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Editorial on the Research Topic

Novel technologies in the diagnosis and management of

sleep-disordered breathing, volume II

Volume II of our Frontiers Research Topic Series was completed in September 2024.

Although nearly a year passed before we began drafting the editorial, this delay proved

advantageous. The intervening period witnessed notable advances in the field of sleep-

disordered breathing (SDB), allowing us to reflect not only on the contributions of this

volume but also on the rapidly evolving scientific landscape in which these studies are

situated. For example, key regulatory milestones were achieved, including the approval

of the first pharmacological treatment for obese patients with obstructive sleep apnea

(OSA) by the U.S. Food and Drug Administration (Lisik and Zou, 2025). The American

Academy of Sleep Medicine also released guidelines for the treatment of central sleep

apnea, underscoring the dynamic and evidence-based evolution of clinical practice (Badr

et al., 2025). Furthermore, projections indicate that by 2050 nearly 77 million U.S. adults

aged 30–69 will be living with OSA, a 35% increase compared with 2020 (Boers et al.,

2025). The global health and economic costs are enormous: health systems are strained

by diagnosis delays (overnight polysomnography is resource-intensive) and low adherence

to conventional therapies (e.g. CPAP). These challenges have motivated the development

of novel diagnostic and management technologies for SDB and the recent developments

provide important context for the diverse contributions featured in this volume.

Genetic insights

Genetic research has long contributed to our understanding of SDB, from

early candidate gene studies implicating pathways related to obesity, craniofacial

development, and ventilatory control, to more recent genome-wide association

studies. Within this broader context, Mendelian randomization (MR) has emerged

as a methodological framework that leverages genetic variation to make causal

inferences about the relationship between exposures and outcomes. MR is often
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described as a form of “nature’s randomized trial,” because the

random allocation of alleles during meiosis approximates the

randomization process used in clinical trials (Smith and Ebrahim,

2003). This approach has gained traction in sleep research because

it helps disentangle correlation from causation, a particularly

pressing challenge given the multifactorial nature of OSA and its

numerous comorbidities.

Three studies in this volume applied MR to examine

associations between OSA and diverse outcomes. Gong

et al. utilized the GSE135917 OSA gene dataset, derived from

subcutaneous adipose tissue samples of OSA patients. Through

weighted gene co-expression network analysis, they identified

two critical genes, CETN3 and GTF2A2, that may contribute

to OSA pathogenesis. These findings suggest new molecular

targets for further investigation, potentially paving the way toward

biomarker-driven precision medicine. Yang et al., drawing on

data from the National Health and Nutrition Examination Survey

(NHANES), reported a causal link between OSA and increased

risk of osteoarthritis, with body mass index serving as a mediator.

This highlights the intertwined relationship between SDB, obesity,

and musculoskeletal health, and suggests that comprehensive

management of OSA may also confer benefits beyond sleep,

particularly in reducing osteoarthritis burden. In contrast, Hou

et al. analyzed data from the FinnGen database and found no causal

evidence that genetically predicted OSA leads to chronic kidney

disease, contradicting the findings from observational studies.

However, higher blood urea nitrogen (BUN; a marker of renal

dysfunction) predicted increased OSA risk. This suggests that renal

impairment may exacerbate OSA or share common pathways, but

specific pathways remain elusive. Although negative findings often

receive less attention, this helps refine hypotheses and redirect

future efforts.

Together, these MR studies emphasize the complexity of OSA

as both a consequence of genetic predisposition and a risk factor

for systemic disease. However, the rise of MR has not been without

controversy. The method depends on strong assumptions: namely,

that the selected genetic variants influence the outcome only

through the exposure of interest, are not linked to other pathways

(no horizontal pleiotropy), and are robustly associated with the

exposure. When these conditions are not met, results can be biased

and misleading (Evans et al., 2025). Given the methodological

intricacies of MR, it is recommended that future investigations

adhere to the MR-SLEEP guidelines, which provide a structured

framework for robust study design and interpretation (Evans et al.,

2025).

Epidemiology, comorbidities, and the
burden of OSA

Several contributions in this volume highlight the global

prevalence of SDB and its far-reaching clinical consequences.

Wang et al. reported striking differences in SDB prevalence among

patients with multiple system atrophy, documenting a prevalence

of 79% in an Asian cohort compared with 42% reported in

European populations. These findings raise important questions

about genetic, environmental, and diagnostic factors that may

account for the disparity. Moreover, the results highlight the need

for efficient screening in populations with a high likelihood of SDB.

The interplay between OSA and infectious disease was

examined by Dinh et al., who demonstrated that moderate-to-high

risk of OSA is associated with more severe manifestations

of COVID-19. The authors postulated that dysregulated

inflammatory responses in OSA patients contribute to worse

outcomes, reinforcing the concept that sleep health is integrally

tied to immune function. Mental health comorbidities were

also explored. Li et al. applied latent profile analysis to

depressive symptoms in NHANES participants with OSA

symptoms, identifying distinct clusters in the population,

illustrating the heterogeneity of psychological burden in OSA

patients. Collectively, these studies reinforce the urgent need to

improve diagnostic pathways for OSA and to acknowledge its

systemic consequences.

In line with these findings, Pittman et al. convened a group of

experts to critically evaluate the challenges of OSA management

facing in the United States. They identified five domains requiring

urgent reform: (1) simplify the patient journey, (2) bridge the

communication gaps, (3) expand the monitoring over several

nights for serial assessments and therapy titration, (4) update the

care models to avoid provider shortages and burnout, and (5)

align the financial models to reward high-quality care. Their work

represents a call to action for structural change and highlights the

necessity of aligning healthcare delivery with the realities of OSA’s

widespread burden.

Mechanistic and biomarker studies

To advance mechanistic understanding of OSA and

explore novel biomarkers, Howarth et al. investigated

electroencephalogram (EEG) power spectral densities in patients

with mild OSA. They reported a positive association between

relative delta frequency power and excessive daytime sleepiness as

assessed by the multiple sleep latency test. These results suggest

that mild OSA patients with elevated delta activity may experience

increased sleep drive, a finding that raises conceptual questions

about how to distinguish excessive sleepiness from excessive

need for sleep. Biomarker discovery was advanced by Liu et al.,

who conducted the first study of claudin (CLDN) proteins, key

regulators of barrier function, in OSA. Their analysis revealed

that plasma and urine CLDN levels decreased in OSA patients,

and especially urinary CLDN3 was inversely associated with OSA

severity. These findings are intriguing, as they suggest a possible

mechanistic link between intermittent hypoxia, intestinal mucosal

integrity, and altered biomarker expression. Future studies

are needed to determine whether disrupted epithelial barriers

contribute to systemic consequences of OSA.

Cardiovascular insights and heart rate
dynamics

Cardiovascular complications represent one of the most

significant consequences of OSA. While physiological signals

representing the cardiovascular status are routinely measured
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during sleep recordings, they often remain underutilized. Heart

rate, for example, has traditionally been viewed as supplementary

to respiratory or oxygenation metrics in sleep studies. However,

emerging research underscores its value as a sensitive marker of

autonomic and cardiovascular stress. Hilmisson et al. employed

photoplethysmography (PPG) based cardiopulmonary coupling

analysis (Thomas et al., 2005) to derive heart rate measures during

sleep. They reported that each one beat per minute increase

during stable non-REM sleep corresponded to a 4.4% higher

likelihood of nocturnal non-dipping blood pressure, an established

cardiovascular risk factor. These findings support the proposition

that nocturnal heart rate dynamics may serve as accessible and

clinically relevant markers for cardiovascular health assessment in

OSA patients (Azarbarzin et al., 2025).

Technological innovations and
protocol development

Innovation in therapeutic strategies and methodological rigor

is also reflected in this volume. O’Connor Reina et al. clarified the

development of a smartphone-based application for myofunctional

therapy, designed to strengthen pharyngeal dilator muscle control

in OSA patients. This work reflects the broader trend toward

digital therapeutics, which offer scalability and accessibility for

tailored therapy.

Additionally, Kobayashi Frisk et al. presented a

systematic review protocol aimed at synthesizing evidence

on multidimensional sleep health (Buysse, 2014) and

cardiovascular disease. Protocol publications are valuable for

enhancing transparency and reducing bias, and this initiative

signals a growing recognition of the need to move beyond

unidimensional measures of sleep (e.g., sleep duration) toward

more holistic conceptualizations.

Future directions in OSA management

Taken together, the studies in this volume underscore that the

field of sleep medicine is progressing rapidly, both in diagnostic

precision and therapeutic innovation. Yet, realizing the benefits

of these advancements will require systemic transformation. The

World Health Organization’s recent report envisions care pathways

that integrate home sleep apnea testing, telemonitoring, and virtual

consultations to accelerate access and tailor management (WHO,

2025). Such pathways not only streamline diagnosis and treatment

but also hold promise for improving patient outcomes by reducing

delays and increasing personalization (Zou et al., 2023).

At the same time, the integration of machine learning,

advanced diagnostic modalities, and novel therapies heralds

a new era of personalized medicine in sleep care. However,

successful translation of advanced diagnostics and personalized

treatments from research into clinical practice will require careful

validation in large-scale, diverse populations (McNicholas and

Korkalainen, 2023; Oks et al., 2025). Moreover, innovations must

be accompanied by health system reforms to ensure equitable

access, particularly for underserved populations disproportionately

affected by OSA. Equally critical is the training of healthcare

professionals as new diagnostic technologies, digital health

platforms, and personalized therapeutic strategies will necessitate

continuous education and interdisciplinary collaboration

(McNicholas et al., 2025a). Sleep medicine increasingly intersects

with respirology, cardiology, endocrinology, neurology, and

psychiatry, reinforcing the need for collaborative approaches that

transcend traditional disciplinary boundaries. Finally, addressing

the systemic burden of OSA requires not only technological and

clinical innovation but also policy-level interventions (McNicholas

et al., 2025b). Financial models must evolve to reward high-quality,

patient-centered care, and workforce challenges must be mitigated

through strategic planning and resource allocation.

Conclusion

Volume II of our Frontiers Research Topic series captures

a pivotal moment in sleep medicine, showcasing studies that

range from molecular genetics to health policy. Together,

these contributions reinforce the view of OSA as a complex,

multifactorial disorder with implications across nearly every organ

system. At the same time, they illuminate new avenues for

diagnosis, treatment, and health system reform. The field stands at

the threshold of a transformative era, and the challenge ahead is to

translate these scientific advances into tangible benefits for patients

worldwide (Kryger and Thomas, 2025).
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This consensus conference report summarizes discussions on sleep apnea care

and management. Our goal is to simplify the journey to optimize success

for individuals at risk of obstructive sleep apnea and to facilitate diagnostics,

monitoring and communication among the entire healthcare team including

patients, primary care physicians, sleep specialists, sleep dentists and other

key providers. The statement identifies five key problems or unmet needs and

contemplates four potential future directions.

KEYWORDS

obstructive sleep apnea (OSA), continuous positive air pressure (CPAP), home sleep apnea

test (HSAT), value-based care, patient journey, oral appliance therapy

Our goal is to simplify the journey to successful diagnosis and treatment of obstructive

sleep apnea (OSA) and to facilitate communication among providers and between patients

and providers. Such providers may include primary care physicians, sleep specialists, sleep

dentists and others.

OSA is thought to affect up to 1 billion people worldwide although, due to logistics,

current diagnostic strategies are challenging (Benjafield et al., 2019). The current gold

standard approach of seeing a board-certified sleep specialist followed by polysomnography

or home sleep apnea testing with a technically adequate device is unlikely to be scalable

to assess the global burden of disease particularly given that many more patients are at

risk of OSA. Further complicating scalability is the expected increase in prevalence due to

the obesity pandemic and the aging of the population (Mulgrew et al., 2007; Rosen et al.,

2012). We convened a consensus conference of key stakeholders to discuss potential future

approaches to sleep apnea care and management. The conference was sponsored byWesper,

but the sponsor had no role in guiding the discussion or summarizing conclusions which

were at the discretion of the co-chairs (SDP, AM).
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1 Introduction

The group met via Zoom teleconference in March 2022 with

a robust discussion moderated by the co-chairs. Three session

topics were used to guide discussions: personnel+ communication,

equipment, and financial models. Documents were circulated to

seek input yielding this proceedings summary. The participants

were chosen to provide diversity both from the perspective of

training background (e.g., dentist, physician, technologist, health

economist, and patient advocate) and various health systems (e.g.,

Veteran Affairs, Kaiser Permanente, academic medical centers,

non-academic medical centers, private practice, and industry). We

further sought input via follow-up calls from key opinion leaders

who were unable to participate in the interactive discussion, but

whose opinions were valued. Their comments contributed to the

final summary. A few topics like financial models were taken offline

to dive deeper into these topics with subject matter experts. The

details of these more granular topics were summarized in this

final document.

2 Problems and unmet needs

The current framework for this document uses the conference

discussions to define problem(s) and identify unmet needs rather

than attention on specific solutions. Our goal in agreeing on

problems and unmet needs was to establish a strong foundation or

baseline on which to propose future directions toward solutions for

the benefit of all OSA patients.

2.1 Patient journey needs to be simplified

At present, some health systems encourage an initial evaluation

by a primary care physician followed by a sleep consultation and

evaluation with a specialist (Hwang et al., 2018). The specialist

may then order a polysomnogram or home sleep apnea test. The

patient is scheduled for a subsequent follow-up visit where the

patient returns to the specialist to discuss the results and may be

prescribed treatment, usually PAP therapy. Though some practices

incorporate the distribution of durable medical equipment (DME)

into their clinical flow, oftentimes the patient receives the PAP

therapy through a home care company, only to have to return to

the specialist a few months later for monitoring and evaluation.

While multiple visits may be appropriate, they can be perceived

as burdensome to patients and thus alternative care models to

improve efficiency may be well received. In principle, a subset of

patients at risk of OSA could undergo diagnostic testing at the

discretion of a provider or at the request of a concerned patient.

In such a model, patients could be prescribed therapy without the

need for multiple visits to confirm what may be clinically obvious.

One common example is the high volume of patients undergoing

Abbreviations: COPD, chronic obstructive pulmonary disease; CHF,

congestive heart failure; DME, durable medical equipment; HIPAA,

Health Information Portability and Accountability Act; HIV, human

immunodeficiency viruses; OSA, obstructive sleep apnea; PAP, positive

airway pressure; US, United States.

bariatric surgery (Lee et al., 2009; Sareli et al., 2011; Rodbard,

2016; Horvath et al., 2018; Kreitinger et al., 2020; Raphelson et al.,

2022). Such patients have high pre-test probability for OSA and

the data suggest increased risk of perioperative complications in

people with OSA undergoing bariatric surgery (Glazer et al., 2018;

Ahlin et al., 2019). Thus, a reasonable approach could involve

an initial diagnostic test in these patients without the need for

additional visits for routine cases. One challenge exists when serial

nights of data are required for optimal patient care (Lechat et al.,

2023). Currently, the patient would repeatedly return to clinic

or receive serial mailings to get diagnostic equipment because

most existing medical technology does not allow serial assessments

over multiple nights. While objective testing is an important

aspect of the patient journey, explanation of testing results, review

of appropriate treatment options, and long-term monitoring of

therapeutic outcomes remain essential steps in the journey to

ensure optimal patient outcomes.

2.2 Enhanced communication is needed

A number of participants expressed concern about the

lack of communication that sometimes occurs between various

providers e.g., dentists and doctors, sleep providers and surgeons,

providers and durable medical equipment (DME) companies,

etc. In some cases, the participants described competition rather

than collaboration despite general acknowledgment that the

pool of patients potentially seeking treatment is vast. Secure

communication is often a challenge since various providers

may not use the same electronic health records system, e.g.,

many dental offices use dental software that does not typically

integrate with medical electronic health record (EHR) platforms.

Alternative communication methods such as text messaging and

email may not be HIPAA compliant. In some cases, experienced

providers reported receiving the most difficult cases (sometimes

described using the pejorative term “train wrecks”) after other

therapies had been exhausted. For example, patients who are

morbidly obese and have failed positive airway pressure (PAP)

therapy going to a dentist for an oral appliance as a last

resort (Mohammadieh et al., 2022). There was general agreement

that secure communication strategies using universally accepted

standards for communication and data should be enhanced

and that identifying patients with high likelihood for success

would be helpful to all parties involved. Future collaborative

communications might include, but not limited to, monitoring

patients via telemedicine and employing wearable technology,

particularly cloud-based systems that can be accessed by the diverse

healthcare team.

2.3 Expanded scope for monitoring is
needed for serial assessments and therapy
titration

Most diagnostic approaches currently provide one night of

data. Many factors can contribute to night-to-night variability

including patient familiarity with the equipment, changes in body
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posture, sleep stage distribution, alcohol intake, nasal congestion,

etc. Multiple nights of data would be helpful in solidifying or

informing context toward diagnosis (Stoberl et al., 2017). In

addition, over time many factors can change including body

weight or during titration of therapy, such that serial data over

weeks or months would be helpful in guiding treatment for

some patients.

A major contributor to optimizing therapy adherence is patient

engagement which can be enhanced by providing objective data

(Malhotra et al., 2018), e.g., improvement in OSA and metabolic

risk in the context of weight loss (Chirinos et al., 2014). In

the case of oral appliances, tracking residual OSA while using

treatment can be helpful since additional mandibular advancement

and/or other adjustments could be made, guided by objective

data (Cistulli and Gotsopoulos, 2004). In patients with substantial

comorbidities, e.g., COPD or CHF, serial data would be helpful

in guiding sleep therapy particularly given the dynamic nature of

these diseases. In some cases, exacerbations of COPD or CHF may

be predicted by deterioration in sleep parameters as a harbinger

of impending decompensation (Shorofsky et al., 2019; Do et al.,

2022a,b). Early identification of patients at risk of hospitalization or

readmission may allow targeted interventions potentially resulting

in reduced healthcare costs (Light et al., 2018; Sterling et al.,

2022).

2.4 Provider shortage and burnout
accelerate need for updated care models

As previously stated, given the global burden of disease,

the number of board-certified sleep specialists is unlikely

adequate to address the volume of patients affected and at

risk. Even among sleep technologists, respiratory therapists

and nurses, there are current shortages in adequately trained

personnel as many are choosing alternative job opportunities.

Existing providers and staff are experiencing burn out due

to multiple complex factors. However, the addition of extra

data may impose a further burden on some individuals. For

example, endocrinologists experienced a considerable workload

with the advent of continuous glucose monitoring since the

volume of data markedly increased, placing a burden on

already stretched providers (Rodbard, 2016; Verbraecken,

2021).

Automation may be one solution to simplify routine tasks

since a sophisticated algorithm could provide robust summary

data and perhaps flag any outliers requiring expert review. Patient

engagement is another strategy whereby the extra data become the

responsibility of the patient (with appropriate disclaimers) and can

be used to create peer groupmotivation rather than an extra burden

on providers (Hoy et al., 1999). Nonetheless, expert providers will

clearly be required on an ongoing basis for review of outlier data,

for quality control performing routine audits of a percentage of

patients to provide reassurance, and for concierge patients who

prefer traditional models of care. Members of the sleep team like

psychologists, nurse practitioners, physician assistants and sleep

navigators with specialized and focused training are also a resource

for consideration.

2.5 Financial models are needed that
reward high quality care

Today, many US health systems use volume-based purchasing

rather than value-based purchasing. The volume approach rewards

quantity of care whereas in theory the value-based system rewards

quality of care. Clearly, both approaches have merit since a

variety of financial models are needed as the cost to provide care

increases and budgets become more constrained. In a volume-

based scenario, the development of care management service codes

by US Medicare could be used to reward efforts used for remote

patient or physiological monitoring (RPM) and may be one tool to

improve outcomes and generate revenue. In addition, if increasing

automation and assistant scoring of sleep studies occurs, the loss of

professional revenue from interpreting reports could be addressed

by rewarding high quality care based on avoiding subsequent health

care costs (Pittman et al., 2004; Malhotra et al., 2013). However,

we anticipate with improved efficiencies, increased volume would

preserve financial viability.

In a value-based scenario, careful consideration must be given

to the selection of robust validated quality metrics. Objectively

captured data could be used to identify and define leading

indicator(s) that predict important patient centric outcomes which

are often lagging indicators. Some recent data suggest physician

time expended on trying to achieve certain quality metrics does

not yield better patient outcomes (Panzer et al., 2013; Saver

et al., 2015; Adler, 2018). It is possible that OSA may be a

disease that that could be part of a well-designed value-based

care model, as evidence grows about the associated benefits

of OSA treatment with cardiovascular risk reduction, reduction

of hypertension, improvement of neurocognitive outcomes, etc.

Additionally, evidence is growing with respect to the association

of OSA treatment and reductions in health care resource use and

costs. For example, treating OSA may reduce costs of various other

interventions by preventing medical complications, motor vehicle

accidents, etc. (Ayas et al., 2006; Strohl et al., 2013). In the case

of chronic obstructive pulmonary disease, recent data showed a

reduction in ER visits and hospitalizations with the consistent use

of PAP therapy for OSA as compared to patients not consistently

using PAP (Sterling et al., 2022).

3 Future directions and models

3.1 Establish a centralized specialist model

One solution that has been proposed for highly prevalent

diseases is to develop specialized expertise for the care of

these patients. In Africa, both HIV and tuberculosis are highly

prevalent, and the volume of patients can easily overwhelm

the existing infrastructure. Some providers have been specifically

trained for the care and management of these patients to allow

highly efficient/high-quality care. This approach allows up to 20

medications to be prescribed at one time with the experience

of the provider enabling rigorous management of medication

side-effects, drug interactions and identification of outliers that

may require sub-specialty care. In the case of OSA, in theory

one provider with multispecialty training could manage obesity,
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diabetes, hypertension and OSA rather than multiple individual

sub-specialists. Recent data suggest weight loss through diet and

exercise in conjunction with PAP therapy may be an effective

treatment strategy for cardiometabolic risk in OSA (Chirinos et al.,

2014; Carneiro-Barrera et al., 2022). Thus, OSA therapy including

risk factor modification may yield superb outcomes. Clearly, these

specialized providers would need to work within the context of a

supportive environment including excellent communication with

sub-specialists (Kalonji and Mahomed, 2019).

3.2 Triage to fast-track straight-forward
cases model

For patients with high pre-test probability, an expedited

pathway could be designed whereby patients have a telemedicine

evaluation to initiate care management. Diagnostic testing and

treatment could then be facilitated by telemedicine for straight-

forward cases. This model can also evolve over time with a focus

on continually simplifying the patient journey to access care.

Adaptation during the crisis of the recent pandemic have helped

to realize what could be the model for the future of clinical sleep

medicine (Malhotra and Ayas, 2020). Likewise, more difficult cases

would be scheduled with the appropriate specialist consult to

coordinate more involved care management.

3.3 Tiered-care model

Given that management of some OSA patients is straight-

forward, many patients do not require a face-to-face meeting with

a physician specialist. A percentage of patients could likely be

managed by primary care nurse practitioners, physician assistants,

respiratory therapists, or sleep technologists (under a physician’s

supervision) though the more complicated cases may need direct

physician evaluation, but only a subset would require seeing a sleep

expert. Such an approach would need to be studied rigorously

to ensure optimum care is provided. Clearly, communication

would need to be robust between all tiers of care providers. Sleep

navigators have been used effectively to triage patients within

referring practices and to improve end-to-end patient care.

3.4 Predictive model(s)

In theory, predictive models and patient preferences could

drive treatment decisions regarding who should receive oral

appliances, upper airway surgery, or PAP therapy rather than based

on “first come-first serve” approaches.

4 Discussion

Problems and unmet needs persist regarding the management

of OSA following a consensus conference of key stakeholders to

discuss potential future approaches to improve sleep apnea care

andmanagement. Other stakeholders will expand the scope of their

solutions to close the gaps between problems, unmet needs, and

available solutions. This scenario results in riding the bus driven

by others. Or we can drive the bus to have more control over

possible outcomes.

We should aim to simplify the patient’s journey to achieve

successful diagnosis and treatment. Delete what isn’t required.

Barriers to effective communication between providers and

between providers and patients should be eliminated. Serial

monitoring for OSA should be routine to establish reliable baseline

measurements or monitor response to therapy over weeks and

months. Provider shortages and burnout persist. These pose

challenges when the demand for services increases, but the supply

cannot. And most financial models still reward the quantity of care

vs. the quality of care.

Solutions are possible when the entire ecosystem is engaged that

manages and delivers care to patients. Communication between

a sleep specialist and a sleep dentist to provide effective oral

appliance therapy to a patient should not be limited to fax machines

just because medical and dental information systems are not

interoperable.We need to find solutions. This allows data regarding

patient progress to also flow from the sleep dentist back to the

sleep specialist.

Future directions and models should deliver more value to

patients and improve the quality of their care. In value-based

models, these are the core outcomes on which payment to treat

patients is based. The efficiency in which a care team provides

this care is also important to help manage resources. The entire

ecosystem will need to be engaged to design, test, measure and

iterate the technology, processes and care delivered through these

models. Patients should win if we are successful.
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Association between risk of 
obstructive sleep apnea severity 
and risk of severe COVID-19 
symptoms: insights from salivary 
and serum cytokines
Yen Dinh 1†, Abdullah Alawady 2,3*†, Hesham Alhazmi 1,4, 
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Venter Institute, La Jolla, CA, United States, 8 Division of Infectious Diseases and Global Public Health 
Department of Medicine, University of California San Diego, La Jolla, CA, United States, 9 Tufts University 
School of Dental Medicine, Boston, MA, United States

Objectives: Obstructive sleep apnea (OSA) can adversely affect the immune 
response through clinical factors such as hypoxia, inflammation, and sleep 
disturbance. Since SARS-CoV-2 heavily relies on local and systemic host 
immune responses, this study aims to examine the links between the severity of 
OSA risk, cytokine levels, and the severity of symptoms associated with SARS-
CoV-2 infection.

Methods: Saliva and blood samples from 50 COVID-19 patients and 30 non-
infected hospital staff members were collected. Using Luminex multiplex 
analysis, 65 blood and salivary cytokines were examined from the collected 
samples. Ordinal logistic regression analysis was utilized to examine the 
association between the self-reported risk of OSA, assessed through the STOP-
Bang questionnaire, and the likelihood of experiencing severe symptoms of 
COVID-19. Mann–Whitney test was then performed to compare the cytokine 
levels between individuals with moderate to severe risk of OSA to those with a 
mild risk of OSA.

Results: Ordinal logistic regression analysis revealed that individuals with 
a moderate to severe risk of OSA were 7.60 times more likely to experience 
more severe symptoms of COVID-19 compared to those with a mild risk of 
OSA (OR  =  7.60, 95%CI: 3.03, 19.06, p  <  0.001). Moreover, among COVID-19-
positive patients with a moderate to severe risk of OSA, there was a statistically 
significant negative correlation with serum IL-6 (p  <  0.05), Eotaxin (CCL11) 
(p  =  0.04), and salivary MIP-3α/CCL20 (p  =  0.04). In contrast, individuals without 
COVID-19 who had a moderate to severe risk of OSA exhibited a significant 
positive correlation with serum IL-6 (p  =  0.04).

Conclusion: Individuals with moderate to severe risk of OSA were more likely 
to experience severe COVID-19 symptoms than those with mild risk for OSA. 
Additional analysis from the present studies revealed distinct patterns of oral 
and systemic immune responses between individuals with mild and moderate to 
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severe risk of OSA. Findings from the present study underscores the importance 
of early detection and management of OSA to improve clinical outcomes, 
particularly when faced with the subsequent superimposed infection such as 
COVID-19.

KEYWORDS

COVID-19, SARS-CoV-2, obstructive sleep apnea, IL-6, cytokines

Introduction

Obstructive sleep apnea (OSA) affects approximately one billion 
individuals globally and is characterized by periodic interruptions in 
breathing during sleep, either partially or completely (1, 2). Individuals 
with OSA face an elevated risk of developing cardiovascular disease, 
hypertension, and various other chronic health issues (2, 3). The potential 
link between OSA and COVID-19 has been of particular interest due to 
the respiratory nature of both conditions, their overlapping comorbidities, 
and notable risk factors, particularly obesity (4).

Persistent, episodic collapse of airway during sleep results in 
chronic intermittent hypoxia, a state of decreased oxygen saturation 
and increased carbon dioxide arterial blood partial pressure (5). 
Each time this occurs, the process of desaturation and reoxygenation 
results in oxidative stress and a generation of reactive oxygen species 
(ROS) (5). Ultimately, chronic intermittent hypoxia can result in 
immune dysfunction both locally and systemically, predisposing 
individuals with OSA to developing subsequent superimposed 
infections (6, 7).

In recent years, the SARS-CoV-2 and the successive variants has 
had a significant, widespread impact worldwide. The World Health 
Organization (WHO) reported over 761 million cases and 6.8 million 
deaths to date (8). In particular, COVID-19 is caused by SARS-CoV-2 
and primarily affects the respiratory system. Symptoms range from 
asymptomatic to severe Acute Respiratory Distress Syndrome 
(ARDS), requiring hospitalization and potentially leading to mortality 
(9). Multiple risk factors, including obesity, age, diabetes mellitus 
(DM), and cardiovascular disease, have been linked with an increase 
in severity of COVID-19 symptoms (10).

Previous studies illustrated the presence of similar risk factors in 
individuals with OSA, hinting at a possible connection between OSA and 
the severity of COVID-19 symptoms (11, 12). Earlier investigations also 
revealed that individuals who had both OSA and contracted COVID-19 
faced an elevated risk of hospitalization, mechanical ventilation, 
admission to intensive care units (ICUs), and mortality when compared 
to COVID-19 patients with OSA (4, 13, 14). Despite these notable 
findings, there remains a substantial gap in the existing body of literature, 
prompting the current study to focus on investigating the relationship 
between risk of OSA, the severity of COVID-19 symptoms, and their 
association with relevant serum and salivary biomarkers.

Methods

The present study was conducted in collaboration with the 
Dasman Diabetes Institute in Kuwait, the J Craig Venter Institute 

(JCVI), the Ministry of Health in Kuwait, and the University of 
Alberta. Ethics approval was granted by the Institution Review Boards 
(IRB) of JCVI, the Ministry of Health in Kuwait, and the University of 
Alberta. All enrolled participants provided their informed consent for 
participation in the study, with the respective ethics approval 
references as follows: Kuwait Ministry of Health #2020/1462, the 
University of Alberta #Pro00125245, and JVCI, which received an 
exemption due to the secondary analysis of de-identified samples.

Study design

The present study employed a convenience sampling approach, 
enrolling patients from AlFarwaniyah, Jaber Al Ahmed, and Kuwait 
Field hospitals in Kuwait between 24 July and 4 September 2020. 
Individuals who tested positive for SARS-CoV-2 by RT-PCR (n = 50) 
provided consent and underwent nasopharyngeal swab collection. 
For the control group, nasopharyngeal swabs were obtained from 
hospital staff members (n = 30) who had no contact with COVID-19 
case(s).

Using a Qualtrics questionnaire on an iPad, comprehensive 
demographic and clinical data were gathered from the participants. 
This included details about their medical history, medication use, 
smoking habits, sleep patterns, weight, height, waist circumference, 
neck circumference, blood type, respiratory rate, COVID-19 
symptoms, and, for those using supplemental oxygen, the specific 
liter amount.

Saliva collection

In preparation for saliva collection, 15 mL plastic centrifuge tubes 
were pre-labeled with the date and subject number, along with a clear 
demarcation at the 4 mL level. The saliva collection tubes were then placed 
on ice. Before proceeding with sample collection, a hospital nurse 
provided detailed instructions and demonstrated to the participants the 
process of saliva collection, including how to use the parafilm to stimulate 
saliva production and how to collect the saliva in the pre-marked tubes. 
The participants were directed to swish a sip of water in their mouth, 
swallow it, and then chew on a piece of parafilm. When saliva formed, the 
participants used their tongue to push the saliva into the pre-marked tube, 
which was placed back in an ice-filled cup. Saliva collection continued 
until it reached the 4 mL mark, accounting for the meniscus. After 
completing the task, participants notified the nurse, who then sealed and 
sanitized the tube before storing it in an ice-filled collection rack and 
disposing of any unused materials.
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Blood collection

All serum samples were collected in 7.5 mL BD Vacutainer Serum 
tubes with clot activator using standardized venipuncture techniques.

Sample processing

The samples were packed in containers with dry ice and 
transferred to the Jaber Alahmad Hospital laboratory. The samples 
were received and processed within the same day, ensuring a 
maximum of 3 h elapsed between collection and processing. 
Salivary samples were centrifuged at 2000xg for 5 min. The 
separated supernatant and pellets were transferred into distinct 
tubes. Serum samples were centrifuged at 2000xg for 10 min after 
a 30-min interval of equilibration at room temperature on vertical 
racks. All processed samples were stored at −80°C. During 
samples transfer from the laboratory to JCVI, the samples were 
placed on dry ice along with a specialized monitoring apparatus 
to guarantee their sustained frozen condition throughout the 
transportation process.

Cytokine abundance measurements

The serum analysis was conducted with the Luminex 200 system 
(Luminex Corporation, Austin, Texas, United  States) using the 
Immune Monitoring 65-Plex Human ProcartaPlex Panel (Cat# 
EPX650-16500-901; ThermoFisher Scientific, Vienna, Austria) 
following the manufacturer’s instructions. This comprehensive kit 
assessed immune function by examining 65 protein targets in a single 
well, encompassing cytokines, chemokines, growth factors/regulators, 
and soluble receptors. To establish a standard curve, the provided 
standard was diluted fourfold, and both high and low controls were 
incorporated into the analysis.

Outcome variable

COVID status
COVID-19 severity was categorized into four distinct groups as 

follows: (1) Mild symptoms, which included individuals who were 
hospitalized without the need for oxygen therapy (n = 11); (2) 
Moderate symptoms, involving hospitalized patients requiring 
low-flow oxygen support (<10 L/min) (n = 28); (3) Severe symptoms, 
comprising of hospitalized patients who need high-flow oxygen 
support (>10 L/min) (n = 11); and (4) the control group, composed 
of hospital administrative staff members who had no contact with 
COVID-19 patients (n = 30). The control group underwent daily 
visual triage by the hospital, including temperature and symptom 
checks, although they did not undergo PCR testing nor have a 
confirmed negative PCR test. The control group was age-and 
sex-matched with the COVID-19 subjects. Two variables were 
generated for analysis, a binary variable and a categorical variable. 
Stratification of the participants into COVID-19 vs. no COVID-19 
groups yielded a binary variable for the descriptive statistics. For the 
ordinal logistic regression analysis, a categorical variable was 
generated after grouping participants into one of four categories: (1) 

control (non-infected); (2) mild symptoms; (3) moderate symptoms; 
and (4) severe symptoms.

Exposure variable and covariates

Obstructive sleep apnea
The risk of OSA was evaluated using the STOP–Bang 

questionnaire, a well-validated screening tool known for its high 
sensitivity of 96% and a negative predictive value of 90% (15). 
Participants were asked the following questions: (1) Do you snore 
loudly (loud enough to be  heard through closed doors or your 
bed-partner elbows you for snoring at night)? (2) Do you often feel 
tired, fatigued, or sleepy during the daytime (such as falling asleep 
during driving or talking to someone)? (3) Has anyone observed 
you  stop breathing or choking/gasping during your sleep? (16). 
Participants received one point for each affirmative response to the 
aforementioned questions. An extra point was included if they were 
male, aged 50 or older, had a body mass index (BMI) exceeding 
35 kg/m (2), possessed a neck circumference exceeding 40 cm, or had 
a history of high blood pressure. Participants who accumulated three 
or fewer points were classified as having a low risk of OSA, whereas 
those with more than three points were categorized as having a 
moderate to severe risk of OSA (16).

Body measurements
Measurements for height, weight, waist, and neck circumferences 

were collected using the Qualtrics software on an iPad. Weight was 
assessed using a standard scale, while height was determined with the 
integrated stadiometer. Waist circumference was measured using a 
paper anthropometry tape, specifically at the midpoint between the 
bottom of the rib cage and the top of the iliac crest. These 
measurements were taken for each participant during minimal 
respiration and recorded to the nearest 0.1 cm. For neck circumference 
measurement, participants were advised to stand in a relaxed posture 
with their head held upright, looking straight ahead. The measurement 
was taken just above the midpoint of the participant’s neck, usually 
below the thyroid cartilage (commonly known as the Adam’s apple), 
at the end of a normal expiration. All measurements were recorded to 
the nearest millimeter.

Statistical analysis

All statistical analyses were carried out utilizing STATA 17 
software, where a significance threshold of 0.05 was set. To create 
demographic data represented in Tables 1, 2, categorical variables 
were examined using chi-square tests, resulting in counts and 
percentages. To explore the connection between COVID-19 status and 
OSA risk, an ordinal logistic regression analysis was conducted after 
adjusting for gender and age. Moreover, an analysis of sixty-five serum 
and salivary biomarkers was performed. For each of these biomarkers, 
calculations were conducted to determine both the median and 
interquartile range (IQR) with a distinction between individuals with 
a mild risk of OSA and those with a moderate to severe risk. Following 
this, a two-sample Mann–Whitney test was employed to assess the 
statistical significance of differences between these two groups for 
each respective biomarker.
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Results

Among the 80 participants of this study, 42.5% of individuals had 
moderate to severe risk of OSA while 57.5% had mild risk of OSA. For 
those with moderate to severe risk of OSA, 64.7% were male, 68.7% 
were > 50 years old, 47.1% had a BMI >35 kg/m2, and 91.2% were 
smokers (Table 1).

87% of individuals who experienced moderate and severe 
COVID-19 symptoms had a moderate to severe risk of OSA (Table 2).

COVID-19 positive individuals with a moderate to severe risk of 
OSA exhibited lower serum IL-6 levels (median 4, IQR 28) compared 
to individuals with a mild risk of OSA (median 21, IQR 38, p < 0.05). 
In contrast, individuals without a COVID-19 but who have a moderate 
to severe risk of OSA displayed higher serum IL-6 levels (median 14, 
IQR 25.5) than those with a mild risk of OSA (median-8, IQR 5, 
p < 0.05) (Table 3).

Among individuals who tested positive for COVID−19, those 
with a moderate to severe risk of OSA exhibited lower levels of salivary 

MIP-3α/CCL20 (Median 0.205, IQR 0.286) compared to those with a 
mild OSA risk (Median 0.293, IQR 0.688, p < 0.05). Furthermore, in 
COVID-19-positive individuals with a moderate to severe OSA risk, 
lower levels of serum Eotaxin-1/CCL11 (median 1332.5, IQR 1178) 
were observed in contrast to those with a mild OSA risk (median 
1933, IQR 1210, p < 0.05) (Table 3).

Individuals with a moderate to severe risk of OSA exhibit a 7.60-fold 
increased likelihood of falling within higher categories of COVID-19 
symptom severity (OR: 7.60, 95%CI: 3.03–19.06, p < 0.001). Specifically, 
the probability of transitioning from lower (control or mild) to higher 
(mild to moderate, moderate to severe) COVID-19 symptom categories 
is 7.60 times higher among individuals with a moderate to severe risk of 
OSA compared to those with a mild risk (Table 4).

Sensitivity analysis was conducted using the same sleep apnea 
variable while excluding BMI from the variable. Individuals at a 
moderate/severe risk of OSA still exhibited a 5.85 fold increased 
likelihood of falling within the higher categories of COVID-19 
symptom severity (OR: 5.85, 95%CI: 2.38–14.41, p < 0.001).

TABLE 1  Descriptive summary of sample characteristics stratified by risk of obstructive sleep apnea.

Characteristics Mild risk of obstructive sleep 
apnea N =  46 (%)

Moderate/severe risk of 
obstructive sleep apnea 

N =  34 (%)

p-values

Age  ≤ 50 years 40/46 (87) 11/33 (32.3) <0.001

Age > 50 years 6/46 (13) 23/33 (68.7)

Female 24/46 (52.1) 12/34 (35.3) 0.13

Male 22/46 (47.9) 22/34 (64.7)

Diabetic 7/46 (15.2) 16/34 (47) 0.002

Non-diabetic 39/46 (84.8) 18/34 (53)

Heart disease 1/46 (2.2) 7/34 (20.6) 0.007

No heart disease 45/46 (97.8) 27/34 (79.4)

Hypertension 2/46 (4.4) 20/34 (58.8) 0.000

No hypertension 44/46 (95.6) 14/34 (41.2)

BMI ≤ 35 39/46 (84.8) 18/34 (52.9) 0.002

BMI >35 7/46 (15.2) 16/33 (47.1)

Smoker 15/43 (34.9) 3/34 (8.8) 0.007

Non-Smoker 28/43 (65.1) 31/34 (91.2)

Asthma 2/45 (4.4) 3/34 (8.8) 0.43

No asthma 43/45 (95.6) 31/34 (91.2)

Emphysema 6/46 (13.1) 0/34 (0) 0.03

No emphysema 40/46 (86.9) 34/34 (100)

Male waist circumference ≤ 94 3/22 (13.6) 2/22 (9.1) 0.64

Male waist circumference > 94 19/22 (86.4) 20/22 (90.1)

Female waist circumference ≤ 80 6/24 (25) 0/12 (0) 0.06

Female waist circumference > 80 18/24 (75) 12/12 (100)

Male neck circumference ≤ 43 20/22 (90.9) 19/22 (86.4) 0.64

Male neck circumference > 43 2/22 (9.1) 3/22 (13.6)

Female neck circumference ≤ 41 21/24 (87.5) 10/12 (83.3) 0.73

Female neck circumference > 41 3/24 (12.5) 2/12 (16.7)

p-values were determined using chi-square tests. Waist circumference cut off was based on the International Diabetes Federation. Cut off for males was 94 cm, while for females it was 80 cm. 
Neck circumference cut off was based on the WHO guidelines. Cut off for males was 43 cm, while for females it was 41 cm.
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Discussion

The present study investigated the association between the risk of 
OSA and the likelihood of individuals experiencing heightened 
COVID-19 symptoms, while also examining the associated inflammatory 
patterns of the disease versus the non-diseased state. We demonstrated 
that individuals with moderate to severe risk for OSA were more likely to 
experience more severe symptoms than individuals with mild risk for 
OSA. Additionally, the sensitivity analysis revealed that our results 
remained statistically significant despite BMI being excluded from the 
sleep apnea variable, suggesting that the association between risk of OSA 

and COVID-19 symptom severity is not solely driven by obesity, rather 
by the combination of the different components of the STOP-Bang model 
(gender, age, BMI, hypertension, snoring, gasping for air during sleep, 
feeling sleepy during the daytime, and neck circumference).

Furthermore, individuals with a moderate to severe risk of OSA, 
in the absence of concurrent COVID-19, exhibited elevated levels of 
serum IL-6 in contrast to those with a mild risk of OSA. Conversely, 
individuals at moderate to severe risk of OSA with concurrent 
COVID-19 showed reduced levels of serum IL-6, Eotaxin-1/CCL11, 
and salivary MIP-3α/CCL20 compared to those with mild OSA risk 
and concurrent COVID-19. Since it is widely recognized that OSA can 

TABLE 2  Descriptive summary of COVID-19 symptoms stratified by risk of obstructive sleep apnea.

Characteristics Mild risk of obstructive sleep 
apnea N =  46 (%)

Moderate/severe risk of 
obstructive sleep apnea 

N =  34 (%)

p-values

Mild COVID-19 symptoms 7/19 (36.84) 4/31 (12.90) 0.56

Moderate/severe COVID-19 symptoms 12/19 (63.16) 27/31 (87.10)

Shortness of breath 11/19 (57.9) 21/31 (67.7) 0.48

No shortness of breath 8/19 (42.1) 10/31 (32.3)

respiratory distress <=20/min 5/46 (10.9) 9/34 (26.5) 0.07

Respiratory distress >20/min 41/46 (89.1) 25/34 (73.5)

Chest pain 9/45 (20) 6/34 (17.7) 0.79

No chest pain 36/45 (80) 28/34 (82.3)

Sputum production 8/19 (42.1) 15/31 (48.4) 0.67

No sputum production 11/19 (57.9) 16/31 (51.6)

Cough 17/19 (89.5) 25/31 (80.6) 0.41

No cough 2/19 (10.5) 6/31 (19.3)

Congestion 4/19 (21.1) 4/31 (12.9) 0.45

No congestion 15/19 (78.9) 27/31 (87.1)

Sore throat 6/19 (31.6) 8/31 (25.8) 0.66

No sore throat 13/19 (68.4) 23/31 (74.2)

Symptom severity was based on oxygen supplementation requirements. Subjects were placed in the Mild symptoms category if they were hospitalized without the need for oxygen therapy. 
Moderate if they required less than 10 L/min and severe if they required > 10 L/min of 100% O2 supplementation Subjects were placed in the severe symptoms category if they required > 10 L/
min of 100% O2 supplementation. Respiratory distress cut off was based on 20 breaths/min.

TABLE 3  Descriptive summary of statistically significant differences between serum and salivary biomarker levels stratified by COVID-19 status and risk 
of OSA.

Biomarkers: No COVID p-values COVID p-values

Mild risk of 
OSA

Median
(IQR)

Moderate/Severe 
risk of OSA

Median
(IQR)

Mild risk of 
OSA

Median
(IQR)

Moderate/Severe 
risk of OSA

Median
(IQR)

Serum (pg/

ml)

IL-6 −8 (5) 14 (25.5) 0.04 21 (38) 4 (28) 0.04

MIP-3α/CCL20 0 (4) −1 (1) 0.15 3 (7) 4 (7) 0.42

Eotaxin-1/

CCL11

2056 (1503.5) 1,124 (1017) 0.32 1933 (1210) 1332.5 (1178) 0.04

Saliva (pg/ml) IL-6 0.067 (0.248) 0.015 (0.072) 0.33 0.014 (0.154) 0.007 (0.366) 0.95

MIP-3α/CCL20 0.276 (0.404) 0.08 (0.196) 0.12 0.293 (0.688) 0.205 (0.286) 0.04

Eotaxin-1/

CCL11

0.106 (0.235) 0.106 (0.059) 0.70 0.117 (0.161) 0.146 (0.198) 0.94

Mann–Whitney test was used to determine the p-values. IQR, interquartile range.
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compromise the immune system, rendering individuals with 
preexisting OSA more susceptible to experiencing severe symptoms 
due to their weakened immune response against the virus.

The increased serum levels of IL-6 in patients with a moderate to 
severe risk of OSA, without concurrent COVID-19, aligns with the 
findings made by Imani et al. (17). Specifically, IL-6 plays various roles 
in inflammation and the immune system, including the stimulation of 
immunoglobulin secretion and the initiation of vascular inflammation 
(17). Among OSA patients, chronic intermittent hypoxia induces the 
release of proinflammatory cytokines like IL-6, resulting in a sustained 
condition of mild but persistent inflammation (18).

However, for patients with moderate to severe risk for OSA with 
concurrent COVID-19, there is a decrease in serum IL-6, Eotaxin-1/
CCL11, and salivary MIP-3α/CCL20. Eotaxin-1/CCL11 is a 
chemokine primarily responsible for recruiting eosinophils to 
inflammation sites, especially in the context of allergic reactions (19). 
Conversely, MIP-3α/CCL20 is a chemokine that exhibits selective 
binding to CCR6, a receptor predominantly found on immature 
dendritic cells (DC) (20). Therefore, MIP-3α/CCL20 facilitates the 
migration of immature DCs to the site of injury, and studies conducted 
by Reibman et  al. have provided insight into the role of MIP-3α/
CCL20 in shaping the adaptive immune response within the airway 
mucosa (20). The observed attenuated immune response in patients 
with a moderate to severe risk of OSA and concurrent SARS-CoV-2 
infections may be  attributed to two potential mechanisms. First, 
OSA-mediated chronic inflammation due to persistent intermittent 
hypoxia could result in immune dysfunction (21). This pre-existing 
immune impairment could potentially exacerbate when individuals 
with OSA contract SARS-CoV-2, resulting in decreased secretion of 
cytokines. For instance, obesity, a shared risk factor for both OSA and 
COVID-19, impairs the immune response through chronic low-grade 
inflammation, hyperinsulinemia, hyperglycemia, and hyperleptinemia 
(22). Additionally, the deposition of adipose tissues can impede 
respiratory function, increasing susceptibility to respiratory infections 
like COVID-19 (22). Alternatively, SARS-CoV-2 infection could 
directly induce an “immunological collapse,” a state of reduced 
inflammatory reactions, unchecked viral replication, widespread 
dissemination, and direct host cell cytotoxicity (23). Nonetheless, the 
latter theory falls short of providing a comprehensive explanation for 
the observed reduction in IL-6 in the current study. This is evident as 
Remy et al. noted an increase in IL-6 when compared to the healthy 
control group in their own study (23). The discrepancies between the 
findings further reinforces the former theory that a synergistic effect 
exists between OSA and the concurrent COVID-19.

Limitations

It is important to note, however, that while the results of our cross-
sectional study suggest a possible association between OSA, impaired 

inflammatory reaction, and increased COVID-19 severity, additional 
research is required to establish a definitive causal relationship. One 
notable limitation of this study is the relatively small sample size, 
which may constrain the generalizability of our findings and limit the 
statistical power to detect subtle associations between variables. 
Another limitation of our study lies in the composition of the control 
group, consisting of hospital staff, while the experimental group 
comprises hospitalized patients. The inherent differences between 
these groups may introduce confounding variables related to 
occupational exposures, health behaviors, or access to healthcare, 
potentially impacting the generalizability of our findings. 
Furthermore, the exclusive focus on hospitalized patients within our 
experimental groups may inadvertently disregard potential variations 
in cytokine profiles among non-hospitalized individuals with COVID-
19, constraining the generalizability of our findings. Additionally, in 
the present study, polysomnography confirmation of OSA was not 
feasible due to the clinical status of the patients and the infection 
control measures implemented during the pandemic. Thus, the 
patients in the study were never formally diagnosed with 
OSA. Likewise, we did not confirm participants’ prior OSA diagnosis. 
This decision was influenced by the potential for introducing recall 
bias, and the survey’s limited length constrained the comprehensive 
collection of accurate historical data on past OSA diagnosis. The 
absence of polysomnography or stratification of participants with a 
prior diagnosis of OSA limits the interpretation of the results, limiting 
our ability to assess the impact of pre-existing OSA on the observed 
outcome. However, the STOP-Bang questionnaire, a validated 
screening tool, was employed to assess the risk for OSA (15). While 
the STOP-Bang questionnaire is a valuable tool, it has inherent 
limitations. Future investigations should explore the inclusion of prior 
OSA diagnoses and polysomnography confirmation. Additionally, 
considerations such as sample size, representative sample, controlling 
for additional covariates and confounding variables, and investigating 
potential mechanisms through which OSA may impact immune 
response warrant attention in future studies.

Conclusion

Findings from the present study demonstrated an association 
between a moderate to high risk of OSA and the manifestation of 
severe COVID-19 symptoms. Moreover, the study has unveiled a link 
between the levels of inflammatory cytokines in individuals with OSA, 
some of which exhibited distinct differences based on the presence or 
absence of acute COVID-19. These findings substantiate the initial 
hypothesis, implying that individuals at higher risk of OSA may 
display an impaired inflammatory response, potentially intensifying 
the severity of COVID-19 symptoms.

Consequently, it becomes imperative to address and target OSA as a 
potential risk factor to mitigate the onset of severe COVID-19 symptoms 

TABLE 4  Ordinal logistic regression analysis of the association between COVID-19 status and risk of OSA.

Covariate Odds ratio 95% confidence interval p-values

Sleep apnea 7.60 3.03–19.06 <0.001

Adjusted sleep apnea* 5.85 2.38–14.41 <0.001

*The adjusted sleep apnea variable was determined using the STOP-Bang model while excluding BMI.
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in subsequent variants and respiratory infections. By identifying and 
implementing appropriate interventions for individuals with OSA, 
healthcare professionals have the potential to diminish the susceptibility 
to COVID-19 symptoms and the associated complications they entail. 
Despite the ongoing endeavors to study COVID-19, further research is 
imperative to attain a more comprehensive grasp of the contributing 
factors that exacerbate the manifestation of symptoms related to 
COVID-19 and other respiratory infectious diseases.
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Association of CLDN molecules
with sleep apnea hypopnea
syndrome: new biomarker
candidates

Dan Liu†, Han Meng†, Nansheng Wan* and Jing Feng*

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital,

Tianjin, China

Introduction: Obstructive sleep apnea (OSA) is a common sleep-related

breathing disorder, and has become a serious threat to public health. Intermittent

hypoxia caused by OSA results in a low-grade inflammatory response that leads

to impaired mucosal barrier function. Claudin (CLDN) molecules are important

for the permeability of the mucosal epithelium. This study aimed to explore

whether CLDN molecules can be a potential biomarker of OSA.

Methods: A total of 37 healthy controls and 40 OSA patients underwent a

physical assessment for OSA and filled out the STOP-Bang Questionnaire (SBQ)

and Epworth Sleepiness Scale (ESS). Clinical specimens of plasma and urine were

obtained to observe the di�erence between OSA patients and healthy controls

and diagnostic accuracy of CLDN molecules for OSA.

Results: CLDN1, CLDN2, and CLDN3 molecules in plasma and urine decreased

in OSA patients (both p < 0.05). The areas under the receiver operating

characteristic curve (AUCs) of urinary CLDN1, plasma CLDN1, urinary CLDN2,

plasma CLDN2, urinary CLDN3, and plasma CLDN3 were 0.887, 0.724, 0.779,

0.676, 0.828, and 0.665, respectively. The AUC of urinary CLDN1 + CLDN2

+ CLDN3 was 0.906 (95% confidence interval (CI), 0.831–0.981). The AUC of

plasma CLDN1 + CLDN2 + CLDN3 was 0.776 (95% CI, 0.645–0.878). The AUC

of urinary CLDN3 + SBQ was 0.899 (95% CI, 0.832–0.967). The AUC of urinary

CLDN3 + ESS was 0.896 (95% CI, 0.826–0.966). In addition, Urinary CLDN-3 was

negative associated with the severity of OSA.

Conclusion: CLDNmolecules are promising as useful biomarkers forOSA, which

may be related to the impaired barrier function related to OSA.

KEYWORDS

CLDN family, obstructive sleep apnea, biomarker, diagnosis, barrier

1 Introduction

Obstructive sleep apnea (OSA) is characterized by repeated closure of the upper

airway during sleep, which leads to intermittent hypoxia (IH), hypercapnia, and

increased sympathetic nerve activity (1). Currently, the STOP-Bang Questionnaire

(SBQ) and other questionnaires are used in many medical centers for initial

screening of patients with suspected OSA, followed by polysomnography (PSG)

for high-risk patients (2). PSG, which is the gold standard for diagnosing

OSA, requires the patient to wear the device all night in a specific room,
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and the staff must observe the machine at all times, which

consumes considerable time and human resources. In addition,

the examination is expensive. It is estimated that approximately

one in seven of the world’s adult population has OSA. However,

the diagnosis rate is very low (3), and testing may be one of

the many obstacles to diagnosis. Laborious and expensive PSG is

a prohibitive treatment for many patients with suspected OSA.

Therefore, qualified biomarkers can help streamline the screening

and diagnostic processes for OSA and reduce the financial burden

of OSA as a serious public health problem.

Studies have shown that the disruption of mucosal barrier is a

common pathological process in OSA. There is evidence to suggest

that IH cause changes in the blood-brain barrier (BBB) through

oxidative stress, oxygen sensors, increased inflammation, and also

influences microvessel permeability of BBB (4). Baronio et al. (5)

report higher overall brain water and lower levels of aquaporin 1

in the hippocampus and cerebellum of mice exposed to chronic

IH. The pathological damage of intestinal mucosa has also been

confirmed. In the presence of hypoxia, intestinal dysfunction leads

to necrosis and detachment of the intestinal mucosal epithelium.

Once the intestinal mucosa is damaged, the permeability of the

intestinal barrier changes. Hypoxia can induce inflammation, and

tissues with inflammatory reactions often exacerbate hypoxia,

which is a positive feedback phenomenon (6). At the same time,

the inflammatory response caused by OSA can also damage

the lung mucosa and vascular intima, leading to more serious

comorbidities (7).

The CLDN protein family is an important junction protein

in barrier function. Currently, more than 20 subtypes of CLDN

proteins related to mammals have been identified (8). Partial

subtyping of genes has identified defects that are associated with

diseases (9), and differential expression of eight subtypes has been

found in various diseases (10). However, there is currently not a lot

of research on CLDN molecules and OSA. Given the importance

of disruption of mucosal barrier in OSA, more studies focus on

OSA and barrier function are warranted. Therefore, the aim of our

study was to explore the changes of CLDN molecules in patients

with OSA, and whether the CLDN molecules can be a biomarker

for assessment of OSA.

2 Materials and methods

2.1 Study design and participants

The present investigation was a study that enrolled consecutive

adults who underwent an in-laboratory sleep recording and were

diagnosed with OSA from July 2022 to December 2022 at the

Sleep Medical Center, Tianjin Medical University General Hospital

(Heping, China). All data were anonymous and complied with

the requirements of authorities for personal data protection. The

study protocol was approved by the Ethical Committee of Tianjin

Medical University General Hospital (IRB2019-WZ-175). Healthy

participants were also recruited. They underwent PSG to assess

whether they should be classified as healthy controls or OSA

patients. No participant was undergoing continuous positive airway

pressure treatment or had any other lung diseases.

TABLE 1 Clinical characteristics of the study population.

Controls
(n = 37)

OSA
(n = 40)

p-value

Age (years) 44.3± 12.81 50.33± 13.47 0.065

Male, n (%) 54.05% 72.50% 0.095

Hypertension (%) 5.41% 70% <0.001

Diabetes (%) 0% 7.50% 0.091

MetS (%) 8.11% 62.50% <0.001

TG (mg/dl) 129.23± 61.64 190.35± 96.67 0.002

HDL-C (mg/dl) 54.94± 16.12 41.37± 11.97 <0.001

BMI (kg/m2) 27.03± 6.71 29.85± 5.08 0.043

Neck circumference (cm) 38.03± 3.22 41.68± 3.49 <0.001

Waist circumference (cm) 93.30± 7.75 103.9± 11.24 <0.001

SE (%) 87.01± 7.98 76.94± 11.86 <0.001

AHI (events/h) 2.43± 1.35 54.51± 27.69 <0.001

Arousal (events/h) 8.52± 4.82 30.58± 22.50 <0.001

AI (events/h) 0.55± 0.71 31.81± 31.11 <0.001

ODI (events/h) 2.04± 2.01 44.85± 26.69 <0.001

Mean SpO2 (%) 96.59± 1.07 92.08± 3.25 <0.001

SPO2 min (%) 91.89± 2.58 72.75± 12.54 <0.001

T90 (%) 0 17.76± 19.98 <0.001

Plasma CLDN1 (ng/ml) 371.40± 44.34 332.59± 47.05 0.0006

Urine CLDN1 (ng/ml) 350.53± 39.17 269.58± 51.43 <0.001

Plasma CLDN2 (ng/ml) 2.21± 0.27 2.20± 0.29 0.0084

Urine CLDN2 (ng/ml) 2.10± 0.28 1.71± 0.33 <0.001

Plasma CLDN3 (ng/ml) 4.98± 0.64 4.45± 0.66 0.0131

Urine CLDN3 (ng/ml) 4.82± 0.63 3.70± 0.84 <0.001

SBQ 2.18± 1.25 3.33± 1.01 0.0034

ESS 9.81± 3.67 13.88± 3.53 <0.001

Data are shown as mean± SD or median (IQR).

OSA, obstructive sleep apnea; MetS, metabolic syndrome; TG, triglycerides; BMI, body mass

index; HDL-C, high density lipoprotein cholesterol; AHI, apnea-hypopnea index; SpO2 min,

minimum peripheral capillary oxygen saturation; T90, total sleep time spent with oxygen

saturation below 90%; AI, apnea index; ODI, oxygen desaturation index; SE, sleep efficiency;

SD, standard deviation; SBQ, OP-Bang Questionnaire; ESS, Epworth Sleepiness Scale.

2.2 Sleep monitoring

All participants underwent a full night of sleep recording at the

Sleep Medical Center. They were allowed to follow their habitual

sleep time from 21:00 to 22:00 to 06:00–07:00 hours. Each patient’s

sleep was continuously monitored using a PSG device (Alice 5;

Philips Respironics, Murrysville, PA, USA) by two technicians.

Sleep parameters were scored manually using the American

Academy of Sleep Medicine Manual v2.3 2016. Respiratory sleep

patterns were studied according to the recommendations of the

American Academy of Sleep Medicine. The PSG parameters

evaluated included sleep latency, sleep efficiency, total sleep time,

and duration of each sleep stage. Apnea was defined as the cessation

of airflow for at least 10 s in the presence of respiratory effort.
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FIGURE 1

Scatter plot of CLDN molecules in the OSA and control groups. Di�erences in the expression of CLDN1 in (A) urine and (B) plasma. Di�erences in the

expression of CLDN2 in (C) urine and (D) plasma. Di�erences in the expression of CLDN3 in (E) urine and (F) plasma. OSA, obstructive sleep apnea.

*p < 0.05, **p < 0.01, ***p < 0.001.

Hypopnea was identified as a >30% reduction in airflow for

at least 10 s and was associated with either a >3% decrease in

oxygen saturation or arousal. The apnea–hypopnea index (AHI)

was calculated as the average number of apnea and hypopnea events

per hour. Participants with OSA were diagnosed according to an

AHI of >5, whereas those with an AHI of <5 were diagnosed as

primary snorers. The percentage of time spent in sleep with an

oxygen saturation of <90% was defined as T90.

2.3 Clinical data and laboratory tests

During the visit, lifestyle questionnaires, SBQ, ESS, medical

tests (i.e., electrocardiogram and plasma pressure measurement),

anthropometric measurements (i.e., weight, height, and waist and

neck circumference), and biochemical tests (fasting plasma glucose,

total cholesterol, high-density lipoprotein cholesterol, low-density

lipoprotein cholesterol, and triglycerides) were performed. The

venous plasma samples and urine samples were collected early

in the morning before breakfast. Enzyme-linked immunosorbent

assay kits for human CLDN1, CLDN2, and CLDN3 were purchased

from J&L Biological Industrial Co., Ltd. (Shanghai, China), and

analyses were performed according to the recommended protocols.

Participants were considered to have a metabolic syndrome if

they had at least three of the following criteria: increased waist

circumference (≥94 cm for men and 80 cm for women), increased

triglycerides (≥150 mg/dl), decreased high-density lipoprotein

cholesterol (<40 mg/dl for men and <50 mg/dl for women),

increased plasma pressure (systolic ≥130 and/or diastolic ≥85

mmHg), and increased fasting glucose (≥100 mg/dl) (11).
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TABLE 2 Accuracies of indicators in the diagnosis of OSA.

Markers AUC (95% CI) Cuto�
value

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%) Accuracy
(%)

Urinary CLDN1 (ng/ml) 0.887 (0.811–0.964) 258.7 100.0 67.5 76.9 100 84.4

Plasma CLDN1 (ng/ml) 0.724 (0.611–0.837) 359.41 62.2 75 72.9 64.3 68.4

Urinary CLDN2 (ng/ml) 0.779 (0.679–0.880) 1.7 100.0 42.5 65.3 100 72.4

Plasma CLDN2 (ng/ml) 0.676 (0.557–0.795) 1.9 85.6 42.5 61.7 73.3 64.9

Urinary CLDN3 (ng/ml) 0.828 (0.735–0.922) 3.83 100.0 56.1 71.1 100 78.9

Plasma CLDN3 (ng/ml) 0.665 (0.543–0.786) 4.65 70.3 57.5 64.1 64.2 64.1

Urinary CLDN1+ CLDN2+ CLDN3 0.906 (0.831–0.981) – 97.3 82.5 85.7 96.6 90.2

Plasma CLDN1+ CLDN2+ CLDN3 0.776 (0.645–0.878) – 95.5 52.5 68.5 91.5 74.8

Plasma CLDN3+ urinary CLDN3 0.872 (0.786–0.959) – 95.5 52.5 68.5 91.5 74.8

Cutoff values were selected based on Youden’s index.

AUC, area under the receiver operating characteristic curve; CI, confidence interval; OSA, obstructive sleep apnea; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 2

ROC curve of the joint indicator. (A) Combined ROC curve of urinary CLDN1 + CLDN2 + CLDN3. (B) Combined ROC curve of plasma CLDN1 +

CLDN2 + CLDN3. (C) Combined ROC curve of urinary CLDN3 + SBQ. (D) Combined ROC curve of urinary CLDN3 + ESS. AUC, area under the ROC

curve; ROC, receiver operating characteristic; ESS, Epworth Sleepiness Scale; SBQ, STOP-Bang Questionnaire.

2.4 Statistical analysis

The results for variables that were normally distributed are

presented as the means ± standard deviations. The results for

variables that were not normally distributed are summarized

as medians and compared using the Mann–Whitney U test.

Student’s t test was used to compare the means of two

independent variables. Spearman’s correlation analysis was used

to evaluate the relationship between two variables. Receiver

operating characteristic (ROC) curves were generated to estimate

the area under the curve (AUC), and optimal cutoffs were

estimated via the highest Youden’s index. Sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV)

and accuracy were calculated through the crosstabs. Binary

logistic analysis was used to analyze the ROC curve of the

joint indicator. p values < 0.05 were considered statistically

significant. Error bars were used to indicate the standard

deviation. All statistical analyses were performed using SPSS
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TABLE 3 Accuracies of indicators in the diagnosis of OSA.

Markers AUC (95% CI) Cuto�
value

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%) Accuracy
(%)

SBQ 0.754 (0.644–0.864) 3.5 70.7 59.4 65.3 65.2 65.3

ESS 0.786 (0.682–0.891) 14.5 72.5 73 74.4 71.7 72.7

Urinary CLDN3+ SBQ 0.899 (0.832–0.967) – 85.0 81.1 82.9 83.3 83.1

Urinary CLDN3+ ESS 0.896 (0.826–0.966) – 80.0 91.9 91.4 81.0 85.7

SBQ, STOP-Bang Questionnaire; ESS, Epworth Sleepiness Scale; OSA, obstructive sleep apnea; and AUC, area under the receiver operating characteristic curve; PPV, positive predictive value;

NPV, negative predictive value.

20.0 (IBM, New York, NY, USA) and Graphpad Prism v.9.0

(California, USA).

3 Results

3.1 General clinical characteristics of the
OSA and control groups

A total of 40OSA patients and 37 healthy controls were enrolled

in the cohort. The OSA patients and controls were matched by

age (p = 0.065) and sex (p = 0.095). The demographic and

polysomnographic characteristics of the groups were presented in

Table 1.

3.2 There were significant di�erences in
plasma and urinary CLDN1, CLDN2, and
CLDN3 between the OSA and control
groups

The plasma CLDN1, CLDN2, and CLDN3 levels were

significantly decreased between the OSA and control groups

(p = 0.006, p = 0.0084, and p = 0.0131). The urinary

CLDN1, CLDN2, and CLDN3 levels were significantly decreased

between the OSA and control groups (both p < 0.001; Table 1;

Figure 1).

3.3 The diagnostic e�cacy of CLDN
molecules in OSA

We used ROC curves to assess the diagnostic efficacy of

CLDN molecules for OSA. The AUC of urinary CLDN1 was 0.827

(95% CI, 0.811–0.964), with a sensitivity of 100%, specificity of

67.5%, PPV of 76.9%, NPV of 100%, and accuracy of 84.4%; the

AUC of plasma CLDN1 was 0.724 (95% CI, 0.611–0.837), with

a sensitivity of 62.2%, specificity of 75%, PPV of 72.9%, NPV of

64.3%, and accuracy of 68.4%; the AUC of urinary CLDN2 was

0.779 (95% CI, 0.679–0.880), with a sensitivity of 100%, specificity

of 42.5%, PPV of 65.3%, NPV of 100%, and accuracy of 72.4%;

the AUC of plasma CLDN2 was 0.676 (95% CI, 0.557–0.795), with

a sensitivity of 85.6%, specificity of 42.5%, PPV of 61.7%, NPV

of 73.3%, and accuracy of 64.9%; the AUC of urinary CLDN3

was 0.828 (95% CI, 0.735–0.922), with a sensitivity of 100%,

specificity of 56.1%, PPV of 71.1%, NPV of 100%, and accuracy

of 78.9%; the AUC of plasma CLDN3 was 0.665 (95% CI, 0.543–

0.786), with a sensitivity of 70.3%, specificity of 57.5% PPV of

64.1%, NPV of 64.2%, and accuracy of 64.1%. It can be seen

that the predictive power of urinary CLDN1 is the best among

single indicators.

The AUC of urinary CLDN1 + CLDN2 + CLDN3 was 0.906

(95% CI, 0.831–0.981), with a sensitivity of 97.3%, specificity of

82.5%, PPV of 85.7%, NPV of 96.6%, and accuracy of 90.2%; the

AUC of plasma CLDN1 + CLDN2 + CLDN3 was 0.776 (95% CI,

0.645–0.878), with a sensitivity of 95.5%, specificity of 52.5%, PPV

of 68.5%, NPV of 91.5%, and accuracy of 74.8%; the AUC of plasma

CLDN3 + urinary CLDN3 was 0.872 (95% CI, 0.786–0.959), with

a sensitivity of 95.5%, specificity of 52.5%, PPV of 68.5%, NPV of

91.5%, and accuracy of 74.8%. Among the joint indicators, urinary

CLDN1 + CLDN2 + CLDN3 has the best predictive ability. And

the predictive ability of the combined index is higher than that of

the single index (Table 2; Figure 2).

3.4 The diagnostic e�cacy of CLDN
molecules combined SBQ or ESS in OSA

The AUC of SBQ was 0.754 (95% CI, 0.644–0.864), with a

sensitivity of 70.7%, specificity of 59.4%, PPV of 65.3%, NPV of

65.2%, and accuracy of 65.3%; the AUC of ESS was 0.786 (95% CI,

0.682–0.891), with a sensitivity of 72.5%, specificity of 73%, PPV of

74.4%, NPV of 71.7%, and accuracy of 72.7%; the AUC of urinary

CLDN3 + SBQ was 0.899 (95% CI, 0.832–0.967), with a sensitivity

of 85%, specificity of 81.1%, PPV of 82.9%, NPV of 83.3%, and

accuracy of 83.1%; the AUC of urinary CLDN3 + ESS was 0.896

(95% CI, 0.826–0.966), with a sensitivity of 80.0%, specificity of

91.9%, PPV of 91.4%, NPV of 81.0%, and accuracy of 85.7%. We

found that the combination of urine CLDN3 molecules improved

the ability to predict OSA (Table 3; Figure 2).

3.5 Correlation analysis suggests that
urinary CLDN3 can predict the severity of
OSA

We found that urinary CLDN3was significantly correlated with

AHI and T90 (r = −0.36, p = 0.023; r = 0.33, p = 0.035; Table 4;

Figure 3). This suggested that the more severe OSA, the lower the

concentration of urinary CLDN3.
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FIGURE 3

Linear regression plots. (A) Urinary CLDN3 and AHI. (B) Urinary CLDN3 and T90. AHI, apnea–hypopnea index; T90, total sleep time spent with oxygen

saturation of <90%.

TABLE 4 Correlation analysis of urinary CLDN3, AHI, and T90.

Factor Urinary CLDN3 AHI T90

Urinary CLDN3 r – −0.36 −0.33

p – 0.023 0.035

AHI r −0.36 – –

p 0.023 – –

T90 r −0.33 – –

p 0.035 – –

AHI, apnea–hypopnea index; T90, total sleep time spent with oxygen saturation of <90%.

4 Discussion

In this study, the association of CLDN1, CLDN2, and CLDN3

molecules with OSA is proposed for the first time. We found that

the concentrations of CLDN1, CLDN2, and CLDN3 molecules

in the plasma and urine of OSA patients decreased. CLDN1 and

CLDN3 are called “pore-sealing CLDNs,” and the increase in the

expression of the sealing CLDNs will lead to the increase of the

tight junctions of the mucosa. CLND2 is called “pore-forming

CLDNs,” which can form paracellular anion/cation pores and water

channels, results in reducing epithelial tightness and increasing

solute permeability (12). Our study is based on the assumption that

IH damages the intestinal mucosal epithelium and thereby impairs

expression of CLDN molecules, resulting in decreases in plasma

and urine, but the specific mechanism needs to be further explored.

Previous studies have found that IH can cause impairment

of barrier function. Baronio et al. reported higher overall brain

water and lower levels of aquaporin 1 in the mice exposed to

chronic IH (5). A study has shown the brain diffusion alteration

in patients with OSA, and neuronal damage and vasogenic edema

in the different brain regions of OSA patients due to IH (13).

In addition, in the study of intestinal permeability by D-lactate,

high intestinal permeability was found in middle-aged male non-

obese OSA patients, so there may be subclinical intestinal damage

in some OSA patients (14). In this study, we speculated that

the decrease of CLDN1 and CLDN2 may lead to the decrease

of barrier permeability, while the decrease of CLDN2 may lead

to the decrease of water passage, and result in tissue edema. As

important molecules in maintaining barrier function, CLDNs have

rarely appeared in the study of OSA. Our exploration also provides

a promising idea for subsequent basic research.

In addition, the diagnostic efficacy of urinary CLDN3 was

82.8%, and there is a correlation between CLDN3 and the severity

of OSA. The AUC of Urinary CLDN1 + CLDN2 + CLDN3 was

90.6%. Urine is an easily obtainable specimen in clinical practice.

Therefore, the urine CLDNs are expected to become promising

biomarkers for OSA. These findings are very important for further

studying biomarkers for the prediction of OSA.

In previous studies, many OSA biomarkers have been

discovered, such as I-FABP, D-LA, LPS, and LBP (15). In

our previous study, Liu et al. (11) found that neutrophil-

to-lymphocyte ratio, lymphocyte, and CD4 counts are

associated with “overlap syndrome (OVS)” and have a

moderate diagnostic value. These are promising biomarkers

for exploring OSA from the perspective of metabolic processes

and inflammatory responses. However, there are few researches

focus on the barrier function in OSA. We believe that this

will help us further explore the impact of OSA on other

organ complications.

Combined CLDN molecules, CLDN + SBQ and CLDN +

ESS have high AUC, which also provides us with a direction for

the screening of OSA. As subjective factors, SBQ and ESS usually

have low specificity and accuracy (16). Combined urinary CLDN3

with SBQ and ESS, we found that the specificity and accuracy

were significantly increased. In addition, the sensitivity of CLDN1,

CLDN2, and CLDN3 molecules in plasma is 100%. Therefore, we

believe that adding the CLDN molecules to SBQ and ESS may

have more satisfactory results in OSA screening. Future large-scale

clinical studies are warranted to confirm our hypothesis.

OSA is frequently associated with comorbidities that include

metabolic, cardiovascular, renal, pulmonary, and neuropsychiatric,

and there is growing evidence of bidirectional relationships

between OSA and comorbidity, especially for heart failure,

metabolic syndrome, and stroke (17). And severe OSA

was an independent predictor of all-cause death (18). The

possible mechanisms include oxidative stress, sympathetic

nerve activation, vascular endothelial injury, and endothelial

dysfunction. The underlying mechanisms have not yet been
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explored (19). OSA increases the risk of stroke by 60% (20).

Alvarez-Sabin et al. found that in patients with hypertension,

moderate-to-severe OSA is independently associated with lacunar

silent cerebral infarct (21). Therefore, it is very important

to strengthen the screening of OSA in the population. Early

detection of patients with moderate and severe OSA can

reduce the number of patients with cardiovascular and

cerebrovascular diseases and avoid a large amount of waste

of public resources.

This study mainly focuses on patients with moderate to severe

OSA. We first propose the association of CLDN levels with OSA

patients, which provides clues for further understanding of the

impaired barrier function related to OSA. Next, we will conduct

a large-sample study based on the results of this study to determine

whether CLDN molecules can be used to screen patients with

moderate and severe OSA, and the potential value of CLDN

molecules in mild patients.

5 Conclusions

This study mainly explored the association of CLDN1, CLDN2,

and CLDN3 molecules with OSA. We found that CLDN molecules

have good predictive ability. Urinary CLDN3 was inversely

associated with the severity of OSA. The combination of urine

CLDN3 and SBQ or ESS can significantly improve specificity

for diagnose of OSA, indicating the CLDN molecules as novel

biomarker candidates.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by Ethical

Committee of Tianjin Medical University General Hospital. The

studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.

Author contributions

DL:Writing – original draft. HM:Writing – original draft. NW:

Writing – review & editing. JF: Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

work was supported by National Natural Science Foundation of

China (82300120, 82170097, 81970083, 81570084, 81270144, and

30800507) and Tianjin “131” Innovative talent team building

project—Tianjin Medical University General Hospital Diagnostic

interventional pulmonary medicine innovation team (201940).

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance

during the preparation of this manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep
apnea. Physiol Rev. (2010) 90:47–112. doi: 10.1152/physrev.00043.2008

2. Rundo JV. Obstructive sleep apnea basics. Clevel Clin J Med. (2019) 86(9 suppl
1):2–9. doi: 10.3949/ccjm.86.s1.02

3. Lyons MM, Bhatt NY, Pack AI, Magalang UJ. Global burden of sleep-disordered
breathing and its implications. Respirology. (2020) 25:690–702. doi: 10.1111/resp.13838

4. Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment:
addressing the blood–brain barrier. Sleep Med Rev. (2014) 18:35–
48. doi: 10.1016/j.smrv.2012.12.003

5. Baronio D, Martinez D, Fiori CZ, Bambini-Junior V, Forgiarini LF,
da Rosa DP, et al. Altered aquaporins in the brains of mice submitted to
intermittent hypoxia model of sleep apnea. Respir Physiol Neurobiol. (2013)
185:217–21. doi: 10.1016/j.resp.2012.10.012

6. Li Q, Xu T, Shao C, Gao W, Wang M, Dong Y, et al. Obstructive sleep apnea is
related to alterations in fecal microbiome and impaired intestinal barrier function. Sci
Rep. (2023) 13:778. doi: 10.1038/s41598-023-27784-0

7. Meliante PG, Zoccali F, Cascone F, Di Stefano V, Greco A, de Vincentiis M, et al.
Molecular pathology, oxidative stress, and biomarkers in obstructive sleep apnea. Int.
J. Mol. Sci. (2023) 24:5478. doi: 10.3390/ijms24065478

8. Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins:
expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. (2017)
1397:66–79. doi: 10.1111/nyas.13360

9. Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M,
et al. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated
with ichthyosis: a tight junction disease. Gastroenterology. (2004) 127:1386–
90. doi: 10.1053/j.gastro.2004.07.022

Frontiers inNeurology 07 frontiersin.org29

https://doi.org/10.3389/fneur.2024.1347137
http://www.letpub.com
https://doi.org/10.1152/physrev.00043.2008
https://doi.org/10.3949/ccjm.86.s1.02
https://doi.org/10.1111/resp.13838
https://doi.org/10.1016/j.smrv.2012.12.003
https://doi.org/10.1016/j.resp.2012.10.012
https://doi.org/10.1038/s41598-023-27784-0
https://doi.org/10.3390/ijms24065478
https://doi.org/10.1111/nyas.13360
https://doi.org/10.1053/j.gastro.2004.07.022
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2024.1347137

10. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al.
Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial
tight junctions, apoptosis, and cell restitution. Gastroenterology. (2005) 129:550–
64. doi: 10.1016/j.gastro.2005.05.002

11. Liu D, Wang Z, Zhuang Y, Wang Y, Zhang J, Wang R, et al. Chronic
breathlessness in obstructive sleep apnea and the use of lymphocyte
parameters to identify overlap syndrome among patients. J Clin Med. (2023)
12:936. doi: 10.3390/jcm12030936

12. Khan N, Asif AR. Transcriptional regulators of claudins in epithelial tight
junctions.Mediators Inflamm. (2015) 2015:1–6. doi: 10.1155/2015/219843

13. Kilicarslan R, Alkan A, Sharifov R, Akkoyunlu ME, Aralasmak A, Kocer A, et al.
The effect of obesity on brain diffusion alteration in patients with obstructive sleep
apnea. Sci. World J. (2014) 2014:1–7. doi: 10.1155/2014/768415

14. Heizati M, Li N, Shao L, Yao X, Wang Y, Hong J, et al. Does
increased serum d-lactate mean subclinical hyperpermeability of intestinal
barrier in middle-aged nonobese males with OSA? Medicine. (2017)
96:e9144. doi: 10.1097/MD.0000000000009144

15. Mashaqi S, Rangan P, Saleh AA, Abraham I, Gozal D, Quan SF, et al. Biomarkers
of gut barrier dysfunction in obstructive sleep apnea: a systematic review and meta-
analysis. Sleep Med Rev. (2023) 69:101774. doi: 10.1016/j.smrv.2023.101774

16. Prasad KT, Sehgal IS, Agarwal R, Aggarwal AN, Behera DB, Dhooria S.
Assessing the likelihood of obstructive sleep apnea: a comparison of nine screening
questionnaires. Sleep Breath. (2017) 21:909–17. doi: 10.1007/s11325-017-1495-4

17. McNicholas WT, Pevernagie D. Obstructive sleep apnea: transition
from pathophysiology to an integrative disease model. J Sleep Res. (2022)
31:e13616. doi: 10.1111/jsr.13616

18. Fu Y, Xia Y, Yi H, Xu H, Guan J. Yin S.Meta-analysis of all-
cause and cardiovascular mortality in obstructive sleep apnea with or
without continuous positive airway pressure treatment. Sleep Breath. (2016)
21:181–9. doi: 10.1007/s11325-016-1393-1

19. Dopp JM, Reichmuth KJ, Morgan BJ. Obstructive sleep apnea and hypertension:
mechanisms, evaluation, and management. Curr Hypertens Rep. (2008) 9:529–
34. doi: 10.1007/s11906-007-0095-2

20. Shahar, E. Whitney CW, Redline S, Lee ET, Newman AB, Javier
NF, et al. Sleep-disordered breathing and cardiovascular disease. Am
J Respir Crit Care Med. (2001) 163:19–25. doi: 10.1164/ajrccm.163.1.
2001008

21. Alvarez-Sabín J, Romero O, Delgado P, Quintana M, Santamarina E, Ferré A,
et al. Obstructive sleep apnea and silent cerebral infarction in hypertensive individuals.
J Sleep Res. (2017) 27:232–9. doi: 10.1111/jsr.12571

Frontiers inNeurology 08 frontiersin.org30

https://doi.org/10.3389/fneur.2024.1347137
https://doi.org/10.1016/j.gastro.2005.05.002
https://doi.org/10.3390/jcm12030936
https://doi.org/10.1155/2015/219843
https://doi.org/10.1155/2014/768415
https://doi.org/10.1097/MD.0000000000009144
https://doi.org/10.1016/j.smrv.2023.101774
https://doi.org/10.1007/s11325-017-1495-4
https://doi.org/10.1111/jsr.13616
https://doi.org/10.1007/s11325-016-1393-1
https://doi.org/10.1007/s11906-007-0095-2
https://doi.org/10.1164/ajrccm.163.1.2001008
https://doi.org/10.1111/jsr.12571
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


TYPE General Commentary

PUBLISHED 04 March 2024

DOI 10.3389/fneur.2024.1373229

OPEN ACCESS

EDITED BY

Ding Zou,

University of Gothenburg, Sweden

REVIEWED BY

Brandon Nokes,

University of California, San Diego,

United States

Harald Hrubos-Strøm,

Akershus University Hospital, Norway

*CORRESPONDENCE

Carlos O’Connor Reina

carlos.oconnor@quironsalud.es

RECEIVED 19 January 2024

ACCEPTED 12 February 2024

PUBLISHED 04 March 2024

CITATION

O’Connor Reina C, Baptista P and Plaza G

(2024) Commentary: Physical therapy for

sleep apnea: a smartphone application for

home-based physical therapy for patients

with obstructive sleep apnea.

Front. Neurol. 15:1373229.

doi: 10.3389/fneur.2024.1373229

COPYRIGHT

© 2024 O’Connor Reina, Baptista and Plaza.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Commentary: Physical therapy
for sleep apnea: a smartphone
application for home-based
physical therapy for patients with
obstructive sleep apnea

Carlos O’Connor Reina1*, Peter Baptista2 and Guillermo Plaza3,4

1Otorhinolaryngology Department, Hospital Quironsalud Marbella, Marbella, Spain,
2Otorhinolaryngology Department, Clínica Universitaria de Navarra, Pamplona, Spain,
3Otorhinolaryngology Department, Hospital Universitario de Fuenlabrada, Universidad Rey Juan

Carlos, Madrid, Spain, 4Otorhinolaryngology Department, Hospital Sanitas La Zarzuela, Madrid, Spain

KEYWORDS

obstructive sleep apnea, home-based physical therapy, smartphone application,

physical therapy, respiratory muscle training

A Commentary on

Physical therapy for sleep apnea: a smartphone application for

home-based physical therapy for patients with obstructive sleep apnea

by Bui-Diem, K., Hung, C.-H., Zhu, G.-C., Tho, N. V., Nguyen-Binh, T., Vu-Tran-Thien,

Q., To-Truong, D., Ngo-Thanh, H., and Duong-Quy, S. (2023). Front. Neurol. 14:1124059.

doi: 10.3389/fneur.2023.1124059

Background

Obstructive sleep apnea (OSA) is the most common respiratory disease, with an

increasing incidence worldwide. Telemedicine based on smartphone apps to treat this

disease seems worthwhile. Myofunctional therapy is one of the options to treat OSA, and it

has been recommended only for specific cases seeking alternative treatments and who are

reluctant to undertake surgical or mechanical strategies (1).

State of the art

In this journal, a recent manuscript published by Bui-Diem et al. (2) raised some

issues we would like to address here. Our group designed an app called Airway Gym

(3) to treat obstructive sleep apnea (OSA) that promotes proprioceptive rehabilitation

and coordination of the airway muscles (4). This app includes nine exercises based on

myofunctional therapy aimed at improving the tonicity of the various muscles involved

in the pathogenesis of OSA (5). Before each exercise, an animated demonstration and

a video with a real person are shown to the patient (Figure 1) so that they learn how

to perform the exercise. After each exercise, the patient receives visual, acoustic, and

tactile feedback about the success of their performance as a point score. When the patient

finishes the exercises, the results are saved on a networked online storage (in the cloud),
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FIGURE 1

Video of a real person performing an oropharyngeal exercise.

and a therapist can evaluate the patient’s adherence and

performance of the exercises. Users of the app can follow the

progress of their daily activity over time. A chat function is

available through which the patient can contact the therapist

directly. Additional information can be found on the AirwayGym

webpage https://airwaygym.app/en/gymnasts-homepage.

Randomized clinical trial with an app

We have already performed a randomized clinical trial (6)

where the intervention group with severe OSA showed significant

improvements in most metrics of OSA scores. The control

group just performed sham therapy. The apnea-hypopnea index

decreased by 53.4% from 44.7 (range 33.8–55.6) to 20.9 (14.0–

27.7) events/h (p-value <0.001). The oxygen desaturation index

decreased by 46.5% from 36.3 (27.2–43.4) to 19.4 (12.9–26.0)

events/h (p= 0.003). The Epworth Sleepiness Scale score decreased

from 10.3 (8.7–12.2) to 5.4 (3.4–7.3) in the app group (p < 0.001).

Since Eckert (7) defined non-anatomical factors or ’phenotypes’

as crucial determinants of OSA for many people, our group has

focused on investigating those with a weakness in pharyngeal

dilator muscle control known as “Hypotonic.” Studies performed

with our app demonstrated that this was the best phenotype to

improve adherence and receive myofunctional therapy (8).

In their article, Bui-Diem et al. (2) designed an app that, to

the best of their knowledge, is the first application designed to

assist patients with OSA in performing rehabilitation programs

at home. However, they mentioned Airway Gym in their article

and considered it an application for sleep apnea to practice upper

airway muscle strength, although they erroneously mentioned that

the video of our app does not show a real person. Furthermore,

the use of their app (1) is clearly very similar to how we use ours,

and they did not reference any of our works that would support

this assertion.

Conclusion

Webelieve that our app has been underestimated by the authors

and truly was the first designed to perform a rehabilitation program

at home using real-person videos based on enhanced tone and

proprioceptive deficit of upper airway muscles in OSA patients.

Future publications by Bui-Diem et al. should always reference

articles on which they have based their idea; in this case, we

consider it based on the concept from our research.
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Excessive daytime sleepiness is 
associated with relative delta 
frequency power among patients 
with mild OSA
Timothy Howarth 1,2,3,4*, Masoumeh Tashakori 1,4, 
Tuomas Karhu 1,4, Matias Rusanen 1,4,5, Henna Pitkänen 1,4, 
Arie Oksenberg 6 and Sami Nikkonen 1,4

1 Department of Technical Physics, University of Eastern Finland, Kuopio, Finland, 2 Darwin Respiratory 
and Sleep Health, Darwin Private Hospital, Darwin, NT, Australia, 3 College of Health and Human 
Sciences, Charles Darwin University, Darwin, NT, Australia, 4 Diagnostic Imaging Center, Kuopio 
University Hospital, Kuopio, Finland, 5 HP2 Laboratory, INSERM U1300, Grenoble Alpes University, 
Grenoble Alpes University Hospital, Grenoble, France, 6 Sleep Disorders Unit, Loewenstein  
Hospital – Rehabilitation Center, Ra’anana, Israel

Background: Excessive daytime sleepiness (EDS) is a cause of low quality of 
life among obstructive sleep apnoea (OSA) patients. Current methods of 
assessing and predicting EDS are limited due to time constraints or differences 
in subjective experience and scoring. Electroencephalogram (EEG) power 
spectral densities (PSDs) have shown differences between OSA and non-OSA 
patients, and fatigued and non-fatigued patients. Therefore, polysomnographic 
EEG PSDs may be useful to assess the extent of EDS among patients with OSA.

Methods: Patients presenting to Israel Loewenstein hospital reporting daytime 
sleepiness who recorded mild OSA on polysomnography and undertook a 
multiple sleep latency test. Alpha, beta, and delta relative powers were assessed 
between patients categorized as non-sleepy (mean sleep latency (MSL) ≥10  min) 
and sleepy (MSL <10  min).

Results: 139 patients (74% male) were included for analysis. 73 (53%) were 
categorized as sleepy (median MSL 6.5  min). There were no significant differences 
in demographics or polysomnographic parameters between sleepy and non-
sleepy groups. In multivariate analysis, increasing relative delta frequency power 
was associated with increased odds of sleepiness (OR 1.025 (95% CI 1.024–
1.026)), while relative alpha and beta powers were associated with decreased 
odds. The effect size of delta PSD on sleepiness was significantly greater than 
that of either alpha or beta frequencies.

Conclusion: Delta PSD during polysomnography is significantly associated with 
a greater degree of objective daytime sleepiness among patients with mild OSA. 
Further research is needed to corroborate our findings and identify the direction 
of potential causal correlation between delta PSD and EDS.
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excessive daytime sleepiness, MSLT, OSA, ESS, power spectral densities
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Introduction

Excessive daytime sleepiness (EDS) is highly prevalent across 
populations, estimated to affect up to one in five people (1). EDS is 
associated with an increased risk of motor vehicle accidents (2, 3), 
decreased quality of life (4, 5), reduced work productivity (4, 6), and 
significant economic burden (7, 8). In addition, EDS has shown 
significant associations with psychological distress (9, 10), depression and 
bipolar disorder (11–15), and seasonal affective disorder (11). EDS is 
often associated with sleep disorders, such as insomnia, narcolepsy, or 
obstructive sleep apnoea (OSA). Among patients with OSA, a greater 
severity as judged by the apnoea-hypopnoea index (AHI) has been 
associated with EDS (16). Yet, alongside increasing OSA severity there 
appears to be a concurrent increase in comorbidities (17, 18), which are 
also associated with increased daytime sleepiness (19–22), and may thus 
confound the effect of OSA on EDS. However, EDS is common even 
among patients with only mild OSA (AHI 5–15), without concomitant 
insomnia or narcolepsy (16), and a significant proportion of patients who 
are receiving continuous positive airway pressure (CPAP) therapy still 
suffer from EDS (23–25). The current prevailing theory suggests that 
EDS in the context of OSA is caused by a combination of sleep 
fragmentation and intermittent hypoxia, which over time lead to 
neuronal damage (26). Yet, although these markers are less common 
among patients with mild OSA, these patients are still prone to EDS, and 
therefore further exploration into the potential underlying mechanisms 
is warranted. Furthermore, studies which have utilised subjective markers 
of sleepiness have found contradictory results in polysomnographic 
parameters between sleepy and non-sleepy patients (27, 28).

Alternate parameters assessed through polysomnography (PSG) 
are being increasingly investigated for their relationship with 
EDS. Oxygen desaturation severity and power spectral densities 
(PSDs) for example have shown greater correlations with EDS as 
measured via multiple sleep latency tests (MSLTs) mean sleep latency 
(MSL) than either the AHI or the oxygen desaturation index (ODI) 
(29, 30). Although power spectral analyses are commonly used to 
quantify electroencephalogram (EEG) outcomes, the association of 
these with EDS is sparsely reported, though associations with other 
somnolence or psychiatric disorders have been (31–34). Within the 
sleep field, EEG-based PSDs are typically analysed at four frequency 
bands – delta (δ) (0.5–4 Hz), theta (θ) (4–8 Hz), alpha (α) (8–12 Hz), 
and beta (β) (12–30 Hz), though the exact thresholds used between 
studies may differ. Among patients with insomnia, beta frequency 
power has been found to be  higher in non-rapid eye movement 
(NREM) stages, but lower in rapid eye movement (REM) stages 
compared to patients without insomnia (35). Among patients with 
narcolepsy, alpha power has been found to be higher in REM stages 
and delta power lower in NREM stage 1 (N1) compared to controls 
(36). Concerning EDS, one recent study reported increased delta and 
reduced alpha and beta power prior to sleep among patients classified 
as sleepy [Epworth sleepiness scale (ESS) score > 20] compared to 
non-sleepy patients (ESS score < 5) (37). Another reported greater 
alpha power among drowsy compared to non-drowsy patients (also 
assessed via ESS) – though in a resting but non-sleep state (38). To 
date, however, no studies have reported on associations between sleep 
EEG PSDs and objectively measured EDS via MSLTs which may have 
higher generalisability than subjective measures of EDS (39).

Therefore, this study aimed to describe the associations between 
objectively measured EDS and the EEG PSDs assessed over the whole 

night among patients with mild OSA. Based on previous findings in 
different patient populations, we hypothesised that during N3 and 
REM sleep, alpha PSD would be increased, and delta PSD decreased 
among suspected OSA patients with EDS compared to those without. 
Furthermore, we hypothesised there would be a significant positive 
correlation between delta PSD and MSL.

Methods

Dataset

Between the years 2001 and 2011, patients were referred to 
Loewenstein Hospital rehabilitation centre (Raanana Israel) for an 
overnight PSG [level 1 study, analysed with REMbrandt Manager 
System (Medcare CO, Amsterdam, Netherlands) and following day 
MSLT] [following AASM guidelines (40)] based on suspicion for 
OSA alongside complaints of daytime sleepiness. The PSG data were 
rescored for research purposes at Kuopio University Hospital 
according to the AASM 2007 guidelines and clinical practices at the 
time. The MSL was determined by calculating the mean of the four 
nap recordings in the MSLT.

Patient demographic and anthropometric information were 
collected by the sleep technologist prior to the PSG. From the initial 
cohort (n = 937), patients with missing demographic/clinical data 
(n = 104), absence of sleep stage scoring (n = 2), less than 6 h of total sleep 
time (n = 29), or failed MSLTs (n = 10) were excluded from the analysis. 
Furthermore, this study focused on patients with mild OSA (5 ≤ AHI 
<15 events/h), and thus 139 patients were included in the final analysis. 
Patients were categorized as ‘sleepy’ or ‘non-sleepy’ based on their MSL 
with the sleepy group including patients with an MSL <10 min.

EEG processing

Six EEG recordings were conducted across the frontal, central, and 
occipital regions, and the placement of electrodes for these recordings 
followed the International 10–20 System guidelines (41). These signals 
were sampled at 256 Hz and imported to MATLAB 2021b (MathWorks 
Inc., Natick, Massachusetts, United States) for further analysis. The 
central EEG signals (C3-A2 and C4-A1), being more prevalent among 
the patients, were selected for comparison between the sleepy and 
non-sleepy groups. For this purpose, the EEG signals were filtered 
using a fifth-order Chebyshev Type I bandpass filter with 0.3 and 35 Hz 
cutoff frequencies. The filtered signals were divided into 30-s epochs 
according to sleep stages. The analysis included epochs identified as 
light sleep (N1 + N2), deep sleep (N3), and REM.

In frequency domain analyses, the PSD was estimated within each 
30-s epoch by Welch’s method with 50% overlap and employing a 
Hamming window with size 1,000 points. The relative PSDs were 
calculated across various frequency bands, and for this study defined as 
slow oscillation (0.3–1 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), beta (12–30 Hz), and gamma (30–35 Hz). Relative PSDs were 
determined by dividing the PSD values for each specific frequency band 
(alpha, beta, and delta) by the total PSD calculated over the frequency 
range of 0.3 to 35 Hz. Then, the median relative PSDs were calculated 
for each signal in each sleep stage. Based on preliminary results, the 
frequency bands delta, alpha, and beta were selected for further analysis.
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Ethics approval

Data collection and processing were approved by the Ethical 
Committee of the Loewenstein Hospital – Rehabilitation Center 
(0006-17-LOE).

Statistical analysis

The Mann–Whitney U test was used to test for statistically 
significant differences in continuous variables in demographics, 
polysomnography variables (total sleep time, night sleep latency, 
wakening after sleep onset (WASO), percentage time in NREM 
(N1 + N2 + N3) and REM stages, apnoea-hypopnea index, oxygen 
desaturation index (defined as a drop of ≥4%) and time under 90% 
oxygen saturation as a percentage of total sleep time (T90%)), and 
relative EEG frequency band powers between sleepy and non-sleepy 
groups. Furthermore, the Chi-squared test was employed to evaluate 
the statistical significance of categorical values.

To explore the predictive efficacy of EEG PSDs on EDS, six 
binomial logistic regression models were developed utilising relative 
PSD in each frequency band (alpha, beta and delta in both C3A2 and 
C4A1 channels) as the primary predictor. For the regression analyses, 
the relative band powers were scaled to the range of 0 to 100 by 

multiplying the values by 100 to make reported odds ratios (ORs) and 
95% confidence intervals (CIs) more easily interpretable and 
comparable. The models were adjusted for age, sex, BMI, REM, and 
T90. Due to potential multiple comparison issues, a p-value threshold 
of 0.01 was considered for statistical significance. Post-hoc Wilcoxon 
tests were employed to compute the effect size and to allow comparisons 
of effect between frequency bands (alpha, beta, and delta) and between 
the C3A2 and C4A1 channels. The Wilcoxon effect size was calculated 
as the z-statistic dividing by the square root of the sample size.

Results

Of the 139 patients with mild OSA included, 66 (47%) were 
categorised as non-sleepy (median MSL = 14 min) and 73 (53%) as 
sleepy (median MSL = 6.5 min). Patients in the sleepy and non-sleepy 
groups were predominantly males; however, there was a statistically 
significant difference in gender distribution between the groups 
(p = 0.007; Table  1). Sleep architecture, AHI and ODI did not 
significantly differ between sleepy and non-sleepy groups.

Significant differences in relative PSDs between sleepy and 
non-sleepy patients were noted in each sleep stage, in both C3A2 
and C4A1 channels (Figure  1, values provided in 
Supplementary Table S1). During N1 + N2 stages sleepy patients 

TABLE 1  Demographic data and sleep characteristics of sleepy and non-sleepy groups.

Demographic

All patients (n =  139) Non-sleepy (n =  66) Sleepy (n =  73) p-value

Age (years) 51 (42–57) 51 (42–58) 50 (44–57) 0.86

Male n (%) 103 (74.1%) 42 (63.6%) 61 (83.5%) 0.007

BMI (Kg/m2) 28.9 (26.3–32.6) 28.9 (26.5–32.9) 29.1 (25.9–31.5) 0.71

Normal weight

(18.5 ≤ BMI < 25)
19 (13.7%) 9 (13.6%) 10 (13.7%)

0.99

Overweight (25 ≤ BMI < 30) 59 (42.4%) 28 (42.4%) 31 (42.5%) 0.10

Obese (BMI ≥ 30) 61 (43.8%) 29 (43.9%) 32 (43.8%) 0.99

Polysomnography

Total sleep time (min) 405 (390.6–420.2) 400.2 (391.0–419.5) 407 (390.4–421.1) 0.50

Night sleep latency (min) 8.1 (5.0–13.4) 9.4 (4.9–19.5) 7.5 (5.0–10.5) 0.02

WASO (min) 22 (11.6–43.8) 22.2 (11.0–46.5) 22.0 (12.8–38.2) 0.91

Wake (%) 8.2 (4.6–14.5) 9.4 (4.6–15.6) 8.0 (4.9–11.6) 0.45

N1 (%) 1.8 (0.4–3.5) 1.8 (0.2–3.5) 1.9 (0.5–3.5) 0.54

N2 (%) 48.1 (42.6–55.5) 48.4 (40.8–56.2) 48.0 (43.3–55.4) 0.83

N3 (%) 20.6 (15.4–26.4) 19.8 (14.5–26.6) 20.7 (17.0–25.8) 0.72

NREM (%) 72.0 (67.3–77.3) 72.1 (64.8–77.5) 71.9 (69.2–77.0) 0.95

REM (%) 18.1 (13.9–21.4) 17.7 (13.3–23.1) 18.3 (14.5–21.0) 0.32

AHI (events/h) 9.8 (7.4–12.9) 9.8 (7.3–12.9) 9.8 (7.6–12.6) 0.83

ODI (events/h) 6.8 (3.9–11.0) 6.6 (3.5–11.7) 6.9 (4.1–10.4) 0.80

T90 (%) 0.3 (0.1–1.9) 0.4 (0.1–1.9) 0.2 (0.1–1.6) 0.84

MSLT

MSL (min) 9.5 (6.4–13.9) 14.0 (11.8–16.6) 6.5 (5.1–8.1) 3e-24

Statistical significance was calculated with the Mann–Whitney U test (for continuous variables) or the Chi-squared test (for categorical variables). Bolded values were considered significant  
(p-values<0.01). All parameters are presented as median (IQR). AHI, apnea-hypopnea index; BMI, body mass index, IQR, Interquartile range; MSL, mean sleep latency; MSLT, Multiple sleep latency 
test; NREM, non-rapid eye movement sleep; ODI, oxygen desaturation index; REM, rapid eye movement sleep; T90%, percent sleep time below 90% oxygen saturation; WASO, Wake after sleep onset.

36

https://doi.org/10.3389/fneur.2024.1367860
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Howarth et al.� 10.3389/fneur.2024.1367860

Frontiers in Neurology 04 frontiersin.org

showed significantly higher delta power, and reduced alpha and beta 
power, though the reduced alpha was only evident in the C3A2 
channel. Among sleepy patients, the C3A2 channel showed 
significantly higher delta power, and lower alpha and beta power 
than the C4A1 channel. Among non-sleepy patients however, 
though the delta power in C3A2 was significantly higher than in the 
C4A1, the beta power was also significantly greater in C3A2, with 
no difference in alpha power between channels. Similar results were 
seen in N3 stage, with sleepy patients showing significantly increased 
delta, and reduced alpha and beta, though the reduced beta was this 
time seen only in the C4A1 channel. For both sleepy and non-sleepy 
patients, delta power was higher in C3A2 compared to C4A1, while 
alpha and beta powers were lower. In REM stage, sleepy patients had 
higher delta power, and lower alpha and beta power compared to 
non-sleepy patients. There was no significant difference in delta 
power between channels, however alpha and beta power were 
significantly reduced in the C3A2 channel.

In multivariate binomial regression (adjusted for age, sex, REM, 
BMI & T90%) relative PSDs at each frequency band showed significant 
associations with odds for EDS. Increased delta power PSD 
significantly increased odds of EDS while increased alpha and beta 
powers significantly decreased the odds for EDS (Tables 2, 3).

The effect size of delta frequency PSDs was significantly stronger 
in both C3A2 and C4A1 channels than that of either alpha [mean 
overall difference C3A2 0.824 (95% CI 0.822, 0.827)) or beta (mean 
overall difference C3A2 0.827 (95% CI 0.824, 0.830)] (Table 4). The 
effect size of alpha PSD was significantly larger than that of beta 
overall and in all stages. Furthermore, within the C3A2 channel, for 
N3 and REM sleep the difference in effect size between alpha and beta 
was significantly greater than for N1 + N2 stages – however in the 
C4A1 channel the effect size difference was significantly smaller in N3 
compared to N1 + N2 and REM. As well as significant differences in 
effect sizes between frequencies, there were significant differences in 
effect sizes between channels within all frequency bands. The effect 

FIGURE 1

Comparison of the relative electroencephalogram power spectral densities (PSD) between sleepy and non-sleepy groups in N1  +  N2, N3, and REM for 
C3A2 and C4A1 channels. p  <  0.01  =  *.
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size within the C4A1 channel was significantly smaller than the C3A2 
for each frequency. For the beta frequency particularly, the effect size 
difference between channels was anywhere from two to five-fold 
greater than for the alpha and delta frequency bands.

Discussion

In this study, among patients with mild OSA, patients with a 
MSL < 10 min showed significantly higher relative PSDs in the delta 
frequency band and significantly lower PSDs in the alpha and beta bands 
compared to less sleepy patients. These differences in relative PSDs were 
consistent across sleep stages, with noted hemispherical differences. In 
multivariate models’ PSDs remained significant, independent predictors 
for EDS. However, the effect size associated with the delta frequency 

band was significantly greater than that of either the alpha or beta 
frequency bands. We chose to analyse patients with mild OSA, as EDS 
remains common among these patients despite a lower presence of 
hypoxia and sleep fragmentation, and therefore other models must 
be developed to understand and explain the underlying mechanics of 
EDS (26). Furthermore, previous studies have identified differences in 
polysomnographic variables among patients with mild OSA between 
those subjectively assessed as sleepy and non-sleepy (27, 28).

Delta waves are strongly associated with the intensity of sleep and 
are known to appear with greater power following periods of sleep 
deprivation, such that they are considered a marker of sleep drive (34, 
42–44). As such it is plausible that excessive daytime sleepiness leads to 
stronger delta wave activity during the night as opposed to causality in 
the other direction. A previous study identified similar results, among 
patients with chronic fatigue syndrome, who were shown to have 
significantly increased relative delta power (45). Although the patients 
in the previous study were not ‘sleepy’ as those in the current study but 
rather ‘fatigued’, there is some overlap between fatigue and sleepiness. 
Morisson et al. (46) and Xirometris et al. (47) also reported significantly 
greater relative delta power among patients with OSA compared to 
controls, with Xirometris et al. further reporting a significant positive 
correlation between relative delta power and ESS score. However, some 
key differences are noted in the current study – neither of these previous 
studies found a significant association between OSA/sleepiness and 
delta power in the central region specifically, whereas our study did so. 
Furthermore, our study also found significant differences in alpha and 
beta powers, whereas the previous studies did not. This may be due to 
differences in patient selection, with the current study recruiting patients 
with OSA and complaints of daytime sleepiness and comparing between 
those with an MSL <10 min, and those with an MSL ≥10 min, while the 
previous studies compared patients with OSA to controls without 
OSA. Furthermore, all patients in this study were referred on the basis 
of self-reported sleepiness, and as such our “non-sleepy” patients can 
only be considered so in this particular population context and are not 
relatable to “non-sleepy” individuals in the general population, nor to 

TABLE 2  Odds ratios (ORs) of being sleepy based on relative EEG band powers.

Channel Predictors Delta Alpha Beta

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

C3A2 Age (unit - 1 year) 1.009 (1.008–1.010) <0.001 1.007 (1.006–1.008) <0.001 1.008 (1.007–1.009) <0.001

BMI (unit - 1 kg/m2) 1.035 (1.033–1.037) <0.001 1.030 (1.029–1.032) <0.001 1.030 (1.028–1.032) <0.001

Sex (male) 4.283 (4.142–4.429) <0.001 4.034 (3.903–4.170) <0.001 4.134 (3.998–4.274) <0.001

REM 1.108 (1.072–1.146) <0.001 0.967(0.936–0.999) 0.049 1.036 (1.002–1.072) 0.037

T90% (unit - %) 1.039 (1.037–1.041) <0.001 1.036 (1.034–1.038) <0.001 1.035 (1.033–1.037) <0.001

Corresponding PSD (unit 

– 1% in scaled range)

1.025 (1.024–1.026) <0.001 1.001 (0.998–1.003) 0.594 0.983 (0.981–0.985) <0.001

C4A1 Age (unit - 1 year) 1.008 (1.007–1.011) <0.001 1.007 (1.006–1.008) <0.001 1.008 (1.007–1.009) <0.001

BMI (unit - 1 kg/m2) 1.036 (1.034–1.038) <0.001 1.032 (1.031–1.034) <0.001 1.036 (1.033–1.038) <0.001

Sex (male) 4.438 (4.291–4.591) <0.001 4.118 (3.984–4.257) <0.001 4.481 (4.332–4.634) <0.001

REM 1.078 (1.043–1.114) <0.001 0.987 (0.955–1.021) 0.460 1.093 (1.058–1.131) <0.001

T90% (unit - %) 1.041 (1.038–1.043) <0.001 1.035 (1.033–1.037) <0.001 1.035 (1.033–1.037) <0.001

Corresponding PSD (unit - 

100)

1.027 (1.026–1.028) <0.001 0.989 (0.986–0.992) <0.001 0.970 (0.968–0.971) <0.001

Binomial logistic regression analyses were adjusted for age, BMI, sex, REM, and T90%. BMI, body mass index; CI, Confidence interval; OR, odds ratio; PSD, Power spectral density; REM, 
Rapid eye movement; T90%, percentage of total sleep time under 90% oxygen saturation.

TABLE 3  Odds ratios (ORs) of being sleepy for univariate binomial 
regression.

Predictors OR (95% CI) p-value

Age (unit - 1 year) 1.002 (1.001–1.004) <0.001

BMI (unit - 1 kg/m2) 1.015 (1.013–1.016) <0.001

Sex (male) 2.977 (2.890–3.067) <0.001

REM 0.960 (0.931–0.991) 0.011

T90% (unit - %) 1.028 (1.026–1.029) <0.001

Corresponding PSD 

(unit – 1% in scaled 

range)

Delta_C3A2 1.016 (1.015–1.017) <0.001

Alpha_C3A2 0.994 (0.992–0.996) <0.001

Beta_C3A2 0.991 (0.988–0.993) <0.001

Delta_C4A1 1.017 (1.016–1.018) <0.001

Alpha_C4A1 0.989 (0.987–0.992) <0.001

Beta_C4A1 0.979 (0.978–0.981) <0.001

BMI, body mass index; CI, Confidence interval; OR, odd ratios; PSD, Power spectral density; 
REM, Rapid eye movement; T90%, percent sleep time below 90% oxygen saturation.

38

https://doi.org/10.3389/fneur.2024.1367860
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Howarth et al.� 10.3389/fneur.2024.1367860

Frontiers in Neurology 06 frontiersin.org

those perhaps in other studies. This may also be underlying the very 
small odds ratios noted for all factors other than sex in the 
multivariate models.

It has been reported that absolute power increases across all 
frequencies in response to apnoeic events (48), thus one would expect 
to see differences in absolute band powers between patients with a 
greater AHI and those with a lower AHI, but differences in relative 
band powers may not be visible. In the current study however, there 
was no significant difference in the AHI between sleepy and 
non-sleepy groups. Additionally, there are inconsistencies within the 
literature regarding the thresholds to be used for frequency analyses 
which may vary by up to 2 Hz in either direction from AASM stated 
thresholds of 4 Hz, 8 Hz & 13 Hz (32, 47, 49–51), which may in part 
explain differences in significance and effect size of findings.

Hemispheric coherence has previously been reported to be high in 
EDS patients (52). Yet, in the current study we  noted significant 
differences between the C4A1 & C3A2 channels in both sleepy and 
non-sleepy patients, and in each of N1 + N2, N3 and REM sleep stages. 
Delta frequency relative power was lower in C4A1 compared to C3A2, 
whereas alpha and beta frequency powers were higher in C4A1 
compared to C3A2. It has been reported that during sleep onset and at 
lower levels of arousal the right hemisphere is dominant (53), yet 
we noted increased delta activity and reduced alpha and beta in the right 
hemisphere. Furthermore, we noted statistically significant differences 
in the effect size for predicting EDS between C4A1 and C3A2 channels 
in each of N1 + N2 & N3, for all frequency bands (Table  4). The 
differences were relatively small, with a combined sleep stage difference 
of 0.081 (0.078, 0.084) in the delta frequency and 0.051 (0.048, 0.054) in 
the alpha frequency. However, the difference in the beta frequency was 
significantly larger, at 0.198 (0.195, 0.201). Further research is needed to 
define if hemispheric coherence is an important aspect of EDS.

Differing brain wave patterns have been noted between patients 
with insomnia, narcolepsy and a variety of other psychiatric disorders 

in comparison to controls. A greater beta power density has been 
noted during NREM among insomnia patients compared to healthy 
sleepers (35, 54), while patients with narcolepsy show higher alpha 
power in REM than controls (36). Seemingly in contrast, the results 
from the current study show increasing alpha and beta power, 
regardless of sleep stage, are associated with significantly reduced odds 
of EDS – highlighting a potential difference in the way these disorders 
manifest on the EEG. This may be due to the use of relative as opposed 
to absolute PSDs within which the heightened delta power obscures 
the ‘true power’ of the other frequency bands. However, as alpha 
power is associated with relaxed wakefulness, and beta power with 
active wakefulness it stands to reason that these frequencies would 
be lower among ‘sleepy’ patients. Additionally, among patients with 
sleep disordered breathing, symptoms of both depression and 
paranoid ideation have been associated with greater absolute power of 
slow oscillations (defined in the cited study as 0.5–1 Hz) (55). Previous 
research has shown a significant association between depression and 
EDS (15), which may contribute to why in the current study, 
increasing delta power was associated with increased odds for EDS.

Another novel method of assessing the correlation between EEG 
signals and EDS is the odds ratio product (ORP) (56, 57). The ORP 
differs from PSDs in several key ways. First, in PSDs delta frequency 
range typically used is 0.5-4 Hz, whereas in the ORP the thresholds 
used for the lower frequencies are 0.33–2.33 Hz and 2.33–6.7 Hz. 
Secondly the ORP is calculated in 3-s intervals compared to the 30 s 
epochs of the PSDs. Finally, the ORP is defined against an external 
reference standard (56 clinical PSGs including patients with a range 
of sleep disorders) while relative PSDs are normalised within each 
patient (56). The ORP is overall a more complex measure, showing 
the relationship of the powers of different EEG frequencies within a 
single index, while in comparison PSDs show the power of a single 
frequency range. Given that there are large interindividual 
differences in power spectra, the relative PSDs will also differ 

TABLE 4  Mean differences in effect size within multivariate binomial regression between alpha, beta and delta frequencies for channels C3A2 and 
C4A1, and between channels for each of alpha, beta, and delta.

Wilcoxon effect size difference (95% CI)

Channel Sleep Stages Delta vs. Alpha Alpha vs. Beta Delta vs. Beta

C3A2 N1 + N2 0.859 (0.855–0.863) 0.031 (0.027–0.035) 0.847 (0.84–0.851)

N3 0.865 (0.859–0.872) 0.374 (0.367–0.380) 0.865 (0.858–0.871)

REM 0.859 (0.853–0.866) 0.380 (0.373–0.387) 0.836 (0.828–0.843)

All sleep stages 0.824 (0.822–0.827) 0.033 (0.030–0.036) 0.827 (0.824–0.830)

C4A1 N1 + N2 0.861 (0.857–0.865) 0.232 (0.228–0.236) 0.795 (0.791–0.799)

N3 0.865 (0.858–0.872) 0.054 (0.047–0.060) 0.821 (0.814–0.827)

REM 0.858 (0.852–0.865) 0.496 (0.490–0.504) 0.767 (0.761–0.774)

All sleep stages 0.830 (0.827–0.833) 0.222 (0.219–0.225) 0.774 (0.771–0.777)

C3A2, C4A1 All sleep stages 0.827 (0.825, 0.829) 0.130 (0.128–0.132) 0.801 (0.799–0.803)

Delta Alpha Beta

N1 + N2 0.108 (0.104–0.113) 0.038 (0.034–0.043) 0.193 (0.188–0.197)

N3 0.141 (0.135–0.147) 0.124 (0.118–0.131) 0.295 (0.288–0.301)

REM 0.039 (0.032–0.046) 0.111 (0.104–0.117) 0.256 (0.249–0.263)

All sleep stages 0.081 (0.078–0.084) 0.051 (0.048–0.054) 0.198 (0.195–0.201)

All sleep stages 0.043 (0.041–0.044)

CI, Confidence interval; N1/N2/N3; non-rapid eye movement stage 1/2/3; REM, rapid eye movement.
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significantly based on the profile of the population under study (58). 
As yet however, although the ORP has shown to be significantly 
associated with ESS scores, no studies have utilised it to compare to 
following day MSLTs (59). Overall, given the novelty of the ORP, 
there is little literature testing the association between it and 
measures of sleepiness.

Limitations

Patients recruited into this study self-reported subjective sleepiness, 
and thus, although they were divided into two groups based on 
objectively assessed MSL, there is a significant difference between the 
‘non-sleepy controls’ in this study (who showed a median MSL of 
14.5 min), and what may be considered ‘non-sleepy/healthy controls’ in 
the general population. Furthermore, we utilised a 10 min MSL cut-off 
for sleepy/non-sleepy groups, which differs from the 8 min cut-off used 
in the AASM criteria for narcolepsy, nor did we consider any REM 
periods during the MSLT. This study excluded patients with moderate 
or severe OSA, which counted for 82.5% of the patient sample with 
demographic information, acceptable EEGs and successful MSLTs, and 
therefore introduced selection bias – thus these results apply only to 
mild OSA and cannot be generalised to OSA more broadly. The utilised 
dataset also lacked clinical comorbidity and medication data, which 
would have significant impacts on EDS and/or EEG activity. 
Furthermore, we did not have information on whether patients smoked, 
consumed caffeine, or drank alcohol prior to the sleep study, nor did 
we  have available any measure of subjective sleepiness such as the 
ESS. Additionally, as was explored above, relative powers were used in 
the current study, and this may limit generalisability and comparison 
to other studies which used absolute powers, or other power 
transformations. Finally, the overnight polysomnography occurred on 
only the single occasion, and thus may be limited by the first night effect 
and the patients state of sleep deprivation prior to the sleep study.

Conclusion

These results show that there are significant differences in PSDs 
between sleepy and non-sleepy patients with mild OSA as measured 
objectively via MSLT. Sleepy patients with mild OSA show significantly 
greater intensity of slow waves during the night, and correspondingly 
lesser intensity of fast waves, even after accounting for sleep stages, 
and other polysomnographic and demographic parameters. 
Furthermore, there appear to be  hemispherical differences in 
frequency band powers among patients with EDS compared to less 
sleepy patients. Further research is needed to corroborate our findings, 
and to assess both the impact of a greater severity of OSA and the 
influence of potential confounders such as cardiorespiratory 
comorbidities on these results.
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Latent profile analysis of
depression in US adults with
obstructive sleep apnea
hypopnea syndrome
Enguang Li †, Fangzhu Ai †, Chunguang Liang*, Qing Chen,
Ying Zhao, Kaiyan Xu and Jie Kong

Department of Nursing, Jinzhou Medical University, Jinzhou, China
Objective: This study used latent profile analysis to explore the level of

depression among US adults with obstructive sleep apnea hypopnea syndrome

(OSAHS) symptoms and to identify different latent categories of depression to

gain insight into the characteristic differences between these categories.

Methods: The data of this study were obtained from the National Health and

Nutrition Examination Survey (NHANES) database, and the subjects with OSAHS

symptoms were aged 18 years and older. The latent profile analysis (LPA) method

was used to fit the latent depression categories in subjects with OSAHS

symptoms. The chi-square test, rank sum test, and binary logistic regression

were used to analyze the influencing factors of depression subgroups in subjects

with OSAHS symptoms.

Results: Three latent profiles were identified: low-level (83.7%), moderate-level

(14.5%) and high-level (1.8%) depression. The scores of 9 items in the high-level

depression group were higher than those in the other two groups. Among them,

item 4 “feeling tired or lack of energy” had the highest score in all categories.

Conclusion: Depression in subjects with OSAHS symptoms can be divided into

low-level, moderate-level and high-level depression. There are significant

differences among different levels of depression in gender, marital status, PIR,

BMI, smoking, general health condition, sleep duration and OSAHS

symptom severity.
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Introduction

Obstructive sleep apnea hypopnea syndrome (OSAHS) is a

chronic sleep-disordered breathing disease. It is characterized by

recurrent collapse or obstruction of the upper airway during sleep,

resulting in intermittent hypoxia (IH) and hypercapnia (1). This

situation greatly increases the risk of multiple psychiatric disorders

in subjects with OSAHS symptoms (2). According to the current

study, the prevalence of OSAHS in the adult population of the

United States ranges from approximately 2% to 14%. It is higher, up

to 20%, in individuals over the age of 60 years (3). As of 2019, nearly

1 billion people worldwide are affected by OSAHS, and the

prevalence in some countries even exceeds 50%. Of those affected,

China has the most significant number, followed by the United

States, Brazil and India (4). In addition, subjects with OSAHS

symptoms may face a range of severe affective disorders, which

may lead to cognitive decline and have the potential to trigger

permanent brain damage (3).

Depression is one of the most common affective disorders and a

major related cause of the global burden of mental illness (5). It is

characterized by mental symptoms such as low mood, loss of interest,

difficulty sleeping, pessimism, and low sense of worth (6, 7).

Depression is particularly prevalent in subjects with OSAHS

symptoms. According to Melanie Harris et al., in a sleep clinic

sample, the incidence of depression in subjects with OSAHS

symptoms ranges from 21% to 41% (8). In addition, a longitudinal

study by Chen Yihua et al. also confirmed the causal relationship

between OSAHS and depression. That is, OSAHS may lead to the

occurrence of depression (9). The mechanism of OSAHS causing

depression may involve the initiation or aggravation of the

pathological process of cerebral small vessel disease (C-SVD) and

blood-brain barrier (BBB) dysfunction, thus inducing the occurrence

of depression (10). The occurrence and development of depression

can also affect the mental health of subjects with OSAHS symptoms,

which may lead to decreased sleep quality and poor mental state, thus

aggravating the symptoms of OSAHS.

Previous studies mainly focused on exploring the influence of

different factors on depression in subjects with OSAHS symptoms,

including age, gender, OSAHS symptom severity, and other related

factors (11–14). However, these studies all used depression as a

variable to diagnose the presence of depression or to assess the

severity of depression by assessing the total score of the scale or by

setting a cut-off value. However, this approach does not fully reflect

the reality of the situation. It ignores the intrinsic characteristics of

individuals, and there may be specific subgroups that have not yet

been identified. To better understand, we need to take a person-

centered approach, observe the relationship of relevant variables

among participants, and identify subgroups of individuals based on

their response patterns to a set of variables (15).

Latent profile analysis (LPA) is a human-centered statistical

method used to identify potential, unobserved subgroups or latent

profiles in the data. It aims to discover potential, relatively unique

groups in the data that show different patterns or characteristics on
Frontiers in Psychiatry 0244
the observed variables. LPA is often used to study latent types or

subgroups in a population to understand the data better and

provide personalized intervention or treatment options (16). In

healthcare, LPA has been widely used in a variety of studies, one of

which includes the field of sleep medicine (17–19). For example,

Wan-Ju Cheng et al. analyzed the endotypes of OSAHS symptoms

and found three clusters of pathological endotypes in patients with

moderate to severe OSAHS, each of which showed different

polysomnographic features and clinical symptom characteristics

(20). However, to our knowledge, no study has used LPA to

investigate depression in subjects with OSAHS symptoms.

Therefore, the primary goal of this study was to use the LPA

approach for depression subtype identification in subjects with

OSAHS symptoms in the United States to address patient

heterogeneity. Secondly, the secondary objective was to

investigate the influencing factors of different subtypes of

depression to gain insight into the characteristics and related

factors of depression in subjects with OSAHS symptoms.
Methods

Study participants

The data used in this study were obtained from the US National

Health and Nutrition Examination Survey (NHANES) database.

Because this study focused only on subjects with OSAHS

symptoms, we chose the sleep questionnaire that included the

year in which the question was asked: “How often do you snort/

stop breathing?” while years in which the question was not

mentioned were excluded. Finally, we selected data from the

NHANES database for 2005-2006, 2007-2008, 2015-2016, and

2017-2018 as the sample for this study. This study’s original

number of participants was 21748, all aged 18 years and older.

After excluding missing values for depression scales, the sample size

was reduced to 19643. Subsequently, after excluding missing values

of other relevant variables, 3352 subjects were finally included. The

sample screening procedure is shown in Figure 1. NHANES survey

data can be obtained at https://wwwn.cdc.gov/nchs/nhanes/

analyticguidelines.aspx.
Measures

Socio-demographic variables
In this study, we used the ratio of family income to poverty

(PIR) as the reference standard to measure family income situation.

Those with PIR ≤ 1.3 were identified as low-income. However, those

with PIR>1.3 were considered a non-low-income population. In

addition, we used body mass index (BMI) as a measure of obesity,

which was divided into four categories: underweight (BMI, <18.50),

normal (18.50 to 24.99), overweight (25.00 to 29.99), and obese

(BMI, ≥30).
frontiersin.org

https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx
https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx
https://doi.org/10.3389/fpsyt.2024.1398669
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Li et al. 10.3389/fpsyt.2024.1398669
Health behavior variables
Alcohol consumption was categorized into three categories:

never, light, and heavy drinking. Never drinking was defined as

having a drinking frequency of zero or never drinking in the past 12

months. Light drinking was defined as 1-36 drinks in the previous

12 months, or at least 1-2 drinks per year and up to 2-3 drinks per

month. Heavy drinking was defined as drinking more than 37 times

in the previous 12 months or drinking at least once a week and up to

once a day.

Smoking status was determined based on the subjects’ responses

to two questions: “Have you ever smoked more than 100 cigarettes

in your lifetime?” and “Do you currently smoke?”. A response of

“no more than 100 cigarettes in his lifetime and no current smoker”

was defined as never smoking. A response of “smoking more than

100 cigarettes in a lifetime and not currently smoking” was defined

as ever smoking. Answering “smoking more than 100 cigarettes in

one’s life and now smoking every day, or smoking more than 100

cigarettes in one’s life and now smoking on a few days” was defined

as current smoking.

Health status variables
The diagnosis of diabetes was based on self-reported judgments

of the subject’s responses to the following questions: “Ever been told

by a doctor or health professional that you have diabetes or sugar

diabetes?”. A response of “yes” was defined as having diabetes, while

“no” and “Borderline” were defined as not having diabetes.

General health condition was based on subjects’ responses to “I

have some general questions about your health” and “Would you

say your health in general is?” The responses to these two questions

are defined. Excellent, very good, and good were all defined as good

health. Fair was defined as general health status. Poor was defined as

poor health.
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Sleep-related variables
We used seven and nine hours as cut-off points for determining

the length of sleep (21, 22). Specifically, sleep duration less than 7

hours was defined as short, sleep duration between 7 and 9 hours

was defined as normal, and sleep duration more than 9 hours was

defined as long.

OSAHS symptom severity was assessed based on self-report of:

“In the past 12 months, how often did you snort, gasp, or stop

breathing while you were asleep?”. The selection “Rarely” was

recorded as “mild OSAHS symptom,” “Occasionally,” as

“moderate OSAHS symptom,” and “Frequently” as “severe

OSAHS symptom.”

Depression
The Patient Health Questionnaire-9 (PHQ-9) is a commonly

used self-rating scale to diagnose depression and assess its severity.

Each item on the scale was scored using a Likert four-point scale of

0 (not at all), 1 (a few days), 2 (more than half a day), and 3 (almost

every day).The total score ranges from 0 to 27, with higher scores

indicating more significant depression. At present, the PHQ-9 has

been widely validated in multiple domains, and the results show

that the scale has good reliability and validity (23–25). In the

present study, the Cronbach alpha coefficient of the PHQ-9, a

measure of depression, was 0.858.The assignment of each variable is

shown in Table 1.
Statistical analysis

Stata 17.0 (StataCorp LLC, USA) software was used to screen,

extract, and combine the NHANES data, and Mplus 8.3 (Muthen

and Muthen)and SPSS 25.0 (IBM Corp) software were used for

statistical analysis. SPSS 25.0 software was used for statistical

description and analysis during data analysis. Quantitative data

with normal distribution were expressed as mean ± standard

deviation (M ± SD). We used frequency (n) and percentile (%)

for representation for qualitative data.

In this study, latent profile analysis of the nine items of the

PHQ-9 scale was performed using Mplus 8.3 software. We analyzed

latent class by gradually increasing the number of latent classes

starting from 1 and simultaneously testing the models’ fit index with

different classes. We selected the best-fitting model by comparing

the fitting indexes of different models. In selecting the best fitting

model, we mainly considered the following model fit indicators:

sample corrected aBIC (adjusted BIC, aBIC), Lo-Mendell-Rub test

(LMRT) and Entropy were used to evaluate the accuracy of

classification. Generally, smaller aBIC values indicate a better

model fit (26). We evaluated the classification accuracy using

Entropy, which ranges from 0 to 1. When the value of Entropy is

closer to 1, the classification is more accurate. In general, when

Entropy is greater than or equal to 0.8, the classification accuracy is

above 90% (27). BLRT is used to test whether the difference between

the K category model and the k-1 category model is significant.

When their value is less than 0.05, the K category model has a more
FIGURE 1

The flowchart of the population screening process. Further analysis:
Sample size remaining after excluding missing values from
depression questionnaires.
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substantial improvement in fit compared with the k-1 category

model (28). In this study, we will make a comprehensive judgment

based on the above fitting indicators to determine the best

classification model.

We will use the latent category of depression derived using LPA

as the dependent variable when performing univariate analyses. We

will use the chi-square test and the Kruskal-Wallis H test for

categorical variable comparisons for statistical analysis. For

continuous variables that follow a normal distribution, we will

use one-way ANOVA for statistical analysis. The variables with

statistically significant differences were included in multiple logistic

regression analyses to analyze the influencing factors of depression

categories in subjects with OSAHS symptoms. A two-sided p-value

of less than 0.05 was considered statistically significant.
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Results

Baseline characteristics

The subjects with OSAHS symptoms in this study were mainly

male, accounting for 61.4% of the total sample size. Among them,

3352 subjects with OSAHS symptoms ranged from 20 to 85 years,

with an average age of 51.0 (SD = 15.942). The primary

characteristics of the participants were mainly Non-Hispanic

White (44.7%), married (57.3%), obese (50.1%), never smoking

(45.2%), and normal sleep duration (58.1%). Most patients had

Some college or AA education degree (31.9%), and most had mild

OSAHS symptoms (47.0%). Most of the patients were non-low-

income people with good income (72.4%), drank alcohol lightly

(68.6%), and self-rated general health condition was good (71.0%).

Detailed demographic information of the participants is provided

in Table 2.
Results of latent profile analysis

In this study, latent profile analysis was performed on the nine

items of the PHQ-9 questionnaire, and one to five latent categories

were fitted sequentially. The fitting indices of different types of

profile models are shown in Table 3. The observations showed that

Profiles 4 and 5 had P values of LMRT probability greater than 0.05,

indicating that they did not reach the significance level and were

therefore excluded. At the same time, the aBIC value of Profile 3 is

lower than that of Profile 1 and Profile 2, which is more in line with

the optimal criteria. Finally, we also need to consider the entropy

value. The entropy value of Profile 3 is closer to 1 than Profile 1 and

Profile 2, so Profile 3 has the best classification effect. Taking the

above analysis together, it can be concluded that Profile 3 is the

optimal model.

In order to verify the reliability of the above latent profile

analysis results, we calculated the average attribution probability of

the three class samples in each class. The results showed that the

correct classification probability of the latent class 1 was 99.2%, the

latent class 2 was 96.4%, and the latent class 3 was 100.0%. These

probabilities are all greater than 90%, indicating that the results of

latent profile analysis in this study are relatively reliable. See Table 4

for details.
Naming of latent profile

According to the LPA results, the mean feature scores of each of

the nine items in the PHQ-9 are plotted in Figure 2. Profile 1 scored

significantly lower than Profile 2 and 3 on each item. This group

comprised 83.7% of the participants, so we named it “low-level

depression” based on its score characteristics. In Profile 2, the score

of item 9 was similar to that of Profile 1, and the scores of the

remaining eight items were between Profile 1 and Profile 3,

accounting for 14.5%. Therefore, we named it “moderate-level

depression.” The scores of all items of Profile 3 were significantly
TABLE 1 Independent variable assignment.

Predictive
factors

Assignment

Gender “Male” = 1, “Female” = 2

Age Original value entry

Race “Mexican American” = 1, “Other Hispanic” = 2,
“Non-Hispanic White” = 3, ”Non-Hispanic Black “ = 4,

”Other Race” = 5

Education level “Less than 9th grade” = 1, “9-11th grade” = 2,
“High school graduate” = 3, ”Some college or AA degree “ =

4, ”College graduate or above” = 5

Marital status “Married” = 1, “Widowed” = 2, ”Divorced” = 3,
“Separated” = 4, ”Never married” =5,

“Living with a partner” = 6

PIR “Low-income(PIR ≤ 1.3)” = 1,
“Non-low-income(PIR ≤ 1.3)” = 2

BMI “Underweight(BMI<18.50)” = 0,
“Normal weight(18.50~24.99)” = 1,
“Overweight(25.00~29.99)” = 2,

“Obese(BMI≥30) “ = 3

Alcohol
consumption

“Never (0)” = 0, “Light(1~36/6~10)” = 1,
“Heavy(≥37/1~5)” = 2

Smoking “Never smoked” = 0, “Ever smoked” = 1,
“Currently smoked” = 2

Hypertension “Yes” = 1, “No” = 0

Diabetes “Yes” = 1, “No” = 0

Asthma “Yes” = 1, “No” = 0

Coronary
disease

“Yes” = 1, “No” = 0

General
health

condition
“Good(1~3)” = 1, “Fair(4)” = 2, ”Poor(5)” = 3

Sleep duration “Short(<7 hours)” = 1, “Normal(7~9 hours)” = 2, ”Long(>9
hours)” = 3

OSAHS
symptom
severity

“Mild(1 Rarely)” = 1, “Moderate(2 Occasionally)” = 2,
”Severe(3 Frequently)” = 3
PIR, ratio of family income to poverty; BMI, body mass index; OSAHS, obstructive sleep
apnea hypopnea syndrome.
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higher than those of Profile 1 and Profile 2, and this group was

named as having a “high-level depression.”
Inter-profile characteristic differences

Table 5 compares differences in demographic characteristics

between the three underlying depression types. We used the chi-

square test, one-way ANOVA, and Kruskal-Wallis H test to

compare the differences in the presence of single risk factors

among subjects with OSAHS symptoms with different underlying

depression categories. The findings revealed statistically significant

differences between patients in different underlying depression

categories involving multiple factors. These factors included

gender, education level, marital status, PIR, BMI, smoking,

hypertension, diabetes, asthma, general health condition, sleep

duration, and OSAHS symptom severity. For the remaining

categorical differences, we did not observe statistically significant

differences. This study considered a two-sided p-value of less than

0.05 statistically significant.

In each of the three depression categories, most subjects with

OSAHS symptoms were married, obese, and nonlow-income, with

good self-reported general health and normal sleep duration.

Notably, the proportion of subjects with OSAHS symptoms with

low-level depression was higher in men (64.5%) than in women

(35.5%). However, the proportion of men with moderate-level and

high-level depression decreased (45.2% and 45.8%, respectively). In

addition, the smoking rate also increased significantly in people

with moderate-level and high-level depression, which were 40.0%

and 49.2%, respectively, which were higher than those with low-

level depression (22.1%).
Multiple logistic regression of
depression profiles

In this study, the classification of profile characteristics of

depression was used as the dependent variable, with reference to

high-level and low-level depression, and variables statistically

significant in the univariate analysis were studied as independent

variables. Subsequently, we included these variables in binary

logistic regression models to explore the correlation between

observed variables and the classification of each profile. The

results showed that PIR in depressive traits did not differ

significantly between profiles. Compared with “high level of

depression,” we found that the following factors had a significant

impact on “low level of depression”: gender, marital status, BMI,

smoking, general health condition, sleep duration, and OSAHS

symptom severity. Specifically, male (OR= 2.215, P= 0.004),

underweight (OR=6.538, P < 0.001), never smoking (OR=2.794,

P=0.002) or ever smoking (OR=2.695, P= 0.004), P=0.007), good

general health condition(OR=6.605, P<0.001) or general health

condition(OR=2.711, P=0.010), normal sleep duration (OR=2.460,

P=0.030) and mild to moderate OSAHS symptoms (OR=2.711,

P=0.010). p=0.002) (OR=2.338, p=0.016) were more likely to be in a
TABLE 2 Baseline information of depressed patients with OSAHS.

Variable Total
number
(N=3352)

Variable Total
number
(N=3352)

Gender Alcohol
consumption

Male 2057 (61.4) Never 751 (22.4)

Female 1295 (38.6) Light 2299 (68.6)

Age Heavy 302 (9.0)

50.66 ± 15.942 Smoking

Race Never smoking 1515 (45.2)

Mexican American 518 (15.5) Ever smoking 993 (29.6)

Other Hispanic 323 (9.6) Currently smoking 844 (25.2)

Non-
Hispanic White

1497 (44.7) Hypertension

Non-Hispanic Black 693 (20.7) Yes 1459 (43.5)

Other Race 321 (9.6) No 1893 (56.5)

Education level Diabetes

Less than 9th grade 263 (7.8) Yes 577 (17.2)

9-11th grade 481 (14.3) No 2775 (82.8)

High
school graduate

821 (24.5) Asthma

Some college or
AA degree

1068 (31.9) Yes 634 (18.9)

College graduate
or above

719 (21.4) No 2718 (81.1)

Marital status Coronary
heart disease

Married 1921 (57.3) Yes 198 (5.9)

Widowed 176 (5.3) No 3154 (94.1)

Divorced 369 (11.0) General
health condition

Separated 110 (3.3) Good 2380 (71.0)

Never married 435 (13.0) General 751 (22.4)

Living with
a partner

341 (10.2) Poor 221 (6.6)

PIR Sleep duration

Low-income 924 (27.6) Short 1163 (34.7)

Non-low-income 2428 (72.4) Normal 1948 (58.1)

BMI Long 241 (7.2)

Underweight 39 (1.2) OSAHS
symptom severity

Normal weight 594 (17.7) Mild 1575 (47.0)

Overweight 1039 (31.0) Moderate 964 (28.8)

Obese 1680 (50.1) Severe 813 (24.3)
PIR, ratio of family income to poverty; BMI, body mass index; OSAHS, obstructive sleep
apnea hypopnea syndrome.
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“low-level” depression state. For “moderate-level” depression, BMI

and OSAHS symptom severity had a significant impact on it.

Specifically, underweight (OR = 5.439, P < 0.001) and mild-to-

moderate subjects with OSAHS symptoms (OR = 2.005, P = 0.035)

(OR = 2.313, P = 0.021) were more likely to be in the “moderate-

level” of depression. Relative to the “low-level depression,” the

“moderate-level” was affected by factors such as gender, PIR,

BMI, smoking, general health condition, sleep duration, and

OSAHS symptom severity. In particular, people with low-income

(OR=1.649, P<0.001) were more likely to have a “high-level” of

depression. The detailed analysis results of the binary Logistic

regression analysis are shown in Table 6.

Discussion

In this study, LPA was used to classify depression in subjects

with OSAHS symptoms, and three different characteristics were

determined according to the scores of each group, namely “low-

level depression” (83.7%), “moderate-level depression” (14.5%) and

“high-level depression” (1.8%). Among them, 98.2% of subjects

with OSAHS symptoms had a moderate or low level of depression.

The three levels of depression showed higher levels in both item 3,

“Difficulty falling asleep or sleeping too much”, and item 4 “, Feeling

tired or low in energy”. This indicates that depression subjects with

OSAHS symptoms generally have the problem of sleeping too long or

too short and often feel tired or lack energy. Combined with the results

of this study, we conclude that there is A correlation between short

sleep duration and depression, which is consistent with the findings of

Michael A. Grandner et al (29). In addition, the study by Tiffany J

Braley et al. confirmed that sleep disorders, especially OSAHS, may be

responsible for the general fatigue felt by patients (30).

The low-level depression group had the lowest andmost balanced

scores in the other seven items, accounting for 83.7% of the total

subjects with OSAHS symptoms. Such patients may have a low

probability of depression. However, special attention should be paid
Frontiers in Psychiatry 0648
to item 3, “Difficulty falling asleep or sleeping too much”, and item 4

“, Feeling tired or low in energy”. This may be because subjects with

OSAHS symptoms have upper airway obstruction during sleep,

leading to apnea or hypopnea. This disrupts normal sleep cycles

and deep sleep, leading to frequent awakenings, which contribute to

short sleep duration (31). subjects with OSAHS symptoms may

experience decreased blood oxygen levels due to inadequate oxygen

supply during apnea or hypopnea. This further affects the body’s

energy metabolism and rest recovery process, resulting in patients

feeling tired (22). Combined with the results of this study, we believe

that early personalized treatment measures should be carried out for

people with low-level depression to reduce the severity and symptoms

of OSAHS patients and improve their sleep quality and quality of life

to prevent them from becoming moderate or high-level depression.

Measures include weight control, smoking cessation, adequate sleep

duration, and CPAP therapy.

Among subjects with OSAHS symptoms, 14.5% were classified as

moderate-level depression. The most prominent item in this group

was item 9, “Thought you would be better off dead”, with a score that

coincided with low-level depression and was close to zero. This

suggests that the risk of suicide is not high for low-level and

moderate-level depression in subjects with OSAHS symptoms (32).

This may be because depression caused by OSAHS symptoms usually

has milder symptoms. Patients are often more likely to accept and

respond positively to treatment, which reduces the probability of

suicidality (33). The moderate-level depression group is the category

most likely to develop into high-level depression, so the level of

depression in patients must be detected early and controlled.

1.8% of subjects with OSAHS symptoms were classified as

having high-level depression. The scores of item 6, “Feeling bad

about yourself”, and item 7 “, Difficulty concentrating on things”,

were significantly higher than those of the other two depression

categories. This may be because chronic sleep deprivation and poor

sleep quality can also hurt mood, leading to a decrease in patients’

self-perception and ability to focus attention (34, 35). A sleep center

physician should perform a thorough history and physical

examination to determine the presence of major depressive

symptoms. Second, they should cooperate with psychiatrists to

jointly develop an individualized treatment plan, including

cognitive treatments such as pharmacotherapy and cognitive

behavioral therapy (36). In addition, patients can also actively

conduct self-management, learn to cope with stress and negative

emotions and improve self-management skills (37). These measures

help to reduce the level of depression as much as possible.
TABLE 3 Classification of potential fitting models.

Profile k Likelihood aBIC Entropy LMRT(P) Proportion

1 18 -34356.574 68802.065

2 28 -29362.864 58864.045 0.967 0.0000 0.85770/0.14230

3 38 -27374.177 54936.068 0.974 0.0000 0.83711/0.14529/0.01760

4 48 -24314.934 48866.981 0.976 0.2294 0.80907/0.13634/0.03699/0.01760

5 58 -23637.679 47561.870 0.938 0.4858 0.01760/0.05638/0.16766/0.72136/0.03699
aBIC, Adjusted Bayesian Information Criterion; LMRT, Lo-Mendell-Rubin Likelihood Ratio Test.
TABLE 4 Average Posterior Probabilities for Most Likely Latent Class
Membership (Row). by Latent Class (Column).

Class Profile 1 Profile 2 Profile 3

Profile 1 0.992 0.008 0.000

Profile 2 0.036 0.964 0.000

Profile 3 0.000 0.000 1.000
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The results of this study showed that gender, marital status, PIR,

BMI, smoking, general health condition, sleep duration and OSAHS

symptom severity were the influencing factors of depression in

OSAHS symptoms patients. Gender plays a crucial role in the

development of depression in OSAHS symptoms patients. Due to
Frontiers in Psychiatry 0749
the influence of biological, hormonal levels and psychosocial factors

related to women, the probability of depression in female OSAHS

symptoms patients is generally higher. This conclusion is consistent

with the results of multiple studies (38–40). In this study, since the

proportion of men with OSAHS symptoms is much more

significant than that of women, there may be a higher incidence

of depression in men than in women, which is also consistent with

the results of Min-hwan Lee et al (41). Therefore, sleep physicians

should make a comprehensive treatment plan according to the

gender characteristics and needs of patients, including sleep

therapy, drug treatment and psychological support.

Recent research suggests that a lack of close, confidence-worthy

marital relationships may be a vulnerable factor for depression in

women living in disadvantaged circumstances (42). The results of

the present study also show that unmarried individuals have higher

levels of depression than married individuals, which is consistent

with the findings of Akihide Inaba (43). Open and effective

communication should be maintained between couples, and

subjects with OSAHS symptoms can share their feelings and

troubles with their spouse to let the other person understand the

situation they have experienced (44). In addition, marriage can

provide intimacy and companionship and reduce loneliness in

patients. Loneliness is often an essential factor in depression, and

marriage can provide the emotional connection and support that

patients need (42). Therefore, subjects with OSAHS symptoms
TABLE 5 Demographic characteristics of the different profiles.

Variable

Low-level
n = 2806 (83.7%)

Moderate-level
n = 487 (14.5%)

High-level
n = 59 (1.8%)

c²/F p
n (%) or M ± SD n (%) or M ± SD n (%) or M ± SD

Gender 71.571 0.000

Male 1810 (64.5) 220 (45.2) 27 (45.8)

Female 996 (35.5) 267 (54.8) 32 (54.2)

Age 1.026 0.420

50.96 ± 16.140 49.20 ± 14.677 48.81 ± 15.949

Race 14.042 0.081

Mexican American 457 (16.3) 53 (10.9) 8 (13.6)

Other Hispanic 270 (9.6) 45 (9.2) 8 (13.6)

Non-Hispanic White 1235 (44.0) 238 (48.9) 24 (40.7)

Non-Hispanic Black 569 (20.3) 109 (22.4) 15 (25.4)

Other Race 275 (9.8) 42 (8.6) 4 (6.8)

Education level 42.885 0.000

Less than 9th grade 208 (7.4) 50 (10.3) 5 (8.5)

9-11th grade 381 (13.6) 84 (17.2) 16 (27.1)

High school graduate 671 (23.9) 136 (27.9) 14 (23.7)

Some college or AA degree 895 (31.9) 157 (32.2) 16 (27.1)

College graduate or above 651 (23.2) 60 (12.3) 8 (13.6)

(Continued)
FIGURE 2

LPA Fit Index for Depression in OSAHS. NI:Have no interest in doing
things, LE:Feeling low, depressed, or hopeless, SD: Difficulty falling
asleep or sleeping too much, FE:Feeling tired or low in energy, LOA:
Poor appetite or overeating, FBAY:Feeling bad about yourself, IA:
Difficulty concentrating on things, ST: Moving or speaking slowly or
too quickly, BOD: Thought you’d be better off dead.
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TABLE 5 Continued

Variable

Low-level
n = 2806 (83.7%)

Moderate-level
n = 487 (14.5%)

High-level
n = 59 (1.8%)

c²/F p
n (%) or M ± SD n (%) or M ± SD n (%) or M ± SD

Marital status 108.185 0.000

Married 1705 (60.8) 195 (40.0) 21 (35.6)

Widowed 147 (5.2) 26 (5.3) 3 (5.1)

Divorced 276 (9.8) 82 (16.8) 11 (18.6)

Separated 78 (2.8) 30 (6.2) 2 (3.4)

Never married 321 (11.4) 97 (19.9) 17 (28.8)

Living with a partner 279 (9.9) 57 (11.7) 5 (8.5)

PIR 139.773 0.000

Low-income 661 (23.6) 238 (48.9) 25 (42.4)

Non-low-income 2145 (76.4) 249 (51.1) 34 (57.6)

BMI 29.385 0.000

Underweight 29 (1.0) 10 (2.1) 0 (0)

Normal weight 526 (18.7) 59 (12.1) 9 (15.3)

Overweight 890 (31.7) 128 (26.3) 21 (35.6)

Obese 1361 (48.5) 290 (59.5) 29 (49.2)

Alcohol consumption 7.098 0.131

Never 607 (21.6) 130 (26.7) 14 (23.7)

Light 1948 (69.4) 313 (64.3) 38 (64.4)

Heavy 251 (8.9) 44 (9.0) 7 (11.9)

Smoking 90.719 0.000

Never smoking 1331 (47.4) 166 (34.1) 18 (30.5)

Ever smoking 855 (30.5) 126 (25.9) 12 (20.3)

Currently smoking 620 (22.1) 195 (40.0) 29 (49.2)

Hypertension 24.273 0.000

Yes 1170 (41.7) 261 (53.6) 28 (47.5)

No 1636 (58.3) 226 (46.4) 31 (52.5)

Diabetes 12.558 0.002

Yes 457 (16.3) 103 (21.1) 17 (28.8)

No 2349 (83.7) 384 (78.9) 42 (71.2)

Asthma 32.426 0.000

Yes 484 (17.2) 137 (28.1) 13 (22.0)

No 2322 (82.8) 350 (71.9) 46 (78.0)

Coronary heart disease 3.855 0.146

Yes 157 (5.6) 35 (7.2) 6 (10.2)

No 2649 (94.4) 452 (92.8) 53 (89.8)

General health condition 344.255 0.000

Good 2155 (76.8) 199 (40.9) 26 (44.1)

(Continued)
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should be actively involved in sleep therapy as well as other possible

treatment methods, such as medication and psychological support.

In this study, we used PIR to indicate household income

situation. Income is an essential factor affecting the development

of depression in subjects with OSAHS symptoms. This study

indicates that people with low income are more likely to suffer

from depression than people without low income. This is in line

with the findings of Akihide Inaba and Matthew Ridley et al (43,

45). subjects with OSAHS symptoms may need to undergo a range

of tests, treatments, and devices, such as sleep monitoring and

ventilators. However, the cost of these treatments and devices may

be a financial burden for low-income patients. In addition, the level

of income may also be associated with the patient’s self-identity and

social status. Low income may exacerbate depressive symptoms,

leading to feelings of low self-worth and the stress of reduced social

status (46). Therefore, it is recommended that low-income groups

actively seek appropriate health insurance or social welfare policies

to alleviate the financial pressure of treatment and equipment costs.

BMI mainly reflects the weight status of patients. Being

overweight or obese is a common risk factor for OSAHS. Excess

body weight increases the likelihood of airway obstruction and

airway collapse, which leads to an increase in the severity of OSAHS

(47). In addition, obesity is associated with chronic inflammation

and metabolic disturbances, factors that are thought to be involved

in the development of depressive symptoms (48, 49). Therefore, a

healthy diet and exercise program is recommended for overweight

or obese subjects with OSAHS symptoms with depression in order

to lose weight.

In this study, it was found that the order of smoking factors for

depression in subjects with OSAHS symptoms was: current smoking

greater than former smoking greater than never smoking. This result is

consistent with the findings of Tana M. Luger et al (50). Current

smokers with OSAHS symptoms may have developed more profound

psychological dependence. When faced with stress and anxiety, they

were more likely to smoke to relieve their mood. This psychological
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dependence may increase the risk of depression (50). Based on the

above findings, this study suggests that for patients with comorbid

smoking, OSAHS and depression, it is necessary to consider various

factors to develop corresponding treatment programs and

interventions (51). First, smoking cessation interventions are needed,

which can involve medication, counselling, or nicotine replacement

therapy to help patients quit (52). Physicians also need to conduct a

comprehensive physical and psychological assessment of patients to

understand the interplay between smoking, OSAHS, and depression

and to develop an individualized treatment plan.

General health condition included physical, mental, social, and

lifestyle and chronic disease status (53). Sleep disorders and low

oxygen supply may lead to physical fatigue and depression in

subjects with OSAHS symptoms, which may affect their

physiological health. Long-term poor sleep and hypoxia may

negatively affect brain function and increase the risk of depression

(54). OSAHS itself is a chronic disease, and chronic disease

conditions are also associated with depression, so individuals with

OSAHS symptoms have a higher risk of depression (55). Therefore,

self-rated health is essential to provide family physicians with a

practical and straightforward way to identify patients at risk for

long-term adverse depressive outcomes and to inform treatment

decisions (56). To understand the patient’s overall health,

physicians should perform a comprehensive assessment of the

patient, including sleep quality, psychological status, social

interactions, lifestyle habits, and chronic disease status.

OSAHS can affect the sleep time and sleep quality of patients

and further affect the emotional and mental health of patients (57).

The results of this study showed A significant correlation between

short sleep duration and OSAHS-related depression, which is

consistent with the findings of Michael A. Grandner and Amie C

Hayley et al (29, 58). In addition, the study by CAROL J. LANG

et al. also noted an increased incidence and severity of depression in

men with comorbid OSAHS and insomnia (59). This may be

because subjects with OSAHS symptoms may wake up frequently
TABLE 5 Continued

Variable

Low-level
n = 2806 (83.7%)

Moderate-level
n = 487 (14.5%)

High-level
n = 59 (1.8%)

c²/F p
n (%) or M ± SD n (%) or M ± SD n (%) or M ± SD

General 541 (19.3) 190 (39.0) 20 (33.9)

Poor 110 (3.9) 98 (20.1) 13 (22.0)

Sleep duration 60.022 0.000

Short 930 (33.1) 210 (43.1) 23 (39.0)

Normal 1704 (60.7) 217 (44.6) 27 (45.8)

Long 172 (6.1) 60 (12.3) 9 (15.3)

OSAHS symptom severity 31.190 0.000

Mild 1367 (48.7) 188 (38.6) 20 (33.9)

Moderate 796 (28.4) 155 (31.8) 13 (22.0)

Severe 643 (22.9) 144 (29.6) 26 (44.1)
PIR, ratio of family income to poverty; BMI, body mass index; OSAHS, obstructive sleep apnea hypopnea syndrome.
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or have apnea during the night, affecting their deep sleep and sleep

efficiency, so they may need longer sleep to get adequate rest.

However, because sleep quality is affected, they may not get enough

quality sleep, which may exacerbate depression (22). Therefore, it is

recommended that subjects with OSAHS symptoms depression

consult a professional physician or sleep specialist for accurate

diagnosis and treatment recommendations.

OSAHS symptom severity is an essential factor affecting the risk

of depression. In this study, snoring or apnea frequency was used as a

subjective indicator to determine the severity of OSAHS, and the

results showed a significant correlation between OSAHS symptom

severity and depression. This is consistent with the methodology of

Sheikh Shoib et al. and further confirms the conclusions of the

present study (60). From the perspective of objective accuracy, it is
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more accurate to use the AHI index as an objective criterion to judge

the severity of OSAHS, and several studies have fully confirmed the

significant correlation between the AHI index and depression (14,

39). OSAHS symptom severity may affect the sleep quality of patients,

and severe OSAHS usually leads to frequent apnea and hypoxemia.

This decline in sleep quality may cause symptoms such as mood

swings, irritability, fatigue, and even induce or worsen depression. In

order to maintain mental health, it is recommended that patients

relieve stress and improve their emotional state by communicating

with relatives and friends, attending support groups, and seeking

professional psychological counselling. If a doctor recommends

CPAP devices, they should be used on time every night. CPAP

devices may reduce episodes of apnea and hypoxemia by providing

airflow of positive pressure to maintain airway patency.
TABLE 6 The results of multiple logistic regression of depression profiles.

Variables
Low VS Moderate Low VS High Moderate VS High

OR(95%CI) p OR(95%CI) p OR(95%CI) p

Gender

Male 0.475(0.381, 0.593) 0.000 2.215(1.281, 3.830) 0.004 1.053(0.598, 1.854) 0.858

Marital status

Married 0.737(0.517, 1.050) 0.091 1.063(0.387, 2.925) 0.905 0.784(0.277, 2.214) 0.645

Widowed 0.645(0.371, 1.120) 0.119 1.128(0.254, 5.007) 0.874 0.727(0.156, 3.379) 0.684

Divorced 1.338(0.883, 2.026) 0.170 0.439(0.147, 1.315) 0.141 0.587(0.191, 1.809) 0.354

Separated 1.347(0.767, 2.366) 0.300 0.880(0.162, 4.780) 0.883 1.186(0.214, 6.585) 0.845

Unmarried 1.414(0.946, 2.113) 0.091 0.323(0.115, 0.909) 0.032 0.457(0.158, 1.321) 0.148

PIR

Low-income 1.649(1.316, 2.065) 0.000 0.866(0.488, 1.537) 0.624 1.428(0.792, 2.577) 0.237

BMI

Underweight 1.193(0.516, 2.758) 0.680 6.538(2.776, 12.83) 0.000 5.439(1.228,10.553) 0.000

Normal weight 0.591(0.425, 0.821) 0.002 1.133(0.510, 2.517) 0.759 0.670(0.291, 1.538) 0.345

Overweight 0.921(0.717, 1.182) 0.517 0.621(0.342, 1.129) 0.118 0.572(0.308, 1.062) 0.077

Smoking

Never smoking 0.500(0.385, 0.650) 0.000 2.794(1.479, 5.279) 0.002 1.398(0.723, 2.701) 0.319

Ever smoking 0.578(0.437, 0.766) 0.000 2.695(1.315, 5.524) 0.007 1.558(0.743, 3.266) 0.240

General health condition

Good 0.157(0.112, 0.220) 0.000 6.605(3.126, 13.95) 0.000 1.036(0.486, 2.210) 0.926

General 0.447(0.317, 0.629) 0.000 2.711(1.273, 5.774) 0.010 1.211(0.567, 2.585) 0.621

Sleep duration

Short 0.926(0.639, 1.343) 0.686 1.804(0.788, 4.127) 0.163 1.670(0.715, 3.904) 0.236

Normal 0.567(0.393, 0.818) 0.002 2.460(1.094, 5.532) 0.030 1.396(0.606, 3.214) 0.434

OSAHS symptom severity

Mild 0.739(0.567, 0.964) 0.026 2.711(1.452, 5.064) 0.002 2.005(1.048, 3.834) 0.035

Moderate 0.989(0.749, 1.307) 0.940 2.338(1.169, 4.678) 0.016 2.313(1.133, 4.724) 0.021
PIR, ratio of family income to poverty; BMI, body mass index; OSAHS, obstructive sleep apnea hypopnea syndrome.
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Limitations

The selection of the subjects with OSAHS symptoms in the

NHANES database only relied on patients’ self-reports and did not

use professional equipment such as polysomnography (PSG) for

diagnosis. This method of data collection may have subjective bias,

which in turn affects the objective accuracy of the data. The NHANES

database was incomplete, meaning many relevant variables, such as

AHI and lowest oxygen saturation, were omitted. Due to the lack of

these essential variables, we may not have been able to

comprehensively assess their effect on depression in subjects with

OSAHS symptoms, which may lead to potential bias.

The effect of menopausal status was not considered in the

analysis. Hormonal level changes during menopausal transition

may have an impact on the presentation of depression in subjects

with OSAHS symptoms. Future studies could take a more

comprehensive approach and consider the influence of gender

and menopausal status on depression in OSAHS patients to

improve the understanding of this complex relationship.

Conclusion

Depression in subjects with OSAHS symptoms has heterogeneity

among individuals, which can be divided into three potential

categories, namely low-level depression, moderate-level depression,

and high-level depression. There were significant differences in

gender, marital status, PIR, BMI, smoking, general health

condition, sleep duration, and OSAHS symptom severity among

different categories of subjects with OSAHS symptoms. According to

the individual characteristics of different categories of subjects with

OSAHS symptoms, medical staff can pay special attention to people

with low-level depression and provide targeted psychological

counseling and support and other intervention programs to reduce

their depression levels. Such individualized interventions will be more

effective in helping patients cope with the challenges of depression

and hopefully improve their overall quality of life.
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The relationship between 
obstructive sleep apnea and 
osteoarthritis: evidence from an 
observational and Mendelian 
randomization study
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1 Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 
China, 2 Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, 
China, 3 Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, 
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Objectives: Obstructive sleep apnea (OSA) and osteoarthritis (OA) are common 
comorbidities that significantly impact individuals’ quality of life. However, the 
relationship between OSA and OA remains unclear. This study aims to explore 
the connection between OSA and OA and evaluate causality using Mendelian 
randomization (MR).

Methods: A total of 12,454 participants from the National Health and Nutrition 
Examination Survey (2009–2012) were included. OSA participants were identified 
based on self-reported interviews. The association between OA and OSA was 
assessed through multivariable logistic regression analysis. A two-sample MR 
was employed to investigate the relationship between OSA and OA, specifically 
hip OA and knee OA, utilizing the inverse variance-weighted (IVW) approach.

Results: Based on the observational study, individuals with OSA exhibited a 
higher risk of OA (OR  =  1.67, 95% CI  =  1.40–1.98). IVW demonstrated that the 
risk of OA (OR  =  1.13, 95% CI: 1.05–1.21, p  =  0.001), hip OA (OR  =  1.11, 95% CI: 
1.04–1.18, p  =  0.002), and knee OA (OR  =  1.08, 95% CI: 1.02–1.14, p  =  0.005) was 
significantly associated with OSA. Reverse MR analyses indicated no effect of 
OA on OSA. Additionally, body mass index (BMI) was found to mediate 36.9% 
(95% CI, 4.64–73.2%, p  =  0.026) of the OSA effects on OA risk.

Conclusion: The cross-sectional observational analysis unveiled noteworthy 
associations between OSA and OA. Meanwhile, findings from the MR study 
provide support for a causal role.

KEYWORDS

obstructive sleep apnea, osteoarthritis, Mendelian randomization, NHANES (National 
Health and Nutrition Examination Survey), BMI—body mass index
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1 Introduction

OSA is characterized by recurrent upper respiratory tract 
obstructions during sleep, leading to a reduction or cessation of 
airflow (1). A total of 936 million individuals are affected by OSA 
worldwide, with 425 million individuals experiencing moderate-to-
severe cases (2). OSA patients endure chronic intermittent hypoxemia 
and metabolic disorders (3), often accompanied by inflammatory 
diseases (4). Studies indicate common risk factors associated with 
OSA and OA patients (5). OA, the most prevalent musculoskeletal 
disease, affects synovial joints, causing joint pain, decreased mobility, 
and a diminished quality of life (6). In 2020, the global prevalence of 
OA affecting approximately 7.6% of the population has been 
increasing in recent years (7, 8), making OA the fourth leading global 
cause of disability (9, 10). The medical burden associated with OA is 
steadily increasing worldwide (11).

Both OSA and OA significantly impact individuals’ quality of life. 
OSA disrupts sleep quality, leading to fragmentation, while OA 
induces pain and discomfort, particularly during the night. Current 
drug efficacy for both diseases is limited (5), necessitating urgent and 
effective treatment strategies. Exploring the correlation and potential 
mediator between OSA and OA provides valuable insights into disease 
mechanisms and symptom exacerbation. This understanding can 
enhance strategies for managing symptoms and finally improve 
outcomes for patients affected by both OSA and OA.

MR is an innovative epidemiological approach employing genetic 
variables as instrumental variables (IV) to assess causal effects on 
outcomes; this approach is less susceptible to biases from confounding 
factors and reverse causality (12).

This study integrates an observational investigation within the 
National Health and Nutrition Examination Survey (NHANES) with 
MR techniques to elucidate the causal relationship between 
OSA and OA.

2 Methods

2.1 Study population

The NHANES, a comprehensive research initiative evaluating the 
wellbeing and dietary status of individuals in the United  States, 
comprises five core components: demographic details, dietary data, 
physical examinations, laboratory discoveries, and questionnaires. 
Ethical approval for NHANES protocols was duly granted by the 
National Center for Health Statistics Research Ethics Review Board, 
and all participants provided informed consent. This research 
included a total of 39,722 individuals from four NHANES cycles 
(2005–2006, 2007–2008, 2015–2016, and 2017–2018). The analysis 
excluded participants with missing OA data (n = 19,538) or OSA data 
(n = 7), as well as those with rheumatoid arthritis or other 
non-osteoarthritis forms (n = 1,959). Additionally, participants with 
missing covariate data were excluded, including family income-to-
poverty ratio (PIR) data (n = 1,447), educational data (n = 4), marital 
status data (n = 3), smoking status data (n = 6), alcohol consumption 
data (n = 1,713), BMI data (n = 91), chronic kidney disease (CKD) data 
(n = 88), diabetes mellitus (DM) data (n = 390), stroke data (n = 9), 
hemoglobin (HB) data (n = 1,766), serum alkaline phosphatase (ALP) 
data (n = 200), serum calcium data (n = 2), and alanine 

aminotransferase (Alt) data (n = 45). Consequently, the analysis 
encompassed a total of 12,454 individuals, as illustrated in Figure 1 
through a flow chart.

2.2 Variables

The exposure variable in this study was OSA, while the outcome 
variable was OA. OSA determination relied on affirmative responses 
to three yes-or-no questions related to snoring frequency, snorting or 
cessation of breathing occurrences, and daytime sleepiness. 
Individuals with positive responses to any of these questions were 
considered to display symptoms suggestive of OSA (13). OA 
participants in this study were identified based on self-reported 
personal interview data on various health conditions.

Demographics, medical conditions, and laboratory examinations 
were used to classify covariates. During home interviews, data on 
demographic characteristics, such as age, gender, marital status, 
educational attainment, PIR, and race, were gathered, along with 
information on medical conditions such as DM, hypertension, 
hyperlipidemia, and CKD. As a part of the NHANES laboratory 
examination, serum samples were collected, including serum calcium, 
Alt, ALP, creatinine, white blood cell count (WBC), and HB levels.

2.3 Mendelian randomization

For this research, we obtained genome-wide association study 
(GWAS) data on OSA from the Finnegan dataset population, which 
can be  accessed at https://storage.googleapis.com/finngen-public-
data-r9/summary_stats/finngen_R9_G6_SLEEPAPNO.gz. The study 
involved a total of 375,657 individuals, comprising 38,998 individuals 
with OSA and 336,659 individuals as controls. The GWAS catalog 
dataset (https://www.ebi.ac.uk/gwas/downloads/summary-statistics.
ID GCST90044591) provided genetic data associated with OA from 
Jiang (14), consisting of 8,952 individuals diagnosed with OA and 
447,396 control individuals without OA. The GWAS dataset for OA in 
the knees and hips was acquired from Tachmazidou et al. (15). BMI 
summary statistics were obtained from MRC-IEU, involving 461,460 
samples (IEU GWAS ID ukb-b-19553). To mitigate population 
stratification bias, only studies including individuals of European 
descent were used to retrieve all summary data.

All GWAS studies included in this research received approval 
from the relevant ethical review boards, and participants provided 
written informed consent. The research adhered to the STROBE MR 
guideline (16).

2.4 Selection of instrumental variables

We selected instrumental variables (IVs) for OSA, OA, OA of the 
hip and knee, potential mediator [fasting insulin, Homeostasis Model 
Assessment of Insulin Resistance, Modified Stumvoll Insulin 
Sensitivity Index, and Modified Stumvoll Insulin Sensitivity Index 
(model adjusted for BMI)] GWAS data with a p-value of <5 × 10−6, 
ensuring independence (r2 < 0.001, kb = 10,000). The IVs for the 
potential mediator (BMI, waist circumference, hip circumference, 
waist-to-hip ratio adjusted for BMI, and waist-hip ratio) GWAS data 
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were chosen based on a p-value of less than 5 × 10−8, ensuring 
independence (r2 < 0.001, kb = 10,000). The F statistic for each single 
nucleotide polymorphism (SNP) was computed using the formula 
Beta2/SE2.

2.5 Statistical analysis

This study meticulously incorporated intricate sampling designs 
and weights following the NHANES analytic guidelines, using mobile 
examination center (MEC) weights for all analyses. Continuous 
variables are presented as means and standard errors (SEs), while 
categorical variables are expressed as proportions. The examination of 
the relationship between OSA and OA involved a multivariate binary 
logistic regression model to calculate the odds ratio (OR) and 95% 
confidence intervals (CI). Three models were constructed for 
statistical inference. Model 1 solely included OSA, while Model 2 
expanded to incorporate gender, age, ethnicity, marital status, and 
educational background. Model 3, an augmented version of Model 2, 
encompassed additional factors such as creatinine levels, alcohol 
consumption, BMI, smoking habits, serum calcium, serum Alt, ALP, 
serum creatinine, WBC, and medical history of hypertension, DM, 
CKD, stroke, and hyperlipidemia.

Subgroup analyses aimed to explore potential modifications in the 
impact of OSA on OA. These analyses considered age (<60, ≥60), sex, 
BMI (<30, ≥30), CKD status (yes, no), hyperlipidemia (yes, no), DM 
status (yes, no), hypertension (yes, no), and stroke status (yes, no), 
adjusting for Model 3.

MR analyses included the computation of F statistics to gauge the 
strength of each instrument. An overview of the MR research design 
is displayed in Figure  2. The primary method, IVW, assessed the 
association of genetically predicted OSA and OA. Supplementary MR 

models, such as weighted mode, weighted median (WM), MR-Egger, 
and simple mode, were used. Cochrane Q test and MR-Egger intercept 
were used to examine potential heterogeneity and directional 
pleiotropy. A leave-one-out analysis identified significant single 
nucleotide polymorphisms (SNPs) and assessed the robustness 
of findings.

Furthermore, we used the IEU Open GWAS Project website1 to 
explore whether the genetic variants associated with OSA were also 
connected to other prevalent risk factors that might affect the results 
obtained from Mendelian randomization, including BMI, 
arthropathies, bone mineral density (BMD), vitamin D, and smoke 
(17, 18).

Reverse MR analyses, treating OA as the exposure and OSA as the 
outcome, were conducted to explore bidirectional causality, using the 
same GWAS datasets. The IVW examination was duplicated using an 
alternative osteoarthritis GWAS dataset from IEU GWAS, followed by 
a meta-analysis to consolidate outcomes.

To determine whether the observed association between OSA and 
OA was a direct association, we assessed the relationship between 
genetically previously established risk factors for OA (19) (BMI, waist 
circumference, hip circumference, waist-to-hip ratio adjusted for BMI, 
waist-hip ratio, fasting insulin, Homeostasis Model Assessment of 
Insulin Resistance, Modified Stumvoll Insulin Sensitivity Index, and 
Modified Stumvoll Insulin Sensitivity Index [model adjusted for 
BMI)] in MR analyses (GWAS dataset in Supplementary Table S1) (5). 
For significant associations, potential mediation effects (the exposure-
mediator-outcome pathway) may exist. To explore the potential 
mediator between OSA and OA, a mediator MR analysis was 
conducted. This involved estimating the overall effect of OSA on OA 
(α), the effect of the potential mediator on OA (β2), and the effect of 
OSA on the potential mediator OA (β1). The direct impact of OSA on 
OA was calculated as α - β1*β2. Statistical analyses were conducted 
using R Studio 4.2.0 and the R package “Two Sample MR,” with a 
significance level set at a p-value of <0.05. Meta-analyses were carried 
out using RevMan 4.3.

3 Results

3.1 Observational study

3.1.1 Baseline characteristics
The dataset under scrutiny included 12,454 participants. Table 1 

presents the baseline characteristics categorized by OA. Of the 
participants, 1,560 (5.28%) had OA, and 3,628 (29.53%) had 
OSA. OSA participants exhibited a higher prevalence of OA (630, 
39.84%) than those without OSA (2,998, 27.95%). The OA group was 
characterized by a higher likelihood of being male, former smokers, 
and having a history of DM, stroke, CKD, hyperlipidemia, 
hypertension, elevated serum creatinine, and BMI.

3.1.2 Association between OSA and OA
Table 2 displays the outcomes of logistic regression analyses with 

multiple adjustments. After meticulous adjustments for various 

1  http://gwas.mrcieu.ac.uk

FIGURE 1

Flow chart of the study population.
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factors, Model 1 resulted in OR = 1.71, 95% CI = 1.46–2.00, and 
p < 0.0001; Model 2 showed OR = 1.98, 95% CI = 1.67–2.33, and 
p < 0.0001; and Model 3 revealed OR = 1.67, 95% CI = 1.40–1.99, and 
p < 0.0001.

3.1.3 Subgroup analyses
Subgroup analyses, considering variables such as age, sex, 

smoking status, history of CKD, hyperlipidemia, DM, hypertension, 
and stroke, consistently showed results with no significant interaction 
(all p interaction >0.05, Figure 1).

3.2 Mendelian randomization study

3.2.1 MR analyses using primary genetic 
instruments

The genetic instrument for OSA (Supplementary Table S1) 
comprised 101 SNPs with F values exceeding 10 (see 
Supplementary Table S2). Employing the IVW method, the analysis 
indicated that OSA was associated with an increased likelihood of OA 
(OR = 1.13, 95% CI 1.05–1.21, p = 0.001), hip OA (OR = 1.11, 95% CI 
1.04–1.18, p = 0.002), and knee OA (OR = 1.08, 95% CI 1.02–1.14, 
p = 0.005). Figure  3 visually represents outcomes from IVW, 
MR-Egger, weighted mode, weighted median, and simple mode.

The MR-Egger intercept test showed no horizontal pleiotropy 
regarding the impact of OSA on OA (intercept = 0.00046; p = 0.915), 
hip OA (intercept = 0.0038; p = 0.500), and knee OA 
(intercept = −0.00134; p = 0.861). The Cochrane Q test revealed no 
heterogeneity regarding the impact of OSA on OA (IVWQ 83.78, 
p = 0.691) but significant heterogeneity regarding OSA effects on hip 
OA (IVWQ 143.23, p = 0.00244) and knee OA (IVWQ 161.48, 
p = 7.45 10−5). The leave-one-out analysis found no SNP significantly 
influencing results (Figure 2–4).

After reviewing the IEU Open GWAS Project website, 
we discovered that 45 SNPs were linked to confounding factors [BMI 
(28), weight (3), obesity (1), waist circumference (1), arthropathies (6), 
BMD (2), vitamin D deficiency (2), and smoking (2)]. Then, 
we removed these 45 SNPs and found that the causality remained the 
same (OA IVW OR = 1.151, 95% CI: 1.042–1.273, p = 0.006, knee OA 
IVW OR = 1.064, 95% CI: 1.002–1.130, p = 0.04146917, hip OA IVW 
OR = 1.086, 95% CI: 1.002–1.178, p = 0.043).

3.2.2 Bidirectional MR, replication, and 
meta-analysis

Reverse MR analyses indicated no evidence of a causal 
relationship between OSA and OA. Odds ratios (OR) for OA, knee 
OA, and hip OA were 1.00 [95%CI (0.97–1.03), p = 0.89], 1.04 (95% 
CI: 0.99–1.09, p = 0.08), and 0.98 (95% CI: 0.91–1.06, p = 0.67), 
respectively. Replication analysis used OA GWAS data from Zengini 
et al. (20) (IVW OR = 1.04, 95% CI = 0.93–1.15, p = 0.493), meta-
analyses showing increased OA risk with a genetic predisposition for 
elevated OSA levels (OR = 1.10, 95% CI = 1.03–1.17, p = 0.002) 
(Figure 4).

3.2.3 Mediator MR analyses
Given that waist circumference, hip circumference, BMI, and 

insulin resistance are well-established risk factors for OA, they could 
potentially mediate the effect of OSA on the risk of developing OA 
(Supplementary Figure S5 and Supplementary Table S5). Among the 
three potential mediators, we  only identified BMI as a mediator 
between OSA and OA (Supplementary Table S3).

A total of 458 independent SNPs served as IVs for BMI, all with 
F statistics >10 (see Supplementary Table S4). Mediator MR analysis 
revealed that BMI (IVW: OR 1.49, 95% CI 1.35–1.64, p = 3.16e-15) 
was associated with an increased overall risk of OA (indirect effect 
β2). An increased BMI risk (indirect effect β1) was observed in 

FIGURE 2

Flow chart of the Mendelian randomization analysis.
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TABLE 1  Baseline characteristics of study participants based on the OA.

Total Non-OA OA p-value

Age 45.44 (0.32) 42.98 (0.288) 61.55 (0.45) <0.0001

Sex <0.0001

 � Female 6,101 (50.34) 5,099 (47.87) 1,002 (66.56)

 � Male 6,337 (49.66) 5,782 (52.13) 555 (33.44)

PIR 3.164 (0.04) 3.14 (0.05) 3.30 (0.08) 0.024

Serum ALP 68.81 (0.38) 68.20 (0.36) 72.81 (0.77) <0.0001

Serum calcium 9.40 (0.01) 9.39 (0.01) 9.41 (0.02) 0.199

Serum ALT 25.43 (0.20) 25.68 (0.22) 23.84 (0.50) 0.001

HB 14.383 (0.04) 14.423 (0.04) 14.12 (0.05) <0.0001

WBC 7.30 (0.04) 7.30 (0.04) 7.33 (0.07) 0.671

NLR 2.13 (0.02) 2.10 (0.02) 2.28 (0.04) <0.0001

RWD 13.13 (0.02) 13.09 (0.02) 13.42 (0.05) <0.0001

BMI 28.82 (0.13) 28.51 (0.13) 30.84 (0.24) <0.0001

OSA <0.0001

 � No 8,818 (70.49) 7,889 (72.06) 929 (60.18)

 � Yes 3,620 (29.51) 2,992 (27.94) 628 (39.82)

Education 0.486

 � College 6,805 (62.981) 5,918 (62.831) 887 (63.967)

 � Non-college 5,633 (37.019) 4,963 (37.169) 670 (36.033)

Marital status 0.001

 � Married 6,551 (55.89) 5,680 (55.03) 871 (61.51)

 � Non-married 5,887 (44.11) 5,201 (44.97) 686 (38.49)

Smoke <0.0001

 � Former 2,862 (23.78) 2,306 (21.94) 556 (35.89)

 � Never 7,039 (56.33) 6,281 (57.42) 758 (49.15)

 � Now 2,537 (19.89) 2,294 (20.64) 243 (14.96)

Stroke <0.0001

 � No 12,074 (97.82) 10,644 (98.57) 1,430 (92.90)

 � Yes 364 (2.18) 237 (1.43) 127 (7.10)

DM <0.0001

 � No 9,281 (79.36) 8,330 (81.42) 951 (65.86)

 � IGT 457 (3.09) 392 (3.02) 65 (3.55)

 � IFG 672 (5.46) 555 (5.08) 117 (7.88)

 � DM 2,028 (12.10) 1,604 (10.49) 424 (22.71)

CKD <0.0001

 � No 10,483 (87.64) 9,362 (89.22) 1,121 (77.28)

 � Yes 1,955 (12.36) 1,519 (10.78) 436 (22.72)

Alcohol user <0.0001

 � Never 1,714 (10.35) 1,496 (10.33) 218 (10.52)

 � Former 1,719 (10.96) 1,415 (10.20) 304 (15.99)

 � Heavy 2,676 (22.64) 2,516 (24.22) 160 (12.27)

 � Mild 4,292 (37.51) 3,639 (36.30) 653 (45.48)

 � Moderate 2,037 (18.53) 1,815 (18.96) 222 (15.74)

Hyperlipidemia <0.0001

(Continued)

60

https://doi.org/10.3389/fneur.2024.1425327
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al.� 10.3389/fneur.2024.1425327

Frontiers in Neurology 06 frontiersin.org

FIGURE 4

Meta-analyses on the relationship between OSA and OA.

relation to OSA (IVW OR 1.12, 95% CI 1.08–1.17, p = 2.46e-08). 
Furthermore, OSA demonstrated a causal association with 
heightened OA susceptibility (IVW OR = 1.13, 95% CI 1.05–1.21, 

p = 0.001) (overall effect α). The percentage of the impact of OSA on 
OA influenced by BMI was 36.9% (95% CI: 4.64–73.2%, p = 0.026) 
(Figure 5).

TABLE 2  Independent associations between OSA and OA.

Multivariable adjusted (OR, 95% CI)

Model 1 Model 2 Model 3

95% CI p-value 95% CI p-value 95% CI p-value

OSA 1.71 (1.46, 2.00) <0.0001 1.98 (1.68, 2.33) <0.0001 1.67 (1.40, 1.99) <0.0001

Model 1: OSA. Model 2: OSA, age, sex, education, and PIR. Model 3: OSA, age, sex, education, PIR, marriage status, HB, serum calcium, WBC, smoke, stroke, ALP, DM, hyperlipidemia, CKD, 
alcohol user, RDW, NLR, BMI, and ALT.

FIGURE 3

Causal relationships between OSA and OA risk performed by MR.

TABLE 1  (Continued)

Total Non-OA OA p-value

 � No 3,832 (32.09) 3,549 (34.14) 283 (18.64)

 � Yes 8,606 (67.91) 7,332 (65.86) 1,274 (81.36)

Baseline characteristics of study participants. Mean ± SEs for continuous variables: p-value was calculated by weighted student’s t-test. Number (%) for categorical variables: p-value was 
calculated by weighted chi-square test. BMI, body mass index; DM, diabetes mellitus; IFG, impaired fasting glucose. IGT, impaired glucose tolerance; CKD, chronic kidney disease; RDW, red 
cell distribution width; HB, hemoglobin; PIR family income-to-poverty ratio; ALP, alkaline phosphatase; ALT, alanine aminotransferase; WBC, white blood cell; NLR, neutrophil-to-
lymphocyte ratio; OSA, obstructive sleep apnea.

61

https://doi.org/10.3389/fneur.2024.1425327
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al.� 10.3389/fneur.2024.1425327

Frontiers in Neurology 07 frontiersin.org

4 Discussion

This study represents the first comprehensive investigation into 
the relationship between OSA and OA through MR analysis, utilizing 
large-scale observational study data and genetic datasets. Cross-
sectional observational analysis identified significant relationships 
between OSA and OA, while findings based on the MR study did 
support a causal role. The analysis of potential mediating factors found 
that BMI was an important factor between OSA and OA.

OSA and OA are common diseases. Previous studies found that 
the prevalence of OSA among individuals with OA was significantly 
higher than that in the general population, with figures standing at 
66% versus 17%, respectively (21).

Sleep, as a period of physiological recovery, creates an environment 
conducive to cell proliferation, migration, and differentiation, with cell 
division and protein synthesis peaking during sleep (22, 23). OSA 
causes airway collapse, leading to oxygen deprivation and disruption 
of sleep rhythm (24–26). Previous studies revealed that OSA can cause 
increases in inflammatory, oxidative stress, and metabolic 
abnormalities, such as abnormal blood lipids, uric acid, and blood 
sugar (22, 23), which may lead to the future development of OA.

In this study, our MR analysis provided evidence of a causal 
relationship between OSA and OA, substantiated by rigorous 
examinations of horizontal pleiotropy and heterogeneity. These 
findings were further reinforced by two-way MR analysis, eliminating 
the possibility of reverse causality.

Obesity and inflammation are potential pathogenic mechanisms 
by which OSA leads to OA. Previous studies, through bioinformatics 
analysis, have found that shared inflammation genes between OSA 
and OA are significantly enriched in the TNF pathway and the IL-17 
pathway (27).

The correlation between OSA and BMI has been a focal point of 
research for quite some time. The sleep fragmentation due to OSA can 
result in a state of effective sleep deprivation, which, in turn, can cause 
daytime drowsiness, a reduction in physical activity, and, consequently, 
an increase in body weight (28). One key factor contributing to weight 
gain in individuals with OSA is insulin resistance. Studies have 
indicated that the development of insulin resistance in the context of 
sustained intermittent hypoxia is closely tied to the disruption of 
leptin signaling pathways (28, 29).

In this study, we observed significant mediated effects of BMI on 
the associations between OSA and OA risk. In particular, other 
obesity and insulin resistance markers mediated no association 
between OSA and OA risk, among which the mediated proportion 
of BMI was 36.9%, consistent with previous research (30). These 

findings suggested that OSA may increase obesity and finally 
aggravate OA.

A high BMI or obesity leads to overloading the joints due to excess 
weight, which, in turn, leads to the destruction of articular cartilage 
(31). Others attributed it to excess fat tissue, which secretes hormones 
and proinflammatory cytokines, contributing to low-grade systemic 
inflammation (32). Given that BMI is a relatively controllable 
mediating factor (33), effectively managing BMI in OSA patients 
could potentially reduce the incidence of OA.

This research integrates a cross-sectional approach with Mendelian 
randomization, offering a foundational exploration to ascertain 
preliminary associations. Subsequently, the Mendelian randomization 
study reinforces these findings by substantiating the underlying causal 
mechanisms. Moreover, this methodology effectively mitigates the risk 
of false positives inherent in Mendelian studies, thereby enhancing the 
credibility of our results (34). The limitations of the study include the 
identification of OSA based on participants’ self-reported interviews. 
This methodology might have resulted in an inflated estimation of the 
true incidence of OSA. Furthermore, the absence of granular individual-
level data from the GWAS precluded us from discerning whether the 
condition could introduce any inherent biases into our analysis. Finally, 
the applicability of our findings to diverse ethnic groups may 
be constrained, given that our analysis was focused on individuals of 
European descent, thus limiting the generalizability of our conclusions.

5 Conclusion

The study identified a causal relationship between OSA and OA 
and uncovered BMI as a mediator, laying a foundation for future 
research avenues and clinical interventions in the realm of sleep-
related musculoskeletal disorders.
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Introduction: High blood pressure (HBP) is an independent, modifiable driver of

cardiovascular (CV) morbidity and mortality. Nocturnal hypertension and non-

dipping of blood pressure (NdBP)may be early markers of HBP. Similar to patients

with NdBP, individuals with non-dipping of heart rate (NdHR) during sleep have

an increased risk of CV disease, CV events, and CV-related mortality. The aim

of this analysis was to evaluate if cardiopulmonary coupling (CPC) analysis-

derived sleep states [stable/unstable non-rapid eyemovement (NREM) sleep] and

concomitant heart rate (HR) changes can provide information about nocturnal

blood pressure (BP).

Method: Plethysmogram (pleth) signals from the HeartBEAT study

(NCT01086800) were analyzed for CPC sleep states. Included in the analysis

are sleep recordings from participants with acceptable pleth-signal quality at

baseline (n = 302) and follow-up (n = 267), all having confirmed CV disease or

CV-disease risk factors. The participants had a high prevalence of obstructive

sleep apnea (OSA), 98.4% with moderate-OSA [apnea–hypopnea index (AHI)

≥ 15) and 29.6% severe OSA (AHI ≥ 30). A “heart-rate module” was created to

evaluate the utility of identifying patients more likely to have BP dipping during

sleep. Patients who did not have a decrease of ≥10% in their BP from wake to

sleep were defined as NdBP and NdHR if their heart rate during stable-NREM

sleep was higher than during unstable-NREM sleep.

Results: The most significant di�erence in minimum HR (HRmin) was observed

when comparing BP dippers [56 ± 4 beats per minute (BPM)] and non-BP

dippers (59 ± 4 BPM; p < 0.0001) during diastolic blood pressure in stable-

NREM sleep. Higher HRmin were associated with an increased likelihood of

being a non-dipper, with the strongest relationship with diastolic BP and

stable-NREM sleep. Every increase of 1 BPM during stable-NREM sleep was

associated with an ∼4.4% increase in the probability of NdBP (p = 0.001).

Subjects with NdHR have higher mean BP during sleep and wake periods than

HR dippers. When continuous positive airway pressure therapy is e�cacious,

and a dipping pattern is achieved—physical and mental health is improved.
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Conclusion: HR analytics in relation to the sleep period and the CPC

spectrogram-estimated sleep states can provide novel and potentially clinically

useful information on autonomic health. HR dipping (or not) may be a useful

screener of BP dipping or non-dipping to identify individuals who may benefit

from a formal assessment of 24-h ambulatory BP. Such a stepped approach may

enable a more practical and applicable approach to diagnosing HBP.

Clinical Trial Registration: The Heart Biomarker Evaluation in Apnea Treatment

(HeartBEAT) study is registered at clinicaltrials.gov/ct2/show/NCT01086800.

KEYWORDS

sleep stability, blood pressure dipping, cardiovascular disease, cardiopulmonary

coupling (CPC), heart rate kinetics, heart rate dipping

1 Introduction

High blood pressure (HBP) is a major independent and

modifiable driver of cardiovascular (CV) morbidity and mortality

globally (Mills et al., 2020). Therefore, early diagnosis and

optimal management of HBP are essential (Williams et al., 2018).

Hypertension may be overt, with the physician’s estimate and

multiple home recordings in agreement, or it may be less obvious.

The term masked hypertension (MH) was first introduced in 2002,

describing a hypertension phenotype characterized by normal/not-

increased office blood pressure (BP) readings and elevated out-of-

office BP (Pickering et al., 2002). Identifying the MH phenotype is

of interest for multiple reasons: (a) the prevalence is substantial,

estimated at ∼10%−30% of individuals attending hypertension

clinics (O’Brien et al., 2013; Stergiou et al., 2021); (b) MH

increases the risk of CVmorbidity, with a meta-analysis comparing

normotensive individuals and those with MH finding a 2.09 times

increase in experiencing CV events for individuals with MH, while

individuals with sustained hypertension have a 2.59 times increase

in CV events (Pierdomenico and Cuccurullo, 2011); and (c) MH

is more difficult to diagnose, as an out-of-office evaluation is

required with 24-h ambulatory BP monitoring (24-ABPM). The

availability of classic cuff 24-ABPM may be relatively limited and

expensive, and the process is cumbersome and uncomfortable for

the user, with cuff inflations and the frequency of measurements

possibly causing arousals, disturbing sleep, and affecting the

nighttime BP (NBP) measurement, which may not represent the

true NBP (Pickering et al., 2006). While novel technologies are

in development, including wrist pulse wave analyses, these are

not yet fully validated. Moreover, such new technologies enable

the collection of a large number of BP readings, which are not

readily transferable to intermittent cuff inflation. Thus, disease-

related validation remains to be done with more continuous forms

of BP recording.

Nocturnal hypertension and non-dipping of BP may be early

markers of HBP and MH. Nocturnal BP and night-to-day BP

ratio have been identified as significant predictors of adverse CV

outcomes (O’Brien et al., 1988; Asayama et al., 2023) and better

predictors of fatal and non-fatal CV events and organ damage

than daytime BP (Ohkubo et al., 2002; Salles et al., 2016; Staplin

et al., 2023). Similar to changes in NBP, individuals with non-

dipping of their heart rate (HR) during sleep have an increased

risk of CV disease, CV events, and CV-related mortality (Eguchi

et al., 2009; Kabutoya et al., 2010; Tadic et al., 2018; Nelde et al.,

2023). For example, obstructive sleep apnea (OSA) is a common

disease capable of disrupting normal BP control (Senaratna et al.,

2017; Benjafield et al., 2019). A bidirectional relationship exists

between OSA and HBP, with OSA patients having an increased

risk of developing HBP, and the prevalence of OSA is higher

in patients with HBP (Sawatari et al., 2016). However, other

causes of sleep disruption such as insomnia and periodic limb

movements are also associated with elevated NBP (Palagini et al.,

2013).

Current guidelines highlight the importance of accurate

diagnosis of HBP. The gold standard for identifying MH is 24-

ABPM (Franklin et al., 2017), but still, the diagnosis is largely

based on in-office BP measures, and patients with HBP and

MH may therefore remain undiagnosed (Stergiou et al., 2021).

Somewhat surprisingly, another readily available signal, HR during

sleep [from ambulatory recordings and the millions of laboratory

polysomnography (PSG) or home polygraphy done yearly], has

not been subjected to rigorous analysis. Arousals from sleep are

associated with both HR and BP elevations. It is thus plausible that

an analysis of HR during sleep may provide a surrogate of BP or at

least identify those who should have a formal 24-ABPM performed.

HBP in patients with OSA is often predominantly nocturnal,

and non-dipping BP is common (Marin et al., 2012). Therefore,

alternative, simple, and less invasive measures that may estimate

changes related to HRmight be of value to identify non-dippers for

further evaluation, including 24-ABPM as a tool that might assist

in managing patients with OSA, insomnia, or comorbid insomnia

and sleep apnea (Sweetman et al., 2019) and HBP (Tadic et al., 2018;

Nelde et al., 2023).

This report targeted nocturnal heart rate (NHR) by analyzing

photoplethysmogram (PPG) and oximetry information (SpO2)

recorded during a conventional home sleep apnea test (HSAT).

The cardiopulmonary coupling (CPC) sleep state and the HR

kinetics analysis were computed to estimate alignments of

HR with stable- and unstable-NREM sleep (Al Ashry et al.,

2021b). It has been noticed that HR profiles across the night

can on average drop (“HR dipping”), remain relatively flat

(“HR non-dipping”), or even rise (“HR reverse dipping”). HR

dipping is maximal during stable-NREM sleep periods [high-

frequency coupling (HFC)] but can sometimes rise during such
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periods, suggesting increased sympathetic drive when normally

NREM3/stable NREM2 should be associated with reduced

sympathetic drive. We hypothesized that a simple method for

calculating HR changes during stable-NREM sleep can be utilized

to estimate dipping, non-dipping, or reverse-dipping HR. To

test our hypothesis, we utilized the Heart Biomarker Evaluation

in Apnea Treatment (HeartBEAT) study, which was designed

to evaluate alternative approaches to reduce the risk of heart

diseases. This study included classic cuff ABPM (Gottlieb et al.,

2014).

2 Materials and methods

2.1 Study design

The HeartBEAT study (NCT01086800) was a four-site,

randomized, parallel-group trial among patients with high CV

risk (Gottlieb et al., 2014). At baseline, patients were screened

for OSA with the Berlin questionnaire (Netzer et al., 1999), and

if they were at risk for OSA, an HSAT was initiated utilizing a

portable sleep monitor, including recording PPG-signal and pulse-

oximetry (SpO2) data from a fingertip sensor. Patients with an

AHI of ≥15 events per hour of sleep were eligible to participate

in the study. Patients with an AHI of >50 and a central index

of >5 were excluded from randomization. The primary outcome

of the HeartBEAT study was to evaluate changes in 24-h mean

arterial blood pressure (MAP). In addition, nocturnal dipping and

non-dipping of BP were reported, with non-dipping BP defined as

a mean nocturnal BP higher than 90% of the mean daytime BP

value. Participants in theHeartBEAT study were randomly assigned

to one of three groups: continuous positive airway pressure

(CPAP) therapy, nocturnal oxygen therapy, or healthy lifestyle with

sleep education. Institutional review board approval was obtained

from each participating institution. For this analysis, a data user

agreement was obtained from theNational Sleep Research Resource

(Dean et al., 2016).

2.2 Participants

Patients aged 45–75 with established coronary heart disease or

multiple CV-disease risk factors and well-managed hypertension,

were recruited from cardiology practices at four participating

medical centers. Patients with an AHI in the range of 15–50 were

offered the opportunity to participate in the study. This study is

based on a CPC analysis of the data derived from the fingertip PPG-

sensor (the pleth waveform and oxygen data), as well as information

reported about participants’ dipping or non-dipping status.

2.3 Follow-up

A detailed description of the methodology and primary results

of the trial’s outcome have been reported (Gottlieb et al., 2014).

In brief, outcomes were measured at baseline and 12 weeks after

randomization. The primary outcome was 24-h MAP (measured

using the 90207 Ambulatory Blood Pressure Monitor, Spacelabs

Healthcare). The mean pressure was calculated at each reading as

one-third of systolic pressure plus two-thirds of diastolic pressure.

The 24-h mean pressure was calculated as a weighted average of

the mean pressure during wakefulness and sleep, with the weights

determined by the percentage of reported time spent in each state

as recorded in a sleep diary. Nocturnal non-dipping blood pressure

was defined as the mean nocturnal BP higher than 90% of the mean

daytime value.

2.4 Methods

2.4.1 The data set
The HeartBEAT study measured and reported BP dipping and

non-dipping. Subjects were stratified into BP dippers and BP non-

dippers, where non-dippers did not demonstrate a decrease in BP

of ≥10% from wake to sleep.

2.4.2 CPC analysis
The CPC method has been described in detail in several

prior publications (Thomas et al., 2005; Al Ashry et al., 2021a).

Cardiopulmonary sleep spectrograms were first obtained from

a single lead electrocardiogram (ECG). ECG-derived respiration

(EDR) is obtained either by using R-S wave amplitudes or variations

in the QRS complex area. Ectopic beats are identified and removed,

normal sinus–normal sinus (NN) intervals are extracted, and

outliers are filtered (Thomas et al., 2005). After extracting the

NN interval series on ECG and its associated EDR, the signals

are then resampled using cubic splines at 2Hz. The fast Fourier

transform is applied to three overlapping 512-sample sub-windows

within the 1,024-coherence window. The 1,024-coherence window

is then advanced by 256 samples (2.1min), and the calculation

is repeated until the entire NN interval/EDR series is analyzed.

Thus, the cross-spectral power and coherence of these two signals

are calculated over a 1,024-sample (8.5-min) window. For each

1,024-sample window, the product of the coherence and cross-

spectral power is used to calculate the ratio of coherent cross-

power in the low-frequency (0.01–0.1Hz) band to that in the high-

frequency (0.1–0.4Hz) band. The logarithm of the high-to-low-

frequency CPC ratio [log (HFC/LFC)] is then computed to yield

a continuously varying measure of CPC sleep stability/instability

output metrics. While, originally, the ECG signal was used as

input, any signal or signal set that encodes respiration and heart

rate variability (HRV) may be used to compute the CPC sleep

spectrogram; most conveniently, this signal set can be obtained

from the peripheral PPG-signal, which is readily available from

current generation oximeters. The current embodiment uses a

ring- or fingertip-based oximeter to collect the data coupled

with a mobile application and Bluetooth to stream the data for

automated analysis. The SleepImage system complies with the

Health Insurance Portability and Accountability Act (HIPAA),

is cleared by the Food and Drug Administration (K182618),

and complies with the EU Medical Device Directive (CE-mark

2862) to automatically generate biomarkers, presented numerically

and graphically (Figure 1). The analysis is otherwise essentially

identical. The outputs of the CPC algorithm include low-frequency
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(LFC; 0.01–0.1Hz), high-frequency (HFC; 0.1–0.4Hz), and very

low-frequency (vLFC; 0.001–0.01Hz) couplings, and an elevated

LFC-broad band (eLFCBB) that is a sleep fragmentation signal

biomarker (Thomas et al., 2005). HFC/LFC covary more strongly

with an electroencephalographic (EEG) non-cyclic alternating

pattern (n-CAP) and CAP, respectively (Thomas et al., 2005), than

conventional N3/N2—although most of N3 is HFC, and much of

HFC occurs during N2.

Stable-NREM sleep (HFC) is associated with several desirable

sleep characteristics, including increased absolute and relative delta

power (Thomas et al., 2014), a consolidated NREM sleep <1-

Hz slow oscillation, temporally stable breathing, stable arousal

thresholds, normal arterial oxygen (O2) and carbon dioxide (CO2)

concentrations, and BP dipping (Wood et al., 2020). Unstable

NREM (LFC) is characterized by features opposite of stable-

NREM (HFC), and ineffective (fragmented) REM sleep takes

on LFC coupling signatures, while wake or effective REM sleep

shows vLFC pattern (Thomas et al., 2005). HFC covaries better

with relative than absolute EEG slow-wave power and is thus

less constrained by the “loss” of slow-wave sleep (SWS) with

age (Thomas et al., 2014). Specific spectrographic signatures

of fragmented sleep (elevated LFC narrow band, eLFCNB) are

biomarkers of strong chemoreflex effects on sleep respiration

(Thomas et al., 2007), identifying areas of sleep with central apneas

and periodic breathing. BP dipping occurs only during periods

of HFC (Wood et al., 2020), consistent with the demonstration

that non-CAP is the EEG correlate of BP dipping (Iellamo et al.,

2004). LFC is associated with hypertension and stroke (Thomas

et al., 2009), while HFC is reduced in depression (Yang et al.,

2011), heart failure (Yeh et al., 2008), and fibromyalgia syndrome

(Thomas et al., 2010). HFC is an independent determinant of

the glucose disposition index (Pogach et al., 2012). Pre- and

posttreatment effects in sleep apnea are captured via changes

in HFC/LFC (Lee et al., 2014). An integrated metric, the

Sleep Quality Index (SQI), which is heavily weighted by stable-

NREM sleep, is associated with desirable directions of metabolic

health and blood pressure (Magnusdottir et al., 2020, 2021,

2022).

2.4.3 HR and CPC analysis
The PPG signal from each polygraphy recording in the

HeartBEAT data was processed through the SleepImage System

algorithms. A software module (“HR module”) was developed

for evaluating the HR data collected during the sleep study,

which was then intersected with the sleep-state output from the

SleepImage System: (a) A 2-sample-per-second resampled NN

series was evaluated by cropping the entire series from sleep

onset to sleep conclusion. Then, a linear trendline was fitted to

generate a slope coefficient, the associated p-value, and an R2

for model fit. While this method may provide insight that some

clinical professionals may value, it was not expected to have much

explanatory power, as it attempts to describe HR as a linear

trend over the course of the sleep period, lumping all sleep states

together. The disproportionate effect of sleep stage on BP dynamics

has been explained in the literature (Stein and Pu, 2012). (b)

HR rate statistics for each CPC sleep state classification were

then calculated using the same 2-sample-per-second resampled

NN series.

2.4.4 Primary endpoint
For this analysis, the following variables of interest were

extracted from the HeartBEAT data set: (a) MAP non-dipping

and dipping, (b) systolic blood pressure (SBP) non-dipping and

dipping, and (c) diastolic blood pressure (DBP) non-dipping and

dipping, where non-dippers were defined as patients who did not

demonstrate a decrease in BP ≥10% from wake to sleep. The

primary endpoint was to evaluate (a) the relationship between HR

during stable and unstable CPC sleep states and BP and (b) if sleep

evaluation combined with this HRmodule can be utilized to stratify

patients to identify patients more likely to have non-BP dipping

during sleep for further evaluation.

2.5 Statistical analysis

The primary endpoint, questioning if the HR module can be

utilized to identify BP dipping during sleep, was evaluated using a

logistic regression, regressing HR parameters from the HR module

on the dipping and non-dipping variables extracted from the

HeartBEAT data, controlling for gender, age, and race to assess the

predictive power on BP dipping.

Basic summary statistics, such as counts, are presented, along

with means and standard errors (in parentheses) for gender, race,

age, and body mass index (BMI). A one-way analysis of covariance

was utilized to compare non-dippers and dippers controlling for

age, gender, BMI, and site identifier. Means and standard errors

for the HR parameters are presented, along with the p-values

for pairwise comparison between the groups. The analysis was

performed using Stata version 15.1.

3 Results

3.1 Study population

Included in this analysis of the pleth signal from the

HeartBEAT data (Gottlieb et al., 2014) are both baseline

and follow-up recordings with signal quality defined

as average successful peak detection on the overnight

recording of no <70% for analysis to evaluate HR during

sleep and on data describing dipping and non-dipping

BP status. The data set contained sleep recordings with

acceptable pleth-signal quality from 302 patients at baseline

and 267 at follow-up, or a total of 569 sleep recordings

(Supplementary Table S1).

3.2 Primary outcome measures

First, the relationship between the CPC-sleep-state analysis

and the software HR module and dipping or non-dipping

status of BP was evaluated (Table 1). The most significant

difference in minimum HR (HRmin) was observed when
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FIGURE 1

Heart rate kinetics during sleep. The arrows indicate heart rate characteristics (green: dipping, black: non-dipping, red: reverse dipping).

comparing HR for dippers (56 ± 4 BPM) and non-dippers

(59 ± 4 BPM) during DBP and stable-NREM sleep (p

< 0.0001).

Table 2 presents the result from different logit models

regressing variables of interest (HR metrics; HRmin during sleep

andHRmin during stable-NREM sleep), controlling for age and race
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TABLE 1 Heart rate (HR) software module (“HR parameters”) for dippers and non-dippers, beats per minutes (BPM).

Average HR (BPM)
measured during diastolic
blood pressure (mm/Hg)

Average HR (BPM)
measured during systolic
blood pressure (mm/Hg)

Average HR (BPM) measured
during mean arterial blood

pressure (mm/Hg)

Non-Dipa Dipa p-valueb Non-Dipa Dipa p-valueb Non-Dipa Dipa p-valueb

Sleep

Mean HR 66.4 (±5.5) 64.7 (±5.5) 0.063 66.0 (±5.5) 65.1 (±5.5) 0.301 66.6 (±5.5) 65.1 (±5.5) 0.090

Min HR 55.6 (±2.6) 54.31 (±2.6) 0.003 55.6 (±2.6) 54.6 (±2.6) 0.016 55.8 (±2.6) 54.6 (±2.6) 0.003

Wake

Mean HR 69.2 (±5.7) 67.8 (±5.6) 0.126 69.1 (±5.7) 68.1 (±5.6) 0.293 69.6 (±5.7) 68.1 (±5.6) 0.100

Min HR 57.5 (±3.0) 55.9 (±3.0) 0.001 57.7 (±3.0) 56.2 (±3.0) 0.003 57.871 (±3.0) 56.3 (±3.0) 0.001

Stable NREM

Mean HR 67.2 (±7.4) 64.3 (7.3) 0.017 66.1 (±7.4) 64.9 (±7.34) 0.318 66.6 (±7.4) 64.6 (±7.3) 0.150

Min HR 58.6 (±4.1) 56.3 (4.1) <0.0001 57.6 (±4.2) 56.74 (±4.1) 0.189 58.25 (±4.2) 56.7 (±4.1) 0.022

HR, heart rate; NREM, non-rapid eye movement sleep; BPM, heart beats per minute.
aValues are mean± standard deviation.
bDifference between groups (p-value).

on the indicator variables for diastolic, systolic, and MAP non-

dipping. BMI was explored as a control but did not add to the

explanatory/predictive power of any of the models. The results are

presented as coefficient estimates from the logit regression with

p-values in parentheses. The strongest associations were observed

when including HRmin during stable-NREM sleep. Higher HRmin

were associated with a higher likelihood of being a non-dipper,

with an increase of 1 beat per minute in HRmin during stable

NREM being associated with an approximate 4.4% increase in

the probability of being a non-dipper (p = 0.001). Being African

American and increased age were found to be factors that increased

the likelihood of being a non-dipper, while gender did not seem

to be a significant predictor. For the sake of brevity, the mean HR

in stable-NREM sleep was not included in the results, although it

showed a statistically significant effect on diastolic non-dipping, in

favor of the minimum, which had a higher coefficient. The variance

inflation factor (VIF) was calculated to investigate the presence of

collinearity. The average VIF did not exceed 1.08 for any of the

models, with the highest calculated VIF of 1.14 for an individual

variable. This indicates that multicollinearity is not of concern with

the chosen independent variables.

Second, the cohort was stratified based on the “HR parameter”

into HR dippers and HR non-dippers (Table 3). At baseline, fewer

HR non-dippers used calcium-channel blockers (10.7%, p= 0.047)

and diuretics (10.9%, p= 0.044) thanHR-dippers. Additionally, HR

non-dippers presented with a higher meanMAP when awake of 2.2

mmHg (p = 0.046) than HR-dippers. Comparing HR dippers and

non-dippers and focusing on BP, HR non-dippers have significantly

higher average DBP (DBPave; 85.3 vs. 83.8 mmHg, p = 0.035);

DBPsleep (74.6 vs. 72.7 mmHg, p = 0.018); and DBPwake (90.8 vs.

89.0 mmHg, p = 0.024). Additionally, they have a higher average

MAP (MAPave; 89.7 vs. 88.1 mmHg, p = 0.050); MAPsleep (79.4 vs.

77.4 mmHg, p = 0.036); and MAPwake (95.2 vs. 93.3 mmHg, p =

0.031), respectively (Table 4).

Finally, the subgroup that received the CPAP therapy was

stratified based on dipping status (HR dipper or HR non-dipper)

at baseline and at a 12-week follow-up (Table 5). When comparing

participants who were HR non-dippers at baseline and HR

dippers at follow-up, significant improvements were observed

in depression severity measured using the Patient Health

Questionnaire-9, −3.1 (p = 0.005), and the health and quality-of-

life indicators that were evaluated using the Short Form (36) Health

Survey: (a) vitality, 12.8 (p = 0.036); (b) physical functioning, 20.1

(p= 0.003); and (c) emotional functioning, 16.5 (p= 0.005); social

functioning, 17.4 (p = 0.007); and mental health and emotional

wellbeing, 13.9 (p= 0.001).

4 Discussion

The analysis of HR across the night in relation to CPC

sleep state, HR, and BP showed the following statistically

significant results: (a) lower HRmin during sleep in participants

who demonstrated diastolic, systolic, and MAP dipping when

compared to non-dippers; (b) lower HRmin during wake within the

sleep period in participants who demonstrated diastolic-, systolic-

, and MAP dipping compared to non-dippers; (c) lower HRmin

and HRmean during stable-NREM sleep (HFC) in those who

demonstrated diastolic dipping compared to non-dippers; (d) the

strongest associations were observed when including HRmin during

stable-NREM sleep (HFC); (e) when utilizing the HR module

to stratify the cohort based on HR dipping and non-dipping,

participants with non-dipping of HR had significantly higher MAP

and DBP when comparing all readings, readings during sleep, and

readings during wake; and (f) in the subgroup of participants

who received CPAP-therapy, participants with a HR non-dipping

pattern at baseline and HR dipping pattern at follow-up (i.e.,

treatment responders based on heart rate profiles), significantly

improved their subjective mental and physical functioning. The

results overall suggest that HR dipping in stable-NREM sleep/HFC

is a desirable biological characteristic.
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TABLE 2 Logistic regression models regressing the HR parameter on diastolic, systolic, and mean arterial blood pressure (MAP) non-dip indicators.

Diastolic non-dipping
blood pressurea

Systolic non-dipping
blood pressurea

MAP non-dipping
blood pressurea

Sleepmin 0.049 (0.010) 0.041 (0.035) 0.049 (0.010)

Stable NREMmin 0.044 (0.001) 0.026 (0.032)

Male 0.092 (0.674) 0.117 (0.591) 0.030 (0.891) 0.153 (0.483) 0.193 (0.378)

Race

African American 0.744 (0.009) 0.720 (0.012) 1.013 (0.001) 0.960 (0.001) 0.921 (0.002)

Other 0.086 (0.815) −0.002 (0.995) 0.007 (0.983) 0.195 (0.592) 0.117 (0.749)

Age 0.019 (0.146) 0.023 (0.073) 0.035 (0.008) 0.026 (0.049) 0.032 (0.016)

Const. −4.205 (0.000) −4.572 (0.001) −4.400 (0.002) −3.532 (0.002) −5.010 (0.000)

NREM, non-rapid eye movement sleep; MAP, mean arterial pressure.
aValues are the logistic regression coefficients with p-values in parenthesis.

HR kinetics during sleep seems to provide indirect information

about BP during sleep, an important cardiovascular health

variable. HR is readily available through most systems that

track sleep oximetry and could allow for risk stratification;

individuals with a non-dipping HR pattern could be directed to

selectively undergo conventional ABPM. The finding that HR was

specifically influenced by stable-NREM sleep (HFC) as estimated

through the pleth spectrogram was not surprising. Autonomic

physiology presents an important window into sleep; for example,

hemodynamics, HRV, and respiration are markedly dependent

on the sleep stage, with vagal dominance, stable breathing, and

BP reductions (“dipping”) during SWS/N3 (Javaheri and Redline,

2012). Furthermore, standard reporting of EEG-based stages as

a percentage of sleep time is an insensitive metric of sleep

fragmentation (Bianchi and Thomas, 2013). Most HSATs do not

provide EEG stages, although machine learning applied to ECG

and respiratory signals can approximate deep sleep. The ability to

evaluate HR dynamics in relation to sleep state without the need for

extensive PSG has practical advantages.

A reduction in BP during sleep (BP dipping) is considered

a BP-related biomarker of healthy sleep (Routledge et al., 2007;

Salles et al., 2016). There is a progressive reduction of BP from

wake through SWS, with an increase in REM sleep or transiently

in association with arousals. The HR profile follows this basic

scheme and is the highest in REM sleep and unstable-NREM

sleep or during arousals and lowest in conventional N3 (Javaheri

and Redline, 2012). In a prior study by our group, we used PSG

with beat-to-beat BP monitoring, ECG-derived CPC analysis, and

quantified delta power and the rate of occurrence of the<1-Hz slow

oscillation.We found that BP dipping occurred only during periods

of stable NREM (HFC), concomitant with slow oscillation/delta

power-enriched NREM sleep. HR was lowest in N3, but the small

sample size of 11 subjects perhaps explained the lack of HR dipping

during HFC; however, the current analysis shows the predicted dip

in HR. Mechanisms associated with rising slow wave/delta power

and a high grade of electrocortical synchrony are likely the drivers

of an integrated response of BP, HR, and stable breathing. Even in

conditions associated with fragmented sleep, such as sleep apnea,

delta power, and vagal HRV dominance tends to ebb and flow in a

correlated manner (Jurysta et al., 2006; Wood et al., 2020).

There is substantial variability in sleep quality in individuals

with similar severities of sleep apnea. Such differences may be

quantified by subjective symptoms e.g., questionnaire such as the

Insomnia Severity Index (Bastien et al., 2001); conventional criteria

e.g., N1, N3, total sleep time, sleep efficiency; EEG-based methods

such as the odds ratio product, which estimates sleep depth

continuously (Younes et al., 2015; Younes, 2023); and ECG/PPG

CPC spectrograms and the SQI (Thomas et al., 2014; Hilmisson

et al., 2019; Magnusdottir et al., 2020). BP during sleep is another

useful measure, while HR analysis could provide a complementary

metric for sleep quality.

There are sleep and circadian influences on BP and HR control.

Even in forced desynchrony experiments, both metrics are low in

the biological night when body temperature is low and melatonin

is high. Thus, there are both sleep and circadian components to

BP and HR dipping, and a loss of this pattern can occur from

either sleep or circadian factors. Any case of sleep fragmentation

can flatten or even reverse BP and HR during the biological

night. OSA can affect sleep quality and cause non-dipping BP by

autonomic dysfunction, transient surges associated with arousals,

the upregulation of neurohumoral systems, oxidative stress, and

a general lowering of sleep depth. However, when there is non-

dipping of either BP or HR during stable (unfragmented) sleep

of which HFC is a good biomarker, it likely reflects abnormal

autonomic regulation as many other drivers are less active during

this state (e.g., breathing and oxygenation are stable). Profiles of HR

may be useful when following treatment of sleep apnea, especially

with therapies with residual apnea. While CPAP when used can

largely normalize breathing, other increasingly used therapies, such

as weight loss, hypoglossal nerve stimulation, and oral appliances,

are more likely to have residual apnea. Partial CPAP use will also

demonstrate residual apnea. HR profiles could be one way to

assess the impact of residual disease as successful therapy could be

expected to improve HR dipping and even convert a non-/reverse

dipper to a dipper as demonstrated in this analysis when looking at

the subgroup treated with CPAP.

This analysis has some limitations, including (a) the study

population was selected for presence of CV disease or risk and

does not readily generalize to the range of medical backgrounds

on which sleep apnea occurs; (b) classic sleep staging was
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TABLE 3 Baseline characteristics: heart rate dippers vs. non-dippers.

Heart ratea

Alla

(n = 302)
HR dippersa

(n = 143, 47.4%)
HR non-dippersa

(n = 159, 52.6%)
HR dippers compared to

HR non-dippers (p-values)b

Characteristics

Age (years) 63.0 (±0.410) 63.1 (±0.617) 63.0 (±0.585) 0.910

Body mass index (BMI; kg/m2) 34.4 (±0.358) 34.9 (±0.539) 33.7 (±0.511) 0.103

Neck circumference (cm) 42.2 (±0.211) 42.3 (±0.313) 42.0 (±0.297) 0.561

Waist/hip ratio 1.0 (±0.004) 1.0 (±0.006) 1.0 (±0.006) 0.091

African American (%) 13.2 13.3 12.6 0.855

Caucasian (%) 79.2 78.3 79.9 0.741

Ever smoked (%) 62.9 6.3 11.3 0.127

Coexisting conditions (%)

Prior myocardial infarction 22.0 22.3 23.3 0.532

Diabetes mellitus 42.5 44.3 40.9 0.554

Dyslipidemia 77.8 77.8 78.6 0.874

Hypertension 82.8 85.7 80.5 0.233

Obstructive sleep apnea (%)

Moderate (AHI 15–30) 98.4 97.2 99.3 0.141

Severe (AHI ≥ 30) 29.6 29.4 29.6 0.971

Medication use (%)

ACE or ARB 69.8 73.4 64.8 0.106

Any beta-blockers 67.3 65.7 66.7 0.865

Calcium-channel blocker 30.1 37.1 26.4 0.047

Medication for diabetes 39.3 42.7 35.8 0.227

Diuretic 37.7 42.7 31.8 0.044

Lipid-lowering medication 89.0 86.0 91.8 0.107

Questionnaires

Epworth Sleepiness Scale 8.9 (±0.204) 9.1 (±0.304) 8.8 (±0.288) 0.431

Patient Health Questionnaire-9 (PHQ-9) 5.5 (±0.279) 5.5 (±0.420) 5.6 (±0.399) 0.971

PHQ-9 depression severity 0.7 (±0.054) 0.8 (±0.080) 0.7 (±0.076) 0.687

Sleep measures

Sleep Quality Index (SQI) 41 (±0.910) 41 (±1.324) 40 (±1.255) 0.489

Apnea-Hypopnea Index (AHI) 33 (±0.555) 33 (±0.809) 33 (±0.764) 0.935

Stable sleep (%) 27 (±1.030) 28 (±1.498) 26 (±1.420) 0.352

Unstable sleep (%) 50 (±0.982) 49 (±1.428) 51 (±1.354) 0.476

Fragmentation (eLFCBB :%) 26 (±0.945) 26 (±1.375) 26 (±1.304) 0.925

Periodicity (e-LFCNB :%) 3 (±0.276) 3 (±0.401) 3 (±0.381) 0.910

Blood pressure measures (mm/Hg)

Average diastolic pressure, all readings 71 (±0.456) 70 (±0.684) 71 (±0.646) 0.101

Average diastolic pressure, sleep 65 (±0.490) 64 (± 0.231) 65 (±0.685) 0.184

Average diastolic pressure, wake 73 (±0.742) 72 (±0.742) 74 (±0.701) 0.067

Average systolic pressure, all readings 124 (±0.833) 123 (±1.262) 125 (±1.191) 0.160

(Continued)
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TABLE 3 (Continued)

Heart ratea

Alla

(n = 302)
HR dippersa

(n = 143, 47.4%)
HR non-dippersa

(n = 159, 52.6%)
HR dippers compared to

HR non-dippers (p-values)b

Average systolic pressure, sleep 116 (±0.943) 115 (±1.415) 117 (±1.330) 0.223

Average systolic pressure, wake 128 (±0.844) 126 (±1.280) 129 (±1.208) 0.102

Average mean arterial pressure, sleep 83 (±0.573) 82 (±0.855) 84 (±0.804) 0.138

Average mean arterial pressure, wake 92 (±0.523) 91 (±0.789) 93 (±0.745) 0.046

HR, heart rate; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker.
aValues are mean± standard deviation for continuous variables and percentages for categorical variables.
bDifference between groups (p-value).

TABLE 4 Heart rate dipper vs.. non-dipper: blood pressure and biochemical measures.

HR-dippera

(n = 143, 47.4%)
HR-non-dippera
(n = 159, 52.6%)

p-valuesb

Medication use (%)

ACE or ARB 76 65 0.008

Any beta-blockers 59 56 0.455

Calcium-channel blocker 12 2 0.017

Medication for diabetes 28 19 0.028

Diuretic 26 17 0.031

Lipid-lowering medication 35 35 0.953

Blood pressure measures (mm/Hg)

Average diastolic blood pressure 84 (±3.183) 85 (±3.164) 0.035

Average diastolic pressure, sleep 73 (±3.459) 75 (±3.436) 0.018

Average diastolic pressure, wake 89 (±3.392) 91 (±3.371) 0.024

Average systolic pressure 106 (±5.723) 108 (±5.688) 0.230

Average systolic pressure, sleep 94 (±6.415) 96 (±6.371) 0.145

Average systolic pressure, wake 112 (±5.854) 114 (±5.818) 0.175

Average mean arterial pressure 88 (±3.568) 90 (±3.546) 0.050

Average mean arterial pressure, sleep 77 (±4.040) 79 (±4.013) 0.036

Average mean arterial pressure, wake 93 (±3.713) 95 (±3.690) 0.031

HR, heart rate; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker.

aValues are mean± standard deviation for continuous variables and percentages for categorical variables.

bDifference between groups (p-value).

not available or possible; (c) only one night of recording was

available at any given time point; (d) HR can be modified

by numerous factors including stress, anxiety, and pain, the

impact of which on the type of analysis we performed is

unknown; (e) the implications of HR-pattern analysis for disease

prognostics, well established for conventional ambulatory blood

pressure, are unknown; (f) the impact of drugs such as beta-

blockers or antihypertensives in general on the noted patterns

need to be established, and it is plausible that both attenuation

or amplification of the HR response during sleep may occur

based on cardiovascular functional status; and (g) conditions such

as heart failure, advanced renal disease, post-cardiac transplant,

or advanced autonomic neuropathy are likely to have relatively

unchanging HR across the night and may not allow this analysis.

Heart rate analysis would be invalidated by atrial fibrillation and

during fixed-rate cardiac pacing for bradyarrhythmias, while other

modes of pacing may still allow analysis, but that needs to be

directly demonstrated. The parent study design and our current

analysis cannot determine if HR is an independent risk factor

(beyond nocturnal BP) for cardiovascular outcomes. Additionally,

a generalization of its potential usefulness to non-apnea conditions

such as insomnia or restless legs and their treatments cannot

be determined.

In conclusion, HR analytics in relation to the sleep period

and the CPC spectrogram-estimated sleep states can provide

novel and potentially clinically useful information on autonomic

health. HR dipping (or not) may be a useful screener of BP

dipping/non-dipping and identify individuals who may benefit

from formal assessment of ambulatory BP and/or evaluate the

efficacy of various therapies. Such a stepped approach may
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TABLE 5 Heart rate dipper vs. non-dippers: comparison of characteristics.

Baseline Follow-Up p-valuesb

I. HR-dippera

(n = 45, 45.9%)
II.

HR-non-dippera

(n = 53, 54.1%)

III. HR-dippera

(n = 42, 51.2%)
IV. HR-non-

dippera

(n = 40, 48.8%)

III vs. I IV. vs. I III vs. II IV vs. II

Characteristics

Age (years) 63.3 (±1.025) 62.5 (±0.618) 64.0 (±1.074) 62.5 (±1.087) 0.966 0.951 0.729 1.000

Body mass index (BMI; kg/m2) 33.6 (±0.769) 33.5 (±0.708) 32.5 (±0.815) 33.9 (±0.815) 0.757 0.997 0.795 0.898

Neck circumference (cm) 42.2 (±0.518) 41.5 (±0.478) 41.1 (±0.550) 42.0 (±0.550) 0.477 0.944 0.948 0.906

Waist/hip ratio 1.0 (±0.009) 1.0 (±0.008) 1.0 (±0.009) 1.0 (±0.009) 0.998 1.000 0.848 0.742

African American (%) 8.9 3.8 9.5 2.5 0.999 0.613 0.654 0.994

Caucasian (%) 82.2 86.8 78.6 85.0 0.969 0.986 −0.714 0.996

Coexisting conditions (%)

Prior myocardial infarction 15.6 18.9 14.3 25.0 0.999 0.680 0.941 0.876

Diabetes mellitus 37.2 43.4 57.1 37.5 0.252 0.975 0.537 0.941

Dyslipidemia 79.1 83.0 78.6 67.5 1.000 0.590 0.955 0.291

Hypertension 72.1 84.9 81.0 67.5 0.765 0.959 0.968 0.200

Medication use (%)

ACE or ARB 68.9 66.0 78.0 60.0 0.800 0.817 0.604 0.926

Any beta-blockers 57.8 62.3 58.5 57.5 1.000 1.000 0.984 0.968

Calcium-channel blocker 40.0 26.4 26.8 27.5 0.549 0.710 1.000 0.999

Medication for diabetes 35.6 33.9 48.8 25.0 0.575 0.740 0.445 0.807

Diuretic 28.9 30.2 41.5 35.0 0.611 0.934 0.664 0.963

Lipid-lowering medication 93.3 88.7 92.7 85.0 1.000 0.584 0.920 0.938

Questionnaires

Epworth sleepiness scale score 8.2 (±0.554) 8.1 (±0.511) 8.6 (±0.574) 8.2 (±0.588) 0.972 1.000 0.927 1.000

Patient Health Questionnaire-9

(PHQ-9)

4.8 (±0.658) 5.7 (±0.606) 2.6 (±0.681) 4.6 (±0.698) 0.119 1.000 0.005 0.657

PHQ-9 Depression severity 0.6 (±0.123) 0.8 (±0.113) 0.2 (±0.127) 0.6 (±0.130) 0.233 0.999 0.01 0.746

Short Form (36) Health Survey

SF-vitality 54.8 (±3.370) 54.1 (±3.105) 66.9 (±3.530) 57.0 (±3.574) 0.067 0.969 0.036 0.928

(Continued)
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TABLE 5 (Continued)

Baseline Follow-Up p-valuesb

I. HR-dippera

(n = 45, 45.9%)
II.

HR-non-dippera

(n = 53, 54.1%)

III. HR-dippera

(n = 42, 51.2%)
IV. HR-non-

dippera

(n = 40, 48.8%)

III vs. I IV. vs. I III vs. II IV vs. II

SF-physical functioning 74.4 (±4.190) 65.5 (±3.861) 86.1 (±4.390) 65.6 (±4.445) 0.221 0.474 0.003 1.000

SF-general health perceptions 62.6 (±3.345) 56.4 (±3.082) 66.5 (±3.504) 60.9 (±3.548) 0.853 0.984 0.138 0.778

SF-emotional functioning 81.3 (±3.514) 75.6 (±3.238) 92.1 (±3.681) 76.7 (±3.727) 0.152 0.803 0.005 0.997

SF-social functioning 81.1 (±3.797) 73.8 (±3.499) 91.2 (±3.978) 76.6 (±4.027) 0.264 0.844 0.007 0.997

SF-mental health/emotional

wellbeing

74.0 (±2.567) 72.2 (±2.365) 86.1 (±2.689) 72.6 (±2.722) 0.007 0.983 0.001 1.000

Sleep measures

Sleep Quality Index (SQI; 0–100) 41 (±2.538) 40 (±2.339) 42 (±2.627) 41 (±2.692) 0.995 1.000 0.957 0.994

Apnea-Hypopnea Index (AHI) 32 (±1.774) 32 (±1.635) 20 (±1.836) 25 (±1.882) <0.001 0.042 <0.001 0.013

Blood pressure measures (mm/Hg)

Average diastolic blood pressure,

all readings

73 (±1.117) 71 (±1.028) 69 (±1.157) 70 (±1.187) 0.063 0.382 0.499 0.963

Average diastolic pressure, sleep 68 (±1.236) 66 (±1.135) 63 (±1.282) 65 (±1.315) 0.062 0.534 0.488 0.996

Average diastolic pressure, wake 76 (±1.185) 74 (±1.090) 71 (±1.228) 73 (±1.259) 0.074 0.552 0.461 0.989

Average systolic pressure, all

readings

126 (±2.014) 122 (±1.853) 123 (±2.087) 122 (±2.140) 0.816 0.685 0.990 1.000

Average systolic pressure, sleep 118 (±2.378) 115 (±2.184) 115 (±2.466) 115 (±2.530) 0.791 0.858 1.000 1.000

Average systolic pressure, wake 130 (±2.026) 126 (±1.864) 127 (±2.099) 126 (±2.152) 0.745 0.704 0.990 0.995

Average mean arterial pressure,

sleep

85 (±1.488) 83 (±1.366) 82 (±1.543) 83 (±1.583) 0.288 0.724 0.860 1.000

Average mean arterial pressure,

wake

94 (±1.264) 92 (±1.163) 90 (±1.310) 92 (±1.343) 0.238 0.700 0.859 1.000

HR, heart rate; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker.
aValues are mean± standard deviation for continuous variables and percentages for categorical variables.
bP-values based on difference between groups at baseline and follow-up.
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enable a more practical, cost-effective, and applicable approach to

diagnosing MH.
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Identification and Mendelian 
randomization validation of 
pathogenic gene biomarkers in 
obstructive sleep apnea
Nianjin Gong 1†, Yu Tuo 2† and Peijun Liu 1*
1 Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao 
Autonomous Prefecture, Enshi, China, 2 Department of Oncology, The Central Hospital of Enshi Tujia 
and Miao Autonomous Prefecture, Enshi, China

Background: By 2020, obstructive sleep apnea (OSA), a prevalent respiratory 
disorder, had affected 26.6–43.2% of males and 8.7–27.8% of females worldwide. 
OSA is associated with conditions such as hypertension, diabetes, and tumor 
progression; however, the precise underlying pathways remain elusive. This 
study aims to identify genetic markers and molecular mechanisms of OSA to 
improve understanding and treatment strategies.

Methods: The GSE135917 dataset related to OSA was obtained from the GEO 
database. Differentially expressed genes (DEGs) were subsequently identified. 
Weighted gene co-expression network analysis (WGCNA) was conducted to 
pinpoint disease-associated genes. The intersection of these data enabled the 
identification of potential diagnostic DEGs. Further analyses included Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment studies, 
exploration of protein–protein interactions based on these genes, and an 
examination of immune infiltration. Mendelian randomization was employed to 
validate core genes against the Genome-Wide Association Study database.

Results: A total of 194 DEGs were identified in this study. WGCNA network 
analysis highlighted 2,502 DEGs associated with OSA. By intersecting these 
datasets, 53 diagnostic DEGs primarily involved in metabolic pathways were 
identified. Significant alterations were observed in immune cell populations, 
including memory B cells, plasma cells, naive CD4 T cells, M0 macrophages, and 
activated dendritic cells. CETN3, EEF1E1, PMM2, GTF2A2, and RRM2 emerged 
as hub genes implicated in the pathogenesis. A line graph model provides 
diagnostic insights. Mendelian randomization analysis confirmed a causal link 
between CETN3 and GTF2A2 with OSA.

Conclusion: Through WGCNA, this analysis uncovered significant genetic 
foundations of OSA, identifying 2,502 DEGs and 194 genes associated with 
the disorder. Among these, CETN3 and GTF2A2 were found to have causal 
relationships with OSA.

KEYWORDS

obstructive sleep apnea, differentially expressed genes, WGCNA, Mendelian 
randomization, immune infiltration
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Introduction

Obstructive sleep apnea (OSA) is a prevalent chronic sleep 
disorder affecting individuals globally. In the United  States, 
approximately 10% of adults experience mild OSA, with moderate 
to severe cases ranging from 3.8 to 6.5% (1, 2). The primary 
symptom of OSA is repetitive upper airway collapse during sleep, 
largely due to the activity of the genioglossus muscle. This collapse 
leads to sleep disruptions and intermittent hypoxia, causing 
daytime fatigue and drowsiness. Moreover, OSA significantly 
increases the risk of various conditions, including coronary heart 
disease, diabetes, and cerebrovascular accidents, creating a 
substantial health and economic burden on individuals and 
society (3). Polysomnography is the primary diagnostic tool for 
OSA (4). However, its limited availability in specialized medical 
institutions and issues with patient discomfort challenge its 
widespread use (5). OSA often results in chronic intermittent 
hypoxia, which can lead to alterations in genes associated with 
hypoxic phenotypes (6). OSA is closely associated with a genetic 
basis. Studies utilizing allele models have identified 10 genetic 
variants that are linked to an increased risk of OSA. These variants 
demonstrate odds ratios ranging from 1.21 to 2.07 in the global 
population, indicating a significant genetic contribution to the 
risk of developing OSA (7). Understanding these genetic changes 
not only provides insights into the mechanisms underlying OSA 
but may also pave the way for innovative and precise 
diagnostic methods.

Weighted gene co-expression network analysis (WGCNA) is a 
specialized statistical tool designed for an in-depth analysis of gene 
expression data (8). It identifies co-expression patterns among 
genes or transcripts, groups genes with similar expression traits, 
and pinpoints gene modules linked to specific biological processes 
or diseases. Unlike traditional methods, WGCNA uses a weighted 
network strategy to emphasize significant gene correlations, 
providing a systematic view of gene interactions and disease 
mechanisms. Recent research employing WGCNA reveals genetic 
factors for diseases, yet gaps remain in identifying markers for OSA 
and understanding their roles (9, 10). The goal of utilizing WGCNA 
in our study is to identify diagnostic genes associated with OSA 
(11, 12).

Mendelian randomization (MR) is a genetics-based approach 
designed to assess causal relationships between exposures and 
diseases. By leveraging genetic variants, such as SNPs, as 
instrumental variables, MR evaluates associations between 
environmental or lifestyle factors and disease risk. One of its 
inherent strengths is the random allocation of genes at 
conception, which ensures independence from many confounding 
factors, thereby facilitating a more unbiased assessment of 
causality (13, 14). To validate the core diagnostic genes associated 
with OSA, they were included in an MR analysis, building upon 
the genes previously identified through WGCNA. This study 
aims to enhance our understanding of the genetic foundations of 
OSA through the use of advanced bioinformatics tools like 
WGCNA and MR analysis. By identifying and validating genetic 
markers associated with OSA, we seek to develop more accurate 
diagnostic tools and targeted therapeutic strategies, ultimately 
reducing the substantial health and economic burdens of 
this disorder.

Methods

Differentially expressed genes of the OSA 
gene dataset

In R v4.1.2, the analysis began by loading the “limma” and 
“pheatmap” packages. Gene expression data were obtained from the 
GSE135917 dataset available in the GEO database (15). The dataset 
involved two distinct groups: a control group comprising 8 individuals 
and an OSA patient group consisting of 34 individuals. The diagnosis 
of OSA within this cohort was primarily reliant on the respiratory 
disturbance index (RDI). Following initial data processing, a 
differentially expressed gene (DEG) analysis was conducted using the 
“limma” package. A logFC threshold of 0.585, equivalent to a 1.5-fold 
change, and an adjusted p-value criterion of adjusted p-value <0.05 
were applied to identify statistically significant genes. This threshold 
selection was based on common practices in other studies, ensuring 
that the identified gene changes were biologically meaningful and 
controlling the false positive rate, thereby ensuring the statistical 
validity and biological relevance of the results (16, 17). Subsequently, 
an expression heatmap was generated based on these identified genes.

WGCNA analysis of gene expression

Utilizing the WGCNA approach, the normalized expression data 
were analyzed. Genes with fluctuations below 0.1 were excluded, and 
sample clustering was performed to eliminate outliers. An optimal soft 
threshold was determined based on the softPower criteria. Using the 
TOM algorithm and the specified softPower value, a gene adjacency 
matrix was constructed. Dynamic cutting was applied with a depth of 
2 and a minimum module size of 100, and congruent modules were 
merged at a cut height of 0.35. Advanced analysis revealed correlations 
between modules and clinical markers, and core genes were identified 
by applying set thresholds: gene significance >0.5 and module 
association >0.8. These thresholds were chosen to ensure a high level of 
confidence in the biological significance of the findings, aligning with 
established practices in the field as illustrated in similar studies (18, 19).

Diagnostic DEG identification and 
enrichment analysis

By intersecting datasets, potential diagnostic DEGs were identified. 
The “clusterProfiler” and “enrichplot” packages were then used to perform 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) enrichment analyses (12, 13). The GO analysis focused on three 
dimensions: biological process, cellular component, and molecular 
function. A p-value <0.05 was considered statistically significant.

Diagnostic DEG analysis and interaction

The STRING database1 was used to evaluate diagnostic DEGs. 
Interactions among these genes were then visualized with Cytoscape 

1  https://cn.string-db.org/
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v3.9.0. To refine the module’s density and significance within the 
protein–protein interaction networks, the “cytoHub” plug-in in 
Cytoscape was utilized.

Receiver operating characteristic analysis 
for hub diagnostic genes diagnostic

The expression data from GSE13597 were meticulously analyzed 
using the “glmnet” and “pROC” packages. During this process, 
structured sample categorization was performed, hub diagnostic genes 
were identified and ranked, and receiver operating characteristic 
(ROC) curves were generated. These ROC curves provided an 
intuitive visual representation of the diagnostic capabilities of each 
core gene, with their performance quantitatively assessed using the 
area under the curve (AUC) values.

Calibrating hub diagnostic gene model

The “rms” and “rmda” packages were used to extract gene 
expression data from the GSE135917 dataset and identify key 
diagnostic genes. Samples were categorized into “high” or “low” based 
on their expression profiles. To optimize the logistic regression 
modeling approach, the “datadist” function was employed for data 
structuring. The “lrm” function was then used to create a logistic 
regression model, with sample categories as dependent variables and 
gene expression classifications as predictors. From this model, a 
nomogram was generated using the “nomogram” function, providing 
a graphical representation of the “risk of disease” in relation to gene 
expression levels. Subsequently, a logistic regression analysis yielded 
a plotted nomogram and a calibration curve, confirming the model’s 
calibration accuracy.

Immune cell infiltration and gene 
correlation analysis

The “CIBERSORT” method was utilized to evaluate immune cell 
infiltration within the expression data of the dataset (20). Cells were 
rigorously filtered based on a significance threshold of p < 0.05. For 
enhanced visualization, the “pheatmap” and “corrplot” packages were 
employed to generate heatmaps and correlation plots of immune cells, 
respectively. Subsequently, violin plots were constructed to provide a 
detailed depiction of the distribution of infiltrated immune cells. 
Furthermore, the relationship between the expression of the hub 
diagnostic gene and the abundance of immune cells was elucidated.

MR analysis

An MR study was conducted using the “TwoSampleMR” package 
to explore potential causal relationships. Exposure data were obtained 
from various eQTL IDs, including eqtl-a-ENSG00000171848, eqtl-a-
ENSG00000140307, eqtl-a-ENSG00000140650, eqtl-a-
ENSG00000124802, and eqtl-a-ENSG00000153140. Outcome data 
were sourced from the ebi-a-GCST90018916 ID (21). Following 
extraction, datasets were harmonized, and appropriate instrumental 

variables for MR were identified. Subsequent MR analyses were 
performed, and results were converted to estimate odds ratios. 
Additionally, the heterogeneity and pleiotropy of the instrumental 
variables were critically assessed. To facilitate visual interpretation of 
the findings, scatter plots, forest plots, funnel plots, and leave-one-out 
sensitivity plots were generated, offering a comprehensive overview of 
the MR results and the robustness of the conclusions.

Results

Integrated analysis reveals the diagnostic 
genes

A comprehensive DEG analysis was performed on the GSE135917 
OSA gene dataset, resulting in the identification of 194 DEGs. These 
genes, which may play a pivotal role in the progression and 
manifestation of OSA, were visually represented in a heatmap 
(Figure 1A). To gain further insights into the interplay and co-expression 
patterns among these genes, WGCNA analysis was employed. This 
analysis identified an optimal soft threshold of 12, ensuring a scale-free 
topology in the gene network, as illustrated in Figures 1B,C. Within this 
network analysis, the “MEblue” module emerged as a significant player, 
demonstrating a strong association with OSA. This module alone 
comprises an extensive set of 2,502 DEGs (Figure 1D). The magnitude 
and co-expression patterns within this module underscore its critical 
significance in the development of OSA, suggesting it may harbor genes 
or pathways central to the molecular mechanisms of the disease.

Diagnostic DEG enrichment analysis

By intersecting these datasets, 53 diagnostic DEGs predominantly 
associated with metabolic pathways were identified (Figure 2A). GO 
enrichment analysis highlighted key biological processes, including 
C-terminal protein amino acid modification, post-translational protein 
modification, blood vessel endothelial cell migration, and fatty acid 
derivative metabolic processes. In the cellular component category, the 
primary focus was on the lysosome and azurophil granule, while 
molecular function emphasized iron ion binding and monooxygenase 
activity (Figure 2B; Supplementary Figure S1). Additionally, KEGG 
analysis underscored metabolic pathways, the p53 signaling pathway, 
the cAMP signaling pathway, necroptosis, and peroxisome (Figure 2C).

Hub diagnostic genes identification and 
modelling

Through a comprehensive exploration of the diagnostic DEGs 
using the STRING database and further visualization in Cytoscape 
software, essential core genes, including CETN3, EEF1E1, PMM2, 
GTF2A2, and RRM2, emerged prominently in their relevance 
(Figures 3A,B). Within the context of the GSE13597 dataset, these 
genes were identified as potential diagnostic cornerstones. Their 
diagnostic effectiveness was reinforced by an AUC value exceeding 
0.85, demonstrating their strong diagnostic capability (Figure 4A).

Leveraging the predictive potential of key genes, including 
CETN3, EEF1E1, PMM2, GTF2A2, and RRM2, an advanced model 
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was meticulously developed to assess disease susceptibility based on 
gene expression nuances. Using the nomogram function, a detailed 
nomogram was created, providing a clear visual representation of the 
direct association between gene expression levels and the “risk of 
disease” (Figure  4B). Following data collection and processing, a 

logistic regression was implemented. The resulting analysis produced 
a comprehensive nomogram that visually elucidates the probability of 
various outcomes, considering multiple predictors. To validate the 
accuracy and robustness of the established model, a calibration curve 
was generated. The remarkable alignment of this curve with the 

FIGURE 1

DEG and WGCNA analyses of OSA from the GSE135917 dataset were conducted. (A) Heatmap of 194 DEGs linked to OSA. (B,C) WGCNA analysis 
revealing the optimal soft-thresholding power at 12, ensuring scale-free topology in the gene co-expression network. (D) The “MEblue” module 
containing 2,502 DEGs strongly associated with OSA. DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; 
OSA, obstructive sleep apnea.

FIGURE 2

Diagnostic DEG enrichment analysis in OSA was conducted. (A) DEGs primarily associated with metabolic pathways. (B) GO enrichment analysis 
highlighting significant BPs, CCs, and MFs. (C) Principal pathways identified from KEGG analysis. DEGs, differentially expressed genes; GO, Gene 
Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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45-degree reference line underscores the high consistency between 
predicted and observed outcomes, reaffirming the predictive strength 
of the model in categorizing gene expression levels (Figure 4C).

Immune infiltration in patients with OSA

In an in-depth analysis of immune infiltration within the 
dataset, specific patterns in cellular abundance were observed 

among patients with OSA. Notably, an increased presence of 
memory B cells and M0 macrophages suggested their potential role 
in OSA progression or response. Conversely, a noticeable decrease 
in plasma cells, naive T CD4 cells, and activated dendritic cells 
hinted at their diminished involvement in the OSA condition 
(Figures 5A,B). The intricate associations between these core genes 
and immune cells are visually illustrated in Figures 5C–J, elucidating 
the potential interactions and interplay between gene expression 
and immune cell profiles.

FIGURE 3

Analysis and visualization of diagnostic DEGs were performed. (A) Diagnostic DEG interactions mapped using the STRING database. (B) A highlighted 
representation of the hub diagnostic genes, including CETN3, EEF1E1, PMM2, GTF2A2, and RRM2, visualized with Cytoscape software. DEGs, 
differentially expressed genes.

FIGURE 4

Comprehensive analysis of gene expression and disease risk assessment was conducted. (A) The diagnostic significance of the hub diagnostic genes. 
(B) A nomogram illustrating the direct correlation between gene expression levels and the associated “risk of disease.” (C) A model validation curve 
illustrating its accuracy.
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MR analysis

Crucial insights into the potential causal relationships between 
certain genes and the designated outcome were provided by the MR 
analysis. CETN3, in particular, exhibited a clear and statistically 
significant association with the outcome, as indicated by the following 
p-values: IVW at 0.005, weighted median at 0.028, and MR Egger at 
0.037. This compelling evidence suggests a noteworthy causal effect of 
CETN3 on the outcome (Figures 6A,B). GTF2A2 also emerged as a 
gene of significant interest, with its association with the outcome 
highlighted by the following p-values: 0.024 for IVW, 0.017 for 
weighted mode, and 0.026 for weighted median (Figures 7A–B).

Notably, the MR-Egger intercept method indicated no evidence of 
pleiotropy, and Cochran’s Q technique revealed an absence of 
heterogeneity (Table 1). These collective results provide compelling 
evidence of the nuanced associations between the genes CETN3 and 
GTF2A2 with the outcome, underscoring their significant 
linkage to OSA.

Discussion

OSA, a prevalent and severe sleep disorder, disrupts breathing 
during sleep. Typically, these interruptions last several seconds to a 
minute and occur when the throat muscles fail to keep the airway 
open, despite attempts to breathe. This obstruction often causes a 
decrease in blood oxygen levels and frequent awakenings throughout 
the night, leading to fragmented and non-restorative sleep (22, 23). 
The samples derived from GSE135917 originate from the 
subcutaneous adipose tissue of patients with OSA. This adipose tissue, 
readily accessible as a fat depot, plays a pivotal role in 
metabolic regulation.

The analysis included 8 healthy controls from Study Group 1 and 
34 patients with OSA from both groups. The GSE135917 OSA gene 
dataset was thoroughly examined, leading to the identification of 194 
DEGs crucial to the progression and manifestation of OSA. Network 
analysis via WGCNA identified a strong association of the “MEblue” 
module with OSA, indicating that this module may contain key genes 

FIGURE 5

Immune infiltration analysis in patients with OSA and associations with the hub diagnostic genes was conducted. (A) Patterns in cellular abundance 
observed among patients with OSA. (B) Identified relationships and interactions among various immune cell types. (C–J) Graphic elucidations 
illustrating the intricate relationships between the hub diagnostic genes and immune cells.
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FIGURE 6

Mendelian randomization analysis was conducted to investigate gene-outcome associations. (A) Outcomes of the Mendelian randomization analysis 
presented in a forest plot, highlighting the significant association of CETN3. (B) Correlation between exposure and outcome depicted in a scatter plot, 
further emphasizing CETN3’s critical role.

FIGURE 7

Mendelian randomization analysis was performed to examine GTF2A2-outcome associations. (A) Outcomes from the Mendelian randomization 
analysis presented in a forest plot, emphasizing the significant association of GTF2A2. (B) Correlation between exposure and outcome was detailed in a 
scatter plot, further spotlighting GTF2A2’s critical role.

TABLE 1  Heterogeneity and horizontal pleiotropy analyses between CETN3, GTF2A2, and OSA.

Exposure Outcome Egger intercept p-intercept Cochran’s Q p-value

CETN3 OSA 0.0121 0.199 24.027 0.728

GTF2A2 OSA 0.0053 0.460 52.804 0.156
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or pathways central to the disease’s molecular mechanisms. WGCNA 
has become a prominent tool in OSA research due to its ability to 
systematically explore the molecular complexities of the disorder (24, 
25). Utilizing WGCNA, gene co-expression modules relevant to OSA 
can be identified, critical driver genes can be discovered, and various 
data types such as transcriptomics, proteomics, and metabolomics can 
be integrated, providing a comprehensive understanding of the disease 
landscape (26, 27).

Through a thorough analysis of datasets, 53 diagnostic DEGs 
predominantly associated with metabolic pathways were precisely 
identified. These DEGs provide profound insights into the potential 
molecular mechanisms underlying OSA, particularly in terms of 
metabolic regulation. Identified biological processes, such as 
C-terminal protein amino acid modification, post-translational 
protein modification, blood vessel endothelial cell migration, and fatty 
acid derivative metabolic processes, are intriguing. These processes 
could potentially be  linked to metabolic abnormalities, vascular 
dysfunction, and delayed tissue repair often observed in patients with 
OSA (28). Regarding cellular components, the prominence of the 
primary lysosome and azurophil granule suggests an impact of OSA 
on cellular acidic environments and inflammatory responses. Notably, 
azurophil granules are associated with inflammatory responses in 
various ailments (29). Insights into molecular function, highlighting 
iron ion binding and monooxygenase activity, suggest a potential 
connection between OSA and red cell functionality and the oxidative 
stress response at the tissue level (30). The STRING database, 
combined with Cytoscape software, facilitated a detailed examination 
of diagnostic DEGs, uncovering the intricate interrelationships among 
these genes (31). Subsequent ROC curve analyses emphasized the 
robust diagnostic potential of the identified core genes. Additionally, 
the established gene model, utilizing logistic regression and model 
calibration, offers profound insights into the disease and illuminates 
new avenues for future diagnostic and therapeutic interventions.

The unique dynamics of immune cells in patients with OSA were 
revealed through an in-depth analysis of immune infiltration. Memory 
B cells and M0 macrophages showed a significant increase, suggesting 
their role in mediating inflammatory cascades and subsequent tissue 
impairments associated with the disease (32). In contrast, plasma cells, 
naive T CD4 cells, and activated dendritic cells exhibited a reduced 
prevalence, indicating a diminished regulatory capacity as the disease 
progresses, likely linked to the chronic hypoxic environment and 
persistent inflammation inherent in OSA (33). Particularly, the 
reduction in plasma cells may lead to weakened antibody-mediated 
immune responses in patients with OSA, diminishing their defense 
against pathogens (34). The decrease in naive T CD4 cells could affect 
the regulatory and activation functions of the immune system in OSA 
patients, weakening their resistance to infections (35). Furthermore, 
a reduction in activated dendritic cells suggests that OSA may interfere 
with effective antigen presentation and the initiation of immune 
responses, impacting overall immune regulation. These insights, 
combined with the complex interplay between cellular components 
and key genes, pave the way for a deeper exploration of the molecular 
and immunological foundations of OSA. Several studies have delved 
into SNPs and their connection to OSA, highlighting the discovery of 
rs11691765  in GPR83 and rs35424364  in C6ORF183 within the 
Hispanic/Latino American population. These genomic-level findings 
shed new light on the roles of inflammation and hypoxia signaling 
pathways in sleep apnea (36). OSA demonstrates distinct genetic 

disparities among various ethnic groups. In the case of European 
Americans, genetic variants in CRP and GDNF show a significant 
association with the AHI. Conversely, in African Americans, the 
rs9526240 variant within the HTR2A gene is notably correlated with 
the presence of OSA (37). Our study distinctively emphasized MR 
analysis within a European population, providing specialized insight 
into genetic influences. While our findings were primarily based on 
this demographic, we acknowledged the importance of comparing 
these results with SNP data reported in Hispanic/Latino and African 
American populations to understand broader genetic implications. 
The MR approach revealed pronounced correlations between certain 
genes and outcomes relevant to OSA. CETN3, in particular, showed 
distinct associations across various methodologies, underscoring its 
critical role in the genetic framework of OSA. Similarly, GTF2A2 
emerged as another significant contributor within the genetic context 
of the disease. On the other hand, several genes, including EEF1E1, 
PMM2, and RRM2, did not exhibit robust associations, highlighting 
the nuanced and multifaceted genetic architecture of OSA.

Investigations into family genetics have shown that in OSA, 
inherited traits may influence late sleep timing associated with 
increased IL-6 levels, and a genetic tendency towards more significant 
social jetlag corresponding with higher IL-1 levels (38). The genetic 
relationship between OSA and its pathological features is evident, as 
demonstrated by a twin study from Hungary on OSA. Specifically, the 
study found a significant shared genetic basis linking serum 
triglyceride levels with key indicators of OSA severity, such as the 
oxygen desaturation index and the proportion of sleep time with 
oxygen saturation below 90% (39). In summary, it is evident that 
genetic variations significantly contribute to the development and 
progression of OSA, underlining the importance of genetic factors in 
understanding and addressing this condition. CETN3, also known as 
centrin 3, encodes a protein belonging to the EF-hand protein 
superfamily. As calcium-binding proteins, centrins play a crucial role 
in centrosome dynamics, particularly in centrosome replication and 
separation, both essential for cell division (40, 41). Oxidative stress, 
commonly associated with conditions like OSA, can disrupt the cell 
cycle by affecting both protein functions and DNA integrity (42). 
Elevated oxidative stress could, therefore, compromise the functional 
integrity of CETN3, hindering its primary role in maintaining 
centrosome dynamics. Studies have shown that disruptions in cell 
cycle regulation are linked to sleep disturbances and respiratory 
dysfunction, highlighting the relevance of CETN3 in OSA pathology 
(43). Similarly, GTF2A2 encodes a critical subunit of the general 
transcription factor IIA, which is essential for the assembly of the 
preinitiation complex in gene transcription directed by RNA 
polymerase II. Composed of two main subunits, GTF2A2 represents 
one of them (44, 45). Given GTF2A2’s central role in transcription 
initiation, oxidative stress induced by elevated ROS levels, often seen 
in OSA, might impede its function or expression (46). The potential 
of ROS to alter transcription regulators and their target genes suggests 
that the cellular imbalances caused by OSA could indirectly modulate 
the function of genes such as GTF2A2. This impairment may lead to 
altered transcriptional regulation, which has been shown to affect 
cellular function and contribute to the systemic effects observed in 
OSA patients, such as enhanced inflammatory responses and 
metabolic dysregulation (47).

Additionally, we recognize that due to limited sample sizes and 
selection biases, our findings may need to be validated in a broader 
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population to confirm their generalizability. Variations and potential 
biases may occur from exclusive reliance on specific datasets and 
sample origins. Despite strong associations identified with CETN3 
and GTF2A2, further investigation is necessary for genes such as 
EEF1E1, PMM2, and RRM2. It’s critical to experimentally validate the 
causal roles of these genes in OSA. Although the MR approach is 
robust, it requires cautious interpretation due to its foundational 
assumptions. Future research should expand to include a wider range 
of tissues and functional validations to deepen our understanding.

Conclusion

In-depth analysis has identified critical genes, notably CETN3 and 
GTF2A2, with potential roles in the etiology and progression of 
OSA. Insights into immune cell dynamics further emphasize the 
multifaceted nature of the disease. While promising, inherent 
limitations in the study must be considered, particularly concerning 
potential biases in the datasets and assumptions in the methodology. 
These findings offer a foundation for future OSA research, highlighting 
the need for experimental validation and broader exploration.
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Objective: Sleep-related breathing disorder (SRBD) is a prevalent non-motor 
symptom in multiple system atrophy (MSA). However, the reported prevalence 
of SRBD in MSA from different studies has shown inconsistency. Additionally, 
only one study has examined the impact of SRBD on both motor and non-
motor symptoms in MSA.

Methods: Cross-sectional study of 66 patients with probable MSA from China. 
SRBD was ascertained with polysomnography (PSG). All the MSA individuals 
were assessed using the Epworth Sleepiness Scale (ESS), Unified Multiple-System 
Atrophy Rating Scale (UMSARS), Hamilton Depression Scale (HAMD), Hamilton 
Anxiety Scale (HAMA), the Mini-mental State Examination (MMSE), Non-Motor 
Symptoms Scale (NMSS), and Pittsburgh Sleep Quality Index (PSQI). Moreover, a 
meta-analysis was conducted by searching studies related to MSA and SRBD in 
PubMed, Web of Science, Embase, and Cochrane databases. Data were pooled 
as necessary to calculate prevalence of SBRD with 95% confidence intervals (CI).

Results: Our study included 66 patients with MSA, 52 of whom had a diagnosis 
of SRBD (78.8%). There were no significant differences between the MSA with 
SRBD and without SRBD groups on the age, sex, disease onset, disease duration, 
UMSARS I, II, and IV, the NMSS, the HAMA, HAMD, the ESS the FSS, the MMSE, 
and the PSQI scales. However, MSA patients with SRBD having a significant 
higher obstructive apnea index and percentage of snoring during sleep than 
MSA patients without SRBD [10.0 (4.1–10.6) vs. 0.1 (0–0.3), and 8.3 (5.1–12.2) 
vs. 4.2 (0–7.5)]. Also, between the two groups, the mean and minimum oxygen 
concentrations during sleep were lower in MSA patients with SRBD than in those 
without SRBD [93.7 (93–95) vs. 95.5 (95.8–97), p  =  0.001] and [83.9 (81.2–89.0) 
vs. 90.3 (89.8–93.3), p  =  0.000]. The primary search strategy identified 701 
articles, with 10 meeting the inclusion criteria. The overall prevalence of SRBD in 
a combined sample of 295 MSA patients was found to be 60.5% (95% CI, 43.2–
76.5%). Further analysis revealed that the prevalence of SRBD in MSA patients in 
Asia was 79.2% (95% CI, 54.7–96.3%), which was higher than that in Europe (41.6, 
95% CI, 32–51.5%).

Conclusion: The study found a prevalence of 78.8% of SRBD in MSA patients, 
with a notably higher prevalence in Asia compared to Europe. The majority 
of SRBD cases in MSA were attributed to obstructive apnea. Furthermore, the 
presence of SRBD did not show a significant impact on the motor and non-
motor symptoms of MSA patients.
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Introduction

Multiple system atrophy (MSA) was first proposed by Graham 
and Oppenheimr in 1969 as an alpha-synucleinopathy disease 
characterized by poor response to levodopa, autonomic dysfunction 
and/or cerebellar ataxia. It can be classified into two types: MSA-P 
(predominant Parkinsonism) and MSA-C (predominant cerebellar 
ataxia), based on the main motor symptoms (1). MSA-P type presents 
Parkinson’s syndrome as the main symptom, while MSA-C type shows 
cerebellar ataxia disorder as the main symptom. Further research on 
MSA has revealed that it not only exhibits typical motor symptoms 
but also numerous non-motor symptoms, such as sleep-related 
breathing disorders (1).

Sleep-related breathing disorder (SRBD) is a common sleep disorder 
in patients with neurodegenerative diseases, including Alzheimer’s 
disease (AD), Parkinson’s disease (PD), dementia with Lewy bodies, 
MSA, hereditary ataxia, and amyotrophic lateral sclerosis (ALS) (2). 
SRBD typically manifests as obstructive sleep apnea (OSA), central sleep 
apnea (CSA), irregular breathing, apnea, Cheyne-Stokes breathing 
pattern, and stridor (2). Certain episodes of sleep breathing disorders 
can impact patient safety, with issues like nocturnal wheezing potentially 
leading to sudden nocturnal death (3). Wheezing in the early stages of 
MSA has been identified as an independent risk factor for shorter 
survival in MSA patients (4). Moreover, central and peripheral 
respiratory disturbances are common in MSA patients, occurring during 
both sleep and wakefulness. These disturbances can include intermittent 
involuntary gasping, periodic or irregular breathing, abnormal hypoxic 
and hyperventilatory responses, respiratory failure, and stridor (2).

Sleep-related breathing disorder are a common non-motor 
symptom in patients with MSA. However, current reports on the 
prevalence of SRBD in MSA show varying results, with previous 
studies indicating occurrence rates ranging from approximately 24.9–
100% among MSA patients (5–14). Research on the impact of SRBD 
on both motor and non-motor symptoms in MSA is limited. Only one 
study published in 2017 examining the effects of SRBD on MSA 
patients revealed that those with SRBD exhibited more severe motor 
deficits, depressive symptoms, and frontal lobe dysfunction compared 
to those without SRBD. Additionally, they experienced more daytime 
sleepiness, sleep deprivation, longer average sleep duration, and 
OSA (9).

This study aims to further investigate the prevalence of SRBD in 
MSA and its effects on motor and non-motor symptoms. Furthermore, 
a meta-analysis of previously published studies on SRBD prevalence 
in MSA patients will be conducted to discuss the factors contributing 
to the wide range of reported SRBD prevalence in MSA.

Methods

This cross-sectional study included 66 consecutive patients with 
probable MSA who were admitted to the Department of Neurology at 

West China Hospital and Sichuan Taikang Hospital between 2016 and 
2024. Diagnosis was made by neurologists based on second consensus 
statement on the diagnosis of MSA proposed by Gilman et al. (15). 
Apnea was defined as a ≥90% decrease in the airflow signal from baseline 
for ≥10 s, while hypopneas were diagnosed as a ≥ 30% decrease in airflow 
lasting ≥10 s, associated with either ≥3% desaturation from the prevent 
baseline or an arousal. Irregular breathing was defined as irregular 
respiratory rhythm, which is characterized by alternating depths or 
uneven speeds (16). Blood oxygen was defined as the oxygen saturation 
measured by finger oximetry. Periodic limb movements were defined in 
the 2007 AASM Manual for the Scoring of Sleep and Associated Events 
(17). SRBD were identified by an Apnea-Hypopnea Index (AHI) > 5/h, 
with severity categorized as mild (AHI: 5–15/h), moderate (AHI: 15–30/
h), and severe (AHI > 30/h) (17). Polysomnography (PSG) was 
conducted at the Sleep Medicine Center of West China Hospital.

The study was approved by the Ethics Committees of West China 
Hospital, Sichuan University (2020-842), and all patients provided 
written consent. Patients meeting the diagnostic criteria for probable 
MSA, completing relevant questionnaires and PSG, and showing no 
brain injury on MRI were included. Exclusion criteria were the use of 
medications affecting sleep, cognitive impairment, acute psychosis, or 
critical illness.

Demographic and clinical characteristics were recorded for all MSA 
patients, with “disease onset” defined as the initial motor or autonomic 
symptom presentation and “disease duration” as the time from symptom 
onset to study enrollment. Various questionnaires were used to evaluate 
clinical characteristics in the patients. The Non-Motor Symptoms Scale 
(NMSS, nine domains) was used to evaluate the severity of non-motor 
symptoms. The severity of depression and anxiety were assessed, 
respectively, using the Hamilton Depression Rating Scale (HAMD, 17 
items) and Hamilton Anxiety Rating Scale (HAMA). Patients were also 
evaluated using the Fatigue Severity Scale (FSS) and Epworth Sleepiness 
Scale (ESS). Severity of motor symptoms was assessed using the Unified 
Multiple System Atrophy Rating Scale (UMSARS); cognitive function, 
using the Mini-mental State Examination (MMSE); non-motor 
symptoms, Non-Motor Symptoms Scale (NMSS); and sleep quality, 
using the Pittsburgh Sleep Quality Index (PSQI).

Overnight video-PSG

Overnight video-PSG began for each patient at 22:00 every night 
in a quiet room with appropriate lighting and temperature, and it 
consisted of continuous recordings by electroencephalography (F4–
M1, C4–M1, O2–M1, F3–M2, C3–M2, and O1–M2), electro-
oculography (ROC–M1, LOC–M2), submental electromyography, 
right and left anterior tibialis surface electromyography, and 
electrocardiography. Overnight PSG was performed with video and 
audio in the Sleep Medicine Center of West China Hospital at Sichuan 
University. PSG was used to monitor the following indices: video, 
audio, electroencephalography, blood oxygen, oral-nasal airflow, 
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thoracic and abdominal breathing, electrocardiography, eye 
movement, and mandible and limb electromyography. PSG results 
were scored by sleep technicians and interpreted by sleep specialists. 
Sleep staging, respiratory events, arousal, and limb movements were 
evaluated according to the guidelines for scoring sleep and related 
events from the American Academy of Sleep Medicine (18).

The following sleep variables were analyzed: sleep latency (SL); 
REM sleep latency; sleep efficiency (SE); total sleep time; percentage 
of total time spent in stage N1, N2, and N3 or REM sleep; wake after 
sleep onset (WASO); apnea–hypopnea index (AHI); Obstructive 
apnea index; Central apnea index; average/minimum oxygen 
saturation (SaO2); and periodic leg movement index (PLMI).

Statistical analysis

Data were analyzed using SPSS 19.0 (IBM, Chicago, IL, 
United States). Continuous data showing a normal distribution were 
expressed as mean ± standard deviation (SD), while continuous 
skewed data were reported as median (interquartile range). Inter-
group differences were assessed for significance using Student’s t test. 
Inter-group differences in continuous skewed data were assessed using 
a Mann–Whitney U test. Differences in categorical data were assessed 
using the chi-squared test. Logistic regression analysis was used to 
estimate the odds ratio (OR) and 95% CI after adjusting for potential 
confounding factors, including quantitative variables (age and disease 
duration) and categorical variables (sex, smoking, alcohol 
consumption, and MSA sub-type). Differences associated with p < 0.05 
were statistically significant.

Meta-analysis methods

Searching strategy
This meta-analysis was conducted following the guidelines of the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) (19). The Cochrane Collaboration definition for systematic 
review and meta-analysis was strictly followed. Two authors (HW and 
TZ) independently searched Medline via PubMed, Web of Science, 
Embase via embase.com, and Cochrane databases for original 
published studies on the clinical manifestations of MSA patients with 
or without SRBD. Inclusion criteria were studies published in English 
before April 2, 2024.The search string was as follows: “Sleep Apnea 
Syndromes” OR “Apnea Syndrome, Sleep” OR “Apnea Syndromes, 
Sleep” OR “Sleep Apnea Syndrome” OR “Sleep Hypopnea” OR 
“Hypopnea, Sleep” OR “Hypopneas, Sleep” OR “Sleep Hypopneas” OR 
“Apnea, Sleep” OR “Apneas, Sleep” OR “Sleep Apnea” OR “Sleep 
Apneas” OR “Sleep Apnea, Mixed Central AND Obstructive” OR 
“Mixed Central AND Obstructive Sleep Apnea” OR “Sleep Apnea, 
Mixed” OR “Mixed Sleep Apnea” OR “Mixed Sleep Apneas” OR “Sleep 
Apneas, Mixed” OR “Hypersomnia with Periodic Respiration” OR 
“Sleep-Disordered Breathing” OR “Breathing, Sleep-Disordered” OR 
“Sleep Disordered Breathing” OR “sleep-related breathing disorders” 
OR “sleep related breathing disorders” OR ““Sleep Apnea Syndromes” 
OR “Sleep Apnea, Obstructive” OR “Apneas, Obstructive Sleep” OR 
“Obstructive Sleep Apneas” OR “Sleep Apneas, Obstructive” OR 
“Obstructive Sleep Apnea Syndrome” OR “Obstructive Sleep Apnea” 
OR “OSAHS” OR “Syndrome, Sleep Apnea, Obstructive” OR “Sleep 

Apnea Syndrome, Obstructive” OR “Apnea, Obstructive Sleep” OR 
“Sleep Apnea Hypopnea Syndrome” OR “Syndrome, Obstructive 
Sleep Apnea” OR “Upper Airway Resistance Sleep Apnea Syndrome” 
OR “Syndrome, Upper Airway Resistance, Sleep Apnea” AND 
“Atrophy, Multiple System” OR “Multiple System Atrophies” OR 
“Multisystemic Atrophy” OR “Atrophies, Multisystemic” OR “Atrophy, 
Multisystemic” OR “Multisystemic Atrophies” OR “Multiple System 
Atrophy Syndrome” OR “Multisystem Atrophy” OR “Atrophies, 
Multisystem” OR “Atrophy, Multisystem” OR “Multisystem Atrophies.”

Study selection criteria
Articles were initially screened based on their titles and abstracts, 

with full text consulted when necessary. Patients were diagnosed with 
SRBD according to objective instruments, including polysomnography 
(PSG), Embletta and Apnea Link sleep monitoring devices. In 
addition, SRBD was diagnosed in the occurrence of an AHI > 5/h (17). 
Inclusion criteria were (1): original data on SRBD and clinical 
symptoms of MSA (2), patients diagnosed with probable MSA, (3) and 
sufficient data to calculate the prevalence of SRBD in MSA patients 
and the impact of SRBD on MSA patients.

Exclusion criteria were (1): reviews, editorials, conference 
abstracts, letter or case reports (2); focus solely on SRBD 
characteristics, pathogenic mechanisms, or MSA management with 
SRBD (3); comparisons between MSA and other synucleinopathies 
(4); insufficient data for meta-analysis (5); non-English articles (6); or 
studies not involving human subjects. Discrepancies in article 
inclusion were resolved by a third author (WF).

Data extraction and study quality assessment
The data extracted from the original articles included the surname 

of the first author, publication year, country, sample size, prevalence 
of SRBD, mean age of patients, sex, disease onset, disease duration. 
For longitudinal studies, only baseline data were extracted.

The quality of the included studies was evaluated using the 
Newcastle-Ottawa Scale (NOS) for case–control and cohort studies, 
as well as the Agency for Healthcare Research and Quality guideline 
(AHRQ) for cross-sectional studies (20, 21). Any discrepancies were 
resolved through consensus among all authors.

Statistical analysis
The STATA software version 16.0 was used for statistical analysis. 

The primary outcome measure was frequency of SRBD in MSA as 
reported in prevalence (%). The pooled prevalence of SRBD and 95% 
confidence intervals were obtained by using a DerSimonian-Laird 
random-effects model with double arcsine transformation (22). A p 
value equal to or less than 0.05 was considered statistically significant. 
The heterogeneity across studies was evaluated using Cochrane’s I2 
values. I2 > 75% was defined as high heterogeneity, 50% < I2 < 75% as 
moderate heterogeneity, 25% <  I2 < 50% as low heterogeneity, and 
I2 < 25% as homogeneity. The Begg’s and Egger’s test was created to 
detect publication biases.

Results

Polysomnography was completed in 66 MSA patients, and these 
66 patients were included in this study, of which 52 (78.8%) reached 
the diagnosis of SRBD (AHI >5/h), including 31 males and 21 females.

90

https://doi.org/10.3389/fneur.2024.1440932
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://embase.com


Wang et al.� 10.3389/fneur.2024.1440932

Frontiers in Neurology 04 frontiersin.org

Among the 52 patients with SRBD, 19 patients had mild (AHI: 
5–15/h), 15 patients had moderate (AHI: 15–30/h), and 18 patients 
had severe (AHI: >30/h), and the three types accounted for 36.5, 28.8, 
and 34.6% of all patients, respectively.

As shown in Table 1, in this study, 66 patients diagnosed with 
MSA were categorized into two groups based on the presence of 
SRBD. The analysis focused on comparing motor and non-motor 
symptoms between these two groups. The study found no statistically 
significant variances between the groups in terms of motor symptom 
severity assessed by the UMSARS scale, non-motor symptoms 
evaluated through the NMSS scale, anxiety and depression levels 
measured by the HAMA and HAMD scales, somnolence assessed by 
the ESS scale, fatigue evaluated using the FSS scale, cognitive 
functioning measured by the MMSE scale, as well as assessments of 
nocturnal sleep functioning PSQI scales (p > 0.05). Notably, 71.2% of 
MSA patients exhibited periodic leg movements, with 35 of them also 
displaying SRBD.

As illustrated in Table 2, all 66 patients diagnosed with MSA in 
this particular study underwent PSG. There were no significant 
variations observed between MSA patients with SRBD and those 
without SRBD in terms of various sleep parameters such as total sleep 
time (TST), sleep efficiency (SE), sleep latency (SL), sleep structure 
(N1, N2, and N3, and the percentage of REM phase in the entire sleep 
cycle), arousal index, wake after sleep onset (WASO), central apnea 
index, and periodic leg movement index (PLMI). However, it was 
noted that MSA patients with SRBD exhibited a notably higher 
obstructive apnea and hypopnea index compared to MSA patients 
without SRBD [10.0 (4.1–10.6) vs. 0.1 (0–0.3) and 14.7(8.5–19.3) vs. 
2.3(1.3–2.9), p  = 0.000]. Furthermore, MSA patients with SRBD 
displayed a significantly higher occurrence of snoring during sleep in 

comparison to those without SRBD [8.3 (5.1–12.2) vs. 4.2(0–7.5), 
p = 0.015]. Additionally, compared with MSA patients without SRBD, 
MSA patients with SRBD had lower mean and minimum oxygen 
concentrations and higher oxygen desaturation index during sleep 
{[93.7 (93–95) vs. 95.5 (95.8–97), p = 0.001], [83.9 (81.2–89.0) vs. 90.3 
(89.8–93.3), p = 0.000], and 19.9 (10.9–36.6) vs. 2.5(1.5–4.0)}.

Table 3 presents the process of logistic regression analysis. After 
adjusting for age, sex, disease duration, smoking, alcohol consumption, 
and MSA subtype, the associations between the presence of SRBD in 
MSA patients and the UMSARS score, NMSS score, HAMA score, 
HAMD score, MMSE score, PSQI score, and FSS score remained 
statistically insignificant (p > 0.05). It can be concluded that age, sex, 
disease duration, smoking, alcohol consumption, and MSA sub-type 
did not significantly affect the relationship between the independent 
and dependent variables.

Meta-analysis results

The literature search yielded 701 potentially relevant articles 
(Figure 1). After eliminating duplicates, 458 records were reviewed 
and 393 were excluded during the title and abstract screening phase. 
The remaining 65 full-text articles were assessed for eligibility, and 37 
were excluded because they were reviews (n = 3), studies about 
treatment (n = 4), studies unrelated MSA (n = 2) or SRBD (n = 12), case 
series <5 (n = 2), letter (n = 5), conference abstract (n = 9), and 
insufficient date (n = 18).

In the end, 10 articles were ultimately included in our review, 
involving a total of 295 MSA patients. Five original researches were 
performed in Asia, five in Europe.

TABLE 1  Comparison of motor and non-motor symptoms in MSA patients with and without SRBD.

Characteristics All MSA patients (n  =  66) With SRBD (n  =  52) Without SRBD 
(n  =  14)

p

Male/Female 40/26 31/21 9/5 0.753

Age(years) 63.05 ± 10.13 63.69 ± 9.60 60.64 ± 11.58 0.325

Disease onset (year) 60.15 ± 10.3 60.74 ± 9.91 57.93 ± 11.01 0.370

Disease duration (year) 2.79 ± 2.78 2.61 ± 1.86 2.84 ± 2.98 0.962

UMSARS I 13.23 ± 5.8 13.06 ± 5.74 13.86 ± 5.99 0.648

UMSARS II 16.52 (12–20.25) 16.33 ± 6.12 17.29 ± 6.23 0.638

UMSARS IV 1.74 ± 0.99 1.65 ± 0.84 2.00 ± 1.36 0.751

NMSS 49.35 ± 26.4 49.79 ± 26.23 47.71 ± 28.16 0.797

HAMA 11.14 ± 7.88 10.84 ± 7.29 12.21 ± 9.64 0.804

HAMD 10.28 ± 6.99 9.78 ± 6.14 12.07 ± 9.23 0.642

ESS 7.11 (2.75–11.00) 7.23 (2.25–11.75) 6.64 (2.75–9.00) 0.571

FSS 21.71 (11–30) 22.98 (11–34) 17 (12.50–21.25) 0.723

MMSE 24.58 (22–29) 24.13 (21.25–28) 26.21 (24.50–29.00) 0.172

PLMS (%) 47 (71.2) 35 (67.3) 12 (85.7) 0.318

PSQI 6.64 (3.0–9.5) 6.90 (3–9) 5.64 (1.75–10.00) 0.194

ESS, Epworth Sleepiness Scales; FSS, Fatigue severity scale; HAMA, Hamilton anxiety scale; HAMD, Hamilton depression scale; MSA, Multiple system atrophy; MMSE, Mini-mental state 
examination; NMSS, Non-motor symptoms scale; PLMS, Periodic limb movements syndrome; PSQI, Pittsburgh sleep quality index; SRBD, Sleep related breathing disordered; and UMSARS, 
Unified multiple-system atrophy rating scale.
Values are n (%), mean ± SD or median (interquartile range).
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Prevalence of SRBD

As shown in Table 4 and Figure 2, including the results of the 
present study, the summary prevalence of SRBD in MSA was 60.5% 
(95% CI, 43.2–76.5%) in a pooled sample of 295 subjects. This study 
showed high heterogeneity (I2 = 88.1%). Sensitivity analysis showed 
unchanged results (Supplementary Figure 1.4). There was no evidence 
of publication bias as Begg’s and Egger’s test was not significant 
(Supplementary Figures 1.1.A,B).

As shown in Figure 3, the summary prevalence of SRBD of MSA 
in Asia was 79.2% (Figure 3A, 95% CI, 54.7–96.3%), which was higher 
than that in Europe (Figure 3B, 41.6, 95% CI, 32–51.5%). This study 
revealed significant heterogeneity in the prevalence of SRBD in 
patients with MSA in Asia (I2 = 90.6%), while showing homogeneity 
in Europe (I2  = 19.2%). Sensitivity analysis confirmed consistent 
findings (Supplementary Figure  1.5). There was no evidence of 
publication bias as Begg’s and Egger’s test was not significant 
(Supplementary Figures 1.2.A,B, 1.3.A,B).

Discussion

The study results revealed that 78.8% of MSA patients were 
diagnosed with SRBD (AHI > 5), consistent with findings from 
previous studies (ranging from 24.9 to 100%) (5–14). Gender 
prevalence did not show a significant difference, aligning with 
previous research (23). In terms of SRBD severity, 36.5% were 
classified as mild, 28.8% as moderate, and 34.6% as severe, with a 
slightly lower proportion of moderate cases compared to previous 
studies (23). A meta-analysis of previous studies indicated an overall 
SRBD prevalence of 60.4% in MSA patients (Table  4; Figure  2), 
differing from the present study’s 78.8%. Further analysis by region 
showed a prevalence of 79.2% in Asian MSA patients, matching the 
current study’s findings. In contrast, European MSA patients had a 
significantly lower prevalence of 41.6% (Figure 2). However, previous 
studies have shown that sensitivity analysis revealed a comparable 

TABLE 3  Risk factors of SRBD in patients with MSA.

OR (95%CI)

Model 1 Model 2 Model 3

UMSARS 1.01 (0.97–1.06)* 1.02 (0.97–1.07)* 1.02 (0.97–1.08)*

NMSS 1.00 (0.98–1.02)* 1.00 (0.97–1.02)* 1.00 (0.97–1.03)*

HAMA 1.02 (0.95–1.10)* 1.03 (0.95–1.11)* 1.04 (0.95–1.13)*

HAMD 1.05 (0.97–1.13)* 1.05 (0.95–1.14)* 1.05 (0.96–1.15)*

MMSE 1.09 (0.95–1.26)* 1.10 (0.95–1.28)* 1.10 (0.93–1.29)*

PSQI 0.94 (0.82–1.08)* 0.94 (0.82–1.07)* 0.96 (0.83–1.12)*

FSS 0.94 (0.92–1.01)* 0.97 (0.92–1.02)* 0.96 (0.91–1.01)*

CI, confidence interval; FSS, Fatigue Severity Scale; HAMD, Hamilton Depression Scale; 
HAMA, Hamilton Anxiety Scale; MMSE, Mini-mental State Examination; NMSS, Non-
Motor Symptoms Scale.
Model 1, Crude model; Model 2, Adjusted for age, sex; Model 3, Adjusted for age, sex, 
disease duration, smoking, alcohol consumption, and MSA sub-type. *p > 0.05.

TABLE 2  Comparison of PSG measurements in MSA patients with and without SRBD.

Variables All MSA patients (n  =  66) With SRBD (n  =  52) Without SRBD (n  =  14) p

TST 337.0 ± 90.2 334.3 ± 86.4 346.9 ± 106.0 0.647

SE, % 66.0 ± 17.3 65.9 ± 16.9 66.4 ± 19.6 0.920

SL, min 22.9(5–28) 22.8(5.5–26.1) 23.1(2.4–33.9) 0.660

N1, % 32.2(30.6–42.35) 33.8(19.6–43.6) 25.9(14.5–34.6) 0.134

N2, % 48.1 ± 14.6 47.88 ± 15.3 48.89 ± 12.0 0.819

N3, % 1.5(0–0.32) 1.1(0–0.3) 3.0(0–2.7) 0.369

REM sleep, % 18.3 ± 3.8 17.19 ± 6.9 22.21 ± 9.8 0.890

WASO, min 151.1 ± 83.9 150.8 ± 81.2 152.1 ± 96.4 0.962

Arousal index, /h 19.7(13.6–23.6) 20.6(11.5–26.0) 16.3(10.5–21.5) 0.246

OA index, /h 7.6(0–9) 10.0(4.1–10.6) 0.1(0–0.3) 0.000

CA index, /h 0.4(0–0.4) 0.5(0–0.5) 0.1(0–0.1) 0.122

hypopnea index, /h 9.6 (3.4–17.3) 14.7(8.5–19.3) 2.3(1.3–2.9) 0.000

Total OA times 1.0(0–2.0) 1.65(0–2) 1.0(0.0–3.0) 0.363

Total CA times 0(0–2.0) 0.5(0–0.25) 1.0(0–2.0) 0.048

Percentage of snoring, % 5.3(1.2–5.9) 6.6(0.1–5.7) 4.6(0–6.6) 0.447

Average SaO2, % 94.1(93–96) 93.7(93–95) 95.5(95.8–97) 0.001

Minimum SaO2, % 85.4(83–90) 83.9(81.2–89.0) 90.3(89.8–93.3) 0.000

ODI,/h 14.9 (6.1–31.9) 19.9(10.9–36.6) 2.5(1.5–4.0) 0.000

Average snoring time, (min) 7.4(3–10.8) 8.3(5.1–12.2) 4.2(0–7.5) 0.015

PLMI, /h 25.2(4.3–43.5) 25.15(4.8–41.0) 25.3(21.2–44.0) 0.733

CA, Central apnea; MSA, Multiple system atrophy; REM, Rapid eye movement; OA, Obstructive apnea; ODI, Oxygen desaturation index; PLMI, Periodic leg movement during sleep index; SE, 
Sleep efficiency; SL, Sleep latency; SaO2, Oxygen saturation; TST, Total sleep time; and WASO, Wake after sleep onset.
Values are n (%), mean ± SD or median (interquartile range). Bold values indicate p < 0.05, indicating statistically significant differences between the two groups.
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pooled prevalence of SRBD (AHI > 5) in Western and Asian 
populations (24). Therefore, we hypothesized that the variation in 
SRBD prevalence between MSA patients in Asia and Europe may 
be attributed to differing impacts of the disease on the respiratory 
system in different ethnic groups. Further multicenter studies 
encompassing diverse regions and ethnicities are needed to validate 
these findings.

In this study, we compared the subjective rating scale scores of 
motor and non-motor symptoms in MSA patients with and without 
SRBD. The results indicated no significant differences between the two 
groups in terms of age, sex, disease onset, disease duration, severity of 
motor symptoms (UMSARS I, II, IV), severity of non-motor 
symptoms (NMSS), anxiety and depression levels (HAMA, HAMD), 
daytime sleepiness (ESS), fatigue (FSS), cognitive functioning 
(MMSE), and sleep quality (PSQI). These findings suggest that SRBD 
is not linked to the severity of motor and non-motor symptoms, 
including cognition, daytime sleepiness, fatigue, and sleep quality in 

MSA patients. However, previous studies have reported conflicting 
results, showing that MSA patients with SRBD had higher UMSARS 
scores and more severe depressive symptoms compared to those 
without SRBD (9). This discrepancy could be attributed to the limited 
number of patients (n = 40) in the previous study (9), highlighting the 
need for larger multicenter studies to confirm our conclusions.

In patients with MSA, SRBD encompass obstructive sleep apnea 
(OSA) and central sleep apnea (CSA). This study revealed that MSA 
patients with SRBD had a higher frequency and index of obstructive 
apnea during sleep compared to central apnea. Conversely, MSA 
patients without SRBD showed similar frequencies and indices of 
obstructive and central apnea during sleep, aligning with findings 
from a previous study (9). Furthermore, MSA patients with SRBD 
exhibited a higher index of obstructive apnea during sleep than those 
without SRBD, while the index of central apnea did not significantly 
differ between MSA patients with or without SRBD, consistent with 
previous research (9). Previous research has linked OSA to abnormal 

FIGURE 1

Flow diagram of systematic literature searching.
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upper airway anatomy, compromised stability of ventilatory control, 
and dysfunction in upper airway muscles and their neuromodulation 
(25). These underlying mechanisms result in hypoventilation during 
sleep in affected individuals. Our study revealed that MSA patients 
with SRBD exhibited a higher hypopnea index and a greater 
percentage of snoring during sleep compared to MSA patients 
without SRBD. Central apnea in MSA may be linked to the loss of 
neuronal cells in specific respiratory rhythm-controlling areas of the 
brain (26). Therefore, SRBD in MSA patients is likely due to 

obstructive apnea from abnormal upper airway caused by the disease 
itself, rather than central apnea from central nervous system atrophy. 
Our study found no significant differences in total sleep time, sleep 
efficiency, sleep structure, or subjective sleep quality between MSA 
patients with and without SRBD, consistent with previous research 
(9). However, patients with MSA and SRBD exhibited lower mean 
oxygen saturation and higher oxygen desaturation index during 
sleep compared to those without SRBD. Previous studies have also 
indicated a higher prevalence of excessive daytime sleepiness (EDS) 

TABLE 4  Characteristics of studies included in the meta-analyses.

References First author Year Country Sample 
size

Diagnostic 
SRBD method

Proportion of 
SRBD (%)

AHRQ/
NOS score

(14) Vetrugno 2004 Italy 19 PSG 37 7

(13) Deguchi 2010 Japan 15 PSG 86.7 6

(5) Wassilios 2014 France 23 PSG 34.8 6

(12) Alfonsi 2016 Italy 17 PSG 29.4 7

(10) Ohshima 2017 Japan 24 PSG 100 6

(11) Flabeau 2017 France 28 PSG 39.3 7

(8) Saleheddine 2018 France 45 PSG 56 7*

(9) Cao 2018 China 40 PSG 65 7*

(7) Sugiyama 2022 Japan 34 PSG 85 6*

(6) Sun 2024 China 50 PSG 44 7

295 PSG 60.4

AHRQ, The Agency of Healthcare Research and Quality guideline; PSG, Polysomnography; SRBD, Sleep-related breathing disorder; MSA, Multiple system atrophy; NOS, Newcastle-Ottawa 
Scale. Details of the Literature Quality Assessment scoring are shown in Supplementary Tables 1, 2. *Evaluating cross-sectional studies quality using NOS.

FIGURE 2

Forest plot on the pooled prevalence of sleep-related breathing disorder in multiple system atrophy.
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in MSA patients with SRBD (9). This suggests that SRBD may 
contribute to the development of EDS in these patients. By 
synthesizing our findings with existing literature, we propose that 
SRBD does not impact sleep quality or architecture in MSA patients, 
and that the increased EDS in MSA patients with SRBD may 
be attributed to the hypoxic nature of SRBD during sleep.

The study’s strengths included a larger sample size, low dropout 
rate, and comprehensive clinical and PSG variables. However, 
several limitations should be acknowledged. Firstly, the average age 
of the participants was 60 years, suggesting a potential risk of 
selection bias. Secondly, neurodegenerative disease diagnosis relied 
on clinical assessment, potentially leading to diagnostic accuracy 

issues. Thirdly, all patients had to meet the diagnostic criteria for 
probable MSA, introducing a selection bias towards more severe 
cases. Fourthly, non-motor symptoms were mainly assessed 
through questionnaires, potentially affecting diagnostic precision. 
Fifthly, the study was conducted at a single center, highlighting the 
need for multicenter studies involving diverse populations to 
determine SRBD prevalence in MSA patients. Sixthly, both our 
study and existing literature on SRBD effects in MSA patients have 
primarily originated from Asia, with a lack of studies from Europe 
and the United States. This geographical bias raises questions about 
potential ethnic differences in SRBD effects on MSA. Additionally, 
the criteria used to diagnose probable MSA are those published in 

FIGURE 3

Forest plot of sleep-related breathing disorder prevalence among multiple system atrophy patients in Asian (A) and European (B) populations.
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2008, not the most recent criteria published by the Movement 
Disorder Society in 2022.

Conclusion

The study found a prevalence of 78.8% of SRBD in MSA patients, 
with a notably higher prevalence in Asia compared to Europe. The 
majority of SRBD cases in MSA were attributed to obstructive 
apnea. Furthermore, the presence of SRBD did not show a significant 
impact on the motor and non-motor symptoms of MSA patients.
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Adequate sleep duration has recently been recognized as a major determinant

of cardiovascular health by the American Heart Association. This is a significant

step toward recognizing sleep as a major lifestyle factor and pillar of health,

along with physical activity and nutrition. However, healthy sleep is not only

a matter of duration. Other dimensions, such as timing, regularity, e�ciency,

satisfaction with sleep, and daytime alertness are also deemed important to

consider. We have designed a systematic review protocol according to the

PRISMA-P guidelines with the objective of determining which sleep dimensions

are predictors of all-cause mortality and major adverse cardiovascular events

(MACE; cardiovascular death, non-fatal myocardial infarction, non-fatal stroke,

and unstable angina requiring hospitalization), and whether or not the use of

multiple dimensions of sleep yields superior predictive value to the use of sleep

duration alone in predicting the above-mentioned outcomes. Wewill implement

a systematic search strategy in 10 databases with independent manual screening

by two reviewers. The aim is to comprehensively identify longitudinal studies

which have examined the relationship between sleep duration and at least one

other dimension of sleep andmortality orMACE.Meta-analysis will be performed

after data extraction to address these objectives quantitatively. We anticipate that

several sleep dimensions beyond sleep duration have been studied in relationship

to all-cause mortality and MACE, and that a combination of multiple sleep

dimensions can better predict these outcomes than sleep duration alone. Such

findings would lay important groundwork to establish multidimensional sleep

health as a major determinant of cardiovascular health.

KEYWORDS

circadian, lifestyle, longitudinal study, MACE, personalized medicine, preventive

medicine, risk factor, sleep disorder

Introduction

Cardiovascular disease (CVD), especially major adverse cardiovascular events

(MACE), which include cardiovascular death, non-fatal myocardial infarction, non-

fatal stroke, and unstable angina requiring hospitalization (Bosco et al., 2021), is a

leading cause of morbidity and mortality worldwide, with 523 million cases, and

nearly 19 million deaths in 2019 (Roth et al., 2020). Primary prevention, with a

focus on promoting health throughout the life course before manifest disease is a key
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strategy to combat the burden of CVD. In 2010, the American

Heart Association (AHA) introduced a concept of “Cardiovascular

Health” (CVH), which encompassed seven interrelated and

modifiable health factors and behaviors, coined “Life’s Simple

Seven”(Lloyd-Jones et al., 2010). These were three lifestyle factors:

diet, physical activity, and nicotine exposure; and four health

factors: blood pressure, blood lipids, body weight, and blood

glucose, which can be modified by lifestyle and targeted therapy.

High CVH has been associated with lowered risk for not only

CVD, but also cancer, end-stage renal disease and dementia, as

well as many other benefits such as improved cognitive function

and quality of life (Rasmussen-Torvik et al., 2013; Han et al., 2016;

Virani et al., 2021).

Sleep was not included in the initial “Life’s Simple Seven”,

despite its influence on CVH as well as general health and

wellbeing. The AHA updated their concept of CVH in 2022

to include sleep duration as the eighth factor of CVH, now

termed “Life’s Essential Eight” (Lloyd-Jones et al., 2022). Sleep

duration is indeed a major health factor, demonstrated by evidence

that both short and long sleep duration is associated with

increased cardiovascular events and all-cause mortality (Wingard

and Berkman, 1983; Yin et al., 2017). However, it is far from being

the only sleep-related factor that is relevant to health.

Sleep is a physiological and behavioral state characterized by

a lack of consciousness and voluntary movement and considered

a period of rest and recovery in which humans spend about one

third of their lives (Aminoff et al., 2011). It is a physiologically

complex state that is essential for wellbeing, health, and even

survival, as can be demonstrated by the ultimately lethal effects of

sleep deprivation (Everson et al., 1989). Although yet to be fully

clarified, sleep is known to be involved in childhood development

(Roffwarg et al., 1966; Mirmiran et al., 1983; Zielinski et al., 2016),

energy conservation (Benington and Heller, 1995; Scharf et al.,

2008; Zielinski et al., 2016), immune modulation (Krueger, 2008;

Zielinski and Krueger, 2011; Zielinski et al., 2016), cognitive and

physical performance (Walker, 2008; Killgore, 2010; Zielinski et al.,

2016; Watson, 2017; Cunha et al., 2023), psychological wellbeing

(Scott et al., 2021), and clearance of brain waste (Xie et al., 2013;

Zielinski et al., 2016).

There are numerous ways to characterize and evaluate sleep,

and many factors are involved in the construct of “healthy

sleep”. Polysomnography, for instance, can be used to study

sleep architecture and duration, as well as to identify sleep-

related disorders such as sleep-disordered breathing, periodic limb

movements, and narcolepsy. Actigraphy and sleep diaries used over

an extended period of time can be used to identify rest-activity

patterns including sleep duration, timing, and regularity as well

as environmental factors. Questionnaires and interviews can be

used to determine how individuals perceive their sleep, as well

as to evaluate daytime symptoms such as fatigue and sleepiness.

Neuroimaging with positron emission tomography (PET), single-

photon emission computed tomography (SPECT), and functional

magnetic resonance imaging (fMRI) have been used in research

to study metabolism, cerebral blood flow, waste build-up, and

neurotransmission in sleep (Dang-Vu et al., 2010; Pak et al.,

2020). Many of these individual sleep factors, including perceived

quality, timing, latency, duration, daytime alertness, napping, and

sleep disorders have been associated with mortality, morbidity and

wellbeing, suggesting that it is relevant to consider multiple factors

in the assessment of sleep as a component of CVH and a major

pillar of healthy lifestyle (Kojima et al., 2000; Newman et al., 2000;

Akerstedt et al., 2004; Jennings et al., 2007; Young et al., 2008;

Gottlieb et al., 2010; Laugsand et al., 2011; Ohayon et al., 2014; Cubo

et al., 2019; Zhang et al., 2019).

There currently exist several tools which measure sleep health

as a complex construct, taking multiple dimensions into account.

Buysse’s “RU-SATED” scale, for example, rates sleep regularity,

sleep satisfaction, daytime alertness, sleep timing, sleep efficiency,

and sleep duration to evaluate sleep health (Buysse, 2014). A

“healthy sleep scale” (HSS), which combines sleep duration,

chronotype, insomnia, snoring, and excessive daytime sleepiness

to evaluate sleep health has been developed in the UK biobank

cohort, and shown to predict CVD in several studies (Fan et al.,

2020; Wang et al., 2022; Nambiema et al., 2023). The National Sleep

Foundation has developed a “Sleep Health Index” (SHI) which

uses 14 questions to evaluate sleep duration, sleep disorders, and

sleep quality (Knutson et al., 2017). “Sleep quality” is a general

term which can be considered a composite of several sleep-related

factors; in the SHI this refers to feelings of being well-rested, trouble

falling asleep and staying asleep, negative impact due to lack of

sleep, and unintentional dozing. The “Pittsburgh Sleep Quality

Index” (PSQI), also developed by Buysse and colleagues, is one

of the most commonly used tools to assess “sleep quality”. The

PSQI consists of nine questions evaluating bedtime, time to fall

asleep, time one gets out of bed, sleep duration and time in bed,

trouble sleeping due to several factors, use of sleep medications,

trouble staying awake, enthusiasm to get things done, and a

global rating of sleep quality (Buysse et al., 1989). As such, it

can also be considered a tool to measure multidimensional sleep

health. Yin et. al.’s “Sleep Quality Scale”(Yi et al., 2006), Partinen

and Gilason’s “Basic Nordic Sleep Questionnaire”(Partinen and

Gislason, 1995) are other such questionnaires. Poor sleep health

as evaluated by tools measuring multidimensional sleep have

been associated with stress (Benham, 2019), CVD (Brindle et al.,

2019; Fan et al., 2020; Lee et al., 2022; Wang et al., 2022;

Nambiema et al., 2023; Tian et al., 2023), and mortality (Lee et al.,

2023).

Current evidence thus suggests that multiple dimensions

of sleep health should be considered to achieve optimal health

and wellbeing, rather than the AHAs current recommendation

of sleep duration alone (Lloyd-Jones et al., 2022). Synthesis

of evidence, however, is currently lacking. In this systematic

review, we will summarize longitudinal observational studies

which have examined the relationship between all-cause

mortality and/or MACE and sleep duration in addition to

at least one other sleep health factor. Subsequently, we plan

to describe which sleep health factors have been studied and

associated with the given endpoints. A meta-analysis will be

conducted to quantitatively synthesize comparable numerical

data (Lisik et al., 2023), in order to determine which factors

are most influential in predicting all-cause mortality and/or

MACE, if a composite of multiple factors improves predictive

capacity of the endpoints, and how many factors should ideally

be considered.
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Methods

Reporting and protocol registration

This protocol was prepared according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

Protocols (PRISMA-P) (Shamseer et al., 2015). It has been

registered with the International Prospective Register of Systematic

Reviews (PROSPERO) with the title, Beyond sleep duration: a

systematic review of multidimensional sleep health in relation

to cardiovascular disease and mortality and registration number

CRD42024503231. The final report will be written according

to the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines (Page et al., 2021), and any

deviations from the original protocol will be reported in the

final manuscript.

Inclusion/exclusion criteria and outcome
measures

This review will include observational longitudinal follow-up

studies of adults ≥18 years at the start of follow-up. The studies

must include an assessment of the participants’ sleep duration as

well as at least one other sleep dimension (such as sleep timing,

regularity, efficiency, daytime alertness and napping, circadian

factors, and sleep disorders), as well as MACE and/or death as an

endpoint. The outcome measure in this systematic review will be

MACE, which in this context will refer to cardiovascular death,

non-fatal myocardial infarction, non-fatal stroke, and unstable

angina requiring hospitalization, as well as all-cause mortality

(Bosco et al., 2021). There will be no exclusion due to language.

Google Translate will be used to translate all non-English language

reports (Jackson et al., 2019).

Research questions

We aim to answer the following questions:

1. Which sleep health dimensions have been combined with sleep

duration to assess MACE and all-cause mortality?

2. Does combining multiple dimensions of sleep provide an added

value for predicting MACE and all-cause mortality?

a. Which sleep dimensions are predictors of MACE and

all-cause mortality?

b. Does combination of a greater number of sleep dimensions

result in better prediction of the endpoints?

Search strategy

Bibliographic database searches were performed on January

22nd 2024 in 10 databases (CAB Direct, CINAHL, Embase, Google

Scholar, PsycINFO, PubMed, Scopus,Web of Science,WHOGlobal

Index Medicus, and WorldCat Dissertations and Theses), with

search queries tailored to each database due to differences in syntax

and availability of controlled vocabulary.

Table 1 illustrates the search strategy for PubMed, while

search queries for the other databases can be found in the

Supplementary material.

The search terms were based on domain knowledge and were

refined/extended with pilot searches. Where possible, relevant

controlled vocabulary terms were included. Spelling and tense

variations were accounted for. This general search strategy was used

for nine databases, while it was simplified for Google Scholar due to

substantial search limitations in this database.

De-duplication and screening

De-duplication will be conducted in Endnote 21 (Clarivate

Analytics, 2023), as previously described by Bramer et al. (2016).

Thereafter, an initial screening will be performed based on title,

abstract, and keywords. Records which are clearly eligible or for

which there is doubt about eligibility will pass to the second step.

In the second step, the full text of each record will be retrieved and

assessed for eligibility. Both steps of the screening will be performed

independently by two reviewers (MKF and DZ), blinded to each

other’s decisions during each step. Decisions will be unblinded

and compared for differences after each step. Disagreements will

be resolved through discussion and if needed through arbitration

by a third reviewer (DL). Rayyan (rayyan.ai) will be used for

screening and documentation of decisions. The main reason for

exclusion at the second screening step will be presented in a

Supplementary Table in the final manuscript.

Data extraction

Data to be extracted from the included articles are: surname of

first author, study design, country, number of subjects and subject

characteristics (age, sex, and comorbidities), sleep duration, other

sleep-related parameters, outcome definition, outcome data (point

estimates and corresponding 95%CI), and length of follow-up. A

standardized Microsoft Excel (Microsoft Corp., 2024) form will

be used to extract the data, and corresponding authors will be

contacted in order to obtain anymissing data. Two reviewers (MKF

and DZ) will independently perform all data extraction blinded

to the other reviewer’s work. Differences will be compared and

discussed after completion with arbitration by a third reviewer (DL)

where necessary.

Assessment of quality and risk of bias

The Newcastle-Ottawa Quality Rating Scale (NOS) will be used

to assess the quality and risk of bias of included articles (Wells et al.,

2021). NOS assesses selection of study participants, comparability

of cohorts, and the outcome, and is a commonly and easily used

quality assessment tool for cohort studies (Deeks et al., 2003;

Higgins, 2008; Ma et al., 2020). Two reviewers (MKF and DZ)
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TABLE 1 Search strategy for PubMed.

# Block name Search terms

1 Sleep duration (

( “Sleep Duration”[mh] OR “Sleep Deprivation”[mh] OR “sleep deprivation”[tiab] OR “insufficient sleep”[tiab])

OR

(“quantity sleep”[tiab:∼2] OR “quantities sleep”[tiab:∼2] OR “amount sleep”[tiab:∼2] OR “duration sleep”[tiab:∼2] OR “length sleep”[tiab:∼2]

OR “time sleep”[tiab:∼2] OR “period sleep”[tiab:∼2] OR “hours sleep”[tiab:∼2] OR “minutes sleep”[tiab:∼2] OR “span sleep”[tiab:∼2])

OR

(“duration asleep”[tiab:∼2] OR “length asleep”[tiab:∼2] OR “time asleep”[tiab:∼2] OR “period asleep”[tiab:∼2] OR “hours asleep”[tiab:∼2] OR

“minutes asleep”[tiab:∼2])

OR

(“quantity sleeping”[tiab:∼2] OR “quantities sleeping”[tiab:∼2] OR “amount sleeping”[tiab:∼2] OR “duration sleeping”[tiab:∼2] OR “length

sleeping”[tiab:∼2] OR “time sleeping”[tiab:∼2] OR “period sleeping”[tiab:∼2] OR “hours sleeping”[tiab:∼2] OR “minutes sleeping”[tiab:∼2] OR

“span sleeping”[tiab:∼2])

OR

(“short sleep”[tiab:∼2] OR “long sleep”[tiab:∼2] OR “extended sleep”[tiab:∼2])

OR

(“short sleeper”[tiab:∼2] OR “long sleeper”[tiab:∼2] OR “extended sleeper”[tiab:∼2])

OR

(“short sleepers”[tiab:∼2] OR “long sleepers”[tiab:∼2] OR “extended sleepers”[tiab:∼2])

)

2 Sleep components (

(“Sleep”[mh] OR “sleep∗”[tiab] OR “wake∗”[tiab] OR “waking”[tiab] OR “awake”[tiab])

OR

(“Polysomnography”[mh] OR “Actigraphy”[mh] OR “actigraph∗”[tiab] OR “actimetr∗”[tiab] OR “acceleromet∗”[tiab] OR

“polysomnograph∗”[tiab] OR “EEG”[tiab] OR “electroencephalogram”[tiab] OR “MSLT”[tiab] OR “MWT”[tiab] OR “fitbit”[tiab] OR

“dreem”[tiab] OR “Oura ring”[tiab] OR “Gen3”[tiab] OR “Fitbit”[tiab] OR “Mi band”[tiab])

OR

(“Circadian Clocks”[mh] OR “Circadian Rhythm”[mh] OR “circadian”[tiab] OR “chronotype∗”[tiab] OR “chronotherap∗”[tiab] OR

“eveningness”[tiab] OR “morningness”[tiab] OR “evening type∗”[tiab] OR “morning type∗”[tiab] OR “bedtime∗”[tiab] OR “time to bed”[tiab]

OR “time in bed”[tiab] OR “shuteye”[tiab] OR “shut-eye”[tiab] OR “lights off”[tiab] OR “lights on”[tiab] OR “Shift Work Schedule”[mh] OR

“shift work∗”[tiab] OR “shiftwork∗”[tiab] OR “shift schedule”[tiab:∼2] OR “shift schedules”[tiab:∼2] OR “shift scheduling”[tiab:∼2] OR “shifting

schedule”[tiab:∼2] OR “shifting schedules”[tiab:∼2] OR “shifting scheduling”[tiab:∼2] OR “working hours”[tiab:∼2] OR “work hours”[tiab:∼2]

OR “work schedule”[tiab:∼2] OR “work schedules”[tiab:∼2] OR “work scheduling”[tiab:∼2] OR “working schedule”[tiab:∼2] OR “working

schedules”[tiab:∼2] OR “jetlag”[tiab] OR “jet-lag”[tiab] OR “light∗”[tiab] OR “nois∗”[tiab] OR “WASO”[tiab] OR “TIB”[tiab] OR “SE”[tiab])

OR

(“Sleepiness”[mh] OR “fatigue∗”[tiab] OR “tired∗”[tiab] OR “somnolence”[tiab] OR “nap”[tiab] OR “napping”[tiab] OR “alert∗”[tiab] OR

“ESS”[tiab] OR “KSS”[tiab] OR “EDS”[tiab] OR “day”[tiab] OR “daytime”[tiab] OR “night∗”[tiab] OR “drows∗”[tiab] OR “siesta”[tiab])

OR

(“Sleep Wake Disorders”[mh] OR “insomnia”[tiab] OR “restless legs syndrome”[tiab] OR “restless leg syndrome”[tiab] OR “Willis-Ekbom”[tiab]

OR “Wittmaack-Ekbom”[tiab] OR “RLS”[tiab] OR “periodic leg movement∗”[tiab] OR “periodic limb movement∗”[tiab] OR “Snoring”[mh] OR

“snoring”[tiab] OR “snore”[tiab] OR “hypersomnia”[tiab] OR “dyssomnia”[tiab] OR “parasomnia”[tiab] OR “narcolepsy”[tiab] OR “night

terror”[tiab] OR “nightmare∗”[tiab] OR “Apnea”[mh] OR “apnea”[tiab] OR “apnoea”[tiab] OR “hypopnea”[tiab] OR “hypopnea”[tiab] OR

“OSA”[tiab] OR “OSAHS”[tiab] OR “AHI”[tiab] OR “CSA”[tiab] OR “UARS”[tiab] OR “upper airway resistance syndrome”[tiab])

)

3 Multidimensionality (

(“Sleep”[mh] OR “sleep∗”[tiab])

AND

(

(“RU-SATED”[tiab] OR “RU_SATED”[tiab] OR “PSQI”[tiab])

OR

(“score∗”[tiab] OR “index”[tiab] OR “indices”[tiab] OR “multidimensional”[tiab] OR “multi-dimensional”[tiab] OR “multi∗”[tiab] OR

“dimension∗”[tiab] OR “component∗”[tiab] OR “parameter∗”[tiab] OR “metric∗”[tiab] OR “composite”[tiab] OR “combination∗”[tiab])

)

)

4 Multidimensional

sleep health

(#1 AND (#2 OR #3))

5 All-cause outcomes (“Mortality”[mh] OR “mortality”[tiab] OR “death∗”[tiab] OR “lethal”[tiab])

6 Specific outcomes

of interest

(

(“Heart Arrest”[mh] OR “SCD”[tiab] OR “cardiopulmonary arrest”[tiab] OR “cardiac arrest”[tiab] OR “heart arrest”[tiab] OR “asystole”[tiab] OR

“cardiac event∗”[tiab] OR “Myocardial Infarction”[mh] OR “myocardial infarct∗”[tiab] OR “Myocardial Ischemia”[mh] OR “myocardial

ischemia”[tiab] OR “unstable angina”[tiab] OR “acute coronary syndrome”[tiab] OR “ACS”[tiab] OR “AMI”[tiab] OR “MI”[tiab] OR “Heart

Failure”[mh] OR “heart failure”[tiab] OR “cardiac failure”[tiab] OR “myocardial failure”[tiab] OR “heart decompensation”[tiab] OR “ventricular

dysfunction”[tiab] OR “CHF”[tiab])

OR

(“Stroke”[mh] OR “stroke”[tiab] OR “cerebral infarct∗”[tiab] OR “cerebrovascular accident∗”[tiab] OR “CVA”[tiab] OR “brain vascular

accident∗”[tiab] OR “cerebrovascular apoplexy”[tiab] OR “brain ischemia”[tiab] OR “intracranial hemorrhage”[tiab] OR “intracranial

hemorrhage”[tiab] OR “cerebral hemorrhage”[tiab] OR “cerebral hemorrhage”[tiab])

OR

(“MACE”[tiab] OR “major adverse cardiovascular event∗”[tiab] OR “infarct∗”[tiab])

)

(Continued)
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TABLE 1 (Continued)

# Block name Search terms

7 Outcomes (#5 OR #6)

8 Full query #4 AND #7

mh, search to be made by Medical Subject Headings (MeSH), a controlled vocabulary; tiab, search to be made in title and abstract fields [search terms followed by “:∼2” in the field setting

denote search terms with a proximity parameter (in which the two words are allowed to occur in any order with up to two words in-between)]. Clarifications. (1) bold font-weight visually

indicates blocks of search terms or parentheses encapsulating these; (2) green color denotes blocks of search terms; (3) dark blue color denotes search terms with the [tiab] field setting without

the proximity parameter; (4) light blue color denotes search terms with the [tiab] field setting with the proximity parameter; (5) purple color denotes controlled vocabulary search terms.

will independently assess the articles and any disagreement will

be resolved by consensus. If needed, a third reviewer (DL) will

arbitrate the final rating.

Data synthesis and statistical analysis

Extracted data items will be summarized in a table of

characteristics. In addition, relevant aspects will be synthesized

narratively. Comparable data (defined here as results from

regression analysis with sufficient similarity in study participants,

exposure, and outcome, as assessed by MKF and DZ) will be

quantitively synthesized using random-effects meta-analysis with

robust variance estimation (RVE) (Hedges et al., 2010). The

random-effects model has been chosen as it is expected that

the included studies will demonstrate substantial heterogeneity,

given different cohorts, exposure definitions/assessment methods,

outcome definitions/assessment methods, as well as statistical

analysis approaches. The RVE model will be utilized as it relaxes

a number of assumptions of conventional methods, such as normal

distribution of effect sizes and their estimates. Furthermore, RVE

can accommodate non-independent effect sizes (Pustejovsky and

Tipton, 2022). As it is expected that some included studies may

investigate multiple combinations of sleep health dimensions (and

reuse controls), RVE will enable the inclusion of all such effect sizes

in more comprehensive meta-analyses. A further strength of RVE

is that the precise dependency structure (or degree) does not need

to be defined in the model. RVE will be implemented through the

robumeta R package (Fisher et al., 2015).

A meta-analysis will be performed for each distinct exposure-

outcome pair, for which there are at least two studies with

comparable numerical data (Ahn and Kang, 2018). Meta-analyses

will be performed to assess the predictive value on all-cause

mortality and/or MACE of:

1) Specific sleep health dimensions (and combinations thereof).

2) Quantity of sleep health dimensions.

If data allows, meta-regression will be performed to control

for relevant confounders such as sex, age, body mass index,

hypertension and diabetes.

Depending on the study characteristics (particularly if potential

dependency in effect sizes is primarily due to common features

of the researchers or assessment tools, or of the subjects), the

appropriate weighting model will be chosen (Pustejovsky and

Tipton, 2022). All meta-analyses will be performed with small

sample adjustment for both the residuals and the degrees of

freedom, as per the general recommendations and in particular

given the expectation of relatively small numbers of studies in each

meta-analysis (Tipton, 2015). A forest plot will be produced to

visualize the results of each meta-analysis, using the forestploter R

package (Dayimu, 2022). Heterogeneity will be assessed by the I-

squared statistic (I2; to quantify the proportion of variation between

studies not due to random sampling error) (Higgins et al., 2003)

and Tau-squared (τ 2; to determine the between-study variance of

true effect) (Parr et al., 2019). In meta-analyses with Satterthwaite

degrees of freedom (df S) below 4, the threshold for significant p-

value will be 0.01 instead of the default level of 0.05 to reduce

the risk of type I error (Tanner-Smith et al., 2016). Publication

bias will be assessed in exposure-outcome pairs with ≥10 studies

(Dalton et al., 2016) through statistical tests (Begg and Mazumdar

correlation test and Egger’s regression test, respectively, with p-

value of 0.05 as the threshold for significance) and visual inspection

of funnel plots. In case of suspected publication bias, we will

estimate the number of effect sizes required to return symmetry

using the trim-and-fill method. Assessment of publication bias

will be undertaken using the metafor R package (Viechtbauer,

n.d.). A sensitivity analysis excluding studies with a poor overall

quality rating will be performed where at least two studies with

comparable numerical data remain, to assess the influence of

methodological rigor on the pooled results. Other secondary

analyses which may be performed include subgroup analyses based

on diagnosed sleep disorders, follow-up time, sex and age, if data

allows as per above, to discern the stability of the association or

potential cause(s) of heterogeneity. Analyses will be performed

using the R statistical software (R Core Team, 2024). All data and

code will be made available on Open Science Framework or as

Supplementary material. The methods are outlined graphically in

Figure 1, based on the PRISMA flow diagram layout (Page et al.,

2021).

Discussion

Sleep, an essential and intricate component of human life, is

undergoing a transformative reevaluation in the realm of medical

science. Traditionally, sleep medicine has centered on diagnosing

and treating specific sleep disorders. However, there is a discernible

shift toward recognizing sleep health as a comprehensive construct,

encompassing various dimensions that collectively influence

overall wellbeing (Buysse, 2014). This systematic review aims to

explore the intricate relationship between multiple dimensions of

sleep and their correlation with mortality and MACE, marking a

groundbreaking step in understanding the broader implications of

sleep on CVH.
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FIGURE 1

Schematic of review methods. Modification of flow-chart based on:

Page et al. (2021). For more information, visit: http://www.prisma-

statement.org/ .

The contemporary societal landscape, characterized by rapid

technological advancements and evolving work structures, poses

unprecedented challenges to our sleep patterns. Factors such

as rigid work schedules, constant exposure to information,

and transmeridian travel have become intrinsic disruptors of

sleep. Artificial lighting, a product of technological progress, has

detached humans from their natural rhythm dictated by the sun,

introducing disruptions across various facets of sleep (Zhong et al.,

2022). The past decade, marked by a surge in technology, has

exacerbated this phenomenon by introducing devices that emit

both light and distractions, further hindering the attainment of

optimal sleep.

Temporal aspects of sleep have gained significant attention

in recent research. Surprisingly, the timing of sleep initiation,

with evidence suggesting that going to bed before 10 pm or after

11 pm is associated with poorer CVH than sleeping between

10 and 11 pm, irrespective of sleep duration, underscores the

importance of circadian rhythms (Nikbakhtian et al., 2021).

Even subjective factors like dissatisfaction with sleep (Del

Brutto et al., 2024) and ease of falling asleep (Li et al.,

2021) have shown associations with increased risk of mortality,

emphasizing the need to delve beyond mere sleep duration.

Recent findings highlight sleep regularity as a more accurate

predictor of all-cause mortality than sleep duration alone

(Cribb et al., 2023; Windred et al., 2024). This shift in focus

toward regularity underscores the intricate interplay of sleep

dimensions and their collective impact on health outcomes.

Aspects such as consistency in sleep patterns, beyond the

conventional consideration of sleep duration, are proving to be

pivotal in understanding the complex relationship between sleep

and mortality/MACE.

Health, be it sleep health, CVH, or overall general health

is a construct that is difficult to define in a straight-forward

manner. Rather it, is the result of the complex interplay of

multiple social/behavioral, environmental, and biological factors

(Grandner and Fernandez, 2021). The impact of lifestyle factors

such as physical activity (You, 2024), nutrition (You et al.,

2024b), and sleep (You et al., 2024a) on overall health is critical

for a holistic understanding of sleep duration. Figure 2 portrays

a schematic which illustrates the causal relationships between

fundamental sleep health factors, sleep disorders, the health and

lifestyle factors included in the AHA’s “simple seven”(Lloyd-Jones

et al., 2010), CVH, and MACE, created using the DAGitty browser

application (Textor et al., 2016). The directed edges (denoting

a causal relation between two factors with specified direction)

in the schematic have strong support in the literature (Scheer

et al., 2009; Calhoun and Harding, 2010; Chennaoui et al., 2015;

Visseren et al., 2021; Russell et al., 2023). The schematic also

makes apparent one of the principal challenges that accompany

the study of something as complex as health; the determination

of causation. The studies we will include are observational, thus

will limit the ability to assess the extent to which the studied sleep

health factors independently cause MACE or mortality, both due

to expected limitations in data to perform robust analyses and due

to unobserved confounders (as exemplified by the intermediate

processes such as hypertension). Moreover, as can be seen in the

schematic, sleep disordered breathing has a particular relationship

with other factors of cardiovascular health that is not shared with

other sleep disorders due to the non-sleep-mediated effects of

intermittent hypoxia on the cardiovascular system (Cowie et al.,

2021). Such a relationship can further complicate the interpretation

of our results, warranting a deeper investigation of the mechanisms

linking various sleep factors to MACE, which is beyond the scope

if this review. If meta-regression can be performed, this will allow

us to determine whether there are underlying cardiovascular risk

factors which can also explain the relationship between sleep factors

and MACE.
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FIGURE 2

Schematic of the relationship between sleep health and cardiovascular health in relation to other health and life-style factors. Illustration of the

causal relationships between fundamental sleep health factors, sleep disorders, the health and lifestyle factors included in the AHA’s “simple seven”,

CVH, and MACE. Created using the dagitty browser application: Textor et al. (2016).

Despite the aforementioned challenges, in an era defined by

technological advancements and diverse lifestyles, recognizing and

addressing the multifaceted nature of sleep is not only pertinent

but may also pave the way for innovative preventive strategies

against the growing burden of CVD. Anticipating that various

sleep dimensions are intertwined with sleep duration in influencing

mortality and MACE, this systematic review intends to contribute

to the burgeoning field of multidimensional sleep health. The

hypothesis posits that incorporating multiple sleep dimensions

in longitudinal studies will yield superior predictive accuracy

compared to a singular focus on sleep duration. Should this

hypothesis be validated, it could pave the way for a paradigm

shift in conceptualizing sleep health as a major determinant of

CVH. Recognizing the heterogeneity of contemporary society, the

call for a broad perspective on multidimensional sleep health is

imperative. Tailoring interventions to individual physiologies and

lifestyles becomes crucial in optimizing overall health outcomes.

Moreover, since many sleep dimensions, in addition to being

modifiable, are easily detectable by self-observation or with the

help of readily available tools such as sleep diaries and smartphone

applications (Fino and Mazzetti, 2019) there is a large potential for

developing preventative strategies against the burden of CVD. On

the individual level, this may be achieved by lifestyle modification

to improve sleep health as well as to fine-tune risk prediction

to identify individuals in need of more intensive preventive care.

Such a strategy would open avenues for personalized interventions

that go beyond treating sleep disorders to proactively promoting

CVH through holistic sleep management. On the societal level, a

deeper understanding of the relationship between sleep health and

CVH would be instrumental in guiding work and school policy

to optimize scheduling and environmental conditions. A synthesis

of the existing evidence on the relationship between multiple

sleep factors and hard cardiovascular endpoints will provide an

important steppingstone for the development of ideal lifestyle-

related health management strategies.
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Background: Observational studies have suggested an association between 
obstructive sleep apnea (OSA), chronic kidney disease (CKD), and renal function, 
and vice versa. However, the results from these studies are inconsistent. It 
remains unclear whether there are causal relationships and in which direction 
they might exist.

Methods: We used a two-sample Mendelian randomization (MR) method to 
investigate the bidirectional causal relation between OSA and 7 renal function 
phenotypes [creatinine-based estimated glomerular filtration rate (eGFRcrea), 
cystatin C-based estimated glomerular filtration rate (eGFRcys), blood urea 
nitrogen (BUN), rapid progress to CKD, rapid decline of eGFR, urinary albumin to 
creatinine ratio (UACR) and CKD]. The genome-wide association study (GWAS) 
summary statistics of OSA were retrieved from FinnGen Consortium. The 
CKDGen consortium and UK Biobank provided GWAS summary data for renal 
function phenotypes. Participants in the GWAS were predominantly of European 
ancestry. Five MR methods, including inverse variance weighted (IVW), MR-Egger, 
simple mode, weighted median, and weighted mode were used to investigate 
the causal relationship. The IVW result was considered the primary outcome. 
Then, Cochran’s Q test and MR-Egger were used to detect heterogeneity and 
pleiotropy. The leave-one-out analysis was used for testing the stability of MR 
results. RadialMR was used to identify outliers. Bonferroni correction was applied 
to test the strength of the causal relationships (p  <  3.571  ×  10−3).

Results: We failed to find any significant causal effect of OSA on renal function 
phenotypes. Conversely, when we  examined the effects of renal function 
phenotypes on OSA, after removing outliers, we found a significant association 
between BUN and OSA using IVW method (OR: 2.079, 95% CI: 1.516–2.853; 
p  =  5.72  ×  10−6).

Conclusion: This MR study found no causal effect of OSA on renal function in 
Europeans. However, genetically predicted increased BUN is associated with 
OSA development. These findings indicate that the relationship between OSA 
and renal function remains elusive and requires further investigation.

KEYWORDS

obstructive sleep apnea, chronic kidney disease, renal function, Mendelian 
randomization, causal relationship
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1 Introduction

Chronic kidney disease (CKD), distinguished by structural and 
functional impairments of the kidneys, is generally diagnosed when 
the Estimated Glomerular Filtration Rate (eGFR) drops below 60 mL/
min per 1.73 m2 or in instances where kidney damage persists for a 
minimum of 3 months (1). Being a significant global health issue, 
CKD affects an estimated 700 million individuals globally (2). It is 
projected that by 2040, CKD will ascend to become the fifth primary 
cause of death worldwide (2). There is currently no cure for CKD, and 
the primary emphasis in treatment and management revolves around 
modifying risk factors and controlling complications. As CKD 
progresses, it invariably results in a consistent decline in renal 
function, frequently necessitating renal replacement therapy for 
patients suffering from End-Stage Kidney Disease (ESKD) (3, 4). This 
situation imposes a substantial economic burden on both societal and 
familial fronts owing to medical expenditures (5). Therefore, there is 
an exigent requirement to discern treatable risk factors connected with 
the onset and advancement of CKD.

Obstructive Sleep Apnea (OSA), a condition with high prevalence, 
is experienced by an estimated 38% of the global adult population in 
its moderate-to-severe forms (6). OSA is marked by the repeated 
closure of the upper airway during sleep, consequentially causing sleep 
fragmentation and intermittent hypoxia (7). Numerous observational 
studies offer evidence supporting a bidirectional relationship between 
OSA and CKD (8, 9). OSA may heighten the risk of renal damage, 
CKD can reciprocally impose a heightened risk of OSA (10–17). 
Nevertheless, the results derived from observational studies have been 
inconsistent. For example, in individuals afflicted with Coronary 
Artery Disease, the severity of OSA was not independently associated 
with CKD (18). Another study illustrated that OSA alone does not 
constitute a risk factor for CKD. However, for patients presenting with 
Metabolic Syndrome, OSA served as an additional burden escalating 
the risk of CKD (19).

Traditional observational studies are limited in their ability to 
completely eliminate confounding bias or reverse causality (20). The 
assessment of causality between OSA and CKD based on the 
associations observed in observational studies is challenging. 
Randomized controlled trials are less susceptible to confounding; 
however, conducting such trials to evaluate the effects of potentially 
harmful exposures like OSA would be  unethical or impractical. 
Elucidating the causality between OSA and CKD is crucial as it 
provides insights into the underlying biological mechanisms of the 
disease and aids in the development of therapeutic strategies for 
improving CKD prevention. The Mendelian Randomization (MR) 
design serves as a valuable technique in epidemiological studies for 
assessing causal inference by employing genetic variants as 
instrumental variables (21). The strength of MR lies in the random 
assignment of genetic variants from parents to offspring, which are 
impervious to self-selective behavior—this can fortify the causal 
inference by mitigating potential unmeasured residual confounding 
and precluding reverse causality (22). MR analysis capitalizes on 
genetic variations as Instrumental Variables (IVs) to corroborate 
causal associations, taking advantage of their diminished susceptibility 
to measurement errors or biases. Two-sample MR (TSMR) is 
commonly applied to link exposure and outcome data sourced from 
distinct Genome-Wide Association Study (GWAS) datasets (23). For 
this project, bidirectional MR analyses were employed to surmount 

the limitations intrinsic to observational studies and to probe into the 
relationship between OSA, and CKD, renal function.

2 Methods

2.1 Study design

A TSMR approach was utilized employing summary statistics 
from distinct GWAS for OSA and CKD. Initially, a forward MR 
analysis was undertaken to explore the associations between 
genetically predisposed OSA and both CKD and renal function. 
Subsequently, given the potential influence of impaired renal function 
on OSA, a reverse MR analysis was executed to scrutinize the 
associations between genetically influenced renal function and 
OSA. A robust MR framework adheres to three critical assumptions: 
(1) instrumental variables (IVs) are strongly associated with the 
exposure; (2) IVs are not related to any confounders influencing both 
exposure and outcome; and (3) the influence of IVs on outcomes is 
only via their effect on exposure rather than any other causal pathways 
(24). This article solely employed summary data. The original studies 
have obtained the necessary ethical approval and informed consent 
from patients.

2.2 Genetic associations with OSA

The full GWAS summary statistics pertaining to OSA were 
extracted from the most recent published data in the FinnGen 
database, which included 375,657 participants—38,998 patients and 
336,659 controls (25). The diagnosis of OSA was made based on the 
International Classification of Diseases, Tenth Revision (ICD-10) and 
Ninth Revision (ICD-9) codes (ICD-10: G47.3, ICD-9: 3472). These 
were acquired from the Finnish National Hospital Discharge Registry 
and the Causes of Death Registry. This diagnosis was established on 
the basis of subjective symptoms, clinical examination, and sleep 
registration applying an apnea-hypopnea index ≥5 events·h−1 or a 
respiratory event index ≥5 events·h−1. By amalgamating ICD codes 
from various registries, we constituted disease endpoints. In the fifth 
round of data from FinnGen, the prevalence of OSA was 7.69%, with 
63% of OSA patients being male. The average age of the OSA group 
was 58.9 ± 13.3 years, with a BMI of 31.72 ± 6.74 kg/m2. The age at OSA 
diagnosis was 55.3 ± 11.9 years. In contrast, the average age in the 
non-OSA group was 51.8 ± 17.7 years, with a BMI of 26.87 ± 5.02 kg/
m2, while the overall average BMI was 27.25 ± 5.34 kg/m2. Compared 
with the non-OSA group, the OSA group had a higher prevalence of 
diseases such as type 2 diabetes, hypertension, and coronary heart 
disease. Age, sex, and the 10 first principal components were adjusted 
as covariates in the original GWAS study (26).

2.3 Genetic associations with CKD and 
renal function

There are seven phenotypes included, and they are primarily from 
Chronic Kidney Disease Genetics (CKDGen) Consortium and UK 
Biobank: creatinine-based estimated glomerular filtration rate 
(eGFRcrea), cystatinC-based estimated glomerular filtration rate 
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(eGFRcys), blood urea nitrogen (BUN), urine albumin to creatinine 
ratio (UACR), CKD (defined as an estimated glomerular filtration rate 
(eGFR) of less than 60 mL/min/1.73 m2), rapid decline of eGFR 
(Rapid3) (the eGFR decreases by more than 3 mL/min/1.73 m2 per 
year), and rapid progress to CKD (CKDi25) (defined as the decrease 
of eGFR ≥25% of baseline accompanied by the progression from no 
CKD to CKD). Instrument variable summary statistics for CKD were 
sourced from a meta-analysis conducted by the CKDGen Consortium, 
which incorporated 23 European ancestry cohorts (n = 480,698; 41,395 
patients and 439,303 controls) (27). Individuals of European ancestry 
in the CKDGen dataset had a mean age of 54 years old, and 50% of 
them were male, with a median eGFR of 91.4 mL/min/1.73 m2 and a 
prevalence of CKD of 9%. All genetic associations were adjusted for 
sex, age, study site, genetic principal, components, relatedness, and 
other study-specific features. The GWAS summary statistics for 
eGFRcrea, eGFRcys, and BUN were sourced from a meta-analysis that 
included data from the CKDGen Consortium and the UK Biobank, 
encompassing 1,201,909 participants (28). The UACR data were 
derived from a separate meta-analysis, which documented the 
summary data from both trans-ethnic (n = 564,257) and European-
ancestry populations (n = 547,361) (29). Summary statistics for Rapid3 
(comprising 34,874 cases and 107,090 controls) and CKDi25 
(encompassing 19,901 cases and 175,244 controls) were obtained from 
a meta-analysis of 42 GWAS studies from the CKDGen Consortium 
and the UK Biobank (30). For detailed diagnostic criteria and 
inclusion procedures, please refer to the original literature. The 
datasets for CKD, eGFR, UACR, Rapid3, and CKDi25 are accessible 
at http://ckdgen.imbi.uni-freiburg.de/. Detailed information about 
each dataset can be found in Supplementary Table S1.

2.4 Selection of instrumental variables (IVs)

First, we procured Single Nucleotide Polymorphisms (SNPs) that 
were strongly associated (p value <5 × 10−8) with exposures in each 
MR analysis. For CKDi25 and Rapid3, where only a few significant 
SNPs were found using the p < 5 × 10−8 threshold, SNPs were selected 
as IVs at p < 5× 10−6. Second, it is crucial to ensure the chosen IVs 
satisfy the independence criterion. To evaluate the independence of 
these variables and account for potential linkage disequilibrium 
effects, a linkage disequilibrium parameter (R^2) threshold of 0.001 
and a genetic distance cutoff of 10,000 kb were implemented. 
Additionally, during the reverse MR analysis, duplicate values from 
the seven renal function phenotype IVs were eliminated. Third, 
Phenoscanner (31) was employed to check potential confounding 
factors (such as hypertension, obesity, overweight, diabetes, among 
others) that might be related to the IVs, thus preventing such factors 
from interfering with the impact of exposure on outcomes. Moreover, 
IVs associated with the outcomes at a significance level of p < 5 × 10−8 
were excluded. We harmonized the effect alleles of outcome-associated 
SNPs to ensure consistency with those of exposure-associated SNPs, 
taking into account allele letters and frequencies. Also, palindromic 
SNPs were excluded from the analysis. To further bolster the reliability 
of our research results, we applied Steiger filtering to remove SNPs that 
exhibited a stronger correlation with the outcomes than with the 
exposures (32). The meticulous selection process for IVs as described 
above significantly enhances the credibility of our findings. 
Furthermore, to eliminate bias induced by weak IVs in the results, 

we computed the F statistic. The F statistic is calculated using the 
formula F = R2 (n-k-1)/[k (1-R2)], where R2 signifies the extent to 
which the IVs explain the exposure.

2.5 Mendelian randomization analysis

To investigate the causal relationship between exposure and 
outcome, several methods were utilized, including Inverse Variance 
Weighted (IVW), MR-Egger, Weighted Median, Simple Mode, and 
Weighted Mode. The point estimates obtained through IVW 
correspond to a weighted linear regression of SNP-outcome 
associations against SNP-exposure associations, with no regard to 
intercept. It is imperative when using the IVW method to ensure the 
absence of pleiotropy among SNPs, as this can significantly bias the 
results (33). In contrast, the MR-Egger method assumes the 
Instrument Strength Independent of Direct Effect (InSIDE) 
assumption and primarily examines the dose–response relationship 
between IVs and outcomes (34). This method takes into account the 
presence of pleiotropy to a certain extent. Even if most IVs have 
pleiotropy, MR Egger can provide effective estimates (34).

The weighted median method is effective in mitigating the impact 
of using invalid IVs and can provide consistent estimates of causal 
effects, even when up to 50% of the information is derived from 
genetic variations in invalid instruments (35). In contrast, weighted 
mode methods exhibit lower capability in detecting causal effects but 
are associated with fewer biases (36). If there is no pleiotropy, we chose 
IVW as the primary method for conducting our MR analysis. If 
pleiotropy exists, MR-Egger will be employed as the main method, 
along with the direction of effect size in four MR methods.

2.6 Sensitivity analysis

In our study, we utilized Cochran’s Q test to evaluate heterogeneity. 
Specifically, the inter-instrument Q-test was applied to probe 
heterogeneity arising from multiplicity or other factors (37). To 
identify pleiotropy, we conducted the MR-Egger regression test. A 
significant deviation of the intercept term from zero indicates the 
presence of horizontal pleiotropy (34). In instances where 
heterogeneity or horizontal pleiotropy was detected, estimates were 
recalculated using IVW, MR-Egger, and other methods after the 
removal of outlier SNPs identified through Radial MR analysis (38). 
Additionally, a leave-one-out analysis was performed, whereby SNPs 
were systematically removed one at a time, and the effect 
was recomputed.

2.7 Statistical analysis

All statistical analyses were conducted using R (version 4.2.3, R 
Foundation for Statistical Computing, Vienna, Austria). MR analyses 
were carried out using the “TwoSampleMR” and “RadialMR” 
packages. To control the type I  error rate in the multiple testing, 
we utilized the Bonferroni correction method. This procedure involves 
dividing the critical significance level by the number of tests 
conducted, providing a simple yet effective way to manage multiple 
comparisons. However, it’s worth noting that such correction methods 
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can become overly conservative when a large number of tests are 
performed (39). In our study, Bonferroni correction was applied to 
account for multiple testing of the associations between OSA and 7 
renal function outcomes (i.e., eGFRcrea, eGFRcys, BUN, UACR, 
Rapid3, CKDi25, and CKD) with 5 methods. A two-sided p-value of 
<3.571 × 10−3[0.05/(1 × 2 × 7)] was considered significant.

3 Results

3.1 Forward MR analysis

The number of independent SNPs selected as IVs for OSA was 14 
for the analysis of association with eGFRcrea, 15 with eGFRcys, 15 
with BUN, 16 with UACR, 15 with Rapid3, 15 with CKDi25, and 16 
for CKD. We  employed a more stringent p-value criterion in our 
analysis. A two-sided p value of <3.571 × 10−3 was considered 
significant. The primary two-sample MR analysis showed no 
significant association between genetically determined OSA and renal 
function phenotypes. These results were reproduced in the other 
analysis methods (Figure 1). Heterogeneity was suspected regarding 
the association between OSA and eGFRcrea, eGFRcys, BUN, 
CKD. The MR-Egger intercept, which is an indicator of genetic 
pleiotropy, was statistically significant for OSA between BUN 
(Supplementary Table S2). The scatter plots were shown in 
Supplementary Figures S1–S2. The results of leave-one-out sensitivity 
and single SNP risk analysis were shown in 
Supplementary Figures S3–S6. The heterogeneity or horizontal 
pleiotropy was noted in OSA between eGFRcrea, eGFRcys, BUN, 
CKD, we recomputed IVW, MR-Egger and other methods estimates 
after removing the outlier SNPs identified by Radial MR. The MR 
analysis showed no significant association between genetically 
determined OSA and eGFRcrea, eGFRcys, BUN, CKD (Figure 1). 
There was no evidence of significant heterogeneity. There was still 
pleiotropy between OSA and BUN (Supplementary Table S3). At this 
point, we selected MR-Egger as the primary analysis method and, 
combined with the direction of effect sizes from other methods, 
we did not find a significant association between OSA and BUN.

3.2 Reverse MR analysis

A total of 304, 147, 143, 44, 13, 13, and 15 independent SNPs were 
selected as IVs for the MR analysis investigating the associations of 
eGFRcrea, eGFRcys, BUN, UACR, Rapid3, CKDi25, and CKD with 
OSA, respectively. The IVW method was employed, revealing 
suggestive evidence of a potential causal association between BUN 
and the risk of OSA (p = 0.004) (Figure 2). Heterogeneity was observed 
in the associations between eGFRcrea, eGFRcys, BUN, UACR, CKD, 
and OSA. Additionally, horizontal pleiotropy was detected in the 
relationships between eGFRcys and OSA (Supplementary Table S2). 
At this point, using the MR-Egger method as the primary analysis 
method, we did not find a significant association between eGFRcys 
and OSA. This result was also supported by four other methods. The 
scatter plots were shown in Supplementary Figures S7–S8. The results 
of leave-one-out sensitivity and single SNP risk analysis were shown 
in Supplementary Figures S9–S16. After excluding outlier SNPs, 

we  recalculated the estimates using IVW, MR-Egger, and other 
methods. We discovered a significant association between BUN and 
OSA using the IVW method (OR: 2.079; 95% CI: 1.516–2.853; 
p = 5.72 × 10−6) (Figure  2). Importantly, there was no evidence of 
significant heterogeneity or pleiotropy in the associations 
(Supplementary Table S3).

4 Discussion

Our findings indicated that OSA did not directly lead to CKD, 
which contradicts prior observational studies. Furthermore, the lack 
of a genetic correlation between OSA and different renal function 
phenotypes supported this result. However, in our reverse MR 
analysis, we  observed a positive correlation between BUN and 
OSA. Based on our findings, an elevation in BUN levels could 
be associated with an increased risk of OSA.

Contrary to our study results, recent epidemiological research 
has established a link between OSA and CKD. For instance, a 
cohort study involving more than 3 million US veterans—
predominantly males with a mean age of 60.5 years—indicated that 
an onset diagnosis of OSA was associated with a higher incidence 
of CKD and a more rapid decline in kidney function over time as 
compared to those without OSA (40). In a retrospective and 
longitudinal population-based cohort study leveraging the Taiwan 
Longitudinal Health Insurance Database 2000, it was observed that 
individuals with OSA demonstrated an elevated risk of developing 
CKD, even after excluding those with hypertension and diabetes. 
The adjusted OR for this association was 1.37. A subgroup analysis 
further revealed a higher incidence of CKD among women with 
OSA. However, no significant correlation was found between OSA 
and CKD development in men (41). A study involving older 
participants aged 65 years and above, recruited from the general 
population, involved overnight polysomnography for 277 
individuals. The results indicated an increased risk of rapid kidney 
function decline over an 11-year follow-up period among those 
with an Apnea-Hypopnoea Index (AHI) of 30 or higher. These 
findings remained statistically significant even when adjusted for 
various factors, such as age, sex, BMI, smoking status, diabetes 
mellitus, hypertension, and history of cardiovascular disease. Thus, 
it can be inferred that AHI serves as an independent risk factor for 
glomerular kidney function decline (42). Yayan et al. (43) concluded 
that CKD is more prevalent in patients with OSA compared to those 
without OSA, and the frequency of CKD escalates as the severity of 
OSA intensifies. Moreover, Marrone suggested that severe hypoxia, 
even if experienced for a limited duration during the night, may 
pose a greater risk factor for renal damage in patients with OSA 
than average SpO2 levels and/or frequency of apnea events (15). 
Chang et al. (16) reported that severe OSA independently increases 
the risk of CKD. Additionally, a study conducted by Adams et al. 
disclosed a correlation between OSA and stages 1–3 of CKD (17). 
A cross-sectional study further highlighted the prevalence of OSA 
in non-dialysis CKD patients to be 28%, with an incidence rate of 
88%. The study also demonstrated a rise in the risk and severity of 
OSA as CKD stages progressed (14). The available real-world data 
indicates a reciprocal relationship between OSA and CKD. It 
suggests that individuals with OSA may have an increased 
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likelihood of developing CKD and experiencing a decline in kidney 
function. Conversely, patients with CKD are more vulnerable to 
developing OSA. However, it is essential to acknowledge that these 
observational studies have inherent limitations, including 
methodological shortcomings, small sample sizes, selection bias, 
and inadequate adjustment for confounding factors, which prevent 
the establishment of a definitive causal link.

However, it’s worth noting that not all observational studies 
found a definitive significant link between OSA, CKD, and renal 
function. For instance, a retrospective cohort sub-study of the 
Wisconsin Sleep Cohort Study did not identify any association 
between the severity of sleep apnea and the decline in renal function 
(44). Lee et al. (19) suggested that OSA alone does not pose a risk 
factor for CKD, but in patients with metabolic syndrome, OSA was 
an additional burden escalating the risk of CKD. Also, Fernandes 
et al. (45) found a high prevalence—approximately 67%—of OSA 
in patients with stages 3b-4 CKD. However, intriguingly, the AHI 
was very similar between these two groups of patients, and no 

significant association was discerned between AHI and the 
eGFR. The retrospective study conducted by Uyar et  al. (46) 
assessed patients diagnosed with OSA, excluding those with a 
previous diagnosis of CKD. The results showed no difference 
between OSA patients and the control group when evaluated 
concerning an estimated eGFR of less than 60 mL/min/1.73m2. 
Moreover, no correlation was observed between eGFR and the 
desaturation index. The study conducted by Canales et al. did not 
establish a significant relationship between renal function and 
sleep-disordered breathing (47). Furthermore, OSA was not found 
to be an identifying factor for patients at risk of CKD (48).

Due to the limitations of association studies in addressing 
causality, it remains challenging to definitively establish the causal 
relationship between OSA and CKD based solely on observational 
studies. Therefore, it is important to interpret the aforementioned 
findings with caution. Contrary to the majority of observational 
studies, our investigation did not uncover any causal link between 
OSA and CKD. In the reverse MR analysis, the results indicated 

FIGURE 1

MR analysis of the causality of OSA on renal function. OSA, obstructive sleep apnea; eGFRcrea, creatinine-based estimated glomerular filtration rate; 
eGFRcys, cystatinC-based estimated glomerular filtration rate; BUN, blood urea nitrogen; UACR, urine albumin to creatinine ratio; Rapid3, rapid decline 
of eGFR; CKDi25, rapid progress to CKD; CKD, chronic kidney diseases. IVW, Inverse Variance Weighted; *The results of after removing the outlier 
SNPs.
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that BUN has a causal relationship with OSA. However, there was 
no evidence of a causal relationship between CKD, as well as other 
renal function phenotypes, and OSA. There are a couple of 
possible reasons that may contribute to the association between 
OSA, CKD and renal function in observational studies. There are 
several potential factors that could contribute to the observed 
association between OSA and CKD in observational studies. Age, 
sex, diabetes, hypertension, glomerulonephritis, cholesterol and 
cigarette smoking are established risk factors for CKD (49). CKD 

patients with cardiovascular disease, diabetes, smoking habit and 
higher serum phosphorus have a higher risk of kidney damage 
(50). And in patients with non-dialysis CKD, the cardiovascular 
risk increases linearly with the higher levels of LDL cholesterol 
(51). OSA is also a recognized risk factor for cardiovascular 
disease. Patients with OSA often exhibit comorbidities such as 
hypertension, diabetes, obesity, and cardiovascular disease (52–
54). OSA may be linked to CKD through shared conditions like 
obesity, hypertension, and diabetes, but the exact influence of 

FIGURE 2

MR analysis of the causality of renal function on OSA. OSA, obstructive sleep apnea; eGFRcrea, creatinine-based estimated glomerular filtration rate; 
eGFRcys, cystatinC-based estimated glomerular filtration rate; BUN, blood urea nitrogen; UACR, urine albumin to creatinine ratio; Rapid3, rapid decline 
of eGFR; CKDi25, rapid progress to CKD; CKD, chronic kidney diseases. IVW, Inverse Variance Weighted; * The results of after removing the outlier 
SNPs.
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each condition is difficult to determine (55–57). In the reverse 
MR analysis, we found an association between BUN and OSA. The 
increase in BUN usually occurs when the glomerular filtration 
rate decreases by more than 50%, which means that in CKD 
patients, an increase in BUN often represents the disease 
progressing to a later stage. Contemporary research elucidates that 
in patients undergoing hemodialysis, BUN exhibits a significant 
correlation with OSA (58–61). Moreover, multiple studies have 
demonstrated that optimized dialysis therapy can mitigate the 
severity of sleep apnea in patients afflicted with End-Stage Renal 
Disease (ESRD) (62–64). This implies that ESRD may elevate the 
risk of OSA. Present-day research has suggested various 
pathophysiological mechanisms through which ESRD could 
precipitate OSA, encompassing neuropathy or myopathy induced 
by uremia and hypervolemia. Diminished sensory function and 
denervation of the Upper Airway (UA) dilator muscle have been 
demonstrated to contribute to the pathogenesis of UA obstruction 
in patients diagnosed with OSA (65). In ESRD, uremic neuropathy 
is prevalent and may impinge on the sensory function of the UA, 
thereby augmenting UA collapsibility (66). Moreover, uremic 
myopathy, known to exacerbate the fatigability of the respiratory 
muscles (67), could potentially result in decreased tone of the UA 
dilator muscles, leading to an ensuing increase in UA collapsibility 
during sleep. On the other hand, there exists a substantial and 
well-established body of evidence underscoring the role of fluid 
overload in the pathogenesis of sleep apnea, particularly in 
conditions typified by fluid overload such as heart failure and 
End-Stage Renal Disease (ESRD) (68, 69). Hypervolemia and the 
rostral fluid shift from the legs overnight can both contribute to 
subsequent fluid accumulation in the neck. This accumulation can 
result in a reduction in the cross-sectional area of the UA and an 
increased collapsibility, thereby predisposing individuals to OSA 
(68). It is also plausible that fluid overload contributes to OSA not 
merely through its impact on UA collapsibility, but also potentially 
by influencing ventilatory instability (70). Other research has 
suggested a direct and independent correlation between the 
degree of fluid overload and the severity of OSA in ESRD (71–73).

Our MR study offers several key advantages. Firstly, to the 
best of our knowledge, it is the first study to assess the causal 
relationship between OSA and CKD, as well as renal function, 
using a two-sample MR analysis. Second, we  utilized GWAS 
datasets predominantly from populations of European ancestry to 
mitigate the effects of population stratification. Third, different 
estimation models and rigorous sensitivity analysis were used to 
ensure the reliability and robustness of the results. However, our 
study has certain limitations. Firstly, the exclusive inclusion of 
participants with European ancestry in our dataset introduces 
potential participant overlap, and the generalizability of the results 
to the entire population needs further verification. Secondly, 
despite implementing a rigorous process to identify outlier 
variants and mitigate horizontal pleiotropy, complete elimination 
of its impact was unattainable due to the complex and uncertain 
biological functions of numerous genetic variants. Thirdly, larger 
sample sizes and more advanced methodologies are required to 
confirm the findings and comprehensively demonstrate statistical 
power. Finally, our study did not conduct subgroup analyses. In 
our analysis, the definitions of OSA and CKD were based on 

binary variables (i.e., the presence or absence of the disease) 
without considering the severity of these conditions. This could 
lead to an incomplete understanding of the relationship between 
OSA and CKD. For instance, if only severe OSA significantly 
increases the risk of CKD, while mild or moderate OSA has a 
lesser or no impact, our analysis may fail to capture this 
distinction. Additionally, the stages of CKD progression could 
also affect its association with OSA, but due to the lack of data, 
we were unable to assess this variation.

In conclusion, our MR analysis indicates that genetically predicted 
OSA does not have a causal impact on CKD and renal function 
phenotypes. This finding contradicts the results of most observational 
studies. Additionally, in the reverse MR analysis, only BUN was found 
to be statistically associated with OSA. To ensure the accuracy of our 
results, future research should rely on higher quality GWAS data and 
utilize more advanced methods. Furthermore, this study emphasizes 
the importance of further investigating the underlying mechanism 
linking OSA and CKD.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving humans 
in accordance with the local legislation and institutional 
requirements. Written informed consent to participate in this study 
was not required from the participants or the participants’ legal 
guardians/next of kin in accordance with the national legislation and 
the institutional requirements.

Author contributions

YH: Writing – original draft, Writing – review & editing. YL: 
Writing – review & editing. ZX: Supervision, Writing – review & 
editing. ZW: Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Acknowledgments

We would like to express our gratitude to the participants and 
investigators of the FinnGen study. Our sincere appreciation is 
extended to CKDGen for their generous public sharing of GWAS 
summary data, which has significantly facilitated our research. 
We also thank all contributors for providing GWAS data.

114

https://doi.org/10.3389/fneur.2024.1323928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hou et al.� 10.3389/fneur.2024.1323928

Frontiers in Neurology 08 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the reviewers. 
Any product that may be evaluated in this article, or claim that may 
be  made by its manufacturer, is not guaranteed or endorsed by 
the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2024.1323928/
full#supplementary-material

References
	1.	Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Köttgen A, Levey AS, et al. Evolving 

importance of kidney disease: from subspecialty to global health burden. Lancet. (2013) 
382:158–69. doi: 10.1016/s0140-6736(13)60439-0

	2.	Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney 
disease. Lancet. (2021) 398:786–802. doi: 10.1016/s0140-6736(21)00519-5

	3.	Orlandi PF, Xie D, Yang W, Cohen JB, Deo R, Ricardo AC, et al. Slope of kidney 
function and its association with longitudinal mortality and cardiovascular disease 
among individuals with CKD. J Am Soc Nephrol. (2020) 31:2912–23. doi: 10.1681/
asn.2020040476

	4.	Swartling O, Rydell H, Stendahl M, Segelmark M, Trolle Lagerros Y, Evans M. CKD 
progression and mortality among men and women: a Nationwide study in Sweden. Am 
J Kidney Dis. (2021) 78:190–9.e1. doi: 10.1053/j.ajkd.2020.11.026

	5.	Xie Y, Bowe B, Mokdad AH, Xian H, Yan Y, Li T, et al. Analysis of the global burden 
of disease study highlights the global, regional, and national trends of chronic kidney 
disease epidemiology from 1990 to 2016. Kidney Int. (2018) 94:567–81. doi: 10.1016/j.
kint.2018.04.011

	6.	Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. 
Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-
based analysis. Lancet Respir Med. (2019) 7:687–98. doi: 10.1016/s2213-2600(19)30198-5

	7.	Patel SR. Obstructive sleep Apnea. Ann Intern Med. (2019) 171:Itc81–itc96. doi: 
10.7326/aitc201912030

	8.	Abuyassin B, Sharma K, Ayas NT, Laher I. Obstructive sleep Apnea and kidney 
disease: a potential bidirectional relationship? J Clin Sleep Med. (2015) 11:915–24. doi: 
10.5664/jcsm.4946

	9.	Hanly PJ, Ahmed SB. Sleep apnea and the kidney: is sleep apnea a risk factor for 
chronic kidney disease? Chest. (2014) 146:1114–22. doi: 10.1378/chest.14-0596

	10.	Canales MT, Bozorgmehri S, Ishani A, Weiner ID, Berry R, Beyth R. Prevalence 
and correlates of sleep apnea among US veterans with chronic kidney disease. J Sleep 
Res. (2020) 29:e12981. doi: 10.1111/jsr.12981

	11.	Nicholl DDM, Ahmed SB, Loewen AHS, Hemmelgarn BR, Sola DY, Beecroft JM, 
et al. Declining kidney function increases the prevalence of sleep apnea and nocturnal 
hypoxia. Chest. (2012) 141:1422–30. doi: 10.1378/chest.11-1809

	12.	Beaudin AE, Raneri JK, Ahmed SB, Hirsch Allen AJM, Nocon A, Gomes T, et al. 
Risk of chronic kidney disease in patients with obstructive sleep apnea. Sleep. (2022) 
45:zsab267. doi: 10.1093/sleep/zsab267

	13.	Zamarrón E, Jaureguizar A, García-Sánchez A, Díaz-Cambriles T, Alonso-
Fernández A, Lores V, et al. Obstructive sleep apnea is associated with impaired renal 
function in patients with diabetic kidney disease. Sci Rep. (2021) 11:5675. doi: 10.1038/
s41598-021-85023-w

	14.	Shanmugam GV, Abraham G, Mathew M, Ilangovan V, Mohapatra M, Singh T. 
Obstructive sleep apnea in non-dialysis chronic kidney disease patients. Ren Fail. (2015) 
37:214–8. doi: 10.3109/0886022x.2014.979730

	15.	Marrone O, Battaglia S, Steiropoulos P, Basoglu OK, Kvamme JA, Ryan S, et al. 
Chronic kidney disease in European patients with obstructive sleep apnea: the ESADA 
cohort study. J Sleep Res. (2016) 25:739–45. doi: 10.1111/jsr.12426

	16.	Chang CP, Li TC, Hang LW, Liang SJ, Lin JJ, Chou CY, et al. The relationships of 
sleep apnea, hypertension, and resistant hypertension on chronic kidney disease. 
Medicine. (2016) 95:e3859. doi: 10.1097/md.0000000000003859

	17.	Adams RJ, Appleton SL, Vakulin A, Hanly PJ, Mcdonald SP, Martin SA, et al. 
Chronic kidney disease and sleep Apnea Association of Kidney Disease with Obstructive 
Sleep Apnea in a population study of men. Sleep. (2017) 40:zsw015. doi: 10.1093/sleep/
zsw015

	18.	Furlan SF, Sinkunas V, Damiani LP, Santos RB, Peres M, Lemos PA, et al. 
Obstructive sleep apnea, sleep duration and chronic kidney disease in patients with 
coronary artery disease. Sleep Med. (2021) 84:268–74. doi: 10.1016/j.sleep.2021.05.025

	19.	Lee YJ, Jang HR, Huh W, Kim YG, Kim DJ, Oh HY, et al. Independent contributions 
of obstructive sleep Apnea and the metabolic syndrome to the risk of chronic kidney 
disease. J Clin Sleep Med. (2017) 13:1145–52. doi: 10.5664/jcsm.6758

	20.	Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an 
approach to assess causality using observational data. J Am  Soc Nephrol. (2016) 
27:3253–65. doi: 10.1681/asn.2016010098

	21.	Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology 
contribute to understanding environmental determinants of disease? Int J Epidemiol. 
(2003) 32:1–22. doi: 10.1093/ije/dyg070

	22.	Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. (2017) 
318:1925–6. doi: 10.1001/jama.2017.17219

	23.	Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Hum Mol Genet. (2014) 23:R89–98. doi: 10.1093/
hmg/ddu328

	24.	Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian 
randomization: using genes as instruments for making causal inferences in 
epidemiology. Stat Med. (2008) 27:1133–63. doi: 10.1002/sim.3034

	25.	Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. 
FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 
(2023) 613:508–18. doi: 10.1038/s41586-022-05473-8

	26.	Strausz S, Ruotsalainen S, Ollila HM, Karjalainen J, Kiiskinen T, Reeve M, et al. Genetic 
analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic 
health. Eur Respir J. (2021) 57:2003091. doi: 10.1183/13993003.03091-2020

	27.	Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, et al. A catalog of genetic 
loci associated with kidney function from analyses of a million individuals. Nat Genet. 
(2019) 51:957–72. doi: 10.1038/s41588-019-0407-x

	28.	Stanzick KJ, Li Y, Schlosser P, Gorski M, Wuttke M, Thomas LF, et al. Discovery 
and prioritization of variants and genes for kidney function in >1.2 million individuals. 
Nat Commun. (2021) 12:4350. doi: 10.1038/s41467-021-24491-0

	29.	Teumer A, Li Y, Ghasemi S, Prins BP, Wuttke M, Hermle T, et al. Genome-wide 
association meta-analyses and fine-mapping elucidate pathways influencing 
albuminuria. Nat Commun. (2019) 10:4130. doi: 10.1038/s41467-019-11576-0

	30.	Gorski M, Jung B, Li Y, Matias-Garcia PR, Wuttke M, Coassin S, et al. Meta-
analysis uncovers genome-wide significant variants for rapid kidney function decline. 
Kidney Int. (2021) 99:926–39. doi: 10.1016/j.kint.2020.09.030

	31.	Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. 
PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics. 
(2016) 32:3207–9. doi: 10.1093/bioinformatics/btw373

	32.	Hemani G, Tilling K, Davey SG. Orienting the causal relationship between 
imprecisely measured traits using GWAS summary data. PLoS Genet. (2017) 
13:e1007081. doi: 10.1371/journal.pgen.1007081

	33.	Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with 
multiple genetic variants using summarized data. Genet Epidemiol. (2013) 37:658–65. 
doi: 10.1002/gepi.21758

	34.	Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid 
instruments: effect estimation and bias detection through egger regression. Int J 
Epidemiol. (2015) 44:512–25. doi: 10.1093/ije/dyv080

	35.	Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in 
Mendelian randomization with some invalid instruments using a weighted median 
estimator. Genet Epidemiol. (2016) 40:304–14. doi: 10.1002/gepi.21965

	36.	Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data 
Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 
(2017) 46:1985–98. doi: 10.1093/ije/dyx102

	37.	Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PM. 
Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of 

115

https://doi.org/10.3389/fneur.2024.1323928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fneur.2024.1323928/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2024.1323928/full#supplementary-material
https://doi.org/10.1016/s0140-6736(13)60439-0
https://doi.org/10.1016/s0140-6736(21)00519-5
https://doi.org/10.1681/asn.2020040476
https://doi.org/10.1681/asn.2020040476
https://doi.org/10.1053/j.ajkd.2020.11.026
https://doi.org/10.1016/j.kint.2018.04.011
https://doi.org/10.1016/j.kint.2018.04.011
https://doi.org/10.1016/s2213-2600(19)30198-5
https://doi.org/10.7326/aitc201912030
https://doi.org/10.5664/jcsm.4946
https://doi.org/10.1378/chest.14-0596
https://doi.org/10.1111/jsr.12981
https://doi.org/10.1378/chest.11-1809
https://doi.org/10.1093/sleep/zsab267
https://doi.org/10.1038/s41598-021-85023-w
https://doi.org/10.1038/s41598-021-85023-w
https://doi.org/10.3109/0886022x.2014.979730
https://doi.org/10.1111/jsr.12426
https://doi.org/10.1097/md.0000000000003859
https://doi.org/10.1093/sleep/zsw015
https://doi.org/10.1093/sleep/zsw015
https://doi.org/10.1016/j.sleep.2021.05.025
https://doi.org/10.5664/jcsm.6758
https://doi.org/10.1681/asn.2016010098
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1001/jama.2017.17219
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1002/sim.3034
https://doi.org/10.1038/s41586-022-05473-8
https://doi.org/10.1183/13993003.03091-2020
https://doi.org/10.1038/s41588-019-0407-x
https://doi.org/10.1038/s41467-021-24491-0
https://doi.org/10.1038/s41467-019-11576-0
https://doi.org/10.1016/j.kint.2020.09.030
https://doi.org/10.1093/bioinformatics/btw373
https://doi.org/10.1371/journal.pgen.1007081
https://doi.org/10.1002/gepi.21758
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1093/ije/dyx102


Hou et al.� 10.3389/fneur.2024.1323928

Frontiers in Neurology 09 frontiersin.org

diagnostic accuracy. J Clin Epidemiol. (2015) 68:299–306. doi: 10.1016/j.
jclinepi.2014.09.005

	38.	Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al. 
Improving the visualization, interpretation and analysis of two-sample summary data 
Mendelian randomization via the radial plot and radial regression. Int J Epidemiol. 
(2018) 47:1264–78. doi: 10.1093/ije/dyy101

	39.	Sedgwick P. Multiple hypothesis testing and Bonferroni's correction. BMJ. (2014) 
349:g6284. doi: 10.1136/bmj.g6284

	40.	Molnar MZ, Mucsi I, Novak M, Szabo Z, Freire AX, Huch KM, et al. Association 
of incident obstructive sleep apnoea with outcomes in a large cohort of US veterans. 
Thorax. (2015) 70:888–95. doi: 10.1136/thoraxjnl-2015-206970

	41.	Lin YS, Liu PH, Lin SW, Chuang LP, Ho WJ, Chou YT, et al. Simple obstructive 
sleep apnea patients without hypertension or diabetes accelerate kidney dysfunction: a 
population follow-up cohort study from Taiwan. Sleep Breath. (2017) 21:85–91. doi: 
10.1007/s11325-016-1376-2

	42.	Jaussent I, Cristol JP, Stengel B, Ancelin ML, Dupuy AM, Besset A, et al. Impact of 
sleep disturbances on kidney function decline in the elderly. Eur Respir J. (2016) 
47:860–8. doi: 10.1183/13993003.01147-2015

	43.	Yayan J, Rasche K, Vlachou A. Obstructive sleep Apnea and chronic kidney 
disease. Adv Exp Med Biol. (2017) 1022:11–8. doi: 10.1007/5584_2017_35

	44.	Canales MT, Hagen EW, Barnet JH, Peppard PE, Derose SF. Sleep Apnea and 
kidney function trajectory: results from a 20-year longitudinal study of healthy middle-
aged adults. Sleep. (2018) 41:zsx181. doi: 10.1093/sleep/zsx181

	45.	Fernandes JFR, Barreto Silva MI, Loivos CP, Menna Barreto APM, Meira VDS, 
Kaiser SE, et al. Obstructive sleep apnea in non-dialyzed chronic kidney disease patients: 
association with body adiposity and sarcopenia. Nutrition. (2019) 57:282–9. doi: 
10.1016/j.nut.2018.04.013

	46.	Uyar M, Davutoğlu V, Gündoğdu N, Kosovalı D, Sarı İ. Renal functions in obstructive 
sleep apnea patients. Sleep Breath. (2016) 20:191–5. doi: 10.1007/s11325-015-1204-0

	47.	Canales MT, Lui LY, Taylor BC, Ishani A, Mehra R, Stone KL, et al. Renal function 
and sleep-disordered breathing in older men. Nephrol Dial Transplant. (2008) 
23:3908–14. doi: 10.1093/ndt/gfn364

	48.	Beaudin AE, Raneri JK, Hirsch Allen AJM, Series F, Kimoff RJ, Skomro RP, et al. 
Obstructive sleep Apnea symptoms do not identify patients at risk of chronic kidney 
disease. Am J Respir Crit Care Med. (2023) 207:361–4. doi: 10.1164/rccm.202207-1297LE

	49.	Mcclellan WM, Flanders WD. Risk factors for progressive chronic kidney disease. 
J Am Soc Nephrol. (2003) 14:S65–70. doi: 10.1097/01.asn.0000070147.10399.9e

	50.	Provenzano M, Rivoli L, Garofalo C, Faga T, Pelagi E, Perticone M, et al. Renal 
resistive index in chronic kidney disease patients: possible determinants and risk profile. 
PLoS One. (2020) 15:e0230020. doi: 10.1371/journal.pone.0230020

	51.	De Nicola L, Provenzano M, Chiodini P, D'arrigo G, Tripepi G, Del Vecchio L, et al. 
Prognostic role of LDL cholesterol in non-dialysis chronic kidney disease: Multicenter 
prospective study in Italy. Nutr Metab Cardiovasc Dis. (2015) 25:756–62. doi: 10.1016/j.
numecd.2015.04.001

	52.	Parati G, Lombardi C, Hedner J, Bonsignore MR, Grote L, Tkacova R, et al. 
Position paper on the management of patients with obstructive sleep apnea and 
hypertension: joint recommendations by the European Society of Hypertension, by the 
European Respiratory Society and by the members of European COST (COoperation 
in scientific and technological research) ACTION B26 on obstructive sleep apnea. J 
Hypertens. (2012) 30:633–46. doi: 10.1097/HJH.0b013e328350e53b

	53.	Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, et al. 
Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 
(2009) 32:1017–9. doi: 10.2337/dc08-1776

	54.	Redline S, Azarbarzin A, Peker Y. Obstructive sleep apnoea heterogeneity and 
cardiovascular disease. Nat Rev Cardiol. (2023) 20:560–73. doi: 10.1038/s41569-023-00846-6

	55.	Knutson KL, Ryden AM, Mander BA, Van Cauter E. Role of sleep duration and 
quality in the risk and severity of type 2 diabetes mellitus. Arch Intern Med. (2006) 
166:1768–74. doi: 10.1001/archinte.166.16.1768

	56.	Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association 
between sleep-disordered breathing and hypertension. N Engl J Med. (2000) 
342:1378–84. doi: 10.1056/nejm200005113421901

	57.	Veasey SC, Rosen IM. Obstructive sleep Apnea in adults. N Engl J Med. (2019) 
380:1442–9. doi: 10.1056/NEJMcp1816152

	58.	Tada T, Kusano KF, Ogawa A, Iwasaki J, Sakuragi S, Kusano I, et al. The predictors 
of central and obstructive sleep apnoea in haemodialysis patients. Nephrol Dial 
Transplant. (2007) 22:1190–7. doi: 10.1093/ndt/gfl748

	59.	Hanly PJ, Gabor JY, Chan C, Pierratos A. Daytime sleepiness in patients with CRF: 
impact of nocturnal hemodialysis. Am J Kidney Dis. (2003) 41:403–10. doi: 10.1053/
ajkd.2003.50066

	60.	Moradzadeh M, Mirmohammadkhani M, Tamadon MR, Mansori K, Malek F. 
Prevalence of sleep Apnea and its associated factors in chronic kidney disease patients. 
Tanaffos. (2021) 20:116–25.

	61.	Millman RP, Kimmel PL, Shore ET, Wasserstein AG. Sleep apnea in hemodialysis 
patients: the lack of testosterone effect on its pathogenesis. Nephron. (1985) 40:407–10. 
doi: 10.1159/000183509

	62.	Hanly PJ, Pierratos A. Improvement of sleep apnea in patients with chronic renal 
failure who undergo nocturnal hemodialysis. N Engl J Med. (2001) 344:102–7. doi: 
10.1056/nejm200101113440204

	63.	Tang SC, Lam B, Ku PP, Leung WS, Chu CM, Ho YW, et al. Alleviation of sleep 
apnea in patients with chronic renal failure by nocturnal cycler-assisted peritoneal 
dialysis compared with conventional continuous ambulatory peritoneal dialysis. J 
Am Soc Nephrol. (2006) 17:2607–16. doi: 10.1681/asn.2005090936

	64.	Kennedy C, Ryan SA, Kane T, Costello RW, Conlon PJ. The impact of change of 
renal replacement therapy modality on sleep quality in patients with end-stage renal 
disease: a systematic review and meta-analysis. J Nephrol. (2018) 31:61–70. doi: 10.1007/
s40620-017-0409-7

	65.	Boyd JH, Petrof BJ, Hamid Q, Fraser R, Kimoff RJ. Upper airway muscle 
inflammation and denervation changes in obstructive sleep apnea. Am J Respir Crit Care 
Med. (2004) 170:541–6. doi: 10.1164/rccm.200308-1100OC

	66.	Brouns R, Deyn D. Neurological complications in renal failure: a review. Clin 
Neurol Neurosurg. (2004) 107:1–16. doi: 10.1016/j.clineuro.2004.07.012

	67.	Tarasuik A, Heimer D, Bark H. Effect of chronic renal failure on skeletal and 
diaphragmatic muscle contraction. Am Rev Respir Dis. (1992) 146:1383–8. doi: 10.1164/
ajrccm/146.6.1383

	68.	Elias RM, Chan CT, Paul N, Motwani SS, Kasai T, Gabriel JM, et al. 
Relationship of pharyngeal water content and jugular volume with severity of 
obstructive sleep apnea in renal failure. Nephrol Dial Transplant. (2013) 28:937–44. 
doi: 10.1093/ndt/gfs473

	69.	Elias RM, Bradley TD, Kasai T, Motwani SS, Chan CT. Rostral overnight fluid shift 
in end-stage renal disease: relationship with obstructive sleep apnea. Nephrol Dial 
Transplant. (2012) 27:1569–73. doi: 10.1093/ndt/gfr605

	70.	Arzt M, Eckert DJ. Is fluid overload a target to treat sleep disordered breathing in 
patients with end-stage renal disease, and what are the underlying mechanisms? Eur 
Respir J. (2017) 49:1700443. doi: 10.1183/13993003.00443-2017

	71.	Harmon RR, De Lima JJG, Drager LF, Portilho NP, Costa-Hong V, Bortolotto LA, 
et al. Obstructive sleep apnea is associated with interdialytic weight gain and increased 
long-term cardiovascular events in hemodialysis patients. Sleep Breath. (2018) 22:721–8. 
doi: 10.1007/s11325-017-1603-5

	72.	Lyons OD, Inami T, Perger E, Yadollahi A, Chan CT, Bradley TD. The effect of fluid 
overload on sleep apnoea severity in haemodialysis patients. Eur Respir J. (2017) 
49:1601789. doi: 10.1183/13993003.01789-2016

	73.	Ogna A, Forni Ogna V, Mihalache A, Pruijm M, Halabi G, Phan O, et al. 
Obstructive sleep Apnea severity and overnight body fluid shift before and after 
Hemodialysis. Clin J Am  Soc Nephrol. (2015) 10:1002–10. doi: 10.2215/
cjn.08760914

116

https://doi.org/10.3389/fneur.2024.1323928
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/j.jclinepi.2014.09.005
https://doi.org/10.1016/j.jclinepi.2014.09.005
https://doi.org/10.1093/ije/dyy101
https://doi.org/10.1136/bmj.g6284
https://doi.org/10.1136/thoraxjnl-2015-206970
https://doi.org/10.1007/s11325-016-1376-2
https://doi.org/10.1183/13993003.01147-2015
https://doi.org/10.1007/5584_2017_35
https://doi.org/10.1093/sleep/zsx181
https://doi.org/10.1016/j.nut.2018.04.013
https://doi.org/10.1007/s11325-015-1204-0
https://doi.org/10.1093/ndt/gfn364
https://doi.org/10.1164/rccm.202207-1297LE
https://doi.org/10.1097/01.asn.0000070147.10399.9e
https://doi.org/10.1371/journal.pone.0230020
https://doi.org/10.1016/j.numecd.2015.04.001
https://doi.org/10.1016/j.numecd.2015.04.001
https://doi.org/10.1097/HJH.0b013e328350e53b
https://doi.org/10.2337/dc08-1776
https://doi.org/10.1038/s41569-023-00846-6
https://doi.org/10.1001/archinte.166.16.1768
https://doi.org/10.1056/nejm200005113421901
https://doi.org/10.1056/NEJMcp1816152
https://doi.org/10.1093/ndt/gfl748
https://doi.org/10.1053/ajkd.2003.50066
https://doi.org/10.1053/ajkd.2003.50066
https://doi.org/10.1159/000183509
https://doi.org/10.1056/nejm200101113440204
https://doi.org/10.1681/asn.2005090936
https://doi.org/10.1007/s40620-017-0409-7
https://doi.org/10.1007/s40620-017-0409-7
https://doi.org/10.1164/rccm.200308-1100OC
https://doi.org/10.1016/j.clineuro.2004.07.012
https://doi.org/10.1164/ajrccm/146.6.1383
https://doi.org/10.1164/ajrccm/146.6.1383
https://doi.org/10.1093/ndt/gfs473
https://doi.org/10.1093/ndt/gfr605
https://doi.org/10.1183/13993003.00443-2017
https://doi.org/10.1007/s11325-017-1603-5
https://doi.org/10.1183/13993003.01789-2016
https://doi.org/10.2215/cjn.08760914
https://doi.org/10.2215/cjn.08760914


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores neurological illness to improve patient 

care

The third most-cited clinical neurology journal 

explores the diagnosis, causes, treatment, and 

public health aspects of neurological illnesses. Its 

ultimate aim is to inform improvements in patient 

care.

Discover the latest 
Research Topics

See more 

Frontiers in
Neurology

https://www.frontiersin.org/journals/Neurology/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Novel technologies in the diagnosis and management of sleep-disordered breathing, volume II

	Table of contents

	Editorial: Novel technologies in the diagnosis and management of sleep-disordered breathing, volume II
	Genetic insights
	Epidemiology, comorbidities, and the burden of OSA
	Mechanistic and biomarker studies
	Cardiovascular insights and heart rate dynamics
	Technological innovations and protocol development
	Future directions in OSA management
	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	The future of sleep apnea management: we can either ride the bus or drive it
	1 Introduction
	2 Problems and unmet needs
	2.1 Patient journey needs to be simplified
	2.2 Enhanced communication is needed
	2.3 Expanded scope for monitoring is needed for serial assessments and therapy titration
	2.4 Provider shortage and burnout accelerate need for updated care models
	2.5 Financial models are needed that reward high quality care

	3 Future directions and models
	3.1 Establish a centralized specialist model
	3.2 Triage to fast-track straight-forward cases model
	3.3 Tiered-care model
	3.4 Predictive model(s)

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Association between risk of obstructive sleep apnea severity and risk of severe COVID-19 symptoms: insights from salivary and serum cytokines
	Introduction
	Methods
	Study design
	Saliva collection
	Blood collection
	Sample processing
	Cytokine abundance measurements
	Outcome variable
	COVID status
	Exposure variable and covariates
	Obstructive sleep apnea
	Body measurements
	Statistical analysis

	Results
	Discussion
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Association of CLDN molecules with sleep apnea hypopnea syndrome: new biomarker candidates
	1 Introduction
	2 Materials and methods
	2.1 Study design and participants
	2.2 Sleep monitoring
	2.3 Clinical data and laboratory tests
	2.4 Statistical analysis

	3 Results
	3.1 General clinical characteristics of the OSA and control groups
	3.2 There were significant differences in plasma and urinary CLDN1, CLDN2, and CLDN3 between the OSA and control groups
	3.3 The diagnostic efficacy of CLDN molecules in OSA
	3.4 The diagnostic efficacy of CLDN molecules combined SBQ or ESS in OSA
	3.5 Correlation analysis suggests that urinary CLDN3 can predict the severity of OSA

	4 Discussion
	5 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Commentary: Physical therapy for sleep apnea: a smartphone application for home-based physical therapy for patients with obstructive sleep apnea
	Background
	State of the art
	Randomized clinical trial with an app
	Conclusion
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Excessive daytime sleepiness is associated with relative delta frequency power among patients with mild OSA
	Introduction
	Methods
	Dataset
	EEG processing
	Ethics approval
	Statistical analysis

	Results
	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Latent profile analysis of depression in US adults with obstructive sleep apnea hypopnea syndrome
	Introduction
	Methods
	Study participants
	Measures
	Socio-demographic variables
	Health behavior variables
	Health status variables
	Sleep-related variables
	Depression

	Statistical analysis

	Results
	Baseline characteristics
	Results of latent profile analysis
	Naming of latent profile
	Inter-profile characteristic differences
	Multiple logistic regression of depression profiles

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics Statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	The relationship between obstructive sleep apnea and osteoarthritis: evidence from an observational and Mendelian randomization study
	1 Introduction
	2 Methods
	2.1 Study population
	2.2 Variables
	2.3 Mendelian randomization
	2.4 Selection of instrumental variables
	2.5 Statistical analysis

	3 Results
	3.1 Observational study
	3.1.1 Baseline characteristics
	3.1.2 Association between OSA and OA
	3.1.3 Subgroup analyses
	3.2 Mendelian randomization study
	3.2.1 MR analyses using primary genetic instruments
	3.2.2 Bidirectional MR, replication, and meta-analysis
	3.2.3 Mediator MR analyses

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Cardiopulmonary coupling-calculated sleep stability and nocturnal heart rate kinetics as a potential indicator for cardiovascular health: a relationship with blood pressure dipping
	1 Introduction
	2 Materials and methods
	2.1 Study design
	2.2 Participants
	2.3 Follow-up
	2.4 Methods
	2.4.1 The data set
	2.4.2 CPC analysis
	2.4.3 HR and CPC analysis
	2.4.4 Primary endpoint

	2.5 Statistical analysis

	3 Results
	3.1 Study population
	3.2 Primary outcome measures

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Identification and Mendelian randomization validation of pathogenic gene biomarkers in obstructive sleep apnea
	Introduction
	Methods
	Differentially expressed genes of the OSA gene dataset
	WGCNA analysis of gene expression
	Diagnostic DEG identification and enrichment analysis
	Diagnostic DEG analysis and interaction
	Receiver operating characteristic analysis for hub diagnostic genes diagnostic
	Calibrating hub diagnostic gene model
	Immune cell infiltration and gene correlation analysis
	MR analysis

	Results
	Integrated analysis reveals the diagnostic genes
	Diagnostic DEG enrichment analysis
	Hub diagnostic genes identification and modelling
	Immune infiltration in patients with OSA
	MR analysis

	Discussion
	Conclusion
	References

	Prevalence and impact of sleep-related breathing disorder in multiple system atrophy patients: a cross-sectional study and meta-analysis
	Introduction
	Methods
	Overnight video-PSG
	Statistical analysis
	Meta-analysis methods
	Searching strategy
	Study selection criteria
	Data extraction and study quality assessment
	Statistical analysis

	Results
	Meta-analysis results
	Prevalence of SRBD

	Discussion
	Conclusion
	References

	Beyond sleep duration: protocol for a systematic review of multidimensional sleep health in relation to cardiovascular disease and mortality
	Introduction
	Methods
	Reporting and protocol registration
	Inclusion/exclusion criteria and outcome measures
	Research questions
	Search strategy
	De-duplication and screening
	Data extraction
	Assessment of quality and risk of bias
	Data synthesis and statistical analysis

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Causal effects of obstructive sleep apnea on chronic kidney disease and renal function: a bidirectional Mendelian randomization study
	1 Introduction
	2 Methods
	2.1 Study design
	2.2 Genetic associations with OSA
	2.3 Genetic associations with CKD and renal function
	2.4 Selection of instrumental variables (IVs)
	2.5 Mendelian randomization analysis
	2.6 Sensitivity analysis
	2.7 Statistical analysis

	3 Results
	3.1 Forward MR analysis
	3.2 Reverse MR analysis

	4 Discussion
	 References

	Back Cover



