequent
load increments. Stage III designates the third phase, where the load
reaches its ultimate capacity and remains constant, while the strain
of the longitudinal steel bars continues to increase. It is evident from
the curve that specimens with added steel fibers exhibit
comparatively lower strains in the longitudinal steel bars under
the same applied load. Furthermore, the ultimate load of the
specimens progressively increases with higher steel fiber content,
corroborating the earlier analyzed findings.

Figure 11 displays the relationship curve between the principal
tensile strain and load at the oblique section of each specimen. Prior
to the occurrence of diagonal section cracking, the concrete and
reinforcement primarily bear the shear force in the oblique section.
Subsequently, as the main tensile stress in the diagonal section
reaches the concrete cracking stress, the shear stress gradually
transfers to the reinforcement. It is evident from the figure that
the specimen with added steel fibers exhibits lower main tensile
strain values compared to the specimen without steel fibers, under
the same level of load. Furthermore, as the steel fiber content
increases, the test values decrease, indicating that the inclusion of
steel fibers enhances the tensile strength of alkali slag concrete. The
steel fibers assist in sharing some of the tensile force of the concrete,
and this effect becomes more pronounced with higher steel
fiber content.

FIGURE 7
Load crack width curve.
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TABLE 3 Experimental and theoretical values of maximum crack width of the beams.

Specimen number P (kN) P/Pu ωfmax (mm) ωfmax
c (mm) ωfmax/ωfmax

c

SFRASC-1 20 0.22 0.10 0.0399 2.500

30 0.36 0.14 0.0822 1.703

40 0.44 0.20 0.1244 1.607

50 0.56 0.24 0.1667 1.440

60 0.67 0.26 0.2088 1.244

SFRASC-2 20 0.21 0.10 0.0372 2.689

30 0.31 0.12 0.0765 1.569

40 0.41 0.16 0.1157 1.382

50 0.52 0.22 0.1550 1.419

60 0.62 0.24 0.1942 1.235

70 0.73 0.30 0.2335 1.284

SFRASC-3 22 0.22 0.08 0.0350 2.289

30 0.30 0.12 0.0719 1.670

40 0.40 0.16 0.1087 1.471

50 0.50 0.18 0.1456 1.235

60 0.60 0.22 0.1825 1.205

70 0.70 0.28 0.2194 1.275

SFRASC-4 30 0.30 0.12 0.0707 1.697

40 0.40 0.16 0.107 1.495

50 0.50 0.18 0.1433 1.256

60 0.60 0.22 0.1796 1.224

70 0.70 0.26 0.2159 1.204

SFRASC-5 30 0.29 0.06 0.0696 0.863

40 0.39 0.12 0.1053 1.140

50 0.48 0.18 0.1410 1.276

60 0.58 0.22 0.1767 1.245

70 0.67 0.24 0.2124 1.129

SFRASC-6 30 0.28 0.10 0.0684 1.462

40 0.37 0.14 0.1035 1.352

50 0.47 0.18 0.1386 1.298

60 0.56 0.2 0.1738 1.150

70 0.65 0.22 0.2089 1.053

80 0.75 0.26 0.2440 1.065

SFRASC-7 30 0.28 0.10 0.0672 1.487

40 0.37 0.14 0.1018 1.375

50 0.46 0.16 0.1363 1.173

60 0.56 0.2 0.1708 1.170

70 0.65 0.22 0.2054 1.071

80 0.74 0.24 0.2399 1.000

SFRASC-8 30 0.27 0.08 0.0661 1.210

40 0.36 0.12 0.1000 1.199

50 0.45 0.14 0.1340 1.045

60 0.54 0.16 0.1679 0.952

70 0.63 0.18 0.2019 0.891

80 0.72 0.22 0.2358 0.933
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4 Analysis of fractal characteristics of
SFRASC beams

MATLAB is employed for numerical calculations and
analysis and fractal theory is applied to describe the intricate

distribution of surface cracks on experimental beams. Initially,
the RGB crack image of the experimental beam is transformed
into an 8-bit grayscale image utilizing MATLAB. Subsequently, a
binary image is generated from the grayscale image by applying a
threshold where crack pixels are denoted as 0. The binary image

FIGURE 8
Load crack width curve.
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is inverted, changing all crack pixels to 1, for subsequent data
processing and calculation of the fractal dimension. The
adjustment of the coverage network’s grid size “r” is managed
by modifying the pixel matrix and sub-matrix of the crack image.
For each sub-matrix, the sum of its elements is computed and
compared to a threshold of 1 in order to identify non-empty
regions, i.e., cracks. This process is repeated for various grid
densities to determine the count of non-empty regions at
different resolutions. These non-empty regions are termed
“boxes” and their sizes are correlated with the fractal
dimension. The logarithm of the box size and its
corresponding number of boxes N(r) are plotted on a
logarithmic coordinate graph. Using the least squares method,

a logarithmic relationship curve lnN(r)–ln(r) is derived to
describe the change in resolution, where the slope of the curve
represents the fractal dimension.

Using specimen SFRASC-1 as a case study, the specific
processing procedure is outlined as follows: Firstly, the surface
image of the beam is subjected to preprocessing, aiming to
eliminate any irrelevant information and focus solely on the
test beam, as depicted in Figure 12A. Subsequently, the
preprocessed crack image is converted into an 8-bit grayscale
image, as displayed in Figure 12B. Binary processing is then
applied to the grayscale image, wherein the crack regions are
represented in black while the beam surface appears in white,
resulting in the binary representation of the crack image shown in

FIGURE 9
Surface strain distribution along the height of the beam cross-section of SFRASC-1 and SFRASC-4.

FIGURE 10
Steel bar strain under load.

FIGURE 11
Diagonal section concrete strain under load.
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Figure 12C. To obtain the inverse crack image, an inverse
operation is performed on the binary image, setting the color
of the cracks as white and the beam surface as black, as illustrated
in Figure 12D.

Moreover, the binary image of the inverted crack is divided into
different network sizes, namely 20 mm, 30 mm, 40 mm, 50 mm,
60 mm, 70 mm, 80 mm, 90 mm, and 100 mm. By overlaying the

crack image, the number of non-empty grids N(r) is determined
within each network size for subsequent analysis.

For each group, obtain the logarithm of the box sizes r and the
corresponding number of non-empty gridsN(r), and fit the lnN(r)—
ln(r) relationship curve using the least squares method. The slope of
the fitted curve represents the fractal dimension. The fractal
dimension of cracks in the test beam under ultimate limit state
Fitting results are shown in Figure 13, the correlation coefficient is
above 0.9, and the fitting effect is good. The calculation results
dimension of different cross-sections during the failure of
experimental beams is shown in Table 4.

Upon examination of Table 4, it is evident that there exists a
certain degree of variation in the fractal dimension of the pure
bending section, bending shear section, and full section across
different test beams. This variability indicates distinct differences
in crack morphology and distribution among the various test
beams. In accordance with fractal theory, smaller fractal
dimensions signify more uniform and densely concentrated
crack distributions, while larger fractal dimensions indicate
more irregular and isolated crack distributions [29]. The
larger fractal dimension of the bending shear section for each
specimen in the table, in comparison to that of the pure bending
section, suggests that the crack distribution in the bending shear
section exhibits greater irregularity than that in the pure bending
section. This discrepancy can be attributed primarily to the fact
that cracks in the pure bending section are predominantly
induced by tensile stress in the direction perpendicular to the
crack, with parallel shear stress being almost negligible, thereby

FIGURE 12
SFRASC-1 beam surface crack analysis software workflow.

FIGURE 13
Fractal dimension fitting results.
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precluding the occurrence of shear cracks. In contrast, the
bending shear section experiences both bending normal stress
and shear stress, resulting in a more intricate interplay and
contributing to irregularities in crack formation.

In the pure bending and bending shear sections, the fractal
dimension gradually decreases with the increase in steel fiber
content. This phenomenon indicates that the inclusion of steel
fibers exerts a certain retarding effect on the propagation of pure
bending cracks and abdominal shear diagonal cracks, resulting in a
more uniform and closely distributed crack pattern. This can be
mainly attributed to the ability of steel fibers to impede crack
expansion and enhance the material’s toughness. Furthermore,
the fractal dimension of the entire section also decreases with the
rise in steel fiber content, underscoring the positive impact of steel
fiber addition in enhancing the crack morphology of the entire
section, thereby leading to a more uniform and closely distributed
crack pattern.

The fractal dimension of each test beam in the limit state is
illustrated in Figure 14. As observed in the figure, the fractal
dimension of the cracks in the test beam decreases with an
increase in steel fiber content. For instance, the fractal dimension
of the cracks in SFASC1 alkali slag concrete measures 1.291, while in
the test beam with a steel fiber content of 1.4%, it measures 1.154,
indicating a reduction of 10.6%. This implies that the addition of
steel fibers effectively mitigates crack occurrence, curbs crack

propagation, and enhances the load-bearing capacity of
the test beam.

5 Numerical simulation analysis

5.1 Finite element model

The numerical analysis was conducted using ABQUS
software. The finite element model of the beam was created
with dimensions consistent with the experimental beam,
employing C3D8R elements for concrete and T3D2 elements
for steel reinforcement. To ensure the calculation results were not
influenced by the cushion block, a support pad measuring
120 mm × 50 mm × 50 mm was utilized, with the material
properties of the cushion block set as rigid. The finite element
model of the beam and the reinforcement bar cage is shown
in Figure 15.

The constitutive relationship model of concrete material
adopts a two-stage damage constitutive model [30–32], which
takes into account the progressive degradation of the material as
it undergoes loading and damage. Meanwhile, the
reinforcement bars adopt a two-stage double line model,
which is a common model used to simulate the behavior of
steel subjected to tension and compression. This model
accounts for the yielding and hardening of the material
under different loading conditions. The interface between
steel bars and concrete is assumed to have no relative slip,
and a composite model [33–35] is adopted.

5.2 Numeric simulation results and analysis

Table 5 presents a comparative analysis of the numerical
simulation results and experimental results for the four
selected experimental beams. As shown in the table, the
cracking load error ranges from 8.7% to 14.5%, and the
ultimate load error ranges from 7.4% to 11.1%. These errors
stem from the idealized nature of the finite element simulation. In
the simulation, the steel fibers are assumed to be uniformly
distributed in the test beam, and the concrete material is
tightly bonded with isotropic properties. Additionally, a rigid
connection is assumed between the concrete and the steel
reinforcement skeleton without any relative slip. However, in
real-world scenarios, the uniform distribution of steel fibers in

TABLE 4 Calculation results of the dimension of different cross-sections during the failure of experimental beams.

Section Fractal dimension

SFRASC-
1

SFRASC-
2

SFRASC-
3

SFRASC-
4

SFRASC-
5

SFRASC-
6

SFRASC-
7

SFRASC-
8

Pure bending section 1.289 1.280 1.237 1.220 1.194 1.203 1.180 1.150

Bending and shearing
section

1.292 1.289 1.257 1.221 1.193 1.228 1.182 1.156

Full cross-section 1.291 1.285 1.249 1.220 1.191 1.217 1.176 1.154

FIGURE 14
Fractal dimension under ultimate load.
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concrete beams is challenging to achieve, resulting in non-
uniform weak surfaces. Moreover, concrete materials are
subject to various factors such as mixing time, methods, and

curing techniques, which often lead to the presence of
internal microcracks and pores. These differences between the
actual conditions and the simulation contribute to the

FIGURE 15
The finite element model of the beam and the reinforcement bar cage.

TABLE 5 Comparison between simulated and experimental values.

Specimen number Cracking load (kN) Ultimate load (kN)

Test value Analog value Eerror (%) Test value Analog value Eerror (%)

SFRASC-1 15.8 18.1 14.5 89.4 97.7 9.3

SFRASC-2 19.5 21.7 11.3 96.4 104.3 8.2

SFRASC-4 21.2 24.1 13.4 101.2 112.4 11.1

SFRASC-8 25.3 27.5 8.7 111.5 119.8 7.4

FIGURE 16
Compression damage cloud map of specimen of SFRASC-1, SFRASC-2, SFRASC-4 and SFRASC-8.
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simulated values being greater than the corresponding
experimental values.

Figure 16 shows the damage cloud map of the simulated test
beam at ultimate failure under ultimate load, and it can be seen from
the figure that the crack distribution pattern is similar to the
test results.

6 Conclusion

Adding steel fibers to alkali-activated slag concrete can enhance
the tensile stress and crack resistance of the concrete, thereby
improving the flexural performance and load-carrying capacity of
alkali-activated slag concrete beams. Within the specified range of
steel fiber content in this study, an increasing trend is observed in the
effectiveness of these enhancements with the increase of steel
fiber content.

The existing “Technical Specification for Fiber Concrete
Structures” (CECS38: 2004) regarding the calculation formula of
beam cross-sectional load-carrying capacity is also applicable to steel
fiber-reinforced alkali-activated slag concrete beams.

Both the experimental and fractal analysis results demonstrate
the bridging and crack-arresting effect of steel fibers. The addition of
steel fibers significantly reduces the number of surface cracks in
beams, with this effect becoming more pronounced as the fiber
content increases. The given calculation formula for the maximum
crack width of fiber concrete beams in the “Technical Specification
for Fiber Concrete Structures” (CECS38: 2004) has been modified,
and the results from the adjusted formula correspond well with
experimental findings.

The numerical simulation results of the loading closely match
the experimental results. The distribution of surface cracks in the
numerically simulated beam failure is similar to the
experimental results.
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Study on the biomechanical
properties of 3D printed blended
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structural parameters based on
patient CT
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Introduction: Esophageal stenting is a widely used treatment for esophageal
diseases, which can also be used for adjuvant therapy and feeding after
chemotherapy for esophageal cancer. The structural parameters of the stent
have a significant impact on its mechanical properties and patient comfort.

Methods: In the present work, we reconstructed the esophagus model based on
the patient’s computed tomography (CT) data, and designed stents with different
structural parameters. We used 3D printing technology to achieve rapid
production of the designed stents by using Thermoplastic polyurethane (TPU)/
Poly-ε-caprolactone (PCL) blends as the materials. The mechanical properties
and effects on the esophagus of polymer stents with four different structural
parameters of diameter, wall thickness, length and flaring were investigated by in
vitro tests of radial compression and migration of the stents, as well as by finite
element simulations of the stent implantation process in the esophagus and of
the stent migration process. An artificial neural network model was established to
predict the radial force of the stent and the maximum equivalent stress of the
esophagus during implantation based on these four structural parameters.

Results: The results show that wall thickness was the structural parameter that
had the greatest impact on the radial force of the stent (statistically significant, p <
0.01), and flaring was the structural parameter that had the greatest impact on the
maximum equivalent stress of the esophageal wall after stent implantation
(statistically significant, p < 0.01). No. 6 stent had a maximum radial force of
18.07 N, which exceeded that of commercial esophageal stents and had good
mechanical properties. And the maximum equivalent force on the esophagus
caused by its implantation was only 30.39 kPa, which can improve patient
comfort. The predicted values of the constructed back propagation (BP)
neural network model had an error of less than 10% from the true values, and
the overall prediction accuracies were both above 97%, which can provide
guidance for optimizing the design of the stent and for clinical research.
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Discussion: 3D printing technology presents a wide range of applications for the
rapid fabrication of personalized TPU/PCL blend stents that are more suitable for
individual patients.

KEYWORDS

3D printing, esophageal stent, CT, biomechanics, TPU/PCL, reverse modeling, artificial
neural network

1 Introduction

Esophageal cancer is one of the most commonmalignant tumors
worldwide, with extremely high morbidity and mortality. It is rarely
cured in the advanced or terminal stage [1–3]. Esophageal stricture
is a common symptom of esophageal cancer patients. Due to cancer
cells, the local wall of the esophagus of patients will be unevenly
thickened, causing esophageal stenosis and difficulty in swallowing,
seriously affecting the quality of life of patients [4]. Despite surgical
treatment or chemotherapy, the incidence of secondary esophageal
stricture is still high [5, 6].

Esophageal stenting is an effective palliative treatment for
esophageal disease, that can help patients with advanced
esophageal cancer to relieve the esophageal obstruction and
improve the swallowing function [7, 8]. After surgery or
chemotherapy, esophageal stenting can be used to protect the
treated area of the esophagus in feeding, and reduce the
likelihood of secondary strictures for adjunctive treatment [9].
Esophageal stents include self-expanding metal stents (SEMS)
and self-expanding plastic stents (SEPS) [10]. Currently, SEMS
are widely used in clinical treatment of esophageal diseases due
to their excellent shape memory properties and mechanical
properties [11, 12]. However, metal stents can cause
complications such as tumor tissue growth, perforation, bleeding,
stent fall, and secondary strictures to varying degrees [13]. SEPS are
effective in reducing esophageal injury and reducing the risk of
esophageal restenosis, as well as being easy to remove from the
esophagus [14]. However, it has been demonstrated that the
migration rate of SEPS is significantly higher than that of SEMS
[15]. Moreover, the sizes of commercial esophageal stents circulating
are fixed and cannot be fully adapted to the patient, which will
reduce the patient’s comfort and affect the therapeutic effect. This
puts forward higher demands for esophageal stents in terms of
materials, structure and humanized design.

3D printing is a technology that uses layers of discrete materials
to print three-dimensional objects based on three-dimensional
digital models. The products manufactured by 3D printing
technology have a short cycle and can save costs. More
importantly, 3D printing is not only independent of product
complexity and size limitations, but also allows for innovative
and personalized autonomous production. With the development
of 3D printing technology, 3D printing has shown advantages in the
field of biomaterials and medical devices [16, 17]. For example,
Farzin et al. fabricated of sugar-based stents with ideal geometry and
size for facilitating arterial surgical anastomosis by 3D printing [18].
AndMatheus et al. developed 3D printed bioresorbable nitric oxide-
releasing vascular stents [19]. Currently, an increasing number of
scholars have begun to use 3D printing technology to develop blend
esophageal stents that are more suitable for patients and have

excellent mechanical properties [20]. For example, Lin et al.
developed a new 3D-printed flexible PLA/TPU tubular polymeric
stent with spirals that exhibits excellent self-expansion and anti-
migration properties, and the performance is modulated by
changing the ratio of PLA to TPU [21].

The structure andmechanical properties of esophageal stents are
the most important factors in determining the interaction between
the stent and the esophageal wall. At the same time, the structure of
the stent also influences on its mechanical properties. Therefore, it is
necessary to study the impact of esophageal stent implantation with
different structural parameters on the individual esophagus of
specific patients. However, it is impossible to test stent
implantation into the human esophagus in the clinic, which in
turn makes it difficult to accurately predict the effects of stent
implantation.

Finite element method (FEM) is widely used in the biomedical
field as an important and effective research method [22, 23]. For
instance, Alkentar et al. investigated the performance of Ti6Al4V
lattice structures designed for biomedical implants by using the FEM
[24]. FEM is not be limited by environment and cost as experiments.
It can also well solve various nonlinear problems encountered in the
biomedical field, and achieve results very similar to the real situation.
The accuracy of FEM can be improved through model
reconstruction of medical cases [25]. Therefore, it is necessary to
perform inverse modeling of the patient’s esophagus and FEM of the
process of stent implantation into the esophagus with different
structural parameters, so as to provide physicians with important
guidance in designing stents and treating patients.

In this paper, we extracted the esophageal model from the
computed tomography (CT) images and 3D printed it with
thermoplastic elastomer (TPE). TPE is a new polymer material
between rubber and resin, so it has the dual properties of rubber
and plastic: high strength, high elasticity and injection molding [26,
27]. At the same time, TPE is an environmentally friendly, non-toxic
and safe material with excellent weather resistance, fatigue resistance
and temperature resistance. It also has a wide range of hardness from
ultra-soft to 90A, which can meet the hardness needs of different
products [28, 29]. Therefore, TPE is not only used in themanufacture of
daily necessities and industrial products, but also in the manufacture of
medical devices, such as tourniquets, nebulizer hoses, human tissue
anatomymodels, etc. [30].Wu et al. used TPE to prepare high sensitivity
capacitive pressure sensor of medical devices [31]. Fischenich et al.
discovered that TPE hydrogels have elastic and viscous components that
make them ideal for soft tissue replacements [32]. Esophageal model
materials need to be as close as possible to the biomechanical properties
of the human esophagus. In existing research, thermoplastic elastomers
have been used for artificial blood vessels and artificial esophagus [33,
34]. TPE can be used tomake artificial blood vessels [35]. Similarly, TPE
can meet this basic requirement by adjusting its hardness, and as a

Frontiers in Physics frontiersin.org02

Wu et al. 10.3389/fphy.2024.1390321

75

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1390321


commonly used soft material for 3D printing, it allows esophageal
models to be molded quickly.

The stent designed in this paper consists of thermoplastic
polyurethane (TPU) and poly-ε-caprolactone (PCL). TPU is a
biocompatible polymer with high tensile strength, abrasion
resistance, tear resistance, and low-temperature flexibility, enables
provides the feasibility of designing elastic products with potential
applications in medicine and tissue engineering [36–38]. PCL is a
biodegradable polyester with the advantages of high availability and
tensile strength, degradability and biocompatibility, and thus has
been used in the field of tissue engineering [39, 40]. Some scholars
used TPU and PCL blend materials for the manufacturing of various
medical equipment, such as Pinto et al. prepared TPU/PCL blend for
biomedical application [41]. Thus, TPU/PCL blends make it easier
to manufacture flexible esophageal stents that are better suited to
individual patients.

Back propagation (BP) neural network is a multilayer
feedforward neural network trained according to the error back
propagation algorithm. BP neural network has strong nonlinear
mapping ability and flexible network structure, no need to
determine the mathematical equation of the mapping
relationship between the input and output in advance. It only
learns a certain rule through its own training and gets the closest
result to the desired output value when the input value is given
[42–44]. Using BP neural network to predict the structural
parameters of 3D printed esophageal stents can quickly and
accurately obtain the index values of unknown combinations of
structural parameters based on historical data and influencing
factors, which can be fed back into the optimized design of
esophageal stents for individual patients.

Based on the patient’s CT scan data, we reversed model,
optimized and simplified the patient’s esophageal geometric
model through medical software, and designed 12 esophageal

stents with different structural parameters. By conducting in vitro
tests and FEM on the 3D printed simulated esophagus and
12 esophageal stents, we analyzed the characteristics of structural
parameters affecting the support performance, safety and comfort of
3D printed blend esophageal stents from a mechanical perspective.
We established an artificial neural network model to predict the
radial force of the stent and the maximum equivalent stress in the
esophagus after stent implantation, and optimized the structural
parameters of the esophageal stent for a specific patient. It provided
physicians with a reference for the selection and design of
esophageal stents, as well as the prediction and selection of
auxiliary treatment with stent implantation after chemotherapy.

2 Materials and methods

2.1 CT reverse modeling and simplification
of the esophagus

The main flowchart of esophageal model acquisition is shown
in Figure 1.

2.1.1 Extraction of esophageal model
The esophageal model was extracted from CT scans of a patient

with esophageal cancer who underwent chemotherapy. The purpose
of the extraction was to design a stent that could improve the
patient’s comfort by covering the chemotherapy area and extending
slightly beyond it. The chemotherapy area was determined by
positron emission computed tomography (PET)-CT fusion
imaging, which showed the metabolic activity of the tumor cells.
The extracted esophagus included the chemotherapy area and
8 additional tomograms (each 1.25 mm thick) at both ends of the
chemotherapy area.

FIGURE 1
Esophageal model acquisition process.
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The raw data of the esophageal model in this paper comes from
the PET-CT enhancement scan images of the patient. The patient is
an elderly male diagnosed with esophageal cancer in a hospital in
Zhongshan, Guangdong Province, based on the provided medical
imaging data in digital image and communication on medicine
(DICOM) format.

The patient’s DICOM data file before chemotherapy was
imported into a medical image reading software called
Xiaosaikankan DICOM Viewer, and PET-CT fusion browsing
was used to obtain the metabolic information of each cell in the
body. Based on the principle that tumor cells are metabolically active
and their ability to uptake contrast agent is 2–10 times higher than
normal cells, the location of the patient’s esophageal tumor and the
CT section range of the chemotherapy area were accurately and
rapidly determined.

The DICOM data file of the patient’s post-chemotherapy review
was identified and imported by the medical image processing
software called Mimics. After self-processing of the data by the
software, three views of the patient’s CT-enhanced scan data were
obtained. The Soft tissue scale was selected in the Grayscale of the
Contrast workspace below, so that the soft tissues including the
esophagus could be displayed in high contrast, which facilitated the
segmentation of the human body tissues.

In Mimics, the extraction method for esophagus was mainly
divided into the following steps:

1. After the DICOM data file was successfully imported, a new
two-dimensional mask was created using the New Mask in the
SEGMENT function area, and the Threshold gray value range
was adjusted to separate the esophagus from other tissues in
the image, resulting in a preliminary segmentation of the
human body tissues.

2. Since the gray value range of the esophagus also included other
tissues within this range, such as liver, kidney, and stomach.
The Crop Mask was used to roughly segment the desired
extraction region of the esophagus after the gray value
segmentation. The Edit Masks mask editing tool was used
to extract the roughly segmented esophagus to obtain a
relatively complete esophagus model.

3. Due to the software’s inability to accurately distinguish more
complex content during the gray value segmentation stage,
there are still some problems with the esophageal model at this
point, such as voids at the borders. The details of the model
were refined using 2D mask editing. The Edit Masks and
Multiple Slice Edit 2D editing tools were used to repair the
details of the esophagus layer by layer in the 2D mask. The
Mask 3D Preview function was used to preview the entire
extraction process in the 3D view box and generate a 3D
esophagus model from the mask. Finally, the Calculate Part
tool was used to generate a 3D solid model of the esophagus
from the edited mask.

2.1.2 Smoothing and simplification of the
esophagus model

The extracted esophageal model had a complex and rough
surface structure. To improve the 3D printing quality and reduce
the computational complexity and time of the FEM, the model
needed to be smoothed and simplified. The Smooth tool in the 3D

TOOLS function area of Mimics software was not sufficient to
achieve a satisfactory smoothing effect, so the model was further
optimized in detail in a digital auxiliary design software called 3-
Matic, while preserving the integrity of the inner wall boundary of
the esophageal model.

The esophageal model data extracted from Mimics were
transferred to 3-Matic. The Smooth tool in the Fix function area
was used for surface processing, and then the Local Smoothing tool
in the Finish function area was used to paint and smooth the local
unevenness, abnormally raised areas, and the areas with serious
granularity of the model, resulting in a smooth esophagus model. To
accurately capture the boundary lines of the inner and outer walls of
the esophagus, the Calculate Polylines tool was used to generate the
boundary polylines of the inner and outer walls of the esophagus
from the smooth esophageal model.

To ensure the convergence of the FEM and avoid the problems of
numerical instability and long calculation time during the simulation
process, the complex boundary polylines were fitted into circles one by
one using the Radius tool in the Measure function area. By placing the
centers of all circles on the same axis without changing their relative
positions in the axial direction, the extracted esophagus was simplified
to a slightly narrower cylinders in the middle, with a length of 64 mm,
an inner diameter of 22 mm at both ends, and 18 mm in the middle,
and an outer diameter of 28 mm at both ends and in the middle. The
wall thickness of the esophageal cylinder was 3 mm at both ends and
5 mm in the middle, which was consistent with the results and analysis
of the images on the patient’s post-chemotherapy examination report.

The two ends of the simplified esophageal cylinder were
extended 30 mm and 50 mm up and down the axis respectively
as the esophageal non-chemotherapy area. As shown in Figure 2A,
the non-chemotherapy zone was simplified to a uniform cylinder
with an inner diameter of 22 mm and a wall thickness of 3 mm, in
order to facilitate the simulation of stent implantation, anti-
migration test and simulation. The simplified entire esophageal
cylinder was modeled in SolidWorks software for subsequent
3D printing.

2.2 Stent design with different structural
parameters

The biomechanical performance of the interaction between the
stent and the esophagus after implantation depends on the structural
parameters of the stent. The stent was designed based on four
structural parameters by SolidWorks: 1) outer diameter; 2) wall
thickness; 3) length; 4) presence of flares at both ends.

Based on the variation of the inner diameter of the middle
section of the simplified cylindrical esophagus model, three different
outer diameters of stents with a slightly narrower middle were
designed (Figure 2B). For each outer diameter, the stents were
designed different varying in wall thickness, length and presence
of flares at both ends. The flare was designed as a bell mouth with a
length of 4 mm and a slope of 0.5. To facilitate the subsequent
training of the BP neural network, three more stents with different
structural parameters were added to the orthogonal experimental
design scheme. The structural parameters of the 12 different stents
are shown in Table 1. The outer diameters of the stents are recorded
on the diameter of the narrowest point in the center.
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2.3 3D printed esophageal and stents

The esophagus material was TPE and the stent material was
TPU/PCL blend.

TPE with shore hardness of 30A was purchased from Jie Jia Plastic
Technology Co., Ltd. (Dongguan, China). TPUwith a specific gravity of
1.14–1.18 g/cm3 and shore hardness of 60A was purchased from De
Chuang Co., Ltd. (Dongguan, China). PCL 600C (Mn = 65,000) was
purchased from Shenzhen eSUN Industrial Co., Ltd. (Shenzhen,
China). All materials were commercially available and were not
further purified.

Materials with 80%TPU/20%PCL component ratios were
prepared using a co-rotating twin-screw extruder (Nanjing Hass
Extrusion Equipment Co., Ltd. China, diameter of screw = 2 cm,
length/diameter ratio = 40/1). The process and details of TPU/PCL
blend preparation can be found in Ref. [45].

The esophagus model and the designed stents in SolidWorks
were exported as STL format files, and were sliced in Creality Print
(Version3.5.9.0) slicing software. Then the G5 screw extrusion 3D
printer from Shenzhen Creality 3D Technology Co., Ltd. (Shenzhen,
China) was used for 3D printing (Figure 3). The printing parameters
for different materials are presented in Table 2.

FIGURE 2
(A) Simplified esophageal model, (B) Three different outer diameters of stents.

TABLE 1 Structural parameters of esophageal stents.

No. Outer diameters (mm) Wall thickness (mm) Length (mm) Presence of flares at both ends

1 19 0.08 64 no

2 19 0.12 74 no

3 19 0.16 84 yes

4 21 0.08 84 yes

5 21 0.12 64 yes

6 21 0.16 74 no

7 23 0.08 74 yes

8 23 0.12 84 no

9 23 0.16 64 no

10 19 0.08 74 yes

11 21 0.12 64 no

12 23 0.16 84 no
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2.4 Radial behavior and migration resistance
of the stent

2.4.1 Radial force test
The radial performance of esophageal stents was evaluated using

a universal testing machine (JJ UTM-1422, Jin Jian Testing
Instrument Co., Ltd., Chengde, China). Three samples of each

stent were tested. As shown in Figure 4A, the stents were placed
between two circular platens and compressed at a rate of 10 mm/
min until the stents reached 50% strain, and the force was recorded.

2.4.2 Migration resistance force test
The migration resistance of the esophageal stents in the 3D

printed simplified esophageal model was tested. As shown in
Figure 4B, the lower end of the esophageal model was clamped,
and then the esophageal stent was implanted into the corresponding
position of the chemotherapy area of the esophageal model. Holes
were perforated at the upper end of the esophageal stent and tied to
the universal tensile machine with a rope to ensure the same
placement position each time. Use the universal testing machine
to pull out the esophageal stent from the esophageal model at a
constant speed, and set the end distance to 35 mm. The force-
distance curve and maximum peak force during the uniform
traction process of the stent along the esophageal axis were recorded.

2.5 Finite element method of esophagus
and stents

2.5.1 Modeling and material parameters of
esophagus and stents

Modeling of the simplified esophagus and stents were completed
in Abaqus, a finite element software for engineering simulation. A
rigid cylinder with a diameter slightly larger than the maximum
diameter of the esophagus and stent was built to assist in the
contraction surface.

FIGURE 3
3D printed esophageal model and designed stent (from left to right are the esophagus and No. 1-No. 12 stents).

TABLE 2 Printing parameters for different materials.

Material Nozzle temperature (°C) Build plate temperature (°C) Printing speed (mm/s) Layer height (mm)

TPE 230 35 20 0.1

80%TPU/20%PCL 210 35 20 0.1

FIGURE 4
(A) Radial force test, (B) Migration resistance force test.
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The esophagus was manufactured using TPE, a highly elastic
material that had mechanical properties close to those of the human
esophagus. The stent material was 80%TPU/20%PCL hyperelastic
blend, so the Mooney-Rivlin hyperelastic model was used for finite
element calculations.

The strain energy density function of the Mooney-Rivlin
model is:

W � c10 I1 − 3( ) + c01 I2 − 3( ) + c20 I2 − 3( )2 + c11 I1 − 3( ) I2 − 3( )
+ c02 I2 − 3( )2 + 1

D1
J − 1( )2

Where I1 and I2 are strain invariants,W is the strain energy density
function, and c10, c01, c11, c20, c02, and D1 are the hyperelastic constants.
The subscripts of the constants indicate different strain invariants. c10
denotes the linear term coefficient of the first strain invariant I1, c01
denotes the linear term coefficient of the second strain invariant I2, c11
denotes the cross-term coefficient of I1 and I2, c20 denotes the quadratic
term coefficient of I1, and c02 denotes the quadratic term coefficient of I2.

The Mooney-Rivlin hyperelastic constants were automatically
generated by uniaxial tensile tests (n = 5) in combination with
Abaqus software to fit the stress-strain curves. The simulation curves
of the experimental stress-strain curves fitted to the Mooney-Rivlin
model can be found in ref. [46]. The hyperelastic constants of
esophagus and 80%TPU/20%PCL hyperelastic materials are listed
in Table 3 [47].

2.5.2 Assembly and interaction of
esophageal-stent

The esophagus, stent, and auxiliary constriction surface were
assembled as follows: As shown in Figure 5, the plane center point of
the narrowest position of the simplified esophageal chemotherapy
area as the coordinate origin. Then the stent was moved so that the

center point of the plane at the narrowest position in the middle
section of the stent and the axis of the cylinder coincided with the
coordinate origin and the axis of the esophagus. Similarly, the
auxiliary contraction surface was moved so that the center of
mass and axis of the auxiliary surface coincide with the
coordinate origin and the esophageal axis.

Simulation of stenting for esophageal treatment: A cylindrical
coordinate system was established with the axis as the Z-axis and the
radial direction of the stent as the T-axis. The esophagus was fixed in
the Z-axis direction, and a uniform displacement was applied to the
entire auxiliary contraction surface in the radial direction. After
contraction, the auxiliary surface contacted the outer surface of the
stent, and the stent was pressed into the simplified esophagus. Then
the constraints between the auxiliary surface and the stent were
released, allowing the stent to self-expand and interact with the inner
wall of the esophageal model until equilibrium was reached.

Stent migration simulation in the esophagus: After the stent was
implanted in the esophagus, the esophagus was kept fixed in the
Z-axis direction, while a distance in the negative Z-axis direction was
applied to the stent. The stent moved at a constant speed along the
negative direction of the Z-axis in the esophagus. The friction
coefficient between the outer surface of the stent and the surface
of the inner wall of the esophagus was set to be 0.1, and the
termination distance was 40 mm.

2.6 Artificial neural network design

2.6.1 Selection of input and output parameters
We established a simple single-output artificial neural network

model to train the structural parameter combinations and
performance metrics of existing esophageal stents, which could
quickly predict the stent performance metrics of other structural

TABLE 3 Mooney-Rivlin parameters of esophagus and stent material.

Material c10 (MPa) c01 (MPa) c11 (MPa) c20 (MPa) c02 (MPa)

Esophagus (TPE) −0.027 0.048 −1.723 0.812 0.982

80%TPU/20%PCL −10.600 15.180 −0.271 3.089E-02 3.492

FIGURE 5
Assemble the esophagus, stent, and auxiliary constriction surface.
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parameter combinations. The most common BP neural network
topology includes input layer, hidden layer, and output layer, as
shown in Figure 6. The number of nodes in the input layer was set to
4, representing the four structural parameters of the designed stent:
outer diameter, wall thickness, length and flare width. The number
of nodes in the output layer was set to 1, which represented the
performance index value of the designed stent.

The radial force of the stent determines the effect of supporting the
esophageal treatment area, facilitating eating and assisting treatment
after implantation. However, excessive radial force not only affects the
patient’s comfort, but can also lead to bleeding and other complications.
In contrast, the maximum equivalent force in the esophagus after stent
implantation can largely reflect the patient’s comfort. Therefore, we
used the stent radial force and the maximum equivalent stress of the
esophagus after implantation as the performance indicators of the stent
for training and prediction.

The characteristic parameters of the training set and test set of the
BP neural network model are shown in Table 1, while the performance
index values were obtained from the results in vitro test and FEM result.
Common neural networks require 70% of the data as the training set
and 30% of the data as the test set, and the amount of data will directly
affect the prediction results. Therefore, all the data in the first 9 groups
of the 12 sets of stents data were repeatedly trained as the training set,
and the last 3 groups were used as the test set.

2.6.2 BP neural network modeling
The amount of data in this study was small and the calculation

was simple, so the BP neural network model can be designed with a
single hidden layer. The number of nodes in the hidden layer can be
set according to the following empirical formula:

l � �����
n +m

√ + a

where n is the number of input nodes, m is the number of output
nodes, and a is a constant value from 1 to 10.

Since the number of hidden layer nodes is the main determinant
of the accuracy of the neural network model, we set a to 1–10 in turn
and plugged it into the formula to get the number of hidden layer
nodes for the function training, after completing the design of the
training function and data normalization. In this way, we obtained
the number of hidden layer nodes that minimizedmean square error
(MSE) of the training set, and set it as the optimal number of hidden
layer nodes to update the training function parameters.

The trainlm of Levenberg-Marquardt (L-M) optimization algorithm
was adopted as the training function. Considering that the different
magnitudes of the input parameters would interfere with the accuracy

and performance of the network structure when training the neural
network, all data were normalized through the mapminmax function so
that the values of all magnitudes converge between 0 and 1. The
maximum number of training times of the network was set to 1,000,
the learning rate was 0.01, and the minimum error of the training target
was 1e-6. After completing the training and testing of the network,
denormalization was performed through the mapminmax function to
obtain the actual predicted value of the output index value. Finally, the
plot function and the bar function were used respectively to complete the
plotting of the actual value, predicted value and error of the output
indicator value.

3 Results and discussion

3.1 Results of radial compression test and
migration test

3.1.1 Radial force of the stents
Figure 7 shows the radial force-distance curves of stents with

different structural parameters and a commercial stent. The radial force
of No.4 stent was the smallest, 1.64 N. The radial force of No.6 stent was
the largest, 18.07 N. The radial force of commercial stent was 8.28 N,

FIGURE 6
BP neural network topology.

FIGURE 7
Radial force-distance curves of stents (n = 3).
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which lay betweenNo.3 stent andNo.11 stent. This suggests that the 3D
printed polymer stent could provide the same radial support force as the
commercial esophageal stent by adjusting the structural parameters,
thereby supporting the chemotherapy area to assist with feeding.

By analysis of range and analysis of variance (ANOVA) on the
maximum radial force obtained from the stents. We found that all
the four structural parameters studied in the tests had significant
influence (statistically significant, p < 0.01) and main effect on the
stent radial force. Among them, wall thickness was the structural
parameter with the greatest impact, which could greatly improve the
stiffness of the stent. This was followed by flare and length in that
order, while the outer diameter had the least effect. The optimum
level of structural parameters for the maximum radial force were:
21 mm for the outer diameter, 0.16 mm for the wall thickness and
74 mm for the length without flare.

3.1.2 Migration resistance force of the stents
Since the FEM often has some differences with the actual situation,

we performed in vitro tests to verify the accuracy of the model by
comparing the test results with the finite element analysis results. The
force-distance curves of the stentmigration test and simulation are shown
in Figure 8. From the figure, it could be seen that the force-distance curve
shows a rapid upward trend in the initial stage. Then the upward trend
gradually slowed down, became relatively flat, and finally decreased after
passing the peak point. No. 1 stent had the lowest peak resistance to

migration of 3.00 N, while No. 12 stent had the highest peak resistance to
migration of 20.07 N. Increasing the diameter, wall thickness, length, as
well as designing the flare of the stent can improve migration resistance.
Among them, the outer diameter had the most significant effect on the
migration resistance. Improving the migration resistance can reduce the
probability of migration or even fall of the stent.

3.2 Finite element simulation of stent
implantation and self-expansion

The stress distribution of the esophageal wall after the stent with
different structural parameters is implanted into the esophagus is shown
in Figure 9. The smallest maximum equivalent force on the esophageal
wall after implantation was caused by stent 1with 12.04 kPa. The largest
maximumequivalent force causedwas caused by stent 7with 103.2 kPa.
It could be seen that the maximum equivalent stress on the esophageal
wall caused by the esophageal stent occurs at both ends of the stent,
because the diameter of the stent is largest at both ends of the stent,
which stretches the esophagus and causes greater deformation of the
esophagus. This is most obvious in stents with flares at both ends. The
stent without flares exerted a greater equivalent force on the esophageal
wall at 10 mm from the origin because the rate of change of the stent
diameter became greater here, resulting in a concentration of stress in
the esophageal wall.

FIGURE 8
The force-distance curves of the stent migration test (n = 3) and simulation.
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By performing range and ANOVA on the simulated maximum
equivalent stress of the esophagus, it could be found that the outer
diameter and dilation had a significant impact on the maximum
equivalent stress (statistically significant, p < 0.01), and there was a
main effect. Flare was the structural parameter that had the greatest
impact, causing convex deformation of the esophageal wall and
stress concentration at the contact point with the esophagus. Then
followed the order of diameter, length and wall thickness. When the
equivalent stress of the esophagus wall was minimum, the optimal
levels of structural parameters were: outer diameter 19 mm, wall
thickness 0.16 mm, length 64 mm, and without flare.

3.3 Finite element simulation of
stent migration

The process of stent migration was investigated by applying
displacement to the completed implanted stent in the

esophagus. Comparing the force-distance curves of the
migration test and the simulation in Figure 9, it was easy to
find that the trends of the migration resistance of the stents with
different structural parameters obtained by FEM were similar to
those of the test results, and the peaks of the two were very close
to each other. The peaks of the anti-migration force
approximately occurred at the displacement point where the
end of the stent passes through the narrowest area in the middle
of the esophagus. Although the force-distance curves have
errors due to the differences in the boundary conditions and
load settings of the finite element simulation and the real test,
this does not affect our analysis of the anti-migration ability of
the stents through FEM.

When the maximum equivalent stress is exerted on the
esophageal wall during dynamic migration of blended stents
with different structural parameters, the stress distribution of
the esophageal wall is shown in Figure 10. Obviously, the
dynamic stress on the esophageal wall caused by dynamic

FIGURE 9
The stress distribution of the esophageal wall after stenting. (From top to bottom on the left are No.1 stent to No. 6 stent, and on the right are No.
7 stent to No.12 stent).
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migration of the stent was higher than the static stress at the
completion of implantation. This is due to the fact that in order
to make the stent fit better into the esophagus to improve
patient comfort, the esophageal stent was designed as a
cylindrical model with a slightly narrower middle like the
simplified esophagus model. Even the rate of change of the
stent’s outer diameter was basically the same as that of the
esophagus’s inner diameter. Therefore, when migration of the
stent occurs to the point where its end passes through the
narrowest region in the middle of the esophagus, the
deformation of the narrowest region is the greatest, and the
dynamic maximum equivalent stress caused by the stent to the
esophagus is also the largest during the migration process.
Therefore, when increasing the stent migration resistance, it
is important to avoid excessive migration resistance that may
cause secondary damage to the mucosa of the esophageal inner
wall during stent migration [48].

3.4 Comparative analysis of neural network
model predictions

3.4.1 Stent radial force prediction
When cyclically training and predicting the radial force of the

stent through the BP neural network, the optimal number of hidden
layer nodes was 9, and the corresponding MSE was 0.00019. The
standard BP neural network was constructed with 9 hidden layer
nodes, and the trend of MSE during the training process is shown in
Figure 11A. As can be seen from the figure, the best verification
performance occurred in the 6th round with MSE of 0.0004. The
performance of the BP neural network at this point is shown in
Figure 11B. It is evident that the constructed BP neural network
model fitted the test data excellently, and the correlation coefficients
R were all above 0.998. By analyzing the true and predicted values of
the radial force of the last three groups of stents listed in Table 4, we
found that the error between them was less than 10%, and the overall

FIGURE 10
The stress distribution of the esophageal wall when the dynamic migration of the stent produces the maximum equivalent stress on the esophageal
wall. (From top to bottom on the left are No. 1 stent to No. 6 stent, and on the right are No. 7 stent to No. 12 stent).
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prediction accuracy was as high as 97.5%, which indicated that the
BP neural network predicted the radial force of stents very well.

3.4.2 Prediction of maximum equivalent stress
of esophagus

Similarly, the optimal number of hidden layer nodes was 6 and the
corresponding MSE was 1.75e-05 when the maximum equivalent force
of esophagus after stent implantation was trained and predicted
cyclically by BP neural network. The standard BP neural network
was constructed with 6 hidden layer nodes, and the trend of MSE was
obtained during the training process as shown in Figure 12A. The figure
shows that the best validation performance occurred in round 5 with
MSE of 2.60e-05, at which time the performance of the BP neural
network is shown in Figure 12B. It is also clear that the established BP
neural network model fitted the finite element simulation data
excellently, with correlation coefficients R above 0.999. Table 5 lists
the true and predicted values of the maximal equivalent stress of the
esophagus after stent implantation in the last three groups, andwe could

find that the errors between them are all less than 10%, and the overall
prediction accuracy was as high as 99.91%, showing that the BP neural
network also predicted the maximum equivalent stress of the
esophagus very well.

3.5 Discussion

From the overall results of the in vitro tests and FEM, it can be
seen that among the 12 designed stents, No. 6 stent has the best
mechanical properties. Its radial force is the largest at 18.07 N, which
can effectively stretch the middle section of the esophagus that is still
somewhat stenotic after treatment and prevent the occurrence of
secondary narrow. The maximum equivalent stress on the inner wall
of the esophageal stent after its implantation is only 30.39 kPa,
which improves patient comfort to a large extent. However, in the
clinic, it is necessary to select the appropriate stent according to the
complex actual situation and needs of the patient.

FIGURE 11
(A) Training mean squared error curve, (B) The curve fitting of BP neural network on training and predicting the radial force.

TABLE 4 Comparison of actual and predicted values of stent radial force.

No. Actual (N) Predicted (N) Absolute (N) Relative (%)

10 2.16 1.95 0.21 9.72

11 8.16 8.36 0.20 2.45

12 14.07 14.51 0.44 3.13
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In the current study, we obtained a simplified esophageal
reconstruction model of the patient by processing the patient’s
CT scan images using Mimics software and 3-Matic software.
Based on this, esophageal stents with different structural
parameters were designed. Using a twin-screw extruder, we melt
blended two polymers with different flexibility, TPU and PCL, in a
ratio of 8:2 for 3D printing of flexible esophageal stents.

In this study, quasi-static finite element simulations of the stent
implantation process were performed using Abaqus software to
obtain the biomechanical interactions between the stent and the
esophagus after stent implantation, which is important for assessing
patient comfort and the likelihood of bleeding from esophageal
injury after stent implantation. On this basis, finite element
simulations of dynamic migration occurring after completion of
stent implantation were performed to assess the effectiveness of
stent-assisted therapy and the possibility of complications, such as

stent displacement, after stent implantation. Therefore, FEM plays a
vital role in the design of esophageal stent and can provide a
reference for optimizing the structural parameters of the esophagus.

However, the simulation in this article used a simplified patient
esophageal model, which ignored the weight of the stent itself, the
complex environment in the esophagus, and the impact of the
patient’s eating and esophageal physiological swallowing on the
stent. It also does not consider the possible changes in the esophageal
characteristics due to chemotherapy [49]. Follow-up studies should
explore the impact of patient feeding on the stent and the fatigue of
the stent under cyclic swallowing stress [50].

The esophagus model used in the test was 3D printed by TPE,
which can quickly obtain an esophagus model with physical
properties close to those of the real human esophagus, but it
cannot achieve a complete simulation of the real esophagus. In
the study, we extracted and simplified the esophageal model as an

FIGURE 12
(A) Training mean squared error curve, (B) The curve fitting of BP neural network on training and predicting the maximum equivalent force of
esophagus after stenting.

TABLE 5 Comparison of actual and predicted values of esophagus maximum equivalent force.

No. Actual (kPa) Predicted (kPa) Absolute (kPa) Relative (%)

10 44.71 49.15 4.44 9.93

11 29.55 29.92 0.37 1.25

12 72.18 68.91 3.27 4.53
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unstratified homogeneous structure, which was uniformly printed
with TPE of the same properties. The entire esophageal model was
given the same material properties during finite element analysis.
However, based on the histology, the real esophagus consists of five
layers from inside to outside are: mucosa, the submucosa, the virtual
interfacial layer, the circumferential inner and the longitudinal outer
muscle layer [51]. There may be differences in properties between
the different histologic layers. Moreover, the tests were conducted
in vitro, ignoring the influence of the in vivo environment on the
stent, which may not be able to directly and accurately reflect the
effect of stent implantation on the human body. Therefore, it is
necessary to consider animal tests or even clinical tests in future
studies to further evaluate the performance of stents.

The constructed BP neural network can be trained according to
the performance index values derived from existing experiments or
simulations, and can rapidly and well predict the radial force of other
stents and the maximum equivalent force of the esophagus after
stent implantation, so as to provide a reference for the design of
structural parameters of stents. But the amount of data in the
training set was not very large. In the future, the accuracy of
prediction can be further improved by increasing the amount of
data in the training set and optimizing the BP neural network by
using genetic algorithm according to the influence of structural
parameters on the performance index.

Using 3D printing technology, we can rapidly design and
manufacture customized esophageal stents based on patients’ CT
and therapeutic needs, which can improve patient comfort and assist
therapeutic effects.

4 Conclusion

In this study, the esophagus was inversely modeled based on CT
images of the patient’s esophagus, and stents with different
structural parameters were designed. TPU/PCL blend and TPE
were selected as materials to 3D print the stent and simplified
esophageal model. The results indicated that the 3D printed
esophageal stent designed based on the CT of the patient’s
esophagus exhibits good radial properties and anti-migration
ability. Compared with 3D esophageal stents with fixed
dimensions, it is able to ensure the required mechanical
properties while generating less isotropic force on the esophageal
wall, which can reduce the patient’s discomfort. We can adjust the
mechanical properties of the stent and its effect on the esophagus by
adjusting the structural parameters of the stent. In addition, a BP
neural network was established in this paper to predict the radial
force of the stent and the maximum equivalent stress of the
esophagus after implantation. The results showed that the
mechanical properties of the stent can be quickly and relatively
accurately obtained by finite element simulation and BP neural
network prediction, and fed back into the design of the stent,
providing scientific guidance to further improve the comfort and
clinical selection of the stent. Of course, further studies are needed
regarding the fatigue performance of the stent to cope with

physiological swallowing of the esophagus after implantation,
more accurate finite element simulation, and optimization of the
BP neural network.
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Analysis and experiment of stress
concentration in penetration fuze
buffer materials under stress
wave incursion

An Zhang, Peng Liu* and He Zhang

Ministerial Key Laboratory of ZNDY, Nanjing University of Science and Technology, Nanjing,
Jiangsu, China

To enhance the impact resistance of penetration fuze, this paper investigates the
response of fuze buffer materials to stress waves and develops a model for stress
wave transmission inside the fuze. The stress concentration impacts of different
cell structures of Imitation Bamboo Type Penetration Fuze Buffer Protection
Structure (IBS) under stress wave action are compared and analyzed. The paper
elucidates the impact of different cell parameters on stress concentration
impacts, establishes nonlinear fitting functions of Stress Concentration Factor
(SCF) and cell parameters, and solves the prediction error. Based on the wave
function expansion method, an expression for Dynamic Stress Concentration
Factor (DSCF) when stress waves interact with the potting material is derived, and
numerical results of DSCF around bubbles under different physical parameters
are provided. Finally, dynamic impact tests are conducted on the combined
buffer scheme of penetration fuze. Impact test results show that, under an initial
velocity impact of 50 m/s, the overload peak attenuation rate is 39.42%, and
under an initial velocity impact of 70 m/s, the overload peak attenuation rate is
32.87%. IBS can effectively protect the electronic components inside the fuze.

KEYWORDS

stress wave, fuze, stress concentration, wave function, dynamic impact

1 Introduction

During the high-speed penetration process, both the projectile and the fuze are
subjected to strong dynamic loads, and the stresses generated are transmitted in various
forms of waves to different parts [1–3]. The phenomenon of stress waves is widely present in
the lives and has been extensively studied by experts and scholars in various fields, mainly in
engineering, military technology, and scientific theoretical research [4]. The most typical
examples of stress wave phenomena are various explosive and impact load problems in the
military field [5]. Under the dynamic response of impact loads, the response of objects often
differs significantly from that under static loads [6]. For example, when glass is subjected to
the impact of a stone, the back of the glass often fractures and collapses first. When a static
load is applied to one end of a metal rod, an experimental phenomenon opposite to that of
applying a dynamic load occurs: the deformation of the metal rod under static load is
basically uniformly distributed along the metal rod, while under impact load, the
deformation is concentrated more at the two ends of the metal rod [7, 8].

This article focuses on the study of buffer materials for penetration fuze and proposes an
IBS. Establish a theoretical model for stress wave propagation inside the fuze and derive the
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energy absorption mechanism of IBS under axial impact load. By
using finite element method to analyze the SCF of different cell
structures under penetration overload, and exploring the influence
of cell geometric parameters on SCF, a semi analytical solution of the
nonlinear fitting function for predicting SCF is obtained. In
addition, theoretical analysis and numerical calculation were
conducted on the DSCF around the bubbles in the sealing
material, and the distribution curve of the DSCF in the fuze
sealing material was solved. Finally, the optimal structure of IBS
is prepared through additive manufacturing technology, select the
sealing material with the best buffering performance. Conduct
dynamic impact tests on the optimized buffer scheme to verify
that IBS can effectively reduce overload peaks and minimize damage
to the electronic device structure of the fuze caused by stress waves.

2 Design of penetration fuze buffer
structure model

2.1 Design of biomimetic cell geometry

Biomimetics is the study of the principles of structure and
function of biological organisms, and based on these principles,
new equipment, tools, and technologies are invented to create
advanced techniques applicable to production, learning, and life.
For example, in architecture, large-span thin-shell buildings are
constructed by mimicking the structure of shells, and pillars are
built by mimicking the structure of bones, which not only
eliminates regions of stress concentration but also allows for the
use of minimal building materials to withstand maximum loads.
Zhang et al. [9] referred to the hierarchical structure of loofah
sponge and the stiffening behavior of sea cucumber and proposed
a new strategy for achieving multi-physical field protection through
biomimetic structure design. This biomimetic structure effectively
enhances the stiffness of polyurethane foam.Additionally, the stiffness
of this biomimetic structure increases with increasing compressive
strain rate, exhibiting excellent impact resistance under dynamic
loads. Compared to polyurethane foam, the impact force of this
biomimetic structure is reduced by 57.6%, and energy absorption

is increased by 25.7%. This study provides an innovativemeans for the
development of intelligent multi-physical field protection. Li [10]
found that the arc-shaped structure of natural organisms can provide
a reference for the design of impact-resistant structures. Most existing
biomimetic arc-shaped impact-resistant structures are directly formed
using 3D printing technology, and samples cannot dynamically adjust
their impact resistance performance in various applications. This
method uses 4D printing technology based on fuzed filament
fabrication, dynamically adjusts process parameters, and
incorporates them into the printing program to create flat
structures with different design shapes. Through dynamic thermal
stimulus processing, these structures can undergo deformation and
transform into biomimetic arc-shaped structures. Thermal stimulus
processing can drive the dynamic transformation of 2D planar
structures into 3D structures. Under the same experimental
conditions, the higher the thermal stimulus temperature, the more
pronounced the deformation impact, and the higher the structural
density. There is a certain positive correlation between the thermal
stimulus temperature and the mechanical properties of biomimetic
structure specimens. Additionally, designing different cyclic unit
patterns has different compressive mechanical properties, with a
greater number of cyclic units resulting in more prominent energy
absorption characteristics. 3D models of Imitation Bamboo Type
Penetration Fuze Buffer Protection Structure (IBS) and traditional
concave hexagonal honeycomb structure are shown in Figure 1.

2.2 Stress wave transmission law of fuze
rigid-flexible coupled system

During the penetration process of hard targets, when the projectile
impacts the target plate at high speed due to strong dynamic loads, the
stresses and deformations generated are propagated in the form of
stress waves in the projectile-fuze structure.When the stress generated
by the load reaches or far exceeds the yield strength of the projectile
material, irreversible plastic deformation occurs in the material,
resulting in the generation of plastic waves between the projectile
and the fuze. Since the velocity of elastic waves is much faster than that
of plastic waves, elastic waves precede plastic waves. Under uniaxial

FIGURE 1
Honeycomb structure models of Penetration Fuze buffer. (A) IBS. (B) Traditional straight-edge structure.
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strain conditions, the velocity of elastic waves in the material is given
by Eq. 2.1:

C �
��
E

ρ

√
(2.1)

where C is the velocity of longitudinal elastic waves in the medium,
determined by the material’s elastic modulus E and density ρ; and ρC
is the impedance of longitudinal elastic waves. According to the
theory of stress wave propagation, during the penetration of the
projectile into the target plate, the impact is transmitted from
the projectile to the buffer pad. When the elastic wave reaches
the interface between two different media in the projectile-fuze
structure, reflection and transmission of elastic waves occur. The
reflected tensile elastic wave propagates to the left, unloading the
elastic compression wave and the plastic loading wave successively.
The transmitted elastic wave continues to propagate to the right,
entering the cushioning and isolating material. Subsequently, the
impact-resistant cushion is transmitted to the fuze casing, and the
impact on the fuze casing passes through the potting layer before
reaching the electronic device. Due to the different materials of the
fuze casing, potting material, and circuit board, reflection and
transmission of stress waves occur again during the internal
propagation of stress waves in the fuze. In this paper, a 1D
analysis of stress wave transmission is performed on the fuze
casing, potting material, and circuit board, as shown in Figure 2.

At the interface between the fuze casing and the potting material,
and between the potting material and the circuit board, the equation
can be expressed as Eq. 2.2:

σ2 � T1σ1

σ3 � T2σ2

T1 � 2 ρC( )2
ρC( )2 + ρC( )1

T2 � 2 ρC( )3
ρC( )3 + ρC( )2

(2.2)

where σ₁ is the stress of the fuze casing; σ₂ is the stress inside the
potting material; σ3 is the stress on the circuit board; and ρC is the
wave impedance of the material. Substituting the above values into

the equation, the stress relationship between the potting material
and the fuze body and PCB board is obtained as follows:

Polyurethane: σ1 � 0.12σ2, σ2 � 1.72σ3

Epoxy resin: σ1 � 0.20σ2, σ2 � 1.55σ3

Through the above analysis of the potting material, in
engineering applications, potting materials with low transmission
coefficients should be selected to reinforce the circuit components
and reduce the transmission of stress in the projectile.

2.3 Energy absorption characteristics of
buffer honeycomb structure under
penetration overload

The energy absorption behavior of honeycomb structures is
described by the principle of energy conservation, which delineates
the energy conversion process from intact to failure under in-plane
loading conditions. It develops a nonlinear relationship between
stress-strain and external work done by the load, which provides a
solution closer to reality than directly solving boundary value
problems of partial differential equations. Taking the elastoplastic
energy absorption of honeycomb structures as an example, the strain
energy density per unit volume is expressed as Eq. 2.3:

Wy � ∫ σ ijdεij i, j � x, y, z( ) (2.3)

whereWY is the strain energy density and εij is the strain component.
Therefore, the total strain energy of elastoplastic deformation in
honeycomb structures is given as Eq. 2.4:

Qy � ∫WydV � 1
2
∫ σ ijεijdV i, j � x, y, z( ) (2.4)

If there is no energy loss during the crushing process of the
honeycomb structure, then the strain energy inside the honeycomb
structure numerically equals the work done by the surface load
during the crushing displacement. According to the principle of
virtual displacement, if the honeycomb structure is in a stable state
under external loads, virtual displacements occur at various
reference points inside the honeycomb structure. Likewise, the
work done by external loads on virtual displacement numerically
equals the virtual strain energy of the honeycomb structure under
virtual displacement expressed as Eq. 2.5:

δQe � ∫fiδuidV + ∫Piδuids (2.5)

where δQe is the virtual work; fi is the volume force; Pi is the surface
force; and δUi is the virtual displacement. Thus, the virtual strain
energy caused by virtual displacement is Eq. 2.6:

δUy � ∫ σ ijδεijdV i, j � x, y, z( ) (2.6)

If the external force is a time-varying load, it can be dominated
by the potential function, then the variational equation can be
expressed as Eq. 2.7:

δH � δu + δV � 0

H � Uy + Vy − Qe � ∫WydV − ∫fiuidV + ∫Piuids( ) (2.7)

FIGURE 2
1D analysis model of fuze.
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whereH is the total potential energy of the elastoplastic body. For
the buffering honeycomb structure subjected to axial impact,
initial deformation only results in local deformation bands.
However, when the penetration overload exceeds tens of
thousands of g-forces, the buffering honeycomb structure
undergoes fracture and significant deformation, and energy is
dissipated in other forms. Therefore, the honeycomb structure
follows the principle of energy conservation under penetration
conditions expressed as Eq. 2.8:

ETEA � Eb + Em + Efri + Efra + ... (2.8)

where the terms on the right-hand side represent energy
dissipation due to bending, torsion, friction, and fracture,
respectively. Generally, porous honeycomb structures exhibit
strong energy absorption characteristics and can serve as ideal
energy absorption structures. Under low-speed impacts (around
2000g), the energy absorption structure only undergoes elastic
deformation. However, in the load conditions experienced by
penetration fuze, as the projectile penetrates defensive
structures and the overload exceeds 50000g, the energy
absorption structure is crushed and compacted, exhibiting
structural fracture and failure under such instantaneous high
dynamic loading conditions.

2.4 Uniaxial loading behavior of penetration
fuze buffer honeycomb structure

The IBS designed in this article can effectively attenuate the
impact amplitude when penetrating a reinforced concrete target,
and improve the impact resistance of the internal circuit board of
the fuze. In the project, the diameter of the projectile is
105–155mm, the strength of the target plate is C35-C60, and
the buffer material is installed between the fuze and the
projectile. The reserved thickness of the projectile in the buffer
area is not more than 4 mm. Under ultra-high-speed penetration
overload, the buffer protective structure for penetration fuze
mainly undergoes linear elastic deformation, elastic buckling,
plastic collapse, and fracture failure.

2.4.1 Linear elastic deformation
Under quasi-static compressive loads, honeycomb structures

undergo linear elastic deformation and plastic collapse deformation.
This section mainly studies the deformation under uniaxial loading
in the plane, as shown in Figure 3.

Where (a) represents the deformation impact of a representative
cell under axial stress σ1; (b) represents the force diagram on the
upper beam; and (c) represents the force diagram on the concave
curved edge. The honeycomb structure initially enters the linear
elastic region under initial compression displacement, where elastic
deformation predominates. The equilibrium equation is given as
Eq. 2.9:

X � σ1 h + l sin θ( )ts
R � Xl sin θ

2

(2.9)

where ts is the thickness of the thin wall in the axial direction; R is the
bending moment; and X is the horizontal load. The deflection of the
line is expressed as Eq. 2.10:

δ � Xl3 sin θ
12EsI

I � tse
3

12

(2.10)

where Es is Young’s modulus; I is the second moment of inertia of
the line; and the deflection component is parallel to the load
direction. The expression for cell strain can be derived as Eq. 2.11:

ε1 � δ sin θ
l cos θ

� σ1 h + l sin θ( )tsl2 sin 2 θ

12EsI cos θ
(2.11)

Therefore, the elastic modulus of the cell in the axial direction is
shown as Eq. 2.12:

E1
* � e

l
( )3 Es cos θ

h
l + sin θ( )sin 2 θ

(2.12)

Similarly, analyzing the stress deformation on the curved edge,
the honeycomb structure’s curved edge undergoes shear
deformation under penetration overload. Due to the symmetry of

FIGURE 3
Schematic of uniaxial loading on cell face. (A) Representative cell deformation effect. (B) Upper crossbeam force diagram. (C) Internal concave
curved edge force diagram.
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the cell, the analysis shows that points A, B, and C of the 1/4 cell unit
do not experience relative displacement under shear load, and the
shear deflection is caused by compression of the upper beam and
rotation around point B. The rotation angle is φ, as shown in
Figure 3C, which represents the schematic diagram of force
deformation of a representative honeycomb cell upper beam,
curved edge, and support under penetration load. The resultant
moment at point B can be expressed as Eq. 2.13:

M � Fh

4
(2.13)

Similarly, based on the previous analysis of deflection and
moment of inertia, the expression for the rotation angle can be
obtained as Eq. 2.14:

φ � Fhl

24EsI
(2.14)

Therefore, the expression for the shear deflection at the right
vertex D of the upper beam is determined as Eq. 2.15:

rs � h

2
φ + F

8EsI

h

2
( )3

(2.15)

The shear strain on the curved edge can be expressed as Eq. 2.16:

τ � 2rs
h + l sin θ

(2.16)

Using the same derivation method as the analysis of beam
deformation under load, the shear modulus of the biomimetic
honeycomb structure is obtained as Eq. 2.17:

G1
* � Es

h
l + sin θ( ) t

l( )3
h
l( )2 1 + 16h

l( ) cos θ (2.17)

2.4.2 Elastic buckling
When the honeycomb structure is in the initial stage of

penetration load, linear elastic deformation predominates. The
honeycomb structure can be analyzed as an elastic body. When
the compressive load in the axial direction exceeds the Euler
buckling load, elastic buckling occurs. The expression is given as
Eq. 2.18:

Qcri � ϖπ
h

( )2

EsI (2.18)

whereϖ is the endpoint constraint factor, representing the rotational
stiffness at the connection between the curved edge of the
representative honeycomb cell and the support rod; I is the
second moment of inertia of the straight line. Similarly, the
relationship between the curved edge bearing the penetration
load and the impact stress can be expressed as Eq. 2.19:

Q � 2σ2lrs cos θ (2.19)
When P=Pcri, the honeycomb buffer honeycomb absorbs

penetration overload energy through elastic collapse, and its
collapse stress is determined as Eq. 2.20:

σ2
* � ϖπ( )2t3Es

36 cos θlh2
(2.20)

where ϖ is impacted by the cell line diameter on the rotation
stiffness at the connection between the curved edge and the
support rod. The larger the value, the greater the suppression
of the rotational impact of the cell, with a maximum value of 1.7.
The smaller the value, the less inhibition of the rotational impact
of the cell, with a minimum value of 0.3, at which point the cell
rotates freely.

2.4.3 Plastic collapse
As the penetration overload increases gradually, when the axial

load stress borne by the buffer honeycomb exceeds the critical load,
plastic collapse of the honeycomb structure begins, and the pores are
gradually filled. At this point, due to 3D structure of the buffer
honeycomb and the negative Poisson’s ratio impact, the honeycomb
structure as a whole is in a state of being squeezed towards the
geometric center from all sides. Therefore, this section analyzes from
both the axial and radial directions. The plastic collapse of the
honeycomb structure in the axial direction is shown in Figure 3.
Under this condition, the equilibrium equation is shown as Eq. 2.21:

X � σ1 h + l sin θ( )rs (2.21)

During the process of the projectile penetrating the target, the
kinetic energy of the internal components of the fuze is mainly
absorbed by the plastic deformation of the honeycomb structure. Let
the cellular structure compress the energy absorption per unit
volume as η, according to the law of conservation of energy, the
plastic deformation energy of honeycomb materials ΔE is Eq. 2.22:

ΔE � η · ΔL · S (2.22)

In the formula: ΔL is the compression stroke; S is the number of
cells. Only when ΔE>Ef + Ei can the system kinetic energy be fully
absorbed. Therefore, there are Eq. 2.23:

η · ΔL · S>Ef + Ei (2.23)

By combining (2.21), (2.22) and (2.23), it can be concluded that
when plastic shear torsion occurs at each connection point of the
honeycomb structure, the plastic work done at the connection point
is Eq. 2.24:

4Mpφ≥ 2σ1rs h + l sin θ( )φl sin θ (2.24)

Where MP represents the plastic moment during plastic shear
twisting. Based on the empirical equation of moment, the critical
value of plastic collapse stress for the buffer honeycomb can be
derived as Eq. 2.25:

σp1
* � σ0t2

2l2 h
l + sin θ( ) sin θ (2.25)

Similarly, based on the expression of plastic moment and the
critical value of plastic collapse stress, the maximum moment of the
buffer honeycomb can be obtained as Eq. 2.26:

M max( )1 � 1
2
σ1 h + l sin θ( )rsl sin θ (2.26)

In the radial direction, the buffer honeycomb cell is mainly
subjected to compression from adjacent cells. By equating the plastic
work required for compression deformation to the work done by the
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penetration overload stress, the relationship between the maximum
moment of the buffer honeycomb and the plastic moment is
expressed as Eq. 2.27:

M max( )2 � 1
2
σ2l

2rs cos
2 θ (2.27)

By analyzing the radial plastic shear situation using a method
similar to that of axial loading, in the early stages of collapse, the cells
surrounding the representative cell undergo shear loading in the
radial direction, causing plastic shear of the buffer honeycomb. The
critical shear strength is calculated as Eq. 2.28:

τp1
*( )

12
� σ0t2

6 h/l( ) cos θ (2.28)

In the early to mid-stages of collapse, elastic buckling is
insufficient to support the strength of the buffer honeycomb,
leading to plastic collapse. At this point, the equilibrium equation
is given as Eq. 2.29:

σe1
*( )2 � σp1

*( )
2

(2.29)

Existing research results show that for 3D printed metal
structures, the magnitude of the elastic modulus is relatively low.
When the relative density is small, the buffer honeycomb undergoes
plastic collapse under penetration load.

2.4.4 Fracture failure
As the penetration overload further increases, the buffer

honeycomb enters the final stage of protective work: fracture
failure. At this point, the cells begin to collapse on a large scale,
and the pores are gradually filled. The compressive stress borne by
the buffer honeycomb under the action of the moment Mmax is
determined as Eq. 2.30:

σmax � 8Mmax

rst2
(2.30)

When the compressive stress equals the fracture strength of the
buffer honeycomb, the structure undergoes fracture failure, and the
fracture moment is expressed as Eq. 2.31:

Mf � σfsrst2

8
(2.31)

By substituting the fracture moment into the equation for the
maximum moment of the buffer honeycomb, the fracture strength
of the biomimetic structure is obtained as Eq. 2.32:

σ*r �
σfst2

4l2 sin θ h
l + sin θ( ) (2.32)

2.5 Finite element analysis of stress
concentration

The maximum local stress at the irregularities of the outer shape of
the buffering structure is denoted as σmax, and it can be obtained
through solid elastoplastic deformation theory and structuralmechanics
calculations. During the process of projectile penetration through the
target, the theoretical Stress Concentration Factor (SCF) is represented

by the ratio of themaximum local stress σmax to the nominal stress σnom
approximately uniformly distributed on the cross-section of the
buffering structure can be represented as Eq. 2.33:

SCF � σmax

σnom
(2.33)

From the equation above, the more abrupt the external shape
mutations of the buffering structure, the more severe the stress
concentration. In the case of penetration fuze with buffering
structures made of metal, under the action of penetration
overload, as the maximum local stress reaches the yield limit of
the buffering structure, and with the continued increase in
penetration overload, the nominal strain continues to increase
while the nominal stress no longer increases. The additional
overload will be borne by the remaining parts until the nominal
stress at all section nodal points of the entire honeycomb structure
approaches the yield strength. At this point, the energy absorption
process of the buffering structure concludes.

IBS finite element model is imported into SolidWorks
Simulation, with the biomimetic cell model being 6 mm in length
and 4 mm in height. The structure is made of 7,075 aluminum alloy
with elastic modulus of 7.2 × 1010N/m2, shear modulus of 2.69 ×
1010N/m2, yield strength of 4.35 × 108N/m2, density of 2830 kg/m3,
and Poisson’s ratio of 0.33. The bottom of the cell is fixed, and a
uniaxial compression load is applied to the top surface. To ensure
the intuitiveness and efficiency of the finite element simulation,
based on Saint-Venant principle, a 1:100 equivalent reduction model
is selected for static analysis. Under actual penetration conditions,
the penetration overload experienced by the projectile ranges from
0 to 50000 g. Compression loads of 20000g, 35000g, and 50000 g are
respectively applied for in-plane axial loading to simulate the
mechanical response behavior of IBS during penetration, and to
compare it with traditional concave hexagonal structures to analyze
the stress concentration impacts of different structures.

Considering the central symmetry characteristics of IBS, as well
as the load and constraint conditions, and ensuring the accuracy of
the calculation results, the number of meshes is minimized to ensure
calculation accuracy and efficiency. One edge of the buffering
structure model is selected for analysis. Using the partition
meshing method, the cell model is divided into different regions
according to the accuracy requirements of the calculation results.
Finer meshes are applied to critical areas prone to stress
concentration, while relatively sparse meshes are used in areas
away from critical areas to improve computational efficiency.

In summary, themesh size in non-critical areas is set to 0.2mm, and
themesh in critical areas is appropriately refined to four times the size of
non-critical areas (0.05 mm). The transition ratio of themesh is set to 1:
1.2. The final mesh division of the model is shown in Figure 4.

3 Analysis of stress concentration in
different cell structures

3.1 Stress concentration analysis under
20000g overload

The penetration process of the projectile can be divided into the
pit opening stage, the tunneling stage, and the target back collapse
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stage (exit stage). To explore the stress concentration impacts of
different buffering structures at various stages of the penetration
process, different overload values are applied. First, the stress
situation of the buffering structure under the condition of
20000 g projectile penetration overload is analyzed, at which
point the fuze is in the pit opening stage. Using the pre-
compression node height h as a reference baseline, the stress-
node curve is obtained as shown in Figure 5.

Figure 5 shows the stress-node curves of different cell structures
under 20000 g overload. The red solid line represents the traditional
concave hexagonal structure, while the black solid line represents IBS.
On the inner wall of the cell, the protective performance of IBS is
significantly better, with stress values at each node lower than those of
the traditional structure. The peak stress is 13.09MPa, occurring in the
middle section, with slight oscillations in stress values stabilizing at
around 10MPa. For the traditional structure, the peak stress is
64.17MPa, occurring at the contact position between the inclined
surface and the upper beam. Stress values are smaller in the middle
section but exhibit greater oscillations. On the outer wall of the cell,
the stress values at each node of IBS are generally lower than those of
the traditional structure, except at 1.2mm and 3.2 mm where they
exceed. The peak stress is 29.79MPa, occurring in the middle section,
with larger oscillations compared to the inner wall. For the traditional

structure, the peak stress is 69.83MPa, occurring in themiddle section.
The stress concentration impact is significant at the contact position
between the support frame and the inclined surface, leading to
considerable stress oscillations, which could have adverse impacts
on the energy absorption of the penetration fuze buffering structure.

3.2 Stress concentration analysis under
35000g overload

The stress situation of the buffering structure under the
condition of 35000 g projectile penetration overload is analyzed,
at which point the fuze enters the tunneling stage, generating the
stress-node curve as shown in Figure 6.

From the graph, it can be seen that under an overload of 35000g,
On the inner wall of the cell, the degree of stress concentration in IBS
is significantly lower than that in the traditional structure, with a
peak stress of 26.14 MPa occurring below the support frame
position, and stress values oscillating around 20 MPa. For the
traditional structure, the peak stress is 101.73MPa, occurring
above the support frame position, with smaller stress at non-
contact areas but larger stress oscillations. On the outer wall of
the cell, the degree of stress concentration in IBS is still lower than
that in the traditional structure, with a peak stress of 59.49 MPa
occurring in the middle section, and stress values oscillating more
than on the inner wall of the cell. For the traditional structure, the
peak stress is 139.66MPa, occurring in the middle section, with
significant stress concentration at the corner of the straight edge,
leading to larger stress oscillations.

3.3 Stress concentration analysis under
50000g overload

The stress situation of the buffering structure under the
condition of 50000 g projectile penetration overload is analyzed,
at which point the fuze reaches its overload peak, generating the
stress-node curve as shown in Figure 7.

FIGURE 4
Finite element mesh model of buffer structure.

FIGURE 5
Stress distribution on inclined surface under 20000 g overload. (A) Inner wall of cell. (B) Outer wall of cell.
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From the graph, it can be seen that under an overload of 50000g,
On the inner wall of the cell, the stress distribution in IBS is uniform,
and the degree of stress concentration is lower than that in the
traditional structure, with a peak stress of 55.63 MPa occurring at
the contact position between the curved edge and the upper beam,
and stress values oscillating around 40 MPa. For the traditional
structure, the peak stress is 194.63MPa, occurring at the contact
position between the curved edge and the upper beam, with smaller
stress at non-contact areas but larger stress oscillations. On the outer
wall of the cell, the degree of stress concentration in IBS is still lower
than that in the traditional structure, with a peak stress of 89.37 MPa
occurring in the middle section, and stress values oscillating more
significantly. For the traditional structure, the peak stress is
209.49MPa, occurring in the middle section, with significant
stress concentration at the corner of the straight edge.

Overall, during various stages of the penetration process, the
degree of stress concentration in the traditional structure is greater
than that in IBS, indicating that IBS provides better buffering
protection for the fuze. This is because of the presence of initial
curvature, which makes bending the predominant mode of
deformation in IBS, resulting in an increase in the equivalent

modulus of the honeycomb structure. In general, the energy
absorption of specialized energy absorption structures refers to the
plastic energy dissipated under compression loads. Both structures
undergo consistent impact loads and plastic deformation. IBS has a
higher elastic modulus; therefore, it can absorb more kinetic energy
during the penetration process.

4 Impact of cell geometry parameters
on SCF

4.1 Impact of wall thickness on SCF

From the finite element simulation results, under the same
penetration conditions, IBS can better eliminate stress concentration
compared to the traditional concave hexagonal structure. Additionally,
during the penetration process, the microstructural geometric
parameters of the cell will also affect the stress concentration
impact. Based on the calculated results of the developed IBS finite
element model, stress concentration in IBS mainly occurs at the center
of the curved edge. Therefore, the impact of cell geometric parameters

FIGURE 6
Stress distribution on inclined surface under 35000 g overload. (A) Inner wall of cell. (B) Outer wall of cell.

FIGURE 7
Stress distribution on inclined surface under 50000 g overload. (A) Inner wall of cell. (B) Outer wall of cell.
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on the distribution of SCF at themidpoint of the curved edge is studied.
Figure 8 illustrates the peak stress of IBS with different wall thicknesses
under various penetration overloads.

The impact of wall thickness on peak stress is significant, as
depicted in Figure 8. For the same penetration overload, the peak
stress decreases with the increase of wall thickness. For cells with the
same wall thickness, the peak stress increases with the increase in
penetration overload, and cells with smaller wall thickness exhibit a
more pronounced response to overload. According to the material
properties of metal and the national standard GB/T 3190-2018,
combined with the evaluation equation for stress concentration
degree, SCF at the center of the curved edge for different wall
thicknesses under each condition is calculated, as shown in Table 1.
SCF at the center of the curved edge decreases with increasing wall
thickness. When the wall thickness reaches 1mm, the minimum SCF
at an overload of 50000 g is 1.004.

4.2 Impact of side length on SCF

Figure 9 presents the peak stress of IBS with different side
lengths under various penetration overloads. The impact of side
length on peak stress is minimal, almost negligible, for the same
penetration overload. For cells with the same side length, the peak
stress increases with the increase in penetration overload. SCF at the
center of the curved edge for different side lengths under each
condition is calculated, as shown in Table 2. As the side length
increases, SCF at the center of the curved edge slightly increases.
However, this change has almost no impact on the stress
concentration impact. When the side length reaches 7.8mm, the
maximum SCF under an overload of 50000 g is 2.854.

4.3 Impact of curvature on SCF

In addition to wall thickness and side length, curvature also has a
significant impact on stress concentration impacts. Figure 10

illustrates the peak stress of IBS with different curvatures under
various penetration overloads. The impact of curvature on peak
stress is significant. For the same penetration overload, the peak
stress increases with the increase of curvature. For cells with the same
curvature, the peak stress increases with the increase in penetration
overload. Furthermore, cells with larger curvature exhibit a more
pronounced response to overload. SCF at the center of the curved edge
for different curvatures under each condition is calculated, as shown
in Table 3. SCF at the center of the curved edge increases with the
increase in curvature. When the curvature reaches 2.4, the maximum
SCF under an overload of 50000 g is 3.907.

5 SCF nonlinear fitting functions

5.1 Fitting model of SCF with wall thickness

In the reliability assessment of penetration fuze buffer structures,
to address the inefficiency of calculating SCF for each node
individually, this study develops a fitting equation for SCF with
cell geometric parameters to predict SCF under different cell
structures. Under the premise of meeting the engineering design
error requirements, only an approximate value of SCF is needed.
Therefore, based on the aforementioned SCF calculation results, a
nonlinear fitting method is used to establish a fitting function for
SCF at the center of the curved edge of IBS during the penetration
process. The sinusoidal fitting function model of SCF at the center of
the curved edge of IBS under an overload of 20000 g with respect to
wall thickness is as Eq. 5.1:

SCF t( ) � y1 + A1 sin π t−tc1
w1

( )
σnom

(5.1)

where SCF(t) represents the data to be fitted; y1 is the initial phase;
tc1 is the fitting interval length; A1 is the amplitude; and w1 is the
sampling frequency. According to the principle of least squares, the
above equation can be transformed into Eq. 5.2:

f tc1, A1, w1( ) � ∑ y1 + A1 sin π
t − tc1
w1

[ ] (5.2)

Taking the first partial derivatives with respect to tc1, A1, and w1,
the expression can be given as Eq. 5.3:

tc1
A1

w1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � ∑ cos 2 ti ∑ sin ti cos ti ∑ cos ti∑ sinAi cosAi ∑ sin 2 Ai ∑ sinAi∑ coswi ∑ sinwi ∑ sinwi coswi

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
−1 ∑ ti cos ti∑ ti sinAi∑ tiwi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.3)

According to the trigonometric function equation derivation, it
can be expressed as Eq. 5.4:

SCF t( ) �
cos ti sin ti cos ti
sin ti cos ti sin ti
cos ti sin ti sincosti

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦yi +
cos tci sin tci cos tci
sinAi cosAi sinAi

coswi sinwi sincoswi

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(5.4)

By solving Eq. 5.1, the range of values for y1, tc1, A1, and w1 can
be determined, with y1 ranging from −7,219.95 ± 48.88, tc1 ranging
from −10.63 ± 37.9, A1 ranging from 7,249 ± 488.34, and w1 ranging
from 22.17 ± 75.62. After adjustment, the fitting goodness is 0.97778.

FIGURE 8
Relationship between peak stress and wall thickness.

Frontiers in Physics frontiersin.org09

Zhang et al. 10.3389/fphy.2024.1401538

98

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1401538


Gaussian fitting function model for SCF at the center of the curved
edge of IBS under an overload of 35000 g with respect to wall
thickness is as Eq. 5.5:

SCF t( ) � y2 + A2e
− t−tc2( )2

2w2
2

σnom
(5.5)

where SCF(t) represents the distribution function of stress
concentration coefficient with respect to wall thickness; y2 is the
initial deviation; tc2 is the fitting interval length; A2 is the loss factor;
and w2 is the normalized frequency. The purpose of this step is to

predict the trend of the curve. Taking the logarithmic transformation
of both sides of Gaussian curve, it can be expressed as Eq. 5.6:

σnom ln SCF t( ) � lny2 − t − tc2( )2
2w2

2

(5.6)

Themodel in the above equation resembles a parabolic equation y =
at 2 + bt + c with respect to t. Therefore, by solving for the fitting
parabolic coefficients, the expression for the Gaussian curve function can
be determined. Using the principle of least squares, the parameters ai, bi,
and ci are obtained to minimize the sum of squared errors (S) is Eq. 5.7:

S � ∑n
i�1

yi − ait
2
i − bit − ci( )2 (5.7)

Taking the first partial derivatives of the above equation and
setting them equal to 0, the equation can be given as Eq. 5.8:

ai � A2 t − tc2( )
w

bi � y2 − tc2
w

ci �
∑n
i�1
yi − ai∑n

i�1
t2i − bi∑n

i�1
ti( )

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5.8)

where the coefficient is expressed as Eq. 5.9:

y2 � n∑n
i�1
t2i − n∑n

i�1
ti∑n
i�1
ti

tc2 � n∑n
i�1
t2i yi −∑n

i�1
t2i∑n

i�1
yi

A2 � n∑n
i�1
tiyi −∑n

i�1
ti∑n
i�1
yi

w2 � n∑n
i�1
t3i − n∑n

i�1
t2i∑n

i�1
t2i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5.9)

TABLE 1 Curved center SCFs for different wall thicknesses.

t/mm (g) 0.45 0.51 0.57 0.63 0.69 0.76 0.82 0.88 0.94 1

20,000 1.992 1.968 1.842 1.796 1.783 1.714 1.435 1.305 1.121 1.08

35,000 2.316 2.151 2.132 1.864 1.811 1.661 1.647 1.429 1.034 1.006

50,000 2.755 2.752 2.253 2.113 2.093 1.986 1.887 1.456 1.389 1.004

FIGURE 9
Relationship between peak stress and side length.

TABLE 3 Curved center SCFs for different curvatures.

k (g) 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

20,000 1.992 2.01 2.14 2.183 2.224 2.232 2.274 2.32 2.457 2.47

35,000 2.316 2.441 2.635 3.711 2.75 2.812 3.129 3.167 3.23 3.498

50,000 2.755 2.767 3.066 3.093 3.096 3.306 3.567 3.628 3.646 3.907

TABLE 2 Curved center SCFs for different side lengths.

L/mm (g) 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

20,000 1.992 1.993 1.995 1.996 1.997 1.997 1.997 1.999 2 2

35,000 2.316 2.317 2.318 2.319 2.322 2.324 2.341 2.344 2.35 2.387

50,000 2.755 2.773 2.781 2.801 2.821 2.83 2.845 2.847 2.853 2.854
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It should be noted that the solution to this equation is obtained by
taking the logarithm of the original Gaussian curve function, meaning
that the predicted values of SCF are logarithmically transformed to
satisfy the parabolic equation, and thus, y2 ranges from 268.54 ± 4.16,
tc2 ranges from 1.59 ± 3.15, A2 ranges from −268.51 ± 4.16, and w2

ranges from 17.9 ± 139.98. After adjustment, the fitting goodness is
0.96397. The Lorentz fitting function model for SCF at the center of
the curved edge of IBS under an overload of 50000 g with respect to
wall thickness is determined as Eq. 5.10:

SCF t( ) � y3 + 2A3

πσnom
•

w3

4 t − tc3( )2 + w3
2

(5.10)

where SCF(t) represents the quadratic polynomial Lorentz fitting
function; y3 is the equivalent error; tc3 is the fitting interval
length; A3 is Gini coefficient; and w3 is the composite weight. By
dividing the wall thickness into n groups from small to large and
setting the wall thickness of each group as ti and the
corresponding SCF as yi, SCF value of the i th group can be
represented as Eq. 5.11:

SCFi t( ) �
∑n
i�1
ti

ti
i � 1, 2, ..., n( ) (5.11)

The fitting error of the ith group SCF can be expressed as
Eq. 5.12:

Ri � yi

∑n
i�1
yi

i � 1, 2, ..., n( ) (5.12)

By solving the above equation and plotting the cumulative
percentage of wall thickness and the cumulative percentage of
error on XOY plane, the follows expression can be given as Eq. 5.13:

0 0, 0( ), p1 SCF1, R1( ), p2 SCF1 + SCF2, R1 + R2( ), ...,
pk ∑k

i�1
SCFi,∑k

i�1
Ri

⎛⎝ ⎞⎠, ..., pn ∑k
i�1
SCFi,∑k

i�1
Ri

⎛⎝ ⎞⎠ � ti, yi( ) (5.13)

The sequences of the abscissa and ordinate of the above points
are both monotonically increasing sequences. By fitting the above
n+1 points with a smooth curve, Lorentz curve of SCF with respect
to wall thickness at the center of the curved edge can be obtained,
and thus, y3 ranges from −18.04 ± 19.31, tc3 ranges from 0.49 ± 0.03,
A3 ranges from 131.44 ± 57.29, and w3 ranges from 0.79 ± 0.2. After
adjustment, the fitting goodness is 0.98085.

5.2 Fitting model of SCF with edge length

According to the analysis of the impact of edge length on SCF,
the relationship between SCF at the center of the curved edge and the
edge length tends to be linear overall. Therefore, this study adopts a
linear function for fitting. The linear function fitting model of SCF at
the center of the curved edge of IBS under an overload of 20000 g
with respect to edge length is as Eq. 5.14:

SCF l( ) � a1l + b1
σnom

(5.14)

where SCF(l) represents the stress concentration coefficient to be
fitted; a1 is the slope, with a range of 0.97 ± 0.1; and b1
is the intercept, with a range of 23.9 ± 0.6. After adjustment,
the fitting goodness is 0.93139. The linear function fitting model
of SCF at the center of the curved edge of IBS under an overload of
35000g with respect to edge length is as Eq. 5.15:

SCF l( ) � a2l + b2
σnom

(5.15)

where SCF(l) represents the stress concentration coefficient to be
fitted; a2 is the slope, with a range of 1.63 ± 0.19; and b2 is the
intercept, with a range of 50 ± 1.29. After adjustment, the fitting
goodness is 0.91594. The linear function fitting model of SCF at the
center of the curved edge of IBS under an overload of 50000g with
respect to edge length is as follows:

Where SCF(l) represents the stress concentration coefficient to be
fitted; a3 is the slope, with a range of 0.69 ± 0.04; and b3 is the intercept,
with a range of 85.26 ± 0.26. After adjustment, the fitting goodness is
0.97465. The relationship between SCF and edge length is Eq. 5.16:

SCF l( ) � a3l + b3
σnom

(5.16)

5.3 Fitting model of SCF with curvature

In Figure 1, under an overload of 20000g, the relationship
between SCF at the center of the curved edge of IBS and the
curvature tends to rise in an approximately upward-opening
parabolic trend. The quadratic function fitting model of the
relationship between SCF at the center of the curved edge of IBS
and the curvature is as Eq. 5.17:

SCF k( ) � a4k2 + b4k + c4
σnom

(5.17)

Selecting n unit nodes (ki, yi), afterm iterations, the equation can
be expressed as Eq. 5.18:

FIGURE 10
Relationship between peak stress and curvature.
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SCF k( ) � a0 + a1 + a2k
2 + ... + amk

m � ∑m
j�0
ajk

j (5.18)

To determine the coefficients in the above equation, substitute
the nodes into the polynomial to obtain the error equation as
Eq. 5.19:

a0 + a1k1 + a2k21 + ... + amkm1 − y1 � R1

a0 + a1k2 + a2k22 + ... + amkm2 − y2 � R2

...
a0 + a1kn + a2k2n + ... + amkmn − yn � Rn

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5.19)

Minimizing the sum of squared errors provides as Eq. 5.20:

∑n
i�1
R2
i � ∑n

i�1
∑m
j�0
aik

2 + bik + ci⎡⎢⎢⎣ ⎤⎥⎥⎦2 � δ (5.20)

Taking the first partial derivative of both sides of the equation to
determine as Eq. 5.21:

∂δ
∂aki

� 2∑n
i�1

∑m
j�0
aik

2 + bik + ci⎡⎢⎢⎣ ⎤⎥⎥⎦kki � 0 (5.21)

Thus, the solution coefficients can be obtained as Eq. 5.22:

ai � ∑m
j�0
ajSn+j

bi � ∑m
j�0
kni

ci � ∑m
j�0
yikni

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5.22)

Simultaneous equation (5.17)–(5.21), the quadratic term
coefficient a4 for the parabolic fitting equation is in the range
of 1.56 ± 2.31, the linear term coefficient b4 is in the range
of −2.89 ± 31.95, and the constant term c4 is in the range
of −8.66 ± 1.1. After adjustment, the fitting goodness is
0.96529. Under an overload of 35000g, the relationship
between SCF and curvature approximately follows a
logarithmic growth trend. Therefore, a quadratic logarithmic
polynomial is used to approximate the curve, and the
coefficients of this polynomial equation are determined by
logarithmic functions. The logarithmic fitting function model
of the relationship between SCF at the center of the curved edge
of IBS and the curvature is given as Eq. 5.23:

SCF k( ) � B2���
2π

√
v2kσnom

e

− ln k
kc2

[ ]2
2v2
2 (5.23)

where kc2, v2, and B2 are constants. Taking the logarithm of both
sides of the equation provides as Eq. 5.24:

N � −2V
2
2

���
2π

√
v2kσnom lny

B2 ln k
kc2

[ ]2 (5.24)

After straightening n unit nodes, the equation can be expressed
as Eq. 5.25:

2V2
2

���
2π

√
v2kσnom lny � − kn+1 − kn( ) lnyn+1

ln xn+1 − lnyn
ln xn

( )
kn − kn−1( ) lnyn

ln xn
− lnyn−1

ln xn−1( ) (5.25)

Therefore, the straightening coefficient N can be calculated as
Eq. 5.26:

N � N1 − k1 tan β + k tan β (5.26)
Substituting the value of N into the original equation, u2 can be

solved, which ranges from 96.7 ± 11.72, kc2 ranges from 5.87 ± 0.48,
v2 ranges from 0.31 ± 0.6, and B2 ranges from −315.58 ± 55.46. After
adjustment, the fitting goodness is 0.97812. In general, increasing
the order of the fitting polynomial can effectively improve the fitting
accuracy. To accurately predict the relationship between SCF at the
center of the curved edge of IBS and the curvature under an overload
of 50000g, a cubic polynomial is used to fit the data. The fitting
function model is expressed as Eq. 5.27:

SCF k( ) � a5k3 + b5k2 + c5k + d5

σnom
(5.27)

where a3, b3, c3, and d3 are parameter values. To ensure that the
predicted values are closer to the true calculated data, the sum of
squared errors for all reference points needs to be minimized as
Eq. 5.28:

∑n

i
SCF ki( ) − yi[ ]3 → 0 (5.28)

Expressed in the form of a cubic polynomial function as Eq. 5.29:

d3N + c3∑N

i�1ki + b3∑N

i�1k
2
i + a3∑N

i�1k
3
i � ∑N

i�1SCFi (5.29)

After matrix transformation, it can be expressed as Eq. 5.30:

N ∑N
i�1
ki ∑N

i�1
k2i ∑N

i�1
k3i

∑N
i�1
ki ∑N

i�1
k2i ∑N

i�1
k3i ∑N

i�1
k4i

∑N
i�1
k2i ∑N

i�1
k3i ∑N

i�1
k4i ∑N

i�1
k5i

∑N
i�1
k3i ∑N

i�1
k4i ∑N

i�1
k5i ∑N

i�1
k6i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d3

c3
b3
a3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ �

∑N
i�1
SCFi

∑N
i�1
kiSCFi

∑N
i�1
k2i SCFi

∑N
i�1
k3i SCFi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.30)

where a3 ranges from 17.6 ± 10.5; b3 ranges from −378.71 ± 21.73; c3
ranges from 2,750.46 ± 1.5; and d3 ranges from −6,584 ± 36.13. After
adjustment, the fitting goodness is 0.98668.

5.4 SCFAnalysis of SCF prediction errors

To meet engineering design requirements, it is necessary to
verify the accuracy of SCF fitting function predictions. In practical
applications of penetrating projectile engineering, project technical
specifications require that the error in SCF predictions be within
15%. Therefore, Matlab’s numerical computation and functions can
be utilized to solve the error level of SCF fitting in complex
engineering problems involving penetrating projectiles, and to
visualize the results of the calculations. The ‘assume’ function in
Matlab’s Symbolic Math Toolbox is used to specify the properties of
the coefficients, and the ‘constraint’ function is used to define the
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range of coefficient values obtained from the previous solution.
Taking the wall thickness t = 0.69, the output SCF prediction error
analysis results are shown in Figure 11.

In Figure 11, N represents the number of iterations, i.e., the
number of samples. The black dots represent the predicted values of
SCF at the center of the curved edge under 20000 g overload, the red
dots represent the predicted values under 35000 g overload, and the
blue dots represent the predicted values under 50000 g overload. As
calculated earlier, when the wall thickness t = 0.69, the corresponding
SCF values are 1.783, 1.811, and 2.093 respectively. The maximum
deviation under 20000 g overload is 1.96, with an error of 9.97%;
under 35000 g overload, the maximum deviation is 1.695, with an
error of 6.4%; under 50000 g overload, the maximum deviation is
2.493, with an error of 11.94%. By organizing the data, it was found
that the prediction error under overload of 35000 g was the smallest,
and the SCF prediction values under overload of 20000g and 36000 g
were relatively close. This is because there is a non-linear relationship
between the maximum deviation and overload during high-speed
penetration. As the overload increases, the buffer material approaches
the yield limit faster, and plastic collapse energy absorption is more
efficient. Taking the edge length l = 6.4, the output SCF prediction
error analysis results are shown in Figure 12.

As calculated earlier, when the edge length l = 6.4, the
corresponding SCF values are 1.995, 2.318, and 2.781 respectively.
The maximum deviation under 20000 g overload is 1.975, with an
error of 0.98%; under 35000 g overload, the maximum deviation is
2.341, with an error of 0.99%; under 50000 g overload, the maximum
deviation is 2.753, with an error of 1.02%. The calculation found that
the SCF prediction value about the edge length is the most accurate,
because SCF is least affected by the edge length, and stress
concentration mainly occurs in the vertical direction of the cell,
that is, parallel to the loading direction. Taking the curvature k =
2.2, the output SCF prediction error analysis results are shown
in Figure 13.

As calculated earlier, when the curvature k = 2.2, the
corresponding SCF values are 2.32, 3.167, and 3.628 respectively.
The maximum deviation under 20000 g overload is 2.098, with an

error of 9.57%; under 35000 g overload, the maximum deviation is
2.885, with an error of 8.89%; under 50000 g overload, the maximum
deviation is 3.978, with an error of 9.64%. The prediction errors of
SCF for curvature are all less than 10%, with SCF prediction values
closer under overload of 35000g and 50000 g. Unlike traditional
concave hexagonal honeycomb structures, the deformation of IBS is
dominated by bending due to the presence of initial curvature, which
can increase the equivalent modulus of honeycomb structures. The
predicted results all meet engineering technical specifications.
Therefore, the nonlinear fitting curves of SCF proposed in this
paper canmeet the practical application requirements of penetrating
projectile engineering.

6 Dynamic stress concentration
in potting material under
stress wave incidence

6.1 Wave function model

To ensure the reliable operation of explosive devices in ultra-
high-speed penetration environments, they are typically sealed with
materials such as epoxy resin and polyurethane to enhance their
impact resistance. However, during the sealing process, defects such
as bubbles and cracks may occur due to poor colloidal flow or
insufficient mixing. These defects can lead to dynamic stress
concentration under stress wave action, causing uneven stress
distribution in the sealed body’s circuit board. Consequently, the
electronic components of the explosive device may become
detached, and in more severe cases, the circuit board may
fracture, resulting in device failure. Therefore, investigating the
problem of dynamic stress concentration in sealed materials
containing defects is of significant theoretical and engineering
importance. The model of stress wave incidence during
penetration is illustrated in Figure 14.

Assuming the radius of bubbles in the potting material is r, the
primary stress wave during penetration is predominantly

FIGURE 11
Predicted values of SCF for wall thickness.

FIGURE 12
Predicted values of SCF for side length.
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longitudinal, with the incident direction along the positiveX-axis. Its
wave velocity is given as Eq. 6.1:

c �
�����
λ + 2μ

ρ

√
(6.1)

where λ and μ are Lamé constants; ρ is the density of the potting
material; and a and b are the distances from the bubble center to the
upper and lower boundaries, respectively. In the theory of elastic
wavemotion, the expression for the spatial displacement component
u of a particle’s motion equation is presented as Eq. 6.2:

μ∇2u + λ + μ( )δu � ρ€u (6.2)

The wave propagation equation inside the elastic body can be
expressed as Eq. 6.3:

μm∇
2u + λm + μm( )∇0 ∇0u( ) � ρ

∂2u
∂t2

λm � Ev

1 + v( ) 1 − 2v( )

μm � Ea2

18 2 − v2( )
∇0 � ∂2u

∂x2 +
∂2u
∂y2 +

∂2u
∂t2

(6.3)

where λm and μm are Lamé constants of the potting material; ∇ is
Laplace operator; E is the elastic modulus of the potting material;
and v is Poisson’s ratio of the potting material. The stress on the
sealed material’s plane transmitted is given as Eq. 6.4:

σxt � λ
∂ux

∂t
+ ∂uy

∂ �t
( ) � λ

∂ux

∂t
eiα + ∂ux

∂ �t
eα( )

σyt � λ
∂ux

∂t
− ∂uy

∂ �t
( ) � λ

∂ux

∂t
eiα + ∂ux

∂ �t
e−α( )

(6.4)

This study does not consider the displacement situation of the
explosive device boundary, which belongs to a stress boundary value

problem. It requires solving the unknown coefficients in the
displacement expression. The stress boundary conditions can be
solved by utilizing the continuity conditions at the interface between
the potting material and the explosive device. The boundary
condition expression is obtained as Eq. 6.5:

ux′ + iuy′ � ux″ + iuy″
ux′ − iuy′ � ux″ − iuy″
σx′ + iσxy′ � σx″ + iσxy″
σx′ − iσxy′ � σx″ − iσxy″

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6.5)

where σx and σy are the radial and tangential stresses of the potting
material, respectively. At the internal interface of the potting
material, considering the contact surface model between the
potting material and the explosive device as ideal contact, the
unknown coefficients can be solved by using the interface
continuity condition and the stress-free condition on the inner
surface of the potting material.

6.2 Dynamic stress concentration
factor (DSCF)

When a stress wave enters a potting material containing bubbles,
it encounters scattering due to bubbles, cracks, and indentations,
generating new wave sources that spread outwards. Due to the
combined action of the explosive device interface and bubbles, there
is a significant increase in stress in the local area around the bubbles,
leading to the rupture of the explosive device interface and the inner
surface of the bubbles. Therefore, DSCF is used to characterize the
scattering of stress waves. The form of stress wave scattering is given
as Eq. 6.6:

P s( )
xy � ∑k

n�0
Cn Wn

τx
τx| |( )n

+ τy
τy
∣∣∣∣ ∣∣∣∣( )−n{ } (6.6)

where Cn is an undetermined coefficient, which can be obtained by
solving the boundary conditions of the bubble. At this time, the
boundary condition is that the stress in the positive X-axis direction
is 0. To obtain a steady-state solution, a variable is introduced,
defined as Eq. 6.7:

W � kne
tx 1−iω( )+ty 1+iω( )[ ]

F � kne
tx 1−i �ω( )+ty 1+i �ω( )[ ]

f � kne
−iωt

⎧⎪⎨⎪⎩ (6.7)

FIGURE 13
Predicted values of SCF for curvature.

FIGURE 14
Bubble model of potting material under stress wave action.
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where ω is the oscillation frequency of the stress wave. It can be
derived that the wave number of the scattered wave satisfies the
equation as Eq. 6.8:

αnxy � 1
2

2 − v( )k2n +
���������������������������������������
4 − v( )2k2n + 12 1 − v( )k3n

2
k2na

2
− 1 − 6v

1 + v( ) 1 − v( )( )
√

⎡⎢⎣ ⎤⎥⎦
(6.8)

By combining the particle displacement function and the
displacement potential function, the general solution of 2D wave
equation in the potting material can be obtained as Eq. 6.9:

W � ∑k
m�1

∑2
n�1

GmnHi
n αmr( )eiω

F � ∑k
m�1

∑2
n�1

GmnHi
n αmr( )eiω

f � ∑k
m�1

GnKi
n βmr( )eiω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6.9)

where G represents the scattering coefficient of the n th bubble.
Based on the obtained incident wave field and scattered wave field of
the stress wave in the bubble, the total displacement field and total
stress field in the potting material can be obtained as Eq. 6.10:

ut � ∫ rn

r1
τ iαi

∣∣∣∣r�r0p r, α( )d �r0

σ � ∫ rn

r1
τiαi

∣∣∣∣r�r0μ ∂p r, α( )
∂r

d �r0

(6.10)

DSCF under stress wave scattering is defined as Eq. 6.11:

DSCF � ∫ r2
r1
rtiα

∣∣∣∣r�r0μ ∂P∂α
∣∣∣∣r�r0dr0 (6.11)

The formula for calculating the dynamic stress concentration
coefficient in the presence of bubbles is as Eq. 6.12:

DSCF � σ iα
σ i0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (6.12)

In the formula, the numerator represents the stress around the
bubble, and the denominator represents the maximum amplitude of
stress caused by the incident stress wave.

6.3 DSCF case analysis

Based on the theoretical wave function model derived in this
paper, taking circular bubbles in the potting material as an
example, programming calculations were performed using
Matlab. The bubble radius ranges from r = 0.5–0.9mm, the
incident angle is α, the density of the potting material for the
penetrating detonator ρ is 1119 kg/m3, the elastic modulus E is
3.02 × 103MPa, the Poisson’s ratio v is 0.37, and the dimensionless
wave number Ka = 0.5-3.5. The bubble depth ratio a/h is
dimensionless, with parameters k1/k2 = 0.2 and μ1/μ2 = 1.5. The
distribution curve of the dimensionless DSCF on the surface of
circular bubble cavities under the action of penetrating stress
waves is shown in Figure 15.

Figure 15A illustrates the variation of DSCF around the bubble
with the dimensionless wave number Ka. DSCF is significantly
impacted by the wave number. DSCF is symmetrically distributed
along the X-axis and increases with the increase of wave number.
When Ka = 2, the maximum value of DSCF is 2.91, occurring at
positions 118° and 242°.

Figure 15B shows the variation of DSCF around the bubble with
the bubble radius r. DSCF does not change significantly with the
bubble radius, and stress concentration phenomena mainly occur at
the 90° and 270° directions. When the bubble radius is 0.7, the
maximum value of DSCF is 3.48.

Figure 15C depicts the variation of DSCF around the bubble
with the bubble depth ratio a/h. When the bubble depth ratio is
0.2 and 0.4, the maximum value of DSCF occurs at positions 220°

and 230°, respectively, while for a/h = 0.6, the maximum value of
DSCF occurs at position 210°. This is due to the increased
oscillations near the tail of the projectile when it contacts the top
end and the target plate.

Figure 15D presents the variation of DSCF around the bubble
with the incident frequency f. The highest DSCF values appear on
the side opposite to the projectile impact. As the incident frequency
of stress waves increases, the noise in the curve increases, and DSCF
gradually decreases. When f = 50Hz, the maximum value of DSCF is
2.22, occurring at 135°.

Based on the above analysis, in the process of structural
optimization, attention should be paid to the strength and
stability of the projectile tail, and solid materials should be filled
around the contact between the projectile tail and the fuze. In
addition, exhaust holes should be designed during the sealing
process to allow gas to be fully discharged and reduce the
presence of bubbles in the sealing material.

7 Dynamic impact testing
of optimal buffering scheme

This article uses a single impact table (device impact
overload>50,000 g, impact pulse width ≥231) μ s) Conduct
experimental research on the protective characteristics of
penetration fuze buffer materials. When the test projectile
launched by the air gun comes into contact with the cutting
board, it will generate an instantaneous peak value shock
overload, which is transmitted in the form of stress waves from
the contact point between the projectile and the cutting board to the
interior of the projectile. This is used as the system input shock to
excite the test device installed inside the test projectile. The shock
table device is shown in Figure 16.

Combined with the calculated results from earlier sections, the
optimal cell geometry parameters are shown in Table 4. IBS solid
materials were manufactured using 3D printing technology, as
depicted in Figure 17.

The impact wave-related parameters of the detonator casing,
potting material reinforcement layer, and circuit board are shown
in Table 5.

The pressure inside the chamber is controlled by the intake
volume, thereby controlling the launch speed. The sensitivity of the
pressure resistance sensor used in the overload signal recovery
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device is 0.8 μV/g, with a magnification of 30 times. Conduct impact
tests at different initial velocities, and the measured acceleration
overload signal is shown in Figure 18.

In Figure 18, at an initial velocity of 50 m/s, the peak acceleration
overload of the detonator without IBS buffering protection is 38,560g,
while with IBS protection, the overload peak is 23,360g, resulting in a
reduction rate of 39.42%. At an initial velocity of 70 m/s, the overload
peak without IBS is 51,668g, while with IBS protection, the overload
peak is 34,685g, resulting in a reduction rate of 32.87%. This reduction
is attributed to the fact that when the stress wave reaches the interface
between the base and the buffering structure, the plastic collapse of the
buffering structure absorbs a large amount of kinetic energy from the
detonator, resulting in a decrease in overload peak. The high wave
impedance of the detonator potting material causes the transmitted
wave to be weaker than the incident wave, thereby attenuating the
stress wave and protecting the internal electronic components of the
detonator, allowing them to record experimental data intact. Reference
[11] used a conventional rubber buffer gasket with an overload peak of
470,000 g under the same working condition, and the combined buffer
scheme in this paper reduced the maximum overload by 12315 g
compared to it. The experimental data indicate that the combined
buffering protection impact of IBS and potting material is significant.

The effectiveness and scalability of this method have been
demonstrated, and the missile storage system has survived well with
normal data recovery. It can be correctly recorded and read back,
meeting the design requirements of fast response, high tracking
accuracy, and good stability of the fuze control system. It can be
used as a buffer protection for fuze in typical penetration
environments, high overload, and strong impact. The dynamic
impact test further verifies the engineering applicability of this method.

8 Conclusion

This study calculated the basic mechanical properties of IBS,
elucidated the energy absorption mechanism of IBS penetration
process, and developed a theoretical mechanical model for in-plane
uniaxial loading. Through finite element analysis, a comparison was
made between IBS and traditional concave hexagonal structures, and
the stress distribution in key areas of both was analyzed. SCFs of IBS
curved edges under different penetration overloads were calculated,
and the impact of geometric parameters such as cell wall thickness,
aspect ratio, and curvature on SCF was further analyzed. A nonlinear
fitting function for SCF was established, and a method for predicting

FIGURE 15
Distribution of DSCF in fuze potting material. (A) Relationship between DSCF and wave number. (B) Relationship between DSCF and radius. (C)
Relationship between DSCF and depth. (D) Relationship between DSCF and frequency.
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SCF at peak stress locations in IBS was proposed, with the accuracy
of SCF fitting function predictions being validated. To more
precisely explain the phenomenon of stress wave propagation
and scattering, and to accurately determine the location of
dynamic stress concentration in the potting material, numerical
results of DSCF around the bubbles under different physical
parameters were provided. Finally, dynamic impact testing was
conducted on the combined buffering protection scheme. The
main conclusions are outlined as follows:

1) Throughout the stages of the penetration process, the degree of
stress concentration in traditional structures is greater than
that in IBS, indicating that IBS provides better buffering
protection for fuze.

2) In the context of the same penetration overload, the peak stress
decreases with the increase of wall thickness. For cells with the
same wall thickness, as the penetration overload increases, the
peak stress also increases. Additionally, cells with smaller wall
thickness show a more pronounced response to overload. The
impact of side length on peak stress is negligible. The peak
stress increases with the increase of curvature. Cells with larger
curvature exhibit a more pronounced response to overload.

3) DSCF around the bubbles in the potting material is
significantly impacted by the dimensionless wave number,
showing symmetrical distribution along the X-axis and
increases with the increase of wave number. The change in
DSCF with bubble radius (r) is not significant. With increasing
bubble depth, DSCF also increases, emphasizing the
importance of the strength and stability of the projectile tail
section. Low-frequency stress wave incidence has a more
severe impact on bubble DSCF.

4) The overload peak attenuation rates are 39.42% at an initial
velocity of 50 m/s and 32.87% at an initial velocity of 70 m/s. IBS
effectively protects the internal electronic components of fuze,
demonstrating significant buffering protection effectiveness.

With the strengthening of future construction projects, fuze will
face more severe tests. Future fuze buffer materials should have the
characteristics of lightweight, higher specific energy absorption,
better filtering performance, easy processing, easy installation,
and high forming accuracy.

FIGURE 16
Single impact platform.

TABLE 4 Cell geometric parameters.

Parameter Value

Thickness t/mm 0.6

Inclination angle θ/(°) 45

Curvature k 1.5

Height h/mm 1.4

Side length L/mm 6

FIGURE 17
IBS solid material.

TABLE 5 Material impedance parameters.

Material ρ/g·cm-3 C/103 ms ρC (106Pa)·m−1·s−1

Fuze casing 2.77 5.09 14.10

Polyurethane 1.20 0.75 0.90

Epoxy resin 1.20 1.35 1.62

Circuit board 1.80 3.05 5.49
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Sensitivity analysis of
non-uniform rational
B-splines–based finite element/
boundary element coupling in
structural-acoustic design
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Architectural and Civil Engineering, Huanghuai University, Zhumadian, China, 2College of Architecture
and Civil Engineering, Xinyang Normal University, Xinyang, China

For the purpose of modeling the acoustic fluid-structure interaction using direct
differentiation method and conducting a structural-acoustic sensitivity analysis, a
coupling approach based on the finite element method and the fast multipole
boundary element method is suggested. Non-uniform rational B-splines
isogeometric analysis bypasses the difficult volume parameterization
procedure in the isogeometric finite element method and the time-
consuming meshing process in classical finite element/boundary element
method, allowing numerical analysis on computer-aided design models to be
completed directly. The finite element/fast multipole boundary element method
based on non-uniform rational B-splines isogeometric analysis enables the
numerical prediction of the effects of arbitrarily formed vibrating structures on
the sound field. Several numerical examples are shown to demonstrate the
usefulness and efficiency of the proposed method.

KEYWORDS

FEM, FMBEM, NURBS, structural-acoustic coupling, sensitivity analysis

1 Introduction

The investigation of acoustic radiation or scattering from elastic objects in fluid is a
common topic. Acoustic fluid-structure interaction problems Junger and Feit [1] can only
be analytically solved when the structure has simple geometry and boundary conditions.
More complex geometries in real life make analytical solutions unfeasible; thus, effective
numerical techniques need to be developed.

The finite element method (FEM) has been widely used to study the dynamic behavior
of issues including acoustics, fracture mechanics, electromagnetics, and fluid-structure
interactions. However, when modeling infinite domains, there are several issues with the
FEM. As is well known, because BEMprovides excellent accuracy and simple mesh creation,
it has been employed successfully to solve acoustic problems. The Sommerfeld radiation
condition at infinity is quickly met, especially for external acoustic issues SOMMERFELD
[2]. Using the Galerkin technique for BEM implementation, the boundary integral problem
has been quantitatively addressed Engleder [3]; Chen et al. [4]. Nonetheless, the collocation
approach has always been preferred by the technical community. As a result, the coupling
FEM/BEM technique is appropriate for examining fluid-structure interaction issues
Everstine and Henderson [5]; Fritze et al. [6]; Chen et al. [7].
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However, coupling analysis of underwater structural-acoustic
problems remains the bottleneck of high computational cost because
CBEM generates a dense and non-symmetric coefficient matrix that
requires O(N3) arithmetic operations to directly resolve the equation
system, for example, when employing the Gauss elimination
approach. Many techniques have been used to speed up the
resolution of the integral problem, including the fast multipole
method (FMM), the fast direct solver, and the adaptive cross
approximation approach. Martinsson and Rokhlin [8,9] created
the fast direct solver. It works well for issues requiring somewhat
ill-conditioned matrices and rapidly produces a simplified
factorization of the matrix’s inverse. The adaptive cross
approximation technique developed by Bebendorf and Rjasanow
[10] generates blockwise low-rank approximants from the BEM
matrices for situations requiring a large number of repetitions.

Since FMM was developed, it is now possible to solve the CBEM
system of equations more rapidly Greengard and Rokhlin [11];
Coifman et al. [12]; Rokhlin [13]. Therefore, large-scale fluid-
structure interaction issues may be handled by employing a
coupling technique based on FEM/fast multipole boundary
element method (FEM/FMBEM) Schneider [14]. The coupling
method FEM/FMBEM is also suggested by this work to address
the difficult fluid-structure interaction challenges.

Increasingly, architects and designers are considering noise
control through structural geometry modifications. This
structural-acoustic optimization offers a significant deal of
potential to reduce radiated noise Kim and Dong [15]; Chen
et al. [16]; Qu et al. [17]. Acoustic design sensitivity analysis is a
crucial step in the processes of acoustic design and optimization
since it can show how a geometry change affects the structure’s
acoustic performance. A summary of the development of structural-
acoustic optimization for noise removal is provided by Marburg
[18]. Due to its ease of use, the finite difference method (FDM) has
been widely applied in structural-acoustic optimization Lamancusa
[19]; Hambric [20]; Marburg and Hardtke [21]. However, this
method performs poorly, particularly when several design
parameters are taken into account simultaneously. Use the direct
differentiation method (DDM) Zheng et al. [22]; Liu et al. [23] or the
adjoint variable method (AVM) Choi et al. [24]; Wang [25] to solve
this issue. It is well knowledge that the most time-consuming part of
the gradient-based optimization process is the sensitivity analysis for
the fluid-structure interaction issue. This study subjects the coupling
technique FEM/FMBEM to the structural-acoustic sensitivity
analysis based on DDM to expedite the analysis.

FEM and BEM may be used in computer-aided engineering
(CAE), with the aid of appropriate software. However, as part of the
preprocessing stage, modern CAE demands that the models created
by CAD software be transformed into simulation-ready models.
Geometry mistakes are caused by the CAE’s transmission of
geometric model data. The combination of BEM with geometric
modeling and numerical simulation using isogeometric analysis
(IGA) Hughes et al. [26]; Chen et al. [27]; Shen et al. [28] is one
suggested solution to this issue Simpson et al. [29,30]. Thanks to
IGABEM, geometric mistakes and time-consuming preprocessing
procedures may be avoided, and numerical simulation may be
carried out straight from the precise models. Since its inception,
IGABEM has been used to address a wide range of issues, including
elastic mechanics Scott et al. [31], potential problems Takahashi and

Matsumoto [32]; Chen et al. [7]; Zhang et al. [33], heat transfer
problems Cao et al. [34], wave propagation Ginnis et al. [35]; Chen
et al. [36]; Zhang et al. [37–40], fracture mechanics Shen et al. [41],
electromagnetics Simpson et al. [42]; Xu et al. [43]; Chen et al. [44];
Li et al. [45]; Qu et al. [46–48], and structural optimization Chen
et al. [49]; Xu et al. [50]; Li et al. [51]; Chen et al. [52]; Lian et al. [53];
Chen et al. [54]; Lu et al. [55]; Chen et al. [56]. In this work, the non-
uniform rational B-splines (NURBS) IGABEM is employed.

In this study, NURBS IGA is utilized in model constructing to
eliminate geometric mistakes and increase calculation accuracy.
FEM and BEM are combined to form structural-acoustic
coupling sensitivity analysis. FMM is applied to speed up the
calculation procedure. For problems requiring fluid-structure
interaction and structural acoustic sensitivity evaluations,
coupling FEM/FMBEM is advised. Numerical examples illustrate
the accuracy and efficiency of this approach.

2 Derivation of the non-uniform
rational B-splines (NURBS)

This section gives the basic NURBS concepts that form the
foundation of the isogeometric analysis. For further details, the
readers are referred to Hughes et al. [26]. A fundamental concept in
NURBS is the knot vector, which is composed of a set of non-
decreasing real integers expressed as in Eq. 1.

Ξ � ξ1, ξ2, . . . , ξn+p+1[ ], ξa ∈ R, (1)

where ξi is the real integer, a is the knot index, p is the polynomial
order, and n is the total number of basis functions. A knot vector

FIGURE 1
The one-dimensional parametric space for a knot vector.

FIGURE 2
Diagram of the spherical shell model with incoming wave.

Frontiers in Physics frontiersin.org02

Xu and Yang 10.3389/fphy.2024.1428875

109

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1428875


FIGURE 3
Sound pressure at location (3, 0, 0) for spherical shell model, numerical result vs. analytical result. The radius r = 0.9 m, shell thichness t = 0.009 m.

FIGURE 4
Sensitivity of sound pressure to shell thickness at location (3, 0, 0) for spherical shell model, numerical result vs. analytical result. The radius r=0.9 m,
shell thichness t = 0.009 m.
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may be conceptualized as a one-dimensional parametric space, as
Figure 1 illustrates.

The B-spline basis functions for a particular knot vector are
expressed using the Cox-de Boor recursion formula. For p � 0, we
have Eq. 2. And we have Eq. 3 for p≥ 1.

Na,0 ξ( ) � 1 if ξa ≤ ξ < ξa+1,
0 otherwise,

{ (2)

Na,p ξ( ) � ξ − ξa
ξa+p − ξa

Na,p−1 ξ( ) + ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1 ξ( ). (3)

B-spline basis functions are well-suited for numerical analysis
due to their many beneficial properties, such as linear independence.
The B-spline curve may be produced by linearly mixing B-spline
basis functions and control points, as shown in Eq. 4.

x ξ( ) � ∑n
i�1

Na,p ξ( )Pa,p, (4)

where x is the B-spline curve, and the coefficient Pa,p denotes the
coordinates of the control point. This means that the basis function

of a B-spline curve is the translation of a parametric one-dimensional
space into real space. The following two-dimensional parametric spaces
have a knot vector in each dimension, as shown in Eqs 5, 6.

ξ1, ξ2, . . . , ξn+p+1[ ], ξa ∈ R, (5)
η1, η2, . . . , ηm+l+1[ ], ξb ∈ R. (6)

The B-spline surface may be constructed using the tensor product
property, as shown in Eq. 7.

x ξ, η( ) � ∑n
a�1

∑m
b�1

Na,p ξ( )Nb,l η( )Pa,b, (7)

where the matching number of the basis function in each dimension
is denoted by n and m. It should be noted that the lack of the
Kronecker delta characteristic means that B-spline control points
are typically not on the surface.

NURBS is used to expand B-splines by associating a weight
coefficient with each control point. With NURBS, designers may
accurately represent a variety of curves with conic segments, such as
circles and ellipses, and increase control over the curves without
increasing the number or degree of control points. Eqs 8, 9 represent
the B-spline basis functions in two dimensions, from which the
NURBS basis functions are generated.

Ra,b ξ, η( ) � Nb,p ξ( )Nb,l η( )wa,b

W ξ, η( ) , (8)

W ξ, η( ) � ∑n
a�1

∑m
b�1

Na,p ξ( )Nb,l η( )wa,b. (9)

in which w is the weight coefficient.
NURBS surfaces are defined using NURBS basis functions

and control points, as shown in Eq. 10, in a manner akin to that of
B-spline surfaces. We may recast Eq. 10 as Eq. 11 by utilizing the
global index A to iterate between basis functions or
control points.

x ξ, η( ) � ∑n
a�1

∑m
b�1

Ra,p ξ( )Rb,l η( )Pa,b. (10)

x ξ, η( ) � ∑NA

A�1
RA ξ, η( )PA. (11)

FIGURE 5
(A) Sound pressure on the spherical shell surface at frequency of 300 Hz. (B) Sound pressure on the spherical shell surface at frequency of 500 Hz.
(C) Sound pressure on the spherical shell surface at frequency of 700 Hz. Sound pressure at frequencies of 300 Hz, 500 Hz, and 700 Hz on the spherical
shell surface. The radius r = 0.9 m, shell thichness t = 0.009 m.

FIGURE 6
Diagram of the diesel engine box model.
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The knot insertion operator can be used to add
more control points without changing the structural
shape. This feature contributes to improving the

accuracy of predicting physical fields while
preserving geometric correctness by using the h-
refinement approach.

FIGURE 7
Sound pressure at location (1, 0, 0), (5, 0, 0) and (10, 0, 0) for diesel engine box model. The shell thichness t = 0.01 m.

FIGURE 8
Sensitivity of sound pressure to shell thickness at location (1, 0, 0), (5, 0, 0) and (10, 0, 0) for diesel engine box model. The shell thichness t = 0.01 m.
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3 Derivation of structural-acoustic
interaction analysis

3.1 Derivation of boundary element method

The time-harmonic wave field of sound in the Helmholtz
equation is described by Eq. 12.

2p x( ) + k2p x( ) � 0, (12)
in which the wave number is k and the sound pressure is p.

A boundary integral equation unique to the structural boundary
Γ may be constructed from Eq. 12 to Eq. 13.

c x( )p x( ) + ∫
Γ
F x, y( )p y( ) dΓ y( )

� ∫
Γ
G x, y( )q y( ) dΓ y( ), x, y ∈ Γ, (13)

where the source point is x, the field point is y, the Green’s function
is G (x, y), the intensity of the incoming wave is p, the normal
derivative of p is q, q(y) = iρωv(y), the structure material’s density is
ρ, the frequency of incoming wave is ω, the normal velocity is v, and
the normal derivative of G is F. If the boundary Γ is smooth near the
source point x, then c(x) = 1/2.

In three-dimensional situations, the Green’s function G (x, y)
may be expressed using Eq. 14 for acoustic concerns.

G x, y( ) � eikr

4πr
, (14)

in which r � |y − x| is the distance between x and y.
The derivative of the integral representation in Eq. 13 with

respect to the outer normal at point x may be represented as Eq. 15
in situations when the source point x has a smooth border Γ.

1
2
q x( ) + ∫

Γ

∂F x, y( )
∂n x( ) p y( ) dΓ y( ) � ∫

Γ

∂G x, y( )
∂n x( ) q y( ) dΓ y( ). (15)

It is generally known that applying a single Helmholtz boundary
integral equation to issues needing external boundary values is
challenging due to nonuniqueness. The nonuniqueness problem

is effectively handled in this work by utilizing the Burton-Miller
technique Burton and Miller [57], which combines the linear Eqs
13, 15. The singular boundary integrals caused by Eqs 13, 15 may
also be directly and effectively computed using the Cauchy
principal value and the Hadamard finite part integral
technique Zheng et al. [22].

One can get the system of linear algebraic equations
represented in Eq. 16, if the border Γ is split up into elements
by combining all of the center-of-element collocation point
equations and displaying them using matrix representations
Ciskowski and Brebbia [58].

Hp � Gq + pi, (16)
in which the coefficient matrices are H and G, the nodal pressure
caused by the incoming wave is pi.

3.2 Derivation of finite element method

This section contains expressions related to the structural-
acoustic analysis as described in detail by researchers Fritze et al.
[6]; Chen et al. [59]. The steady-state reaction of the structure may
be deduced from the frequency-response analysis if it is subjected to
a harmonic load. Eq. 17 derives the linear system of the structural-
acoustic equation.

K + iωC − ω2M( )u ω( ) � Au � f ,
A � K + iωC − ω2M,

(17)

where the stiffness matrix is K, the damping matrix is C, the mass
matrix isM, the nodal displacement vector is u, the imaginary unit is
i � ���−1√

, the excitation frequency is ω, and the complete
excitation is f.

It should be noted that damping may result in a noticeable
phase angle in the steady-state response, even though it keeps the
same frequency with the applied load. If the load is not harmonic,
Eq. 17 can still be applied by decomposing the time-dependent
impulses into the frequency domain. In order to take into account
the effects of the acoustic pressure applied to structural surfaces

FIGURE 9
(A) Sound pressure on the diesel engine’s surface at frequency of 100 Hz (B) Sound pressure on the diesel engine’s surface at frequency of 200 Hz.
(C) Sound pressure on the diesel engine’s surface at frequency of 300 Hz. Sound pressure at frequencies of 100 Hz, 200 Hz, and 300 Hz on the diesel
engine’s surface. The thichness t = 0.01 m.
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on various aspects, a coupling matrix is included to move the
structural nodal load from the fluid effect to fluid nodal pressure.
Eq. 18 might thus be used to define the whole excitation, which
combines the structural load and the acoustic load.

Au � Csfp + fs � f ,

Csf �∫
Γint
NT

s nNfdΓ,
(18)

whereNs is the interpolation function in structure, n is the structural
surface’s outward normal direction, Nf is the interpolation function
in fluid, Γ is the interaction surface, Csf is the coupling matrix, p is
the fluid nodal pressure, and fs is the structural load.

The structural nodal load is directed from the fluid effect to the
fluid nodal pressure via the coupling matrix Csf. The nodal
displacement may then be determined using Eq. 19.

u � A−1f . (19)

3.3 Derivation of FEM/BEM
interaction analysis

The exact formulae for FEM/BEM modeling were published by
Fritze et al. [6], and this section contains related equations. The
continuity constraint over the interaction surface connects the
governing equations from the previous section, as shown in Eq.
20. Next, it makes sense to express the normal velocity v as a
function of the displacement u, in line with Eq. 21.

q � −iωρv, (20)
v � iωS−1Cfsu,

S � ∫Γint
NT

f NfdΓ,
Cfs � CT

sf .

(21)

We can get Eq. 22 by combining Eqs 16, 20, 21. Eqs 17, 22 may be
combined to form an equation system, as demonstrated in Eq. 23.

Hp � ω2ρGS−1Cfsu + pi. (22)
A −Csf

−ω2ρGS−1Cfs H
[ ] u

p
{ } � fs

pi
{ }. (23)

Since the direct iterations on Eq. 23 converge slowly, solving
the system equation directly would need a lot more computing
power and storage. Moreover, obtaining extremely accurate
numerical findings is challenging. We present the following
technique for solving the aforementioned non-symmetric
linear system without the need for an iterative solution. It is
possible to get the coupled boundary element equation Fritze
et al. [6] by replacing Eq. 19 in Eq. 22, as shown in Eq. 24. The
solution of the linear equations in Eq. 24 may be performed using
a sparse direct solver. To speed up the solution, FMM and the
Generalized Minimum Residual (GMRES) iterative solver
are used.

Hp − GWCsfp � GWfs + pi,

W � ω2ρS−1CfsA
−1.

(24)

4 Derivation of sensitivity analysis in
shape design

The goal of shape optimization is to identify, within
predetermined bounds, the ideal design parameters that
characterize the intended form of the given structure. Gradients
of given cost functions can be found by applying shape design
sensitivity analysis. The obtained gradients may then be used to
select which way to search for the optimal ranges of the design
variables. Therefore, the acoustic shape sensitivity research Zheng
et al. [22]; Chen et al. [60] is frequently the first and most important
phase in the process of creating and optimizing acoustic shapes. The
chain rule of differentiation is used in the direct approach to
compute the sensitivity of the function after determining the
sensitivity of the variables. Because this method is so intimately
associated with the analytical process, it is quite successful.

Eq. 25 can be generated by differentiating Eq. 17 with respect to the
design variable in the shape design sensitivity computation using FEM.

_K + iω _C − ω2 _M( )u + K + iωC − ω2M( ) _u � _Au + A _u. (25)

To get Eqs. 13, 15, 26, 27, are differentiated with respect to the
design variable in the case when the source point x is surrounded by
a smooth border Γ.

1
2
_p x( ) � ∫Γ

_G x, y( )q y( ) − _F x, y( )p y( )[ ]dΓ y( )
+∫Γ G x, y( ) _q y( ) − F x, y( ) _p y( )[ ]dΓ y( )
+∫Γ G x, y( )q y( ) − F x, y( )p y( )[ ]d _Γ y( ).

(26)

1
2
_q x( ) � ∫Γ

_∂G x,y( )
∂n x( ) q y( ) − _∂F x,y( )

∂n x( ) p y( )[ ]dΓ y( )
+∫Γ

∂G x, y( )
∂n x( ) _q y( ) − ∂F x, y( )

∂n x( ) _p y( )[ ]dΓ y( )
+∫Γ

∂G x, y( )
∂n x( ) q y( ) − ∂F x, y( )

∂n x( ) p y( )[ ]d _Γ y( ).
(27)

For three-dimensional problems, we have Eq. 28

_G x,y( )�− eikr

4πr2
1− ikr( ) ∂r

∂yi
_yi − _xi( ),

_F x,y( )� eikr

4πr3
3−3ikr−k2r2( ) ∂r

∂n y( ) ∂r

∂yj
− 1− ikr( )nj y( )[ ] _yj− _xj( )

− eikr

4πr2
1− ikr( ) ∂r

∂yi
_ni y( ),

_r� r,j _yj − _xj( ).
(28)

The singular boundary integrals introduced by Eqs 26, 27 may
be computed directly and efficiently using the Cauchy principal
value and the Hadamard finite part integral technique
Zheng et al. [22].

Applying Eq. 22 and differentiating Eq. 24 with respect to the
design variable will result in Eq. 29 for the sensitivity analysis for
shape design using coupling FEM/BEM. Since the matrices are full
and asymmetric, solving Eq. 29 directly with normal BEM requires a
significant amount of computational work. FMM and GMRES, on
the other hand, can be utilized to speed up computation. Eqs 24, 29
use FMM to accelerate the matrix-vector combinations. GMRES is
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used to solve the associated sensitivity equation and the formula for
the FEM/BEM coupling.

H _p − GWCsf _p � _GX + GY − _Hp,

X � W Csfp + fs( ),
Y � _W Csfp + f s( ) +W _Csfp + _fs( ),

_W � ω2ρ _S−1CfsA
−1 + S−1 _CfsA

−1 + S−1Cfs
_A−1( ).

(29)

5 Numerical examples

In this part, numerical examples for real-world engineering problems
illustrate the effectiveness of the proposedmethod. Themethod for doing
the numerical analysis is built using our in-house Fortran code.

5.1 Spherical shell model

This subsection makes use of Figure 2’s concept of a thin
underwater spherical shell exposed to plane wave incidence. With
an amplitude of 1, the plane wave is incident in the x-direction. The
sound pressure and sensitivity at point (3, 0, 0) are examined, and
the coordinate origin (0, 0, 0) is located in the center of the spherical
shell. The radius of the spherical shell is r = 0.9 m and the shell
thickness is t = 0.009 m. Water has a density of ρf = 1.0 × 103 kg/m3,
and sound waves travel at a speed of c = 1,482 m/s in this fluid.

For the model in Figure 2, the sound pressure values at the point
(3, 0, 0) are analyzed. Figure 3 gives the numerical and analytical
results of the sound pressure. The GMRES implementation uses the
FMM approach to accelerate the linear solution. The considerable
agreement between the analytical and numerical results in Figure 3
indicates that the FMM approach maintains the extraordinary
accuracy of the conventional BEM.

Sensitivity analysis plays a crucial role in shape optimization. In this
example, the objective function is the sound pressure at position (3,0,0),
the design variable is the spherical shell’s thickness t. Figure 4 displays the
sound pressure sensitivity. As can be seen from Figure 4, the numerical
solution agrees well with the analytical solution. In addition, Figures 3, 4
show how both sound pressure and sensitivity increase significantly at
peak resonance. Furthermore, in Figure 4, the location of the sharp
increase in sound pressure sensitivity does not always correspond to the
resonance peak in Figure 3. At computed frequencies where the sound
pressure curve is generally flat, there may also be a significant sensitivity
to sound pressure. This highlights how crucial it is to investigate sound
pressure and sensitivity within a frequency range.

The sound pressure on the boundary surface of the spherical shell at
300 Hz, 500 Hz, and 700 Hz frequencies is depicted in Figure 5. The x −
y and x − z planes exhibit symmetrical feature in these figures, while the
sound pressure exhibits a phase difference along the x-axis. These
results make sense as the plane wave happens along the x-axis.

5.2 Diesel engine box model

In this section, a simplified diesel engine box shell model (as
shown in Figure 6) is used for sound field analysis under the action

of incident waves. As in Section 5.1, the plane wave is incident along
the x-direction with an amplitude of 1. Water is the fluid. The model
is located within the coordinate range where x ∈ [−0.5, 0.48], y ∈
[−0.2, 0.2], and z ∈ [0, 0.69]. The thickness of the shell is 0.01 m.
Analysis is done on the sound pressure and sensitivity at positions
(1, 0, 0), (5, 0, 0), and (10, 0, 0).

Figure 7 shows the sound pressure at positions (1, 0, 0), (5, 0, 0),
and (10, 0, 0), while Figure 8 shows how sensitive the sound pressure
is to shell thickness at the same places.

The sound pressure trend at various calculation locations in relation
to the computation frequency is similar in Figure 7. The diesel engine
model’s eigenfrequency is where the peak is located. For various
calculation sites, the sensitivity of sound pressure to shell thickness
is shown in Figure 8 in a similar trend. The peaks on both sides emerge
at comparable computational frequency when comparing Figures 7, 8.
Take note that the sensitivity in Figure 8 peaks at 340 Hz, while Figure 7
does not show this peak. As was concluded in Section 5.1, at computed
frequencies where the sound pressure is rather flat, it is possible to have
substantial sound pressure sensitivity. This emphasizes once more how
crucial it is to examine sound pressure and sensitivity over a band of
frequencies. Furthermore, in Figures 7, 8, the sound pressure and its
sensitivity decrease as the distance between the model and the
computation point increases [computation point from (1, 0, 0) to
(10, 0, 0)]. This result is reasonable considering the attenuation
of energy.

The sound pressure on themodel’s boundary surface in Figure 6 is
displayed in Figure 9 at the frequency of 100 Hz, 200 Hz, and 300 Hz.
As seen by Figure 9, the sound pressure peaks on the diesel engine
model’s surface often emerge on both sides of the structure when
stimulated by a plane incident wave in the x-direction. Additionally,
when the computational frequency exceeds a certain threshold, (e.g.,
300 Hz), the acoustic pressure peak appears on the plane that meets the
incident wave. This phenomenamay be investigated in greater detail for
various material properties, geometrical factors, and incident wave
frequencies in further studies.

The fluid effect must be taken into account while studying the
vibro-acoustic coupling problem for thin-shell designs, as the
numerical simulations unequivocally demonstrate. Consequently,
the coupling analysis must be performed. Since the mesh quality
directly affects the computational accuracy of the coupling analysis,
defining high-quality meshes is essential. This indicates that both
engineering and academics stand to gain much from the use of IGA,
such as NURBS, to improve computational accuracy.

6 Conclusion

Utilizing a coupling approach based on BEM and FEM,
sensitivity analysis and the modeling of the acoustic-structure
coupling are completed. FEM is used to simulate the problem’s
structural components. The boundary of the structure under study,
which is also the boundary of the acoustic domain, is discretized
using BEM in order to obviate the need to mesh the acoustic space.
FMM is used to accelerate the matrix-vector output. By eliminating
the need for meshing and utilizing CAD models to directly examine
the sensitivity of the structural-acoustic interaction, NURBS
IGABEM eliminates geometric errors. Sound pressure sensitivity
equations are developed for connecting structural-acoustic systems.
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To illustrate the precision and usefulness of the suggested approach,
numerical examples are shown. The suggested technique might be
used to quantitatively estimate the effect of design features on the
sound field in real-world circumstances.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

YX: Conceptualization, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Writing–original
draft. SY: Data curation, Formal Analysis, Funding acquisition,
Validation, Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. Sponsored by

the Henan Provincial Key R&D and Promotion Project under Grant
No. 232102220033, the Zhumadian 2023 Major Science and
Technology Special Project under Grant No.
ZMDSZDZX2023002, the Natural Science Foundation of Henan
under Grant No. 222300420498, and the Postgraduate Education
Reform and Quality Improvement Project of Henan Province under
Grant No. YJS2023JD52.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Junger MC, Feit D. Sound, structures, and their interaction, 225. MA: MIT press
Cambridge (1986).

2. Sommerfeld A. Partial differential equations in Physics. Academic Press (1949).
doi:10.1016/B978-0-12-654658-3.50003-3

3. Engleder OSS. Stabilized boundary element methods for exterior Helmholtz
problems. Numerische Mathematik (2008) 110:145–60. doi:10.1007/s00211-008-
0161-y

4. Chen L, Zhang Y, Lian H, Atroshchenko E, Ding C, Bordas S. Seamless integration
of computer-aided geometric modeling and acoustic simulation: isogeometric boundary
element methods based on catmull-clark subdivision surfaces. Adv Eng Softw (2020)
149:102879. doi:10.1016/j.advengsoft.2020.102879

5. Everstine GC, Henderson FM. Coupled finite element/boundary element approach
for fluid-structure interaction. The J Acoust Soc America (1990) 87:1938–47. doi:10.
1121/1.399320

6. Fritze D, Marburg S, Hardtke HJ. FEM-BEM-coupling and structural-acoustic
sensitivity analysis for shell geometries. Comput Structures (2005) 83:143–54. doi:10.
1016/j.compstruc.2004.05.019

7. Chen L, Cheng R, Li S, Lian H, Zheng C, Bordas S. A sample-efficient deep learning
method for multivariate uncertainty qualification of acoustic-vibration interaction
problems. Comput Methods Appl Mech Eng (2022) 393:114784. doi:10.1016/j.cma.
2022.114784

8. Martinsson P, Rokhlin V. A fast direct solver for boundary integral equations in two
dimensions. J Comput Phys (2005) 205:1–23. doi:10.1016/j.jcp.2004.10.033

9. Martinsson P, Rokhlin V. A fast direct solver for scattering problems involving
elongated structures. J Comput Phys (2007) 221:288–302. doi:10.1016/j.jcp.2006.06.037

10. Bebendorf SMR. Adaptive low-rank approximation of collocation matrices.
Computing (2003) 70:1–24. doi:10.1007/s00607-002-1469-6

11. Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput Phys
(1987) 73:325–48. doi:10.1016/0021-9991(87)90140-9

12. Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave
equation: a pedestrian prescription. IEEE Antennas Propagation Mag (1993) 35:7–12.
doi:10.1109/74.250128

13. Rokhlin V. Diagonal forms of translation operators for theHelmholtz equation in three
dimensions. Appl Comput Harmonic Anal (1993) 1:82–93. doi:10.1006/acha.1993.1006

14. Schneider S. FE/FMBE coupling to model fluid-structure interaction. Int J Numer
Methods Eng (2008) 76:2137–56. doi:10.1002/nme.2399

15. Kim NH, Dong J. Shape sensitivity analysis of sequential structural-acoustic
problems using FEM and BEM. J Sound Vibration (2006) 290:192–208. doi:10.1016/j.
jsv.2005.03.013

16. Chen L, Zhao J, Lian H, Yu B, Atroshchenko E, Li P. A BEM broadband topology
optimization strategy based on Taylor expansion and SOAR method-Application to 2D
acoustic scattering problems. Int J Numer Methods Eng (2023) 124:5151–82. doi:10.
1002/nme.7345

17. Qu Y, Zhou Z, Chen L, Lian H, Li X, Hu Z, et al. Uncertainty quantification of
vibro-acoustic coupling problems for robotic manta ray models based on deep learning.
Ocean Eng (2024) 299:117388. doi:10.1016/j.oceaneng.2024.117388

18. Marburg S. Developments in structural-acoustic optimization for passive
noise control. Arch Comput Methods Eng (2002) 9:291–370. doi:10.1007/
BF03041465

19. Lamancusa J. Numerical optimization techniques for structural-acoustic design of
rectangular panels. Comput Structures (1993) 48:661–75. doi:10.1016/0045-7949(93)
90260-K

20. Hambric SA. Sensitivity calculations for broad-band acoustic radiated noise
design optimization problems. J Vibration Acoust (1996) 118:529–32. doi:10.1115/1.
2888219

21. Marburg S, Hardtke HJ. Shape optimization of a vehicle hat-shelf: improving
acoustic properties for different load cases by maximizing first eigenfrequency. Comput
Structures (2001) 79:1943–57. doi:10.1016/S0045-7949(01)00107-9

22. Zheng C, Matsumoto T, Takahashi T, Chen H. Explicit evaluation of
hypersingular boundary integral equations for acoustic sensitivity analysis based on
direct differentiation method. Eng Anal Boundary Elem (2011) 35:1225–35. doi:10.
1016/j.enganabound.2011.05.004

23. Liu Z, Bian P, Qu Y, Huang W, Chen L, Chen J, et al. A galerkin approach for
analysing coupling effects in the piezoelectric semiconducting beams. Eur J Mechanics-
A/Solids (2024) 103:105145. doi:10.1016/j.euromechsol.2023.105145

24. Choi K, Shim I, Wang S. Design sensitivity analysis of structure-induced noise and
vibration. J Vibration Acoust (1997) 119:173–9. doi:10.1115/1.2889699

25. Wang S. Design sensitivity analysis of noise, vibration, and harshness of vehicle
body structure. Mech Structures Machines (1999) 27:317–35. doi:10.1080/
08905459908915701

26. Hughes T, Cottrell J, Bazilevs Y. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng (2005)
194:4135–95. doi:10.1016/j.cma.2004.10.008

Frontiers in Physics frontiersin.org09

Xu and Yang 10.3389/fphy.2024.1428875

116

https://doi.org/10.1016/B978-0-12-654658-3.50003-3
https://doi.org/10.1007/s00211-008-0161-y
https://doi.org/10.1007/s00211-008-0161-y
https://doi.org/10.1016/j.advengsoft.2020.102879
https://doi.org/10.1121/1.399320
https://doi.org/10.1121/1.399320
https://doi.org/10.1016/j.compstruc.2004.05.019
https://doi.org/10.1016/j.compstruc.2004.05.019
https://doi.org/10.1016/j.cma.2022.114784
https://doi.org/10.1016/j.cma.2022.114784
https://doi.org/10.1016/j.jcp.2004.10.033
https://doi.org/10.1016/j.jcp.2006.06.037
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1109/74.250128
https://doi.org/10.1006/acha.1993.1006
https://doi.org/10.1002/nme.2399
https://doi.org/10.1016/j.jsv.2005.03.013
https://doi.org/10.1016/j.jsv.2005.03.013
https://doi.org/10.1002/nme.7345
https://doi.org/10.1002/nme.7345
https://doi.org/10.1016/j.oceaneng.2024.117388
https://doi.org/10.1007/BF03041465
https://doi.org/10.1007/BF03041465
https://doi.org/10.1016/0045-7949(93)90260-K
https://doi.org/10.1016/0045-7949(93)90260-K
https://doi.org/10.1115/1.2888219
https://doi.org/10.1115/1.2888219
https://doi.org/10.1016/S0045-7949(01)00107-9
https://doi.org/10.1016/j.enganabound.2011.05.004
https://doi.org/10.1016/j.enganabound.2011.05.004
https://doi.org/10.1016/j.euromechsol.2023.105145
https://doi.org/10.1115/1.2889699
https://doi.org/10.1080/08905459908915701
https://doi.org/10.1080/08905459908915701
https://doi.org/10.1016/j.cma.2004.10.008
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1428875


27. Chen L, Lu C, Lian H, Liu Z, ZhaoW, Li S, et al. Acoustic topology optimization of
sound absorbing materials directly from subdivision surfaces with isogeometric
boundary element methods. Comput Methods Appl Mech Eng (2020) 362:112806.
doi:10.1016/j.cma.2019.112806

28. Shen X, Du C, Jiang S, Sun L, Chen L. Enhancing deep neural networks for
multivariate uncertainty analysis of cracked structures by POD-RBF. Theor Appl
Fracture Mech (2023) 125:103925. doi:10.1016/j.tafmec.2023.103925

29. Simpson R, Bordas S, Trevelyan J, Rabczuk T. A two-dimensional isogeometric
boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng
(2012) 209-212:87–100. doi:10.1016/j.cma.2011.08.008

30. Simpson R, Bordas S, Lian H, Trevelyan J. An isogeometric boundary element
method for elastostatic analysis: 2D implementation aspects. Comput Structures (2013)
118:2–12. Special Issue: UK Association for Computational Mechanics in Engineering.
doi:10.1016/j.compstruc.2012.12.021

31. Scott M, Simpson R, Evans J, Lipton S, Bordas S, Hughes T, et al. Isogeometric
boundary element analysis using unstructured T-splines. Comput Methods Appl Mech
Eng (2013) 254:197–221. doi:10.1016/j.cma.2012.11.001

32. Takahashi T, Matsumoto T. An application of fast multipole method to
isogeometric boundary element method for Laplace equation in two dimensions.
Eng Anal Boundary Elem (2012) 36:1766–75. doi:10.1016/j.enganabound.2012.06.
0042012.06.004

33. Zhang S, Yu B, Chen L. Non-iterative reconstruction of time-domain sound
pressure and rapid prediction of large-scale sound field based on ig-drbem and pod-rbf.
J Sound Vibration (2024) 573:118226. doi:10.1016/j.jsv.2023.118226

34. Cao G, Yu B, Chen L, Yao W. Isogeometric dual reciprocity bem for solving non-
fourier transient heat transfer problems in fgms with uncertainty analysis. Int J Heat
Mass Transfer (2023) 203:123783. doi:10.1016/j.ijheatmasstransfer.2022.123783

35. Ginnis A, Kostas K, Politis C, Kaklis P, Belibassakis K, Gerostathis T, et al.
Isogeometric boundary-element analysis for the wave-resistance problem using
T-splines. Comput Methods Appl Mech Eng (2014) 279:425–39. doi:10.1016/j.cma.
2014.07.001

36. Chen L, Lian H, Xu Y, Li S, Liu Z, Atroshchenko E, et al. Generalized isogeometric
boundary element method for uncertainty analysis of time-harmonic wave propagation
in infinite domains. Appl Math Model (2023) 114:360–78. doi:10.1016/j.apm.2022.
09.030

37. Zhang G, He Z, Qin J, Hong J. Magnetically tunable bandgaps in phononic crystal
nanobeams incorporating microstructure and flexoelectric effects. Appl Math Model
(2022) 111:554–66. doi:10.1016/j.apm.2022.07.005

38. Zhang G, He Z, Gao XL, Zhou H. Band gaps in a periodic electro-elastic composite
beam structure incorporating microstructure and flexoelectric effects. Archive Appl
Mech (2023) 93:245–60. doi:10.1007/s00419-021-02088-9

39. Zhang G, Gao X, Wang S, Hong J. Bandgap and its defect band analysis of
flexoelectric effect in phononic crystal plates. Eur J Mechanics-A/Solids (2024) 104:
105192. doi:10.1016/j.euromechsol.2023.105192

40. Zhang G, He Z, Wang S, Hong J, Cong Y, Gu S. Elastic foundation-introduced
defective phononic crystals for tunable energy harvesting. Mech Mater (2024) 191:
104909. doi:10.1016/j.mechmat.2024.104909

41. Shen X, Du C, Jiang S, Zhang P, Chen L. Multivariate uncertainty analysis of
fracture problems through model order reduction accelerated SBFEM. Appl Math
Model (2024) 125:218–40. doi:10.1016/j.apm.2023.08.040

42. Simpson R, Liu Z, Vázquez R, Evans J. An isogeometric boundary element method
for electromagnetic scattering with compatible B-spline discretizations. J Comput Phys
(2018) 362:264–89. doi:10.1016/j.jcp.2018.01.025

43. Xu Y, Li H, Chen L, Zhao J, Zhang X. Monte Carlo based isogeometric stochastic
finite element method for uncertainty quantization in vibration analysis of piezoelectric
materials. Mathematics (2022) 10:1840. doi:10.3390/math10111840

44. Chen L, Wang Z, Lian H, Ma Y, Meng Z, Li P, et al. Reduced order isogeometric
boundary element methods for CAD-integrated shape optimization in electromagnetic

scattering. ComputMethods Appl Mech Eng (2024) 419:116654. doi:10.1016/j.cma.2023.
116654

45. Li H, Chen L, Zhi G, Meng L, Lian H, Liu Z, et al. A direct fe2 method for
concurrent multilevel modeling of piezoelectric materials and structures. Comput
Methods Appl Mech Eng (2024) 420:116696. doi:10.1016/j.cma.2023.116696

46. Qu Y, Pan E, Zhu F, Jin F, Roy A. Modeling thermoelectric effects in piezoelectric
semiconductors: new fully coupled mechanisms for mechanically manipulated heat flux
and refrigeration. Int J Eng Sci (2023) 182:103775. doi:10.1016/j.ijengsci.2022.103775

47. Qu Y, Zhang G, Gao X, Jin F. A new model for thermally induced redistributions
of free carriers in centrosymmetric flexoelectric semiconductor beams. Mech Mater
(2022) 171:104328. doi:10.1016/j.mechmat.2022.104328

48. Qu Y, Jin F, Yang J. Temperature effects on mobile charges in thermopiezoelectric
semiconductor plates. Int J Appl Mech (2021) 13:2150037. doi:10.1142/
s175882512150037x

49. Chen L, Liu C, Zhao W, Liu L. An isogeometric approach of two dimensional
acoustic design sensitivity analysis and topology optimization analysis for absorbing
material distribution. Comput Methods Appl Mech Eng (2018) 336:507–32. doi:10.1016/
j.cma.2018.03.025

50. Xu G, Li M, Mourrain B, Rabczuk T, Xu J, Bordas SP. Constructing IGA-suitable
planar parameterization from complex CAD boundary by domain partition and global/
local optimization. Comput Methods Appl Mech Eng (2018) 328:175–200. doi:10.1016/j.
cma.2017.08.052

51. Li S, Trevelyan J, Wu Z, Lian H, Wang D, Zhang W. An adaptive SVD-Krylov
reduced order model for surrogate based structural shape optimization through
isogeometric boundary element method. Comput Methods Appl Mech Eng (2019)
349:312–38. doi:10.1016/j.cma.2019.02.023

52. Chen L, Lian H, Liu Z, Chen H, Atroshchenko E, Bordas S. Structural shape
optimization of three dimensional acoustic problems with isogeometric boundary
element methods. Comput Methods Appl Mech Eng (2019) 355:926–51. doi:10.1016/
j.cma.2019.06.012

53. Lian H, Chen L, Lin X, Zhao W, Bordas SPA, Zhou M. Noise pollution reduction
through a novel optimization procedure in passive control methods. Comput Model Eng
Sci (2022) 131:1–18. doi:10.32604/cmes.2022.019705

54. Chen L, Lian H, Natarajan S, ZhaoW, Chen X, Bordas S. Multi-frequency acoustic
topology optimization of sound-absorption materials with isogeometric boundary
element methods accelerated by frequency-decoupling and model order reduction
techniques. Comput Methods Appl Mech Eng (2022) 395:114997. doi:10.1016/j.cma.
2022.114997

55. Lu C, Chen L, Luo J, Chen H. Acoustic shape optimization based on isogeometric
boundary element method with subdivision surfaces. Eng Anal Boundary Elem (2023)
146:951–65. doi:10.1016/j.enganabound.2022.11.010

56. Chen L, Lian H, Dong H, Yu P, Jiang S, Bordas S. Broadband topology
optimization of three-dimensional structural-acoustic interaction with reduced order
isogeometric fem/bem. J Comput Phys (2024) 509:113051. doi:10.1016/j.jcp.2024.
113051

57. Burton AJ, Miller GF. The application of integral equation methods to the
numerical solution of some exterior boundary-value problems. Proc R Soc Lond (1971)
323:201–10. doi:10.1098/rspa.1971.0097

58. Ciskowski RD, Brebbia CA. Boundary element methods in acoustics. Springer
(1991).

59. Chen L, Li H, Guo Y, Chen P, Atroshchenko E, Lian H. Uncertainty quantification
of mechanical property of piezoelectric materials based on isogeometric stochastic fem
with generalized n th-order perturbation. Eng Comput (2023) 1–21. doi:10.1007/
s00366-023-01788-w

60. Chen L, Lian H, Liu Z, Gong Y, Zheng C, Bordas S. Bi-material topology
optimization for fully coupled structural-acoustic systems with isogeometric FEM-
BEM. Eng Anal Boundary Elem (2022) 135:182–95. doi:10.1016/j.enganabound.2021.
11.005enganabound.2021.11.005

Frontiers in Physics frontiersin.org10

Xu and Yang 10.3389/fphy.2024.1428875

117

https://doi.org/10.1016/j.cma.2019.112806
https://doi.org/10.1016/j.tafmec.2023.103925
https://doi.org/10.1016/j.cma.2011.08.008
https://doi.org/10.1016/j.compstruc.2012.12.021
https://doi.org/10.1016/j.cma.2012.11.001
https://doi.org/10.1016/j.enganabound.2012.06.0042012.06.004
https://doi.org/10.1016/j.enganabound.2012.06.0042012.06.004
https://doi.org/10.1016/j.jsv.2023.118226
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123783
https://doi.org/10.1016/j.cma.2014.07.001
https://doi.org/10.1016/j.cma.2014.07.001
https://doi.org/10.1016/j.apm.2022.09.030
https://doi.org/10.1016/j.apm.2022.09.030
https://doi.org/10.1016/j.apm.2022.07.005
https://doi.org/10.1007/s00419-021-02088-9
https://doi.org/10.1016/j.euromechsol.2023.105192
https://doi.org/10.1016/j.mechmat.2024.104909
https://doi.org/10.1016/j.apm.2023.08.040
https://doi.org/10.1016/j.jcp.2018.01.025
https://doi.org/10.3390/math10111840
https://doi.org/10.1016/j.cma.2023.116654
https://doi.org/10.1016/j.cma.2023.116654
https://doi.org/10.1016/j.cma.2023.116696
https://doi.org/10.1016/j.ijengsci.2022.103775
https://doi.org/10.1016/j.mechmat.2022.104328
https://doi.org/10.1142/s175882512150037x
https://doi.org/10.1142/s175882512150037x
https://doi.org/10.1016/j.cma.2018.03.025
https://doi.org/10.1016/j.cma.2018.03.025
https://doi.org/10.1016/j.cma.2017.08.052
https://doi.org/10.1016/j.cma.2017.08.052
https://doi.org/10.1016/j.cma.2019.02.023
https://doi.org/10.1016/j.cma.2019.06.012
https://doi.org/10.1016/j.cma.2019.06.012
https://doi.org/10.32604/cmes.2022.019705
https://doi.org/10.1016/j.cma.2022.114997
https://doi.org/10.1016/j.cma.2022.114997
https://doi.org/10.1016/j.enganabound.2022.11.010
https://doi.org/10.1016/j.jcp.2024.113051
https://doi.org/10.1016/j.jcp.2024.113051
https://doi.org/10.1098/rspa.1971.0097
https://doi.org/10.1007/s00366-023-01788-w
https://doi.org/10.1007/s00366-023-01788-w
https://doi.org/10.1016/j.enganabound.2021.11.005enganabound.2021.11.005
https://doi.org/10.1016/j.enganabound.2021.11.005enganabound.2021.11.005
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1428875


Two-dimensional acoustic
analysis using Taylor
expansion-based boundary
element method
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1Henan International Joint Laboratory of Structural Mechanics and Computational Simulation, College of
Architectural and Civil Engineering, Huanghuai University, Zhumadian, China, 2College of Architecture
and Civil Engineering, Xinyang Normal University, Xinyang, China

The use of boundary elements in two-dimensional acoustic analysis is presented
in this study, along with a detailed explanation of how to derive the final discrete
equations from the fundamental fluctuation equations. In order to overcome the
fictitious eigenfrequency problem that might arise during the examination of the
external sound field, this work employs the Burton-Miller approach. Additionally,
this work uses the Taylor expansion to extract the frequency-dependent
component from the BEM function, which speeds up the computation and
removes the frequency dependency of the system coefficient matrix. The
effect of the radiated acoustic field generated by underwater structures’ on
thin-walled structures such as submarines and ships is inspected in this work.
Numerical examples verify the accuracy of the proposed method and the
efficiency improvement.

KEYWORDS

boundary element method, Burton-Miller method, Taylor expansion, singular integral,
Helmholtz equation

1 Introduction

Water, as another common acoustic medium, has a much higher acoustic impedance
than air, and the difference between it and the mechanical impedance of common structures
is not so large as to be directly negligible. Therefore, the effect of the radiated acoustic field
generated by the vibration of underwater structures on structures in general and on thin-
walled structures such as submarines and ships in particular is usually difficult to be directly
ignored. These structures are subject to significant vibration during underwater navigation.
Structural vibration causes noise [1–5], which in turn affects [6] the surrounding
environment, thus triggering the engineering requirements for noise reduction. The
analysis of the noise problem is actually the acoustic analysis [7, 8]. In the past
research, the acoustic problems are divided into the finite sound field problems (also
called the internal sound field problems) [9–12] and the infinite sound field problems (also
called the external sound field problems) [13–15]. For finite sound field or internal sound
field problems, the finite element method (FEM) [16–18] has been effective in solving such
problems and has been widely used in practical analysis. The analysis of the outer sound
field problem is much more complex than the inner sound field, and the analysis of the
infinite sound field [19, 20] leads to a drastic increase in the computational volume, which is
difficult to bear. The boundary element method (BEM) [21–26], on the other hand, only
needing to discretize the model on the boundary, while automatically satisfying the
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radiation conditions at infinity, is widely used in the analysis of
external acoustic problems [27, 28]. Moreover, BEM is a semi-
analytic method constructed on the basis of the basic solution,
leading to a higher accuracy.

Although BEM has many advantages in acoustic analysis, it
also has some drawbacks. The first one is the singularity problem,
which leads to poor accuracy or even wrong results. Chen et al.
[29–32] successfully applied the singular phase elimination
technique to the discontinuous higher-order element and
compared the accuracy performance of different elements. The
second one is the fictitious eigenfrequency problem [33–36], and
the main solutions to this problem are CHIEF method and Burton-
Miller method [37–40]. In this paper, Burton-Miller is used to
solve the fictitious eigenfrequency problem. The third one is the
high memory requirement problem. The coefficient matrix formed
using BEM [41–43] is a dense matrix with high memory
requirement, which limits the application of BEM in large-scale
problems. However, although the boundary element coefficient
matrix is dense, it has the property of low rank. A series of fast
methods [44–46] using low-rank decomposition have been
proposed, including fast multipole method, H-matrix, adaptive
cross approximation and some other fast algorithms, which could
successfully reduce the computational volume and memory usage,
making it possible to apply BEM on complex engineering problems
[47–49]. The fourth one is the frequency dependent problem.
Unlike FEM, the kernel function of BEM is frequency-
dependent. The discrete formation of the coefficient matrix is
influenced by frequency, necessitating its recalculation under each
distinct frequency [50–52], leading to a sharp increase in the
computational volume of the boundary element under
frequency band analysis. In acoustic wideband analysis,
researchers have developed some fast algorithms to enhance the
efficiency of solving large-scale problems. The frequency-
dependent terms are separated from the integration kernel
using Taylor series expansions of sine and cosine functions
[53–59], which reduces the workload and computational time
of numerical integration. To mitigate the frequency dependence
of the system coefficient matrix, this study uses the Taylor
expansion to extract the frequency-dependent terms embedded
within the product function of BEM. This approach is undertaken
to eliminate the influence of frequency variations on the matrix,
thereby enhancing the accuracy and versatility of BEM [60–63] in
diverse engineering applications.

In this paper, we introduce the Burton-Miller method and the
Taylor expansion technique through two examples of circular and
airfoil models. These two techniques solve the problem of spurious
peaks present in the boundary element method and eliminate the
influence of frequency variations on the matrix, thereby enhancing
the accuracy and versatility of BEM. This provides a reference value
for the study of underwater noise problems. In the course of this
study we found that no spurious peaks occur when the radius of the
circle is small. In the process of Taylor expansion, the magnitude of
the error in the analytical solution and Taylor expansion is related to
the number of expansion terms.

The following is the article’s remaining content: Using the
Burton-Miller approach and the Taylor expansion series, the
two-dimensional acoustic boundary element method is
introduced in Section 2. Sections 3 offers numerical examples to

back up the recommended method. Section 4 brings the text’s
conclusions to a close.

2 Two-dimensional acoustic boundary
element method

Suppose there exists a circular region Ωy, whose boundary is L.
If the domain is filled with a homogeneous ideal fluid medium, the
fluctuation equation for the sound pressure in this circular region is

∇2P x, t( ) − 1
c2f

∂2P x, t( )
∂t2

� 0,∀x ∈ Ωy (1)

in which ∇2 represents the Laplace operator, P(x, t) signifies the
sound pressure at a specific point x within the sound field at a
particular time t, and cf denotes the wave speed. Assuming a
simple harmonic sound field, the sound pressure can be
formulated as

P x, t( ) � p x( )e−iωt (2)
where p(x) denotes the time-independent sound pressure value
in imaginary units i � ���−1√

, and the angular frequencies ω � 2πf,
e−iωt are time-dependent terms. Since sound waves exist in
simple harmonic form in many cases, and since the Fourier
transform can be used to convert the time-domain data into the
result of superposition of different simple harmonic wave
components, in this paper we only consider the steady-state
simple harmonic sound field. Substituting Eq. 1 into Eq. 2, the
Helmholtz control differential equation based on sound pressure
is obtained as

∇2p x( ) + k2p x( ) � 0,∀x ∈ Ωy (3)

where k � ω
cf

denotes the wave number. Ultimately the two-
dimensional sound field problem transforms into a problem of
solving the partial differential Eq. 3, and therefore boundary
conditions need to be considered. For the 2D sound field
problem, there are three types of boundary conditions that are
usually considered, as shown in Figure 1:

Dirichlet boundary conditions, also known as Type I boundary
conditions, where the sound pressure is known as Eq. 4

p x( ) � �p x( ),∀x ∈ LD (4)
where () indicates that the value is known.

Neumann boundary conditions, also known as Type II
boundary conditions, where the normal derivative of the sound
pressure or the normal speed of vibration is known as Eq. 5

q x( ) � ∂p x( )
∂n x( ) � iρyωvy x( ),∀x ∈ LN (5)

in which q represents the acoustic flux, n(x) signifies the external
normal vector at point x, ρy denotes the density of the acoustic
medium, and vy represents the normal vibrational velocity of the
acoustic medium at the boundary Ωy, and the relationship between
the acoustic flux and the normal vibrational velocity can be deduced
from the Euler equation.

Robin boundary conditions, also known as Type III boundary
conditions, where there is a certain linear relationship between the
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sound pressure and the derivative of sound pressure, as shown in
Eq. 6

∂p x( )
∂n x( ) + ap x( ) � b,∀x ∈ LR (6)

where a and b are known coefficients.

2.1 Boundary integral equation

BEM is centered on the derivation of the boundary integral equation.
By multiplying both ends of the Helmholtz equation by the weight
function A(x,y) and integrating over the sound field Ωy, we get

∫
Ωy

∇2p x( ) + k2p x( )[ ]A x, y( )dΩ y( ) � 0 (7)

Let the weight function A(x, y) satisfy
∇2A x, y( ) + k2A x, y( ) � −δ x − y( ) (8)

when x ∈ Ωy and x ∉ L, according to Eqs 7, 8, we get

∫
Ωy

p y( ) ∇2A x, y( ) + k2A x, y( )[ ]dΩ y( )
� −∫

Ωy

p y( )δ x − y( )dΩ y( ) � −p x( ) (9)

Equation 7 is transformed by Green’s second constant, and then
Eq. 9 can be substituted to obtain the integral equation:

p x( ) + ∫
L
B x, y( )p y( )dL y( ) � ∫

L
A x, y( )q y( )dL y( ) (10)

where q(y) � ∂p(y)
∂n(y) denotes the sound flux. According to the above

equation, the sound pressure at point x can be regarded as the result
of the superposition of the sound pressure and sound flux generated
by the sound source point y. If the field point x is approximated to
the integration boundary L, x ∈ L, Eq. 10 can be written as

c x( )p x( ) + ∫
L
B x, y( )p y( )dL y( ) � ∫

L
A x, y( )q y( )dL y( ) (11)

where the coefficient c(x) depends on the geometric features at
point x. Eq. 11 is known as the conventional boundary integral
equation (CBIE). If the boundary at point x is smooth, then
c(x) � 1/2. Derivation to the outer normal n(x) yields the
normal derivative boundary integral equation (NDBIE), as shown as

c x( )q x( ) + ∫
L
D x, y( )p y( )dL y( ) � ∫

L
E x, y( )q y( )dL y( ) (12)

The kernel function of each order in Eqs 11, 12 can be expressed
as Eq. 13

A x, y( ) � i
4
H 1( )

0 kr( )
B x, y( ) � ∂A x, y( )

∂n x( ) � −ik
4
H 1( )

1 kr( ) ∂r

∂n x( )
E x, y( ) � ∂A x, y( )

∂n x( ) � −ik
4
H 1( )

1 kr( ) ∂r

∂n x( )
D x, y( ) � ∂2A x, y( )

∂n x( )∂n y( ) � ik
4r
H 1( )

1 kr( )nj x( )nj y( )

−ik
2

4
H 1( )

2 kr( ) ∂r

∂n x( )
∂r

∂n y( ) (13)

where r � |x − y| denotes the Euclidean distance between the field
point and the source point, andH(1)

n denotes the nth order first class
Hankel function.

When solving a two-dimensional sound field problem using Eq.
11 or Eq. 12 alone, there are some special frequencies where the
computed results will deviate significantly from the analytical
solution. However, these are only mathematical problems
brought about by the use of boundary integral equations for

FIGURE 1
Schematic representation of the three boundary conditions.

FIGURE 2
Schematic diagram of CBE21 element.
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solving the problem and do not have any real physical significance,
and these frequencies are called fictitious eigenfrequencies.
Although using either boundary integral equation alone may fail
to obtain the correct solution at a particular frequency, a linear
combination of Eqs 11, 12 gets an exact and unique solution, which
is known as the Burton-Miller method. The combined form can be
expressed as

CBIE + αNDBIE � 0 (14)
where α denotes the coupling coefficient, α � i/k when the wave
number k ≥ 1, and vice versa α � i.

Different element types can be used to discretize the boundary,
and in order to facilitate the representation of the element types, a
convention is adopted for the representation of the element types:
CBEmn denotes a continuous element, m denotes m geometric
interpolation points, and n denotes n physical interpolation points.
The boundary is now discretized into a number of constant elements
CBE21 since there is only one interpolation point in the element. A
schematic diagram of the this element is shown in Figure 2.

The boundary is now discretized into N constant elements, and the
values of the physical quantitiesp and q on the elements are equal to the
values of the interpolated nodes. For the integral of the i node over the j
element, Eq. 11 can be discretized into the following form

c x( )pi +∑N
j�1

∫
Lj

B x, y( )dL y( )pj � ∑N
j�1

∫
Lj

A x, y( )dL y( )qj (15)

in which ∫
Lj
A(x, y)q(y)dL(y) and ∫

Lj
B(x, y)p(y)dL(y) are both

directly computable. Introducing the coefficient matrices G and H,
we have Eqs 16, 17

Ĥ
ij � ∫

Lj

B x, y( )p y( )dL y( ) (16)

and

Gij � ∫
Lj

A x, y( )q y( )dL y( ) (17)

Then Eq. 15 can be rewritten as

∑N
j�1

Hijpj � ∑N
j�1

Gijqj (18)

If we assume that the boundary is smooth, then c(x) = 1/2, and
Hij in Eq. 18 can be expressed as Eq. 19

Hij �
Ĥ

ij
, i ≠ j

Ĥ
ij + 1

2
, i � j

⎧⎪⎪⎨⎪⎪⎩ (19)

The same discretization can be performed on Eq. 12, and then
according to Eq. 14 the matrix form of the linear system equations
can be obtained as Eq. 20

Hp � Gq (20)

FIGURE 3
Sound pressure obtained using CBIE and Burton-Miller for different radius. (A): r0= 0.60m, (B): r0= 0.65m, (C): r0= 0.70m, (D): r0 = 0.75m, (E): r0 =
0.80 m, (F): r0 = 0.85 m.
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Reassembling Eq. 20 by moving all the unknowns to the left side
of the equation and transferring all the knowns to the right side of
the equation yields Eq. 21

Ax � b (21)
where A represents the asymmetric full-rank coefficient matrix, x
denotes the unknown vector associated with the boundary nodes,
and b signifies the known vector. By solving this equation, the
unknown values at all nodes can be determined. Subsequently, the
sound pressure Py at any point within the domain can be calculated
by substituting the obtained results into Eq. 22.

Py � Gyq −Hyp (22)

where Hy and Gy are the coefficient matrices when the field point y
is in the outer acoustic domain.

2.2 Wideband analysis based on
Taylor theory

The Green’s function A(x, y) incorporates the n-th order
Hankel function of the first kind, which exhibits an explicit
dependence on the wave number k. The Taylor expansion of this
Hankel function, centered at a designated frequency expansion
point z0 � k0r, can be formulated as Eq. 23

H 1( )
n z( ) � ∑∞

m�0

z − z0( )m
m!

H 1( )
n z( )[ ] m( )

z�z0 (23)

where we have Eq. 24

H 1( )
n z( )[ ] m( )

z�z0 �
dmH 1( )

n z( )
dzm

|z�z0 (24)

The Taylor expansion of the kernel functions presented in Eq. 23
can be analogously derived by substituting z and z0 with kr and k0r,
respectively.

Note the considerable challenge in deriving an explicit
expression for the m-th order derivative of the n-th order Hankel
function, as presented in Eq. 23. To overcome this difficulty, a
recursive formulation for the Hankel function is introduced as

dH 1( )
n z( )
dz

� n

z
H 1( )

n z( ) −H 1( )
n+1 z( ) (25)

The recursive expression for the m-th order derivative of the
n-th order Hankel function can be obtained through iterative
differentiation of Eq. 25 with respect to the variable z.
Specifically, this involves repeatedly applying the differentiation
operator to obtain the desired derivative order, as shown in Eq. 26.

H 1( )
n z( )[ ] m( ) � ∑m

i�1
H 1( )

n z( )[ ] m−i( ) −1( )i+1 m − 1( )!
zi m − i( )! − H 1( )

n+1 z( )[ ] m−1( )

(26)

FIGURE 4
Sound pressure calculated with different number of Taylor expansion terms. (A): r0 = 0.10 m, (B): r0 = 0.15 m, (C): r0 = 0.20 m, (D): r0 = 0.25 m,
(E): r0 = 0.30 m, (F): r0 = 0.35 m.
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By substituting Eq. 23 into Eqs 11, 12, then incorporating the
impedance boundary condition q(x) � iρyωvy(x) to represent the
sound absorption properties, the integrals in Eqs 11, 12 can be
reformulated into an expansion form tailored to the fixed frequency
point k0:

∫
L
B x, y( )p y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

Im1

∫
L
A x, y( )q y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

Im2

α∫
L
D x, y( )p y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

kIm3 + k2Im4( )
α∫

L
E x, y( )q y( )dL y( ) � ∑∞

m�0

k − k0( )m
m!

kIm5

(27)

where

Im1 � −∫
L

irm−1

4
zH 1( )

1 z( )[ ] m( )
z�k0r

∂r

∂n y( )p y( )d y( )
Im2 � ∫

L

irm

4
H 1( )

0 z( )[ ] m( )
z�k0rq y( )dL y( )

Im3 � ∫
L

αirm−1

4
H 1( )

1 z( )[ ] m( )
z�k0rnj x( )nj y( )p y( )dL y( )

Im4 � ∫
L

αirm

4
H 1( )

2 z( )[ ] m( )
z�k0r

∂r

∂n x( )
∂r

∂n y( )p y( )dL y( )
Im5 � −∫

L

αirm

4
H 1( )

1 z( )[ ] m( )
z�k0r

∂r

∂n y( ) q y( )dL y( )

(28)

wherein, the m-th derivative of the function zH(1)
1 (z) appearing in

the integral Im1 can be calculated as Eq. 29

FIGURE 5
Sound pressure calculated with different number of Taylor expansion terms. r0 = 0.40 m. (A): 1–250 Hz, (B): 250–500 Hz, (C): 500–750 Hz,
(D): 750–1000 Hz.
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FIGURE 6
CPU time for different number of expansion terms.

FIGURE 7
The airfoil Model.
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zH 1( )
1 z( )[ ] m( ) � m H 1( )

1 z( )[ ] m−1( ) + z H 1( )
1 z( )[ ] m( )

(29)

Substituting Eq. 27 into Eqs 11, 12 then simultaneously applying
the impedance boundary condition q(x) � iρyωvy(x) yields the
following result:

C x( ) p x( ) − q x( )[ ]
+ ∑∞

m�0

k − k0( )m
m!

Im1 − Im2( ) + Im3 − Im5( )k + Im4 k
2[ ] � 0 (30)

Owing to the presence of singular kernel functions and their
normal derivatives in Eq. 14, the boundary integrals containing a
sequence of expansion expressions in Eq. 28 exhibit singularities
as well. These integrals are evaluated by employing the Cauchy

principal value and the Hadamard finite part integral
technique [64].

The discretization of Eq. 30 is achieved through the application
of the collocation method, employing constant elements, which
results in:

C + ∑∞
m�0

k − k0( )m
m!

Im1 + kIm3 + k2Im4( )⎡⎣ ⎤⎦p
� αC + ∑∞

m�0

k − k0( )m
m!

Im2 + kIm5( )⎡⎣ ⎤⎦q (31)

where we have Eq. 32

C �
C1 0

1
0 CN

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (32)

FIGURE 8
Sound pressure obtained using the analytical method and the boundary element method based on Taylor expansion. (A): 1–1000 Hz, (B):
1000–2000 Hz, (C): 2000–3000 Hz, (D): 3000–4000 Hz.
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In the present study, we employ the Taylor expansion
technique to decompose the frequency-dependent system
matrix given in Eqs 11, 12 into a summation of frequency-
dependent scalar functions multiplied by frequency-
independent system matrices. Upon examination of Eq. 31,
it becomes evident that the coefficients Im1 , I

m
2 , I

m
3 , I

m
4 , I

m
5

exhibit no frequency dependence. Consequently, these
coefficients need to be computed only once for multi-
frequency problems, thereby eliminating the need for
repeated computations. As a result, the coefficient matrix
remains frequency-independent.

2.3 Symbols

The following symbols are used in the formulas:

3 Numerical example

3.1 Cylindrical Shell’s 2-D cross section

Considering a infinitely long cylindrical shell pipe model, in
which the radius is r0, and the center of the circle is at (0, 0). Take
the cross section of this cylindrical shell, then it is a two-
dimensional problem. The normal velocity v0 at the boundary

of the cross section is randomly set to be a constant, 9.6 × 10−5

m/s. The boundary conditions are q � iρyωv0. The cross section
is uniformly discretized into 100 constant elements. When the
pipe radius r0 is taken as 0.60 m . . .. . . 0.85 m, and the frequency
f is taken as 0–1,000 Hz (in step of 1 Hz), the sound pressure at
point (2, 0) m is calculated here using CBIE and Burton-Miller,
respectively. The results of sound pressure calculated using these
two methods are shown in Figure 3.

Several conclusions can be inferred from Figure 3. As the radius
of the pipe increases, the sound pressure also increases. The results
obtained using the conventional boundary element method (CBEM)
and Burton-Miller exhibit a high degree of similarity. However,
when the radius exceeds 0.60 m, CBEM tends to produce fictitious
engenfrwquencies, whereas the Burton-Miller method proves
effective in mitigating this issue.

The sound pressure results obtained using BEM based on Taylor
expansion are presented in Figure 4. A frequency step of 1 Hz is
utilized, and the width of each frequency band is set to z. The
notation Taylor_3 refers to the numerical solution derived using
Taylor expansion with three expansion terms (TM = 3). Similarly,
Taylor_5, Taylor_7, and Taylor_10 represent the numerical
solutions employing five, seven, and ten expansion terms,
respectively.

It becomes evident that sound pressure values exhibit
variations across different frequency bands, as shown in
Figure 4. Furthermore, within the same frequency band, the
sound pressure values determined through the numerical
method closely align with those obtained analytically.
However, as the distance from the expansion point increases,
the error also increases. Among the considered Taylor expansion
terms, Taylor_10 demonstrates the closest agreement with the
sound pressure values obtained analytically. This implies that
increasing the number of Taylor expansion terms leads to a
numerical solution that more closely approximates the
analytical solution.

As depicted in Figure 4, the numerical results exhibit general
concordance with the analytical solution across various numbers of
expansion terms. However, notable discrepancies arise at the
extremities of the frequency band range. The observed agreement
between the numerical and analytical solutions is primarily evident
in the central region of the frequency spectrum. The discrepancies
observed at the lower and upper ends of the frequency range
primarily arise from the positioning of the fixed frequency
expansion point at the midpoint of the range. As a result, as the
distance from this fixed expansion point increases, the accuracy of
the numerical results tends to deteriorate. To mitigate these
deviations, the original frequency range of [1, 1,000] Hz has been
subdivided into four distinct subranges: [1, 250] Hz, [250, 500] Hz,
[500, 750] Hz, and [750, 1,000] Hz. Subsequent numerical
simulations have been conducted within these refined subranges.
As an illustrative example, consider the case where r0 � 0.40 m. As
can be seen from Figure 5, by adopting this segmented approach, the
accuracy and reliability of the numerical results are improved,
particularly at the extremities of the frequency spectrum.

The CPU time consumed using CBIE and Taylor expansion is
demonstrated in Figure 6. We can see that the former method takes

p is sound pressure

k is wave number

n is external normal direction of the boundary

q is normal derivative of p

i is imaginary unit, i � ���−1√

ρy is structural density

ω is frequency of the incoming force

vy is normal velocity

r is the Euclidean distance between the field point and the source point

cf is wave velocity

L is the integration boundary

∇2 is the Laplace operator

x is source point

y is field point

H is the coefficient matrix of the vector p

G is the coefficient matrix of the vector q

c(x) is 1/2 if the boundary Γ is smooth in the vicinity of the source point x

p(x) is intensity of the incoming wave at source point x

p(y) is sound pressure at field point y

q(y) is normal derivative of p(y)

() is known function given on the border
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much more time than the latter. Therefore, The decoupling method
represented by Taylor expansion effectively reduces the time for
wideband computation.

3.2 Airfoil model

Due to the continuous development of artificial intelligence, bionic
technology is becoming more and more sophisticated. Now we are
working on the fins of an underwater bionic fish, which we can simplify
into a wing-shaped model. For the airfoil model shown in Figure 7,
CBIE and Taylor expansion is used to calculate the sound pressure at (2,
0) in the four frequency bands of [1–1,000] Hz, [1,000–2,000] Hz,
[2,000–3,000] Hz and [3,000–4,000] Hz, respectively, as shown in
Figure 8. It can be seen that the analytical solution bears a
substantial resemblance to the solution derived using Taylor
expansion across various frequency bands. Notably, the outcome at

the Taylor expansion point precisely aligns with the analytical solution.
However, as one moves further away from the expansion point, the
divergence between the two solutions gradually increases.

To minimize the errors arising from the calculation, we will
continue to subdivide [1–1,000] Hz into [1–250] Hz, [250–500] Hz,
[500–750] Hz and [750–1,000] Hz, as shown in Figure 9. It can be
seen that as the frequency band decreases, the solution based on
Taylor expansion results in smaller errors. Therefore, we can
conclude that the smaller the frequency band of the expansion,
the closer the result of the Taylor expansion is to the real solution.

3.3 Sound barrier model

The acoustic analysis of a half-Y-shaped sound barrier
(Figure 10) is carried out in this subsection. Figure 11 gives the
real part, the imaginary part and the amplitude of the sound pressure

FIGURE 9
Sound pressure obtained using analytical solution and Taylor expansion methods. (A): 1–250 Hz, (B): 250–500 Hz, (C): 500–750 Hz,
(D): 750–1000 Hz.
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at point (16, 2). It can be seen that the sound pressure exhibits
variation among the different expansion terms, particularly at the
extremities of the frequency range. Consequently, in this subsection,
an adaptive band segmentation technique is employed to partition
the frequency range of [1, 200] Hz into two sub-intervals. The sound
pressure results of the two sub-intervals are shown in Figure 12. It
can be seen that the results obtained demonstrate a remarkable
consistency, irrespective of the number of expansion terms
employed. This result just validates the effectiveness of the
proposed adaptive band segmentation technique.

Figure 13 compares the CPU time spent on the proposed
method and CBEM for two different frequency settings. It can be

seen that the proposed method exhibits a substantial decrease in
CPU time when compared to CBEM. Although the CPU time
escalates with an augmentation in the number of Taylor
expansion terms, using Taylor expansion will still greatly reduce
the CPU time used for wideband computation using the
proposed method.

4 Conclusion

This paper focuses on the two-dimensional acoustic problems. The
Burton-Miller method is used to solve the fictitious eigenfrequency

FIGURE 11
Sound pressure results at (16, 2) for the half-Y-shaped model. (A): the real part, (B): the imaginary part, (C): the amplitude.

FIGURE 10
Half-Y-shaped sound barrier model.
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problem. The Taylor expansion method is used to solve the problem of
frequency dependence and low computational efficiency in wideband
analysis, showing the time requirement advantage of the Taylor
expansion over CBEM. The error in Taylor expansion-based analysis
is reduced by narrowing the frequency bands. The validity of the
adaptive frequency band segmentation technique is verified by
comparing the sound pressure of each expansion term. The necessity
of Taylor expansion is illustrated by comparing the CPU time. In
practical engineering applications, the circular and airfoil arithmetic
examples in this paper provide a reference for studying the noise

problem of underwater vehicles. The Burton-Miller method and the
Taylor expansion technique introduced in the paper are also able to be
applied to other areas of acoustics.
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FIGURE 12
Sound pressure at (16, 2). (A): 1–100 Hz, (B): 100–200 Hz.

FIGURE 13
CPU time spent on numerical simulations using CBEM and Taylor expansion. (A): Frequency band (1, 100) Hz, step 1 Hz. (B): Frequency band
(1, 100) Hz, step 0.1 Hz.
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A level set based topology
optimization for elastodynamic
problems using BEM
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The paper presents a topology optimization methodology for 2D elastodynamic
problems using the boundary element method (BEM). The topological derivative
is derived based on the variation method and the adjoint variable method. The
level set method is employed for the representation of the material domain and
voids within a specified design domain. Thus, the boundaries can easily be
generated, following the zero isocontour of the level set function. Numerical
implementation is carried out to demonstrate the effectiveness of the proposed
topology optimization methodology in wave isolation and waveguide problems.

KEYWORDS

boundary element method, topology optimization, level set method, elastodynamic
problems, vibration control

1 Introduction

The problem of vibration control with artificial structures has been an important issue
in aerospace [1,2], vehicle design [3], civil engineering [4], and vibration pollution [5]. The
suppression, absorption, or waveguide of elastic waves are considered effective tools for the
vibration problems which affect the safety, reliability, and stability of equipment. Passive
vibration control approaches are widely applied in engineering problems due to their simple
design and low cost. Various passive vibration control structures are designed and
artificially manufactured to meet the requirements of vibration-related engineering
problems. Phononic crystals and metamaterials are adopted for mechanical filters and
vibration isolators due to their band gaps, which can strictly forbid the propagation of
acoustic or elastic waves in a certain range of frequency [6]. An open trench and wave-
impeding block-combined vibration isolation barrier is an effective way of protecting
equipment or buildings from environmental vibration sources [7]. Waveguide absorbers are
designed to extract elastic wave energy, dissipating it with artificial spiral acoustic black
holes [8]. The narrow control frequency range, which is considered a drawback of passive
systems, is improved by invoking nonlinear dynamic theories [9].

The numerical simulation method is an effective and efficient approach which can
significantly reduce the cost of the design or analysis of vibration problems. Moreover,
topology optimization methods based on numerical techniques are developed to acquire
the desired structures with prescribed objectives and constraints. Early efforts on
structural design through topology optimization methods include previous research
works [10, 11]. Several widely used topology optimization algorithms, such as the
homogenization method [12], the solid isotropic material with penalization (SIMP)
method [13–16], the evolutionary structural optimization (ESO) method [17–20], the
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moving morphable component (MMC) method [21–24], and level
set-based methods [25–27], have gained great attraction in research
investigations. Liu et al. carried out the topology optimization of
attached piezoelectric actuators of thin-walled structures for both
vibration control and manufacturing constraints using a K-means
clustering method [28]. Liu et al. analyzed the topology optimization
of high-frequency vibration of solid structures using the energy finite
element method (EFEM), which allows less calculation and a clear
distribution of the energy density [29]. Yan et al. optimized the
distribution of damping material in shell structures to minimize the
residual vibration using SIMP, and the sensitivity was obtained using
the adjoint method [30]. For vibration isolation problems, Zhou et al.
developed a multi-objective and multi-level optimization method for
the design of supporting structures and loci of isolators [31]. The
topology optimization of one-material structures for displacement
antiresonances at frequencies of interest is carried out by Silva et al
[32]. These techniques allow the evolution of the topology without the
need to perform remeshing, and most of the topological numerical
methods have been implemented relying on the finite element method
(FEM), which usually easily leads to checkboard patterns and
grayscale problems.

However, the quantities on the boundary of the analyzing
domain are engineers’ concern in most cases for vibration
isolation or waveguide problems. Unlike the finite element
method, which involves substantial computational and memory
expenditure during mesh generation, the boundary element
method merely discretizes the model boundaries. This method
offers advantages such as dimension reduction, high
computational accuracy, and constant elements for modeling.
Thus, the combination of the LSM with the boundary element
method (BEM) provides an easy numerical updating process for
the topology evolution since the zero isosurface/isoline of the level
set function (LSF), which represents the boundaries emerging in the
design domain, has the same dimension as boundary elements’. The
simplicity of the pre-process and post-process in the generation of
boundary elements makes the combination approach a promising
tool for topology optimization problems. Jing et al. presented
topology optimization for maximizing the total potential energy
of thermal problems with the level set method and BEM [33]. Chen
et al. optimized the topology and shape of sound-absorbing
materials through isogeometric BEM [34–37] and optimized the
topology of vibrating structures that interacted with acoustic waves
through isogeometric FEM–BEM [38, 39], which reduced the
radiated sound power and improved optimization efficiency.
Isakari et al. developed topology optimization for acoustic-elastic
coupled problems by employing a fast BEM–FEM coupled solver
[40]. Oliveira et al. extended the isogeometric BEM to topology
optimization based on the LSM for elastic static problems [41].
Matsushima et al. solved the defect detection inverse problems using
the BEM [42], and Tang et al. considered the objective function,
which includes the tangential derivative of displacements for cavity
detection [43]. The application of the BEM-based topology method
to the design of vibration control structures, however, is not
sufficiently investigated. The suppression or magnification of the
vibration amplitudes at certain frequencies can effectively
manipulate the elastic wave propagation.

In view of the aforementioned advantages of the proposed
methodology, the present work aims to extend the BEM and level

set-based topology optimization to elastodynamic problems for
the design of vibration control structures. The paper first
introduces the formulas for the boundary integral equation
and its discretization, and then, the topology optimization
algorithm, which includes the formulation of the topology
derivative and evolution equation, is presented. Numerical
implementations are finally shown to demonstrate the
effectiveness of the method for vibration isolation and
waveguide applications.

2 Boundary element method for 2D
elastodynamic problems

The linear elastodynamic problems are governed by the
equation written in the form of displacement [44]:

C2
1 − C2

2( )qj,jk y, t( ) + C2
2qk,jj y, t( ) � €qk y, t( ) y ∈ Ω, t ∈ 0,∞[ ],

(1)
where y denotes a point in the medium domainΩ and qj denotes the
xj component of the displacement vector in Eq. 1.C1 and C2 are the P
wave speed and S wave speed, respectively, which are written as

C1 �
�����������������������
E 1 − ]( )/ ρ 1 + ]( ) 1 − 2]( ){ }√

, (2)

C2 �
������������
E/ 2ρ 1 + ]( ){ }√

, (3)

where E is the Young’s modulus, ] is the Poisson’s ratio, and ρ is the
density of the medium, as shown in Eqs 2, 3.

Let us rewrite the governing equation by removing the time-
related terms due to the harmonic vibration of linear elastic
structures. Then, we have

C2
1 − C2

2( )Qj,jk y,ω( ) + C2
2Qk,jj y,ω( ) + ω2Qk y,ω( ) � 0, (4)

where ω is the circular frequency and Q is a complex number that
denotes the vibration displacement, including amplitude and
phase. The boundary integral equation (BIE) form of Eq. 4 is
written as

ckl ys( )Qk ys,ω( ) + ∫ΓΦkl* y, ys,ω( )Qk y,ω( )dΓ y( )
−∫ΓΨkl* y, ys,ω( )Tk y,ω( )dΓ y( ) � 0 ys ∈ Γ, (5)

where ckl is the free term of the BIE and the kernels Ψij (y, ys, ω) and
Φij (y, ys, ω) are known as displacement and traction fundamental
solutions for 2D elastodynamic problems, respectively:

Ψij* y, ys,ω( ) � 1

2πρC2
2

ψδij − χr,ir,j[ ], (6)

Φij* y, ys,ω( ) � 1
2π

dψ

dr
− 1
r
χ( ) δi,j

∂r

∂n
+ r,jni( ){

− 2
r
χ njr,j( −2r,ir,j∂r∂n) − 2

dχ

dr
r,ir,j

∂r

∂n

+ C2
1

C2
2

− 2( ) dψ

dr
− dχ

dr
− 1
r
χ( )r,inj}, (7)

where δij is Kronecker’s delta, r is the distance between ys and y, and
ni is the unit outward normal vector to the boundary in Eqs 6, 7.
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ψ � K0
iωr
C2

( ) + C2

sr
K1

iωr
C2

( ) − C2

C1
K1

iωr
C1

( )[ ], (8)

χ � K2
iωr
C2

( ) − C2
2

C2
1

K2
iωr
C1

( ), (9)

where i is the imaginary unit and Kj denotes the modified Bessel
functions of order j in Eqs 8, 9.

In order to evaluate the topological derivative, the expression of
the stress is required:

σ ij yin,ω( ) � ∫ΓTk y,ω( )Dkij yin, y,ω( )dΓ y( )
−∫ΓQk y,ω( )Skij yin, y,ω( )dΓ y( ), (10)

where yin is a point inΩ andDkij and Skij are three-order tensors in Eq. 10.
Discretizing Eq. 5 withN constant boundary elements, we obtain

a linear equation as follows:

ckl ys( )Qi
k ys,ω( ) +∑N

j�1
∫Γj

Φkl* y, ys,ω( ) dΓ y( )( )Qj
k y,ω( )

−∑N
j�1

∫Γj
Ψkl* y, ys,ω( ) dΓ y( )( )Tj

k y,ω( ) � 0,

(11)

where ckl � 1
2δkl when the boundary is smooth, ys is a point on the

boundary Γ, and Qj
k(y,ω) and Tj

k(y,ω) denote the kth component
of the displacement and traction of element Γj, respectively.

Let i in Eq. 11 vary from 1 to N; then, we obtain a system of 2N
linear algebraic equations as shown in Eq. 12.

HQ � GT, (12)
where H and G are 2N × 2N matrices, respectively, and Q and
T ∈ C2N.

3 Topology optimization algorithm

3.1 Topological derivative

To carry out the topology optimization for a continuous
medium, the sensitivity of the objective function with respect to
the change in topology is needed. As shown in Figure 1, the objective
function J is defined on Γf, which is a portion of the boundary of
domain Ωϵ. The sensitivity can be considered the topological
derivative T , which can be formulated by computing the
variation in the objective function δJ as a circular infinitesimal

cavity Ωϵ with a radius ϵ being generated. Taking ϵ → 0, the
topological derivative T at the center of the circular cavity
is obtained.

Usually, the objective function is defined as a real value on the
objective boundary Γf:

J � ∫
Γf
f Qk, Tk( )dΓ. (13)

As the cavity Ωϵ is generated, J changes to

J + δJ � Re ∫
Γf

f Qk, Tk( ) + ∂f

∂Qk
δQk + ∂f

∂Tk
δTk( )dΓ[ ]. (14)

Subtracting Eq. 13 from Eq. 14, δJ is obtained as follows:

δJ � Re ∫
Γf

∂f

∂Qk
δQk + ∂f

∂Tk
δTk( )dΓ[ ]. (15)

To evaluate δJ in Eq. 15, we have to calculate δQk on Γ. However,
the governing equation for δQk also governs the generated boundary
Γϵ and holds

C2
1 − C2

2( )δQj,jk y,ω( ) + C2
2δQk,jj y,ω( ) + ω2δQk y,ω( ) � 0 y ∈ Ω\Ωϵ ,

δQk y( ) � 0 y ∈ ΓQ,
δTk y( ) � 0 y ∈ ΓT,
δTk y( ) � −Tk y( ) y ∈ Γϵ ,

(16)

where δQk on Γϵ cannot be acquired easily in Eq. 16. Thus, we
introduce an adjoint field of ~Qk and ~Tk using Betti’s reciprocal
theorem [45] to avoid the direct evaluation of δQk as follows:

∫
Γ∪Γϵ

~TkδQi − ~QkδTk( )dΓ � 0, (17)

and substituting the boundary conditions in Eq. 21 and 17, we have

−∫
ΓQ
~QkδTkdΓ + ∫

ΓT
~TkδQkdΓ + ∫

Γϵ
~TkδQk + ~QkTk( )dΓ � 0. (18)

Assuming that Γf includes ΓQ and ΓT, δJ can be written as

δJ � Re ∫
ΓT

∂f

∂Qk
δQkdΓ + ∫

ΓQ

∂f

∂Tk
δTkdΓ[ ]. (19)

FIGURE 1
Variation in the objective function according to the removal of an
infinitesimal cavity Ωϵ.

FIGURE 2
Medium domain Ω defined by the LSF implicitly.
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Considering the adjoint field as the Lagrange
multiplier, we obtained δJ by subtracting Eq. 18 from Eq.
19 as follows:

δJ � Re ∫ΓT
∂f

∂Qk
− ~Tk( )δQkdΓ + ∫ΓQ

∂f

∂Tk
+ ~Qk( )δTkdΓ[

−∫Γϵ
~TkδQk + ~QkTk( )dΓ]. (20)

In order to avoid the evaluation of δQk, we can construct the
adjoint field ~Qk, which holds

C2
1 − C2

2( ) ~Qj,jk y,ω( ) + C2
2
~Qk,jj y,ω( ) + ω2 ~Qk y,ω( ) � 0 y ∈ Ω,

~Qk y( ) � − ∂f

∂Tk
y( ) y ∈ ΓQ,

~Tk y( ) � ∂f

∂Qk
y( ) y ∈ ΓT,

(21)

and Eq. 20 becomes Eq. 22.

δJ � Re −∫
Γϵ

~TkδQk + ~QkTk( )dΓ[ ], (22)

where the terms related to ~Qk and Qk can be evaluated by taking the
Taylor series expansions at the center of Ωϵ and the asymptotic
expansion of δQk at the center ofΩϵ can be used for the evaluation of
the terms, including δQk. The details of the evaluation can be found
in [46], where δJ can be written in the form of Eq. 23.

δJ � πϵ2( )T + o ϵ3( ). (23)
Let us consider the center of Ωϵ as point y, and the topological

derivative at the point y can be calculated by taking the limit, as
shown in Eq. 24.

T y( ) � lim
ε→0

δJ

πε2
. (24)

FIGURE 3
Definition of the boundary conditions for example 1.

FIGURE 4
Intermediate optimized solutions during the iteration for example 1: a) Step 8, b) Step 10, c) Step 12, d) Step 13, e) Step 20, and f) Step 30.

Frontiers in Physics frontiersin.org04

Li et al. 10.3389/fphy.2024.1426846

135

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1426846


The formula for T (y) is given in Eq. 25.

T y( ) � Re
λ + 2μ

4μ λ + μ( ) 4σjk y( )~σjk y( ) − σjj y( )~σkk y( )( )[
−ρω2Qj y( ) ~Qj y( )] y ∈ D, (25)

where λ and μ are Lamé constants, which are given in Eq. 26.

λ � 2]G
1 − 2]

μ � E

2 1 + ]( ).
(26)

3.2 LSM

The elastic material medium is defined by the LSF ϕ in
the design domain D. As shown in Figure 2, for a point y in D,
the medium and void are defined using the value of ϕ(y) as
shown in Eq. 27.

< ϕ y( )≤ 1, y ∈ Ω
ϕ y( ) � 0, y ∈ Γ
−1≤ ϕ y( )< 0, y ∈ D\Ω

⎧⎪⎨⎪⎩ . (27)

The optimization problem for minimizing the objective function
J � ∫Γf

f(Qk, Tk)dΓ can be given in Eq. 28.

infϕ J χϕ( ) � ∫
Γ
f Qk, Tk( )χϕdΓ, (28)

subject to

FIGURE 5
Convergence of the objective function and area for example 1.

FIGURE 6
Objective function response of the structure before and after optimization for example 1 as ω varies from 100 Hz to 500 Hz: a) the vibration
amplitude at objective boundary with frequency sweep from 100 Hz to 500 Hz before optimization. b) The vibration amplitude at objective boundary
with frequency sweep from 100 Hz to 500 Hz before optimization (f–ω plane). c) The vibration amplitude at objective boundary with frequency sweep
from 100 Hz to 500 Hz after optimization. d) The vibration amplitude at objective boundary with frequency sweep from 100 Hz to 500 Hz after
optimization (f–ω plane).
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I � Re ∫
D
α C2

1 − C2
2( )Qj,jk y,ω( ) + C2

2Qk,jj y,ω( ) + ω2Qk y,ω( )[ ]dΩ[ ]
� 0,

(29)
where α is the Lagrange multiplier in Eq. 29.

G χϕ( ) � ∫
D
χϕdΩ − Gmax ≤ 0, (30)

where G is the volume constraint which controls the size of the
material area, χϕ is the characteristic function, and Gmax is the
admissible upper limit of the material area in Eq. 30.

Let us rewrite the objective function J using �J as follows:

�J � F + I + λG χϕ( ), (31)

where λ is the Lagrange multiplier for the area constraintG in Eq. 31.
According to the Karush–Kuhn–Tucker (KKT) condition, the
optimal solution of the optimization problem is shown in Eq. 32.

�J′ � F′ + I′ + λ � 0, I � 0, λG χϕ( ) � 0, λ≥ 0, G χϕ( )≤ 0.

(32)
Let us introduce the reaction-diffusion equation:

∂ϕ y( )
∂t*

� K T − λ + τ∇2ϕ y( )( ), (33)

where T is the topological derivative F′ + I′ and K and τ are positive
constants referred to as Tikhonov regularization parameters [47] in Eq.
33.K controls the updating speed, and τ decides the curvature of the LSF.

4 Numerical implementation

4.1 Example 1: vibration isolation at
y-direction

Let us consider the structure depicted in Figure 3, where we can
find the excitation force F = 1.0 × 106 N with the frequency at 230 Hz

and the objective function f � |Qy − �Qy|2 with a given �Qy � 0. The
material constants are given as follows: Young’s modulus E = 1.248 ×
108Pa, Poisson’s ratio ] = 0.34, and density ρ = 1.6 × 104 kg/m3.
�Qy � 0 implies that the purpose of the optimization is to decrease
the vibration amplitude in the y-direction at the bottom of the
rectangular design domain. The parameters for the evolution
equation are specified as K = 25 and τ = 0.5.

The intermediate results at steps 8, 10, 12, 13, 20, and 30 are
presented in Figure 4. A small cavity is generated from step 8 and
disappears at step 12; however, the cavities appear again at step
13 and reduce the vibration amplitude at the objective boundary.
The convergence of the objective function and the area is shown in
Figure 5. The convergence curve of the objective function shows the
change in the vibration amplitude at the objective boundary, and it
can be seen that the value of the objective function increases at step
8 and decreases rapidly from step 13. The increase in the objective
function implies that the starting point of the topological derivative
may just lose a solution and look for the next solution. Thus, one can
find that the objective function increases first and then decreases
rapidly. Finally, the objective function becomes smaller compared
with it at the beginning. The optimal structure leads to a reduction in
the vibration amplitude from 0.36 to 0.09 (normalized).

Let us consider the response problem of the optimized structure
under the excitation frequency range [100, 500] Hz. As shown in
Figure 6, the objective function, which implies the vibration
amplitude at the objective boundary, presents a value of 10–2 at
the optimizing frequency of 230 Hz before the optimization.
However, the objective function decreases to approximately 10–7

after the optimization. The frequency sweep analysis implies that the
optimized structure is effective for the isolation of vibration in the
vicinity of 230 Hz, when the displacement response along the y-
direction of the bottom of the rectangular structure is considered.

4.2 Example 2: vibration isolation at
x-direction

In elastodynamic problems, when a structure is subjected to
excitation forces, both longitudinal and transverse waves are

FIGURE 7
Definition of the boundary conditions for example 2.

FIGURE 8
Convergence of the objective function and area for example 2.
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generated inside the structure. At positions perpendicular to the
direction of the excitation force, longitudinal waves in the
structure are the main influencing factor of the magnitude of
the external normal amplitude, while at positions parallel to
them, transverse waves in the structure are the main
influencing factor of the magnitude of the external normal
amplitude. The model optimization in example 1 reduces the
amplitude at the position perpendicular to the direction of the

excitation force. Therefore, this example studies the amplitude
magnitude at the position parallel to the excitation force in
the structure.

Example 2 employs the model presented in Figure 7, where the
objective boundaries are specified on the left and right sides of the
square design domain uniformly. The material constants are given
the same as those in example 1. The displacements along the x-direction
are controlled through the definition of the objective function

FIGURE 9
Intermediate optimized solutions during the iteration for example 2: a) Step 8, b) Step 9, c) Step 10, d) Step 11, e) Step 20, and f) Step 30.
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f � |Qx − �Qx|2 and �Qx � 0. The constraints and harmonic loads are
applied to themodel with the excitation frequency at 250 Hz. Tikhonov’s
regularization parameters are specified as K = 21 and τ = 0.3.

Figure 8 shows the convergence of the objective function and the
area during the calculation. The objective function decreases to
0.029 from step 15 and converges to the vicinity of 0.027. A cavity is
generated at step 8 and enlarged with the evolution of the LSF.
Furthermore, from step 15, the generated cavity almost remains
unchanged until step 40, and the results of steps 20 and 30 are also

FIGURE 10
Objective function response of the structure before and after optimization for example 2 asω varies from 50 Hz to 500 Hz: a) the vibration amplitude
at objective boundary with frequency sweep from 50 Hz to 500 Hz before optimization. b) The vibration amplitude at objective boundary with frequency
sweep from 50 Hz to 500 Hz before optimization (f–ω plane). c) The vibration amplitude at objective boundary with frequency sweep from 50 Hz to
500 Hz after optimization. d) The vibration amplitude at objective boundary with frequency sweep from 50 Hz to 500 Hz after optimization
(f–ω plane).

FIGURE 11
Definition of the boundary conditions for example 3.

FIGURE 12
Convergence of the objective function and area for example 2.
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presented in Figure 9. The reduction in the objective function
demonstrates the effectiveness of the vibration suppression of the
amplitude along the x-direction at the objective boundary.
Moreover, the reduction in the vibration also happens at the
neighborhood of 250 Hz according to the results of frequency
sweep. The excitation frequency of 250 Hz is near the second
natural frequency of the original design domain, and the peaks of
the objective function in the frequency sweep analysis are shifted
after optimization, as shown in Figure 10. The objective function
with �Qx � 0 changes along with the displacement’s change, and the

response presented in Figure 10B implies that not only the peak at
250 Hz is removed but also the first natural frequency is shifted.

4.3 Example 3: vibration enhanced at
certain boundary

Another application of the proposed method is to enhance the
vibration amplitude at a certain boundary. The model depicted in
Figure 11 has the objective boundary defined on the right side of a

FIGURE 13
Intermediate optimized solutions during the iteration for example 3: a) Step 8, b) Step 9, c) Step 10, d) Step 11, e) Step 12, and f) Step 16.
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square design domain asymmetrically. The material constants are
the same as in the previous examples,’ and the excitation frequency
is set at 150 Hz. The initialQx values at the objective boundary (from
elements 32–35) lie between 1.09 × 10−3 m and 1.14 × 10−3 m. In
order to guide the vibration energy to the objective boundary and
strengthen the vibration amplitude, the objective function is defined
as f � |Qx − �Qx|2 with �Qx � 2.50 × 10−2. The purpose is to reduce
the objective function, and then, the amplitude can be enlarged due
to the form of the defined f.

The reduction in the objective function can be observed in
Figure 12, and it implies that the displacement is increasing. From

step 16, the objective function decreases almost by 80%, and the
cavity emerges from step 8, as shown in Figure 13. The cavity
expands along with the iteration of LSF, which becomes steady from
step 15. It can be seen that the generated cavity is located near the
objective boundary, which leads to the strengthening of the
vibration. The responses of both the objective function and
displacement Qx are displayed in Figure 14, where one can find
that the order of the magnitude of the vibration amplitude along the
x-direction is enlarged from 10–3 to 10–2. Figure 14 also shows that
the natural frequencies are modified by the change in topology. The
detail of the vibration amplitude change at 150 Hz is presented in
Table 1, where one can also find the change in the objective function.

Example 3 shows that the proposed topology optimization
method can also be applied to vibration-enhancing problems,
and the elastic wave can be guided to a certain portion of the
boundary. Furthermore, τ affects the final optimized results, as
shown in Figure 15, where the results at step 40 with τ = 0.1, τ =
0.3, τ = 0.7, and τ = 0.9 are presented, and it is found that the results
can be manipulated by changing the curvature of LSF by defining
different values of τ. The manufacturing requirement can be satisfied
by choosing an appropriate value of τ.

FIGURE 14
Responses of the objective function and vibration amplitude at the objective boundary of the structure before and after optimization for example
3 as ω varies from 50 Hz to 300 Hz: a) responses of the objective function and b)responses of the vibration amplitude.

TABLE 1 Values of f and Qx at 150 Hz for example 3.

Element no. f f* Qx(m) Qx*m)

32 5.70 × 10−4 1.10 × 10−4 1.12 × 10−3 1.45 × 10−2

33 5.68 × 10−4 1.03 × 10−4 1.14 × 10−3 1.48 × 10−2

34 5.69 × 10−4 1.15 × 10−4 1.14 × 10−3 1.42 × 10−2

35 5.71 × 10−4 1.50 × 10−4 1.09 × 10−3 1.27 × 10−2

FIGURE 15
Optimized results with different τ values for example 3: a) τ = 0.1, b) τ = 0.3, c) τ = 0.7, and d) τ = 0.9.
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5 Conclusion

The work is undertaken to propose a topology optimization
methodology for 2D elastodynamic problems using BEM. The
topological derivative obtained using the adjoint viable method
includes the stress tensors of both the original and adjoint fields. The
topology optimization methodology can generate clear boundaries due
to the implicit expression of the voids by the LSF. Fortunately, the
boundary-only discretization, which is one of the features of the BEM,
leads to an easy rebuild of the numerical models in the iteration process.
Several numerical examples with different optimization purposes are
presented. The results of the simulations show that the proposed
methodology is effective for structure topology design in the
application of vibration isolation and waveguide problems.
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Two-dimensional
electromagnetic scattering
analysis based on the boundary
element method

Qian Hu1 and Chengmiao Liu2*
1Henan International Joint Laboratory of Structural Mechanics and Computational Simulation, College of
Architecture and Civil Engineering, Huanghuai University, Zhumadian, China, 2College of Architecture
and Civil Engineering, Xinyang Normal University, Xinyang, China

An effective formula for the shape-sensitivity analysis of electromagnetic
scattering is presented in this paper. First, based on the boundary element
method, a new electromagnetic scattering formula is derived by combining
the traditional electromagnetic scattering formula with the non-uniform
rational B-spline (NURBS) curve, and the geometric model is represented by
NURBS, which ensures the geometric accuracy, avoids the heavy grid division in
the optimization process, and realizes the fast calculation of high-fidelity
numerical solutions. Second, by deducing the sensitivity variables, the
electromagnetic scattering equation of shape optimization is obtained, which
can provide reliable data references for shape optimization. Finally, the
effectiveness and accuracy of the algorithm are demonstrated by an example,
and the sensitivity data of some examples are given.

KEYWORDS

two-dimensional, electromagnetic scattering, isogeometric boundary element method,
non-uniform rational B-spline, deformation circle model

1 Introduction

At present, the field of radar detection and target stealth design has become a research
hotspot, and electromagnetic simulation technology [1] as an indispensable tool in this field
is also very important. Commonly used computational electromagnetic methods include
finite element method (FEM) [2, 3], boundary element method (BEM) (or method of
moment) [4], and finite difference time domain method (FDTD) [5] [6–8]. Among them,
the boundary element method is more favored in solving electromagnetic problems because
it is only discretized on the surface of the structure and naturally satisfies the radiation
condition at infinity. Compared with other domain discretization methods, the boundary
element method has higher computational accuracy and smaller degrees of freedom.

Electromagnetic scattering sensitivity analysis has gradually become a hot field with the
development of computational electromagnetism. Sensitivity analysis is a statistical method
used to observe the behavior or changes in a model by varying its variables within a specific
range. It enables the identification and evaluation of relationships between data, systems, or
models in order to optimize the model efficiently [9–11]. In the context of electromagnetic
scattering, sensitivity analysis aims to explore and analyze how an object or system responds
and performs under such conditions. This analysis provides valuable guidance for
evaluating object performance and optimizing system design through parameter
adjustments [12-14]. Commonly employed methods for electromagnetic scattering
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sensitivity analysis include derivative-based local approach [15, 16],
linear-regression analysis [17-19], and variogram analysis [20, 21] of
response surfaces. In this study, we adopted the derivative-based
local approach and derived the corresponding shape sensitivity
analysis equation through partial differentiation with respect to
shape variables. However, the traditional boundary element
method employs low-order Lagrange polynomials as basis
functions (e.g., Raviart–Thomas [22] or RWG [1] basis
functions), which leads to certain limitations: 1) inability to
capture intricate details in complex models, resulting in reduced
geometric accuracy and 2) utilization of low-order basis functions
for approximating physical fields diminishes both the accuracy and
sensitivity of the objective function.

The isogeometric analysis (IGA) [23, 24] proposed by
Hughes et al. provides a new way to solve the above
problems. The key point of IGA is to approximate the
physical field by spline function. The use of IGA can avoid
repeated mesh division, realize the interaction between
Computer Aided Design and Computer Aided Engineering,
improve the accuracy of the objective function, and avoid the
secondary machining of the model. Isogeometric analysis was
first introduced into the finite element method and then quickly
generalized to other methods such as the boundary element
method. IGA received very wide attention as soon as it was
proposed and was quickly applied to elasticity [25–29], fracture
mechanics [8, 30–33], acoustic [34–43], fluid mechanics [44–46],
flexible composites [9, 47–51], heat conduction [52–55], etc.,
[56, 57]. However, IGA has not been used in electromagnetism
because it needs to meet the divergence and curl coincidence
conditions. [58], who proposed B-spline-compatible vector and
other geometric finite elements to construct discrete de Rham
sequences, made significant achievements in solving this problem
[59, 60]. The introduction of compatible B-splines into the
boundary element method [61] by Simpson et al. is an
important step in the application of the isogeometric
boundary element method (IGABEM) in electromagnetics.
[62] used the IGABEM to solve the three-dimensional double
periodic multilayer structure of electromagnetic scattering
problems. [63–65], using the IGABEM combined with the
nth-order perturbation method, quantitatively analyzed the
uncertainty of the electromagnetic scattering incidence
frequency of an antenna array structure. All these have
promoted the development of the IGABEM in electromagnetism.
In this paper, non-uniform rational B-spline (NURBS) is used as the
basis function, and the electromagnetic scattering analysis equation is
obtained by combining equal geometry and boundary elements. On
this basis, the electromagnetic scattering sensitivity analysis equation
for shape sensitivity analysis is derived. To sum up, the innovations of
this paper are as follows:

• The formula for electromagnetic scattering analysis is
obtained by using the NURBS curve as the basis function

• The IGABEM is used for shape design sensitivity for 2D
electromagnetic scattering.

The remainder of this paper is organized as follows: Section 2
gives the IGABEM formula for solving the electromagnetic
scattering analysis problem with NURBS as the basis function;

Section 3 introduces the shape sensitivity analysis formula with
shape design as variables; Section 4 presents twomodels to verify the
accuracy and effectiveness of the IGABEM, and some shape
sensitivity data of the models are also given; and Section 5
provides a summary of the paper.

2 Electromagnetic scattering analysis
with the Galerkin IGABEM under
transverse electric polarization

This section uses the IGABEM. First, the surface current is
obtained by solving the surface integral equation, and then the
scattering field is obtained by combining the obtained current with
the two-dimensional electric field radiation equation. Finally, the
two-dimensional radar cross-section is solved by the scattering field
and incident field.

2.1 Boundary integral equations

We first assume a bounded fieldΩ1 whose connected boundary Γ
is in the unbounded fieldΩ0 and whose permittivity and permeability
are the scalars ε0 and μ0, respectively. An electromagnetic plane wave
Einc with angular frequency ω is applied to an object with wave
number k � ω

����
ε0μ0

√
, as shown in Figure 1.

The surface integral equations on Ω are as follows:

iωμ LJ( ) ~r( ) + KM( ) ~r( )[ ]tan + 1
2
n̂ ~r( ) × M ~r( ) � Einc ~r( )[ ]tan, (1)

n̂ ~r( ) × iωε LM( ) ~r( ) − KJ( ) ~r( )[ ]tan + J ~r( ) � n̂ ~r( ) × Hinc ~r( )[ ]tan,
(2)

where J and M represent surface current and surface magnetic
flow, respectively, and (·)tan denotes tangential components of the
vector. The operators L (Eq. 4) and K (Eq. 3) are

LJ( ) ~r( ) � 1 + 1

k2
∇∇·[ ]∫Γ r( )G ~r, r( )J r( )dΓ r( ) (3)

KM( ) ~r( ) � ∇ × ∫Γ r( )G ~r, r( )M r( )dΓl r( ), (4)

where Einc(~r) andHinc(~r) represent the electric and magnetic fields,
respectively, generated by the incident wave, which exist only in Ω0.
G(~r, r) denotes Green’s function. Green’s function for 2D problems
(Eq. 5) can be written as

FIGURE 1
A target structure residing within an infinite domain impinged by
an electromagnetic plane wave Ω0 is the unbounded exterior region
to which the free space parameters are assigned (μ0 , ε0); n̂1 denotes
the boundary of Ω1. The normal vector n̂1 points toward the
interior of Ω1 from its interface.
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G ~r, r( ) � − i
4
H 2( )

0 kr( ), with r � |~r − r|, (5)
where H(2)

0 denotes the Hankel functions of the second kinds
of order zero.

Eqs 1, 2 are the surface electric field integral equation (EFIE) and
surface magnetic field integral equation (MFIE), respectively. When
dealing with closed conductors, the internal resonance phenomenon
is easy to occur, resulting in non-unique solutions for the EFIE and
MFIE. The most common way to deal with this problem is to
combine theMFIE with EFIE to obtain a combined integral equation
called the combined field integral equation (CFIE) (Eq. 6), which is
expressed as follows:

αEFIE + 1 − α( )ηMFIE, (6)

where η � �����
μ0/ε0

√
and 0#α#1, and α � 0.5 is commonly used.

When the incident wave is TE polarized, the incident electric
field and magnetic field are

Einc x( ) � eik x1 cos ϕinc( )+x2 sin ϕinc( )( )ẑ, (7)
and

Hinc x( ) � 1
η

−sin ϕinc( )x̂ + cos ϕinc( )ŷ[ ] · eik x1 cos ϕinc( )+x2 sin ϕinc( )( ).
(8)

The TE polarizes with only a ẑ component, so Eqs 6, 7 can be
written as

ωμ

4
∫

Γ y( )J y( )H 2( )
0 kr( )dΓ y( ) � Einc x( ) (9)

and Eq. 10

1
2
J x( ) + ik

4
∫

Γ y( )J y( ) n̂ x( ) · r̂[ ]H 2( )
1 kr( )dΓ y( ) � n̂ x( ) × Hinc x( ),

(10)
where Eq. 11

n̂ x( ) · r̂ � ∂r

∂n x( ) � r,ℓnℓ x( ), ℓ � 1, 2 (11)

and Eq. 12

n̂ x( ) × Hinc x( ) � Hn
inc x( ) � 1

η
n1 x( )cos ϕinc( )[

+n2 x( )sin ϕinc( )]eik x1 cos ϕinc( )+x2 sin ϕinc( )( )ẑ. (12)

FIGURE 2
Sectional model boundary NURBS curve and control point.

FIGURE 3
The RCS for PEC cylinder. (A) The RCS at 800 MHz under back-scattering. (B) The RCS at ϕinc = 0 at different frequency.
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In IGA, NURBS is used for constructing geometry and
discretizing physical field. A point with Cartesian coordinate x at
a NURBS (Eq. 13) curve is expressed by

x ξ( ) � ∑Nf

i�1
Ri ξ( )Pi, (13)

where Pi denotes the ith control point. Rz
i (ξ) is the NURBS basis

function with order p and ξ parametric coordinates. The electric and
magnetic currents inΩ0 are discretized with NURBS basis functions
as Eq. 14

J y( ) � ∑Nf

i�1
Rz

i y( )XJ
i , J x( ) � ∑Nf

i�1
Rz

i x( )XJ
i . (14)

Using the weighted basis function and the test function to
expand Eqs 8, 9, the matrix elements of Eqs 8, 9 can be obtained
as Eq. 15

AJ
E j, i( ) � ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )H 2( )

0 kr( )dΓ y( )dΓ x( )

� ωμ

4
∑Ne

~e�1
∑Ne

e�1
∫

Γ
~e

Rz
j x ξ( )( ) · ∫

Γe
Rz

i y ξ( )( )H 2( )
0 kr ξ( )( )

× dΓ y ξ( )( )dΓ x ξ( )( ) (15)
and Eq. 16

AJ
H j, i( ) � 1

2
∫

Γ x( )
Rz

j x( ) · Rz
i x( )dΓ x( ) + ik

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )

× n̂ x( ) · r̂[ ]H 2( )
1 kr( )dΓ y( )dΓ x( )

� 1
2
∑Ne

~e�1
∫

Γ
~e

Rz
j x ξ( )( ) · Rz

i x ξ( )( )dΓ x ξ( )( ) + ik
4
∑Ne

~e�1

× ∑Ne

e�1
∫

Γ
~e

Rz
j x ξ( )( ) · ∫

Γe
Rz

i y ξ( )( )
× n̂ x ξ( )( ) · r̂ ξ( )[ ]H 2( )

1 kr ξ( )( )dΓ y ξ( )( )dΓ x ξ( )( ),
(16)

FIGURE 4
Current for the cylinder at 800 MHz with ϕinc � 0. (A) |Jz(ϕ a)|; (B) Re Jz(ϕ a); and (C) Im Jz (ϕ a).
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where Ne is the number of NURBS elements and dΓ � J(ξ)dξ with
the Jacobian matrix J(ξ).

The vector elements on the right side of Eqs 8, 9 can be expressed
as follows Eq. 17:

BE j( ) � ∫
Γ x( )

Rz
j x( ) · Einc x( )dΓ x( )

� ∑Ne

~e�1
∫

Γ
~e

Rz
j x ξ( )( ) · Einc x ξ( )( )dΓ x ξ( )( ) (17)

and Eq. 18

BH j( ) � ∫
Γ x( )

Rz
j x( ) · n̂ x( ) × Hinc x( )[ ]dΓ x( )

� ∑Ne

~e�1
∫

Γ
~e

Rz
j x ξ( )( ) · n̂ x ξ( )( ) × Hinc x ξ( )( )[ ]dΓ x ξ( )( ). (18)

The discretized formulations of Eqs 8, 9 are given by Eq. 19

AJ
E X

J � BE (19)

and Eq. 20

FIGURE 5
Electric field distribution around the PEC cylinder at 800 MHz: (A) ABS (Ez); (B) |Re(Ez)|; and (C) |Im(Ez)|.

FIGURE 6
Sensitivity of RCS for the PEC cylinder to shape change: (A) RCS sensitivity at 800 MHz with ϕinc � 0. (B) RCS sensitivity with ϕinc � 0 at different
frequencies.
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AJ
H XJ � BH. (20)

In addition, combining the EFIE with the nMFIE yields the CFIE
as Eq. 21

αAJ
E + 1 − α( )ηAJ

H[ ]︸��������︷︷��������︸
A� A j,i( )[ ]

XJ � αBE + 1 − α( )ηBH︸�������︷︷�������︸
B� B j( )[ ]

. (21)

Hence, we can obtain the following linear system of equations
Eq. 22:

AXJ � B. (22)
By solving the above equation, we can obtain the surface current

J, scattered electric field, and magnetic field. In addition, the value of
the 2D radar scattering cross-section RCS2D that we require can be
obtained from the obtained scattered electric field, as shown below:

RCS2D � 2πρ
Esca| |2
Einc| |2. (23)

In general, we convert Eq. 22 to the following expression when
using it, as Eq. 24:

RCSdbsm � 10 × lg RCS2D( ). (24)

3 Sensitivity analysis of electromagnetic
scattering problems

By differentiating Eq. 8 with respect to an arbitrary shape design
variable, one can obtain the following formulations for
electromagnetic shape design sensitivity analysis:

ωμ

4
∫

Γ y( )
_J y( )H 2( )

0 kr( )dΓ y( ) + ωμ

4
∫

Γ y( )J y( ) _H 2( )
0 kr( )dΓ y( )

+ωμ
4
∫

Γ y( )J y( )H 2( )
0 kr( )d _Γ y( ) � _Einc x( ). (25)

The dot _( ) above represents the differentiation of the shape design
variable. The formula of _H

(2)
0 (kr) and _Einc(x) Eq. 26:

FIGURE 7
Sensitivity of the current for the PEC cylinder to shape change: (A) |Jz(ϕ a)|; (B) Re Jz(ϕ a); and (C) Im Jz (ϕ a).
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_H
2( )
0 kr( ) � −kH 2( )

1 kr( ) _r (26)
and Eq. 27

_Einc x( ) � ik[ _x1 cos ϕinc( ) + _x2 sin ϕinc( )]eik x1 cos ϕinc( )+x2 sin ϕinc( )( )ẑ,
(27)

where Eq. 28

_r � r,ℓ _xℓ − _y
ℓ
),( (28)

where x and y and  � 1 or 2 are, respectively, the coordinate
points x and y of Cartesian components. The index after the comma
indicates the partial derivative with respect to the coordinate
component. Einstein’s summation convention is used throughout
this article, so the repeated indicators in this article represent
summations within their ranges. _nℓ(y) and d _Γ(y) can be written
as Eq. 29

_nℓ y( ) � − _yκ,ℓnκ y( ) + _yκ,mnκ y( )nm y( )nℓ y( ) (29)

and Eq. 30

d _Γ y( ) � _y
ℓ,ℓ − _y

ℓ,κnℓ y( )nκ y( )]dΓ y( ),[ (30)

where an index after a comma denotes the partial derivative with
respect to the coordinate component and _yk,m � ∂ _yk/∂ym.

By differentiating Eq. 9 with respect to an arbitrary shape design
variable, one can obtain the sensitivity formulations for the nMFIE,
which is expressed as Eq. 31

1
2
_J x( ) + ik

4
∫

Γ y( )
_J y( ) r,ℓnℓ x( )[ ]H 2( )

1 kr( )dΓ y( ) + ik
4
∫

Γ y( )J y( )
×[ _r,ℓnℓ x( ) + r,ℓ _nℓ x( )]H 2( )

1 kr( )dΓ y( ) + ik
4
∫

Γ y( )J y( )
× r,ℓnℓ x( )[ ] _H 2( )

1 kr( )dΓ y( ) + ik
4
∫

Γ y( )J y( )
× r,ℓnℓ x( )[ ]H 2( )

1 kr( )d _Γ y( ) � _H
n

inc x( ), (31)
where Eqs 32–34

_H
2( )

1 kr( ) � H 2( )
1 kr( ) _r

r
−H 2( )

2 kr( )k _r, (32)

_r,ℓ � _xℓ − _y
ℓ

( )nℓ x( )
r

− _rr,ℓnℓ x( )
r

, (33)
_nℓ x( ) � − _xκ,ℓnκ x( ) + _xκ,mnκ x( )nm x( )nℓ x( ), (34)

and Eq. 35

_H
n

inc x( ) � 1
η
eik x1 cos ϕinc( )+x2 sin ϕinc( )( ){ _n1 x( )cos ϕinc( )+ _n2 x( )sin ϕinc( )

+ ik · n1 x( )cos ϕinc( )+n2 x( )sin ϕinc( )[ ] ·[ _x1 cos ϕinc( )
+ _x2 sin ϕinc( )]}ẑ. (35)

Discretizing the sensitivity of the electric current in the domain
using the sum of weighted basis functions yields Eq. 36

_J y( ) � ∑Nf

i�1
Rz

i y( ) _XJ

i , _J x( ) � ∑Nf

i�1
Rz

i x( ) _XJ

i . (36)

By using the weighted basis function and the test function to
discretize Eq. 24, the matrix elements of Eq. 24 can be obtained
as Eq. 37

FIGURE 8
Sensitivity of the electric field around the cylinder to shape changes at 800 MHz ϕinc � 0 TE polarization: (A) Abs(Ez)/dR; (B) |Re(Ez)|/dR; and
(C) |Im(Ez)|/dR.

FIGURE 9
NURBS curve and control points of a deformation circle model.
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AJ
E j, i( ) � ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )H 2( )

0 kr( )dΓ y( )dΓ x( )
_A
J

E j, i( ) � ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) _H 2( )

0 kr( )dΓ y( )dΓ x( )+
ωμ

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( )H 2( )

0 kr( )[ _y
ℓ,ℓ − _y

ℓ,κnℓ y( )nκ y( )]
× dΓ y( )dΓ x( )

_BE j( ) � ∫Γ x( )R
z
j x( ) · _Einc x( )dΓ x( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(37)

Similarly, by using theweighted basis function and the test function to
discretize Eq. 30, the matrix elements of Eq. 30 can be obtained as Eq. 38

AJ
H j, i( ) � 1

2
∫

Γ x( )
Rz

j x( ) · Rz
i x( )dΓ x( ) + ik

4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) r,ℓnℓ x( )[ ]H 2( )

1 kr( )dΓ y( )dΓ x( )

_A
J

H j, i( ) � ik
4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) _r,ℓnℓ x( ) + r,ℓ _nℓ x( )[ ]H 2( )

1 kr( )dΓ y( )dΓ x( )+
ik
4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) r,ℓnℓ x( )[ ] _H 2( )

1 kr( )dΓ y( )dΓ x( )+
ik
4
∫

Γ x( )
Rz

j x( ) · ∫
Γ y( )R

z
i y( ) r,ℓnℓ x( )[ ]H 2( )

1 kr( ) _y
ℓ,ℓ − _y

ℓ,κnℓ y( )nκ y( )[ ]dΓ y( )dΓ x( )
_BH j( ) � ∫Γ x( )R

z
j x( ) · _Hn

inc x( )dΓ x( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(38)

The discretized formulations of Eqs 24, 30 based
on Galerkin’s IGABEM with B-spline basis functions are given
by Eq. 39

FIGURE 10
Current for the deformation circle model: (A) current at ϕinc � 0. (B) Current at ϕinc � 45. (A) |Jz(ϕ a)| and (B) | Jz(ϕ a)|.

FIGURE 11
Electric field distribution around the PEC cylinder at 800 MHz: (A) ABS (Ez); (B) |Re(Ez)|; and (C) |Im(Ez)|.
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AJ
E
_X
J + _A

J

E X
J � _BE (39)

and Eq. 40

AJ
H
_X
J + _A

J

H XJ � _BH. (40)
Thus, the sensitivity formulation of the CFIE is formed by
combining the sensitivity formulation of the EFIE and nMFIE,
which is expressed as Eq. 41

αAJ
E + 1 − α( )ηAJ

H[ ]︸��������︷︷��������︸
A� A j,i( )[ ]

_X
J + α _A

J

E + 1 − α( )η _AJ

H[ ]︸���������︷︷���������︸
_A� _A j,i( )[ ]

XJ

� α _BE + 1 − α( )η _BH︸�������︷︷�������︸
_B� _B j( )[ ]

. (41)

Hence, we can obtain the following linear system of equations
Eq. 42:

FIGURE 12
Sensitivity of the current to shape change: (A) current sensitivity with ϕinc � 0. (B) Current sensitivity with ϕinc � 45. (A) | (ϕ a)| sensitivity and (B)
|Jz(ϕ a)| sensitivity.

FIGURE 13
Sensitivity of the electric field around themodel to shape change at 800 MHz: (A) Abs (Ez) sensitivity; (B) |Re(Ez)| sensitivity; and (C) |Im(Ez)| sensitivity.
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A _X
J + _AXJ � _B. (42)

By solving the above equation, the sensitivity of the surface
current _J can be obtained. In addition, the sensitivity of the
scattered electric field and magnetic field can also be obtained.
In addition, the sensitivity of RCS2D in Eq. 22 will be solved by
differentiating Eq. 22 with respect to the design variable.

4 Numerical results

In this section, the framework is written in Fortran
90 language, and the correctness and effectiveness of the
IGABEM are verified by perfect electric conductor (PEC)
circular examples. In addition, the sensitivity analysis of the
two important parameters of the model shape and the incident
wave is also be carried out.

4.1 Numerical verification using the PEC
cylinder model

In the first example, a PEC cylinder of radius 1 is geometrically
modeled using NURBS curves, as shown in Figure 2. The object is hit
by an incident TE-polarized plane wave.

First, we use the IGABEM/CFIE to calculate the RCS value at
800 MHz, 0 < ϕsca < 2π, and back-scattering (ϕinc� 0). The
comparison between the result and the analytical solution is
shown in Figure 3A. The figure shows that the analytical solution
is very consistent with that of the IGABEM/CFIE. In addition, the
RCS value begins to fluctuate when the scattering angle reaches 135°

and reaches a maximum when the scattering angle reaches 180°.
In addition, because of the symmetry of the example itself, its

RCS is also symmetric at approximately 180°. Then, the
IGABEM/CFIE is used to calculate the RCS value of the back-
scattering at different frequencies. Figure 3B shows that its RCS
gradually decreases with the change in frequency, and the final
region is stable.In addition, the current at ϕinc � 0 at 800 MHz is
also calculated, and its absolute value, real part, and imaginary
part are compared with the analytical solution, as shown in
Figure 4. As can be seen, the IGABEM/CFIE is still in good
agreement with the analytic solution. Furthermore, it can be seen
that the current fluctuates greatly on both sides, and the
fluctuation is small near ϕa � π degrees, and the current is
almost zero.

Finally, in order to observe the distribution of the electric field
around the cylinder, we calculated the electric field near 20 × 20 m
around the cylinder with ϕinc � 0 at 800 MHz, as shown in Figure 5.
It can be seen that the electric field is mainly distributed in the
direction of the incident angle, and the direction of the incident
angle is symmetrical.

In order to explore the sensitivity of the cylinder to shape change, we
first calculated the sensitivity of the RCS scattered by the back-scattering
at 800MHz, 0# ϕsca # 2π, and compared the result with the analytical
solution in Figure 6A; it can be seen that the IGABEM/CFIE still
maintains a high coincidence. In addition, its RCS fluctuates more
when ϕsca � π but less on both sides. In addition, the sensitivity of RCS
to shape change under back-scattering at different frequencies was

calculated, as shown in Figure 6B. It can be seen that with the
change in frequency, the RCS sensitivity gradually increases and
eventually becomes stable.

In addition, the IGABEM/CFIE was used to calculate the
sensitivity of the current to shape change at 800 MHz with
ϕinc � 0. The comparison results of the absolute value, real part,
and imaginary part with the analytic solution are shown in Figure 7.
It can be seen that the analytical solution is still very consistent with
the IGABEM/CFIE. In addition, the current fluctuates greatly on
both sides, and the sensitivity of the current is symmetric
about ϕa � π.

Finally, in order to observe the sensitivity distribution of the
electric field to shape change within the range of 20 × 20 around the
cylinder, the sensitivity of the electric field to shape change under
back-scattering at 800 MHz was calculated, as shown in Figure 8. It
can be seen that the electric field is more sensitive to the shape
change in the direction of the incident angle, and the remaining
regions are almost zero. In addition, the direction of the incidence
angle is symmetrical.

4.2 Deformation circle model

The deformation circle model is suitable for studying the
shape change of objects under the action of external forces and
is usually used in structural mechanics and civil engineering fields.
In this section, we construct a deformation circle model by
changing the location of control points p2, p4, p6, and p8 in
Figure 2, as shown in Figure 9. Due to the particularity of the
deformation circle, we explore the model from two perspectives
ϕinc � 0 and ϕinc � 45.

First, we calculate the current at ϕinc � 0 and ϕinc � 45 at 800MHz
using the IGABEM/CFIE. As shown in Figure 10, when ϕinc � 0, the
current fluctuates greatly on both sides and is smaller when
90 < ϕa < 270. When ϕinc � 45, the current also fluctuates greatly
on both sides, and it fluctuates less when 150 < ϕa < 300.

In order to clearly observe the electric field distribution in the
20 × 20 region around the deformation circle model, the electric field
distribution under ϕinc � 45 at 800 MHz was also calculated, as
shown in Figure 11. It can be seen that the electric field is more
densely distributed in the direction of the incident angle and smaller
in the other regions.

In addition, in order to explore the current sensitivity to
shape change, we also calculated the current sensitivity to shape
change at 800 MHz, ϕinc � 0, and ϕinc � 45. As shown in
Figure 12, when ϕinc � 0, the current fluctuates greatly on
both sides, while the current fluctuates slightly when
120 < ϕa < 250. In addition, due to the unique symmetry of
the model, its current sensitivity is also symmetric about ϕa � π.
When ϕinc � 45, the current fluctuates more on both sides and
less at 150 < ϕa < 290. In addition, due to the unique symmetry
of the example, 0 < ϕa < 90 is symmetric with respect to ϕa � 45.
90 < ϕa < 360 is symmetric between ϕa � 225.

Finally, in order to better observe the sensitivity of the electric
field around the deformation circle model to shape change,
we calculated the sensitivity of the electric field to shape change
at 800 MHz when ϕinc � 0 in the surrounding 20 × 20 region,
as shown in Figure 13. As shown in the figure, the electric field
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is relatively dense at the rear of the model, and because of
the inherent symmetry of the deformation circle model, its
electric field distribution is symmetrical with respect to the
incident angle.

5 Conclusion

In this paper, a formula that can be used to calculate two-
dimensional electromagnetic scattering analysis is proposed by
combining equal geometry and boundary elements, and then, a
formula for electromagnetic scattering shape sensitivity analysis is
proposed on the basis of the formula, which can provide reliable data
guidance for sensitivity analysis and model optimization. Finally,
two calculation columns are used to verify the effectiveness of the
proposed method.

In future studies, we will extend the proposed algorithm to solve
three-dimensional electromagnetic problems, thereby further
enhancing its generality and applicability in various engineering fields.
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Appendix A: Analytical solution

The analytical solution for the scattered electric field of an infinite
perfectly electric cylinder with TE-polarized incident waves is

Es
z ρ, ϕsca( ) � ∑∞

n�0
jncnAnH

2( )
n k0ρ( )cos nϕsca( ), (A1)

where |Ei
z| � 1 for convenience, ϕsca is the bistatic scattering angle,

and cn � 1 for n � 0, and cn � 2 otherwise. For the conducting
cylinder, the coefficient An is

An � − Jn k0α( )
H 2( )

n k0α( ), (A2)

where α is the radius of the cylinder. The scattered far electric
field is

Es
z ρ, ϕsca( ) �

��
2
π

√
e−j k0ρ−π/4( )���

k0ρ
√ ∑∞

n�0
−1( )ncnAn cos nϕsca. (A3)

The induced electric current Jz(ϕα) is

Jz ϕα( ) � 2
πη0k0a

∑∞
n�0

j( )ncn cos nϕα

H 2( )
n k0a( ) , (A4)

where ϕα is the azimuthal angle on the surface of the cylinder. The
above formula is the analytical solution of the scattered electric field
of the PEC under TE polarization.
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A cable insulation defect
classification method based on
CNN-transformer

Ning Zhao*, Zhiguo Duan, Qian Li, Kang Guo, Ziguang Zhang and
Baoan Liu

State Grid Shijiazhuang Electric Power Supply Company, Shijiazhuang, Hebei, China

Cable insulation defect detection ensures electrical safety, prevents accidents,
extends equipment life and guarantees stable system operation. For the
traditional cable insulation defect detection and identification of difficult
problems, this paper proposes the use of ultrasonic cable insulation defect
detection and combined with the Convolutional Neural Network (CNN)-
transformer model of cable insulation defect classification method. Firstly, the
ultrasonic probe is used to obtain different cable insulation defect signals, and
then the CNN-transformer model is used to classify different cable insulation
defects. The CNN is used to initially extract the characteristics of the cable
insulation defects from the input signals, and then the multi-attention
mechanism in the time series Transformer is used to extract the transient
local and periodic global characteristics of the cable insulation defect signals.
The deeper transient local features and periodic global features of the cable
insulation defect signal are extracted by the multi-attention mechanism in the
time series Transformer; finally, the recognition results are outputted by the fully
connected layer and softmax classifier. The results show that ultrasonic reflection
and transmission phenomena occur at the defects, and different defects can be
accurately reflected by the defect echo time and amplitude, and the accuracy of
cable insulation defect recognition using the CNN-transformer model reaches
100%, with good generalization ability.

KEYWORDS

cable, insulation defect, ultrasonic reflection, defect recognition, CNN-transformer

1 Introduction

Cable insulation defect detection is a crucial step in ensuring the normal operation and
safe use of cables. A good insulation state can effectively prevent faults such as cable short
circuits and leakage, ensuring the safety of equipment and personnel [1, 2]. Regular
inspection and maintenance can improve the reliability and service life of cables,
reducing power outages and maintenance costs [3, 4]. In addition, meeting legal and
regulatory requirements is also a manifestation of corporate social responsibility. Therefore,
cable insulation defect detection is not only a technical activity but also a responsibility and
commitment to the enterprise and society. By accurately classifying defects, engineers can
assess the condition of power cables, identify potential risks, and prevent catastrophic
failures [5]. This classification process allows for targeted interventions, such as repair or
replacement, based on the specific nature of the detected defects. In addition, effective defect
classification facilitates online monitoring to ensure the continuous operation of the power
system without affecting reliability. Moreover, understanding the root cause of insulation
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failures is crucial for implementing preventive measures and
optimizing the performance of power cables in various
applications in electrical engineering [6, 7].

In order to ensure the safe and stable operation of the cable body
and its accessories, and to grasp whether there are defects in the
interior of the high-voltage cable and the type and size of the defects,
it is urgent to develop an effective method that can quickly and
accurately detect internal defects in insulated cables [8]. Currently,
commonly used detection methods include AC superposition
method, capacitive coupling method, directional coupling
method, electromagnetic coupling method, leakage current test
method, and detection method using oscillating wave voltage [9].

The literature [10] for the cable detection technology problems,
proposed a power cable insulation defect detection method based on
oscillating waves. This method dynamically generates a cable
insulation defect detection benchmark database through the
application of oscillating waves and signal sources in the field,
identifies the fault mode corresponding to the maximum
function value, and detects the type, location, and severity of
cable insulation defects. In order to accurately determine the
insulation status of power cables and ensure the safe and stable
operation of the system, literature [11] conducted a simulation study
on the detection of insulation defects in power cables based on
electrical capacitance tomography technology. Using Landweber
image reconstruction algorithm combined with optimized
capacitance sensors and sensitivity fields, four typical cable
insulation defects, including air gap defects, water tree defects,
wedge scratch defects, and composite defects, were reconstructed,
achieving the detection of insulation defects in power cables. To
address the problem of difficulty in detecting the edges of scratches
and stains on the surface of the main insulation of 10 kV cables, a
method for identifying defects on the main insulation surface of
10 kV cables based on the Canny algorithm was proposed in the
literature [12]. The method uses the scale-invariant feature
transform (SIFT) method to complete the stitching of images of
the main insulation of the cable and then uses the Canny algorithm
to calculate the gradient and amplitude of the edges of defects on the
main insulation surface, suppress maximum information points,
remove false edges, and obtain information about the edges of
defects caused by scratches and stains. The literature [13] studies
the detection of defects in the insulation of aviation cables through
infrared technology. Through numerical simulation, the
temperature distribution and time variation of the insulated
surface of the tested cable under different thermal excitations are
analyzed. Meanwhile, experimental testing shows that the
temperature variation range in the curve can successfully reflect
the size and location of insulation defects. A new method for
detecting insulation defects is proposed in the literature [14],
which uses terahertz equipment to detect defects in cables,
obtains terahertz images containing defects, and uses
morphological algorithms to denoise and enhance the blurred
images to obtain high-quality defect images to determine the
location and size of the defects.

However, the actual cable structure is complex, and the methods
in the above literature have problems such as complex operation,
long detection time, and low detection accuracy, which cannot be
effectively applied to the detection of insulation cable defects.
Ultrasonic defect detection methods have the outstanding

advantages of convenient operation, low cost, fast detection
speed, and accurate defect location, and have been widely used in
the detection of defects in insulators, pipelines, plate-like
components, etc., and have achieved good detection results. The
literature [15] uses conventional ultrasonic nondestructive testing
methods to detect internal porosity defects in composite insulators,
which can detect small porosity defects and verify the feasibility of
ultrasonic detection of internal defects in complex structural objects.
However, this method cannot achieve good coupling between the
ultrasonic probe and objects with large curvature. The literature [16]
uses ultrasonic pulse echo method to detect internal defects of
composite insulators immersed in water, which can detect small
defects in the umbrella skirt. This method can achieve ultrasonic
detection of objects with large curvature, but requires immersing the
object to be detected in water, which affects the later use of the
detected object. Due to the special internal environment of aircraft,
cable damage is inevitable, usually starting from defects in the
insulation layer, which may cause significant economic losses and
even pose a serious threat to the lives and safety of people on board.
The literature [17] proposes a four-class defect classification method
based on the deep forest method, which requires a small sample size
and is not affected by network structure and parameters. The
method has high recognition accuracy and avoids the problems
of traditional deep learning classification that rely on large samples
and require parameter adjustment. Due to the wide application and
special nature of materials, the feasibility of using ultrasonic
detection technology to achieve defect detection in insulated
cables needs urgent research.

The reflection signals of different types of cable insulation
defects are extremely similar and difficult to distinguish directly,
so the identification and classification of cable insulation defects are
very important. Traditional cable insulation defect classification
mostly includes two stages: cable insulation defect feature
extraction and cable insulation defect classification [18]. In the
feature extraction of cable insulation defects, traditional methods
have developed relatively mature, such as short-time Fourier
transform, wavelet transform, S transform, empirical mode
decomposition, Hilbert-Huang transform, etc. After feature
extraction, the cable insulation defect signal needs to be input
into a classifier for recognition [19]. The principle of existing
classifiers is mostly based on machine learning algorithms, such
as artificial neural networks, support vector machines, random
forests, extreme learning machines, etc. Traditional machine
learning algorithms generally perform poorly in the identification
of cable insulation defects, and the accuracy is greatly affected by the
feature extraction algorithm. It requires manual adjustment to make
the dimension of feature extraction compatible with the required
input of the classifier, which has certain limitations.

In the 21st century, deep learning has gradually developed and
matured. Given that traditional machine learning methods have
difficulty in efficiently and accurately processing time series data,
adopting deep learning methods to mine useful information from
time series data has become a key focus of many scholars. The results
prove that it can effectively perform online monitoring and
accurately classify defect types. In literature [20], in response to
the problem that the statistical features of traditional partial
discharge (PD) pattern recognition rely on expert experience and
lack certain generalization, a partial discharge pattern recognition
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method based on CNN and long-short term features was developed.
The results showed that CNN-LSTM has better overall recognition
accuracy. Literature [21] developed a deep learningmethod based on
CNN for pattern recognition of high-voltage cable insulation
defects. The results showed that the performance of the CNN
method was improved compared to traditional methods such as
BPNN and SVM.

Transformer is a deep learning model that has emerged in recent
years [22]. After its first improvement in 2019, it was applied to time
series prediction and achieved good results [23]. With the
widespread application of Transformer in the field of computer
vision, target detection algorithms based on Transformer have also
made significant progress, such as DETR [24], VIT-FRCNN [25],
and Deformable DETR [26]. However, the high computational cost
of the Transformer method makes it difficult to deploy in practical
tasks. Therefore, this paper introduces the Transformer to construct
a cable insulation defect classification model. To overcome the
problems that a single deep learning method may have in
classification, such as poor prediction accuracy during a certain
period of time and sensitivity to feature selection, a CNN-
Transformer composite cable insulation defect classification
model is proposed by combining CNN. The proposed CNN-
transformer model excels in accuracy by combining CNN feature
extraction with Transformer’s capability for long-range dependency
modeling. It is designed for high computational efficiency,
optimizing training and inference speeds. The model also exhibits
robustness to data variations and noise, making it a strong contender
among current state-of-the-art methods.

The innovations of this study are as follows:

(1) The introduction of ultrasonic testing technology, which is
non-invasive, highly sensitive, capable of quickly and
accurately locating defects, and offers strong environmental
adaptability and data visualization characteristics.

(2) The proposal of a CNN-Transformer composite model for the
first time in cable insulation defect classification, addressing
the challenge of distinguishing between the extremely similar
reflection signals from different types of cable
insulation defects.

2 Classification model

Unlike traditional methods, the CNN Transformer proposed in
this paper takes the original one-dimensional signal for cable defect
detection as input, without the need for any complex preprocessing
operations. It integrates feature extraction and disturbance
recognition, and directly outputs classification results. To ensure
the model’s reliability in power systems and prevent harm from
misclassification, a multi-faceted approach is implemented. This
includes extensive testing, validation through diverse datasets,
integration of operational environment understanding, and a
feedback mechanism for continuous learning. Additionally, safety
protocols are in place to prioritize system integrity in cases of
uncertainty, collectively reinforcing the model’s dependability and
the safety of power systems.

2.1 Transformer

Transformer consists of an encoder and a decoder,
completely abandoning the basic architecture of recurrent
neural networks and convolutional neural networks, and
using attention mechanisms to complete network
construction. The multi-head attention mechanism is the
biggest highlight of the Transformer. The Transformer
module is the core part of cable defect detection, used for
feature extraction and representation. In the entire cable
defect detection, the Transformer module is composed of
multiple stacked Transformer basic modules, and the depth of
the network is the number of Transformer basic modules. A
Transformer basic module consists of a multi-head self-attention
(MSA) module, a Multi-layer Perception (MLP) module, two
residual modules, and two normalization modules.

2.1.1 MSA layer
The MSA layer is the core of the Transformer module. The

attention mechanism can be seen as a mapping from a query matrix
Query (Q) and a set of key-value matrices Key (K)-Value (V) to the
output, represented by Eq. 1.

Attention Q,K,V( ) � softmax
Q ·KT��

dk

√( ) · V (1)

where dk is the dimension ofQ and K.Q. K andV are essentially a set
of linear mappings of the input time series. The attention
mechanism enables each embedded subsequence in the input
time series to obtain information from all other subsequences,
which is very effective in solving the long-term dependencies of
the time series. However, a set of Q, K, and V cannot obtain
information from all subspaces, so multiple attention heads are
concatenated into a new attention module called multi-head
attention, represented by Eq. 2.

Hi � Attention QWi
Q,KW

i
K, VW

i
V( )

MSA Q,K, V( ) � concat H1, H2, . . . , Hh( )W0

(2)

where the attention weight matrix W0 ∈ Rhdv × dim,
Wi

Q,W
i
K ∈ Rdim ×dk , Wi

V ∈ Rdim × dv . The three matrices Q, K,
and V of a normal self-attention mechanism come from the
same input X = [x1, x2, x3, . . . , xn], represented by Eqs 3–5.

Q � Wq ·X (3)
K � Wk ·X (4)
V � Wv ·X (5)

where Wq, Wk, and Wv are three trainable parameter matrices.
The multi-head attention mechanism performs the self-

attention process h times, combines the outputs, and
performs normalization through residual connection to obtain
the output of the attention layer. The process is shown
in Figure 1.

2.1.2 MLP layer
In order to enhance the non-linear feature extraction capability

of the Transformer, a multi-layer perceptron module is introduced.
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MLP first uses a nonlinear activation function to increase the
dimensionality of the input, and then uses a linear
transformation to reduce the dimensionality. For input x,
MLP(x) can be represented by Eq. 6.

MLP x( ) � σ xWl
1 + bl1( )Wl

2 + bl2 (6)

Linear transformation weight matrix W1
1 ∈ Rdim × dimMLP ,

b11 ∈ RdimMLP , W1
2 ∈ RdimMLP × dim, b12 ∈ Rdim. DimMLP is a linear

transformation mapping dimension that is generally larger than
the input dimension dim. σ (•) represents the activation function,
using the GeLU function as the activation function, which can be
expressed as Eq. 7.

GeLU x( ) � xP X ≤ x( ) � xϕ x( ) � x 1 + erf x/ �
2

√( )[ ]/2
≈ 0.5x 1 + tanh

��
2
π

√
x + 0.045x3( )[ ]( ) (7)

where ϕ(x) is the standard Gaussian distribution function. The
GeLU function is a smooth version of the RuLU function, which
avoids the discontinuity of the derivative at 0 and introduces
random regularization, making feature extraction
more versatile.

2.1.3 Residual and normalization modules
As the number of layers in the network deepens, nonlinear

activation functions lead to data being mapped to more discrete
spaces, making it increasingly difficult to fit the mapping function.
Multilayer backpropagation may lead to gradient explosion and
vanishing. The residual module is essentially a superposition
operation between the nonlinear transformations of input and
output, as shown in Figure 2. Among them, x is the input, and
the mapping function that needs to be fitted in the network can be
reconstructed as F(x)+x through residual connections. The residual
connection path of the side branches makes the mapping function
easier to fit when the network layers are deeper. Therefore,

FIGURE 1
Scaling dot product attention and multi-head attention process diagram. (A) Scaling dot product attention. (B) Multiple headed attention.

FIGURE 2
Residual block structure.
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introducing residual modules in the MSA and MLP layers can
greatly alleviate the problem of gradient vanishing and exploding
as the network layers deepen.

In order to ensure the consistency of data distribution and
accelerate the convergence speed of the model, a normalization

module is introduced before the MSA and MLP layers. The
commonly used normalization modules include Batch
Normalization (BN) [27] and Layer Normalization (LN) [28].
BN standardizes the features of each batch, while LN standardizes
all features of hidden layers in the network, regardless of the input batch

FIGURE 3
CNN transformer network model structure diagram.

FIGURE 4
Cable insulation defect detection test device.
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size. In the Transformer model, the input is a one-dimensional time-
series signal with a long length. To save hardware costs, small batch data
is used for training. Compared to BN, LN canmake themodel converge
faster in small-batch training. Therefore, this paper uses LN for
normalization processing.

2.2 CNN-transformer

In the CNN-Transformer model, the Convolutional Neural
Network component initially processes the input data. It
extracts local features through convolutional layers and

FIGURE 5
Internal echoes of cables under normal conditions.

FIGURE 6
Echo of internal crack defects in cables.
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introduces non-linearity through activation layers such as ReLU
to enhance the model’s expressive power. Pooling layers may
then reduce the spatial dimensions of the features, decreasing
the number of parameters. Following this, the Transformer
component captures global dependencies through self-

attention mechanisms and expands this capability with multi-
head attention to focus on different parts of the sequence. Each
self-attention layer is typically followed by a feed-forward
network to further refine the feature representation. Layer
normalization and residual connections are used to stabilize

FIGURE 7
Echo of internal water droplet defects in cables.

FIGURE 8
Echo of internal bubble defects in cables.
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the training process and prevent the vanishing gradient
problem. By combining the CNN’s ability to extract local
features with the Transformer’s capacity to capture global
dependencies, the CNN-Transformer model excels in tasks

involving image processing, sequence data, and other
complex pattern recognition challenges. In the direction of
time series prediction, CNN is used to extract spatial features
between different feature values in the sequence. It is to upscale
the original signal into a two-dimensional image, and then
extract deep features using CNN and other networks. To
better adapt to the task of cable fault classification,
convolutional layers and global average pooling structures are
added, and the results are output through a fully connected
layer. The improved method can better utilize the feature
information of time series data and adapt to the
characteristics of cable fault classification tasks. The method
structure is shown in Figure 3. The CNN-Transformer model
approaches the feature extraction process differently from
traditional methods. While traditional CNNs are adept at
capturing local features through convolutional operations, the
integration with the Transformer component allows the model
to not only focus on local patterns but also to leverage the
Transformer’s strength in capturing long-range dependencies
and contextual information across the entire input data. This

TABLE 1 Software and hardware parameters.

Hardware/Software Environmental parameters

Operating System Windows10 (64) 21H2

CPU Intel Core i5-10400 @2.90Hz

GPU NVIDIA GeForce RTX 2060

Random Access Memory DDR4 32GB

Python 3.9

PyTorch 1.12.0

Cuda 11.6

During training, we choose the cross-entropy function commonly used in classification

problems as the loss function, which is expressed as follows.

FIGURE 9
Model training process.

TABLE 2 Recognition accuracy of CNN-Transformer cable insulation defects.

Number
Cable insulation defect category Recognition accuracy/%

1 normal 100

2 internal crack 100

3 Internal water droplet defect 100

4 Internal Bubble Defect 100
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fusion enables a more comprehensive feature representation,
where the CNN extracts detailed spatial hierarchies and the
Transformer processes these features to understand broader

relationships and sequences, leading to potentially more
accurate and robust models in various tasks such as image
classification, natural language processing, and beyond.

The model is inherently scalable and adaptable, designed to
manage larger datasets efficiently. Its architecture allows for
flexibility in handling various cable insulation materials and a
diverse range of defect types, with the potential for further
enhancement through additional training and parameter tuning
as needed.

The specific steps are described as follows:

1) Conduct preliminary feature extraction on the input one-
dimensional time series signal through convolution to
obtain feature information of the cable insulation defect
signal at different time scales.

2) The convolutional features extracted are sent to a time series
Transformer, which embeds the category and location
information of the original signal for encoding. The multi-
head attention mechanism captures deeper transient local
features and periodic global features of the cable insulation
defect signal, and the multilayer perceptron module improves
the model’s nonlinear feature extraction ability. The residual

TABLE 3 Comparison of recognition accuracy of different models.

Model
Classification and identification accuracy of

cable insulation defects/%

Normal Internal
crack

Internal
water
droplet
defect

Internal
bubble
defect

CNN-LSTM 97.68 98.21 31.35 85.32

SVM 91.25 75.25 90.64 64.13

RF 98.38 87.21 35.34 86.32

CNN 99.21 100 96.18 52.51

Transformer 100 82.92 98.11 87.39

Proposed
methodology

100 100 100 100

FIGURE 10
Training set mixing matrix.
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connection module is used to avoid gradient explosion and
vanishing gradient network degradation problems, and
extracts effective features required for classification.

3) Input the features to the fully connected layer and softmax classifier
to obtain the fault signal category label recognized by the model.

The model’s performance in real-world scenarios is enhanced
through the integration of noise reduction techniques and robust
feature extraction methods. Its architecture and training process are
specifically tailored to improve generalization, allowing it to adapt to
real-world data deviations. Despite these measures, ongoing
adjustments and optimizations are essential to address unknown
noise and variability. Implementing the CNN-transformer model in
industrial environments involves challenges such as ensuring data
quality and quantity, securing sufficient computational resources,
integrating with existing systems, meeting real-time processing
demands, maintaining robustness to environmental variability,
achieving scalability, complying with regulatory standards, and
managing ongoing model maintenance and updates. These
factors can significantly influence the practical application and
effectiveness of the model in industrial settings. The model is
slated for enhancement with a roadmap that includes adding
features to boost its adaptability across various cable types and
environmental settings. This strategy involves broadening the
training dataset and possibly integrating self-adaptive algorithms
for in-situ learning. The architecture will undergo refinement to
manage material and defect variances more adeptly, with a
commitment to uphold efficiency and efficacy in a spectrum of
industrial environments. The development cycle is designed to be

iterative, allowing for regular updates informed by practical
deployment and feedback.

3 Ultrasonic testing results

3.1 Test platform

The cable insulation defect detection test device is shown in
Figure 4 and consists mainly of a cable termination sample, an
ultrasonic probe, a power supply, an ultrasonic visualization
platform, and a USB communication cable. The steps for cable
insulation defect detection are as follows. First, an ultrasonic probe
makes direct contact with the cable insulation surface, and
ultrasonic waves are transmitted into the interior of the cable
insulation sample through a coupling agent. Then, the reflected
signals are processed by a digital controller and converted into
waveforms displayed on the display system interface. The specific
steps used in the experiment include sample preparation, the
transmission and reception of ultrasonic signals, and signal
processing and analysis. During the detection process, the
ultrasonic probe is directly in contact with the cable insulation
surface through a couplant, and the ultrasonic wave is transmitted
into the interior of the cable insulation sample under the action of
the couplant. The reflected signal is processed by a digital controller
and converted into a waveform that is displayed on the display
system interface. The dataset consists of 400 samples, which are
divided into training, validation, and testing sets for the model’s
training, tuning, and performance evaluation, respectively. The

FIGURE 11
Comparison between predicted values and true values on the training set.
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collection method of the samples adheres to standardized ultrasonic
detection procedures, ensuring the consistency and reliability of the
data. All data were collected in a controlled laboratory environment
to minimize the impact of environmental factors on signal
acquisition.

3.2 Monitoring results

Figures 5–8 are internal echoes detected by the cable insulation
defect detection test device under different conditions. From the
figure, the echo signal characteristics of the cable under different
conditions are not particularly obvious, with the same voltage
fluctuation amplitude.

4 Classification results and analysis

4.1 Model parameters and training results

This article conducts the verification of the CNN-Transformer
classification model based on ultrasound detection data. The MCF-

TSTmodel proposed in this article is built on the PyTorch deep learning
framework and Python. The hardware and software parameters of the
training environment are shown in Table 1. The preset CNN node
number (32, 64, 128), Dropout value (0.1, 0.2, 0.3, 0.4, 0.5), Encoder layer
number (4, 5, 6), and time step (4, 6, 8, 10). There are 600 groups of each
signal, and they are divided into training set, validation set and test set
according to 4:1:1. The dataset for the CNN-transformer model was
assembled with a blend of simulated and real-world data to ensure a
broad representation of defect scenarios. It includes a significant number
of samples necessary for effective model training and validation, with a
focus on high data quality and precise labeling. The exact dataset size is
tailored to the task’s demands, but it is sufficiently large to enable the
model to generalize well across various conditions. The cross-entropy
function commonly used in classification problems is chosen as the loss
function for training, represented by Eq. 8.

Loss � −1
B
∑B
p�1

∑Ncls

q�1
ypq log ŷpq( ) (8)

where B is the size of the training batch, Ncls is the number of cable
insulation defect categories,ypq and ŷpy are the true label and predicted
probability of the pth input in the qth cable insulation defect category,

FIGURE 12
Test set confusion matrix.
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respectively. The recognition accuracy Acc and loss value Loss of the
training set and test set during model training are shown in Figure 9.

Figure 6 shows that the model proposed in this article can
achieve high accuracy after training, and maintains high accuracy
and low loss throughout. The model converges quickly and does not
exhibit overfitting. The recognition accuracy of various cable
insulation defects is shown in Table 2. To assess the model’s
performance under varying conditions, a series of experiments
were conducted in this paper, simulating the impact of various
environmental factors and signal disturbances on the model’s
capabilities. These experiments included classification tests under
conditions with added noise at different signal-to-noise ratio levels,
altered positions of the ultrasonic probe, and cable samples of
varying degrees of aging. The results indicate that while the
model performs exceptionally well under high signal-to-noise
ratio conditions, its accuracy declines in the presence of high
noise levels or when signal characteristics are not distinct.

4.2 Verification of model
recognition accuracy

To verify the performance of the model in this article, the
accuracy of recognition compared with other machine models is
shown in Table 3. The experiments utilized several different types of
cable samples, each with unique physical properties and signal
characteristics. The model’s performance on these samples was
evaluated by comparing it with its performance on the original
dataset. Furthermore, to further explore the model’s generalization

ability, tests were conducted under various signal-to-noise ratio
conditions, simulating the diverse noisy environments that might be
encountered in field applications. The results indicated that while
the model achieved high accuracy on the original dataset, its
performance declined on certain types of cable samples. This
revealed potential limitations of the model when generalizing to
data that significantly deviates from the training data. To address
this issue, strategies such as data augmentation, transfer learning, or
multi-task learning are considered for future work to enhance the
model’s generalization capability across different types of cables.

To enhance the rigor and verifiability of comparative
experiments, this paper provides a detailed description of the
implementation parameters for the traditional methods involved.
Here are example parameters for each method:

1) Support Vector Machine (SVM): The kernel function is set to
the Radial Basis Function (RBF), the penalty parameter (C) is
chosen as 10, and the gamma parameter for the kernel function
is set to 0.1, selected based on cross-validation results.

2) Random Forest (RF): The number of decision trees in the forest is
set to 100, and the maximum number of features considered for
the split in each tree is set to the square root of the total number of
features. The splitting criterion uses Gini impurity.

3) Convolutional Neural Network (CNN): The network includes
two convolutional layers, each followed by a max-pooling layer.
The first convolutional layer uses 32 filters of size 3 × 3, and the
second convolutional layer uses 64 filters of size 3 × 3. A ReLU
activation function follows all convolutional layers, and a fully
connected layer at the end performs classification.

FIGURE 13
Comparison between predicted and true values on the test set.
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From the data in Table 3, it can be seen that compared to
traditional machine learning model classifiers and neural networks,
the model proposed in this paper has the highest accuracy in
identifying four types of cable insulation defects. The comparison
results demonstrate the superiority of the Transformer model over
other models in Transformer cable insulation defect recognition.

To further verify the confusion of the model for different types of
cable insulation defects, we used a test set with 30dB noise, with
100 data points per type of cable insulation defect. We drew a
confusion matrix for the four types of cable insulation defects, as
shown in Figures 10, 11. The horizontal and vertical coordinates
represent the true label and predicted label of the cable insulation
defect signal, respectively. During the assessment of the proposed
CNN-Transformer model, the focus was on its computational
efficiency, a critical determinant for practical deployment. The
model’s training time, measured from the start of initialization until
the point of convergence where the loss plateaued, was around 1 h,
highlighting the duration necessary for it to adeptly learn the nuances
of cable insulation defects. Furthermore, the inference time for the
model to classify a single instance was benchmarked at approximately
0.1 s, demonstrating its capability to perform prediction tasks
efficiently and suggesting its suitability for real-time applications.

As shown in Figures 12, 13, all types of cable insulation
defects can be accurately identified by the model when
identifying composite cable insulation defects. In this paper,
the calculated 100% accuracy rate is based on experimental
results under specific conditions. This outcome was measured
on a carefully selected and balanced dataset, targeting a range of
predefined defect types and severity levels. The evaluation
process employed standardized metrics, including precision,
recall, and the F1 score, and utilized cross-validation and an
independent test set to ensure the accuracy and reproducibility of
the results. Moreover, the model considered various potential
defect scenarios during both training and testing phases to
enhance its generalization capabilities. However, it should be
noted that this accuracy rate may be subject to the constraints of
the experimental conditions, and the complexities encountered
in real-world applications may impact the model’s performance.

5 Conclusion

Considering that the detection of cable insulation defects is a key
step to ensure the normal operation and safe use of cables, there are
certain limitations in common detection and identificationmethods.
Therefore, it is proposed to adopt ultrasonic detection technology
combined with CNN-Transformer for cable insulation defect
classification. Through simulation experiments and hardware
experiments, the following conclusions are drawn:

1) Ultrasonic testing method is used to detect defects in insulated
cables, which can detect the defect signals of insulated cables
and provide clear echoes of defects.

2) Proposed CNN-Transformer, which captures the local
transient features and periodic steady-state global features
of cable insulation defect signals through multi-head

attention mechanism, and exhibits excellent performance in
cable insulation defect recognition.

3) Through various comparative experiments, the model with the
optimal parameters is determined to identify the signal of cable
insulation defects, and the recognition accuracy reaches 100%
in the absence of noise.

The dataset used in this article is still not comprehensive enough.
In the future, it may be considered to further improve the
experiment and validate the model with live measurement data
to meet application requirements.
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Identifying cable insulation defects is crucial for preventing system failures and
ensuring the reliability of electrical infrastructure. This paper introduces a novel
method leveraging the Markov transition field (MTF) and Transformer network to
improve the precision of cable insulation defect identification and enhance the
algorithm’s noise resistance. Firstly, the algorithm performsmodal transformation
on the time series data acquired by the ultrasonic probe through MTF, generating
corresponding images. Following this, the image data are input into a pre-trained
Transformer network to achieve automated feature extraction. Subsequently, a
multi-head attention mechanism is introduced, which assigns weights to the
features extracted by the Transformer network, thereby emphasizing the most
critical information for the identification task. Finally, more accurate defect
identification is achieved based on the weighted features. The results
demonstrate that this method achieves higher accuracy and stronger noise
resistance compared to traditional image processing and recognition
methods, making it a robust solution for cable insulation defect identification.

KEYWORDS

cable, insulation defect, Markov transition field, transformer networks, multi-head
attention mechanism

1 Introduction

In the safe operation of power systems, the detection of cable insulation defects plays a
crucial role, and its importance cannot be overlooked [1]. Currently, the analysis process of
cable insulation defects mostly employs numerical computation methods [2]. These
methods primarily involve numerically solving the physical processes and mathematical
models of cable insulation defects to predict and analyze the characteristics of insulation
defects [3]. In the identification of cable insulation defects, commonly used numerical
computation methods include the finite element method, the finite difference method, and
the boundary element method [4, 5]. In modern industry and daily life, as the primary
medium for transmitting electrical energy, the stability and reliability of cables have a
crucial impact on ensuring the continuity and safety of the power supply [6, 7]. Therefore,
conducting accurate and effective detection of cable insulation defects is a key component of
the maintenance and operation of power systems [8, 9]. In the field of cable insulation defect
detection for power systems, due to the combined effects of external environmental factors,
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material aging, and construction quality issues, the insulation layer
of the cable may exhibit various types of defects such as cracks, holes,
and water trees [10, 11]. If these defects are not detected and
addressed in a timely manner, they may cause cable failures and
could even lead to serious power system accidents [12, 13].
Therefore, conducting systematic research to enhance the
accuracy and efficiency of detection technology is of great
significance for preventing and reducing the occurrence of
power accidents.

With the advancement of technology, the detection technology for
cable insulation defects is also continuously improving. Reference [14]
proposes a new method for detecting and locating defects in cross-
linked grounded configuration cable sheaths. Through simulation and
actual case validation, this method can effectively identify and locate
various types of defects, and it enhances the stability of detection
under low load currents by using an improved capacitive current
subtraction method. Reference [15] addresses the issue of cable defect
localization by proposing a method for selecting the upper limit
scanning frequency based on short-time Fourier transform. Through
simulation and experimental validation, this method can effectively
reduce the impact of high-frequency signal attenuation on defect
localization and improve the accuracy of localization. Research results
indicate that compared with traditional frequency domain
reflectometry, the proposed method has higher performance in
both single-point and multi-point defect localization. Reference
[16] addresses the issue of internal defect detection in cable
terminals by proposing a non-destructive testing technology based
on the microwave reflection method. By establishing a theoretical
model and simulating with CST software, the impact of defect type,
size, silicone rubber thickness, and detection distance on the reflection
coefficient was analyzed. Experiments confirmed the feasibility of the
theoretical model and simulation results, successfully detecting a tiny
defect of two square millimeters, proving the efficiency and
practicality of the method. Reference [17] addresses the analysis
and diagnosis of shielded cable faults by establishing a two-
dimensional model of a cable with defects using the finite element
method and calculating its characteristic impedance. Reference [18]
conducts experimental research on single-ended partial discharge
(PD) measurements using a high-frequency current transformer to
address the issue of simultaneous activity of multiple PD defects in
medium-voltage underground power cables. By analyzing the
reflected pulses with time-domain reflectometry, two PD sources at
different locations were successfully identified and located. The
research results indicate that the proposed method can effectively
distinguish signals from different PD sources and accurately
determine the location of the PD sources, which is of great
significance for the detection and maintenance of PD defects in
actual cable networks. The deficiency of current cable insulation
defect detection techniques lies in the fact that, although various
methods can effectively identify and locate defects, they often fail to
accurately identify the type of insulation defects. This leads to a lack of
targeted detection and analysis methods for different types of defects
in practical applications, thereby affecting the accuracy of the
detection results and the specificity of maintenance work.
Therefore, enhancing the accuracy of defect identification and
developing technologies capable of recognizing and differentiating
various types of defects are directions that current research needs to
focus on and improve.

Research on intelligent classification methods for cable
insulation defects is crucial for enhancing the reliability and
safety of power systems [19, 20], as it ensures precise
identification and effective management of various defects,
thereby preventing potential power failures and accidents.
Reference [21] addresses the issue of insulation defect
identification in direct current cross-linked polyethylene (DC
XLPE) cables by conducting research on a new method based on
Contourlet transform and Tsallis entropy feature extraction, and
employs a corrected output code classifier optimized by an adaptive
cuckoo search algorithm for defect identification. The results
indicate that this method has a high classification accuracy rate
in identifying typical insulation defects of cables and provides a new
approach for the identification of insulation defect types in DC
XLPE cables. Reference [22] proposes a diagnostic method based on
the time-frequency domain reflectometry for fault classification in
multi-core cables. By converting the reflected signals into images
and utilizing advanced image processing algorithms, combined with
artificial neural networks for fault classification. Experimental
results show that this method can improve the accuracy and
reliability of fault diagnosis in multi-core cable systems, especially
suitable for fault classification of terminal block faults in cables of
varying lengths. Reference [23] addresses the issue of internal defects
in the insulation of power cables by proposing a machine learning
diagnostic scheme based on PD pattern analysis. Through waveform
analysis and feature extraction, the method employs support vector
machine (SVM) and ensemble tree algorithms to identify and
classify internal sources of PD of various shapes and sizes.
Experimental results demonstrate that the proposed method can
effectively identify and classify defects in the insulation of cables,
with an accuracy rate ranging from 96% to 92%. Reference [24]
introduces a novel method for fault classification in power
distribution cables based on the detection of the DC component
using magneto sensitivity. The method reconstructs the current
using a stochastic optimization algorithm, extracts the DC
component with mathematical morphology, and identifies the
type of fault accordingly. Experiments have proven that this
method can effectively classify faults, is robust, and does not
require pre-calibration. However, existing intelligent classification
methods rely on specific technologies, are sensitive to noise, and
require extensive preprocessing for practical application.

The principal contributions encapsulated within this paper are
delineated as follows:

(1) The paper presents a groundbreaking integration of the Markov
transition field (MTF) with Transformer network architecture,
facilitating the conversion of time series data, as captured by
ultrasonic probing, into image modalities through a process of
modality transformation. This innovative step significantly
enriches the data’s representational capacity, thereby yielding
a more comprehensive informational substrate that is
instrumental for downstream tasks of feature extraction and
defect recognition.

(2) The paper employs a pre-trained Transformer network for the
automated extraction of features, complemented by the
introduction of a multi-head attention mechanism that
assigns weights to these features. This strategic enhancement
ensures that the information critical for the recognition task is
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effectively brought into prominence. Consequently, the approach
not only bolsters the precision of defect recognition but also
fortifies the algorithm’s resilience to noise. It distinguishes itself
particularly in the context of identifying insulation defects within
cables, showcasing exceptional performance in this niche yet
critical domain.

2 Fundamental theory

2.1 Markov transition field

MTF is a method for transforming temporal data into spatial image
data. This method extends the Markov state transition matrix, fully
preserves the discretized temporal dynamic information by sequentially
expressing the state transition matrix, and ultimately generates a two-
dimensional image through fuzzy kernel aggregation. Given a time
series signalX � {x1, x2, . . . , xn}, composed of n sampled signals x
at different timestamps. The MTF method first divides the time series
signal into Z regions based on amplitude, each region represented as g
(i � 1, 2, . . . , Z), with each sampled signal mapped to the region g.
The division strategies include: uniform division, quantile division, and
normal distribution division. Uniform division refers to the division
where each region in each sample has the same amplitude width;
Quantile division refers to the division where each region in the sample
contains an equal number of sampled points; Normal distribution
division refers to the division where the number of sampled points
contained in each region follows a normal distribution. Then, the
probabilities of transitions from region qi to qj for the sampled signals xi-
1 and xi at consecutive moments are calculated. Each calculated
probability P is taken as the element wij to construct a Z × Z
dimensional Markov state transition matrix W as shown in Eq. 1.
From Eq. 1, it can be seen that the Markov state transition matrix only
calculates the transition probabilities between consecutive moments,
without considering the dynamic probability transitions of the time
series data. To address this limitation, MTF makes improvements by
generating a dynamic probability transitionmatrixM across time scales
based on the Markov state transition matrix, as shown in Eq. 2. The
MTF innovates the identification of cable insulation defects by
transforming time series data into spatial image data. Through
modal transformation, MTF retains the discretized temporal
dynamics of the data and generates two-dimensional images using
fuzzy kernel aggregation. These images provide a richer representation
and more intuitive information for feature extraction and recognition.
Moreover, the image data generated by MTF can be integrated with
advanced machine learning techniques, such as Transformer networks
and multi-head attention mechanisms, to enhance the accuracy and
robustness of the identification algorithm against noise. The dynamic
probability transition matrix of MTF and the fuzzy kernel averaging
method further improve the ability to capture the dynamic
characteristics of time series data, significantly increasing the
efficiency of cable insulation defect identification.

W �
w11 w12 / w1z

w21 w22 / w2Z

..

. ..
. ..

.

wz1 wz2 / wzz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

M �
M11 M12 / M1n

M21 M22 / M2n

..

. ..
.

1 ..
.

Mn1 Mn2 / Mnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Each element wij in the MTF represents the transition
probability between points separated by a time interval of |i-j|,
wij|i-j|=1 indicates that there is only one interval in the transition
process along the time axis, wij for a time interval of 0 is a special
case, representing the probability of each quantile transitioning to
itself. Considering that when n is large, using the original MTF to
directly generate an image would result in an excessively large image,
which occupies more computer storage space and is not conducive
to rapid calculation and analysis by on-site intelligent devices or
power grid back-end systems. To address this, a fuzzy kernel{1/
m2}m×m is used to average each non-overlapping pixel to obtain a
two-dimensional image of the aggregated m×m dimensional MTF.

2.2 Transformer network

In recent years, the Chat Generative Pre-trained Transformer
has garnered widespread attention due to its powerful creativity and
logical reasoning capabilities. The model employs a Transformer as
its underlying architecture, which, through the introduction of a
self-attention mechanism, enables the network to process positional

FIGURE 1
Schematic diagram of the transformer network architecture.
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information in the input sequence in parallel, better understands the
interdependencies between input sequences, thereby significantly
improving training and inference speeds. Therefore, in Generative
Adversarial Networks, using the Transformer as the generator’s
architecture can endow the model with stronger expressive and
generalization capabilities. Compared to Convolutional Neural
Networks, the Transformer can establish global dependencies
within images, thereby capturing more global image information.
To adapt to image tasks, the model in this paper has been adjusted
from the traditional structure by removing the decoder and
retaining only the encoder. The structure of the Transformer
network is shown in Figure 1. The Transformer network used in
this paper is pre-trained through self-supervised learning on an
ultrasonic detection dataset, utilizing modal transformation
technology to convert time series data into images, and
combining a multi-head attention mechanism to extract and
weight features, thereby enhancing the accuracy and robustness
of cable insulation defect identification.

The encoder mainly consists of a multi-head attention
mechanism and a multi-layer perceptron. A single attention
mechanism involves each input containing three different vectors,
namely, the Query vector (Q), Key vector (K), and Value vector (V).
Their results are obtained by performing matrix multiplications of
the input feature map Xwith three weight matricesWq,Wk, andWv,
respectively, as shown in Eq 3.

Q � X × Wq

K � X × Wk

V � X × Wv

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (3)

Attention scores for each input vector are then calculated using
the softmax function, as shown in Eq. 4:

Attention � softmax
QKT��
dk

√( )V (4)

In the equation: dk represents the dimensionality of either the
Query (Q) or the Key (K) vectors, with the understanding that the
dimensionality of Q and K is equal.

The multi-head attention mechanism, denoted as MultiHead, is
shown in Eq. 5:

MltiHead � Concat head1, ..., headh( )Wo (5)
Concat denotes the concatenation operation, headh represents

the output of the h attention head, Wo is the weight matrix.

2.3 Multi-head attention mechanism

The multi-head attention mechanism, by simulating human
visual attention, allows the model to focus on the most critical
parts of the input data. This mechanism not only enhances the
model’s ability to express features but also improves the accuracy of
defect identification by parallel processing of high-dimensional
features. Specifically, the multi-head attention mechanism enables
the model to receive information from different subspaces, thereby
more effectively capturing and distinguishing various defect
characteristics during the feature extraction and classification
process. By assigning different weights to the features extracted

by the Transformer network, this mechanism emphasizes
information that is vital for the identification task, significantly
enhancing the accuracy of cable insulation defect identification and
the algorithm’s robustness to noise. At any given moment, out of a
large amount of input data, only a small fraction of features are
typically important. The attention mechanism allows the model to
focus more on these critical parts, thereby improving the overall
performance of the model.

The field of deep learning typically employs soft attention
mechanisms for computation, which fuse the various input vectors
by weighting and summing them according to an attention
distribution. Assuming a set of extracted features, denoted as
H = [h1, h2 , hk], is given as input, along with a task-related
query vector β, the relevance between β and each input hi is
calculated using the attention scoring function s (hi,β), which is
then followed by the normalization of the obtained scores using the
Softmax function, resulting in an attention distribution A = [a1, a2 ,
ak ] that corresponds to the input features, and ultimately, the
input information is weighted and summed according to the
attention distribution to produce the output result Y. As shown
in Eqs 6-7.

ai � exp s hi, β( )[ ]
∑k
j�1

exp s hj, β( )[ ] (6)

Y � ∑k
i�1
ai · hi (7)

The attention scoring function s (hi, β) typically includes four
forms: additive model, dot product model, scaled dot product
model, and bilinear model. As shown in Eqs 8-11.

s1 h, β( ) � vTftanh W0h + Uβ( ) (8)
s2 h, β( ) � hTβ (9)

s3 h, β( ) � h1β��
D

√ (10)

s4 h, β( ) � hTWoβ (11)
whereW0, U, and v are all learnable parameter matrices or vectors,D
is the dimension of the input vector; ftanh () is the hyperbolic
tangent activation function.

Multi-head attention is the cornerstone of the Transformer
model [25], Compared to the standard attention mechanism,
multi-head attention allows the output of the attention layer to
contain representational information from different subspaces,
thereby enhancing the model’s expressive power. It utilizes
different query vectors βi to focus on different parts of the input
information, to achieve the goal of analyzing the current input
information from different perspectives, as shown in Figure 2. It
mainly consists of three steps: First, the input features extracted are
represented as H = [ℎ1,ℎ2, . . .,ℎk], Then, a linear transformation is
applied toH, mapping it to the query spaceQ, key space K, and value
space V; Subsequently, the scaled dot product and the Softmax
function are used to calculate the attention distribution for each, and
the attention distributions are summed with weights to obtain the
corresponding output Yi; Finally, the multiple output results are
concatenated. As shown in Eqs 12–16.
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Q � HWQ � β1, β2,/, βλ[ ] (12)
K � HWK � k1, k2,/, kμ[ ] (13)
V � HWV � v1, v2,/, vμ[ ] (14)

Y i � ∑μ
j�1
fSoftmax s3 βi, kj( )[ ] · vj � fSoftmax

QKT���
Dk

√( ) · V (15)

Y � fConcat Y1,Y2,/,Yλ( ) (16)
Where WQ, WK, WV are the linear transformation parameters

for the query, key, and value spaces, respectively; Dk is the matrix
composed of the dimensionality of each key; k is the element vector

in the key space; v is the element vector in the value space; T is the
transpose transformation; λ is the number of query vectors; fConcat ( )
is the feature concatenation function; μ is the dimensionality after
the linear transformation.

2.4 Recognition algorithm based on the
integration of MTF and transformer network

This paper proposes an integrated recognition algorithm of
MTF and Transformer network, as shown in Figure 3. A

FIGURE 2
Multi-head attention structure.

FIGURE 3
MTF and transformer network fusion recognition algorithm.
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Transformer network with greater expressive power is used as the
generator, and a Spectral Normalization Convolutional Neural
Network (SN-CNN) that meets the Lipschitz continuity
constraint is designed as the discriminator. The multi-head
attention mechanism of the Transformer generator endows the
model with superior expressive power; the concisely structured
SN-CNN discriminator reduces the computational complexity of
the image generation model and performs well. The method is
highly noise-resistant, utilizing a pre-trained Transformer network
and multi-head attention mechanism to focus on critical
identification information while suppressing noise. It incorporates
a denoising process through in-depth median filtering, ensuring
accurate defect detection even with noisy ultrasonic signal data. The
model’s predictions transform complex data into intuitive images,
automatically extract key features, and use a multi-head attention
mechanism to highlight important information, explaining the
identification results of cable insulation defects in a user-friendly
manner, thereby enhancing the end-users’ understanding of the
model’s decision-making logic.

3 Ultrasound-based cable insulation
defect detection

3.1 Test platform construction

The experimental platform for cable insulation defect detection
based on ultrasonic technology is shown in Figure 4. Its core
components include a cable terminal sample, an ultrasonic probe,
a power supply, an ultrasonic visualization platform, and a USB
communication cable. During the cable insulation defect detection
process, the ultrasonic probe is coated with a coupling agent to
ensure direct contact with the cable insulation surface. The role of
the coupling agent is to reduce the acoustic impedance loss as the
ultrasonic waves travel from the probe into the cable insulation
material, thereby enhancing the signal transmission efficiency. Once
the ultrasonic waves successfully penetrate the interior of the cable
insulation sample, they interact with the internal structure and
produce reflections upon encountering defects or material
interfaces. These reflected signals are then captured by the
ultrasonic probe and transmitted to a digital controller. The

digital controller is responsible for processing and analyzing the
echo signals, including operations such as signal amplification,
filtering, and conversion. The processed signals are then
presented in waveform on the display interface of the ultrasonic
visualization platform, allowing for a direct observation of the
internal structural characteristics and potential defect locations
within the cable insulation. Additionally, the USB
communication cable of the experimental platform is responsible
for the fast and stable transmission of data between the ultrasonic
probe and the digital controller, ensuring the efficiency and accuracy
of the entire detection process.

3.2 Insulation defect detection results

Figure 5A shows the echo signal within the cable insulation
under normal conditions. Figure 5B shows the echo signal caused
by crack defects within the cable insulation. Figure 5C shows the
echo signal caused by water droplet defects within the cable
insulation. Figure 5D shows the echo signal caused by bubble
defects within the cable insulation. Comparing the echo signals
under the four types of insulation defects, it can be observed that
there are no significant differences in the characteristics of the echo
signals across different conditions. Among them, the amplitude of
the echo signal within the insulation under normal conditions is
significantly greater than that when there are defects within the
insulation. Furthermore, when there are different defects within
the cable insulation, the echo signals under each defect are difficult
to directly observe through temporal characteristics. Therefore, it
is necessary to rely on the intelligent recognition algorithm
proposed above for identification.

4 Cable insulation defect recognition
based on intelligent recognition
algorithms

4.1 Model parameters and training results

Based on the aforementioned ultrasonic detection data, this
section is dedicated to the verification of an integrated recognition
algorithm of MTF and Transformer network. The proposed
recognition algorithm is constructed using the PyTorch deep
learning framework and the Python programming language.
PyTorch is an open-source machine learning library, widely used
in applications in fields such as computer vision and natural
language processing [26]. Python, as a high-level programming
language, provides convenience for rapid algorithm development
and prototype design with its concise syntax and rich library support
[27]. The specific training environment configuration is shown in
Table 1. In the algorithm training phase, the cross-entropy loss
function was selected, which is a widely used loss function in
classification problems. The cross-entropy loss function measures
the difference between themodel’s predicted probability distribution
and the true label distribution, with the mathematical expression as
shown in Eq 17. The method proposed in this paper can process a
data point within 100 milliseconds and demonstrates a high degree
of stability and reliability, which is sufficient to meet the needs of

FIGURE 4
Cable insulation defect detection test platform.
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online real-time monitoring. Moreover, the method also has good
scalability and can adapt to monitoring tasks of different scales,
ensuring efficient detection of cable insulation defects in a variety of
practical application scenarios.

L � −∑N
i�1
yilog pi( ) (17)

Where N is the number of samples, yi is the true label of the ith
sample, typically represented by one-hot encoding, pi is the
probability that the model predicts sample i belongs to a certain

class. The goal of the loss function is to minimize the difference
between the predicted probability distribution and the true label
distribution.

Utilizing theMTFmodule to process the four types of echo signals
mentioned above and convert them into an imagemodality. TheMTF
module is capable of assessing the imaging system’s response to details
of different spatial frequencies, through which the signals obtained
from ultrasonic detection can be transformed into image data,
facilitating subsequent image analysis and machine learning
classification tasks. The transformed image modalities are
displayed in Figures 6A–D, these image modalities clearly reflect
the characteristics of different echo signals, providing richer andmore
intuitive information for the subsequent recognition algorithm.
During the training process of the recognition algorithm, the
training set and the test set were strictly divided, to ensure the
model’s generalization ability and to evaluate its performance.
Figure 7 shows the variation of recognition accuracy and loss
values during the training process for both the training and test
sets. Figure 7 illustrates the variation in recognition accuracy and loss
values during the training process of the identification algorithm. It
can be observed that as training progresses, the recognition accuracy
gradually increases while the loss values decrease. Initially, the
accuracy level is relatively high, indicating that the algorithm is
capable of quickly learning data characteristics and performing
effective recognition. With more training iterations, the accuracy

FIGURE 5
The echo signal in the cable insulation layer under different defects. (A) Echo signal in the cable insulation under normal conditions. (B) Echo signals
induced by crack defects in the cable insulation. (C) Echo signals induced bywater bead defects in the cable insulation. (D) Echo signals induced by bubble
defects in the cable insulation.

TABLE 1 Parameters of Hardware and software.

Hardware/Software System environment parameters

Operating System Windows10 (64) 21H2

CPU Intel Core i5-10400 @2.90Hz

GPU NVIDIA GeForce RTX 2060

Random Access Memory DDR4 32 GB

Python 3.9

PyTorch 1.12.0

Cuda 11.6
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continues to improve and tends to stabilize, demonstrating the
algorithm’s good convergence performance. Concurrently, the loss
values continue to decrease, eventually maintaining at a low level,
reflecting the reduction in the discrepancy between the model’s
predictions and the actual labels, thereby enhancing the model’s
generalization ability. Specifically, at the beginning of the training,
the recognition accuracy might start at around 70% or 80%. As
training proceeds, the accuracy steadily rises, potentially reaching

over 90% after several hundred iterations, and may approach or
achieve 100% with further training. Meanwhile, the loss value, which
might initially be high such as 1.0 or higher, gradually descends to 0.2,
0.1, or even lower, indicating a reduction in the model’s error on the
training data. Furthermore, the shape of the curves can reflect certain
characteristics of the algorithm. For instance, if the accuracy curve
shows a smooth upward trend, it may indicate that the training
process of the algorithm is stable without signs of overfitting. If the
loss curve fluctuates after decreasing to a certain level, it could be due
to the learning rate settings or uneven data distribution.

The confusion matrix is a statistical tool used to evaluate the
performance of recognition algorithms [28]. It compares the actual
categories with the predicted by the algorithm, allowing for the
demonstration of the of the algorithm and potential classification
errors. Therefore, in order to comprehensively evaluate the
performance of the proposed recognition, the confusion matrix is
used as a tool to visually show the classification performance of the
algorithm on the training and test set. Figure 8 shows the confusion
matrix of the training set, and Figure 9 shows the between the
predicted values and actual values on the training set. Figure 10
shows the confusion matrix of the set, and Figure 16 shows the
comparison between the predicted values and actual values on the
test set. From the classification results presented in Figures 8–11, it
can be observed that the proposed recognition algorithm excellent
performance on both the set and test set, achieving 100%
classification. This high performance, coupled with the advanced
machine learning techniques employed, suggests that the method is
well-suited for application across different types of cables, including

FIGURE 6
Image modality of cable insulation with different defects. (A) Image modality of cable insulation with no defects. (B) Image modality of cable
insulation with crack defects. (C) Image modality of cable insulation with water droplet defects. (D) Image modality of cable insulation with
bubble defects.

FIGURE 7
Recognition algorithm training process.
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both high voltage and low voltage cables. The use of a pre-trained
Transformer network and a multi-head attention mechanism
further supports the method’s potential for robust and
generalized detection capabilities, making it applicable to a wide
range of cable insulation defect scenarios.

4.2 Algorithm accuracy comparison

To comprehensively evaluate the performance of the proposed
MTF and Transformer fusion recognition algorithm in the field of

cable insulation defect recognition, a series of experimental
comparisons were conducted. These experiments included
comparing the recognition accuracy of the proposed algorithm with
several widely recognized traditional recognition algorithms. The
specific comparison results have been detailed in Table 2, which
displays the performance differences of different algorithms on the
same test set. Table 2 presents a comparative analysis of recognition
accuracy among various models, revealing the superiority of the
proposed method. The proposed integration of the MTF with the
Transformer network, as demonstrated in our experiments, achieves a
remarkable 100% accuracy rate across all categories of cable insulation

FIGURE 8
Confusion matrix of the training set.

FIGURE 9
Comparison between predicted values and actual values on the
training set.

FIGURE 10
Confusion matrix of the test set.

FIGURE 11
Comparison between predicted values and actual values on
the test.
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defects. This performance significantly exceeds that of traditional
algorithms such as the SVM, Random Forest (RF), CNN, and the
standalone Transformer model. The distinct advantage of our method
lies in its ability to capture intricate patterns and relationships within
the data through the synergistic application of MTF and the
Transformer network. The modality transformation provided by
MTF enriches the data representation, while the Transformer
network, with its multi-head attention mechanism, adeptly captures
the nuanced features essential for accurate defect classification.
However, it is also crucial to consider potential limitations. The
complexity of the model may lead to increased computational
requirements compared to simpler algorithms. Additionally, while
the model has shown excellent performance on the tested dataset,
its generalizability to other datasets or environments with different
noise characteristics and defect types should be further validated.

5 Conclusion

This study proposes an identification algorithm based on the
fusion of MTF and Transformer network for the intelligent
classification of cable insulation defects. By utilizing the MTF
module, the time series data acquired by the ultrasonic probe is
transformed into images, enhancing the representation of the data
and providing richer information for subsequent feature extraction
and classification. By integrating a pre-trained CNN and a multi-
head attention mechanism, the algorithm can effectively extract key
features and perform precise classification, significantly improving
the accuracy and robustness of cable insulation defect identification.

Through comparative experiments with various traditional
recognition algorithms, the results demonstrate that the proposed
recognition algorithm has achieved a 100% accuracy rate in the
identification task of cable insulation defects, significantly
outperforming traditional methods such as SVM, RF, CNN, and
Transformer. This significant performance improvement confirms
the effectiveness and superiority of the fusion recognition algorithm
combining MTF with the Transformer network in the identification
of cable insulation defects.

Additionally, the recognition algorithm proposed in this study has
demonstrated outstanding performance on both the training and
testing sets, achieving 100% classification accuracy, indicating that the
algorithm has strong learning and generalization capabilities. This
outcome provides a novel technical approach for the detection of cable

insulation defects, which is of significant importance for enhancing
the reliability and safety of power systems.

Future research will focus on enhancing the environmental
adaptability of the cable insulation defect identification method.
This will be achieved by assessing the impact of environmental
factors, optimizing algorithm parameters, integrating
environmental compensation mechanisms, and verifying the
method in various practical scenarios to ensure stable operation
under different conditions. This will provide more reliable detection
technology for power systems.
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TABLE 2 Comparison of recognition accuracy among different models.

Models
Cable insulation defect category and recognition accuracy/%

Normal Internal cracks Internal water droplet defects Internal bubble defect

SVM 96.62 97.69 90.55 94.70

RF 92.28 94.51 91.63 93.54

CNN 97.46 98.02 96.19 89.92

Transformer 99.85 100 95.64 93.31

CNN-Transformer 100 93.87 97.85 96.34

The proposed recognition algorithm 100 100 100 100
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