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Editorial on the Research Topic 


Emerging sustainable and green technologies for improving agricultural production





Introduction

Nowadays, the world is facing food shortages with the increasing global population, decreasing food sources, and deteriorating environment. The traditional methods (e.g. seed priming, stratification, scarification, ultrasound, disinfectants, fungicides, hormones, and fertilizers) have been employed to improve agricultural production. However, most of these methods have their own limitations. To address these challenges, this Research Topic “Emerging sustainable and green technologies for improving agricultural production” aims to apply computer vision technology, emerging physical technologies (Ion beam irradiation, low-temperature plasma, magnetic field, and micro-nano bubble), nanotechnology and intelligent filed management for precise analysis of plant phenotype, efficient control of plant disease, regulation of seed germination and plant growth, and improvement of crop yield. During this period, a total of 41 papers were submitted to the Research Topic and 23 papers from 156 authors were published.





The application of computer vision technology in agriculture

Monitoring the plant growth phenotype has great significance for promoting the efficient and precise implementation of agronomic operations, screening superior traits and breeding new varieties. Traditional analytical techniques mainly rely on manual identification, which involves high labor intensity, high labor costs, and is prone to subjective errors. In recent years, with the development of deep learning technology, computer vision has become an important tool for plant phenotypic analysis. The YOLO (You only look once) series of algorithms feature fast detection speed, high efficiency and high precision, and have demonstrated extremely high application value in agriculture.

For example, the prevalent measurement methods for corn seeds are traditional, consuming substantial process resources. Yu et al. proposed an enhanced YOLOv8 target detection model, EBS - YOLOv8, for detecting corn seed germination. They demonstrated this method for germination potential put forward in this paper can effectively depict the rate variation of seeds during the germination process, thus offering a novel perspective for future research on seed germination potential. Accurate and rapid identification of cabbage posture is crucial for minimizing damage to cabbage heads during mechanical harvesting. Shen et al. introduced YOLOv5-POS, an innovative cabbage posture prediction approach. Cabbage posture recognition was completed within 28 milliseconds, enabling real-time harvesting. This method provided a highly accurate and efficient solution for automated harvesting, minimized crop damage, and improved operational efficiency. Identifying grape bunches is crucial for maintaining the quality and quantity of grapes, as well as managing pests and diseases. Yang et al. proposes a lightweight detection method named YOLOv8s-grape. The thesis proposes a lightweight and efficient model for grape bunch detection and biophysical anomaly assessment in complex environments based on YOLOv8 by redesigning the network structure. Green pepper fruits have colors similar to leaves and are often occluded by each other, posing challenges for detection. Du et al. proposed an automatic counting method for green pepper fruits based on object detection and multi-object tracking algorithm. The above researched indicated that not only enhanced the efficiency and precision of agricultural production by YOLO, but also promoted the development of intelligent agriculture.





The application of physical methods for promoting plant growth

In the face of the food crisis, the application of physical technologies to increase food production becomes particularly significant. Ion beam irradiation technology, low-temperature plasma technology, magnetic field technology, and micro-nano bubble technology, etc. are attracting more and more attention from researchers.

Plasma-activated water (PAW) can enhance seed germination, growth, and biomass production. It is important to explore PAW’s potential in improving the productivity of sorghum and possibly other crops. Beak et al. investigated the effects of PAW irrigation on young sorghum seedlings through phenotypic and transcriptional analyses. Not only enhances sorghum seedling growth through transcriptional regulation but also has the potential to optimize agricultural practices by increasing crop yield. In addition, Veerana et al. found that plasma enhanced growth and salinity tolerance of bok choy (Brassica rapa subsp. chinensis) in hydroponic culture. Ion beam irradiation technology is often used in mutagenic breeding. However, in recent years, its contemporary stimulating effect on seeds has also been discovered, such as promoting crop growth and enhancing stress resistance, etc. The Arabidopsis seeds were irradiated by 12C6+. Yin et al. demonstrated that 170 DEGs were present in the 50 Gy and 200 Gy groups and GO enrichment indicated that they were mainly associated with stress resistance and cell wall homeostasis. Low-dose heavy ion beam irradiation induces ROS production in plants, thereby accelerating seedling growth, while high-dose irradiation leads to the accumulation of excess ROS and thereby severely inhibits plant growth. Magnetoelectric activated water can significantly improves soil salt leaching and water use efficiency, demonstrating positive effects on enhancing soil water retention, promoting crop growth, and increasing yields. Lei et al. clarify the effects of coupling improvement agents under magnetoelectric activated water irrigation conditions on the photosynthetic physiological traits, grain nutrients, and yield of spring maize in the arid region of northwest China. Microbubbles are referred as bubbles with a diameter less than 100 microns and situated between micron- and nanoscale dimensions. They can generate through various mechanisms, such as rotational shear, pressure dissolution, electrochemistry, micropore pressure and mixed jet flow. These bubbles possessed unique physical and chemical properties, including slow bubble rise in solution, prolonged residence time, enhanced solubility, expanded specific surface area, accelerated gas−liquid mass transfer rate, elevated interface point, and spontaneous generation of free radicals. Moreover, it can also increase the ozone saturation concentration in water, leading to its decomposition into oxygen for crop growth and development, thereby mitigating hypoxia-related issues in crops. In the study of Zhao et al., the micro/nano bubble technology was applied to achieve a saturation state of bubble nutrient solution, including micro-nano oxygen (O2 group) and micro-nano ozone (O3 group) bubble nutrient solutions. The application of micro/nano (O2 and O3) bubble nutrient solutions to substrate-cultured lettuce plants increased the amount of dissolved oxygen in the nutrient solution, increased the lettuce yield, and elevated the net photosynthetic rate, conductance of H2O and intercellular carbon dioxide concentration of lettuce plants.





The application of nanomaterials in agriculture

In the pursuit of sustainable development, nanotechnology provides effective solutions for enhancing agricultural productivity. Nanomaterials (NMs) can be effective in increasing plant abiotic and biotic stress tolerance. Trzcińska-Wencel et al. aimed to evaluate the effects of biologically synthesized silver nanoparticles (AgNPs) from Fusarium solani IOR 825 on the growth of Zea mays. They demonstrated the lowest tested concentration of AgNPs (32 µg mL−1) on maize efficiently inhibits maize-borne pathogens, without any negative effect on plant growth and chlorophyll content. Moreover, it does not provoke oxidative stress. Nonetheless, various nanoparticles can influence plant growth in diverse manners, often through distinct mechanisms of action. Beyond their direct effects on the plant itself, they frequently alter the physicochemical properties of the soil and modulate the structure of microbial communities in the rhizosphere. Zhang et al. reviewed the multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities. Nanoparticles enhance plant growth and development by facilitating nutrient uptake, modulating rhizosphere microorganisms, and enhancing soil physiochemical properties, among other benefits, with a focus on their positive effects on plants.





Intelligent field management

Straw return is regarded as a widely used field management strategy for improving soil health, but its comprehensive effect on crop grain yield and quality remains elusive. Zhang et al. reviewed straw return enhances grain yield and quality of three main crops. A meta-analysis containing 1822 pairs of observations from 78 studies was conducted to quantify the effect of straw return on grain yield and quality of three main crops (maize, rice, and wheat). On average, compared with no straw return, straw return significantly (p < 0.05) increased grain yield (+4.3%), protein content (+2.5%), total amino acids concentration (+1.2%), and grain phosphorus content (+3.6%), respectively. The effects of distinct straw retention modes on soil denitrification activity have rarely been discriminated and the underlying mechanisms remain unclear. Zhang et al. coupled field and incubation experiments to explore the characteristics of soil denitrification activity, soil and standing water physicochemical properties, and the abundance, community diversity, and co-occurrence network of nosZ denitrifiers, based on a paddy field implementing 10-year straw retention under a rice–wheat rotation system.

Wheat harvesting is highly time-sensitive, with the optimal period for harvesting being very short. The scheduling of agricultural machinery is a crucial component of modern agriculture and is closely related to the productivity of agricultural operations. In response to the issue of harvesting machine failures affecting crop harvesting timing, Liu et al. develops an emergency scheduling model and proposes a hybrid optimization algorithm that combines a genetic algorithm and an ant colony algorithm. As a renewable forest resource, bamboo plays a role in sustainable forest development. Recently, a strip clear-cutting (StC) was theoretically proposed to promote the sustainability of bamboo production, Liang et al. verified that StC for Phyllostachys glauca forests is feasible and sustainable as its sustainability index outweighs those of traditional cutting systems (SeC and ClC), and 10 m is the optimum distance for the strip width of StC.

In conclusion, the integrated application of computer vision, physical intervention, nanomaterials and intelligent management is driving agriculture to innovate in the direction of high efficiency, precision and sustainability, providing multi-dimensional solutions for addressing food security challenges.
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Introduction

Heavy ion beam is a novel approach for crop mutagenesis with the advantage of high energy transfer line density and low repair effect after injury, however, little investigation on the biological effect on plant was performed. 50 Gy irradiation significantly stimulated the growth of Arabidopsis seedlings, as indicated by an increase in root and biomass, while 200 Gy irradiation significantly inhibited the growth of seedlings, causing a visible decrease in plant growth.





Methods

The Arabidopsis seeds were irradiated by 12C6+. Monte Carlo simulations were used to calculate the damage to seeds and particle trajectories by ion implantation. The seed epidermis received SEM detection and changes in its organic composition were detected using FTIR. Evidence of ROS and antioxidant systems were analyzed. RNA-seq and qPCR were used to detect changes in seedling transcript levels.





Results and discussion

Monte Carlo simulations revealed that high-dose irradiation causes various damage. Evidence of ROS and antioxidant systems implies that the emergence of phenotypes in plant cells may be associated with oxidative stress. Transcriptomic analysis of the seedlings demonstrated that 170 DEGs were present in the 50 Gy and 200 Gy groups and GO enrichment indicated that they were mainly associated with stress resistance and cell wall homeostasis. Further GO enrichment of DEGs unique to 50 Gy and 200 Gy revealed 58 50Gy-exclusive DEGs were enriched in response to oxidative stress and jasmonic acid entries, while 435 200 Gy-exclusive DEGs were enriched in relation to oxidative stress, organic cyclic compounds, and salicylic acid. This investigation advances our insight into the biological effects of heavy ion irradiation and the underlying mechanisms.





Keywords: heavy ion beam, Arabidopsis thaliana, contemporary biological effects, plant growth, RNA-seq





Introduction

Heavy ions are positively charged particles with an atomic number of two or more, which are typically missing some or all of their outer electrons. These ions can be found in small amounts in space and are a component of space radiation. With advances in nuclear technology and the development of hardware such as accelerators, researchers are now able to generate heavy-ion beams at precise energy levels. One of the most prominent physical properties of heavy-ion beams is the Bragg curve, which is an inverted depth dose distribution compared to conventional radiation (Kraft, 2000; Hasson et al., 2013). Recently, the heavy-ion beams have been used as a novel effective mean of mutagenesis in plant and microbial breeding (Tanaka et al., 2010). The heavy-ion beams deposit more energy and have a higher linear energy transfer (LET) than low LET radiations such as X-rays or gamma-rays, making them more difficult to be repaired by cells (Hirano et al., 2015). As a result, the heavy-ion beams can induce stronger biological effects than other forms of radiation.

In general, most studies concentrate on the damage effect of heavy ion beam irradiation. At the cellular level, the damage included the thinning and perforation of the cell wall, rupture of the cell membrane and organelles, and cell lysis and death (Vilaithong et al., 2000; Yu et al., 2002). At the molecular level, the heavy ion beam irradiation could cause the breaks, cross-links, and high-level structural changes of DNA double strand, as well as single-base substitutions, insertions, and deletions (Prise et al., 2001; Hada and Georgakilas, 2008; Ritter and Durante, 2010). Furthermore, ion beam irradiation could also induce changes at the epigenetic levels, such as DNA methylation (Qian et al., 2010; Yu et al., 2011; Lima et al., 2014). The transcriptional and proteomic response of plants can differ due to the variety of plants and ion type (Xiong et al., 2020; Li et al., 2022).

Reactive oxygen species (ROS) was associated with the plant growth and may influence the response of plants to radiation (Huang et al., 2019; Tan et al., 2023). For example, ROS production in mitochondria has been observed under radiation including gamma (Yoshida et al., 2012; Kawamura et al., 2018). Previous studies have shown that different doses of irradiation lead to changes in ROS and antioxidant gene expression in plants. Zhang et al. (2008) found that 12C6+ irradiation of wheat at 10-80 Gy all caused changes in seedling ROS levels, but 20 Gy ROS levels were the highest; Wang et al. (2018a) found that irradiation of Arabidopsis thaliana seeds with 50-200 Gy 12C6+ ion beams all resulted in the accumulation of ROS in the seedlings and the expression of antioxidant enzyme systems was also increased. However, the transcriptomic response of plants under different dose of heavy ions irradiation remains unclear. Given that ROS induced by ionizing radiation have a very important role in the biological effects of heavy ion beam irradiation, we examined several ROS-related metrics in seedlings and analyzed them jointly with comparative transcriptome results.

Herein, this study investigated the effects of different dose of heavy ion beam irradiation on Arabidopsis by algorithmically simulating the damage patterns produced by heavy ion beam irradiation on seeds, combined with the comprehensive analysis of seed morphology, as well as the seedling phenotype, physiology and transcriptome. This study provides a theoretical basis for selecting doses in heavy ion beam mutagenesis breeding work. Additionally, it suggests an idea for investigating the biological effects of plants in response to varying doses of heavy ion beam irradiation.





Materials and methods




Irradiation and Monte Carlo simulation

Arabidopsis (cv. ‘Columbia’) seeds were placed in petri dishes with a diameter of 35 mm, a depth of 10 mm and a thickness of 1 mm. These seeds were then exposed to ionizing radiation using the shallow treatment and biological irradiation terminal (TR4) of the Heavy Ion Research Facility in Lanzhou (HIRFL) at the Institute of Modern Physics, Chinese Academy of Sciences (IMP-CAS). The irradiation condition was air environment, carbon ions with an initial energy of 80 MeV/u, a temperature of 12 ± 2°C, a beam current intensity of 30 nA, a dose rate of 80 Gy/min, and doses of 50 and 200 Gy.

Monte Carlo methods are employed to investigate the ion implantation processes. Monte Carlo simulations were conducted to simulate the interaction between 80 MeV/u carbon ions (12C6+) and Arabidopsis seeds by utilizing the TRIM program of the SRIM (Ions in Matter stop range of Ions in Matter) software (Ziegler et al., 2010). Since the seeds were not included in the built-in parameters of SRIM, the necessary parameters were manually calculated. To determine the density, the weight of seeds in a 35 mm petri dish was determined and the average density was 0.7203 g/cm3. The content of other components (proteins, lipids, sugars, etc.) of Arabidopsis seeds was obtained from the literature (Supplementary Table S1). Petri dish made of polystyrene plastic from Corning were represented in the model (Supplementary Figure S1). The ‘detailed calculation with full damage cascades’ mode was selected regarding type of SRIM calculation.





Scanning electron microscopy and fourier transform infrared spectrometer spectra analysis

Arabidopsis seeds used for SEM and FTIR analysis were gradient dehydrated with ethanol (40%, 60%, 80%, and 100%). After being glued to a sample stage with conductive tape (Nisshin EM), the seeds were sprayed with Pt and observed using a Hitachi SU3500 scanning electron microscope for SEM analysis. For FTIR analysis, the seeds were ground and mixed with potassium bromide, which was tested in the wavenumber region of 500-4000 cm-1 using a FTIR spectrometer (Tensor, Bruker, Germany). Each sample was replicated three times for biological accuracy.





Plant morphological observation

After being sterilized in a disinfector (30% H2O2: 80% ethanol = 1:3; v/v) for 1 min, Arabidopsis seeds were transferred to dry filter paper with a 1 mL pipette. The seeds were then vernalized at low temperature (4°C) for 48 h and planted in 90 mm × 10 mm sterile petri dishes containing 1/2 MS (Murashige Skoog Medium). The petri dishes were then placed vertically and placed in a growth chamber at 22 ± 2 °C with a light of 5000 lx and a 14/10 h light-dark cycle. The seedlings were grown in 1/2 MS for 7 days and the plant height and root length were measured with Image J (Rawak Software, Inc. Germany). Afterwards, the seedlings were collected and dried for 24 h at 45°C. The final dry weight was then measured. Thirty seedlings from each group were selected with 3 replications.





Microscopic observation of root tip

Root tip of Arabidopsis was stained with PI as Benfey described (Long et al., 2010; Sozzani et al., 2010). Briefly, the whole seedling root samples were immersed in 10 μg/mL propidium iodide (PI) solution for a period of 1 to 10 min and then observed under a confocal microscope (Zeiss LSM880).





Determination of ROS and malondialdehyde

The detection of superoxide radical (·O2-) content was based on the method proposed by (Elstner and Heupel, 1976) with slight modifications. The 0.2 g of seedlings were homogenized in 1 mL of 50 mM phosphate buffer (pH=7.8) and then centrifuged at 12000 rpm at 4°C for 10 min. Then, 0.6 mL of the supernatant was mixed with 0.1 mL of 10 mM hydroxylamine hydrochloride and 0.5 mL of 65 mM phosphate buffer (pH=7.8) and then left to rest at 25°C for 1 h. After centrifugation at 12000 g at 4°C for 10 min, 1 mL of 17 mM p-aminobenzenesulfonic acid and 1 mL of 7 mM α-naphthylamine were added and allowed to stand for 20 min at 25°C. The absorbance was then measured at 530 nm.

The rate of hydroxyl radical (·OH) production was measured by oxidizing bromopyrogallol red (BPR) (Wang et al., 2018a). The 2 g of 7-day-old seedlings were homogenized in 1.5 mL of deionized water, which was then centrifuged at 5000 g at 4°C for 10 min. Subsequently, 1 mL of the supernatant was added with 0.3 mL of 1% (v/v) H2O2, 0.3 mL of 1 mM BPR solution and 0.2 mM FeSO4 solution. The absorbance was detected at 550 nm wavelength.

H2O2 content was determined by Patterson’s method (Patterson et al., 1984). The 0.2 g of 7-day-old seedlings were homogenized in 5 mL of pre-cooled acetone and centrifuged at 10,000 g at 4°C for 15 min. Subsequently, 0.2 mL of concentrated ammonia and 0.1 mL of 20% TiCl4 were added to 1 mL of the supernatant, mixed gently and reacted at 25°C for 5 min before centrifuging at 8000 g at 4°C for 10 min. The precipitate was then rinsed repeatedly with pre-cooled acetone and then 1 mL of 1 M H2SO4 was added to dissolve it, after which the absorbance was assayed at 410 nm.

Malondialdehyde (MDA) content was determined as described in a previous study (Qi et al., 2015). The 0.2 g seedlings were homogenized in 5 mL of 10% (w/v) trichloroacetic acid and centrifuged at 5000 g for 10 min at 4°C. Subsequently, 2 mL of the supernatant was blended with 2 mL of 0.6% thiobarbituric acid (TBA) [dissolved in 10% trichloroacetic acid (TCA)]. This homogenate was then incubated at 100°C for 30 min and centrifuged at 5000 g for 10 min. The supernatant was used to measure the absorbance value with a spectrophotometer at 450, 532 and 600 nm.





Determination of antioxidant systems

About 0.2 g 7-day-old seedlings were homogenized in 2 mL of 50 mM phosphate buffer containing 4% polyvinylpyrrolidone (PVP) and 5 mM dithiothreitol (DTT) and centrifuged at 12,000 g for 15 min at 4°C. The supernatant enzyme extraction solution (EES) was used for the determination of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity.

The SOD activity was determined by monitoring the inhibition of the photochemical reduction of nitroblue tetrazolium (Giannopolitis and Ries, 1977). Each 3 mL reaction mixture was made up of 50 mM phosphate buffer (pH=7.8), 0.1 mM EDTA, 130 mM methionine, 0.75 mM NBT, 0.02 mM riboflavin, and 0.1 mL EES. The reaction mixture was illuminated for 15 min at a light intensity of 5000 lx. The mixture with no light application was used as a control. The absorbance was recorded at 560 nm. The quantity of enzyme required to reduce the NBT by 50% was used to calculate the SOD activity, which was measured in units.

The POD activity was measured using guaiacol (Zhang and Kirkham, 1994). The 0.2 mL of guaiacol solution and 0.2 mL of EES were added to 2.5 mL of phosphate buffer (pH=7, 50 mM), and then 0.1 mL of H2O2 was further added to detect the change in absorbance at 470 nm within 3 min.

To gauge CAT activity, the approach of Cakmak et al. (1992) was employed. This involved in the blending of 0.1 mL of 50 mM phosphate buffer (pH=7.0) and 2.9 mL of 20 mM H2O2 with 0.1 mL of EES. The absorbance value of the reaction mixture was determined at 240 nm for a period of 3 min.

Ascorbic acid (AsA) concentration were measured according to the method of Chen et al. (2015). 0.2 g of 7-day-old seedlings were homogenized by adding 2 mL of 0.2 M HCl at 4°C, followed by centrifugation at 5000 g at 4°C for 15 min. Subsequently, 0.5 mL of supernatant was blended with 0.4 mL of 0.2 M NaOH and 50 μL of 0.2 M NaH2PO4, and then the absorbance was measured at 265 nm.





RNA extraction, transcriptome sequencing and bioinformatics analysis

Seedlings from each group (Col, 50 Gy, and 200 Gy) were cultured for 7 days and used for transcriptome sequencing. The mRNA was extracted with TRIZOL and sequenced using the Illumina Hiseq 4000 platform. The raw reads were filtered for low-quality data, contamination, and high N content. HISAT (Kim et al., 2015) was used to map the clean reads to the reference genome (Lamesch et al., 2012). GATK (McKenna et al., 2010) was then used to detect single nucleotide polymorphism (SNP) and insertion/deletion (INDEL). The transcript with protein coding potential was added to the reference gene sequence to form a complete reference sequence. Bowtie2 (Langmead and Salzberg, 2012) was used to map the clean reads to the reference sequence. RSEM (Li and Dewey, 2011) was used to calculate the expression levels of genes and transcripts. NOIseq algorithm (Tarazona et al., 2015) was used to detect DEGs. TBtools (Chen et al., 2020) was used to visualize the gene expression levels. Gene Ontology (GO) enrichment analysis was performed using TopGO, where the list of genes and number of genes in each term were calculated using the GO term annotated DEGs. The P-value was calculated by hypergeometric distribution (P- value < 0.05 indicating significance of enrichment) to identify the GO terms that were significantly enriched by the DEGs compared to the whole genomic background, thereby determining the main biological functions of DEGs.





Gene expression analysis using quantitative real time PCR

Total mRNA prepared for RNA-seq was also subjected to quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Reverse Transcriptase M-MLV (Takara, Japan) was used to generate cDNA for qRT-PCR analysis. SYBR® Premix Ex Taq™ (Takara, Japan) was employed on a Mastercycler® ep realplex Real-time PCR System (Eppendorf, German) to assess expression levels. The 2-ΔΔCt method was used to calculate the fold changes in expression. Tubulin beta-1 chain (AT1G75780) was used as the internal control, and the primers used were listed in Supplementary Table S3. The experiments were conducted three times. RNA-seq data was uploaded in Genome Sequence Archive (GSA, https://ngdc.cncb.ac.cn/gsa/), accession number: CRA013460.






Results and discussion




Monte Carlo simulation of ion beam implantation

Irradiation damage and depth was simulated using the TRIM program in the SRIM software. The simulation results showed that the penetration depth of irradiation was 24.44 mm, which was significantly larger than the depth of the dish (10 mm) under irradiation. In addition, the energy deposition and the level of damage increased slightly with the increase of target depth (Figures 1A–D).

[image: Panel A shows a simulation of ion paths over a 12 millimeter target depth. Panel B illustrates collision events with vacancy production, showing higher numbers near the target's end. Panel C presents ionization energy loss for ions and recoils, increasing towards the target's end. Panel D shows the phonon energy loss for ions and recoils, also rising towards the target's end.]
Figure 1 | Simulation results of the TRIM program. In (A–D), the target will be divided into three layers, the lid, the bottom and the middle layer of seeds (as shown in gray pattern). (A) represents the trajectory of ions through the target. (B) demonstrates the vacancies in the target caused by the incident ions. (C, D) show the ionization energy loss and phonon energy loss of the injected ion.

The charged particles could decelerate and transfer energy to the medium as they enter it, resulting in a sharp energy release at the end of range, which was known as the Bragg peak of a heavy ion beam (Blakely et al., 1984). However, since our targets were not thick enough to reach the end of the range, the damage was uniform across the target. The interaction between charged particles and target matter can be divided into four types of collisions, namely inelastic collisions with electrons outside the nucleus (Ionization loss), elastic collisions with the nucleus, inelastic collisions with the nucleus (Radiation loss), and elastic collisions with electrons outside the nucleus. Under the condition of high-energy ions, the ionization loss far exceeded radiation loss, about 2000:1 (Lindhard et al., 1963). The inelastic collisions between charged particles and extra-nuclear electrons were the primary mode of energy loss, which was consistent with our simulation results. Analysis of the data showed that 99.96% of the damage was caused by the ionization of incident ions, while 0.03% was attributed to the ionization of the recoil atoms and the other remaining 0.01% was diffused by the recoil atoms in the form of phonons (Figure 1D).

In high-energy ion beam irradiation, a higher initial energy often corresponds to a lower linear energy transfer (LET) within a specific range, reducing damage to ion tracks (Berger et al., 2006; Kazama et al., 2008; Kazama et al., 2011). Despite the 12C6+ ion beam in our study having a non-fatal LET, the elevated irradiation dose still induced significant biological effects. Figure 1A stimulated the results of 9999 ions from a single channel, where most of the ions were found to pass through the target. The Monte Carlo algorithm was used to simulate the irradiation process, which revealed the occurrence of rare events such as the collision of 12C6+ ions with the nucleus of the target atoms, resulting in a sharp deceleration of the trajectory and substantial damage at the end of the range. As the irradiation dose correlated with the injected ion count, higher doses required more injected ions, elevating the probability of nuclear collisions. This might explain why high doses of high-energy injected ions could cause severe target damage despite the majority ions passing through.





Morphology observation of seeds after ion beam irradiation

The physical effects of particle radiation have been extensively researched. The extent of damage was dependent on the type of particle and plant. Studies in the condensed matter physics have shown the that irradiation can cause holes in materials (Miyoshi, 1996; Das and Rao, 2021). Wang and Wang (2013) investigated the effects of N+ irradiation on the wheat seeds and found that higher doses of irradiation caused etching and holes in the seed coat. Similarly, when Arabidopsis was irradiated with low-energy N+, abrasion-like damage was observed in the columella and radial primary wall of the seed coat cells, accompanied by a significant reduction in their thickness (Wang et al., 2004). Li et al. (2005) studied the effects of irradiation on Cedrus deodara pollen using SEM and atomic force microscopy. The result showed that the pollen was more sensitive to irradiation than the seed. Even a very low dose irradiation could cause significant damage to the pollen’s structure.

However, there was no visible damage observed in our study (Figure 2). Upon irradiation, Arabidopsis seeds merely exhibited wrinkling of the seed coat cells, which worsened with the increase of irradiation dose. Even at 200 Gy, magnified inspection failed to detect any holes in the seed coat, making it difficult to distinguish irradiated seeds from non-irradiated seeds (Figures 2D–I). This was consistent with the study of Iwai et al. (1999) by using 14N+ to irradiate leaf disks of Nicotiana plumbaginifolia. Our Monte Carlo simulations revealed that the depth of injection was far greater than the thickness of the target, yet no visible damage was detected on the seed coats. These results demonstrated that the biological effects of ion beam irradiation on Arabidopsis seeds were mainly induced by ‘ionization loss’ rather than the high energy release events at Bragg Peak.

[image: Microscopic images displaying the texture of three seeds at different magnifications. Images A, D, and G show whole seeds with patterned surfaces. Images B, E, and H focus on the surface pattern, revealing intricate, hexagonal structures. Images C, F, and I show close-ups of the surface detailing finer grooves and textures. Each row represents a single seed at increasing magnifications from left to right.]
Figure 2 | SEM observations of Arabidopsis seeds irradiated by 12C6+ ion beam. (A–C) show the results of Col seeds without irradiation observed at 200x, 600x and 6000x, respectively, and similarly, (D–F) and (G–I) show the results of the observations at 50 Gy and 200 Gy. (B, E) and (H) are the amplification of the insets in (A, D) and (G, C, F, I) are the amplification of the insets in (B, E, H) respectively.





FTIR investigation

FTIR spectroscopy was employed to analyze the biomolecules in Arabidopsis seeds (Figure 3). After filtering out the data related to N-H and O-H stretching of 4000-3770 cm-1, environmental CO2 of 2800-1800 cm-1, and high noise ratio data below 800 cm-1 (Duygu et al., 2009; Kelly et al., 2011), a total of 12 characteristic peaks were identified. These peaks were located at 3313, 3008, 2927, 2858, 1745, 1655, 1537, 1452, 1240, 1157, 1103, and 1058 cm-1, respectively. These peaks mainly correspond to macromolecules with amide bonds in protein and phosphate bonds in nucleic acid (Byler and Susi, 1986; Movasaghi et al., 2008; Hu et al., 2017; Sharma et al., 2019).Previous studies have shown that the infrared absorption by biomolecules mainly occurred in the 3050-2800 cm-1 and 1800-900 cm-1, which was known as the CH stretch region and the biochemical fingerprint region (Huleihel et al., 2002). The CH stretch region mainly represented the stretching vibration of hydrocarbon bonds, which was highly correlated with lipid and hydrocarbon structures. The biochemical fingerprint region mainly reflected a variety of biomolecules, including lipid-related C=O (1600-1800 cm-1), protein secondary structure-related amide I (1603-1700 cm-1), amide II (1480-1560 cm-1), amide III (1180-1300 cm-1), amino acid-related COO- (around 1400 cm-1), nucleic acid-related PO2- (1040-1100, 1220, 1240 cm-1), sugar synthesis-related C-OH (1030 cm-1), and a characteristic peak for H2O2 near 3309 cm-1 (Van de Voort et al., 1994; Fabian et al., 1995; Chiriboga et al., 1998; Eckel et al., 2001; Shetty et al., 2006; Movasaghi et al., 2008; Baker et al., 2014).

[image: Graph showing transmittance as a function of wavenumber for three samples: Col (black), 50Gy (red), and 200Gy (blue). Peaks are marked at various wavenumbers, such as 3343, 2927, 1655, and 671 cm⁻¹.]
Figure 3 | FTIR detection of Arabidopsis seeds irradiated by 12C6+ ion beam. The detection wave number range was 500 - 4000 cm−1. The red line represents the transmittance of Arabidopsis seeds after 50 Gy irradiation, blue represents that after 200 Gy irradiation and black line represent the control.

As shown in Figure 3, there was no obvious distinction in peak positions among the different treatment groups. The reason may be that the irradiation injuries in this study were largely caused by the ionization loss (Figure 1), thereby reducing the occurrence of radiation loss. As a result, the probability of incident ions colliding with atoms in the target was minimal, and the likelihood of chemical bond damage yielding new matter was negligible.





Effect of irradiation on Arabidopsis seedlings growth and development

The wild-type Arabidopsis seeds were exposed to different doses of carbon ion beams irradiation to determine the biological response of irradiated seedlings. Leaf area almost doubled at 50 Gy compared to control, while it decreased by 18% at 200 Gy (Figure 4). Meanwhile, fresh and dry weight increased by 16% and 23%, respectively, with 50 Gy and decreased by 34% and 31% with 200 Gy irradiation compared to Col (Figures 4C, D). The comparison of root length and shoot length can also intuitively show the difference in the growth state of seedlings. It can be clearly seen from the figure that both root and shoot length are significantly increased in 50 Gy compared with the control, while the development of 200 Gy is limited (Figures 4A, E, F). The results indicate that 50 Gy 12C6+ irradiation could promote the growth of Arabidopsis thaliana at the seedling stage. Conversely, 200 Gy 12C6+ irradiation was observed to inhibit the growth of Arabidopsis seedlings.

[image: Composite image showing the effects of different radiation doses on plant seedlings and root cells. (A) Shows seedlings exposed to control (Col), 50 Gray (Gy), and 200 Gy, illustrating growth differences. (B), (C), and (D) present bar graphs comparing leaf area, fresh weight, and dry weight across treatments, with significant increases at 50 Gy. (E) and (F) display box plots of seven-day seedling shoot and root lengths, showing size variations. (G), (H), and (I) are microscopic images of root tips indicating cell numbers, measured as 22±3, 25±3, and 15±5 respectively, with a scale bar of 50 micrometers.]
Figure 4 | Observation of Arabidopsis seedlings from irradiated seeds. (A) Photographs of the three groups of 7-day-old seedlings; (B) Leaf area of the seedlings, 10 cotyledons were randomly selected; The fresh weight (C) and dry weight (D) of Arabidopsis seedlings were weighed, Data are means ± SE (n=3); (E, F) The shoot and root length of 7-day-old seedlings, Data are means ± SE (n=30); Asterisks indicate significant differences (* for P < 0.05, ** for P < 0.01); (G–I) Confocal microscopic observation of root tip.

The microscopic observation of the root tips of Arabidopsis seedlings revealed that the number of cells in the meristematic zone of the root tip was slightly increased after 50 Gy irradiation treatment, indicating that the low-dose irradiation stimulated the division of stem cells and facilitated the production of differentiated cells, thus promoting root elongation (Figures 4G, H). In contrast, the 200 Gy irradiation caused much more serious damage to the growth and development of Arabidopsis (Figure 4I). Moreover, the root tips exhibited an irregular curved shape and a reduced differentiation zone.





Redox regulation of Arabidopsis response to ion beam irradiation

The ionizing radiation can induce direct and indirect biological effects on the living organisms. The direct effects involve in the absorption of energy by biological molecules, causing damage to macromolecules. Indirect effects are resulted by the radiolysis of water, which produces various of free radicals or ROS. The growth promotion phenomenon caused by low-dose ion beam irradiation has not been fully explained, although some studies suggest that it may be related to the small amount of ROS generated by irradiation (Shi et al., 2011). In plants, the ·O2- is converted to H2O2 under the catalysis of SOD. H2O2 is then degraded by CAT, POD, AsA and other substances. Although H2O2 is an essential signaling molecule in plants, excessive production of ·O2- can lead to the formation of the highly destructive ·OH. The ·OH is the most damaging, as it diffuses quickly and reacts with intracellular biomolecules at a rapid rate, leading to the rupture of their structure, which is one of the main causes of radiation-induced DNA strand breaks.

It has been widely established that ROS are powerful oxidizers and plays major roles in plant signaling, thereby regulating plant growth and development (Chen et al., 2015; Tan et al., 2023). Upon exposure to 50 Gy irradiation, ROS levels, particularly ·O2-, were significantly elevated compared to the control (Figure 5B). The level of MDA (Figure 5D), an indicator of membrane lipid peroxidation, was reduced, indicating that the plants were not significantly damaged and even benefited from the irradiation. In contrast, when exposed to 200 Gy, H2O2 levels were significantly higher than those of the 50 Gy dose and the control, while ·O2- levels were considerably lower than the 50 Gy dose, but still higher than the control (Figure 5). Furthermore, MDA levels were significantly higher than the control, demonstrating that the plants were severely damaged. Overall, the antioxidant system displayed unexpected patterns of response to both radiation doses. At 50 Gy, the activities of POD, CAT, and content of AsA were all increased compared to the control (Figures 5F, H), while the activity of SOD decreased (Figure 5E). At 200 Gy, all members of the antioxidant system experienced a decrease in activity or content compared to the control.

[image: Bar graphs labeled A to H compare the effects of different treatments (Col, 50Gy, 200Gy) on various biochemical parameters in plants. Each graph represents a different parameter: A) H₂O₂ content, B) O₂⁻ content, C) •OH generating rate, D) MDA content, E) SOD activity, F) POD activity, G) CAT activity, H) AsA content. Data shows varying responses with significant differences marked by asterisks.]
Figure 5 | ROS and antioxidant system assays in 7-day-old seedlings. (A) H2O2 content; (B) ·O2- content; (C) ·OH production rate; (D) MDA content; (E) SOD activity; (F) POD activity; (G) CAT activity; (H) AsA content. (* for P < 0.05, ** for P < 0.01).

The direct effects of irradiation on cells were of very short duration (<10-12s), and radiolysis was no longer possible during seedling development, so all subsequent ·OH production was generated by the reaction of H2O2 with ·O2-. This study found that the rate of ·OH generation was similar at both doses, but the content of H2O2 and ·O2- content were different. ·O2- had more time to be catalyzed by SOD to generate H2O2 in the cell due to its slower diffusion rate and reaction with biomolecules (Riley, 1994; Andrés et al., 2023). Therefore, although the level of ROS at 200 Gy was the same as that at 50 Gy, the enzyme activity and AsA content were significantly reduced, the MDA content was significantly increased, suggesting that high-dose irradiation caused disruption of the plant antioxidant system, resulting in the inability to repair excessive oxidative damage and abnormal plant growth and development. Conversely, at 50 Gy, the antioxidant system of the seedlings was functioning actively, which promotes plant growth and development.





A general overview of transcriptome

The raw data was filtered to obtain an average of 21.157 million clean reads per sample with a Q30 score of 96.5%. These data were compared to the TAIR reference genome and more than 95% of the reads were mapped successfully (Supplementary Table S2). The reproducibility of the data obtained from the same group was high (Pearson correlation >92%) (Figure 6A). To validate the RNA-seq, 16 DEGs were randomly selected for qRT-PCR analysis. The qRT-PCR results were consistent with the log2 fold change (FC) trend of the RNA-seq data (Figures 6B, C), indicating that the RNA-seq data was reliable for further analysis.

[image: Panel A shows a heatmap displaying correlation coefficients for different conditions, with a gradient from blue (low) to red (high). Panels B and C depict bar graphs of log2 fold changes comparing qPCR and RNA-seq data at 50 Gy and 200 Gy, respectively. Panels D and E are circular dendrograms illustrating the log fold changes with color gradients from blue (low) to red (high).]
Figure 6 | RNA-seq of Arabidopsis seedlings from irradiated seeds. (A) Heatmap of correlation between samples of RNA-seq; (B, C) qRT-PCR verification of part of the RNA-seq results, calculated by 2 -ΔΔCt; (D, E) Heatmap of DEGs for 50 Gy and 200 Gy irradiation.

To further explore the biological effects of various doses of ion beams on seedlings, we delved into the sequencing data. The RNAseq results revealed that 228 DEGs were identified in the 50 Gy which 137 were up-regulated and 91 were down-regulated (Figure 6D, Supplementary Figure S2A), Meanwhile, 605 DEGs were identified in the 200 Gy, with 395 up-regulated and 210 downregulated (Figure 6E, Supplementary Figure S2B). Moreover, we compared the two sets of sequencing data and found that 58 genes were only altered in the 50 Gy, 435 genes only in the 200 Gy, with 170 DEGs shared by the two groups (Supplementary Figure S2C). Analysis of the DEGs revealed that those specifically expressed in 50 Gy were mainly associated with ‘cold acclimation’, ‘response to jasmonic acid’, ‘response to oxidative stress’, ‘cellular response to phosphate starvation’ and ‘cellular response to hypoxia’. DEGs that were exclusive to 200 Gy were mainly concentrated in ‘cellular response to hypoxia’, ‘response to oxidative stress’, ‘cellular response to salicylic acid’, ‘response to organic cyclic compound’ and ‘response to oomycetes’. It was remarkable that DEGs in both 50 Gy and 200 Gy were localized to ‘response to oxidative stress’, ‘cellular response to hypoxia’, ‘plant-type cell wall’, ‘xyloglucan: xyloglucosyl transferase activity’ and ‘response to far red light’ (Figure 7). Although the different doses of irradiation induced the production of DEGs with varying enrichment results, it can be concluded that Arabidopsis responds to C-ion beam irradiation mainly through oxidative stress and cell wall dynamic homeostasis-related pathways.

[image: Network diagrams labeled A, B, and C. Each diagram depicts nodes representing gene expressions. Nodes are color-coded by different response categories: hypoxia, oxidative stress, jasmonic acid, phosphate starvation, and more. Node sizes and colors indicate fold changes and expression size, with a scale from blue (low) to red (high). Various biological terms and gene codes are interlinked, illustrating complex interactions and responses.]
Figure 7 | GO enrichment of DEGs. (A) for DEGs only in 50 Gy, (B) for DEGs only in 200 Gy, and (C) for DEGs both in 50 Gy and 200 Gy. Different colored lines indicate enrichment in different term, the color of the prototype symbol indicates the fold change of differences, and the size indicates the ratio of enrichment.

In this study, a total of 170 DEGs were identified between the treatment groups (50 Gy and 200 Gy irradiation) and the control. Among them, more than 25 genes were related to oxidative stress, including RLK7 (AT1G09970), OXS3 (AT5G56550) and ORE1 (AT5G39610). These genes have previously been shown to significantly affect plant oxidizing resistance (Woo et al., 2004; Blanvillain et al., 2009; Pitorre et al., 2010). ROS levels in seedlings were examined in this study and we observed that they were increased regardless of irradiation dose, which may explain the presence of a large number of oxidative stress-related DEGs. In brief, the differential expression of oxidative stress-related genes under different doses of irradiation suggests that they collectively respond to radiation and synergistically resist irradiation damage.

The 50 Gy irradiation treatment produced only 228 DEGs compared with the control, which is roughly 1/3 of 200 Gy produced. There were 58 and 435 DEGs that appeared uniquely in the 50 and 200 Gy irradiation treatments. GO enrichment analysis of the two groups of DEGs mentioned above reveal that in addition to ‘response to oxidative stress’ and ‘ cellular response to hypoxia’, which is conserved in both of the DEGs, genes respond to jasmonic acid signaling were also differently expressed in the 50 Gy DEGs, which may be related with the physiological phenotype of Arabidopsis seedlings after low-dose irradiation.

In addition, among the unique differentially expressed genes (DEGs) associated with 200 Gy irradiation, while there are instances of ‘response to oxidative stress’ and ‘cellular response to hypoxia,’ a substantial number of genes are also enriched in the category of ‘response to salicylic acid.’ This observation may suggest that the distinct phenotypes observed at 50 Gy and 200 Gy are a result of radiation-induced variations in ROS and hormone response.





Transcriptional investigation of the growth promotion induced by 50 Gy 12C6+ ion beam irradiation

The seeds exposed to 50 Gy irradiation had increased the development rate at the seedling stage. Through GO enrichment analysis, we found that the DEGs at 50 Gy were mainly associated with response to oxidative stress, cold acclimation, cellular response to hypoxia and response to jasmonic acid (Figure 7A).

The ROS-related genes that were upregulated under the 50 Gy irradiation treatment, such as peroxidase (AT5G39580, AT3G28200), glutathione s-transferase (AT1G17170), and ascorbate oxidase (AT5G21105), were identified in this study. ROS have been found to play a crucial role in plants and may regulate plant growth responses to radiation (Huang et al., 2019; Tan et al., 2023). For instance, Overmyer et al. (2005) found that the expression of AT5G39580 was reduced in ozone-exposed environments. Pavet et al. (2005) demonstrated that the expression of AT3G28200 was increased during redox response, suggesting it may be involved in plant resistance to oxidase stress. Additionally, Rahantaniaina et al. (2013) reported that glutathione S-transferase (AT1G17170) converts GSH to GSSG by exogenous H2O2 application. Yamamoto et al. (2005) also found that the ascorbic acid oxidase (AT5G21105) mutant accumulated more AsA than the wild type under salt stress, confirming its importance in salt stress-induced oxidative stress.

Previous studies have demonstrated that chalcone synthase TT4 (AT5G13930) is highly expressed after UV-B irradiation, resulting in a significant production of flavonoids and thus increased resistance (Nakabayashi et al., 2014; Zhou et al., 2023). Song et al. (2008) found that overexpression of ATG25400 resulted in increased resistance to oxidative stress. Our study also identified changes in the expression of several WRKY family members, with WRKY45 being uniquely upregulated at both irradiation doses. Chavan et al. (2022) applied exogenous dehydroascorbate (DHA) to the foliar surface of rice, which induced a substantial increase in the ROS content of the whole rice plant as well as a significant increase in WRKY45 expression, suggesting that WRKY45 is also involved in ROS signaling regulation. Our RNA-seq and ROS analysis results suggests that seedlings may use the ROS produced by irradiation as signaling molecules to accelerate various developmental and metabolic process, thereby improving the development rate of plants at the seedling stage.

Jasmonic acid (JA) is involved in a wide range of development activities and plays a major role in plant stress tolerance (Ghorbel et al., 2021; Li et al., 2021). RNA-seq analysis result indicated that the expression of certain JA related WRKY family members (WRKY33 and WRKY45) and genes such as AT5G07010 and AT5G26260 was upregulated at the 50 Gy dose, which may increase the stress tolerance of seedlings. Noteworthily, the findings were in accordance with Ueda et al. (2015) research, who found that knockdown of WRKY45 in rice significantly affected the expression of downstream JA- and SA-related genes, thereby affecting the plant resistance to oxidative environments.

Our previous research determined that 50 Gy irradiation increased seedlings tolerance to cold environment (Wang et al., 2018b). GO enrichment analysis in this study partially confirmed this finding, suggesting that multiple genes may be involved in the cold acclimation, which could be beneficial for further research on improving cold tolerance in plants.

Moreover, genes related to xyloglucan were also enriched. Members of the Xylan or XTH family are known to be involved in cell wall expansion and reorganization (Rose et al., 2002; Stratilová et al., 2020; De Caroli et al., 2021). For instance, overexpression of XTH24 (AT4G30270), XTH18 (AT4G30280) or XTH19 (AT4G30290) has been shown to cause hypocotyl or root elongation in Arabidopsis (Miedes et al., 2013; Lee et al., 2018; Dhar et al., 2022), which is similar to what we observed in early seedling development (Figure 4). Therefore, root elongation induced by 50 Gy irradiation may be associated with the up-regulation of some XTH family genes.





Transcriptional investigation of the growth inhibition by 200 Gy 12C6+ ion beam irradiation

GO enrichment analysis of DEGs after 200 Gy 12C6+ ion beam irradiation revealed that the expression of genes related to oxidative stress were altered, which is in accordance with the ROS determination as described above (Figure 4, 7B). One study was conducted to investigate the effects of ion beam-induced ROS production on organisms, founding that high-dose ion beam irradiation leads to the burst of ROS (Matsumoto et al., 2021). In our study, the expression of eight peroxidase family members was up-regulated under 200 Gy irradiation, but the activity of POD and CAT decreased, which may partially account for the increase in H2O2 and ·O2- in Arabidopsis seedlings. In addition, six genes related to glutathione metabolism were also up-regulated, which was consistent with the decrease in AsA content and SOD activity. Therefore, it is difficult for the antioxidant system of the plant to maintain its balance in a high dose generated ROS environment, resulting in the plant’s inability to self-regulate oxidative stress. Taken together, excessive irradiation dose induced the accumulation of more ROS in Arabidopsis seedlings, which led to the disruption of the antioxidant system and the surge of lipid peroxidation in the cell membrane, and eventually resulted in seedling developmental disorders.

Salicylic acid has been extensively studied in plants against abiotic stresses and is particularly important in oxidative stress defense processes (Radwan, 2012; Herrera-Vásquez et al., 2015). Our research revealed that more than 20 DEGs were associated with SA response, suggesting that the SA metabolic pathway plays a significant role in defense against high-dose C-ion beam irradiation. Additionally, the GO enrichment results for other stresses, such as response to organic cyclic compound and response to oomycetes, were also observed in the 200 Gy heavy ion beam irradiation, suggesting that the defense responses induced by 200 Gy of heavy ion beam irradiation is somewhat similar to those induced by organic cyclic compound and oomycetes.

The expression of XTH family members (XTH15, XTH18, XTH19, XTH23, XTH24, XTH30) was increased under 200 Gy irradiation, which is similar to the pattern under 50 Gy irradiation. Considering the contrastive effects of 50 Gy and 200 Gy treatments on the growth of Arabidopsis, it is likely that the inhibition of Arabidopsis growth at 200 Gy may also be caused by changes in other genes or pathways besides the ROS pathway.

As noted in our text, DEGs in 200 Gy are mainly enriched for cell wall homeostasis as well as against oxidative stress (Figure 7). To explain that the growth of 200 Gy seedlings was inhibited but the number of up-regulated genes was more than that of down-regulated genes, we put the DEGs list on display (Supplementary Table S4). It can be seen that 6 genes belong to plant defensin (PDF) family, 7 genes belong to peroxidase, 6 genes belong to xyloglucan endotransglucosylase/hydrolase family (XTH), 4 genes belong to WRKY family of transcription factors, etc.

Previous research indicated that proteins of the PDF family inhibit root development (Allen et al., 2008), while members of the XTH family participate in the reorganization and stabilization processes of plant cell walls, thereby influencing root development (Miedes et al., 2013). Peroxidase is identified as a crucial component in the plant’s response to oxidative stress (Kim et al., 2012; Ling et al., 2013), and several members of the WRKY transcription factor family exhibit upregulated expression in response to ionizing radiation (Nagata et al., 2005; Goh et al., 2014). These pieces of evidence elucidate the correlation between our RNA-seq results and phenotypic observations.






Conclusion

Low-dose heavy ion beam irradiation induces ROS production in plants, thereby accelerating seedling growth, while high-dose irradiation leads to the accumulation of excess ROS and thereby severely inhibits plant growth. Monte Carlo simulation results indicated that higher doses of irradiation induced more complex damage patterns compared to the lower doses. Both doses have little effect on the structural organic components but activate a large number of genes in response to stress, forming a response system that is centered on oxidative stress signals and other stress response pathways. In addition, plant hormones such as SA and JA may work together to respond to radiation.
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Introduction

As a renewable forest resource, bamboo plays a role in sustainable forest development. However, traditional cutting systems, selection cutting (SeC) and clear-cutting (ClC), result in an unsustainable production of bamboo forests due to labor-consuming or bamboo degradation. Recently, a strip clear-cutting (StC) was theoretically proposed to promote the sustainability of bamboo production, while little is known about its application consequence.





Methods

Based on a 6-year experiment, we applied the strip clear-cutting system in a typical running bamboo (Phyllostachys glauca McClure) forest to assess its feasibility and sustainability. Using SeC and ClC as controls, we set three treatments with different strip widths (5 m, 10 m, and 20 m) for strip clear-cutting, simplified as StC-5, StC-10, and StC-20, respectively. Then, we investigated leaf physiological traits, bamboo size and productivity, population features, and economic benefits for all treatments.





Results

The stands managed by StC had high eco-physiological activities, such as net photosynthetic rate (Pn), photosynthetic nitrogen use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE), and thus grew well, achieved a large diameter at breast height (DBH), and were tall. The stand biomass of StC (8.78 t hm-2 year-1) was 1.19-fold and 1.49-fold greater than that of SeC and ClC, respectively, and StC-10 and StC-20 were significantly higher than SeC or ClC (p< 0.05). The income and profit increased with the increase in stand density and biomass, and StC-20 and StC-10 were significantly higher than SeC or ClC (p< 0.05). Using principal components analysis and subordinate function analysis, we constructed a composite index to indicate the sustainability of bamboo forests. For the sustainability assessment, StC-10 had the highest productive sustainability (0.59 ± 0.06) and the second highest economic sustainability (0.59 ± 0.11) in all cutting treatments. StC-10 had the maximum overall sustainability, with a value of 0.53 ± 0.02, which was significantly higher than that of ClC (p< 0.05).





Conclusion

The results verified that StC for Phyllostachys glauca forests is feasible and sustainable as its sustainability index outweighs those of traditional cutting systems (SeC and ClC), and 10 m is the optimum distance for the strip width of StC. Our findings provide a new cutting system for managing other running bamboo forests sustainably.





Keywords: bamboo forest, economic benefit, membership value, productivity trait, sustainability





Introduction

Forest sustainability is crucial to human well-being, and sustainable forest management plays a vital role in sustainable development (Singh et al., 2009; MacDicken, 2016; Viccaro and Caniani, 2019). Productive and economic sustainability are key assessment components of sustainable forest management (Hansmann et al., 2012; Holden et al., 2014; Brukas et al., 2015; Bartniczak and Raszkowski, 2018; Viccaro and Caniani, 2019). Productive sustainability requires forest management that does not weaken forest productivity (Bartniczak and Raszkowski, 2018; Viccaro and Caniani, 2019). Economic sustainability refers to maintaining economic income over time without compromising sustainability (Foy, 1990; Brukas et al., 2015). Generally, productive and economic sustainability emphasize different aspects of sustainability but are indispensable components of sustainable development (Holden et al., 2014; Brukas et al., 2015).

Although natural forest area decreases by approximately 6.5 million hectares every year (MacDicken, 2016; Viccaro and Caniani, 2019), the bamboo forest is known as an increasing forest, with a total area of more than 30 million hectares in China (Du et al., 2018; Kang et al., 2022). As clonal plants, bamboo species are fast-growing and have a short renewable cycle. Thus, bamboo is a good substitute for wood and plays a role in satisfying forestry production needs (Guo et al., 2013). However, traditional cutting systems (selection cutting and clear-cutting) for bamboo forests are either labor-consuming or degrade the bamboo, which limits the sustainable development of bamboo forests.

A cutting system is an important way to achieve high productivity and economic sustainability in bamboo forests. At present, the cutting systems for bamboo forests are selection cutting and clear-cutting (Wang et al., 2016; Mao et al., 2017; Liu and Hu, 2018). Selection cutting can achieve high productive sustainability by selectively cutting down a certain proportion of mature plants every cutting season to keep bamboo forests in a rational age structure (Liu and Hu, 2018). However, the productivity advantage comes at the expense of high labor costs and low economic profit (Wang et al., 2016; Mao et al., 2017; Liu and Hu, 2018). By contrast, clear-cutting saves cutting costs by cutting down all plants in a cutting area every cutting season. In addition, clear-cutting is liable to result in a degradation of bamboo forests as no existing mature plants supply nutrients to newborn bamboo to support its growth (Liu and Hu, 2018). Therefore, the low cost of clear-cutting is at the expense of productive sustainability. As selection cutting and clear-cutting have evident drawbacks in economic sustainability or productive sustainability, it is urgent to develop a sustainable cutting system for managing bamboo forests more sustainably.

Strip clear-cutting refers to applying clear-cutting in forest strips along the direction of the slope and retaining uncut patches in cut areas (Ocaña-Vidal, 1992; Picchio et al., 2018). Strip clear-cutting is a sustainable cutting method for timber extraction (Rondon et al., 2010) but it is seldom applied to bamboo forests. Considering the source-sink characteristic of clonal integration (Marshall, 1996; Kleinhenz and Midmore, 2001; Shi et al., 2021), the strip clear-cutting system could be a potential solution for the sustainable management of bamboo forests because the newborn bamboo in clear-cut strips could obtain nutrients from the uncut strips to support their regeneration and then avoid degradation (Wang et al., 2016). After a partial clear-cutting experiment in stands of a typical running bamboo (Phyllostachys glauca) was carried out, the maximum distance of clonal integration was 5 m because the new shoots in the clear-cutting area were significantly smaller than those in the uncut area once they were more than 5 m away from the uncut side (Wang et al., 2016). Thus, a strip clear-cutting system protocol was proposed for running bamboo forests (see Figure 1A), i.e., dividing a bamboo stand into equally wide strips along a slope, clear-cutting every other strip, and then clear-cutting the “uncut” strips over a certain cycle (e.g. every 2 years), and so on (Wang et al., 2016). This protocol combines the merits of clear-cutting (saving labor and cost) and selection cutting (sustainable production). Although the strip clear-cutting system is arguably feasible and sustainable in theory, we still do not know its consequences in practice. Furthermore, an optimum strip width for this cutting system needs to be determined.

[image: Diagram illustrating bamboo cutting methods. Panel A shows strip clear-cutting with alternating red and green circles indicating cut and uncut bamboo, using strip widths of 5, 10, and 20 meters, with a four-year cutting cycle and a two-year interval. Panel B depicts clear-cutting with all circles in red, representing cut bamboo. Panel C shows selection cutting with a mix of red and green circles, indicating both cut and uncut bamboo.]
Figure 1 | The design of cutting systems in Phyllostachys glauca bamboo forests. (A) The strip clear-cutting system with different strip widths (5 m, 10 m, and 20 m); at least nine strips were established for each width. (B) The clear-cutting system. (C) The selection cutting system.

Phyllostachys glauca McClure, a woody and evergreen bamboo, is a typical running bamboo native to China. The bamboo forms pure forests and covers a large area in Ruichang City. In this study, using traditional cutting systems (selection cutting and clear-cutting) as controls and setting strip clear-cutting with different widths, we aimed to verify the productive and economic sustainability of bamboo forest managed by a strip clear-cutting system and determine a suitable strip width through a long-term trial with Phyllostachys glauca forest in Ruichang City. Based on the preliminary results, we hypothesized that: (1) strip clear-cutting has advantages in productive and economic sustainability over selection cutting and clear-cutting because it incorporates the merits of the two traditional cutting systems, and (2) as the maximum distance of nutrient supply observed in the field cutting experiment was 5 m and a distance less than 5 m is not convenient for cutting (most culms were approximately 5 m long), a strip width of 5 m is the best option for the strip clear-cutting system in practice.





Materials and methods




Species and site description

Phyllostachys glauca is widely distributed from the Yellow River Valley to the Yangtze River Valley. It is 5-12 m in height and 20-50 mm in diameter, and has excellent economic value, e.g., shoots for food and culms for building and ornaments (Wang et al., 2016; Shi et al., 2021). As an economic species, Phyllostachys glauca brings considerable benefits to local people.

The study site was located in Ruichang City (29°23’06″ N-29°51’11″ N, 115°06’31″ E-115°43’45″ E), Jiangxi province, China, where the largest area of natural Phyllostachys glauca forest in China grows, with a total area of 9 938 hm2 (Wang et al., 2016; Shi et al., 2021; Wu et al., 2022). In the local area, Phyllostachys glauca usually forms pure stands with few understory species. Ruichang City has a subtropical humid monsoon climate that receives 1394 mm precipitation annually, with an average temperature of 16.6°C.





Traditional cutting systems for Phyllostachys glauca

The bamboo forests were predominantly managed by the clear-cutting system with a cutting cycle of 3 years, and the bamboo population could not fully recover under this short cycle of clear-cutting. Consequently, this long-term cutting leads to a progressive decline in bamboo stands and even flowering. Another cutting system, selection cutting with a cutting cycle of 3 or 4 years, was only applied to a small proportion of bamboo forests because of labor consumption. Owing to high stand density, approximately 90% of individuals were cut for operating convenience. The two cutting systems barely maintained sustainable forest production.





Experiment design




Strip clear-cutting system design

We used the protocol proposed by Wang et al. (2016), which was described as aforementioned, to design the strip clear-cutting system. Strip width and cutting cycle, two key parameters of the cutting system, were designed as follows. Three strip widths were set to detect a suitable distance for bamboo growth and recovery, which were 5 m, 10 m, and 20 m. As the selection cutting system with a cutting cycle of 3 or 4 years can maintain the bamboo forest healthily in the local area, we designed a 4-year cutting cycle for the strip clear-cutting system in this study. In practice, a bamboo stand was divided into strips of equal width (5 m, 10 m, or 20 m) along the hill slope and continuously numbered from number one. Then, all even strips were clear-cut first, and the uncut strips (odd strips) would be clear-cut 2 years later. Accordingly, the even and odd strips were alternately clear-cut every 2 years (Figure 1A).





Cutting experiment design

In December 2016, bamboo forests located at the same elevation, slope aspect, degree and position were selected to develop the cutting experiments. Ten plots of 10 m × 10 m were surveyed for each kind of bamboo stand, and the results showed that they were similar in the diameter at breast height (DBH), plant height, and stand density (Table 1). Taking selection cutting and clear-cutting systems as controls, the strip clear-cutting system was designed as three treatments, which were strip clear-cutting with strip widths of 5 m (StC-5), 10 m (StC-10), and 20 m (StC-20) (Figure 1). The experiment design was a balanced incomplete block design due to terrain constraints. For the strip clear-cutting experiment, at least nine strips were set for each treatment, and the strip lengths ranged from 50 to 100 m. Four 5 m × 5 m plots in StC-5, six 5 m × 10 m plots in StC-10, and five 5 m × 10 m plots in StC-20 were established in the cut strips and uncut strips. Clear-cutting was alternatively carried out for the initial cut and uncut strips in December 2018 and 2020. The selection cutting (SeC) and clear-cutting (ClC) experiments were carried out in a stand at least 50 m wide and 100 m long. Five and four 5 m × 10 m plots in SeC and ClC were randomly selected, respectively. Selection cutting and clear-cutting systems were both carried out every 3 years.

Table 1 | The initial characteristics of bamboo forests before cutting.


[image: Table comparing bamboo stands with different cutting methods: strip clear-cutting, selection cutting, and clear-cutting. Columns show diameter at breast height (2.02 ± 0.12 cm, 2.05 ± 0.16 cm, 2.02 ± 0.11 cm), plant height (4.36 ± 0.24 m, 4.40 ± 0.31 m, 4.35 ± 0.22 m), and stand density (36819 ± 5003 hm², 38555 ± 6588 hm², 35361 ± 5582 hm²). Same letters indicate non-significant differences (p > 0.05).]





Methods




Plot survey

In December 2016, the DBH and height of each individual were measured in each plot before bamboo cutting. From 2017 to 2021, the DBH, plant height, and number of newborn bamboos in each plot were investigated every year.





Leaf physiological traits

The net photosynthetic rate (Pn) of different treatments was measured using an open gas exchange system with a red and blue light source (LI-6400; LiCor Inc., Lincoln, NE, USA), and the measurements were conducted from 9:00 h to 11:00 h on sunny days in August. Three mature sun leaves on healthy individual plants (five plants in each plot) were randomly selected and measured at a CO2 concentration of 400 μmol mol−1, photosynthetic photon flux density of 1500 mmol m−2 s−1, and flow rate of 500 mmol s-1. When the measurement parameters were stable, three values were recorded every 10 s for each leaf, and the average value of each leaf was used for further analysis.

To determine the specific leaf area (SLA), 50 mature leaves in each plot were collected, and their leaf areas were measured using a CI-203 Portable Laser Area Meter (CID Inc., Camas, WA, USA). Afterwards, the leaves were oven-dried at 60°C for 48 h and the dry mass was determined. Then dried leaf samples were ground into a fine powder for chemical analysis. Leaf phosphorous (P) and nitrogen (N) concentrations were determined using a discontinuous chemical analyzer (Cleverchem 200+, DeOem-Tech GmbH, Hamburg, Germany) after digestion with sulfuric acid (H2SO4).





Economical investigation

The most economical part of Phyllostachys glauca is the culms, which are widely used as the holder for vegetable cultivation, garden building, flagpoles, and so on. The sale price of this bamboo culm depends on the culm length. We investigated the local sale price of culms and the cutting cost from 2017 to 2021. As the bamboo forests grow naturally and the culms are sold in situ, the management cost of those bamboo forests is only the labor costs of cutting. On a hectare basis, the profit of bamboo forests was calculated as the income (the product of culm yield and sale price) subtracted from the cutting cost. Here, the extra cutting cost for strip clear-cutting set the boundary lines between strips at the first cutting operation.






Indicator calculation




Productivity indicators

Stand density was calculated as the total number of bamboos divided by plot area. Individual biomass was calculated using the quadratic model proposed by Zou et al. (2020), which used DBH and height as predictors to estimate biomass. Then, the stand biomass was the sum of the total individual biomass in a plot. Eventually, the annual stand density and annual stand biomass were calculated as stand density and biomass divided by the cutting cycle.

The calculations of the evenness and uniformity of bamboo forests followed the methods of Zheng and Hong (1998). Specifically, evenness was calculated as stand density divided by the standard deviation of subplot density, and uniformity was calculated as average DBH divided by the standard deviation of subplot average DBH. In addition, the recruitment rate was estimated as the ratio between the number of newborn bamboos and the number of pre-existing bamboos in a plot.

SLA (cm2 g-1) was calculated by dividing leaf area by leaf dry mass, and photosynthetic nitrogen use efficiency (PNUE) and photosynthetic phosphorus use efficiency (PPUE) were calculated by dividing Pn by leaf N and P concentrations, respectively.





Economic indicators

Bamboo wood production (BWP) refers to the biomass of bamboo culms. Based on our investigation, the sale price of bamboo culms was classified into seven classes according to their height (Table 2). The sale income was the sum of all the bamboo individuals in a plot with their specific heights and prices, as shown in Equation 1:

Table 2 | Averaged sale prices of Phyllostachys glauca culms in Ruichang City from 2017 to 2021.


[image: Table displaying average plant prices based on height. For heights 2.5 to 3 meters, the price is 0.209 yen per plant; 3 to 4 meters, 0.400 yen; 4 to 5 meters, 0.567 yen; 5 to 6 meters, 0.850 yen; 6 to 7 meters, 1.067 yen; 7 to 8 meters, 1.367 yen; over 8 meters, 1.850 yen.]
[image: Equation representing an index calculation: \( I = \frac{\sum_{i=1}^{x}(R_i \times n_i)}{A \times C} \).] 

where I is the income (¥ hm-2 year-1); [image: Mathematical notation showing the letter "R" with a subscript "i".]  and [image: Lowercase letter "n" with subscript "i" in italic font, often used to denote an indexed variable in mathematical expressions.]  are the sale price and the number of bamboos in a height grade in a plot, respectively; A is the plot area; and C is the cutting cycle, i.e., 6 years for selection cutting, clear-cutting, and strip clear-cutting. The number and height of culms in a plot were investigated during the cutting operation. Similar to the calculation of income, cutting costs were also calculated in the unit of ¥ hm-2 year-1, i.e., cutting costs divided by stand area and cutting cycle. The return on investment (ROI) represents the ratio of cost to income.





Sustainability calculation

Using principal components analysis (PCA) and subordinate function analysis (SFA), we constructed a comprehensive index based on multiple indicators to indicate the sustainability of bamboo forests, which was calculated using Equation 2 (Fu et al., 2004; Mrosek et al., 2006; Shi et al., 2009; Balana et al., 2010):

[image: Equation showing a summation formula: SI equals the sum from i equals one to n of (W sub i multiplied by S sub i).] 

where SI is the sustainability index, [image: Subscript notation of the letter "W" with a lowercase "i".]  is the weight vector of the i sustainability indicator, and [image: Lowercase letter "s" with subscript "i" in a serif font, commonly used in mathematical or scientific notation.]  is the membership value of the i sustainability indicator.

The weight of sustainability indicators ([image: Mathematical notation showing a capital letter "W" with a subscript lowercase "i".] ) was determined by PCA. Based on the cumulative percentage of principal sustainability components and the component capacity score coefficient values, [image: Capital letter "W" with subscript lowercase letter "i".]  was calculated using Equation 3:

[image: Equation showing \( W_i = C_i / \sum_{i=1}^{n} C_i \) labeled as equation (3).] 

where [image: A mathematical notation displaying the letter "C" with a subscript "i".]  is the component capacity score coefficient of the i sustainability indicator. The membership value ([image: Subscript notation with the letter "s" and subscript "i".] ) was calculated as either ascending or descending functions (Equations 4, 5). An ascending function was used for a sustainability indicator with a positive component capacity score, and vice versa.

[image: Equation showing the formula \( S_{i} = \frac{(x_{ij} - x_{imin})}{(x_{imax} - x_{imin})} \) with the equation number labeled as 4.] 

[image: Expression representing a formula: \( S_i = \frac{(x_{\text{imax}} - x_{ij})}{(x_{\text{imax}} - x_{\text{imin}})} \). It is labeled as equation (5).] 

where [image: Mathematical notation showing the variable x with subscripts i and j.]  is the j-th observation value of the i-th sustainability indicator, and [image: A mathematical expression showing "x max" with a tilde symbol above the "x".]  and [image: Mathematical expression representing the minimum value of x with a tilde below the variable x and the subscript "min".]  are the maximum and minimum of the i-th sustainability indicator, respectively.

We defined three sustainability indexes, i.e., the productive sustainability index (SIpr), economic sustainability index (SIec), and overall sustainability index (SIo). SIpr was composed of 13 indicators: DBH, plant height, stand density, stand biomass, recruitment rate, evenness, uniformity, Pn, PPUE, PNUE, leaf phosphorus concentration (LP), leaf nitrogen concentration (LN), and SLA. SIec was composed of five indicators: bamboo wood production, income, cost, return on investment (ROI), and profit. Then, SIo was calculated using all the above 18 indicators.






Statistics analysis

One-way ANOVA with Duncan’s multiple range test was used to examine the significance of the effect of the cutting on leaf physiological traits (Pn, PPUE, PNUE, LP, LN, and SLA), bamboo size and productivity (DBH, plant height, stand density, and stand biomass), population features (recruitment rate, evenness, and uniformity), economic benefits (bamboo wood production, income, cost, ROI, and profit), and sustainability (SIpr, SIec, and SIo). Pearson correlation analysis was performed to detect the relationships between physio-productivity traits, bamboo size and productivity, population features, economic benefits, and sustainability. The weight vector of each indicator was determined by principal component analysis (PCA). Redundancy analysis (RDA) was used to explore the relationships between sustainability indexes and their predictors (productivity traits and economic features). RDA was performed using CANOCO 5.0 (Microcomputer Power Corporation, USA). PCA and other statistical analyses were performed by SPSS 17.0 (SPSS Inc., Chicago, IL, USA), and figures were graphed with Origin Pro 8.5 (Origin Lab Corporation, Northampton, MA, USA).






Results




The productivity traits of different cutting treatments




Physio-productivity traits

The net photosynthetic rate (Pn), specific leaf area (SLA), leaf nitrogen concentration (LN), leaf phosphorus concentration (LP), photosynthetic phosphorus use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE) were varied in bamboo stands with different cutting systems (Figure 2). Pn and SLA were similar in different cutting treatments (p > 0.05), while their maximum and minimum values both occurred in StC-10 and SeC treatments, respectively (Figures 2A, B). As for LN, all treatments were similar (p > 0.05) (Figure 2C). However, the LP values of StC-5 and ClC were 1.49 ± 0.04 g kg-1 and 1.47 ± 0.06 g kg-1, respectively, and significantly higher than that of other treatments (p< 0.05) (Figure 2D). The strip clear-cutting treatments (StC-5, StC-10 and StC-20) were higher than the treatments of SeC and ClC in PNUE and PPUE (Figures 2E, F). PNUE and PPUE of StC-10 (0.11 ± 0.01 μmol mol-2 s-1 and 4.11 ± 0.22 μmol mol-2 s-1) were significantly higher than those of SeC (p< 0.05).

[image: Bar charts labeled A to F compare different plant traits across five treatments: StC-5, StC-10, StC-20, SeC, and ClC. Charts show variations in net photosynthetic rate, specific leaf area, leaf nitrogen concentration, leaf phosphorus concentration, photosynthetic nitrogen use efficiency, and photosynthetic phosphorus use efficiency. Labels "a" and "b" above bars indicate statistical groupings. Each chart uses orange bars with error lines, showing consistent patterns or differences across treatments.]
Figure 2 | The effect of cutting systems on leaf physiological traits. (A) Net photosynthetic rate. (B) Specific leaf area. (C) Leaf nitrogen concentration. (D) Leaf phosphorus concentration. (E) Photosynthetic nitrogen use efficiency. (F) Photosynthetic phosphorus use efficiency. Data are means ± S.E. StC-5, strip clear-cutting of 5 m width treatment, n = 4; StC-10, strip clear-cutting of 10 m width treatment, n = 6; StC-20, strip clear-cutting of 20 m width treatment, n = 5; SeC, selection cutting treatment, n = 5; ClC, clear-cutting treatment, n = 4. The small letters indicate significant differences between different treatments in the same indicator (p< 0.05).





Bamboo forest productivity

Different cutting systems have imposed an evident influence on bamboo size (DBH and plant height), stand density, and productivity (stand biomass) (Figure 3). In strip clear-cutting treatments, the bamboo sizes decreased with an increase in strip width, and the bamboos in StC-5 and StC-10 were similar in size (p > 0.05) but larger than those in other treatments. On the contrary, the stand density of the strip clear-cutting treatments increased with an increase in strip width, and the stand density of StC-20 had the highest value (17198.52 ± 750.65 plant hm-2 year-1) in all treatments. Owing to its relatively large size and high stand density, StC-20 had the greatest stand biomass (10.62 ± 0.84 t hm-2 year-1), which was 1.58-, 1.18-, 1.43-, and 1.81-fold greater than StC-5, StC-10, SeC, and ClC, respectively.

[image: Four bar charts labeled A, B, C, and D compare different growth metrics for five groups: StC-5, StC-10, StC-20, SeC, and ClC. Chart A shows diameter at breast height (DBH) in centimeters, Chart B displays plant height in meters, Chart C indicates annual stand density in plants per hectare per year, and Chart D measures annual stand biomass in tons per hectare per year. Each chart includes error bars and labeled significant differences among groups.]
Figure 3 | The effect of cutting systems on the bamboo growth of Phyllostachys glauca. (A) DBH. (B) Plant height. (C) Annual stand density. (D) Annual stand biomass. Data are means ± S.E. DBH, diameter at breast height; StC-5, strip clear-cutting of 5 m width treatment, n = 4; StC-10, strip clear-cutting of 10 m width treatment, n = 6; StC-20, strip clear-cutting of 20 m width treatment, n = 5; SeC, selection cutting treatment, n = 5; ClC, clear-cutting treatment, n = 4. The small letters indicate significant differences between different treatments in the same indicator (p< 0.05).





Population features

There were no significant differences in recruitment rate and evenness between bamboo stands managed by different cutting systems (p > 0.05) (Figure 4). Among the cutting treatments, StC-20 and ClC were the lowest in recruitment rate and evenness, which were 65.20 ± 3.64% and 2.45 ± 0.23, respectively. Conversely, the stand uniformity of StC-20 was significantly higher than other cutting treatments (p< 0.05), with a value of 20.50 ± 1.36.

[image: Three bar charts labeled A, B, and C show data comparisons. Chart A displays recruitment rates, ranging from 80% to 120% across different categories, all labeled with 'a'. Chart B shows evenness values around 3.0 with 'a' labels. Chart C illustrates uniformity ranging from 6 to 24, with StC-20 marked as 'a' and others as 'b'. Categories include StC-5, StC-10, StC-20, SeC, and ClC. Each bar indicates a statistical significance with error bars.]
Figure 4 | The effect of different cutting systems on population features of Phyllostachys glauca stands. (A) Recruitment rate. (B) Evenness. (C) Uniformity. Data are means ± S.E. StC-5, 5 m strip clear-cutting, n = 4; StC-10, 10 m strip clear-cutting, n = 6; StC-20, 20 m strip clear-cutting, n = 5; SeC, selection cutting, n = 5; ClC, clear-cutting, n = 4. The small letters indicate significant differences between different treatments of the same indicator (p< 0.05).






The economic benefits of different cutting treatments

The bamboo stands under different cutting systems showed a distinct structure of height classes (Figure 5), which determined a specific sale price of culms (as shown in Table 2). The proportions of plant heights over 5 m in strip clear-cutting stands were 59.27%, 46.76%, and 46.31% for StC-5, StC-10, and StC-20, respectively, which decreased with an increase of strip width and were all higher than SeC (38.67%) and ClC (38.23%). Compared with SeC and ClC, the strip clear-cutting treatments showed a relatively lower proportion of the height (H) class of 4m ≤ H< 5 m and a relatively higher proportion of the height class of H ≥ 8 m. As a result, the bamboo stands managed by strip clear-cutting systems, especially StC-5 and StC-10, had a higher proportion of long culms than SeC and ClC.

[image: Stacked bar chart showing the proportion of plant height classes in different samples: StC-5, StC-10, StC-20, SeC, and ClC. Each bar is divided into height ranges, indicated by colors from beige for 2.5 meters and greater, to light blue for 8 meters and higher. Proportions vary across samples, with annotations indicating statistical significance.]
Figure 5 | The proportion of plant height classes in bamboo stands treated by different cutting systems. Data are means ± S.E. StC-5, strip clear-cutting of 5 m width treatment, n = 4; StC-10, strip clear-cutting of 10 m width treatment, n = 6, StC-20, strip clear-cutting of 20 m width treatment, n = 5; SeC, selection cutting treatment, n = 5; ClC, clear-cutting treatment, n = 4. The small letters indicate significant differences between different treatments in the same indicator (p< 0.05).

Different cutting systems have a significant influence on bamboo economics (Figure 6, p< 0.05). StC-10 obtained the greatest bamboo wood production (6.89 ± 0.48 t hm-2 year-1), which was 1.30-, 1.09-, 1.22- and 1.45-fold greater than that of StC-5, StC-20, SeC, and ClC, respectively. With long culms and a high stand density, the bamboo stands managed by StC-10 and StC-20 obtained higher incomes than those managed by SeC and ClC. The income of StC-20 was as high as 10, 194 yuan hm-2 year-1, which was 1.45-, 1.05-, 1.17- and 1.32-fold greater than that of StC-5, StC-10, SeC, and ClC, respectively. The cutting cost was highest in SeC and lowest in ClC, which were 7, 152 yuan hm-2 year-1 and 3, 934 yuan hm-2 year-1, respectively. Additionally, the cutting cost of strip clear-cutting treatments ranged from 4, 248 yuan hm-2 year-1 to 4, 671 yuan hm-2 year-1. In terms of the return on investment (ROI), SeC and StC-5 were significantly higher than StC-10, StC-20, and ClC. As a result, StC-20 and StC-10 obtained a higher profit (5, 957 yuan hm-2 year-1 and 5, 352 yuan hm-2 year-1) than other treatments.

[image: Five bar charts showing various metrics:   A) Bamboo wood production (tons per hectare per year) with values ranging around 4-8.   B) Income (yen per square meter per year) with values around 6000-12000.   C) Cost (yen per square meter per year) ranging from 4000 to 8000.   D) Return on investment (ROI) percentage, varying between 30% and 100%.   E) Profit (yen per square meter per year) with values from 1600 to 4800. Each chart contains bars labeled StC-5, StC-10, StC-20, SeC, and CIC, with different labels such as a, b, and c used for comparison.]
Figure 6 | The economic statistics of bamboo stands under different (A) Bamboo wood production. (B) Income. (C) Cost. (D) Return on investment. (E) Profit. Data are means ± S.E. StC-5, strip clear-cutting of 5 m width treatment, n = 4; StC-10, strip clear-cutting of 10 m width treatment, n = 6; StC-20, strip clear-cutting of 20 m width treatment, n = 5; SeC, selection cutting treatment, n = 5; ClC, clear-cutting treatment, n = 4. The small letters indicate significant differences between different treatments in the same indicator (p< 0.05).





Sustainability indicators and their principal contributors




Sustainability indicators

The sustainability indicators, including productive sustainability, economic sustainability, and overall sustainability, varied for the bamboo stands under different cutting systems (Figure 7). As for productive sustainability, StC-5 and StC-10 were significantly higher than other treatments (p< 0.05), with values of 0.57 ± 0.05 and 0.59 ± 0.06, respectively. StC-20 and StC-10 had higher economic sustainability values (0.60 ± 0.10 and 0.59 ± 0.11), which were 3.16-fold and 3.11-fold greater than ClC, respectively. Combining the productivity and economic aspects, the overall sustainability of strip clear-cutting treatments was higher than SeC and ClC, and StC-10 obtained the greatest value of 0.53 ± 0.02 among all treatments. Generally, compared with selection cutting and clear-cutting, strip clear-cutting models exhibited good sustainability in this bamboo forest management.

[image: Bar chart showing sustainability across different treatments: StC-5, StC-10, StC-20, SeC, and ClC. Categories include productive sustainability (orange), economic sustainability (green), and overall sustainability (purple). Error bars and letter annotations indicate statistical significance.]
Figure 7 | The sustainability indicators of bamboo stands under different cutting systems. Values are means ± S.E, StC-5: strip clear-cutting of 5 m width treatment, n = 4; StC-10: strip clear-cutting of 10 m width treatment, n = 6; StC-20, strip clear-cutting of 20 m width treatment, n = 5; SeC: selection cutting treatment, n = 5; ClC: clear-cutting treatment, n = 4. Different small letters indicate the significant differences between different treatments in the same indicator (p< 0.05).





Principal contributors to the sustainability indicators

The redundancy analysis (RDA) showed the relationships between productivity traits, economic features, and sustainability indexes of Phyllostachys glauca stands managed by different cutting systems (Figure 8). As sustainability indexes were calculated with the component capacity score coefficient of each indicator (see Equation 3), the six indicators (PNUE, PPUE, DBH, plant height, Pn, and stand density) closely related to productive sustainability were the principal contributors of SIpr, with a negative contribution of stand density and a positive contribution from the other five indicators. Since other predictors such as uniformity, evenness, LP, LN, SLA, and recruitment rate weakly correlated to productive sustainability, they had limited contributions. Likewise, the bamboo wood production, income, return on investment, and profit of bamboo stands were four principal contributors to economic sustainability because they were closely associated with SIec. When all predictors were included, the overall sustainability was mainly determined by plant height, DBH, bamboo wood production, stand biomass, evenness, and income. However, income and bamboo wood production were mostly determined by the productivity indicators (stand biomass and density), with significant correlation coefficients (p< 0.01) of 0.92 (income and stand biomass), 0.61 (income and stand density) and 0.91 (bamboo production and stand biomass), respectively. Furthermore, stand density was significantly and negatively associated with DBH (r = -0.70, p< 0.001) and plant height (r = -0.70, p< 0.001), while bamboo wood production was significantly and positively associated with DBH (r = 0.53, p< 0.01) and plant height (r = 0.53, p< 0.01). Thus, the bamboo individual size not only affected productive sustainability but also governed economic sustainability, and it was the key factor influencing the overall sustainability of bamboo stands.

[image: A PCA biplot showing data distribution on two axes: Axis 1 (67.40%) and Axis 2 (25.79%). Various colored circles represent different categories: StC-5, StC-10, StC-20, SeC, and CIC. Red vectors indicate variables such as profit, recruitment rate, and biomass, with directions and lengths representing their influence. Black vectors point towards SI_pr and SI_ec.]
Figure 8 | Redundancy analysis (RDA) of productivity traits, economic features, and sustainability indexes of Phyllostachys glauca stands managed by different cutting systems. Black arrows, response variables; red arrows, explaining variables. StC-5, strip clear-cutting of 5 m width treatment; StC-10, strip clear-cutting of 10 m width treatment; StC-20, strip clear-cutting of 20 m width treatment; SeC, selection cutting treatment; ClC, clear-cutting treatment. SIpr, productive sustainability index; SIec, economic sustainability index; SIo, overall sustainability index; Pn, net photosynthetic rate; SLA, specific leaf area; LN, leaf nitrogen concentration; LP, leaf phosphorus concentration; PNUE, photosynthetic nitrogen use efficiency; PPUE, photosynthetic phosphorus use efficiency; DBH, the diameter at breast height; BWP, bamboo wood production; ROI, return on investment.







Discussion




The feasibility of applying the strip clear-cutting system in Phyllostachys glauca forest

Our first hypothesis that strip clear-cutting has advantages in productive and economic sustainability over selection cutting and clear-cutting because it incorporates the merits of the two traditional cutting systems, was mainly supported. Productive, economic, and overall sustainability of strip clear-cutting were higher than SeC and ClC except for the economic sustainability of StC-5 (Figure 7).

The bamboo stands managed by strip clear-cutting systems had larger individual plants (DBH and plant height) and a greater averaged stand biomass than those managed by SeC and ClC (Figure 3). As plant size and stand biomass were the main contributors to productive sustainability, the treatments of strip clear-cutting outweighed the treatments of SeC and ClC in productive sustainability. Our results were consistent with previous studies, which indicated that the strip cutting of Phyllostachys edulis led to greater DBH, plant height, and biomass than selection cutting and clear-cutting (Zhang et al., 2020). This was likely explained by the high eco-physiological activities of the bamboo under strip clear-cutting because Pn, PNUE, and PPUE are important factors that promote plant growth by increasing photosynthates and the plant nitrogen utilization rate, especially in the case of nutrient deprivation (Ghannoum et al., 2005; Zhong et al., 2019; Mugo et al., 2021; Nasar et al., 2021). A higher PUNE resulted in a higher crop nitrogen utilization rate and thus enhanced crop yield (Ghannoum et al., 2005; Zhao et al., 2013; Mugo et al., 2021). In this study, we also detected strong correlations between Pn and PNUE, and PNUE and bamboo size, which in turn affected biomass (Figure 8).

Moreover, bamboos are clonal plants and have the trait of clonal integration, which can translocate resources (photosynthate, mineral nutrients, water, etc.) between ramets connected with rhizomes along a source-sink gradient (Pitelka and Ashmun, 1985; Alpert, 1991; Price et al., 1996; Dong et al., 2019; Shi et al., 2022). As for the strip clear-cutting system, bamboos in the uncut strip were source ramets and could provide resources to sink ramets (newborn bamboos) in the cut strip to support their growth (D’hertefeldt and Jónsdóttir, 1994; Chen et al., 2015; Wang et al., 2016; Shi et al., 2021; Zheng et al., 2022). A higher Pn leads to more photosynthate production, which could be translocated and utilised by the connected bamboo ramets and then enhance the final yield (Li et al., 2016; Li et al., 2018). Therefore, we inferred that the high photosynthetic capacity and clonal integration among bamboos increased individual size and consequently led to a greater stand biomass in strip clear-cutting stands than in clear-cutting stands, in which no source ramets supply nutrients to the newborn bamboos as the bamboo plants were all cut. Unlike the case of applying SeC in Moso bamboo (Phyllostachys edulis) stands, the bamboo stands managed by selection cutting in this study did not show a competitive advantage in sustainable production. The reason that selective cutting maintains good sustainable productivity in the Moso bamboo forest lies in the low cutting intensity because few mature individuals were cut, with a proportion of less than one-quarter of the total. However, in our case, the average stand density of Phyllostachys glauca was as high as 3.7 plants m-2. For the sake of operating convenience, the local farmers cut approximately 90% of individuals in a cutting cycle, and the few individuals kept supplied limited nutrients for bamboo regeneration, resulting in lower productive sustainability than SeC.

In addition to good productivity, the bamboo stands managed by strip clear-cutting also have good economic sustainability. The economic indicators of bamboo wood production and income were highly related to stand density and biomass, which were mainly determined by individual bamboo size (Figure 8). Although the cutting cost of strip clear-cutting was higher than that of clear-cutting (Wang et al., 2016; Liu and Hu, 2018), StC-10 and StC-20 outcompeted SeC and ClC in economic sustainability due to their higher stand density and plant height. On the contrary, StC-5 had lower economic sustainability than other treatments because it had the lowest stand density (Figure 3C). As a clonal plant, ramets of Phyllostachys glauca are analogous to twigs of trees. Thus, bamboo cutting is similar to tree pruning, and more intensive pruning leads to more regeneration of new shoots (Zhou et al., 2009; Zheng et al., 2022; Zhou et al., 2022). In this study, the low stand density of StC-5 was attributed to the weakest cutting strength in all treatments.

Compared with traditional cutting systems (SeC and ClC), the strip clear-cutting system is efficient and sustainable in bamboo forest management and thus has advantages over productivity and economy. Additionally, some studies confirmed that the application of clear-cutting in bamboo forests led to the degradation of bamboo resources (Tan et al., 2017; Liu and Hu, 2018). Therefore, our results indicated that the strip clear-cutting system is feasible in bamboo forest management.





An appropriate strip width for the strip clear-cutting system for Phyllostachys glauca forest

Our second hypothesis that a strip width of 5 m is the best option for the strip clear-cutting system in practice was not supported. According to the values of the overall sustainability index, the best strip width is 10 m instead of 5 m (Figure 7). The productive sustainability of StC-10 was similar to StC-5, and the economic sustainability of StC-10 was the second highest. StC-10 outcompeted other cutting treatments (StC-5, StC-20, SeC, and ClC) in overall sustainability.

The 10-m strip width of strip clear-cutting has the maximum productive sustainability in all treatments because it has advantages in traits closely related to productive sustainability, such as PNUE, PPUE, DBH, plant height, and stand density (Figure 8). In the strip clear-cutting treatments, StC-10 had higher SLA, PNUE, and PPUE than StC-5 and StC-20 (Figure 2). This indicated that the bamboo of StC-10 had stronger photosynthetic ability and resource-utilizing efficiency than StC-5 and StC-20 and increased bamboo growth. Likewise, previous studies found that a higher photosynthetic capacity leads to more photosynthate accumulation to accelerate the growth of Phyllostachys edulis (Li et al., 2018; Zheng et al., 2022). Furthermore, nutrient supply to the bamboo in the cut strips decreased with increasing strip width. Many studies confirmed that the strength of clonal integration (resource translocation between bamboos) decreased with an increase in the distance between source and sink ramets (Matlack, 1997; Stuefer et al., 2004; Shi et al., 2021), which was also supported by our results. Bamboo size decreased with the increase in strip width, i.e., the clonal integration distance (Figures 3A, B). Bamboo plants in cut strips need to receive nutrients from the bamboo in uncut strips on both sides to support their growth, and a shorter distance means more nutrient supplies. Field cutting and isotopic tracing (N15) experiments both suggested that the effective distance of clonal integration in Phyllostachys glauca is less than 5 m (Wang et al., 2016; Shi et al., 2021). Thus, it explains the large size of bamboo individuals in StC-5. As for StC-10, bamboo in cut strips could obtain nutrients from bamboo on either the left or right side of uncut strips no more than 5 m wide, which could result in a similar individual size to that of StC-5. Similarly, previous studies on the strip clear-cutting of Moso bamboo also found that individual sizes with strip widths of 3 m and 6 m were larger than with strip widths of 9 m and the SeC and ClC treatments (Tan et al., 2017), and the DBH of new bamboo gradually decreased with the increase in strip width (Zhou et al., 2022). Furthermore, we found that stand density increased with increasing strip width. Thus, bigger individual size and higher stand density lead to greater stand biomass of StC-10.

With a moderate stand density and large bamboo, the 10 m strip width of strip clear-cutting also has good economic sustainability. More individuals and long culms in a stand result in higher income and profit. StC-10 and StC-20 achieved significantly higher economic sustainability than ClC (p< 0.05). Although StC-20 had the greatest economic sustainability (0.60 ± 0.10), it had lower productive sustainability than StC-5 and StC-10, which were only 66.14% and 64.15% of StC-5 and StC-10, respectively (p< 0.05). As the clear-cutting width (20 m) was longer than the effective distance of clonal integration (< 5 m), the newborn ramets in the central area of the cut strips could not receive any nutrients from the source ramets in the uncut strips on either side (Matlack, 1997; Stuefer et al., 2004; Shi et al., 2021). Thus, bamboo stands would be liable to be degraded by long-term management with StC-20, the same situation caused by ClC. Conversely, the stands managed by StC-5 produced fewer bamboo individuals than StC-10 and StC-20 and then obtained an economic sustainability (0.24 ± 0.12) of less than 40% of StC-10 and StC-20. Thus, a strip width of 10 m rather than 5 m was the best option in the forest management of Phyllostachys glauca.





The potential application of the strip clear-cutting system for running bamboo management

Phyllostachys glauca is a running bamboo species that places ramets in new micro-habitats via the underground running rhizomes (Shi et al., 2021; Wang et al., 2023). For running bamboos, ramets connected with a rhizome can translocate their resource, such as water and nutrients (clonal integration), along a source-sink gradient (Shi et al., 2021; Shi et al., 2022). Strip clear-cutting produces a source-sink gradient between the cut strips and uncut strips, and the strip width determines the strength of clonal integration, which supports the growth of newborn ramets. Theoretically, the strip clear-cutting system suits other running bamboo species because they have the same clonal structure. To date, the strip clear-cutting system has only been used in two running bamboo species, Phyllostachys glauca and Phyllostachys edulis (Wang et al., 2016; Zhang et al., 2020; Zheng et al., 2022). Testing of the effect of different strip widths on bamboo regeneration showed that 10 m and 6 m were suitable strip widths for the cutting of Phyllostachys glauca and Phyllostachys edulis (Wang et al., 2016; Zhang et al., 2020; Zheng et al., 2022), respectively. However, there are 178 running bamboo species widely distributed in China (Gu et al., 2021). Most of those species are of high economic and productive value. Using an efficient and sustainable cutting system is a vital issue in increasing the management sustainability of bamboo forests. Therefore, the strip clear-cutting system deserves to be applied to other running bamboo species.

Although some studies developed strip clear-cutting in Moso bamboo forests in recent years, most of them focused on regeneration growth, soil traits, etc., rather than an assessment of management sustainability (Tan et al., 2017; Zhang et al., 2020; Zheng et al., 2022; Zhou et al., 2022). In this study, we evaluated the sustainability of Phyllostachys glauca forests under the strip clear-cutting system based on a 6-year field experiment. Thus, the long-term observation, across a complete strip clear-cutting cycle, offers a reliable and accurate assessment of this new cutting system. Our results have verified the feasibility and sustainability of applying the 10-m strip width of strip clear-cutting in Phyllostachys glauca forests. It provides a new option for managing running bamboo forests in a sustainable way.






Conclusions

With traditional cutting systems for Phyllostachys glauca forests (selection cutting and clear-cutting), it is hard to achieve good sustainability in both productivity and economy. Based on a 6-year experiment, we assessed the feasibility and sustainability of strip clear-cutting, a new cutting system for bamboo stands, by comparing its productivity traits, economic features, and sustainability index with those of traditional cutting systems. The strip clear-cutting outweighed selection cutting and clear-cutting in productive and economic sustainability because it possessed the cutting convenience of clear-cutting and good nutrient supply for regeneration of selection cutting. Of the different strip widths, a 10 m wide strip of strip clear-cutting obtained the highest overall sustainability and is the optimum option for the strip clear-cutting system in practice. The results verified that strip clear-cutting with a 10-m strip width in Phyllostachys glauca forests is feasible and sustainable. Our findings provide a novel system for the cutting of other running bamboos in a sustainable way.
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Due to its high efficacy as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides, ozone has broad application prospects in agricultural production. In this study, micro/nano bubble technology was applied to achieve a saturation state of bubble nutrient solution, including micro-nano oxygen (O2 group) and micro-nano ozone (O3 group) bubble nutrient solutions. The effects of these solutions on lettuce physiological indices as well as changes in the microbial community within the rhizosphere substrate were studied. The application of micro/nano (O2 and O3) bubble nutrient solutions to substrate-cultured lettuce plants increased the amount of dissolved oxygen in the nutrient solution, increased the lettuce yield, and elevated the net photosynthetic rate, conductance of H2O and intercellular carbon dioxide concentration of lettuce plants. Diversity analysis of the rhizosphere microbial community revealed that both the abundance and diversity of bacterial and fungal communities in the substrate increased after plant cultivation and decreased following treatment with micro/nanobubble nutrient solutions. RDA results showed that the microbial community in the S group was positively associated with EC, that in the CK and O2 groups exhibited a positive correlation with SC, and that in the O3 group displayed a positive correlation with CAT and POD. Overall, the implementation of micro/nanobubble generation technology in soilless substrates can effectively increase the lettuce growth and yield, and O3 had a more pronounced effect on lettuce yield and quality and the microbial community structure in the substrate than O2. Our study would provide a reference and theoretical basis for developing sustainable and green technology for promoting lettuce production and can be a promising alternative to conventional methods for improving crop yields.
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1 Introduction

Currently, soil disinfection has become widely used in agriculture, which can reduce the occurrence of pests and diseases at the source and improve vegetable quality and yield (Gullino et al., 2022). The use of conventional chemical pesticides and disinfectants generally leads to detrimental effects (Rani et al., 2021). Improper utilization of pesticides can also adversely affect the quality of water, soil and air (Tudi et al., 2021). Consequently, uncomplicated and effective disinfection techniques used for decontaminating less contaminated soil is gaining traction. Recently, ozone has been considered an environmentally friendly method extensively applied in various fields, including shelf life extension of products, deodorization, food, water and air purification, industrial wastewater treatment (Li et al., 2009), preservation of vegetables and fruits (Miller et al., 2013), and rhizosphere soil sterilization (Díaz-López et al., 2022).

Ozone is an allotropic form of oxygen with a strong oxidation potential, and it can decompose into oxygen without harmful residues (Tomiyasu et al., 1985). Compared with alternative methods of soil disinfection, ozone sterilization exhibits rapid disinfection speed and robust sterilization efficacy without inducing pathogenic microorganism resistance (Botondi et al., 2021; Díaz-López et al., 2022). Ozone can target proteins, unsaturated lipids, respiratory enzymes and peptidoglycans in cell membranes, enzymes and nucleic acids in the cytoplasm, and proteins and peptidoglycans in sporangia and viral capsids (Khadre et al., 2006). Due to its rapid decomposition and antibacterial properties, ozone treatment can improve crop quality and antioxidant capacity (Piechowiak et al., 2022) and greatly increase the stress resistance, photosynthetic capacity and yield of tomatoes (Xu et al., 2021). It can also inactivate Escherichia coli and mycelia in dry figs, thereby reduce aflatoxin levels (Zorlugenç et al., 2008).

Soil cultivation is the predominant method for crop production and requires regular soil aeration and irrigation; however, numerous pathogenic microorganisms also proliferate in the soil, competing for nutrients with crops and consequently impeding crop growth and defense mechanisms (Das et al., 2022). Soilless cultivation has gradually become as a pivotal component of facility horticulture and the primary mode of factory production for crops owing to its inherent advantages, such as fertilizer conservation, water preservation, enhanced yield potential, superior quality output, and impeccable hygiene standards (Gruda, 2022). Soilless substrate can replace natural soil to anchor crop roots, and supply essential nutrients through drip or trickle irrigation to ensure optimal growth and development (Asaduzzaman et al., 2015; Fields et al., 2021). Moreover, soilless substrate cultivation not only prevents soil disturbance and reduces land pressure and degradation, but also promotes crop intensification through year-round production (Gebreegziher, 2023). Compared to traditional soil cultivation, the composition and concentration of nutrient solution and growth media can be precisely controlled in soilless cultivation, and the yield and quality of horticultural crops can also be greatly improved (Xu et al., 1995; Elia et al., 1999). It enables precise control of trace element concentrations, ensuring continuous exposure of roots to fortified nutrient solutions without soil interference. Furthermore, soilless cultivation can maximize the absorption, transport and accumulation of nutrients in the edible part of plant roots (Rouphael and Kyriacou, 2018). The utilization of soilless culture also facilitates the mitigation of soil-borne diseases and the optimization of plant nutrition (Gebreegziher, 2023).

Micro/nanobubble generation technology, developed at the end of the last century, has garnered increasing attention as a clean and efficient method for water treatment (Khuntia et al., 2012). Microbubbles are referred as bubbles with a diameter less than 100 microns and situated between micron- and nanoscale dimensions (Chang et al., 2024). They can generate through various mechanisms, such as rotational shear, pressure dissolution, electrochemistry, micropore pressure and mixed jet flow (Díaz-López et al., 2022). These bubbles possessed unique physical and chemical properties, including slow bubble rise in solution, prolonged residence time, enhanced solubility, expanded specific surface area, accelerated gas−liquid mass transfer rate (Wu et al., 2019), elevated interface point, and spontaneous generation of free radicals (Li et al., 2009). Recently, ozone micro/nanobubbles have emerged as a promising disinfection technology, facilitating prolonged aqueous-phase ozone reactivity. This innovative approach holds potential for preserving the freshness and quality of fruits and vegetables while safeguarding their overall nutritional value (Botondi et al., 2021). Moreover, it can also increase the ozone saturation concentration in water, leading to its decomposition into oxygen for crop growth and development, thereby mitigating hypoxia-related issues in crops (Fan et al., 2020).

Lettuce (Lactuca sativa L.) is one of the most commonly consumed leafy vegetables worldwide and widely used for soilless cultivation (Nerlich and Dannehl, 2021). Currently, hypoxia is primarily mitigated in crop soilless cultivation via water circulation by a pump to ensure continuous nutrient solution flow and enhance dissolved oxygen levels through the synergistic effects of water flow and air contact. However, the efficiency in large-scale hydroponic systems is relatively low, which poses challenges to the normal growth of plants. Therefore, it is necessary to develop new methods for irrigating crops and improving the oxygen content in water. The integration of soilless culture substrate and micro/nanobubble generation technology enables efficient and rapid dissolution of ozone into the nutrient solution, thereby augmenting the dissolved oxygen levels in the solution. In this study, lettuce plants were cultivated in a soilless substrate and irrigated with Yamazaki nutrient solution, micro/nano-ozone nutrient solution or micro/nano-oxygen nutrient solution (CK, O2 and O3). The effects on the physiological indices and rhizosphere microbial community diversity of lettuce were analyzed, providing a reference and theoretical basis for developing sustainable and green technology and can be a promising alternative to conventional methods for improving crop yields.




2 Materials and methods



2.1 Preparation of three types of nutrient solutions

(1) Japan Yamazaki lettuce nutrient solution (CK): The mother liquid of the nutrient solution was prepared according to the formula listed in Supplementary Table S1, mixed in a ratio of liquid A:B:C of 1:1:0.1 and diluted 100 times before use.

(2) Micro/nano oxygen bubble nutrient solution (O2): Air was compressed with an oxygen concentrator 8F-5AW device (Jiangsu Yuyue Medical Equipment Co., Ltd.), resulting in oxygen generation. Subsequently, the oxygen was conveyed through an intake pipe to a micro/nanobubble generator MF-5000 device (Shanghai Xingheng Technology Co., Ltd.) where it was allowed to interact with the CK nutrient solution for 20 minutes, forming a micro/nanooxygen bubble nutrient solution.

(3) Micro/nano-ozone bubble nutrient solution (O3): Air was compressed in the oxygen generator, resulting in oxygen generation. Subsequently, the produced oxygen was fed into the ozone generator VMUS-4 (Weihua Dike Beijing Science and Technology Co., Ltd.) for conversion into ozone. The concentration of gaseous-phase ozone could be determined using an online UV-300H ultraviolet ozone detector (Weihua Dike Beijing Science and Technology Co., Ltd.) and the OZONE DESTRUCT 30168-02 system (Weihua Dike Beijing Science and Technology Co., Ltd.). The generated ozone was then conveyed to the micro/nanobubble generator MF-5000 (Shanghai Xingheng Technology Co., Ltd.) through an intake pipe and allowed to interact with the CK nutrient solution for 20 minutes, thereby forming a micro/nano-ozone bubble nutrient solution. The ozone concentration in the water was measured using a GreenPrima PM8200CL ozone analyzer (GreenPrima Instrument Co., Ltd., Shanghai), which consists of a Bsens650 double platinum electrode sensor, a PM8200CL controller, and a BAF615 constant current trough.




2.2 Lettuce treatment and physical index measurements

Seeds of the Italian lettuce variety were obtained from China Vegetable Seed Technology Co., Ltd. (Beijing) and cultivated in a 4×8 seedling tray at 25 °C within a controlled greenhouse environment. Once the third leaf emerged, the seedlings were transplanted into Danish peat soil (PINDSTRUP 0-10 mm) substrate. The 36 lettuce plants with identical growth statuses were randomly divided into three groups. The plants were irrigated with 300 mL of micro/nano-ozone bubble nutrient solution (O3, ~30 mg/L), micro/nano-oxygen bubble nutrient solution (O2, ~30 mg/L), or Japan Yamazaki lettuce nutrient solution (CK) every two days. During the treatment, the temperature was maintained at 25 °C, and the pH of the nutrient solution was maintained at 6.2. The lettuce plants were harvested after 55 days, and the following physiological indicators were assessed. (1) The net photosynthetic rate, transpiration rate, conductance to H2O and intercellular carbon dioxide concentration of the lettuce plants were measured by an LI-6400XT portable photosynthesometer (Beijing Ecotek Technology Co., Ltd.) following the manufacturer’s instructions. (2) The rapid induction kinetic curve of chlorophyll fluorescence (OJIP curve) in lettuce leaves was assessed using a Handy-PE portable plant efficiency analyzer (Hansha Scientific Instruments Ltd.) to determine the chlorophyll fluorescence parameters. (3) The lettuce fresh weight was determined using a balance, followed by oven drying at 105 °C for 30 minutes. Subsequently, the dried plants were further subjected to drying at 80 °C for 48 hours before their dry weight was measured. (4) The nitrate content was determined according to the methods described by Wang et al. (2017a). The ascorbic acid content was determined using the 2,6-dichloro-isophenol method, while root activity was assessed using 2, 3, 5-triphenyltetrazolium chloride method (TTC) TTC method. (5) The plant height and spreading width of the lettuce plants were measured by a ruler, and the number of leaves was recorded.




2.3 Analysis of substrate physical and chemical properties

The rhizosphere substrate samples were collected after lettuce harvesting. A five-point sampling method was employed, and the substrates were gathered within a radius of 0-15 cm surrounding the root system (Zhao et al., 2024). Part of the samples were air-dried and used to determine physicochemical properties and enzyme activities. The remaining samples were immediately cryopreserved with liquid nitrogen and maintained at a temperature of -80 °C for amplicon sequencing. The samples included S, representing the original substrate; CK, representing the control group with nutrient solution irrigation; O2, representing the micro/nano oxygen bubble nutrient solution irrigation; and O3, representing the micro/nano ozone bubble nutrient solution irrigation. Each treatment consisted of 3 biological replicates.

Catalase (CAT) activity was measured with a Soil CAT Activity Assay Kit via spectrophotometry at a wavelength of 240 nm. The peroxidase (POD) activity was assessed by employing a soil-specific POD assay kit (Soil Peroxidase (S-POD) Activity Assay Kit, Spectrophotometer, Solarbio) using colorimetric analysis at a visible wavelength of 430 nm. The determination of urease activity (UE) was conducted using the Soil Urease (S-UE) Activity Assay Kit at a visible wavelength of 630 nm with a spectrophotometer. The sucrase (SC) activity was determined using a spectrophotometer with the Soil Saccharase (S-SC) Activity Assay Kit at a visible wavelength of 540 nm. The pH was determined using a pH meter (ST3100, Ohaus Instrument (Changzhou) Co., Ltd.). The soluble salt concentration (EC) was determined by a portable EC meter (TZS-ECW-G, Zhejiang Topu Yunnong Technology Co., Ltd.). The significant differences in all detection indicators were determined using ANOVA in R (v4.3.1), while pairwise t tests were used to assess the significant differences between pairwise samples.




2.4 DNA extraction, PCR amplification and sequencing

Total genomic DNA for each sample was extracted using the OMEGA Soil DNA Kit (M5635-02) (Omega Bio Tek, Norcross, GA, USA) following the manufacturer’s instructions and stored at -20 °C prior to further analysis. The quantity of the obtained DNA was measured using a NanoDrop NC2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and agarose gel electrophoresis.

PCR amplification of the V3-V4 region of the bacterial 16S rRNA gene was performed using the forward primer 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-3’). The fungal primers ITS5F (5’-GGAAGTAAAAGTCGTAACAAGG-3’) and ITS1R (5’-GCTGCGTTCTTCATCGATGC-3’) were used to amplify the V1 region of the ITS gene. Sample-specific 7-bp barcodes were incorporated into the primers for multiplex sequencing. The PCR mixture contained 5 μL of reaction buffer (5×) and high GC buffer (5×), 0.25 μL of Q5 high-fidelity DNA polymerase (5 U/μL), 2 μL (10 mM) of dNTPs, 1 μL (10 µM) of each forward and reverse primer, 2 μL of DNA template, and 8.75 μL of ddH2O. Thermal cycling consisted of initial denaturation at 98 °C for 30 s, followed by 25~30 cycles of denaturation at 98 °C for 15 s, annealing at 50 °C for 30 s, and extension at 72 °C for 30 s, with a final extension of 5 min at 72 °C. PCR amplicons were purified with an Axygen Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) on a microplate reader (BioTek, FLx800). After the individual quantification step, amplicons were pooled in equal amounts, and paired-end 2×250 bp sequencing was performed using the Illumina NovaSeq platform with a NovaSeq 6000 SP Reagent Kit (500 cycles) at Shanghai Personal Biotechnology Co., Ltd. (Shanghai, China).




2.5 Quality control and analysis of sequence data

The QIIME2 (v2019.4) protocol was used with slight modifications according to the official tutorials (https://docs.qiime2.org/2019.4/tutorials/) to conduct data analysis (Bolyen et al., 2018). After removing the primers using the cutadapt plugin and filtering, denoising, merging, and removing chimeras from the raw sequences using the DADA2 plugin, the obtained high-quality sequences that exhibited 100% similarity were subsequently clustered into amplicon sequence variants (ASVs) (Callahan et al., 2016). For the annotation of bacterial 16S rDNA and ITS, we used the Greengenes (v13.8) (DeSantis et al., 2006) and UNITE databases (v8.0) (Kõljalg et al., 2013) to assign taxonomic information. ASVs with abundances less than 0.001% of the total samples were removed, and the abundance matrix with rare ASVs removed was used for subsequent analyses. We used the QIIME feature-table rarefy function for data normalized for differences in sequencing depth, and the leveling depth was set to 95% of the minimum sample sequence size. We conducted a comparative analysis of the bacterial and fungal proportions and percentages across various taxonomic levels (domain, kingdom, phylum, class, order, family and genus) within each sample to further investigate variations in the composition of the substrate microbiota.




2.6 Species diversity analysis

The α diversity indices, including Chao1, Shannon (Shannon, 1948), observed species, Simpson, Pielou’s evenness, and Goods’ coverage, were calculated using QIIME2 and visualized as box plots to compare the species richness and evenness of bacteria and fungi. Using R and QIIME2 software, β-diversity analysis was performed using the Bray-Curtis metric to investigate changes in microbial community structure between samples, which can be visualized by PCoA. The unweighted pair-group method with arithmetic means (UPGMA) hierarchical clustering of samples according to Euclidean distance based on species composition profiles at the genus level was used. To compare the memberships and structures of communities between samples, heatmaps were generated with the top 20 ASVs using Mothur.




2.7 Correlation analysis between physicochemical properties and microbial communities

Based on the physicochemical parameters and the relative abundances of the bacterial and fungal communities, redundancy analysis (RDA) was conducted using Canoco 4.5 software.




2.8 Analysis of key microbiota

To identify key bacteria and fungi within different groups, we employed linear discriminant analysis effect size (LEfSe) to analyze characteristic strains using the default parameters (Segata et al., 2011). The Kruskal-Wallis test was applied with a significance threshold of 0.05 for variance analysis. Similarly, the Wilcoxon rank sum test was conducted with a significance threshold of 0.05. Moreover, discriminating features were determined based on a logarithmic LDA score threshold of 3.0.





3 Results



3.1 Effects of different nutrient solutions on plant height, degree of development and yield in lettuce

After irrigation with O2, O3 or CK nutrient solution, we measured the lettuce leaf count, plant height, and individual plant weight (Figure 1). Compared with the CK group, the O3 treatment significantly increased the number of lettuce leaves and promoted both the growth and development of the plants. Although the O2 group also exhibited some promotion effects on lettuce plants, these effects did not reach statistical significance (Figures 1B–D, p > 0.05). The application of micro/nanobubble nutrient solution for irrigating lettuce significantly increased the wight per plant (Figures 1E–G, p <0.01), with a more pronounced promoting effect observed in the O3 group than in the O2 group. Therefore, irrigation with micro/nanobubble nutrient solutions, especially those containing ozone, can effectively enhance lettuce production.

[image: Three lettuce plants labeled CK, O2, and O3 are shown with their roots exposed. Below are bar charts comparing different growth parameters: B) Leaf number, C) Plant height in centimeters, D) Spreading width in centimeters, E) Root weight in grams, F) Leaf weight in grams, and G) Plant weight in grams. Each chart indicates variations in the growth characteristics among the three groups with letters a, b, ab, or c denoting significant differences.]
Figure 1 | Effects of different irrigation patterns on plant height, spreading width and weight per lettuce plant. (A) Graph of the lettuce plants harvested from the three different groups. (B–G) Comparisons of leaf number, plant height, spreading width, root weight, leaf weight and whole plant weight between the three groups. The significance of differences was determined using ANOVA with pairwise t tests. Different letters on different columns indicate a significant difference between these two treatments (p < 0.05).




3.2 Effects of different nutrient solutions on root activity and ascorbic acid and nitrate contents of lettuce plants

There was a significant increase in the root vitality of the lettuce plants in the O2 and O3 groups compared to that in the CK group (p < 0.05); the root viability coefficient of the O3 group was significantly greater than that of the O2 group (Table 1). The ascorbic acid content of the lettuce plants was not significantly affected by the nutrient solutions. Compared with that in the CK group, the application of the micro/nanobubble nutrient solution resulted in a significant reduction in the nitrate content (p < 0.01), and the O3 group exhibited significantly lower nitrate levels than the O2 group. Therefore, during substrate cultivation, the application of micro/nanobubble generation technology to introduce oxygen or ozone into nutrient solution could effectively enhance root vitality and significantly mitigate nitrate accumulation in lettuce plants.

Table 1 | Effects of microbubble technology in nutrient solution on the root activity, ascorbic acid content and nitrate content of lettuce plants.


[image: Table compares three groups (CK, O₂, O₃) regarding root vigor, ascorbic acid, and nitrate levels. CK shows root vigor of 0.66 ± 0.22, ascorbic acid 0.122 ± 0.04, nitrate 3.42 ± 0.68. O₂ has root vigor 0.72 ± 0.23, ascorbic acid 0.117 ± 0.04, nitrate 1.99 ± 0.35. O₃ displays root vigor 1.03 ± 0.21, ascorbic acid 0.152 ± 0.07, nitrate 2.93 ± 0.49. Significance provided by ANOVA with different letters indicating significant differences at p < 0.05.]



3.3 Effects of different nutrient solutions on the photosynthetic parameters of the lettuce plants

Compared with that of the CK group, the net photosynthetic rate of the O2 group exhibited a slight increase but lacked statistical significance; however, the net photosynthetic rate of the O3 group significantly improved (Table 2). Moreover, both the O2 and O3 groups exhibited significantly increased transpiration rates, intercellular carbon dioxide (CO2) concentrations, and conductance to H2O (p < 0.05). Furthermore, the net photosynthetic rate, transpiration rate, intercellular carbon dioxide concentration, and conductance to H2O in the O3 group were significantly greater than those in the O2 group (p < 0.05). These results suggested that incorporating micro/nanobubble generation technology into soilless substrate cultivation processes was beneficial for enhancing leaf conductance to H2O, increasing the intercellular CO2 concentration, and substantially improving the lettuce transpiration rate.

Table 2 | Effects of different nutrient solutions on the photosynthetic parameters of lettuce plants.


[image: Table comparing three groups (CK, O₂, O₃) across four variables: net photosynthetic rate, transpiration rate, intercellular CO₂ concentration, and conductance to H₂O, each with standard deviations. Different letters indicate significant differences between treatments (p < 0.05).]



3.4 Effect of micro/nanobubble nutrient solutions on the chlorophyll fluorescence parameters of lettuce plants

Compared to those of the CK group, the Sm, Vj, DIo/CSo and DIo/CSm values of the O3 and O2 groups decreased significantly; the potential photochemical activity (Fv/Fo), maximum photochemical efficiency (Fv/Fm), ABS/RC, TRo/RC, REo/RC, ETo/RC and ETo/CSo increased, respectively (Figures 2A, B). Our results indicated that irrigating lettuce with nutrient solution after micro/nano treatment enhances the efficiency of chlorophyll absorption and light energy transfer, especially the O3 group.

[image: Six-panel figure displaying spider and line graphs:  A: Spider chart comparing parameters like Fv/Fm and ABS/RC for CK, O₂, O₃. B: Spider chart for ABS/CS₀ parameters across treatments. C: Line graph showing relative values over scaling factor for CK, O₂, O₃. D: Line graph detailing OJIP transients for treatments. E: Graph of standardized O-P differences for O₂ and O₃. F: Graph illustrating standardized double differences for O₂ and O₃.  Each chart visualizes different statistical or scientific aspects of treatments CK, O₂, and O₃, with varying scales and units.]
Figure 2 | Effects of different micro/nanobubble nutrient solutions on the chlorophyll fluorescence parameters of lettuce leaves. (A, B) The electron transport and reaction center activity of the PSII receptor side of lettuce leaves. (C) OJIP curves of lettuce leaves in the CK, O2 and O3 groups. (D) Fluorescence O-P logarithmic curve. (E) OJIP curves of the fluorescence kinetics of the O2 and O3 groups after global (O~P) double standardization with the CK group. (F) Logarithmic OJIP curves of the fluorescence kinetics of the O2 and O3 groups after global (O~P) double standardization with the CK group.

As shown in Figure 2C, compared with that of the CK group, the initial fluorescence intensity (Fo) of the O3 and O2 groups decreased by 29% and 37%, respectively; the O3 group exhibited a 13% increase in the maximum fluorescence intensity (Fm), while the O2 group showed a 9% decrease. Additionally, when the PSII reaction centers were completely closed, the O3 group demonstrated a greater fluorescence yield than the O2 group did. Compared to the CK group, the fluorescence intensity of the J-spot was attenuated, while that of the I-spot and P-spot were enhanced. O3 irrigation resulted in a reduction in the fluorescence intensity of the J-spot, I-spot and P-spot. After standardizing the OJIP curve (Figure 2D), it was observed that the fluorescence intensity of the J and P points in the O3 and O2 groups was significantly greater than that the CK group. The results suggested that O3 and O2 groups can enhance electron transfer in both the PSII reaction center and acceptor side. Notably, significant changes were observed at points J (2 ms) and I (30 ms) (Figures 2E, F). Overall, the effects of O2 and O3 treatment on the OJIP curve of lettuce leaves were comparable, while the impact of O3 on the oxygen emission complex (OEC) of lettuce leaves exceeded that of O2.




3.5 Analysis of physical and chemical properties of the substrate

Figure 3 shows that the indices of pH, CAT activity, POD activity, UE activity, and SC activity increased across all the three groups irrigating with nutrient solution (O3, O2 and CK) compared to those of the S group. Additionally, a decrease in EC was observed compared to that in the S group. Notably, the EC of the O3 group exhibited a slight increase compared to that of both the CK and O2 groups (Figure 3A). Compared to those of the CK group, both the O3 and O2 groups exhibited a decrease in pH (Figure 3B). POD enzyme activity significantly increased, with the greatest increase observed in the O3 group (Figure 3C). CAT activity increased more in the O2 group than in the O3 group (Figure 3D). SC and UE activities were lower in both the O2 and O3 groups than the CK group, with a particularly significant decrease observed in SC activity within the O3 group (Figures 3E, F).

[image: Bar charts labeled A to F display various metrics (EC, pH, POD, CAT, SC, UE) for groups S, CK, O₂, O₃. Each chart shows distinct group performances with letter labels indicating statistical significance. Group S generally shows the lowest values, while O₂ and O₃ show varied but higher levels across the metrics.]
Figure 3 | Analysis of the physical and chemical properties of the substrate. Values of EC (A), pH (B), POD (C), CAT (D), SC (E) and UE (F) between the three groups. The significant differences were determined using ANOVA with pairwise t tests.




3.6 Microbial sequencing analysis

Totally, 12 libraries were sequenced, which obtained 1,663,178 and 907,842 raw bacterial and fungal sequences. After quality control (QC) and data filtering, 1,500,641 and 828,149 clean reads were obtained for analysis of bacterial and fungal communities (Supplementary Table S2). In the bacterial community, the numbers of ASVs in the S, CK, O2 and O3 groups were 6,625, 8,565, 8,373 and 7,293, respectively. The number of common ASVs across all four groups was 636, accounting for 9.6%, 7.43%, 7.60% and 8.72% of the total number of ASVs identified in each group, respectively (Figure 4A). The fungal community contained 195 ASVs in the S group, while those in the CK, O2 and O3 groups numbered 789, 738 and 685, respectively. There were 58 shared ASVs among these four groups, accounting for 29.74%, 7.35%, 7.86% and 8.47% of the total number of ASVs identified in each corresponding group, respectively (Figure 4B). Overall, the ASV increased in the substrate after lettuce cultivation and irrigation, but there was a significant difference in composition among the three groups. The total number of ASVs in both groups treated with O2 and O3 was lower than that in the CK group, indicating a reduced survival ability for microorganisms in these environments. Especially, the O3 group had a more noticeable impact on the total number of ASVs.

[image: Venn diagrams and heatmaps depicting microbial data. Panel A and B show Venn diagrams with group overlaps for CK, O2, O3, and S, with respective quantities indicated. Panels C and D display hierarchical clustering heatmaps of microbial genera. The color gradient represents data values, with a scale range provided. Categories are labeled as S, CK, O2, and O3.]
Figure 4 | ASV comparison of microbial communities and the abundance profile of the top 20 genera between different groups. (A, B) Vann comparisons of ASVs identified among the bacterial and fungal communities. (C, D) The abundance profiles of the top 20 genera among four samples, and UPGMA clustering of the samples was conducted according to the Euclidean distance of the species composition data.

Clustering analysis based on the genus-level abundance of different classes in the microbial communities revealed that Acidothermus, Dokdonella, Dongia, Bryobacter, Candidatus_Solibacter, Pseudolabrys and 67-14 exhibited relatively greater abundances in the S group. Conversely, Subgroup 6, Candidatus_Kaiserbacteria, Sphingomonas, Devosia, Saccharimonadales, Mucilaginibacter, BIrii41, Haliangium, A4b, Bauldia, SWB02, Terrimonas and Opitutus displayed lower abundances than they did in the other three groups (CK, O2 and O3) (Figure 4C). The species compositions of the CK and O2 groups exhibited a relatively high degree of similarity. In terms of the fungal community, significant differences were observed in the distribution of the dominant bacteria, with Chrysosporium, Clitopilus, Mortierella, and Lecanicillium being relatively abundant in the S group. Conversely, Chrysosporium, Plectosphaerella, Olpidium, Epicoccum, Paramyrothecium, Capronia, Alternaria and Scytalidium were relatively highly abundant in the O2 group. Monilinia, Cladosporium, Mycosphaerella, Thermoascus, Penicillium, Malassezia and Phialemonium were relatively abundant in the O3 group. Additionally, the relative abundances of Alternaria, Scytalidium, Conlarium, and Trichoderma were greater in the CK group (Figure 4D). These results demonstrated that the relative abundance of the dominant bacteria was influenced by treatment with the micro/nanobubble nutrient solutions.




3.7 Alpha diversity of the microbial community

Compared with those of the CK group, the α diversity of S group exhibited lower Chao1, Simpson, Pielou’s evenness, Shannon, and observed species indices in the bacterial community (Figure 5A). Conversely, the CK group displayed higher values than the O2 and O3 groups. These findings suggested that lettuce cultivation enhanced bacterial diversity and that micro/nanobubble nutrient solution decreased this diversity. However, no significant difference was detected in terms of the α diversity (Figure 5B, p > 0.05). That the rarefaction curves tended to be flat indicated that the sequencing results effectively reflected the diversity present in the sample (Supplementary Figures S1A, B). The bacterial abundance curve exhibited a relatively gentle slope (Supplementary Figure S1C), indicating small differences in abundance between the ASVs and high uniformity in community composition. In contrast, the fungal community displayed a steep line (Supplementary Figure S1D), suggesting low uniformity in community composition. Hence, both the abundance and diversity of bacterial and fungal communities in the substrate increased after plant cultivation and decreased following treatment with micro/nanobubble nutrient solutions.

[image: Box plots compare diversity indices across four samples: S, CK, O₂, and O₃. Panel A shows significant p-values for Chao1, Goods coverage, Simpson, Pielou_e, Shannon, and Observed species. Panel B depicts similar indices with varying p-values, indicating statistical differences among samples.]
Figure 5 | The α diversity of the microbial community among the different groups. (A) The α diversity of the bacterial community. (B) The α diversity of the fungal community, including Chao1, Good’s coverage, Simpson, Pielou’s evenness, Shannon and observed species indices. * indicate significant differences among the different groups (Dunn’s test, p < 0.05).




3.8 Analysis of the microbial community structure composition

To investigate the impact of micro/nanobubble nutrient solutions on the dominant bacterial community structure and fungi, we analyzed and compared the species composition of each group. Figure 6A showed the classification tree of the bacterial communities in the four substrate samples. There were mostly four phyla that were the most abundant, namely, Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi. Among them, Alphaproteobacteria, Actinobacteria, Acidobacteriia, and Ktedonobacteria belong to these phyla. Moreover, two classes, Bacteroidia and Verrucomicrobiae, also showed high abundance. Figure 6B showed the classification tree of the fungal community, which mostly included two phyla, Ascomycota and Basidiomycota. Among them, Eurotiomycetes, Sordariomycetes, Dothideomycetes and Agaricomycetes had the highest abundances.

[image: Taxonomic circle and bar charts display bacterial and fungal diversity. Panels A and B show diversity at phylum, class, order, family, and genus levels using colored circles and segments for groups S, CK, O2, and O3. Panels C and D present relative abundance percentages of bacterial and fungal taxa across the same groups, using stacked bar charts. Taxa categories include Proteobacteria, Actinobacteria, Basidiomycota, Ascomycota, and others, shown in distinct colors.]
Figure 6 | Classification tree and taxonomic composition of the microbial community structures among the different groups. (A, B) The classification tree of the detected bacteria and fungi. (C, D) The taxonomic composition of bacterial and fungal community structures at the phylum level.

Proteobacteria consistently dominated the bacterial communities across the three treatment groups (Figure 6C, CK, O2 and O3); however, variations in relative abundance were observed. The phyla Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, and Chloroflexi collectively accounted for 88% of the bacterial composition among all groups. Conversely, Verrucomicrobia, Patescibacteria, Gemmatimonadetes, Planctomycetes, and Firmicutes exhibited relative abundances below 5%. Compared to that in the CK group, the relative abundance of Acidobacteria decreased in both the O2 and O3 groups (Figure 6C). In the O2 group, there was a decrease in the proportion of Actinobacteria, while the relative abundances of Proteobacteria and Bacteroidetes increased. In the O3 group, there was a decreasing trend in the relative abundances of Proteobacteria and Bacteroidetes, while the proportions of Actinobacteria and Patescibacteria increased.

The composition of the fungal community was relatively simple compared to that of the bacterial community (Figure 6D). In terms of relative abundance, the top 8 phyla of samples included Basidiomycota, Ascomycota, Mortierellomycota, Chytridiomycota, Olpidiomycota, Mucoromycota, Aphelidiomycota, and Rozellomycota. Compared with those in the S group, the relative abundance of Basidiomycota and Mortierellomycota decreased, and that of Ascomycota increased in the substrate (CK, O2 and O3). Compared with than in the CK group, the relative abundance of Mortierellomycota in the O2 and O3 groups significantly decreased. Moreover, there was a decreasing trend in the relative abundance ratio of Basidiomycota and Chytridiomycota, while an increase was noted in the relative abundance ratio of Olpidiomycota. Compared to those in the CK group, the relative abundances of Ascomycota and Mucoromycota in the O2 group decreased. Conversely, in the O3 group, there was an increase in the relative abundance of Ascomycota, Mucoromycota, and Aphelidiomycota.

Principal Coordinate Analysis (PCoA) is a conventional unconstrained ranking technique that can be employed to depict variations or associations in the internal composition of microbial communities. As shown in Figure 7A, principal component 1 (PCo1) accounted for 50.6% of the bacterial community diversity within the samples, while PCo2 explained an additional 18.1%. When considering fungal community diversity (Figure 7B), PCo1 and PCo2 jointly contributed to approximately 61.4% of the observed variation. Figures 7C, D show that all three biological replicates from each treatment, except the O2 treatment, were clustered into one cluster at the genus level (the same was also true at the other levels), indicating that the micro/nanobubble nutrient solutions changed the structural distribution of bacteria and fungi in the substrate. The topological structure of the hierarchical clustering of bacteria and fungi exhibited remarkable similarity, with both the CK and O2 groups closely clustered together. The S group was positioned at the base of the topology, indicating that lettuce cultivation most significantly influenced substrate microorganisms. Intergroup difference analysis revealed that the distance among the three sampling points in the CK group was the smallest, and that the distance between CK and O2 or CK and O3 was much greater (Figures 7E, F). This further confirmed that the effects of the intergroup treatment outweighed the effects of the sampling deviations. Totally, these results indicated that the microbial and fungal communities in the rhizosphere substrate changed after treatment with two micro/nanobubble nutrient solutions and that the community composition was more influenced by O3.

[image: Panel A and B show Principal Coordinate Analysis plots with groups S, CK, O₂, and O₃ differentiated by color, highlighting variance. Panels C and D depict hierarchical clustering analyses with corresponding bar plots illustrating taxa distribution among groups. Groups and taxa are color-coded, with specific taxa listed. Panel E and F present box plots showing distances to CK for each group, with variances clearly displayed. Each panel provides comparative insights into microbial communities across different conditions.]
Figure 7 | β diversity analysis of the microbial community structures. (A, B) PCoA plots of bacterial and fungal communities. (C, D) The panel on the left is a hierarchical clustering diagram in which samples are clustered according to their similarity of bacterial and fungal communities. The panel on the right is a stacked bar chart of the top 10 most abundant genera. (E, F) Analysis of the distance from O2 and O3 to CK based on their microbial abundance profiles.




3.9 Principal coordinate analysis and redundancy analysis

To further investigate the impact of environmental factors on the distribution of substrate microbial community components, such as CAT, POD, UE, SC, pH and EC, RDA was employed to explore the relationships between the composition and structure of the substrate microbial community and environmental variables. As shown in Figure 8A, it shows that the significant differences of the bacterial community structure between the S, CK, O2 and O3 groups were correlated with the environmental conditions. RDA1 accounted for 62.51% of the interpretive variance, while RDA2 explained an additional 12.58%. Together, these two components contributed to a cumulative interpretive degree of 75.09%, indicating a high level of explanatory power. The RDA of fungal communities revealed that the incorporation of environmental factors and other variables led to more pronounced dissimilarities in the community structure composition between the S, CK, O2 and O3 groups. The first component accounted for 73.91% and the second component 4.52% (Figure 8B). The CAT, POD, UE, SC and pH were found to be important environmental factors affecting both the bacterial and fungal community. For the bacterial community (Figure 8A), the S group was positively correlated with EC; the CK group positively correlated with pH, UE and SC, the O2 group exhibited a positive correlation with SC; and the O3 group displayed a positive correlation with CAT and POD. For the fungal communities (Figure 8B), the S group was positively correlated with EC; the CK group showed a positive correlation with SC; the O2 group exhibited a positive correlation with pH, UE and SC; and the O3 group displayed a positive correlation with SC, CAT, and POD.

[image: Two scatter plots labeled A and B display redundancy analysis (RDA) results. Plot A shows points distributed along RDA1 (62.51%) and RDA2 (12.58%), with vectors labeled POD, UE, CAT, SC, and EC. Plot B shows points on RDA1 (73.91%) and RDA2 (4.52%) with similar vectors. Colors distinguish groups: red (S), teal (CK), green (O₂), and dark blue (O₃). P-values are 0.003 for A and 0.018 for B.]
Figure 8 | RDA plots of microbial communities with environmental variables. (A) Bacterial communities. (B) Fungal communities. POD, CAT, UE, SC and EC.




3.10 LEfSe difference analysis

LEfSe analysis was employed to identify biomarkers in microbial communities exhibiting significant differences among the groups. For the bacterial communities, 38, 14, 25, and 21 biomarkers were characterized for the S, CK, O2 and O3 groups, respectively (Figure 9A). Actinobacteria exhibited the greatest difference in abundance in the S group, whereas Terrimonas and Deltaproteobacteria were identified as the most abundant bacterial taxa in the CK and O2 groups, respectively. Devosia emerged as the predominant taxon in the O3 group. In the fungal community, there were 11, 6, 6, and 18 biomarkers in S, CK, O2 and O3, respectively (Figure 9B). Among these groups, Clitopilus was identified as the most significant fungus in the S group, Fusarium exhibited the highest abundance in the CK group, Plectosphaerella showed significant enrichment in the O2 group, and Sordariomycetes emerged as the most significant fungus in the O3 group.

[image: Circular phylogenetic trees displaying taxonomic classifications. Diagram A shows bacterial taxa with colored sections for different categories such as Acidobacteria and Actinobacteria. Diagram B depicts fungal taxa like Mucoromycota and Mortierellomycota. Each section is color-coded for substances S, CK, O2, and O3. Both diagrams include labels and legends to identify each group.]
Figure 9 | LEfSe analysis of microbial sequences. (A) Bacterial 16S rDNA sequences. (B) Fungal ITS rDNA sequences. The concentric circles depict the hierarchical classification levels ranging from phylum to genus. Each small circle at a specific level represents a taxonomic classification, with its size directly proportional to the relative abundance of that taxon. Hollow nodes represent taxa with no significant differences between groups, while colored nodes indicate significant differences between groups S, CK, O2 and O3, with higher abundances in samples represented by these colors. Letters were used to identify taxa that exhibited significant differences between groups. The legend on the right provides the names of the species denoted by letters. The size of each node corresponds to the average relative abundance of the taxon.





4 Discussion

Recently, the use of ozone water in agricultural production has significantly increased, including its application in the preservation of agricultural products (Shi et al., 2023), enhancement of fruit quality (Silva Neto et al., 2019), sterilization and disinfection, and disease prevention and control (Trinetta et al., 2011). By incorporating micro/nanobubble generation technology into agricultural practices, it not only conserves agricultural water but also enhances crop quality and yield (Liu et al., 2019). Due to the historical significance and economic value as a vital vegetable crop, employing micro/nanobubble generation technology alongside soilless substrate culture has immense potential for optimizing lettuce cultivation systems and increasing productivity.



4.1 Effects of micro/nano-ozone bubble nutrient solution on the growth, quality, and photosynthetic parameters of lettuce

Improving the lettuce quality and yield is a major concern in lettuce cultivation. Yang et al. (2017) reported that the use of glutamine as a nitrogen source in hydroponic cultivation can increase the accumulation of glycosylated flavonoids, ascorbic acid, and most amino acids, and improve the nutritional value of lettuces. Foliar application of selenium solution for lettuce plants can enhance their nitrogen utilization efficiency (Piñero et al., 2022). It has also been shown that irrigation with oxygenated water can increase crop yield (Zhou et al., 2019). In this study, compared with the CK group, the O2 and O3 treatments increased the lettuce yield (Figure 1G) and improved the root system vitality (Table 1). This treatment may facilitate the promotion of aerobic respiration in plant roots, thereby augment nutrient transfer (Sey et al., 2009; Liu et al., 2019), which can stimulate the growth of lettuce plants.

Ascorbic acid is abundant in fresh vegetables and fruits (Zheng et al., 2022), with lettuce being considered a moderate dietary source of this essential nutrient (Yang et al., 2021). In this study, the content of ascorbic acid in the O3 group was greater than the CK group. Yao et al. (2021) demonstrated that the utilization of micro/nano oxygen aeration technology can enhance the oxidation efficiency of ammonia and effectively eliminate NH4+ through improved oxygen transfer efficiency. Similar to Yao et al. (2021), the nitrate content in the lettuce leaves of both O2 and O3 groups decreased compared to the CK group, especially the O2 group (Table 1).

It has demonstrated that the introduction of oxygen can enhance crop yield, water use efficiency, and the leaf photosynthetic rate (Zhou et al., 2019). The net photosynthetic rate, transpiration rate, intercellular carbon dioxide concentration, and stomatal development in the O3 group were significantly greater than those in the O2 group (Table 2). When a nutrient solution treated with micro/nanobubble generation technology is applied for lettuce irrigation, it can improve the net photosynthetic rate, and promote the efficient absorption and transfer of light energy, thereby promote lettuce growth and development. In conclusion, the micro/nanobubble nutrient solution not only promotes lettuce growth but also enhances its quality, especially the O3 treatment.




4.2 Effect of micro/nano-ozone bubble nutrient solution on microbial community diversity in the substrate

The exceptional disinfectant and antibacterial properties of ozone stem from its potent oxidizing effect. It has demonstrated bactericidal activity against both gram-positive and gram-negative bacteria, in addition to its ability to effectively deactivate yeast and mold spores (Wang et al., 2021). Ozone micro/nanobubbles can effectively remove the antibiotics ciprofloxacin and levofloxacin from water (Babaee et al., 2023). Dissolved ozone exhibits greater antibacterial efficacy than ozone in its gaseous state and can effectively control bacteria, fungi, viruses, protozoa, and spores by impacting cellular membranes and other cellular constituents (Premjit et al., 2022; Shelake et al., 2022).

Ozone water irrigation may induce denaturation and deactivation of harmful substances within the plant rhizosphere, thereby enhancing plant growth. There was a significant increase in both the abundance and diversity of bacterial and fungal communities present in the substrate (Figure 5). The species number and diversity of bacteria and fungi in the substrates of the O2 groups were slightly lower than the CK group, while those in the O3 group were significantly lower. This may be due to ozone’s potent oxidation and antibacterial activity. Microbial community analysis revealed similar dominant phyla of bacteria and fungi among the sampled substrates; however, their relative abundances varied. Actinobacterium is pivotal in the decomposition of cellulose and various chemical compounds, thereby significantly contributing to the carbon cycle (Lewin et al., 2016). The relative abundance of Actinobacteria in both the CK and O2 groups exhibited low, whereas that in the O3 and S groups showed high. Bacteroidetes are the predominant bacteria in soil (Larsbrink and McKee, 2020) and can secrete a diverse array of carbohydrate-active enzymes. Compared to those in the S group, the relative abundances of Bacteroidetes in the CK, O2 and O3 groups increased. The abundance of Bacteroidetes in the O3 group was lower than that in the O2 group but was consistent with that in the CK group (Figure 6C). Previous studies have shown that bacteria of the Acidobacteria phylum are oligotrophic (Wang et al., 2017b) and that the abundance of Acidobacteria in soil is often greater under lower organic carbon conditions (Fierer et al., 2007). The relative abundance of Acidobacteria in the substrates of groups O2 and O3 decreased. Proteobacteria are copiotrophically attributed and favored by nutrient-rich conditions with high carbon content (Fierer et al., 2007; Newton and McMahon, 2010). In all the groups, more than 40% of the bacteria belonged to Proteobacteria. Chloroflexi is an anaerobic bacterium that undergoes parthenogenetic reproduction and primarily engages in carbon and nitrogen fixation (Logue and Lindström, 2010). The relative abundance of Chloroflexi remained consistent across all groups. The findings suggested that the introduction of oxygenated irrigation did not impact the population of beneficial bacteria but did positively influence nutrient accumulation in the substrate.

The relative abundance of Basidiomycota decreased in the CK, O2 and O3 groups compared to that in the S group, while there was a significant decrease in the relative abundance of Mortierellomycota and an increase in that of Ascomycota. The Basidiomycota phylum can be broadly categorized into saprophytic, symbiotic, and parasitic/pathogenic taxa based on their nutritional strategies. Saprophytic fungi can decompose organic matter such as wood, leaf litter or feces, while symbiotic fungi establish mutualistic associations with other organisms. Therefore, these fungi are pivotal in ecosystem functioning. Pathogenic or parasitic fungi can infect plants and other fungi (Schmidt-Dannert, 2016). The Mortierella fungus is a prevalent soil fungus that is vital in soil ecology and crop health. It facilitates the absorption of mineral elements by plant roots while inhibits pathogens (Miao et al., 2016; Li et al., 2018). A subset of saprophytic bacteria within the Ascomycota phylum is crucial in decomposing recalcitrant organic matter present in soil, thereby facilitating nutrient cycling. However, certain members of Ascomycota can also induce plant diseases such as root rot, stem rot, fruit rot and branch blight (Beimforde et al., 2014; Zhao et al., 2019).

The concentration of ozone in nutrient solutions may also impact crop growth and yield. Studies have shown that high levels of ozone can damage crops and vegetation (Rai et al., 2015) and can adversely affect plant growth, active ingredients and yield (Lee et al., 2022). For example, high concentrations of ozone can reduce the biomass of potatoes, cause leaf damage, and decrease the total number of potato tubers. Increased ozone concentrations can also impact the diversity of root-associated bacteria in crops (Feng et al., 2015). For instance, O3 has inhibitory effects on the microbial community in wheat rhizosphere soil (Li et al., 2012) and indirectly affects the composition of microbial communities in poplar rhizosphere soil negatively (Wang et al., 2024). An increase in O3 concentration can result in a decline in the biomass of fungi and gram-negative bacteria (Díaz-López et al., 2022), thereby perturbing the microbial community composition, particularly by reducing nitrifying bacteria and enhancing the relative abundance of fungal groups capable of denitrification. Elevated O3 not only impacts the structure of soil microbial communities but also has potential implications for their functional capabilities (Chen et al., 2019). In this study, a saturated oxygen and ozone micro/nanobubble nutrient solution was used. However, there is no clear categorization of the dissolved oxygen mass concentration in micro/nanobubble nutrient solutions, and further investigation is needed to determine the optimal gas concentration promoting plant growth and optimizing microbial community of substrate. We aimed to develop an irrigation frequency that is more suitable for meeting the requirements of plant growth while also being cost-effective, scientifically sound, and sustainable.





5 Conclusion

In summary, the application of micro/nanoscale (O2 and O3) bubble nutrient solution can promote photosynthesis and increase the yield of substrate-cultured lettuce plants. The majority physical and chemical indexes of the substrate also exhibited an increasing trend, while SC and UE activities decreased. The change in the rhizosphere microbial community with O2 and O3 treatment revealed that both the abundance and diversity of bacterial and fungal communities in the substrate increased after plant cultivation and decreased following treatment with micro/nanobubble nutrient solutions. The O3 group had a more pronounced impact on the microbial community structure in the substrate than the O2 group. Our study provides a method that combines micro/nanobubble generation technology with a soilless substrate to cultivate lettuce plants, which can promote robust seedling growth and substantially increase lettuce yield.
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Supplementary Figure 1 | Rarefaction curves and ASV rank-abundance curves of different substrate samples. (A) Rarefaction curves of bacterial communities. (B) Rarefaction curves of fungal communities. (C) ASV rank-abundance curves of the bacterial communities. (D) ASV rank-abundance curves of fungal communities. The horizontal coordinate is the sequencing depth, and the vertical coordinate is the median value of the α diversity index calculated 10 times, which is presented in a box plot.


Supplementary Table 1 | The mother liquor formula of Japanese Yamazaki nutrient solution for lettuce.


Supplementary Table 2 | Sequencing information for different samples.
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While it is commonly understood that air temperature can greatly affect the process of photosynthesis and the growth of higher plants, the impact of root zone temperature (RZT) on plant growth, metabolism, essential elements, as well as key metabolites like chlorophyll and carotenoids, remains an area that necessitates extensive research. Therefore, this study aimed to investigate the impact of raising the RZT on the growth, metabolites, elements, and proteins of red leaf lettuce. Lettuce was hydroponically grown in a plant factory with artificial light at four different air temperatures (17, 22, 27, and 30°C) and two treatments with different RZTs. The RZT was raised 3°C above the air temperature in one group, while it was not in the other group. Increasing the RZT 3°C above the air temperature improved plant growth and metabolites, including carotenoids, ascorbic acids, and chlorophyll, in all four air temperature treatments. Moreover, raising the RZT increased Mg, K, Fe, Cu, Se, Rb, amino acids, and total soluble proteins in the leaf tissue at all four air temperatures. These results showed that raising the RZT by 3°C improved plant productivity and the metabolites of the hydroponic lettuce by enhancing nutrient uptake and activating the metabolism in the roots at all four air temperatures. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology.
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Introduction

Plant factories with artificial light are increasingly popular for the hydroponic cultivation of leafy greens. Compared to conventional outdoor field operations, plant factories provide exceptional control over environmental conditions (Graamans et al., 2018). Environmental management in plant factories covers a wide range of abiotic parameters, such as temperature, relative humidity, vapor pressure deficit, carbon dioxide concentration, light intensity, light quality, and culture mediums. All of these abiotic parameters, when optimized, enable efficient and stable production of high-quality crops regardless of the season or weather conditions (Morrow, 2008; Takatsuji, 2010; Merrill et al., 2016).

A completely abiotic, stress-free environment is not necessarily optimal for producing leafy greens for human consumption. Specific abiotic stressors that amplify stress responses, such as root zone temperature (RZT) and light quality in plant factories, can add economic value to plants (Dresselhaus and Hückelhoven, 2018). Previous studies have shown that RZT can influence various root physiological processes, such as water and nutrient uptake, photosynthesis, and assimilate distribution (Udagawa et al., 1991; Klock et al., 1997; Yamori et al., 2022; Levine et al., 2023). Root growth increased linearly with increasing RZT from a minimum to an optimum temperature (Arkin and Taylor, 1981), although further increases in RZT were accompanied by a rapid decrease in root and shoot growth (Arkin and Taylor, 1981). Furthermore, during cool seasons, heating RZT by electric heating cables increased lettuce shoot weight (Bumgarner et al., 2012). Also, research has been focused in plant factories to enhance the biosynthesis of some secondary metabolites, which include total chlorophyll, total carotenoids, ascorbic acid, anthocyanin (Kong and Nemali, 2021; Levine et al., 2023; Van De Velde et al., 2023). It has been indicated that the regulation of RZT increased leaf nutrient elements (Moccio et al., 2024), and that low RZT treatments increased anthocyanin concentrations (Islam et al., 2019).

Based on the previous studies, we hypothesized that increasing the RZT a few degrees higher than the air temperature may improve the growth and quality of plants. Recent experiments demonstrating that the optimal RZT depends on the air temperature (Yamori et al., 2022; Levine et al., 2023) led us to investigate raising the RZT at various air temperatures. To our knowledge, no studies have investigated the effect of temperature changes of several degrees to the RZT relative to varying air temperatures on plant growth and the metabolites for this lettuce cultivar, although numerous studies have already examined the effects of air temperature on plant growth and showed that low or high air temperatures negatively affect plant physiological processes, such as photosynthesis, respiration, growth, and development, which consequently result in reduced crop yields (Yamori et al., 2005, 2010; Wahid et al., 2007; Theocharis et al., 2012; Hasanuzzaman et al., 2013; Way and Yamori, 2014; Yamori et al., 2014; Qu et al., 2021). Based on these prior studies, we selected a slight 3°C increase in RZT to ensure that we did not cross the threshold or tipping point that could cause a rapid decrease in root and shoot growth.

In considering the effects of raising RZT on plant growth and metabolites, it is important to clarify the physiological processes to understand the environmental response to it better. Ionome analysis has been used to reveal the uptake and translocation of mineral elements in plants (Quadir et al., 2011; Nicolas et al., 2019), while metabolite profiling analysis has been widely used to reveal changes in metabolites in response to various environments, including light intensity, light quality, and UV-B irradiation (Kusano et al., 2011; Goto et al., 2016; Kitazaki et al., 2018). By combining multiple omics analyses, it is possible to gain a more comprehensive understanding of RZT’s impact on plants’ physiological processes. These studies can be highly beneficial and can provide valuable insights into how RZT affects the different aspects of plant growth and development. Overall, the main objective of this study is to analyze the effects of raising RZT on the plant growth, elements, and metabolites of ‘Red Fire’ red leaf lettuce plants grown at different air temperatures. Four air temperature treatments (17, 22, 27, and 30°C) and two RZT treatments (no root zone heating and raising the root zone temperature 3°C above the air temperature) were applied. The effects of raising the RZT by 3°C on lettuce growth and functional components were comprehensively investigated by ionome and metabolite profiling analyses.





Materials and methods




Plant materials and treatments

The seeds of ‘Red Fire’ red leaf lettuce (Takii Seed Co., Kyoto, Japan) were used. All the experiments on the red leaf lettuce, including the collection of plant material, were in compliance with relevant institutional, national, and international guidelines and legislation.

Growth conditions were controlled at 62.9 ± 6% relative humidity and 16 hours of photoperiod artificial light using white LED lights (TecoG II-40N2-5-23, Toshin Electric Co., Ltd., Osaka, Japan). During the seed propagation period, the photosynthetic photon flux density (PPFD) was maintained at 120 ± 10 µmol m−2 s−1 in the daytime. The seeds were sown in seedling trays with a sponge substrate at 20°C air temperature with a 13-day propagation time until they had 2-3 true leaves. After 13 days, the plants were transplanted to where the experiment was conducted and acclimated for 3 days before the 16 day experiment started. The PPFD was then increased to 200 ± 20 µmol m−2 s−1 using white LED light (TecoG II-40N2-5-23, Toshin Electric Co., Ltd., Osaka, Japan). The plants were grown in a custom-built nutrient film technique (NFT) system and supplied with a nutrient solution, GG liquid A and B stock solutions (Green Co., Ltd, Fukuoka, Japan), with an EC of 1.00 ± 0.05 dS/m. Filtered reverse osmosis water was used at all stages of lettuce growth from the seedling stage. There were eight treatments, four air temperatures (17, 22, 27, and 30 ± 1°C), and two treatments in which the temperature of the nutrient solution was either raised 3°C above the air temperature or not heated. The temperature of the nutrient solution, also called root zone temperature (RZT) was controlled with a heater (NHA-065, Marukan Co., Ltd., Osaka, Japan) to maintain a temperature of 3°C above the respective air temperature treatment. The temperature of the nutrient solution was continuously monitored at the root zone area in the NFT system to ensure the plants received proper experimental treatments throughout the experiment. A total of 72 plants were randomly selected and divided into three treatments. In our experiment, two 12-cell trays with 24 plants were propagated in an NFT system using a 30-liter reservoir. This was considered to be one experimental unit. Our experiment involved three treatments with different RZTs, as described below, and one experimental run, which included one experimental unit (1 NFT system with 24 plants). Data from the experiment were taken 19 days after the plants were transplanted to the NFT system (32 days after the seeds were sown).





Plant growth

To analyze the shoot and root dry weights of the plants, the shoots and roots from every plant were separated 32 days after seeding, placed in paper envelopes, and then dried at 80°C in a constant-temperature oven for about two weeks. Leaf mass per area (LMA) was also determined by cutting the leaf blade of the largest leaf with a leaf puncher and dividing its dry weight by its leaf area.





Determination of metabolites

Total chlorophyll A+B, total carotenoids (α-Carotene, β-Carotene, zeaxanthin, violaxanthin, lutein, and neoxanthin), and ascorbic acid concentrations were quantified for the analysis of the metabolites. Two 0.56 cm2 holes were punched in the center of the largest leaf blades by a hole puncher, and 1.0 mL of 80% acetone was added to the cut sample and ground with a mortar and pestle to extract chlorophyll and carotenoids. The acetone extract was centrifuged at 12,000 rpm for 5 minutes, and the supernatant was used for the analysis. The analysis was performed by measuring absorbance at 750.0, 636.6, 646.6, and 470.0 nm using a UV-Vis-NIR spectrophotometer (UV-2700, Shimadzu Corporation, Kyoto, Japan), and the concentrations of chlorophyll and carotenoids were determined using equations derived from the previous studies (Lichtenthaler, 1987; Porra et al., 1989). A reflectometer (RQ Flex plus, Merck Darmstadt, Germany) quantified the ascorbic acid in the leaves of plants in each treatment (Yamori et al., 2022).





Ionome analysis

Plant samples were dried for 3 days in a 70°C oven. The weight of dried samples was set to 40–50 mg in a single biological sample. Each sample was digested with nitric acid (HNO3) and hydrogen peroxide (H2O2) (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) as follows: 30 min at 80°C and 1 h at 120°C with 2 ml HNO3; 1 h at 120°C after adding 0.5 ml HNO3 and 0.5 ml H2O2; and overnight at 80°C until the samples were completely dried. After digestion, the dried pellets were dissolved in 0.08 M HNO3. The elemental concentrations (phosphorus [P], potassium [K], calcium [Ca], magnesium [Mg], sulfur [S], iron [Fe], manganese [Mn], boron [B], zinc [Zn], molybdenum [Mo], copper [Cu], nickel [Ni], sodium [Na], cobalt [Co], lithium [Li], germanium [Ge], arsenic [As], selenium [Se], rubidium [Rb], strontium [Sr], cadmium [Cd] and cesium [Cs]) in the samples were measured by inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 7800, Agilent Technologies Co., Ltd, Japan).





Metabolite profiling analysis

Metabolite profiling was conducted using gas chromatography-time-of-flight-mass spectrometry (GC-MS), as described by (Kusano et al., 2007), but with slight modifications. Six biological replicates were used for the analysis. Metabolites were extracted from each leaf and root sample at a 2.5 mg dry weight tissue concentration per ml of extraction solution (methanol: chloroform: water = 3:1:1 v/v/v), and the extracted samples were methoxylated then subsequently trimethylsilylated. A sample equivalent to 5.6 µg dry weight of derivatized samples was then subjected to GC-MS, and the data obtained (NetCDF format) were transferred to MATLAB version 2011b (MathWorks, MA, USA) software. We used NIST/EPA/NIH Mass Spectral Library 14 (NIST14), an in-house metabolite library, and Golm Metabolome Database (GMD) for identification according to their RI and comparison with the reference mass spectra in the libraries (Kusano et al., 2007). The chromatograms were preprocessed using the high-throughput data analysis method (Jonsson et al., 2005) and were normalized using the cross-contribution compensating multiple standard normalization algorithm (Supplementary Figure S1) (Redestig et al., 2009).





Determination of protein concentrations

Protein extracted from leaves was quantified by a protein-assay kit (Bradford Plus Protein Assay Kit with Dilution-Free BSA Protein Standards, Cat. No. A55866, Thermo Fisher Scientific, Massachusetts, United States), using the method developed by Bradford (1976). The analysis was carried out at a temperature of 22°C. This was primarily because our protein assay test was executed under room temperature conditions.





Energy consumption analysis

To determine the energy consumption of raising the RZT by 3°C, the energy consumption of heating the lettuce per 1 gram of fresh shoot biomass was assessed. The amount of electricity in kilowatt-hours (kWh) it took to raise the temperature of 10 liters of water by 3°C per day was measured. Energy consumption was calculated by multiplying the amount of electricity by the volume of water in the hydroponic cultivation system and by the 15 growing days in this system. This was then divided by the number of plants in the growing system. Lastly, the electricity values per plant were divided by the fresh weight shoot biomass in grams of the plant in order to get a quantitative value of energy consumption (kWh) per 1 g fresh weight of lettuce. A wattmeter measured how much electricity was consumed during the water heating process (EC-04, Custom Co., Ltd, Tokyo, Japan). It is important to note that energy requirements differ based on shelf designs, seasons, starting water temperature, and other factors. Based on many changing variables that would go into more comprehensive energy analysis, the calculations in this study may not be well representative of other production systems, and it’s meant to serve as a general example of one particular operation in Japan.





Statistical analysis

A Tukey-Kramer honest significant difference test at α = 0.05 was performed for the means of measurement values to determine significant differences among the measured parameters. For elemental and metabolite concentrations, significance difference tests of the means compared to the 22°C treatment (the control) were performed with the drc 3.0–1 package (Ritz et al., 2015) of the R 3.6.2 (R Core Team, 2017) software, using the graphical interface RStudio Desktop 1.1.4.6.3 (RStudio Team, 2015). The principal component analysis was also conducted using R-Studio (v.4.0.3). Metabolic profile data were analyzed using weighted correlation network analysis (WGCNA) (DiLeo et al., 2011). The Kyoto Encyclopedia of Genes and Genomes was used to search for metabolite pathways. MetaboAnalyst 4.0 software was used for pathway analysis and visualization (Liu et al., 2015). These WGCNA elements and metabolites were classified into two modules (Module1 and Module2), based on their correlation with shoot and root dry weights, chlorophyll, ascorbic acid, and the soluble proteins of leaves and roots. The experiment was repeated three times to ensure the results remained consistent.






Results




Effect of raising RZT on plant growth and metabolites

The plants in this study were grown under eight treatments, four air temperatures (17, 22, 27, and 30°C), and two treatments with different RZTs. In one group, the RZT was raised 3°C above the air temperature (RZT+3°C), and in the other group, it was not (RZT) (Figure 1A).

[image: The image consists of two panels. Panel A displays four line graphs showing temperature over time in degrees Celsius at different air temperatures (17°C, 22°C, 27°C, 30°C) with lines representing air temperature, root zone temperature (RZT), and RZT plus 3°C. Panel B features images of foliage at these temperatures, comparing normal RZT and RZT plus 3°C, with differences in color and size. A scale bar indicates 10 centimeters.]
Figure 1 | The air temperatures in the 17, 22, 27, and 30°C treatments and the water temperatures over time in the heated (RZT+3 °C) and non-heated treatments (RZT) are shown in (A). The top view of ‘Red Fire’ red leaf lettuce from each treatment harvested 32 days after sowing (B) is shown.

Shoot and root dry weights were significantly increased by raising the RZT by 3°C at all air temperature treatments (Figures 1B, 2A, B). The 17°C air temperature treatment with the 3°C raised RZT had 23% greater shoot dry mass and 30% greater root dry mass relative to its corresponding unheated treatment (Figures 2A, B). The 22°C air temperature treatment with the 3°C raised RZT had 31% greater shoot dry mass and 24% greater root dry mass relative to its corresponding unheated treatment (Figures 2A, B). The 27°C air temperature treatment with the 3°C raised RZT had 18% greater shoot dry mass and 22% greater root dry mass relative to its corresponding unheated treatment (Figures 2A, B). Lastly, the 30°C air temperature treatment with the 3°C raised RZT had 14% greater shoot dry mass and 19% greater root dry mass relative to its corresponding unheated treatment (Figures 2A, B). The maximum dry weight of shoots and roots was observed with RZT+3°C at 27°C (Figures 2A, B). However, the shoot/root ratio and LMA were not significantly changed by raising the RZT at any of the four air temperatures (Figures 2C, D). All root zone heating treatments increased carotenoid and chlorophyll contents relative to their corresponding nonheated treatments under all four air temperatures (Figures 3A, B). Also, ascorbic acid increased at all air temperatures except 17°C (Figure 3C). The 17°C air temperature treatment with the 3°C raised RZT had 19% greater chlorophyll content and 12% greater carotenoid content than its corresponding unheated treatment (Figures 3A, B). The 22°C air temperature treatment with the 3°C raised RZT had 21% greater chlorophyll content, 13% greater carotenoid content, and 28% greater ascorbic acid content relative to its corresponding unheated treatment (Figures 3A-C). The 27°C air temperature treatment with the 3°C raised RZT had 16% greater chlorophyll content, 16% greater carotenoid content, and 51% greater ascorbic acid content relative to its corresponding unheated treatment (Figures 3A-C). Lastly, the 30°C air temperature treatment with the 3°C raised RZT had 26% greater chlorophyll content, 23% greater carotenoid content, and 34% greater ascorbic acid content relative to its corresponding unheated treatment (Figures 3A-C).

[image: Four bar charts labeled A to D depict plant growth metrics at different air temperatures: 17, 22, 27, and 30 degrees Celsius, comparing two groups (blue and red bars). Chart A shows shoot dry weight, B shows root dry weight, C depicts shoot/root ratio, and D illustrates LMA. Significant differences are marked with asterisks.]
Figure 2 | Shoot dry weight (A), root dry weight (B), shoot/root ratio (C), and LMA (D) of ‘Red Fire’ red leaf lettuce grown under all the different treatments are shown. The bars are standard errors (n = 6-9). The mark * indicates significant differences between treatments at the same temperature by Tukey’s HSD test (5% level of significance).

[image: Bar charts compare chlorophyll, carotenoid, and ascorbic acid content in plant samples at varying root zone temperatures (RZT) and air temperatures (17°C, 22°C, 27°C, 30°C). Blue bars represent RZT, red bars indicate RZT+3°C. Significant differences are marked with asterisks. Chlorophyll content is highest at 27°C RZT+3°C. Carotenoid content peaks at 27°C RZT+3°C. Ascorbic acid content shows noticeable variation, highest at 27°C RZT+3°C and lowest at 30°C RZT.]
Figure 3 | The total chlorophyll (A), total carotenoid (B), and ascorbic acid concentrations (C) of ‘Red Fire’ red leaf lettuce grown in different air and RZT treatments are shown. Bars are standard errors (n = 4-7). Statistical differences between treatments at the same temperature by Tukey’s HSD test (5% level of significance). * (significant level, 5%) and † (marginal significant level, 10%).





Effect of raising RZT by 3°C on proteins, elements, and metabolites

Raising RZT significantly increased total soluble protein in the roots by 31% and leaves by 40% of plants grown at 22°C relative to its corresponding unheated root zone treatment (Figures 4A, B). Ionome and metabolome analyses were performed on plants grown at the air temperature of 22°C to further elucidate the mechanism by which raising the RZT by 3°C promoted plant growth and improved metabolites (ascorbic acid and chlorophyll).

[image: Bar graphs illustrating soluble protein content in plants. Graph A shows leaf protein content, with a significant increase from approximately 100 to 200 mg per gram plant under elevated temperature (RZT+3°C). Graph B shows root protein content, increasing from about 10 to 20 mg per gram plant. Error bars indicate variability, and asterisks represent statistical significance.]
Figure 4 | Soluble protein concentrations in the leaves (A) and roots (B) of ‘Red Fire’ red leaf lettuce grown in an unheated RZT and a +3°C RZT treatments at 22°C air temperature. Statistical differences between treatments at the same temperature by Tukey’s HSD test (5% level of significance). Bars are standard errors (n = 6-8). The mark * indicates significant differences between treatments at the same temperature.

Analysis of ionome profiles showed that raising the RZT by 3°C affected various elements of the roots and shoots of plants grown at the air temperature of 22°C (Figure 5A). In the leaves, Li, B, K, Fe, Cu, Se, and Rb were significantly higher in the RZT+3°C treatments than the unheated RZT treatments, but in the roots, Li, Mg, and Ca were significantly lower, while S, K, Fe, As, Se, and Cd were significantly higher (Figure 5A).

[image: Chart illustrating nutrient distribution and metabolic pathways in plants. Panel A shows a heatmap of element ratios comparing leaf and root samples, with red indicating higher values and blue lower. Panel B details interconnected metabolic pathways, emphasizing sugar, glycolysis, and amino acid metabolism. Boxes represent metabolites with their presence in leaf and root indicated by color. Major pathways like the TCA cycle are highlighted along with sugar metabolism and amino acid metabolism sections. Arrows depict the flow and interaction between different metabolites.]
Figure 5 | Changes in the relative amount of each element (A) and each metabolite (B) in the leaf and root of ‘Red Fire’ red leaf lettuce grown under heated RZT in the 22°C air temperature treatments. Significant increases are shown in red and decreases in blue by a Tukey’s HSD test (5% level of significance). The lower left of the metabolite names represents changes in metabolites in the leaves and the lower right represents changes in metabolites in the roots. * (B) can only be used for general interactions, and it is not a complete comprehensive diagram of all metabolomic interactions.

Raising the RZT by 3°C also affected the metabolic profiles of plants grown at 22°C (Figure 5B). In the roots, it decreased glucose but increased sucrose and malate (Figure 5B), and it significantly increased 10 amino acids (alanine, arginine, aspartate, cysteine, GABA, lysine, proline, pyroglutamate, glutamate, and tryptophan) (Figure 5B). Although it had no significant impact on metabolic profiles, the leaves showed increased glycerol as a carbohydrate, and 5-caffeoylquinic acid (chlorogenic acid) (Figure 5B).





Clustering elements and metabolites altered by raising the RZT by 3°C

Raising the RZT by 3°C in plants grown at an air temperature of 22°C changed the metabolites and elements. The metabolites and elements were clustered by network analysis using WGCNA and classified into two modules (Module1 and Module2). Module1 elements and metabolites were positively correlated with shoot and root dry weights, chlorophyll, ascorbic acid, leaf soluble protein, and root soluble protein. The elements and metabolites of Module2 showed a negative correlation with all the variables that were found to be correlated with Module1 (Figure 6A).

[image: Heat map, table, and bar charts of metabolic modules. Panel A shows a heat map of two modules correlated with various plant traits. Panel B lists metabolites and elements in each module. Panel C exhibits enrichment ratios of metabolic pathways for module one, including amino-acid biosynthesis and the TCA cycle. Panel D displays ratios for module two, featuring pathways like arginine biosynthesis and tryptophan metabolism.]
Figure 6 | The correlation between each module and phenotype for ‘Red Fire’ red leaf lettuce is shown in (A). This module consists of the measured elements and metabolites with significantly different concentrations with Tukey’s HSD test (5% level of significance) caused by raising the RZT in the 22°C air temperature treatments. The list of metabolites and elements for each module are shown in (B); (C) shows metabolite enrichment analysis in Module 1; and (D) shows metabolite enrichment analysis in Module 2. WGCNA elements and metabolites were classified into two modules (Module 1 and Module 2), based on their correlation with shoot and root dry weights, chlorophyll, ascorbic acid, leaf soluble protein, and root soluble protein.

Module1 contained 18 metabolites and 1 element, while Module2 contained 23 metabolites and 20 elements (Figure 6B). Enrichment analysis (Metabo4.0) was used to determine the metabolic pathways enriched for the metabolites in these modules. Module1 was significantly enriched with valine, leucine, and isoleucine biosynthesis, aminoacyl-tRNA biosynthesis, and citrate cycle (TCA cycle) (Figure 6C). In contrast, Module2 was significantly enriched with aminoacyl-tRNA biosynthesis, beta-Alanine metabolism, and arginine biosynthesis (Figure 6D).





Principle component analysis

Principle Component Analysis (PCA) was performed to identify the relationships of traits with plant growth and metabolites (Figure 7). The first two principal components, PC1 and PC2, accounted for 70.3% and 20.0% of the total variance, respectively. In PC1, shoot and root dry weights, shoot/root ratio, and chlorophyll concentrations showed positive values, whereas LMA showed negative values. Ascorbic acid and carotenoid concentrations showed negative values in PC2.

[image: Biplot showing principal component analysis (PCA) with PC1 explaining 71.4% and PC2 explaining 23.7% of the variance. Variables include functional ingredients like ascorbic acid, carotenoid, chlorophyll contents, and plant growth traits like LMA, shoot and root dry weight, and shoot-to-root ratio. Data points represent different air temperatures: 17°C (blue), 22°C (yellow), 27°C (gray), and 30°C (red), labeled as RZT and RZT+3°C. Arrows indicate the direction and strength of the traits' contributions.]
Figure 7 | Principle component analysis (PCA) of the traits for ‘Red Fire’ red leaf lettuce grown at different temperatures. Arrows indicate the direction and strength of each trait’s contribution on the first two PCs.





Two-factor ANOVA analysis

Overall, the results suggest that the air temperature and RZT combined only significantly interacted with root dry weight (Table 1). They did not significantly affect ascorbic acid concentrations, shoot dry weight, shoot/root ratio, LMA, chlorophyll, and carotenoid concentrations (Table 1). The RZT alone had significant interactions with root and shoot dry weights, chlorophyll, carotenoid, and ascorbic acid (Table 1), while the air temperature alone significantly interacted with root and shoot dry weights, LMA, chlorophyll, carotenoid, and ascorbic acid (Table 1).

Table 1 | Show differences in traits of plant growth and functional ingredients when grown at different air and root zone temperatures.


[image: Table displaying the effect of air temperature (°C) and root zone temperature (RZT) on various plant metrics including root dry weight, shoot dry weight, shoot/root ratio, leaf mass per area (LMA), chlorophyll, carotenoid, and ascorbic acid content. The table includes values at four air temperatures (17°C, 22°C, 27°C, 30°C) with two RZT levels (0°C, +3°C), showing averages and significant differences indicated by varied letters. Statistical significance is noted with asterisks, with an explanation provided at the bottom.]




Energy analysis of raising RZT by 3°C on lettuce

The energy consumption in kilowatt-hours (kWh) per 1 g fresh weight of fresh lettuce shoot biomass was 0.236, 0.037, 0.046, and 0.067 kWh for root zone heating at the 17, 22, 27, and 30°C treatments, respectively.






Discussion

This study showed two key points. First, raising the RZT by 3°C relative to any of the four air temperatures enhanced total soluble protein, various elements, and amino acids in roots, resulting in improved plant growth and yields. Second, it increased the concentration of carotenoid and chlorophyll metabolites and ascorbic acids at most air temperatures, suggesting improved quality since these are often desirable compounds for consumers. Some undesirable element uptake was significantly increased in the roots with a RZT increase of 3°C, such as Cd and As. Still, they did not accumulate significantly in the leaf tissue, which is the frequently consumed part of the plant. PCA revealed that shoot and root dry weights had similar trends as chlorophyll concentrations but had a weak relationship with ascorbic acid and carotenoid concentrations. These results suggest that plant growth and metabolites could be improved simultaneously. In summary, raising the RZT 3°C above the air temperature results in enhanced total soluble protein, various elements, and amino acids in roots, improved plant growth, and yields relative to our unheated control treatments. Further studies would be needed to investigate the optimum RZT relative to the air temperature by investigating multiple RZT differences relative to air temperature.




Raising RZT by 3°C increases the metabolite, soluble protein, amino acid, and elements of lettuce

In all temperature treatments, raising the RZT by 3°C increased chlorophyll, carotenoid, and ascorbic acid (Figure 3). Previous studies have suggested that increases in certain antioxidants generally occur under stressful conditions (Perrin and Gave, 1986; Smirnoff, 2000; Giannakourou and Taoukis, 2003; Hsu et al., 2013). Furthermore, the plants grown at an air temperature of 22°C and RZT+3°C had significantly increased concentrations of chlorogenic acid in their leaves (Figure 5). Chlorogenic acid is a polyphenol with antioxidant properties that may reduce oxidative damage in human cells (Khanam et al., 2012). Thus, raising the RZT increased chlorophyll, ascorbic acid, and chlorogenic acid, antioxidants that could bring added health benefits to the consumer.

Based on the analysis of metabolic profiles, raising the RZT by 3°C increased the concentrations of total soluble proteins (Figure 4) and various amino acids (Figure 5B) in root and leaf tissue. The lower soluble protein content in the unheated RZT treatment could be attributed to numerous factors. One possibility is that a lower RZT leads to the progressive degradation or retardation of proteins because more energy carriers are consumed to enhance adaptation to low temperatures, producing lipids, amino acids, and other molecules, in addition to promoting cell membrane fluidity and structural rearrangement (Maruyama et al., 2014; Wu et al., 2016). Another possibility is that cold temperatures also caused the destabilization of protein complexes (Thakur and Nayyar, 2013), while high RZT treatments have also been reported to lead to a decline in soluble protein as well since high RZT stress causes root protein to decrease. At the same time, sucrose metabolism is activated to store energy for root survival, resulting in the accumulation of sugars instead (Du and Tachibana, 1994). These responses would lead to increase in the concentrations of total soluble proteins by raising the RZT by 3°C, whereas decrease in the unheated RZT treatment.

Furthermore, nutrient uptake and the metabolism of amino acids in root and leaf tissue were enhanced at all four air temperatures, with the concentrations of aspartic acid and glutamine mainly increased (Figure 5), which aspartic acid and glutamic acid are the starting amino acids for the biosynthesis of many amino acids (Jander and Joshi, 2010; Walker and van der Donk, 2016; Appleton and Rosentrater, 2021). Arginine biosynthesis and β-alanine metabolism were also positively correlated with protein concentrations and plant growth parameters (Figure 6), as arginine metabolism is believed to promote plant growth (Kawade et al., 2020) and β-alanine is a precursor of CoA that is involved in producing fatty acids, which are also cellular building blocks (Parthasarathy et al., 2019). Overall, this increase in biochemical properties may have led to an increase in photosynthesis and, thus, in biomass. However, the biosynthesis of valine, leucine, and isoleucine showed a negative correlation with protein concentrations and plant growth parameters (Figure 6), and isoleucine decreased as the RZT was raised (Figure 5). As valine, leucine, and isoleucine are reported to increase in reaction to the stress response (Joshi et al., 2010), there is a trade-off between plant growth and defense (Huot et al., 2014) as growth–defense tradeoffs are considered to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense.

Based on the analysis of ionome, the concentrations of various elements were found to be increased upon raising the RZT, with Mg, K, and Fe being the most significantly affected (Figure 5A). Interestingly, the observed increase in Mg levels aligns with the findings of other studies, which have shown that raising the RZT for wheat leads to an increase in Mg uptake in the first 30 days of growth (Huang and Grunes, 1992). Further studies on NH4 and K uptake have found reductions when RZT is reduced, which is also consistent with our results for K uptake (Shabala and Shabala, 2002). According to our research, there was a noticeable increase in S uptake, which aligns with the findings of studies on onions where the RZT was raised to 21°C (Coolong and Randle, 2006). Furthermore, we found a significant increase in B in leaf tissue, consistent with other research studies that concluded that B uptake decreases at lower RZTs (Ye et al., 2000). Another study with tomatoes found the optimal RZT for Cu, Mn, and K to be around 24°C, consistent with our results (Tindall et al., 1990).

Furthermore, in the leaves, Fe and Se were significantly greater with RZT+3°C than with RZT in plants grown at an air temperature of 22°C (Figure 5). It is worth noting that Fe is essential for human health (Abbaspour et al., 2014), and Se has antioxidant properties that contribute to the prevention of epidemics in humans (Xiao et al., 2021). These results are consistent with other studies of tomatoes that have found that raising root temperatures increased Fe and Mn uptakes (Riekels and Lingle, 1966). Raising the RZT significantly changed root and shoot elemental composition uptake.





Raising RTZ by 3°C increases the value of lettuce

We examined whether raising the RZT by 3°C could be viable option in lettuce production. Raising the RZT by 3°C relative to any of the four air temperatures enhanced plant growth and yields (Figure 2). Energy consumption analysis proved that the 22 and 27°C air temperature treatments combined with raising the RZT were most beneficial. However, there are still challenges in implementing RZT heating controls in commercial plant factories. In plant factories, plants are typically grown in vertical, multi-stage rows, so it may be more expensive to implement heating controls in all the rows (Kozai, 2013). However, creating a more sustainable system might be possible if the waste heat from the LEDs could be used to raise the RZT for each cultivation rack. Furthermore, the cost of air conditioning should be considered as the heat generated by increasing the RZT may escape into the air, requiring more energy from the air conditioners.

This research could also be applied to greenhouses and open fields. In greenhouse environments, research similar to raising the RZT has been conducted on heating strawberry crowns to increase yields (Kawade et al., 2020). As hydroponics in greenhouses has become more common, raising the RZT by heating the culture medium to increase yields may be possible. Even with conventional field production practices, raising the RZT has been conducted by covering the soil with insulating mulch during winter (Deschamps and Agehara, 2019), which indicates that actively increasing the RZT could promote plant growth in field conditions.






Conclusion

This study demonstrates that raising the RZT by 3°C increased nutrient uptake from the roots to the leaves, and in the roots, it increased various amino acids and total soluble proteins. Furthermore, plant growth and metabolites (carotenoids, ascorbic acids, and chlorophyll) were improved in a broad range of air temperatures. The results also indicate that in plant factories, raising the RZT may increase productivity and the value of lettuces grown. In the future, constructing a plant factory with RZT heating capabilities could be beneficial. Furthermore, looking into the nighttime versus daytime effects on plant growth and heating effects on the lettuce stem could be helpful.
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In response to the issue of harvesting machine failures affecting crop harvesting timing, this study develops an emergency scheduling model and proposes a hybrid optimization algorithm that combines a genetic algorithm and an ant colony algorithm. By enhancing the genetic algorithm’s crossover and mutation methods and incorporating the ant colony algorithm, the proposed algorithm can prevent local optima, thus minimizing disruptions to the overall scheduling plan. Field data from Deyang, Sichuan Province, were utilized, and simulations on various harvesting machines experiencing random faults were conducted. Results indicated that the improved genetic algorithm reduced the optimal comprehensive scheduling cost during random fault occurrences by 47.49%, 19.60%, and 32.45% compared to the basic genetic algorithm and by 34.70%, 14.80%, and 24.40% compared to the ant colony algorithm. The improved algorithm showcases robust global optimization capabilities, high stability, and rapid convergence, offering effective emergency scheduling solutions in case of harvesting machine failures. Furthermore, a visual management system for agricultural machinery scheduling was developed to provide software support for optimizing agricultural machinery scheduling.
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1 Introduction

Wheat harvesting is highly time-sensitive, with the optimal period for harvesting being very short. As the saying goes, “Harvest at ninety percent ripeness for full yield; at full ripeness, ten percent is lost.” Therefore, the scheduling of agricultural machinery is a crucial component of modern agriculture and is closely related to the productivity of agricultural operations (Bochtis et al., 2014). Proper scheduling can strategically organize the operational time and areas for machinery, preventing aimless movement, reducing operational conflicts, and minimizing repeated operations. This optimization substantially enhances agricultural production efficiency, fostering the modernization and sustainable development of agricultural operations. It is evident that the advancement of modernized agriculture relies heavily on effective machinery scheduling processes (Chen et al., 2021; Li, 2022). However, the implementation of scheduling plans is inherently dynamic. During peak seasons, the high demand for harvesters and prolonged continuous operation can lead to inevitable machinery failures. Solely relying on manual emergency scheduling methods based on experience proves insufficient for addressing the complexities of real-life situations. The absence of a proficient emergency scheduling strategy can result in extensive delays in harvests, with crops missing their optimal harvesting periods and consequently delaying the progress of harvesting operations. Adverse effects ripple throughout the entire production chain (Liu D. et al., 2022; Brewer et al., 2022). Therefore, it is urgent to explore advanced emergency scheduling methodologies for harvesters in the event of failures to enhance the overall level of scheduling efficiency (Sun et al., 2022).

Currently, the agricultural machinery scheduling has received much attention and achieved fruitful results. Scholars have tackled the scheduling problem with intelligent algorithms (Zhang W. et al., 2022; Hou et al., 2022), such as genetic algorithms (Ma et al., 2022; Liu et al., 2024), ant colony algorithms (Wang et al., 2023), particle swarm algorithms (Worasan et al., 2020; Huang et al., 2023), and hybrid optimization algorithms (He et al., 2019; He and Li, 2021; Feng et al., 2024). Similar intelligent algorithms have improved computational efficiency and the ability to make fast and accurate decisions in scheduling agricultural machines, providing a powerful tool for realizing rational agricultural machinery scheduling (Zhang W. P. et al., 2022; Zhang F. et al., 2022). In static scheduling research, various scholars have explored different perspectives, presenting a layered progression of logical relationships. Plessen (2019) developed a harvest planning method based on the coupling of crop assignment and vehicle routing, addressing the optimal sequence for servicing fields of the same crop during harvest. He et al. (2018) proposed a wheat harvest scheduling model for agricultural machinery cooperatives in China, aiming to minimize the harvesting period on fragmental farmlands while considering the constraint of minimizing differences in harvesting times among different combine harvesters. Building on this, Wang and Huang (2022) extended the research by proposing a mixed-integer linear programming model that integrates operator assignment, aiming to minimize total working time and costs. Yang et al. (2022) introduced an improved whale optimization algorithm to optimize the scheduling of multiple types of combined harvesters, aiming to comprehensively minimize total costs. Li (2022) presented an intelligent scheduling method based on non-dominated sorting genetic algorithm III (NSGA-III) and an improved ant colony algorithm for multi-machine collaborative operations, aiming to reduce operation time and enhance efficiency. Tian et al. (2023) developed and validated a multi-objective waypoint planning algorithm for drones in orchard spraying, using an improved ant colony algorithm that optimizes nodes through an improved heuristic function and introduces a ranking optimization mechanism to accelerate algorithm iterations. Overall, these studies demonstrate the progressive evolution from basic scheduling models to intelligent optimization algorithms that improve the scheduling efficiency and operational effectiveness of agricultural machinery by comprehensively considering machines, operators, and operational environments.

The aforementioned study has made significant advances in static scheduling; however, it faces challenges in ensuring reasonable scheduling when encountering disruptive events. Agricultural machinery scheduling is a dynamic and complex process, and the emergence of agricultural machinery failures hinders the original scheduling plan, which needs to be changed for the first time. Some scholars have included dynamic factors in the study of agriculture machinery scheduling. For example, Okulewicz and Mańdziuk (2017) simplified dynamic vehicle scheduling by introducing a swift, event-responsive tactic. Cao et al. (2021) optimized task assignments by balancing the workload among agricultural machinery. Seyyedhasani and Dvorak (2018) applied enhanced heuristic algorithms for agricultural machinery scheduling, accommodating field-level dynamics. Hu et al. (2020) proposed a two-stage method for agricultural scheduling planning, validated through case studies. Liu et al. (2021) introduced an improved immune algorithm, enhancing cross-regional machinery scheduling efficiency. Furthermore, Fernandez et al. (2020) employed particle swarm optimization and shuffled frog-leaping algorithms to develop a dynamic charging scheduling scheme, optimizing charging costs and improving the economic efficiency of charging stations. Liu Y. X. et al. (2022) implemented a novel hyper-heuristic algorithm for multi-line bus dynamic scheduling, significantly reducing waiting times. In the realm of agricultural drone scheduling, Chen et al. (2023) introduced a Levy annealing algorithm, demonstrating exceptional performance in schedule optimization. Moreover, Fatemi-Anaraki et al. (2023) explored the impacts of rescheduling within robotic manufacturing, providing insights into dynamic scheduling strategies. Taken together, these investigations signal an evolution toward advanced algorithmic optimization, which is critical for enhancing the dynamic scheduling of agricultural machinery and operational efficiency in farming practices.

However, the aforementioned literature has not yet conducted an in-depth study on harvester malfunctions, and the solutions for other disruptive events mostly involve complete rescheduling for optimization. These methods can cause significant disruption to the entire system, especially in the highly time-sensitive field of agriculture. This paper conducts an in-depth study on harvester malfunctions, aiming to address the disruptions caused by such failures and minimize the resulting losses. This study utilizes genetic algorithms (GA) as its primary framework, enhancing crossover and mutation techniques while incorporating ant colony algorithms to boost the overall algorithm’s local search capabilities. The objective is to enable prompt and precise decision-making in the face of harvester failures, ultimately minimizing the impact of breakdowns on scheduling plans. The key contributions of this study include the following:

	(1) Developed an emergency scheduling model focused on minimizing the overall scheduling cost, taking interference management as the central concept and utilizing the theory of multi-agricultural machinery scheduling operations as the foundation. The objective is to mitigate the disruption to the scheduling plan in case of a harvester breakdown.

	(2) Designed the solution algorithm of the model. The genetic algorithm was used as the framework, and the crossover and mutation methods were improved. The ant colony algorithm was introduced to improve the local search ability of the overall algorithm to reduce the impact of the scheduling plan due to harvester failure.

	(3) In the case study, the improved genetic algorithm proved to be superior in emergency scheduling in case of harvester failure by constructing a visualized management system for scheduling agricultural machinery and selecting actual data for simulation tests.






2 Agricultural emergency scheduling models



2.1 Problem description

The emergency scheduling problem in case of a harvester breakdown can be described as follows: an agricultural cooperative schedules M = {M1, M2,…, MM} harvesters to F = {F1, F2,…, FN} farmland for operation, and when k harvesters break down and are unable to continue their operational tasks, the remaining M = {M1, M2,…, MM − k} harvesters operate on the remaining farmland according to the scheduling goal and return to the agricultural cooperative after completing the operation. The whole scheduling process is shown in Figure 1.

[image: Flowchart illustrating a farm machinery scheduling system. It includes initial scheduling, emergency scheduling, job information updates by management, improved genetic algorithm usage, and scheduling decisions. There's monitoring for malfunctions and decision pathways, leading to either interference resolution or information preservation, which includes storing order, fault, and historical data. The chart integrates graphical elements such as farmers, machinery, and computer icons, connecting various steps in the process.]
Figure 1 | Schematic diagram of the scheduling process for agricultural machinery.

Prior to the study, hypothetical preconditions for this emergency scheduling problem are first presented:

	(1) Each farmland requires only one harvester to operate.

	(2) All harvesters are traveling at a uniform speed during the transfer process.

	(3) Broken-down harvesters return to the farm cooperative for repair by default.

	(4) All functioning machinery returns to the machinery depot after completing their tasks.

	(5) Only faulty harvesters break down into disturbing events during the scheduling process.

	(6) All harvester operations progress according to the scheduling plan.

	(7) It is assumed that all harvesters in the farm cooperative have been tasked and that no additional assignments will be considered.

	(8) The location information of the farmland and harvesters is known, and the time window of the farmland is known and does not change.

	(9) In this research study, a soft time window constraint is used, which will incur waiting costs if the harvester is earlier than the operating time and penalty costs if the operating time is exceeded.






2.2 Mathematical model

Based on the problem description of emergency scheduling, the various influencing factors were measured, and the emergency scheduling model with a soft time window and the optimization objective of minimizing the integrated scheduling cost was developed. The set of farmland F = {F1, F2,…, FN}, with Fi representing the ith farmland, and its attributes are described as Fi = {Loc_Fi, S_Fi}, where Loc_Fi and S_Fi denote the location and area of the farmland Fi, respectively, and i ∈ [1, N]. The set of harvesters M = {M1, M2, …, MM}, with Mk representing the kth harvester, is described by its attributes as Mk = {Loc_Mk, V_Mk, E_Mk}, where Loc_Mk denotes the current position of harvester Mk, V_Mk denotes the average traveling speed of harvester Mk during the plot transfer process, and E_Mk denotes the average operating speed of harvester machinery Mk, k ∈ [1, M]. For the convenience of the study, the following mathematical symbols are defined, as shown in Table 1.

Table 1 | Symbols and meaning.


[image: Table detailing various symbols and their meanings in agricultural scheduling. Symbols include \( y \), \( S_i \), \( V \), and many others, representing concepts like integrated scheduling costs, farmland area, traveling speed, and machinery operation costs. It also includes time variables for initial and emergency scheduling plans and unit costs in Chinese Yuan (CNY).]
Objective function:

[image: Minimize \( y = C_1 \sum_{k=1}^{M} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{kij} d_{ij} + C_2 \sum_{k=1}^{M} \sum_{i=1}^{N} x_{ki} s_i + C_3 \sum_{i=1}^{N} s_i P_k + C_5 \sum_{k=1}^{M} \sum_{i=1}^{N} x_{ki} |t_{ki} - t_k| \).]

Constraints:

[image: Summation notation showing the sum from k equals 1 to N of x sub i k equals 1, with the condition k not equal to k prime, displayed beside equation number 2.]

[image: The mathematical expression shows the summation from \(t=1\) to \(N\) of \(x_{it}\) equal to zero, denoted as equation (3).] 

[image: Summation formula representing a constraint in mathematical notation. The double summation iterates over indices i and j from 1 to N. The expression inside is x_sub_ijk times S_sub_j, which is less than or equal to Q_sub_k for k in set M. It is labeled as equation 4.]

[image: Summation equation with constraints: sum from i equals 1 to M of sum from k equals 1 to N of x sub i j k equals 1, where j is an element of N. Labeled as equation 5.]

[image: The image shows a mathematical inequality: the double summation from i equals one to N and j equals one to N of x subscript i j k times d subscript j is less than or equal to D subscript i k, where k is an element of M. It is labeled with the number six on the right.]

[image: Mathematical expression for \( P_k \) defined in three cases: \( x_{ik}(E_i - t_{ki})C_3 \) for \( t_{ki} < E_i \); zero for \( E_i \leq t_{ki} \leq L_i \); and \( x_{ik}(t_{ki} - L_i)C_4 \) for \( t_{ki} > L_i \). Equation labeled as (7).]

[image: Mathematical expression defining \(w_{ik}\) as the maximum of zero and the difference between \(E_i\) and \(t_{ik}\), where \(i\) belongs to set \(N\) and \(k\) belongs to set \(M\).]

[image: The image shows a mathematical formula: \(t_{ij} = \frac{d_{ij}}{V}\), where \(i, j \in N\). The equation is labeled as equation (9).]

[image: Mathematical equation showing \( x = k_i + l_{ij} + w_{ij} + c_j + t_{ij} \) with a reference number (10) in parentheses.]

[image: Equation defining variable \( v_{ijk} \). It equals 1 if harvester \( k \) is traveling from location \( i \) to \( j \); otherwise, it equals 0. The equation is labeled as (11).]

[image: Variable \( x_{ik} \) is defined as a binary indicator: it equals 1 if harvester \( k \) is operating on farmland \( i \), and 0 otherwise. Equation number 12.]

The objective function Equation 1 represents the comprehensive scheduling cost minimization as the objective function, where the first part is the objective function for the initial scheduling, which is the sum of the three of the scheduling total traveling cost, job cost, and penalty time cost, and the second part is the offset cost after the breakdown occurs; the final objective is to minimize the comprehensive scheduling cost as the goal. Equation 2 ensures that, in the event of a failure, operational harvesters are scheduled from their current locations. Equation 3 ensures that faulty harvesters are not scheduled. Equation 4 indicates that the operating capacity of each piece of agriculture machinery cannot exceed its maximum operating capacity limit. Equation 5 indicates that each piece of agriculture machinery operates only once in each field. Equation 6 indicates that each piece of agriculture machinery does not operate beyond its maximum distribution distance. Equation 7 represents the penalty cost constraint, where the agriculture machinery arrives at the field earlier than the earliest operation time, incurring a waiting cost, and later than the latest operation time, incurring a penalty cost. Equation 8 represents the waiting time constraint. Equation 9 represents the traveling time constraint. Equation 10 represents the time constraint that the current time to reach the farm field = time to reach the previous field + waiting time + previous farm operation time + travelling time. Equation 11 represents the decision variable: the decision variable of whether or not agriculture machinery k travels from farm field i to farm field j. Equation 12 represents another decision variable: the decision variable of whether agriculture machinery k serves in farm field i or not.





3 Design of the improved genetic algorithm



3.1 Analysis of model-solving algorithms

By analyzing the agricultural machinery scheduling problem, it can be approached and solved similarly to the emergency vehicle scheduling problem. The solution process for emergency scheduling is illustrated in Figure 2.

[image: Three-panel diagram of a farm scheduling process. Step 1 shows the initial scheduling scheme with colored routes connecting fields and a machinery depot. Step 2 displays the emergency scheduling with a harvester failure marked by a red icon. Step 3 illustrates the completed schedule with adjusted routes. Legend includes symbols for the machinery depot, fault information, harvester types, routes, fault locations, and farmland completion status.]
Figure 2 | Schematic diagram of the emergency scheduling process.

Upon receiving a breakdown scheduling request at the information center of the agricultural cooperative, the breakdown request needs to be processed immediately. The optimization objective is to minimize the comprehensive scheduling cost while ensuring that the remaining operating capacity of the agricultural machine in the farmland, the distance, and the offset time are within feasible limits. An emergency scheduling plan should be quickly incorporated into the operation task rather than completely re-scheduled. The process of receiving and scheduling the remaining farmland after the breakdown of a piece of agriculture machinery is illustrated in Figure 3.

[image: Diagram illustrating a timeline for emergency scheduling. The timeline shows three key points: ti-2, ti-1, and ti. Between ti-1 and ti, remaining field data is accepted. Adjustment time occurs between ti-2 and ti-1. From ti to ti+1, emergency scheduling plan B is implemented. Plan B addresses harvester failure issues, activated during [ti-2, ti-1], and implemented from [ti, ti+1].]
Figure 3 | Emergency scheduling process schematic.




3.2 Selection and design of model-solving algorithms



3.2.1 Choice of model-solving algorithms

To solve the emergency scheduling problem in harvester breakdown scenarios, a heuristic algorithm is considered the optimal choice for addressing dynamic problems owing to its capacity to effectively solve challenges through an evolutionary process. Therefore, a genetic algorithm combined with an ant colony algorithm (GA-ACO) was proposed, which is based on the GA framework and introduces ACO to further add a local optimal approach. First, GA, as a typical genetic optimal framework, achieves global optimality in solving various scheduling problems. Second, ACO preserves the pheromone information in the environment in advance, which is very useful when there is a small change in the environment, and constructs the whole scheduling scheme directly by adding the non-working farmland to the current partial scheduling scheme. The combination of the two algorithms not only complements their respective drawbacks but also takes into account the difficulties of scheduling complexity to obtain a better contingency scheduling solution.




3.2.2 Design of model-solving algorithms

The flowchart of the algorithm is shown in Figure 4. The specific design steps of the improved genetic algorithm are as follows:

[image: Flowchart illustrating an algorithm operation for agricultural machinery planning. The input section contains parameters for machinery, field, algorithm, and costs. Key parameters include operational efficiency, field time windows, population size, and cost components. The operation section outlines steps such as initializing population, ant colony algorithm operation, fitness calculation, and selection, leading to the best solution output. Arrows represent the process flow, with iterative steps for generating and merging populations.]
Figure 4 | Improved genetic algorithm flowchart.

(1) Input the number of the faulty harvester, the moment of breakdown, and the parameters of the agriculture machinery; get the farmland to be operated with the normal harvester; and finally, add it to the emergency scheduling sequence. The specific steps are as follows Algorithm 1.

Algorithm 1 | Emergency scheduling information extraction.


[image: Flowchart displaying a fault handling algorithm in farming operations. Inputs include V_Fault, T_Fault_Time, Initial_V, Initial_Route, and Initial_Time. The output is Farmland and V harvester status. The procedure initializes Farmland as empty, assigns Initial_V to V, and sets V_Fault to zero. It iterates while extracting farmland, checking if V equals V_Fault. If a breakdown occurs, it updates variables and adjusts schedules based on fault time. The loop updates Farmland and decrements V by V_Fault before concluding.]
(2) The algorithm uses integer coding for encoding and decoding. The chromosome length corresponds to the number of operating farmlands (1 to n). The initial population is generated randomly. The algorithm prioritizes operations based on the distance between farmlands and agricultural machinery, as well as operation time. It then assigns operation points to each piece of agricultural machinery based on these priorities. As shown in Figure 5, where the number of farmlands is 9, g(i) denotes the priority of operation point i, where the smaller number of g(i) means the higher priority of the operation point. The order of operation of agriculture machinery obtained after decoding is 2–1-7–4-9–3-8–6-5.

[image: Chart showing two rows of numbers. The top row labeled "Farmland number i" includes the numbers one to nine. The bottom row labeled "decode g(i)" displays the numbers two, one, six, four, nine, eight, three, seven, five. Both rows are in green-bordered squares.]
Figure 5 | Decoding process.

(3) Improvement of the ant colony algorithm operation. The ACO is derived from the behavior of ants in searching for food, where ants mark paths by releasing pheromones and other ants choose paths with more pheromone concentration. In this study, the transfer probability in the ACO algorithm’s optimization strategy is shown in Equation 13, and the pheromone concentration is updated in Equations 14, 15. The solved populations are then merged into the genetic algorithm population for iteration.

[image: Equation describing the probabilistic state transition rule in ant colony optimization. P_ij(t) is the probability of moving from node i to j at time t. If j is allowed, it equals the product of τ_ij(t) and η_ij(t) raised to powers α and β, respectively, divided by the sum over allowed node transitions. Otherwise, P_ij(t) equals zero. Equation (13).]

[image: Mathematical equation displaying t̅<sub>ij</sub> equals (1 - p) multiplied by t̅<sub>i</sub> plus the summation from k equals 1 to m of Δt̅<sub>ij</sub><sup>k</sup>, followed by equation number 14.] 

[image: Formula expression for \(\Delta x_{ij}^k\), where it equals \(d_{ij}^k\) if \((i,j)\) is in \(T^k\), and \(0\) otherwise, labeled as equation (15).]

where Pkij(t) is the probability that the kth ant chooses path i to j. α and β are parameters that adjust for the effects of pheromone concentration and heuristic information on path selection. ηij(t) is the heuristic information on path i → j, τij is the pheromone concentration of i → j, ρ ∈ (0, 1) is the volatility coefficient of the pheromone, m is the number of ants, Δτkij is the pheromone left by the kth ant on path i → j, and dij is the distance from node i to node j.

To prevent the algorithm from prematurely converging to a local optimum solution, we limit the pheromone concentration of each path to a predefined range (Equation 16), avoiding the “infinite loop” phenomenon.

[image: Equation sixteen presents a piecewise function with three conditions. When tau subscript i j is between tau minimum and tau maximum, it equals tau subscript i j. If tau subscript i j is less than or equal to tau minimum, it equals tau minimum. If tau maximum is less than or equal to tau subscript i j, it equals tau maximum.]

where τmax and τmin are the maximum and minimum pheromone settings, respectively.

We introduced a methodology (Liu Y. Y. et al., 2022) to enhance the efficiency of the update rule and then utilized a binary approach for optimization. Ants were ranked based on their traversal times across all regions after each iteration, with only the pheromones released by the top 50% fastest ants being retained, as described in Equations 17, 18.

[image: Mathematical equation showing updates for a variable \( y_{ij} \). It includes terms with a decay factor \((1-p)\), accumulation of weighted differences over several indices, and an additional noise term \(e\Delta b_{ij}^e(t)\), labeled as equation (17).]

[image: Equation defining \( A_{ij}^{k^*}(t) \). It equals \(\frac{1}{L} f(i,j)\) if \( f(i,j) \) belongs to \( T^{k^*} \); otherwise, it equals zero. Marked as equation (18).]

where e is the weight size of the path Tbs, Δτbsij(t) is the pheromone added at moment t of the shortest route, Tbs is the shortest route, and Lbs is the length of Tbs.

(4) Fitness. The fitness of the lowest comprehensive scheduling cost as the optimization objective, from the objective function of Equation 1 can be obtained from fitness, as shown in Equation 19:

[image: Mathematical equation showing \( f = 1 / \min y \), labeled as equation 19.]

(5) Selection, crossover. A roulette selection operator was used in the operator operation to randomly select and retain the optimal individuals based on the fitness ratio. The crossover method is PMX crossover, as shown in Figure 6. The detailed steps are as follows. Step 1: Randomly select the start and end positions of genes within the parent chromosomes (the selected positions on the two chromosomes are identical). Step 2: Exchange the positions of the two gene groups. Step 3: Perform conflict detection. Based on the swapped gene groups, establish a mapping relationship; taking the 7–5–2 mapping as an example, it is evident that in the results of Step 2, parent 1 has two instances of gene 7. These are then converted into gene 2 through the mapping relationship, and so forth until all conflicts are resolved. Step 4: Ultimately, the offspring are generated.

[image: Diagram depicting a four-step process of genetic algorithm crossover. Step 1 shows two parent sequences generating random numbers. Step 2 involves exchanging gene positions between these sequences. Step 3 detects conflicts in the adjusted sequences. Step 4 shows the final offspring sequences produced from the parents’ genetic material. Each step involves a transformation of numbers across gene positions.]
Figure 6 | Schematic diagram of the crossover approach.

The specific steps for PMX are as follows Algorithm 2.

Algorithm 2 | Crossover steps.


[image: Pseudocode for genetic algorithm crossover. Input involves two parent chromosomes. Random indices \(i\) and \(j\) are generated and compared. Gene segments between indices in parent chromosomes are switched to create child chromosomes. Conflict detection and mapping relationship are established for duplicates in each parent before creating children. Final output is two child chromosomes.]
(6) Mutation. Mutation improves the diversity of the population, and it is important to note that the choice of the mutation rate is a critical parameter. An inadequate mutation rate can lead the algorithm to get stuck in local optimal solutions, whereas an excessively high mutation rate may result in the algorithm losing its search direction. Therefore, the selection of the mutation rate should be fine-tuned based on the specific circumstances. The mutation steps are illustrated in Figure 7.

[image: Illustration of a gene exchange process between two sequences. The top sequence shows numbers: 2, 5, 8, 1, 7, 4, 2, 6. The bottom sequence shows numbers: 2, 5, 4, 1, 7, 8, 2, 6. The numbers 8 and 4 are exchanged between the sequences, indicated by arrows.]
Figure 7 | Schematic diagram of the variation.

The specific steps of the mutation are as follows Algorithm 3.

Algorithm 3 | Steps of mutation.


[image: Code snippet for generating a new chromosome. Input is 'chromosome', and output is 'New_chromosome'. The process involves selecting random indices \(i\) and \(j\) within the chromosome length, ensuring they are not equal. Swap elements at these indices and assign the modified chromosome to 'New_chromosome'.]
(7) Elite retention. Elitism is implemented to prevent population degradation. In this process, the best individual from each generation is duplicated. One of these top individuals is directly passed on to the next generation without any genetic alterations, while the other continues to participate in the evolutionary process as usual. The specific steps of Elite retention are as follows Algorithm 4.

Algorithm 4 | Steps of Elite retention.


[image: Text explaining a genetic algorithm procedure. Step 1 selects the best individuals as "elite". Step 2 duplicates the elite to "elite_copy". Step 3 adds "elite_copy" to offspring. Step 4 includes "elite" in the new generation. Step 5 updates the population.]





4 Example validation



4.1 Experimental data

To verify the effectiveness and advantages of the improved genetic algorithm proposed in this study for the emergency scheduling problem in case of harvester breakdown scenarios, the farmland data of this study were taken from Chuanwan District, Deyang City, Sichuan Province, as shown in Figure 8. Simulated operational tasks were set up based on the actual operational environment to verify the performance and stability of the algorithm. The algorithm was run on AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz, 16 GB of RAM, Windows 11, and MATLAB. The basic information about the management center of the agricultural machinery cooperative and the farmland is shown in Table 2, which mainly includes geographic location information, farmland area, and operation time window, where O denotes the management center of the agricultural machinery cooperative. The harvester was selected as the Lovol Gushen GE80S(4LZ-8E2), and its working efficiency in farmland is 1 hm2/h, and the traveling speed during the transfer of harvester is 24 km/h.

[image: Map with numbered yellow pushpin markers spread across a green landscape, marking various geographic locations. One green pin labeled "0" is centrally located. The numbers range from 0 to 71.]
Figure 8 | Map of the experiment.

Table 2 | Experimental data information.


[image: A table displaying columns labeled "No.", "Longitude (°)", "Latitude (°)", "Area (Mu)", and "Time window (h)". The table lists numerical data in two sections, with entries ranging from 0 to 71. Each row contains specific numerical values for longitude, latitude, area size, and a time window. Some entries show time windows like "08:00–09:00", others vary. Certain fields in the table are marked with a dash, indicating missing data.]



4.2 Initial scheduling program

In the initial scheduling stage, the initial values are set for the algorithm parameters: The population size is 500, the maximum number of iterations is 1,000, the crossover probability is 0.9, and the variance probability is 0.05. The number of ants is 50, the pheromone importance factor α = 1, the heuristic factor β = 2, and the pheromone evaporation coefficient is 0.75. The harvester transfer cost is 10, the operation cost is 3, and the penalty cost is 0.5. The experimental data and algorithm parameters are incorporated into the objective function of the initial scheduling, the simulation solution of the algorithm is completed using MATLAB programming, and the results of the initial scheduling are shown in Table 3.

Table 3 | Initial scheduling results.


[image: Table showing harvesters with operating routes, initial movement costs in distance and operating (CNY), penalties, and optimum total costs (CNY). Five harvesters, labeled \(M_1\) to \(M_5\), have varying routes and costs. All penalties are zero, with total costs ranging from 488.84 to 564.76 CNY.]
The scheduling results of the initial scheme are shown in Figure 9. Figure 9A shows the convergence of the improved genetic algorithm in the operation process; by combining the advantages of the genetic algorithm and the ant colony algorithm, it can be concluded that the objective function tends to be stable in the generation of 470, which plays a positive role in improving the convergence speed and the solution accuracy. Figure 9B shows the route map of the initial scheduling scheme, from which it can be concluded that the farmland where each harvester works maintains the optimal distance. Figure 9C shows the Gantt chart of the initial scheduling scheme, which shows the sequence of the farmland worked by each harvester. The completion time of each harvester’s operation task is approximately the same, where the white part is the harvester’s transfer phase and the green part is the harvester’s operation phase.

[image: Chart with three parts. A: Line graph showing the decline of initial scheduling cost in Chinese Yuan with increasing iteration number, titled "Improved genetic algorithm." B: Map diagram displaying routes between various coordinates, labeled with numbers. C: Schedule of harvester numbers from M1 to M5 against time in hours, presented in a grid format.]
Figure 9 | Initial scheduling scheme result graph. (A) Initial scheduling convergence graph. (B) Initial scheduling route map. (C) Initial scheduling Gantt chart.




4.3 Emergency scheduling program

In the contingency scheduling scheme, the improved genetic algorithm, the genetic algorithm, and the ant colony algorithm were used to compare different harvesters and different time periods when they break down. The contingency scheduling results were obtained by the three algorithms by performing operations 10 times at randomly set breakdown moments, and the optimal cost, average cost, standard deviation, and each scheduling cost obtained are shown in Table 4. As can be seen from Table 4, the optimal scheduling integrated costs using the improved genetic algorithm are 47.49% and 34.70% lower than the genetic algorithm and the ACO algorithm, respectively, after the first agriculture machinery breaks down at moment t1. After the second agriculture machinery breaks down at moment t2, the optimal scheduling integrated costs are reduced by 19.60% and 14.80%, respectively. After the third agriculture machinery breaks down at moment t3, the optimal scheduling integrated costs are reduced by 32.45% and 24.40%, respectively. In addition, the standard deviations of the improved genetic algorithm are smaller than those of the other two algorithms, which indicates that the improved genetic algorithm has a greater advantage in the accuracy of the optimal solution and can find the optimal solution in different harvesters and different time periods. Therefore, the improved genetic algorithm can meet the task requirements of emergency scheduling in case of a harvester breakdown.

Table 4 | Emergency scheduling results.


[image: A table comparing different algorithms: improved genetic algorithms, genetic algorithm, and ant colony algorithm. It lists breakdown time, broken down harvester, distance, operating costs, penalty, offset cost, optimum total cost, average cost, and standard deviation for each algorithm. Data shows varying costs and penalties, with improved genetic algorithms providing lower overall costs and penalties compared to the others.]
The emergency scheduling route map and Gantt chart for each fault stage are shown in Figures 10–12, where the red markers in the route map and Gantt chart are the locations where the harvester breaks down. From the route map, it can be intuitively seen that although all three algorithms are capable of completing the operation tasks in all farmlands, the operation route of the genetic algorithm is more complicated, and such an operation route increases the transfer time and prolongs the operation progress. The ant colony algorithm has a better operation route relative to the genetic algorithm, but the second half of the operation route of the farmland is beyond the scope of the time window relative to the improved genetic algorithm, which increases the penalty cost, whereas the improved genetic algorithm maintains the optimal distance and optimal cost in all three randomly set breakdown cases. From the operation progress Gantt chart, it can be concluded that the emergency scheduling scheme of the genetic algorithm and ant colony algorithm has the largest change from the initial scheduling scheme, while the emergency scheduling scheme of the improved genetic algorithm has less perturbation, and the maximum completion time is shorter than that of both the genetic algorithm and ant colony algorithm, so the improved genetic algorithm improves the efficiency of operation, has the optimal operation route and the shortest maximum completion time among all the algorithms, and is able to satisfy the harvester’s scheduling timeliness.

[image: Graphs A, B, and C compare routes based on latitude and longitude using the ant colony algorithm, genetic algorithm, and improved genetic algorithm. D, E, and F show time-based harvester data for each algorithm with consistent patterns, highlighting fault time.]
Figure 10 | Emergency scheduling results at moment t1. (A–C) Emergency scheduling route map. (D–F) Emergency scheduling Gantt chart.

[image: Six-panel comparison showing algorithms for solving a problem depicted on maps and execution timelines. Panels A, B, and C illustrate node connections via Ant Colony, Genetic, and Improved Genetic algorithms, respectively, with latitude and longitude axes. Panels D, E, and F present corresponding harvester timelines over 17 hours, indicating task allocation and fault times. Each algorithm demonstrates different efficiencies and routes across the nodes and execution times.]
Figure 11 | Emergency scheduling results at moment t2. (A–C) Emergency scheduling route map. (D–F) Emergency scheduling Gantt chart.

[image: A series of illustrations comparing three algorithms: the Ant Colony Algorithm, Genetic Algorithm, and Improved Genetic Algorithm. Panels A, B, and C show spatial plots with different colored paths and nodes marked with latitudes and longitudes. Panels D, E, and F display corresponding Gantt charts, depicting task assignments over time for the same algorithms. Each chart shows task sequences with harvester numbers, time in hours, and fault times.]
Figure 12 | Emergency scheduling results at moment t3. (A–C) Emergency scheduling route map. (D–F) Emergency scheduling Gantt chart.

In addition to comparing the integrated scheduling costs at different time stages and under different harvester breakdown scenarios, the trends of the three algorithms during the iterative process were further analyzed. As shown in Figure 13, the genetic algorithm has a strong global search ability, but it is easy to fall into local optimal with the ant colony algorithm, while the improved genetic algorithm has the advantage of high convergence efficiency in three randomly set breakdown scenarios, which is due to the initial optimization search through the genetic algorithm to obtain the optimal solution quickly, and then the ant colony algorithm is used to carry out a secondary search for the sub-optimal solution and finally merge the populations to obtain the optimal solution. The improved genetic algorithm combines the advantages of the two algorithms; the first step of the algorithm, to a certain extent, determines the size of the optimal solution, and it can be seen from the figure that the improved genetic algorithm can greatly improve the efficiency of the algorithm’s initial search. More specifically, it can improve the evolutionary efficiency of the algorithm, optimize the overall size of the solution in fewer iterations, and reduce the search time. The improved optimization performance of the algorithm is evidenced not only by the high optimization accuracy but also by the highly stable results.

[image: Three line charts labeled A, B, and C compare scheduling costs over iterations for three algorithms: Improved Genetic Algorithm, Genetic Algorithm, and Ant Colony Algorithm. A shows costs starting above CNY twelve thousand, B above CNY four thousand, and C above CNY six thousand. Each chart shows the Improved Genetic Algorithm as the lowest cost.]
Figure 13 | Convergence graph of contingency scheduling results. (A) Convergence graph at moment t1. (B) Convergence graph at moment t2. (C) Convergence graph at moment t3.




4.4 System design

The study presents a scheduling model and algorithm for agricultural machinery, leading to the development of a visual management system. This system utilizes modern information technology and intelligent tools to create an information interaction platform for agricultural management departments, machinery cooperatives, farmers, and households. It enables precise analysis of agricultural machinery operations scheduling, real-time supervision, and handling of massive operational data. The system is structured into five layers: user, application, service, data, and equipment. The framework is illustrated in Figure 14.

[image: Flowchart illustrating an agricultural machinery management system, divided into layers: User, Application, Service, Data, and Equipment. The User layer includes working area, operation time, and job location. The Application layer covers basic information and management modules. The Service layer involves data reception and vehicle terminal services. The Data layer focuses on MySQL database functions and data types. The Equipment layer lists agricultural machinery, server, display equipment, storage, Beidou positioning, and network equipment.]
Figure 14 | System framework diagram.

The system collects fault information and then uploads agriculture machinery data to the back-end of the system to form information interaction and achieve intelligent decision-making, and the visualization of scheduling is shown in Figure 15. The implementation of the system design can effectively achieve human–computer interaction and improve the overall management service level.

[image: A satellite map with yellow lines indicating routes for a smart farm scheduling system. Red markers are placed at multiple locations across the farmland, each numbered for reference. The landscape includes fields, buildings, and bodies of water.]
Figure 15 | Breakdown scheduling visualization interface.




4.5 Discussion

Table 5 compares recent studies on the scheduling of agricultural machinery, including scheduling objectives and research methods, and lists the characteristics of each method to better explain the experimental results obtained in this study.

Table 5 | Comparison of agriculture machinery scheduling studies for various scheduling objectives.


[image: A table listing various studies on agricultural machinery scheduling. It includes columns for numbers, references, objectives, methods, and features. The studies use algorithms such as genetic, particle swarm optimization, ant colony, and others for dynamic scheduling tasks. Each entry describes different approaches and benefits like meeting dynamic demands, minimizing transfer distance, resolving task allocation issues, and improving scheduling timeliness in malfunction scenarios.]
In this study, the proposed mathematical model and improved algorithm for the problem of the phenomenon of agricultural machines breaking down during the execution of scheduling tasks have the following benefits in terms of results. First, the initial scheduling problem is solved, and the managers of agricultural cooperatives can make quick decisions to allocate the agriculture machinery in the agriculture machinery pool to the operating farmland with high quality. Second, in the event that agricultural machinery breaks down during the scheduling task and is unable to regain operational capability in a short period of time, they are able to respond quickly to the remaining farmland and make timely emergency strategies. Finally, this research study can also be extended to the emergence of new operating farmland situations during the execution of scheduling tasks to develop better emergency scheduling strategies.

Issues related to this study should not be ignored. First, for scheduling agricultural machinery with loading capacity, its own capacity should also be considered when a breakdown occurs. Second, as the system contains many data, including job retrospective data, the data security and system maintenance of the management center should be strengthened to prevent data privacy leakage or even system crash.





5 Conclusion

We addressed an emergency scheduling problem where a harvester breaks down during the execution of a scheduled task and is unable to restore its operating capability in a short time. The objectives were to achieve the lowest comprehensive scheduling cost and resume and complete the remaining farm operations as soon as possible. Upon analysis of influencing factors in agricultural machinery operations, we established an emergency agricultural machinery scheduling model with the lowest comprehensive scheduling cost using an improved genetic algorithm that combined genetic and ant colony algorithms. Finally, compared with the scheduling solutions of the genetic algorithm and the ant colony algorithm, the scheme obtained in this study optimizes the sequence of agricultural machine operation and can meet the emergency scheduling task demands of the harvester in the event of a breakdown. The main conclusions of this study are as follows:

(1) Combined with the current situation of agricultural machine scheduling under a disturbance event, the emergency scheduling problem is proposed when an agricultural machine breaks down and can no longer restore its operating ability in a short time. Combining the influencing factors and characteristics of the scheduling process of agricultural machines, an objective function with the goal of minimizing the operating time offset is added to the initial scheduling. After that, the problem is solved by the improved genetic algorithm, and the results show that the optimal integrated scheduling cost of the improved genetic algorithm in the three breakdown stages is reduced by 47.49%, 19.60%, and 32.45% compared with the genetic algorithm’s 34.70%, 14.80%, and 24.40% compared with the ACO algorithm, which verifies the effectiveness of the improved genetic algorithm.

(2) To avoid getting trapped in local optima during the search for the global optimum, an improved algorithm combining GA and ACO was designed. The algorithm combines the advantages of the two algorithms; convergence speed is fast, and at the same time, it has a good global optimization ability; through three different time periods and different breakdowns of agricultural machinery samples, the three algorithms are compared, and the results show that the improved genetic algorithm enhanced convergence efficiency, resulting from the combination of a genetic algorithm and an ant colony algorithm.

(3) This study designed and developed a set of agricultural machinery scheduling visualization management systems that provide intelligent information references for agricultural machinery scheduling operation scenarios. It can effectively provide all-around service information interaction, realize multi-position integration and complete functions, meet the needs of agricultural machinery operation service scheduling operations, and provide support for the reasonable planning of the whole scheduling scene.
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Introduction

Green pepper yield estimation is crucial for establishing harvest and storage strategies.





Method

This paper proposes an automatic counting method for green pepper fruits based on object detection and multi-object tracking algorithm. Green pepper fruits have colors similar to leaves and are often occluded by each other, posing challenges for detection. Based on the YOLOv5s, the CS_YOLOv5s model is specifically designed for green pepper fruit detection. In the CS_YOLOv5s model, a Slim-Nick combined with GSConv structure is utilized in the Neck to reduce model parameters while enhancing detection speed. Additionally, the CBAM attention mechanism is integrated into the Neck to enhance the feature perception of green peppers at various locations and enhance the feature extraction capabilities of the model.





Result

According to the test results, the CS_YOLOv5s model of mAP, Precision and Recall, and Detection time of a single image are 98.96%, 95%, 97.3%, and 6.3 ms respectively. Compared to the YOLOv5s model, the Detection time of a single image is reduced by 34.4%, while Recall and mAP values are improved. Additionally, for green pepper fruit tracking, this paper combines appearance matching algorithms and track optimization algorithms from SportsTrack to optimize the DeepSort algorithm. Considering three different scenarios of tracking, the MOTA and MOTP are stable, but the ID switch is reduced by 29.41%. Based on the CS_YOLOv5s model, the counting performance before and after DeepSort optimization is compared. For green pepper counting in videos, the optimized DeepSort algorithm achieves ACP (Average Counting Precision), MAE (Mean Absolute Error), and RMSE (Root Mean Squared Error) values of 95.33%, 3.33, and 3.74, respectively. Compared to the original algorithm, ACP increases by 7.2%, while MAE and RMSE decrease by 6.67 and 6.94, respectively. Additionally, Based on the optimized DeepSort, the fruit counting results using YOLOv5s model and CS_YOLOv5s model were compared, and the results show that using the better object detector CS_YOLOv5s has better counting accuracy and robustness.





Keywords: DeepSORT, deep learning, green pepper, fruit counting, track tracking




1 Introduction

Green pepper, a significant commercial crop, can undergo multiple harvests based on fruit maturity during the growing season from June to November (Stein et al., 2016), and pepper yields exhibit considerable variation across different harvesting periods. Consequently, pre-harvest estimation of green pepper yield can significantly aid in optimizing harvest processes, labor management, transportation, and storage conditions (He et al., 2022). Currently, green pepper yield estimation predominantly depends on manual sampling, a time-consuming and labor-intensive method (Aggelopoulou et al., 2010; Wulfsohn et al., 2012). Recent advancements in machine vision and deep learning have demonstrated substantial potential in enhancing fruit yield estimation accuracy (Ren and Yang, 2016). This integration offers an effective solution for the yield estimation of green peppers.

Fruit yield can be reflected laterally by the quantity (Teixidó et al., 2012; Zhang Y. et al., 2022; Payne et al., 2013). Dorj et al. (2017) and Malik et al. (2016) implemented distinct image thresholding techniques to segregate citrus fruits from the background. This approach was used for detecting and counting citrus fruits in single images. Tu et al. (2020) and Behera et al. (2021) utilized the Faster-RCNN convolutional neural network for fruit detection and counting in single images.

The correlation between the number of fruits in a single image and the count estimated by the algorithm is approximately 95%. However, counting individual scattered fruits in single images may not accurately reflect the total count of fruits in the entire orchard. Therefore, when counting fruits in an orchard, it is common to use interval image sampling to reflect the overall situation of the entire orchard. For example, Song et al. (2014) counted peppers on densely planted trees by capturing images at 5cm intervals, thereby obtaining multi-view representations of the same fruit. They employed the ‘bag of words’ model for pepper detection in individual images and identified the same peppers across multiple images by analyzing coordinate shifts, thus minimizing repeat counts. The experimental data revealed that the correlation coefficient between manual and automated pepper counting methodologies stood at 74%. It can be seen that although Y. Song et al. tried to reduce the repeat count by analyzing the peppers in adjacent images, the interval image sampling still caused the problem of the repeat count (Liu et al., 2019). To reduce such problems, when using interval sampling to count apples and oranges, Xia et al. (2022) deployed CenterNet for the detection of fruits and developed a patch-matching model to match the same fruit in adjacent images. The experimental results indicated a correlation between manual and algorithm counting of apples and oranges at 97.37% and 95.62% respectively. However, the patch-matching model necessitated a brute-force comparison of all patches, resulting in an average processing time of 5.33 minutes per image sequence.

To achieve rapid and accurate automatic fruit counting while reducing duplicate counts, many researchers employ multi-object tracking algorithms on sequences of fruit videos. These algorithms detect fruits in video sequences and assign a unique ID to each fruit, enabling the counting of fruits based on the number of IDs. Gao et al. (2022) utilized the YOLOv4-tiny algorithm in conjunction with the CSR-DCF algorithm for the detection and tracking of apples. This approach achieved a counting accuracy of 91.49% and enabled fruit tracking at speeds of 2–5 fps on a CPU. Similarly, Vasconez et al. (2020) compared the influence of multiple target detection algorithms on tracking and counting based on the Bayesian multi-target tracking algorithm. They found that, under the same tracking algorithm, object detection algorithms with higher detection performance often resulted in better counting accuracy. Additionally, they discovered that when processing fruit video sequences, the multi-object tracking required only 10 milliseconds per frame, and the average counting accuracy for different types of fruits reached 90%. While tracking fruits for counting can yield good results, the dense growth of fruit trees often leads to fruits being obscured by each other or by foliage. Fruits may disappear and reappear in video sequences at different time intervals (Li X. et al., 2022; Wu et al., 2023), significantly increasing the difficulty of fruit tracking. Therefore, to improve the accuracy of fruit counting, Gao F. et al. (2021) optimized the Hungarian matching algorithm based on the YOLOv4-tiny algorithm. This enhancement strengthened the association of the same apples across different time intervals in video sequences. Ultimately, they achieved an average counting accuracy of 81.94% for apples in the orchard. Similarly, Zhang W. et al. (2022) improved the YOLOv3 algorithm and SORT (Simple Online and Realtime Tracking) algorithm simultaneously to count citrus fruits in the field. By combining an efficient object detection algorithm with an accurate object tracking algorithm, they aimed to prevent duplicate counting caused by complex fruit occlusion. The method demonstrated a Mean Absolute Error of 8.1% and a Standard Deviation of 8% in orange counting.

Accurate fruit detection is imperative for accurate tracking (Mccool et al., 2016). The integration of precise object detection and efficient multi-object tracking algorithms makes automated fruit counting through video sequences feasible (Zhang W. et al., 2022). The detection of green peppers presents significant challenges due to their dense distribution on plants, severe occlusion by branches and leaves, and color similarity to the background. Traditional visual detection algorithms struggle to achieve both high precision and recall rates in green pepper detection (Stein et al., 2016). Convolutional Neural Networks (CNNs) have become the mainstream approach for feature extraction in green pepper detection. Li X. et al. (2021) proposed a detection model targeting the scale variation problem of green peppers based on YOLOv4-tiny. This model efficiently detects small green peppers, as well as highly overlapping and occluded ones, achieving a detection accuracy of 95.11%. The following year, Wang et al. (2022) balanced the parameter count and detection accuracy of the YOLOv5s model to detect small chili peppers. They achieved an mAP (mean Average Precision) value of 95.46% for this task. Cong et al. (2023) introduced a Swin Transformers attention mechanism into the Mask R-CNN model for effective segmentation of green peppers under strong lighting, overlapping instances, and heavy foliage occlusion, achieving an average detection accuracy of 98.1%. In addition, Wei et al. (2023) studied the influence of different light intensity and light Angle on the recognition and positioning of green pepper based on the YOLOv5s model. The study showed that the detection effect of green pepper was the best under the illumination Angle of 90°, and the mAP value was 97.3%.

Based on the research mentioned above, this paper proposes a novel method for automatic counting of green pepper fruits based on object tracking, aimed at facilitating rapid and accurate estimation of green pepper yields. Effective object detection and precise object tracking are crucial for achieving high counting accuracy. Therefore, this paper implements the following tasks:



1.1 Improvement of YOLOv5s model with lightweight design and attention mechanism

Enhance the YOLOv5s model by incorporating the concepts of lightweight model design and attention mechanisms. Adopt a Slim-Neck structure to maintain model accuracy while reducing computational complexity and enhancing detection speed. Integrate channel attention modules and spatial attention modules to improve feature perception and extraction of green peppers at different locations within images.




1.2 Optimization of DeepSort algorithm for green pepper tracking

Address the issue of double counting caused by ID switches during green pepper tracking by optimizing the matching mechanism within the DeepSort algorithm. These adjustments aim to reduce ID switching events, particularly those triggered by significant changes in green pepper motion characteristics.




1.3 Implementation of track post-processing method

Use a track post-processing method to optimize green pepper tracks, thereby minimizing double counting to the maximum extent possible.





2 Methods

The enhanced DeepSort multi-target tracking algorithm is integrated with the optimized YOLOv5s target detection algorithm for the counting of green peppers. The optimized YOLOv5s algorithm rapidly identifies green pepper fruits within the video sequence. Subsequently, the data about detected fruits are inputted into the enhanced DeepSort algorithm. This algorithm associates identical fruits and allocates a distinct ID to each one throughout the video sequence. Ultimately, the counting of green peppers is achieved by tallying the unique IDs assigned to each fruit. The technological roadmap for this counting method is depicted in Figure 1.

[image: Mobile device mounted on a robot captures video of plants in a garden. Schematic diagrams show processing steps including convolutional neural networks and tracking algorithms. Process visualizes input sequences and generates plant tracking and counting results, with steps like feature extraction, template updating, and optimization.]
Figure 1 | Roadmap of counting method.



2.1 Optimized YOLOv5s object detection algorithm

The YOLOv5s algorithm, a one-stage detection framework, adeptly balances detection speed with accuracy. Its architecture comprises four primary components: the Input Layer, Backbone, Neck, and Prediction Head, as shown in Supplementary Figure 1. Within the Input Layer, green pepper images are resized to 640×640 pixels using adaptive picture scaling, ensuring training speed while maintaining model accuracy. Additionally, the Mosaic data augmentation method (Bochkovskiy et al., 2020) is employed, where four images are randomly scaled, cropped, and arranged together to enrich the dataset and enhance the model’s generalization ability. The Backbone network consists of structures such as Focus, BottleneckCSP (Redmon and Farhadi, 2018), and SPP (Spatial Pyramid Pooling) (He et al., 2014), which are used to extract target features from the input image. The Neck utilizes a network structure that integrates FPN (Feature Pyramid Network) (Lin et al., 2017) and PAN (Path Aggregation Network) (Liu et al., 2018) to aggregate high-level and low-level features, reducing the loss of target features due to spatial compression and channel expansion. This integration helps preserve important features across different scales and resolutions, improving the overall effectiveness of the feature extraction process. The Prediction Head utilizes operations such as NMS (Non-Maximum Suppression) (Bodla et al., 2017) to determine the best bounding boxes and applies other techniques for refining predictions. Additionally, it outputs three different-sized feature maps to predict targets of various sizes. This approach allows for comprehensive object detection across different scales within the input image.

In the process of identifying green peppers, the similarity in color between fruits and leaves, as well as their overlapping and occlusion by branches and leaves, all affect green pepper fruit recognition. The accuracy and speed of green pepper fruit recognition also influence the subsequent tracking of it. Therefore, this paper proposes the CS_YOLOv5s model based on the YOLOv5s model for green pepper detection. Firstly, the Slim-Neck combined with GSConv (Li H et al., 2024) is used to optimize the Neck part of the YOLOv5 model, achieving a better balance between detection accuracy and speed. GSConv integrates DWconv and Conv modules to accelerate prediction calculations while minimizing the loss of semantic information during spatial compression and channel expansion of feature maps. Simultaneously, a cross-stage partial network module VoV-GSCSP, designed using a one-shot aggregation method, is employed for effective information fusion between feature maps at different stages. This reduces the complexity of computations and network structures while maintaining sufficient accuracy. To mitigate the interference of green pepper branches and leaves on fruit recognition, the CBAM attention mechanism is introduced at the connection between the Neck part and the Prediction Head of the YOLOv5s model. This enhances the perception of green pepper fruit features at different positions, improves the model’s feature extraction capability, and increases the attention to green pepper fruit features. Figure 2 illustrates the network structure of the optimized YOLOv5s algorithm.

[image: Flowchart of a neural network structure titled "Slim-Neck". It includes sections labeled "Input", "Backbone", and "Output". The "Backbone" has components like Focus, Conv, C3, and SPP arranged vertically. The "Slim-Neck" section features modules such as GSConv, VoVGSCSP, and CBAM, with processes like Concat and Unsample connecting them. The "Output" section leads to two Conv layers, each connected to a box. An input image of plants is shown in the "Input" section.]
Figure 2 | Network structure of the CS_YOLOv5s algorithm.



2.1.1 CBAM attention mechanism

CBAM (Woo et al., 2018) (Convolutional Block Attention Module) represents an attention mechanism tailored for image processing, encompassing two sub-modules: Channel Attention (Lu and Hu, 2022) and Spatial Attention (Gao C. et al., 2021). The structural layout of CBAM is depicted in Figure 3. This module enhances green pepper recognition by further extracting features from channels and spatial locations, effectively suppressing interference information and accentuating significant locations.

[image: Diagram illustrating a feature refinement process with input passing through a channel attention module and a spatial attention module. The results are combined to produce a refined feature output.]
Figure 3 | CBAM structure diagram.




2.1.2 Slim-neck combined with GSConv

Within the Neck layer of YOLOv5s, the integration of Slim-Neck with GSConv has yielded notable results in the field of automotive autonomous driving. To form the Slim-Neck network structure, the C3 module in the Neck layer is substituted with the VoVGSCSP module. This alteration enhances the model’s generalization capabilities and concurrently reduces the number of channels and parameters. Within the Slim-Neck structure, the GSConv module replaces the standard Convolution (Conv) module. GSConv fuses Standard Convolution (Zhou et al., 2022) (SC) with Depth-wise Separable Convolution (Hossain et al., 2021) (DSC). Through a Shuffle structure, information from SC is intermingled with that from DSC, ensuring both the stability of the model’s performance and a reduction in parameters. The combined Slim-Neck and GSConv network structure effectively minimizes the number of parameters while amplifying the model’s feature extraction capabilities. Figures 4 and 5 illustrate the structures of GSConv and Slim-Neck, respectively.

[image: Diagram of a GSConv process. An input with C1 channels undergoes convolution, reducing to C2/2 channels. It splits into two paths: direct to concatenate and through depthwise convolution. Both paths merge with concatenate, then shuffle, resulting in the output with C2 channels.]
Figure 4 | GSConv structure diagram.

[image: Flowchart illustrating two network blocks: GSBottleneck and VoVGSCSP. GSBottleneck involves GSConv layers, with inputs at C1 channels, processing through Conv and GSConv, and output at C2 channels. VoVGSCSP processes input at C1 channels through Conv, GSBottleneck, Concat, and Conv layers, outputting at C2 channels. Arrows indicate data flow direction.]
Figure 5 | Slim-Neck structure diagram.





2.2 DeepSort multiple target tracking algorithm

The DeepSort multi-target tracking algorithm comprises four key components: the Kalman filter algorithm (Li et al., 2015), the Hungarian algorithm, the Reid model, and Cascade matching. In the following frame, the Kalman filter algorithm estimates the target’s motion state. Mahalanobis distance, measuring the discrepancy between the prediction box and the detection box, serves as the target’s motion feature. In contrast, the cosine distance, which assesses the similarity between the detection box feature vector and the track feature set, defines the target’s appearance feature. These features are then cascaded for matching. For tracks and detection boxes that do not match, the cost matrix is determined by the Intersection Over Union (IOU) value between the prediction and detection boxes. Subsequently, these elements are re-matched by employing the Hungarian algorithm.

The Kalman filter algorithm serves as an optimization tool for estimating the states of dynamic systems. When tracking green peppers, this algorithm predicts the fruit’s motion state in the next frame. This algorithm operates in two phases: Prediction and Update. In the Prediction phase, the motion state of the green pepper at time T is forecasted based on its state at T-1. The Update phase involves a weighted analysis of the green pepper’s motion states at times T-1 and T, culminating in an adjusted motion state at time T. The specific formula is shown in (1)–(6).

Prediction stage:

[image: State prediction equation with variables and indices: \( \hat{X}_{t|t-1} = F_t \times X_{t-1|t-1} + B_t \times u_t \). Equation is labeled as (1).]

[image: Covariance prediction equation: P subscript t vertical bar t minus 1 equals F subscript t minus one P subscript t minus one vertical bar t minus one F subscript t minus one superscript T plus Q subscript t.]

[image: Mathematical notation showing "X-hat subscript t slash t minus 1," likely representing a predicted state or estimate.]  and [image: Mathematical notation showing "P" with a subscript "t slash t minus one."]  are the states and covariance matrices obtained by the prediction; [image: Mathematical notation showing \( X_{t-1/t-1} \).]  is the time state of t-1; [image: The image features a section of mathematical notation showing the letter "F" with a subscript "r" in a stylized font.]  is the state transition matrix; [image: The image shows the variable "u" with a subscript "r" in a mathematical or scientific context.]  is the external control input; [image: Mathematical notation showing "P" with subscript "t-1/t-1".]  is the covariance matrix of the current state; [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. Optionally, add a caption for more context.]  is the covariance matrix of process noise.

Update stage:

[image: Measurement update equation shown: \( y_t = Z_t - H_t X_{t|t-1} \), labeled as equation (3).]

[image: Kalman gain equation: \( K_t = P_{t|t-1}H_t^T(H_tP_{t|t-1}H_t^T + R_t)^{-1} \).]

[image: Status update equation: \( X_{i/j} = \hat{X}_{i/j-1} + K_j y_j \), labeled as equation (5).]

[image: Covariance update equation: \( P_{t|t} = (I - K_tH_t)P_{t|t-1} \).]

[image: It appears you sent a mathematical expression or placeholder rather than an image. Please upload the actual image or provide a URL for it so I can help generate the alternate text.]  is the measurement residual; [image: Mathematical notation of the variable "Z" with a subscript "t".]  is the measured value; [image: I'm unable to view or interpret images directly. Please upload the image, and I can help you generate alternate text for it.]  is the measurement matrix; [image: Math notation showing the letter "R" with a subscript "r".]  is the covariance matrix of measurement noise; [image: I'm sorry, I can't see the image you're referring to. Please provide the image or a URL for it, and I can help generate the alternative text.]  is the Kalman gain; I is the identity matrix; [image: Mathematical expression "X" with subscript "t / t".]  is the update status at t time.

The Hungarian algorithm, an optimization tool, addresses the optimal allocation problem through combinatorial matching. Within the DeepSort framework, the Hungarian algorithm computes the minimum cost between object detection boxes and tracking tracks, thus determining the most effective matching scheme. The Intersection Over Union (IOU) value between the prediction box and the detection box forms the cost matrix. The Hungarian algorithm then utilizes this matrix to ascertain the optimal match between target detection and tracking. To circumvent ID switching of the detected target, which can occur due to occlusion or overlap, both the motion and appearance features of the target are cascaded for matching.




2.3 Improving DeepSort algorithm

Green pepper tracking faces significant challenges due to fruit overlap and branch occlusion. Camera movement, fruit overlap, and branch occlusion can substantially alter green peppers’ motion features between video frames. This alteration hinders the ability to match them with their previous tracks, often resulting in the assignment of new IDs. To mitigate ID switching attributable to changes in green peppers’ motion features, this study integrates an appearance matching algorithm for green peppers into the DeepSort algorithm, thereby enhancing the influence of the matching mechanism based on green pepper appearance features.

Furthermore, to decrease the frequency of ID switching during tracking, the track optimization algorithm from SportsTrack has been incorporated. This method processes the generated tracks by analyzing their correlations, thereby reducing mismatches during tracking. Figure 6 presents the flow chart of the enhanced DeepSort multi-target tracking algorithm.

[image: Flowchart illustrating a tracking process, starting with "Tracks" leading to "Kalman prediction" and subsequent paths. Confirmed tracks undergo "Track optimization" and "Cascade matching" with target detection results. Red dashed lines highlight additional loops through "Appearance feature matching" and "IOU matching." Tracks are classified as matched or unmatched, leading to updates or deletion based on survival frames. The process includes "Kalman update" and creation of new unconfirmed tracks.]
Figure 6 | Improved flow chart of DeepSort multi-target tracking algorithm.



2.3.1 Appearance feature matching

In green pepper fruit tracking, ID switching primarily occurs due to motion feature changes across two video frames, manifesting in two forms: permanent and reversible switching. Permanent switching occurs when the motion features of a green pepper fruit change irrecoverably, leading to the loss of original features and subsequent matching to a new, stable track. This results in a permanent change in the ID of the green pepper fruit, as illustrated in Figure 7A. As illustrated in the figure, the green pepper initially identified as ID 35 undergoes a permanent ID switch, changing from 35 to 49. Conversely, reversible switching happens when the motion features of a green pepper fruit mutate but swiftly recover, allowing the original features to persist and the initial track to be re-associated. In such instances, the green pepper fruit’s ID undergoes a reversible change, as depicted in Figure 7B. As can be seen from the figure, the green pepper fruit with ID 123 briefly switches to 142 and then returns to 123. However, for the green pepper count, ID 142 will be recorded. In both scenarios, the green pepper fruit risks being double-counted.

[image: Illustration showcasing two identification-switching processes in tracking. Section A demonstrates permanent switching, with IDs changing from 35 to 49 between frames N and N+1. Section B shows reversible switching, where IDs switch from 123 to 142 at frame N+1, then recover back to 123 at a later frame. The paths are marked with arrows and dotted lines to highlight the transitions.]
Figure 7 | Two cases of green pepper ID switching. (A) indicates that the previous ID of the pepper track can no longer be restored after the switch due to the change of pepper motion characteristics, and (B) indicates that the previous ID of the pepper track can be restored after the switch due to the change of pepper motion characteristics.

The cascade matching within the DeepSort algorithm facilitates the alignment between detected green peppers and generated tracks, following a weighted assessment of both appearance and motion features. Nevertheless, when motion features undergo significant changes, cascade matching may fail, leading to the generation of a new track and necessitating the re-matching of the detected green pepper fruit. This study enhances the matching mechanism of the DeepSort algorithm, amplifying the role of green pepper appearance features in the target-track association process. Post-cascade matching, an additional green pepper appearance feature matching algorithm is incorporated. This step re-matches green peppers and tracks that become dissociated due to motion feature mutations, thereby reducing the incidence of ID switching in green pepper tracking.




2.3.2 Track optimization

The optimization of tracking can be broadly classified into two primary categories: continuous track optimization and fragment track optimization. As shown in Figure 8A, in a continuous time series, multiple tracks are successively linked to the same green pepper, resulting in an ID switch for the fruit. In fragment track optimization, illustrated in Figure 8B, occlusions or camera movements cause a green pepper to temporarily disappear and reappear, matching with a new track and resulting in an ID switch in fragmented time. In both scenarios, there is a risk of double-counting the green pepper fruit. The improved SportsTrack track optimization algorithm is applied to refine green pepper tracking, aiming to minimize this double-counting error.

[image: Diagram demonstrating ID switching in object tracking. Panel A shows ID switching for continuous trajectories, with objects initially boxed in pink, switching to green. Panel B illustrates track fragment ID reassignment, with objects initially boxed in purple, then reassigned to blue, indicating a change in tracking ID during interruptions.]
Figure 8 | Track optimization of two cases. (A) represents ID switching in the continuous track, and (B) represents ID switching in the pepper track in the track fragment.

In the captured video sequence, each green pepper fruit exhibited uniform linear motion and possessed a distinct shape, markedly differing from the athletes tracked in SportsTrack (Wang et al., 2023). This study integrates position and shape feature matching into the SportsTrack track optimization algorithm, enhancing the accuracy of the optimization process. Initially, unstable and partially stable tracks are eliminated based on the variance in their appearance feature similarity. For two stable track segments containing M and N frames, respectively, a similarity matrix is computed if they persist for a reasonable duration. Should the count of M×N similarity values exceed half of their product, the position and shape features of the two tracks are matched. Upon satisfying all criteria, the two tracks are deemed to have the same ID and consequently merged into a single track. Supplementary Figure 2 illustrates the complete track optimization process.






3 Experimental



3.1 Dataset acquisition

The green pepper variety utilized in this experiment was ‘Xiangyan 15’, cultivated in the experimental field of Hunan Agricultural University, located in Furong District, Changsha City, Hunan Province. When collecting data, the self-made radio-controlled car was driven at a constant speed using a remote control., A DJI Osmo Mobile SE handheld stabilizer was mounted on the car to secure the phone and minimize vibrations, ensuring stable image capture. The phone model used was an OPPO Reno6 Pro+. The specific parameters of the remote-controlled car are listed in Table 1.

Table 1 | The parameters of the radio-controlled car.


[image: Table showing parameters and corresponding values or methods: Drive mode is four-wheel drive, speed range is zero to two meters per second, steering control is differential steering, and load capacity is zero to five kilograms.]
At 8 am (low), 12 noon (high), and 4 PM (middle) different light intensities, the radio-controlled car at 0.2m/s speed to collect data. The fruit density was distinguished according to the number of green peppers in each image. Figure 1 illustrates the shooting process and the resulting image quality. The dataset comprises 1200 images, each with a resolution of 1920×1080, stored in JPG format. Additionally, seven videos were captured at a resolution of 1920×1080, in MP4 format, with a frame rate of 30 fps. Detailed information about each video is provided in Table 2.

Table 2 | Detailed information about each video.


[image: Table showing video details grouped into Test and Train categories. Columns include Video, Light intensity, Green pepper density, and Video duration in seconds. Test videos: Video001 to Video004, Light intensity ranges from Low to High, Green pepper density varies. Train videos: Video005 to Video007, Light intensity is Medium to Low, pepper density is Medium. Video durations range from 6 to 27 seconds.]
To augment the green pepper image dataset, standard data enhancement techniques including Image Rotation, Gaussian Blur, Mirror Flip, and Brightness Change were employed in random combinations. The effects of this image expansion are depicted in Supplementary Figure 3. Consequently, the green pepper image dataset expanded from 1200 to 4800 images. The data set is divided into the training set and the test set by a ratio of 7:3. Similarly, the video dataset was split into training and test datasets in a 4:3 ratio. This division was designed to facilitate the training of the ReID model within the DeepSort algorithm and to evaluate its tracking performance and counting accuracy.




3.2 Experimental platform

The experimental setup utilized an HP DELL T5820 workstation, configured with a XEON W2155 CPU, 32GB of RAM, and an NVIDIA RTX2080Ti 12G graphics card. The Pytorch1.8 deep learning framework was deployed on a Windows 10 operating system, with Python 3.8 as the programming language.

For YOLOv5s model training, input images were resized to 640×640 pixels. Stochastic Gradient Descent (SGD) was employed to optimize the model parameters. The Weight Decay was set at 0.005, with a Momentum Factor of 0.937. The training used a Batch Size of 4 across 300 Epochs.

During ReID model training, the ResNet network served as the base model. Input images were resized to 128×256, with Stochastic Gradient Descent (SGD) and a Momentum Factor of 0.9 for optimization. Leveraging Market’s official pre-training weights, the training was conducted with a Batch Size of 64 over 300 Epochs.




3.3 Evaluation metrics

In assessing the object detection algorithm, key metrics include Recall (R), Precision (P), mean Average Precision (mAP), and the Detection Time for a single image and GFLOPs. These metrics are defined by the formulas in Equations (7)–(9).

[image: Formula for precision: \( \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \).] 

[image: Formula for recall showing "Recall equals TP divided by TP plus FN," where TP represents true positives and FN represents false negatives. Equation is labeled as number eight.] 

[image: Equation for mean Average Precision (mAP), showing mAP equals the sum of individual average precisions (AP) from k equals zero to N, divided by N, labeled as equation nine.] 

Here: TP - the number of real samples;

FP - the number of false positive samples;

FN – number of false negative samples;

N - the number of classes in the sample.

The evaluation of the multi-target tracking algorithm employs ID Switch (IDs) (Luo et al., 2014), Multiple Object Tracking Accuracy (MOTA), and Multiple Object Tracking Precision (MOTP) as key metrics. IDs quantifies the frequency of ID changes for the same target caused by incorrect associations; ideally, this metric should be zero. MOTA effectively gauges the performance of tracking algorithms in terms of target detection and track stability. MOTP assesses the positioning accuracy of the detection system. The calculations for MOTA and MOTP are detailed in Equations (10) and (11).

[image: Equation for Multiple Object Tracking Accuracy (MOTA): MOTA equals one minus the sum of false positives (FP), false negatives (FN), and identity switches (IDSW) divided by the sum of ground truths (GT). Equation number 10 appears next to it.] 

[image: Formula for Multiple Object Tracking Precision (MOTP): MOTP equals the sum over all time frames t of the sum of distances d_t,i, divided by the sum over all time frames t of the number of matches c_t, multiplied by one hundred percent. Equation number 11.] 

Here: FN - the number of false negative examples;

FP - the number of false positive examples;

GT - the number of labeled targets;

IDSW - the number of ID switch;

[image: Please upload the image, and I'll help you generate the alternate text for it.]  - the number of successful matches in the current frame;

[image: Mathematical expression showing the variable \( d_{r,i} \), with subscript variables \( r \) and \( i \).]  - the distance between the real box and the detection box;

i - the current detection target;

t - the sequence number of the frame.

To evaluate the performance of green pepper counting in video sequences, three indexes are proposed: Average Counting Precision (ACP), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). ACP and MAE can measure the performance of the model and reflect the accuracy of counting, while RMSE can reflect the robustness of the model (Jiang et al., 2021). These metrics assess both the accuracy and error in counting. The formulas for these evaluation indexes are provided in Equations (12)–(14).

[image: Mathematical formula for ACP: the average of 1 minus the fraction of GT count divided by GT, summed from i equals 1 to N, then divided by N. Equation number 12.] 

[image: Formula for Mean Absolute Error (MAE), showing MAE equals the sum of absolute differences between ground truth (GT) and count, divided by N. Labeled as equation thirteen.] 

[image: Root Mean Square Error (RMSE) formula: RMSE equals the square root of the sum from one to N of the squared differences between GT and COUNT, divided by N. Equation number 14.] 

Here: GT - the number of labeled targets;

COUNT - the number of statistics;

N - the number of videos.





4 Results analysis



4.1 Detection results and analysis

The training process of the model is depicted in Supplementary Figure 4, showing that the CS_YOLOv5s model converges faster during training, with a lower final loss value compared to YOLOv5s. To evaluate the impact of each improvement module on the YOLOv5s model, ablation experiments were conducted on the test set, and the results are presented in Table 3.

Table 3 | Test comparison of test results.


[image: Table comparing the YOLOv5s model with its variations including Slim-Nick + GSConv and CBAM. Metrics shown are precision (P/%), recall (R/%), mean average precision (mAP/%), detection time per image in milliseconds, and GFLOPs. The baseline YOLOv5s has 99% precision, 93.9% recall, 96.8% mAP, 9.4 ms detection time, and 16.3 GFLOPs. With Slim-Nick + GSConv, precision is 98.7%, recall 94.5%, mAP 96.9%, detection time 6.0 ms, and 15.3 GFLOPs. Adding CBAM yields 98.6% precision, 95% recall, 97.3% mAP, 6.1 ms detection time, and 15.4 GFLOPs. Checkmarks indicate module additions to YOLOv5s.]
After applying the Slim-Neck + GSConv structure to the YOLOv5s model, the precision decreased, but recall and mAP values increased. Additionally, the Detection time of a single image and GFLOPs were reduced. Further adding the CBAM attention mechanism resulted in the proposed CS_YOLOv5s model. Experiment results show that with the addition of the CBAM attention mechanism, which enhances the model’s attention to green pepper fruit features, recall and mAP values improved, while precision, detection time of a single image, and GFLOPs remained relatively unchanged. Comparing the YOLOv5s model with the CS_YOLOv5s model, the latter exhibits slightly lower accuracy but a 1.1% increase in recall, a 0.5% increase in mAP value, and a reduction of 3.3ms in the detection time per single image.

The detection results of the model for green peppers with different densities are shown in Figure 9. As illustrated in Figure 9, the optimized YOLOv5s algorithm demonstrates superior detection confidence for green peppers across different densities, compared to the standard YOLOv5s algorithm. Furthermore, the optimized YOLOv5s algorithm notably reduces missed detections of green pepper, thereby enhancing the stability of subsequent green pepper tracking.

[image: Comparison of YOLOv5s and Optimized YOLOv5s object detection on pepper plants. Each pair of images shows detected peppers outlined with red boxes and confidence scores. The optimized version generally exhibits better precision, identifying additional peppers with higher confidence scores across the images.]
Figure 9 | Detection results of different density models.

This paper compares CS_YOLOv5s with the YOLO series and the DR_DETR object detection algorithm, as shown in Table 4. From the table, it is evident that YOLOv5s has a significant advantage in recognizing chili peppers. Although YOLOv6s, YOLOv8s, and YOLOv3-tiny exhibit slightly higher Precision than YOLOv5s, their Recall and mAP values are much lower than YOLOv5s, and they have higher parameter counts. While RT-DETR achieves good performance, its parameter count is excessively large. The proposed CS_YOLOv5s in this paper achieves good levels of recall rate, precision rate, mAP value, and GFLOPs, meeting the requirements for chili pepper recognition and subsequent tracking tasks.

Table 4 | Comparison of multiple target detection algorithms.


[image: Table comparing various models with columns for model name, precision (%), recall (%), mean average precision (%), and GFLOPs. CS_YOLOv5s has precision 98.60, recall 95.00, mAP 97.30, and 15.40 GFLOPs. YOLOv5s has precision 99.00, recall 93.90, mAP 96.80, and 16.30 GFLOPs. RT-DETR shows precision 95.80, recall 96.80, mAP 97.90, and 108.30 GFLOPs. YOLOv3-tiny has precision 99.00, recall 78.00, mAP 88.00, and 19.00 GFLOPs. YOLOv6s shows precision 99.00, recall 90.80, mAP 95.20, and 44.20 GFLOPs. YOLOv8s has precision 99.20, recall 91.40, mAP 95.50, and 28.40 GFLOPs.]



4.2 Track results and analysis

This experiment incorporates both the appearance feature matching algorithm and the track optimization algorithm into the DeepSort framework. To evaluate the impact of each component on the DeepSort algorithm, CS_YOLOv5s was used as the object detector, and the two algorithms were tested in turn.

Following the integration of the two algorithms into the DeepSort framework, the tracking effectiveness of green pepper fruit under three distinct conditions was compared, with the results detailed in Table 5. The test results indicate that post-integration, the Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP) for green pepper tracking under various conditions exhibit minimal fluctuations, while the number of ID switches is notably reduced. Videos 001 and 002 share identical lighting conditions but differ in green pepper density. A comparative analysis of their test results reveals the effectiveness of both algorithms in track optimization, with the addition of the appearance feature matching algorithm showing a more pronounced impact. Videos 002 and 003 present the same green pepper density, yet Video 003 features lower light intensity. The comparison between these videos indicates an enhanced optimization effect from the appearance feature matching algorithm under reduced light conditions. These results suggest that lower light intensity leads to increased correlation errors between the target and track, attributable to changes in the motion features of green pepper fruit.

Table 5 | Test comparison of tracking effect.


[image: Table comparing performance of the CS_YOLOv5s model across three videos with different algorithms. Metrics include GT, MOAT/%, MOTP/%, and IDs. Algorithms such as Deep Sort and its variations are listed. Video 001 and 002 show MOAT/% values in the range of 91.0 to 92.8, with Video 003 having a range of 88.6 to 89.4. MOTP/% values range from 85.9 to 88.3, and IDs from 13 to 29.]
Upon comprehensive analysis, it was observed that the standalone integration of the appearance feature matching algorithm resulted in a 25% reduction in the number of ID switches. Furthermore, the exclusive addition of the track optimization algorithm led to a 4.41% decrease in ID switches. When both the appearance feature matching and track optimization algorithms were combined, there was a notable reduction of 29.41% in ID switching. These results are detailed in Table 6.

Table 6 | Comprehensive comparison of tracking effect test.


[image: A table comparing tracking algorithms using the CS_YOLOv5s model across three videos. Algorithms include Deep Sort, Deep Sort with appearance matching, DeepSort with optimization, and DeepSort with both features. Ground Truth (GT) is two hundred forty-seven. Metrics: MOAT/% ranges from ninety-point-nine to ninety-one-point-three, MOTP/% is eighty-seven-point-one and eighty-six-point-nine, and IDs range from forty-eight to sixty-eight.]



4.3 Counting results and analysis

In order to explore the influence of the appearance matching algorithm and track optimization algorithm on the counting of green pepper fruit, CS_YOLOv5s was used as the detector of DeepSort algorithm to carry out the counting comparison experiment of green pepper fruit. The count of green pepper fruits under three distinct conditions within the test set, as detailed in Table 1, was comparatively analyzed, with the findings presented in Table 7. An examination of the test results from Videos 001 and 002 reveals that an increase in green pepper fruit density correlates with a decrease in counting accuracy and an increase in missed detections. This trend is attributed to the intensified influence of green pepper branches, leaves, and fruit overlap on both detection and tracking as the density increases. Comparing Videos 002 and 003, a decrease in light intensity is observed to lead to lower counting accuracy and higher missed detection rates for green pepper fruit. The difficulty in identifying green pepper fruit in low-light conditions is the primary reason for this outcome. Upon comparing the three scenarios, it is evident that under challenging conditions of low light and high-density green pepper fruit, the integration of both algorithms significantly enhances counting accuracy.

Table 7 | Comparison of counting effect tests.


[image: Table comparing tracking algorithms across three videos: "DeepSort," "DeepSort + appearance matching," "DeepSort + optimization," and "DeepSort + appearance matching + optimization." Metrics include ground truth (GT), count, ID switch (IDSW), average computation performance (ACP), and mean absolute error (MAE). Each video shows varying results for each algorithm, indicating differences in performance and accuracy.]
A comprehensive evaluation across all three scenarios was conducted to compare the effects of the two algorithms on counting accuracy, with the findings detailed in Table 8. In the absence of optimization algorithms, the Average Counting Precision (ACP) stands at 88.13%, the Mean Absolute Error (MAE) at 10, and the Root Mean Square Error (RMSE) at 10.68. Following the sequential addition of the appearance feature matching and track optimization algorithms, the ACP increases by 5.46% and 2.44% respectively, while both the MAE and RMSE decrease correspondingly. When both algorithms are integrated into the DeepSort algorithm simultaneously, for green pepper counting in videos, the ACP (Average Counting Precision), MAE (Mean Absolute Error), and RMSE (Root Mean Squared Error) values of 95.33%, 3.33, and 3.74, respectively. Compared to the original algorithm, ACP increases by 7.2%, while MAE and RMSE decrease by 6.67 and 6.94, respectively. The integration of these two algorithms results in a substantial enhancement of the counting accuracy robustness of the algorithm.

Table 8 | Comprehensively comparison of counting effect tests.


[image: Table comparing different DeepSort algorithms across four metrics: number of videos, ACP, MAE, and RMSE. Each algorithm, including DeepSort with appearance matching, optimization, and both enhancements, processes three videos. ACP ranges from 88.13% to 95.33%, MAE drops from 10 to 3.33, and RMSE ranges from 10.68 to 3.74.]
To investigate the impact of YOLOv5s and CS_YOLOv5s on green pepper fruit counting, comparative experiments were conducted using the improved DeepSort algorithm as the basis. The experimental results are summarized in Table 9 below. In conclusion, the CS_YOLOv5s model demonstrates significant advantages in green pepper fruit counting accuracy and robustness compared to YOLOv5s. However, the FPS improvement when processing videos using CS_YOLOv5s is only slightly higher than that of YOLOv5s, indicating that the matching process while tracking green pepper fruits consumes significant computational resources. Based on this study, the processing speed of videos reaches 17 FPS, which is insufficient for the real-time processing of 30 FPS videos. In order to realize the real-time detection of green pepper fruit, it is necessary to reduce the video frame rate to 15FPS. Obviously, after the frame rate is reduced, the sampling interval of the two frames of images is not consistent with the sampling in this experiment. Therefore, the speed of the radio-controlled car should be reduced by half.

Table 9 | Effect of target detector on counting.


[image: Table comparing two algorithms: "DeepSort + Appearance matching + optimization" using models YOLOv5s and CS_YOLOv5s. Both process 3 videos. YOLOv5s results: 93.29% ACP, 5.33 MAE, 5.58 RMSE, 15.9 FPS. CS_YOLOv5s results: 95.33% ACP, 3.33 MAE, 3.74 RMSE, 16.2 FPS.]



4.4 Track effect improvement



4.4.1 Comparison results of adding appearance feature matching

In the DeepSort algorithm, the green pepper fruit’s appearance feature matching algorithm was integrated into the matching process, with the test results depicted in Figure 10. Post-integration, this algorithm effectively alleviates the two primary types of false associations stemming from the motion feature mutations of green pepper fruit, leading to a reduction in the number of ID switches.

[image: Diagram showcasing two scenarios of ID switching and stabilization in image tracking. In section A, "permanent switching" occurs when the original DeepSORT algorithm switches IDs between frames, depicted as "35" to "49". Adding appearance matching prevents this switch, maintaining ID "34". Section B illustrates "reversible switching"; original DeepSORT switches from "123" to "142" but later recovers the ID. Adding appearance matching stabilizes the ID as "107". Each scenario is represented with sequences of frames marked with IDs and arrows indicating processes.]
Figure 10 | Effect of green pepper tracking after improvement. (A) shows the improvement effect of pepper trajectory under the condition of  'A' in Figure 7 before and after the algorithm is used; (B) shows the improvement of pepper trajectory in the case of 'B' in Figure 7 before and after the algorithm is used.




4.4.2 Comparison results of track optimization

The optimization of the green pepper fruit tracking process significantly alleviated incorrect target-to-track matching, with the test results presented in Figure 11. By utilizing track context information, issues of ID switching in both continuous and fragmented tracks were mitigated, resulting in more stable tracking of green pepper fruit.

[image: Diagram showing two panels labeled A and B, illustrating ID switching in object tracking. Panel A displays the transition from an original track with ID switching to an optimized track with merged tracks. Panel B shows the original track with fragment reassignment IDs, leading to an optimized track with merged tracks again. Both panels depict sequences of images with arrows indicating changes.]
Figure 11 | Results of green pepper track optimization. (A) shows the improvement effect of pepper track under the condition of 'A' in Figure 8 before and after the algorithm is used; (B) shows the improvement of pepper trajectory in the case of 'B' in Figure 8 before and after the algorithm is used.






5 Conclusion

This paper focuses on the fusion and individual optimization of the DeepSort multi-target tracking algorithm and the YOLOv5s target detection algorithm to enable accurate counting of green peppers in video sequences, conducting experiments to verify the efficacy of these optimizations. The experiments led to the following conclusions:

	(1) A target detection model named CS_YOLOv5s based on the YOLOv5s framework was proposed. CS_YOLOv5s utilizes a Slim-Neck combined with GSConv to optimize the Neck layer, balancing the model’s detection accuracy and speed. Additionally, the model incorporates the CBAM attention mechanism to enhance the feature perception capability of the model for different positions of green pepper fruits, thereby improving feature extraction. Experimental results demonstrate that the CS_YOLOv5s model achieved an mAP (mean Average Precision) of 98.96%, Precision rate of 95%, Recall rate of 97.3%, and Detection Time for a single image of 6.3 ms. Comparative analysis under different densities of green pepper fruits showed that the performance of the CS_YOLOv5s model surpassed that of the original model.

	(2) In response to the causes of ID switching observed in green pepper fruit tracking, this paper enhances the matching mechanism of the DeepSort algorithm, placing greater emphasis on green pepper characteristics during the matching process. Additionally, the track optimization algorithm from SportsTrack was employed and refined for improved green pepper track. Using CS_YOLOv5s as the object detector, after sequentially integrating these enhanced functionalities into the DeepSort algorithm, while the improvements in MOAT (Multiple Object Tracking Accuracy) and MOTP (Multiple Object Tracking Precision) are modest, a significant reduction in ID switching is observed. By simultaneously integrating these two algorithms into DeepSort, the number of ID switches for pepper fruits in the video decreased from 68 to 28, representing a reduction of 29.41%.

	(3) The impact of appearance feature matching and track optimization algorithms on the counting accuracy of green pepper fruit was experimentally investigated within the DeepSort framework. These two algorithms demonstrated varying degrees of effectiveness in enhancing the counting accuracy of green peppers. When compared across various environments, the appearance feature matching algorithm was found to more effectively improve counting accuracy. After integrating both algorithms, the Average Counting Precision (ACP) increased to 95.33%, the Mean Absolute Error (MAE) decreased to 3.33, and the Root Mean Square Error (RMSE) decreased to 3.74. Compared to the original algorithm, ACP increases by 7.2%, while MAE and RMSE decrease by 6.67 and 6.94, respectively. The algorithm significantly improves the counting accuracy and robustness of green pepper fruits. and based on the optimized DeepSort algorithm, the influence of different detectors on counting is compared, and it is found that better detectors will get better results.






6 Outlook

The research demonstrates that combining object detection algorithms with object tracking algorithms can effectively, quickly, and accurately count pepper fruits, thereby estimating pepper fruit yield, which has practical value. However, there are numerous varieties of peppers, and harvesting requirements and growing conditions vary. Therefore, future research will further expand to acquire more datasets to enhance adaptability to different agricultural environments.

In addition, the research shows that the fruit counting of green pepper can basically achieve real-time detection, but the real-time detection frame rate needs to be improved by further optimization algorithms. The tracking and matching process of pepper fruit consumes a lot of time and computing resources. Future efforts could focus on optimizing matching algorithms to simplify them and improve matching speed while ensuring accuracy.
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As one of the most important economic crops, grapes have attracted considerable attention due to their high yield, rich nutritional value, and various health benefits. Identifying grape bunches is crucial for maintaining the quality and quantity of grapes, as well as managing pests and diseases. In recent years, the combination of automated equipment with object detection technology has been instrumental in achieving this. However, existing lightweight object detection algorithms often sacrifice detection precision for processing speed, which may pose obstacles in practical applications. Therefore, this thesis proposes a lightweight detection method named YOLOv8s-grape, which incorporates several effective improvement points, including modified efficient channel attention (MECA), slim-neck, new spatial pyramid pooling fast (NSPPF), dynamic upsampler (DySample), and intersection over union with minimum point distance (MPDIoU). In the proposed method, MECA and NSPPF enhance the feature extraction capability of the backbone, enabling it to better capture crucial information. Slim-neck reduces redundant features, lowers computational complexity, and effectively reuses shallow features to obtain more detailed information, further improving detection precision. DySample achieves excellent performance while maintaining lower computational costs, thus demonstrating high practicality and rapid detection capability. MPDIoU enhances detection precision through faster convergence and more precise regression results. Experimental results show that compared to other methods, this approach performs better in the grapevine bunch detection dataset and grapevine bunch condition detection dataset, with mean average precision (mAP50–95) increasing by 2.4% and 2.6% compared to YOLOv8s, respectively. Meanwhile, the computational complexity and parameters of the method are also reduced, with a decrease of 2.3 Giga floating-point operations per second and 1.5 million parameters. Therefore, it can be concluded that the proposed method, which integrates these improvements, achieves lightweight and high-precision detection, demonstrating its effectiveness in identifying grape bunches and assessing biophysical anomalies.
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1 Introduction

Grapes are not only delicious but also highly nutritious, boasting a high yield (Restani et al., 2021). With an annual production of approximately 7.5 million tons, grapes are cultivated worldwide, with 41% of production in Europe, 29% in Asia, and 21% in the USA (Colombo et al., 2019). Grapes are widely used in various industries, including winemaking, fresh consumption, and food processing. About 50% of grapes are used in wine production, one-third as fresh fruit, and the remainder is refined to produce grape jams, grape juice, grape seed oil, and various other grape-based products (Kandylis et al., 2021). The global wine industry, valued in billions of dollars, encompasses a wide range of economic activities (Arnó et al., 2009). Vineyards require careful management to balance grape quality and quantity, maximizing profitability in wine production (Bramley, 2010). To achieve accurate and timely yield estimation and enhance quality, it is essential to closely monitor grape bunches throughout the growing season and perform timely pruning and fruit thinning to prevent an excessive burden on the plant (Li et al., 2023). Disease management is also a significant concern in the grape and wine industry (Renouf and Lonvaud-Funel, 2007), and managers in vineyards need to assess biophysical anomaly assessment. In the past, grape management typically relied on manual methods, which were time-consuming and labor-intensive. Therefore, it is crucial to find solutions that enable farmers to produce with high quality, higher yields, and lower costs. Automated equipment holds promising prospects for this endeavor (Tang et al., 2020; Zhou et al., 2022). By combining automated machinery with state-of-the-art (SOTA) object detection technology, automatic identification of grape bunches and biophysical anomaly assessment are achieved, thereby fulfilling the economic goals pursued by farmers.

In recent years, deep learning (DL) has had a significant impact on the development of computer vision in artificial intelligence (LeCun et al., 2015). Convolutional neural networks (CNNs) in DL have been widely employed in the field of agriculture and have shown superiority over existing conventional image processing techniques (Kamilaris and Prenafeta-Boldú, 2018a; Santos et al., 2020; Kamilaris and Prenafeta-Boldú, 2018b). During the establishment of smart orchards, the use of object detection to identify targets and diagnose diseases contributes to intelligent orchard management, ultimately improving crop yield and quality. Object detection can be categorized into those based on classical machine learning (ML) and those based on DL (Zhao et al., 2022). However, the former demands manual feature engineering, necessitating personnel with high levels of expertise and experience, and is susceptible to the complexities of the environment (Chen et al., 2023). With the advancement of DL, the precision, speed, and robustness of the latter surpass the former (Liang et al., 2020). Generally, object detection based on DL can be categorized into two-stage and one-stage detection methods. The difference lies in the fact that the former involves proposing a set of candidate regions (region proposal) before regressing their positions and classifying the candidate regions. In contrast, the latter eliminates the region proposal stage, directly predicting bounding boxes and computing class probabilities for these boxes (Sirisha et al., 2023). Classic two-stage algorithms include R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015). One-stage algorithms include the You Only Look Once (YOLO) series (Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon and Farhadi, 2018; Bochkovskiy et al., 2020; Ultralytics, 2020; Li et al., 2022; Wang et al., 2022; Ultralytics, 2023), Single-Shot Multi-Box Detector (SSD) (Liu et al., 2016), CenterNet (Duan et al., 2019), and RetinaNet (Lin et al., 2017), among others. However, object detection in complex agricultural environments remains challenging due to issues such as occlusion, low detection accuracy, slow speed, large model parameters, and high computational complexity. For instance, in grape detection tasks, factors such as the dense arrangement of grape fruits and occlusion by tree leaves result in decreased accuracy of classical object detection models. To address the deficiencies of classical models in grape detection tasks, numerous researchers have refined classical algorithms to fulfill the demands for detection accuracy and real-time performance. Guo et al. (2023) replaced cross-stage partial networks (CSP) in the backbone of YOLOv4 with Resblock_body_AM, in which the output of each Resblock_body uses a simple, parameter-free attention module (SimAM) to refine features. Subsequently, they used bidirectional feature pyramid network (BiFPN) fusion weights to process the output of concatenate (Concat) and introduced skip connection structures to alleviate feature information loss. Additionally, they adjusted hyperparameters α and γ to 0.75 and 2 in the focal loss function to address the issue of imbalanced positive and negative samples. Experimental results demonstrated that YOLOv4+ achieved a 3.35% increase in mean average precision (mAP) and a 3% improvement in F1 compared to the original model. Li et al (Li et al., 2021. replaced LeakyReLU with Mish activation function to improve prediction accuracy, introduced squeeze and excitation (SE) attention to improving recognition ability, replaced convolution (Conv) in YOLOv4-tiny with depthwise separable convolution (DSC) to reduce model parameters and obtain real-time performance, and utilized soft nonmaximum suppression (Soft-NMS) to improve the model’s detection capability for overlapping grapes. Additionally, they applied transfer learning to enhance the model’s detection precision and generalization. When compared with Faster R-CNN, SSD300, YOLOv4, and YOLOv4-tiny, their proposed model achieved an increase in mAP of 1.67%, 2.28%, 0.84%, and 6.69%, respectively. Chen et al. (2023) replaced CBM (Conv+BN+Mish) with GBM (GhostConv+BN+Mish) in the backbone of YOLOv4, reducing the model’s parameters. They also integrated SE attention in residual blocks to focus on essential information. Furthermore, they added ASFF to the detection head to learn spatial weights for the fusion of features at different scales. Additionally, they constructed a new loss function to improve detection efficiency. Compared to the original model, their proposed model achieved a 3.69% increase in mAP, a 20.245 FPS improvement in detection speed, and a remarkable 82.79% reduction in parameters. Lu et al. (2022) captured long-distance dependencies, preserved both global and local features, and improved the detection accuracy and generalization ability by replacing the last C3 in the backbone of YOLOv5 with a Swin-transformer encoder block. The proposed Swin-T-YOLOv5 outperformed YOLOv5 in grape bunch detection, achieving a 4% higher mAP on cloudy days. This method could serve as a reliable digital tool to assist growers in performing precision management in vineyards. Zhu et al. (2023) incorporated convolutional block attention module (CBAM) attention at the end of the backbone of YOLOv5 to boost feature extraction. Additionally, a small object detection layer was added to preserve more information related to small objects. Furthermore, they replaced the original detection head with the decoupled head from YOLOX, where classification and regression are handled separately to optimize model performance. The results demonstrated that YOLOv5m-CFD achieved a 26.3% increase in mAP50–95 compared to YOLOv5m, making it well-suited for real-time grape harvesting.

From the above, it can be concluded that for automated equipment, maintaining real-time robustness and accuracy while preserving lightweight design is crucial. Therefore, the thesis designs a lightweight object detection model based on YOLOv8 for detecting grape bunches and evaluating the biophysical anomalies of grape bunches. The primary contributions of this thesis are as follows: Firstly, it incorporates modified efficient channel attention (MECA) to efficiently capture local cross-channel interactions and enhance feature expressiveness, thereby extracting crucial features. It retains more information on each channel without incurring a significant computational cost. Secondly, it utilizes a novel lightweight operator called group shuffle convolution (GSConv) to reconstruct bottleneck and C2f, creating an efficient feature fusion network slim-neck to replace neck in YOLOv8. This results in an object detection model with improved inference speed and reduced model parameters and computational complexity while maintaining precision. Thirdly, it proposes a new spatial pyramid pooling technique, a new spatial pyramid pooling fast (NSPPF), to replace SPPF to capture multiscale receptive field information for local and global feature fusion, promote channel information fusion, and enrich semantic information. Finally, it introduces a highly lightweight and effective dynamic upsampler, DySample, which redefines the upsampling process through point sampling. Compared to other upsamplers, DySample achieves excellent performance with minimal computation (lower inference latency, memory usage, and parameters), making it highly practical. Additionally, it adopts intersection over union with minimum points distance (MPDIoU) to replace complete intersection over union (CIoU) as a boundary box regression loss metric and adopts varifocal loss (VFL) as a classification loss metric. The MPDIoU loss uses the minimum point distance for bounding box similarity, directly minimizing the point-to-point distance between predicted and actual annotated bounding boxes. MPDIoU achieves faster convergence and more accurate regression results. The overall framework of the proposed method is illustrated in Supplementary Figure S1.

The remaining sections of the thesis include the following: Section 2 provides a brief introduction to the datasets used in the experiment and the proposed method. Section 3 outlines the hardware and software equipment, hyperparameters, and evaluation metrics used in the experiment. Section 4 discusses the experimental results. Section 5 presents the conclusions drawn from the experimental results.




2 Materials and methods



2.1 Selection of dataset

Pinheiro et al. (2023) collected two datasets: grapevine bunch detection and grapevine bunch condition detection. The datasets were obtained from the vineyard of the Faculty of Sciences at the University of Porto’s agrarian campus in Vairão. Both datasets use the same set of images and different labels; the “Bunch” is used to annotate the grape bunches in the image, and the condition of the grape bunches is distinguished using the “OptimalBunch” and “DamagedBunch”. These images come from red and white grapevine varieties and are collected under different lighting and perspective conditions, containing sufficient visual information. Additionally, some images have portions of the vine in addition to the target, and some images have scenes where different plant structures (i.e., trunks, leaves, stems, or other bunches) are occluded and bunches overlapped, adding complexity to the background environment. The purposes of these datasets are as follows: (1) The former is aimed at identifying grapevine bunches, which helps to utilize equipment to assist in harvesting. (2) The latter is used to classify the condition of grapevine bunches based on the presence of biophysical anomalies, defined as having 10% or more of any physical damage. The objective is to detect the condition of grapevine bunches, reduce yield losses, and assist vineyard managers in improving crop efficiency and quality. The images were taken using a Xiaomi Redmi Note 7 smartphone with a dual camera and a resolution of 8,000 pixels × 6,000 pixels. A total of 910 original images containing the target objects of grapevine bunches were collected. To reduce complexity, the resolution of these images is downscaled to 720 pixels × 540 pixels. Subsequently, the images undergo 10 different augmentation techniques, including rotation (rotating the image by + 15°, − 15°), scaling, translation (translating the image), flipping (mirroring the image horizontally), multiplying (making the image brighter or darker), blurring, adding noise (adding Gaussian noise), combination 1, and combination 3 (random combinations of three operations). The results of these augmentation operations are shown in Supplementary Figure S2. This results in two datasets, each containing 10,010 images. Each dataset was divided into three sets: Train (5995), Val (1980), and Test (2035). The details of the datasets are illustrated in Table 1.

Table 1 | Number of images and annotated objects per class in each set after augmentation.


[image: Table displaying data for grapevine detection and condition. For grapevine bunch detection: Class "Bunch" with 10,010 images; annotations for Train: 6,912, Val: 2,329, Test: 2,431, Total: 11,672. For grapevine bunch condition detection: Class "OptimalBunch" with 7,678 images; annotations for Train: 4,958, Val: 1,637, Test: 1,826, Total: 8,421. Class "DamageBunch" has 3,045 images; annotations for Train: 1,954, Val: 692, Test: 605, Total: 3,251.]
In cases of limited data, data augmentation effectively expands the dataset, providing the model with more samples for training, which improves the training outcome. Data augmentation techniques such as rotation, scaling, and flipping simulate various possible real-world scenarios, making the model more robust to variations in the input data and thus enhancing its stability and reliability. By increasing the diversity and quantity of data, the model can learn the features of the data more comprehensively, resulting in higher prediction accuracy. Therefore, 10 augmentation operations were chosen, with each original image generating ten new versions of realistic vineyard images.

The thesis validates the effectiveness of the proposed modules and model on these datasets, offering a novel solution for automatically identifying grape bunches and classifying grape bunches as healthy or damaged. Applying the proposed modules or model can significantly improve the efficiency of managers in managing crops.




2.2 Overview of YOLOv8

YOLOv8 (Ultralytics, 2023) comprises five different versions: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. Its network architecture, illustrated in Figure 1A, comprises a backbone, neck, and head, while its main modules, including CBS, Bottleneck, C2f, SPPF, and Detect, are depicted in Figure 1B. CBS, composed of Conv, batch normalization, and activation functions, aims to extract high-level semantic features from images for subsequent object detection tasks. The bottleneck module reduces channel dimensions using a 1 × 1 convolutional kernel, followed by processing feature maps with a 3 × 3 convolutional kernel. This design significantly reduces model complexity while maintaining strong feature representation capability. The C2f module consists of two Conv and multiple bottleneck blocks, utilizing residual connections to better learn and utilize correlated information between features. The SPPF module captures information from different receptive fields by applying maximum pooling operations to input feature maps at various receptive fields, then merging these pooled feature maps to provide a comprehensive spatial information representation. The Detect, which serves as YOLOv8’s detection head, predicts the positions and categories of objects in images. It achieves this by introducing convolutional and logistic regression operations in the final layers of the network to generate the positions of target boxes and corresponding class probabilities. YOLOv8 combines the above modules to achieve efficient object detection and recognition. It is the latest iteration of the YOLO series for object detection and image segmentation, developed by Ultralytics. Building upon the success of previous versions, it introduces new features and improvements to enhance performance and flexibility. Its key innovations and improvements are as follows:

[image: Diagram showing the architecture of a neural network consisting of three sections: Backbone, Neck, and Head. The Backbone includes multiple convolutional layers and a spatial pyramid pooling block. The Neck features upsampling and concatenation processes. The Head involves detection layers. Additional boxes define components like CBS, comprising convolution, batch normalization, and SiLU activation, alongside bottleneck structures and loss calculations.]
Figure 1 | (A) The structure of YOLOv8. (B) The principal modules of YOLOv8.

	Designing the C2f module, inspired by YOLOv5’s C3 module and YOLOv7’s ELAN, for further lightweighting while maintaining a richer gradient flow of information.

	Replacing the conventional detection head of YOLOv5 with the decoupled head of YOLOX, separating the classification (cls) task and the regression (reg) task to expedite convergence.

	Adopting the anchor-free concept, departing from the anchor-based approach used in previous versions.

	Utilizing the VFL for classification loss, the distribution focal loss (DFL) and the CIoU for regression branch loss function ensures strong alignment between classification and regression tasks.

	Adopting the task-aligned assigner matching method replaces the previous IoU matching or unilateral proportion allocation method.






2.3 Modified efficient channel attention

To enhance feature representation performance, network architectures have become increasingly complex, with deeper layers and a higher number of parameters (Xiao et al., 2020). While this allows models to learn richer features and improve their feature extraction and expression capabilities, it also leads to the stacking of more deep convolutional counterparts and significantly increased demands on memory and computational resources. Attention mechanisms offer a solution by not only strengthening the extraction of critical features and significantly improving performance (Brauwers and Frasincar, 2023) but also by being flexible in their integration at any point within the structure of CNNs. As a result, attention mechanisms have demonstrated substantial potential in computer vision (Guo et al., 2022); among them, the channel attention mechanism is employed to enhance the representation capability of each channel within CNNs. The fundamental idea is to weight the features of each channel, enabling the model to more effectively learn the correlations and significance among different channels. By modeling interdependencies among channels, the SE attention mechanism (Hu et al., 2018) enriches the discriminative capability of channel features, adaptively adjusts channel feature responses, mitigates the influence of irrelevant channels, and amplifies the importance of critical channels. The key operations encompass squeeze and excitation. Squeeze conducts global pooling to endow the model with a global receptive field. Excitation leverages the information from the squeeze operation to fully capture channel dependencies. SE effectively improves performance across diverse tasks, including classification, detection, and segmentation. However, dimensionality reduction has a side effect on prediction, and capturing dependencies across all channels is inefficient and unnecessary. The efficient channel attention (ECA) mechanism (Wang et al., 2020) avoids dimensionality reduction and effectively captures cross-channel interactions. Following global average pooling across channels without dimensionality reduction, ECA captures local cross-channel interactions by using one-dimensional convolutions to capture interactions between each channel and its k neighbors. This method has been proven to ensure efficiency and effectiveness. However, using only average pooling to aggregate spatial information has limitations. Guo et al. (2024) propose a new attention mechanism called MECA, which adds maximum pooling to the ECA mechanism. This structure aggregates information using both average pooling and maximum pooling, enabling the model to acquire more information about the target. Additionally, the parallel structure ensures detection speed. The structure of MECA is illustrated in Figure 2. Global average pooling and maximum pooling are employed to encapsulate global information and target salient feature information into a channel descriptor, respectively. Subsequently, 1-D convolution is employed to capture local cross-channel interactions for k neighbors of each channel to effectively learn channel attention. The obtained channel information is then aggregated via channel-wise summation. This is followed by the application of a sigmoid function to enhance non-linear expression capability. Ultimately, the key features are derived by multiplying the channel feature maps with the corresponding weight coefficients.

[image: Diagram of a neural network module featuring an input with dimensions H by W by C, processed through average and max pooling into dimensions 1 by 1 by C. These converge at a shared Conv1D layer (kernel size 5), followed by sigmoid activation and element-wise multiplication, resulting in an output with dimensions H by W by C. Labels indicate operations such as channel-wise sum and element-wise multiplication.]
Figure 2 | The structural diagram of MECA, “AvgPool” and “MaxPool”, represents average pooling and maximum pooling, respectively.

Shallow features play a crucial role in aiding the model’s understanding of detailed target information, such as contours, edges, colors, textures, corners, and shape features. Therefore, the thesis improves the backbone by integrating MECA, which boosts the backbone’s ability to extract shallow features, consequently improving the model’s detection precision.




2.4 Slim-neck

In DL, both Conv and DSC are crucial tools for feature extraction. Conv, being a fundamental operation, is typically utilized in image processing tasks. It extracts features by performing element-wise multiplication and summation on the input data (such as images) using a set of convolutional kernels (also known as filters). The convolution operation possesses characteristics such as parameter sharing and a local receptive field, enabling models to efficiently process large-scale input data while exhibiting a degree of translational invariance. However, traditional convolution requires a large number of parameter counts, especially when processing high-dimensional input data. As the input data size increases, the computational workload of the convolution operation also escalates, potentially resulting in performance degradation in resource-constrained environments. Lightweight designs can effectively alleviate the high computational costs associated with DL. Currently, the primary approach to reducing parameters and floating-point operations per second (FLOPs) involves the use of DSC, which improves processing speed. DSC comprises two steps: Depthwise Convolution (DWConv) and Pointwise Convolution (PWConv). In the DWConv step, each channel of the input data undergoes convolution with a separate kernel, generating multiple channel-wise feature maps. Subsequently, in the PWConv step, a 1 × 1 convolutional kernel is applied to each channel’s feature map to integrate information across channels. The primary advantage of DSC lies in its reduced parameter count and higher computational efficiency while still maintaining effective feature representation. This makes it particularly suitable for model designs in resource-constrained scenarios, such as mobile devices or embedded systems. However, the separation of depthwise convolution and pointwise convolution in DSC may hinder the model from fully capturing interchannel correlations. Therefore, in some cases, DSC might limit the model’s feature representation capability. In summary, while both Conv and DSC are essential feature extraction operations, they each possess limitations. The choice between them in practical applications depends on specific task requirements and computational resource constraints.

Achieving a balance between lightweight design and precision is of equal importance. Li et al. (2022) propose GSConv, as illustrated in Supplementary Figure S3. GSConv enhances nonlinear expressions and reduces redundancy or duplicated information by incorporating the DWConv and channel shuffle (CS) operations. It combines the advantages of Conv and DWConv, resulting in fewer parameters and efficient computing power while maintaining excellent feature expression ability. Additionally, it endeavors to preserve hidden connections between channels with lower time complexity.

When the feature map reaches the neck network of the model, it already has the maximum number of channels and the minimum width and height dimensions, meaning it contains high-level semantic information. In this scenario, it may be considered to reduce the complexity of the neck. To reduce the loss of shallow feature information, drawing inspiration from DenseNet, the thesis introduces skip connections to mix shallow and deep-level features, achieving feature fusion for reusability and enhancing detection precision, and reconstructing the neck with both GSConv and NC2f. Next, it replaces the neck in YOLOv8 with a slim-neck, as depicted in Figure 3. The structure of GSBottleneck is shown in Figure 4A, and the structure of NC2f is shown in Figure 4B.

[image: Diagram of a "Slim-neck" neural network architecture showing processes with labeled boxes including "Upsample," "Concat," "GSConv," and "3×NC2f." Arrows indicate the flow of operations through the network's layers.]
Figure 3 | The structural diagram of slim-neck.

[image: Diagram illustrating a neural network architecture with two sections labeled A and B. Section A features components including 3×NC2f, CBS, GSBottleneck, and Concat connected in a flow sequence, with iterations highlighted and annotations of data splits. Section B defines GSBottleneck using multiple GSConv layers with options for connectivity, showing parallel paths converging with a plus sign.]
Figure 4 | The structural diagrams of (A) the GSBottleneck module and (B) the NC2F module.




2.5 New spatial pyramid pooling fast

The receptive field, also known as the area that a convolutional neural network feature can see in an input image, plays a crucial role in object detection. A large receptive field captures global and high-level semantic features but may overlook small objects, resulting in poor detection of small targets. Conversely, a small receptive field gathers excessive local details and may miss the global context, affecting object recognition. Considering the multiscale nature of grape bunches and the need for model lightweightness, inspired by YOLOv5’s SPP (He et al., 2015), SPPF, feature fusion with the attentional multiple receptive fields (FFARF) (Qi et al., 2023), and GSConv, this thesis designs the NSPPF module, as shown in Figure 5A. Its specific improvements are as follows: (1) Inserting CS after the Concat module of SPPF facilitates interaction among channels with different receptive fields, enhancing intergroup communication and enriching target features. (2) Replacing the CBS module of SPPF with the GSConv operator reduces parameters and computations while maintaining speed, achieving equivalent detection performance. The CS module reorders channel sequences to facilitate better feature correlation capture, thereby enhancing the model’s performance and expressive capability, as shown in Figure 5B. To uniformly integrate channels from various receptive fields and augment cross-group communication, it is used to allocate each group with subgroups originating from diverse receptive fields and ensures equitable dispersion of channels among groups, facilitating effective interdependence capture across all receptive fields. Compared with SPP and SPPF, the NSPPF module serves the same purpose, has fewer parameters, and obtains richer feature information, thereby improving detection speed and precision.

[image: Diagram explaining NSPPF and CS. In panel A, NSPPF involves GSConv feeding into three MaxPool layers with k equals five, then concatenating into CS and another GSConv. In panel B, CS shows interconnected colored blocks in red, orange, green, and blue.]
Figure 5 | The structural diagrams of (A) the NSPPF module and (B) the channel shuffle module.




2.6 Dynamic upsampler

Feature upsampling is a crucial factor in progressively restoring feature resolution. In recent years, several upsamplers, such as content-aware reassembly of features (CARAFE) (Wang et al., 2019), fuse the assets of decoder and encoder (FADE) (Lu et al., 2022a), and similarity-aware point affiliation (SAPA) (Lu et al., 2022b), have contributed to improving performance. However, these methods, involving dynamic convolutions and extra subnetworks for generating dynamic kernels, are computationally intensive. Furthermore, FADE and SAPA are restricted to high-resolution images, limiting their applicability. To address these challenges, Liu et al. (2023) propose DySample, which takes a different approach to upsampling, bypassing dynamic convolutions by reframing upsampling through point sampling. DySample does not require high-resolution images, saving computational resources and achieving a lightweight design. Moreover, it can be effortlessly implemented using standard built-in functions in pytorch. The design of DySample is illustrated in Figure 6.

[image: Diagram illustrating two processes: A and B. Panel A shows a block diagram with a sampling point generator and grid sampling, converting input \(X\) with dimensions \(H\), \(W\), and \(C\) into output \(X'\) with dimensions \(sH\), \(sW\), and \(C\). Panel B showcases Static and Dynamic Scope Factors. The Static Scope Factor uses linear transformation and pixel shuffle to produce sampling set \(S\), combining intermediate outputs \(G\) and \(O\). The Dynamic Scope Factor includes additional operations using sigma notation, resulting in output \(S\), based on intermediate \(G\) and \(O\).]
Figure 6 | The design of DySample. The input feature, upsampled feature, generated offset, original grid, and sampling set are represented by [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] , [image: Mathematical notation showing the variable "x" raised to the power of "y".] , [image: Please upload an image for me to generate the alternate text.] , [image: It seems there was an error with the image upload. Please try uploading the image again, and I can help generate the alt text for it.] , and [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] , respectively. (A) The sampling set [image: Please upload the image or provide a URL so I can generate the alternate text for you.]  is generated by the sampling point generator, and the input features [image: Please upload the image or provide a URL so I can generate the alternate text for it.]  are resampled using a grid sample ([image: The text "grid underscore sample" is shown in a serif font.] ), the calculation formula for this process is shown in Equation 1. In sampling point generator (B), the sampling set [image: Please upload the image or provide a URL, and I will generate the alternate text for you.]  is the sum of the generated offset [image: Please upload the image or provide a URL for me to generate the alternate text.]  and the original grid [image: Please upload the image you need the alternate text for.] , calculated as shown in Equation 2. It has two versions: static range factor and the dynamic range factor. The upper box displays the version with a “static range factor”, employing a linear layer for generating the offset, calculated as shown in Equation 3. The bottom one shows the version with a “dynamic range factor”, where the range factor is first generated and then used to modulate the offset, calculated as shown in Equation 4, where σ representation sigmoid function and s representation is the upsampling scale factor.

[image: Please upload the image or provide a URL so I can generate the alternate text.] 

[image: It looks like you've provided a mathematical expression instead of an image. If you need alt text for an image, please upload the image file or provide a link to it.] 

[image: Certainly! Please upload the image you'd like me to describe.] 

[image: Please upload the image or provide a URL so I can generate the alt text for you.] 

Liu et al. (2023) use linear projection to generate point-wise offsets and to resample point values with the grid sample function in pytorch. They then progressively improve it by (i) controlling the initial sampling position, (ii) adjusting the moving scope of the offsets, and (iii) dividing the upsampling process into several independent groups and obtaining a new upsampler, DySample.

Compared to other dynamic upsamplers, DySample not only reports the best performance but also does not require high-resolution guided features as input. It does not need a custom CUDA package and consumes the least computational resources, showing advantages in terms of latency, training memory, training time, GFLOPs, and parameter count. For future work, DySample will be applied to low-level tasks and explore joint modeling of upsampling and downsampling. Therefore, the thesis combines DySample with the neck, achieving high practicality and rapid detection capability at low computational costs.




2.7 Intersection over union with minimum points distance

Intersection over union (IoU) (Yu et al., 2016) is the ratio of the union to the intersection of the ground truth box [image: Stylized lowercase letter "B" followed by a subscript "gt".]  and predicted box [image: The image shows a mathematical notation, specifically the script letter "B" subscripted with the letters "prd."] , as illustrated in Figure 7. Where [image: The text shows a mathematical expression with the letter "h" followed by the subscript "g" and "t".] , [image: Mathematical notation showing \( w_{gt} \), where "w" is a variable and "gt" is the subscript.]  is height and width of [image: The image shows a mathematical notation, a stylized uppercase letter "B" followed by the subscript "gt".] . [image: The symbol "h sub p r d" is depicted, indicating a specific parameter or variable, possibly related to a mathematical or scientific context.] , [image: Mathematical notation showing the variable "w" with the subscript "prd".]  is height and width of [image: Stylized letter "B" with a subscript "prd" in italic font.] . The calculation formula for IoU is shown in Equation 5. It is used to assess the similarity between the model’s detection result and the real target.

[image: Equation for Intersection over Union (IoU) illustrated with two overlapping rectangles. The ground truth rectangle \( B_{gt} \) is labeled in red, with width \( w_{gt} \) and height \( h_{gt} \). The predicted rectangle \( B_{prd} \) is shown in blue, with width \( w_{prd} \) and height \( h_{prd} \). The formula represents IoU as a measure of overlap between the two rectangles.]
Figure 7 | The diagram of IoU.

[image: Mathematical formula for Intersection over Union (IoU) is shown: IoU equals the intersection of B sub gt and B sub prd divided by the union of B sub gt and B sub prd.] 

YOLOv5 has three types of loss functions, which are box_loss (localization loss), obj_loss (confidence loss), and cls_loss (classification loss). YOLOv8 removes the obj_loss and uses VFL for classification loss. To align with the Anchor-Free approach and enhance generalization, it adds the DFL loss, employing CIoU (Zheng et al., 2020) + DFL (dfl_loss) as the loss function for the regression branch. This allows the network to quickly focus on the distribution of the target location and its vicinity. The calculation formula for CIoU is shown in Equations 6–8.

[image: Equation representing Complete Intersection over Union (CIoU): CIoU = IoU - (ρ^2(B_gt, B_pred) / C^2 + αv); denoted as equation (6).] 

[image: The equation shown is: \( v = \frac{4}{\pi^2} \left( \arctan\left(\frac{w_{gt}}{h_{gt}}\right) - \arctan\left(\frac{w_{prd}}{h_{prd}}\right) \right)^2 \).] 

[image: Alpha is defined as a piecewise function: zero when IoU is less than 0.5, and v over the square of (1 minus IoU) plus epsilon when IoU is greater than or equal to 0.5.] 

where [image: The formula shows \(\frac{\rho^2 (B_{\text{gr}} + B_{\text{prd}})}{C^2}\), where \(\rho^2\) is the square of rho, \(B_{\text{gr}}\) and \(B_{\text{prd}}\) are added within parentheses, and \(C^2\) is the square of C in the denominator.]  denotes normalized central point distance and υ is aspect ratio. ρ is specified as Euclidean distance, and [image: Mathematical expression showing rho squared, denoted as ρ², with B sub gt and B sub prd in parentheses.]  is the Euclidean distance of central points of two boxes [image: Stylized capital letter 'B' with a subscript 'gt'.]  and [image: Stylized letter "B" followed by the subscript "prd".] . [image: Text "C" followed by a superscript "2", representing "C squared".]  is the diagonal length of the smallest enclosing box covering two boxes [image: The image shows the italicized mathematical notation "B" with a subscript "gt".]  and [image: Stylized lowercase letter "B" with a subscript "prd" in italics.] . α is a weight parameter.

Although existing methods have demonstrated some effectiveness, current bounding box regression loss functions cannot optimize scenarios where predicted boxes and actual annotated boxes have the same aspect ratio but significantly different width and height values. Therefore, Siliang and Yong (2023) propose MPDIoU as a bounding box regression loss function to compare the similarity between [image: Stylized calligraphic uppercase letter "B" followed by a subscript "gt".]  and [image: Stylized script letter "B" with subscript "prd" in a mathematical context.] . The MPDIoU simplifies the computation process for comparing the similarity between two bounding boxes and considers all relevant factors in existing loss functions, such as overlap areas, nonoverlap areas, center-point distances, and deviations in width and height. As a result, it leads to quicker convergence during training and more precise regression results. The calculation formula for MPDIoU is shown in Equations 9–11.

[image: The formula shown is for MPDIoU, which is calculated as IoU minus the sum of two fractions. Each fraction has a squared term \(d^2\) in the numerator and the sum of squared terms \(h^2 + w^2\) in the denominator. The equation is labeled as formula (9).] 

[image: Distance squared, \(d_1^2\), equals \((x_1^{\text{rd}} - x_1^g)^2 + (y_1^{\text{rd}} - y_1^g)^2\), as shown in equation 10.] 

[image: Equation displaying the squared distance \(d_{2}^{2}\) as the sum of two squared differences: \((x_{2}^{\text{rnd}} - x_{2}^{\text{ev}})^{2}\) plus \((y_{2}^{\text{rnd}} - y_{2}^{\text{ev}})^{2}\). Labeled as equation (11).] 

where w, h is width and height of input image. The top-left and bottom-right coordinates of [image: Stylized uppercase letter "B" with a subscript "prd" in italic font.]  are denoted as [image: Mathematical expression showing four predicted variables: \( x_{1}^{prd}, y_{1}^{prd}, x_{2}^{prd}, y_{2}^{prd} \).] , and the top-left and bottom-right coordinates of [image: Mathematical notation depicting an italicized uppercase "B" with a subscript "gt".]  are denoted as [image: Variables representing coordinates in a mathematical expression: \(x_1^{gt}\), \(y_1^{gt}\), \(x_2^{gt}\), \(y_2^{gt}\).] .




2.8 Proposed method

To address issues related to low detection precision, slow speed, large model parameters, and computational demands, this thesis presents improvements to YOLOv8, proposing YOLOv8-grape, as illustrated in Figure 8. Firstly, the MECA module is introduced into the backbone, enriching channel information by combining different pooling layers and capturing local cross-channel interactions for k neighbors of each channel to effectively learn channel attention and obtain critical features. Following this, utilizing NSPPF replaces the original SPPF; its design combines the advantages of GSConv and CS to reduce redundancy and enhance the feature extraction capability of the model’s backbone. Subsequently, utilizing a slim-neck replaces the original neck; its design leverages the benefits of GSConv and skips connection to reuse shallow features, maintaining detection accuracy and speed while eliminating redundant functionalities. Finally, DySample is employed to replace Upsample, enhancing upsampling behavior at a low cost. Furthermore, MPDIoU is used as the loss function for the regression branch, improving the training of bounding box regression and thereby enhancing convergence speed and regression precision.

[image: Clusters of grapes are shown in two rows. Column A presents clear images of green and purple grape bunches. Columns B and C display the same images overlaid with heatmaps, highlighting areas of interest with intensity values of 0.95 and 0.97.]
Figure 8 | Visualization of the feature maps. (A) The original images; (B) the heatmaps of YOLOv8s; (C) the heatmaps of the YOLOv8s-grape.





3 Experiment configuration

The hardware, running environment, configuration of CUDA, Cudnn, and related libraries for this experiment are detailed in Table 2. Model hyperparameters are presented in Table 3. Evaluation metrics are used to assess the overall model’s performance. In the field of ML, confusion matrices are often used to measure the accuracy of model classification in ML. For binary classification problems, the combination of real categories and the number of predicted categories by the model can be used, as shown in Table 4. In this experiment, we have selected parameters (Params) to measure the model’s training requirements in terms of volume. Giga floating-point operations per second (GFLOPs) are used to quantify the computational load of the model. Times (T) are used to measure the time of training for the model. P, R, mAP, and FPS are employed to validate the network’s performance. Further details are shown in Table 5.

Table 2 | Experimental environment configuration.


[image: Table displaying system specifications: Windows 10 operating system; Intel Core i9-9900K CPU at 3.60 GHz; NVIDIA GeForce RTX 2080 Ti GPU; CUDA version 10.1; Cudnn version 7.6.5; Pytorch version 1.8.1.]
Table 3 | Model hyperparameter configuration.


[image: Table showing deep learning parameters: input image size 640 by 640, batch size 8, 100 epochs, learning rate initial 0.01, learning rate final 0.01, momentum 0.937, weight decay 0.0005.]
Table 4 | Binary confusion matrix.


[image: Confusion matrix displaying actual versus predicted conditions. Rows represent actual conditions: positive and negative. Columns represent predicted conditions: positive and negative. Cells show true positive (TP), false negative (FN), false positive (FP), and true negative (TN).]
Table 5 | The evaluation metrics.


[image: Table detailing performance metrics used in object detection and evaluation. Metrics include Precision (P), Recall (R), Average Precision (AP), Mean Average Precision (mAP), and Frames Per Second (FPS). Each metric is presented with its abbreviation, formula, and a short description. Precision is the ratio of true positive samples predicted. Recall measures the model's coverage of true positives. AP is the average detection precision. mAP evaluates overall model performance across classes. FPS measures detection speed, indicating how many images are processed per second.]
TP refers to instances where the model predicts that an object is “Bunch” or a specific type of bunch, such as “OptimalBunch” or “DamageBunch”, and indeed, the object in the image belongs to the predicted class. Conversely, FP occurs when the model predicts that an object is a “Bunch” or a specific type of bunch, the object not belonging to the predicted class. FN denotes cases where the model predicts that an object is not a “Bunch” or a specific type of bunch, but the object actually belongs to the predicted class. TN signifies instances where the model predicts that an object is not a “Bunch” or a specific type of bunch, and indeed, the object in the image does not belong to the predicted class.

The smaller the parameters and GFLOPs, the easier it is to deploy the model on the mobile terminal of the picking robot; a higher FPS indicates shorter processing time and faster speed; a higher mAP reflects better performance.




4 Results and discussion



4.1 Results

To validate the proposed method, the thesis uses publicly available datasets, grapevine bunch detection, and grapevine bunch condition detection. The choice of baseline model for the experiment is presented in Supplementary Table S1. To verify the effectiveness of the proposed modules, ablation experiments are conducted as outlined in Table 6, where A, B, C, D, and E correspond to MECA, slim-neck, NSPPF, DySample, and MPDIoU, respectively. Additionally, in order to further verify the effectiveness of MECA, DySample, and MPDIoU, comparisons are made with other attention mechanisms [SE, ECA, normalization-based attention module [NAM] (Liu et al., 2021), efficient multiscale attention [EMA] (Ouyang et al., 2023)], upsampling methods (CARAFE) and loss functions [focal efficient intersection over union [Focal EIoU] (Zhang et al., 2022), and wise intersection over union [WIoUv3] (Tong et al., 2023)], as shown in Tables 7–9. In order to further verify the performance of YOLOv8s-grape, the proposed model is compared with YOLOv5s, YOLOv5m (Ultralytics, 2020), YOLOv6n, YOLOv6s (Li et al., 2022), Gold-YOLO-N, Gold-YOLO-S (Wang et al., 2023), YOLOv7-tiny, YOLOv7 (Wang et al., 2022), YOLOX-s (Ge et al., 2021), PP-YOLOE-s, PP-YOLOE-m (Xu et al., 2022), DAMO-YOLO-T, DAMO-YOLO-S (Xu et al., 2022), and YOLOv8s. The results are shown in Table 10. The validation results of the proposed method and baseline model at different IoU thresholds for mAP are shown in Supplementary Table S2.

Table 6 | Ablation experiment.


[image: A table displaying performance metrics for grapevine bunch detection and grapevine bunch condition detection across different models (Baseline, A, B, C, D, E). Columns include the number of parameters (M), GFLOPs, precision (P), recall (R), mAP50, mAP50-95, and FPS. Rows show specific data points, with checkmarks indicating model usage. Values vary across metrics, highlighting model comparisons.]
Table 7 | Comparison of different attention mechanisms.


[image: Comparison table showing performance metrics for grapevine bunch and condition detection across various methods. Columns include Methods, Params, GFLOPs, Precision (P), Recall (R), mAP50, mAP50-95, and FPS. Methods listed are Baseline, SE, ECA, NAM, EMA, and MECA. MECA shows the highest mAP50 for bunch detection and mAP50-95 for condition detection. Bold values indicate superior performance of proposed modules over benchmarks.]
Table 8 | Comparison of different upsamplers.


[image: Comparison table showing the performance of three methods: Baseline, CARAFE, and DySample. Parameters include Params (M), GFLOPs, precision (P), recall (R), mAP50, mAP50–95, and FPS for both grapevine bunch detection and condition detection. Bold values denote superior performance, with DySample excelling in mAP50 and mAP50–95 measurements for bunch detection and condition detection. CARAFE has a lower FPS compared to others.]
Table 9 | Comparison of different loss functions.


[image: Table comparing grapevine bunch detection and condition detection using different methods: Baseline (CIoU), Foca EIoU, WIoUv3, and MPDIoU. Metrics include Precision (P), Recall (R), mean Average Precision at 50% (mAP50), mAP50–95, and Frames Per Second (FPS). MPDIoU shows notable performance in mAP50–95 for condition detection, and values are in bold.]
Table 10 | Comparison of different methods.


[image: Table comparing different detection methods for grapevine bunch and condition detection. Parameters include Params (M), GFLOPs, Precision (P), Recall (R), mAP50, mAP50–95, and time (T in hours). Methods listed are various YOLO versions, Gold-YOLO, YOLOX, and DAMO-YOLO. Bold values indicate superior performance.]
As shown in Supplementary Table S1, Params, GFLOPs, P, R, mAP50, and mAP50–95 increase with the depths and widths of the model, while FPS decreases gradually. Specifically, on the grapevine bunch detection dataset, YOLOv8s shows an improvement of 1.9% in mAP50–95 compared to YOLOv8n, while YOLOv8m, YOLOv8l, and YOLOv8x exhibit increases of 1.6%, 2%, and 0.8% in mAP50–95 relative to YOLOv8s, respectively. On the grapevine bunch condition detection dataset, YOLOv8s demonstrates a 3.4% increase in mAP50–95 compared to YOLOv8n, while YOLOv8m, YOLOv8l, and YOLOv8x show improvements of 1%, 1.2%, and 1.8% in mAP50–95 relative to YOLOv8s, respectively. However, YOLOv8m, YOLOv8l, and YOLOv8x have parameter increases of 14.8 M, 32.5 M, and 57.1 M, and GFLOPs increases of 50.5, 136.8, and 229.5, respectively, compared to YOLOv8s. Obviously, this is not applicable in device-constrained scenarios. Therefore, the conclusion can be drawn that selecting the appropriate model depth and width can enhance detection performance while conserving computational resources. Hence, YOLOv8s is chosen as the baseline model due to its superior detection performance, fast detection speed, and compact model size. An improvement upon this baseline model will provide technical support for subsequent mobile deployments.

As shown in Table 6, the improvement points (MECA, slim-neck, NSPPF, DySample, and MPDIoU) yield varying degrees of enhancement. Specifically, on the grapevine bunch detection dataset, the mAP50–95 of models with these improvement points increased by 0.7%, 1.5%, 0.5%, 1.2%, and 0.5% compared to YOLOv8s, respectively. On the grapevine bunch condition detection dataset, these models exhibit mAP50–95 increases of 0.9%, 1.7%, 0.7%, 0.8%, and 0.7% compared to YOLOv8s, respectively. Their FPS remains largely consistent with the baseline model. Compared to YOLOv8s, the parameters and GFLOPs of slim-neck and NSPPF decrease by 1.2 million parameters and 2 Giga floating-point operations per second, and 0.3 million parameters and 0.2 Giga floating-point operations per second, respectively. Among these improvements, attention mechanisms, upsampling techniques, and loss functions enhance detection accuracy at a lower cost. The lightweight design of the proposed method is achieved through slim-neck and NSPPF. Slim-neck reduces the model’s parameter count and computational complexity by employing a meticulously designed lightweight network architecture. It incorporates GSConv, NC2f, and skip connections to reduce the model’s parameter count and computational overhead while maintaining detection performance. NSPPF employs the strategies of GSConv and CS to diminish the model’s parameter count, facilitating increased intragroup channel interaction and thereby accomplishing the model’s lightweight design. Therefore, the improvement points possess flexible and lightweight characteristics, enabling easy integration into various computer vision tasks, significantly enhancing feature representation capabilities, and achieving optimal performance.

As shown in Tables 7–9, it is evident that MECA, DySample, and MPDIoU consistently yield higher mAP values compared to other attentions, upsamplers, and loss functions, with minimal impact on speed. Specifically, on the grapevine bunch detection dataset, MECA exhibits mAP50–95 increases of 0.8%, 0.6%, 0.6%, and 0.9% compared to the baseline model, SE, NAM, and EMA, respectively. DySample demonstrates mAP50–95 increases of 1.2% and 1% compared to the baseline model and CARAFE, respectively. MPDIoU shows mAP50–95 increases of 0.5%, 0.3%, and 0.8% compared to the baseline model, Focal EIoU, and WIoUv3, respectively. On the grapevine bunch condition detection dataset, MECA achieves mAP50–95 increases of 0.9%, 1.3%, 1.5%, 0.8%, and 0.6% compared to the baseline model, SE, ECA, NAM, and EMA, respectively. DySample achieves mAP50–95 increases of 0.8% and 1.3% compared to the baseline model and CARAFE, respectively. MPDIoU achieves mAP50–95 increases of 0.7%, 1%, and 1.2% compared to the baseline model, Focal EIoU, and WIoUv3, respectively. From these conclusions, it is evident that the improvement points are more effective on these two datasets compared to other enhancement methods. Therefore, this thesis selects MECA, DySample, and MPDIoU for further exploration and implementation.

As shown in Table 10, compared with YOLOv5s, YOLOv5m, YOLOv6n, YOLOv6s, Gold-YOLO-N, Gold-YOLO-S, YOLOv7-tiny, YOLOv7, YOLOX-s, PP-YOLOE-s, PP-YOLOE-m, DAMO-YOLO-T, DAMO-YOLO-S, and YOLOv8s, the mAP50–95 of the YOLOv8s-grape is respectively higher by 6.8%, 3.6%, 7.2%, 6.3%, 7.4%, 7.1%, 17.8%, 7.6%, 20.5%, 5.1%, 3.8%, 9.1%, 9.6%, and 1.9% on the grapevine bunch detection dataset. The mAP50–95 of the YOLOv8s-grape is respectively higher by 9.1%, 5.9%, 7.2%, 6%, 8%, 7.9%, 18.5%, 10.4%, 20.6%, 8.8%, 8.1%, 9.8%, 8.4%, and 2.6% on the grapevine bunch condition detection dataset. Compared with YOLOv5s, YOLOv6n, YOLOv6s, Gold-YOLO-N, Gold-YOLO-S, YOLOv7-tiny, YOLOv7, YOLOX-s, DAMO-YOLO-T, DAMO-YOLO-S, and YOLOv8s, the mAP50 of the YOLOv8s-grape is respectively higher by 0.9%, 0.7%, 1.7%, 0.5%, 1.4%, 1.7%, 0.1%, 1.9%, 0.5%, 1.5%, and 0.3% on the grapevine bunch detection dataset. The mAP50 of the YOLOv8s-grape is respectively higher by 2.3%, 1.4%, 2%, 2.5%, 2.7%, 4.8%, 3.5%, 4.3%, 1.9%, 1.4%, and 1.3% on the grapevine bunch condition detection dataset. Compared to YOLOv5m, PP-YOLOE-s, and PP-YOLOE-m, the mAP50 of YOLOv8s-grape is respectively lower by 0.2%, 0.4%, and 0.2% on the grapevine bunch detection dataset. However, the T of YOLOv8s-grape is lower than theirs. Additionally, the mAP50 of YOLOv8s-grape is respectively higher by 2.1%, 5.2%, and 5.1% on the grapevine bunch condition detection dataset. Compared to YOLOv8s, the parameters and GFLOPs of the proposed method decrease by 1.5 million parameters and 2.3 Giga floating-point operations per second. Therefore, considering the comprehensive data, the proposed method has superiority over other methods. Specifically, the proposed method has relatively small parameters and computational requirements, while achieving high detection precision.

As shown in Supplementary Table S2, the proposed method shows an improvement in thresholds for different IoUs, indicating that the proposed method is effective in grapevine bunch detection and grapevine bunch condition detection.




4.2 Visualization



4.2.1 Comparison of heatmaps of YOLOv8s and the proposed method

To demonstrate the proposed method’s feature extraction capabilities more intuitively, this thesis uses Grad-CAM to visualize the feature map before entering the detection head of YOLOv8s and the proposed method. The results of the heatmaps visualized by the feature maps are shown in Figure 9, where red areas indicate the regions on which the model is highly focused.

[image: Two sets of six line graphs compare grapevine bunch detection and condition detection using YOLOv8s and YOLOv8s-grape models. Each set shows train/box_loss, train/cls_loss, train/dfl_loss, precision, recall, mAP50, and mAP50-95 metrics over 100 epochs. Both models display similar trends with decreasing losses and improving precision and recall.]
Figure 9 | The box_loss, cls_loss, dfl_loss, P, R, mAP50, and mAP50–95 curves of the training and validating process of YOLOv8s and the proposed method. Where the x-axis is epochs, and the y-axis is the curve name.

It can be seen from the figure that, compared to YOLOv8s, the YOLOv8s-grape pays more attention to the areas of the grape bunch in the feature extraction process and relatively less attention to irrelevant information. Thus, it showed the proposed method can better focus on the important information of grape bunches and biophysical anomaly assessment.




4.2.2 Comparison of results of YOLOv8s and the proposed method

To validate the performance of the proposed model, this thesis visualizes the comparison results between the proposed method and baseline model on two datasets, as shown in Figure 9.

From the graph, it can be seen that the descent curve of the loss function of the proposed method during the validation process is faster, indicating that the improved loss function helps to accelerate convergence. During the training process, when the mAP50 and mAP50–95 of the proposed method tend to stabilize, they are higher than YOLOv8s, indicating that the proposed method can improve overall detection performance.





4.3 Discussion

Agricultural automation (grape bunch detection, biophysical anomaly assessment) has always been a focal point in smart agriculture. Grape bunches can often be partially obscured by leaves or other parts of the grapevine, making accurate detection a challenging task. Furthermore, varying weather conditions can lead to differences in lighting, posing challenges for accurate grape detection under changing illumination. Especially with DL algorithms emerging as the mainstream research approach for vision systems in automated robots, there is a demand for model lightweighting to facilitate deployment on mobile devices. Grapevine bunch detection and biophysical anomaly assessment research should further enhance the real-time, precision, and reliability of grape detection, thus promoting widespread applications in agricultural automation machines. To address these challenges, the thesis optimizes YOLOv8 by integrating slim-neck and NSPPF to reduce model parameters, introducing attention mechanisms to enhance feature extraction capabilities, refining upsampling for improved practicality and rapid detection, and enhancing the loss function for faster convergence and more accurate regression results. Through the experiments outlined in Section 4, it was found that the proposed method, without significantly increasing Params and GFLOPs, improved detection performance. Lightweight models have fewer parameters and lower complexity, performing well in efficiency and resource utilization, but may limit their ability to capture complex patterns and relationships in data, leading to reduced predictive performance, especially for complex tasks or datasets with high variability. From the experimental data, although the mAP has increased and the detection performance has improved, the training time has also increased. The test results of YOLOv8s and the proposed method (YOLOv8s-grape) are shown in Supplementary Figure S4.

From Supplementary Figure S4, it can be seen that the proposed method can improve the precision of the model’s prediction of targets. This method can also be applied to other crops in the same growth state (clusters), such as tomatoes, bananas, and peppers.





5 Conclusion

The lightweight models play a pivotal role in advancing agricultural automation and sustainability. By reducing computational complexity and memory requirements, lightweight models enable efficient execution on devices with limited processing power, such as edge devices or mobile platforms. This is especially crucial for applications like real-time grape bunch detection and biophysical anomaly assessment in agricultural settings, where timely decision-making is essential for optimizing crop management and resource allocation. The thesis proposes a lightweight and efficient model for grape bunch detection and biophysical anomaly assessment in complex environments based on YOLOv8 by redesigning the network structure. Attention mechanisms have been added to help the model focus on important features. This enhancement can improve the model’s capability to detect obstructed or closely arranged grape clusters by highlighting the most critical areas in the images. The application of the slim-neck contributes significantly to the speed of grape detection, which is crucial for real-time automated detection and anomaly assessment. It reduces computational complexity while maintaining sufficient detection precision. The fusion of shallow and deep features aids the model in reducing the loss of object information, which is beneficial for grape bunch detection and biophysical anomaly assessment. The proposed NSPPF reduces the parameter and computational load while outperforming SPPF. The CS operation encourages cross-interactions among feature maps from different channels, enhancing the model’s understanding of relationships between various features. This helps improve the model’s ability to learn complex patterns and abstract features, thus enhancing its robustness. Optimizing upsampling aids in increasing resolution, information recovery, enhancing the performance of DL tasks, and improving image quality. Additionally, optimizing the loss functions enables the model to more accurately locate dense grape bunches. Compared to other methods, the proposed method exhibits superior precision, better generalization, and increased robustness. This thesis provides a theoretical foundation for grape bunch detection and biophysical anomaly assessment, further facilitating automation. It can also offer technical support for device deployment and serve as a reliable digital tool for providing accurate diagnoses to assist growers in taking timely actions to protect grapes, thereby improving work efficiency and reducing labor and computing resource costs. The proposed method and module design concepts can be incorporated into mobile devices or robotic systems, enabling real-time and precise grape management for agricultural practitioners in the future.
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Straw return is regarded as a widely used field management strategy for improving soil health, but its comprehensive effect on crop grain yield and quality remains elusive. Herein, a meta-analysis containing 1822 pairs of observations from 78 studies was conducted to quantify the effect of straw return on grain yield and quality of three main crops (maize, rice, and wheat). On average, compared with no straw return, straw return significantly (p< 0.05) increased grain yield (+4.3%), protein content (+2.5%), total amino acids concentration (+1.2%), and grain phosphorus content (+3.6%), respectively. Meanwhile, straw return significantly (p< 0.05) decreased rice chalky grain rate (-14.4%), overall grain hardness (-1.9%), and water absorption of maize and wheat (-0.5%), respectively. Moreover, straw return effects on grain yield and quality traits were infected by cultivated crop types, straw return amounts, straw return methods, and straw return duration. Our findings illustrated that direct straw return increased three main crop grain yields and improved various quality traits among different agricultural production areas. Although improper straw return may increase plant disease risk and affect seed germination, our results suggest that full straw return with covered or plough mode is a more suitable way to enhance grain yield and quality. Our study also highlights that compared with direct straw return, straw burning or composting before application may also be beneficial to farmland productivity and sustainability, but comparative studies in this area are still lacking.
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1 Introduction

Food security is one of the most important challenges that humanity must face in the near future due to environmental changes and increasing population numbers (Opitz et al., 2016). Maize, rice, and wheat are three widely cultivated cereal crops globally, yielding significant quantities of straw and grain (Liu et al., 2023b). In recent years, these crops’ straw returns have been widely popularized and implemented as a farmland management policy in many areas of China (Li et al., 2018; Zhao et al., 2018). Straw return refers to the harvesting, crushing, and disposal of crop straw harvested from the field, and applying it back to the farmland (Zhang et al., 2023b). Much attention has focused on the beneficial effects of straw return, such as increasing soil organic matter and stimulating carbon (C) sequestration (Qin et al., 2021; Zhang et al., 2021b; Xing et al., 2022). Indeed, as natural manure, straw can supply various elements and organic matter to the soil, which changes the amount and composition of soil microbial communities (Qin et al., 2021; Zhang et al., 2021b; Xing et al., 2022). Meanwhile, straw return has been shown to meet the CO2 reduction target because the straw is mulched rather than burnt directly (Hongli et al., 2022; Lian et al., 2022; Li et al., 2023; Shuailin et al., 2023). However, crops’ straw properties are quite different, which is bound to have different effects on farmland soil properties (Ul Islam et al., 2023), and probably further lead to differences in crop grain yield and quality (Zhang et al., 2021a; Zhou et al., 2023). Unfortunately, the synthetical responses of grain yield and quality of the three major crops to straw return remain inconclusive. Furthermore, the combine influence of soil properties and straw return to grain yield and quality require further investigation.

There are a lot of traits to evaluate grain quality. For instance, the protein content and total amino acids concentration can be used as common traits to study the response of straw return on all three main crop quality (Min et al., 2011; Zhao et al., 2022). Generally, the effects of straw return on grain quality can be better evaluated through four interrelated categories: appearance quality, processing quality, cooking and eating quality, and nutritional quality (Hu et al., 2021). Currently, there have been numerous independent field experiments that investigate the impact of straw return on grain quality and yield. For instance, straw return could reduce winter wheat grain yield but increase protein content (Tan et al., 2019). However, there were also reported that although straw return increased crop grain yield, it significantly reduced grain quality, especially protein content (Gupta et al., 2022). Consequently, the independent field experimental results revealed either positive or negative effects on grain yield and grain quality due to straw return, making the overall conclusions obscure. Furthermore, some field management practices could further affect the responses of grain yield and quality to straw return, such as the type of cultivated crops, the amount of straw return, the method of straw return, etc (Zhang et al., 2021b; Zhao et al., 2022). These field management practices probably also have diverse effects on grain yield and quality by causing differences in the response of soil physical and chemical properties to straw return. Hence, the effects of straw return acted unsteadily on grain yield and various quality traits due to the multifarious states of the agricultural environment, which made the impacts of straw return on food security controversial (Ning et al., 2022; Zhang et al., 2023b). In addition, although straw return had a direct impact on soil properties, it might also have a lagged impact on grain yield and quality traits (Gai et al., 2019; Zhang et al., 2023a). Therefore, these findings indicate that the duration of straw return may have an impact on long-term outcomes.

Meta-analysis, a statistical method that synthesizes multiple independent studies on the same particular topic, has developed rapidly since it was introduced into ecology research in the 1990s (Hedges et al., 1999). It allowed for a more accurate measurement of the magnitude of effects in environmental studies and boosted the generalization of data collected from individual studies (Arnqvist and Wooster, 1995; Xia et al., 2017). Therefore, meta-analysis can be used to elucidate the responses of grain yield and quality to straw return. In this study, we hypothesize that: (1) straw return has an advantageous effect on grain yield and quality; (2) long-term straw return has a more significant impact than short-term practices; and (3) the impact of returning straw to the grain depends on multiple factors. Hence, the objective of this study is to elucidate the influence of straw return on both grain yield and quality, along with its underlying determinants, thus facilitating the advancement of sustainable food security in the future.




2 Materials and methods



2.1 Data collection and database establishment

Before March 30th, 2023, relevant research articles were searched using the Web of Science (https://apps.webofknowledge.com) and China National Knowledge Infrastructure (http://www.cnki.net) with the search terms “straw return, straw adding or straw incorporation” and “grain quality”. Peer-reviewed publications selected by the following criteria:

	(1) selected published journals rather than academic degree dissertations;

	(2) chose field experimental articles rather than pot experimental articles or reviews;

	(3) each study comprised a control group (without straw return) and a treatment group involving straw return, focusing on grain yield and quality traits under identical environmental conditions (including the consistency of agronomic measures such as N application rate);

	(4) the field experimental methods necessitate the direct return of straw to the field rather than post-composting or burning;

	(5) the selected articles must provide both the mean values and the number of replications.



Specifically, we collected background information, grain yield data, and grain quality traits to conduct this meta-analysis. The background information included field experimental location (Supplementary Figure S1), type of cultivated crop, amount of straw return, method of straw return, duration of straw return, and soil properties. Most research publications reported grain yield and quality in tables that could easily be transferred into the dataset directly. For other data presented in the figures, GetData Graph Digitizer software (Version 2.24) was used to extract the data. Finally, we obtained 1822 observations from 78 articles among all preliminary screening articles (Figure 1; Supplementary Text S1).

[image: Flowchart detailing the selection process for a meta-analysis. Identification phase includes records from Web of Science (123 from 7805) and CNKI (167 from 2034) with 22 irrelevant records removed. Screening phase removes duplicates, filtering 268 records to 234 after downloading failures, and further analysis excludes 34 records. Out of 234, 165 journal papers are selected, excluding 69 academic dissertations. Eligibility checks criteria like experimental fields and reporting requirements, leading to 87 excluded studies. Final inclusion results in 78 studies used for the meta-analysis.]
Figure 1 | The PRISMA flow diagram of straw return effect on three main crops' grain yield and quality for this meta-analysis.




2.2 Group subdivision

According to conventional classification methods, in this meta-analysis, the grain quality traits were divided into four parts: appearance quality, processing quality, cooking and eating quality, and nutritional quality. Furthermore, we used 3 traits (brown rice percentage, mill rice percentage, and flour yield) to describe grain processing quality, 3 traits (chalky grain rate, chalkiness degree, and grain volume) to describe grain appearance quality, 9 traits (amylose content, gel consistency, flavor, grain hardness, sedimentation value, resistance/extensibility relation, wet gluten content, water absorption, and oil/fat content) to describe cooking and eating quality, and 16 traits [protein content, 9 amino acids (histidine, threonine, valine, methionine, isoleucine, leucine, phenylalanine, lysine, and arginine) concentration, total amino acids concentration, and 5 grain elements (nitrogen, N; phosphorus, P; potassium, K; iron, Fe; and zinc, Zn) contents] to describe nutritional quality.

We also divided the effects of straw return on crop grain yield and quality by types of cultivated crops, amounts of straw return, methods of straw return, and durations of straw return, respectively (Yu et al., 2022). More specifically, types of cultivated crops were grouped as rice, wheat, and maize; amounts of straw return were classified into two subgroups according to the description of each search article: part straw return (≤ 3000 kg hm-2) and full straw return (> 3000 kg hm-2); methods of straw return included three modes: straw-covered mode, straw surface ploughed mode, and straw deep ploughed mode; and durations of straw return were divided into short-term (≤ 3 years), medium-term (3-10 years), and long-term (> 10 years) (Zhou et al., 2023).




2.3 Meta-analysis

Natural logarithms of response ratio (lnR) were used to measure relevant information with Equation 1: (Hedges et al., 1999; Yu et al., 2022):

[image: Mathematical equation showing natural logarithm of R equals the natural logarithm of the ratio of M sub T to M sub CR, labeled as equation one.] 

where MT and MCK are the means of the treatment (straw return) and the control (no straw return) for each variable, respectively.

Since most of the selected studies did not report the standard deviations or standard error, we weighted the effect size as follows with Equation 2: (Xia et al., 2017; Yu et al., 2021):

[image: Equation labeled as two, showing "Weight equals open parenthesis N subscript T times N subscript CX close parenthesis divided by open parenthesis N subscript T plus N subscript CX close parenthesis".] 

where NT and NCK are the number of replicates of the treatment and the control, respectively.

The percentage change (PC) in each variable as affected by straw return was shown using the following Equation 3: (Yu et al., 2023; Liu et al., 2023b):

[image: Formula for PC: PC equals the exponential function of beta times R minus one, all multiplied by one hundred percent. Equation number three.] 

where positive PC means an increase whereas a negative value indicates a decrease for each variable as affected by straw return.

Fixed effect modes were conducted to generate a bootstrapping procedure with 999 iterations for mean response ratios and 95% confidence intervals (95%CIs) using Metawin 2.0 (Berhane et al., 2020). Between-group heterogeneity (Qbtests) was used to ensure whether the trait significantly differed among sub-groups. The Spearman test was used to ensure whether relevant factors influence the effects of straw return. The effect of long-term straw return on grain yield and quality was analyzed by linear regression. In addition, OriginPro 2024 (OriginLab, Northampton, MA, USA) was used for the Spearman test, linear regression analysis, and polynomial fit analysis to complete relevant analysis, in which a p-value (*, p< 0.05; **, p< 0.01; ***, p< 0.001) was used to judge the significance of the tests.

The Egger’s test is a statistical method used primarily in meta-analysis to assess the presence of publication bias in a set of studies. We chose Stata 16.0 (Stata Corp LLC., USA) to examines whether there is a relationship between the effect size of each study and its standard error Li et al. (2023a). The test statistic (t-value) for Egger’s test is calculated as the coefficient of the standard error term in the regression divided by its standard error, which is similar to a t-test.





3 Results



3.1 Overall effects of straw return on grain yield and quality

On average, compared with no straw return, straw return increased grain yield for all three crops by 4.3% (p< 0.05; Figure 2). For grain quality, straw return improved processing quality (brown rice percentage for rice, +1.4%; flour yield for wheat, +1.5%), cooking and eating quality (gel consistency for rice, +2.2%; flavor for wheat, +1.7%), and nutritional quality (protein content, +2.5%; histidine for maize, +10.1%; threonine for maize and wheat, +5.6%; methionine for maize and wheat, +4.8%; arginine for maize, +7.6%; total amino acids concentration, +1.2%; P content, +3.6%) (p< 0.05, Figure 2). Meanwhile, straw return significantly improved rice appearance quality through decreasing chalky grain rate (-14.4%) and chalkiness degree (-16.4%) (p< 0.05, Figure 2).

[image: Forest plot depicting percentage changes in various rice quality traits. Categories include grain yield, processing quality, appearance quality, cooking and eating quality, and nutritional quality. Each trait has a percentage change represented by purple circles and lines, with corresponding confidence intervals and sample sizes. Traits vary in effect, with some showing significant changes away from zero.]
Figure 2 | Overall effects of straw return on grain yield and quality of three main crops (maize, rice, and wheat). When the 95%CIs did not overlap with zero, the responses of variables to straw return were considered as statistically significant (p < 0.05, with asterisks). The numbers in brackets represent the number of observations.




3.2 Effects of agricultural management practices on grain yield and quality under straw return



3.2.1 Types of cultivated crop affecting grain yield and quality under straw return

The increasing effects of straw return on grain yield significantly differed among types of cultivated crop (p< 0.05, Figure 3A). Among them, straw return increased grain yield of maize and rice by 6.1% and 6.9% (p< 0.05), while it had no significant effect on increasing wheat grain yield (+1.2%, p > 0.05). For cooking and eating quality, straw return decreased grain hardness of maize and rice by 2.5% and 5.8% (p< 0.05), while it had no significant effect on wheat grain hardness (p > 0.05) (Figure 3D). Meanwhile, there was a significant different between maize and wheat for wet gluten content and water absorption under straw return, and their response of maize to straw return was negative (p< 0.05, Figure 3D). For nutritional quality, straw return increased total amino acids concentration of maize by 5.9% (p< 0.05), while it had no significant effect on that of rice and wheat (p > 0.05)(Figure 3E).

[image: A series of graphs illustrate the percentage change in various quality traits for grains: maize (green squares), rice (orange circles), and wheat (pink triangles).   - A: Grain yield shows positive changes with significant effects indicated. - B: Processing quality includes brown rice and milled rice percentages, with slight changes. - C: Appearance quality covers grain rate and volume, showing variable effects. - D: Cooking and eating quality examines traits like amylose content and grain hardness. - E: Nutritional quality analyzes protein and amino acid levels with some significant changes.  Each graph includes statistical details like Qb and p-values.]
Figure 3 | Effects of cultivated crop types (maize, rice, and wheat) on grain yield (A), processing quality (B), appearance quality (C), cooking and eating quality (D), and nutritional quality (E) under straw return. Between-group heterogeneity (Qb) represents the effects of categorical variables. Significant Qb values (p < 0.05) indicate that the effects of categorical variables were significant. When the 95%CIs did not overlap with zero, the responses of variables to overall fertilization were considered as statistically significant (p < 0.05, with asterisks). The numbers in brackets represent the number of observations.




3.2.2 Amounts of straw return affecting grain yield and quality

There was no significant difference in grain yield between part and full straw return (Figure 4A). However, full straw return increased grain yield by 3.9% (p< 0.05), which was higher than that (+2.0%, p > 0.05) affected by part straw return (Figure 4A). For processing quality, the increase of brown rice percentage and milled rice percentage (+6.4% and +6.0%, respectively; p< 0.05) as affected by part straw return were higher than that (+0.4%, p< 0.05; +0.1%, p > 0.05) as affected by full straw return (p< 0.05, Figure 4B). For appearance quality, chalky grain rate was decreased by 11.5% (p< 0.05) under full straw return, while there was no significant change under part straw return (Figure 4C). For cooking and eating quality, amylose content was significantly increased by 40.5% (p< 0.05) under part straw return, while it showed insignificant change under full straw return (Figure 4D). Contrarily, oil/fat content significantly increased by 3.6% (p< 0.05) under full straw return, while there was no effect of part straw return (Figure 4D). For nutritional quality, protein content increased by 6.9% (p< 0.05) under part straw return, which was higher than full straw return conditions (+2.34%, p< 0.05, Figure 4E).

[image: A series of forest plots display the percentage change in various rice quality parameters due to different treatments. Panels A to E represent grain yield, processing quality, appearance quality, cooking and eating quality, and nutritional quality, respectively. Each panel includes several parameters with associated statistical values \(Q_b\) and \(p\), plotted against percentage change. Icons denote treatment types: green squares for overall, orange circles for part, and pink triangles for full. Statistical data, including sample sizes, is annotated beside each plot point. A visual key at the bottom explains the icon coding.]
Figure 4 | Effects of straw return amounts (part straw return and full straw return) on grain yield (A), processing quality (B), appearance quality (C), cooking and eating quality (D), and nutritional quality (E). Between-group heterogeneity (Qb) represents the effects of categorical variables. Significant Qb values (p < 0.05) indicate that the effects of categorical variables were significant. When the 95%CIs did not overlap with zero, the responses of variables to overall fertilization were considered as statistically significant (p < 0.05, with asterisks). The numbers in brackets represent the number of observations.

The results of linear regression analysis showed that grain yield remained unchanged as the amount of straw returned increased (p > 0.05, Supplementary Figure S2A). However, brown rice percentage, milled rice percentage, and amylose content decreased with increasing amounts of straw return (p< 0.001, Supplementary Figures S2B, C, H), while the content of isoleucine and total amino acid concentration increased with increasing amounts of straw return (p< 0.01, Supplementary Figures S2V, AA).




3.2.3 Methods of straw return affecting grain yield and quality

On average, different methods of straw return had no difference in the increase in grain yield (p > 0.05, Figure 5A). However, straw-covered mode and straw surface ploughed mode increased grain yield by 5.2% and 4.0%, respectively (p< 0.05, Figure 5A), while straw deep ploughed mode did not significantly increase grain yield (+3.6%, p > 0.05). For processing quality, brown rice percentage significantly increased by 3.8% (p< 0.05) under straw-covered mode, which was higher than that under straw surface ploughed mode (+0.4%, p< 0.05, Figure 5B). For cooking and eating quality, amylose content and gel consistency increased by 11.1% and 4.8% under straw-covered mode, respectively (p< 0.05, Figure 5D), which was higher than that under straw surface ploughed mode, respectively (p< 0.05). Oil/fat content decreased under straw-covered mode by 2.2%, while it increased under straw surface ploughed mode by 5.5% (p< 0.05, Figure 5D). For nutritional quality, total amino acids concentration only increased under straw-covered mode by 2.5% (p< 0.05), while it showed insignificant change under straw surface plough mode (Figure 5E).

[image: Forest plot illustrating the percentage change in various rice quality attributes under different agricultural treatments. Categories include grain yield, processing quality, appearance quality, cooking and eating quality, and nutritional quality. Symbols represent straw-covered (green square), surface ploughed (orange circle), and deep ploughed (pink triangle). Statistical annotations include Qb and p-values. Images at the bottom show fields with different treatments.]
Figure 5 | Effects of straw return methods (straw-covered mode, straw surface ploughed mode, and straw deep ploughed mode) on grain yield (A), processing quality (B), appearance quality (C), cooking and eating quality (D), and nutritional quality (E). Between-group heterogeneity (Qb) represents the effects of categorical variables. Significant Qb values (p < 0.05) indicate that the effects of categorical variables were significant. When the 95%CIs did not overlap with zero, the responses of variables to overall fertilization were considered as statistically significant (p < 0.05, with asterisks). The numbers in brackets represent the number of observations.




3.2.4 Duration of straw return affecting grain yield and quality

There was a significant difference in grain yield among different durations of straw return (Supplementary Figure S3). Short- and long-term straw return increased grain yield by 6.2% and 17.3% (p< 0.05), respectively, while medium-tern straw return did not increase grain yield (-0.2%, p > 0.05) (Supplementary Figure S3A). Similar to grain yield, the stimulated effects of long-term straw return (+11.0%, p< 0.05) on protein content were higher than that (+4.8%, p< 0.05; -0.1%, p > 0.05) affected by short- and medium-term straw return, respectively (p > 0.05 and p< 0.05, Supplementary Figure S3E). In this study, we selected the four most important variances (grain yield, protein content, total amino acids concentration, and N content) to characterize the effects of straw return durations on grain yield and quality (Figure 6). In general, the promotion effects of straw return on these four most important factors first decreased and then increased with increasing the duration of straw return.

[image: Four graphs (A, B, C, D) display the relationship between the duration of straw return (in years) and the natural logarithm (lnR) of various agricultural metrics. Graph A shows lnR of grain yield with purple circles and a quadratic trend line. Graph B displays lnR of protein content with green circles. Graph C illustrates lnR of total amino acids concentration with orange circles. Graph D presents lnR of nitrogen content with blue circles. Each graph includes statistical data such as the equation, R-squared, p-value, and sample size (N), all plotted with a red trend line and shaded confidence interval.]
Figure 6 | Parabolic relationship of the response ratio (lnR) of grain yield and quality with the duration of straw return. (A) grain yield; (B) protein content; (C) total amino acids concentration; (D) nitrogen (N) content. The points represent the observations and the shaded areas around the regression lines represent the 95% confidence intervals (the 95CIs).





3.3 Relationships between fertilizer application and environmental factors with grain yield and quality as affected by straw return

Generally, chemical fertilization application weakened the effect of straw return on grain yield and some quality traits but increased the total amino acids concentration as affected by straw return (Figure 7). Furthermore, there is a positive correlation between soil fertility index with grain yield, N content, and Fe content under straw return conditions (Figure 7).

[image: Heatmap showing the Spearman correlation between influencing factors (e.g., N application rate, soil pH) and various quality traits like grain yield and nutritional quality. Correlation strength is indicated by color, from orange (positive) to teal (negative). Asterisks denote significance levels, with "***" for p<0.001, "**" for p<0.01, and "*" for p<0.05. Some values are marked as "nd" for not determined.]
Figure 7 | Correlation between the effect size of variances and environmental factors with Spearman test. A positive (negative) R-value denotes a positive (negative) relationship (*, p < 0.05; **, p < 0.01; ***, p < 0.001). "n.d" means "not detected".




3.4 The Egger’s test conclusion for publication bias

The Egger’s test results showed (Table 1) that the publication bias in the study of chalkiness degree, gel consistency, flavor, histidine, threonine, arginine. Type I error for the Egger’s test was higher than other tests, which might reject the true results due to publication bias Li et al. (2023a).

Table 1 | The Egger’s test conclusion for publication bias.


[image: A table presenting the P-values of Egger’s test for various rice characteristics with columns for the original conclusion and without publication bias. Significant results are marked with an asterisk. Below the table, an explanation states the use of Egger’s test to detect publication bias, considering P values greater than 0.05.]




4 Discussion



4.1 Response of grain yield to straw return

Consistent with our hypothesis (1), straw return has a positive effect on grain yield, with a significant increase of 4.3% (95%CIs: 2.8%-5.8%, p< 0.05, Figure 2). Indeed, straw return not only releases more soil C, N, and P but also improves soil properties and reduces soil bulk density, which has a promoting effect on crop growth and thus increases grain yield (Lu et al., 2009; Lou et al., 2023). In addition, straw return further increases soil organic C contents by increasing microbial activity, which plays an important role in promoting soil health and high-quality crop growth (Zhou et al., 2023). Compared with previous meta-analysis studies (Supplementary Table S1), although the overall effect of grain yield response to straw return in this study was a reasonable magnitude, there are also some differences in grain yield among cultivated crop types (Figure 3A), which was consistent with previous research results (Liu et al., 2019, 2023a) (Supplementary Table S1). Two reasons may have caused this difference: (1) compared with maize and rice, wheat undergoes an overwintering period, while lower temperatures and precipitation are not conducive to straw decomposition and mineralization, providing fewer nutrients for wheat under straw return; (2) crops have different uptake preferences for various N forms, while (Chen et al., 2018; Quan et al., 2021) maize and rice are nitrate- and ammonium-loving crops respectively, which results in the nutrient form released by the straw after returning to paddy fields and uplands can meet the needs of their respective crops.

Crop straw, as an organic fertilizer, can change soil C/N ratio, and provide essential elements and organic C to soil (Pal and Mahajan, 2017; Zhou et al., 2020). Hence, straw return can restore the soil environment of excessive fertilization and increase grain yield concurrently (Zhang et al., 2017; Xu et al., 2022; Chen et al., 2023). Our meta-analysis showed that compared with part straw return, full straw return increased grain yield significantly (Figure 4A), which is probably due to being more conducive to improving soil fertility and the growth of crop roots under full straw return. Moreover, the straw-covered mode and straw surface ploughed mode were more beneficial in increasing grain yield than the deep ploughed mode of straw return (Figure 5A). This might be because the appropriate straw return method could accelerate the decomposition rate of straw, increase soil organic carbon content, and improve the activity of soil microorganisms (Lu et al., 2009; Zhao et al., 2016; Chen et al., 2017). Li et al. (2013) reported the accumulation of toxic substances and pathogens caused by a slow straw decomposition rate with the deep ploughed mode of straw return, which affects the effects of straw return and seed germination. Therefore, it is necessary to emphasize a proper way of straw return to improve soil environment conditions and boost grain yield. Interestingly, the effect of straw return on grain yield showed an upward parabolic relationship with straw return duration (Figure 6A). This indicated that long-term straw return might have more favorable effects on crop grain yield (Supplementary Figure S3A), which was consistent with our hypothesis (2). In summary, this finding suggests that under the condition of full straw return, long-term straw-covered mode and straw surface ploughed mode may have a better grain yield increase.




4.2 Response of grain quality to straw return

Similar to the response of grain yields, overall, the four types of grain quality traits also had a positive response to straw return (Figure 2), which was consistent with our hypothesis (1). For processing quality, the remarkable increase in brown rice percentage by straw return indicated that grains were prone to improve weight during the processing period (Figure 2), which produced more grain yield along the kernel surface rich in lipid and thus positively affected the commercial value (Coradi et al., 2021). Flour yield for wheat also showed the same tendency as that of brown rice percentage (Figure 2), indicating that straw return had a significant effect on the overall processing quality of wheat. For appearance quality, according to relevant standards, the high value of chalky grain rate and chalkiness degree represent the poor quality of rice grain (Cheng et al., 2003; Aoki et al., 2017). However, in the present study, straw return decreased the chalky grain rate and chalkiness degree (Figure 2), which indicated that straw return increased the appearance quality of rice (Zeng et al., 2013; Chen et al., 2014). For cooking and eating quality, in general, the greater the gel consistency of rice, the softer the rice, and the better cooking and eating quality (Cagampang et al., 1973). In this study, straw return increased the gel consistency of rice grain (Figure 2), resulting in a tendency to improve the taste quality of rice when cooked (Hou et al., 2015). More importantly, straw return also played a positive role in improving the nutritional quality of three main crop grains, including significantly increasing protein content, threonine, methionine, total amino acids concentration, and P content (Figure 2). Previous studies found that straw return promoted the transport of N to grain in the middle and late stages of rice production (Thuy et al., 2008; Wang et al., 2018; Sharma et al., 2021), which might be one of the reasons for the increase of protein content as affected by straw return.

N, P, and K are the most commonly applied chemical element in fertilizer and their effects on nutrient distribution in cereal grains have also been widely studied (Gai et al., 2019). In this study, these fertilization rates did not mediate the effects of straw return on grain N, P, and K content (Figure 7). This might be because straw return did not regulate the transport and conversion of crop part nutrient elements. However, there was a significant positive correlation between total amino acid concentration and fertilizer application rates (Figure 7), which was consistent with our hypothesis (3). Moreover, some grain quality traits were significantly correlated with others as affected by straw return (Supplementary Figure S4), indicating associated benefits for various quality traits by implementing straw return management (Yadvinder et al., 2004; Yang et al., 2016). For types of cultivated crops, straw return could improve various grain traits of all three crops, especially protein content and total amino acid concentration (Figure 3). Among them, straw return has the most significant effect on improving maize grain quality, which may be due to the highest decay rate of straw when planting maize resulting in the rapid transport of nutrient elements. For straw return types and methods, similar to the effect in grain yield, part straw return with straw-covered mode and straw surface ploughed mode was a more suitable straw return management to improve crop grain quality (Figures 4, 5). Interestingly, similar to grain yield, the effect of straw return on protein content, total amino acids concentration, and N content also showed an upward parabolic relationship with straw return duration (Figure 6A). In other words, long-term straw return might have more favorable effects on crop grain yield (Supplementary Figure S3A), which was consistent with our hypothesis (2).

We utilizing the Egger’s test to evaluate publication bias within this meta-analysis, our findings demonstrate that only analyses pertaining to flour yield, chalky grain rate, grain hardness, water absorption, protein content, methionine, total amino acids concentration, and P without publication bias. It is important to acknowledge that the Egger’s test introduces the potential for Type I error Li et al. (2023a). Additionally, it is conceivable that other traits could be affected by the implementation of straw return practices, though further inclusion of study samples is necessary to confirm this hypothesis. Our study corroborates that straw return practices do indeed influence flour yield, chalky grain rate, grain hardness, water absorption, protein content, methionine, total amino acids concentration, and P on grain quality.




4.3 Limitations of this study

In this meta-analysis, we quantified the effects of straw return on three main crops’ grain yield and quality traits and validated that straw return enhanced overall grain yield and quality (Figure 2). However, there were still some limitations in our study. First, most of the previous studies we selected were conducted under short-term conditions, which made the depiction of the long-term effects of straw return on grain yield and quality hard (Supplementary Figure S3). Our results showed that crop grain yield and quality might first decrease and then increase with increasing the duration of straw return (Figure 7). This finding indicates that future studies need to conduct in-depth monitoring of the long-term effects of straw return to effectively evaluate the response of grain yield and quality to straw return (Li et al., 2023b). Unfortunately, it is undeniable that straw return would bring an increase in the risk of crop diseases and pests in the second cultivation year, thus leading to an increase in the input of pesticides for crop cultivation and protection (Liu et al., 2019). Second, straw return also could lead to changes in soil C/N ratio (Kong et al., 2023) and a further increase in N fertilizer application to ensure the efficient utilization of nutrients (Bossolani et al., 2023). This is because in low C/N ratio soils, straw return can enhance soil C sources, stimulate microbial activity, and facilitate C-driven N processes, while in high C/N ratio soils, straw decomposition by soil microbes may deplete N elements, necessitating increased N fertilizer application to ensure optimal crop growth. Thus, it is necessary to study the synergistic effect of long-term fertilization management measures and straw return. Third, for grain yield, although there are many reports on the impact of straw return on crop yield, it should be noted that there are still few studies on the comprehensive impact of straw return on food crop production, including its overall economic and ecological effects, such as input costs, greenhouse gas emissions, soil fertility, disease and pest control, and crop grain quality (Lv et al., 2019). In traditional agriculture, straw is burned in the field, and then completely mineralized, which also leaves nutrients and C in the soil, and straw incineration also effectively kills farmland pests and soil germs (Lv et al., 2019). The nutrients after the complete mineralization of straw incineration are more easily utilized by crops. Although it will increase CO2 emissions in the short term, in the long run, on the whole, straw incineration will not increase additional CO2 emissions, and the total amount should still be balanced (Kong et al., 2023). Hence, the differential effect and mechanism between straw incineration or composting before application and direct straw return should be further clarified. Meanwhile, to respond to national policies, previous studies mostly focused on the comparison of effects between reduced N fertilizer rate and no N fertilizer (or normal N fertilizer rate) treatment, and there was a lack of comparison of effects of straw return under the same N fertilizer application rate. Therefore, comparative field research in this scope should be strengthened. In addition, in terms of grain quality, due to the lack of selected data, we only collected crucial quality traits from all of the quality traits to analyze (Figures 3–6). Therefore, it is urgent to supplement experimental data to improve the impact of straw return on grain quality in the future.





5 Conclusion

This meta-analysis presented statistical evidence that direct straw return enhanced grain yield and quality. Specifically, straw return significantly (p< 0.05) increased overall grain yield (+4.3%), flour yield (+1.5%), protein content (+2.5%), methionine (+4.8%), arginine (+7.6%), total amino acids concentration (+1.2%), and the phosphorus of grain (+3.6%), compared with no straw return treatment, respectively. In addition, direct straw return significantly decreased the chalky grain rate, grain hardness, and water absorption by 14.4%, 1.9%, and 0.5%, respectively. Through subgroup analysis, we found that the effects of straw return on grain yield and quality traits were influenced by cultivated crop type, the amount of straw return, and the method of straw return. Interestingly, there was an upward parabolic relationship between grain yield and quality with straw return duration. Our study indicated that although improper direct straw return may increase plant disease risk and affect seed germination, full straw return with covered or plough mode is a more suitable way to enhance grain yield and quality under long-term straw return duration. Nevertheless, the comparative effects of direct straw return versus straw burning or composting before application on crop yield and quality deserve further study.
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In this study, we aimed to examine the growth, physiological and biochemical status, and responses to salinity stress of bok choy (Brassica rapa subsp. chinensis) cultivated in a hydroponic system with a plasma-treated solution. Plasma gas generated using a cylindrical dielectric barrier discharge or air (control) was injected into Hoagland nutrient solution once a week for different durations (0, 5, and 10 min). After 4 weeks, the length of the shoots and roots, number of leaves, and dry weight of bok choy plants significantly increased in individuals grown with Hoagland solution treated with plasma gas for 10 min. An increase in dry weight of individual plants of approximately 80.5% was observed in plants in the plasma-treated group compared to those in a control group. The levels of chlorophyll, total soluble proteins, and nitrogen uptake, and transcription of genes related to salinity stress tolerance—WRKY2, HHP3, and ABI1— were also significantly elevated in bok choy grown with plasma treated Hoagland solution. Moreover, when exposed to 20 mM NaCl, plant length and leaf number were significantly increased, in the group grown with Hoagland solution treated with plasma gas for 10 min. Level of H2O2 was significantly elevated in the treated nutrient solutions. In plants grown with the treated nutrient solution, intracellular NO was highly detected in the cell division and elongation zone of roots. Our findings suggest that plasma treatment of nutrient solutions in hydroponic culture systems may improve the growth, physiological and biochemical status, and tolerance to salinity stress in plants, and a crucial role of H2O2 generated in the treated nutrient solutions may play in this improvement.




Keywords: Brassica rapa subsp. chinensis, atmospheric pressure non-thermal plasma, hydroponic culture, plasma-treated solution, plant growth and development, reactive oxygen and nitrogen species, salinity stress




1 Introduction

The increase in population size together with climate change are major obstacles to improving the food security index. The global population is experiencing a steady increase, projected to reach 8.5 billion people by 2030, 9.7 billion by 2050, and 10.9 billion by 2100 (Desa, 2019). Simultaneously, productivity in the agricultural sector has been declining, impacted by the effects of climate change (Kumar et al., 2022). Crop production is affected by various physical, biological, and anthropogenic stressors, which can reduce crop yields by 25–50% (Savary et al., 2012). Traditional agricultural practices cannot currently satisfy the demand for a sustainable food supply of the global population. Therefore, the demand for alternative strategies to overcome these difficulties has grown. Indoor agriculture and the enhancement of plant tolerance to environmental stresses have emerged as potential alternatives to increase production, with intensive research conducted in both fields (Nguyen et al., 2018; Mempel et al., 2021). Hydroponic culture systems represent a major and promising technology applied in indoor agriculture, owing to its usefulness and economic value (Hati and Singh, 2021). These have been technologically upgraded through the integration of smart technology, sanitation tools, and LED technology (Fuentes-Peñailillo et al., 2024). The promotion of plant tolerance to environmental stresses has been extensively studied to identify strategies that can respond to climate change (Redman et al., 2011; Wu et al., 2018; Dahal et al., 2019; Fiodor et al., 2021; Ullah et al., 2021). Developing innovative methods to increase the efficiency of hydroponic cultures and plant tolerance to environmental stresses is required, while minimizing potential negative effects of agricultural activities on the environment.

Plasma is a potential tool that may be applied in hydroponic culture systems to improve plant vitality and productivity. Plasma is an ionized gas, often referred to as the fourth state of matter (Langmuir, 1929; Tendero et al., 2006). It can be created by applying high voltage to gas, causing atoms to ionize and produce chemically reactive components, such as electrons, positive and negative ions, UV photons, free radicals, and resting or excited atoms (Langmuir, 1929). Generally, plasma is classified into thermal plasma (hot) and non-thermal plasma (cold) based on the temperature of its electrons and ions (Tendero et al., 2006; Woedtke et al., 2013). Non-thermal plasma generated at atmospheric pressure has garnered recognition as a cutting-edge, eco-friendly technology that may be applied in the agricultural industry to enhance plant performance and sustainability (Gao et al., 2022). Direct treatment with atmospheric pressure non-thermal plasma has been shown to improve seed germination, plant growth, and reproduction in studies (Serr et al., 2021; Waskow et al., 2021; Fathi, 2022; Sedhai et al., 2023; Guragain et al., 2024; Motrescu et al., 2024); most have shown that plasma promotes seed germination and plant growth by breaking the seed coat and allowing a more effective penetration of water and nutrients. Furthermore, it stimulates the production of enzymes, hormones, and growth factors that promote seedling growth, resulting in faster and more uniform germination and, ultimately, greater crop yields (Adhikari et al., 2020; Song et al., 2020). In addition to direct treatment, indirect treatment can be conducted by using plasma-activated water (PAW) or solutions that are made by exposing plasma to water or solutions to generate with reactive oxygen and nitrogen species, including OH•, O•, H•, ONOO−, NO•, and H2O2 (Kaushik et al., 2019; Zhou et al., 2020; Shaji et al., 2023). Improvements in seed germination and plant growth using PAW have been achieved in various vegetables and crops (for review Gao et al., 2022), such as corn (Lamichhane et al., 2021), radish sprout (Iwata et al., 2019), spinach (Kang et al., 2019), pea (Gao et al., 2019), and tomato (Adhikari et al., 2019). The increase in growth and development in plants treated with PAW is closely associated with the synergistic action of aqueous nitrite (NO2−), nitrate (NO3−), and ammonium ions (NH4+), as well as hydrogen peroxide (H2O2) species (Zhang et al., 2017; Judée et al., 2018), which activate plant growth regulators, alter levels of plant hormones, and induce stress tolerance responses (Adhikari et al., 2020; Konchekov et al., 2023). In addition, plasma can enhance nutrient availability and absorption by changing the physicochemical characteristics of the soil, decreasing the need for fertilizers and improving nutrient-use efficiency (Konchekov et al., 2023). Other studies have further shown that the effectiveness of direct and indirect non-thermal plasma treatments on plants depends on several factors, such as plant species, plasma source, voltage, pressure, feeding gases, gas flow rate, treatment time, plasma gap distance, moisture content, and type of liquid solution (Kaushik et al., 2019) (Adhikari et al., 2020).

The production of one of the most important vegetables in Asia—Brassica rapa subsp. chinensis, commonly known as bok choy or pak choi—is adversely affected by a variety of biotic and abiotic stresses (Zhang et al., 2014; Kayum et al., 2015). Currently, most applications of atmospheric pressure non-thermal plasma and PAW in agriculture focus on seeds and plants growing in soil, with relatively little research conducted on hydroponic plant cultivation (Carmassi et al., 2022) (Ruamrungsri et al., 2023) (Date et al., 2023). The goal of this study was to investigate the growth, physiological and biochemical status, and tolerance to salinity stress in bok choy plants cultured in a hydroponic system with a nutrient solution treated with gas generated using cylindrical dielectric barrier discharge (DBD) plasma. The results of our investigation suggest that plasma treatment of nutrient solution in hydroponic culture system can positively impact the growth, physiological and biochemical status, as well as the salinity stress tolerance of plants. Furthermore, our research has highlighted the significant role that H2O2, which is generated in the treated nutrient solutions, may play in contributing to these positive outcomes.




2 Materials and methods



2.1 Hydroponic culture and plasma treatment

Bok choy seeds (Dong-Won Nong-San Seed Co., LTD., Yongin-si, Gyeonggi-do, Korea) were purchased and individually placed in sponge blocks (25 × 25 × 30 mm) soaked with deionized (DI) water for germination, incubated at 25°C in the dark for 1 week. After germination, the sponge blocks containing germinated seeds were transferred to a square pot each (39 × 39 × 45 mm). These were placed in Styrofoam plates (20 pots per plate) inside plastic containers (41 × 30 × 14 cm) containing 8 L of 1X Hoagland solution (Figure 1A). The Hoagland solution was prepared using DI water, as described in a previous study (Hoagland and Arnon, 1950). Bok choy plants were cultured with 1X Hoagland solution and aeration (Figure 1B).

[image: Diagram illustrating a plasma discharge system and a hydroponic culture system. Panel A shows a cylinder-type DBD plasma device with a cross-section view highlighting the plasma discharge and electrodes within quartz tubes, powered by a 5 kV, 20 kHz AC high voltage supply. Panel B depicts a plasma hydroponic culture system with 20 plants in 1X Hoagland solution, utilizing a bubbler and plasma device. Dimensions are 41 cm by 30 cm by 14 cm. The system includes an air gas pump, transformer, and AC power supply, with specified voltages and flow rates.]
Figure 1 | Hydroponic culture system with cylindrical electrode DBD plasma. Schematic views and photographs of the cylindrical electrode DBD plasma device (A) and hydroponic culture system (B).

In this study, we used the cylinder-type DBD plasma as the same plasma device used in a previous study (Ji et al., 2018), employing single-pair cylindrical DBD electrodes to generate plasma with air as the feeding gas (Figure 1A). Two brass electrodes (190 × 1 mm each) covered with quartz tubes (200 × 5 mm) were alternately connected to a high voltage or the ground with a control voltage of 55 kV, input voltage of 5 kV at a repetition frequency of about 20 kHz (Figures 1A, B). The electrode sets were placed in a larger cylindrical quartz sleeve (210 × 10 mm), with a distance of 1 mm between the electrodes (Figure 1A). Plasma was produced between them, using air fed with a fish air pump (Dae-Kwang Electronics, Inc., Seoul, Korea) at maximum flow (2.5 L/min), and the resulted gas was injected into the Hoagland solution through a bubbler for indicated times (Figure 1B).

One week old bok choy seedlings were cultured in Hoagland solution injected with plasma gas for 0 (control), 5 or 10 min, using bubbler at the maximum flow rate (2.5 L/min) and then with only air at the minimum flow rate (0.5 L/min) for 1 week. The solution was then discarded, after which 8 L of new Hoagland solution were placed in the container. New Hoagland solution was treated in the same way, with plasma gas for 0, 5 or 10 min and then with only air, and the plants were cultured for another week. Repeating this process, bok choy seedlings were cultured for a total of 4 weeks, replacing the Hoagland solution 3 times. Plants were cultured under a 16:8 h light: darkness cycle and 25°C.




2.2 Measurement of plant growth

The bok choy plants were harvested after 4 weeks and washed with DI water. After drying the plants with tissue paper, the shoot and root lengths were measured using a ruler, while the number of leaves per plant was counted. To obtain the dry weight (DW) of harvested individual plants, plants were placed in paper bags and dried using a dry oven at 65°C for 3–4 days. Subsequently, the dried plants were weighed using a balance (Kern, Albstadt, Ebingen, Germany).




2.3 Characterization of plasma gas-treated Hoagland solution

The physicochemical properties of the plasma gas-treated Hoagland solution were immediately characterized after treatment by measuring the concentration of H2O2, nitrogen oxide (NOx), hydroxyl radicals, ozone (O3), pH, electrical conductivity (EC), and oxidation reduction potential (ORP). For these analyses, Hoagland solution (8 L) was treated with plasma gas for 5 or 10 min, while the untreated solution (0 min) was used as a control. Following plasma treatment, the levels of H2O2 and NOx in the treated solutions were assayed using the Amplex™ Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes, Eugene, OR, USA) and QuantiChromTM Nitric Oxide Assay Kit (BioAssay Systems, Hayward, CA, USA), respectively, following the manufacturer protocols.

To measure the hydroxyl radical level, terephthalic acid (Sigma-Aldrich, St. Louis, MO, USA) dissolved in 50 mM NaOH was incorporated into DI water or Hoagland solution until reaching a final concentration of 20 mM terephthalic acid. Subsequently, the DI water or Hoagland solution containing terephthalic acid was injected with plasma gas for 0, 5, or 10 min. Terephthalic acid can only react with hydroxyl radicals to produce 2- hydroxy terephthalic acid, which is fluorescent (Kanazawa et al., 2011); its fluorescence was detected at 310/425 nm (excitation/emission) using the Synergy HTX Multi-Mode Reader (BioTek Instruments, Winooski, VT, USA).

The O3 level, pH, EC, and ORP were measured using an ozone meter (CLEAN DOZ30 Dissolved Ozone Tester, Clean, Shanghai, China), pH meter (pH Testr® 30 Pocket Testers; Oakton), EC meter (PCTS TestTM 50; Oakton), and ORP meter (ExStik™ Model RE300 Waterproof ORP Meter, Extech, Hudson, NH, USA), respectively. Levels of NO2− and NO3− ions in the plasma gas-treated Hoagland solution were analyzed using ion chromatography. To do so, the treated Hoagland solution was filtered (0.5-μm pore size) and injected into the ion chromatograph ICS-3000 (Thermo Scientific Dionex, Sunnyvale, CA, USA).




2.4 Measurement of chlorophyll and total soluble protein levels

Chlorophyll is a critical photosynthetic pigment that influences photosynthetic capacity and plant growth. To measure the chlorophyll levels, fresh leaves (0.2 g) of 4-week-old bok choy plants grown in plasma gas-treated Hoagland solution were cut into small pieces and placed into 50-mL conical tubes. For chlorophyll extraction, 20 mL of 80% acetone was added into each conical tube, after which the tubes were inverted multiple times to ensure that all leaves were properly mixed with the acetone solution. The tubes were covered with aluminum foil to prevent light exposure and incubated at 25°C until all leaves were completely white. Subsequently, the absorbance of the extracted liquid was measured at 663 and 645 nm using the Synergy HTX Multi-Mode Reader. The concentrations of chlorophyll a and chlorophyll b, together with the total chlorophyll in leaves of bok choy were calculated as mg/g fresh weight (FW) of leaves using the following equations (Manolopoulou et al., 2016):

[image: Formula for Chlorophyll a concentration in milligrams per gram fresh weight: (12.7 times A663 minus 2.69 times A645) times (X over 1000) times n.]	

[image: Formula for chlorophyll b calculation, in milligrams per gram fresh weight (mg/g FW): equals 22.9 times absorbance at 645 nanometers minus 4.68 times absorbance at 663 nanometers, multiplied by X over 1000, times n.]	

[image: The formula for calculating total chlorophyll content in milligrams per gram of fresh weight is shown as follows: equals open parenthesis twenty point two times A six four five minus eight point zero two times A six six three close parenthesis times open parenthesis X divided by one thousand close parenthesis times n.]	

where A645 and A663 represent the absorption values at 645 and 663 nm, respectively, X is the total volume of liquid extract (mL), and n is the leaf FW (g).

The total soluble protein content was obtained from the shoots and roots of 4-week-old bok choy plants. The soluble protein content in plant cells is an indirect indicator of plant physiological and biochemical status, which contributes to plant growth. A 100-mg portion from each fresh shoot and root sample were ground in liquid nitrogen, after which the ground powder was transferred to 1.5-mL microtubes. Subsequently, 1 mL of 1X phosphate buffered saline (PBS) was added into the tube, and the tube was vortexed and then centrifuged at 12,400 × g and 4°C for 10 min (Song et al., 2015). The supernatants were collected and transferred into new tubes, where the Bradford assay kit (Bio-Rad, Hercules, CA, USA) was used to determine the concentration of total soluble protein following the manufacturer’s protocol. Bovine serum albumin was used as a standard.




2.5 Determination of NO3−-N and NH4+ content in the shoot and root

The primary nitrogen sources that plants can take up and utilize are NH4+ and NO3− ions, so intracellular levels of NH4+ and NO3−-N may be related to plant growth and quality. To determine the concentration of NO3−-N and NH4+, shoots and roots were collected from plants cultured in the untreated and plasma gas-treated Hoagland solution. The samples were completely dried in the oven at 65°C and later ground in a mortar using a pestle. To determine the NO3−-N level, 100 mg of shoot or root powder were suspended in 10 mL of DI water and incubated at 45°C for 1 h. After incubation, the suspensions were filtered (Whatman No. 40 filter paper, Whatman Inc., Maidstone, UK) and immediately analyzed for NO3−-N levels using a salicylic acid-sulfuric acid method that provides the nitrosalicylic acid content (Lastra, 2003).

The phenol-hypochlorite reaction was used to analyze the level of NH4+ (King et al., 1990). The ground powder (10 mg) of shoot or root samples was mixed with 1 mL of DI water and shaken for 15 min at 25°C to extract the NH4+. This mixture was centrifuged at 12,400 × g for 5 min, after which the supernatant was transferred into new tubes. To determine the NH4+ concentration, a reaction mixture was constructed with 0.1 mL of supernatant, 0.4 mL of DI water, 2.5 ml of phenol-sodium nitroprusside (100 mM phenol and 0.16 mM sodium nitroprusside), and 2.5 ml of alkaline hypochlorite (125 mM NaOH and 5 ppm sodium hypochlorite solution) and incubated at 30°C for 10 min. After incubation, absorbance at 635 nm was measured using the Synergy HTX Multi-Mode Reader. Ammonium sulfate was used to make a standard curve from which the NH4+ level was inferred.




2.6 Response to salinity stress after plasma treatment

We analyzed the expression of genes associated with salinity stress tolerance. The mRNA expression levels of these genes were measured in bok choy plants from the treated and untreated groups. Shoots and roots of 4-week-old bok choy plants were harvested, washed with DI water, and stored at −80°C for further use. The shoots and roots were ground with liquid nitrogen, and the total RNA was extracted using the RNAiso Plus kit (Takara Bio, Shiga, Japan) according to the manufacturer’s instructions. The concentration of total RNA was measured using a NanoDrop spectrophotometer (BioTek Instruments), while 100 ng of total RNA were used to synthesize cDNA in the ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo, Osaka, Japan) according to the manufacturer’s instructions. The cDNA of three salinity stress tolerance-related genes—heptahelical protein, HHP3; WRKY transcription factor, WRKY2; and ABA-insensitive 1, ABI1—was further amplified to determine cycle threshold (Ct) values using an iQ SYBR Green Supermix (Bio-Rad) and CFX96TM real-time RT-PCR system (Bio-Rad). The thermal cycling conditions were as follows: 95°C for 3 min, 40 cycles at 95°C for 10 s and 60°C for 30 s. Using the Ct values, the relative levels of mRNA for the target genes compared to those of an actin gene (reference gene) were calculated as follows (Livak and Schmittgen, 2001):

[image: Mathematical expression showing Ratio equals two raised to the power of negative delta delta Ct.]	

[image: Negative delta delta Ct equals open parenthesis Ct target minus Ct reference slash control close parenthesis minus open parenthesis Ct target minus Ct reference slash treatment close parenthesis.]	

The primer sequences used for qPCR are listed in Table 1. An average of three replicate measurements was obtained in each experiment, while the experiment was performed in triplicate.

Table 1 | Primers used in a quantitative polymerase chain reaction (qPCR) for salinity stress-related gene expressions.


[image: Table listing primer names, sequences, and references. Primer names include HHP3-F, HHP3-R, WRKY2-F, WRKY2-R, ABI1-F, ABI1-R, Actin-F, and Actin-R. Sequences are shown in the 5' to 3' direction. References are Wang et al., 2019; Tang et al., 2013; Kong et al., 2018.]
The growth of bok choy plants under salinity stress in untreated or plasma gas-treated Hoagland solution was analyzed. Bok choy seeds were germinated for 1 week as described in section 2.1, after which they were transferred to plastic containers containing Hoagland solution (8 L) supplemented with 20 mM NaCl and incubated for 1 week. These solutions were either treated with air (control) or plasma gas for 10 min. After 1 week, the Hoagland solution was replaced with new Hoagland solution treated in the same way, and the bok choy plants continued to be cultured for 1 week. The same process was repeated once again; thus, the bok choy plants were cultivated for 4 weeks in total, renewing the Hoagland solution each week. All plants were grown under a 16:8 h light: darkness cycle at 25°C. After 4 weeks of culture, plant length and leaf number were measured.




2.7 Intracellular NO in bok choy root

To understand the potential mechanisms of plant growth enhancement in plasma gas-treated nutrient solutions, the intracellular NO levels in plant roots were examined. Intracellular NO is a signaling molecule involved in the regulation of plant growth, development, and immunity (Neill et al., 2003) (Domingos et al., 2015; Khan et al., 2023). Bok choy seeds were germinated and transferred into plastic containers filled with Hoagland solution, as described in section 2.1. Following plasma gas treatment of the Hoagland solution for 0 or 10 min, the bok choy plants were cultivated for an additional week. The plants were then harvested and washed with DI water to remove any organic matter adhered to the roots. Subsequently, the roots were soaked in 300 μL of 10 μM 4-amino-5-methylamino-2′7′-dichlorofluorescein diacetate (DAF-FM DA, Invitrogen, Waltham, MA, USA) in PBS (pH 7.5) and incubated in the dark for 1 h at 25°C. The samples were washed three times with fresh 1X PBS and mounted on glass slides. Observations (excitation, 495 nm; emission, 515 nm) were immediately conducted using an Olympus IX83-FP confocal microscope (Olympus, Tokyo, Japan).




2.8 Statistical analysis

All data are presented as the average of 9–20 replicates ± standard deviation. All experiments were repeated two or three times, with at least three replicate measurements performed for each experiment. The significance of differences observed in datasets was tested by a one-way ANOVA followed by post hoc Tukey’s HSD test at p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*) using R software version 4.4.1 (The R foundation).





3 Results



3.1 Characterization of plasma gas-treated Hoagland solution

The electrical current and voltage of the discharged plasma and its active species analyzed using optical emission spectroscopy were described in a previous study (Ji et al., 2018). The physicochemical properties of the plasma gas-treated Hoagland solution, including the pH, ORP, EC, and H2O2, NOx, hydroxyl radical, and O3 levels, were measured. The pH of the Hoagland solution was not dramatically changed after plasma gas treatment, with 5.60–5.61 and 5.53–5.59 pH values measured in the non-treated (only air) and plasma gas-treated Hoagland solutions, respectively (Figure 2A). The EC values were slightly increased after plasma gas treatment of Hoagland, but there were no significant differences with only air-gas-treated Hoagland (Figure 2B). In the air-treated and plasma gas-treated solutions, EC values of approximately 1809 and 1843 µS/cm (5 min) and 1745 and 1869 µS/cm (10 min) were detected, respectively (Figure 2B). Similarly, the ORP slightly increased after plasma gas treatment (Figure 2C). It was significantly higher (p < 0.05) in Hoagland treated with plasma gas (346 mV) than that treated with air (319 mV) for 10 min (Figure 2C) while no significant differences between only air- and plasma gas-treated Hoagland for 5 min, values of approximately 328 and 343 mV, respectively (Figure 2C).

[image: Bar graphs showing the effects of treatment time on various parameters with air and plasma gas. (A) pH remains stable across all times. (B) Electrical conductivity is consistent. (C) ORP shows a slight increase with plasma gas at ten minutes. (D) H₂O₂ levels significantly rise with air over time. (E) NOx levels stay constant.]
Figure 2 | Analysis of physicochemical properties of Hoagland solution after plasma gas treatment. Average pH (A), EC (B), ORP (C), H2O2 (D) and NOx (E) levels measured in Hoagland solution injected with plasma gas for 0, 5, and 10 min. Each value represents the mean and standard deviations of replicate measurements; n = 6 or n = 9. ***p < 0.001 and *p < 0.05.

Owing to limitations in the available methodologies, we measured the concentrations of H2O2, NOx (including NO, NO2−, and NO3−, as NO is rapidly oxidized to NO2− and NO3−), hydroxyl radicals, and O3 in Hoagland solution after plasma gas treatment. The H2O2 level in the Hoagland solution increased after plasma gas treatment in a time-dependent manner (Figure 2D). Under plasma gas-treatment for 5 and 10 min, the H2O2 concentrations in the solution were approximately 3.23 and 3.81 µM, respectively, and significantly higher than that in the untreated control (0 min), at 2.80 µM (p < 0.001) (Figure 2D). In addition, the H2O2 level in the Hoagland solution increased significantly (p < 0.001) after 10 min of plasma gas treatment compared to 5 min of plasma treatment (Figure 2D). The level of NOx (including NO, NO2−, and NO3−) was not significantly different between the plasma gas-treated and untreated Hoagland solutions (Figure 2E). Approximately 14.46 mM, 14.49 mM, and 14.13 mM NOx were observed in Hoagland solution treated for 0, 5, and 10 min, respectively (Figure 2E). Ion chromatography showed that the NO3− level was slightly increased after plasma gas treatment, from 739.4 (0 min) to 788–795.4 mg/L (5 and 10 min), whereas NO2− was not detected (Table 2; Supplementary Figure S1).

Table 2 | Level of anions in Hoagland solution after plasma gas treatment according to ion chromatography.


[image: Table displaying negative ion concentrations in milligrams per liter over treatment times of zero, five, and ten minutes. For NO3-, values are seven hundred thirty-nine point four, seven hundred eighty-eight, and seven hundred ninety-five point four. For SO4 2-, values are two hundred nine point six, two hundred twenty-two point eight, and two hundred twenty-four point three. For PO4 3-, values are seventy-three point five, seventy-eight point nine, and seventy-seven point nine. Each value was assessed from one experimental measurement.]
Neither hydroxyl radicals nor O3 were detected in the treated and untreated Hoagland solutions. However, 0.28 µM and 0.61 µM values of hydroxyl radicals were measured in the DI water treated with plasma gas for 5 and 10 min, respectively (Supplementary Figure S2).




3.2 Bok choy plant growth was enhanced in plasma gas-treated Hoagland

Figure 3 displays a photograph of bok choy plants in hydroponic pots after 1–4 weeks of cultivation, clearly showing that plants grew better in Hoagland treated with plasma gas—particularly that treated for 10 min—than in untreated Hoagland (0 min) (additional replicate data are shown in Supplementary Figure S3). The plants were harvested after 4 weeks (Figure 4A, additional replicate data in Supplementary Figure S4), when growth was quantitatively analyzed. Shoots and roots of bok choy grown in treated Hoagland were longer than those grown in untreated Hoagland (Figures 4A, B). Significantly longer shoot and root lengths (p < 0.001) were observed in the 10 min plasma gas-treated Hoagland plants compared to those of the untreated solution (Figure 4B), with increases of approximately 25.6% in shoot length (11.2 to 14.1 cm) and 97.2% in root length (13.8 to 27.2 cm) (Figure 4B). The number of leaves per plant was also significantly increased (p < 0.01) after the 10 min treatment (Figure 4C). Moreover, the average total dry weight (DW) of individual plants was significantly increased (p < 0.01) in Hoagland treated for 5 (36.8%) and 10 min (80.5%) compared to that in the untreated solution (Figure 4D). The DW of both shoots and roots was also higher for plants grown in plasma gas-treated Hoagland (Figure 4D). In particular, the DW of shoots grown in 10 min plasma gas-treated Hoagland was significantly greater (p < 0.01) than that of plants grown in the untreated solution (Figure 4D).

[image: Growth progression of seedlings over time and age displayed in a grid. Columns represent time intervals of zero, five, and ten minutes. Rows show seedlings at one, two, three, and four weeks old. Seedlings visibly increase in size and leaf density with age and time.]
Figure 3 | Photograph of bok choy plants grown in Hoagland solution injected with plasma gas for 0, 5, and 10 min in the hydroponic culture system.

[image: Panel A shows plant growth at zero, five, and ten minutes of treatment over four weeks, with increasing size. Panel B displays box plots of shoot and root lengths, showing significant growth differences across treatment times. Panel C illustrates an increase in the number of leaves with longer treatments. Panel D presents dry weight data for shoot, root, and whole plant, indicating significant differences in weight gain among treatment durations. Asterisks denote statistical significance levels.]
Figure 4 | Morphometric parameters of 4-week-old bok choy plants. Photograph of harvested bok choy plants grown for 4 weeks in Hoagland solution injected with plasma gas for 0, 5, and 10 min (A). Average length of shoots and roots (B), number of leaves (C), and dry weight (D) of individual plants. Each value represents the mean and standard deviations of replicate measurements; n = 36 plants (B, C) and n = 10 plants (D). ***p < 0.001, **p < 0.01 and *p < 0.05.




3.3 Chlorophyll and total soluble protein content and nitrogen uptake were enhanced in bok choy grown in plasma gas-treated Hoagland

As plant growth was enhanced when Hoagland was treated with plasma gas, the physiological and biochemical statuses related to plant growth in cells were also investigated. The contents of chlorophyll a, chlorophyll b, and total chlorophyll per g of leaf fresh weight (FW) were significantly increased (p < 0.001) in the leaves of bok choy cultured in plasma gas-treated Hoagland solution for 4 weeks compared to those in plants cultured in untreated (0 min) Hoagland (Figure 5A). The total chlorophyll values in bok choy cultivated in Hoagland injected with plasma gas for 0, 5, and 10 min were 0.60, 0.95, and 0.85 mg/g FW, respectively (Figure 5A). Increases of approximately 58.2% (5 min) and 41.1% (10 min) were observed in total chlorophyll content of plants grown in treated Hoagland, compared to that of plants in untreated Hoagland (Figure 5A).

[image: Bar graphs showing the effects of plasma treatment times (0, 5, and 10 minutes) on plants. Graph A: Chlorophyll content, showing increased levels with treatment. Graph B: Total soluble protein in shoots, roots, and whole plants, with noticeable increases. Graph C: NH4+ levels, significantly rising with treatment. Graph D: NO3--N levels with marked increases, especially in whole plants. Statistical significance is indicated with asterisks.]
Figure 5 | Average chlorophyll content (A), total soluble protein concentration (B), and NH4+ (C) and NO3−-N (D) levels in 4-week-old bok choy plants grown in Hoagland solution injected with plasma gas for 0, 5, and 10 min. Each value represents the mean and standard deviations of replicate measurements; n =18 (A, B) and n = 9 (C, D). ***p < 0.001, **p < 0.01 and *p < 0.05.

The total soluble protein content in the shoot, root, and entire plant was measured after cultivation in Hoagland solution for 4 weeks (Figure 5B). Generally, the total soluble protein content was higher in the shoots than in the roots (Figure 5B), while the content in roots was higher in plants grown in treated Hoagland (5 min) than that in plants grown in untreated (0 min) solution. Additionally, the total soluble protein content in the entire plant was significantly greater (p < 0.001 or p < 0.05) when plants were cultivated in plasma gas-treated Hoagland (5 min, 17.1 mg/g; 10 min, 15.2 mg/g FW) than in untreated solution (13.2 mg/g FW) (Figure 5B).

In general, both NH4+ and NO3−-N concentrations were higher in the roots than in the shoots (Figures 5C, D). The levels of NH4+ were significantly increased (p < 0.001) in the roots of plants grown in Hoagland treated with plasma gas for 5 and 10 min (approximately 1.64 and 2.66 mg/g DW, respectively), compared to that of plants grown in untreated (0 min) solution (1.13 mg/g DW). Conversely, concentrations in the shoots were not significantly increase between the untreated and treated groups (Figure 5C). The NH4+ levels in the entire plant were considerably higher under cultivation with treated Hoagland (approximately 3.96 mg/g DW in 10 min treatment) than those measured in the untreated group (2.34 mg/g DW) (Figure 5C).

Regarding NO3−-N accumulation, approximately 152.40, 236.27, and 237.34 mg/g DW were present in the roots of plants grown in Hoagland treated with plasma gas for 0 (untreated), 5, and 10 min, respectively (Figure 5D). Significantly greater (p < 0.001) NO3−-N levels were observed in roots of plants grown in plasma gas-treated Hoagland compared with those grown in untreated Hoagland, whereas no significant differences were observed in NO3−-N levels in the shoots (Figure 5D). Furthermore, concentrations of NO3−-N in the entire plant were higher when Hoagland was treated with plasma gas than when there was no treatment, with the highest accumulation observed in the group treated for 10 min (approximately 385.20 mg/g DW) (Figure 5D).




3.4 Cultivation in plasma gas-treated Hoagland improved plant tolerance to salinity stress

The mRNA levels of the WRKY2 and ABI1 genes were significantly elevated (p < 0.001, p < 0.01, and p < 0.05) in the shoots of plants grown in treated Hoagland compared to those in plants grown in untreated (0 min) solution (Figure 6). In the roots, the mRNA levels of HHP3 and WRKY2 were significantly higher (p < 0.001) in plants cultured in Hoagland injected with plasma gas for 10 min (approximately 6.2 and 5.0-fold, respectively) than for 0 min (untreated control) (Figure 6).

[image: Bar charts showing relative expression levels of HHP3, WRKY2, and ABI1 in shoots and roots over time intervals of zero, five, and ten minutes. Expression levels are indicated in fold change. Significant differences are marked with asterisks, where one asterisk indicates p < 0.05, two indicate p < 0.01, and three indicate p < 0.001. The shoot expression is shown in white bars and root expression in black bars.]
Figure 6 | Average mRNA levels of three salinity stress-related genes—HHP3, WRKY2, and ABI1—in shoots and roots of 4-week-old bok choy plants grown in Hoagland solution injected with plasma for 0, 5, and 10 min. Each value represents the mean and standard deviations of replicate measurements; n = 6 or n = 9. ***p < 0.001, **p < 0.01 and *p < 0.05.

Figure 7A shows a photograph of 4-week-old bok choy plants cultivated in Hoagland solution containing 20 mM NaCl, injected with plasma gas for 0 or 10 min once a week (additional replicate data are shown in Supplementary Figure S5). Direct observation demonstrated that plants grew faster in plasma gas-treated Hoagland than in untreated solution under salinity stress (Figure 7A). The shoots and roots were significantly longer (p < 0.001 or p < 0.01) in individual plants grown in treated Hoagland than in the untreated solution (Figure 7B). Additionally, the number of leaves per plant was significantly greater (p < 0.001) in individual plants grown in the treated solution than in those grown in untreated Hoagland (Figure 7C).

[image: Panel A shows plants treated with plasma for zero and ten minutes under 20 mM NaCl conditions, demonstrating noticeable growth differences. Panel B, a bar chart, compares shoot and root lengths, indicating significant growth enhancement after ten minutes of treatment. Panel C displays a bar chart of leaf numbers, showing an increase with plasma treatment duration.]
Figure 7 | Morphometric parameters of 4-week-old bok choy plants cultured in untreated (0 min) or plasma gas-treated (10 min) Hoagland under salinity stress (20 mM NaCl). (A) Photograph of bok choy plants cultured in Hoagland solution. Average shoot and root lengths (B) and number of leaves (C) of individual plants grown for 4 weeks. Each value represents the mean and standard deviations of replicate measurements; n = 20. ***p < 0.001 and **p < 0.01.




3.5 Intracellular NO level in bok choy roots

Fluorescence (indication of intracellular NO) was observed in a larger area of the roots of plants grown in untreated Hoagland than in those grown in plasma gas-treated Hoagland (Figure 8; Supplementary Figure S6). In the roots of plant grown in Hoagland injected with plasma gas for 10 min, fluorescence was strongly detected close to the zone of cell division and elongation (Figure 8; Supplementary Figure S6).

[image: Microscopic images display plant roots subjected to different treatments. The first row shows roots grown in non-treated Hoagland solution, with images in light, fluorescence (DAF-FM DA stained), and a merge of both. The second row shows another sample under the same conditions. The third and fourth rows show roots grown in plasma gas-treated Hoagland solution, following the same image format: light, fluorescence, and merge. Fluorescence highlights increased green intensity, indicating nitric oxide presence. Each image is labeled with a 100-micrometer scale.]
Figure 8 | Results of assay for intracellular NO in roots of bok choy plants grown in untreated (0 min) or plasma gas-treated (10 min) Hoagland solution.





4 Discussion

The results of this study suggest that treating nutrient solutions with plasma gas may improve plant growth as well as the physiological and biochemical processes in hydroponic cultures. Improvements in seed germination and plant growth following treatment with plasma or plasma treated water have often been reported in soil culture systems (Lo Porto et al., 2018; Rasooli et al., 2021; Rathore et al., 2022; Yemeli et al., 2022; Bian et al., 2024). Similarly, the enhancement of plant growth using plasma-treated water or nutrient solutions has also been reported for hydroponic culture systems in several studies. Baby-leaf lettuce (Lactuca sativa var. acephala) grown in a hydroponic system using non-thermal plasma-treated nutrient solutions showed an increase in fresh leaf biomass, carotenoid, chlorophyll, and total phenol contents, and antioxidant capacity (Carmassi et al., 2022). A study on sweet basil (Ocimum basilicum L.) cultured in a hydroponic system with plasma-activated nutrient solution further resulted in increased plant height, greater fresh and dry mass, and higher greenness value than those of control plants (Date et al., 2023). Moreover, PAW has been described as a sustainable agricultural technology that improves seed germination, plant development, and biotic and abiotic stress tolerance (Gao et al., 2022).

Our results additionally showed that intracellular physiological and biochemical factors, such as chlorophyll content (photosynthetic activity), total soluble protein concentration (biochemical activity), and NH4+ and NO3−-N levels (nitrogen assimilation) were improved in plants grown in Hoagland treated with plasma gas. Nitrogen represents one of the most essential mineral nutrients for plant growth and biomass production and is a constituent element of nucleic acids, amino acids, proteins, lipids, chlorophyll, and numerous primary and secondary metabolites (Wang et al., 2014). In plants, nitrogen is absorbed by the roots in the form of NO3− and NH4+, which are subsequently distributed throughout the entire plant to support its growth and development (Poothong and Reed, 2016; Cui et al., 2017; Tho et al., 2017). Nitrogen presence in plants is evidenced by darker green leaves, increased protein levels, and enhanced seed plumpness, ultimately boosting crop productivity (Fathi, 2022). In this study, bok choy plants grown in plasma gas-treated Hoagland solution has accumulated more NO3− and NH4+ in the roots than plants in the control group, leading to increases in chlorophyll and soluble protein contents as well as in plant biomass. A previous investigation had also demonstrated that green oak lettuce (Lactuca sativa L.) cultivated with Hoagland solution in a hydroponics system exhibited greater accumulation of NO3− in both shoots and roots when using a nitrate source produced by the pinhole plasma jet, leading to increased plant growth, yield, and amino acid accumulation (Ruamrungsri et al., 2023). Notably, however, the NOx concentration in the Hoagland solution did not change significantly after treatment with plasma gas in our study although nitrogen uptake into plant roots increased. Therefore, the higher intracellular level of NO3− and NH4+ in plants grown in plasma gas-treated Hoagland may not have resulted from the NOx level in the nutrient solution. We suggest that the influx rate through NO3− transporter in plant cells, potentially activated in plasma gas-treated Hoagland, may be elevated, resulting in similar levels of NO3− in control and treated-nutrient solutions. However, we did not quantify the expression and activation level of NO3− transporter in plant cells in this study, and further analysis might be required to examine this hypothesis. Our data also showed that there was a slight decrease or no significant change in chlorophyll contents in leaves of plants grown in between 5 min and 10 min plasma gas treated Hoagland solution. This indicates that 5 min longer treatment with plasma gas may not be able to cause any significant change in chlorophyll contents in leaves. No significant difference in plant biomass (dry weight) between 5 min and 10 min plasma gas treatments (as shown in Figure 4D) may have been resulted from no significant change in chlorophyll contents (level of photosynthesis). Although length of shoot and root and leaves number were significantly greater in 10 min than 5 min plasma gas treatment (as shown in Figures 4B, C), plant dry weight (biomass) could be more closely associated with photosynthetic capability. Therefore, no significant change in chlorophyll contents may have resulted in no significant change in plant biomass between 5 min and 10 min plasma gas treatments.

Several analyses were conducted in this study to determine the mechanism underlying the enhanced plant growth promoted by plasma gas-treated Hoagland solution. Non-thermal plasma generates reactive oxygen and nitrogen species, energetic electrons, and radiation in the gaseous phase, which are transferred to the liquid solution when the plasma interacts with it (Kaushik et al., 2019; Zhou et al., 2020; Shaji et al., 2023; Wong et al., 2023). We first measured the levels of H2O2, NOx, O3, and OH radicals in the Hoagland solution, finding that the H2O2 concentration was slightly found in the untreated Hoagland solution and elevated after plasma gas injection. Numerous studies have indicated that H2O2 can be produced at the water surface in aquatic environments due to photochemical reactions involving chromophoric dissolved organic matter (Cooper et al., 1988, 1994; O’Sullivan et al., 2005; Garcia et al., 2019). Likewise, the low amount of H2O2 detected in the untreated Hoagland solution could be attributed to the interaction between the components in the solution and light. Furthermore, there have been findings suggesting that the presence of Ni2+, F−, PO43−, and CO32− can lead to a significant increase in the production of H2O2 (Wang et al., 2021). In our case, PO43− present in the untreated Hoagland solution may have contributed to generation of H2O2. Many studies have demonstrated that H2O2 is the long-lived reactive oxygen species discovered in liquid solutions following plasma treatment (Judée et al., 2018; Veerana et al., 2019; Xu et al., 2020). In plasma-treated solutions, H2O2 is mainly produced in two ways: (1) The combination of OH radicals created in the gas phase produces H2O2, which is then disseminated directly into the liquid solution, or (2) the OH radicals produced in the gas phase are released into the liquid, where they react with liquid molecules to form H2O2 (Kim et al., 2014; Kovacevic et al., 2017). In this study, OH radicals were detected in neither the untreated nor plasma gas-treated Hoagland solutions. Considering that an increase in OH radicals was observed in plasma gas-treated DI water (Supplementary Figure S2), we suggest that OH radicals may have been generated in the plasma gas-treated Hoagland solution but quickly consumed to produce H2O2. Alternatively, OH radicals may be scavenged in the Hoagland solution, likely through a reaction with its components or the components in the Hoagland solution may interfere with the terephthalic acid reaction, which is used to detect OH radicals.

The increase in H2O2 levels in Hoagland solution treated with plasma gas is likely to have contributed to the promotion of growth and the physiological and biochemical processes of bok choy plants in our study. Currently, H2O2 is considered to have a significant impact on plant growth and physiological processes such as seed germination, root system development, flowering, stomatal aperture regulation, senescence, and programmed cell death (Niu and Liao, 2016). A previous study reported that spraying Ficus deltoidei plants with 16 and 30 mM H2O2 once a week results in significant increases in plant height, leaf area, net photosynthetic rate, stomatal conductance, chlorophyll content, and quantum yield (Nurnaeimah et al., 2020). In cucumber, spraying leaves with 1.5 mM H2O2 significantly increased the leaf relative water content, biomass, chlorophyll content, and net photosynthetic rate (Sun et al., 2016). In addition, maize (Zea mays L.) cultivars grown in Hoagland solution containing 0.5 mM H2O2 showed increased growth and water, proline, mineral, total soluble protein, and total sugar contents in leaves compared to those of a control (Guzel and Terzi, 2013). Exogenous H2O2 at low concentrations acts as a signaling molecule that promotes various physiological processes, including seed germination, stomatal opening, chlorophyll content, and senescence delays; however, at high concentrations, it can cause oxidative damage to biomolecules, which may result in cell death (Cerny et al., 2018; Nazir et al., 2020). Therefore, our results suggest that the H2O2 generated in the Hoagland solution after treatment with plasma gas is a suitable level that could function as a signaling molecule that promotes growth and physiological processes in bok choy.

Physicochemical properties measured in the Hoagland solution, such as pH, EC, and ORP, did not exhibit changes after plasma gas treatment. The lack of significant changes in pH values may be attributed to the buffering activity and/or metal ions in the Hoagland solution maintaining the pH in the neutral range. Recent studies have shown that adding metal ions such as magnesium (Mg2+), zinc (Zn2+), and aluminum (Al3+) to water before plasma treatment can improve its pH compared to that resulting from plasma treatment without metal ions (Lamichhane et al., 2021; Javed et al., 2023). As the Hoagland solution contains numerous metal ion components, these may have contributed to pH regulation in the solution.

Interestingly, we observed that intracellular NO in bok choy roots grown in plasma gas-treated Hoagland solution was strongly detected in the zone of cell division and elongation, which is related to root growth; however, in the control group, it was dispersed in a broad area of the roots. This could be related to the increased NO3− uptake in roots of bok choy grown in plasma gas-treated Hoagland solution, as intracellular NO can be synthesized through reduction of NO3− and NO2− during nitrate assimilation in plants (Wilson et al., 2008). Intracellular NO acts as a signaling molecule that regulates growth and development, stress tolerance, and immunity in plants (Neill et al., 2003; Domingos et al., 2015; Khan et al., 2023). Bok choy plants grown in plasma gas-treated Hoagland solution could potentially uptake more NO3− than plants in the control group, generating intracellular NO in the cell division and elongation zone of the root via reduction of NO2− during NO3− assimilation.

Plants encounter various stresses in their natural environment; in particular, salinity is a major abiotic stressor that has detrimental effects on plant growth and development (Zhao et al., 2021). Our study suggests that using plasma gas-treated Hoagland solution in hydroponic cultures can promote the tolerance of plants to salinity stress. One experimental piece of evidence for tolerance enhancement in our study is the upregulation of several salinity stress-related genes—WRKY2, ABI1, and HHP3—in the shoots and roots of bok choy plants grown in plasma gas-treated Hoagland solution. The increased expression of WRKY2, HHP3, and ABI1 has often been observed in bok choy in response to high salinity environments (Tang et al., 2013; Kong et al., 2018; Wang et al., 2019). WRKY is a well-known stress-related transcription factor that plays a crucial role in regulating various abiotic stresses encountered by many plants (Chen et al., 2012). Another experimental evidence is that bok choy growth in the presence of 20 mM NaCl was greater when plasma gas-treated Hoagland solution was used than when untreated Hoagland solution was the medium. Numerous studies have revealed that plasma-activated water or solutions can enable plants to withstand and adapt to various stressors (Gao et al., 2022). When it comes to salinity stress, PAW pretreatment can improve the salinity tolerance of barley, with H2O2 and NO playing crucial roles in this enhancement (Gierczik et al., 2020). In our study, we did not pre-treat plants with plasma before exposure to high salinity but placed plants in plasma treated solution under high salinity (treatment with plasma and high salinity at the same time). In addition, we did not monitor the change in level of NaCl (whether high salinity is maintained or not) in Hoagland solution during plant cultivation. Further investigations are still needed for better understanding the role of plasma in regulation of salt stress. Recent studies have shown that H2O2 plays a pivotal role as a signaling molecule in the pathway associated with abiotic stress responses (Silva et al., 2020). Moreover, H2O2 acts as a metabolic signal, facilitating the maintenance of ionic and redox homeostasis and enhancing plant tolerance to salinity-induced stress (Silva et al., 2020). Seed priming with H2O2 has enhanced the tolerance to salinity stress by boosting both enzymatic and non-enzymatic antioxidant defense mechanisms (Niu and Liao, 2016; Momeni et al., 2023). In our study the level of H2O2 was elevated in the plasma gas-treated Hoagland solution, which might play a role in enhancing the salinity tolerance of bok choy plants; further research is required to elucidate this issue.

Although positive effects of plasma gas treatment on hydroponic plant cultivation have been demonstrated, our study is still limited to the examination in a controlled laboratory environment using a plant species, bok choy, during seedling stage. The findings from our research provide valuable insights into the potential benefits of non-thermal plasma technology, but they are not sufficient to draw broad conclusions applicable to all hydroponic systems. To extend the use of non-thermal plasma technology to industrial-scale hydroponic cultivation, it is essential to conduct additional research on various plant species under diverse environmental conditions. In addition, the sustainability of utilizing non-thermal plasma in large-scale cultivation and the implications of plasma gas treatment for future commercial use require comprehensive assessment. About the mechanisms of plasma effects, H2O2 might be one of critical factors for plasma mediated enhancement of plant growth in our study. However, other species or mechanisms are still possible for explanation of plasma effects, and further investigation is needed. Recently, similar enhancement effects on plant growth are observed between plasma activated water and artificially generated water through mixing with reactive species (Jirešova et al., 2022). This demonstrates the importance of reactive species in plasma activated water. However, synergistic effects of various species, effects of secondary species resulted from reactions between species, or other physical effects, which can be generated mostly by plasma activated water or solution, should be also considered.




5 Conclusion

Global population growth and climate change have compelled researchers to develop new crop production methods to fulfill demand while being environmentally friendly. Indoor agriculture and hydroponic culture have drawn increasing attention from researchers as alternative solutions. Our study shows that using plasma gas could greatly enhance the fertility of nutrient solutions for plant growth in hydroponic culture systems. In cultures grown in plasma gas-treated nutrient solution, bok choy showed increased physiological and biochemical activity, plant growth, and tolerance to salinity stress. Therefore, our study provides an additional experimental basis for plasma technology as a potential tool to be integrated with hydroponic plant culture to boost plant production, which is essential in meeting the increasing demands of the global population. We suggest that H2O2, a vital reactive oxygen species involved in various physiological processes and produced in plasma gas-treated nutrient solutions, may have acted as a signaling molecule, playing a crucial role in stimulating plant growth. The increase in intracellular NO in plant root cell division and elongation areas seems to be related to this, but further investigation is needed in relation to topic. Furthermore, it cannot be excluded that besides H2O2, various reactive species and secondary species resulted from reactions between species can be generated in plasma gas treated Hoagland solution, and mixture of these species can produce the synergistic and intensive effects on plant cells, which can affect plant growth and development. This can be one of advantages of plasma treated solution compared to other chemical solutions as a promising tool for applying to hydroponic agriculture practices. However, intensive chemical analysis on plasma treated solution is a pre-requirement for elucidating the mechanistic basis of plasma mediated plant hydroponic culture.
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Introduction

Accurate and rapid identification of cabbage posture is crucial for minimizing damage to cabbage heads during mechanical harvesting. However, due to the structural complexity of cabbages, current methods encounter challenges in detecting and segmenting the heads and roots. Therefore, exploring efficient cabbage posture prediction methods is of great significance.





Methods

This study introduces YOLOv5-POS, an innovative cabbage posture prediction approach. Building on the YOLOv5s backbone, this method enhances detection and segmentation capabilities for cabbage heads and roots by incorporating C-RepGFPN to replace the traditional Neck layer, optimizing feature extraction and upsampling strategies, and refining the C-Seg segmentation head.  Additionally, a cabbage root growth prediction model based on Bézier curves is proposed, using the geometric moment method for key point identification and the anti-gravity stem-seeking principle to determine root-head junctions. It performs precision root growth curve fitting and prediction, effectively overcoming the challenge posed by the outer leaves completely enclosing the cabbage root stem.





Results and discussion

YOLOv5-POS was tested on a multi-variety cabbage dataset, achieving an F1 score of 98.8% for head and root detection, with an instance segmentation accuracy of 93.5%. The posture recognition model demonstrated an average absolute error of 1.38° and an average relative error of 2.32%, while the root growth prediction model reached an accuracy of 98%. Cabbage posture recognition was completed within 28 milliseconds, enabling real-time harvesting. The enhanced model effectively addresses the challenges of cabbage segmentation and posture prediction, providing a highly accurate and efficient solution for automated harvesting, minimizing crop damage, and improving operational efficiency.





Keywords: multi-task perception network, cabbage harvest, YOLOv5-POS, Bezier curve, posture recognition




1 Introduction

The predominant method for cabbage harvesting today is mechanical harvesting, which offers advantages such as high efficiency and reduced labor costs. However, this method is also associated with a high incidence of mechanical damage (Ogedengbe et al., 2022). This damage primarily results from the diverse root shapes and complex postures of cabbages, further exacerbated by the high speed of mechanical operations. Consequently, it becomes challenging for the harvester to swiftly and accurately identify and assess the posture of the cabbage, and adjust the cutting position accordingly. Moreover, collisions and transmission vibrations among cabbage plants during the harvesting process can further disrupt the alignment of the cutting device (Tong et al., 2023). Therefore, achieving rapid and precision recognition of cabbage posture during harvesting is of significant research importance (Dongdong et al., 2015).

Detecting and localizing the cabbage root serves as a prerequisite for recognizing its posture. In previous research, the root recognition of conventional fruits and vegetables has typically relied on traditional image processing methods rooted in machine learning (Zhaoxin et al., 2022). For instance, Ying et al. (2000) proposed a straightforward algorithm based on Fourier descriptor technology to detect pear stems in traditional image processing. Luo et al. (2018) employed a segmentation algorithm based on k-means clustering and HSV color space to identify grape cluster pedicels and determine appropriate cutting points for each cluster. Xiong et al. (2018) utilized an improved fuzzy clustering method (FCM) and Otsu to segment images of lychee fruits and stems, achieving accurate calculation of the picking point for lychees during nighttime. Yamamoto et al. (2014) focused on tomato segmentation, distinguishing fruit, leaf, stem, and background based on pixel and blob information and concluded by employing X-means clustering to precisely detect individual intact tomato fruits on the plant. However, traditional image processing methods often face limitations in extracting high-dimensional information, making them susceptible to environmental illumination and object occlusion. Consequently, these factors contribute to reduced recognition accuracy when dealing with complex scenes involving fruit and vegetable roots (Hua et al., 2023).

Compared to traditional image processing methods, deep learning models possess enhanced capabilities in extracting high-dimensional features and end-to-end learning. This enables them to swiftly adapt to large-scale data, effectively addressing challenges posed by illumination variations, complex environments, and high-dimensional information extraction. As a result, deep learning models can significantly enhance the accuracy and stability of root recognition tasks (Sun et al., 2023; Roy and Bhaduri, 2022; Yu et al., 2019). For instance, Sa et al. (2016) utilized Faster R-CNN to integrate multi-modal (RGB and NIR) information, achieving precision separation of leaves and stems for various fruits (such as bell pepper, rock melon, strawberry, and apple) in complex environments. Wu et al. (2021) employed an improved YOLOv3 model optimized through clustering. This model demonstrated exceptional performance in rapidly and accurately identifying banana fruits, inflorescence axes, and flower buds, even under different lighting conditions. Zhu et al. (2023) proposed a method for detecting and locating tea buds based on YOLOv5s and 3D point clouds. They reconstructed YOLOv5s using the Efficient Channel Attention Network (ECANet) module and the Bidirectional Feature Pyramid Network (BiFPN), and combined it with the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm to achieve precision detection and localization of tea buds. Although the aforementioned method performs excellently in terms of detection accuracy, they were evaluated under unobstructed conditions, which limits their applicability in practical agricultural production. Therefore, the challenges of recognition caused by occlusion remain a key issue in current research.

According to existing reports, the combination of deep learning with image processing or machine learning methods has shown promising results in fruit recognition under partial occlusion. For example, Zhao et al. (2023) proposed a single-stage instance segmentation model that incorporates Deformable Convolutions (DCN) and the Convolutional Block Attention Module (CBAM) to classify peach images of nine different varieties and three maturity stages, even under complex conditions involving leaf occlusion or overlap. The model achieved a mean Average Precision (mAP) of 72.12%. Hussain et al. (2023) employed the Mask R-CNN algorithm to segment apple fruits and stems and used Principal Component Analysis (PCA) to estimate the orientations of the fruits and stems. This method successfully identified fruits and stems partially obscured by leaves, achieving average precision (AP) scores of 83.4% for fruits and 38.9% for stems. Sapkota et al. (2024) successfully implemented the YOLOv8 instance segmentation algorithm to achieve precision multi-class segmentation of trunks, branches, and unripe green fruits in the complex environment of an apple orchard, attaining a single-class instance segmentation mAP of 90.2% and a multi-class instance segmentation mAP of 74%. However, unlike the aforementioned studies, the connection point between the cabbage head and the root is completely obscured by outer leaves, making the root cutting position nearly impossible to observe. Additionally, the high computational demands and lower segmentation accuracy of existing research present difficulties in meeting the real-time requirements for mechanical harvesting.

In conclusion, given the diversity and morphological complexity of cabbage varieties, existing models face challenges in identifying the cut points of cabbage roots that are completely covered by outer leaves. Therefore, this study proposes a multi-task perception network based on the YOLOv5s architecture, named YOLOv5-POS, which optimizes the semantic segmentation head and neck layers to enhance model robustness. Additionally, a root growth prediction model based on Bézier curves was introduced to accurately predict the tilt angle of the cabbage root. The model achieves a mAP of 93.5% in instance segmentation, an average absolute error of 1.38° in posture prediction, an average relative error of 2.32°, and a detection time of 0.028 seconds. Compared with mainstream instance segmentation models such as YOLOv5s, YOLOv8n, and Mask-RCNN, as well as angle prediction methods like the minimum bounding rectangle and skeleton extraction, YOLOv5-POS demonstrates good performance.

The primary contributions of this study can be summarized as follows:

	Construction of a novel cabbage dataset: A comprehensive dataset comprising images of various cabbage varieties was meticulously curated. The root morphological structures of these varieties were classified into three main types: curved, short, and straight.

	Development of the YOLOv5-POS multi-task network: Based on the YOLOv5s framework, the YOLOv5-POS model was developed to simultaneously perform target detection and region segmentation of cabbage heads and roots. This was achieved by integrating the C-RepGFPN module within the Neck layer and optimizing the segmentation head. These enhancements enable effective refinement and fusion of high-level semantic features with low-level spatial features, thereby significantly enhancing detection accuracy.

	Establishment of a cabbage pose prediction model based on the Bezier curve: By combining the YOLOv5-POS multi-task network with Bezier curve fitting, this model enables precision determination of cabbage root poses and predicts their growth paths in complex occlusion scenarios. Additionally, the introduction of the KD-Tree algorithm accelerates the key point search process, significantly improving the detection speed of the model.






2 Materials and methods



2.1 Data sources

To capture the growth variations among cabbage varieties, plants from Kunming in Yunnan Province, Harbin in Heilongjiang Province, and Huzhou in Zhejiang Province were selected for this study. These plants showcased a spectrum of root shapes, encompassing curved, short, and straight varieties, as illustrated in Figure 1. Cabbages were secured with a clamping device, and images were captured using a CCD camera with a resolution of 1080×720 pixels positioned 30-40 cm from the cabbage. The images were collected from November to December 2022, resulting in a total of 988 images in different poses. Subsequently, the widely used annotation tool, Labelme, was employed to manually annotate cabbage heads and roots in each image. Target objects were delineated polygonally to exclude irrelevant pixels from the annotations. Of the entire dataset, 837 images were designated for training and validation, while 151 images were set aside for testing purposes.

[image: Map of China highlighting Huzhou, Kunming, and Harbin with red, blue, and green dots. Three images of plants are labeled: a. Curving with a bent stem, b. Smallish showing a smaller plant, c. Straight with an upright stem.]
Figure 1 | Collection locations and cabbage varieties from each region. (A) curving, (B) smallish, (C) Straight.




2.2 Dataset preparation

To enhance the generalization capabilities of the model for real-world scenarios involving occlusion and low lighting conditions, image augmentation techniques were applied using the OpenCV library in Python. These techniques included random combinations of rotation, translation, brightness adjustments, noise addition, and increased occlusion, as depicted in Figure 2.

[image: Six images showing different views of a cabbage plant secured with a clamp. Each image shows the plant at varying orientations, with green leaves and visible roots. Each image is labeled from (a) to (f).]
Figure 2 | Image augmentation techniques applied. (A) Original image, (B) Mirror and noise, (C) Mirror and translate, (D) Flip with occlusion, (E) Translate and adjust brightness, (F) Mirror and flip.

Each original image produced six new images, resulting in a total of 5022 images. However, it is important to note that data augmentation may impact the quality of some images. Therefore, a manual selection process was employed to retain an effective dataset, totaling 4912 images. Among these, 3930 images were used for training, while 982 images were allocated for validation.




2.3 Cabbage root posture and inclination recognition method

As depicted in Figure 3, the proposed method for cabbage posture and inclination recognition, named YOLOv5-POS, consists of three main steps:

	YOLOv5-POS Model Integration: Cabbage images are fed into a pre-trained YOLOv5-POS model to detect and segment cabbage heads and roots.

	Bezier Curve and Key Point Extraction: Traditional image processing techniques are employed to extract key points, which are further identified using geometric moments and the minimum bounding rectangle method. Three key points are extracted: the centroid of the cabbage root, the nearest point at the root break, and the centroid of the cabbage head. These key points serve as control points for fitting the Bezier curve, which simulates the growth trajectory of the root. By connecting these key points on the cabbage, the main axis of the cabbage is determined. This method combines the precise description of geometric moments with the smooth fitting of Bezier curves, accurately depicting the shape and direction of the cabbage root.

	Posture and Inclination Calculation: Using the predicted main axis of the cabbage, the angle between this axis and the ground is calculated to determine the cutting angle.



[image: Diagram illustrating a cabbage recognition model using YOLOv5-POS. The model processes the cabbage image through object detection and semantic segmentation to identify the cabbage head and root. It employs a pose prediction model based on Bezier curves to extract key points and predict the principal axis, concluding with cabbage posture recognition.]
Figure 3 | Cabbage posture prediction method based on YOLOv5-POS multi-task perception network.




2.4 YOLOv5-POS multi-task network architecture

A multi-task learning network in deep learning refers to an advanced neural network architecture designed to simultaneously process and learn multiple interconnected tasks. This architecture typically consists of a shared encoder and several task-specific feature decoders (Lee and Seok, 2023). The shared layer, positioned at the lowest level of the network, extracts common features that are advantageous for all tasks. This capability enables the network to capture shared information across different tasks, thereby improving data utilization efficiency and the generalization capabilities of the model.

Taking advantage of the high accuracy and real-time performance of the YOLOv5s model, this study proposes a real-time multi-task convolutional neural network, named YOLOv5-POS, for the detection and segmentation of cabbage heads and roots. The network features a shared encoder and two independent decoders, as illustrated in Figure 4. The proposed multi-task network uses the existing Backbone and Neck layers as the shared encoder, while optimizing the Neck and Head layers. To minimize computational overhead and maintain the one-stage detector structure, redundant shared blocks between different decoders are omitted.

[image: Diagram showing the YOLOv5-POS model structure for plant recognition. It consists of layers labeled "Backbone," "Neck," "Seg head," and "Detection head," with arrows indicating data flow. The model processes an image of a plant, resulting in a labeled output highlighting the plant's central part and root.]
Figure 4 | Multi-task architecture of YOLOv5-POS.



2.4.1 The overall structure of YOLOv5s

The YOLO series algorithms have gained significant popularity in the field of computer vision object detection due to their remarkable accuracy and real-time performance. Through continuous optimization and iteration, these algorithms have evolved to the YOLOv10 version. However, despite the improved performance metrics in the latest iteration, it often requires substantial computing resources and memory, which can hinder detection speed and model deployment.

To meet the requirements of the cabbage posture recognition, focusing on detection speed and lightweight model deployment, this study utilizes the YOLOv5s model as the foundation for improvement. The model size of YOLOv5s is a mere 14.1 MB (Liu et al., 2023; Tian et al., 2023). The YOLOv5s network structure can be divided into three parts: backbone, neck, and head. The backbone primarily extracts basic features from the image and typically comprises Conv (Convolutions), C3 (Cross Stage Partial Networks Bottleneck with 3 convolutions), and SPPF (Spatial Pyramid Pooling – Fast). This network captures rich information from the input image. The neck layer refines and fuses features extracted from the backbone using a Feature Pyramid Network (FPN) and a Path Aggregation Network (PAN), enhancing the ability of the model to recognize objects at different scales. The head is responsible for predicting and decoding the output from the neck to generate the categories and location information of the targets.

Building upon the fundamental structure of YOLOv5s, this study introduces an efficient multi-scale feature fusion module called C-RepGFPN, which leverages multi-layer aggregation and reparameterization techniques. This module enhances the interaction among features of different scales to accommodate changes in object proportions across different scenes. Moreover, the segmentation Head (C-seg) is improved based on the original Head layer, capitalizing on its ability to extract and fuse multi-scale features. This enhancement improves adaptability to changes in target scale and enhances the ability of the model to capture intricate details. The structure of the improved model is illustrated in Figure 5.

[image: Diagram of a neural network architecture for object detection, divided into Backbone, Neck, and Head sections. The Backbone processes an input image through a series of convolution layers and C3 modules. In the Neck, features are refined using CSPStage, Concat, and Upsample operations. The Head performs detection. Two images of plants are included, showing detection boundaries.]
Figure 5 | The structure of YOLOv5-POS model.




2.4.2 C-RepGFPN neck

To enhance the performance of the YOLOv5s model in the cabbage segmentation task, particularly its ability to varying cabbage sizes in different scenarios, this study introduces the C-RepGFPN Neck. This incorporates the Efficiency-RepgFPN architecture (Wang et al., 2023), optimizing the structure and fusion method of the Feature Pyramid Network (FPN). This enhancement effectively reduces redundant computing and memory consumption. Additionally, the introduction of the re-parameterization mechanism and ELAN into the CSPNet branch enhances feature interaction across different scales and improves the quality of feature fusion. Building on these optimizations, efficiency in feature extraction is further enhanced by integrating a 1x1 convolution kernel into the Efficient-RepGFPN architecture. This reduces the dimensionality of feature maps extracted by the Backbone, facilitating streamlined CSPStage processing. These enhancements in the C-RepGFPN Neck not only improve feature extraction efficiency but also significantly enhance model accuracy in segmenting cabbages of various sizes and shapes. The specific structure and operational principles of the C-RepGFPN Neck are illustrated in Figure 6.

[image: Flowchart illustrating CSPStage and C-RepGFPN architectures. CSPStage involves convolution layers and repetition blocks, with concatenation and addition operations. C-RepGFPN features upsampling, concatenation, and convolution layers, structured in multiple pathways, leading to outputs.]
Figure 6 | Diagram of the C-RepGFPN Neck network structure.




2.4.3 C-Seg segmentation head

To tackle the challenges posed by diverse backgrounds, varying degrees of occlusion, and changes in illumination on cabbage recognition, this study proposes the C-Seg segmentation head model. This model combines the efficient detection capabilities of the YOLOv5s network with the exceptional performance of the U-Net model in image segmentation (Ronneberger et al., 2015). The objective is to enhance the ability of the model to capture edge and texture information of cabbage, thereby achieving more accurate recognition and segmentation while maintaining real-time performance.

The C-Seg segmentation head consists of two main components: ModuleList and Proto, as depicted in Figure 7. The ModuleList performs convolution operations on feature maps of different scales using three convolution layers, extracting and enhancing scale-specific feature information. Conversely, the Proto component includes a residual convolutional layer, a convolutional layer, and a deconvolution layer. Together, these layers facilitate feature extraction, upsampling, and the generation of segmentation results. Notably, the residual convolutional layer improves feature transfer through residual connections, enhancing training stability and enabling the model to capture deeper features.

[image: Diagram illustrating a segmentation head in neural networks. It includes three blocks under "M" with convolution layers (3x3, stride=1) labeled with 128, 256, and 512. Under "Proto", there is a ResConv block followed by a ConvTranspose2d (3x3, stride=2), and a Conv layer (1x1, stride=1). The "ResConv" section shows two Conv layers (1x1, stride=1) leading to an addition operation.]
Figure 7 | Workflow diagram of the detection head.

To further optimize the performance of the model, a ResConv convolutional layer incorporating residual connections replaces the standard convolutional layer in the original YOLOv5s segmentation head. This substitution effectively enhances the depth and feature expression capabilities of the network. Additionally, deconvolution operations are employed to achieve feature map upsampling and adjust the number of channels in the model. This strategy substantially reduces the number of model parameters and the consumption of computing resources, resulting in a more lightweight network structure.





2.5 Cabbage posture prediction model based on Bezier curve

In practical cultivation scenarios, cabbage roots often bend and are wrapped by outer leaves (Dai et al., 2016). Figure 8A illustrates a cabbage plant with its outer leaves removed, where the YOLOv5-POS model effectively identifies and segments the cabbage head and root. However, when a portion of the root is concealed by outer leaves, the visible growth area of the lower root is frequently misclassified as the actual growth direction. This results in erroneous detection, as indicated by the red dotted line in Figure 8B, whereas the true main axis of the cabbage root is depicted in in Figure 8C. Thus, relying solely on YOLOv5-POS for image recognition and segmentation does not adequately address the challenge of cabbage pose recognition.

[image: Three side-by-side images show an orange plant model with a root and green section, possibly a leaf, marked by colored bounding boxes and lines. (a) Highlights "outsourced leaf occlusion." (b) and (c) use red and yellow lines, respectively, to emphasize different parts.]
Figure 8 | Schematic diagram of cabbage root inclination recognition error. (A) YOLOv5-POS recognition and segmentation results, (B) Mismeasurement results due to occlusion of outsourced leaves, (C) Actual measurement results.

Furthermore, the occlusion caused by the outer leaves obscures the connection point between the cabbage head and root after instance segmentation, complicating the ability of harvester to determine the precision cutting position. To tackle this issue, this study draws inspiration from anti-gravity stem tracking root image inpainting algorithm proposed by Mingxuan et al. (2022), originally developed for occluded maize roots. A Bessel curve fitting method is employed to create a prediction model that restores the integrity of the occluded area in the root.

By combining this model with the YOLOv5-POS multi-task network, accurate posture judgment of the cabbage root is achieved. The specific judgment process, as depicted in Figure 9, involves four main steps: preprocessing of multi-task network outputs based on YOLOv5-POS, extraction of key points using the Bessel curve, development of a principal axis prediction model, and final posture assessment.

[image: Flowchart illustrating the process of cabbage posture judgment. It includes four main steps: data preprocessing, key point extraction, predicting principal axis, and judgment of posture. Data preprocessing involves creating masks and rectangulars, while key points focus on centers of mass and edge. The principal axis prediction involves constructing a Bezier curve. The judgment of posture is determined by calculating the slope and evaluating posture. Each step is linked, showing the sequence from preprocessing to final judgment.]
Figure 9 | Flowchart of cabbage pose prediction model based on Bezier curve.



2.5.1 Determination of the main axis of cabbage

As illustrated in Figure 10, the YOLOv5-POS multi-task network model determines the positions of the cabbage root and head in the image. This method employs a geometric model to streamline the segmentation of the cabbage head and root target regions. Utilizing the geometric moment method, the model calculates the minimum bounding rectangle and centroid point of the cabbage head and root, facilitating the determination of their position and mass distribution. Subsequently, the closest breakpoint is identified by traversing the midpoint of the root mask from the uppermost edge of the minimum enclosing rectangle. Key points for the Bezier curve are determined based on the centroid point of the cabbage head, the centroid point of the cabbage root, and the closest point. The Bezier curve is then constructed to predict the growth path of the root. Finally, the principal axis of the cabbage is obtained by calculating the intersection point between the curve and the cabbage head mask, and connecting it with the centroid of the cabbage head.

[image: Flowchart illustrating the process of analyzing a cabbage using YOLOv5-POS. The sequence starts with identification, creating a spherical mask, and determining the cabbage's center of mass. It progresses to a root mask and identifying control points on the cabbage root. A Bezier curve is constructed, leading to building the main axis. Symbols indicate main axis, prediction curve, rectangular boxes, centroids, central point, joint point, and point of closest approach.]
Figure 10 | Flowchart of cabbage pose prediction model based on Bezier curve.




2.5.2 Determination of the Bessel curve control point

In this study, the Bezier curve representing the posture of the cabbage root is constructed using three key control points: the centroid point P0 of the cabbage root, the nearest point P1 to the breakpoint of the cabbage root, and the centroid point P2. The connection between the breakpoint and the cabbage head is determined based on the anti-gravity stem tracking principle of the plant, making P1 an essential vertex of the Bezier curve.

The search for the point P1 significantly influences the calculation speed of the prediction model. To expedite this search process, a KD-Tree method is employed to establish the topological relationship between the spline curve points and the root contour points. A KD-Tree is a specialized data structure that organizes k-dimensional data for rapid data retrieval. By recursively dividing the k-dimensional space, the KD-Tree efficiently organizes and retrieves data, excelling in tasks such as nearest neighbor search and range search for large-scale multi-dimensional data, ensuring efficient performance (Jin et al., 2023). Figure 11 illustrates the construction process of the KD-Tree. Initially, a partition dimension and partition value are selected, typically choosing the median of all data points within the current dimension as the partition value. Subsequently, the data points are divided into two subsets based on this split value. This process is repeated on each subset until all data points are contained in the leaf nodes of the tree. Consequently, each node of the binary tree corresponds to a k-dimensional hyperrectangular region, effectively capturing the distribution and relationship of the data points in the k-dimensional space. The time complexity of the KD-Tree is as follows:

[image: Diagram showing the construction of a k-d tree in six steps. The first five panels illustrate the division of points \(p_1\) to \(p_7\) by horizontal and vertical lines. The final panel displays the resulting tree structure with \(p_4\) as the root node, branching out to \(p_2\) and \(p_5\), further branching to other points and empty nodes.]
Figure 11 | KD-Tree building process.

[image: Recurrence relation for \( T(n) \) defined as: for \( n = 1 \), \( T(n) = O(1) \); for \( n > 1 \), \( T(n) = O(n) + 2 \cdot T\left(\frac{n}{2}\right) \). Labeled as equation 2.1.] 

Bezier curves can be recursively generated and are defined by n+1 control points and n interpolation points for a Bezier curve of degree n. The first and last control points represent the starting and ending points of the curve, while the remaining control points are responsible for shaping the curve. The interpolation points serve to connect adjacent control points, creating a smooth and continuous curve. To calculate a point P(t) on a Bezier curve of degree n, the following formula is utilized:

[image: The image shows a mathematical equation for a Bezier curve: P(t) = (1-t)^n × P_0 + C(n,1) × t × (1-t)^(n-1) × P_1 + ... + C(n,n-1) × t^(n-1) × (1-t) × P_(n-1) + t^n × P_n. This is labeled as equation 2.2.] 

Where t is a parameter ranging from 0 to 1, denoting the position along the curve. [image: Please upload the image or provide a URL to it so I can help generate the alternate text.] , [image: A mathematical expression showing the symbol "P" with a subscript of "1".] , [image: A grayscale optical illusion consisting of vertical bars that vary in width and gradient intensity, creating a visual effect of movement or vibration.] , [image: The image displays a mathematical symbol representing "P" with a subscript "n".]  represent the n+1 control points, and [image: The image displays a mathematical expression representing a binomial coefficient, denoted as "C" with parameters "n" and "i" in parentheses, conveying the number of combinations of n items taken i at a time.]  denotes the binomial coefficient, given by [image: Mathematical formula representing the binomial coefficient: "n factorial divided by the product of i factorial and the factorial of n minus i".] . Although this equation can be employed to compute points on the curve, the computational complexity is substantial, particularly for higher-order curves. Hence, the De Casteljau algorithm (Sanchez-Reyes, 2020) is utilized to calculate each linear combination through multiple recursive steps, ultimately yielding the desired points on the curve.

This relationship is depicted in Figure 12, where the line [image: Mathematical notation displaying a product of three variables: P subscript 4, P subscript 5, P subscript 3.]  represents the tangent to the curve [image: Text shows "P subscript 0, P subscript 5, P subscript 2".] , with [image: Please upload the image or provide a URL, and I will generate the alternate text for you.]  serving as the tangent point. To compute the points on the second-order Bezier curve using the De Casteljau algorithm, a recursive approach is employed, incorporating the parameter k. The algorithm is outlined as follows:

[image: Diagram of a Bézier curve on an XY plane with points labeled P0 through P5. The points P0, P2, and P4 are connected by a blue curve, while P1 through P4 by black lines, and P4 through P5 by a red line.]
Figure 12 | Bezier key point determination curve.

[image: Equation illustrating a weighted sum formula: \(Q_0 = (1-t) \times P_0 + t \times P_1\).] 

[image: Mathematical equation showing Q subscript t equal to open parenthesis 1 minus t close parenthesis multiplied by p subscript 1 plus t multiplied by p subscript 2. The equation is labeled as 2.4.] 

[image: It seems there was an error with the image upload. Please try uploading the image again, and I will be glad to help with the alternate text.]  and [image: Please upload the image so I can generate the appropriate alt text for it.]  are linear interpolation points,

[image: The image displays the mathematical formula for a linear interpolation, represented as \( B(t) = (1 - t) \times Q_0 + t \times Q_1 \), with a reference number (2.5) at the end.] 

When t ∈ [0,1], it represents a quadratic Bezier curve [image: If you can upload the image or provide a link to it, I can help generate the alt text. You can also add a caption for additional context if you like.] , [image: Math expression showing capital letter "P" with subscript "1".] , [image: The image shows a mathematical symbol "P" with a subscript "2". It is displayed in a serif font style.]  defined by the 3−vertices [image: Text displaying mathematical notation "P subscript 0, P subscript 2".] .




2.5.3 Cabbage posture judgment

In accordance with the conveying structure of the clamping conveying device on the cabbage harvester, its primary function is to facilitate the seamless transportation of cabbage to the cutting device. Throughout the conveying process, it is imperative to maintain the cabbage in a relatively immobile state, in perfect alignment with the clamping conveyor belt, thereby enabling the root cutting device to effectively sever the cabbage root. In order to ensure the precision of the root cutting process, it is vital to keep the cabbage root at an optimal angle within the designated cutting range. Any deviation beyond this range is deemed an oblique state. Consequently, the point of intersection between the projected root growth path, as determined by the Bezier curve, and the cabbage head mask, is denoted as [image: Mathematical notation showing the coordinate \( P_3(x_3, y_3) \).] . The midpoint directly above it is denoted as [image: Mathematical notation showing a point in two-dimensional space, labeled as \( P_2(x_2, y_2) \).] , as visually depicted in Figure 10G. The slope formula is expressed as follows:

[image: Equation for angle theta: theta equals the inverse tangent of the fraction (z minus z_0) over (x minus x_0). Reference number 2.6.] 

Compare the obtained [image: It seems like there's an issue with viewing the image. Please upload the image directly or provide a link to it, and I'll help generate the alt text for you.]  with the cutting threshold Angle [image: It seems there's no image attached. Please upload the image or provide a URL, and I will help generate the alternate text for it.]  to determine the cabbage pose:

[image: Cabbage posture diagram with conditions: "Stay vertical, theta less than or equal to beta" and "Tilt of attitude, theta greater than beta." Equation number is 2.7.] 





2.6 Model performance evaluation and experimental environment



2.6.1 Model performance evaluation

This study conducts ablation experiments on multi-task networks and compares them with various commonly used multi-task networks and instance segmentation models to assess the performance of the YOLOv5-POS model. The primary evaluation metrics for the detection model include Recall, Precision, and mean Average Precision (mAP). Precision denotes the ratio of correctly identified targets to the total detected targets, while recall represents the proportion of true targets that are successfully detected. The F1 score, a harmonic mean of precision and recall, serves as an indicator of the overall stability and robustness of the model. A higher F1 score typically implies greater reliability. The F1 score is calculated using the following formula:

[image: Formula for recall: Recall equals TP divided by the sum of TP and FN, labeled as equation 2.8.] 

[image: The formula shows the calculation for precision, where precision equals TP divided by the sum of TP and FP, labeled as equation 2.9.] 

[image: Equation representing the F1 score: \( F1 = \frac{2 \times \text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}} \). This is labeled as equation 2.10.] 

The calculation of the F1 score involves the utilization of TP (true positives), FP (false positives), and FN (false negatives). Specifically, TP represents the count of correctly identified examples, FP denotes the count of incorrectly identified positive examples, and FN signifies the count of missed positive examples.

In the context of evaluating instance segmentation models, the primary metric employed is the mAP. This metric is computed as follows:

[image: Average precision (AP) is calculated using the integral from zero to one of the precision-recall (P(R)) curve with respect to recall (R), denoted as AP = ∫[0 to 1] P(R) dR.] 

[image: Formula for mean Average Precision (mAP) is displayed as \( \text{mAP} = \frac{1}{n} \sum^n \text{AP} \).] 

In the formula for mAP, P represents Precision and R represents Recall. Intersection over Union (IoU) is a measure of how well the predicted bounding box aligns with the ground truth bounding box, where larger values indicate more accurate predictions.

mAP provides a comprehensive assessment of the detection performance across various IoU thresholds. mAP@0.5 specifically emphasizes the approximate accuracy, while mAP@0.5:0.95 requires the model to perform well across multiple IoU thresholds. Additionally, the Frame rate (FPS) reflects the detection speed of the model.




2.6.2 Test results evaluation metrics

In this study, three evaluation metrics were employed to compare the computational measurements of angles: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Both MSE and MAE quantify the discrepancy between predicted and true values. MSE is the average of the squared differences between predictions and true values, whereas MAE is the average of the absolute differences. RMSE, derived as the square root of MSE, normalizes the squared errors to the same scale as the original values, offering a more interpretable measure of the prediction error. Its formula is as follows:

[image: Formula for Mean Absolute Error (MAE) showing MAE equals one over n times the sum from i equals one to n of the absolute difference between y sub i and y sub p.] 

[image: Formula for Mean Squared Error (MSE) is shown as: MSE equals one over n times the sum from i equals one to n of the squared difference between actual value y sub i and predicted value y sub p.] 

[image: Root Mean Square Error (RMSE) formula: RMSE equals the square root of the sum of squared differences between actual values \(y_r\) and predicted values \(y_p\), divided by the number of observations \(n\).] 

Where, [image: The image appears to show the letter 'y' with a subscript 'r', likely representing a variable or symbol in a mathematical or scientific context.]  represents the true value, yp represents the predicted value, and n represents the number of samples.




2.6.3 Experimental environment and configuration

The Autodl server serves as the foundational platform for establishing the training environment, operating primarily on Ubuntu 20.04. PyTorch serves as the deep learning framework of choice for conducting a series of experiments. Hardware experiments were performed using an NVIDIA GeForce RTX 2080Ti, complemented by a cloud server with 11GB of memory.

For the initial training, YOLOv5-POS utilizes the model parameters outlined in Table 1. To expedite the training process, a pre-trained model from the YOLOv5 project is employed for transfer learning. Throughout training iterations, the network continually saves parameters associated with the highest accuracy achieved.

Table 1 | The parameter setting of the YOLOv5-POS.


[image: Table displaying parameters and their values for a machine learning model. Learning rate: 0.01, Momentum: 0.937, Weight decay: 0.0005, Epoch: 100, Batch-size: 8, Optimizer accuracy: 98.4 percent.]
Furthermore, the MMDetection open-source object detection toolbox is utilized to compare the implementation of various object detection model algorithms, such as Mask R-CNN, Cascade R-CNN, SOLOv2, HTC, among others. All networks adhere to the same training environment settings and datasets, employing their default initialization parameters and pre-trained weights to ensure optimal network performance.






3 Analysis and results



3.1 Model training

For a comprehensive comparison, all enhanced models underwent training and validation using the same datasets. As depicted in Figure 13, the training loss steadily decreases with increasing iterations. Initially, training commenced with the provided weight file YOLOv5s.pt. Notably, the training loss curve exhibits rapid convergence within the first 20 iterations. Subsequently, the rate of loss reduction gradually diminishes, reaching a plateau around 60 iterations. Beyond approximately 100 iterations, both loss values and accuracy stabilize, displaying minimal fluctuations.

[image: Line graph titled "Loss Function" depicting four lines representing YOLOv5s-POS training and validation loss over 100 epochs. The blue and green lines represent box training and validation, while orange and red lines represent segment training and validation. All lines show a decrease in loss, stabilizing below 0.03 after approximately 40 epochs.]
Figure 13 | Model loss results.




3.2 Ablation experiments

The efficacy of the model improvement was evaluated through ablation experiments to determine the impact of the enhanced components on the performance of the model. Building upon the original YOLOv5s algorithm, an improved method was incorporated at each stage, resulting in four sets of experimental comparisons. The outcomes are presented in Table 2.

Table 2 | The results of the YOLOv5-POS on the Ablation studies.


[image: A table comparing different models: YOLOv5s, +C-RepGFPN, +C-Seg, and YOLOv5-POS. Metrics include precision, recall, mAP at thresholds 0.5 and 0.5:0.95, F1 score, parameters, and GFLOPs, for both box and mask categories. YOLOv5s shows 98.2% precision and 89.7% recall in boxes, while +C-RepGFPN has 98.8% precision and 93.5% mAP. YOLOv5-POS shows 93.3% mAP for masks. Parameters range from 6.98 to 9.18, and GFLOPs from 21.5 to 29.5.]
The results presented in Table 2 show that YOLOv5s-C-FGPN enhances accuracy, recall rate, and mAP@0.5 indicators for object detection and instance segmentation, with F1 showing a 0.4% improvement. The Mask segment shows a 0.2% increase in mAP@0.5:0.95, enabling superior image feature extraction and enhancing model accuracy and recall. However, the increased accuracy comes with a rise in model parameters, with GFPLOPs increasing from 25.7 to 29.5.

In contrast, the Box target detection and Mask image segmentation components of YOLOv5-C-Seg exhibit slight decreases in accuracy and mAP@0.5, with F1 and mAP@0.5:0.95 declining by 0.3% and 1.4% respectively. However, model recall improves by 0.4% and 0.9%, indicating better detection of true targets. Notably, YOLOv5-Seg reduces the number of parameters, with GFLOPs decreasing from 25.7 to 21.5, thus improving computational efficiency.

Regarding the YOLOv5-POS model, it exhibits an increase of 0.3 percentage points in mAP for object detection and 0.8 percentage points in image segmentation, signifying enhanced accuracy. Despite the increase in model parameters, the proposed model effectively reduces GFLOPs while optimizing calculations, showcasing improved computational optimization capabilities.

To further evaluate the performance of the model, this study assessed the trained model on a test set. Figure 14 illustrates the comparison of algorithm performance before and after enhancement. Figure 14A shows the detection results of the baseline YOLOv5s model, where certain areas exhibit significant false detections. In contrast, Figure 14B displays the detection results of the YOLOv5s-POS model, where the same areas show a marked reduction in false detections. The results indicate the YOLOv5s-POS model achieves higher detection accuracy and significantly reduces false detections.

[image: Two images show a plant with green leaves and exposed roots, each overlaid with red and white detection boxes. In the top image (a), the boxes highlight areas labeled "centre" and "root" with different confidence scores, featuring a detailed focus on the center label. The bottom image (b) mirrors this detection pattern but with slightly varied confidence scores. Both images illustrate the accuracy of object detection in identifying plant parts.]
Figure 14 | Comparison of model detection results before and after algorithm improvement. (A) YOLOv5s detection result, (B) YOLOv5-POS detection result.




3.3 Comparison of different detection algorithms

To further validate the effectiveness of the proposed model, several mainstream multi-task network and instance segmentation models were trained and evaluated using consistent training and validation datasets. The models considered for comparison encompass multi-task networks such as YOLOv5s, Mask-RCNN, Cascade-Mask-RCNN, and HTC, alongside instance segmentation models like SOLOv2 and YOLOv5-POS. The experimental results are presented in Table 3.

Table 3 | Comparison of detection models.


[image: Comparison table of object detection models showing metrics for Box and Mask: mAP@0.5, mAP@0.5:0.95, model size in megabytes, and FPS. YOLOv5s has high FPS at 286 with mAP@0.5 scores of 93.0% (Box) and 92.7% (Mask). YOLOv8n excels with mAP@0.5:0.95 at 76.9% (Box) and 76.7% (Mask).]
Table 3 presents a comparative analysis of various models based on multiple metrics, including model size and frames per second (FPS). The YOLOv5s and YOLOv8n models stand out for their compact size and high processing speed, though their accuracy falls short compared to the YOLOv5-POS model. In contrast, models like Mask-RCNN, Cascade-Mask-RCNN, HTC, and SOLOv2 exhibit inferior performance in terms of model size, processing speed, and detection rates when compared to YOLOv5-POS. Although YOLOv8s achieves a marginally higher accuracy (0.3%) than YOLOv5-POS, it comes with a 20% increase in model weight. In the Box (mAP@50) and Box (mAP@50:95) metrics, YOLOv5-POS attained impressive scores of 93.5% and 81.4%, respectively, and excelled in the Mask (mAP@50) and Mask (mAP@50:95) metrics with scores of 93.3% and 80.1%, respectively. Consequently, the YOLOv5-POS model demonstrates superior performance in practical deployment scenarios.

The experimental findings underscore the substantial enhancement in accuracy achieved by the YOLOv5-POS model for object detection and instance segmentation tasks. Specifically tailored for detecting cabbage heads and roots, the YOLOv5-POS model effectively rectifies misidentifications that were evident in the original YOLOv5s model. This improvement is pivotal for accurate cabbage pose recognition predictions. Despite an increase in the number of model parameters, this study demonstrates that the proposed model not only enhances accuracy but also optimizes computational efficiency by reducing GFLOPs during the calculation process. Consequently, the model achieves efficient computations, crucial for real-time applications. Moreover, the YOLOv5-POS model boasts a compact size of 19.4 MB and a high processing speed of 263 FPS, striking an optimal balance between model size and speed. These attributes collectively contribute to delivering precise and reliable detection results.




3.4 Comparison of different measurement methods

To verify the accuracy and reliability of the proposed method in this study, a comparative experiment was conducted with other traditional image processing methods. The experiment utilized 138 images of three different cabbage varieties. The dataset included challenging samples with occluded, severely tilted, short, distorted, and damaged cabbage roots.

Prior to computer-based image measurements, actual angles were measured using an electronic angle measuring instrument for testing and comparison purposes. The results are presented in Table 4 and Figure 15. The test accuracy of the proposed YOLOv5-POS method surpasses that of the YOLOv5-MER and YOLOv5-SE methods across the Kunming-cabbage, Harbin-cabbage, and Huzhou-cabbage datasets. Specifically, on the Harbin-cabbage dataset, the YOLOv5-POS method achieves an RMAE (Root Mean Absolute Error) of only 0.63°, indicating the highest test accuracy among the methods evaluated. On the Kunming-Cabbage dataset, although the RMAE is 2.65°, it significantly outperforms the 8.09° of the YOLOv5-MER method and the 17.50° of the YOLOv5-SE method. When considering the aggregate results across all datasets, the YOLOv5-POS method achieves a total RMAE of 1.38° and a total RMSE (Root Mean Squared Error) of 2.32, both metrics significantly better than those of the other two methods. Specifically, YOLOv5-MER records a total RMAE of 9.95° and a total RMSE of 13.32, while YOLOv5-SE records a total RMAE of 14.4° and a total RMSE of 15.2. These findings underscore the superior test accuracy of the YOLOv5-POS method when evaluated across all test datasets.

Table 4 | Comparison table of different measurement methods.


[image: Table comparing three methods: YOLOv5-POS, YOLOv5-ME, and YOLOv5-SE, across three cabbage species: Kunming, Harbin, and Huzhou. Metrics include RMAE and RMSE in degrees. YOLOv5-POS shows the lowest error rates across species. Sum columns show overall performance. YOLOv5-POS is the proposed method.]
[image: Three sets of images display objects with different detection methods. The left column shows original images of objects with roots. The middle columns illustrate YOLOv5-POS and YOLOv5-MER detection techniques marking and measuring the objects. The right column, YOLOv5-SE, highlights object segmentation. Each image is annotated with numerical values for analysis.]
Figure 15 | Comparison of pose angle predictions under different methods for various varieties and conditions. YOLOv5-POS is the method proposed in this study (The blue circle represents the maximum contour, and the purple circle represents the minimum contour). YOLOv5-MER combined with minimum external rectangle and YOLOv5-SE combined with skeleton extraction.





4 Discussion

In addition to the proposed method, two techniques from other fields were selected for comparison based on their similarity to the technical processing object and the morphological structure of cabbage roots. These techniques include the minimum bounding rectangle method used by Guo et al. (2020) for cluster pepper identification and the skeleton extraction method used by Qi et al. (2022) for litchi trunk identification.

As shown in Figure 16, when external leaf occlusion is absent, the traditional skeleton extraction and bounding box approaches exhibit root tilt prediction performance comparable to the method proposed in this study. However, the limitations of these conventional methods become evident under conditions of external leaf occlusion. The skeleton extraction method is particularly vulnerable to noise interference and has high computational complexity, hindering its ability to accurately capture the true root structure. Similarly, the bounding box method struggles with the complex shapes and varying postures of cabbage roots, failing to fully represent the internal structure, which results in a significant decline in detection accuracy. In contrast, the method proposed in this study demonstrates enhanced robustness and accuracy in the presence of external leaf occlusion. By integrating key point localization with Bezier curve modeling, it effectively addresses the challenges posed by partially occluded roots, achieving more precise measurement of root tilt angles. As shown in Figure 17, experimental results indicate that YOLOv5-POS achieves an absolute error of approximately 1° in root angle prediction, with an accuracy rate of 98%. Compared to other methods, the approach proposed in this study exhibits superior performance in prediction root posture.

[image: Two panels showing purple irregular shapes on a black background. Panel (a) features a red rectangular outline around the shape with the number 15.9 in red above. Panel (b) shows a blue line along the shape's center with the number 16.86 in red above.]
Figure 16 | Calculation of tilt values of cabbage by different image processing methods. (A) Minimum enclosing rectangle, (B) Skeleton extraction.

[image: Two scatter plots comparing angle measurements with linear regression lines. (a) Compares YOLOv5-POS with actual values, showing strong correlation (R-squared = 0.98) with the equation y = 0.96x + 0.48. (b) Compares Hough Transform with actual values, showing moderate correlation (R-squared = 0.62) with the equation y = 0.79x + 6.97. Both plots include data points and regression lines.]
Figure 17 | The linear regression analysis results of the different methods. (A) YOLOv5-POS, (B) Hough Transform.

Moreover, the prediction model integrates the KD-Tree algorithm to enhance its prediction speed. To comprehensively assess the efficacy of the KD-Tree algorithm, this study conducts comparative experiments. The KD-Tree algorithm is employed during the search for nearest neighbor points to optimize search efficiency. The comparison results reveal a reduction in test time from 111 milliseconds to 28 milliseconds following the integration of the KD-Tree algorithm, resulting in a nearly fourfold increase in speed.

While the prediction method proposed in this study has achieved notable accuracy, it still has inherent limitations. The current dataset, though encompassing images with varying illumination levels, lacks samples under high lighting conditions. This limitation reduces the adaptability of the model to different cabbage varieties and real-world scenarios. In high-light environments, overexposure can lead to detail loss, impairing root recognition and angle prediction. Additionally, the increase in parameters and weights required for enhanced model accuracy complicates its deployment and application. Future research should focus on acquiring image data of Chinese cabbage at different growth stages, captured from multiple angles and under diverse lighting conditions. An expanded dataset will improve the robustness of the model against environmental interference, enhance its generalization ability, and support the design of an effective light-shielding structure to mitigate the effects of exposure during imaging. Furthermore, the application of lightweight techniques such as pruning and distillation will aid in optimizing the model to better meet the demands of complex and sophisticated applications.




5 Conclusion

To effectively address the challenges of cabbage pose recognition in complex environments, this study introduces an innovative YOLOv5-POS model. Based on YOLOv5s, the model focuses on the precision detection and segmentation of cabbage heads and roots. By optimizing the segmentation head module and incorporating an improved C-RepGFPN model to replace the traditional Neck layer, the study significantly enhances the detection accuracy and efficiency of the model. Additionally, the study creatively applies the Bezier curve construction method for predicting the posture of cabbage root, achieving precision predictions even under completely leaf occlusions. The experimental results validate the good performance of the YOLOv5-POS model. The model achieves a detection accuracy of 93.3% and an F1 score of 98.8% across various cabbage varieties. In segmentation tasks, it reaches scores of 93.5% and 81.4% for mAP@0.5 and mAP@0.5:0.95, respectively. These results demonstrate the advantages of theYOLOv5-POS model in accuracy and reliability. By accurately locating key points and applying Bezier curves, the model can precisely predict the growth path of cabbage root systems, with a root angle testing accuracy of 98% and a feature extraction to decision processing time of just 28 milliseconds, fully meeting real-time detection requirements. Furthermore, the YOLOv5-POS model proposed in this study significantly outperforms existing mainstream segmentation detection models and measurement methods in balancing accuracy and deployment efficiency. It demonstrates exceptional real-time detection and deployment capabilities on mobile devices, providing robust technical support for cabbage harvest decisions.
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Deep networks play a crucial role in the recognition of agricultural diseases. However, these networks often come with numerous parameters and large sizes, posing a challenge for direct deployment on resource-limited edge computing devices for plant protection robots. To tackle this challenge for recognizing cotton diseases on the edge device, we adopt knowledge distillation to compress the big networks, aiming to reduce the number of parameters and the computational complexity of the networks. In order to get excellent performance, we conduct combined comparison experiments from three aspects: teacher network, student network and distillation algorithm. The teacher networks contain three classical convolutional neural networks, while the student networks include six lightweight networks in two categories of homogeneous and heterogeneous structures. In addition, we investigate nine distillation algorithms using spot-adaptive strategy. The results demonstrate that the combination of DenseNet40 as the teacher and ShuffleNetV2 as the student show best performance when using NST algorithm, yielding a recognition accuracy of 90.59% and reducing FLOPs from 0.29 G to 0.045 G. The proposed method can facilitate the lightweighting of the model for recognizing cotton diseases while maintaining high recognition accuracy and offer a practical solution for deploying deep models on edge computing devices.
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1 Introduction

Cotton is a vital commodity in both the agriculture and textile sectors, and is an indispensable necessity for life (Feng et al., 2022). Records from the National Bureau of Statistics of China show that the cotton plantation has remained around 3.2 million hectares for the past seven years, achieving a peak output of 6.096 million tons in 2018. The diseases directly impact cotton yield and quality, with more than 80 known diseases and more than 20 frequent diseases (Li et al., 2017). To effectively prevent and control cotton diseases, it is essential to employ advanced technology for disease recognition. Currently, field-based investigations of cotton diseases rely largely on plant protection experts, which is time-consuming, labor-intensive, and suffer from poor timeliness. This method also faces difficulties in timely execution across wide areas, and the classification of disease severity is prone to subjective interference from investigators, which somewhat compromise the accuracy of disease monitoring (Shoaib et al., 2023).

With the field of computer vision is rapidly advancing, a large number of crop disease recognition and diagnosis studies have been conducted by researchers in various countries (Wani et al., 2022). The current mainstream disease recognition method is to use deep learning (Hinton and Salakhutdinov, 2006). Deep neural demonstrate excellent performance in image recognition and classification, specifically in agriculture (Ferentinos, 2018; Liu and Wang, 2021). The commonly used deep neural networks include AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2015), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), and so on.

Mohanty et al. (2016) trained a deep convolutional neural network to recognize 38 diseases of PlantVillage which is an open plant disease dataset, and found that the trained GoogleNet model achieved 99.35% accuracy, thereby establishing the method’s feasibility. Zhang et al. (2019) built a model based on AlexNet model to effectively classify and recognize six cucumber leaf diseases. Ramcharan et al. (2019) trained a CNN recognition model and used it in a mobile application. The accuracy of disease images and videos achieved 80.6% and 70.4%, respectively. Jiang et al. (2020) used the convolutional neural networks for image feature extraction of diseased rice leaves, and then applied SVM to classify and predict four rice diseases. The average correct recognition rate of the model reached 96.8%. Zeng et al. (2022) proposed the SKPSNet-50 network model to solve the problem of small and irregular early leaf spots in the maize leaf, and the recognition rate of leaf spots reached 92.90%. Tang et al. (2023) introduces the development and application of precision agriculture techniques for pest and disease control. By utilizing methods such as maize disease recognition based on HSCNN+, intelligent monitoring systems, and UAV hyperspectral remote sensing images, they have significantly enhanced the accuracy and efficiency of disease recognition and monitoring, thus promoting sustainable agricultural development. Chintalapudi et al. (2023) proposed voice biomarkers based on improved feature selection techniques for predicting Parkinson’s disease (PD). Their study analyzed voice data using Support Vector Machines (SVM) and Random Forest (RF) models, significantly improving the accuracy of PD prediction, demonstrating substantial potential in early recognition and diagnosis. Lu et al. (2023) used a modified EfficientNet to recognize healthy and diseased leaves of cotton Verticillium wilt while extracting image features, and it was found that the model achieved 93.00% accuracy in classifying healthy and diseased leaves. The aforementioned experiments all confirm that the application of convolutional neural networks to plant disease identification can effectively assist in plant disease recognition efforts.

Too et al. (2019) compared deep learning architectures such as VGG16, InceptionV4, ResNet50, ResNet101, Resnet152 and DenseNet121 based on PlantVillage. The data used for the experiment consisted of 38 plant diseases. The experimental results show that the DenseNet architecture has fewer parameters, shorter computation time, and the highest test accuracy of 99.75%. Ferentinos (2018) evaluated five CNNs-AlexNet, AlexNetOWTBn, GoogleNet, Overfeat, and VGG-using the PlantVillage dataset. According to their study, VGG emerged as the best model with an accuracy of 99.53%. Liang et al. (2019) constructed a multi-functional classification model of plant leaves based on the ResNet50 network, and estimated the plant species, disease species and disease severity respectively. The overall accuracy was 91%, 98% and 99%, respectively. Bhatt et al. (2017) compared the performance of four networks-VGG19, InceptionV3, Xception, and ResNet50-in terms of accuracy, model size, memory utilization, and inference time. Among these, ResNet50 achieved the highest accuracy of 99.7% on the tomato dataset.

VGG16, ResNet164 and DenseNet40 are very popular networks in the tasks of image classification and have been extensively studied to demonstrate high accuracy for plant disease identification.

With the increase of the parameters and complexity of neural networks, the computational and storage capabilities of the system are facing great challenges. These models can basically only run on the PCs and it is difficult to run them directly on the edge devices. In order to realize the application of deep models in the agricultural field, the models are generally compressed and deployed on the edge devices (Liu et al., 2021). Model compression technology solves the problem of model cost by reducing both the model parameters and computations. Nowadays, the mainstream model compression methods are knowledge distillation (KD), lightweight network architecture, pruning and quantization. Chen et al. (2022) proposed a model combining channel attention and channel pruning for disease identification. The model achieved 99.7% accuracy on PlantVillage and 97.7% accuracy on a local peanut leaf disease dataset. Compared to the base ResNet18 model, floating point operations (FLOPs) were reduced by 30.35%, parameters were reduced by 57.97%, and model size was reduced by 57.85%. Chao et al. (2021) designed a lightweight network to recognize apple leaf diseases. The network was found to have an average classification accuracy of 97.01%, which is much higher than MobileNetV1 and ShuffleNet, and has the least number of parameters. Zhu et al. (2022) compressed the cotton disease recognition model by pruning algorithm. It was found that when the pruning rate was 80%, the accuracy of all the models used was improved, and DenseNet40 had the best performance, the highest accuracy, and the lowest number of model parameters.

Knowledge distillation (Hinton et al., 2015), which serves as a prominent technique for model compression, effectively transfers the intricate knowledge encoded within the cumbersome teacher model to a more streamlined student model. This transfer is achieved by designing the student model to closely emulate the output of the teacher model, thereby ensuring maximum retention of valuable information. Based on ensuring the model’s accuracy, the size and computation load of the model are substantially reduced. Tang and Huang (2021) used tomato diseases in PlantVillage dataset as the researched object, and utilized the knowledge distillation method for training, and compared five kinds of networks such as AlexNet and VGG16. The results demonstrate that the distilled custom model exhibits remarkable accuracy in both identifying and localizing leaf disease areas, highlighting its efficacy in precision agriculture applications. The average recognition accuracy reached 97.6%, and the model size was only 4.4 M. Peng and Wang (2021) used pruning to reduce the neural network size and computational cost, and then re-trained the model through knowledge distillation to reduce the performance loss. Wang et al. (2021) proposed a DNN-based compression method using a lightweight fully connected layer to accelerate inference, pruning to remove redundant parameters, knowledge distillation to improve accuracy, and then quantization to further compress the model, which ultimately compresses the model to 0.04 Mb with an accuracy of 97.09%. Dai and Fan (2022)proposed a new network structure YOLO V5-CAcT to recognize crop diseases. Knowledge distillation is used to reduce the loss of accuracy, and then the average recognition accuracy is 94.24% by continuing to optimize the model. The model size is only 2MB, which is 88% less compared to the original model. Li and Ai (2022) used MobileNetV3 as the student model and ResNet101 as the teacher model for knowledge distillation. The accuracy on the data validation set reached 98.8%, and the model size was 23M.

In this study, they are selected as the teacher models of cotton disease recognition for knowledge distillation. Two kinds of lightweight networks, including the homogeneous and the heterogeneous networks, are selected as the student networks. The homogeneous networks with the same structure as the teacher networks include VGG8, ResNet8, and DenseNet10, while the heterogeneous networks include MobileNetV2 (Sandler et al., 2018) and ShuffleNetV2 (Ma et al., 2018). The latter two lightweight networks, are designed with a strong emphasis on improving computational efficiency and reducing runtime memory. First, we train the teacher models over the plant disease dataset. Then, in order to facilitate the knowledge transfer from a teacher model to a student model and achieve excellent classification performance, we employ spot adaptive strategy for the nine knowledge distillation algorithms. During the whole distillation process, this strategy can adaptively determine the distillation spot of a teacher model and improve the optimization efficiency. We compare the classification performances of the student models achieved from the different knowledge distillation algorithms, and try to find the optimal combination of knowledge distillation algorithm and network structure that satisfies the requirements of high accuracy, high inference speed, and small storage space, and realizes the identification of cotton diseases while satisfying the deployment situation of edge devices.

The rest of the paper is organized as follows: in Section 2, we introduce the material and methodology, including experimental data, introduction of the teacher networks used in our study, generic knowledge distillation algorithms, spot-adaptive knowledge distillation algorithms and evaluation metrics. Section 3 describes the experimental setup and results. The student networks include homogeneous and heterogeneous lightweight networks. We compare the compression effect and recognition accuracy of the teacher-student combination models with different distillation algorithms. Section 4 summarizes the work of this paper.




2 Materials and methods



2.1 Database

The cotton disease dataset used in our study encompasses a diverse range of images, including those sourced from the internet as well as those captured firsthand in agricultural fields. Image acquisition is carried out using an industrial-grade camera (model MS-SUA133GC, resolution 1280×1024 pixels) and a fixed focal length lens (model FA5M06, 5 megapixels, 6 mm focal length). The images are captured from May to August over 2021-2022.This dataset contains the healthy and seven kinds of diseases and with a total of 2,151 images. The image sizes are all resized to 32×32 in the experiment. Some of the original images are shown in Figure 1.

[image: Images A to H display various leaves with different conditions:  A. A healthy, green leaf against a blue sky. B. A leaf with a powdery substance, indicative of mildew. C. Leaves showing signs of stress or disease with unclear markings. D. Leaves with withered edges and discoloration. E. Leaf with numerous small, dark spots. F. Leaf with larger round, brown spots. G. Leaves with significant discoloration and damage. H. Leaf with defined, irregular purple patches or spots.]
Figure 1 | Partial images of self-built cotton disease dataset (A) Healthy, (B) Areolate mildew, (C) Curl virus, (D) Verticillium wilt, (E) Brown spot, (F) Target spot, (G) Fusarium wilt, (H) Bacterial blight.

The self-built cotton disease dataset encompasses eight distinct categories, exhibiting the following distribution of images: 34 instances of areolate mildew, 418 cases of curl virus, 499 occurrences of bacterial blight, 264 instances of brown spot, 58 target spot samples, 419 fusarium wilt cases, 34 verticillium wilt samples, and 425 depictions of healthy leaves. It is noteworthy that the dataset does not exhibit a uniform distribution of images across these categories. Consequently, during the training phase, there exists a potential risk of the trained model exhibiting a bias towards categories that are represented by a higher number of image samples. This imbalance in the dataset’s categorical representation may have significant implications on the model’s overall performance and generalization capabilities. To solve the problem, data enhancement methods such as rotation, random color, and horizontal flip are employed to expand the number of samples of the categories with the small samples. The enhancement example is shown in Figure 2.

[image: Four images of a green leaf with dark spots, showing different transformations. The first is the original image, the second is a horizontally flipped version, the third is rotated one hundred eighty degrees, and the fourth has altered colors. Each image retains the same leaf pattern and structure.]
Figure 2 | Data augmentation operations.

The augmented dataset comprises 170 instances of areolate mildew, 418 cases of curl virus, 499 occurrences of bacterial blight, 264 instances of brown spot, 357 target spot samples, 419 fusarium wilt cases, 170 verticillium wilt samples, and 425 depictions of healthy leaves. Subsequently, for the sake of brevity and clarity in our discussions, we shall refer to this self-constructed cotton disease dataset as SCDD (Self-built Cotton Disease Dataset).

In our experiments, the images of each category in SCDD are divided into a training set and a test set according to a ratio of 8:2, with 2,181 images in the training set and 542 images in the test set.




2.2 Knowledge distillation

Network Compression refers to the process of reducing the size and computational complexity of neural network models through various techniques and methods while aiming to maintain their performance. The goal of network compression is to enable deep learning models to operate more efficiently in resource-constrained environments (such as mobile devices and embedded systems), thereby reducing storage requirements, computational costs, and energy consumption.

The network compression technique employed in this study is based on spot-adaptive knowledge distillation. Knowledge Distillation is a process where a smaller neural network (referred to as the Student Model) is trained to emulate a larger neural network (referred to as the Teacher Model). The Teacher Model is characterized by its large size, computational complexity, and superior performance, while the Student Model is smaller, structurally simpler, and relatively less performant. Through this emulation process, the Student Model typically achieves comparable accuracy to the Teacher Model while significantly reducing the number of model parameters. Hence, knowledge distillation effectively compresses the model.



2.2.1 Knowledge distillation algorithm

The knowledge distillation algorithm exploits the feature interpretability of teacher-based models to transform the training dataset into soft labels, simplifying the data representation and preserving important features. When training the student model, the original data is no longer used. However, the soft labels are directly used as the objective function to reduce the overfitting of the student model. The knowledge distillation algorithm can not only reduce the size of the student model but also improve the inference speed. In addition, it can improve the generalization performance of the small model to achieve higher accuracy and efficiency with limited computational resources. In this paper, a variety of knowledge distillation algorithms are used for comparative experiments in order to obtain the best performance for cotton disease recognition on the compressed model. The considered algorithms include FitNets (Romero et al., 2015), Attention Transfer (AT) (Zagoruyko and Komodakis, 2017), Neuron Selective Transfer (NST) (Huang and Wang, 2017), Probabilistic Knowledge Transfer (PKT) (Passalis and Tefas, 2018), Factor Transfer (FT) (Kim et al., 2018), Relational Knowledge Distillation (RKD) (Park et al., 2019), Similarity-Preserving (SP) (Tung and Mori, 2019), Correlation Congruence (CC) (Peng et al., 2019), and Variational Information Distillation (VID) (Ahn et al., 2019).




2.2.2 Spot-adaptive knowledge distillation

Distillation strategies can be broadly categorized into one-spot distillation and multi-spot distillation based on the number of distillation spots, as shown in Figure 3. One-spot distillation uses only one layer in the teacher model, and multi-spot distillation is acquiring knowledge from multiple layers of the teacher network to provide more supervisory signals to the students. The multi-spot distillation method obtains more information from the teacher than one-spot distillation, so it is generally assumed that they will perform better when training student networks. Both one-spot distillation and multi-spot distillation algorithms involve human determination of distillation spots, which may lead to the problem of insufficient teacher supervision if the location of the determined spots is too sparse and over-regularization if the determined spots are too dense. To address this problem, we use a new strategy for compressing the disease identification model called spot-adaptive distillation (Song et al., 2022).

[image: Diagram comparing three distillation methods for neural networks: one-spot, multi-spot, and spot-adaptive distillation. Each method shows a process involving input images, blocks representing network layers, and output logits. One-spot distillation uses a single layer for both teacher and student. Multi-spot uses multiple layers, and spot-adaptive selectively chooses layers with checks for efficiency. Inputs are images of leafy greens at the start of each method.]
Figure 3 | A Schematic of knowledge distillation.

The fundamental concept of this strategy involves the automatic determination of the distillation location and the merging of the student and teacher models into a multipath routing network. The routing network, illustrated in Figure 4, offers multiple paths to the output layer when data is input. Moreover, a lightweight decision network is employed to determine the optimal propagation path for each sample as it reaches a branch spot in the network. If the decision network passes the data to the layer of the teacher model, it indicates that the layer in the teacher model cannot yet be directly replaced by the corresponding layer in the student model and that the knowledge from the teacher layer needs to be distilled to the corresponding student layer. While the decision network passes data to the layers of the student model, it indicates that the layers of the student model can be directly replaced with the layers of the teacher model, yielding excellent or similar performance, and that distillation can be performed without these layers. This algorithm focuses on the location of distillation, rather than the distillation content that existing research focuses on, so it can be combined with current major distillation algorithms.

[image: Diagram illustrating a knowledge distillation process with teacher and student models. The input consists of leaf images. Both models have three blocks labeled Block 1, Block 2, and Block 3, followed by fully connected (FC) and logit layers. Arrows show the flow of data and weights between blocks. KD loss and KL loss are calculated at each step.]
Figure 4 | Overview of the spot adaptive knowledge distillation method.

The image classification convolutional neural network typically consists of the convolutional block, fully connected layer, and softmax layer. Following the convolutional layer, there will be an activation layer and a batch normalization layer to compress the feature map. The functions of the teacher model [image: A cursive letter "T" is displayed in a stylized serif font, with decorative elements highlighting the character’s elegance against a plain background.]  and student model [image: Please provide the image or a link to the image you want described, and I will generate the alt text for you.]  can usually be expressed as Formulas 1 and 2:

[image: Equation representing a transformation \( T \), defined as the composition of functions: \( T = S \circ F \circ B_N \circ \ldots \circ B_1 \).] 

[image: Mathematical formula showing \( S = S_0 \cdot F \cdot B_N \cdot \ldots \cdot B_1 \), labeled as equation \( (2) \).] 

Where S denotes the softmax function, F denotes the linear function, [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.]  represents the basis function of the i-th block. Superscripts s, t denote the student model and the teacher model, respectively. [image: Group of people are sitting on a stage with microphones in front of them, participating in a panel discussion. A screen in the background displays the text "Web Summit." The setting suggests a formal event or conference.]  represents the combination operation of a function.

The multipath routing network [image: It seems there's an issue with the image data. Please upload the image file directly or provide a URL so that I can assist you in generating the alternate text.]  consists of a student network [image: Please upload the image or provide a URL so I can generate the alternate text for you.]  and a teacher network [image: To generate alt text, please upload the image you'd like described. You can provide a brief caption for additional context if you wish.] . Its basic function is represented as:

[image: Mathematical expression showing M equals S subscript zero composed with F subscript zero composed with B subscript N composed with ellipsis composed with B subscript one, labeled as equation three.] 

[image: Formula showing a weighted average: \( F = wF^T + (1-w)F^S \), where \( w \) is the weight, \( F^T \) and \( F^S \) are two factors. Equation is labeled as (4).] 

[image: Mathematical equation showing B-sub-i equals w-sub-i B plus one minus w-sub-i B-sub-i one. The equation is valid for i ranging from one to N.] 

Where w and [image: A lowercase letter "w" is followed by a subscript "i", commonly used to denote a variable or element in mathematics or scientific notation.]  are the feature fusion weights generated by the decision network, bounded by [0, 1]. When the feature fusion weights take discrete values of {0, 1}, the network turns into a combinatorial network whose layers consist of interwoven connected teacher and student layers.

The decision network consists of a lightweight, fully connected layer whose output is an N+1 two-dimensional routing vector, where N+1 denotes the number of branch spots, i.e., the number of candidate distillation spots. Each routing vector is a probability distribution from which a categorical value is randomly drawn to determine the data flow path of a branch spot in the routing network.

Spot adaptive distillation is performed by simultaneously training the routing and decision networks. The overall objective function is:

[image: Mathematical equation showing a loss function: L equals L sub student plus beta sub one L sub KL plus beta sub two L sub KD plus beta sub three L sub routing, labeled as equation six.] 

Where [image: "Bold uppercase L with the subscript text 'student' in italics."]  is the cross-entropy loss between the student model goals and predictions, [image: A small, slightly blurry mathematical expression reading \(L_{KL}\).]  is the KL scatter between the teacher model predictions and the student model predictions, [image: Mathematical expression representing the subscripted notation "L" with "KD" as the subscript.]  is the distillation loss of existing knowledge imposed on the intermediate layer, [image: Stylized mathematical expression representing "L" subscripted with "routing".]  is the cross-entropy loss between the goals and the routing network predictions, [image: Greek letter beta, subscript two.] , [image: Greek letter beta with a subscript one, represented as β₁.]  and [image: Greek letter beta with subscript three, often used in mathematical equations or scientific contexts to denote a specific variable or parameter related to a model or formula.]  are hyperparameters that weigh these loss functions.





2.3 Teacher networks

In general, the larger the model for deep learning, the higher the accuracy of disease recognition. We use three classical large-parameter convolutional neural networks as the teacher networks, including VGG16, ResNet164, and DenseNet40, to train a high-precision disease recognition teacher model. Compared to other deep learning networks, these models have been demonstrated to be very competitive in plant disease recognition. The last layers of three networks are modified to adapt to the classification task of eight cotton diseases.

VGG16 comprises a total of thirteen convolutional layers, three fully connected layers, and five pooling layers. The activation function used throughout is the ReLU function, exhibiting a simple structure. The convolutional and fully connected layers are often referred to as weight layers. In this network, the main responsibility of the thirteen convolutional layers and five pooling layers is feature extraction, while the three fully connected layers are dedicated to the classification task. VGG16 adopts small 3×3 convolutional kernels and 2×2 pooling kernels for all its convolutional layers. The stacking of multiple convolutional and pooling layers creates a deeper network structure. This configuration not only helps to reduce the number of parameters but also enhances the network’s fitting and representation capabilities through increased nonlinear mapping. Figure 5 illustrates the VGG network structure. The VGG16 model utilized in this study is a modified version of the original VGG, which is smaller in size compared to the classical VGG16 model.

[image: Diagram of a convolutional neural network architecture processing an image. The layers include convolution plus ReLU, batch normalization, max pooling, fully connected, and softmax layers, labeled with dimensions.]
Figure 5 | Schematic diagram of the structure of VGG.

ResNet is a residual network formed by adding jump connections based on ordinary networks. ResNet is easier to optimize than normal networks and the performance will not decrease with increase of the network depth. ResNet introduces a residual module to solve the problem of training difficulty and slow convergence due to deeper layers. The ResNet network structure is shown in Figure 6. In this study, a 164-layer pre-activated pre-ResNet framework with a bottleneck structure is used.

[image: Diagram showing a multi-step process involving image convolution. It starts with a photo of a leaf and progresses through three stages with stacks of yellow, blue, and red squares, each linked by arrows and plus symbols, ending with green squares.]
Figure 6 | Schematic diagram of the structure of ResNet.

DenseNet is to connect the output of each layer directly to the input of each layer behind. These inputs are not directly arithmetically summed, but spliced in feature dimensions, reducing the possibility of gradient vanishing. Furthermore, the incorporation of the bottleneck layer, translation layer, and a small growth rate serves to streamline the network architecture and minimize the number of parameters, thereby enhancing its efficiency. DenseNet has extremely high parameter utilization and shows no overfitting or accuracy degradation when increasing the number of layers. The structure of the DenseNet network is depicted in Figure 7. In this study, a DenseNet40 with only 40 layers is constructed.

[image: Diagram of a neural network model for leaf classification. An image of a leaf feeds into layers of feature maps, shown in orange, blue, red, and teal. Arrows depict connections between layers, marked by green circles labeled "C" indicating concatenation.]
Figure 7 | Schematic diagram of the structure of DenseNet.




2.4 Student networks

A few parameters, low complexity and fast training speed characterize student models. The operation of small network models on edge devices depends on the devices’ computing power and memory size. Some high-end edge chips’ computing power and memory size can already support certain small-scale neural networks. Zhang et al. (2021) introduced a streamlined fruit recognition algorithm tailored exclusively for edge computing devices, which has a parameter count of 5.96M, the smallest among the comparative network models, and is used in NVIDIA Jetson Xavier NX, NVIDIA Jetson TX2, and NVIDIA Jetson NANO edge devices to accomplish target recognition. Mao et al. (2023) developed an Android application RTFD-CPU, assessed the real-time growth conditions of tomatoes and strawberries. on the smartphone Redmi K30pro (Snapdragon 865 and 8 GB RAM). The size of the quantitative RTFD model is 1.33 MB. Overall, the size of the model running on edge devices is basically in the order of MB or smaller.

In the experimental phase, we designed comparative experiments for homogeneous and heterogeneous structures. A homogeneous structure refers to network models in which the layers have very similar or identical structures and configurations. However, due to the uniformity of layer structures, such models may lack flexibility and might not fully capture the diversity and complex features of the data. A heterogeneous structure refers to network models in which the layers have different structures and configurations. The advantage of this approach is that by optimizing the structure and configuration of different layers, it is possible to better capture the complex features of the data, thereby improving model performance.

MobileNetV2 and ShuffleNetV2 are classic lightweight neural networks optimized for the needs of mobile and embedded devices, offering efficient and accurate inference capabilities in resource-constrained environments. MobileNetV2, introduces depth wise separable convolution and inverted residual structures, significantly reducing computational load and parameter count. ShuffleNetV2 addresses bottlenecks in channel communication by incorporating channel shuffle and grouped convolution techniques, which significantly enhance the model’s computational efficiency and throughput. Both models exhibit substantial differences from the aforementioned teacher models in terms of design philosophy, architectural complexity, computational efficiency, and application scenarios, making them typical examples of heterogeneous structures. Thus, we select MobileNetV2 and ShuffleNetV2 as student models in the heterogeneous experiments. For the homogeneous structure experiments, we choose smaller networks with the same structure as the teacher networks, specifically VGG8, ResNet8, and DenseNet10, as the student models.

Figure 8 illustrate depth wise separable convolution of MobileNetV2, while Figure 9 shows the ShuffleNetV2 network structure.

[image: Diagram of a convolutional neural network with 3-channel input, passing through three filters to create three feature maps. These maps are processed by four additional filters, resulting in four final maps, illustrated by connected blocks and arrows.]
Figure 8 | Depth wise separable convolution.

[image: Flowchart illustrating a neural network architecture with three branches. Each branch involves a sequence of operations: grouped convolution, channel shuffle, and depthwise convolution, followed by batch normalization and activation functions. The operations include pooling, concatenation, and addition, with specific strides indicated. Color blocks represent different processing stages.]
Figure 9 | ShuffleNetV2 network architecture.




2.5 Evaluation metrics

We evaluate the performance of the compressed models by the accuracy, the number of floating-spot operations and the model size.

The accuracy of model reflects the accuracy of model prediction. It refers to the percentage of the number of correct model predictions in the total number of data under certain experimental conditions. The formula is as follows:

[image: Formula for accuracy, showing: Accuracy equals the number of true predictions (T sub P) over the total predictions (T sub total), multiplied by one hundred percent. The formula is labeled as equation seven.] 

Where TP refers to the number of correct predictions successfully made by the recognition model, and FP refers to the number of incorrect predictions made by the recognition model. The higher the [image: The word "Accuracy" written in a serif font style, slightly blurred.] , the better the performance of the model.

Floating point operations ([image: The text "FLOPs" displayed in a bold, italic serif font on a white background.] ) are the number of computations during the actual operation. The index used to measure the complexity of the model, and can also be interpreted as the computational workload. This value is calculated based on the depth of the model. The formula for each convolutional layer is as follows:

[image: Mathematical formula for calculating FLOPs: \( \text{FLOPs} = 2HW(C_{in} K^2 + 1)C_{out} \), where \( H \), \( W \), \( C_{in} \), \( K \), and \( C_{out} \) are variables. Equation is labeled as (8).] 

Where [image: It appears you tried to provide an image, but I only received a text snippet. Please upload the image or provide a URL so I can help generate the alternate text for it.]  indicates the quantity of input channels, k refers to the size of the convolution kernel, HW refers to the height and width of the feature map. [image: Mathematical expression showing "C" subscript "out".]  presents the number of output channels.

The calculation formula of the fully connected layer is as follows:

[image: A mathematical formula is shown with the equation for FLOPs, which stands for Floating Point Operations per Second. The formula is "FLOPs = (2 × I - 1) × O", where I and O are variables. The equation is labeled as number 9.] 

Where I represents the quantity of input units, and O represents the quantity of output units.

Model size is the model’s size, independent of the size of the input image, describing the memory required. The computational resources of the edge device’s memory are extremely limited, and if the model is too complex, it cannot be loaded into the device’s memory.

To meet the application requirements of edge devices, it is essential for the compressed model to have a high classification accuracy, as well as small FLOPs and model size.





3 Experimental results and discussion



3.1 Experimental setup

All the settings are kept the same in distillation experiments; the batch sizes of the experiments are 64, the total epoch is 100, and the learning rate is 0.01. The learning rate is decayed by a factor of 0.1 at the 50th, 70th, and 90th epoch, and the temperature value is set to 4. The hyperparameter sum in Fml. (6) is set to 1, based on the distillation method setup. The development environment consists of the following components: the operating system is Ubuntu 18.04.6 LTS 64-bit, the programming language is Python 3.7, the deep learning framework is PyTorch 2.0.0, and the integrated development environment is PyCharm 2020.1.5. The hardware of the computer used for training is configured as follows: an Intel® I7 12700KF CPU @ 2.10GHz x64 processor, 64GB RAM, and an NVIDIA RTX 3090. In the experiments, the spot-adaptive strategy and nine typical distillation algorithms is used to compress the VGG16, ResNet164, and DenseNet40 cotton disease recognition models, and the optimal compression model is selected through comparative experiments.




3.2 Results and discussions

First, we train all the networks and evaluate their accuracy over SCDD, as a baseline to compare the performance with the compression model after compression. The results are shown in the Table 1. The knowledge of VGG16, ResNet164, and DenseNet40 models is transferred in the student model using nine knowledge distillation algorithms, including FitNets, AT, SP, CC, VID, RKD, PKT, FT and NST with spot-adaptive strategy. These algorithms are combined with the original KD algorithm; the KL divergence of soft labels between teachers and students is added to improve performance. In the case of the heterogeneous student model, we investigate the accuracy of the teacher-student combinations, including VGG16-MobileNetV2, ResNet164-ShuffleNetV2, and DenseNet40-ShuffleNetV2. The experiment results are presented in Table 2. When the homogeneous small network is used as the student network, the teacher-student combinations are VGG16-VGG8, ResNet164-ResNet8, and DenseNet40-DenseNet10. The experimental results are shown in Table 3. In order to see the compression effect for the homogeneous and heteromorphic student models, based on the experimental results above, Table 4 compares the six pairs of teacher and student networks under the NST algorithm in terms of accuracy, model size, and FLOPs.

Table 1 | Baseline performance over SCDD.


[image: Chart displaying accuracy percentages for various models categorized as "Teacher" and "Student (baseline)." Teacher models include VGG16 at 90.77%, ResNet164 at 88.00%, and DenseNet40 at 90.59%. Student models include MobileNetV2 at 78.41%, ShuffleNetV2 at 82.47%, VGG8 at 89.48%, ResNet8 at 82.66%, and DenseNet10 at 77.12%.]
Table 2 | Results of heterogeneous student models.


[image: Table comparing accuracy percentages across three models: VGG16-MobileNetV2, ResNet164-ShuffleNetV2, and DenseNet40-ShuffleNetV2. Categories include Teacher, Student, Fitnets, AT, SP, CC, VID, RKD, PKT, FT, and NST. Bold values indicate the highest accuracy under the same structure, with DenseNet40-ShuffleNetV2 achieving 90.59% for NST and ResNet164-ShuffleNetV2 reaching 89.30% for RKD.]
Table 3 | Results of homogeneous student models.


[image: A table comparing accuracies of different methods across three model structures: VGG16-VGG8, ResNet164-ResNet8, DenseNet40-DenseNet10. Highest accuracies, in bold, for each structure are: VGG16-VGG8 with RKD at 90.54%, ResNet164-ResNet8 with NST at 85.05%, and DenseNet40-DenseNet10 with VID at 81.92%.]
Table 4 | Comprehensive performance of NST.


[image: Table comparing the performance of machine learning models before and after distillation. Columns include Teacher, Student, Accuracy, FLOPs, and Model size. Models include VGG16, ResNet164, and DenseNet40 with student models MobileNetV2, VGG8, ShuffleNetV2, ResNet8, and DenseNet10. Data shows improvements in accuracy and reductions in FLOPs and model size after distillation, highlighting gains in efficiency and performance.]
Figure 10 illustrates the training process of various heterogeneous network models during knowledge distillation under the NST algorithm. The figure clearly shows the accuracy and loss curves for VGG16-MobileNetV2, ResNet164-ShuffleNetV2, and DenseNet40-ShuffleNetV2 as they change with epochs. It is evident that DenseNet40-ShuffleNetV2 exhibits better accuracy and lower loss. Additionally, DenseNet40-ShuffleNetV2 demonstrates more stable training and stronger robustness throughout the process.

[image: Line charts show the accuracy and loss of three neural network models over 90 epochs. DenseNet40-ShuffleNetV2, VGG16-MobileNetV2, and ResNet164-ShuffleNetV2 are compared. Accuracy chart shows all models stabilizing around 90%. Loss chart indicates lower loss as epochs increase, with DenseNet40 slightly outperforming others.]
Figure 10 | Loss and accuracy curves of heterogeneous networks (NST).

Comparison with the Table 1, the results of the Table 2 reveals that when the spot-adaptive distillation algorithm is used, the heterogeneous lightweight networks exceed their respective baseline accuracies after distillation for most distillation methods, except for SP and PKT. This suggests that our scheme can broadly transfer helpful knowledge from the teacher model to the student model and improve the accuracy of the student model. For DenseNet40-ShuffleNetV2 combination, after distillation by the NST algorithm, ShuffleNetV2 had the highest recognition accuracy for cotton diseases, which increase from 82.47% to 90.59%. This accuracy is also the same as that of DenseNet40 as a teacher network, without losing any accuracy of the teacher network. As far as the distillation algorithms are concerned, the combined spot-adaptive RKD and NST maintain high accuracy for various teacher/student model combinations, with average accuracies of 87.58% and 87.39%, respectively. It shows that their distillation results have good robustness. As shown in Figure 11, the Gradient-weighted Class Activation Map (CAM) demonstrates the recognition effect of DenseNet40 and ShuffleNetV2 on the same cotton disease leaf image. It can be observed that there is almost no difference in the recognition effect between the teacher model and the student model. This demonstrates that knowledge from the teacher network is well transferred to the student network.

[image: Side-by-side comparison of two plant images processed with heatmaps. The left side features ShuffleNetV2 and the right side DenseNet40. Each section comprises four images, showing different heatmap patterns on leaves.]
Figure 11 | DenseNet40-ShuffleNetV2 CAM visualization (NST).

To further analyze the performance of the DenseNet40-ShuffleNetV2 model distilled using the NST algorithm, Figure 12 presents the confusion matrix of this model on the cotton validation set. The values on the diagonal represent the number of correctly predicted samples. The validation set of the cotton dataset contains a total of 521 samples. The categories from Type 1 to Type 8 correspond to areolate mildew (34 samples), bacterial blight (99 samples), brown spot (32 samples), curl virus (83 samples), fusarium wilt (83 samples), target spot (71 samples), verticillium wilt (34 samples), and healthy leaves (85 samples), respectively. The confusion matrix illustrates the model’s recognition capability on the validation set. From the confusion matrix, we can observe that the model’s ability to recognize areolate mildew needs improvement. Target spot is the most frequently confused disease. Meanwhile, the model demonstrates strong recognition capabilities for most of the diseases.

[image: Confusion matrix displaying predicted versus true labels for eight classes. Diagonal values indicate correct predictions: 29, 90, 29, 75, 75, 60, 31, and 83. Off-diagonal values represent misclassifications, highlighting the model’s performance per class.]
Figure 12 | Confusion matrix of DenseNet40-ShuffleNetV2 (NST).

As shown in the Table 3, in terms of the robustness of the distillation algorithm, NST and RKD still perform better. Under the three teacher-student combinations, the average accuracies of the student models are 86.78% and 86.27%, respectively, ranking the top two. Comparing Tables 1, 3, the NST algorithm achieves the best distillation results for both the ResNet164-ResNet8 and DenseNet40-DenseNet10 combinations, which show a significant improvement in the recognition accuracy compared to the baseline. Only at VGG16-VGG8 is the distillation effect of NST ranked second, but the accuracy after distillation differs from the first method by 0.12%. Figure 13 shows the CAM images of ResNet164-ResNet8 and DenseNet40-DenseNet10 based on the NST algorithm, clearly highlighting the regions of interest for the models.

[image: Heatmap visualizations on leaves displaying disease-affected areas. The left series is analyzed with ResNet164-ResNet8, showing varied coverage of highlighted spots. The right series employs DenseNet40-DenseNet10, illustrating similar patterns in different leaves.]
Figure 13 | ResNet164-ResNet8 and DenseNet40-DenseNet10 CAM visualization (NST).

As can be seen from Tables 2, 3, except in a few cases, there is a slight decrease in the average accuracy when using the homogeneous small network as the student model than when distilling with the heterogeneous lightweight network as the student model. Overall, among the nine knowledge distillation algorithms that employ spot-adaptation, the NST distillation algorithm do better than others. The results in the Table 4 show that under the NST algorithm, when the heterogeneous lightweight network is used as the student network, the distilled ShuffleNetV2 has a smaller model size and higher accuracy than the MobileNetV2, but the FLOPs are slightly larger. When DenseNet40 is used as a teacher model to transfer the knowledge to ShuffleNetV2, the highest accuracy is achieved, and compressing 84.48% of the FLOPs. For the homogeneous student network, the compression effect is very remarkable. Especially the ResNet8 and DenseNet10 networks, the size of the former is compressed by 95.32% and FLOP by 95%, and the size of the latter by 96.26% and FLOPs by 94.83%. For VGG8, the accuracy is best among three homogeneous networks. However, it only compresses 73.44% of size and 69.03% of FLOPs. Therefore, VGG8 has no advantage over the other homogeneous student models.

In a comprehensive comparison, when DenseNet40 is used as a teacher model to transfer the knowledge to ShuffleNetV2, the NST algorithm with added adaptivity shows strong performance over the test dataset. Meeting the requirements of high accuracy, high inference speed, and low storage space. We consider this model to be the most appropriate when being deployed on the edge device of a plant protection robot.





4 Conclusion

Deep convolutional neural network is a mainstream method used for plant disease recognition. However, difficulties arise when deployed in the edge devices due to their significant model parameters and amount of calculation. In order to solve the problem of plant protection robots identifying cotton diseases in the field, we utilize the method of knowledge distillation to compress the network. We first select VGG16, ResNet164, and DenseNet40 to train the cotton disease recognition model and use them as teacher models. The teacher model is then distilled to the student model using nine typical distillation algorithms guided by a spot-adaptive strategy. We investigate two kinds of the student model, namely heterogeneous and homogeneous lightweight network. The former include ShuffleNetV2 and MobileNetV2, while the latter include VGG8, ResNet8 and DenseNet10. Experimental results show that, in most cases, the distillation algorithms with spot-adaptive strategy improve the accuracy of the student model compared with the baseline. Among them, NST and RKD have the best robustness for various teacher-student combinations. When distilling knowledge via NST, DenseNet40-ShuffleNetV2 achieves the best comprehensive performance. The accuracy of ShuffleNetV2 after distillation is increased from 82.47% to 90.59% and the FLOPs decreased by 84.48%. We use DenseNet40 as the teacher network, ShuffleNetV2, which is distilled by NST algorithm, as the disease recognition model, and deploy the model on the edge device of the developed plant protection robot.

In this paper we focus on knowledge distillation for CNN networks. In recent years transformer networks have been shown to have higher image classification accuracy while the complexity of the structure is much higher than that of CNNs. In the future we will investigate the compression of transformer networks to improve the accuracy of disease recognition.
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Introduction

Studying plant-microbe interactions is one of the key elements in understanding the path to sustainable agricultural practices. These interactions play a crucial role in ensuring survival of healthy plants, soil and microbial communities. Many platforms have been developed over the years to isolate these highly complex interactions however, these are designed for small model plants. This creates a need for complementary devices for larger plants, such as sorghum.





Methods

This work introduces a novel platform, EcoFAB 3.0, which is designed to enable studying bioenergy plants such as sorghum for up to 4 weeks in a controlled sterile environment. Several other advantages of this platform such as dark root chambers and user-friendly assembly are also discussed in this work.





Results and discussion

EcoFAB 3.0 was found to replicate previous greenhouse and field observations when comparing an engineered sorghum line overproducing 4-hydroxybenzoic acid (4-HBA) and wildtype (variety BTx430). Consistent with greenhouse and field observations, it was found that the engineered line of sorghum grown in EcoFAB 3.0 had a higher 4-HBA content and a lower dry biomass.
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Introduction

The network of different biochemical processes operating in the rhizosphere is complex. Key factors include soil microbial communities and their metabolic activities, plant-microbe interactions (Berendsen et al., 2012; Qu et al., 2020), soil structure and contents (Bünemann et al., 2018; Karlen et al., 2019), among others. Characterizing and ideally decoupling these processes is a crucial step towards understanding the complex inner-workings of the rhizosphere. Various platforms such as EcoFABs (Gao et al., 2018; Zengler et al., 2019), RootArray (Busch et al., 2012), RootChip (Grossmann et al., 2011, 2012), Tracking Root Interaction System (TRIS) (Massalha et al., 2017), FlowPot (Kremer et al., 2018, 2021) and many others (Sanati Nezhad, 2014; Stanley et al., 2016; Aleklett et al., 2018; Aufrecht et al., 2018; Millet et al., 2019; Ugolini et al., 2024) have been developed to isolate and study these systems. Joelle et al. show reproducible plant traits, as an effect of phosphate starvation, using the EcoFAB 2.0 platform (Sasse et al., 2019). Recently, Novak et al. use EcoFAB 2.0 to show nitrogen starvation modulates root exudation (Novak et al., 2024). A two-channel adaptation of the RootChip, called dual-flow-RootChip, is used by Stanley et al. to show how roots adapt to heterogeneous environments. Root hair were seen to grow asymmetrically in response to asymmetric phosphate perfusion (Stanley et al., 2018). Other studies (Nichols et al., 2010; Hong et al., 2012; Jeong et al., 2015; Mafla-Endara et al., 2021) demonstrate the utility of microfluidic platforms in culturing microbes and studying their interactions in controlled environments. However, these platforms are designed for and compatible with small model plants such as Brachypodium distachyon and Arabidopsis thaliana. Given that these model plants are typically not used as part of field studies, there is limited ability to compare results. This is because model plants are easy to manipulate, have a short life cycle, and have a relatively small genome size which makes them ideal for quick laboratory testing. A. thaliana has been one of the most popular model organisms for plant research over several decades. However, it’s also desirable to have systems for studying sorghum, maize, wheat, and others. There is a need for a complementary platform that provides a controlled environment to grow and study these economically important crops which are significantly larger in size than the model plants.

In this work, we introduce EcoFAB 3.0, a portable and sterile platform designed for studying sorghum for up to four weeks. EcoFAB 3.0 enables rhizosphere imaging, root exudate/leachate collection and has several multi-purpose ports to monitor gaseous exchange, moisture, and temperature among other parameters under sterile conditions. To test the ability of the EcoFAB 3.0 to produce results comparable to field and greenhouse studies, we followed previously published work which characterized engineered sorghum lines accumulating 4-hydroxybenzoic acid (4-HBA) (Lin et al., 2022). 4-HBA is primarily known for manufacturing paraben, which is a widely used preservative in pharmaceutical and cosmetic industries. 4-HBA is a precursor of many valuable products such as deep eutectic solvents (Wang et al., 2018, 2021), Vectran™ (Magalhães et al., 2020). It also has various biological properties such as anti-microbial, anti-inflammatory and others (Chaudhary et al., 2013). In this study, we grow one of the previously characterized engineered 4-HBA sorghum lines in the EcoFAB 3.0 as well as in pots, as a control, and compare 4-HBA production and phenotypic data. The following sections discuss EcoFAB 3.0 fabrication processes, plant growth and harvesting procedure, and comparison with previously published observations.





Materials and methods

EcoFAB 3.0 (Figure 1 below) is fabricated using a combination of custom-made and commercially available parts. The following sub-sections provide details about the different processes employed.

[image: Diagram of an EcoFAB holder measuring six inches wide and two feet tall. Key parts labeled include shoot chamber, multi-purpose ports, seed holder, gasket, water inlet, root chamber, root viewing window, and exudate collection.]
Figure 1 | Full EcoFAB 3.0 assembly in section-view.




Machining

The main body of the EcoFAB 3.0 comprises of two chambers, one for the shoot (Figure 2A) and other for the roots (Figure 2B). Both of these chambers are made by machining a 6-inch (OD) clear polycarbonate (PC) plastic pipe (MSC Industrial Supply Co.). The shoot chamber is a 17 inch tall piece of the polycarbonate (PC) pipe with a circular disk glued (high temperature epoxy such as Loctite E-120HP) on top as a lid. The lid is machined out of a PC sheet (McMaster Carr) of a grade comparable to the 6 inch tube. The shoot chamber has holes drilled in the top lid (x4) and the side (x12) walls. These multi-purpose holes are used for ventilation, collecting gases (CO2, CH4 etc.), and as ports for introducing various sensors (temperature, moisture etc.) in the system.

[image: (A) A gray cylindrical structure with sixteen multi-purpose ports arranged vertically along its side. (B) A white, curved object featuring a barb fitting hole near the top and an exudate collection hole at the bottom.]
Figure 2 | Models of (A) shoot and (B) root compartments of EcoFAB 3.0.

The root chamber is a 7 inch tall piece of the PC tube with a wedge cut out of one side. This wedge interfaces with a window which is used to view roots grow inside the EcoFAB similar to a rhizotron window (Huck and Taylor, 1982; Taylor et al., 1990). The root chamber has a hole drilled near the bottom for collecting root exudates/leachates. A rectangular slot is also machined out of the top of the root chamber directly above the exudate collection hole. This slot interfaces with two barb fittings which are used to add water/growth medium, vent and collect gases from the root chamber. The whole assembly is seated in an opaque holder (blue part in Figure 1) which blocks light from the entire root chamber when in place. The holder is made out of an opaque PVC pipe and has a square slot cut out of the bottom which aligns with the exudate collection tap.





Injection molding

EcoFAB 3.0 has two injection molded parts: the first is a coupling gasket and the second is the root viewing window. The gasket (Figure 3A) holds the two chambers together while isolating them. It has a cylindrical body with a circular disk in the middle. This disk separates the two chambers and has a hole in its center. A plant seed is placed in this hole so that the roots and the shoot grow in their respective chambers. The gasket further consists of two holes on the cylindrical side-wall which interface with the rectangular slot cut into the root chamber. These holes are used to fit the barbs as discussed earlier. It is made using autoclave-compatible black liquid silicone rubber Elastosil 3003/50 A/B with non-cosmetic surface finish on the molds.

[image: Diagram with two parts. Part A shows a brown circular container with a center hole for a plant seed or shoot and barb fitting holes. Part B displays a lid with labeled outer and inner sides, plus a peripheral step.]
Figure 3 | (A) Injection-molded silicone gasket which holds the shoot and the root compartments together. (B) Two sides of the injection-molded viewing window. The outer side, which forms the root imaging plane, has a peripheral ring-shaped step to prevent damage on the window. The inner side, which interfaces with the root chamber, has a lip which is filled with a silicone sealant.

The second injection molded part is the root viewing window (Figure 3B shows both sides of the window). It is an oval shaped disk, also made of polycarbonate, glued to the root chamber to enable root imaging. It is placed at an angle with respect to the sidewalls to encourage the roots grow along the imaging plane. The window is bonded using solvents such as acetone or chloroform to prevent interference from epoxies or commercial adhesives in metabolomics studies. The roots can be imaged by placing the EcoFAB on a photo scanner (or a microscope) such that the viewing window coincides with the imaging plane. It has a 0.5 mm deep ring-shaped step along the periphery, on the outer side, to prevent damage on the imaging surface when the EcoFAB is placed on the photo scanner. It also has a triangular lip on the inner side that creates a cavity when interfaced with the root chamber, which is filled with a silicone sealant (Momentive/GE RTV102) to create a leak-proof joint. To ensure autoclave compatibility, it is made of clear polycarbonate (Lexan HP1-1H112).





Commercial parts

EcoFAB 3.0 uses several commercially available parts. All the multi-purpose holes are made leak-proof using high-temperature silicone grommets (McMaster Carr 1061T25). The root exudate collection tap is made using a high-temperature silicone tubing (McMaster Carr 5054K323) operated with a pinch valve (McMaster Carr 5031K12). The water/growth medium ports in the root chamber (as explained above) are made using 90° elbow barb tube fittings (McMaster Carr 5117K76). The holes, if not in use, are blocked using a tapered plug (McMaster Carr 40025K51) or sterile permeable tape (3M Surgical Micropore Tape) to create a breathable vent in the shoot chamber. The coupling gasket is attached to the two chambers using two 6-inch hose clamps (Powertec 70250).





Growing and harvesting sorghum using EcoFAB 3.0

Engineered sorghum plants overproducing 4-HBA were grown in EcoFAB 3.0 together with the wild-type segregant control (Lin et al., 2022). T3 seeds from Eng-2 line were germinated on a petri dish for four days in a growth chamber and transferred into EcoFAB 3.0 on day five. Growing conditions were 270 µmol/m2/s, 27°C, 60% humidity and 16 h of light per day. Plants were kept in the same chamber for another 21 days before harvest. To evaluate the effect of the EcoFAB enclosure on the plant’s immediate environmental conditions, temperature and relative humidity were measured using a SensorPush HT.w Smart Sensor and light intensity was measured using an Onset HOBO MX2202 sensor. The conditions inside the shoot chamber were measured in presence of a 7-day old Eng-2 line sorghum plant over 13 days, followed by measurements outside over 8 days. To compare growth conditions in EcoFAB 3.0 and regular planting pots, one set of five-day-old seedlings from both engineered line and WT were transferred into 2-quart planting pots and grown together next to the EcoFAB 3.0 units inside the same growth chamber. Plants grown in both EcoFAB 3.0 and pots were watered with the same nutrient solution (1/4 tsp. of all-purpose Miracle Gro plant food per liter of water). At each watering, 20 ml of nutrient solution was injected into EcoFAB 3.0 using a syringe connected to the watering port. The plants in EcoFAB 3.0 were watered every seven days.

Plants were harvested when they were 26 days old (Figure 4). Root and shoot chambers were disconnected, and plants were gently removed with the soil still adhering to the roots. The shoot was cut at the crown and weighed for fresh biomass. Shoot tissue was then frozen in liquid nitrogen and lyophilized prior to dry biomass measurements. Shoot length, number of leaves, and tillers were also counted for phenotypic comparison.

[image: Three tall green plants encased in transparent cylindrical containers with red bases. The containers have small ventilation holes and are secured with black bands featuring blue fasteners. The plants have long, narrow leaves.]
Figure 4 | 26-day-old sorghum plants in EcoFAB 3.0 before harvest.





4-hydroxybenzoic acid analysis

Metabolites in shoot tissues were sequentially extracted from 30 mg dry biomass using 80% methanol (3 x 15 min), followed by acid hydrolysis of the extracts and ethyl acetate partitioning as described by Eudes et al. (2012). Hydrolyzed extracts were reconstituted in 50% methanol for high-performance liquid chromatography (HPLC) analysis as previously described by Rodriguez et al. (2019). In brief, 4-HBA was separated on an Eclipse Plus Phenyl-hexyl column (250 mm length, 4.6 mm diameter, 5 µm particle size; Agilent Technologies, USA) that was maintained at 50°C. 4-HBA was detected by Diode array detectors at 254 nm wavelengths.






Results and discussion




EcoFAB 3.0 design, fabrication, and operation

EcoFAB 3.0 design is primarily influenced by the need for a user-friendly, affordable, portable, easy to fabricate, and reusable platform to grow bioenergy crops, such as sorghum, in a sterile environment. The device requires only two hand-operated clamps to tightly seal the shoot and the root chambers with the gasket. Additionally, using autoclave compatible silicone grommets, plugs, and barb fittings to seal/use the multi-purpose ports makes the operation of EcoFAB 3.0 highly user-friendly. It is sized to house economically relevant crops however, it is small enough to be portable and compatible with laboratory growth chambers. The shoot chamber is sized at 17 inches tall based on the average height of 4-week old wheatland sorghum. The root chamber is sized at 7 inches deep to create an approximately 2-quart chamber comparable with pots and to keep the total device height at 2 ft. enabling two shelves of EcoFAB 3.0 to be grown in a standard growth chamber. As these chambers are machined out of stock plastic pipes, the device can be modified to house plants of different sizes by cutting a longer or a smaller section. However, this will affect the number of devices that can be accommodated in a standard growth chamber. The polycarbonate grade used is transparent and stable at 121°C (250°F) which enables imaging, ensures compatibility with autoclaves, and makes the platform reusable. Although the study in this work did not require sterile growth conditions, the EcoFABs were still autoclaved at 121°C, 15 psig for 20 minutes. The sterility of the EcoFABs was confirmed and the relevant details can be found in the Supplementary Section S1. The device is designed to maintain many capabilities from currently used platforms such as root imaging and exudate collection. The root viewing/imaging window was injection molded with an SPI A1-A2 finish to ensure microscope compatible optical clarity. The transparent root chamber of the EcoFAB enables monitoring the soil moisture all the way to the bottom of the container. The plants growing in the pots were watered every three days with a larger amount as compared to those in the EcoFABs, which were watered weekly. This difference is attributed to higher humidity levels within the EcoFAB 3.0 device as discussed below.

EcoFAB 3.0 presents several advancements compared to EcoFAB 1.0, 2.0 and other devices. Most importantly, these earlier devices are only suitable for growth of very small plants (<5cm tall) whereas the new device supports plants up to 43 cm tall. Earlier devices also confine root growth to a horizontal plane whereas the new device allows roots to explore a much larger soil volume (2 liters) without this constraint. EcoFAB 3.0 employs highly user-friendly fabrication and assembly processes (as described in the Materials and Methods section) in contrast to the other platforms which require specialized fabrication techniques such as polydimethylsiloxane (PDMS)-based casting or laborious assembly. This further enhances the flexibility of the size of the whole device as a user can customize each compartment’s size by machining a smaller (or larger) piece of the polycarbonate tube to accommodate different plants.

Average temperature and light intensity (27.8°C and 6175 lux) measured inside the EcoFAB follow the conditions measured outside (27.3°C and 6529 lux) closely. Average relative humidity measured outside the EcoFAB also remains steady at 64%. However, the average relative humidity inside the shoot chamber increases to 77% over 13 days due to the growing plant. Thus, we recommend increasing the size and number of the ventilation holes to better regulate humidity in future studies. Supplementary Section S2 shows detailed measurements (Supplementary Figure S2) of temperature, light intensity and relative humidity. Overall, we found that EcoFAB 3.0 supports robust growth of sorghum and requires less plant maintenance. Roots were imaged successfully using a photo scanner. Supplementary Section S3 shows image time series of sorghum growth in an EcoFAB 3.0 (Supplementary Figure S3) and a 2-quart pot (Supplementary Figure S4). It also highlights the root imaging capabilities of EcoFAB 3.0 through a time-lapse in Supplementary Figure S5 and Supplementary Video S1.





Phenotypic parameters and 4-HBA analysis

Engineered sorghum (4-HBA line) harvested from EcoFAB 3.0 showed similar dry biomass compared to those grown in pots. However, the wildtype showed 12% less dry biomass in EcoFABs as compared with that collected from the pots. In both EcoFAB 3.0 and pots, the 4-HBA line showed reduced biomass than WT (16% and 14% respectively). This observation is consistent with the biomass data collected from the field growth conditions (4-HBA line showed 11% biomass yield reduction) (Lin et al., 2022). We attribute the lack of statistical significance in reduction of plant biomass in the EcoFABs to the smaller sample size (3 replicates for WT) in this work compared with previous studies which had four replicated 18 m2 plots consisting of four rows and ~355 plants each (~1420 plants total). It should be noted that although the plants harvested from the field (4-month-old) were much older than those harvested from the EcoFABs, the proportion of biomass reduction was still found to be consistent. Both the WT and 4-HBA line plants grown in the greenhouse were taller than those grown in the growth chamber. This difference is accredited to the larger intensity of the natural light source and poorer control on the temperature and relative humidity in a greenhouse. Unlike the wheatland sorghum we found that the BTx430 plants reached the top of the shoot chamber in 26 days. Crowded leaves with reduced effective area available for photosynthesis can result in shorter shoots and lower 4-HBA synthesis. It is recommended that future studies with this plant line either restrict the experiment duration to approximately 3 weeks or use 3-4 inches taller shoot chambers. However, the latter will reduce the number of devices that can fit within a standard growth chamber, as discussed earlier. Number of leaves and tillers, however, were found to be consistent in all the growth conditions.

4-HBA contents measured in the plants grown in EcoFAB 3.0 were not significantly different from those measured in the same plant genotypes grown in the pots. 4-HBA concentration in the engineered line was significantly higher than that in WT, which aligns with the data collected from greenhouse-grown plants (Lin et al., 2022). Moreover, 4-HBA content in the engineered line (166 µmol/g dry wt.) is comparable to that measured in greenhouse-grown engineered plants at the same age (~1-month-old) (Supplementary Figure S6). Table 1 below summarizes the comparison of observations between EcoFABs, pots, and greenhouse. Figure 5 shows the biomass and 4-HBA contents measured in plants grown in EcoFAB 3.0 and pots in the growth chamber.

Table 1 | Comparison of 4-HBA content and phenotypic parameters between engineered sorghum (Eng) and wild-type control (WT) grown in EcoFAB 3.0 (WT: n=3 and Eng: n=4), pots (n=4) and greenhouse (WT: n=5 and Eng: n=4).


[image: Comparison table of plant growth metrics and 4-HBA concentration across three environments: EcoFAB 3.0, Pots, and Greenhouse. WT and engineered (Eng) variants show measurements for 4-HBA levels, shoot length, number of leaves, and number of tillers. Notable differences include higher 4-HBA levels in Eng plants across all environments. Detailed values are provided for each measurement, with citations for greenhouse Eng data.]
[image: Bar graphs labeled A and B. Graph A shows biomass yield in grams per plant. WT and Eng under EcoFAB 3.0 show a -16% change with p=0.12. WT and Eng under Pots show a -14% change with p<0.05. Graph B shows 4-HBA in micromoles per gram dry weight. Both WT and Eng under EcoFAB 3.0 and Pots are around 150 with minimal variation.]
Figure 5 | Biomass yield and 4-HBA content in engineered (Eng) and wild-type (WT) sorghum (A) Engineered sorghum shows a 16% and 14% reduction in biomass in comparison to the wildtype grown in EcoFAB 3.0 and pots, respectively. (B) Engineered sorghum shows two orders of magnitude increase in 4-HBA content as compared to the wildtype.

While these results are encouraging, many more studies would need to be done to validate EcoFAB 3.0’s translatability to greenhouse and to fields. It will be important to perform additional studies comparing the performance of this device in supporting analysis of soil microbial communities. This design also has some limitations that should be pointed out. Firstly, due to its big size, it is challenging to assemble inside a bio-safety hood which is necessary for sterile conditions. Additionally, although the root viewing window is compatible with microscopy, its shape and size does not fit on standard microscope stages. Hence a custom stage or an adapter to a standard stage is needed to fit EcoFAB 3.0 on a microscope. We anticipate that EcoFAB 3.0 should be extensible to a number of other plants, especially those with similar phenology to sorghum (e.g. maize).






Conclusion

This work presents a new device, EcoFAB 3.0, for studying sorghum in a controlled sterile environment for up to 4 weeks. EcoFAB 3.0 supports more naturally growing roots in a dark large 2-liter root chamber. It has several multi-purpose ports that can be used for exudate collection, ventilation, and introducing sensors to monitor gaseous exchange, temperature and other parameters. It features a rhizotron-like window which enables capturing time-lapse images of roots using a photo scanner or an optical microscope. In this work, we demonstrate EcoFAB 3.0 is able to produce observations comparable to those found in field and greenhouse studies. Sorghum plants were successfully grown past the five-leaf stage in EcoFAB 3.0 for 26 days before harvest. An engineered line was compared with the wildtype for its biomass and 4-hydroxybenzoic acid (4-HBA) accumulation. Consistent with the greenhouse observations, the engineered line grown in the EcoFABs maintained a drastic increase in 4-HBA accumulation (166.07 ± 6.85 µmol/g dry wt.). Additionally, in agreement with field results, the engineered line showed a 16% reduction in the biomass. Although it should be noted that the field-grown plants used as reference were older than those used in this work.
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The aim of this study was to evaluate the effects of Bacillus velezensis Bv-116 and its bio-organic fertilizer on the control of cucumber Fusarium wilt caused by Fusarium oxysporum f. sp. Cucumerinum (FOC), the promotion of growth of cucumber seedlings, and the soil microbial community. B. velezensis Bv-116 exhibited an inhibition rate of 84.93% against FOC, as well as broad-spectrum inhibitory activities against other soil-borne plant pathogenic fungi. Fermentation products of B. velezensis Bv-116 destroyed the cell structure of FOC and inhibited the growth of FOC mycelium. These products were identified as volatile antimicrobial gases, proteases and cellulases. In the greenhouse pot experiment, both B. velezensis Bv-116 and its bio-organic fertilizer exhibited significant promoting effects on cucumber growth, and a significant reduction in the incidence and disease severity index of cucumber wilt (p < 0.05). Analysis of the microbial community structure of cucumber rhizosphere soil revealed that inoculation of B. velezensis Bv-116 and its bio-organic fertilizer increased the abundance of genera with biocontrol capabilities against plant pathogens. In addition, inoculation of the bio-organic fertilizer reversed the excessive proliferation of Fusarium and Acidobacteria. Our results suggest the potential of inoculating B. velezensis Bv-116 and its bio-organic fertilizer as an environmentally friendly biocontrol strategy against cucumber wilt.




Keywords: cucumber, Fusarium wilt, Bacillus velezensis, bio-organic fertilizer, Biocontrol mechanism




1 Introduction

Cucumber (Cucumis sativus L.) is a common, popular and economically important vegetable crop. Cucumber wilt caused by Fusarium oxysporum f. sp. Cucumerinum (FOC) is one of the most damaging soil-borne fungal diseases, which is widely distributed, greatly restricting the yield and quality of cucumber, and causing great economic losses worldwide (Bartholomew et al., 2022).

Biological control is considered to be an eco-friendly, safe and long-lasting effective method to control the incidence of diseases, and has been hailed as the most promising control pathway at present (Sarrocco, 2023). Recent studies have shown that biological control of wilt using biocontrol strain antagonists and their bio-organic fertilizer is a promising strategy. For instance, The volatile compounds produced by Streptomyces albulus NJZJSA2 isolated from soil samples exhibited a significant inhibitory effect on the germination of spores of Fusarium oxysporum (Wu et al., 2015). B. velezensis AP-3 protects tomato against Fusarium wilt and promotes growth of tomato plants under salt stress (Medeiros and Bettiol, 2021). Addition of Trichoderma harzianum SQR-T037 bio-organic fertilizer to both nursery and transplanted soils diversified the microbial community in the continuous soil, resulting in effective control of cucumber wilt (Chen et al., 2012).

Meanwhile, studies have revealed that the addition of biocontrol bacteria in organic fertilizer can regulate the soil microecological environment, enhance soil fertility, while providing abundant nutrients for plants, promote plant growth and development, thereby improving plant disease resistance (Tahir et al., 2017). With the increase of kitchen waste year by year, it brings great harm to the environment. Adding biocontrol bacteria to kitchen waste and fermenting to prepare bio-organic fertilizer, thus greening kitchen waste and reducing environmental pollution, will be a valuable research direction in the future.

In view of the harmful effects of FOC-induced cucumber Fusarium wilt on the yield and quality of cucumber, the aim of this study was to screen for an antagonistic bacterial strain with significant inhibitory effect against FOC and to explore an environmentally friendly biocontrol strategy against cucumber wilt. In this study, Bacillus velezensis BV-116 was screened and identified as a biocontrol strain with antagonistic activity against plant pathogenic fungi such as FOC. The potential antimicrobial mechanism of BV-116 was investigated. Then, it was added to kitchen waste fermentation to make bio-organic fertilizer with potential control of cucumber Fusarium wilt. Through greenhouse pot experiments, the study explored the growth-promoting and disease prevention effects of BV-116 and its bio-organic fertilizer, as well as their impact on the structure of rhizospheric soil microbial communities.




2 Materials and methods



2.1 Microbial strains and culture conditions

The bacterial strains used in the study for screening and fungal strains (Trichoderma longibrachiatum, Aspergillus niger, Aspergillus oryzae, Aspergillus flavus and Fusarium graminearum) were obtained from Henan Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University. Fusarium oxysporum f. sp. Cucumerinum strain Race-4 was obtained from College of Plant Protection, Henan Agricultural University. All of the above strains grown on potato dextrose agar (PDA) medium were stored in a 4°C refrigerator.




2.2 Antifungal activity assay

The antagonistic bacteria were screened by the plate confrontation method. Cultured colony solution was sucked up and evenly spread on the surface of Nutrient Agar (NA) plates, which were then inverted and incubated at 37°C for 24h. With a punch, respectively take 6.5 mm in diameter of pathogen mycelial plug (from colonies edge), the candidate strains medium plug and sterile NA medium plug. The pathogen mycelial plug was placed in the center of the PDA plate, and two candidate strain medium plugs and two sterile NA medium plugs were placed opposite each other at the four corners 15 mm away from the plug. The sterile NA medium plug was used as the control. This process was repeated three times. The plates were incubated at 28°C for 7 days, and the diameter of the pathogenic fungus was measured to calculate the inhibition rate (Zhang et al., 2019).




2.3 Identification of antagonistic strain



2.3.1 Morphological observation

The antagonist strains were inoculated onto NA plates by Streak plate method and incubated at 37°C for 24h. Colony characteristics were observed and Gram staining was performed, and the individual characteristics and staining results were observed by laser confocal scanning microscope (ZEISS LSM780, Germany) and optical microscope (Olympus CX31, Japan), respectively.




2.3.2 The 16S rDNA analysis

The 16S rDNA gene sequencing of the selected strain was performed as described by Li et al. (2015).





2.4 Identification of antagonistic component of B. velezensis Bv-116



2.4.1 Effect of B. velezensis Bv-116 fermentation supernatant on FOC

The FOC was inoculated into potato dextrose broth (PDB) at 28°C and 180 rpm for 4 days, and then in PBS solution to reach a pathogen spore concentration of 1 × 107 cfu/mL. B. velezensis Bv-116 was inoculated in NB medium and cultured at 37°C and 180 rpm for 48 h. The supernatant was then collected and filtered through a 0.22 μm microporous sterile filtration membrane to obtain the sterile fermentation supernatant.

The effect of B. velezensis Bv-116 fermentation supernatant on spore germination rate and inhibition rate were determined using the concave slide method (Yang et al., 2018). The effect of supernatant on the morphology of FOC mycelium was determined following the procedure described by Chen et al. (2014). The effect of supernatant on FOC cell membrane permeability was determined following the procedure described by Zhou et al. (2018).




2.4.2 Bacillus velezensis Bv-116 antagonistic gas detection

Nutrient Agar culture medium was poured into the lid of a sterile culture dish, cooled and then 100 µL of B. velezensis Bv-116 fermentation supernatant was added and spread evenly. PDA culture medium was added to the culture dish, and a 6.5 mm diameter mycelium plug containing the pathogenic fungus (FOC) was placed in the center. The dish was covered with a lid and sealed with parafilm before being inverted and placed in the incubator. The side with the inoculated pathogenic fungi facing downwards and the side coated with Bv-116 facing upwards. The dish was incubated at a constant temperature of 28°C, and the growth of the pathogenic fungus was observed. NA culture medium without fermentation supernatant in the lid of the culture dish was used as a control.




2.4.3 Bacillus velezensis Bv-116 extracellular enzyme activity assay

The B. velezensis Bv-116 was inoculated separately on skim milk agar medium (Zhai et al., 2021), colloidal chitin medium (Zhai et al., 2021), and Poria cocos powder medium (Park et al., 2012). The cultures were then incubated at a constant temperature of 37°C for 24 h, and the formation of clear zones was observed. The objective was to determine whether B. velezensis Bv-116 exhibited protease, chitinase, and β-1,3-glucanase activities, respectively.

B. velezensis Bv-116 was inoculated onto sodium carboxymethylcellulose solid medium and incubated at a constant temperature of 37°C for 24 h. Cellulase activity of B. velezensis Bv-116 was determined using Congo red staining (Meddeb-Mouelhi et al., 2014).





2.5 Antimicrobial stability test of B. velezensis Bv-116 fermentation supernatant

The supernatant of B. velezensis Bv-116 fermentation was taken in 15 portions, with each portion containing 5mL. Among them, 5 portions were subjected to continuous heating at 40, 60, 80, 100, and 120°C for 15 minutes. Another 5 portions were placed at a distance of 25 cm from a UV lamp and irradiated for 1, 3, 5, 7, and 9 h, respectively. The remaining 5 portions were adjusted to pH 3.0, 5.0, 7.0, 9.0, and 11.0 using 1 mol/L HCl and NaOH, and left at room temperature for 12h before readjusting the pH back to its initial value of 7.2. The inhibitory activity of the aforementioned fermentation supernatant was evaluated using the double-layer agar plate method (Feng et al., 2021).




2.6 Pot experiment



2.6.1 Preparation of FOC spore suspension and B. velezensis Bv-116 cell suspension

The B. velezensis Bv-116 strain was inoculated into Luria-Bertani (LB) medium and cultured at 37°C with shaking at 180 rpm for 24 h. Subsequently, the cells were harvested by centrifugation, resuspended in PBS solution, and adjusted to a concentration of 1 × 108 cfu/mL. Resuspend the spore suspension of FOC in PBS solution and adjust its concentration to 1 × 106 cfu/mL.




2.6.2 Preparation of nutrient soil and bio-organic fertilizer

Nutrient soil was prepared by mixing peat soil (Pinnacle Top Group, Denmark) and vermiculite (Baitouji, Shijiazhuang Red Grass Trading Co., Ltd.) at a mass ratio of 2:1. The kitchen waste used in the experiment was collected from Dongyuan Restaurant, Jiahui Fresh Food Supermarket, and Wanbang International Seafood Wholesale Market, in Zhengzhou, Henan Province. The main components were mixtures of decayed fruits, discarded vegetable leaves, and slaughter wastes of chickens, ducks, and fishes (blood, intestines, scales, gills, and so on). Then, B. velezensis Bv-116 bacterial suspension was inoculated at a concentration of 1×108 cfu/g dry weight, stirred and mixed, and then fermented for 90 days at room temperature (approximately 24°C) to produce bio-organic fertilizer.




2.6.3 Cucumber seedlings and culture

Cucumber seeds (cultivar Fuyang No. 2) were soaked in 0.1% HgCl2 solution for 1 min, washed and air-dried, and then incubating at 4°C for 10 h before constant dark incubation at 28°C. When the radicle grew to about 0.5 -1 cm, the seeds were sown in seedling trays containing sterilized nutrient soil (5×10 holes, Hunan Hezhiyuan Seed Industry Co., Ltd.), and placed in the greenhouse at 28°C, with a light intensity of 10,000 Lux, relative humidity of 60%, and a light cycle of L:D=16:8 for cultivation.




2.6.4 Determination of the growth promoting effect of B. velezensis Bv-116 and its bio-organic fertilizer

When the cucumber seedlings in the seedling trays reached the three-leaf stage, they were transplanted into 12cm diameter pots, with one cucumber seedling per pot. 3 groups were set up for the experiment, and the design was as follows: CK, pots were filled with 3000 g of nutrient soil; T1, pots were filled with 3000 g of nutrient soil containing 3×1010cfu B. velezensis Bv-116.; T2, pots were filled with 2700 g of nutrient soil and 300 g of bio-organic fertilizers (containing 3 × 1010 cfu of B. velezensis Bv-116 at the start of fermentation) and mixed homogeneously.

Adjustment with sterile water made the moisture content the same in each treatment group, and each treatment group was divided into three groups of 15 seedlings each. All seedlings were cultivated under greenhouse conditions at 28°C, light intensity of 10,000 Lux, relative humidity of 60%, and photoperiod L:D=16:8 for 20 d. Plant height, stem thickness, leaf fresh weight, leaf dry weight, root fresh weight, root dry weight, and chlorophyll content were determined.




2.6.5 Determination of disease prevention effect of B. velezensis Bv-116 and its bio-organic fertilizer

When the cucumber seedlings in the seedling trays reached the three-leaf stage, they were transplanted into 12cm diameter pots, with one cucumber seedling per pot. 4 groups were set up for the experiment, and the design was as follows:CK1, the pots were filled with 3000 g of nutrient soil, and the roots of cucumber seedlings were soaked in sterile water for 20min and then transplanted into the pots; CK2, pots were filled with 3000 g of nutrient soil, and the roots of cucumber seedlings were soaked in FOC spore suspension for 20min and then transplanted into pots; T1, pots were filled 3000 g of nutrient soil containing 3×1010cfu B. velezensis Bv-116, and the roots of cucumber seedlings were transplanted into pots after soaking in FOC spore suspension for 20min; T2, 2700 g of nutrient soil and 300 g of bio-organic fertilizers (containing 3 x 1010 cfu of B. velezensis Bv-116 at the start of fermentation) were added to the pots and mixed homogeneously, and the roots of cucumber seedlings were soaked in the FOC spore suspension for 20min and then transplanted into the pots.

Cucumber seedlings were continued to be cultured under the above conditions for 20 d and investigated and recorded separately. The disease incidence (DI), disease severity index (DSI) and control efficacy (CE) were calculated according to the method of Huang et al. (2020).




2.6.6 Analysis of cucumber rhizosphere soil microbial communities

After the cucumber seedlings continued to be cultured for 20 d under the above conditions, the rhizosphere soil of cucumber plants from each of the four treatment groups was taken and the soil samples were mixed homogeneously between the replicate treatment groups, 10 g of the soil samples were mixed with 90mL of sterile phosphate buffer and incubated for 1h at 180 rpm, then filtered through four layers of sterile gauze, and the filtrate was centrifuged at 4°C for 15min at 8000 rpm to collect the precipitate samples, and DNA of the fungi and bacteria in the samples was extracted separately by the use of a kit (Omega Fungal and bacterial DNA were extracted from the samples using kits (Omega Biotek, Norcross, GA, USA), DNA concentration was determined using a NanoDrop ND-2000 spectrophotometer, and DNA quality was assessed using 1% agarose gel electrophoresis. PCR amplification of the ITS1 region of the fungus was performed using forward primer F (Illumina adapter sequence 1 + CTTGGTCATTTAGAGGAAGTAA) and reverse primer R (Illumina adapter sequence 2 + GCTGCGTTCTTCATCGATGC). The bacterial 16S rDNA V3- V4 region was PCR amplified using the forward primer Primer F (Illumina adapter sequence 1+ CCTACGGGGNGGCWGCAG) and the reverse primer Primer R (Illumina adapter sequence 2+ GACTACHVGGGTATCTAATCC). PCR products were extracted using a 2% agarose gel, and each sample was purified by adding an equal volume of AgencourtAMpure XP Nucleic Acid Purification Magnetic Beads to obtain the raw library of the samples. The PCR products were purified, quantified, and then sequenced by the Miseq platform (Shanghai Tianhao Biotech Co. Ltd., China). All raw reads were checked using FLASH2 (version 1.2.11), and low-quality sequences with quality scores below 20 were filtered out according to the QIIME quality control process (version 1.9.1). Samples were analyzed for Alpha diversity, Beta diversity and microbial community composition.





2.7 Statistics and analyses

The data of this study were collated and analyzed using Microsoft Excel 2010 with Origin 2018 software, data such as spore germination inhibition and diameter of the Inhibition circle were analyzed by general linear model using IBM SPSS 21.0, and differences between treatments were evaluated using the Duncan test, and the height of cucumber seedlings was measured using Image-J software. Alpha diversity was calculated using Mothur software (version 1.9.1), and Beta diversity was analyzed using the R package (version 2.15.3). Tukey’s multiple comparisons test was applied to determine statistical differences between means, which were considered significant when p < 0.05.





3 Results



3.1 screening and identification of antagonistic bacteria

Ten strains exhibiting significant antagonistic activity were screened from 565 bacterial strains maintained in the laboratory, using FOC as an indicator fungus (Supplementary Table S1). Among them, strain Bv-116 showed the highest inhibitory effect on the pathogen (Figure 1A) with 84.93% inhibition. The single colony of this strain milky white, opaque, with a dry, wrinkled raised surface and irregular edges (Figures 1B, C), Gram staining yielded positive results (Figure 1D), and laser confocal scanning microscopy revealed the strain to be rod-shaped (Figure 1E). Morphological observations, combined with 16S rDNA gene BLAST results and phylogenetic tree analysis (Figure 1F), conclusively identified the strain as Bacillus velezensis. B. velezensis Bv-116 exhibited inhibition rates exceeding 85% against all five tested fungi, including Fusarium graminearum (Supplementary Figure S1, Supplementary Table S2).

[image: Image collage with six sections labeled A to F:  A: Petri dish with three types of bacterial colonies and fungal growth. B: Agar plate with numerous bacterial colonies. C: Close-up of a wavy, cream-colored bacterial colony. D: Microscopic view of bacteria stained purple. E: Rod-shaped bacteria under a microscope. F: Phylogenetic tree showing relationships among various Bacillus species, with numerical values indicating genetic distance.  Each section displays unique characteristics related to microbiology research.]
Figure 1 | Screening and Identification of FOC antagonistic strain Bv-116. (A) Antagonistic effect of Bv-116 against FOC, in (A), a is the mycelial plug of FOC, b is the bacteria-carrying medium block of Bv-116, and c is the sterile NA medium block; (B, C) Colony morphology of Bv-116; (D) result of Bv-116 Gram staining; (E) Laser confocal scanning microscopy observations of Bv-116; (F) Phylogenetic trees based on 16S rDNA.




3.2 Preliminary investigation on the inhibitory effect of B. velezensis Bv-116 on FOC and its potential mechanism

The plates treated with fermentation supernatant of B. velezensis Bv-116 showed obvious inhibition circles compared with the control (Figures 2A, B), When the fermentation supernatant concentration was 10%, 20% and 30%, the inhibition rates of FOC spore germination were 37.99%, 64.34% and 86.93% (Supplementary Figure S2), respectively. The results showed that the fermentation supernatant of B. velezensis Bv-116 had a significant inhibitory effect on spore germination of cucumber Fusarium wilt, and the inhibition rate gradually increased with the increase of fermentation supernatant concentration.

[image: Petri dishes labeled A and B show fungal growth. Microscopic images C, D, and E display fungal hyphae, with arrows indicating structural changes. Graph F depicts the relative permeability of cell membranes over time with different concentrations.]
Figure 2 | Effect of B. velezensis Bv-116 fermentation supernatant on spore germination, mycelial morphology and cell membrane permeability of FOC. (A, B) Germination of FOC spores in the presence or absence of B. velezensis Bv-116 fermentation supernatant; The growth status of FOC mycelium without (C) and with (D, E) the presence of Bv-116; (F) Effect of B. velezensis Bv-116 fermentation supernatant on the relative permeability of FOC cell membrane. In the same picture, ** indicate significant differences at the p < 0.01 level.

As indicated by the white arrow in the figure, under the action of B. velezensis Bv-116, the mycelial growth of FOC exhibited deformities, the increase of irregular mycelium, the mycelium entangled with each other, the mycelium adhered to form groups, the partial dissolution of mycelium and the protoplasm in mycelium was unevenly distributed, and the contents were lost (Figures 2C-E). When the inhibited mycelia were re-inoculated into PDB medium, their growth activity was significantly reduced, and their growth rate was notably slower (Supplementary Figure S3).

The results of relative permeability of the cell membrane of FOC with time (Figure 2F) showed that following treatment with B. velezensis Bv-116 fermentation supernatant at different concentrations for varying durations, the relative membrane permeability of the cell membrane of FOC increased over time and with the concentration of fermentation supernatant, significantly exceeding that of the blank control group. After treatment with 30% fermentation supernatant for 480 min, the relative permeability of the FOC cell membrane reached 75.77%.

Volatile gases produced by B. velezensis Bv-116 significantly inhibited the growth of FOC in comparison with the normal growing FOC in the control group (Figure 3A).

[image: Five panels of Petri dishes showing bacterial or fungal cultures. Panel A: Two dishes labeled CK and T; CK is clear, T has numerous colonies. Panel B: Four white colonies on a clear medium. Panel C: Four colonies on a red medium. Panel D: Four irregular colonies on a clear medium. Panel E: Four colonies on a dark medium.]
Figure 3 | Determination of antagonistic gas and extracellular enzyme activity of Bv-116. (A) The petri dish lid on the left and the petri dish are the control group without B. velezensis Bv-116 inoculation (CK), and the treatment group inoculated with B. velezensis Bv-116 is on the right (T); (B) Detection of protease; (C) Detection of cellulase; (D) Detection of chitinase; (E) Detection of β-1,3-glucanase.

The colonies of B. velezensis Bv-116 cultured on skim milk agar and sodium carboxymethylcellulose solid media exhibited obvious clear zones around them, while no clear zones were observed when cultured on chitin agar and Poria cocos powder media (Figures 3B-E). It was shown that B. velezensis Bv-116 possessed protease and cellulase activities without chitinase and β-1,3-glucanase activities.

The results of the antimicrobial stability test of the fermentation supernatant (Figures 4A-C) showed that the diameter of the inhibition circle remained at approximately 10.31 mm and the inhibitory activity was retained by 52.87% after treatment at 100°C for 15min. The pH of the original fermentation broth of B. velezensis Bv-116 was 7.2. The inhibitory activity remained well within the range of pH 3.0 to 9.0, and the diameter of the inhibition circle was still maintained at 10.73 mm with 55.03% inhibitory activity after pH 11.0 treatment for 12 h. After 9 h of UV irradiation, the diameter of the inhibition circle only decreased approximately 5.65 mm and the inhibitory activity was retained by 71.03%.

[image: Bar charts labeled A, B, and C display inhibition circle diameters in millimeters under different conditions. Chart A shows varying diameters across temperatures: CK, 40, 60, 80, 100, and 120 degrees Celsius. Chart B illustrates diameters at pH levels: CK, 3, 5, 7, 9, and 11. Chart C presents diameters under UV exposure: CK, 1, 3, 5, 7, and 9 hours. Each bar features a letter indicating statistical analysis results.]
Figure 4 | Antimicrobial stability of B. velezensis Bv-116 fermentation supernatant under different temperature (A), pH (B) and UV (C) treatment. In the same picture, different letters (a-e) indicate significant differences at the p < 0.05 level.




3.3 Study on the growth-promoting and biocontrol effects of B. velezensis Bv-116 and its bio-organic fertilizer



3.3.1 Effect of B. velezensis Bv-116 and its bio-organic fertilizer on the growth promotion of cucumber seedlings

The growth-promoting effects of B. velezensis Bv-116 and its bio-organic fertilizer on cucumber growth are illustrated in Figures 5A-C. Compared to the control group, significant increases in growth parameters of cucumber plants were observed after treatment with B. velezensis Bv-116 and its bio-organic fertilizer. Specifically, after 20 days of cultivation, cucumber plants treated with B. velezensis Bv-116 and its bio-organic fertilizer showed respective increases in plant height by 8.70% and 59.85%, stem diameter by 38.19% and 75.59%, leaf fresh weight by 148.87% and 482.64%, leaf dry weight by 137.78% and 520.00%, root fresh weight by 267.86% and 446.43%, and root dry weight by 266.67% and 700.00% (Table 1). In addition, there was no significant difference in chlorophyll a, chlorophyll b and chlorophyll a+b contents in Bv-116 group as compared to the control group, whereas the bio-organic fertilizer group showed increases of 63.55%, 50.98%, and 59.49%, respectively (Table 2).

[image: Seven images labeled A to G show groups of potted plants, each in red pots with visible soil. The plants exhibit varying health conditions, with differences in leaf color and density. Some leaves appear vibrant green, while others are wilted or discolored, indicating different environmental conditions or treatments across the groups.]
Figure 5 | Growth promotion effect (A–C) of B. velezensis Bv-116 and its bio-organic fertilizer on cucumber seedlings and control effect (D–G) on cucumber Fusarium wilt disease. (A) is the control group; (B) is the treatment group inoculated with B. velezensis Bv-116; (C) is the group inoculated with bio-organic fertilizer; (D) is the control group; (E) is the FOC inoculation only treatment group; (F) is the FOC inoculation plus B. velezensis Bv-116 treatment group; (G) is the FOC inoculation plus bio-organic fertilizer treatment group.

Table 1 | Growth parameters of cucumber in each treatment group after transplanting and cultivation of cucumber seedlings for 20 days.


[image: Table showing plant metrics across three treatment groups: CK, T1, and T2. Plant height and stem diameter increase with treatment, with T2 having the highest values. Leaf and root fresh and dry weights also increase across treatments, with T2 showing the most substantial growth. Different letters in the data indicate significant differences at p < 0.05. CK is the control, T1 is Bv-116, and T2 is a bio-organic fertilizer group. Data are mean ± SD.]
Table 2 | Chlorophyll content of cucumber leaves in each treatment group after transplanting and cultivation of cucumber seedlings for 20 days.


[image: Table comparing chlorophyll content among three treatment groups: CK, T1, and T2. CK shows chlorophyll a at 1.07 ± 0.04, b at 0.51 ± 0.02, and a+b at 1.58 ± 0.05. T1 shows chlorophyll a at 1.03 ± 0.05, b at 0.53 ± 0.01, and a+b at 1.56 ± 0.06. T2 shows chlorophyll a at 1.75 ± 0.03, b at 0.77 ± 0.02, and a+b at 2.52 ± 0.05. Different letters signify significant differences. CK is the control group, T1 is Bv-116 treatment, and T2 is bio-organic fertilizer treatment.]



3.3.2 Control efficacy of B. velezensis Bv-116 and its bio-organic fertilizer on cucumber Fusarium wilt

After transplanting cucumber plants for 20 days, the growth status of cucumber plant indicated that FOC caused cucumber wilt. Meanwhile inoculation of B. velezensis Bv-116 and its bio-organic fertilizer exhibited effective inhibition against FOC-induced cucumber Fusarium wilt (Figures 5D-G). The disease incidence and disease severity index of cucumbers in the CK2 group reached 100% and 68.44, respectively. The disease incidence of cucumber plants in the T1 and T2 groups was 57.78% and 26.67%, respectively, representing reductions of 42.22% and 73.33% compared to the CK2 group. The disease severity index also decreased to 16.89 and 5.33, respectively, with control effects of 75.11% and 92.10%, respectively (Supplementary Table S3).





3.4 Analysis of cucumber rhizosphere soil microbial community



3.4.1 Analysis of cucumber rhizosphere soil fungal community and their correlation with cucumber Fusarium wilt incidence

The results of alpha diversity analysis of the fungal community in the rhizosphere soil of cucumber plants 20 days after transplanting (Figures 6A, B) showed that the Chao1 and Shannon indices of the T1 group, and the Shannon index of the T2 group, were not significantly different from those of the CK1 and CK2 groups. However, the Chao1 index of the T2 group was significantly lower than that of the CK1 and CK2 groups (p < 0.05). The results of principal coordinate analysis (PCoA) of fungal community, based on beta diversity analysis (Figure 6C), showed that there was no significant separation between the T1 group and the CK1 and CK2 groups. However, there was a significant separation between the T2 group and both the CK1, CK2, and T1 groups (p < 0.05).

[image: Boxplots and graphs illustrating microbial diversity and abundance in different samples CK1, CK2, T1, and T2.   A. Boxplots of Chao1 diversity with significant p-value.  B. Boxplots of Shannon diversity with non-significant p-value.  C. PCoA plot showing samples grouped by color.  D & E. Bar charts show relative abundance of different taxa, color-coded.  F. Bar chart of relative abundance of specific genera across samples with statistical annotations.  G. Heatmap displaying correlations between microbial genera and disease index, color-coded by values.]
Figure 6 | Analysis of cucumber rhizosphere soil fungal community and their correlation with cucumber Fusarium wilt incidence. (A, B) Analysis of the alpha diversity of soil fungal communities in cucumber rhizosphere soil; (C) PCoA of fungal communities based on beta diversity analysis; Composition of fungal community at phylum level (D) and genus level (E) in cucumber rhizosphere soil based on relative quantitative analysis; (F) The relative abundance of certain fungal genera in the rhizosphere soil of cucumber in each treatment group. (G) Correlation analysis of relative abundance of cucumber rhizosphere soil fungal communities at genus level with cucumber Fusarium wilt incidence and severity index based on Spearman’s correlation analysis. CK1 is the control group; CK2 is the treatment group with FOC inoculation; T1 is the treatment group with FOC and B. velezensis Bv-116 inoculation; T2 is the treatment group with FOC inoculation plus bio-organic fertilizer. In the same picture, different letters (a-d) indicate significant differences at the p < 0.05 level, * and ** indicate significant differences at the p < 0.05 level and p < 0.01 level, respectively.

The composition of fungal communities at the phylum level is depicted in Figure 6D. The phylum Ascomycota exhibited the highest abundance in groups CK1, CK2, and T1, whereas its abundance decreased in group T2. Abundance of the phylum Chytridiomycota was significantly higher in group CK2 compared to group CK1 (p < 0.05). In groups T1 and T2, abundance of both Chytridiomycota and Rozellomycota was significantly lower than that in group CK2 (p < 0.05), while abundance of Mortierellomycota and Basidiomycota in group T2 was significantly higher than that in groups CK2 and T1 (p < 0.05) (Supplementary Figure S4).

The composition of fungal communities at the genus level is illustrated in Figure 6E. Abundance of Trichoderma and Penicillium in group CK2 was significantly lower than that in the CK1 group, which received sterile water treatment, while abundance of Betamyces was significantly higher than that in the other three groups (p < 0.05). In group T1, abundance of Phialemonium, Pseudeurotium, and Penicillium was significantly higher than that in group CK2 (p < 0.05), with no significant difference observed in the abundance of Fusarium compared to group CK2. Moreover, in group T2, abundance of Trichoderma, Linnemannia, and Trichosporon was significantly higher than that in groups CK2 and T1, whereas abundance of Fusarium was significantly lower than that in groups CK2 and T1 (p < 0.05) (Figure 6F).

The results of Spearman’s correlation analysis, as illustrated in Figure 6G, elucidated the correlation between the relative abundance of soil fungal communities in the rhizosphere soil of cucumber plants at the genus level and the incidence as well as severity index of cucumber Fusarium wilt. The incidence and severity index of cucumber Fusarium wilt exhibited a significant positive correlation with the abundance of the genus Fusarium, to which the pathogen belongs (p < 0.05). Conversely, a significant negative correlation was observed between the abundance of the genus Trichoderma, which has a biocontrol role, and the incidence and severity index of cucumber Fusarium wilt (p < 0.05).




3.4.2 Analysis of cucumber rhizosphere soil bacterial community and their correlation with cucumber Fusarium wilt incidence

The results of alpha diversity analysis of the bacterial community in the rhizosphere soil of cucumber plants 20 days after transplanting (Figures 7A, B) showed that the Chao1 and Shannon indices of the T1 group were not significantly different from those of the CK1 and CK2 groups, whereas both the Chao1 and Shannon indices of the T2 group were significantly lower than those of the CK1 and CK2 groups (p < 0.05). The results of PCoA of the bacterial community based on beta diversity analysis (Figure 7C) were similar to those of the fungal community, with no significant separation between the T1 group and the CK1 and CK2 groups, whereas there was a significant separation between the T2 group and both the CK1, CK2, and T1 groups (p < 0.05).
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Figure 7 | Analysis of cucumber rhizosphere soil bacterial community and their correlation with cucumber Fusarium wilt incidence. (A, B) Analysis of the alpha diversity of soil bacterial communities in cucumber rhizosphere soil; (C) PCoA of bacterial communities based on beta diversity analysis; Composition of bacterial community at phylum level (D) and genus level (E) in cucumber rhizosphere soil based on relative quantitative analysis; (F) The relative abundance of certain bacterial genera in the rhizosphere soil of cucumber in each treatment group. (G) Correlation analysis of relative abundance of cucumber rhizosphere soil bacterial communities at genus level with cucumber Fusarium wilt incidence and severity index based on Spearman’s correlation analysis. CK1 is the control group; CK2 is the treatment group with FOC inoculation; T1 is the treatment group with FOC and B. velezensis Bv-116 inoculation; T2 is the treatment group with FOC inoculation plus bio-organic fertilizer. In the same picture, different letters (a-c) indicate significant differences at the p < 0.05 level, * and ** indicate significant differences at the p < 0.05 level and p < 0.01 level, respectively.

The composition of bacterial communities at the phylum level is depicted in Figure 7D. Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria and Verrucomicrobia were the dominant bacteria in all treatment groups. Compared with other treatment groups, abundance of Proteobacteria in group T2 was significantly increased (p < 0.05). At the same time, abundance of Bacteroidetes, Actinobacteria, Acidobacteria and Ver-rucomicrobia was significantly decreased (p < 0.05) (Supplementary Figure S5).

The composition of bacterial communities at the genus level is illustrated in Figure 7E. Compared with CK1 group, abundance of Acinetobacter in CK2 group was significantly increased (p < 0.05), while abundance of Bdellovibrio and Brevifollis was significantly decreased (p < 0.05). Abundance of Bacillus, Streptomyces and Mizugakiibacter in T1 group was significantly higher than that in CK2 group (p < 0.05), while the abundance of Pseudomonas in T1 group was significantly lower than that in CK2 group (p < 0.05). Abundance of Bacillus, Pseudomonas, Burkholderia, Brevifollis, Parcubacteria, Comamonas, Sediminibacterium and Rhodanobacter in T2 group was significantly higher than that in CK2 and T1 groups (p < 0.05). Abundance of Streptomyces, Rhizomicrobium and Mizugakiibacter was significantly lower than that of CK2 and T1 groups (p < 0.05) (Figure 7F).

The results of Spearman’s correlation analysis, as illustrated in Figure 7G, elucidated the correlation between the relative abundance of soil bacterial communities in the rhizosphere soil of cucumber plants at the genus level and the incidence as well as severity index of cucumber Fusarium wilt. Cucumber wilt incidence and disease severity index were significantly and positively correlated with the abundance of the genera Povalibacter, Chlorophyta, and Rhodoferax (p < 0.01), and significantly and negatively correlated with the abundance of the genera Brevifollis, Steroidobacter and Duganella (p < 0.01). In addition, abundance of Burkholderia, an important class of biocontrol bacteria (Lahlali et al., 2022), was significantly (p < 0.05) negatively correlated with the cucumber Fusarium wilt disease severity index.






4 Discussion

Cucumber Fusarium wilt caused by FOC is one of the main causes of cucumber yield reduction (Bartholomew et al., 2022). The use of biocontrol strains for wilt control has become a current research hotspot as an environmentally friendly and effective strategy (Sarrocco, 2023).

As a biocontrol bacterium characterized by broad-spectrum antimicrobial activity, strong resistance to adversity, diverse biological control mechanisms, environmental friendliness, and safety to humans and animals, B. velezensis has gained increasing attention (Yang et al., 2023). In this study, B. velezensis Bv-116 was screened out from 565 bacteria strains preserved in the laboratory, which exhibited significant inhibitory effects against FOC. Furthermore, B. velezensis Bv-116 showed strong antagonistic activity against five tested fungi, including Fusarium graminearum, indicating its broad-spectrum antifungal potential. In pot experiments, B. velezensis Bv-116 and its bio-organic fertilizer treatment showed disease control efficiencies of 75.11% and 92.10% against cucumber Fusarium wilt, respectively, indicating its potential as biocontrol agents against cucumber Fusarium wilt.

Research has shown that certain bacillus strains can achieve disease control by inhibiting the growth of pathogens through the production of lipopeptide antibiotics (Shen et al., 2023), volatiles (Ling et al., 2022), extracellular enzymes (Li et al., 2021), inducing plant resistance (Tahir et al., 2017), and competing for nutrients and ecological niches with the pathogens (Zhang et al., 2020a). Specifically, Ling et al. (2022) revealed significant preventive effects of volatile organic compounds (VOCs) released by B. velezensis L1 on the pathogenic fungi causing Lycium fruit rot. B. velezensis Mr12 exhibits broad-spectrum antagonism against various plant pathogens, with high stability of inhibitory substances and the ability to produce various peptide polysaccharides and polyketides as well as cell wall hydrolases (Li et al., 2021). Our research results indicate that B. velezensis Bv-116 possesses strong protease and cellulase activities. Its fermentation supernatant significantly inhibits the spore germination of FOC, disrupts hyphal morphology, and affects the relative permeability of FOC cell membranes. It is speculated that B. velezensis Bv-116 may degrade the cell wall of FOC by secreting proteases and cellulases, disrupting the hyphal cell membrane, causing it to lose its original function, leading to leakage of cell contents, thereby achieving the purpose of inhibiting or killing FOC. When the inhibited mycelia of FOC are recultured, their growth activity significantly decreases, and their growth rate becomes slow. This may be related to the damage to the mycelial cell structure, requiring time for self-repair.

In addition, we found that the volatile gases produced by B. velezensis Bv-116 inhibited the mycelial growth of FOC, which may also play an important role in controlling soil-borne diseases caused by FOC. And the components of antifungal activity in its volatile organic compounds (VOCs) still need to be further investigated. VOCs produced by different biocontrol bacteria act in different ways, such as inhibiting fungal mycelial growth (Ling et al., 2022), inducing plant systemic resistance (Tahir et al., 2017), and promoting plant growth (Gao et al., 2022). The fermentation supernatant of B. velezensis Bv-116 has good antimicrobial stability, which is similar to other reported bacillus (Jia et al., 2018; Huang et al., 2022). For example, The bacteriostatic effect and stability of Bacillus velezensis JK19 fermentation supernatant under different temperatures, pH, enzyme treatment and ultraviolet irradiation were determined by TTC double-layer plate confrontation method, and the results showed that strain JK19 had strong antibacterial stability and antibacterial activity (Huang et al., 2022); the fermentation supernatants of Bacillus thuringiensis (BT)Bt185 and HD-1 were stable to heat, acid, ultraviolet radiation and continuous ultrasonic stimulation (Jia et al., 2018). This indicates its potential use as a biocontrol agent or in the production of bio-organic fertilizer. Subsequent research requires whole-genome sequencing and analysis of B. velezensis Bv-116 to further explore its potential biocontrol functions and mechanisms of action.

The beneficial microorganisms can promote plant growth and biomass accumulation (Han et al., 2014). This is consistent with our research findings, namely that the application of B. velezensis Bv-116 and its bio-organic fertilizer significantly promotes the growth of cucumbers. B. velezensis was reported to produce indole-3-acetic acid, thereby promoting the growth of cucumber plants (Lobo et al., 2023). It is speculated that the growth-promoting effect of B. velezensis Bv-116 may be related to this. Additionally, studies have shown that combining antagonistic strains with organic fertilizer to prepare bio-organic fertilizer can serve as high-quality carriers for antagonistic strains while providing high-quality nutrients for plants (Zhang et al., 2020b). In this study, B. velezensis Bv-116 was added to kitchen waste to prepare bio-organic fertilizer. This not only helps conserve resources and reduce the secondary pollution caused by landfilling and incineration of waste but also kitchen waste can provide rich nutrients for plants after fermentation. This may be one of the potential reasons why the growth indicators of cucumber, the chlorophyll content in leaves, and the control effect on cucumber Fusarium wilt in the Bv-116 bio-organic fertilizer treatment group are higher than those in the other three groups.

On the other hand, rhizosphere microbial communities play an important role in promoting plant growth and increasing tolerance to diseases and abiotic stresses (Trivedi et al., 2021). In our study, it was found that the application of B. velezensis Bv-116 and its bio-organic fertilizer could change the microbial community structure in the rhizosphere soil of cucumber. In the potting disease prevention experiment, abundance of Bacillus genus in the T1 group with the addition of B. velezensis Bv-116 (0.54%) was significantly higher than that in the CK2 group (< 0.01%), demonstrating a better disease control effect. It is speculated that the addition of B. velezensis Bv-116 may increase the abundance of Bacillus, Penicillium (Marfetan et al., 2023), Streptomyces (Dow et al., 2023), and other genera with biological control effects on various plant diseases. The disease control effect of the T2 group supplemented with bioorganic fertilizer was superior to that of the T1 group. This may be due to a significant increase in the abundance of genera possessing biocontrol functions against various plant diseases in the T2 group, including Bacillus associated with B. velezensis Bv-116, Pseudomonas (Yan et al., 2013), Burkholderia (Lahlali et al., 2022) and Trichoderma (Guzmán-Guzmán et al., 2023), etc., compared to the T1 group. While abundance of Fusarium was significantly reduced in T2 group compared to the T1 group. It has been reported that ferulic acid, p-hydroxybenzoic acid and coumaric acid produced from the decomposition of kitchen waste organic materials can also directly inhibit the growth of pathogens, thus reducing the attack of cucumber Fusarium wilt (Zaman and Purwono, 2022). At the same time, the growth-promoting effect of B. velezensis Bv-116 and its bio-organic fertilizer on cucumber plants may also enhance the disease resistance of cucumber plants themselves. In addition, compared to both the CK2 and T1 groups, the addition of bioorganic fertilizer resulted in a significantly higher abundance of genera such as Comamonas, Sediminibacterium, and Rhodanobacter in the T2 group, which possess the capability to degrade heavy metals, pesticides, and other environmental pollutants (Zhao et al., 2012; Fang et al., 2024), conversely, phyla associated with soil infertility, such as Acidobacteria and Verrucomicrobia (Finn et al., 2017), exhibited significantly lower abundance in the T2 groups.

In conclusion, B. velezensis Bv-116 exhibits the capability to inhibit FOC growth by disrupting its cell structure and generating volatile antimicrobial gases. In the presence of pathogens, the addition of B. velezensis Bv-116 or its bio-organic fertilizer prepared by adding it to kitchen waste and fermenting it to cucumber transplantation soil increased the abundance of Bacillus in the rhizosphere soil of cucumber, promoted the growth of cucumber, and had a biocontrol effect on cucumber Fusarium wilt. The application of B. velezensis Bv-116, a functional strain antagonistic to FOC, and the bio-organic fertilizer prepared by adding it to kitchen waste and fermenting it may be a potential environmentally friendly biocontrol strategy against cucumber Fusarium wilt.
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With the growth of the global population and the increasing scarcity of resources, the sustainability and efficiency improvement of agricultural production have become urgent needs. The rapid development of nanotechnology provides new solutions to this challenge, especially the application of nanoparticles in agriculture, which is gradually demonstrating its unique advantages and broad prospects. Nonetheless, various nanoparticles can influence plant growth in diverse manners, often through distinct mechanisms of action. Beyond their direct effects on the plant itself, they frequently alter the physicochemical properties of the soil and modulate the structure of microbial communities in the rhizosphere. This review focuses intently on the diverse methods through which nanoparticles can modulate plant growth, delving deeply into the interactions between nanoparticles and plants, as well as nanoparticles with soil and microbial communities. The aim is to offer a comprehensive reference for the utilization of functionalized nanoparticles in the agricultural sector.
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1 Introduction

In recent years, with the rapid development of agricultural technology and the increasing awareness of environmental protection, the demand for new materials and technologies in the field of agricultural production has become increasingly urgent (Moretti and Marucci, 2019; Magnabosco et al., 2023). The prolonged use of chemicals, pesticides, and fertilizers can indeed ease the challenges of food security in the long term. However, this practice poses risks such as contamination, soil fertility loss, non-target species impact, disease/insect resistance, biodiversity decline, and harm to humans/animals (Yousef et al., 2023; Chandrasekaran and Paramasivan, 2024). Consequently, there is an urgent need for innovative and efficient agricultural technologies to address the global challenges of food production and security (Thorakkattu et al., 2024).

Nanoparticles, often abbreviated as NPs, are regarded as materials ranging from 1 to 100 nm in size, and have different sizes, geometry, physical shape, mechanical strength and chemical composition, which have attracted people attention due to their wide application prospects (Lowry et al., 2019; Ravichandran et al., 2021; dos Santos et al., 2022; Garg et al., 2024; Sun et al., 2024). Nanotechnology has been widely applied across various sectors, including biomedicine, agriculture, and environmental remediation. The United Nations Food and Agriculture Organization (FAO) and the World Bank are actively encouraging the integration of nanotechnology into agricultural practices, with the development of sustainable agricultural systems being a central goal of current nanotechnological applications (De Chiffre et al., 2003; Mishra et al., 2017; Kah et al., 2019; Ahmad et al., 2022; Wang et al., 2022). Compared to traditional agricultural technology, nano-agricultural technology offers numerous advantages, closely linked to enhancements in production efficiency, reductions in input costs, and diminished ecotoxicity (Servin et al., 2015; Kah et al., 2019; Zhang et al., 2024). For example, zinc oxide, silver oxide nanoparticles had been explored as effective slow-release nanofertilizers, transport carriers, and bacteriostatic agents to provide plants with essential nutrients and inhibit pathogens, thus promoting plant growth and increasing crop yields (Elhaj Baddar and Unrine, 2018; Sun et al., 2018; Shireen Akhter Jahan et al., 2024). The application of nanoparticles to soil can influence its physical and chemical properties, the metabolic richness of plant roots, and the activity of the rhizosphere microbial community (Dimkpa et al., 2013; Sarma et al., 2024). Furthermore, the physical and chemical characteristics of soil, including texture, organic matter content, and pH level, inherently influence the migration and morphology of nanoparticles within the soil, which impact the bioavailability of nanoparticles (Cornelis et al., 2014; Reith and Cornelis, 2017; Gómez-Sagasti et al., 2019). The ecological functions of nanoparticles and their environmental impacts are current research focal points. However, their effects on soil health and agricultural applications are of greater practical significance. In particular, the influence of nanoparticles on rhizosphere microorganisms and plant physiology is crucial for enhancing research into sustainable agricultural development strategies.

Land plants interact with soil microorganisms through their roots, making rhizosphere microbial community crucial for soil health and crop growth (Ding et al., 2019; Zhou et al., 2020; Kusiak et al., 2022). Compared to the perpendicular soil (soil not connected to the roots and soil falling after root shaking) (Ding et al., 2019), rhizosphere soil (the soil within 1 mm of the root surface) is teeming with a multitude of microorganisms exhibiting high biological and chemical activity, which is directly linked to the stability and productivity of agricultural production systems (Kaye et al., 2005; Edwards et al., 2015). Numerous recent studies have demonstrated the enhanced efficacy of nanoagents in regulating the plant rhizosphere microbiome compared to traditional non-nanometer approaches (Ahmed et al., 2022; Ahmed et al., 2023). Moreover, the regulation of microbiomes using nanoagents has the potential to enhance plant growth through a variety of mechanisms (Ahmed et al., 2022; Ahmed et al., 2023). Secondly, nanoparticles can indirectly promote plant nutrient absorption and ultimately promote plant growth by increasing the richness of rhizosphere microbiota (Xu et al., 2023). For example, pepper plants treated with Nano-selenium could significantly enhance the presence of beneficial microorganisms in the rhizosphere soil, including Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, and Deltaproteobacteria, as well as Anaerolineae (Li et al., 2022). These alterations in microbial communities lead to a substantial increase in soil enzyme content, soil metabolites such as fluorescein diacetate, urease, brassinosteroids, and p-hydroxybenzoic acid, and plant metabolites like rutin, luteolin, brassinosteroids, and abscisic acid, which enhanced the contribute to bolstering plant defense mechanisms and improving plant growth (Li et al., 2022). Rhizosphere microorganisms promoted plant growth by providing nutrients and hormones, while the metabolites secreted by plant roots could also change the species and number of rhizosphere microbial communities (Hwangbo et al., 2016; Khoiri et al., 2024). Consequently, the creation and application of suitable nanoparticles in agriculture are anticipated to not only improve but potentially supplant the use of chemical pesticides and fertilizers.

This review delves into the utilization of nanoparticles within agricultural production, examining how these particles can foster plant growth through various mechanisms: (i) enhancing nutrient absorption, (ii) facilitating controlled release of nutrients, (iii) enabling precise delivery of nutrients to targeted locations, and (iv) augmenting the population of beneficial microorganisms in the rhizosphere while suppressing those that are pathogenic and detrimental to plant development. Nanoparticles can stimulate plant growth both directly, by enhancing physiological processes, and indirectly, by modulating the beneficial microorganisms in the rhizosphere and altering soil conditions. Consequently, strategies driven by nanotechnology offer a promising and sustainable approach to boost crop growth and bolster crop resilience against stress factors.




2 Nanoparticles enhance nutrient absorption

Nanoparticles hold great potential for enhancing nutrient uptake, and certain nanoparticles can improve plant nutrient utilization efficiency by employing mechanisms such as directional delivery, sustained or controlled release (Solanki et al., 2015; Dutta et al., 2022; Taware et al., 2024) (Figure 1). During the promotion of plant nutrient uptake, nanoparticles can influence nutrient absorption in two ways. On the one hand, they can act as carriers for nutrients, and on the other, they can modulate soil microorganisms to enhance the plant’s nutrient absorption capabilities (Bortoletto-Santos et al., 2020; Khan et al., 2022); Conversely, nutrient elements could be precisely delivered to various regions of plants via nanoparticle carriers, thereby enhancing the efficiency of nutrient utilization (Fincheira et al., 2021).
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Figure 1 | Nanoparticle-based protective agents or carriers are designed to regulate the discharge of active compounds, enhance stability, and control the release rate, thereby achieving sustainable agricultural practices.



2.1 Nanoparticles function as carriers for slow-release fertilizers, enhancing the absorption of nutrients by plant roots.

At present, nanoparticles find extensive application in the realms of energy, electronics, and architecture, yet their utilization in agriculture-related domains remains comparatively limited (de Silva et al., 2020). It possesses the potential for the slow release of fertilizers, owing to its diminutive size, substantial surface area, robust adsorption capacity, and the capability to control the release kinetics at the target site (Ghormade et al., 2011; Zulfiqar et al., 2019; Al-Mamun et al., 2021). The nanoparticles’ diminutive scale and elevated reactivity allow them to penetrate the plant cell wall with greater ease, thereby enhancing the transport and absorption of nutrients throughout the plant (Chhipa, 2017). Furthermore, it enhances fertilizer adsorption efficiency and stability, allowing slow, sustained nutrient release. This fosters plant growth, preserves beneficial microbiota diversity, mitigates eutrophication runoff, and prevents pollution (Kalwani et al., 2022).

Research conducted on nanofertilizers in aqueous environments revealed that a 40% urea-hydroxyapatite formulation demonstrated a controlled release of nitrogen, capable of sustaining the process for up to one week., while pure urea depleted within just a few minutes (Kottegoda et al., 2017). Likewise, the gradual and continuous release of urea from urea-silica nanohybrids prevents premature depletion of urea, ensuring effective and precise delivery of nitrogen and silica to the plant (de Silva et al., 2020).

Nanoparticles can also exert their slow-release function within soil media, markedly enhancing the efficiency of nutrient utilization. For instance, in the study of indigenous wheat irrigated nanohybrid, it was found that urea molecules were slowly released in doped Zn and Mg hydroxyapatite nanohybrids for up to two weeks, and this nanocompound containing only a 50% nitrogen dose maintained wheat crop yield and nitrogen nutrient uptake (Sharma et al., 2022). The recent research had revealed that a nanocarrier with a core and shell structure, composed of urea-loaded Metal-Organic Frameworks (MOFs) and silica, can facilitate the sustained release of nitrogen to crops. When utilizing urea/MIL-100(Fe)/silica heterojunction nanomaterials to treat potted rice, the nitrogen use efficiency of the rice was found to be 34.7% greater than that achieved with traditional urea treatment (Wu et al., 2024).

During the growth cycle of rice, urea-coated hydroxyapatite nanoparticles (urea coated hydroxyapatite nanoparticles, UHA) were released more slowly than conventional urea (Bhavani et al., 2020). Nano U-NPK(containing Ca, P, K, NO3 and urea multi-nutrient nanofertilizer) not only ensures the slow release of the most crucial plant macronutrients(N, P, K), but also has the potential to reduce the nitrogen supply to plants by 40% (Ramírez-Rodríguez et al., 2020). Potassium-based nanoparticles (K2SiO3-NP, K18Mo8O33-NPs) compared with traditional potassium fertilizer, its utilization efficiency was about 40% higher in soybean growth, mainly due to the slow release effect of the nanoparticles, which can provide potassium ions for a longer time, effectively avoiding the toxic effect of large dose rapid delivery (Wang et al., 2024). The montmorillonite nano-hybrid composite was capable of decelerating the release rate of nitrogen across various pH conditions, extending its duration to foster plant growth (Madusanka et al., 2017). The latest study found that a special slow-release fertilizer: milk, could be made into high-fertilizer fertilizer rich in fulvic acid and potassium. The pot experiment results showed that the slow-release fertilizer was slow and more significant fertilizer effect than the traditional organic fertilizer and potassium fertilizer, and had good acid soil restoration effect (Zhu et al., 2024). In conclusion, tailored nanofertilizers have the potential to not only enhance plant growth but also to improve the soil’s physiochemical properties, playing a pivotal role in the advancement of sustainable agriculture.




2.2 Nanoparticles are capable of precisely delivering nutrients

Nanoparticles had improved the nutrient uptake in plants through the precise application of chemical fertilizers and plant growth regulators, thereby fostering innovation within the agricultural sector and offering a novel strategic approach for precision agriculture (Ghosh et al., 2023; Saberi Riseh et al., 2024; Singh et al., 2024). Research had indicated that a seed coating composed of a zinc and urea hydroxyapatite nanohybrid can more precisely deliver plant nutrients and enhance the efficiency of nutrient utilization (Abeywardana et al., 2021). Under acidic soil conditions, innovative phosphate hydroxyapatite nanofertilizers, specifically Hydroxyapatite nanoparticles (HA-NPs), were administered to sunflower crops, demonstrating a significantly faster and more efficient phosphate uptake compared to conventional phosphate and triphosphate fertilizers (Xiong et al., 2018). The design of nanocarriers represents a pivotal avenue for future research into the precise delivery of nanoparticles. The strategic development of nanocarriers that can target tissues and organs within plants and organic matter will facilitate precise control over plant absorption, decrease input requirements, and minimize energy wastage.





3 The Impact of nanoparticles on rhizosphere microbial communities

Nanoparticles engage in a range of physical, chemical, and biological processes, such as vulcanization, flocculation, precipitation, and adsorption, which enable them to interact with soil organic matter, plants, and root microorganisms (Chang et al., 2024). The study indicated that parameters including soil texture, pH, redox potential, organic matter content, and cation exchange capacity influence the chemical properties of nanoparticles (Ben-Moshe et al., 2013; Gao et al., 2019). When nanoparticles enter the soil system, they start to regulate the physiological, biochemical and genetic mechanisms of soil microorganisms; after entering the plant system, they were transferred to xylem tissue and then transported to other tissues to regulate the adaptability of the plant environment (Ahmed et al., 2023). In this section, we primarily explore the function and potential applications of nanoparticles in enhancing the rhizosphere soil microenvironment and fostering interactions among rhizosphere microbes.



3.1 Nanoparticles for enhancing the soil microenvironment in the rhizosphere

Research indicated that nanoparticles could alter soil structure by decreasing the surface energy and enhancing the water repellency of soil particles, while also increasing soil water conductivity and aggregate stability (Chen et al., 2022). These changes could impact the soil water cycle, influencing aspects such as water retention and evaporation rates. Concurrently, alterations in soil structure could also modulate the distribution of soil pH levels and nutrient elements, subsequently influencing the beneficial microbial community within the rhizosphere (Wang et al., 2020). For example, the newly developed biochar-enriched phosphorus-doped aqueous solutions, in conjunction with iron ore nanoparticles, had the capability to alter the soil pH balance, concurrently enhancing the soil’s organic matter and phosphorus concentrations (Li et al., 2022). Nanoparticles alter the structure, content, and diversity of advantageous microbial communities within plants, influencing the interaction within the plant-soil-microbial community system, and a robust soil structure further enhances the activity and nutrient cycling of soil microorganisms (Schjønning et al., 2011; Das et al., 2023; You et al., 2023; Zhang et al., 2023). Research had indicated that the application of carbon nanoparticles (CNPs) to soil could improve its water retention capacity, but also positively influence the functionality of soil microorganisms, thereby indirectly supporting plant growth (Xin et al., 2022). Concurrently, CNPs, which infiltrate plant roots via stomatal penetration or adhere to the epidermis, can stimulate soil microorganisms and enhance enzyme activities (Xin et al., 2022). This, in turn, can improve soil fertility and quality (Figure 2).
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Figure 2 | Nanoparticles are transported to the soil.

Nanoparticles have the potential to foster the proliferation of microbial community diversity by altering the elemental composition of the soil (Karimian and Samiei, 2023). CNPs can significantly enhance the soil’s nitrogen and phosphorus content, thereby fostering a thriving environment for microbial growth-related enzymes, which in turn promotes soil health and fertility (Zhao et al., 2021). Biologically synthesized nanoparticles exert a beneficial influence on organic carbon and microorganisms within soils used for corn cultivation, thereby accelerating plant growth (Haider et al., 2015). Innovative semi-polymer nanocomposite particles possess the capability to significantly augment the concentrations of both organic carbon and active organic carbon, thereby fostering the vigorous growth and development of plants (Zhao et al., 2019). The aforementioned studies indicate that nanoparticles have the potential to enhance soil structure, pH levels, and various other properties, which in turn can influence the interactions among plants, soil, and microbes. However, the precise manner in which these soil properties impact the interplay between these three elements warrants further investigation.




3.2 Nanoparticles promote the interaction between rhizosphere microorganisms and plants

The rhizosphere is regarded as the soil’s most abundant reservoir of organic matter, serving as the primary zone for microbial proliferation and activity (Reinhold-Hurek et al., 2015). The rhizosphere microbial communities play a pivotal role in various beneficial plant growth processes, including nitrogen fixation, nutrient decomposition, and the synthesis of bioactive metabolites (Bi et al., 2021; Chauhan et al., 2023). Owing to their minute particle dimensions, surface functionalization, and unique chemical properties, nanoparticles are employed to enhance plant nutrient absorption and stress tolerance (Lv et al., 2019). Presently, the majority of research into the utilization of nanoparticles is centered on the plants alone, overlooking the impact of nanoparticles on soil microorganisms and their metabolites during this process.

The interaction between rhizosphere secretions and rhizosphere microorganisms is bidirectional, indicating that the metabolites excreted by plant roots play a role in shaping rhizosphere microbial communities; conversely, rhizosphere microorganisms are intimately connected to plant growth and health (Staley et al., 2017; Hu et al., 2018; Trivedi et al., 2020). Nevertheless, a considerable amount of uncertainty persists regarding the interplay between secretions and microbes in the rhizosphere.

The interaction between nanoparticles and plants can significantly promote the generation of metabolites in plant cells and the increase of rhizosphere secretions (Francis et al., 2024). These bioactive substances, once in contact with nanoparticles, indirectly have a profound impact on their key properties such as dispersion stability, aggregation state, and solubility, which has been confirmed in relevant research (McManus et al., 2018; Cervantes-Avilés et al., 2021). Specifically, biomolecules in plant cell metabolites and rhizosphere secretions (amino acids, sugars, phenolic compounds, and other secondary metabolites), Its functional groups have high reactivity and can quickly adsorb onto the surface of nanoparticles through competitive interactions, forming a surface ecological corona (eco-corona) (Nasser and Lynch, 2016; Wheeler et al., 2021). This ecological corona not only changes the physical and chemical properties of nanoparticles, but also further affects their migration, transformation, and biological effects in the soil environment, thus forming a complex ecological interaction network (Kang et al., 2024). This ecological corona phenomenon has a significant impact on the bioavailability of nanoparticles by crops, and its effect exhibits duality. In certain specific contexts, it may have a positive impact, promoting crop uptake and utilization of nanoparticle nutrients; However, in other cases, it may also have adverse effects, interfering with the normal physiological processes of crops. When ecological corona enhances the dispersion and stability of nanoparticles in soil or rhizosphere environment, it helps crop roots to more effectively contact and uptake these nanoparticles, thereby improving bioavailability and promoting crop growth and development. The organic acids in soybean rhizosphere secretions bind to the surface of nanoparticles (CeO2, Mn3O4, Cu(OH)2, MoO3), greatly reducing the bioavailability and delivery efficiency of these agricultural nano chemicals (Cervantes-Avilés et al., 2021). However, if ecological corona leads to an increase in the aggregation degree or a decrease in the solubility of nanoparticles, it may hinder the effective absorption of nanoparticles by crops. For example, the rhizosphere secretion of wheat increases the solubility of CuO nanoparticles in alkaline soil, thereby enhancing their bioavailability by crops (Hortin et al., 2020). Therefore, when using nanoparticles for agricultural production, it is necessary to fully consider the impact of ecological corona phenomenon on crop bioavailability. Through scientific and reasonable nanoparticle design and application strategies, the positive effects can be maximized while minimizing potential risks, in order to achieve sustainable development of agricultural production.

Research has indicated that nanoparticles frequently influence rhizosphere microorganisms by stimulating the secretion of root metabolites. For instance, the adsorption of zinc oxide nanoparticles (ZnO NPs) and their aged counterpart, s-ZnO NPs, onto the epidermis of legume roots triggers a stress response that results in the production of numerous root metabolites, including amino acids and terpenoids (Liu et al., 2023). These metabolites could directly impact soil organic matter or activate microbial decomposition of organic carbon, thereby enhancing the release and breakdown of organic carbon within the rhizosphere (Liu et al., 2023). Selenium nanoparticles (Se NPs) enhanced organic acid biosynthesis and transport genes in plants, directly enhance malate and citric acid secretion in rice roots, and then recruit sphingomonas and Streptomyces, to enhance their interaction with rice and promote the growth of rice (Jiao et al., 2023). The application of Silica dioxide nanoparticles (SiO2 NPs) stimulated the synthesis, transport, and secretion of organic acids in rice roots, which provided a rich carbon source for rhizosphere microorganisms, increases the abundance of beneficial microorganisms such as Proproteobacteria and Actinobacteria in the rhizosphere by 15.2-80.5%, promotes the optimization of the bacterial community, and facilitates the absorption and growth of nitrogen in plants (Yue et al., 2023). It has been reported that compounds released by root exudates and rhizosphere microorganisms can form complexes with metal ions, thereby influencing their bioavailability to plants and microorganisms (Chen et al., 2017). Fe3O4 nanoparticles encapsulated in citrate (CA) release a higher solubility of iron and interact with root exudates, which modulate plant hormones to stimulate root elongation, thereby enhancing plant growth (Sun et al., 2023). Consequently, nanoparticles can be employed to modulate rhizosphere secretions, thereby influencing the metabolic processes and community dynamics of rhizosphere microorganisms, which in turn can facilitate the emission of plant root exudates (Steinauer et al., 2016). The studies conducted clearly indicate that nanoparticles have the capacity to modify the rhizosphere microbiome, thereby enhancing the population of beneficial microbes. To fully harness the agricultural benefits, it is imperative to gain a more profound and holistic comprehension of how nanoparticles influence the interplay between root exudates and the rhizosphere microbiome.




3.3 Nanoparticles suppress plant pathogenic microorganisms

Plant diseases can pose a formidable threat to the productivity and quality of plants. Certain nanoparticles, harnessing their exceptional cell penetration abilities and unique surface properties, demonstrated a promising potential for inhibiting a diverse array of pathogenic microorganisms, thereby ultimately fulfilling the objective of managing and controlling plant diseases effectively (Gordienko et al., 2019; Gao et al., 2023; Rahimizadeh et al., 2023; Scandolera et al., 2024). The most widely studied nanoparticles currently are those of silver, copper, zinc, silicon, etc. These particles usually possess special physical and chemical properties that enable them to interact effectively with plant pathogens (directly destroying the cell membranes of plant pathogenic bacteria, causing lysis of the pathogenic cells and a decrease in pathogenic activity) and inhibit their growth and spread, thereby effectively reducing the incidence and severity of plant diseases (Andleeb et al., 2021; Jaithon et al., 2022). Figure 3 enumerated the application of nanoparticles in five common plant diseases.

[image: Diagram depicting the use of nanoparticles to control plant diseases. It features copper, zinc oxide, and silica nanoparticles targeting pathogens such as Pseudomonas syringae and Magnaporthe oryzae. Illustrations of affected plants encircle a central "pathogen" label. Arrows indicate nanoparticle application for disease management.]
Figure 3 | The inhibitory effects of different nanoparticles on different plant diseases.

Research has indicated that nanoparticles predominantly contribute to the management of plant diseases by disrupting the morphological structure, sporulation capacity, and adhesion behavior of pathogens (Table 1). Silver-associated nanoparticles currently stand out as the most effective in combating pathogenic microorganisms, with their antibacterial properties being particularly evident in organisms such as Ustilaginoidea virens, Ralstonia solanacearum, and Xanthomonas perforans (Pisárčik et al., 2021). The antimicrobial efficacy of these silver nanoparticles was intricately linked to their unique physicochemical characteristics, including concentration, particle size, pH, and other factors (Pisárčik et al., 2021). For example, the growth inhibition of rice false smut fungus by nanosilver was concentration-dependent, and nanosilver at a median effective concentration could significantly inhibit the sporulation and pathogenicity of the fungus. In addition, Ag NPs reduced the H3K27me3 modification mediated by UvKmt6, leading to the upregulation of genes involved in biosynthesis of oryzalide, and the decrease in H3K27me3 levels is associated with the inhibition of mycelial growth (Wen et al., 2023). In addition to combating fungal and bacterial pathogens, silver nanoparticles could also diminish the concentration of Bean Yellow Mosaic Virus (BYMV) and alleviate disease severity in broad beans (Abdelkhalek et al., 2023). Nano biotechnology has revealed that copper nanoparticles, particularly tobacco-derived copper oxide nanoparticles (CuO NPs), exhibit a pronounced antibacterial effect that is concentration-dependent. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations have shown that CuO NPs can disrupt the hyphal cell wall, resulting in a rough and convex surface (Chen et al., 2022). Additionally, there is evidence of significant partial collapse and bending of the hyphae (Chen et al., 2022). This phenomenon occurs because CuO NPs aggregate and adhere to the hyphal cell wall, and may even penetrate the cell membrane (Chen et al., 2022). The direct contact between nanoparticles and the hyphae leads to the accumulation of reactive oxygen species (ROS) and a corresponding increase in hyphal superoxide dismutase (SOD) enzyme activity (Chen et al., 2022). A recent study showed that copper nanoparticles (Cu NPs) also play an important role in the inhibition of bacterial fruit spot disease in watermelon, also by inducing oxidative stress and destroying cell integrity (Noman et al., 2023). Table 1 offers a comprehensive overview of the utilization of nanoparticles as antimicrobial agents.

Table 1 | Effect of various nanofertilizer/nanoparticles on pathogenic microbes and microbial functions.


[image: A table detailing the effects of various nanomaterials/nanoparticles on pathogenic microbes and plants. It includes particle size, dose and mode of application, effects on microbes, plant effects, and references. Metal silver, copper, iron, zinc, silica, and chitosan nanoparticles are analyzed. Effects range from microbial cell damage and inhibition to plant disease resistance and growth enhancement. References are provided for each entry.]
In conclusion, the antimicrobial properties of nanoparticles are derived from their unique physical structure and chemical reactivity. Nonetheless, despite their demonstrated efficacy in inhibiting pathogenic microorganisms, practical applications must take into account their stability, biocompatibility, environmental impact, and cost-effectiveness.




3.4 Nanoparticles boost the efficacy of probiotic microorganisms

Numerous nanoparticles have the potential to improve nutrient transport and soil fertility by modulating the function, species diversity, or population size of the microbial community within the rhizosphere (Wei et al., 2020). Foliar application or direct application of nanoparticle solutions could influence the function of rhizosphere microbial communities in plant root nutrient uptake, nitrogen regulation, and the regulation of related enzyme activities, thereby impacting plant growth and development (Figure 4) (Wu et al., 2023).

[image: Diagram showing the process of using liquid nanoparticles to promote plant growth. Nanoparticles are prepared from a powder mixed into a liquid. They are applied to plants via spray or droplets, affecting nitrogen-fixing, nitrifying, and denitrifying bacteria around the roots. This enhances root exudates, soil enzyme activities, microbial community diversity, and soil properties, promoting beneficial metabolic processes and photosynthesis, ultimately boosting growth. Arrows illustrate the nitrogen cycle and bacterial interactions with nitrogen compounds in the soil.]
Figure 4 | Nanoparticles enhance the activity of beneficial microbes within the rhizosphere, modulate soil metabolic processes, and subsequently foster plant growth and development.

Throughout the phase of accelerated plant growth, the high nutrient demand entices a larger concentration of rhizosphere microorganisms, which play a crucial role in the plants’ nutrient absorption (Chaparro et al., 2014). Simultaneously, the interplay between nanoparticles and rhizosphere microorganisms could enhance plant growth and improve soil health (Tripathi et al., 2024). The research indicated that in the developmental phase of rice seedlings, selenium nanoparticles (Se NPs) enhance the abundance of sphingomonas and various other bacterial species, while also encouraging the secretion of root exudates (Jiao et al., 2023). These combined influenced synergistically modulate nutrient uptake and foster the growth of rice plants (Jiao et al., 2023).In Brassica chinensis L., there exists a comparable regulatory function throughout the growth process (Wang et al., 2022). The symbiotic relationship between rhizosphere microorganisms and plants enhanced the bioavailability of nutrients within the rhizosphere soil, thereby augmenting the plants’ nutrient uptake capabilities (Xu et al., 2023). The application of zinc oxide quantum dots (ZnO QDs) during the growth phase of pumpkins aids in enhancing beneficial microorganisms within the endophytic and rhizosphere environments, thus promoting nutrient uptake and plant growth (Xu et al., 2023). It has been shown that the 50 mg/kg of Fe7(PO4)6 nanoparticle treatment of tomato will increase the relative abundance of beneficial microorganisms associated with nutrient accumulation, which will accelerate nutrient accumulation (Jiao et al., 2024).

Numerous studies have demonstrated that the availability of soil nitrogen and the uptake of nitrogen by plants play a crucial role in determining crop yield. Concurrently, the absorption, excretion, and transformation of soil nitrogen are largely contingent upon the interactions within the rhizosphere microbial communities (Yang et al., 2019; Yu et al., 2019). The effective and sustainable supply of nitrogen in the rhizosphere soil mainly depends on specific rhizosphere microbial communities that convert inert nitrogen into nitrogen compounds. Therefore, nitrogen transformation driven by rhizosphere microbial communities was a significant determinant of plant nitrogen uptake (Moreau et al., 2019). For example, the application of FeNPs to alfalfa increased the diversity of the rhizosphere microbial community, further enhancing the nitrogen-fixing ability of the roots (Zhang et al., 2024). Silver nanoparticles (AgNPs) enhanced the population of rhizosphere bacteria, including Saccharimonadia (also known as Plant Growth Promoting Rhizobacteria, or PGPR) (Sellstedt et al., 2013; Francioli et al., 2021). Certain strains of these bacteria facilitate atmospheric nitrogen fixation, while others contribute to plant growth and aid in nutrient transformation (Sellstedt et al., 2013; Francioli et al., 2021). Table 2 offers a comprehensive overview of the enhancement of diverse nanoparticles on various beneficial microbes within the rhizosphere, along with their affirmative impacts on plant growth.

Table 2 | Effect of various nanoparticles on rhizospheric microorganisms and microbial functions.


[image: A table detailing the impact of various nanoparticles on different plants, including particle size, plant name, application method, effects on rhizosphere microorganisms and their functions, effects on the plant, and references. Nanoparticles studied include silver, copper, iron, zinc, selenium, and silica, used on plants like rice, wheat, tomato, and others, primarily enhancing beneficial soil bacteria, nitrogen fixation, plant growth, yield, and nutrient uptake. References from studies are cited for each entry.]
[image: Table showing data on the effects of an 8 nm application of 50 mg/kg of a substance on Oryza sativa L. The treatment increases beneficial soil bacteria like Proteobacteria, enhances nitrogen fixation, reduces denitrification, and promotes rice growth and yield through tillering enhancement. Reference to Yue et al., 2023.]
Although numerous studies have extensively reported the positive effects of nanoparticles on plant and rhizosphere microbial community diversity, there are still some studies suggesting that the effects of nanoparticles on plants and microorganisms may exhibit dose-dependent effects, especially under high concentration conditions, where they may have inhibitory effects on plant growth and some rhizosphere microbial communities (Saghaï et al., 2022; Ren et al., 2024). For example, in plant growth experiments, low concentrations of ZnO nanoparticles promoted the growth of Vigna radiata and Cicer arietinum seedlings. Treatment concentrations of nanoparticles higher than 20 ppm and 1 ppm, respectively, would inhibit plant growth (Mahajan et al., 2011). At the same time, 1.2 mM low concentration ZnO nanoparticles can also promote the germination and metabolic activity of Solanum lycopersicum, while the germination and metabolic activity of plants above this concentration are inhibited (Singh et al., 2016). High concentrations of nanoparticles not only affect seed germination and plant growth rate, but also affect the level of edible nutrients. Low concentrations of TiO2 nanoparticles (50 mg/L) can increase the level of nutrients in Coriandrum sativum L., while high concentrations can reduce the decrease in edible nutrient content and inhibit growth. In terms of microbial activity, it usually follows a dose-dependent pattern, which is also related to the type of nanoparticles (Yang et al., 2021; Lin et al., 2022). Low dose nanoparticles may have beneficial effects on soil rhizosphere microorganisms by promoting metabolism and energy conversion. For example, treating Medicago truncatula with 5 mg/kg of Ag and 50 mg/kg of Zn, and Ti nanoparticles significantly increased the types and total amount of soil rhizosphere microorganisms (Chen et al., 2017). Low dose (10 mg/kg) ZnO nanoparticles promote the proliferation of Cyanobacteria in the rhizosphere of Lactuca sativa L., but 100 mg/kg ZnO has no significant effect on this colony under the same treatment (Xu et al., 2018). Therefore, excessive application of nanoparticles is likely to disrupt the balance of soil ecosystems. In order to fully utilize the benefits of nanoparticles and reduce their potential risks, it is necessary to conduct in-depth research on the interaction mechanism between nanoparticles and microorganisms, and explore reasonable usage methods and dosages. At the same time, it is necessary to strengthen the environmental risk assessment and supervision of nanoparticles to ensure their safe application.

There are also specific effects between microbes and soil enzymes (Philippot et al., 2024). A variety of soil enzymes play a crucial role in biochemical processes, facilitating the breakdown of complex organic matter and the mobilization of nutrients, while also influencing the functionality of certain microorganisms (Wen et al., 2024). In soils rich in organic matter, a greater abundance of microorganisms correlates with heightened enzyme activity, thereby enhancing the interaction between these two components (Donald et al., 2018). The utilization of ZnO nanoparticle to mung bean plants increased the diversity of soil phosphatase and phytase activities and microorganisms, and improved the level of phosphorus acquisition, while also enhancing soil health and nutrient cycle (Raliya et al., 2016). Studies have shown that the absorption of nitrogen, phosphorus and potassium in 200 mg/kg CNPs was significantly increased by 185%, 30.4% and 193%, respectively (Xin et al., 2022). The increase of plant roots was higher than that of branches, and carbon nanoparticles enhanced the activity of most soil enzymes, thus affecting the soil microbial function, thus indirectly regulating plant growth (Xin et al., 2022). These studies enable us to gain deeper insights into the ways in which nanoparticles can enhance plant nutrient absorption. However, the mechanisms underlying the complex interactions among nanoparticles, plant roots, and soil have yet to be fully investigated.





4 Conclusion

The above research results indicate that nanoparticles play an important role in promoting plant nutrient absorption and rhizosphere microbial communities. There is a close connection and synergistic effect between the two, jointly affecting the growth and development of plants, as well as the stability and sustainability of ecosystems. Nanoparticles can promote plant nutrient absorption by loading nutrients and accurately deliver nutrients to different parts of the plant, thereby improving nutrient utilization efficiency. Concurrently, nanoparticles also play a pivotal role in modulating rhizosphere microorganisms. They not only foster plant growth and enhance yield by combating pathogenic microorganisms that are detrimental to plants, but also alter the composition of the rhizosphere microbial community by modifying soil physical and chemical properties and root exudates, ultimately influencing the growth and development of plants.

Nanoparticles enhance plant growth and development by facilitating nutrient uptake, modulating rhizosphere microorganisms, and enhancing soil physiochemical properties, among other benefits, with a focus on their positive effects on plants. Further research into the interactions between roots and microbes in the rhizosphere influenced by nanoparticles will elucidate the mechanisms behind plant phenotypic alterations induced by nanoparticles. This will also shed light on the manipulation of the plant rhizosphere microbiome by nanoparticles, paving the way for more sustainable agricultural practices.

Various types of nanoparticles have played important roles in plant growth, but metal nanoparticles have the widest application prospects in agricultural production. They can serve as pesticide carriers, improve pesticide utilization, and reduce environmental pollution; At the same time, it can also serve as a trace element or plant growth regulator, promoting plant growth and improving yield and quality. In addition, metal nanoparticles have shown great potential in environmental monitoring and biosensing, providing timely and accurate environmental data for agricultural production. Although there are still some challenges in practical applications, such as assessing environmental effects and biosafety, as well as optimizing production costs, with the continuous development and improvement of nanotechnology, the application of metal nanoparticles in agriculture will become more extensive and in-depth, making important contributions to agricultural production and sustainable development.

Nanoparticles have the potential to directly influence plant growth and indirectly affect the surrounding ecological environment, thereby ensuring the sustainable development of agriculture and fostering the green revolution. Moving forward, it is imperative to conduct additional research to uncover the effects of nanoparticles (NPs) on higher plants, particularly crops and vegetables, when applied to soils with varying properties. This should include an exploration of the molecular mechanisms of NPs uptake, transformation, and its impact on growth parameters, as well as the interaction mechanisms between NPs and rhizosphere microbes. Concurrently, greater focus should be placed on the interplay among rhizosphere microbial communities, soil, NPs, and plants. Further studies are necessary to ascertain the beneficial effects of NPs. Moreover, long-term investigations into cereal crops and other key crops are essential to establish correlations between NP dosage, soil type, and ecological impacts. Such research is crucial for reducing reliance on chemical pesticides and fertilizers and for securing the future sustainable development of agriculture.

In summary, this review encapsulates the outcomes of nanoparticles in enhancing plant growth and modulating the rhizosphere microbiome via various mechanisms, offering a foundation for the synergistic integration of future research endeavors in the realms of nanoscience, sustainable agriculture, and environmental science.
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Introduction

Recent advancements in agricultural technology have highlighted the potential of eco-friendly innovations, such as plasma-activated water (PAW), for enhancing seed germination, growth, and biomass production.





Methods

In this study, we investigated the effects of PAW irrigation on young sorghum seedlings through phenotypic and transcriptional analyses. We measured growth parameters, including seedling height, stem thickness, and biomass, across five sorghum varieties: BTx623, Sodamchal, Noeulchal, Baremae, and Hichal. Additionally, we performed detailed analyses of stem cross-sections to evaluate the structural changes induced by PAW. Whole transcriptome analysis was conducted to identify differentially expressed genes (DEGs) and to perform Gene Ontology (GO) analysis.





Results

Phenotypic analysis revealed significant growth enhancements in PAW-treated seedlings compared to the control group, with notable increases in seedling height, stem thickness, and biomass. Stem cross-section analysis confirmed that PAW treatment led to the enlargement of primordia tissue, leaf sheath (LS1 and LS2), and overall stem tissue area. Transcriptomic analysis revealed that 78% of the DEGs were upregulated in response to PAW, indicating that PAW acts as a positive regulator of gene expression. Gene Ontology (GO) analysis further showed that PAW treatment predominantly upregulated genes associated with transmembrane transport, response to light stimulus, oxidoreductase activity, and transcriptional regulation. Additionally, an enriched AP2/EREBP transcription binding motif was identified.





Conclusion

These findings suggest that PAW not only enhances sorghum seedling growth through transcriptional regulation but also has the potential to optimize agricultural practices by increasing crop yield. The upregulation of genes involved in critical biological processes underscores the need for further exploration of PAW’s potential in improving the productivity of sorghum and possibly other crops.
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1 Introduction

Food shortages due to increasing population, climate change, and deteriorating environmental conditions have become a major issue that requires attention and immediate solutions (Anderson et al., 2020; Duchenne-Moutien and Neetoo, 2021). Traditionally, various strategies have been employed to improve agricultural production through physical and chemical methods, such as seed priming, stratification, scarification, disinfectants, fungicides, hormones, and fertilizers (Araújo et al., 2016; Kiiski et al., 2016; Pawar and Laware, 2018). However, these methods often require expensive equipment, are time-consuming, and are sometimes impractical. Furthermore, modern agriculture relies heavily on chemical fertilizers, pesticides, and other chemicals to ensure healthy growth and higher yields; however, these approaches lead to environmental pollution and health risks (Savci, 2012; Sun et al., 2018; Bijay-Singh and Craswell, 2021).

Emerging sustainable technologies, such as atmospheric cold plasma (CAPP), ion beams, and nanoparticles, are becoming increasingly popular in agriculture because of their advantages in seed sterilization, disease control, and enhancement of seed germination, seedling growth, and plant resistance to stress (Bourke et al., 2018; Usman et al., 2020; Mohammadi et al., 2021). Among these, CAPP technology has shown the potential to stimulate germination, improve cultivation and growth, and enhance secondary metabolite production (Thirumdas and Sarangapani, 2015; Gao et al., 2022; Li et al., 2022a).

The application of CAPP technology to improve crop yield contributes to plant growth during plant development, ultimately increasing plant yield, mainly reactive oxygen and nitrogen species (RONS). Plasma discharge produces high-energy electrons that collide with water and cause various reactions, including ionization and dissociation (Małajowicz et al., 2022). This phenomenon generates several reactive species. Reactive species are further classified as reactive oxygen species (ROS), hydrogen peroxide (H2O2), ozone (O3), superoxide (O2-), reactive nitrogen species (RNS), nitric oxide radicals (•NO), nitrogen dioxide radicals (•NO2), peroxynitrite (ONOO-), nitrite (NO2 -) and nitrate (NO3-). The generation of RONS from plasma discharge is considered the main factor that enhances crop growth and sterilization, and nitrate in RNS is a stable ion and the main source of nitrogen, which is a macronutrient for plant growth and development (Vidal and Gutiérrez, 2008; Vidal et al., 2015). It also affects seed germination, root and leaf growth, root structure, flowering time, branching, plant aging, and yield (Kant et al., 2008; Wang et al., 2021). Recent studies have shown that plasma treatment improves the yield and biomass of crops, including horticultural crops, mainly because of the nitrate content in the plasma-activated water (PAW) (Lamichhane et al., 2021; Lukacova et al., 2021).

Plasma treatments can be broadly categorized into direct and indirect applications, each having distinct impacts on plant growth and development. In direct plasma treatment, the plasma directly interacts with the target biological organisms, where charged particles and reactive species, including ozone, hydrogen peroxide, and OH radicals, immediately affect the biosamples. For instance, using a dielectric barrier discharge (DBD) device at 87 W power for 10 min promotes the growth of pea seeds, whereas treatment at 60, 80, and 100 W for 15 s enhances the vitality of tomato germination and growth (Jiang et al., 2018; Gao et al., 2019).

In contrast, indirect plasma treatments do not directly expose the samples to plasma. Instead, plasma-activated species in the gas phase or PAW are applied to the samples. These treatments activate signaling pathways that promote vegetative and root growth, seed germination, and plant reproduction without direct plasma exposure. For example, PAW produced using DBD with a gas mixture of Ar, Nr, and On has been shown to enhance seed germination and seedling growth in lettuce (Lactuca sativa L.) with a treatment of 24 kV for durations ranging from 5 to 20 min (Than et al., 2022). Similarly, plasma jet-treated water used for irrigation, with plasma treatment times of 15 and 30 min, has improved tomato seedling growth (Adhikari et al., 2019).

Moreover, combining direct and indirect plasma treatments can further enhance plant growth and seed germination. Studies using plate-to-plate double DBD for seed treatment and cylindrical double DBD for PAW irrigation have demonstrated significant growth promotion in crops such as radishes, tomatoes, and peppers (Sivachandiran and Khacef, 2017). Additionally, low-pressure glow air discharge at 100 Torr and 9 W for seed treatment, combined with PAW foliar application using a plasma jet at 16 W, has been shown to increase plant growth in rice (Rashid et al., 2021). These findings indicate that cold plasma technology is a versatile tool for enhancing plant development and seed germination. However, the effectiveness of plasma treatments is highly dependent on the specific conditions tailored to each plant species, suggesting that customized treatment protocols are necessary to optimize outcomes (Lyu et al., 2023).

The utilization of CAPP in agriculture requires an understanding of the fundamental mechanisms underlying the phenomenon of plasma in crops that promote plant growth and confirm the efficiency of plasma treatment (Priatama et al., 2022). Recent studies have investigated the molecular mechanisms, such as gene expression from single genes to whole transcriptome analysis, protein expression analysis, and epigenetic regulation, that underlie the effects of plasma on the regulation of seed germination, plant growth, and biomass (Adhikari et al., 2019; Javed et al., 2023; Gupta et al., 2024; Kaushik et al., 2024). Cell-level observations were performed after plasma treatment in addition to the molecular level. In Arabidopsis, tobacco, and peanuts, plant growth is promoted after exposure to PAW because of changes in cell size and number, which are key factors in determining tissue and plant size (Lee et al., 2020; Ka et al., 2021; Song et al., 2023). PAW irrigation has been shown to improve the expression of growth and defense response genes in tomatoes, and plasma treatment of Arabidopsis seeds promotes the expression of specific genes related to GSH metabolism, mitogen-activated protein kinase signaling, and plant resistance to pathogens (Adhikari et al., 2019; Cui et al., 2021). Recently, proteome and metabolome studies have demonstrated that PAW treatment of radish improves the accumulation of functional compounds (Gupta et al., 2024), and proteomic studies have examined the plasma treatment of African marigold seeds to generate differential 491 protein group, which are involved in ROS homeostasis, green plant photosynthesis, and energy metabolism (Javed et al., 2023). However, the molecular mechanisms underlying plasma-induced growth and biomass increment are largely undiscovered, particularly in crops with significant agricultural value and responsiveness to PAW, depending on crops according to the plasma device.

To understand the phenotypic sensitivity, modification at the cellular level, and molecular factors after PAW treatment among sorghum varieties, we performed phenotypic examination and transcriptome analysis of the stem tissue. Surface dielectric barrier discharge (sDBD) was used as a plasma-generating device to produce PAW dissolved in ionized gas in distilled water (DW). We found remarkable differences in biomass increments in sorghum seedlings in response to PAW treatment due to activated transcriptional regulation.




2 Materials and methods



2.1 Experimental setup for plasma device and PAW production

The PAW was generated using sDBD in gas-tight containers (Figure 1A), as previously described (Lee et al., 2020; Ka et al., 2021). The electrodes used consisted of stainless steel (power supply and ground) with an aluminum oxide plate (1 mm thick) between the electrodes. The sDBD reactor used in the experiment has two electrodes at the top, and its input power and driving frequency are 10 W and 17 kHz, respectively. Commercial fans (15-LED 120, Aone, China) were used to dissolve the plasma gas in water. Two liters of deionized water (DW) were treated with sDBD to obtain PAW25 (6 min), PAW50 (12 min), PAW100 (25 min), and PAW400 (90 min). We conducted the experiment under five treatment conditions (DW, PAW25, PAW50, PAW100, and PAW400). The nitrate content in PAW was directly proportional to the plasma exposure times. PAW25, PAW50, PAW100, and PAW400 correspond to exposure times of 6, 12, 25, and 90 minutes, respectively, as shown in Figure 1D. This correlation is based on our previous studies (Lee et al., 2020; Ka et al., 2021), where we systematically analyzed the impact of varying plasma exposure times on the chemical composition of PAW.

[image: Images show a setup and analysis of plasma-activated water (PAW) and its impact.   a) A device with a metallic frame setup. b) Close-up of the device with purple light. c) Schematic of the device showing components like electrodes and water. d-g) Graphs plotting nitrate, nitrite, hydrogen peroxide, and conductivity against different PAW exposures. h) Diagram of the experimental process from PAW generation to plant treatment and analysis through microscopy and RNA sequencing. The graphs and diagram indicate increased compound concentrations and conductivity with PAW treatment.]
Figure 1 | Plasma-generated device and overview of experimental design used for sorghum seedling growth. (A–C) Settings for producing PAW: (A) sDBD device (B) sDBD electrodes (C) Schematic diagram of sDBD device used for PAW generation. (D–G) Physicochemical properties of PAW: (D) NO2- concentration, (E) NO3- concentration, (F) Hydrogen peroxide (H2O2), and (G) conductivity. (H) Schematic diagram of plant growth under PAW irrigation during the developmental stage.




2.2 Physicochemical analysis of PAW

The chemical characteristics of PAW were analyzed by measuring the anion content using ion chromatography (ICS-2100, Thermo Dionex, Sunnyvale, CA, USA), which was conducted one day after generating PAW. To quantify the anions, a four-point method was used to measure the standard sample (Dionex Seven Anion Standard II [in DW]) at concentrations of 5, 10, 50, and 100 mg/L, and the pH and conductivity were determined using an Orion Versa Star Pro (Thermo Scientific, Waltham, MA, USA). The pH was adjusted to 5.6-5.8 using 0.1 N and 1 N KOH solution to ensure it is suitable for plant growth. Hydrogen peroxide (H2O2) was measured using a Humas HS-H2 O2 -L kit (Humas, Daejeon, Republic of Korea). All measurements were performed in triplicates.




2.3 Plant materials and growth conditions

In this study, we used the sorghum varieties Sodamchal, Noeulchal, Baremae, and Hichal, obtained from propagation in the field (National Institute of Crop Science, Miryang, Republic of Korea). Seed propagation and all experiments were performed following common agricultural practices and complied with relevant institutional regulations. The experiment was conducted in a growth chamber (GC-S, Jeiotech, Seoul, Rep. of Korea) in light 16 h and dark 8 h conditions with 26 °C at 60-70% humidity. For seedling phenotypes, sorghum seeds were germinated on filter paper under the appropriate treatment conditions (DW, PAW). Seedling phenotypes were measured on the 20th day after sowing.

For the phenotypic comparison, seeds were germinated by laying paper on a plate and adding 5 mL of each solution for each condition; on the 2nd day after germination, the seeds were transplanted into the soil and harvested by growth for 20 days. Throughout the experiment, day and night temperatures and relative humidity were maintained at 26°C and 60%, respectively. Sorghum plants were regularly irrigated with PAW at all growth stages to ensure consistent treatment.




2.4 Leaf phenotype and chlorophyll content measurement

Sorghum leaves were collected from the fourth leaf (or the third leaf if the fourth was less developed) of the plants 20 days after sowing. The leaves were fixed using A4 double-sided tape and scanned with a scanner, and the leaf characteristics (leaf area, length, and width) were measured using ImageJ software version 1.54k (https://imagej.net/ij/).

To measure total chlorophyll content in leaves, the final fully expanded leaves were cut, weighted and ground in tissue homogenizer. The chlorophyll was extracted from leaf by 80% acetone, incubated on dark and repeated until all chlorophyll was dissolved. Total chlorophyll content was measured using a spectrophotometer (Hach DR6000, Loveland, CO, United States), with absorbance readings taken at A665 and A648. Biological replicates consisted of at least five individual plants for each treatment condition (DW, PAW25, PAW50, PAW100, PAW400).




2.5 Microscopy observations

After cutting the stem–root interface of the sorghum seedlings, a portion approximately 4 cm above the bottom of the stem (meristem location) was cut using a razor blade. It was directly stained with 0.05% toluidine blue O for approximately 1 min and then washed 3-4 times with DW. Samples were observed under a Nikon SMZ18 optical microscope (Nikon, Tokyo, Japan) using imaging software (NIS-Elements, Nikon, http://www.microscope.healthcare.nikon.com/). Size and area measurements of the cut biological material were performed using the ImageJ software.




2.6 Total RNA extraction and library preparation

Total RNA was isolated from the shoot apical region of sorghum, specifically from a segment spanning 0.5 cm to 1 cm from the root-shoot junction from 20 days seedlings. The isolation was performed on seedlings cultivated under both DW and PAW100 conditions. Fresh seedlings were immediately frozen and pulverized in liquid nitrogen. Subsequently, RNA was extracted using the TRIzol Plant RNA Extraction Kit, following the manufacturer’s standard protocol.

Library preparation was initiated for RNA sequencing by assessing the quality and quantity of the extracted RNA using Bioanalyzer 2100. High-quality RNA was used to construct sequencing libraries. This process involves RNA fragmentation, synthesis of the first and second cDNA strands, end repair, A-tailing, adapter ligation, and enrichment of the library through PCR. The prepared libraries were quantified and validated for quality before sequencing on an Illumina high-throughput sequencing platform. The RNA-seq reads were deposited in the NCBI Sequence Read Archive under BioProject accession PRJNA1173527.




2.7 RNA sequencing analysis and differential expression

RNA sequencing was performed to investigate gene expression patterns and identify differentially expressed genes (DEGs) under specific experimental conditions. Raw RNA-Seq reads were aligned to the Sorghum bicolor reference genome, specifically version NCBIv3, using Kallisto, a pseudo-alignment-based tool that efficiently estimates abundance levels and provides counts per million (CPM) and transcripts per million (TPM) values (Bray et al., 2016). The reference sequence, designated as Sorghum_bicolor, Sorghum_bicolor_NCBIv3.dna.toplevel.fa, and the corresponding annotation files Sorghum_bicolor.Sorghum_bicolor_NCBIv3.57. gff3 were accessed and downloaded from the Ensembl Plant database (Cunningham et al., 2022).

Differential expression analysis was subsequently conducted using iDEP version 1.13, installed locally, with Ensembl Release 107 integrated for genomic data annotation (Ge et al., 2018). The iDEP platform facilitated the efficient handling of data preparation, normalization, and statistical analysis using the DEseq2 1.44.0 package in R 4.4.0 (Love et al., 2014). DEGs were defined based on criteria including a 1.5-fold change and a false discovery rate (FDR) threshold of < 0.05. Hierarchical clustering was used to analyze the gene expression patterns, as assessed by log2TPM, across both groups.




2.8 GO analysis

GO analysis was also performed using iDEP, which incorporates ShinyGO (version 0.77) for functional enrichment analysis (Ge et al., 2020). This analysis included both enrichment and GO network analyses, which enabled the identification and visualization of enriched GO terms across biological processes (BPs), cellular components (CCs), and molecular functions (MFs). After identifying the significant GO categories, we isolated and extracted expression values (TPM) using the dplyr package (version 1.1.4). These values were then used to generate heatmaps. Heatmap analysis of the gene expression patterns was performed using the pheatmap package (version 1.0.12) in R in the RStudio environment (version 2024.04.0, Build 735).




2.9 Promoter motif analysis

To identify conserved motifs among the promoter sequences of highly enriched genes, we collected 2000 base pair sequences upstream of the transcription start site from 285 genes associated with significantly enriched GO categories across BPs, CCs, and MFs. The MEME Suite (version 5.5.5) was used for motif discovery (Bailey et al., 2015). The analysis was performed with the following parameters: the top six motifs were displayed, with a motif length of 20, and all other settings were set to default. For visualization, the identified motifs were further analyzed using TBtools [https://github.com/CJ-Chen/TBtools] (Chen et al., 2020) (Chen et al., 2020). Subsequently, the conserved motifs were subjected to a motif comparison analysis using TomTom (version 5.5.5), a motif comparison tool that aligns and compares discovered motifs against known motif databases. The comparisons were based on the Arabidopsis thaliana DNA Affinity Purification Sequencing (DAP) study, as reported by O’Malley et al. (2016).




2.10 Statistical analyses

GraphPad Prism 9.0 (GraphPad Software, Inc., San Diego, CA, United States) were used for the statistical analysis. Unless described in the figure legends the statistical analysis and comparison among samples were made using one-way ANOVA followed by Tukey’s HSD correction for multiple comparisons. If the P-value was less than 0.05, the different uppercase letters denoted significant differences among samples. The data presented as mean ± SD.





3 Results



3.1 Preparation of PAW

To understand the effects of PAW on early seedlings of the sorghum variety, PAW was produced using an sDBD device with various plasma exposure times (Figures 1A–C). The physical and chemical properties of PAW change depending on the plasma treatment time of the sDBD device (Ka et al., 2021). Using sDBD, we previously reported that the main molecular spectra, including the nitrogen primary negative system (N2 FNS) and nitrogen secondary positive system (N2 SPS) in the ranges of 280-296 and 390-440 nm, were detected by optical emission spectroscopy (OES) analysis during air discharge (Ka et al., 2021). The standardization of PAW25, PAW50, PAW100, and PAW400 were designated based on their nitrate contents, which were 25, 50, 100, and 400 correspond to exposure times of 6, 12, 25, and 90 minutes, respectively. In detail, the NO2- and NO3- contents increased proportionately with the duration of plasma exposure time (Figures 1D, E, Supplementary Figure 1), whereas H2O2 was hardly detected regardless of the PAW exposure time (Figure 1F). Similar to the nitrite and nitrate contents by PAW concentration, the conductivity was found to increase proportionally with increasing nitrate concentration (Figure 1G). Figure 1H shows a schematic diagram of the experimental process. First, PAW was prepared using sDBD on DW by plasma treatment, and IC analysis was performed to confirm the PAW content. After confirming the presence of DW and PAW, irrigated sorghum was grown, and 20-day-old plants were sampled and subjected to microscopic analysis and RNA sequencing.




3.2 PAW effect on sorghum varieties

To evaluate the effect of PAW on sorghum at the seedling stage, various PAW concentrations were tested in a preliminary experiment, including PAW25, PAW50, PAW100, PAW200, PAW300, and PAW400. The results showed that biomass consistently increased with PAW25, PAW50, and PAW100. However, PAW200 and PAW300 resulted in similar or slightly decreased growth compared to PAW100, although both were still greater than DW. A decline in growth relative to DW was observed at PAW400. Based on these findings, we selected PAW25, PAW50, and PAW100 as concentrations that enhance biomass, whereas PAW400 was chosen for its inhibitory effect (Supplementary Figure 2).

To further examine the effect of PAW on different sorghum varieties, we selected five varieties: BTx623, Sodamchal, Noeulchal, Baremae, and Hichal. Plant height, stem thickness, and biomass were measured to assess their sensitivity to PAW treatment (Figures 2A–D). Additionally, we analyzed the increase in these phenotypic traits following PAW irrigation compared to DW (Figures 2E–G). After 20 days of PAW irrigation, the sorghum varieties exhibited differential growth responses at PAW25, PAW50, PAW100, and PAW400 concentrations (Figure 2).

[image: A composite image showing a grid of plant images and graphs. The top section (a) displays plants of various varieties under different conditions labeled DW, PAW25, PAW50, PAW100, and PAW400. Each section showcases growth differences. Below, graphs (b-g) present data on plant height, stem thickness, and biomass, with percentage increases and statistical annotations. Each graph compares different plant varieties and treatments, highlighted by color coding for each condition.]
Figure 2 | PAW increases growth in the early developmental stages of sorghum varieties. (A) Seedling phenotypes in PAW treatments at different concentrations compared to DW. Scale bar: 5 cm. (B–D) Quantification of seedling phenotype and biomass (B) plant height, (C) stem thickness, (D) plant biomass from 25 plants at the seedling stage. (E–G) Comparison of increase in phenotypic data (E) plant height, (F) stem thickness, and (G) biomass (DW vs. PAW). Bar plots represent mean ± standard deviation (SD), and values are from at least three replicates for each, and different letters indicate statistically significant differences (ANOVA, Tukey’s HSD, P ≤ 0.05). Seedlings were grown in soil for 20 days. All phenotypes were recorded 20 days after sowing.

In terms of plant height, BTx623 showed a proportional increase with PAW25, PAW50, and PAW100, correlating with nitrate concentration. However, the Sodamchal, Baremae, and Hichal varieties showed no response at PAW25, the lowest nitrate condition. In contrast, plant height was significantly inhibited in all varieties under PAW400 (Figures 2A, B), with PAW100 producing the tallest plants among the five varieties (Figures 2A, B). In addition, stem thickness in BTx623 increased even at the lowest concentration of nitrate, and progressively increased to PAW100, depending on the nitrate concentration. Interestingly, PAW100 exhibited the highest stem thickness across most varieties, whereas PAW400 exhibited the lowest stem growth across all varieties (Figures 2C, F).

All sorghum varieties gradually responded to biomass under low nitrate conditions in PAW25 and PAW50 and had a robust reaction in PAW100 (Figures 2D, G). They decreased the biomass in PAW400, which had the highest nitration water content. Additionally, leaf phenotypes (leaf area, leaf length, leaf width, and fully expanded leaf number) and chlorophyll content were measured in response to PAW concentrations across all sorghum cultivars (Supplementary Figure 3). In all cultivars, leaf area gradually increased from PAW25 to PAW100, and in four cultivars, except Noeulchal, PAW400 showed a decreased leaf area compared to DW (Supplementary Figure 3A). Leaf length slightly increased to nitrate concentration from PAW25 to PAW100, similar to leaf area (Supplementary Figure 3B). Leaf width increased gradually from PAW25 to PAW100 in BTx623 and Noeulchal (Supplementary Figure 3C). The number of fully expanded leaves followed a similar pattern across all cultivars, with the highest values ​​at PAW50 and PAW100 and the lowest values ​​at DW and PAW400 (Supplementary Figure 3D). Chlorophyll content varied across cultivars and nitrate concentrations, and no significant correlation was observed (Supplementary Figure 3E). The PAW 100 treatment of young sorghum seedlings served as the optimal PAW condition for the highest plant height, stem thickness, and biomass, indicating that sorghum plants exhibit distinct physiological responses when exposed to varying amounts of PAW. Among the sorghum varieties, the strongest response to PAW in terms of plant biomass was observed in BTx623, whereas the other varieties showed weak phenotypic sensitivity. These results imply that PAW treatment regulates the growth of the BTx623, Sodamchal, Noeulchal, Baremae, and Hichal sorghum varieties, which exhibit variable phenotypic sensitivities to PAW exposure time.




3.3 Sorghum stem cross-section phenotype and area calculation

The effect of PAW treatment on specific sorghum tissues was investigated at the cellular level. Phenotypic experimental results from sorghum varieties confirmed the effect of PAW on plant height and stem thickness, resulting in increased biomass in sorghum. We chose stem tissue to further examine the effect of PAW treatment on sorghum tissue and its transcriptome profile because of the strong stem thickness phenotype. Stem tissues included shoot apical meristem (SAM) tissues sampled from the DW and PAW100 treatment groups (Figure 3A). Under DW conditions, the three forms of dissected tissues were the leaf sheath (LS), leaf primordia (P), and SAM; the P and SAM tissues were identified as primordial tissues (Figure 3B). In the case of DW, the location of the tissue type was organized in the order of SAM, P 1-3, and LS 1-3 from inside to outside. There were no significant differences in the order of tissues or anatomical differences between DW and PAW100. However, the PAW100 condition had an overall larger tissue area, and the primordia tissue, including SAM, P1, P2, P3, and P4, of stem tissue clearly validated that PAW100 had substantially larger stem tissue than DW (Figures 3B–E). Specifically, the combination of all tissue areas, primordia tissue, LS1, and LS2 areas was significantly increased in PAW100 condition, 124% in primordia tissue, 27% in LS1, and 42% increment in LS2, respectively (Figure 3F). As a result, the overall stem tissue area was enhanced, and sorghum primordia were the most responsive stem tissues to PAW100 treatment. (Figure 3D).

[image: Illustration of a plant stem with several cross-sections labeled as b, c, d, and e. Panels b and c display stem sections with marked primordia and tissue structures, including P1 to P4 and SAM. Panels d and e show similar cross-sections under different conditions (DW and PAW100). Panel a shows the whole plant with a sampling tissue area indicated. Charts f and g provide bar graphs comparing stem tissue areas for different conditions, highlighting differences in tissue types.]
Figure 3 | Comparison of stem cross sections of seedlings grown under PAW treatment conditions. (A) BTx623 seedling phenotype at 20 days in sorghum. Red box: section tissue. (A, B) Phenotypic comparison of DW and PAW100 stem sections. (D, E) Comparison of phenotypes in primordia tissue stained with toluidine blue (TBO, blue). Left: treatment DW, right: treatment PAW100. SAM: shoot apical meristem, P: leaf primordia, LS: leaf sheath, red circle: primordia tissue. Photos were taken 20 days after sowing. Scale bar: (B, C) 1 mm and (D, E) 2 mm. (F, G) Quantification of stem tissue area at 20 days after sowing. Bar plots represent mean ± standard deviation (SD), and values are from at least three replicates for each (Student’s t-test, ****P < 0.0001). All phenotypes were recorded 20 days after sowing.




3.4 RNA sequencing analysis in DW and PAW100

To understand the transcriptional regulation underlying plasma-induced sorghum growth enhancement, RNA sequencing was performed on six samples of BTx623 treated with DW and PAW100. As shown in Figures 2, 3, the responsiveness to PAW between DW and PAW100 was distinct in the stems of the BTx623 inbred variety, which served as the current reference genome for sorghum (Figures 2–4A). Total reads mapped to reference with mapping rate at 89-93% (Supplementary Table 1). The total raw read counts for each library of stem samples in DW and PAW100 are displayed in a bar graph, with slight variations in library size (Supplementary Figure 4A). To effectively control the mean-dependent variance, we performed a normalized log (rlog) transformation using the DESeq2 package (Figure 4B). Principal component analysis (PCA) was performed on the samples to evaluate the sample variability. Principal component (PC1) explained 42.61% of the variance, and the second principal component (PC2) accounted for 15.76%, effectively distinguishing differences between the treatment groups. PCA demonstrated close clustering of the individual samples within triplicates and a distinct separation between DW and PAW100 treatments along two principal axes (Figure 4C), indicating repeatability of the RNA-seq data. The 35,567 sorghum genes mapped to the RNA-seq library were normalized using TPM (transcripts per kilobase million). Selection criteria were applied, requiring at least a 1.5-fold change, a P-value of less than 0.05, and a false discovery rate (FDR) < 0.1. Identified 1,650 DEGs between the DW and PAW100 treatment groups, with 1,293 upregulated genes (78.3%) and 357 (21.6%) downregulated genes in PAW100 compared to DW was depicted in volcano plots of Supplementary Figure 4B and the number of DEGs in Figure 4D. The resulting heatmap, shown in Figure 4E, demonstrates the clustering of the samples from individual replicates by the PAW treatment, indicating consistency across replicates and reflecting the response to the PAW100 treatment.

[image: Panel a shows side-by-side images of plant growth in different conditions, DW and PAW100. Panel b presents a box plot comparing the transformed expression distribution for DW and PAW100 groups. Panel c illustrates a principal component analysis with clusters for DW and P100 data. Panel d features a bar graph indicating the number of differentially expressed genes with 1,293 upregulated and 357 downregulated. Panel e displays a heatmap of gene expression levels for DW and PAW100 samples, highlighting differences in expression patterns.]
Figure 4 | RNA-seq analysis from sorghum seedling stem tissue treated with PAW. (A) Seedling phenotypes used for RNA sequencing. Left: total seedling phenotypes (scale bar: 10 cm), right: individual seedling phenotypes (scale bar: 3 cm). Photos were taken 20 days after sowing. (B) Distribution of transformed expression in all RNA-seq samples. (C) Principal component analysis individual replicates among samples. (D) Identified differentially expressed genes (DEGs) in transcriptome of DW vs PAW100. (E) Hierarchical clustering and heat map of differentially expressed genes based on the expression levels (TPM). Heatmap from raw TPM and converted to Z-scores.




3.5 GO analysis

Following the identification of DEGs between DW and PAW100 treatments, GO analysis was performed to elucidate the biological implications of the DEGs (Supplementary Figure 5). The analysis revealed significant enrichment of the top 10 GO terms for BPs, CCs, and MFs (Figure 5A, Supplementary Figure 5). Furthermore, in BPs, transmembrane transport, mRNA transcription, and response to light stimulus were highly enriched (Figure 5A); CCs were mainly cell periphery and plasma membrane-related GO was enriched (Supplementary Figure 6A); and in MFs, several groups of oxidoreductase activities such as tetrapyrrole binding, monooxygenase activity, heme binding, and iron ion binding were highly enriched. In addition, the DNA-binding transcription factor and transmembrane transporter activity groups were enriched (Supplementary Figure 6B).

[image: Figure displaying various analyses related to gene expression and enrichment. Panel (a) shows a bar chart with gene ontology terms related to different biological processes, depicted by gene counts and fold enrichment. Panel (b) is a bubble plot illustrating the relationships between these processes. Panels (c) to (i) contain heat maps showcasing gene expression data across various biological functions, including transmembrane transport, response to light stimulus, and plasma membrane. Each heat map compares different conditions, indicated by color gradients from blue to red.]
Figure 5 | Gene ontology analysis of PAW transcriptome. (A) Bar plot of GO Biological Processes. (B) Biological Processes GO-network. The size of the dots represents the number of genes associated with each GO term, whereas the color gradient indicates the fold enrichment; a more saturated colors represent the most highly enriched categories. The thickness and shade of the lines denote the strength of interactions between GO terms. (C–G) Heatmap representation of gene expression profiles from the PAW treatment transcriptome, categorized by enriched Gene Ontology (GO) terms: (C–E) Biological Processes “Transmembrane transport” and “Response to light stimulus;” (F, G) shows Cellular Components “Plasma membrane” and “Cell wall;” whereas (H, I) represent Molecular Functions “Transcription regulator activity” and “Oxidoreductase activity.” Each panel depicts genes that are highly enriched and upregulated in response to PAW treatment, with color gradients indicating expression levels across different treatment. .

Additionally, we performed GO network analysis to gain further insight into the overlapping functional relationships and interactions among the enriched gene sets. The enriched network module in the response to the stimulus group was interconnected with other GO terms including responses to radiation, light stimulus, to abiotic stimulus, mRNA transcription, and photosynthesis light harvesting in photosystem I (Figure 5B). Similarly, these networks were also detected in CCs and MFs categories, such as the network of cell periphery involved GO module in CCs, and oxidoreductase activity involved module in MFs (Supplementary Figures 6C, D). These networks highlight the interplay between different GO terms within the same category of BPs, CCs, and MFs.

Because the upregulation pattern was prominent, we isolated the upregulated genes that were enriched by PAW treatment, especially where the GO-network module showed high interaction among GO-term. As shown in Figure 5C, genes involved in transmembrane transport were strongly upregulated, suggesting an enhanced capability for nutrient and ion transport across cellular membranes, which is a key factor for optimal plant growth and function. Furthermore, genes associated with response to light stimuli showed increased expression, which is likely to facilitate adaptations in photosynthetic efficiency and light absorption, which are essential for energy management and biomass production (Figure 5D). In addition, the mRNA transcript levels were enhanced by PAW treatment (Figure 5E). In the CCs, the expression levels of genes related to the plasma membrane and cell periphery were significantly increased, indicating cellular modifications aimed at increasing structural integrity and biomass accumulation (Figures 5F, G). Moreover, in the GO MFs category, upregulation observed in the transcription regulator activity category underscored the activation of critical gene expression regulatory mechanisms that manage stress responses and developmental processes (Figure 5H). Similarly, genes involved in oxidoreductase activity, which is crucial for the oxidative stress response and maintenance of redox homeostasis, also showed marked upregulation, enhancing plant resilience against environmental stressors (Figure 5I).




3.6 Binding motif analysis of enriched GO categories and Transcription Factor (TF) expression

Based on GO analysis, we observed several significantly upregulated GO terms. To further explore the regulatory mechanisms underlying these observations, we performed promoter motif analysis which identified six distinct binding motifs within these promoter regions with varying levels of presence across the gene set (Figure 6A and Table 1). The most prominent motif, AP2/ERBEP (Motif 1), was detected at 234 sites and matched 56 known motifs from the O’Malley et al. (2016) database. This motif was present in 82.11% of the analyzed genes, suggesting its widespread role in regulating gene expression under the influence of PAW. Another significant motif, C2H2 (motif 2), was found in 224 promoter sites with 75 matches and was present in 78.6% of the genes. Other identified motifs, such as C2C2 (motif 3), AP2/ERBEP (motif 4), G2like (motif 5), and C2C2gata (motif 6), were present in 57.54%, 54.74%, 23.86%, and 10.88% of the genes, respectively, highlighting the diverse regulatory elements that may contribute to the observed highly expressed genes.

[image: Panel a shows motif locations across sequences labeled by identifiers, with motifs represented by colored bars. Panel b depicts a heatmap with hierarchical clustering of gene expression, featuring a gradient from blue to red indicating expression levels from low to high. Labels are on the right corresponding to genomic names and transcription factors.]
Figure 6 | PAW treatment activates TF gene expression. (A) Representative binding motifs from isolated GO categories gene. (B) Heatmap of TF gene expression in Sorghum under PAW treatment. The heatmap illustrates the dynamic regulation of TF genes, with color gradients representing upregulation (red) and downregulation (blue) across various treatment conditions.

Table 1 | Motif analysis of isolated promoters of highly enriched genes.


[image: Table displaying conserved motif sequences with six entries. Each entry includes a sequence logo, the number of sites, matches, top matched motifs, and percentage. The sequences are matched to motifs like AP2/EREBP, C2H2, and others with varying percentages from 10.88% to 82.11%. Based on O'Malley et al. (2016).]
To examine the regulatory role of PAW in sorghum gene expression, particularly because of the predominant trend of upregulated genes, we focused on the TF family. TFs are crucial for regulating gene expression in various BPs. Using data from the Plant Transcription Factor Database (https://planttfdb.gao-lab.org/index.php?sp=Sbi), which identified 2,654 TFs (1,859 loci) in sorghum, we analyzed their expression under DW and PAW100 treatments. Our findings revealed that 144 of these TF genes significantly exhibited differential expression, 82% upregulated and 18% down-regulated, in response to PAW treatment compared to the control (Figure 6B). Among these, TF families, including 19 Ethylene Response Factors (ERF), 15 basic helix–loop–helix (bHLH), and 14 MYB, were notably differentially expressed in the PAW-treated group.





4 Discussion

In this study, we investigated the effects of PAW irrigation on transcriptional regulation during early sorghum growth stages, focusing on the sensitivity of the PAW response of sorghum varieties in terms of plant height, stem thickness, and biomass. Determining the ideal PAW conditions is essential for productive seedling growth, as various sorghum varieties exhibit unique responses to PAW at various concentrations. Our molecular analyses revealed that PAW100 irrigation predominantly activated the expression of genes involved in transmembrane transport, response to light stimuli, mRNA transcription, plasma membrane function, cell wall formation, transcriptional regulatory activity, and oxidoreductase activity. Notably, the AP2/ERBEP motif was highly enriched among the genes upregulated under PAW conditions.

Plants irrigated with PAW promoted growth and biomass, with the PAW100 treatment exhibiting the greatest enhancement. The improved growth after PAW irrigation was likely due to the elevated concentrations of RNS, particularly nitrate (NO3-), produced by sDBD used in PAW preparation. RNS, such as NO3-, influences several physiological processes, including seed germination and overall plant growth (Wang et al., 2021). Previous studies using OES have shown that nitrogen-related radicals NO2- and NO3- are abundant in PAW and are produced when gaseous nitrogen interacts with oxygen atoms, hydroxyl radicals, and water molecules (Lee et al., 2020; Ka et al., 2021). In sorghum, proper PAW irrigation positively impacts plant biomass, whereas longer exposure of plasma to water (PAW400) inhibits sorghum growth owing to excessive NO3- concentrations. This phenomenon was also found in other plants; when irrigated with plasma-treated PAW for a long period of time, plant growth was not promoted compared to that in the control group (Adhikari et al., 2019; Lee et al., 2020).

Among the various phenotypic traits examined in the five cultivars and four different PAW conditions, stem thickness was the most significantly affected by PAW treatment in all cultivars. The increase in stem thickness observed in Figures 2E–G was closely correlated with the overall increase in biomass, suggesting that stem thickness may be a key indicator of the enhanced growth response under PAW treatment. Given the pronounced differences in stem thickness, we conducted further molecular studies focusing on these tissues to better understand the underlying mechanisms. The cross-section of the basal stem tissue, which contains the SAM and primordia, confirmed the phenotypic differences under PAW irrigation (Figures 3A–G). The correlation between stem thickness and biomass accumulation underscores the importance of this parameter in evaluating the effectiveness of PAW treatments on sorghum growth.

GO analysis of the DEGs revealed significant enrichment in BPs essential for plant stress responses and metabolic flexibility. The upregulation of transmembrane transport genes indicates an enhanced capability for nutrient uptake and ion exchange, which are crucial for optimizing metabolic processes essential for growth and development. Several nitrogen and sugar transporter genes such as NRT1.5 (NITRATE TRANSPORTER 1.5), AMT1;4 (AMMONIUM TRANSPORTER 1;4), SWEET6, SWEET12 were highly enriched and distinctly expressed in PAW treatment. These observation aligns with studies in other crop species, where enhanced nutrient transport capabilities have been linked to improved growth outcomes under various stress conditions (Eom et al., 2015; Fan et al., 2021; Pandey et al., 2021). The upregulation of transmembrane transport genes indicates an enhanced capability for nutrient uptake and ion exchange, which are crucial for optimizing metabolic processes essential for growth and development. The increased expression of genes associated with the light response genes such as CAB1 (CHLOROPHYLL A/B BINDING PROTEIN 1), LHCA4 (LIGHT-HARVESTING CHLOROPHYLL-PROTEIN COMPLEX I SUBUNIT A4) likely reflects the effect to the photosynthetic machinery, optimizing energy efficiency and potentially leading to increased biomass accumulation (Friedland et al., 2019; Sekhar et al., 2019; Liu et al., 2023). Furthermore, we observed, enriched genes in GO oxidoreductase activity which have been known to have various function such as oxidative stress response (TT7), wax synthesis for defense mechanism (CER3), development and catalyze hormone biosynthesis (KAO2) (Regnault et al., 2014; Cabello-Hurtado and El Amrani, 2024; Huang et al., 2024). Oxidative stress is a common challenge in plants exposed to abiotic stresses such as drought, salinity, and extreme temperatures, which can severely impede plant growth and productivity. The enhanced expression of these genes in the PAW-treated seedlings implied a greater intrinsic capacity to mitigate oxidative damage, thus maintaining cellular integrity and function during stress exposure.

Our motif analysis revealed that Motif 1, related to the AP2/ERBEP family, was enriched in approximately 82.11% of the upregulated genes, highlighting its potential role in regulatory mechanisms under PAW treatment. The high prevalence of the AP2/ERBEP motif suggests that this TFs family plays a significant role in mediating stress response and developmental regulation in sorghum. The AP2/ERF (APETALA2/Ethylene-Responsive Element Binding Factor) family, often grouped as AP2/ERBEP, is well-known for its involvement in plant stress responses, including drought, salinity, and cold stress (Nakano et al., 2006; Liu et al., 2023). The strong correlation between the AP2/ERBEP motif and the upregulation of transmembrane transport genes suggests that these TFs may enhance the ability of plants to transport nutrients and ions across cellular membranes, which is crucial for maintaining growth and function under stress conditions. This finding aligns with previous studies demonstrating the role of AP2/EREBP TFs in mediating responses to various environmental stimuli (Vidal et al., 2010; Singh et al., 2022). The high enrichment of the AP2/EREBP motifs suggests that PAW may enhance the transcriptional activity of genes by recognizing stress inducers involved in nitrate uptake and metabolism, thereby promoting plant growth.

Because the majority of DEG were upregulated, we further examined TF gene expression. Upon examining the transcriptional levels of TF genes, it was discovered that 82% of TFs had an up regulated during PAW irrigation. In particular, TFs that regulate transcription showed increased expression when sorghum was exposed to PAW, indicating a positive regulatory role for sorghum stem DEGs. Several TF families known to play important roles in growth, biomass accumulation, and stress responses were significantly affected, suggesting that PAW may modulate key regulatory pathways that control plant development and adaptability to environmental stress.

Among the affected TF families, ERF, bHLH, MYB, and NAC were the most notably enriched. These families are known for their roles in plant growth, development, and stress response. For instance, AP2/ERF are well known for their involvement in mediating responses to environmental stresses, such as drought, salinity, and cold (Liu et al., 2023; Ma et al., 2024). MYB TFs are involved in the regulation of secondary metabolism, cell-fate determination, and responses to biotic and abiotic stressors (Dubos et al., 2010; Yang et al., 2022). Similarly, NAC TFs play critical roles in cell division, expansion, and stress signaling (Olsen et al., 2005; Nuruzzaman et al., 2013). The enrichment of these TF families in response to PAW suggests that PAW may enhance these fundamental processes, thereby contributing to improved growth and stress resilience.

Plasma generates RONS in water, including nitrates, and is an effective treatment for enhancing nutrient availability and uptake. Nitrate is a crucial macronutrient for plant development and influences processes such as seed germination, root and leaf growth, and overall yield. Previous studies have shown that nitrate availability can directly affect the expression of nitrate-responsive genes, many of which are regulated by AP2/EREBP TF (Li et al., 2022b). This supports our hypothesis that the PAW-induced upregulation of these TFs is a key mechanism driving the observed biomass increase in sorghum seedlings. Moreover, the broader impact of PAW on various TF families indicates that PAW treatment may trigger a network of regulatory pathways, enhancing not only growth, but also the ability of the plant to withstand environmental stresses. This response underscores the potential of PAW as a sustainable agricultural practice, providing a viable alternative to chemical fertilizers or priming agents for seedlings.

Although numerous case studies have been conducted on the enhancement of plant biomass and growth by PAW, few tissue-specific findings have been observed in plants. Here, we found that PAW treatment altered the expression of a substantial number of genes, including TF, through conserved key regulatory motifs, such as AP2/EREBP, thereby modulating crucial biological pathways in sorghum. These physiological and molecular findings provide strong evidence for the potential of PAW as a growth-promoting alternative in agriculture, primarily through the induction of stress- and development-related pathways. PAW irrigation has the potential to significantly boost agricultural productivity by modulating transcriptional activation, and consequently improving early plant development.

Investigating the effects of PAW irrigation on crop yield and quality is important for field application of PAW in sustainable agriculture. Future studies on the molecular mechanisms that enhance harvesting and boost natural product production in a range of plant species should explore the potential benefits of PAW irrigation. This research contributes to improving the application of eco-friendly PAW technology to crops, ensuring environmental sustainability by applying it to agriculture, and increasing agricultural production.
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Seeking effective improvement agent control measures to enhance the photosynthetic physiological traits and yield levels of spring maize is crucial for efficient green agriculture in arid regions. Therefore, this study was conducted to clarify the effects of coupling improvement agents under magnetoelectric activated water irrigation conditions on the photosynthetic physiological traits, grain nutrients, and yield of spring maize in the arid region of northwest China. Field experiments were set up with three concentrations of growth regulators: 400 times (G1), 500 times (G2), and 600 times (G3), and three amounts of Bacillus subtilis: 15 kg/ha (R1), 45 kg/ha (R2), and 75 kg/ha (R3), along with a control group CK, making a total of 10 treatments applied in the field experiment. The results indicate that under magnetoelectric activated water irrigation, coupling improvement agents significantly enhance the photosynthetic traits, grain nutrients, and yield of spring maize in arid areas. With the coupling of improvement agents, the rectangular hyperbola correction model showed a good fit for the light response curve (R2>0.992). Pnmax was significantly increased (7.37%~37.46%) and was highly correlated with yield (P<0.01). The entropy-weight TOPSIS comprehensive evaluation analysis found that the G2R2 treatment is the optimal improvement agent coupling measure for efficient production of spring maize in arid regions. This treatment yielded 12.68 t/ha and increased 100-kernel weight, grains per spike, and soluble sugar content by 21.3%, 8.22%, and 63.81%, respectively, representing the best balance of quality and high yield. The results of this study provide theoretical references and technical support for the high-quality and efficient production of spring maize in China’s arid regions.
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1 Introduction

In an era of rapid global economic development, increasing social pressure, and enhancing agricultural productivity is crucial for promoting regional economic growth and social stability, especially in the face of continuous population growth, global warming, and other destabilizing factors (Leghari et al., 2021). In arid regions where soil salinization is widespread, the high-quality development of modern ecological agriculture faces numerous challenges, including freshwater scarcity and salt-alkali stress, leading to adverse outcomes such as land degradation, reduced plant diversity, and even crop yield decline (Zhang et al., 2024). Magnetoelectric activated water technology, which treats irrigation water with a magnetic field before agricultural use, can effectively mitigate these negative impacts by altering water quality. Additionally, magnetoelectric activated water significantly improves soil salt leaching and water use efficiency, demonstrating positive effects on enhancing soil water retention, promoting crop growth, and increasing yields (Dobránszki, 2023). Xinjiang, located in the typical arid region of northwest China, faces significant constraints on agricultural development due to arid climates, water shortages, soil salinization, and high temperatures with intense evaporation (Zhang et al., 2017a). Effectively coordinating agricultural production and land salinization in arid areas is crucial for ensuring high-quality and efficient regional agricultural production, which is strategically important for global food security in arid regions (Lin et al., 2024b).

In the context of resource scarcity, pursuing effective, integrated improvement measures is essential to enhancing crop productivity in arid regions. Maize (Zea mays L.), as a major crop in Xinjiang (Geng et al., 2020), has advantages such as high yield and strong adaptability (Gong et al., 2015). Additionally, maize is one of the world’s three major food crops. It can be used directly for food, and livestock feed production (Lunduka et al., 2019), and is a primary source for many industrial products (Zhang et al., 2022). The extensive application value of maize makes it the most widely planted and economically productive cereal crop globally (Wang et al., 2019b). Therefore, the safe and efficient production of maize profoundly impacts the stable development of the global agricultural economy. Currently, traditional measures to increase maize yield include increasing fertilizer application and irrigation (Cui et al., 2024), raising planting density (Shao et al., 2024), implementing intercropping and relay planting (Huang et al., 2024), and adopting conservation tillage (Adil et al., 2024). However, achieving new goals for modern, high-quality, and efficient agricultural production imposes higher demands on maize yield in arid regions. New salt-alkali land improvement measures that have emerged include engineering, biological, chemical, and biological modifications (Yang et al., 2022; Cheng et al., 2023; Wang et al., 2023a).

Currently, building on traditional improvement measures, the application of bio-amendments and other types of chemical amendments in agriculture has become a key focus in modern agricultural research. Applying appropriate soil amendments to saline-alkali land or foliar spraying of growth regulators as part of new integrated control technologies is an effective approach for improving saline-alkali soil and enhancing crop quality and productivity (Haider et al., 2024), It offers strong advantages in environmental sustainability, making it widely applicable. These methods offer strong advantages in environmental sustainability, making them widely applicable. Bacillus subtilis is a type of rhizosphere growth-promoting bacteria (PGPR), which are soil bacteria living on the surface of host plant roots (Gao et al., 2022). These beneficial bacteria promote root extension, suppress pests and diseases, and enhance crop growth and development through various mechanisms. Additionally, PGPR often helps roots resist biotic and abiotic stressors. Their proliferation provides benefits to the host and effectively enhances crop resistance, making them widely used in saline-alkali soil microbial improvement (Khademian et al., 2019; Bai et al., 2023). Plant growth regulators (PGRs) are chemicals that regulate and control plant growth and development, similar to plant hormones like gibberellins, ethylene, auxins, and abscisic acid.

Different types of PGRs can either promote or inhibit plant growth. These regulators come in various forms and are typically applied via foliar spray or drip irrigation for optimal crop absorption (Melini et al., 2023). As an emerging technology, PGRs are widely used in crop production for significantly enhancing growth, quality, and yield. Numerous studies show that foliar-applied PGRs significantly enhance growth and yield across various crop types (Ma et al., 2022). found that applying poly-γ-glutamic acid (γ-PGA) to spring maize in arid regions enhanced drought resistance by promoting photosynthesis, highlighting the potential of PGRs in improving crop resilience in dry environments. Recent studies have shown that Bacillus subtilis plays a significant role in crop growth and physiological regulation. Field experiments in Greece examined various PGRs and application methods, finding significant increases in maize’s net photosynthesis and transpiration rates, with total solids increasing by over 90% under Bacillus subtilis treatment (Efthimiadou et al., 2020). In conclusion, previous studies have significantly advanced the understanding of the interactions between plant growth-promoting bacteria, soil, and crops (Brown and Saa, 2015). However, comprehensive studies on the soil-plant-amendment system are needed to fully explore the regulatory potential of PGPRs and PGRs.

Studying the synergistic effects of PGPR and growth regulators to optimize photosynthetic efficiency is an effective way to enhance crop growth and increase yield. Light is the fundamental determinant of photosynthesis, a key process in plant growth, development, and reproduction. Studies show that maize yield is often determined by the performance of the photosynthetic system (Wang et al., 2023b), which is also a crucial factor in the carbon-water cycle of the terrestrial ecosystem (Wu et al., 2019). The light response curve effectively evaluates a plant’s ability to utilize light and adapt to its environment. Accurately analyzing this curve and its parameters is vital for studying the response of photosynthetic processes to environmental changes (Begam et al., 2024). The mechanisms behind the coupling of amendments for improving maize quality and efficiency in arid regions are not yet fully understood, slowing the progress of research on habitat stress alleviation strategies based on crop physiology.

Previous studies have primarily focused on the effects of single regulatory measures on the physiological traits and yield of spring maize (Zhang et al., 2017b), with relatively few examining the combined effects of multiple regulatory measures on key physiological traits, during critical growth periods and their impact on yield and quality. Therefore, this study hypothesizes that the combined application of magnetoelectric activated water irrigation, plant growth regulators, and root-applied Bacillus subtilis can effectively improve photosynthesis and physiological characteristics in crops, thereby enhancing the yield and quality of spring maize in arid regions. Based on this hypothesis, the focus of this study is to explore the impact of magnetoelectric activated water irrigation coupled with amendments on the maize photosynthetic system, and to elucidate the mechanisms by which it promotes grain quality, yield, and yield components. This research aims to provide innovative solutions for efficient maize production in arid regions and offer theoretical support for the sustainable development of modern ecological agriculture.




2 Materials and methods



2.1 Experimental site conditions

This study was conducted in 2023 at the Xi’an University of Technology experimental station in Gongqingtuan Town, Wensu County, Aksu Prefecture, Xinjiang Uygur Autonomous Region, China (41°27’N, 80°62’E). The station is located at the southern foothills of Tomur Peak in the central Tianshan Mountains, on the northern edge of the Tarim Basin. The experimental area has a typical arid continental climate with distinct seasons, abundant solar and thermal resources, and significant diurnal temperature variation. The average annual temperature is 10.10°C, with an average annual precipitation of about 70 mm. The frost-free period lasts 180 to 220 days, with approximately 3,000 hours of sunshine annually and an annual evaporation rate of about 1,300 mm. Due to the unique geographic environment of Xinjiang, the typical characteristics of oasis agriculture, and the high mineralization of groundwater, secondary salinization frequently occurs in this region, leading to the widespread distribution of saline-alkali land. This study selected the Tailan River irrigation district in Wensu County as the research base, covering an irrigated area of 1.0468 million mu. It is one of the key regions for grain, cotton, oil, and fruit production in Wensu County. Table 1 presents the physical and chemical properties of the 0-40 cm root zone soil in the experimental area, classified as sandy clay according to international soil texture classification standards, with groundwater depth below 5 m.

Table 1 | Initial soil physical and chemical properties in the test area.


[image: Table displaying soil characteristics at depths of zero to twenty and twenty to forty centimeters, including particle composition (clay, silt, sand), bulk density, alkali-hydrolyzable nitrogen, available phosphorus, available potassium, organic matter, and pH levels.]



2.2 Experimental materials

In this study, the ‘Xinyu 66’ variety was selected as the research subject, sown on April 28, 2023, and harvested on September 28, 2023, with a total growth period of 153 days. The foliar growth regulator, developed by Xi’an University of Technology, was formulated based on previous studies combining individual growth stimulants. The main ingredients are glycine, proline, Bacillus subtilis, fulvic acid, and sodium alginate oligosaccharides in a ratio of 1:1:10:5:1. The chelating agent was combined to prepare the stock solution, which was diluted according to treatment concentration for use. From the seedling stage to the filling stage, it was applied twice each on sunny, windless days, spraying both sides of the maize leaves, for a total of eight applications during the growth period. Bacillus subtilis was produced by Junde Ecological Co., Ltd. (Weifang, Shandong Province, China), with a viable count of ≥ 20 billion/g. Before sowing, it was mixed into the 0-40 cm root layer of each experimental plot according to the treatment design.




2.3 Experimental design

This experiment was a two-factor study involving a growth regulator (G) and Bacillus subtilis (R). All treatments used magnetoelectric activated water and organic fertilizer. To identify the optimal application range of amendments for enhancing photosynthesis and yield of spring maize in arid regions, both G and R were tested at three levels: G was diluted 400 times (G1), 500 times (G2), and 600 times (G3); R was applied at 15 kg/ha (R1), 45 kg/ha (R2), and 75 kg/ha (R3). A control group (CK) was established, which did not apply G and R, and only magnetoelectric activated water irrigation and conventional water and fertilizer management were used. The experiment consisted of 10 treatments, each replicated 3 times in a completely randomized block design, resulting in a total of 30 experimental plots. Each experimental plot measured 8 meters in length and 5 meters in width, covering an area of 40 m².

The planting pattern followed a “one mulching film, two belts, four rows” design, where two drip irrigation belts were laid beneath a single mulching film, with maize seeds sown in four rows, Figure 1 shows the arrangement of drip irrigation belt and maize. The planting density was 80,040 plants per hectare, with a sowing depth of 5 cm and two seeds per planting hole. The planting density was 82,500 plants per hectare, with a sowing depth of 5 cm and two seeds per planting hole. Before sowing, 60 kg/ha of organic fertilizer and 150 kg/ha of urea were evenly mixed into the 0-40 cm soil layer using a rotary tiller. During the growing period, each treatment received additional applications of urea (46%) at 150 kg/ha, monopotassium phosphate at 150 kg/ha, and potassium sulfate (K2SO4) at 75 kg/ha. The irrigation amount was controlled at 6.2*103 m³/ha. Drip irrigation was performed using drip belts produced by Xinjiang Tianye Company, with an emitter flow rate of 3.0 L/h and a spacing of 20 cm. The drip belts were laid under the membrane with the seeds during sowing. Fertigation used the 1/4-1/2-1/4 method, where the first 1/4 of the water was clean water, the middle 1/2 included fertilization, and the final 1/4 was clean water again. The irrigation amount for each plot was precisely controlled by a water meter, with a watering cycle of every 7 days.

[image: Illustration of spring maize plants with drip tape and film mulch. Maize plants are spaced with 30 centimeters between rows and 60 centimeters between plants in each row. Drip tape is positioned 15 centimeters from each plant.]
Figure 1 | Schematic diagram of spring maize and drip irrigation belt layout.




2.4 Measurements and calculations



2.4.1 Meteorological data collection

The experimental station has an automatic meteorological monitoring station that collects real-time weather data, including temperature, rainfall, wind speed, light radiation, evaporation, relative humidity, and wind direction, throughout each growth stage. Data is automatically recorded every 30 minutes, with the station installed 2 meters above the ground. The variations in meteorological factors during the experiment are shown in Figure 2.

[image: Line and bar graph showing temperature and precipitation data from April 25 to September 25. Red line indicates maximum temperature, green line average temperature, and blue line minimum temperature. Blue bars represent precipitation levels. Temperature ranges from 0 to 40 degrees Celsius, while precipitation varies from 0 to 5 millimeters.]
Figure 2 | Temperature and rainfall variation throughout the growing season.




2.4.2 Photosynthetic physiology parameter measurement

During the grain-filling period, sunny and windless weather was chosen by checking the weather forecast in advance. The Li-6400xt portable photosynthesis system, produced by PP Systems in the USA, was used to observe three randomly selected uniform and healthy ears of maize per plot between 10:00 and 12:00. Parameters such as net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) were measured, along with the light response curve. Each treatment was observed in triplicate, and the average of these observations was used as the treatment value.




2.4.3 Grain nutrient analysis

After harvesting spring maize, the grain samples from each treatment were analyzed for soluble sugar (SS, g/kg), soluble protein (SP, g/kg), and starch content (SC, g/kg). Soluble sugar content was measured using the anthrone colorimetric method, and SP content was measured using the Coomassie Brilliant Blue method (Lin et al., 2024a).




2.4.4 Yield and its component analysis

At maturity, the actual yield was measured in each plot. Additionally, 20 ears were randomly selected to determine the 100-kernel weight(100-kw)and the number of grains per spike (Gps).




2.4.5 Ye Zi-Piao light response model

The Ye Zi-Piao light response model, describing the response of plant leaf photosynthesis to light as proposed by (Ye et al., 2013), is as follows

[image: Mathematical equation displaying \( P_n = a_p \frac{1 - \beta_p I}{1 + \gamma_p I} - R_d \), labeled as equation (1).] 

In the equation, I represent photosynthetically active radiation, αp denotes the initial slope, βp indicates the light inhibition coefficient, γp signifies the light saturation coefficient, and Rd stands for dark respiration rate.

When Rd is assumed to be constant, the LSP corresponds to the maximum net photosynthetic rate (Pnmax)​, and is calculated using the following equation:

[image: The formula shown is: \( LSP = \frac{\sqrt{(B_p + \gamma_p)/B_p} - 1}{\gamma_p} \), labeled as equation (2).] 

The Pnmax is calculated using the following equation:

[image: Equation labeled as three: \(P_{\text{max}} = C_{p_f} \left( \frac{\sqrt{B_{p_f} + \gamma_{p_f}} - \sqrt{B_{p_f}}}{\gamma_{p_f}} \right)^2 - R_{d_5}\).] 

The light compensation point (LCP) can further be calculated using the following equation:

[image: LCP equation: fraction with numerator \(\alpha_p - \gamma_p R_d - \sqrt{(\gamma_p R_d - \alpha_p)^2 - 4\alpha_p \beta_p R_d}\) and denominator \(2\alpha_p \beta_p\). Marked as equation (4).] 




2.4.6 Entropy-weighted TOPSIS comprehensive evaluation analysis

The entropy weight method introduces the concept of entropy from information theory, assigns objective weights to each indicator based on the size of its attributes, and calculates the entropy value for each indicator. This approach maximizes the presentation of the original information of the indicators and reduces errors caused by subjective factors. The entropy weight-TOPSIS method, as an effective multi-criteria decision-making approach, facilitates the selection of optimal evaluation schemes. The detailed calculation process is referenced in (Shen et al., 2024).





2.5 Data Processing and model validation



2.5.1 Data processing

Data were organized and analyzed using Excel 2021, with variance analysis conducted using SPSS 22.0 for fitting the light response data. Python was used for plotting and model calculations.




2.5.2 Model verification



2.5.2.1 Coefficient of determination

The coefficient of determination (R2) is a commonly used method for evaluating treatment differences. It measures the extent to which the model explains the variability in the data, with values ranging from 0 to 1, where a value closer to 1 indicates a better model fit. Its calculation expression is as follows:

[image: Equation for R-squared value shown: \( R^2 = 1 - \frac{\sum_{i=1}^{n} (O_i - S_i)^2}{\sum_{i=1}^{n} (O_i - \overline{O})^2} \), with equation numbered as (5).] 

Where Oi is the observed value; Si is the model simulation value; [image: The image shows a mathematical notation: a capital letter "O" with a horizontal bar above it, followed by a subscript "i".]  Is the average value of observed values; [image: A mathematical notation showing "s" with a bar over it, and a subscript "i" below the letter.]  Is the average value of the model simulation value; n is the number of samples, the same below. R2 can be used as an auxiliary index to evaluate the fitting effect of the model. Still, it should be noted that R2 can only reflect the part of the dependent variable that can be explained by the independent variable and cannot reflect the influence of other influencing factors on the dependent variable. Therefore, it is necessary to combine other evaluation indexes to evaluate the model-fitting effect.




2.5.2.2 Normalized Root Mean Squared Error

nRMSE is a commonly used standardized metric for measuring the error between predicted and actual values. It is calculated by dividing the Root Mean Square Error (RMSE) by the range or mean of the observed data, making it dimensionless and facilitating comparisons across different datasets. A lower nRMSE indicates better predictive performance of the model.

The formula for calculating RMSE is as follows:

[image: Formula for root mean square error (RMSE) shown as: RMSE equals the square root of the sum from i equals one to n of the squared differences between observed value O sub i and simulated value S sub i, divided by n.] 

Consequently, the formula for calculating nRMSE is:

[image: Formula for normalized root mean square error (nRMSE) equals root mean square error (RMSE) divided by observed value (O sub i), labeled as equation 7.] 




2.5.2.3 Mean Absolute Error

Mean Absolute Error (MAE) is a metric used to measure the accuracy of a predictive model by evaluating the magnitude of prediction errors. A smaller MAE indicates a more accurate model, while a larger MAE signifies poorer prediction accuracy. MAE is calculated by summing the absolute differences between predicted and actual values and then dividing by the number of samples. The formula is given by:

[image: Mathematical formula for Mean Absolute Error (MAE): MAE equals one over n times the summation from i equals 1 to n of the absolute value of O sub i minus S sub i. The equation is labeled as equation 8.] 







3 Results and analysis



3.1 Characteristics of photosynthetic physiological changes in spring maize



3.1.1 Net photosynthetic rate

Studying the light response curve of crops is an important method for understanding photosynthetic characteristics. Figure 3A shows the light response curves of spring maize under different coupled treatments of growth regulators. The figure shows that as photosynthetically active radiation (PAR) increases, the Pn of spring maize rapidly rises within the range of 0 to 1000 μmol/(m²·s) until it approaches the light saturation point. After reaching the light saturation point, the Pn for each treatment stabilizes and remains constant under strong light conditions. When PAR is 2500 μmol/(m²·s), the G2R2 treatment shows the highest Pn value at 23.13 μmol/(m²·s), followed by G2R3 at 22.36 μmol/(m²·s), and the CK treatment has the lowest Pn value at 17.03 μmol/(m²·s). These results indicate that the coupling of different concentrations of growth regulators significantly promotes the Pn of spring maize. Compared to the control treatment without growth regulators, the Pn value for G2R2 differs by 26.35% from CK, and the differences between treatments are significant (P<0.05). The effect of the coupled application of growth regulators on the Pn of spring maize is highly significant. Mean Pn values for spring maize under different light intensities were calculated, showing that the order from highest to lowest Pn value among treatments is G2R2 > G2R3 > G3R2 > G3R3 > G1R2 > G2R1 > G1R3 > G3R1 > G1R1 > CK.

[image: Four line graphs labeled (a) to (d) depict various plant physiological parameters against PAR (photosynthetically active radiation) in micromoles per square meter per second. Each graph includes curves for different treatments: G1R1, G1R2, G1R3, G2R1, G2R2, G2R3, G3R1, G3R2, G3R3, and CK. Graph (a) shows parameter P, (b) shows T, (c) shows G, and (d) shows C. The graphs illustrate how each parameter changes with increasing PAR for different treatments.]
Figure 3 | Effects of magnetoelectric activated water irrigation and coupled application of amendments on net photosynthetic rate (A), transpiration rate (B), stomatal conductance (C), and intercellular CO2 concentration (D) of spring maize.




3.1.2 Transpiration rate

Figure 3B shows the response of spring maize Tr to the coupled application of growth regulators under different levels of photosynthetically active radiation (PAR). The results indicate that at lower light intensities, there is no significant difference in the Tr among the treatments; however, as light intensity increases, the Tr gradually rises. When light intensity reaches 2000 μmol/(m²·s), the rate of increase in transpiration slows down and stabilizes, indicating that spring maize has reached the light saturation point (LSP) at excessively high light levels. This suggests that increased light intensity promotes photosynthesis, thereby enhancing transpiration and providing the necessary moisture for photosynthesis. However, excessively high light intensity does not further increase the Tr of the plants. When the light intensity is 2500 μmol/(m²·s), the G2R2 treatment shows the highest Tr at 4.82 μmol/(m²·s), followed by G2R3 at 4.56 μmol/(m²·s), while the CK treatment has the lowest Tr at 3.84 μmol/(m²·s). The Tr values for G2R2 and G2 R3 are 25.58% and 18.77% higher than that of CK, respectively, and the differences between treatments are significant (P<0.05). This indicates that the growth regulators effectively increase the Tr of spring maize.




3.1.3 Stomatal conductance

Figure 3C illustrates the trend of Gs of spring maize under magnetoelectric activated water irrigation with varying light intensity. The Gs values of all treatments steadily increased with the rise in photosynthetically active radiation (PAR), indicating that stomata gradually open in response to light intensity, and photosynthesis intensifies with increasing light intensity. At a light intensity of 2500 μmol/(m²·s), the Gs values for all treatments reached their maximum and showed a trend of further increase. The Gs value under the G2R2 treatment was the highest at 0.27 μmol/(m²·s), followed by G2R3 at 0.23 μmol/(m²·s). Both values were significantly higher than that of CK (0.15 μmol/(m²·s)) (P<0.05), with increases of 78.49% and 56.95%, respectively. This indicates that under magnetoelectric activated water irrigation conditions, the coupled application of growth regulators significantly enhanced the stomatal conductance of spring maize.




3.1.4 Intercellular CO2 concentration

Figure 3D shows the trend of Ci in spring maize under magnetoelectric activated water irrigation as photosynthetically active radiation (PAR) varies. As the light intensity increased, Ci decreased rapidly within the range of 0-600 μmol/(m²·s), then gradually and slowly increased, eventually stabilizing. Analyzing different stages, the initial rapid decrease in Ci with increasing light intensity is due to the rapid increase in Pn and the gradual enhancement of photosynthesis. At this stage, the stomata of spring maize are not fully open, so the leaf’s photosynthetic process consumes a large amount of stored CO2 to meet the energy required by the increasing light intensity. When PAR reached 600 μmol/(m²·s), the average Gs reached 0.08 μmol/(m²·s), and the stomata of spring maize were partially open, allowing the plant to gradually absorb CO2 from the environment to continue supporting photosynthesis. At this point, Pn is approaching the light saturation point, and its growth rate gradually slows. Therefore, within the light radiation range of 600-800 μmol/(m²·s), the decreasing trend of Ci in spring maize under the coupled application of growth regulators slows and stabilizes in the range of 34.75-131.03 μmol/mol. As PAR continued to increase, Ci gradually rose and stabilized when PAR reached 2000 μmol/(m²·s).





3.2 Influence of coupling application of amendments on light response curve of spring maize



3.2.1 Model adaptability and fitting analysis

To further investigate the impact of the coupled application of amendments under magnetoelectric activated water irrigation on the photosynthetic characteristics of spring maize, the Ye Zi-Piao light response model was used to fit the field-measured net Pn of spring maize. The fitting results of the Ye Zi-Piao light response model for each treatment are shown in Figure 4. As depicted, under magnetoelectric activated water irrigation, the model showed a generally good fit for the net Pn of spring maize.

[image: Line graph showing photosynthetic rate (Pn) in micromoles per meter squared per second against photosynthetically active radiation (PAR). Multiple lines represent different treatments, including CK, G1R1, and others, reaching a Pn plateau around 2500 PAR.]
Figure 4 | Fitting Of the Ye Zi-Piao light response model under coupled amendment application.

Table 2 presents the analysis of the goodness-of-fit for the light response models under the coupling application of magnetoelectric activated water and growth regulators, showing that the Ye Zi-Piao light response model fit well across all treatments. The R² and Adj-R² values are used to assess the goodness-of-fit of the model, with values closer to 1 indicating a better fit to the data. As shown in Table 2, the R² and Adj-R² values for the different treatments are all close to 1, indicating that the model explains the variance in the target variable well. MAE and nRMSE are used to evaluate the prediction accuracy of the model. The data show that the MAE and nRMSE values are small for all treatments, with particularly high prediction accuracy for the G1R1 treatment, where MAE is 0.073 and nRMSE is 0.004. For all treatments, the MAE ranges from 0.073 to 0.434, and the nRMSE ranges from 0.004 to 0.028. Overall, the model’s prediction errors are relatively small, and the goodness-of-fit is satisfactory across all treatments. The model demonstrates strong explanatory capability and high prediction accuracy, showing excellent performance in both explanation and prediction.

Table 2 | Analysis of light response model fit under coupled application of magnetoelectric activated water and amendments.


[image: A table showing various treatments with corresponding statistical values. Columns include Treatment, R-squared, Adjusted R-squared, MAE, nRMSE, and Model fitting results. Treatments range from G1R1 to CK, with R-squared values from 0.992 to 0.999, MAE from 0.045 to 0.434, and nRMSE from 0.004 to 0.028. Model fitting results are mathematical expressions involving P<sub>n</sub>, I, and coefficients.]



3.2.3 Change characteristics of The Ye Zi-Piao light response model characteristic parameter

The light response model reflects the physiological changes of crops under different light conditions and can calculate model parameters such as Pnmax, LSP, LCP, dark respiration rate (Rd), and light use range (ΔI), allowing for a detailed analysis of the crop’s photosynthetic physiological changes. To clarify the impact of coupling growth regulators with magnetoelectric activated water irrigation on the photosynthetic physiological characteristics of spring maize in arid regions, photosynthetic parameters were calculated from the Ye Zi-Piao light response model fitting results, as shown in Table 3. The results show that under different coupling treatments of growth regulators, significant differences in photosynthetic parameters of spring maize, such as αp, Pnmax, LSP, LCP, Rd, and ΔI, were observed. Analysis of Table 3 reveals that under the coupling application of growth regulators, the effects of Pnmax, LSP, LCP, and ΔI among the Ye Zi-Piao light response model parameters are significant, as detailed below:

Table 3 | Effect of coupled amendment application on the Ye Zi-Piao light response model fitting parameters.


[image: A table displaying various treatments labeled G1R1 to CK, with corresponding values for parameters \(\alpha_p\), \(\beta_p\), \(\gamma_p\), \(R_d\), \(P_{\text{nmax}}\), LSP, LCP, AQY, and \(\Delta I\). Statistical significance is shown with asterisks for MANOVA effects: G, R, and G*R. Significant differences are noted at 0.05 and 0.01 levels.]


3.2.3.1 Maximum net photosynthetic rate

At the same growth regulator concentration, the Pnmax of spring maize under various treatments showed a trend of first increasing and then decreasing with the increase in Bacillus subtilis dosage. Additionally, under the same Bacillus subtilis dosage, the Pnmax of spring maize followed the pattern G2>G3>G1. These results indicate that increasing either the foliar application of the growth regulator or the root application of Bacillus subtilis alone significantly enhances the Pnmax of spring maize. Under the condition of coupled application of amendments, the G2R2 treatment had the best effect on increasing the Pnmax of spring maize, reaching 23.3 µmol/(m2·s), followed by the G2R3 treatment, which reached 22.93 µmol/(m2·s). These were 37.46% and 35.28% higher than the Pnmax of the CK treatment, respectively, with significant differences (P<0.05). The G1R1 treatment showed the smallest improvement, at only 18.2 µmol/(m2·s), but still increased by 7.37% compared to the CK treatment, with a significant difference (P<0.05). The above results indicate that under magnetoelectric activated water irrigation, the coupled application of amendments significantly improves the Pnmax of spring maize in arid regions, but there is an application threshold.




3.2.3.2 Light saturation point and compensation point

The LSP is the light intensity at which the net Pn reaches its maximum and does not increase with further light intensity. It can be used to assess the crop’s ability to utilize light. The LCP represents a crop’s adaptability to low-light growth environments. The smaller the value, the stronger the crop’s adaptability to low-light conditions, and vice versa. At G1 and G2 plant growth regulators application levels, with the increase in Bacillus subtilis dosage, the LSP and LCP of spring maize under different treatments showed a trend of first decreasing and then increasing. However, at the G3 application level, the LSP and LCP increased with the increase in R dosage, indicating that within the R2 to R3 range, increasing the dosage can enhance the adaptability of spring maize to low-light environments to varying degrees. Across all plant growth regulators application gradients, the R3 treatment increased by 9.38%, 35.52%, and 7.34% compared to the R2 treatment, with the most significant improvement observed at the G2 gradient, showing significant differences (P<0.05).




3.2.3.3 The available range of light intensity

The available range of light intensity (△I) reflects the ability of spring maize to utilize different light intensities. Its value is determined by both the LSP and the light compensation point LCP. Under the coupled application of magnetoelectric activated water irrigation and amendments, when the growth regulator dosage is constant, △I increase first and then decrease with the increase in Bacillus subtilis dosage. At three growth regulator application levels, the △I under R2 dosage was increased by 15.92%, 14.52%, and 7.71% compared to R1, indicating that Bacillus subtilis can significantly improve the △I of spring maize. However, when the Bacillus subtilis dosage is increased from R2 to R3, the △I in G1R3, G2R3, and G3R3 treatments decreased by 4.13%, 7.06%, and 7.54% compared to G1R2, G2R2, and G3R2, respectively, indicating that excessive application of Bacillus subtilis does not continue to improve the △I of spring maize.






3.3 Response of grain nutrient changes to amendment application

As shown in Figure 5, under magnetoelectric activated water irrigation, the coupled application of amendments increased the SC, SP, and SS in spring maize (P<0.05). At the same growth regulator application level, the nutrient content of the grains increased first and then decreased with the increase in Bacillus subtilis dosage. In the G2R2 treatment, the SC, SP, and SS contents were 668.11 g/kg, 3.08 g/kg, and 46.12 g/kg, respectively, which were 17.46%, 53.11%, and 63.81% higher than the CK treatment, with significant differences between treatments (P<0.05). This indicates that the coupled application of amendments significantly improved the grain nutrition of spring maize. However, at the same growth regulator application level, the effect of Bacillus subtilis on improving grain nutrients has an application threshold.

[image: Line graph comparing soluble protein, soluble sugar, and starch content across different treatments labeled G1R1 to CK. Soluble protein is represented by a blue line, soluble sugar by a red dashed line, and starch content by a green dashed line. Both soluble sugar and starch content peak at G1R3, while soluble protein peaks at G1R3 and G2R3. Data points are marked with different letters indicating statistical differences. Each axis is labeled in grams per kilogram.]
Figure 5 | Effect of coupled amendment application on grain nutrients of spring maize under magnetoelectric activated water irrigation.




3.4 Effect of amendments on the yield and components of spring maize

Figure 6 shows the results of spring maize yield and its components under the coupled application of amendments. The treatment effects are ranked as CK < G1R1 < G1R3 < G1R2 < G3R1 < G2R1 < G3R3 < G2R3 < G3R2 < G2R2, indicating that the coupled application of amendments under magnetoelectric activated water irrigation significantly promotes maize yield, with significant differences between treatments (P<0.05). The highest yield of 12.68 t/ha was observed in the G2R2 treatment, followed by 12.4 t/ha in the G2R3 treatment, while the lowest yield of 9.66 t/ha was recorded in the CK treatment. The G2R2 treatment increased the yield by 31.27% compared to the CK treatment, with a significant difference (P<0.05). The maize yield exhibited a trend of increasing first and then decreasing with the increase in both Bacillus subtilis and growth regulator dosages. The 100-kw and Gps are crucial parameters determining the yield level of spring maize. Under the conditions of this study, these parameters showed significant differences in response to amendment application, with trends closely aligned with yield changes. The G2R2 treatment resulted in the highest 100-kernel weight (39.3 g) and grains per spike (460.14 grains), which were 21.33% and 8.22% higher, respectively, than the CK treatment, with significant differences (P<0.05).

[image: Bar chart comparing yield, grains per spike, and one-hundred-kernel weight across different treatments (G1R1 to CK). Yield is shown as blue bars, grains per spike as a green dotted line, and kernel weight as a red dashed line. Each treatment has grouped data with labeled error bars indicating variation.]
Figure 6 | Effect of coupled application of amendments on the yield and components of spring maize. Different letters indicate significant differences at p < 0.05.




3.5 Correlation analysis of photosynthetic physiological parameters with yield and grain nutrients

To clarify the intrinsic relationship between photosynthetic characteristics, yield, and grain nutrients in spring maize, correlation analysis, and Pearson’s correlation coefficient were used to explore the strength of these relationships. Figure 7 shows the correlation heatmap between parameters. The results indicate a significant correlation between spring maize yield and LCP and Rd (P<0.05). Additionally, spring maize yield is significantly positively correlated with 100-kw, Gps, Pnmax, SC, SS, Pn, SP, Tr, and Ci (r≥0.85). It is significantly negatively correlated with stomatal conductance (r = -0.96), with all correlations being significant at P<0.01. Spring maize yield is closely related to various physiological and biochemical characteristics, particularly those related to photosynthesis, such as Pnmax. Increases in these indicators are typically associated with higher spring maize yields, and this relationship is quite stable.
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Figure 7 | Analysis of the correlation between photosynthetic parameters, light response model characteristics, yield and its components, and grain nutrients.

The Pnmax is the highest net photosynthetic rate achieved per unit area of plant leaves under optimal environmental conditions. This metric typically reflects the potential and efficiency of plant photosynthesis. Correlation analysis shows that Pnmax has a high correlation with spring maize Y, 100-kw, Gps, SC, SS, and SP (r = 0.86–0.93), all of which are significant at P<0.01.




3.6 Comprehensive evaluation of the effects of amendments on photosynthetic characteristics and yield

Through variance analysis of various indicators such as photosynthetic physiological parameters, the Ye Zi-Piao light response model characteristics, and yield in drought-prone spring maize, it was observed that the response to different amendment combinations varied among these indicators. At the same time, a single index does not have the function of comprehensively reflecting the physiological characteristics and yield of spring maize (Li et al., 2019). Comprehensive evaluation metrics were established using photosynthetic characteristics, Ye Zi-Piao light response model parameters, grain nutrient parameters, and yield parameters under different amendment combinations. The weights derived from the entropy method are presented in Table 4.

Table 4 | Weight calculation of indicators using the entropy method.
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It can be observed that the total weight of photosynthetic physiological parameters is 24.51%, while the weight coefficient for the Ye Zi-Piao light response model parameters is significantly higher at 71.16% (with the Rd parameter having the highest weight coefficient of 22.19%). In comparison, the weight coefficients for grain nutrients and yield are relatively small, at 3.27% and 1.05%, respectively. This indicates that the light response model parameters are crucial for evaluating the effectiveness of amendment combinations.

However, while the entropy weight method only clarifies the weight proportions of each indicator, the TOPSIS method provides results that better align with the actual attributes of the indicators (Tan and Geng, 2020). Therefore, based on the comprehensive evaluation analysis results from the entropy-TOPSIS method (Table 5), this study concludes that under the conditions of magnetoelectric activated water irrigation, the combined application of amendments demonstrates the following comprehensive regulatory effects on photosynthetic physiological parameters, the Ye Zi-Piao light response model characteristics, and yield of spring maize in arid regions: G2R2 > G2R3 > G3R2 > G3R3 > G2R1 > G1R2 > G3R1 > G1R3 > G1R1 > CK. The G2R2 treatment has the highest relative closeness value (C = 0.964), indicating the best overall performance and evaluation results.

Table 5 | Comprehensive evaluation of the effects of combined amendments on photosynthetic physiological parameters, grain nutrient parameters, and yield of spring maize.
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4 Discussion

As one of the crucial sources of feed and industrial raw materials globally, high-quality maize production holds significant strategic importance for ensuring global food security (Hill et al., 2019). To meet the increasing demand for maize production, enhancing drought resistance and yield in arid regions is a vital strategy. The application of plant growth regulators and Bacillus amyloliquefaciens has played an important role in achieving this goal (Amoanimaa-Dede et al., 2022).



4.1 Effects of magnetoelectric activated water irrigation and combined application of amendments on photosynthetic physiological characteristics

Light is one of the main environmental factors regulating plant growth (Tang et al., 2022). Photosynthesis, driven by light, is a crucial chemical process in Earth’s energy cycle and a key source of carbon and energy for crop growth (Zhuang et al., 2024). The efficient functioning of the photosynthetic system is vital for improving crop growth quality (Brestic et al., 2015), increasing yields (Zhang et al., 2020), and maintaining the balance of CO2 and oxygen in the ecosystem. Studies have shown that various plant growth regulators and Bacillus subtilis, either alone or in combination, significantly enhance crop physiological traits across different regions (Jiang et al., 2023).

This study, under magnetoelectric activated water irrigation conditions, found that the combined application of growth regulators and Bacillus subtilis significantly synergized the enhancement of Pn, Tr, and Gs in spring maize leaves, and reduced Ci, thereby significantly improving the photosynthetic capacity of the leaves. The significant effects of these applications may be related to the action of endogenous chemical substances. These endogenous substances are secondary metabolites produced during crop physiological responses (Kazan, 2015). They induce positive responses in crop cells through chemical signals from endogenous plant hormones and metabolic regulation, thereby enhancing stress resistance. Specifically, under the G2R2 treatment, Pn, Tr, and Gs increased by 26.35%, 25.58%, and 78.49% compared to the CK treatment, with significant differences (P<0.05). In contrast, the variation in Ci differed from the above parameters. At the same G application rate, Ci initially decreased and then increased with rising R amounts. The CK treatment had a Ci value 37.32% higher than the G2R2 treatment, with significant differences (P<0.05). Related research also shows that Bacillus subtilis can enhance the health and function of spring maize roots by secreting hormones such as cytokinins (CTK) (Bai et al., 2023). However, there is a reasonable application threshold for this promoting effect. Recent research has found that while the combined application of growth regulators and Bacillus subtilis can significantly promote photosynthesis and transpiration, excessive application may lead to resource competition or hormonal imbalance (De Oliveira-Paiva et al., 2024). This may be because high concentrations of G and R could overstimulate plant metabolic activity, accelerating the photosynthesis rate and consuming more CO2, thereby reducing Ci values. In the experimental design of this study, three different concentrations of growth regulators were selected with the aim of systematically evaluating the effects of these concentrations on maize photosynthetic characteristics, yield, and resource use efficiency. This approach seeks to identify the optimal concentration that can maximize maize photosynthetic assimilation while avoiding resource waste and the risks of excessive application. This gradient design enables a more comprehensive understanding of the effects of growth regulator application, providing scientific support for optimizing maize production. Other studies also indicate that foliar application of growth regulators can regulate crop stomatal opening and closing, optimizing gas exchange and water use efficiency. This effect is particularly important in drought conditions as it can not only improve water use efficiency but also significantly reduce water loss (Amoanimaa-Dede et al., 2022), similar to the conclusions of this study. In this study, at the same concentration of growth regulators, increasing the amount of Bacillus subtilis led to a trend where the related parameters first increased and then decreased. This indicates that stomatal opening in spring maize leaves cannot be increased indefinitely by continuously increasing the number of amendments, which is consistent with the conclusions of previous studies. Therefore, in practical agricultural production, it is essential to balance the concentration of combined amendments to achieve the best synergistic effect, which is a key measure for improving crop productivity. Based on this understanding, future research could further explore similar phenomena under different crops and environmental conditions to provide more comprehensive scientific evidence for broader application.

The combined application of amendments not only promotes photosynthesis and transpiration but also significantly affects the light response curve parameters of spring maize. At the same level of growth regulator application, increasing the amount of Bacillus subtilis significantly raised △I, enhanced antioxidant enzyme activity, and improved the ability of spring maize to utilize light in drought conditions. This effect may be due to Bacillus subtilis regulating leaf cell division and elongation, promoting flowering and fruiting, and alleviating plant damage under stress conditions such as drought, high temperatures, and intense light by producing gibberellin (De Oliveira-Paiva et al., 2024). However, further increasing the amount of Bacillus subtilis diminished this promoting effect. This may be because excessive application of Bacillus subtilis increases endogenous hormones such as ethylene within spring maize plants, and high ethylene concentrations can accelerate the aging of nutritional organs and even leaf senescence, thereby limiting the potential for Bacillus subtilis to further enhance the photosynthetic characteristics of spring maize. This phenomenon of promoting effects at low application levels and inhibitory effects at high concentrations is reflected in model parameters such as Pnmax, LSP, and AQY. Bacillus subtilis improves plant growth and development through multiple mechanisms and demonstrates broad application potential in soil improvement and plant nutrition management. Positive feedback from its application in agricultural production has been reported across various crops (Fonseca et al., 2022; Song et al., 2023; Aijaz et al., 2024). Growth regulators significantly promote the photosynthetic physiological characteristics of spring maize through mechanisms such as regulating stomatal opening and closing, increasing chlorophyll content, promoting cell division and elongation, enhancing nutrient absorption, and improving stress resistance. Additionally, growth regulators not only enhance crops’ adaptability to their growing environment but also effectively increase the production of related metabolites (Wang et al., 2024). The combined effects of these mechanisms improve the photosynthetic efficiency of spring maize in arid environments and its adaptability to different light conditions.




4.2 Effects of combined application of amendments on yield and composition of spring maize and grain nutrient regulation

In actual production, the yield of spring maize is influenced by environmental factors (such as light, moisture, and temperature), cultivation practices (such as fertilization and irrigation), and varieties. Therefore, it is necessary to conduct specific measurements and analyses for different regions and climatic backgrounds. Achieving high maize yields generally depends on higher100-kw and Gps (Liao et al., 2024). Improving these two factors is a key approach to achieving high maize yields. Light is a crucial environmental factor determining crop yield, and photosynthetic performance is one of the key factors influencing crop productivity and yield (Khademian et al., 2019). Research indicates that growth regulators show good effects in various crop productions (Kulkarni et al., 2013; Rademacher, 2015). They not only effectively increase yield potential but also improve the physiological metabolism of cells and other nutritional organs by promoting endogenous hormone expression (He et al., 2019), which is consistent with the conclusions of this study. The experimental results show that the G2R2 treatment increased the spring maize yield by 31.27% compared to the CK treatment. Additionally, the combined application of amendments significantly promoted 100-kw and Gps. The G2R2 treatment increased these yield components by 21.3% and 8.22% compared to the non-amendment treatment, with significant differences (P < 0.05). Furthermore, the soluble sugar content increased by as much as 63.81%. This indicates that under magnetoelectric activated water irrigation, the combined application of amendments has a significant regulatory effect on yield. Foliar application of growth regulators combined with root application of Bacillus subtilis synergistically promoted yield levels of spring maize in drought-affected areas, affecting both above-ground and below-ground parts. The study also found that with increasing amounts of amendments, the yield showed a trend of first increasing and then decreasing. Under the regulation of combined amendment application, the trends in 100-kw and Gps closely matched the trend in yield (Figure 6). Therefore, the synergistic effect of foliar application of growth regulators and root application of Bacillus subtilis significantly improves maize yield under adverse conditions, under our study conditions, the maximum yield has been increased about 31%, reflect the remarkable application effect in maize production (Xu et al., 2024). Research by (Gao et al., 2022) and others also found that rhizosphere-promoting bacteria can enhance plant growth and alleviate salt stress by secreting auxins, cytokinin, and abscisic acid, significantly improving spring maize’s stress resistance and productivity. This provides new ideas and methods for increasing spring maize yield. Future research should further explore the effects of different types of amendment combinations and their adaptability and stability under various environmental conditions. In-depth research on the complex relationship between rhizosphere-promoting bacteria and environmental factors can improve our understanding of their mechanisms in agricultural production and provide scientific basis for practical applications.




4.3 Joint regulation of physiological traits and yield of spring maize in arid areas by amendments

Photosynthesis is the process by which plants convert light energy, carbon dioxide, and water into organic compounds such as SC, SP, and SS. These organic compounds are interconverted within the plant through metabolic networks and various biochemical pathways. The products of photosynthesis form the basis for the synthesis of these compounds, and their accumulation status, in turn, affects the efficiency of photosynthesis and the overall growth state of the plant. Maize plants with high photosynthetic efficiency generally produce more soluble sugars (Zhang et al., 2020). Our study results show that Pn, Pnmax, and SS have very significant correlations (0.78 and 0.88, P<0.01). These sugars act as energy reserves and transport substances within the plant, positively influencing the growth, development, and metabolic activities of spring maize. These sugars can also be further converted into starch (Begam et al., 2024). Maize plants with higher photosynthetic efficiency synthesize and accumulate greater amounts of starch during the day. This starch, as an energy reserve, is broken down into sugars at night or when needed, providing ample energy for subsequent metabolic processes (Qiao et al., 2022). In this study, under the combined application of the amendments, the correlations between Pn, Pnmax, and SC were 0.95 and 0.92 (P<0.01), respectively, demonstrating a strong association between Pn and SC, consistent with the aforementioned conclusions. Additionally, the correlations between SC, SP, SS, and Y were 0.93, 0.86, and 0.93, respectively, all showing very significant relationships (P<0.01), further confirming the previous research conclusions. These findings indicate that the combined application of amendments can enhance grain nutrition by regulating photosynthetic characteristics. Additionally, the interactions of these physiological and biochemical traits determine the photosynthetic physiological characteristics and yield performance of maize.

Multi-Criteria Decision-Making (MCDM) analysis methods provide researchers facing complex multi-scenario optimization problems with a powerful tool (Wang et al., 2019a)and are favored by many scholars for their objective results. However, for the same analysis object, different MCDM methods can yield significantly different results due to variations in their calculation processes. Therefore, choosing the most appropriate MCDM method is crucial for making accurate and effective decisions. TOPSIS evaluation analysis is a multi-criteria decision-making method that ranks and selects evaluation results by analyzing the degree of closeness between the evaluation scheme and the ideal solution (Çelikbilek and Tüysüz, 2020). Due to its simplicity, ease of use, and wide applicability, it has been successfully used in multi-scenario analysis and optimization problems, making the entropy weight-TOPSIS method widely applied in multi-criteria comprehensive research (Chen, 2020). This study uses the entropy method to determine the weights of key indicators such as photosynthetic parameters, light response model characteristics, grain nutrient yield, and its components and then applies the TOPSIS method for quantitative evaluation and analysis. This approach provides data support for qualitative analysis and a theoretical basis for developing effective production measures for spring maize in arid regions. The results of this study show that the weights of the photosynthetic parameters and Ye Zi-Piao light response model characteristic parameters account for 95.67%, making them crucial factors in determining the yield of spring maize. The entropy-weight TOPSIS method identified that under magnetoelectric activated water irrigation, the optimal response combination for the application of amendments is the G2R2 treatment. This combination not only enhances the photosynthetic efficiency of spring maize in arid regions but also works synergistically to improve both the yield and grain quality. It provides strong scientific evidence and technical support for addressing agricultural production challenges in these areas.

Building on the correlation analysis, an in-depth analysis of the linear regression relationships between photosynthetic parameters, yield and its components (100-kw and Gps), light response model parameters (Rd, Pnmax, and LSP), and grain nutrients (SC, SP, and SS) was conducted. Figure 8 shows significant linear correlations between these parameters, with the regression model’s coefficient of determination (R²) ranging from 0.45 to 0.98. All models reached highly significant levels (P<0.01), indicating that the models have strong explanatory power and effectively reflect the quantitative relationships between spring maize yield, photosynthetic parameters, model characteristic parameters, yield components, and grain nutrients (Ma et al., 2022). Therefore, in arid regions, amendments can significantly enhance grain nutrient quality and increase yield, making it an effective approach to boosting spring maize production.
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Figure 8 | Regression analysis of spring maize yield and net photosynthetic rate (A), transpiration rate (B), stomatal conductance (C), intercellular CO2 concentration (D), dark respiration rate (E), maximum net photosynthetic rate (F), light compensation point (G), number of grains per spike (H), weight of 100 grains (I), starch content (J), soluble protein (K) and soluble sugar (L).

In summary, arid regions face environmental pressures such as water scarcity and high evaporation, which pose significant challenges to crop production (Akumaga et al., 2023). The combined application of soil amendments effectively enhances crop resistance to these environmental pressures, synergistically promoting photosynthesis and nutrient absorption, thereby significantly increasing the yield and quality of spring maize in arid regions (Rawat et al., 2023). Future research could further explore the effects of different application timings, frequencies, and crops to optimize amendment usage strategies and enhance their effectiveness.





5 Conclusion

Through the study of the combined application of growth regulators and Bacillus subtilis under magnetoelectric activated water irrigation on the photosynthetic physiological traits, grain nutrients, yield, and composition of spring maize in arid regions, the following conclusions are drawn:

	Under the condition of combining magnetoelectric activated water with growth regulators and Bacillus subtilis application, the G2R2 treatment effectively increased the Pn (26.35%), Tr (25.58%), and Gs(78.49%) of spring maize compared to the CK treatment, while reducing Ci by 37.32%. The research design significantly synergistically enhances the photosynthetic characteristics of spring maize. There is a high correlation between yield and photosynthetic parameters (r > 0.85), and the linear regression model demonstrates a high level of stability (R² > 0.67). Improving photosynthetic performance is an effective way to increase the yield of spring maize. The combined application of growth regulators and Bacillus subtilis has a significant effect, with a reasonable application threshold. Excessive application may lead to resource competition or hormone imbalance. In practical production, the application rates of growth regulators and Bacillus subtilis should be optimized and regulated based on the specific needs of the crop to achieve optimal growth and yield improvement.

	The entropy weight-TOPSIS multi-criteria comprehensive evaluation method fully reveals the response of photosynthetic physiological characteristics, and yield of spring maize to the combined application of amendments in arid regions. Under the G2R2 treatment, the yield reached 12.68 t/ha, with a 31.27% increase. Meanwhile, this treatment significantly improved the 100-kw, Gps, and SS, with increases of 21.3%, 8.22%, and 63.81%, respectively, compared to the CK treatment. This combination benefits yield enhancement and quality improvement of spring maize in arid regions. Under magnetoelectric activated water irrigation conditions, our research suggests that the treatment with 500 times diluted growth regulator (G2) combined with 45 kg/ha (R2) of Bacillus subtilis is an appropriate agent combination for the arid regions of southern Xinjiang, China.



In conclusion, this study highlights the key factors and application strategies for improving photosynthetic efficiency, yield, and grain quality of spring maize in arid regions, providing theoretical guidance and technical support for agricultural decision-makers in these areas.
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Introduction

This study introduces a new technical method that involves adjusting the seed-filling posture and fluidizing the seed group to improve the capacity of mechanical seed-metering devices for high-speed maize planting. The design of a novel posture-adjusting seed-metering device is presented and its operating principle is described. In the seed-filling area, the seeds maintain the same postural characteristics and are detached from the seed group. This method creates favorable conditions for mechanical seed-metering devices to achieve effective seed-filling under high-speed planting conditions.





Methods

Firstly, the key parameters of the core component were analyzed. Secondly, the influences of the seed posture adjusting efficiency and seed flow distribution characteristics on the seed-filling effect were clarified by the EDEM simulation. Finally, the high-speed metering performance was optimized and validated using bench testing.





Results

The experiment demonstrated that the type A groove had the highest seed posture adjusting efficiency, a more uniform seed flow distribution, and a superior seed-filling effect as compared to the other groove types. The best metering performance was achieved with an opening angle of 21.6° and an opening width of 8.4 mm; this resulted in pass, repeat, and leak rates of 94.8%, 1.3%, and 3.9%, respectively. Within the speed range of 8–14 km/h, the posture-adjusting seed-metering device demonstrated a pass rate of over 94%, a repeat rate below 2.1%, and a leak rate below 3.9%.





Discussion

The designed device had a better high-speed planting capacity than a seed-metering device without a posture-adjusting mechanism, thus proving the effectiveness of the novel seed-filling method. These findings provide a reference for improving the high-speed planting capacity of mechanical seed-metering devices.





Keywords: maize, seed-metering device, posture adjustment, seed flow, high-speed planting




1 Introduction

The consumption of maize, a widely grown food crop worldwide, is increasing yearly (Hao et al., 2017; Cay et al., 2018). While continued expansion of the scale of agricultural production is needed, crop yields and production efficiency also require rapid improvement. A planter is required to achieve dense and precise planting functions. Improvements in maize planting technology are needed to develop higher-speed and more precise planting devices (Yang et al., 2016a; Kostić et al., 2018; Virk et al., 2019).

Seed-metering devices offer precise seed-planting technology, and their performance directly influences the seeding quality (Yang et al., 2015, 2016b). Mechanical seed-metering devices are extensively used in maize production due to their reliable planting capacity at low and medium speeds as well as their cost-effectiveness, compatibility, and simple structures (Wang et al., 2017a; Xue et al., 2019; Shen et al., 2021). However, the reliability of mechanical seed-metering devices substantially reduces with increases in planter speed. These devices cannot satisfy the demand for high-speed (over 8 km/h) precision seeding, which limits their practical application (Jia et al., 2018; Wang et al., 2019; Yan et al., 2020; Huang et al., 2022). This is primarily because mechanical seed-metering devices are not adaptable to the intricate shapes of seeds. Continuously and successfully filling seeds during high-speed planting is challenging, resulting in repeated or leaky seeding, which significantly influences the maize yield and quality (Li et al., 2023a; Geng et al., 2016; Liu et al., 2014). Consequently, there is an urgent need to address the limitations of mechanical seed-metering devices during high-speed planting. This crucial advancement in seeding equipment and technology is necessary for improved speed and precision.

A considerable body of research has examined the seed-filling mechanisms and structures of precision seed-metering devices (Li et al., 2023b, 2023; Tang et al., 2022). Du et al. (2019) proposed a method that increased the seed group disturbance to promote seed-filling and investigated the optimal structural parameters of the disturbing strips (Wang et al., 2015a, 2015b, 2017b) improved a pickup finger seed-metering device in order to achieve more precise seeding operations; the authors optimized key components such as the finger clamps, seed clearing zones, and seed guiding belts. Additionally, they investigated the impact of maize size and planting speed on performance. PLANTSYSTEM developed a horizontal disc seed-metering device for maize. The device has gradual holes that efficiently import seeds and remove excess seeds (PLANTSYSTEM Product Information, 2024). While the seeding performance of seed-metering devices has been successfully enhanced in previous research, the applicability of these devices is restricted to low- and medium-speed seeding operations. Under high-speed planting conditions, the seed-filling area of the current seed-metering devices consistently experiences disorder and accumulation of the seed group, mutual extrusion, and constrained posture (Gao et al., 2023; Zhao et al., 2024). Due to seed group extrusion, seeds commonly pile up in front of the seed-taking unit, resulting in empty fillings or multiple simultaneous fillings that cannot be emptied. This often causes no-filling or over-filling problems, resulting in a high-speed filling effect that is not stable. This is a critical problem that needs to be addressed.

To this end, in this research, a novel posture-adjusting seed-metering device was designed for the high-speed planting of maize. This device creates a uniformly distributed seed flow in the seed-filling area by actively adjusting the filling posture of seeds, thus improving the continuous and effective filling probability of the seed-taking unit. This paper presents the design and analysis of the structural parameters of the core component. The influences of the seed posture adjusting efficiency and seed flow distribution characteristics on the seed-filling effect were clarified through EDEM simulation. Finally, the metering performance was optimized and validated by bench testing. These findings provide a reference for improving the high-speed planting capacity of mechanical seed-metering devices.




2 Materials and methods



2.1 Overall structure and operating principle

Figure 1A shows the posture-adjusting precision seed-metering device. The device consist of a front shell, a posture-adjusting groove, a seeding plate, a seed delivery partition, a seed guiding wheel, a seed guiding track, a shaft, and a rear shell. Among them, the seed-taking units are uniformly distributed on the margin of the seeding plate, and concave surfaces are uniformly distributed on the surface of the seeding plate. Together with the posture-adjusting groove, they constitute the posture-adjusting mechanism. This is the core component for adjusting the seed-filling posture, creating a uniformly distributed seed flow in the seed-filling area, and improving the seed-filling effect under high-speed planting conditions.

[image: Diagram of a mechanical assembly showing an assembled model and an exploded view with labeled components. Includes detailed views of core components like gear and wedges, and a seed flow process illustrating different filling postures. Each part is color-coded, and adjustments are indicated by arrows.]
Figure 1 | Schematic diagram and operating principle of the seed-metering device. (A) Schematic diagram of the seed-metering device. (B) Operating principle of the seed-metering device. 1. Front shell 2. Posture-adjusting groove 3. Seeding plate 4. Seed delivery partition 5. Seed guiding wheel 6. Shaft 7. Seed guiding track 8. Rear shell 9. Shrinkage surface 10. Concave surface 11. Seed-taking unit (I) Seed-filling II. Seed-clearing III. Seed-delivering IV. Seed-guiding V. Seed-throwing.

Figure 1B depicts the operating principle of the seed-metering device. The operating principle consists of five consecutive operating processes: seed-filling, seed-clearing, seed-delivering, seed-guiding, and seed-throwing. Seeds enter the seed house and first fall into the posture-adjusting groove of the posture-adjusting mechanism. Due to the shrinkage surface inside the posture-adjusting groove, seeds close to posture 2 (long axis perpendicular to the seeding plate) will be stuck in the groove. When the seeding plate rotates, the concave surface and the posture-adjusting groove will apply a driving torque to the seeds approaching posture 2. This causes the seeds to rotate around the center of mass, adjust to posture 1 (long axis parallel to the seeding plate), and then move with the concave surface to the notch of the posture-adjusting groove in order to drop down into the seed-filling area. Seeds with a consistent posture continuously enter the seed-filling area, forming a uniformly dispersed seed flow driven by the seeding plate. The seeds in the seed flow collide with the seed-taking units and enter them to achieve seed-filling. The remaining seeds in the seed-taking units gradually lose their structural constraints with the turn of the seeding plate and fall to complete seed-clearing. The remaining single seeds that reach the opening of the seed delivery partition slide sideways into the cell at the margin of the seed guiding wheel, achieving seed delivery. Under the guidance of the seed-guiding track, the constrained seeds in the cell are transported along the arc-guiding curve to the seed-throwing port to finish seed-guiding (Dong et al., 2023). Seeds arriving at the seed-throwing port lose their structural constraints and fall vertically with initial velocity and gravity to start the seed-throwing process.




2.2 Comparison of seed-filling methods

The differences between the seed-filling method developed in this study and traditional seed-filling methods are shown in Figure 2. Traditional seed-filling methods use a seed-taking unit structure to extract single seeds directly from the seed group. The filling posture of the seeds is restricted due to the excessive accumulation of seeds in front of the seed-taking unit, resulting in the formation of an inter-constrained force chain (Gao et al., 2019, 2023; Zhang et al., 2024). This situation is exacerbated by an increase in the planting speed, which can lead to the seed-filling posture not matching the seed-taking unit in time, resulting in no-filling (Figure 2A). In the novel seed-filling method, the seeds maintain the same postural characteristics (the long axis is parallel to the seed plate) and are detached from the seed group. A moderate quantity of seeds is simply forced in front of the seed-taking unit, with low filling resistance. The seed posture easily matches the seed-taking unit and is not influenced by the planting speed (Figure 2B). Therefore, the novel seed-filling method has an increased probability of effective seed-filling and can adapt to higher planting speeds.

[image: Diagram showing two scenarios of tooth drilling resistance. Panel A on the left illustrates high filling resistance with multiple yellow tooth fillings connected by red and blue lines. Panel B on the right depicts low resistance with fewer tooth fillings and fewer connecting lines. Both panels include close-up views of the tooth drilling environment with a zoomed circular inset showing the tool contact area.]
Figure 2 | Comparison of seed-filling methods. (A) Traditional seed-filling method. (B) Novel seed-filling method.




2.3 Design of the posture-adjusting mechanism

The posture-adjusting mechanism adjusts the posture of the seeds to be filled so that they can break away from the seed group bondage in advance and continuously feed into the seed-filling area to form a uniformly distributed seed flow. Seeds in the seed flow are subjected to simple force in front of the shaped hole and have a low filling resistance, creating highly favorable conditions for effective seed-filling under high-speed conditions. The structural parameters of the posture-adjusting mechanism directly impact the seed-filling effect. The structural parameters primarily compose the seeding plate and the posture-adjusting groove (Figure 3).

[image: Diagram illustrating a seed metering mechanism. The posture-adjusting groove is shown separately. The central seeding plate features blue and green components, surrounded by labeled sections highlighting "posture adjustment," "seed group fluidization," and "effective filling." The image effectively breaks down the sequence of seed adjustment and flow through the mechanism.]
Figure 3 | Schematic diagram of posture-adjusting mechanism.



2.3.1 Design of the seeding plate

The number of seed-taking units depends on the diameter of the seeding plate, which is usually 140–260 mm, and should not exceed a reasonable range (Gao et al., 2023). Considering the grain size of maize and the processing requirements, the selected diameter ds of the seeding plate was 210 mm and the selected thickness b was 3 mm. The spacing of the seed-taking unit ws should be over 1.5 times the maximum seed length of 21.1 mm to prevent the spacing of neighboring seed-taking units from being too small such that seed-filling is hindered (Figure 4). Thus, the number of seed-taking units was determined as follows:

[image: Circular diagram of a mechanical component with detailed views of 3D holes. Labels indicate dimensions and angles in various views, including front, side, and vertical. The bottom section illustrates six situations of effective filling with different shaped objects fitting into the 3D holes.]
Figure 4 | Schematic diagram of seeding plate, seed-taking unit, and effective filling situations.

[image: The equation shows \( ws = \frac{2 \pi r_a}{k} > 21.1 \) labeled as equation (1).] 

where ra is the radius at the center of the seed-taking unit (mm) and k is the number of seed-taking units.

It is known that ra is 97 mm, and substituting this into Equation 1 results in k less than 28.9. Accordingly, the number of seed-taking units should be less than 28. To guarantee the reliability of the seed-filling process, the number of seed-taking units selected was 27.

The centrifugal force should be constantly less than the gravity of the seed during seed delivery. From this it follows that:

[image: A mathematical equation set showing two expressions: \( n \leq \frac{30}{\pi} \sqrt{\frac{2g}{10^{-4}}} = 93.2 \) and \( n = \frac{1000V}{66x} \). It is labeled as equation (2).] 

where n is the rotational speed of the seeding plate (r/min), z is the seeding plant spacing (25 cm), and V is the planting speed of the planter (km/h).

From Equation 2, the maximum rotational speed of the seeding plate should not exceed 93.2 r/min. When k is taken as 27 and substituted into Equation 2, under planting speeds of 8, 10, 12, and 14 km/h, the corresponding rotational speeds of the seeding plate are 20, 25, 30, and 35 r/min, all of which are far less than 93.2 r/min. Therefore, the device was designed with 27 seed-taking units, meeting the seeding plate design requirements. Further, 27 concave surfaces with a depth of 0.1 mm are distributed on the seeding plate surface to ensure that the seeds can be adjusted to the target posture. These concave surfaces enhance the driving torque required for the seeds during the posture-adjusting process.




2.3.2 Structure parameters of the seed-taking unit

The length l, width w, and thickness t of the maize seeds for this study were based on the published “Zhengdan 958” maize seed measurements, where the average length l0 of the maize seeds was 11.54 mm, the average width w0 was 8.63 mm, and the average thickness t0 was 6.17 mm (Dong et al., 2022).

The seed-taking unit directly impacts the seed posture, shape, and dimension compatibility. The seed-taking unit must have rationally designed structural parameters to effectively fill the seeds (after seed-clearing, one seed remains in the shaped hole). The seed-taking unit’s main structural parameters include the mouth width W1, the tail width W2, the wall height H1, the hole height H2, the hole length L1, the bottom surface inclination angle γ1, and the notch angle γ2. Their values should be determined based on six specific situations when seeds are effectively filled (Figure 4).

The six situations are: two seeds in the side-standing posture are laterally superimposed into the shaped hole (Situation 1); a single seed in the side-standing posture and a single seed in the lying posture are laterally superimposed into the shaped hole (Situation 2); a single seed in side-standing posture into the shaped hole (Situation 3); a single seed in the lying posture into the shaped hole (Situation 4); a single seed in the side-standing posture and a single seed in the lying posture longitudinally superimposed into the shaped hole (Situation 5); two seeds in the lying posture longitudinally superimposed into the shaped hole (Situation 6). It can be deduced that the value of the structural parameters is satisfactory when:

[image: Mathematical constraints in a system of inequalities denoted as (3):  1. Zero is less than or equal to \( H_1 - 0.5t_0 \), which is less than or equal to \( 0.5t_0 \). 2. Zero is less than or equal to \( H_2 - w_0 \), which is less than or equal to \( t_0 \). 3. Zero is less than or equal to \( W_1 - w_0 \cos \gamma_1 \), which is less than or equal to \( t_0 \cos \gamma_1 \). 4. Zero is less than or equal to \( W_2 - 0.5t_0 \), which is less than or equal to \( 0.5t_0 \). 5. Zero is less than or equal to \( L_1 \), which is less than or equal to \( l_0 \).] 

Since the bottom surface inclination angle γ1 influences the shape of the seed-taking unit’s filling port, the notch angle γ2 determines the constraint force after the seed filling. When γ1 is too large, the seed-filling posture cannot match the hole, and when it is too small, many seeds are easily filled into the shaped hole simultaneously. Removing excess seeds is difficult when γ2 is too large, and when it is too small, all seeds are removed easily. Based on the dimension range of the seeds, the results of the pre-tests, and Equation 3, it was determined that the optimal values of the mouth width W1, the tail width W2, the wall height H1, the hole height H2, the hole length L1, the bottom surface inclination angle γ1, and the notch angle γ2 were 11 mm, 5 mm, 5 mm, 14 mm, 7 mm, 20°, and 25°, respectively.




2.3.3 Design of the posture-adjusting groove

The posture-adjusting groove is fixed between the front shell and the seeding plate, and a partial notch connects the seed-filling area on the bottom edge. To ensure that seeds close to the target posture (long axis parallel to the seeding plate) can pass through smoothly and the rest of the seeds are blocked, the opening width bo of the posture-adjusting groove should be close to the seed width. Further, to enable effective seed flow formation in the seed-filling area, the radius of the posture-adjusting groove rp is 80 mm and the width of the posture-adjusting groove bp is 13 mm. A 90° opening is present at the top of the posture-adjusting groove to retrieve the cleared-off seeds and to avoid effects on the seed-filling process. The opening angle θo of the posture-adjusting groove is the angle between the vertical direction of the center and the opening position. In the pre-test, when the θo exceeded 30°, the seed-filling area was insufficient, leading to severe leakage. When it was lower than 0°, the particle density of seed flow was relatively high, inhibiting the seed-filling. Therefore, the opening width and the opening angle were as follows:

[image: Mathematical expression with two inequalities: \( b_0 \in (7.5, 9) \) and \( \theta_0 \in (0, 30) \), labeled as equation (4).] 

To ensure that the posture-adjusting mechanism has a favorable adjusting effect on the seed posture, the posture-adjusting groove has a shrinking cross-section to assist the concave surface of the seeding plate to exert sufficient torque on the seeds, prompting their posture to change. Four different structural types were designed for comparison to investigate the influence of the shrinking cross-sections on the posture adjustment and seed-filling effects. Among them, a 60° beveled surface served as type A, projected outward as type B, and recessed inward as type C. Type D, which had no internal structure, was used as a control (Figure 5).

[image: Illustration showing a mechanical setup with a semi-circular yellow object, labeled points, and measurements including angles and radii. Insets on the right depict posture adjustments, labeled "Posture to be adjusted" and "Target posture." The bottom section displays type assessments labeled A, B, C, and D, showing different cross-section designs.]
Figure 5 | Schematic diagram of posture-adjusting groove.




2.3.4 Analysis of the seed-filling process

The seed-filling process can be divided into several stages based on the seed motion characteristics: the posture adjustment stage, the falling stage, and the filling stage, corresponding to the ab, bc, and cd segments, respectively (Figure 6). The main factors influencing the seed-filling effect were clarified by analyzing the seed posture-adjusting efficiency and seed flow distribution characteristics. The normal and tangential contact forces between particles were used to examine the interactions between the seeds, and every stage was analyzed.

[image: Diagram illustrating three stages of a mechanism: filling stage, posture adjustment stage, and falling stage. It shows a colorful, segmented structure with labeled parts such as "a," "b," "c," and "d," depicting movement and positioning. Arrows indicate direction and motion, with labels for angular and linear velocity. The mechanism appears to involve rotating and adjusting components for a specific function.]
Figure 6 | Stage division during the seed-filling process.

In the posture adjustment stage, a space coordinate was built with the seed’s center of mass o as the base point. The centrifugal force of the seed was contrary to the y-axis and vertical to the x-axis; the vertical of the seeding plate served as the z-axis (Figure 7A). The equilibrium equations for the forces on the xoz, xoy, and yoz planes were established as follows:

[image: Three sets of diagrams labeled A, B, and C depict a mechanical system with coordinate axes (x, y, z) on various planes. Each diagram series includes views from different angles: coordinate system, xoz plane, xoy plane, and yoz plane. Forces and variables such as \( F_T \), \( F_N \), \( G \sin \alpha \), and angles are annotated. The structure resembles a mechanical component, colored green and brown, with blue legs.]
Figure 7 | Force analysis during the seed-filling process. (A) Posture adjustment stage. (B) Falling stage. (C) Filling stage.

[image: Mathematical expressions are displayed:   1. \(N = f = F_{1}\mu = F_{2}\mu\) 2. \(N + F_{\text{T}} = G \sin \sigma + f\) 3. \(F_{3} = F_{\text{T}} + F_{\text{N}} + G \cos \sigma\) 4. \(F_{1} = F_{3} \cot \alpha_{x}\)   Each is part of equation (5).] 

where N is the friction force of the concave surface of the seeding plate on the seed (N), f is the friction force of the posture-adjusting groove on the seed (N), F1 is the z-axial force of the seed support force Fn (N), F2 is the reverse force of F1 (N), F3 is the y-axial force of the seed support force Fn (N), μ is the factor of sliding friction between the mechanism and the seed, FN is the normal contact force of the seed (N), FT is the tangential contact force of the seed (N), G is the gravity of the seed (N), Fr is the centrifugal force of the seed (N), σ is the angle between the gravity and the centrifugal force of the seed (°), and αs is the angle between the seed support force Fn and reverse direction of the z-axis (°).

The seed center of mass was assumed to be at the center of the seed length l to simplify the analysis process. The driving torque of the seed was as follows:

[image: ΣM equals one half times the sum of N plus f. This is labeled as equation six.] 

Based on Equations 5 and 6 can be obtained:

[image: Equation showing the sum of moments: ΣM equals (F_r plus F_N plus the square root of G squared minus F_T squared) times μ times cotangent of α_z. Equation number is 7.] 

Equation 7 shows that the driving torque on the seed is negatively correlated with the angle αs. Thus, the driving torque during the posture adjustment stage mainly depends on the shape of the shrinking cross-section of the posture-adjusting groove.

In the falling stage, a space coordinate was built with the seed’s center of mass o as the origin, the direction of gravity served as the y-axis, the vertical direction of gravity as the x-axis, and the vertical direction of the seeding plate as the z-axis (Figure 7B). The force relationship of the seed in the xoy plane was as follows:

[image: Mathematical expression showing two equations: F subscript X equals F subscript T, and F subscript Y equals G minus F subscript N, represented as equation 8.] 

where Fx is the total force of the seeds on the x-axis (N) and Fy is the total force of the seeds on the y-axis (N).

From Equation 8, the denser the particles around the seed to be filled in the falling stage, the larger the normal contact force FN and tangential contact force FT it receives. The total force of the seed on the y-axis direction will be smaller. The efficiency of seed entry into the seed-filling area diminishes, hindering the formation of a uniform seed flow and adversely affecting the seed-filling effect. The sparser the particles around the seed to be filled in the falling stage, the less conducive it is to the formation of a uniform seed flow. A previous study reported that the particle density in the falling stage was positively correlated with the effective seed supply area of the structure (Zong et al., 2023). The opening width bo and the opening angle θo of the posture-adjusting groove determine the size of the effective seed supply area. Thus, it can be inferred that the uniformity of the seed flow in the seed-filling area depends on the bo and the θo.

In the filling stage, a space coordinate was built with the seed center of mass o as the origin. The centrifugal force was contrary to the y-axis and vertical to the x-axis; the vertical of the seeding plate served as the z-axis (Figure 7C). The force relationship of the seed in the xoy plane was as follows:

[image: Equations representing forces in a system: \(F_x = G \sin \sigma - F_T - f_1\), \(F_y = F_T + F_N + G \cos \sigma - F_N = 0\), and \(f_1 = \mu F_n\), where \(G\), \(\sigma\), \(F_T\), \(f_1\), \(F_N\), and \(\mu\) are variables or constants involved in the equations.] 

where f1 is the frictional resistance in the filling stage (N).

From Equation 9:

[image: Mathematical equation showing F sub x equals C sub V times the square root of one plus mu squared, multiplied by the sine of sigma minus arctangent mu, minus mu F sub T, minus mu F sub N, minus F sub T. Equation number ten.] 

In Equation 10, the seed-filling force is Fx, and this is negatively correlated with its total tangential and normal contact force. When the effective seed supply area of the posture-adjusting groove is too large or too small, there will be a non-uniform distribution of the seed flow. The seeds will be subjected to an unstable tangential and normal contact force, resulting in a filling force that is too large or too small for the seeds. This is not conducive to maintaining a stable seed-filling effect. Since the opening width bo and the opening angle θo determine the size of the effective seed supply area, it can be inferred that bo and θo have direct influences on the seed-filling effect.

Therefore, the seed posture adjusting efficiency and uniformity of the seed flow will influence the seed-filling effect of the seed-metering device under high-speed planting conditions. Low efficiency of seed posture adjustment and unstable seed supply are the main reasons for a non-uniform seed flow distribution, making it easy for no-fill or over-fill to occur. In summary, the seed-filling effect is mainly influenced by the key parameters of the posture-adjusting groove (groove type, opening width bo, and opening angle θo). Thus, these parameters were optimized below in simulations and physical experiments.





2.4 Simulation conditions

EDEM2022 discrete element software was chosen to conduct simulation experiments on the key parameters in order to clarify the interactions between the seed flow characteristics and the adjusting mechanism and reveal enhancement mechanism on the seed-filling effect. During the simulation process, Hertz Mindlin (no sliding) was selected as the contact model between the particle and geometry (Chen et al., 2020; Wang et al., 2024). The simulation boundary covered the whole seed-metering device, and the gravity was taken as 9.8 m/s2 in the vertical downward direction. The geometry of the seed-metering device was created as igs file format and imported into EDEM software (Liu et al., 2018). The material in the simulation mainly involved the seed-metering device and maize seeds, and the material of the seed-metering device was set as aluminum alloy, according to the real-life processing situation. The physical parameters during the simulation are shown in Table 1 (Tang et al., 2023; Dong et al., 2024).

Table 1 | Simulation parameters.


[image: A table displaying parameters and their values for different materials. For seed particles: Poisson's ratio is 0.4, solids density is 1197 kg/m³, and shear modulus is 1.37E+08 Pa. For the seed-metering device (aluminum alloy): Poisson's ratio is 0.33, solids density is 2700 kg/m³, and shear modulus is 2.7E+10 Pa. Seed to seed interactions: coefficient of restitution is 0.182, coefficient of static friction is 0.07, and coefficient of rolling friction is 0.02. Seed to seed-metering device: coefficient of restitution is 0.62, coefficient of static friction is 0.3, and coefficient of rolling friction is 0.09.]
The particle factory on the seed inlet continuously generated 800 particles for simulation experiments. Among them, the flat-shaped, wedge-shaped, and spherical-shaped particles adopted a spherical splicing model with a quantity ratio of 6: 3: 1. The triaxial dimensions of each type of particle model followed a normal distribution and were close to the actual dimensions (Du and Liu, 2023). The solving process adopted the Euler algorithm, with a fixed time step of 20% and a storage time interval of 0.01 s (Figure 8).

[image: Diagram showing the components and operation of a particle factory. The main section illustrates the particle factory, seeding plate, seed group, seed flow, and seed-dropping area with labeled angles. On the right, three particle shapes—flat, wedge, and spherical—are shown, each transitioning to a corresponding seed contour. The graphic includes color-coded labels for clarity.]
Figure 8 | EDEM simulation model.

In Figure 8, to quantitatively analyze the effects of the posture adjustment of particles in the posture-adjusting groove and the seed flow distribution characteristics, three data collection areas, 1–3, were established in the simulation post-processing. Area 1 was arc-shaped, with symmetrical left and right boundaries about the center O of the seeding plate, each at a 40° angle. It mainly collected the rotational kinetic energy of the seeds in the posture-adjusting groove. Area 2 was ring-shaped, with its center being the surface center O of the seeding plate; it was used to collect torque information from the concave surfaces of the seeding plate. Area 3 was arc-shaped, with the vertical direction of the center O of the seeding plate making an angle of θo with its right boundary and sitting perpendicular to its left boundary. This area mainly monitored the distribution characteristics of the seed flow in the seed-filling area.




2.5 Bench experiment conditions

The bench experiment included a performance optimization experiment and a performance validation experiment involving materials such as maize seeds and a posture-adjusting seed-metering device. The main variety of maize seeds was “Zhengdan 958” (thousand seed weight of 290.2 g, moisture content of 10.36%, and rest angle of 22.33°). The critical components of the seed-metering device were machined with 6061 aluminum (CNC processing, accuracy of ±0.01 mm). The test devices were the metering performance test platform, which was self-constructed, and the visual data collection system. The performance test platform consisted of a mounting frame, a drive motor (adjusting speed range 0–35 r/min), a transmission device (input chain, output shaft), a seed-guiding tube (to transport the seeds), and a belt conveyor (speed range 0–14 km/h, with a gelatinized surface to fix the seeds). The visual data collection system consisted of a high-speed camera (Revealer, M230M/C), spotlights, coordinate panels, and motion analysis software (Tracker). The testing conditions are displayed in Figure 9.

[image: Seed metering apparatus with components labeled, including mounting frame, seed-metering device, spotlights, seed-guiding tube, high-speed camera, belt conveyor, computer, and speeder. The belt conveyor shows fallen seeds and a highlighted running direction. Two sections demonstrate the seed-filling posture adjusting mechanism: one with the mechanism and one without.]
Figure 9 | Bench test conditions.




2.6 Experimental design

(1) The type of posture-adjusting groove directly influenced the seed posture-adjusting efficiency, with a more significant effect on the seed-filling effect than the opening angle θo and the opening width bo. Firstly, a simulated comparison experiment was carried out to investigate the effects of the type of posture-adjusting groove on the seed posture-adjusting efficiency, seed flow distribution characteristics, and metering performance. The aim of this was to select the optimal type.

(2) Based on the optimal groove type, a double-factor optimization experiment of the metering performance was carried out using the performance test platform of the seed-metering device (Li et al., 2020). The mathematical relationship model was established between the metering performance indices (pass rate Y1, repeat rate Y2, and leak rate Y3) and experimental factors (opening angle X1, opening width X2). The influences of the factors and their interactions on the metering performance were analyzed, and the optimal parameter combination of the seed-metering device was identified.

(3) The validation experiment of the seed-metering device’s high-speed planting capacity was carried out according to its optimal structure parameters. The metering performance at different planting speeds (8 km/h, 10 km/h, 12 km/h, 14 km/h) was tested, respectively, and contrasted with a seed-metering device without a posture-adjusting mechanism.




2.7 Experimental methods

The experiment was performed in accordance with the international test method of single seed precision drills in ISO 7256-1 “Sowing equipment–Test methods” (Zhao et al., 2024). A maize seeding plant spacing of 0.25 m was selected and 250 segments of seed spacing lengths, seeded in the steady operating condition of the seed-metering device, were selected as the experimental sample. Every group of experiments was repeated three times under the same conditions to ensure the accuracy of the experimental results, and the average was taken as the final statistical result (Li et al., 2021; Zhang et al., 2023). The experimental indices (pass rate Y1, repeat rate Y2, and leak rate Y3) were computed using the visual data collection system, as follows:

[image: Mathematical expression showing a set of three equations: Y subscript 1 equals n subscript 1 divided by N prime, Y subscript 2 equals n subscript 2 divided by N prime, Y subscript 3 equals n subscript 3 divided by N prime. The equations are marked as equation 11.] 

where n1 is the number of pass segments, n2 is the number of repeat segments, n3 is the number of leak segments, and N’ is the number of test samples, i.e., 250.





3 Results and discussions



3.1 Simulated comparison experiment results and analysis

In the simulated comparison experiment of the different types of posture-adjusting grooves, the opening angle was 20° and the opening width was 8 mm. The relatively higher planting speed requirement of the seed-metering device was met by setting it at 14 km/h (the rotational speed of the seeding plate was 35 r/min).



3.1.1 Analysis of the seed posture-adjusting efficiency

Figure 10A illustrates the changes in the rotational kinetic energy of the seeds throughout the seed-filling process. In the posture adjustment stage, the change in the rotational kinetic energy of a single seed was more significant than in the falling and filling stages. This is because the driving torque constantly changed the seed posture during the posture adjustment stage, resulting in significant fluctuation in the rotational kinetic energy as compared to the other stages.

[image: Diagram A illustrates the motion trajectory of seeds within a rotating machine, indicating stages such as falling, filling, and posture adjustment, accompanied by a kinetic energy color scale. Diagram B shows a series of images at different time intervals (0.01 to 0.09 seconds) depicting the changing length and width of orange seed-like objects, with arrows indicating the direction.]
Figure 10 | Changes in motion characteristics of single seed during the posture adjustment stage. (A) Rotational kinetic energy. (B) Seed posture.

Figure 10B depicts the specific changes from 0.01–0.09 s in the posture of a single seed during the posture adjustment stage in the simulation. The seed posture with the long axis perpendicular to the seeding plate was continuously adjusted until it was parallel to the seeding plate and then ready to fall, achieving the posture-adjusting effect.

Figure 11A displays the influences of different types of posture-adjusting grooves on the rotational kinetic energy of the seed group over 2–10 s of the simulation. Type A corresponded to rotational kinetic energy between 1.7×10-7–22.7×10-7 J, with an average of 7.2×10-7 J. Type B corresponded to rotational kinetic energy between 1.1×10-7–21.2×10-7 J, with an average of 7.0×10-7 J. Type C corresponded to rotational kinetic energy ranging from 1.3×10-7 to 19.8×10-7 J, with an average of 6.5×10-7 J. Type D corresponded to rotational kinetic energy ranging from 1.0×10-7 to 12.1×10-7 J, with an average of 5.6×10-7 J.

[image: A 3D line graph showing rotational kinetic energy and torque over time for four types labeled A, B, C, and D. Each type is depicted in a different color: blue, green, red, and cyan. The left side chart plots rotational kinetic energy (10^-7 Joules) against time, while the right side chart plots torque (10^-7 Newton meters) against time. Average values with standard deviation are noted for each type. Time is shown in seconds from 2 to 10 on both axes.]
Figure 11 | The influence of groove types on the posture adjusting efficiency. (A) Rotational kinetic energy of seed group. (B) Torque of concave surfaces.

Figure 11B displays the influences of different types of posture-adjusting grooves on the torque in the concave surfaces of the seeding plate over 2–10 s of the simulation. Type A corresponded to a torque between 0–33×10-7 Nm, with an average torque of 3.1×10-7 Nm. Type B corresponded to a torque between 0.1–62×10-7 Nm, with an average of 7.4×10-7 Nm. Type C corresponded to a torque between 0–124.5×10-7 Nm, with an average of 11.1×10-7 Nm. Type D corresponded to a torque between 0–96.5×10-7 Nm, with an average of 8.7×10-7 Nm.

The comparison indicated that type A had a greater effect on increasing the rotational kinetic energy of the seeds, with this being significantly higher than type D. Simultaneously, type A corresponded to the lowest torque of the concave surfaces of the seeding plate, being significantly lower than types C and D. This is because the driving torque of the seeds in the type A posture-adjusting groove was more consistent than that of the other types. The seeds were not subjected to excessive or insufficient torque, which ensuring a higher efficiency in seed posture adjustment.




3.1.2 Analysis of seed flow distribution characteristics

Figure 12A illustrates the seed flow distribution in the seed-filling area from 0–0.45 s in the simulation. When t was 0 s, the seed flow distribution was relatively uniform, with a voidage of 73.9%. When t was 0.15 s, the seed flow had a clear empty area, and the voidage increased rapidly to 85.6%. When t was 0.3 s, the position of the empty area in the seed flow increased with the turn of the seeding plate, and the voidage was 87.1%. When t was 0.45 s, the empty area was not replenished with seeds in time, resulting in the seed-taking unit not being filled; the voidage was 81.4%. This analysis demonstrated that a non-uniform distribution of the seed flow due to an empty area is the main cause of the leakage phenomenon.

[image: Diagram A shows four circular cutaway images with various colored particles and voidage percentages over time: 73.9% at 0 seconds, 85.6% at 0.15 seconds, 87.1% at 0.3 seconds, and 81.4% at 0.45 seconds. "Empty area" is circled in red, and "No-filling" in purple. Graph B presents a bar chart with voidage percentages for types A to D, along with a coefficient of variation line, indicating increasing values across types.]
Figure 12 | Distribution characteristic of seed flow in the seed-filling area. (A) The influence of voidage on seed-filling effect. (B) The influence of groove type on seed flow characteristics.

Figure 12B displays the average values and coefficients of the variation in seed flow voidage in the seed-filling area under different types of posture-adjusting grooves within 2–10 s of the simulation. Type A corresponded to an average value of 81.8%; the coefficient of variation was the smallest at 2.9%. Type D corresponded to an average value of 84.4%; the coefficient of variation was the largest at 3.6%. Under type B and C conditions, the coefficients of variation between 2.9% to 3.6%. These results indicate that the fluctuation in the seed flow voidage was the least under type A, and the seeds were more uniformly distributed, with a lower chance of having empty areas, as compared to the other types.




3.1.3 Simulation validation

Figure 13 presents the simulation and actual comparison of the metering performance under different posture-adjusting grooves. Type A exhibited the optimal metering performance compared with the other types. Under this condition, the simulated pass rate was 95.2% and the actual pass rate was 94.3%. The pass rate was the highest compared with the other types. The simulated leak rate was 3.5% and the actual leak rate was 4.5%. The leak rate was the lowest of the four types. These findings indicate that type A significantly improved the metering performance compared to the other types. The relative errors of the pass rate between the simulation and the actual experiment were between 1.0% and 1.4%, and the relative errors of the leak rate were between -28.6% and -6.6%. These are within reasonable ranges, indicating that the simulation was relatively accurate.

[image: Two bar charts compare pass rates and leak rates for types A, B, C, and D. Chart A shows actual (green) and DEM (blue) pass rates with relative error (red line) peaking near type B. Chart B depicts actual and DEM leak rates, with the relative error highest at type C. Error bars are present on the bars.]
Figure 13 | Comparison of experiment results between actual and simulation. (A) Comparison of pass rate. (B) Comparison of leak rate.

It can be deduced that when the shrinking cross-section of the posture-adjusting groove is curved or has no shape, the driving torque of the seeds at different positions in the groove is inconsistent. This is not conducive to the timely adjustment of the seed posture into the seed-filling area. In addition, the seed particle model in the simulation cannot reflect the differences in the actual seed shape. In the actual experiment, there are processing and assembly errors in the seed-metering device, and the transmission system will produce vibration and other physical factors. The above factors will cause errors between the actual and simulation indices, but these errors are within a reasonable range and have no influence on the experimental results. Therefore, based on the above, further experiments on the metering performance of the device were carried out using the type A posture-adjusting groove.





3.2 Double-factor experimental results and analysis



3.2.1 Analysis of the experiment results

Based on the results of the simulated comparison experiment, a double-factor optimization experiment was performed with a planting speed of 14 km/h. Table 2 displays the differences between the factor levels in the experimental results (data presented as the average ± standard deviation).

Table 2 | Program and results of the double-factor experiment.


[image: Table showing various factors and indices across sixteen numbered entries. Factors include \(X_1\) in degrees and \(X_2\) in millimeters. Indices are \(Y_1\), \(Y_2\), and \(Y_3\) as percentages. Values include statistical variations. A note explains that different lowercase letters signify significant differences between indices at varying \(X_2\) levels under the same \(X_1\) level, while different uppercase letters indicate significant differences at different \(X_1\) levels under the same \(X_2\) level.]
The effect of the opening angle on the pass rate was insignificant, and the effect of the opening width on the pass rate was significant. When the opening angle was fixed, the pass rate showed a rising and then falling trend with increases in the opening width. The pass rate was higher when the opening width was between 8 mm and 8.5 mm. When the opening width was fixed, the pass rate fluctuated slightly with increases in the opening angle. The pass rate was relatively high when the opening angle was 20°. The effects of both the opening angle and opening width on the repeat rate were significant. When the opening angle was fixed, the repeat rate increased with increases in the opening width and was smallest at an opening width of 7.5 mm. When the opening width was fixed, the repeat rate decreased with increases in the opening angle and was smallest with an opening width of 30°. The effect of the opening angle on the leak rate was insignificant, and the effect of the opening width on the leak rate was significant. When the opening angle was fixed, the leak rate tended to decline with increases in the opening width; it was relatively low when the opening width was between 8 mm and 9 mm. When the opening width was fixed, the leak rate slowly increased with increases in the opening angle. The leak rate was relatively low when the opening angle was between 0° and 20°.

This may be because the distribution characteristics of the seed flow are determined by both the opening angle and the opening width. When the opening angle is too small or too large, the seed flow distribution area will be too scattered or concentrated, resulting in a non-uniform distribution of the seed flow or insufficient seed-filling time. When the opening width is too small or too large, the particle density of the seed flow will be too low or too high, and the seed-taking unit will not be able to capture the seeds promptly or suppress the seed-filling effect. These two factors will exacerbate multiple or leakage seeding, thereby influencing the high-speed planting capacity of the seed-metering device.




3.2.2 Regression analysis

Multiple linear regression analysis was performed on the experimental results in Table 3 using Design Expert 8.0.6 software to examine the significant effects of the different experimental factors, such as the opening angle X1 and opening width X2, and their interaction effects on the pass rate Y1, repeat rate Y2, and leak rate Y3 metering performance indices (Table 3).

Table 3 | Significance analysis of experimental factors on indexes.


[image: Table of significance levels for variables \(X_1\), \(X_2\), \(X_1X_2\), and squared terms under models \(Y_1\), \(Y_2\), and \(Y_3\). P-values for significance are provided with asterisks indicating significance levels: one asterisk for significant and two for highly significant.]
From Table 3, it can be seen that the effects of the opening angle on the pass rate and leak rate were not significant, but the effect on the repeat rate was highly significant. The effects of the opening width on the pass rate, repeat rate, and leak rate were all highly significant. The interaction between the experimental factors had no significant effect on each experimental index. Based on the significance of the analysis results, a multiple regression equation between the experimental factors and indices was established, as follows:

[image: Equations representing a system of three expressions: \(Y_1 = -204.1 + 0.1X_1 + 70.2X_2 - 0.01X_1X_2 - 0.0004X_1^2 - 4.1X_2^2\); \(Y_2 = 38.2 - 0.05X_1 - 10.1X_2 - 0.004X_1X_2 + 0.001X_1^2 + 0.7X_2^2\); \(Y_3 = 265.9 - 0.6X_1 - 60.1X_2 + 0.02X_1X_2 - 0.0009X_1^2 + 3.4X_2^2\). Number (12) is beside the equations.] 

In order to identify the optimal combination of structural parameters for the seed-metering device, the regression equation was solved with the optimization objective of maximizing the pass rate, minimizing the repeat rate, and minimizing the leak rate (Jia et al., 2018; Ding et al., 2020). The objective function and constraints were as follows:

[image: A mathematical optimization problem. Maximize \( Y_1(X_1, X_2) \), minimize \( Y_2(X_1, X_2) \), and \( Y_3(X_1, X_2) \), subject to constraints: \( 0 \leq X_1 \leq 30^\circ \) and \( 7.5 \, \text{mm} \leq X_2 \leq 9 \, \text{mm} \). Equation numbered 13.] 

The results indicated that when the opening angle was 21.6° and the opening width was 8.4 mm, the high-speed planting capacity of the seed-metering device was optimum. Under this condition, the pass rate reached 94.3%, the repeat rate reached 1.2%, and the leak rate reached 4.5%.





3.3 Performance validation experimental results and analysis

Based on the optimal combination of structural parameters, the metering performance of the posture-adjusting seed-metering device was tested at different planting speeds, i.e., 8, 10, 12, and 14 km/h, with an opening angle of 21.6° and an opening width of 8.4 mm. It was then compared with a seed-metering device without a posture-adjusting mechanism.

Figure 14A demonstrates that the posture-adjusting seed-metering device had a pass rate above 94%, a repeat rate below 2.1%, and a leak rate below 3.9% within the planting speed range of 8–14 km/h. This meets the technical requirements for precision seeding. The pass rate did not significantly change with increases in the planting speed. It remained in the range of 94–95%, indicating that the posture-adjusting seed-metering device has good adaptability to high-speed planting. The analysis indicated that since the seed posture was regulated in advance and the seeds were present in the seed-filling area, there was a uniformly distributed seed flow. This effectively avoided the extrusion effect between seeds, greatly increased the probability of effective seed-filling, and created favorable conditions for maintaining consistent plant spacing and an even distribution of maize under actual high-speed and high-density planting conditions. In particular, the metering performance at a speed of 14 km/h was optimal, with a pass rate of 94.8%, a repeat rate of 1.3%, and a leak rate of 3.9%; the error was small compared to the optimization results. Therefore, the optimal structural parameters of the seed-metering device are as follows: opening angle of 21.6°, opening width of 8.4 mm.

[image: Graphs A and B show pass, repeat, and leak rates at various operating speeds, with different trends for each rate. Images C and D depict a close-up of machinery processing corn kernels, highlighting movement paths marked in red.]
Figure 14 | Results of performance validation experiment. (A) The posture-adjusting seed-metering device. (B) The seed-metering device without posture-adjusting mechanism. (C) Seed group. (D) Seed flow.

Figure 14B demonstrates that the posture-adjusting seed-metering device had significantly improved metering performance compared to the seed-metering device without a posture-adjusting mechanism within the planting speed range of 8–14 km/h. The pass rate of the posture-adjusting seed-metering device was 7.2–9.1% greater than that of the seed-metering device without a posture-adjusting mechanism. When the seed-metering device does not have a posture-adjusting mechanism, due to the significant accumulation of the seed group in the seed-filling area, the seed posture is constrained; thus, this seed-filling method cannot adapt to high-speed planting conditions (Figure 14C). However, the seed-metering device with a posture-adjusting mechanism can adjust the seed-filling posture in advance. It creates a uniform seed flow in the seed-filling area, significantly increasing the probability of effective seed-filling under high-speed planting conditions (Figure 14D). Together, these findings indicate that the seed-metering device with a posture-adjusting mechanism has an improved high-speed planting capacity compared to traditional methods and is effective under high-speed planting conditions.




3.4 Discussion

In previous studies, when the planting speed was increased from 8–14 km/h, the pass rate of a picker finger seed-metering device decreased from 87.1% to 82%, and the pass rate of a spoon wheel seed-metering device decreased from 90.3% to 81.6% (Dong et al., 2022, 2024). Here, the pass rate of the posture-adjusting seed-metering device was 7.7 to 13.1% higher than an existing mechanical seed-metering device at the same planting speed of 8–14 km/h. This indicates that the device described here has better adaptability to high-speed planting conditions and can meet higher technical requirements. This is primarily because when existing mechanical seed-metering devices are planted under high-speed conditions, seed accumulation and extrusion in the seed-filling area and posture restrictions are aggravated, making it difficult to realize effective seed-filling. This leads to heavy leakage seeding and a decline in seeding quality. In this study, the seed-metering device changed the seed-filling posture in advance through the posture-adjusting mechanism. This resulted in a uniformly distributed seed flow in the seed-filling area, which created favorable conditions for continuous and effective seed-filling and significantly improved the device’s adaptability to high-speed planting conditions.





4 Conclusions

In order to increase the capability of maize mechanical seed-metering devices for high-speed planting, it was proposed that the seed-filling posture be adjusted and fluidizing of the seed group be performed. To this end, a novel posture-adjusting seed-metering device was designed. The influences of the seed posture adjustment efficiency and seed flow distribution characteristics on the seed-filling effect were clarified. The key structural parameters were optimized and validated. The conclusions are as follows:

(1) The simulated comparison experiment showed that when the posture-adjusting groove was type A, the efficiency of the seed posture adjustment was the highest, the driving torque in the concave surfaces of the seeding plate was the smallest, and the seed flow distribution was more uniform, resulting in a significant improvement in the seed-filling effect.

(2) The double-factor optimization experiment showed that when the opening angle was 21.6° and the opening width was 8.4 mm, the high-speed planting capacity of the seed-metering device was optimal. After validation, it was found that the pass rate, repeat rate, and leak rate were 94.8%, 1.3%, and 3.9%, respectively, under this condition.

(3) The performance validation experiment showed that the posture-adjusting seed-metering device had a pass rate above 94%, a repeat rate below 2.1%, and a leak rate below 3.9% within the planting speed range of 8–14 km/h. It exhibited significant improvement compared to a seed-metering device without a posture-adjusting mechanism. The increase in the pass rate reached 7.2 to 9.1% within the planting speed range of 8–14 km/h. These findings indicate that seed posture-adjusting technology can effectively improve the high-speed planting capacity of mechanical seed-metering devices.
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The denitrification process is known to contribute to soil nitrogen (N) loss, which is strongly affected by fertilization strategies; however, the effects of distinct straw retention modes on soil denitrification activity have rarely been discriminated and the underlying mechanisms remain unclear. This study coupled field and incubation experiments to explore the characteristics of soil denitrification activity, soil and standing water physicochemical properties, and the abundance, community diversity, and co-occurrence network of nosZ denitrifiers, based on a paddy field implementing 10-year straw retention under a rice–wheat rotation system. Four straw retention treatments with equivalent chemical fertilizers were applied, namely no straw (NS), wheat straw only (WS), rice straw only (RS), and wheat and rice straw (WRS). Results indicated a significant increase (by 41.93–45.80% when compared to that with NS) in the soil denitrification activity with RS and WRS. Correspondingly, treatments with rice straw retention resulted in the development of a similar community composition (P < 0.05), structure (P = 0.001), and more positively interconnected network, as well as similar specific keystone taxa of nosZ denitrifiers, relative to those in non-rice straw mode. Under long-term rice straw retention conditions, the core nosZ-denitrifying phylogroups shifted (r = 0.83, P < 0.001), with the recruitment of keystone taxa from the phyla Bacteroidetes and Euryarchaeota playing a key role in enhancing denitrification activity and stimulating N loss. Accordingly, in a rice–wheat rotation field, the practice of wheat straw retention in a single season is recommended because it will not markedly sacrifice soil N availability impaired by the denitrification process.
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1 Introduction

Owing to nutrient-rich and aerobic–anaerobic interfaces (Du et al., 2024; Nie et al., 2019), the flooded paddy field serves as a hotspot for denitrification processes, which reduce nitrate (NO3−) to atmospheric nitric oxide (NO), nitrous oxide (N2O), or dinitrogen (N2) in a stepwise manner (Seitzinger et al., 2006). The end-products of heterotrophic denitrification under anoxic or microaerophilic conditions are dominated by N2, followed by N2O and NO (Jahangir et al., 2012), jeopardizing N use efficiency in agricultural ecosystems and contributing to global warming (Philippot et al., 2007). Approximately 36% of N fertilizer was estimated escape from paddy fields through denitrification pathways (Aulakh et al., 2001; Ju et al., 2009).

The practice of straw retention has long been recommended to improve soil N availability, as well as organic carbon (C) sequestration (Thangarajan et al., 2013; Xu et al., 2024); moreover, organic C sources comprise one of the crucial drivers of the denitrification process by providing it with energy and electron donors (Wang et al., 2023). However, the effects of crop residue retention on denitrification activity have varied considerably, with 2.62% to 460.0% of denitrification activity enhanced by straw amendment (Wang et al., 2021, 2022, 2024), among previous studies. Those differences among distinct straw retention modes have rarely been categorized, limiting our knowledge of how soil denitrification pathways are affected by crop residues. It warrants a thorough investigation of denitrification activity by incorporating different modes of straw retention in a two-crop rotation field, especially under the same fertilization conditions, which is critical to explore and guide field management strategies with respect to crop residues.

Microorganisms are the key factors driving soil nitrogen (N) transformation. The nitrous oxide reductase, encoded by the nosZ gene, is increasingly assessed to explore the abundance and structure of denitrifiers and determine the denitrification activity in the soil environment (Duan et al., 2018; Qin et al., 2021; Tao et al., 2022; Tang et al., 2024). Recent studies have highlighted the significant diversity of nosZ-denitrifying communities, which vary under different agricultural management practices, including straw retention (Chen et al., 2025; Xie et al., 2024; Zhou et al., 2022). Furthermore, it has been shown that the nosZ gene exists in two distinct clades (nosZ-I and nosZ-II), each contributing differently to the denitrification process under varying soil conditions (Bano et al., 2024). Despite extensive efforts regarding fertilization regimes, much less is available about the effects of different straw retention modes on nosZ-denitrifiers, which directly regulate the organic C sources that might regulate the ability of denitrifiers to compete for soil nitrate (NO3−) or nitrite (N2O) (Giles et al., 2012; Taylor and Townsend, 2010). Moreover, accumulating studies have reported insignificant relationships between denitrification activity and the abundance or composition of denitrifiers (Attard et al., 2011; Kou et al., 2019), suggesting the necessity of exploring key underlying taxa of the denitrifiers, which dominate the specific ecosystem processes in different habitats (Liang et al., 2021; Kong et al., 2023). Therefore, we hypothesized that specific keystone taxa of denitrifiers are likely stimulated under certain straw retention modes, thereby increasing the soil denitrification activity. This hypothesis was verified based on a field experiment employed with a 10-year program of straw retention. The objectives of this study were (1) to discriminate the soil denitrification activity responses across different straw retention modes, (2) to characterize the abundance, diversity, and co-occurrence network of denitrifiers, and (3) to identify the key soil and standing water factors that drive denitrification activity.




2 Materials and methods



2.1 Field experiment and sampling

The field experiment was initiated in 2010 under a summer rice (Oryza sativa L.)–winter wheat (Triticum aestivum L.) rotation at the Agro–Ecological Station of the Chinese Ecosystem Research Network in the Taihu Lake region of China. The experimental soil belongs to the category of Anthrosols and originates from lacustrine sediments. The field experiment adopted a randomized complete block design with three replicates of four treatments as follows: no straw retention (NS), wheat straw retention in the summer season (WS), rice straw retention in the winter season (RS), and wheat and rice straw return in the summer and winter seasons, respectively (WRS). All four treatment groups received the same amount of mineral N, P, and K fertilizers (Supplementary Table S1). Crop residues in the straw retention treatments, including rice and wheat residues, were chopped into pieces measuring 5 to 10 cm in length and incorporated into the soil in a rotary manner approximately one week before the next crop season.

During the rice season in July 2020, three replicate soil (0–15 cm) and standing water samples were randomly collected from each plot and stored in sterile plastic bags and bottles, respectively. The water samples were filtered through 0.45 μm membranes and processed for chemical analysis. The soil samples were homogenized by passing them through a 2 mm sieve, divided into three parts, and then processed for chemical analysis (stored at 4°C), soil incubation experiments (stored at 4°C), and molecular assays (stored at −80°C).




2.2 Determination of chemical properties

The ammonium nitrogen and nitrite nitrogen in the filtered standing water samples were measured using an ultraviolet spectrophotometer (UV-1280, Shimadzu, Japan) according to Committee of Analytical Method of Water and Wastewater (2002). The concentration of water organic nitrogen was analyzed using a Multi N/C 2100S analyzer (Analytikjena GmbH, Germany) (Ghani et al., 2003). Soil pH was measured using a portable meter (Mettler Toledo, Switzerland) at a soil:water ratio of 1:2.5. Soil electrical conductivity (EC) was detected based on a 1:2.5 soil-to-water ratio using a conductivity salinity meter (Y SI-30, Yellow Springs, USA). Soil organic carbon (SOC) and dissolved organic C (DOC) were measured using TOC-VCPH equipment (Shimadzu, Japan) based on Lu (2000). Soil NH4+-N, NO3−-N, and nitrite nitrogen (NO2−-N) were desorbed with 2 mol L−1 KCl (1:5 soil:solution) and analyzed with an Auto-Analyzer (Skalar, The Netherlands). Soil total nitrogen was measured using the dry combustion method (Lu, 2000). Soil organic nitrogen (SON) was calculated as the difference between soil total nitrogen and the combined soil NH4+, NO3−, and NO2−. Soil available potassium (AK) and phosphorus (AP) were desorbed with 1 mol L−1 NaHCO3 and measured by atomic absorption spectrophotometry and the molybdenum-blue method, respectively. The physicochemical properties of soil and standing water are presented in Table 1.

Table 1 | Physicochemical properties of soil and standing water.


[image: Table displaying pH, ammonium (NH4+), nitrate (NO3−), soil organic nitrogen (SON), soil organic carbon (SOC), dissolved organic carbon (DOC), and water extracts for various straw treatments: no straw (NS), wheat straw (WS), rice straw (RS), and wheat-rice straw (WRS). Values are given in mg kg−1 or g kg−1, with significant differences marked by letters. Abbreviations: DOC, dissolved organic carbon; SON, soil organic nitrogen; DON, dissolved organic nitrogen.]



2.3 Determination of denitrification enzyme activities

The denitrification enzyme activity (DEA) was measured in accordance with the acetylene (C2H2) inhibition method modified from Barton et al. (2000). Briefly, three replicates (10 g) of each fresh soil sample were added to 120 mL glass flasks. Each was amended with 20 mL of solution containing glucose (300 μg C−1 soil) and potassium nitrate (50 μg N g−1 soil). Each flask was sealed with rubber septa and an aluminum crimp cap, and the head space was evacuated and purged with helium gas for 1 min thereafter. Then, 10% of the headspace was replaced with C2H2 (12 mL) through injection. Finally, the replicates were incubated in the dark on a shaker (180 rpm, 25 °C) for 30, 60, 90, and 120 min. Approximately 5 mL of gas samples was transferred into pre-evacuated glass vials and determined using a gas chromatograph (GC-8A, Shimadzu, Japan).




2.4 DNA extraction, real-time PCR assay, and high-throughput sequencing

Genomic DNA was extracted from the triplicate subsamples (0.33 g fresh soil) with Power Soil DNA Isolation Kits (QIAGEN, USA). The quantity and quality of the extracted DNA were measured with a NanoDrop spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). The extracted DNA was divided into two parts, with one fraction for real-time PCR assays and the other fraction for high-throughput sequencing.

The denitrification-associated nosZ gene was amplified using the primer pairs nosZF (5′-CGCRACGGCAASAAGGTSMSSGT-3′) and nosZ (5′-CAKRTGCAKSGCRTGGCAGAA-3′). The reaction mixtures (10 μL) consisted of 5 μL of 2× SYBR green mix II (TaKaRa Biotechnology Co. Ltd., Dalian, China), 0.2 μL of 50× Rox Reference Dye (TaKaRa Biotechnology Co. Ltd., Dalian, China), 0.2 μL (10 μM) of forward and reverse primers, 5 ng of DNA template, and deionized water. The amplification systems consisted of 5 μL of SYBR Master Mix, 0.2 μL (10 μM) of forward and reverse primers, 1 μL of DNA template, and 3.6 μL of double-distilled water (ddH2O). qPCR assay was performed at 95°C for 5 min (denaturation), followed by 40 cycles at 95°C for 30 s, 60°C for 30 s, and 72°C for 60 s (Henry et al., 2006). The qPCR amplification efficiencies and R2 value of the triplicates were 91.4%–95.6% and > 0.99, respectively.

High-throughput sequencing of the nosZ gene was performed using the same primers (nosZF/nosZR) as those for qPCR. The conditions of PCR amplification were as follows: denaturation at 95°C for 3 min; followed by 35 cycles at 94°C for 30 s, 52°C for 45 s, and 72°C for 20 s; and a final elongation at 72°C for 5 min (Delorme et al., 2003). The PCR products were then purified, quantified, and sent for paired-end sequencing (2 × 300 bp) on an Illumina MiSeq platform (Illumina, San Diego, CA, USA).




2.5 Statistical analysis

Raw sequence data were assembled using FLASH2 (Magoč and Salzberg, 2011) and quality filtered using VSEARCH v2.15 (Rognes et al., 2016) and unoise3 in usearch (Edgar, 2016). In total, 769136 high-quality sequences were obtained from 16 samples. The high-quality sequences were clustered into operational taxonomic units (OTUs) based on a 97% nucleotide similarity cutoff (Edgar, 2010), and 2691 OTUs were finally generated. The taxonomic annotations of the OTUs were in accordance with the RDP Functional Gene Repository (FunGene, http://fungene.cme.msu.edu/) using a confidence threshold of 80%. The sequence data have been deposited in the NCBI Sequence Read Archive under the accession number PRJNA668401.

All data were tested for homogeneity of variance with Levene’s tests before analysis. One-way analysis of variance (ANOVA), permutation analysis of variance (PERMANOVA) tests, and the Kruskal-Wallis H-test were performed with SPSS 22.0, R 3.2.1 (http://www.rproject.org/), and STAMP, respectively, to test the significant differences in specific variables among treatment groups. Pearson correlation analysis was used to reveal the relationship between the activity and abundance of denitrifying bacteria using SPSS (version 20.0). Principal coordinate analysis (PCoA, vegan in R) was conducted to visualize assemblage conditions of the denitrifying bacterial community. Random forest analysis (RANDOMFOREST package in R) was used to evaluate the importance of environmental predictors for denitrifying bacteria. The co-occurrence networks were constructed based on the Molecular Ecological Network Analyses Pipeline (MENA) and visualized with Gephi 0.9.2 to detect the interactions among denitrifying bacteria. Structural equation modeling (SEM) was performed to investigate the direct and indirect effects of parameters on DEAs using Amos 21.





3 Results



3.1 Physiochemical characteristics of standing water and soil

The physiochemical characteristics in the paddy field differed among distinct straw retention treatment groups (Table 1). Inorganic N, especially NH4+, comprised the largest proportion of N in the standing water. Compared to those with NS treatment, concentrations of NH4+ and NO3− in the standing water significantly decreased, whereas those of DON and DOC increased after straw retention (P < 0.05). The conditions in the soil were much different. First, organic N (i.e., SON) took the dominant portion of soil N, followed by NH4+, NO3−, and NO2-. More importantly, compared to those with NS treatment, soil pH and soil NO3− and NO2− contents decreased, whereas those of NH4+, SON, SOC, and DOC increased, after the 7-year implementation of straw retention (P < 0.05). Furthermore, whether in the standing water or soil, treatment groups with rice straw amendment (RS or WRS) showed more analogous trends. These results revealed that both in the standing water and soil of the paddy field, the NO3− value was reduced, and the organic C and N values were enhanced by the practice of straw retention, and particularly by rice straw amendment.




3.2 Denitrification enzyme activity and the abundance of nosZ denitrifiers

DEA was used to characterize the potential soil denitrification activity. In the current experimental field, soil DEA was observed to vary from 14.48 to 20.55 mg N2O-N kg−1 h−1 (Figure 1). Although the DEA value increased as an effect of straw retention, only treatments with rice straw amendment (RS and WRS) resulted in significant differences, of which the increments were estimated to be 41.93% and 45.80%, respectively. These results indicate that the employment of rice straw retention might amplify denitrifying N loss in the rice–wheat rotation system.
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Figure 1 | Denitrification enzyme activities (A) and the abundance of the nosZ gene (B) under the four fertilization regimes. Error bars denote the standard errors (n = 3) and are accompanied by different lowercase letters indicating significant differences (P < 0.05) among the four treatment groups according to Tukey’s HSD post-hoc test. NS, no straw; RS, rice straw only; WS, wheat straw only; WRS, rice straw and wheat straw.

Analogous with DEA results, the abundance of the denitrifier-nosZ gene, which ranged from 1.52 to 2.27 × 107 copies g−1 dry soil, was enhanced with straw retention treatments. However, relative to that with NS, only the WRS treatment group showed significantly higher levels of nosZ gene abundance, which also did not correlate with the soil DEA (P > 0.05). The investigation into different phylogroups, but not the copy numbers of denitrifiers, thus appears to be particularly important to account for soil DEA changes as affected by crop residues.




3.3 Beta-diversity and co-occurrence networks of nosZ-denitrifying communities

The characteristics of nosZ-denitrifying communities showed clear variations in response to different straw retention patterns. In the current study, 2691 clustered OTUs were phylogenetically grouped as 69.9% bacteria and 30.1% archaea (Figure 2A), which were predominated by Planctomycetes (19.0%–22.3%), Euryarchaeota (15.1%–22.3%), and Proteobacteria (10.8%–12.7%) at the phylum level (Figure 2B). The ANOVA and STAMP results demonstrated that under treatments with rice straw retention (RS and WRS treatments), whether at the family or genera level, nosZ denitrifiers affiliated with the phyla Euryarchaeota (Haloferacaceae, Archaeoglobaceae, Halonotius) and Bacteroidetes (Cyclobacteriaceae, Lunatimonas) increased in relative abundance (P < 0.05), whereas those affiliated with the phylum Planctomycetes (Phycisphaeraceae, Planctomicrobium, Telmatocola) decreased (P < 0.05) (Figures 3A, B; Supplementary Table S3). PCoA and PERMANOVA results further identified the community distribution characteristics of nosZ denitrifiers, revealing that RS and WRS groups were significantly differentiated relative to the NS and WS groups (Figure 3C).

[image: Illustration of two circular diagrams. (A) A phylogenetic tree with color-coded sections representing different microbial groups such as Methanosarcinales and Planctomicrobium. Labels are arranged around the perimeter. (B) A chord diagram showing connections between microbial groups like Aquificae, Synergistetes, and Bacteroidetes. Each segment is labeled with numeric scales and names like NS, WS, RS, and WRS. Colorful ribbons indicate relationships between groups.]
Figure 2 | Circular maximum likelihood phylogenetic tree (A) and the community compositions (B), presented based on genus and phylum levels, respectively, of the denitrifying bacteria among treatment groups. The tree is based on the nosZ gene sequences of the most abundant operational taxonomic units. Genera in (A) are color-coded by phylum in (B). NS, no straw; RS, rice straw only; WS, wheat straw only; WRS, rice straw and wheat straw.

[image: (A) Bar chart displaying the relative abundance of various microbial families across four sample types: NS, WS, RS, and WRS, with significant differences marked. (B) Heatmap indicating relative abundance percentages for microbial genera across the same sample types, color-coded from light to dark. (C) PCoA plot showing clustering of samples based on Unifrac distance, with significant variation between WS and RS.]
Figure 3 | Differences in the community compositions of denitrifying bacteria at family (A) and genus (B) levels and in the bacterial community structures (C) among treatment groups. The statistical differences were calculated using Tukey’s HSD post-hoc test (marked with asterisks, P < 0.05, n = 3), Kruskal-Wallis H-test (P < 0.05, n = 3), and PERMANOVA test (P = 0.001, n = 6) in (A–C), respectively. NS, no straw; RS, rice straw only; WS, wheat straw only; WRS, rice straw and wheat straw.

These findings suggested that treatments with and without rice straw resulted in pairwise similarity concerning both the community composition and structure of nosZ denitrifiers. Correspondingly, R mode and non-rice straw (non-R) mode co-occurrence networks were separately constructed to identify the key phylogroups and interactions among the nosZ denitrifiers (Figure 4). Generally, non-R and R mode networks consisted of 202 and 262 nodes and 440 and 606 edges, respectively, the latter possessing a higher ratio of positive associations (88.0% > 82.1%), as well as higher average degree and clustering coefficient values, as shown from the topological features (Figure 4A; Table 2). Correspondingly, the Zi-Pi plot showed four (two module hubs and two connectors) and eight (three module hubs and five connectors) hub nodes (i.e., core OTUs), which are representative of keystone taxa of denitrifiers, within the non-R and R networks, respectively (Figure 4B; Supplementary Table S3). The keystone taxa include OTUs prominently from the phylum Planctomycetes (OTU2, OTU195) in the W network, whereas OTUs were prominently from the phyla Euryarchaeota (OTU585, OTU93, OTU414) and Bacteroidetes (OTU100, OTU90) in the R+S network. These findings revealed that the nosZ denitrifiers in the R mode were more positively interconnected and recruited more and specific keystone taxa, as compared with those in non-R mode.

[image: Diagram illustrating microbial network analysis and connectivity. (A) Displays two network structures for Non-R and R modes, colored by microbial groups such as Bacteroidetes and Proteobacteria. (B) A scatter plot compares within-module and among-module connectivity, highlighting specific Operational Taxonomic Units (OTUs) with triangles for each mode. (C) A vertical bar graph shows the influence of environmental factors on model accuracy, with cross-validation error and a heatmap demonstrating Pearson correlation coefficients for different OTUs in both modes.]
Figure 4 | Co-occurrence networks (A) and the keystone taxa (B) of denitrifying bacterial operational taxonomic units (OTUs) based on their topological roles, and the relationships of keystone taxa with soil environmental predictors calculated based on the random forest model (C). Non-R and R modes integrate treatments without (NS+WS) and with (RS+WRS) rice straw retention, respectively. Nodes in (A) are colored based on the phylum level, and their sizes are proportional to the number of degrees; the red and blue edges represent positive and negative correlations between two nodes, respectively, the thicknesses of which are proportional to the value of Spearman’s correlation coefficients. Keystone taxa of co-occurrence networks represented by hubs and connectors in (B) are categorized by threshold lines of Zi = 2.5 and Pi = 0.625, respectively. P-values < 0.05, < 0.01 and < 0.001 are indicated using *, **, and *** in (C), respectively. NS, no straw; RS, rice straw only; WS, wheat straw only; WRS, rice straw and wheat straw.

Table 2 | Topological properties of co-occurrence networks of denitrifying microbial communities.


[image: Table comparing network metrics for non-R mode and R mode. Number of nodes: 202 (non-R), 262 (R). Number of edges: 440 (non-R), 606 (R) with positive and negative percentages. Average degree: 4.35 (non-R), 4.63 (R). Clustering coefficient: 0.45 (non-R), 0.53 (R). Modularity: 0.82 (non-R), 0.81 (R).]



3.4 Associations between denitrification activity and abiotic or biotic environmental factors

Random forest analyses and Pearson correlation results demonstrated that the nosZ denitrifiers and associated keystone taxa were predominantly adjusted by soil NH4+, SOC, pH, DOC/NO3−, and DOC (in order of significance) (Figure 4C). On this basis, the direct and indirect effects of environmental factors on soil DEA, under the R and non-R modes, respectively, were assessed with SEM (Figure 5; Table 3). Generally, more than 90% of soil DEA variance was explained by these two models. Soil DOC/NO3− (rnon-R = 0.85; rR = 0.03), NH4+ (rnon-R = −0.32; rR = −0.61), and pH (rnon-R = −0.04; rR = −0.11) were all key factors in both models, and these directly and indirectly regulated the soil DEA by modulating biotic factors including nosZ bacterial diversity (rnon-R = 0.05; rR = 0.08) and keystone taxa (rnon-R = 0; rR = 0.83). Interestingly, soil DEA was stimulated by a higher level of soil DOC/NO3−, particularly in the non-R model, whereas it was the nosZ keystone taxa (r = 0.83, P < 0.001) that generated the largest positive effect on soil DEA exclusively in the R model. This underlines the fact that nosZ keystone taxa might play an extremely important role in stimulating soil DEA under rice straw retention conditions.

[image: Path diagrams labeled A and B depict structural equation models examining relationships between variables like pH, DOC/NO3, NH4, nosZ keystone taxa, nosZ bacterial diversity, and denitrification enzyme activity. Panel A shows strong relationships between DOC/NO3 and denitrification enzyme activity (0.85***) and NH4 to nosZ bacterial diversity (0.77***). Panel B demonstrates connections between DOC/NO3 and nosZ keystone taxa (0.83***) and NH4 and nosZ bacterial diversity (0.37*). Model fit statistics are provided for both panels, indicating good fit.]
Figure 5 | Structural equation models describing the direct effects of physicochemical and bacterial community characteristics of paddy soil on denitrification enzyme activities under non-R (A) and R (B) modes, respectively.

Table 3 | Standardized regression weights of direct, indirect, and total effects of the key factors on denitrification enzyme activities.


[image: Table displaying direct, indirect, and total effects of variables: pH, DOC/NO3−, NH4+, nosZ keystone taxa, and nosZ bacterial diversity. Values indicate parameters from structural equation modeling, with two numbers for non-R and R modes respectively.]




4 Discussion



4.1 Variations in soil–standing water properties that respond to straw retention

The availability of N is a key factor affecting crop development and the effect of the environment in an agricultural ecosystem (Ju et al., 2009; Zhang et al., 2015). Both in standing water and soil in the present study, the NO3− value was reduced with straw retention treatments (P < 0.05) compared to that with NS treatment. This is beneficial for N loss load reductions, particularly for areas at a high risk of runoff, and was consistent with the results of most studies focused on flooded paddy fields (Chen et al., 2023; Bhattacharyya et al., 2012; Leon and Kohyama, 2017). Distinctively, the NH4+ content in the soil significantly increased after long-term straw retention, particularly for treatments with rice straw amendment (RS and WRS treatments). This was primarily attributed to the characteristics of inorganic N release and microbial immobilization from crop residue decomposition (Kahlon et al., 2013; Xu et al., 2024). More importantly, the available N level, which could be enhanced by stimulation with organic N mineralization following crop residue input, was amplified more with residues having a relatively lower C/N compared to that with residues with a higher C/N (Chen et al., 2021b; Tatti et al., 2017), respectively, corresponding to the rice straw (C/N = 62/1) and wheat straw (C/N = 110/1) in the current study. Nevertheless, the low levels of NO3− with straw retention treatments might imply higher activities of NO3− microbial reduction processes (such as denitrification, anammox, or dissimilatory nitrate reduction to ammonium) rather than its accumulation (Liu et al., 2020; Wang et al., 2021, 2024; Zhang et al., 2021c). Moreover, it is understandable that organic C and N, either in soil or standing water, were enhanced after long-term straw retention (P < 0.05), given the periodic supply of exogenous organic material in conjunction with the amplified microbial activity, which would support the accumulation of organic nutrients (Malhi et al., 2011; Wang et al., 2018; Xu et al., 2024).




4.2 Variations in nosZ denitrifiers in response to straw retention

The responses of the nitrous oxide reductase gene nosZ to fertilization in soil ecosystems have attracted considerable attention (Duan et al., 2018; Li et al., 2022; Philippot et al., 2011; Qin et al., 2021; Tao et al., 2022). In paddy fields, compositions of the dominant nosZ-denitrifying community were found to vary widely against divergent backgrounds (Cucu et al., 2017; Wang et al., 2020). In this experimental field, the nosZ denitrifiers were predominated by Planctomycetes (19.0%–22.3%), Euryarchaeota (15.1%–22.3%), and Proteobacteria (10.8%–12.7%). Most phylogroups of the latter two phyla derived from the nosZ I clade type, which can perform the complete denitrification process (Frostegård et al., 2022; Lin et al., 2023; Zhang et al., 2021a). In contrast, Planctomycetes-affiliated organisms were recently found to belong to the nosZ II clade type based on metagenomics-based analysis (Zhuang et al., 2020). The higher positive association ratio (88%) in the R mode network highlights stronger cooperative interactions among nosZ denitrifiers under rice straw retention, suggesting a more stable and synergistic community structure that facilitates nitrogen cycling (Tao et al., 2022; Zheng et al., 2019). The increased clustering coefficient further indicates the presence of tightly connected microbial clusters, potentially acting as hotspots for efficient nitrogen transformations. These findings underline the diverse ecological roles of nosZ denitrifiers in response to long-term straw retention and the importance of microbial interactions in driving soil nitrogen processes (Hallin et al., 2018; Wei et al., 2015).

Treatments with (R mode) and without (non-R mode) rice straw retention resulted in significant differences, in terms of either the community composition, structure, or keystone taxa of nosZ denitrifiers. Generally, the R mode resulted in the recruitment of more groups from Bacteroidetes and Euryarchaeota phyla as dominant bacteria or keystone taxa. For example, the genera Lunatimonas (phyla Bacteroidetes) and Halonotius (phyla Euryarchaeota), which originate from sea and lake sediments, are typical NO3−-reducing salinophilic bacteria and archaea (Durán-Viseras et al., 2023; Song et al., 2019; Vavourakis et al., 2016). This indicates that the recruitment of these keystone taxa under rice straw retention likely contributes to the observed improvement in denitrification efficiency, aligning with findings that enriched organic carbon conditions stimulate the activity of keystone denitrifiers (Bano et al., 2024; Chen et al., 2025). In contrast, the predominant taxa Planctomicrobium and Telmatocola, which belong to the Planctomycetes phylum in non-R mode, include parthenogenetic anaerobic denitrifying bacteria (Cao et al., 2021) and serve as the dominant bacteria in the anammox process (Chen et al., 2021a; Zheng et al., 2019). This further implies that the specific community of nosZ denitrifiers in the R mode might thereby increase the competitiveness of the denitrification process with respect to nitrate–nitrogen allotropic reduction by increasing the abundance of uncoupled Lunatimonas and Halonotius colonies and their positive interaction ratios, which is partially supported by findings from the co-occurrence networks.




4.2 Roles of abiotic and biotic environmental factors in soil DEA responses to straw retention

In the present paddy field, treatments with rice straw retention (RS and WRS treatments) rather than wheat straw amendment only (WS treatment) significantly increased the soil DEA (by ~ 41.93–45.80%). This corroborates 3-year observation data showing that the application of rice straw results in significant higher seasonal N2O emissions than wheat straw only, under the equivalent input of inorganic fertilizers (Wang et al., 2019). However, neither differences in nosZ gene abundance among distinct straw retention modes nor correlation coefficients for DEA and nosZ gene abundance reach significance. This represents a prevailing controversy based on many studies (Attard et al., 2011; Kou et al., 2019; Kong et al., 2023; Yin et al., 2015), and perhaps in the future, the relationship between gene expression abundance and reactivity can be determined at the mRNA level.

Without considering the abundance of the nosZ gene, the associated microbial community characteristics, as well as the biotic environmental factors, were found to regulate the soil DEA in the experimental paddy field. Specifically, soil DOC and nosZ denitrifier diversity produced a positive effect on the soil DEA, and similar phenomena have been found in many ecosystems (Gao et al., 2019; Jiang et al., 2020; Surey et al., 2020; Yeerken et al., 2024). DOC provides electron donors for denitrification processes and improves microbial competition for soil NO3−-N (Bai et al., 2015; Tao et al., 2022). In contrast, the soil pH, which ranged from 6.63 to 7.10, was partially deviated from the optimum neutral to slightly alkaline range (pH 7–8) (Liu et al., 2010) and had direct negative effects on soil DEA in this study. An interesting finding from this long-term field experiment is that it was rice rather than wheat straw amendment that significantly stimulated soil DEA through the contributions from the keystone taxa of denitrifiers—specifically, a few nitrite-reducing salinophilic bacteria and archaea. This implied that long-term rice straw amendment offers favorable conditions of electron or nitrite competition for these denitrifiers (Wang et al., 2024; Zhang  et al., 2021b). The significant role of a few core phylogroups of denitrifiers has been increasingly observed by researchers (Qin et al., 2021; Tao et al., 2022). However, more evidence in terms of microbial cultivation is warranted to directly validate the underlying mechanisms.





5 Conclusions

Results of the present study provide evidence of how and why soil denitrification activity vary among different straw retention modes in a paddy field. Under the equivalent input of chemical fertilizers, soil denitrification activity can be significantly improved by long-term rice straw retention (in single or double crop seasons). Key environmental factors including soil DOC/NO3-, NH4+, and pH, along with keystone taxa and the diversity of nosZ denitrifiers, showed distinct variations between rice and wheat straw retention modes. Particularly, specific nosZ keystone taxa play a prominent role in driving denitrification activity exclusively under treatment with rice straw retention. By contrast, the practice of wheat straw retention in a single season would be recommended to minimize soil N loss from the denitrification process in a rice–wheat rotation field. Given the complexities of denitrification activity determinants, activity denitrification rates cannot be extrapolated to obtain areal fluxes for a paddy field, and intact core or new in situ methods need to be employed and validated in future research.
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RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
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Introduction

RNA interference (RNAi) represents a cutting-edge approach in biotechnology for gene expression silencing, applied e.g. in plant protection, leveraging molecular principles to control gene expression. This innovative strategy encompasses both endogenous and exogenous applications, each with distinct methodologies and implications. Genetically modified (GM) plants harness RNAi to target plant endogenous transcripts e.g. to regulate the gibberellin pathway (maize event MON 94804) or to alter the fatty acid profile (soy event MON 87705). Endogenous applications also involve GM plants in a process known as host-induced gene silencing (HIGS) (Nowara et al., 2010) for pesticidal applications (e.g. maize event MON 87411 containing dsSnf7 against Diabrotica), (see https://euginius.eu). Conversely, exogenous applications, such as spray-induced gene silencing (SIGS), or root soaking of RNAi involve the direct application of RNA molecules to plants (Liu et al., 2020; Werner et al., 2020).

The core mechanism of RNAi in biotechnology application, such as plant protection, lies in its ability to selectively reduce the expression of specific genes within the target organism (Koeppe et al., 2023). In the majority of cases, this is achieved through the introduction of double-stranded RNA (dsRNA), which is subsequently processed by the RNase III Dicer or related enzymes to short interfering (si)RNA, whose base pairing with the complementary sequence of the target messenger (m)RNA leads to its degradation (Guo et al., 2016; Hung and Slotkin, 2021). While this sequence-based mechanism is advantageous for targeting pests and pathogens, there is a potential for unintended effects on non-target organisms (NTOs) and the GM plant itself (Christiaens et al., 2018). These effects may arise due to sequence homologies between the dsRNA and non-target mRNAs or through mechanisms such as siRNA-induced epigenetic changes and disruption of the organism’s endogenous RNAi pathways (Kloc et al., 2008; Zaratiegui and Martienssen, 2012; Swevers et al., 2013).

Recognizing the novel challenges posed by RNAi-based plant protection, regulatory bodies such as the US Environmental Protection Agency (EPA) and the European Food Safety Authority (EFSA) have acknowledged the need for comprehensive risk assessments (Christiaens et al., 2018; Papadopoulou et al., 2020; Christiaens et al., 2022). The Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology of the Organisation for Economic Co-operation and Development (OECD) have compiled considerations to integrate the latest scientific understanding into the environmental risk assessment of RNAi applications (Organisation for Economic Co-operation and Development (OECD) 2020).

One significant concern is the potential for unintended effects on GM plants themselves. Detecting these effects is complex due to several factors. Current prediction methods primarily rely on bioinformatic searches for complementary sequences to the siRNA within the GM plant’s transcriptome (Good et al., 2016; Lück et al., 2019; Farooq et al., 2021). However, these analyses are often hampered by the lack of a complete and accurate reference genome for the GM plant. When available, reference genomes of closely related cultivars may be used, but these can lead to inaccuracies due to sequence polymorphisms, resulting in false positives or negatives in off-target effect predictions.

In this review, we summarize the mechanisms by which RNAi applications could induce unintended effects in plants and evaluate the technologies and approaches available to detect these effects. By assessing the relevance of RNAi-mediated cellular mechanisms to GM plants based on existing literature, we provide a comprehensive overview and aim to rank these mechanisms according to their significance. This detailed examination will contribute to a better understanding of RNAi applications and the development of more accurate risk assessment methodologies.





Mechanisms of RNAi-induced effects in plants

The principle of RNAi in plant protection relies on reducing or silencing the expression of specific essential genes in the target organism or the GM plant itself. These target genes typically belong to vital metabolic or developmental pathways, leading to a loss-of-function phenotype (Werner et al., 2020; Hernández-Soto and Chacón-Cerdas, 2021). RNAi-based pest control strategies primarily utilize two types of RNA precursors: short hairpin RNAs (shRNA), which consist of two complementary strands forming a stem-loop structure, and complementary dsRNA. The enzyme Dicer, found in nearly all eukaryotes with various isotypes (Zapletal et al., 2023), processes these precursor molecules into short, mostly 21-24 nucleotide (nt) RNA duplexes in the cytoplasm (Figure 1). In plants, Dicer-like (DCL) proteins play an important role in processing dsRNA into siRNAs of different length (Henderson et al., 2006; Mukherjee et al., 2013). The RNA duplexes include a guide strand and a passenger strand [reviewed in (Kim et al., 2009; Borges and Martienssen, 2015)]. While the passenger strand is degraded during further processing, the guide strand, which is complementary to the target gene sequence, is crucial for the silencing of the gene. In the following, we will first focus on the biogenesis of small RNAs in plants and then discuss the mechanisms of RNAi-based silencing before we discuss the implications of these mechanisms for possible off-target effects in GM plants.
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Figure 1 | siRNA biogenesis in plants. (A) Synthesis of natural antisense transcripts by RNA polymerase II (RNA Pol II) followed by Dicer-like protein (DCL)-mediated cleavage. (B) RNA Pol II-mediated transcription of short hairpin (sh) RNAs, followed by DCL processing. (C) RNA Pol II-mediated synthesis of long non-coding (lnc) RNAs, followed by RNase digestion. (D) miRNA processing of RNA Pol II-transcribed miRNA precursors. (E) Trans acting (ta) siRNA pathway followed by siRNA synthesis by DCL. (F) Virus-derived siRNA synthesis from RNA or DNA viruses via replication/transcription followed by DCL processing. (G) RNA Pol IV-mediated transcription of double-stranded (ds) RNA as precursors for heterochromatic (hc) siRNA, followed by processing via DCL. Generated by the use of Biorender.com.




Biogenesis of small RNAs in plants

To investigate the effects of genetic modifications on the RNAi pathway in GM plants, it is essential to consider the natural mechanisms by which RNAi can affect gene expression in plants. To this end, the cellular pathways by which siRNA molecules can be produced in plants are first described here (Figure 1; Table 1). Precursors of siRNA are almost without exception double-stranded RNA molecules, which are either synthesized by endogenous RNA polymerases (RNA Pol) or introduced exogenously (Vazquez et al., 2004; Allen et al., 2005; Axtell et al., 2006). Endogenous precursors include natural antisense transcripts (NAT) synthesized by RNA Pol II, which base-pair with the sense mRNA of the coding gene and thus form the double-stranded substrate for corresponding RNases (Figure 1A) (Borsani et al., 2005; Jen et al., 2005; Zhang et al., 2012). RNA Pol II also synthesizes shRNAs encoded in the genome, which can then be processed by Dicer into siRNA (Figure 1B) (Wesley et al., 2001; Helliwell and Waterhouse, 2003; Senthil-Kumar and Mysore, 2011) or long non-coding (lnc) RNAs (Kim and Sung, 2012; Liu et al., 2012; Wu et al., 2012), whose secondary structures can have hairpins and can thus also be converted into siRNA by corresponding RNases (Figure 1C). Endogenously encoded micro (mi)RNAs are synthesized by Dicer or DCL1 in plants (Kurihara and Watanabe, 2004) from shRNAs, the miRNA precursors (Figure 1D), and either directly regulate the expression of target genes (by miRNA) or base-pair with the precursors of so-called trans-acting (ta)siRNAs, which are then generated by DCL from a double-stranded template (Figure 1E). Exogenously introduced precursors of siRNA are molecules introduced into a cell from an external source. A natural example are viral RNAs, which are either immediately present after infection and replication (RNA viruses, in plant viruses often single-stranded (ss) RNA genome) or are generated by transcription of the viral genome (DNA viruses) and are then templates for DCLs, which produce siRNA from them (Figure 1F) (Ruiz et al., 1998; Lu et al., 2003; Burch-Smith et al., 2004). RNA Pol IV or V can also be involved in siRNA synthesis, for example in the case of the synthesis of precursors of heterochromatic (hc)siRNAs, which are then converted to siRNA by DCL3 (Figure 1G) (Law and Jacobsen, 2010; Zhang and Zhu, 2011; Matzke and Mosher, 2014). In plants, the proteins DCL2, DCL3 and DCL4 generate siRNAs of different lengths mostly with 22 nt, 24 nt and 21 nt, respectively, which in turn trigger different mechanisms of silencing (Henderson et al., 2006; Mukherjee et al., 2013). Of note, DCL2-derived 22 nt siRNAs in plants are involved in a transitive and systemic spread of siRNA especially for antiviral defense, called secondary RNAi (Bouché et al., 2006; Chen et al., 2010; Garcia-Ruiz et al., 2010; Qin et al., 2017). This spread of RNAi involves the amplification and expansion of silencing signals that are mediated by RNA-dependent RNA polymerases (RdRp) (Sanan-Mishra et al., 2021). In this process, siRNAs act on longer RNAs (such as mRNA) as primers for RdRp, whereby a new, long dsRNA is synthesized, which is then eventually processed again by the RNAi machinery into siRNA triggering secondary RNAi.

Table 1 | Mechanisms by which RNA interference induces gene expression changes in plants, categorized by their general mode of action, including the mechanism, the source of siRNA and corresponding references.
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Mechanisms of RNAi-based silencing

Silencing mechanisms can occur in the GM plant harboring the RNAi construct, at the transcriptional level in the cell nucleus or the translational/post-transcriptional level in the cytoplasm (Figure 2). In the nucleus, siRNA can pair with the nascent mRNA of the target gene, recruiting factors to the transcription machinery that inhibit the transcription elongation by RNA polymerase (Figure 2A, left) (Guang et al., 2010). Similarly, siRNA can recruit enzymes that induce epigenetic silencing of the target gene through DNA methylation (Law and Jacobsen, 2010; Wu et al., 2010; Zhang and Zhu, 2011; Wu et al., 2012; Matzke and Mosher, 2014; Movahedi et al., 2015) or histone modification (Baulcombe, 2004; He et al., 2011; Liu et al., 2012) (Figure 2A, right) (Verdel et al., 2009). In plants, epigenetic silencing via DNA methylation is triggered by DCL3-generated ~24 nt siRNA involving a RISC complex containing the protein Argonaute (Ago)4 (Zilberman et al., 2003; Henderson et al., 2006; Qi et al., 2006; Zheng et al., 2007; Wierzbicki et al., 2009; Havecker et al., 2010; Olmedo-Monfil et al., 2010; Sarkies and Miska, 2014; Lewsey et al., 2016). The most well-studied RNAi silencing mechanism involves the degradation of the target gene’s mRNA (Figure 2B, left). In this process, the protein Ago recruits siRNA to the complementary mRNA sequence to form the RNA-induced silencing complex (RISC) (Wu et al., 2012). In plants, this is triggered by DCL4-generated ~21 nt siRNAs involving a RISC complex containing Ago1 (Xie et al., 2005; Qu et al., 2008; Chen et al., 2010; Wang et al., 2011). If there is perfect complementarity between siRNA and the target gene, the mRNA is degraded, leading to down-regulation of the target protein’s production (Valencia-Sanchez et al., 2006). With incomplete base pairing between siRNA and target mRNA, the RNA is not degraded; instead, ribosome-mediated translation is inhibited, resulting in reduced expression of the target gene (Figure 2B, right) (Brodersen et al., 2008).

[image: Illustration explaining gene silencing mechanisms. Part A shows transcriptional gene silencing (TGS) through elongation inhibition and epigenetic silencing, involving RNA polymerase, DNA methylation, and histone modification. Part B illustrates post-transcriptional gene silencing (PTGS) with mRNA degradation and translation inhibition, involving RISC, Ago1-4, and ribosomes.]
Figure 2 | Mechanisms of RNAi-mediated silencing. (A) Mechanisms of transcriptional gene silencing (TGS). (B) Mechanisms of post-transcriptional gene silencing (PTGS). Generated by the use of Biorender.com.

The current literature suggests that siRNA molecules produced via different biogenesis pathways can differ in terms of their length, triggering different types of mechanisms of gene expression regulation described. While DCL4-generated 21 nt siRNA predominantly triggers PTGS via mRNA degradation, DCL3-generated 24 nt siRNA triggers TGS via epigenetic silencing and DCL2-generated 22 nt siRNA induces secondary siRNA. However, all DCL may act on long dsRNA molecules introduced into the plant. Therefore, both TGS and PTGS need to be considered when analyzing RNAi-induced effects in GM plants (Table 1).





Implications of RNAi silencing mechanisms for possible off-target effects in GM plants

With regard to the knowledge about mechanisms by which RNAi can potentially induce unintended effects in the GM plant, the existing literature shows clear bias towards PTGS. For example, a PubMed search with the search term “RNAi AND PTGS NOT TGS” in title and abstract returned 118 hits, whereas the search term “RNAi AND TGS NOT PTGS” only returned 25 hits (as of 18.10.2024). Hence, most published studies are concerned with the investigation of effects resulting from the inhibition of translation or degradation of mRNA (possibly resulting from incomplete complementarity). Relatively fewer studies deal with TGS, possibly because here effects, for example via epigenetic silencing, could also arise upstream or downstream of the gene with sequence complementarity and these cannot be clearly determined on the basis of the pure small RNA sequence by analyzing complementary sequences in the genome.






Techniques for the assessment of RNAi-induced effects in plants

RNAi can induce different types of off-target effects in the plant, which can be identified and studied using different techniques. Here we provide a brief overview of the different techniques that can be used to study the changes induced by RNAi and RNAi off-target effects. The methods employed to study RNAi effects can be divided into two main approaches: targeted and untargeted analysis (Table 2). Targeted screening of RNAi effects focuses on analyzing the intended silencing effects on specific target genes and includes, for example, validation of gene knockdown, functional assays, validation of phenotypic effects, assessment of specificity and long-term effects (e.g. stability of gene silencing). Targeted screening can also be used to analyze effects on predicted off-target genes. The corresponding techniques include molecular techniques such as RT qPCR (Chi et al., 2008; Sun and Rossi, 2009; Holmes et al., 2010; Varkonyi-Gasic and Hellens, 2011; Augustine et al., 2013; Kitzmann et al., 2013; Liu et al., 2014; Czarnecki et al., 2016; Keykha et al., 2016; Manske et al., 2017; Betti et al., 2021; Sarkar and Roy-Barman, 2021; Xu et al., 2021; Zhou et al., 2021; López-Márquez et al., 2023; Kyslík et al., 2024), northern blotting (Chi et al., 2008; Fukuhara et al., 2011; Augustine et al., 2013; Manske et al., 2017; Sarkar and Roy-Barman, 2021), western blotting (Kumar et al., 2003; Sahin et al., 2007; Sun and Rossi, 2009; Holmes et al., 2010; Liang et al., 2013; Han, 2018; Vidarsdottir et al., 2019; Kyslík et al., 2024), genetic techniques such as reporter gene assays (Kumar et al., 2003; Smart et al., 2005; Rinaldi et al., 2008; Sun and Rossi, 2009; Manske et al., 2017; López-Márquez et al., 2023) or genetic mutations (Chan et al., 2006; Czarnecki et al., 2016; Krzyszton and Kufel, 2022), phenotypic assays (Chi et al., 2008; Liu et al., 2014; Xu et al., 2021; Zhou et al., 2021; Tao et al., 2023), enzyme activity assays (Chi et al., 2008; Betti et al., 2021; Sarkar and Roy-Barman, 2021) or advanced techniques such as genome editing using CRISPR/Cas9 (Moore, 2015; Kanchiswamy et al., 2016; Peretz et al., 2018; Kleter, 2020; Mujtaba et al., 2021; Bock et al., 2022).

Table 2 | Techniques for detecting RNAi off target effects in plants categorized by class and field. Short descriptions of each technique as well as the corresponding references are given.


[image: A table listing various techniques across different classes and categories. The classes are segmented into targeted analysis and untargeted analysis. Categories include molecular techniques, genetic techniques, phenotypic techniques, biochemical techniques, and advanced techniques. Each entry provides the technique name, description, advantages, disadvantages, and references. Techniques include quantitative RT-PCR, Northern blotting, Western blotting, reporter gene assays, genetic mutants, phenotypic assays, enzyme activity assays, CRISPR/Cas9, RNA sequencing, visual observation, microscopy, metabolite profiling, proteomics, and chromatin immunoprecipitation sequencing. References are in green text, showcasing various studies.]
Untargeted screening of RNAi effects involves comprehensive analyses mainly aimed at identifying unintended consequences and potential unpredicted off-target effects of RNAi treatments. These techniques include analyzing changes in transcriptomic profiles (Chan et al., 2006; Surget-Groba and Montoya-Burgos, 2010; Haque and Nishiguchi, 2011; Narzisi and Mishra, 2011; Jiao et al., 2021; Xu et al., 2021; Gaffo et al., 2022; Krzyszton and Kufel, 2022; Nguyen et al., 2022; Tyagi et al., 2022; Dong et al., 2023; López-Márquez et al., 2023; Budnick et al., 2024; Cazares et al., 2024), changes in protein expression (Chi et al., 2008; Lacourse et al., 2008; Asano and Nishiuchi, 2011; Chen et al., 2012; Naik et al., 2023) and modifications, metabolites (Chen et al., 2012; Huang et al., 2022; Baysoy et al., 2023; Bressan et al., 2023; Naik et al., 2023; Huang et al., 2024) and epigenetic changes (Warnatz et al., 2011; Muhammad et al., 2020; Navarro-Mendoza et al., 2023) to understand the downstream effects of RNAi on cellular processes. In addition, the distribution and potential off-target interactions of RNAi (small RNAs) with unintended mRNA targets can be determined. Furthermore, there are also bioinformatic tools that utilize computational algorithms to predict potential off-target sites based on sequence complementarity and thermodynamic stability (Good et al., 2016; Lück et al., 2019). However, such bioinformatic prediction tools require extensive knowledge, for example of the plant’s genome or its RNAi machinery, in order to apply them effectively.

When studying off-target effects of RNAi, both targeted and untargeted analyses offer unique advantages and disadvantages. Targeted analysis as focuses on predefined genes or pathways, provide specific and efficient validation of RNAi-induced gene silencing. It ensures detailed understanding of intended effects but has a limited scope, potentially missing broader biological impacts and introducing bias by overlooking unexpected interactions. These techniques require fewer technical resources and their costs are reduced, making targeted analysis well suited as validation techniques. In contrast, untargeted analysis provides a comprehensive, genome/proteome/transcriptome-wide assessment, enabling the discovery of both known and unknown off-target interactions. However, this approach depends on high-quality, well-annotated genomes for precise mapping of RNAi-induced changes and understanding the broader implications of gene silencing in plants. While this unbiased method generates extensive datasets that provide deeper insights into RNAi effects, it is resource-intensive and complex, demanding substantial time, computational power, and expertise for analysis and interpretation. Additionally, the large datasets can introduce noise, probably requiring further validation to identify meaningful effects. Despite potential challenges, combining both approaches can offer a balanced perspective, profiting the specificity of targeted analysis and the breadth of untargeted analysis to achieve thorough insights into RNAi effects.





Discussion




Relevance of unintended effects of RNAi for risk assessment

Unintended effects of RNAi applications in GM plants themselves are a critical focus in the safety assessment of food and feed. Consequently, the Food and Agriculture Organization of the United Nations, for example, has issued guidelines for conducting food safety assessments of food derived from recombinant DNA plants (Food and Agriculture Organization of the United Nations, 2003). Also the OECD publishes science-based consensus documents offering information for the regulatory assessments of specific food and feed products, including those derived from transgenic organisms (Organisation for Economic Co-operation and Development, 2021). These documents gather data on the product’s nutrients, anti-nutrients and toxicants, its use as food or feed, and other factors relevant to food and feed safety. Here and in various review articles on the topic of risk assessment of RNAi-based GM crops, primarily untargeted methods for analyzing gene products and their metabolites, such as proteomics and metabolomics, are proposed to investigate RNAi-induced effects in the GM crop itself (Senthil-Kumar and Mysore, 2011; Kleter, 2020; Papadopoulou et al., 2020; Chaudhary et al., 2024).

The mechanisms by which the RNAi pathway can trigger specific gene expression changes in plants include both transcriptional and post-transcriptional regulation. These processes rely on specific base pairing, either with the nascent transcript (TGS) or with the mature target mRNA or a sequence-like mRNA (PTGS). While 21 nt siRNAs are predominantly involved in PTGS, 24 nt siRNAs often trigger TGS via epigenetic changes. In PTGS the target gene is directly known based on the sequence, whereas TGS can also affect genes located in close or distant proximity to the gene with sequence homology, making sequence-based prediction of TGS induced effects more difficult. PTGS is by far the most investigated mechanism in scientific studies to date, while the literature on RNAi-induced TGS is relatively limited. Therefore, the sheer number of scientific studies and the focus on PTGS to date does not necessarily reflect the actual relevance of the respective mechanisms in the plant, making it difficult to rank them according to their potential for causing unintended effects in plants.

Scientific literature on case studies investigating unintended effects in RNAi-based GM crops is currently scarce. However, bioinformatic tools are being dynamically developed to predict intended target genes and potential unintended effects on off-target genes in the GM crop or NTOs in case of HIGS, leveraging sequence homology to enhance the accuracy and scope of these predictions (Chen et al., 2019). While these tools often reach their limits in NTOs due to the lack or deficient annotated-genomes, high quality annotations are available for model plants or major crops, enabling such tools to predict PTGS effects on plant off-target genes with a higher probability. However, there are also mechanisms (such as TGS) that are not based on direct sequence homology to the target and whose unintended effects cannot be easily predicted bioinformatically. In most cases, it can be assumed that off-target effects manifest themselves at the transcriptome level and can be measured using sufficiently sensitive methods.





Adequate techniques to detect unintended RNAi-induced effects

To detect unintended RNAi-induced effects in GM plants for risk assessment, knowledge about the siRNAs processed in the GM plant, such as size and sequence, compared to the wild type is necessary. Since both intended and possible secondary siRNAs (such as tasiRNA) can play a role, untargeted analyses, such as small RNA sequencing, should be used to identify the sequences of all siRNAs. With this knowledge, bioinformatic tools can be used to predict both intended and unintended effects mediated by sequence homology, primarily through PTGS, and these predictions can be validated using targeted methods such as RT-qPCR. However, a comprehensive bioinformatic search for homologies requires access to the plant´s complete genome, whereas RT-qPCR analyses can also be managed with knowledge of shorter sequence segments. Unintended effects mediated by TGS, on the other hand, are not directly linked to the actual sequence of the siRNA and therefore cannot be adequately detected with targeted methods, but only with untargeted methods. RNA sequencing, for example, can be used for the direct, untargeted investigation of gene expression changes, changes in histone modifications can be detected using ChIP-Seq or altered DNA methylation patterns can be detected using bisulphite sequencing. However, all these methods require the availability of the plant´s genome for accurate analysis. Additionally, there are currently no studies that specifically address the importance of selecting appropriate plant material such as tissue type, developmental stage, and sampling time points or the sensitivities required for untargeted analyses to effectively capture RNAi-induced changes (e.g. alterations in gene expression). Most published studies have focused on using plant tissues, like leaves, without a detailed exploration on how these factors might influence the detection and interpretation of RNAi-induced effects. Likewise, unintended off-target genes may be expressed, for example, in certain tissue types and not in others. These gaps highlight the need for more comprehensive research to optimize experimental designs in RNAi studies aiming to identify unintended effects.





Case studies assessing unintended effects

Among the few studies assessing unintended effects of RNAi in GM plants, some have employed untargeted omics methods to analyze changes in gene expression and metabolite profiles. For example, Huang et al. (2022) compared the leaves of three transgenic maize RNAi lines resistant to Apolygus lucorum with those of three conventionally bred maize lines. Using untargeted omics methods at the levels of small RNAs, the transcriptome and the metabolome, the authors observed that the number of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were greater in RNAi lines than in conventional lines. Additionally, Zörb et al. (2013) using GC-MS-based metabolite profiling showed that RNAi-mediated silencing of the sulfur-rich alpha-gliadin storage protein family in wheat grains did not induce changes in any of the 109 metabolites analyzed. Similarly, Zhang et al. (2020) investigated transcriptomic and metabolomic changes in RNAi-based GM maize resistant to Monolepta hieroglyphica compared to its unmodified variant. This study only identified a single DEG at the transcriptome level and 8 out of 5787 metabolites as DAMs, leading the authors to conclude that the RNAi variant exhibited negligible changes compared to the wild type.

Building on the insights gained from studies exploring off-target effects in RNAi-based GM plants, these findings have helped to inform regulatory approaches, including the one of the first authorization-relevant risk assessments for an RNAi-based genetically modified crop was carried out by the US Environmental Protection Agency (US EPA) for SmartStax Pro (MON 87411/Unique ID: MON-87411-9) (EPA Reg. Number: 62719-707). As part of the product characterization and human risk assessment, in 2016 the US EPA recommended a number of methods to rule out unintended side effects. These include transcriptome analyses using microarray or RNA sequencing, proteome analyses, GC-MS-based metabolomics, and the global detection of changes in DNA methylation patterns. It should be noted that certain recommended methods, such as microarray analyses for transcriptome studies or 2D gel electrophoresis coupled with MS for transcriptome analysis, are no longer state-of-the-art and should be replaced by more up-to-date methods such as RNA sequencing and LC-coupled MS, respectively. The US EPA advised that these analyses should be carried out comparatively between the GM plant containing all modification events (SmartStax Pro), the GM plant lacking the dsRNA cassette (SmartStax) as well as non-genetically modified lines across several generations. Furthermore, they recommended using a combination of different omics methods and to combine them with more sensitive methods such as RT-qPCR, to thoroughly exclude unintended effects.





Current limitations and future research

In summary, the challenges in detecting unintended RNAi effects in GM plants lie in the diversity of siRNAs that can be formed from corresponding precursor molecules and in the fact that TGS (especially via epigenetic mechanisms) can also affect the expression of nearby genes without sequence homology, indicating that targeted/biased bioinformatic methods alone are not sufficient for excluding unintended effects. The few available studies indicate that the RNAi method appears to be relatively specific with minimal unintended effects expected (Zörb et al., 2013; Zhang et al., 2020; Huang et al., 2024).

Untargeted approaches, such as RNA sequencing for transcriptome analysis, LC-MS-based proteomics or GC-MS-based metabolome profiling, offer a promising and increasingly sensitive means of investigating these effects. The current state of well-annotated plant genomes varies significantly across species, with high-quality annotations available for some model plants and major crops, while others remain underrepresented. This variability poses challenges for accurately mapping RNAi-induced changes, as comprehensive and well-annotated reference genomes are crucial for identifying both target and off-target effects, as well as for understanding the broader biological impact of RNAi in diverse plant species. One way around this problem is to perform a de novo assembly of the transcriptome of unannotated plants (Surget-Groba and Montoya-Burgos, 2010; Narzisi and Mishra, 2011). However, this depends on the quality and depth of the sequencing. In combination, bioinformatic approaches with untargeted methods, such as various omics, offer the possibility to detect specific off-target effects in GM plants.

Future research on detecting RNAi-induced effects in GM plants should focus on improving sensitivity and specificity with advanced sequencing technologies, better off-target detection through CRISPR, and more accurate quantification using methods like RT-qPCR and proteomics. Environmental impact studies, long-term monitoring, and standardizing protocols will be key for regulatory safety assessments.
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Introduction

Electrokinetic-assisted phytoremediation (EKAPR) improved the heavy metal accumulation has been extensively covered, but the uneconomic of heavy metal extraction increment unit energy consumption (EHME) limits its development.





Methods

The feasibility from the dual perspectives of regulated the electrokinetics application of different growth stages of Sedum plumbizincicola and electrochemical parameters affecting power consumption to enhance the EHME of EKAPR system were investigated.





Results

Results shown that electrokinetic promoted heavy metals accumulation of S. plumbizincicola significantly, and it not show positive correlation absolutely with the application time. EK-B treatment exhibited high performance for Cu and Pb. Although the Cd and Zn extraction decreased 9.02%-15.63% for EK-B and EK-S compare with EK-W treatment due to difference in biomass, there was insignificant in the content. Comprehensive consideration of growth and accumulate characteristics, electrokinetic application in the booming stage (0.70 of PCA score) was alternative to replace whole growth period treatment. Orthogonal experiments results showed that four factors were insignificant with biomass, heavy metal content and extraction, while voltage gradients and application time had significant effect. The biomass and heavy metal extraction showed appropriate promoted effect in 1.5-2.5 V/cm, 100–150 h, whereas EHME continuous deceased and the decline rate relatively slow within 1.0V/cm, 100h. The result indicates the existence of optimization strategy, the best recommended strategy was T7 treatment, followed by T3, T8 and T12 treatments.





Discussion

Overall, it is an acceptable option to study energy saving in terms of optimization of plant growth stage and electric field parameters, and provides novel perspectives for broadening the practical application.





Keywords: farmland contaminated soil, electrokinetic-assisted phytoremediation, strategy optimization, economic extraction, heavy metal
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Highlight

	Economical heavy metals extraction was studied based on plant growth stage and electrochemical parameters

	Electro-assisted of EKAPR at booming periods is alternative due to less BCF drop and higher PCA score

	Heavy metals extraction under optimal treatment higher 130.83-464.85 mg/kWh than other groups

	Regulation of plant electro-assisted growth stage and strategies contribute to more economical heavy metal extractions






1 Introduction

Rapid industrial development has led to various environmental problems, especially heavy metal pollution. Heavy metals accumulate in soil, water, atmospheric particles and crops and can enter the human body through direct intake, aspiration and skin contact, or indirectly through the food chain (Xie et al., 2024; Singh et al., 2025). It is worth noting that the consumption of food contaminated with heavy metals can cause irreversible damage to human health. For example, excessive exposure to Cd can seriously damage the nervous system, reproductive system, kidney function, and bone health (Sable et al., 2024). Although Zn is an essential nutrient for humans and crops, its excessive intake can lead to health risks such as anemia, cramps and neuropathy (Younas et al., 2023). In addition, heavy metal pollution leads to soil degradation, reduction of vegetation and loss of biodiversity due to its toxicity, inability to decompose, bioaccumulation and long-term presence in the environment (Xie et al., 2023). Overall, heavy metal pollution is an important component of soil pollution, which directly affects the safety of drinking water, food production and crop (Meng et al., 2024). Electrokinetic remediation is a relatively efficient in-situ remediation technology that has developed rapidly in recent years because it is not limited by high soil heterogeneity and low permeability, and reasonable electric field arrangement can promote the migration of heavy metals from deep soil to the surface (Gnanasundar and Akshai Raj, 2021). Combining electro-remediation with phytoremediation (electrokinetic-assisted phytoremediation technique, EKAPR) can effectively solve the problem that the effectiveness of phytoremediation is limited by the bioavailability of pollutants in the soil and the depth of plant roots (Singhal et al., 2022). In recent years, a numerous studies have demonstrated growth promotion and significant biomass increase in tobacco (0.6 V/cm), rush (1.0 V/cm), ryegrass (1.0 V/cm), and Indian mustard (1.0-2.0 V/cm) at different electric field strengths (Chen et al., 2007; Cang et al., 2012; Yuan et al., 2021). In practice, the EKAP system is usually constructed with low-intensity (< 5 V/cm) and long duration (7-60d) direct current (DC) electric field and hyperaccumulators/accumulators (rapeseed, nightshade, ryegrass, etc.). Heavy metals such as Cu, Cd, Pb, Zn, U were effectively removed (5% - 92%) from the soil after the EKAPR system treatment (Ma et al., 2024). Although electrokinetic remediation and combined technologies are effective in removing heavy metal ions from contaminated soils, the energy consumption is major obstacle for widespread application (Virkutyte et al., 2002). Therefore, it is necessary to explore an energy-saving method to make the technology feasible on engineering scale.

There are a number of factors affecting the energy consumption of electrokinetic remediation system. Previous studies have found that the material, spacing and configuration of the electrodes, and voltage can significantly affect the energy consumption of the process (Romina et al., 2021; Hamdi et al., 2024) What’s more, unreasonable application methods and long-term application of power consumption account for 10%-15% of the total cost of the electrokinetic remediation process (Jo et al., 2012; Fu et al., 2017). For example, the electromigration can be improved by increasing the voltage gradient, current intensity and electroosmotic flux, thereby promoting the efficiency of process (Cameselle, 2015). However, reverse electroosmosis may occur when uncontrolled voltage increases result in negative effects on heavy metal removal, which leads in surplus energy consumption (Wang et al., 2021). Even though researchers have found that replacing the direct-current field with a pulsed electric field (Yuan et al., 2017; Sun et al., 2015), adjusting the electrode position (Sun et al., 2019), and multi-electrode arrangement (Kim et al., 2021) can reduce the polarization potential per cycle or increase the effective electric field area to enhance the removal efficiency of heavy metals, thereby diminishing unnecessary energy consumption. In addition, the utilization of self-powered batteries such as solar cells (Jeon et al., 2015) and microbial fuel cells (Habibul et al., 2016), which produce a weak electric field through bacterial metabolism, can significantly reduce the cost of the remediation process. Wen et al. (2021) also found that the competitive properties of charged species in the soil under the electric field treatment can be enhanced by increasing the competitiveness of the target species to make them become preferred migration species, and consequently increase the efficiency of energy utilization. However, there are dual mechanisms of electric field and electrode electrochemical reaction under electric field treatment. Electric field parameters (voltage gradient, electrode spacing, frequency of electric field application and average daily application time, etc.) regulate the electric field effect, electrode electrochemical reaction and electric energy consumption of electrokinetic remediation system, and there are interactions with each other, which should be the focus of energy saving research. But there are no reports on the optimization of electric field application synergistically considering multiple electric field parameters (Yang et al., 2024). On the other hand, the actual application of the EKAPR system is mostly given to apply the electric field for a certain period of time during the process of plant growth, but too long electric field treatment time will not only damage the normal growth of the plant, but also cause energy loss (Ma et al., 2024; Sajad et al., 2020). Meanwhile, there are also differences in organ biomass distribution, plant root morphology and stress tolerance of different growth stages, which lead to differences in growth status and heavy metal accumulation ability (Zhang et al., 2021; Zhao et al., 2023). Therefore, the effect of the interaction time between electric field application and plant on EKAPR remediation process, effectiveness and energy consumption should be a critical research issue for future studies. To sum up, the study was carried out to construct a typical EKAPR pot system with one-dimensional DC commutated electric field using actual heavy metal (Cu, Cd, Pb, Zn) contaminated farmland soil and hyperaccumulater (Sedum plumbizincicola). Pot experiments were conducted in terms of both growth stages and electric field parameter optimization to investigate the characteristic differences between long-term and short-term electroassistance, as well as the optimal application strategy for high-efficiency accumulation coordinated with low energy consumption. Frist of all, electric field was applied to the plants at the seedling, booming, maturity and the whole growth stages. The principal component analysis (PCA) is used to comprehensively evaluate each treatment, and the optimal growth stages is selected according to the factor scores. Next, four key factors affecting energy consumption were used as control variables to design L16 (44) orthogonal EKAPR pot remediation experiment. The characteristics of plant growth and heavy metal uptake under different electric field application strategies were analyzed, and the optimal application strategy was proposed based on high-efficient accumulation of heavy metals and low energy consumption of EKAPR. This study provides technical support and guidance for strengthening the mechanism of electric-assisted plant interactions, as well as the management and safe utilization of EKAPR in heavy metal-contaminated soils in agricultural fields.




2 Materials and methods


2.1 Experimental site and plant material

The plateau red soil used in the experiment was obtained from the farmland around the lead-zinc mine in Huize County, Yunnan Province. The stones, wood chips and other large impurities were removed through 3 mm screen after soil mixing the soil obtained in the field, then dried naturally and used for potting experiments of different growth stage. The pH value of 6.95, the content of organic matter, total N, P and K contents were 20.8, 1.44, 1.65 and 6.84 g/kg, and the alkali-hydrolyzale N, available P and K contents were 38.1, 71.4 and 614.3 mg/kg, respectively. The contents of Cu, Zn, Cd and Pb in soil were 302.13, 93.15, 611.00 and 6058.67 mg/kg, respectively. The content of Cu and Zn is significantly higher than the risk screening value of agricultural land (50, 200 mg/kg, 5.5 < pH ≤ 6.5), and the content of Cd and Pb is significantly higher than the risk control value of agricultural land (2, 500 mg/kg, 5.5 < pH ≤ 6.5) (GB 15618–2018 Soil Environmental Quality Risk Control Standards for Pollution of Agricultural Land). After the experiment, the remaining soil and some fresh soil was mixed for the electric field optimization experiment. The contents of Cu, Cd, Pb and Zn in soil were 247.62, 81.95, 546.00 and 5896.03mg/kg, respectively.

The polymetallic co-accumulator (Sedum plumbizincicola) was obtained from the farmland soil remediation base in the lead-zinc mining area of Zhehai Garden, Huize County, Yunnan Province. Healthy seedlings with uniform size were transplanted into the soil of plastic pots to carry out the experiment. No pesticides or fertilizers were applied to all plants during the whole growth periods.




2.2 Experiment setup

In order to investigate the characteristic differences between long-term and short-term electro-assistance of the EKAPR system and the optimization of the electric field application strategy based on the synergy of the efficient accumulation of heavy metals and energy saving, this study carried out the experiments of applying electric field treatments at different growth stages and the electric field application strategy optimization. Firstly, the growth cycle of S. plumbizincicola was divided into three growth stages, and the electric field treatment was applied at different growth stages and the whole growth stage to analyze the growth condition of the plants and the characteristics of the heavy metal accumulation and uptake under the long/short-term electro-assisted treatment. Thus, the optimal growth stage with the electric field application was chosen for the subsequent experiments. Secondly, the orthogonal experiments were designed with the four key factors regulating the energy consumption of the system as control variables under the optimal growth stage and phytoremediation as control. The characteristic changes of soil heavy metal removal, plant growth and plant heavy metal accumulation under different electrokinetic treatment were analyzed, and the optimal application strategy combination was proposed based on the principle of high efficiency accumulation of heavy metals and low energy consumption. The detailed experimental design is as follows:



2.2.1 Electric field application at different growth stages

The proposed study was laid out in PVC rectangular pot design with triple replications, and the size of each pot was 24×15 × 17 cm. Two graphite electrodes were inserted vertically into the soil on both sides of the pot, and a direct current power supply (0–100 V, 0–3 A) as the output power. Electric field treatments were applied to the plants at seedling (0-30d, EK-S), booming (31-60d, EK-B), maturity (61-90d, EK-M) and whole growth periods (0-90d, EK-S), respectively. And no electric field treatment during the whole growth stage as a control (PR). The schematic of the experimental design was shown in Figure 1. All treatments were sampled at 90 days after transplanting. The voltage of 1V/cm electric field were conducted between 8 a.m. and 12 a.m. in every treatment. All other agronomic practices were done uniformly for all treatments.

[image: Table illustrating plant growth stages. Columns denote periods: Seedling (0-60 days), Booming (61-90 days), Maturity (91-120 days). Rows labeled EK-W, EK-M, EK-B, EK-S, PR show stages: initial sprouting, lush growth, then maturity. Pots marked with "DC" represent plant pots at each stage.]
Figure 1 | Experimental design of electric field application at different growth stages.




2.2.2 Orthogonal experimental of different electric field application strategies

Orthogonal experimental design is a statistical method suitable for multi-factor experiments, using orthogonal tables to study the influence of multiple factors and levels on the test results (Feng et al., 2022; Wang and Ding, 2022). Orthogonality can be used to obtain the required data properly and efficiently, and analyze the influence of each parameter to get the best combination. In this study, the electric field parameters such as voltage gradient (A), electrode spacing (B), electric field application frequency (C) and average daily application time (D), affecting energy consumption, were used as control variables to carry out orthogonal pot experiments of at the optimal growth stage. Each factor includes four levels, the values chosen for each level were based on the appropriate range found in the literature. The was used as control (CK) and the experimental design is shown in Table 1. The EKAPR pots were made of PVC material in a rectangular culture chamber with the dimensions of L×W×H=57×32×18 cm (Supplementary Figure S1). The pot experiments were carried out 4 cycles, with the electric field reversal every 7 days recorded as one cycle, and three replications were set for each treatment. The current was recorded dynamically at regular intervals, and soil and plant samples were collected at the end of experimental for the determination.

Table 1 | Levels and factors of the L16 (44) orthogonal experimental design.


[image: Table displaying various treatment parameters. Columns include Treatments, Electric field strength in volts, Electrode spacing in centimeters, Frequency of electric field applied (intervals), and Application time in hours per day. Treatment groups range from T0 to T16, with varying values for electric field strength and electrode spacing. Application frequency and time also differ across treatments.]




2.3 Data collection and sample analysis

At the experiment, the fresh plants were washed with tap water to remove the adherent soil and then cleaned three times with pure water. And the plants were divided into shoots (aboveground parts) and roots. Fresh samples were used to determine total chlorophyll content, root vigor and root morphology. After a half hour of water removal at 105°C, the samples were dried at 75°C in an oven, and the biomass and heavy metals contents were determined.



2.3.1 Plant growths and physiological analysis

Plant growth parameters relate to plant height, dry weight, chlorophyll content, root vigor and root morphology. Plant height increase (ΔH) was obtained by the difference of plant height between planting (0d) and harvesting (90d). The plant height and dry weight were measured with ruler and balance. Roots were scanned using an EPSONV700 flatbed scanner (Seiko Epson, Japan) and then the root morphology parameters were analyzed using Win RHIZOPROSTD4800 type (Regent, Canada) root image processing software. The chlorophyll content was extracted by ethanol-acetone method. The root vigor was qualitatively determined by triphenyltetrazolium chloride (TTC) method, and the reduction strength of tetrazolium per unit fresh root weight was used to represented the root vigor.




2.3.2 Phytoextraction efficiency

Heavy metal uptake indicators include heavy metal accumulation in plants, translocation factor (TF) and bioconcentration factor (BCF). Soil samples were digested with aqua regia in the electric hot plate until the solution is becoming colorless and transparent. The plant samples were placed in polytetrachloroethylene tank with 3mL concentrated nitric acid and 3mL 30% H2O2 solution, and heated in a constant temperature drying oven (120-160°C) for 4h. Then, the sample was filtered with purified water into 50 mL volumetric flask to be calibrated, and the Cu, Zn, Cd, and Pb contents in the soil and plant were determined by flame atomic absorption spectrophotometer. And the heavy metal accumulation, BCF and TF were used to evaluate plant phytoextraction efficiency, and were calculated by the following equations:

[image: Text describing calculations for heavy metal accumulation: Heavy metal accumulation equals heavy metal content in plant multiplied by biomass. Shoot (Root) BCF equals heavy metal content in shoot (root) divided by total soil heavy metal content. TF equals heavy metal content in shoot divided by heavy metal content in root.]	

In addition, the extraction of heavy metals per unit of energy consumption was chosen to evaluate the treatment effect of different electric field application strategies in order to select the optimal electric field application strategy with high heavy metal accumulation and low energy consumption, and the calculation formula was as follow:

[image: Equation showing two formulas: EC equals U times I times t; EHME in milligrams per kilowatt-hour equals plant heavy metal accumulation increase divided by total energy consumption.]	

Where, EC = energy consumption (kWh), U = Voltage between the two electrode plates (V), I = average electric current of EKAPR system (A), EHME= Economical heavy metals extraction.




2.3.3 Correlation and Principal component analysis

Pearson correlation coefficient was used for correlation analysis and principal component analysis (PCA) was used for comprehensive evaluation of each treatment. And PCA and correlation plots of optimization experiments were employed for investigating the multiple relationships between the plant growths and heavy metals content in plant with energy consumption. Plant growth indexes were selected related to heavy metal accumulation, such as plant height, total dry weight, root vigor, total root length, total root surface area, net photosynthetic rate and total chlorophyll content. Heavy metal indicators were selected for the average content of Cu, Zn, Cd and Pb from the plants.




2.3.4 Range analysis of orthogonal experiments

The effects of electric field strength, electrode spacing, electric field application frequency and daily application time on heavy metal extraction per unit energy consumption were analyzed by range analysis. The range (R) is the difference between the mean of the maximum and minimum values for each factor level, and the effect of each level on the factor can be determined by the range of levels. When R is large, the factor level causes significant changes in the response data, indicating that the factor has a significant impact on the response value (Peng et al., 2020). Therefore, the importance of these factors can be ranked using the R-value. K1, K2, K3, and K4 represent the average of Level 1, Level 2, Level 3 and Level 4 (daily application time), respectively. The optimal condition is determined by the maximum value of K (Kmax) in each factor.





2.4 Statistical analysis

Statistical analysis and graphing were performed with Origin 2024 and IBM SPSS 25.0. One-way analysis of variance (ANOVA) and Duncan test were used to determine differences between treatments. To ensure the accuracy of experimental data, p < 0.05 at the probability level is statistically significant, and all experimental data were averaged with three repetitions.





3 Results


3.1 Effect of electrokinetic application on S. plumbizincicola at different growth stages

The application of electrokinetic at different stages will also have different effects on S. plumbizincicola because of the significant differences in nutrient uptake, water use and photosynthesis and growth characteristics at different growth stages. In this study, the differences in the extraction, contents, TF and BCF of heavy metal by S. plumbizincicola, as well as its growth characteristics after applying electric field treatments at different growth stages were investigated. As can be seen in Figures 2a, b, the application of electrokinetic treatment significantly promoted the heavy metals accumulation in S. plumbizincicola compared to phytoremediation alone (PR treatment), especially the extraction. The average content did not increase with the increase of electric field application time whatever of hyperaccumulation (Cd, Zn) and non-enriched (Cu, Pb) species, instead they were higher under the EK-S and EK-B treatments. In terms of heavy metal content, the difference in the effect of electric field application at different growth stages on Cu and Pb in the roots was more obvious, whereas Zn and Cd showed more significantly in the aboveground. Overall, it was found that electric application at seedling stage and booming stage was more desirable for increasing the content of four heavy metals in S. plumbizincicola, especially for Cu and Pb. The total extraction of Cu and Pb showed similar trends with the content change, and maximum in EK-B which were 101.87% and 298.98% higher than PR treatment, respectively, followed by EK-W, EK-S and EK-M. However, the Cd and Zn showed different trends with the content change, and in the order of EK-W (36.17, 417.93 mg/pot) > EK-B (30.51, 374.70 mg/pot) ≈ EK-S (32.91, 369.75 mg/pot) > EK-M (27.21, 342.21 mg/pot). Compared with PR treatment, it increased by 105.93% and 106.86%, 39.17% and 39.02%, 101.30% and 59.94%, 5.78% and 9.66%, respectively.

[image: Four-part infographic with scientific data: (a) Bar charts for plant extraction of metals, showing variations in root and shoot concentrations. (b) Bar charts for plant content of metals, with average content trends. (c) Circular graphs illustrating Bio-concentration Factor (BCF) for four metals. (d) Table with overall evaluations, growth metrics, and indexes for different treatments. Legends and data sets are color-coded.]
Figure 2 | Effects difference of electric field application at different growth stages on extraction (a) and content (b) of heavy metal in plant, BCF and TF (c), and plant growth traits (d). (ΔH, plant height; TRL, Total Root Length; RSA, Surface Area; RV, Root Vigor; TB, Total biomass; Chl., Chlorophyll content).

In addition, BCF and TF showed a significant increase in all treatments after applying the electric field compared to the PR treatment. Among the four heavy metals, BCF increased significantly under EK-S (Cu: +123.76%, Cd: +39.89%, Pb: +186.73%, Zn:+2.91%) and EK-B (Cu: +123.76%, Cd: +44.62%, Pb: +128.57%, Zn:+6.66%) treatments, while TF increased significantly under EK-W (Cu: +6.59%, Cd: +57.69%, Pb: +197.25%, Zn:+6.05%) treatment obviously, and followed by EK-M, EK-B and EK-S. The variation of BCF and TF showed similar trends to those of heavy metal contents and total extractions in plants. As shown in Figure 2d, the application of electric field significantly increased ΔH, chlorophyll content and root vigor of S. plumbizincicola, whereas significantly inhibited plant biomass (except for EK-W). Comprehensive evaluation combining plant growth characteristics and heavy metal extraction revealed that the order of factor scores was EK-B (0.70) > EK-S (0.60) > EK-W (-0.03) > EK-M (-0.23) >PR (-1.03). These results indicate that the application of electric field treatment during a specific growth stage can effectively replace whole growth stages to attain soil heavy metal remediation efficiently and achieve better energy saving. Furthermore, the best results were obtained by applying the electric field treatment during the blooming stage, and the subsequent studies will be conducted under this treatment as well.




3.2 Optimization analysis of electric field parameters


3.2.1 Plant growth characteristics

Based on the study in section 3.1, electric field treatment was applied during the booming stage of S. plumbizincicola, and orthogonal potting experiments were designed to investigate the effects of voltage intensity, electrode spacing, electric field application frequency and average daily electric field application time on plant growth conditions. From Table 2, it can be seen that the plant indexes of S. plumbizincicola were significantly increased compared to CK, except that the ΔH and net photosynthesis rate showed significant inhibition under some treatments (such as T9). The factors of electric field parameters significantly (p ≤ 0.05) impacted the plant heigh and root morphology such as root surface area and root volume, but did not significantly (p ≥ 0.05) impact on total dry weight, net photosynthetic rate, total chlorophyll content and root vigor (Supplementary Table S1). The maximum ΔH, total dry weigh and root vigor were related to lager voltage (36V or 48V), and the largest values of them were 67.57% (T10), 61.54% (T10) and 304.88% (T11) higher than the control group, respectively (Table 2). And the greatest total chlorophyll content, total root length, total root surface area and root volume were related to plants treated by lower voltage (12V). Meanwhile, the Supplementary Table S2 results also showed that large electrode spacing and slow application frequency have the greatest influence on all growth traits, except total dry weight (small electrode spacing and quick application frequency). For average daily application time, the optimum level of plant growth observed in 4h/d treatment, but not total dry weight (12h/d treatment). Nevertheless, the growth characteristics of S. plumbizincicola did not show obvious trend with the factors, probably due to the synergistic influence of multiple factors.

Table 2 | Plant growth characteristics difference under orthogonal experiment treatment.


[image: A detailed table presents data on plant treatments labeled T0 to T16, showing factors A, B, C, D, and parameters like dry weight, photosynthetic rate, chlorophyll content, root vigor, root length, surface area, and volume. Mean values and standard deviations are included for each treatment, and notes indicate statistical significance.]



3.2.2 Heavy metal accumulation difference

In order to explore the removal effectiveness of heavy metals by S. plumbizincicola under different electric field application strategies, the heavy metal contents in soil and plants after pot treatments were determined, respectively. Compared with the original soil, the contents of all four heavy metals in the soil after potting treatment exhibited significant reductions. The maximum removal of Cu, Cd, Pb and Zn was 14.98% (T8), 44.12% (T9), 35.87% (T9) and 30.25% (T9), respectively. After the electric field treatment, soil heavy metals contents were further reduced, especially the Cd and Pb. Compared with T0 treatment, the heavy metals content showed extremely significant decreasing trend under different electric field treatments (Figure 3a). And the content of Cu and Zn reached lower values under the T8 and T9 treatments, which were 14.43%, 24.46% and 9.63%, 25.57% lower than control group, respectively. Figure 3b reveals a notable increase in the average content of heavy metals in the plants after electric field treatment, especially the content of Cd (+24.23%-52.09%) and Zn (+10.81%-50.11%) in plants. Also, the higher plant content of Cu, Cd and Pb related to treated by a high voltage strength (36 or 48V), and smaller electrode spacing (16.7 cm), application frequency (0 interval) and average daily application time (2 or 4 h/d), the maximum average contents were 24.40 (T4), 834.13 (T12) and 42.24 (T4) mg/kg, respectively. But the Zn content related to treated by a low voltage strength (12V), electrode spacing (12.5 cm) and application frequency (0 interval), and long average daily application time (8 h/d), the greatest Zn contents were observed in T1 treatment (7017.48 mg/kg). In order to investigate the effects of different factors on the heavy metal accumulation in plant, the range values of BCF and TF were calculated. The range value of Cd and Zn is significantly larger than that of Cu and Pb due to their larger BCF value. From Figure 3c, it can be found that the most influential factor on the enrichment of Cu (B>D>C>A) and Zn (B>A>D>C) is the electrode spacing, and that of Cd (A>B>C>D) and Pb (B>A>D>C) is the voltage strength. The TF value of Cu, Cd and Pb is significantly larger than that of Zn. The influence of factor A and B on the TF values of Cu and Zn was significantly greater than that of factor C and D, frequency of electric field application (C) had the weakest effect on the TF value of Cd, the greatest effect of voltage strength (A) on Pb, and insignificant variations among the remaining factors (Figure 3d).





3.3 Parameter optimization design based on orthogonal experiments

The effect of electric field parameters on heavy metal extraction, energy consumption and the economic heavy metal extraction (EHME) were shown in Figure 4. The extraction of Cu, Cd, Pb and Zn from plants after electric field treatment was significantly increased by 2.08%-100.44%, 47.49%-180.00%, 6.68%-46.29% and 4.17%-104.49% over the T0 treatment, and its maximum extraction increased by 0.10 (T10), 8.56 (T6), 0.14 (T11) and 24.61 mg/pot (T11), respectively (Figure 4a). The results also showed that 36 or 48V voltage, 25cm electrode spacing, 2d interval and 4h/d treatment had the greater average extraction, and voltage had the greatest influence on extraction of Cu and Pb, as well as electrode spacing had the greatest influence on extraction of Cd and Zn (Supplementary Table S4). The energy consumption of the EKAPR system under different electric field parameter treatments varied significantly ranging from 0.03 to 2.90 kWh (Figure 4b). Electric field strength, electrode spacing and average daily application time significantly impacted energy consumption, the smallest values were observed in 12V voltage, 50cm electrode spacing, 3d interval and 12h/d treatment (T4).

[image: Bar and line charts illustrate soil and plant heavy metal content, including copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn), with percentage reductions indicated. Two graphs compare soil (panel a) and plant (panel b) concentrations, while two bar charts display bio-concentration factor (BCF, panel c) and translocation factor (TF, panel d) for different metals. Scale values and significant differences are marked.]
Figure 3 | Effects difference of different electric field application on heavy metal content of soil (a) and plant (b), the range values of BCF (c) and TF (d). *(p<0.05), **(p<0.01) indicates the significance electric field treatment with respect to the T0 treatments.

[image: Bar charts show (a) total extraction of Cu, Cd, Pb, and Zn in plants by treatment, (b) energy consumption per pot, and (c) EMF/E with data variations across treatments. Key data points are highlighted in red.]
Figure 4 | Effects difference of different electric field application on heavy metal extraction (a) energy consumption (b) and EHME (c). *(p<0.05), **(p<0.01) indicates the significance electric field treatment with respect to the T0 treatments.

Based on the principle of low energy consumption and high heavy metal extraction, the heavy metal extraction increment per unit of energy consumption (EHME) was calculated (Figure 4c). The largest EHME value were obtained in T7 treatment (472.60 mg/kWh), which were130.83-464.85 mg/kWh higher than other groups. Secondly, T3 (306.64 mg/kWh), T8 (337.92 mg/kWh) and T12 (341.77 mg/kWh) treatments also showed higher heavy metal extraction increments. In addition, the EHME increased with electrode spacing (K4>K3>K2>K1), and decreased voltage (K1>K2>K3>K4), application frequency (K4>K3>K2>K1) and average daily application time (K1>K2>K3>K4), but variance analysis results showed that the four factors all insignificantly impacted the EHME in EKAPR system (Supplementary Table S5). According to the range analysis, electric field strength had the greatest influence on EHME, followed by average daily application time, electrode spacing and application frequency, and the optimal combination is A1B4C4D1 (voltage strength of 12 V, electrode spacing of 50 cm, and interval of 3 d for 2 h/d) for the S. plumbizincicola in EKAPR system.





4 Discussion


4.1 Electro-assisted at booming stage can replace long-term electric field application

Previously, the EKAPR system has been widely used for the removal of heavy metals and organic pollutants from soils due to its ability to alleviate the water-soluble ion decay and maintain the soil colloidal properties (Gao et al., 2021), as well as to stabilize the soil pH by plants and solve the problem of acidification of the soil after electric remediation (Osman et al., 2022), and to promote the dissociation of the effective nutrients and heavy metal ions in soil (Ma et al., 2022). Especially, electroosmosis and electromigration in the electrokinetic action can effectively promote the available form of heavy metal and migrate with the direction of electric field, so as to effectively improve the remediation efficiency of the EKAPR system for heavy metal. After EKAPR system treatment, soil heavy metals such as Cu, Cd, Pb, Zn and U can be effectively removed (removal rates from 5% -92%) (Ma et al., 2024). On the other hand, electrokinetic assistance with appropriate intensity (0.5-4.0 V/cm) can stimulate cell division, enhance enzyme activity, and increase chlorophyll synthesis, thereby promoting plant growth (Li et al., 2016; Zhao et al., 2020). In the study, the electric field application with 1 V/cm at the seedling, blooming and mature stages and whole stage of S. plumbizincicola found that the phytoextraction, content in the plant and BCF of Cu, Cd, Pb, and Zn under all treatments showed an increasing trend compared to the absence of the electric field (PR treatment). And there was slight increasing of plant growth, which were similar to the results of the previous study. Interestingly, the application of electric field treatments at individual growth stages (EK-S, EK-B, EK-M) and the whole growth stage (EK-W) achieved effective extraction of heavy metals by S. plumbizincicola. Even the average content of the four heavy metals in the S. plumbizincicola under the EK-S and EK-M treatments were slightly higher than that under the EK-W treatment (Figure 2b). This is consistent with the findings of Sajad et al. (2020) that the removal of soil contaminants did not significantly increase with increasing remediation time (40% for 7d and 42% for 10d), and that even too long electrokinetic remediation time results in unnecessary power consumption (Han et al., 2014). Moreover, even with the application of low electric field intensity, too long treatment time is still unfavorable for plant growth (Xu et al., 2020).

Nevertheless, there were still differences in heavy metal uptake and plant growth characteristics of S. plumbizincicola after electric field treatment at different growth stages. The differences in the effects of electric field on different growth stages can be summarized as follows: First, differences in photosynthetic rates. With the plant growth, there are significant structural, chemical and functional changes in the leaves at different ages that alter the distribution and uptake processes of nutrients (Warren, 2006). Additionally, leaf specific gravity, leaf nitrogen content and water use efficiency increased with growth, but photosynthetic nitrogen use efficiency and stomatal conductance decreased (Renninger et al., 2015), thus photosynthetic rate showed significant variations among growth stages. For example, it was found that the photosynthetic rate, intercellular CO2 and N contents of cotton were the highest at the bud stage, followed by the flowering stage (Shah et al., 2021). Our study also found that the total chlorophyll content in the leaves of S. plumbizincicola showed an increasing trend with increasing growth time under the electric field treatment, reaching a maximum in the booming stage (EK-B treatment). Second, differences in nutrient absorption. It has been shown that nitrogen and phosphorus content in plants tends to show large differences at different growth stages due to different tissue functions (Li et al., 2014). Compared with the seedling stage, more nitrogen is utilized for photosynthesis, and the synthesis of proteins and nucleic acids to meet plant growth needs in the later growth stages, and therefore has a higher uptake of nitrogen and phosphorus (Goldberg et al., 2017; Iles et al., 2016). Since electric field treatment can effectively dissociate the active nutrients in the soil, a large amount of active nutrients was dissociated from the soil under the EK-W treatment, resulting in the biomass of S. plumbizincicola under this treatment being significantly higher than that under other treatments (+2.36%-24.40%). Whereas the reduction in biomass under the other electric field treatments may be attributed to the stress effect of the electric field (Xu et al., 2020). Third, differences in heavy metal uptake and accumulation. The uptake of heavy metals by plants is a complex physical, chemical and biological process, which is influenced by the plant type, growth stage, etc. Promotion of nutrient and non-nutrient metal uptake from soil with the help of membrane transporter proteins during plant growth (Giovanni et al., 2013). The rhizosphere microbial community, which affects the accumulation of heavy metals in plants, also changes with plant growth, in line with the needs of the plants (Qin et al., 2024). Our study found that the lowest accumulation of the four heavy metals by the S. plumbizincicola was EK-M treatment, while the remaining three treatments did not differ significantly. The low accumulation of heavy metals under EK-M treatment may be due to low biomass (Figure 2d) on the one hand, and may be related to the rhizosphere soil microbial community on the other hand (Farina et al., 2012). Fourth, differences in plant stress capacity. As the plant grows, the oligofructose level in the plant decreases and the sucrose, glucose and fructose content increases, leading to a gradual increase in the antioxidant activity of the plant (Arena et al., 2024; Zou et al., 2021). Debojyoti et al. (2023) found that the sensitivity of rice to arsenic stress was in the order of flowering > grouting > maximum tillering. Compared with PR treatment, the biomass of S. plumbizincicola decreased significantly due to the stress of electric field, and the biomass decreased most obviously at maturity stage, which may be due to the poor adaptability of plants to environmental changes at maturity stage (Gao et al., 2019). In conclusion, the application of electric field in a single growth period can effectively replace the long-term application of electric field and save as much power loss as possible. Furthermore, the comprehensive evaluation of S. plumbizincicola is better after applying electric field treatment in the booming period.




4.2 Optimizing electric field parameters improves plant extraction of heavy metals

The EKAPR system is a complex ecosystem composed of external electric field, remediation plants and soil medium, and its influence factors are complicated and diverse. Among them, electrokinetic parameters such as electrode type, electrode spacing, electrode configuration, voltage intensity and electric field application time affect the remediation efficiency of the EKAPR system on the one hand, and are closely related to the electrical energy loss on the other hand (Hamdi et al., 2024; Ghobadi et al., 2021). In this study, the orthogonal pot experiment found that the heavy metals extraction in plants increased significantly under different electric field application strategies (Figure 3a). The reasons may be attributed to the following: First of all, suitable electric field can improve the permeability of plant cell membrane to heavy metal ions to biofilm, thus increasing the heavy metals content in S. plumbizincicola (Putra et al., 2013). Secondly, the internal electric field in the plant prevents the diffusion of charged ions in the plant tissue, and the applied electric field can balance this phenomenon (Raghavan et al., 2013). Thirdly, electroosmosis by direct current electric field promotes the migration of dissolved cations to the negatively charged plant roots (Cameselle and Reddy, 2012). Furthermore, the application of electric field can also promote plant roots to secrete low molecular organic acids, which activates heavy metals or forms soluble complexes, and enhances the absorption of heavy metals by the plant root system (Hu et al., 2020).

As early as 2011, the study of Cang et al. (2011) found that the electric field gradient is one of the most important factors affecting plant growth, soil properties and soil mineral concentration. Low voltage gradients are usually applied in EKAPR potting experiments because higher voltage gradients can lead to loss of physicochemical properties of the soil (Sánchez et al., 2020), as well as jeopardize the normal plant growth process (Fan et al., 2021). Compared with the PR treatment in this study, all the growth indicators of S. plumbizincicola under electric field treatment showed an increasing trend (Table 2), and the biomass increased with voltages and decreased with electrode spacing (Figure 5a). The smaller the electrode spacing, the higher the current (Wen and Yan, 2020), and the greater the stress on the plant, which is not beneficial to plant growth. The continuous application of electric field has a better promoting effect on biomass than the interval application, but the daily application time only exhibited a slight promoting effect (Figure 5a). Putra et al. (2013) also found that under the electric field treatment at 50 Hz, the content of chlorophyll a and chlorophyll b in Kentucky bluegrass increased by 17% and 44%, compared with that at 10 Hz, respectively. In terms of the content and extraction of heavy metal in plants, the differences between the factors were not significant, even though electric assistances played a contributing role with the extraction higher 7.20-32.94 mg/pot than PR treatment (Figures 5b, c). In addition, the economic heavy metal extraction was similar to the energy consumption, and its values decreased with increasing voltage strength since the energy consumption varied greatly under different electric field application treatments (0.03 to 2.90 kWh). Electric field application frequency and average daily application time, and increased with increasing electrode spacing, but the influence of all four electrochemical factors on EHME was insignificant (Supplementary Table S5).

[image: Multiple line graphs illustrate various relationships: (a) Total biomass at four intervals; (b) Plant content of Cu, Cd, Pb, Zn across different electric field strengths shown on the left y-axis, and corresponding plant content on the right y-axis; (c) Extraction of Cu, Cd, Pb, Zn against electrode spacing; (d) EATME for Cu, Pb, Zn versus application frequency and time. Each graph uses distinct colored lines and markers to differentiate data types.]
Figure 5 | Effects difference of different electric field application on factor level diagram of biomass (a), heavy metal in plant (b), plant extraction (c) and EHME (d).

There are differences in the differences of indicators by different factors, and a single factor cannot assess the effect of electric field parameters on the uptake of heavy metals by S. plumbizincicola. Therefore, the voltage and electrode spacing, application frequency and daily average application time were coupled into voltage gradient and application time to study its effect on biomass and heavy metal extraction. The biomass did not consistently increase with the voltage gradient and electric field application time, reaching a maximum at 2.5 V/cm and 100 h (Figures 6a, d). This is mainly due to excessive electric field can have obvious adverse effect on plant growth due to various electrochemical oxidation reactions and derivative effects (Liu et al., 2020), and a certain time of electric field application can promote plant growth, but too long time of electric field action can be harmful to plant growth and cause energy loss (Ma et al., 2024). Consequently, the best biomass promotion of S. plumbizincicola by electric field assistance was achieved when the voltage gradient was 2.5 V/cm and the electric field application time was 100h. Based on the high biomass principle, the better electro-assisted treatments were T10 and T11 treatments. As the voltage gradient increases, the heavy metal extraction rises rapidly, and it increases slowly and tends to stabilize when the voltage gradient exceeds 2.5 V/cm (Figure 6b). The reason for this can be revealed as the increase in voltage intensity increases the evaporation of soil moisture, leading to a more rapid decrease in moisture content and inhibiting the migration and dissociation of heavy metal ions (Zhou et al., 2020). Similarly, the heavy metal extraction increased with the electric field application time, but the extraction capacity tends to level off when the application time exceeds 100h (Figure 6e). Yan et al. (2019) compared the effects of remediation time, voltage gradient, electrode particle size and ratio on the removal of Cr6+ from soil by orthogonal experiments and found that remediation time had the greatest effect on Cr6+ removal by electrokinetic remediation. But excessive treatment time will not only not improve the removal rate of pollutants, but also cause useless power consumption (Han et al., 2014). For instance, the Pb accumulation of Indian mustard increased by 2–4 times and 2.81 times when treated with 2 V/cm DC electric field for 9d (30 or 60 min/d) or 16 d (8h/d), respectively (Lim et al., 2003; Cang et al., 2011). Generally, the total extraction of the four heavy metals by the S. plumbizincicola was the largest when the voltage gradient was 2.0 V/cm and electric field application time is 100 h. Based on the high heavy metal extraction principle, its better electro-assisted treatment is T3, T4 and T10 treatment. The EHME showed an increasing trend in the voltage gradient of 0.25-1.0 V/cm, slowly decreasing between 1.0-2.0 V/cm and then remaining constant (Figure 6c). The EHME decreases with the increase of electric field application time, and tends to be flat when electric field application time is 100h (Figure 6f). Romina et al. (2021) showed that when the soil voltage exceeds 50 V/m, there may be an increase in energy loss due to soil heating affecting electrical permeability, which in turn limits the effectiveness of the electrokinetic process. This study also confirmed that the removal of heavy metals did not significantly increase with the increase in remediation time, in agreement with the findings of Adhami et al. (2021). It can be seen that for different pollutants and soil conditions, reasonable control of the remediation time can ensure the effectiveness of remediation while also saving time and reducing costs. Based on the principle of high heavy metal extraction and low energy consumption, the better electro-assisted treatment is T3, T7, T8 and T12 treatments.

[image: Six graphs display relationships between variables. (a) Shows total biomass versus voltage gradient, peaking at 2.0 V/cm. (b) Depicts total plant extraction increasing with voltage gradient. (c) Illustrates a decrease in ELME with voltage gradient. (d) Total biomass increases with application time. (e) Plant extraction rises with application time. (f) ELME decreases sharply with application time. Each graph has data points and a trend line.]
Figure 6 | Effects difference of different voltage gradient and application time on biomass (a, d), plant extraction (b, e) and EHME (c, f).

Overall, voltage gradient is considered to be the key indicators affecting the removal efficiency of EKAPR system due to the ability to influence enzyme activities, photosynthesis, plant growth metabolism and soil physicochemical properties. Appropriate voltage promotes plant biomass increase and root morphology development, and then improves heavy metal absorption capacity (Ma et al., 2024). However, the high intensity electric field will destroy the permeability and integrity of cell wall and damage the normal growth of plants (Janositz and Knorr, 2010), and the other side will limit the longitudinal movement of ions by reducing the trachea diameter, thereby inhibiting the absorption capacity of plants (Okumura et al., 2014; Lim et al., 2012). In addition, the electric field treatment time also significantly affected plant growth and heavy metal extraction. Prolonged application of electric field destroys the ultrastructure of root cells, resulting in decreased root biomass and root vigor (Xu et al., 2020; Sánchez et al., 2018). Previous studies have also shown that the single desorption of Pb decreases as time increases (Ma et al., 2022). Therefore, it is necessary to rationally regulate the electrokinetic parameters to balance the effects of electric field on the activation and directional migration of heavy metal and plant growth inhibition, so as to maximize their advantages. The most suitable voltage gradient and electric field application time in this study were 2.0 V/cm and 100h, respectively.4.3 Energy savings in EKAPR systems can be achieved by optimizing plant growth stages and electric field parameters.

In recent years, electrokinetic remediation has begun to develop on multiple aspects, and an increasing number of researchers have been working to improve pollutant removal efficiency by optimizing electric field configuration, introducing electrolytes, and combining with other remediation techniques. But in practical applications, factors such as focusing effects, electrode polarization, soil acidification/alkalization and continuous electric field application lead to high energy consumption (Zheng et al., 2024). Currently, researchers have mainly solved the problem of energy consumption in electric remediation systems by replacing the DC electric field with a pulsed electric field (Yuan et al., 2017), adjusting the position of the electrodes (Sun et al., 2019) and multi-electrode arrangement (Kim et al., 2021) to regulate the electric field, and developing the self-powered technology of solar cells (Jeon et al., 2015) and microbial fuel cells (Habibul et al., 2016). An example of this is Hassan et al. (2015) who found that electric remediation systems powered by solar cells can save up to 40% compared to grid power. Additionally, the researchers improved electric field parameters such as voltage gradient and current magnitude by using reference auxiliary electrodes to promote the migration of metal ions, thus reducing the output of electrical energy (Wang et al., 2019).

In our study, the EKAPR system was optimized by both selecting the growth stages of the plants and adjusting the electric field parameters to achieve energy savings. Firstly, by comparing the growth and the heavy metals extraction of S. plumbizincicola with the electric field application at different growth periods, it was confirmed that the electric field application at a single growth period could effectively remove the heavy metals from the soil under the prerequisite of ensuring normal growth. According to the plant growth and heavy metal uptake and accumulation, the electric field treatment in the booming stage is beneficial to save the electric field treatment time while obtaining better remediation efficiency of the EKAPR system. Secondly, the correlation showed that energy consumption had a significant negative correlation with plant growth (ΔH, TCC, TRL, TRSA), and it no significant correlation with heavy metal content in plant (Figure 7). This result suggests that the remediation efficiency of the EKAPR system does not show a significant linear correlation with the energy consumption, rather there is an optimal value (Zhou et al., 2020), and it is necessary to optimize the electric field parameters to reduce the energy loss. As for example, the energy consumption increased from 0.03 kWh to 1.74 kWh by EKAPR system under T4-T6 treatment, but the total extraction of the four heavy metals decreased from 1.79 mg to 17.08 mg. The energy consumption of EKAPR system depends on the voltage strength, current density and electric field application time (Supplementary Table S5). Within a certain range, the electrode spacing changes the proton transfer distance in the solution, which in turn affects the system internal resistance and power output (Wang et al., 2017). The electric field frequency and the average daily application time together determine the electric field treatment time, and excessively long electric field times will significantly affect plant growth and heavy metal extraction (Fan et al., 2021). Therefore, we should reasonably balance the relationship between the heavy metals extraction by plants and the electrical energy power in order to obtain a high EKAPR system effect.
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Figure 7 | PCA biplots (a) and correlation plots (A) for the content of heavy metals influenced by plant growth index. (ΔH, plant height; TRL, Total Root Length; TRSA, Total Surface Area; RV, Root Vigor; DR, Dry weight; TCC, Total chlorophyll content; Cu, Total Cu extraction in plant; Zn, Total Zn extraction in plant; Cd, Total Cd extraction in plant; Pb, Total Pb extraction in plant).

Overall, this study aimed to optimize the EKAPR system in terms of plant growth stages and electric field parameters for high heavy metal accumulation and low energy consumption, so as to expand the practical application value of the EKAPR system. This study is a novel and proven approach. Nonetheless, this recommended method cannot be used for all EKAPR systems due to differences of plant tolerance to electric field and growth stage. Therefore, comparative studies of different plants species should be extended in future studies to obtain a more comprehensive and accurate method of electric field application. Furthermore, this study only investigated the macro-level changes in plant growth and heavy metal accumulation under different treatments, and the physiological, microbiological, and molecular levels of plants should be further revealed.





5 Conclusion

To extend the practical application and reduce the energy consumption of the EKAPR system, this study optimized the electric field application strategy of the EKAPR system in terms of both plant growth stages and electric field parameters. The growth stages experiments showed that the heavy metal accumulation ability with electric field treatments under single growth stages were not less than those of whole growth period treatments, and it is best under the EK-B treatment. This is confirmed by the comprehensive scores for each treatment (0.70 for EK-B and only -0.03 for EK-W). These results suggested that the feasibility of short-term electric-assistance that can ensure the normal plant growth while effectively accumulating heavy metals. And electric field assistance at booming periods is an alternative method to save energy for replaces long-term electric field application. The electric field parameter optimization experiments show that four factors significantly (p ≤ 0.05) impacted the plant height and root morphology, but the heavy metals content in plants was not showing significant correlation with energy consumption. The biomass and heavy metal extraction of S. plumbizincicola were both better promoted at voltage gradient of 2.0 V/cm and total application time reached 100h. Also, the electric field application schemes are chosen differently according to different purposes. Based on the principles of high heavy metals accumulation increment and low energy consumption, the recommended electric field application strategy for S. plumbizincicola in the EKAPR system is to apply voltage intensity of 24 V, electrode spacing of 25 cm, electric field application frequency of 3 d intervals and average daily application time of 2 h in the booming period, and its EHME reaches 472.60 mg/kWh. To sum up, it is an alternative idea to save energy by optimizing both plant growth stages and electric field parameters to practice the principle of low carbon and broaden the application value of the EKAPR system. However, only the laboratory-scale application of S. plumbizincicola was demonstrated in this study, electric field parameter causing plant physiological differences, mechanism characterization or electrokinetic transport of contaminants needs further study.
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Introduction

In the pursuit of sustainable development, nanotechnology provides effective solutions for enhancing agricultural productivity. Nanomaterials (NMs) can be effective in increasing plant abiotic and biotic stress tolerance. Understanding the nanoparticles (NPs)–plant interaction is essential to identify the potential of NPs for growth stimulation and phytotoxicity risks. Therefore, this study aimed to evaluate the effects of biologically synthesized silver nanoparticles (AgNPs) from Fusarium solani IOR 825 on the growth of Zea mays. Furthermore, the effect of AgNPs on oxidative stress and the antioxidant response was assessed.





Methods

AgNPs were efficiently synthesized from F. solani IOR 825 and characterized for physicochemical properties using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and measurement of Zeta potential. AgNPs at concentrations of 32, 128, and 512 µg mL−1 were used for the pre-sowing treatment of maize grains to inhibit microbial pathogens present on their surface. Sterilized maize grains were cultivated for 14 days for plantlet development. Subsequently, germination percentage (%G), mean germination time (MGT), germination rate index (GRI), fresh and dry weight (FW and DW), and the Ag content in plant organs and total chlorophyll content were analyzed. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) were determined in leaves, roots, stems, and caryopses to assess the oxidative stress. The antioxidative system response to the AgNPs treatment was studied by determining total glutathione (GSH+GSSG) and ascorbate (ASC) contents as well as catalase (CAT), superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX) activities.





Results

AgNPs were spherical and small [TEM average diameter of 22.97 ± 9.4 nm, NTA average size of 43 ± 36 nm, and DLS average hydrodynamic diameters of 27.44 nm (14%) and 108.4 nm (86%)]. Zeta potential revealed that NPs were negatively charged [-19.5 mV (61.3%) and −2.93 mV (38.6%)]. The diffractogram of AgNPs confirmed the presence of a face-centered cubic structure of crystalline AgNPs, while FTIR spectra showed the presence of biomolecules on their surface. The results showed a dose-dependent effect on maize growth. The increase in length and fresh weight of plants treated with a AgNPs concentration of 512 µg mL−1 was noted. The treatment with all tested concentrations of AgNPs (32, 128, and 512 µg mL−1) resulted in increased dry weight of leaves. Reduced chlorophyll content was observed in plants treated with the highest tested concentration of AgNPs (512 µg mL−1). The treatment of grains with AgNPs decreased H2O2 levels in all organs, except the stem where the oxidant’s level increased. MDA levels were unaffected except for the highest tested concentration of AgNPs, which raised its content in leaves. ASC and total glutathione levels were increased in roots and caryopses, respectively. The highest impact of AgNPs treatment was determined for SOD activity, which decreased in leaves, stems, and caryopses and increased in roots. CAT activity was decreased in leaves, stems, and roots. There was a minor effect on POX and APX activities.





Conclusion

The lowest tested concentration of AgNPs (32 µg mL−1) on maize efficiently inhibits maize-borne pathogens, without any negative effect on plant growth and chlorophyll content. Moreover, it does not provoke oxidative stress. However, AgNPs may affect cellular redox systems when their higher concentrations (128 and 512 µg mL−1) are used. The results indicate the potential use of biogenically synthesized AgNPs in agriculture through a crop-safe approach to eliminate pathogens and increase maize production efficiency.
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1 Introduction

Maize (Zea mays), which belongs to the grass tribe Andropogoneae of the Gramineae (Poaceae) family, is one of the most important cereal crop plants, alongside wheat (Triticum spp.) and rice (Oryza sativa) (FAO, 2022). The main purposes of maize cultivation are grain acquisition (production of groats, flour, and starch), silage production (livestock feed), and the use of maize by-products for other purposes, such as biofuel or ethanol production (Rouf Shah et al., 2016). Maize-based food products play a crucial role as a source of nutrients (carbohydrates, proteins, fat, microelements, and macroelements) and a wide range of beneficial health substances such as vitamins (riboflavin, thiamine, and vitamins C and E) or xanthophylls (lutein and zeaxanthin) (Rouf Shah et al., 2016; Revilla et al., 2022). However, the crop yield of maize is affected by abiotic (water and nutrient availability or climate factors including low temperature) and biotic factors that can highly limit maize growth. Among the abiotic factors, low temperature inhibits the germination of maize grains and the growth of plants, particularly in the initial stage of seedling development (Zhang et al., 2020). The biotic factors are represented by a wide range of microbial pathogens, e.g., Aspergillus flavus, Aspergillus parasiticus, Colletotrichum graminicola, Fusarium graminearum, Fusarium moniliforme, Penicillium citrinum, and Rhizopus stolonifera (Goko et al., 2021; Oldenburg and Ellner, 2015). It should be emphasized that germination and early stages of seedling growth are highly sensitive to the presence of pathogenic microbes (Lamichhane et al., 2018).

To overcome the problems caused by the above-mentioned abiotic and biotic factors and enhance maize production efficiency, several techniques such as fertilization, pesticide application, intercropping, seed treatment, and genetically modified organism (GMO) cultivation are commonly used (FAO, 2024; Goodman, 2024). However, these techniques are not entirely effective or safe. For example, fertilization requires a high degree of precision; otherwise, it is ineffective, and excess fertilizer leaks into the environment, causing pollution (Srivastav et al., 2024). Moreover, chemical fertilizers cause soil degradation (e.g., acidification), which reduces nutrient availability and disrupts the soil microbial ecosystem, ultimately reducing soil productivity (Cao et al., 2025). In turn, the use of pesticides (e.g., organophosphates and carbamates) has a significant negative impact on human and animal health, as pesticide residues are detected in feed and food (EFSA (European Food Safety Authority), 2024). Pesticides also negatively affect the environment by reducing the population of beneficial soil microorganisms and weakening soil structure and fertility (Tripathi et al., 2020; Brunelle et al., 2024; Cao et al., 2025). Meanwhile, GMO crops are associated with limited human population trust and legal regulations (Goodman, 2024). Therefore, the development of agriculture is directed toward searching for new solutions and sustainable agricultural technologies, including the implementation of innovative methods for pre-sowing seed treatment to enhance germination efficiency and early development of plants (Biswas et al., 2023), thus improving crop yields.

Nanotechnology, particularly the use of nanoparticles (NPs), has the potential to contribute to the development of modern agriculture. NPs exhibit unique physical and chemical properties, including a high surface-to-volume ratio, and the ability to cross biological membranes and interact effectively with biological systems. In agriculture, NPs have the potential to be utilized as nano-pesticides, nano-fungicides, nano-herbicides, and nano-fertilizers, offering significant benefits. They can enhance nutrient uptake, improve stress resistance, and increase photosynthetic efficiency, resulting in improved growth and yield even under challenging conditions. Moreover, their use can reduce the environmental hazards of conventional agricultural chemicals (Singh et al., 2024; Wahab et al., 2024). NPs are effective even at low concentrations and can be delivered through various methods, including seed treatment, foliar spraying, and hydroponic delivery (Mawale et al., 2024; Nile et al., 2022). NPs, unlike traditional fertilizers, which often leach into groundwater and water reservoirs causing their pollution, provide control over time and efficient nutrient release for plants (Easwaran et al., 2024; Haydar et al., 2024). Nano-priming is a novel approach for the pre-sowing treatment of seeds with NPs to improve germination speed, promote seedlings’ vigor, and enhance plant tolerance to stress conditions (Cao et al., 2025; Zhao et al., 2024). Its effectiveness depends on the dose and physicochemical properties of the NPs used, the time and temperature of priming, seed viability, and many other factors (Abbasi Khalaki et al., 2021). Some studies have reported that nanomaterials can penetrate the seed coat, resulting in increased water absorption. This, in turn, stimulates the enzyme system, which leads to rapid germination and seedling development (Shang et al., 2019). Moreover, nano-enabled seed treatment can increase the disease resistance of crops by boosting immunity, which will reduce the use of pesticides. This unsophisticated, farmer-available, cost-effective, and environmentally friendly seed treatment approach may help crop plants fight climate change challenges (Cao et al., 2025; Zhao et al., 2024). Although the application of NPs in agriculture is still in its developmental stages, it holds promise for increasing crop production and resilience against various stressors (Su et al., 2019; Haydar et al., 2024). NPs for such applications can be synthesized using chemical, physical, and biological methods. Chemical and physical methods of NPs synthesis include techniques such as co-precipitation, the sol–gel method, and laser ablation. These procedures allow for the synthesis of uniform products with high efficiency but require the use of hazardous chemicals that pose health and environmental risks, high temperature, pressure, and energy, as well as additional post-processing steps such as purification or stabilization (Abid et al., 2022). The growing emphasis on environmental protection prompts scientists to invent eco-friendly methods of NPs synthesis that would reduce toxic pollutant formation and minimize harmful environmental impacts (Borehalli Mayegowda et al., 2023). Therefore, the use of plants or microorganisms is the preferred method for the synthesis of NPs, as it is simple, inexpensive, time-efficient, and environmentally friendly and has stable yields. Moreover, molecules from biological sources play a dual role as reducing and capping agents; the latter agent prevents NPs from agglomeration and makes them more bioavailable (Sidhu et al., 2022; Trzcińska-Wencel et al., 2023a). In addition, biological NPs are believed to be more biocompatible than those synthesized chemically (Dowlath et al., 2021; Xiong et al., 2022). To date, the methods of green synthesis include plant (Bernardo-Mazariegos et al., 2019; Masum et al., 2019), bacterial (Abdelgadir et al., 2024), fungal (Golinska et al., 2017; Trzcińska-Wencel et al., 2023b), or algal (Waqif et al., 2024) systems. Several studies have shown the great potential of fungus-mediated synthesis to provide high-yield, stable, and biologically active NPs. Fungal systems due to rapid growth, significant biomass production, secretion of enzymes, and adaptability to new conditions seem remarkably capable of synthesizing NPs, both intracellularly and extracellularly. The fungal-mediated synthesis of a wide range of NPs, including silver (AgNPs), gold (AuNPs), copper (CuNPs), and zinc (ZnONPs), has been explored among different genera such as Aspergillus, Colletotrichum, Fusarium, Penicillium, or Trichoderma (Rai and Golińska, 2023; Anjum et al., 2023). The physical, chemical, and biological properties of mycosynthesized NPs depend on the fungal strain, conditions of growth, preparation of fungal extract, and reaction conditions, e.g., type and concentration of precursor, time, pH, or temperature (Brady et al., 2023). Several studies have pointed out that biologically synthesized AgNPs have potential as antimicrobials or plant growth stimulators for application in agriculture (Mahakham et al., 2017; Acharya et al., 2020; Sencan et al., 2024). However, NPs–plant interactions depend on many variables, including the type, shape, and size of the NPs, and their dose and application method, as well as the plant species (Syu et al., 2014; Krishnasamy et al., 2024). AgNPs can activate the expression of genes related to cell proliferation, metabolism, and hormone signaling pathways (Syu et al., 2014). Recently, Koley et al. (2023) reported that AgNPs improve germination and increase plant biomass by affecting hydrolytic enzyme activity and modulating reactive oxygen species (ROS) generation in the seeds of chickpeas, peas, and mung beans. Other studies have demonstrated the dose-dependent effects of AgNPs treatment on seedling growth, biochemical parameters, and antioxidative system activity, highlighting the adverse effects of higher concentrations, implying a potential toxic effect (Karim et al., 2023). Since the results of studies on the effects of AgNPs on plants, including seed germination and subsequent seedling growth, are limited and inconclusive, there is still a need for further research (Li et al., 2017; Guilger-Casagrande et al., 2022).

The present work is a continuation of our study on efficient biosynthesis of AgNPs using Fusarium solani IOR 825 and their antimicrobial activity against bacterial and fungal plant pathogens, including the sterilization of maize grains (Trzcińska-Wencel et al., 2023b). Those preliminary studies also determined the positive effect of AgNPs on germination and basic growth parameters of 7-day-old maize seedlings. It was the first time that F. solani IOR 825 was used as an efficient, economical, harmless, eco-friendly, and acceptable method for the synthesis of small-sized, negatively charged, and stable (bio-capped) AgNPs. These NPs showed antibacterial and antifungal activities against a set of plant pathogens and effectively sterilized maize grains at low concentrations, preventing the development of grain-borne microorganisms. Based on these excellent outcomes, we aimed to develop AgNPs through the green chemistry route with the ambition that these particles contribute some beneficial effects to industrial agriculture in the future to protect and improve maize growth without posing toxic effects or accumulation in plants. Therefore, this study aims to evaluate the effect of three selected concentrations of AgNPs on the germination of maize grains and plantlet vigor, as well as on the oxidative stress parameters and the antioxidants response within individual plant organs, such as leaves, stems, roots, and caryopses of 14-day-old maize plantlets.




2 Materials and methods



2.1 Biosynthesis and physicochemical characteristics of AgNPs from F. solani IOR 825

The biosynthesis and characterization of AgNPs synthesized from F. solani IOR 825 were performed as described previously by Trzcińska-Wencel et al. (2023b). Briefly, AgNPs were synthesized using fungal autolysate in water. For this purpose, the fungal strain was grown in Potato Dextrose Broth (PDB, A&A Biotechnology, Gdańsk, Poland) at 26°C for 7 days, followed by centrifugation (6500 × g, 10 min), biomass washing with sterile distilled water, and resuspending in water (100 mL of water for 10 g of biomass) for 3 days for autolysis. Autolysate was centrifuged (4000 × g, 5 min), filtered by sterile filter paper, and used for challenging with 100 mM silver nitrate (AgNO3; final concentration of 1 mM). The reaction mixture was sunlight-treated and incubated for 7 days in darkness. After this incubation period, AgNPs were centrifuged (13000 × g, 1 hour) and dried at 37°C. The mass of AgNPs was determined in mg, and the powder was used to prepare the stock solution of 2048 µg mL−1 for further analyses. For maize grain treatment, the AgNPs stock solution was used to prepare final (32, 128, and 512 µg mL−1) concentrations (Trzcińska-Wencel et al., 2023b).

The biosynthesis of AgNPs was confirmed using UV–Vis spectroscopy (NanoDrop One, Thermo Fisher Scientific, Waltham, MA, USA) at the wavelength range 200–700 nm with a resolution of 1 nm. The size and shape of AgNPs were determined using transmission electron microscopy (TEM) (FEI, Tecnai 12 Netherland) after applying AgNPs solution on a carbon-coated copper grid with 400-μm mesh size and drying at room temperature for 24 hours. The size of AgNPs was measured based on TEM micrographs using the ImageJ software. X-ray diffraction (XRD) (X’ Pert PRO Analytical X6 diffractometer, PANalytical, Almelo, Netherlands) with Cu Kα (λ = 1.54056 Å) radiation source and Ni were used with a filter in the 2θ range 5°–120°. The functional groups on the surface of AgNPs were determined by Fourier transform infrared (FTIR) spectroscopy (Spectrum 2000, Perkin-Elmer, Waltham, MA, USA). Before analysis, AgNPs powder was combined with KBr (1:100 ratio, w/w) and analyzed in the range 400–4000 cm−1 at a resolution of 4 cm−1. The size distribution and surface potential of AgNPs in Milli-Q water solution were evaluated by nanoparticle tracking analysis (NTA LM20, NanoSight Limited, Amesbury, UK), dynamic light scattering (DLS), and Zeta potential measurement (Zetasizer Nano-ZS 90, Malvern, UK). The software provided by the equipment manufacturer was used to analyze the obtained results, namely, NTA, version 2.3 Build 0033, and Zetasizer Software, version 6.32.




2.2 Surface sterilization of maize grains and growth conditions

Maize (Z. mays) grains (Torseed S.A, Toruń, Poland) were sterilized in previously selected concentrations (32 and 128 µg mL−1) of AgNPs as described by Trzcińska-Wencel et al. (2023b), while a concentration of 512 µg mL−1 was added to this study to expand significantly the concentration range of AgNPs used for the treatment of grains. Briefly, for each variant, 25 grains were selected and sterilized at room temperature for 30 min with 25 mL of 30% hydrogen peroxide (H2O2) and 70% ethanol (1:1, v:v) or with 25 mL of AgNPs solutions at the concentrations of 32, 128, and 512 µg mL−1 and washed five times with sterile distilled water. Grains were placed on ½ Murashige and Skoog (MS) agar and germinated at 22°C ± 2°C for 14 days. The 14-day-old plantlets at the V2 growth stage were harvested, their length and fresh and dry weight were measured, and the plant material for biochemical analysis was frozen in liquid nitrogen immediately after harvesting and stored at −80°C. All these parameters were estimated for roots, leaves, stems, and caryopses separately (Supplementary Figure S1).




2.3 Maize grain germination and plantlet parameters

The parameters of grain germination were calculated as follows:

[image: Mathematical formula for calculating a percentage: G percent equals the sum of "n" over "N" multiplied by one hundred.]	

where G% is the germination percentage, Ʃn is the total number of grains germinated after 14 days, and N is the total number of grains sown (Scott et al., 1984).

[image: Mathematical formula stating MGT equals the summation of f times x divided by the summation of n.]	

where MGT is the mean germination time, f is the number of germinated grains at day x, x is the number of days from sowing, and Ʃn is the total number of germinated grains (Orchard, 1977).

[image: Formula for calculating GRI: GRI equals G subscript one divided by one, plus G subscript two divided by two, continuing in this pattern, up to G subscript x divided by x.]	

where GRI is the germination rate index and G1, G2, …, Gx is the germination percentage in the subsequent days after sowing (Esechie, 1994).

[image: Formula for Vigor Index 1 is shown: Vigor index 1 equals G percent multiplied by PL.]	

where G% is the germination percentage and PL is the length of plantlets.

[image: Vigor index two equals germination percentage times PDW.]	

where G% is the germination percentage and PDW is the dry weight of plantlets (Abdul-Baki and Anderson, 1973).

The length of the shoots and roots was measured using a ruler and expressed in cm; the fresh and dry weight of the leaves, stems, roots, and caryopses were determined in mg.




2.4 Detection of AgNPs in maize

The plant material was washed and dried at 50°C for 48 hours, then finely powdered, and used for energy dispersive spectroscopy (EDS) analysis to assess elemental composition using a scanning electron microscope (LEO Electron Microscopy model 1430 VP Ltd., UK) coupled with an energy dispersive X-ray spectrometer (Quantax 200 with XFlash 4010 detector, Bruker AXS, Karlsruhe, Germany) (Kumari et al., 2024).




2.5 Leaf chlorophyll content

The total chlorophyll content in maize leaves was assayed according to the method described by Witham et al. (1971). Shortly, the powdered leaf tissue (0.5 g) was extracted with 1.5 mL of 80% cooled acetone and then centrifuged at 5000 × g for 5 min (Thermo Fisher Scientific, USA). The supernatant was drained into a 15-mL test tube, and the extraction of the remaining pellet was repeated five times (until the green color disappeared). Supernatants were combined, and the absorbance of the samples was read at λ645nm and λ663nm using a U-1800 spectrophotometer (Hitachi, Tokyo, Japan). The amount of total chlorophyll was calculated based on the following formula:

[image: Formula for calculating total chlorophyll in milligrams per gram fresh weight: \(= 20.2 \times (\text{Absorbance at } 645 \, \text{nm}) + 8.02 \times (\text{Absorbance at } 663 \, \text{nm}) \times (\frac{V}{1000 \times \text{FW}})\).]	

where V is the final volume of the extract (mL) and FW is the fresh weight of the leaf (g).




2.6 Oxidative stress parameters and the antioxidant system activity



2.6.1 Hydrogen peroxide content

H2O2 content was determined according to the method described by Veljovic-Jovanovic et al. (2002), with their own modifications. The plant material (0.5 g) was ground in liquid nitrogen with a mortar and pestle and extracted with 5 mL of 0.1% trichloroacetic acid (TCA). After centrifugation at 10000 × g at 4°C for 10 min (Thermo Fisher Scientific, USA), 750 µL of supernatant was taken for assay. The reaction mixture contained 125 µL of 19.8 mM 3-(dimethylamino)benzoic acid (DMAB) (Sigma, St. Louis, MO, USA) in 0.1 M phosphate buffer (pH 6.5) and 115 µL of 0.456 mM 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) and 10 µL of horseradish peroxidase (HRP) (Sigma) (25 U in the final volume of 1 mL). After incubation at 25°C for 20 min, the absorbance was measured at λ590nm using a U-1800 spectrophotometer (Hitachi, Tokyo, Japan), and H2O2 concentration (µmol per 1 g of fresh weight) was calculated from the standard curve.




2.6.2 Lipid peroxidation by determination of malondialdehyde level

Lipid peroxidation was determined by assessing malondialdehyde (MDA) level after MDA–thiobarbituric acid (TBA) complex formation under acidic conditions (Hodges et al., 1999); 0.5 g of each plant organ was homogenized in liquid nitrogen and extracted with 5 mL of 80% ethanol supplemented with 0.01% butylated hydroxytoluene (BHT). The extract was centrifuged at 3000 × g and 4°C for 10 min (Thermo Fisher Scientific, USA). The supernatant was mixed with 20% TCA containing 0.5% TBA, heated at 95°C for 20 min in a water bath, and then cooled immediately on ice. The sample was centrifuged at 3000 × g and 4°C for 10 min. The absorbance of the supernatant was measured at wavelengths 600, 532, and 440 nm (U-1800 spectrophotometer, Hitachi, Tokyo, Japan). The MDA level was calculated using the following equations (Equations 1–3):

[image: Equation showing the difference in absorbance: open bracket Abs at five hundred thirty-two nanometers of TBA minus Abs at six hundred nanometers of TBA close bracket minus open bracket Abs at five hundred thirty-two nanometers of TB minus Abs at six hundred nanometers of TB close bracket equals delta A subscript L.] 

[image: Equation showing the calculation: ([Abs440_TMA - Abs600_TMA] × 0.0571) = B.] 

[image: Formula for MDA equivalent in nanomoles per milliliter: \(\text{MDA equiv (nmol mL}^{-1}\) = \(\frac{(A - B)}{\epsilon} \times 10^{3}\), labeled as equation (3).] 

where ϵ is corrected extinction coefficient of MDA (157 mM−1 cm−1), Abs532+TBA − Abs600+TBA is the absorbance of TBA–MDA complexes at 532 nm corrected for non-specific absorbance at 600 nm, Abs532−TBA − Abs600-TBA is the absorbance of compounds in extract solution without TBA at 532 nm corrected for non-specific absorbance at 600 nm, and [(Abs440+TBA − Abs600+TBA) × 0.0571] is the correction for non-specific TBA–sugar complexes according to Hodges et al. (1999).




2.6.3 Total glutathione content

One milliliter of 5% 5-sulfosalicylic acid (SSA) was used for the deproteinization of 0.1 g of homogenized plant material. After 10-min incubation on ice, the samples were centrifuged at 10000 × g for 10 min. Then, the supernatant was 20-fold diluted and used for analysis. Total glutathione level was determined by assessing the reduction rate of 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) to yellow 5-thio-2-nitrobenzoic acid (TNB) by GSH with Glutathione Assay Kit (Catalog Number CS0260, Sigma-Aldrich, USA), according to the manufacturer’s instruction. In the reaction mixture, the glutathione reductase reduced the glutathione disulfide (GSSG) to GSH at the expense of NADPH oxidation. TNB formation rate was measured spectrophotometrically at λ412nm for 5 min using a plate reader (SpectraMax iD3 Multi-Mode Microplate Reader, Molecular Devices, San Jose, CA, USA). The results were calculated by comparison to a standard curve based on a series of GSH concentrations and expressed as nmol of total glutathione (GSH+GSSG) per 1 g of FW.




2.6.4 Reduced and total (reduced and oxidized) ascorbate contents and ascorbate redox ratio

The plant material (0.5 g) was ground in liquid nitrogen and mixed with 5 mL of 5% TCA. After 10 min of incubation on ice, the samples were centrifuged at 14000 × g at 4°C for 10 min (Thermo Fisher Scientific, USA), and the supernatant was used for analyses. The level of reduced ascorbate (ASC) in the extract was estimated by colorimetric determination of the α,α′-bipyridyl complex formed with ferrous ions (Fe2+), which were reduced from ferric ions (Fe3+) by ascorbate from plant extract. To determine ASC in samples, a reaction mixture was prepared by adding the following in sequential order: 135 µL of supernatant, 33.6 µL of deionized water, 40 µL of 85% H3PO4, 685 µL of 0.5% α,α′-bipyridyl, and 140 µL of 1% FeCl3. To determine the total pool of ascorbate, i.e., the ASC and dehydroascorbate (DHA), 16.8 µL of 10 mM dithiothreitol (DTT) and 16.8 µL of 80 mM K2HPO4 were added to 135 µL of extract and incubated 5 min at room temperature to ensure reduction of DHA to ASC. Then, the extract was mixed with 40 µL of 85% H3PO4, 685 µL of 0.5% α,α′-bipyridyl, and 140 µL of 1% FeCl3. After 30-min incubation at room temperature, all samples were centrifuged at 14000 × g for 5 min, and the absorbance of the supernatant was measured at λ525nm (U-1800 spectrophotometer, Hitachi, Tokyo, Japan) and compared to the standard curve of ASC in the of range of 0–50 µg mL−1. Based on the measurement results, the ASC level and the total pool of ASC and DHA were calculated and presented as mg g FW−1. To determine the redox status, the proportion of the reduced form in the total pool was calculated and presented as ASC/ASC + DHA ratio.





2.7 Antioxidant enzyme activities



2.7.1 Protein extraction

Frozen samples (0.5 g) were ground in liquid nitrogen and extracted with 2.25 mL of homogenization buffer composed of 50 mM phosphate buffer, pH 7.5, 2 mM EDTA, 8 mM MgCl2, 0.1% Triton X-100, and 4 mM DTT and centrifuged at 14000 × g at 4°C for 15 min (Thermo Fisher Scientific, USA). The extract for ascorbate peroxidase (APX) activity assay was prepared with 50 mM phosphate buffer, pH 7.5, 5 mM ascorbate, and 1 mM EDTA. Total protein was assayed according to Bradford (1976) with bovine serum albumin (BSA) in the concentration range of 50–400 µg mL−1 as the standard.




2.7.2 Activity of catalase

The activity of catalase was assayed by continuously measuring the decrease of H2O2 concentration in the sample (Rao et al., 1996). The reaction mixture consisted of 1.5 µL of H2O2 (30%), 40–100 μL of plant extract (depending on the plant organ), and 100 mM phosphate buffer, pH 7.0, in a final volume of 1000 μL. The assay mixture was thoroughly mixed in a spectrophotometric quartz cuvette (1.5-mL volume). Then, the decrease in the λ240nm was measured for 90 s with a U-1800 spectrophotometer (Hitachi, Tokyo, Japan). The results were processed to calculate the activity of catalase and presented as U per mg of protein.




2.7.3 Activity of superoxide dismutase

Superoxide dismutase activity was assessed by measuring the inhibition of nitroblue tetrazolium (NBT) to formazan reduction by superoxide radical, as described by Beauchamp and Fridovich (1971). To perform the assay, 25 μL of enzyme extract was mixed with 75 μL of extraction buffer and 1.5 mL of reaction mixture (50 mM phosphate buffer, pH 7.8, 0.67 mM NBT, 1 mM l-methionine, 0.33 mM EDTA, and 0.0033 mM riboflavin). For the control assay, the enzyme extract was substituted by an extraction buffer, and for negative control, H2O was used instead of the reaction mixture. Samples were incubated for 10 min in light. After that, the absorbance at λ560nm was measured using a U-1800 spectrophotometer (Hitachi, Tokyo, Japan). The unit (U) of SOD activity was defined as the amount of enzyme that caused 50% inhibition of the photochemical reduction of NBT to formazan constitutes, and the results were demonstrated as U of enzyme per mg of protein.




2.7.4 Activity of peroxidase

Peroxidase activity was assessed by determining the rate of pyrogallol oxidation to purpurogallin, in the presence of H2O2, as described previously by Tyburski and Mucha (2023). The increase in absorbance at λ420nm was followed in the reaction mixture composed of 100 mM phosphate buffer, pH 6.0, 60 mM pyrogallol, 0.66 mM H2O2, and 5–80 μL of plant extract (depending on plant organ) for 90 s with a U-1800 spectrophotometer (Hitachi, Tokyo, Japan). To correct the results for non-enzymatic oxidation of pyrogallol, enzyme-free assays were performed. Peroxidase activity was calculated using the millimolar extinction coefficient of purpurogallin, ϵ = 12 mM−1 cm−1, and expressed as μmol pyrogallol min−1 mg−1 of total protein.




2.7.5 Activity of ascorbate peroxidase

The activity of ascorbate peroxidase was evaluated by measuring the rate of H2O2 decomposition in the reaction mixture composed of 970 µL of reaction buffer (50 mM phosphate buffer, pH 7.5, and 1 mM EDTA), 10 µL of 50 mM ascorbate, and 10 µL of enzyme extract. The reaction was initiated by adding 10 µL of 0.2 mM H2O2, and the decrease in absorbance at λ290nm was performed over 90 s (Chen and Asada, 1989; Rao et al., 1996). APX activity was calculated using the molar extinction coefficient of 2.8 mM−1 cm−1 for ascorbate and presented as μmol ascorbate min−1 mg−1 of total protein.





2.8 Statistical analysis

The data analysis was performed using GraphPad Prism version 10.0.0 (GraphPad Software, Boston, MA, USA). The results were shown as a mean ± standard error (SE). The means were then compared to determine statistical significance (if p < 0.05) by one-way ANOVA and post-hoc Tukey’s test. The growth, oxidative stress, and antioxidant parameters quantified in the organs of plantlets developed from AgNPs-treated grains were used to perform principal component analysis (PCA) and hierarchical cluster analysis (HCA) with R 4.4.2 (R Foundation for Statistical Computing, Vienna, Austria) using the factoextra, ggplot2, and dendextend R packages (Galili, 2015; Kassambara and Mundt, 2020; Wickham, 2016).





3 Results



3.1 Biosynthesis and physicochemical characteristics of AgNPs from F. solani IOR 825

TEM analysis confirmed the formation of spherical AgNPs with sizes ranging from 8.9 to 47.9 nm and an average diameter of 22.97 ± 9.4 nm (Figure 1A). UV–visible absorption spectroscopic analysis of the mycosynthesized AgNPs showed a characteristic peak at 419 nm (Figure 1B). The results of nanoparticle tracking analysis (NTA) confirmed that the AgNPs exhibited an average size of 43 ± 36 nm and most frequently a diameter of 23 nm (Figure 1C). The results of DLS indicated that average hydrodynamic diameters of AgNPs were found to be 27.44 (14%) and 108.4 nm (86%), as shown in Figure 1D, while Zeta potential values were found to be −19.5 (61.3%) and −2.93 mV (38.6%) (Figure 1E). The diffractogram of AgNPs showed peaks at 38.63, 46.41, 65.10, and 77.09 corresponding to (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes of the face-centered cubic (fcc) silver crystal, respectively (Figure 1F). FTIR spectra showed absorption bands at 3429.21 cm−1 (N–H stretching, amines), 2924.03 cm−1 (C–H stretching, alkane), 2852.77 cm−1 (C–H stretching, alkane), 1743.8 cm−1 (C–H bending, aromatic compound), 1631.89 cm−1 (C=C stretching, alkene), and 1384.44 cm−1 (C–H bending, alkane) (Figure 1G).

[image: A composite image with seven panels: (A) Two TEM images of nanoparticles, one at 100 nm and one at 50 nm scale. (B) UV-Vis absorption spectrum comparing control and silver nanoparticles from Fusarium solani IOR 825. (C) Histogram showing nanoparticle size distribution and cumulative percentage. (D) Graph of intensity versus size, exhibiting a peak around 100 nm. (E) Zeta potential measurement graph with peaks near zero. (F) XRD pattern with labeled peaks for crystallographic planes. (G) FTIR spectrum with marked wavenumbers highlighting functional groups.]
Figure 1 | Detection and physicochemical characteristics of AgNPs synthesized from Fusarium solani IOR 825: transmission electron microscopy (TEM) micrographs (A), UV–Vis spectrum (B), size distribution from nanoparticle tracking analysis (NTA) (C), size distribution from dynamic light scattering (DLS) analysis (D), Zeta potential (E), diffractogram from X-ray diffraction analysis (F), and Fourier transform infrared (FTIR) spectrum (G).




3.2 Germination and growth parameters

The surface sterilization of maize grains with AgNPs from F. solani IOR 825 at the concentration range tested did not affect the germination percentage (%G), mean germination time (MGT), and germination rate index (GRI), as shown in Table 1. The gradual improvement in plant growth was observed after treatment with increasing AgNPs concentrations, when compared to control, and reflected in the increase in shoot length, fresh weight of leaves, and stem of plants developed from AgNPs-treated grains (Figure 2; Supplementary Table S1). The strongest effect was observed for AgNPs treatment at a concentration of 512 µg mL−1, with improvements in shoot (13.3%) and root (11%) lengths, as well as fresh weight of leaves (22.3%) and stems (39.2%) and dry weight of leaves (37.8%) and stems (43.1%). This was also demonstrated in vigor indexes I and II, which increased to 4334.3 (I) and 8096.1 (II), compared to the controls, which were 3980.6 and 6259.7, respectively (Table 1). However, approximately 20% reduction in caryopsis weight was observed. Nevertheless, the stimulatory effect of the AgNPs treatment on root development was observed, and the difference with the untreated control did not pass the significance test.

Table 1 | Germination parameters of maize grains after pre-treatment with AgNPs from Fusarium solani IOR 825.


[image: Table showing the effect of different AgNPs concentrations (0, 32, 128, and 512 µg/mL) on % Germination, Vigor index I and II, MGT, and GRI. Vigor index values are statistically significant at 512 µg/mL.]
[image: Bar graphs labeled A, B, and C show plant growth metrics under four conditions: control, 32, 128, and 512. Graph A depicts shoot and root length in centimeters. Graph B shows fresh weight in milligrams for leaves, stem, roots, and caryopsis. Graph C presents dry weight in milligrams for the same parts. Asterisks indicate significant differences between conditions.]
Figure 2 | The length of shoots and roots (A) and fresh (B) and dry weight (C) of 14-day-old maize plantlets (n=30) after sterilization of grains with AgNPs. Data presented as mean and standard error (SE) and statistical significance (p-value: *p ≤ 0.05 and **p ≤ 0.01).




3.3 AgNPs accumulation in maize

The analysis of elemental composition of plants developed from AgNPs-treated grains showed no significant difference in Ag content between tested and control samples, as shown in Supplementary Table S2.




3.4 Total chlorophyll content

AgNPs treatments at concentrations of 32 and 128 µg mL−1 showed negligible effect on total chlorophyll content in the leaves of plantlets. The application of AgNPs at a concentration of 512 µg mL−1 resulted in a decrease in chlorophyll content by 11.8% (0.05 mg g FW−1) (Figure 3; Supplementary Table S1).

[image: Bar graph showing total chlorophyll content in mg per g FW. Bars represent values for Control, 32, 128, and 512 with respective heights of approximately 0.4, 0.45, 0.42, and 0.4. Asterisks indicate significant differences between groups.]
Figure 3 | Influence of maize grain sterilization with AgNPs on the chlorophyll content in leaves of 14-day-old maize plantlets (n=9). Data presented as mean and standard error (± SE) and statistical significance (p-value: *p ≤ 0.05).




3.5 Oxidative stress parameters

Changes in the activity of individual components of the antioxidant system for the tested plants, concerning non-treated plantlets, given as percentages (%), are shown in Supplementary Table S1.



3.5.1 Hydrogen peroxide content

The accumulation of H2O2 varied depending on the AgNPs concentration used and the plant organ (Figure 4A). In general, its level decreased after grain sterilization with AgNPs, and statistically lower concentrations of H2O2 were noted in caryopses by 26%–31% and in leaves by 16%–24%. In roots, the concentration of H2O2 was reduced by 17.7% (32 µg mL−1 AgNPs), 51.2% (128 µg mL−1 AgNPs), and 19.5% (512 µg mL−1 AgNPs). Simultaneously, in stems of maize plantlets treated with 128 and 512 µg mL−1 of AgNPs, the concentration of H2O2 increased by 21.7% and 32.7%, respectively.

[image: Bar charts depicting the effect of different treatments on various plant tissues. (A) Hydrogen peroxide levels in leaves, stem, roots, and caryopsis, showing significant differences marked by asterisks. (B) Malondialdehyde levels across the same tissues, with significant differences noted. (C) Levels of GSH plus GSSG, particularly notable in caryopsis. Treatments include control, 32, 128, and 512, indicated by different shades in the legend. Error bars display variability, and significance is highlighted with one to three asterisks.]
Figure 4 | Influence of maize grain sterilization with AgNPs on levels of hydrogen peroxide (H2O2) (A), malondialdehyde (MDA) (B), and total glutathione (GSH+GSSG) (C) in 14-day-old maize plantlets (n=9). Data presented as mean and standard error (± SE) and statistical significance (p-value: *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).




3.5.2 Lipid peroxidation

The level of MDA in all control plant organs and AgNPs-treated plantlets was comparable (Figure 4B). The MDA content increased slightly in roots (by 21%–26%) after seed treatment with 128 and 512 µg mL−1 of AgNPs, but the effect was not statistically significant. In contrast, a significant increase in the MDA level by 3.96 nmol g FW−1 (22%) was detected in the leaves of plants developed from grains treated with 512 µg mL−1 of AgNPs, when compared to control plants.




3.5.3 Total glutathione content

The total glutathione content in leaves, stems, and roots was comparable between all tested variants, with no effect of the AgNPs treatment observed (Figure 4C). However, total glutathione levels gradually increased by 19.4%, 69.4%, and 73% in caryopses of plants treated with AgNPs at concentrations of 32, 128, and 512 µg mL−1, respectively.




3.5.4 Reduced and total (reduced and oxidized) ascorbate contents and ascorbate redox ratio

All AgNPs treatments increased leaf total ascorbate (ASC and DHA) content (by 21.5%–48.1%) and showed no significant impact on the ascorbate redox state (Figure 5). The increase in ASC content (by 45.5%–62.1%) and subsequently approximately 1.5-fold higher ASC/DHA ratios were observed in stems of plants treated with all AgNPs concentrations.

[image: Bar charts labeled (A), (B), and (C) show data on ASC and DHA levels and ratios across four plant parts: leaves, stem, roots, and caryopsis. Groups are differentiated by control and three test conditions (32, 128, 512). Significant differences are marked with asterisks indicating varying levels of statistical significance across different treatments and plant parts. In chart (A), roots show the highest ASC and DHA levels. Chart (B) indicates roots also have the highest ASC levels. The ratio chart (C) shows varied ratios across treatments, with notable differences in stem and caryopsis.]
Figure 5 | Influence of maize grain sterilization with AgNPs on the ascorbate plus dehydroascorbate (ASC+DHA) content (A), ASC level (B), and ascorbate redox state [ASC/(ASC +DHA) ratio] (C) of 14-day-old maize plantlets (n=9). Data presented as mean and standard error (± SE) and statistical significance (p-value: *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).

AgNPs at concentrations of 32 and 128 µg mL−1 showed a minor effect on the total ascorbate pool in caryopses, while at a concentration of 512 µg mL−1, the parameter was reduced by 36.3%. However, treating grains with AgNPs at concentrations of 32, 128, and 512 µg mL−1 increased the ascorbic acid concentration by 3, 3.4, and 2.1 times, respectively. Consequently, 3.5-, 3.8-, and 3.2-fold increases in ASC/DHA+ASC ratio in caryopses were observed under AgNPs treatment at concentration of 32, 128, and 512 μg mL-1, respectively.

Different concentration-dependent effects of AgNPs treatment on the overall ASC and DHA pool and redox status in roots were observed. Both total ascorbate and ascorbic acid contents were not altered after treatment with the lowest concentration of AgNPs (32 µg mL−1). However, the treatment of grains with AgNPs at a concentration of 128 µg mL−1 increased the total ascorbate pool and the content of its reduced form (ASC) by 83.8% and 94.4%, respectively. The ascorbate redox status was at the same level as in the control. In contrast, the treatment with the highest tested concentration of AgNPs (512 µg mL−1) increased the total ascorbate by 74.2% and the ASC content by 42.7%. The ascorbate redox status decreased, under the highest AgNPs concentration, by 18.3% when compared to the control (Figure 5).




3.5.5 Activity of catalase

The treatment of grains with AgNPs resulted in the reduction of catalase (CAT) activity in all variants when compared to control plantlets (Figure 6A). A significantly lower CAT activity was revealed in the leaves of plants treated with 32 and 128 µg mL−1 of AgNPs, with enzyme activity decreasing by 38.1% and 22.6%, respectively. In stems of plantlets treated with 32 and 128 µg mL−1 of AgNPs, the activity of CAT was reduced by 38.1% and 22.6%, respectively. The reduction of CAT activity by 40.3% was observed in the roots of plants developed from grains treated with the highest tested concentration of AgNPs. The CAT activity in caryopses did not differ between the control and AgNPs-treated plants (Figure 6A).

[image: Bar charts illustrating enzyme activity in plant parts under different treatments. (A) CAT activity is highest in leaves, lowest in stems; decreases with treatments. (B) SOD activity shows the highest increase in caryopsis with treatments. (C) POX activity is stable in roots; decreases in leaves. (D) APX activity peaks in roots; caryopsis shows minimal change. Treatments are control, 32, 128, and 512, represented by different shades. Error bars and significance levels are indicated.]
Figure 6 | Influence of maize grain sterilization with AgNPs on the activity of catalase (CAT) (A), superoxide dismutase (SOD) (B), peroxidase (POX) (C), and ascorbate peroxidase (APX) (D) in 14-day-old maize plantlets (n=9). Data presented as mean and standard error (± SE) and statistical significance (p-value: *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).




3.5.6 Activity of superoxide dismutase

SOD activity varied substantially between the control and AgNPs-treated variants, decreasing, in a AgNPs dose-dependent manner, in aboveground organs and caryopses and increasing in plant roots (Figure 6B). In leaves, SOD activity decreased by 41.2%, 42.4%, and 25.6% under treatments with 32, 128, and 512 µg mL−1 of AgNPs, respectively. In stems of plants, developed from grains treated with AgNPs at concentrations of 32, 128, and 512 µg mL−1, SOD activity decreased by 24.2%, 22.8%, and 60.3%, respectively. Reduced SOD activity by approximately 30%–32% was recorded in caryopses of plants treated with all tested concentrations of AgNPs. The SOD activity in roots increased by 16.6%–49.2%, with increasing AgNPs concentrations.




3.5.7 Activity of peroxidases

The surface sterilization of maize grains with AgNPs had a minor impact on peroxidase (POX) activity in developed plantlet organs (Figure 6C). Significantly lower POX activity, by 46.6%, was observed in leaves after the use of AgNPs at a concentration of 512 µg mL−1. The activity of POX was slightly reduced in stems (by 16.8% and 14.9% after treatment with AgNPs at concentrations of 32 and 128 µg mL−1, respectively). The AgNPs at a concentration of 512 µg mL−1 increased POX activity in caryopses by 18.5%, but the differences did not pass the significance test.




3.5.8 Activity of ascorbate peroxidase

APX activity was unaffected by AgNPs treatment in leaves, stems, and roots. The reduction in enzymatic activity of APX by 17% was found in caryopses after treatment with 128 and 512 µg mL−1 of AgNPs, whereas a 30.7% reduction occurred when grains were subjected to treatment with 32 µg mL−1 of AgNPs (Figure 6D).





3.6 Principal component analysis and hierarchical cluster analysis

The results of PCA and HCA showing general alterations and correlations of growth and individual biochemical parameters among organs of plantlets developed from grains treated with AgNPs are demonstrated in Figure 7. The first two components, PC1 and PC2, allow us to represent high values of the initial variability of the data (44.8% and 27.8%, respectively). The results showed that APX activity, MDA, and CAT activity showed the highest contribution to PC1 (14.0%, 12.6%, and 12.3%, respectively), while the contribution of variables to PC2 was explained by SOD activity (16.8%), FW (12.9%), and GSH content (12.2%) (Supplementary Table S3). The highest positive correlation was found for ASC and total ASC, along with POX and APX (Figures 7A, B). The effect of the individual concentrations of AgNPs (32, 128, and 512 µg mL−1) among plantlet organs (leaves, caryopses, stems, and roots) based on biochemical and growth parameters were assayed by HCA (Figure 7C). All organs were classified as separate groups, including untreated samples. In both leaves and stems, changes in biochemical and growth parameters under AgNPs treatments at concentrations of 32 and 128 µg mL−1 were nearest to each other, followed by concentrations of 512 µg mL−1 and controls. The caryopses showed dose-dependent alteration, where the two highest concentrations (128 and 512 µg mL−1) caused a similar response pattern, followed by a concentration of 32 µg mL−1 and controls. In roots, the effects of AgNPs treatment at the concentration of 32 µg mL−1 were found to be similar to those of controls, followed by concentrations of 128 and 512 µg mL−1.

[image: (A) Biplot of PCA showing sample distributions along two principal components, PC1 (44.8%) and PC2 (27.8%), with vectors for variables like SOD, GSH, and MDA. (B) Heatmap of correlation coefficients among variables such as APX, POX, and H2O2, with a color scale from -1 to 1. (C) Dendrogram illustrating hierarchical clustering of samples based on similarity, labeled with identifiers.]
Figure 7 | Analysis of general alterations and correlations of growth and individual biochemical parameters among organs of plantlets developed from grains treated with AgNPs. (PCA) Biplot (A), where arrows indicate the strength of the trait influence on the first two PCs. Correlation analysis between all the studied parameters, where red and blue colors represent positive and negative correlations, respectively (B). Dendrogram of hierarchical cluster analysis (HCA) showing associations in changes of biochemical parameters among various AgNPs treatments and maize plantlets organs (C). APX, ascorbate peroxidase; ASC, ascorbate; ASCr, reduced ascorbate; DW, dry weight; FW, fresh weight; GSH, glutathione; H2O2, hydrogen peroxide; MDA, malondialdehyde; POX, peroxidase; SOD, superoxide dismutase; tASC, total ascorbate; Ctrl, untreated control; 32, treatment with AgNPs at concentration of 32 µg mL−1; 128, treatment with AgNPs at concentration of 128 µg mL−1; 512, treatment with AgNPs at concentration of 512 µg mL−1; L, leaves; S, stem; R, roots; C, caryopses; AgNPs, silver nanoparticles; PCA, principal component analysis.





4 Discussion



4.1 Biosynthesis and physicochemical characteristics of AgNPs from F. solani IOR 825

Biological synthesis of NPs addresses the need to develop environmentally friendly, efficient, and safe methods of producing NPs. Many studies have shown that fungi display potential for the biosynthesis of NPs, as they efficiently produce the biomass along with a variety of chemical compounds responsible for the reduction of silver ions to silver NPs and possess a high tolerance to metals (Borehalli Mayegowda et al., 2023). It was reported that fungal enzymes are involved in the synthesis of AgNPs (Ahmad et al., 2003; Hamedi et al., 2017). In a study conducted by El-Sayed and El-Sayed (2020), the protein-rich cell-free filtrate of F. solani KJ 623702 was successfully used for the synthesis of AgNPs, CuNPs, and ZnONPs.

The physicochemical properties of biosynthesized AgNPs and consequently their biological interactions or reactivity are highly dependent on synthesis conditions including the biological source of reducing and stabilizing agents, type, and concentration of precursor salt, as well as the temperature and pH of the reaction mixture (Sidhu et al., 2022; Trzcińska-Wencel et al., 2023a). The results of our study confirmed that the fungal strain F. solani IOR 825 is a system for the efficient synthesis of AgNPs with small size (10–50 nm) and the presence of natural origin capping biomolecules on their surface. This capping can be involved in the reduction of silver ions (Ag+) and the formation of AgNPs and affects their stability and antimicrobial activity. Moreover, the coating modulates the interaction between nanoparticles and biological surfaces, which affects the potential uptake of nanoparticles (Huang et al., 2022; Wypij et al., 2022). In accordance with our results, El-Sayed and El-Sayed (2020) found that FTIR analysis of AgNPs from F. solani KJ 623702 showed peaks attributed to N–H bending, C–H stretching vibrations of protein methylene groups, and O–H stretching of carboxylic acids. The authors, based on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and FTIR results, suggested that the process of biogenic synthesis of NPs is related to the presence of various fungal-origin compounds (containing sulfur, nitrogen, and phosphorus), proteins with β-sheet and a carbonyl group of amino acid residues, and glycoprotein-containing polysaccharides with α-glycosidic bond (El-Sayed and El-Sayed, 2020). The nanoparticle surface properties such as surface charge and hydrophobicity/hydrophilicity are responsible for electrostatic repulsion between individual nanoparticles that prevent aggregation. This makes nanoparticles more mobile and more available for plants than bare nanoparticles. In contrast to chemically synthesized NPs, which are most frequently coated with polyvinylpyrrolidone (PVP), Arabic gum (AG), citrate, and cetyltrimethylammonium bromide (CTAB), the biological NPs are coated with molecules of natural origin (plants or microbial extracts). Consequently, the biological coating is considered less toxic than the chemical one (Sidhu et al., 2022; Wypij et al., 2022). Similar findings were described in our previous studies by Trzcińska-Wencel et al. (2023b, 2023c), who showed the potential of using the fungi of the genus Fusarium for the efficient, low-cost, simple, and environmentally friendly synthesis of metal nanoparticles with desirable physical and chemical properties to provide biocompatibility and biological activity as well as their potential for use in multiple applications, including agriculture.




4.2 Efficacy of AgNPs treatment on grain germination and growth parameters in maize

Although silver is not an essential element for plant growth as compared to other micronutrients such as copper, zinc, iron, or magnesium, its high antimicrobial activity is an advantage in many applications (Duffy et al., 2018; Kakian et al., 2024). The nanoscale form of silver can provide their slow and controlled release over time, thus prolonging antimicrobial protection for plants (Bernardo-Mazariegos et al., 2019; Cao et al., 2025). Moreover, as the biogenic AgNPs exhibit higher antimicrobial activity than biogenic CuNPs, ZnNPs, and FeNPs, their use at a lower effective dose can reduce the toxicity of nanoproducts released into the environment (Asghar et al., 2018; Trzcińska-Wencel et al., 2023b). Therefore, biosynthesized AgNPs are excellent alternatives to conventional fungicides, which are based on copper compounds (Ding et al., 2019; Yen et al., 2019; Khan et al., 2021; Trzcińska-Wencel et al., 2024).

The germination of seeds and early growth of seedlings are identified as critical stages in the development and establishment of plants (Rajjou et al., 2012). A high threat of microbial contamination of seeds used for sowing provides a risk of fungal pathogen growth and infection of germinating seeds or developing seedlings (Magan et al., 2004). Seed priming is an effective method to prepare seeds for sowing to increase germination efficiency and achieve improved seedling growth (Abbasi Khalaki et al., 2021). As previously reported by Trzcińska-Wencel et al. (2023b), the use of AgNPs for grain pretreatment eliminated grain-borne pathogens at the lowest effective AgNPs concentration of 32 µg mL−1 with no impact on grain germination efficiency. In the present paper, we decided to broaden the study on the effect of AgNPs on grain germination and plantlet growth using the effective concentration (32 µg mL−1), its fourfold higher concentrations (128 and 512 µg mL−1), and prolonged (14 days) plant growth period. Simultaneously, the disinfecting effect of the used AgNPs concentrations on grains was confirmed, as no microbial growth was visually detected on the surface of the germinating grains or plant growth medium (Supplementary Figure S2). The results showed no impact of all tested AgNPs concentrations on grain germination when compared with control. Nonetheless, the treatment accelerated plantlet development, as manifested by the improved growth of shoot and reduction of grain weight in comparison with the control, indicating a stimulatory effect of the AgNPs on maize development. Similarly, seed pre-sowing treatments with bio-AgNPs improved the growth of licorice (Glycyrrhiza glabra) (Kim et al., 2023), maize (Z. mays) (Karim et al., 2023), onion (Allium cepa L.) (Acharya et al., 2019), watermelons (Citrullus lanatus) (Acharya et al., 2020), winged bean (Psophocarpus tetragonolobus) (Kamal Kumar et al., 2020), wheat (Triticum aestivum) (Mondéjar-López et al., 2023), and black gram [Vigna mungo (L.) Hepper] (Krishnasamy et al., 2024). In the study reported by Soliman et al. (2020), seed priming with increasing AgNPs concentrations gradually improved the germination of seeds and growth of maize (Z. mays L.), fenugreek (Trigonella foenum-graecum L.), and onion (A. cepa L.). Moreover, stimulatory effects on the growth and development of seedlings after seed nanopriming with the AgNPs synthesized using chemical and physical methods were reported for common beans (Phaseolus vulgaris) (Savassa et al., 2021) and beans (Prażak et al., 2020). However, in the other experimental system, namely, medium supplementation with chemically synthesized nanoparticles at a concentration of 100 ppm, the phytotoxic effects were observed on Bacopa monnieri (Krishnaraj et al., 2012). Higher phytotoxicity was observed under foliar application of AgNPs than root exposure in soybean and rice (Li et al., 2017), while the application of PVP-coated AgNPs resulted in limited germination and a decrease in the growth of T. aestivum L. (Vannini et al., 2014).

As numerous studies have suggested the adverse effects of NPs (especially at high concentrations), there is a need for extensive research on the interactions that occur between NPs and plants (Ding et al., 2019; Khan et al., 2021; Trzcińska-Wencel et al., 2024). The bioaccumulation and translocation of AgNPs in the treated plants depend on the plant (e.g., species and stage of growth), method of application, time of exposure, or dose used. The biological activity of AgNPs is determined by their physicochemical features, mainly by size, chemical composition, and surface properties. These parameters influence the uptake and transport of NPs within plant organs, their interactions with cellular components (e.g., cell wall penetration), and the release of silver ions, subsequently contributing to their effect on plant growth (Nandini et al., 2023; Trzcińska-Wencel et al., 2024). AgNPs in the environment undergo various biotransformations such as aggregation, ion release, sulfidation, or complexation with organic matter that determine their bioavailability to plants or toxicity. It has been noticed that AgNPs transport throughout the plant tissues via both apoplastic and symplastic pathways (Ali et al., 2021; Cao et al., 2025). However, our study showed that the Ag was undetected in any of the plantlet organs after 14 days of pre-sowing treatment of grains. In contrast, in a study conducted by Savassa et al. (2021), the seed treatments with 1, 10, and 100 mg L−1 of chemically synthesized AgNPs, Ag2SNPs, and AgNO3 (control) resulted in silver accumulation and biotransformation in P. vulgaris seeds. Ag was detected in the seed coat depending on the Ag source and concentration used. After 5 days from seed treatment, the Ag from AgNO3 was detected in the epidermis, while the Ag from AgNPs and Ag2SNPs was mainly located in the internal layer (parenchyma cells) of seeds. The study of Koley et al. (2023) implies that seed treatment with AgNPs led to their accumulation at a low dose and then the gradual release of Ag+ ions, which stimulated the antioxidant system with accelerated germination and growth of legume plants. In turn, Yan et al. (2023) reported that AgNPs stimulated the germination process of rice seeds due to the AgNPs uptake during the imbibition process. AgNPs were accumulated in decreasing concentrations in the seed coat, embryo, and endosperm. In contrast, the metabolomic and transcriptomic analyses revealed that AgNPs increased in stress signaling molecule synthesis, showing their potential as nanobiostimulators to ensure long-term stress memory (Yan et al., 2023).




4.3 Effect of AgNPs treatment on oxidative stress parameters and antioxidant system response

AgNPs may induce ROS generation and strengthen antioxidant system response by the enzymatic and/or non-enzymatic pathways involving both a wide range of enzymes (e.g., superoxide dismutase, catalase, peroxidases) and low-molecular-weight compounds (e.g., ascorbic acid, glutathione, proline, and tocopherols) (Sharma et al., 2019). In the present study, the treatment of maize grains with AgNPs specifically affected cellular redox agents in plant organs subjected to analysis. Symptomatically, as revealed by the lipid peroxidation assay, the treatments did not cause severe oxidative stress in any organ. This finding shows that optimal AgNPs treatments do not increase the risk of oxidative damage. However, the slight but significant increase in the rate of MDA formation and a decrease in total chlorophyll content occurred in leaves, but solely in plants challenged with the highest AgNPs concentration. Similarly, the decrease in photosynthetic pigments was reported in Brassica sp. seedlings exposed to AgNPs synthesized from Aloe vera extract (Vishwakarma et al., 2017) and in Lupinus termis after exposure to AgNPs synthesized from the leaf extract of Coriandrum sativum (Al-Huqail et al., 2018). In our study, the photosynthetic rate and the maximum efficiency of photosystem II were not analyzed in AgNPs-treated maize plants. Therefore, it remains to be determined to what extent the decrease in chlorophyll content affects photosynthetic efficiency. However, this issue will be addressed in our forthcoming study. Other authors have shown that a decrease in chlorophyll content adversely affects photosynthesis. Under decreased chlorophyll levels, excess electron flow may result in an imbalance between the donor and acceptor sites of photosystem II. This results in molecular oxygen reduction generating harmful ROS and photosystem damage (photoinhibition) (Bhattacharjee, 2019). The increase in lipid peroxidation and decrease in chlorophyll content in leaves of plants exposed to the highest AgNPs concentration may be related to increased photoinhibition occurring at excessive nanoparticle concentration. Although further experiments are required to assess if maize leaves become more susceptible to photooxidation under non-optimal AgNPs concentrations, these findings stress the necessity of optimizing the treatment procedure thoroughly since treating seeds with excessive AgNPs concentrations may bring about some detrimental consequences.

Although no significant oxidative damage was detected in AgNPs-treated plants, several components of the cellular redox systems were affected by treatments. Usually, the parameters were altered in an organ-specific manner. In leaves, the H2O2 levels were moderately reduced in the AgNPs-treated plants. The decrease in the oxidant content may be partly due to a substantial reduction in the activity of SOD, which is a H2O2-producing enzyme. The stable total glutathione levels and a small increase in the ASC content may also contribute to reducing the H2O2 level in leaves. Therefore, the ascorbate is supposed to scavenge H2O2 in a non-enzymatic manner since no increase in the APX activity can be observed (Kunert and Foyer, 2023). Gupta et al. (2018) evaluated the stimulatory effects of AgNPs on rice seedlings and suggested that growth promotion was related to efficient ROS scavenging mechanisms, including changes in glutathione–ascorbate cycle and activities of involved enzymes (ascorbate peroxidase and glutathione reductase) in leaves. Contrary to our results, authors have suggested low alterations of SOD activity in response to AgNPs treatment. Soliman et al. (2020) reported an increase in ascorbate and glutathione contents in leaves of Z. mays, A. cepa, and T. foenum-graecum, as well as an increase in expression levels and activities of antioxidant enzymes in AgNPs-treated seedlings. In turn, our results indicate that the H2O2-scavenging enzymes, namely, POX and CAT, differentially reacted to AgNPs treatment. A negligible increase in POX activity and a substantial decrease in CAT activity were observed. When compared to APX and other H2O2-scavenging enzymes, CAT has a low affinity to its substrate. Therefore, the enzyme is involved in H2O2 scavenging when oxidants are accumulated to high levels (Heck et al., 2010; Černý et al., 2018). Since the H2O2 content decreased under the AgNPs treatment, the amount of the enzyme may be adjusted accordingly by decreasing its abundance. Earlier studies demonstrated that CAT activity is dependent on the high availability of H2O2 (Scandalios et al., 1983; Rodríguez-Ruiz et al., 2019).

The growth of the AgNPs-treated plant roots was maintained at the control level. The H2O2 content was decreased in roots. This may be linked to the rise in the level of the H2O2-scavenging agent, namely, ascorbate. Furthermore, increased ascorbate content was accompanied by high activities of the H2O2-consuming enzymes, namely, POX and APX. At this stage of plant development, significant root growth is observed that is correlated with a wide range of physiological processes, such as auxin metabolism, cross-linking of cell wall components, or cell elongation, in which peroxidases are involved (Passardi et al., 2005; Majda and Robert, 2018). POX is a prevalent apoplast-targeted enzyme. However, the majority of ascorbate is located in the cytosol, where APX isoforms are present. Therefore, we believe that the increasing ASC levels in the roots of the AgNPs-treated plants may contribute to maintaining high APX activity, which in turn prevents excessive H2O2 accumulation. These mechanisms may be responsible for the reduction in H2O2 content in the roots of the AgNPs-treated plants. In contrast, decreased CAT activity and increased SOD activity may favor H2O2 accumulation (Kumari et al., 2021). Acting simultaneously, the aforementioned factors may contribute to H2O2 homeostasis in roots under the AgNPs treatment. In turn, Kim et al. (2023) observed improvements in shoot and root elongation of mung bean (Vigna radiata) after 12-hour seed treatment with biosynthesized AgNPs (at concentrations of 12.5, 25, and 50 ppm). In contrast to our findings, other authors suggested inhibition in root development after direct exposure of roots to AgNPs in soil or medium (Cvjetko et al., 2017). In the study reported by Guilger-Casagrande et al. (2022), the effect of soil exposure of soybean seedlings to AgNPs resulted in a reduction in dry weight. In addition, the increase in H2O2 and lipid peroxidation (higher MDA content) in seedling roots was observed. Considering the inconclusive results, further research is still required to understand the effects of AgNPs on root development in plants in view of different species and the conditions of NPs application.

The stimulatory effect of AgNPs treatments on maize was observed as the reduction in biomass of the caryopses. This was accompanied by a consistent decrease in H2O2 content and APX, CAT, and SOD activities. Simultaneously, the redox balance of ascorbate turned out to be further reduced, and the content of total glutathione substantially increased. The latter effect was more pronounced under treatments with higher AgNPs concentrations. The increase in total glutathione concentration significantly distinguished the caryopses from other organs. Glutathione is a versatile molecule, with many functions that go beyond common antioxidant roles. Glutathione is a source of sulfur for protein biosynthesis, plays a crucial role as an antioxidant, and represents the potential as a highly reducing chemical barrier to prevent over-oxidation of cellular components through its direct interaction with peroxides or as a substrate for ROS-neutralizing enzymes (Noctor et al., 2012). Since ASC levels were relatively low in caryopses, GSH is supposed to be a major low-molecular-weight antioxidant in this organ. Consequently, the reduction in H2O2 level in caryopses may be a consequence of AgNPs-dependent accumulation of GSH in this organ. It is suggested that the detoxification of Ag in plant cells is related to the direct bonding of Ag with GSH through the −SH group or utilization of GSH for increased production of phytochelatins involved in metal detoxification (Kaur et al., 2021; Larue et al., 2014). Enhanced antioxidant protection in the caryopses, due to AgNPs-stimulated GSH accumulation, may be important for mitigating the relatively high oxidative damage in this organ, as exemplified by high lipid peroxidation. However, the latter is not related to AgNPs treatment. It should be kept in mind that at this developmental stage, plant growth is still important and supported by seed reserves (Kennedy et al., 2004). Therefore, a complete analysis of the metabolic status of caryopses in a 2-week-old maize plant is required to interpret the behavior of redox agents analyzed in this study.

Our study shows that the activities of certain enzymes decreased at AgNPs treatment. Studies on plants overexpressing CAT, APX, or SOD have shown that these enzymes act synergistically to keep the homeostasis of cellular redox state, being increased or decreased in an orchestrated manner (Scandalios et al., 1983; Faize et al., 2011; Wang et al., 2017; Che et al., 2020). We suspect that the decrease in the enzyme activities, observed in all organs except the stem, may reflect their synchronized response to a decrease in H2O2 resulting from the AgNPs treatment. In stems, the increase in the H2O2 content was in line with the enhanced stem biomass gain and stem lengthening resulting from AgNPs administration. Therefore, we assume that it may be a growth-related process, involving rather an apoplast H2O2, whereas CAT is a cytosolic enzyme and may not directly respond to changing apoplast H2O2 levels (Majda and Robert, 2018; Marzol et al., 2022). In this organ, H2O2 homeostasis may be regulated by the ascorbate pool, which turned out to be more reduced when challenged with AgNPs.

To sum up, the possible mechanisms of AgNPs action in plantlets that are responsible for alterations in cellular redox metabolism during the AgNPs-dependent maize growth stimulation are presented in Figure 8. The overall decrease in H2O2 accumulation in all organs (except stem) suggests that the efficiency of redox reactions has increased after grain treatments with AgNPs. The results indicate that specific plantlet organs showed a varying response and that the induced effect depended on the applied dose. The alterations of the determined oxidative stress parameters were stronger with the application of higher AgNPs concentrations to grains. However, our results show no evidence of the induction of severe oxidative stress by AgNPs in maize plantlets, as overproduction of ROS and its consequences due to the incapability of an antioxidative defense system for efficient ROS scavenging were not detected.
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Figure 8 | The summarized effects of AgNPs on maize growth and redox metabolism in maize plantlet organs. Upright- and downward-pointing arrows denote stimulatory and inhibitory effects of AgNPs treatments, respectively (for details, see text). APX, ascorbate peroxidase; ASC, ascorbate; CAT, catalase; GSH, total glutathione; H2O2, hydrogen peroxide; POX, peroxidase; SOD, superoxide dismutase.





5 Conclusions

To summarize, AgNPs synthesized from F. solani IOR 825 were applied for the pretreatment of maize grains to sterilize their surface and improve plant growth and development. Biogenic AgNPs showed potential for application in seed priming, which is linked to their remarkable antimicrobial activity even at low concentrations against grain-borne microbial pathogens that cause infections during germination and seedling development. The positive effect of AgNPs on shoot elongation and enhanced biomass of maize plantlets, without any negative impact on oxidative stress or the chlorophyll content, confirmed their crop-safe biostimulatory potential. Furthermore, the biosynthesis process and pre-sowing grain technique are simple, cost-effective, and environmentally friendly, indicating that they are affordable and implementable for practical use.
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The early stage pathogens of plant diseases have the characteristic of low concentration and difficult detection, which exacerbates the difficulty of tracing the disease, leading to rapid spread and difficulty in effective control. Currently, common plant disease detection techniques such as imaging and spectroscopy can only be applied after the occurrence and manifestation of diseases, and it is difficult to accurately locate the source of disease outbreaks during spore germination or propagation stages. Therefore, this paper proposes a method for locating the source of airborne plant diseases based on the non-local-interpolation algorithm. Firstly, a highly sensitive concentration sensor was designed based on Mie scattering theory to accurately count spores in plant diseases, and a multi-sensor collaborative computing network model was constructed. Secondly, by collecting spore quantity data at different locations, a particle diffusion model is established to summarize the propagation patterns of particles under specific regional conditions. Finally, a non-local-interpolation algorithm coupled with improved power-law equations was designed for precise localization of airborne plant disease sources under different wind and direction conditions. The experimental results in the greenhouse show that the maximum error of light scattering counting does not exceed 10%; Under windless and windy conditions, our method achieved localization accuracies of 94.7% and 92.9%, respectively, with approximately three nodes per square meter. This provides new ideas and insights for early diagnosis and precise localization of plant diseases.
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1 Introduction

With the rapid development of computer technology, wireless sensor network technology has been widely used in the detection and identification of plant diseases, providing faster and more accurate diagnosis than traditional methods (Steeneken et al., 2023). However, the early detection of plant diseases is faced with severe tests. In the early stage of the disease, the concentration of pathogenic bacteria is low, which is difficult to detect, and the rapid spread of pathogenic bacteria through airflow further aggravates the complexity of disease tracing (Ali et al., 2022). Therefore, seeking new methods for early diagnosis and precise localization of plant diseases can help reduce agricultural economic losses, promote precise application of biologic agents, and reduce potential environmental impacts.

At present, biology-based methods for plant disease detection, such as polymerase chain reaction (PCR) method (Lal et al., 2023), quantitative real-time PCR method (Wang et al., 2023), and deoxyribonucleic acid (DNA) analysis (Chavhan et al., 2023), have become an efficient and accurate method of plant disease diagnosis. However, biology-based disease detection methods require a long time to complete sample collection, processing, and analysis (Yang et al., 2020), with weak timeliness, and cannot meet the needs of on-site real-time diagnosis. Image-based plant disease detection methods show significant timeliness (Li et al., 2024). They are often combined with machine learning algorithms to capture and preliminary analysis of the disease symptoms of plant leaves or tissues within a few seconds (Sajitha et al., 2024). (Liu et al., 2024) collected hyperspectral image data of virus-infected plant leaves and used machine learning algorithms for model training to establish an accurate model for identifying leaf disease areas, with a prediction accuracy of 97.5%. Although hyperspectral imaging technology can provide high-resolution spectral data and help in the detection of plant diseases, its high equipment cost and sensitivity to light intensity hinder its application in the field of rapid detection of plant diseases. (Panchal et al., 2023) collected image data of infected leaves and accurately labeled them according to disease characteristics. Then, key feature patterns were extracted from diseased leaf images through feature extraction and image segmentation, solving the problem of disease classification with an accuracy of 93.5%. However, in order to train highly accurate plant disease recognition models, it is necessary to rely on a large number of precisely labeled datasets (Yang et al., 2022). In addition, the image quality is easily affected by environmental lighting and background interference, and in the early stage of plant disease, because the symptoms are not obvious, and cannot be effectively recognized through images, resulting in lag.

In response to this issue, spore detection technology provides an effective solution. The pathogens of plant diseases will produce conidia under suitable temperature conditions, and spread to the surface of the plant through air flow (Yousef et al., 2024). Upon germination, these conidia form haustoria that penetrate plant cell surfaces, facilitating internal spread of the infection (Oro et al., 2018). Therefore, spore detection technology can achieve early warning by identifying the spores of pathogens before disease symptoms appear. In recent years, plant disease detection methods based on spore detection, such as spore capture apparatus (Kremneva et al., 2023) and microscopic image processing technology (Wei et al., 2024), have directly targeted the reproductive bodies of pathogens, providing direct evidence of disease occurrence, and can be detected in time even when the early symptoms of plant diseases are not obvious. (Mahaffee et al., 2023) collected spores in the air through a spore catcher, providing physical evidence for the early existence of pathogens. However, different species of spores may be so similar in appearance that spore capture apparatus have difficulty distinguishing between spores of similar morphology and size. (Zhang et al., 2024) through image processing technology, carried out detailed segmentation processing on the collect spore microscopic images to achieve the purpose of morphological recognition and counting of spores, and the evaluation indexes F1-score and mean intersection ratio (MioU) reached 0.943 and 0.925 respectively. The application of microscopic image processing technology frequently encompasses steps such as staining or surface modification, which may exert irreversible effects on the biomolecular structure or function of spores, and thus cause deviations in the diagnosis and classification of diseases. In contrast, light scattering technology provides a labeling-free spore detection method that can avoid these problems. By analyzing the scattered signals generated by the interaction between spores and light, (Liu et al., 2024) can conduct detection without disturbing the natural state of spores. (Son et al., 2023) developed a new method for monitoring plant diseases by utilizing the chemical specificity of scattered signals and combining them with sensor technology. Although light scattering technology can identify the presence of spores, it has not been able to achieve effective enrichment of spores and detection under real-time flow conditions, thus making it impossible to accurately locate plant diseases. (Lee et al., 2023) combined volatile organic compounds (VOCs) sensors and temperature and humidity sensors to achieve early detection of plant pathogens, and analyzed sensor data through a machine learning model for quantitative detection of viruses. It can be seen that single point detection cannot provide a detailed traceability analysis of the origin and transmission pathways of plant diseases.

The predominant modes of transmission for fungal diseases in greenhouse plants are air transmission, splash transmission, and seedling transmission (Spooren et al., 2024). When fungal diseases in greenhouse plants are transmitted through the air, the estimation of the location of the plant disease source region has a high degree of similarity with the location of air pollution sources. (Wang et al., 2021) proposed a reverse algorithm to estimate the quantity, location and intensity of unknown air pollution sources. (Kendler et al., 2021) deployed sparse sensor arrays to collect pollutant concentration data and then used an adaptive multi-objective evolution (MOEA) search algorithm to estimate source terms. However, although the transmission media of disease spores and air pollutants are the same, there are significant differences in the transmission mechanism between them. Because of their small size and mass, disease spores are relatively unaffected by Newtonian laws of mechanics. Their movement in the air is more likely to be affected by Brownian motion and airflow disturbance, which increases the uncertainty and complexity of the spore propagation path (Aliabadi et al., 2011). In contrast, although atmospheric pollutants may also be affected by airflow dynamics, their diffusion process is mainly regulated by physical processes and possibly accompanying chemical transformations (Pöschl, 2005). As a result, the atmospheric pollution source location model is not fully applicable to the spread analysis and location tracing of disease spores (Li et al., 2023).

Based on this, a method of locating airborne plant disease sources based on a non-local-interpolation algorithm was studied in this paper. Firstly, a highly sensitive concentration sensor was designed based on the Mie scattering theory to accurately count spores in plant diseases. Subsequently, by collecting spore quantity data at different locations, a particle diffusion model was established to summarize the diffusion patterns of particles under specific regional conditions. By analyzing the diffusion law, a non-local- interpolation algorithm coupled with improved power law equations was designed for precise localization of airborne plant disease sources under different wind and direction conditions. Our method provides a research solution for early diagnosis and traceability of plant diseases in the future.




2 Materials and methods



2.1 Experimental scenario setting

In this study, simulation experiments were carried out in a Venlo-type greenhouse with an area of 600 square meters. To mitigate environmental contamination, 5μm polystyrene nanoparticles were employed as surrogates for real botrytis spores, which typically range in size from a few microns to ten microns (Rhouma et al., 2022). The greenhouse was equipped with a wet curtain-fan forced cooling system. The average temperature inside the greenhouse was 21 ± 2 °C, and the relative humidity was 70 ± 10% RH. A microbial aerosol generator (TK-3) was employed to release 5μm nanospheres, with a concentration of 1mg/ml. The experimental nodes are arranged in a grid area of 0.8m*0.8m in the greenhouse to facilitate accurate control and monitoring. Since crops such as greenhouse strawberry cultivation are usually arranged in rows and planted in 20cm high ridges, their distribution can be approximated as a two-dimensional plane structure. Based on this geometric feature, the non-local- interpolation algorithm proposed in this paper is specially designed for two-dimensional space. In order to verify the accuracy of the simulation model, we set up 5 detection nodes in the experimental site to measure the nanosphere concentration and wind speed data to verify the consistency of the simulation results with the actual environment.




2.2 Method of disease spore counting

According to the size and arrangement of particles in the gas, the light scattering phenomena of the gas can be divided into different types and arrangement intervals, including Rayleigh scattering, Mie scattering, and Raman scattering (Kerker, 2013). The arrangement interval mainly depends on the density and spatial distribution of particles in the gas. For gases, Mie scattering typically occurs in small particles, such as water droplets, haze, and aerosols, with particle sizes ranging from a few nanometers to several hundred micrometers. These particles will produce obvious scattering effects on electromagnetic waves in visible and infrared bands. The formula is shown as Equation 1 (Jones, 1999):

[image: Mathematical equation showing the scattering cross-section, sigma sub SC, equals two pi divided by k squared times the sum from n equals one to infinity of the quantity two n plus one times the absolute value of a sub n divided by b sub n squared.]

where σSC is the scattering cross-sectional area; k is the wave number of the incident wave, k=2π/λ, and λ is the wavelength of the incident wave; ɑn and bn are the Mie coefficients, which represent the amplitudes of the electric and magnetic fields of the electromagnetic wave on the surface of a particle, and are at the heart of the Mie scattering theory.

The particle size range of plant disease spores is usually between a few microns and tens of microns, as shown in Table 1 (Wang et al., 2022), which is equivalent to the wavelength of visible light, so the Mie scattering theory can be considered to count disease spores. We use a laser with the same wavelength as the characteristic of plant disease spores to illuminate the collected disease spores to produce scattering phenomena. By collecting scattered light signals at a specific angle, the curve of scattering light intensity with time can be obtained. Subsequently, the microprocessor employs an algorithm based on Mie scattering theory to analyze the intensity and angle of scattered light, thereby calculating the refractive index and extinction coefficient of particles (Shao et al., 2017). This analysis enables a certain degree of differentiation between spores and inorganic particles to infer the number of different disease spores per unit volume. In order to improve the accuracy of distinguishing between spores and inorganic particles, we introduce cardinal subtraction. The background particle concentration was determined using a light scattering sensor in an environment devoid of plant disease spores and was recorded as a baseline. Whereafter, this baseline is then subtracted from the particle concentration measured in the actual environment. This subtraction effectively mitigates the interference from environmental background noise, thereby yielding a more accurate determination of the actual concentration of plant disease spores. The sensor structure is shown in Figures 1a, b. The scattering module consists of a 635nm wavelength laser, focusing lens, reflector, photomultiplier tube, light trap, and gas channel.

Table 1 | Average spore size of fungal and bacterial diseases of major greenhouse crops.


[image: Table comparing spore sizes of three species. B. cinerea spores: 19.3 (11.4–26.7) x 11.7 (8.3–14.5) micrometers. P. cubensis spores: 30.6 (21.1–39.8) x 20.5 (13.8–23.6) micrometers. P. xanthii spores: 35.4 (30.2–39.5) x 14.2 (7.3–22.2) micrometers.]
[image: Diagram illustrating a spore detection and monitoring system. (a) Depicts a device with air inlet, outlet, fan, blower, and 4G module, highlighting a detailed view of the light scattering module with a light source, scattered light, and photoelectric detector. (b) Shows another setup with light trapping, a laser, and a detector. (c) Outlines the process of data collection including wind speed, direction, temperature, humidity, and spore count. Data is transmitted via 4G to a cloud, accessible by computer and mobile clients, along with visuals of wind pattern analysis, spore release sources, and modules for detecting and identifying disease spore locations.]
Figure 1 | Schematic diagram of airborne plant disease location based on non-local-interpolation algorithm. (a) Node shell and Light scattering structure. (b) Light scattering schematic diagram. (c) System frame diagram.




2.3 Location network construction and framework of IoT node

The framework of airborne plant disease source location method based on non-local-interpolation algorithm proposed in this paper is shown in Figure 1c. Firstly, the cloud server receives the spore count information sent by the node. Secondly, the cloud server receives the temperature and humidity information and wind speed and direction information sent by the node. Then, according to the analysis of spore number data and environmental information, the location information of plant disease source was obtained by using disease source location algorithm. Finally, the cloud platform synchronizes the number of spores and the location of plant disease sources to the client.

The node takes MCU module (STM32F407VGT6) as the core to realize data collection and transmission. The concentration sensor based on laser scattering has a detection accuracy of 90%. The detection range and accuracy of the temperature and humidity sensor are -40 to 100°C (± 1°C) and 0 to 100% RH (± 3% RH), respectively. The wind speed and direction sensor (SM5388V) has a wind speed detection range and accuracy of 0~30 m/s (± 3%), and a wind direction detection range and accuracy of 0~360° (± 22.5°). Each detection node is equipped with a 4G module (EC20), which regularly transmits environmental information data to the cloud server, and the cloud server can also send commands to the node for data collection. We use Alibaba Cloud Internet of Things as a cloud server, these nodes through the 4G network to achieve data storage and circulation. In addition, each detection node is equipped with a battery (12 V) to supply power.




2.4 Construction of diffusion model

In order to accurately analyze the flow field in the greenhouse, we used SolidWorks to accurately model the experimental area and SolidWorks Flow Simulation to conduct gas diffusion analysis (Fedorenko et al., 2023). Taking into account the requirements of changing flow field gradients, we used an unstructured meshing approach and refined the area near the wet curtain and the fan perimeter to ensure better flow detail capture.

In the experimental environment, gas flow and heat exchange follow the basic principles of conservation of mass, momentum, and energy (Bejan, 1987). Considering the low airflow speed in the greenhouse, this case can be described as a low Reynolds number flow, and the compressibility of the fluid is usually negligible (Bartzanas et al., 2013), thus simplifying the analysis process. Nevertheless, the physical properties of the fluid, such as density and viscosity, exhibit variations over time and space. Our simulation comprehensively accounts for and reflects these changes. When simulating the greenhouse flow field, the Euler method was used to numerically describe the motion characteristics of the flow field, so as to obtain the distribution of state parameters such as fluid velocity, pressure, and temperature (Chen et al., 2006). Through detailed modeling of gas flow and heat exchange processes in the greenhouse, we can provide a reliable basis for experimental design and equipment optimization (Zhang et al., 2021).

In addition, in order to better describe the turbulence characteristics of greenhouse air and optimize the experimental environment. We choose to adopt the standard k-ϵ model, which is one of the most widely used turbulence models in computational fluid mechanics and can effectively predict the development and transfer process of turbulence (Yu and Thé, 2016). By combining the actual situation of the greenhouse with the standard k-ϵ model, we can better understand the characteristics of the air flow in the greenhouse, including the formation, transmission and attenuation of turbulence, which helps to improve the efficiency and reliability of the experiment. In the standard k-ϵ model, k and ϵ are unknown quantities. The k equation and the ϵ equation are expressed as Equation 2 (Shaheed et al., 2019):

[image: Two mathematical equations are shown. The first equation is a differential equation involving the variables k and t, diffusion coefficient D subscript k eff, and terms G subscript k and epsilon. The second equation is a similar form involving the variable epsilon, diffusion coefficient D subscript epsilon eff, and terms C subscript 1 epsilon, C subscript 2 epsilon, G subscript k, and epsilon squared over k. Both equations are numbered as equation (2).] 

Together, these equations describe the transport and evolution of turbulent kinetic energy k and turbulent dissipation rate ϵ in a fluid.

To determine the fluid temperature distribution influenced by diverse thermal sources, which subsequently modulates the fluid’s viscosity and density, and thereby governs its flow and diffusion dynamics, the energy equation is utilized to characterize the conservation of thermal energy within the fluid. The equation is presented as Equation 3 (Antontsev et al., 2002):

[image: Equation showing thermal energy balance: \(\rho c_p \left(\frac{\partial T}{\partial t} + u \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + Q\).] 

where cp is the specific heat capacity; T is the temperature; k is the thermal conductivity and Q is the heat source term.




2.5 Disease location algorithm

Considering the impact of disease spores on the environment, we chose nano-microspheres instead of real spores for the experiment. Each node in the wireless sensor network monitors the concentration of nanospheres in the current environment. According to the coordinates of the nodes and the observed concentration data of the nanospheres, the concentration distribution is obtained by cubic spline interpolation. This concentration distribution was used as the initial concentration distribution of the non-local diffusion simulation, and then the non-local diffusion simulation was carried out by iterative updating to obtain the final concentration distribution, so as to estimate the disease source. We considered the localization algorithm of nanospheres in both windless and windy conditions. The windless state refers to the diffusion of particles not being affected by the airflow field. The flowchart of the non-local-interpolation localization algorithm is shown in Figure 2.

[image: Flowchart illustrating the process of data transmission and interpolation. It begins with nodes distributed in a region, transmitting data to an IoT platform. Data is fitted using cubic spline interpolation. If wind is present, a power law equation modifies the interpolation model. The disease source coordinates are identified in the concentration distribution. The system iteratively updates the non-local diffusion simulation based on diffusion. Ends with identification of the source location.]
Figure 2 | Flow chart of non-local interpolation localization algorithm.

The formula of the non-local-interpolation algorithm is as Equation 4:

[image: Mathematical expression with three equations: \( C_0(x, y) \); the partial derivative of \( C \) with respect to time equals \( D \nabla^2 C \); and \( B = f(v) \), denoted as equation (4).] 

where B is the boundary condition, C is the concentration of the substance, t is the time, D is the diffusion coefficient, and 𝛁2 is the Laplace operator, which represents the spatial variation of concentration. In this case, assume that there is a set of known data points (xi,yi), where i=0,1,2,……,n, and satisfy x0<x1<x2<…<xn. A smooth curve C0(x,y) is generated through these points.

Fit a cubic polynomial between each neighboring data point to obtain a series of cubic polynomial segments. For the ith data point, assume that the cubic polynomial is Si(x), where x falls in the interval [xi,xi+1]. This cubic polynomial can be expressed as Equation 5:

[image: Equation for a cubic spline: \( S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 \).] 

The coefficients of the cubic polynomial are determined by the Equation 6 steps:

[image: Set of three mathematical equations surrounded by curly braces, labeled as equation six. The equations are: \( S_i(x_i) = y_i \), \( S'_i(x_{i+1}) = S'_{i+1}(x_{i+1}) \), and \( S''_i(x_{i+1}) = S''_{i+1}(x_{i+1}) \).] 

The non-local diffusion term encompasses both horizontal and vertical diffusion functions. Given that the nodes data were collected along the same horizontal plane as the plant, this study focuses solely on the horizontal diffusion function. The distinction among the three prevalent single-parameter models lies in the characteristics of their tails. The tail quality of the horizontal propagation function is a critical aspect in plant epidemiology, as it influences the pattern of epidemic spread. The distributions are ranked from the lightest to the heaviest tail: Gaussian distribution, Exponential distribution, and Cauchy distribution function, respectively (Soubeyrand et al., 2008). Given the enclosed nature of a greenhouse, which tends to restrict long-range propagation, Gaussian or Exponential distributions are deemed more suitable for modeling. Furthermore, the high humidity and optimal temperatures prevalent in greenhouses can enhance the transmission of diseases. Consequently, distributions with heavier tails, such as the Exponential or Cauchy distributions, are more frequently utilized. After careful consideration, we have selected the product of the Exponential distribution and the initial concentration distribution to represent the non-local diffusion term.

In greenhouse simulations, it is often assumed that the walls and tops of the greenhouse are impermeable and that the formula for the concentration of diffusive substances at the boundaries is as Equation 7:

[image: A mathematical expression comprises two cases. First, f(v) equals zero when v is zero meters per second. Second, f(v) equals some function of x and y when v is not zero meters per second. Equation is numbered (7).] 

The improved power-law equation is as Equation 8:

[image: Mathematical equation showing \( v(x, y) = k \cdot (x^\alpha \cdot y^\beta) \), labeled as equation (8).] 

where v(x,y) is the wind speed at coordinates (x,y), k is constant, ɑ and b are exponents. In the experimental environment of this study, when the wind speed is 1m/s, k=0.29591, ɑ=0.11069, b=0.14347.

Finally, a final concentration distribution is obtained based on the results of the non-local diffusion simulation. This distribution will take into account the initial predicted distribution and the effects of the diffusion process.





3 Results and discussion



3.1 Verification of the light-scattering nodes

To verify the detection performance of the laser scattering node for particulate matter, the nodes was tested at the ambient temperature of 21±2 °C and the ambient humidity of 70±10% RH, using 5μm nanospheres as the release source. The test results are shown in Figure 3a, indicating that the actual consistency error at room temperature is ±10%. Compared with ordinary laser scattering sensors, it has higher consistency and accuracy. In addition, we positioned node 1 near the visually identified gray mold area in the strawberry greenhouse, while nodes 2, 3, 4, and 5 were distributed around it. In the case of subtracting the environmental base, it is obviously found that the value of node 1 is higher than that of other nodes, thus confirming that this node can effectively detect the presence of disease spores, as shown in Figure 3b.

[image: Panel (a) shows a scatter plot of measurement error percentages across different environmental concentration counts. Data points are marked by different shapes and colors, representing five datasets. Panel (b) displays five line graphs of spore counts over time in seconds, labeled for Nodes 1 to 5. Each line is uniquely colored to differentiate the nodes.]
Figure 3 | Laser scattering node test results. (a) Normal temperature consistency error distribution of light scattering nodes. (b) Spore count at five different locations at the same time.




3.2 Diffusion model verification and wind field distribution verification

Since there is always airflow in the greenhouse, the particles always follow a non-Gaussian distribution. In windy conditions, particles travel through the environment with airflow, and their diffusion path and range are significantly affected by wind speed and direction. Our research not only covers the diffusion behavior of particles under constant wind speed conditions, but also extends to the effects of temperature and humidity on the diffusion of nanospheres.

To verify the accuracy of the simulation model, a microbial aerosol generator (TK-3) and nanospheres (5μm) were used as particle release sources. Five detection nodes were arranged at the sites to measure the concentration of the nanospheres, and the diffusion of the nanospheres was verified by using a fan to simulate natural wind. SolidWorks Flow Simulation software was used to draw the diffusion diagram of nanospheres and analyze the diffusion trend of nanospheres. As shown in Figure 4a, when there is wind, the distribution of nanospheres will have a greater diffusion in the downwind direction. Due to the environmental pressure where the wet curtain is set, the nanospheres may spread to the area with lower pressure based on the wind direction, resulting in a certain diffusion of the nanospheres on the side. As shown in Figure 4c, the distribution of the nanospheres showed a tendency to spread from the center to the periphery under the condition of windless. To further evaluate the accuracy of the simulation model, we normalized the nanosphere concentration data at 5 different locations measured by the experiment and compared them with the normalized simulation data. The results show that there is a high correlation between the experimental data and the simulation data, with correlation coefficients of 0.9144 and 0.9280 in windy and windless conditions, respectively shown in Figures 4b, d.

[image: (a) Visualization of airflow density with colors representing different values. (b) Line graph comparing simulation and experimental data for normalized values. (c) Airflow density map showing circular patterns. (d) Comparison graph for normalized values at different nodes. (e) Airflow velocity map with arrows indicating direction and speed. (f) Graph comparing wind speed from simulation and experimental data. (g) Airflow velocity distribution visualized with color scales. (h) Line graph comparing wind speed data across nodes.]
Figure 4 | Comparison diagram between simulation and experiment. (a) Diffusion simulation under windy conditions. (b) Normalization comparison between simulated data and experimental data under windy conditions. (c) Diffusion simulation under windless conditions. (d) Normalization comparison between simulated data and experimental data under windless conditions. (e) Wind speed simulation at 2 m/s. (f) Comparison of simulation and experimental data at 2 m/s wind speed. (g) Wind speed simulation at 1 m/s. (h) Comparison of simulation and experimental data at 1 m/s wind speed.

In the environment under the rotation of the greenhouse fan, most plants require the air passing speed between 1m/s and 2.78m/s to ensure that the growth and ventilation needs of the plant are met. Therefore, under normal circumstances, when the fan in the greenhouse is turned on, the airflow speed should be maintained within this range to ensure that it will not adversely affect the plants, but also effectively carry out ventilation. By using SolidWorks modeling and Flow Simulation analysis, we simulated the wind field distribution of 2 m/s in a specific area and compared the simulation data with the experimental data after normalization, as shown in Figure 4e. Figure 4f shows that the correlation coefficient results in 0.8796. Similarly, we simulated the wind field distribution in a specific region at 1m/s wind speed and compared it with the actual measured data after normalization, and the correlation coefficient was 0.8633, as shown in Figures 4g, h.




3.3 Plant influences in experimental settings

In the process of node deployment of wireless sensor networks, many factors need to be considered, including signal transmission range, signal interference, energy consumption and data acquisition efficiency. When the sensor node is deployed in the plant, it may encounter problems of occlusion and interference caused by the plant itself. This physical barrier can lead to instability in signal transmission, which in turn affects the accuracy and reliability of the data. The sensor nodes deployed near the plant can effectively reduce the signal transmission interference caused by the plant. This layout helps to improve the signal stability and the overall performance of the network. Artificial plants are used in this experiment. Figure 5a shows the layout of sensor nodes deployed inside the plant; Figure 5c shows a layout scheme where sensor nodes are deployed next to the plant.

[image: Graphs illustrating wireless sensor network data. (a) Grid maps showing positions of nodes, particle release sources, artificial plants, and wind direction. (b) Bar chart comparing average distance error for algorithms CL, PF, and NLD-I with and without artificial plants. (c) Second grid setup with similar components as (a). (d) Another bar chart comparing algorithms' performance in different conditions, illustrating differences in average distance error with and without artificial plants.]
Figure 5 | Effect of plant disturbance on sensor deployment. (a) Nodes are deployed between plants. (b) Comparison of positioning errors of the three algorithms with or without plant interference when the wind speed is 0 m/s. (c) Nodes are deployed next to the plants. (d) Comparison of positioning errors of the three algorithms with or without plant interference when the wind speed is 1 m/s.

To systematically evaluate the performance differences of two different node deployment schemes in particle release source localization experiments. In this study, we designed the following experiment, in which the particle release source was randomly placed in five different locations, and the test was repeated three times at each location. Under the conditions of windless and windy, the influence of plant interference on sensor nodes on positioning accuracy is shown in Figures 5b, d, respectively. The results show that, overall, the plants have a significant interference effect on the data obtained by the sensor, and in the evaluation of the localization algorithm, the non-local-interpolation (NLD-I) algorithm shows higher adaptability than the particle filter (PF) algorithm and the centroid localization (CL) algorithm. We deployed sensors in a 600 square meter greenhouse using the strategy depicted in Figure 5c. The distribution density was calculated by dividing the area of a circle defined by the positioning error radius by the total experimental area, yielding an average density of approximately 3 sensors per square meter.




3.4 Positioning algorithm verification

In order to accurately predict the location of pathogen of strawberry gray mold, a disease spore transmission model was established according to the transmission characteristics of disease spores in windy and windless conditions. Cubic spline interpolation algorithm, non-local diffusion simulation, and improved power-law model were used to predict the location of the disease source. To verify the accuracy of the positioning algorithm, the microbial aerosol generator (TK-3) was first used as the particle release source, and the pre-equipped nano microspheres solution was continuously sprayed, and five nodes were arranged according to Figure 5c. The nodes were composed of light scattering module, Internet of Things module, battery, and MCU module. Then five different positions were randomly selected for the experiment, and each position was tested three times. The diffusion of the nanospheres was verified by using a fan to simulate natural wind. When there is no wind, the non-local-interpolation algorithm is used to locate the release source, and the positioning error is shown in Figure 6a. Under windy conditions, improved power-law equation model was introduced into the non-local-interpolation algorithm to locate the release source. The positioning error when the wind speed was 1m/s is shown in Figure 6b. In addition, under the same environmental interference condition, the comparison of positioning errors of the non-local-interpolation algorithm (NLD-I), the centroid positioning algorithm (CL) and the particle filter algorithm (PF) under the conditions of windless and windy is shown in Figures 7a, b respectively. Therefore, compared with the non-local-interpolation algorithm, the particle filter algorithm has the disadvantages of randomness, high computational complexity, and difficult particle number selection, while the centroid location algorithm is not sensitive to small data concentration changes. By taking the positioning error distance as the radius, the positioning accuracy of the non-local-interpolation algorithm is 94.7% and 92.9%, respectively, under the conditions of windless and windy.

[image: Two charts display experimental data. Plot (a) shows distance coordinates for disease and forecast points, color-coded with a legend. An adjacent line graph presents distance error across five experiments with varying values between 6 to 16 centimeters. Plot (b) repeats the distance coordinate setup, with different point arrangements. Its accompanying line graph illustrates distance error across five experiments, showing values from 6 to 21 centimeters. Both plots use the same legend to distinguish points.]
Figure 6 | Positioning error diagram. (a) The location distribution map and location error diagram of non-local interpolation algorithm when there is no wind. (b) The location distribution map and location error diagram of non-local interpolation algorithm when the wind is 1 m/s.

[image: Two sets of graphs compare distance error across different experiments using three algorithms: CL, PF, and NLD-I. In both sets, line graphs (left) show distance error trends over multiple experiments, while bar graphs (right) illustrate average distance errors for each algorithm. Graph (a) indicates that CL generally has higher errors; NLD-I performs best. Graph (b) reinforces this with more evident differences, especially with CL having the highest average error.]
Figure 7 | Positioning error comparison diagram. (a) Comparison of positioning errors and comparison of the average positioning errors of the three algorithms when there is no wind. (b) Comparison of positioning errors and comparison of the average positioning errors of three algorithms when the wind speed is 1 m/s.




3.5 Comparative analysis

In order to verify the superiority of the airborne plant disease source localization method designed in this study, we comprehensively compared its concealment, wind speed interference resistance, real-time on-site detection ability, cost-effectiveness, and non-destructive testing characteristics with existing plant disease detection methods in the early stages of the disease. The results are listed in Table 2. (Chavhan et al., 2023) proposed a novel approach for the early detection of plant diseases based on multiple molecular marker-assisted analysis. This method encompasses both multiplex PCR detection and CAPS labeling, characterized by its high specificity and sensitivity. Nevertheless, this method is lossy detection and difficult to detect in real time in the field. (Panchal et al., 2023) employ an image-based deep learning approach for plant disease detection. This method requires labeling of leaf images of infected crops according to disease patterns and utilizing pixel-based operations to enhance the information in the images. Then feature extraction and image segmentation were carried out, and crop diseases were classified according to the extracted diseased leaf patterns. But in the absence of obvious symptoms, this method cannot detect early plant diseases. (Xie et al., 2024) proposed a plant disease detection method based on hyperspectral imaging technology. This method used hyperspectral imaging technology to detect plant biological stress, thus achieving early diagnosis. However, hyperspectral cameras and related equipment are relatively expensive. Above analysis shows that the plant disease detection method proposed in this paper can timely diagnose the disease and locate the source of the outbreak in the early stage of plant disease, with strong anti-interference ability and cost-effectiveness. Therefore, this method has application potential and practical value in the field of plant disease detection.

Table 2 | Comparison between the proposed method and the current methods of plant disease detection.


[image: Comparison table of plant disease detection methods. Chavhan et al., 2023 meets four criteria: symptoms visibility, wind resistance, real-time capability, cost-effectiveness, missing only nondestructive testing. Panchal et al., 2023 only meets wind resistance and cost-effectiveness. Xie et al., 2024 lacks wind resistance and cost-effectiveness but meets others. The proposed method satisfies all criteria.]




4 Conclusion

In this paper, a method for locating airborne plant disease sources based on non-local-interpolation algorithm is proposed. Firstly, the scattering characteristics of spores are studied, and a high-sensitivity concentration sensor is designed on the basis of Mie scattering theory. The concept of radix subtraction is innovatively introduced to accurately count spores in plant diseases. Secondly, two sensor deployment schemes are designed, the optimal sensor deployment strategy is determined by applying the accurate positioning algorithm, and the wireless sensor network model is constructed. Then, by collecting data on the number of spores at different locations, a particle diffusion model was established to deeply study the propagation law of particles under specific regional conditions, and simulation experiments were carried out through SolidWorks flow simulation software. The correlation coefficients between the particle diffusion predicted by the simulation model and the experimental data reached 0.9144 and 0.9280 respectively under windy and windless conditions. Finally, according to the law of particle propagation, a disease source location algorithm coupled with the non-local-interpolation algorithm and improved power-law equation was designed to accurately locate the plant disease source under different wind direction conditions. The results of greenhouse experiments show that our method achieves localization accuracy of 94.7% and 92.9% respectively under windless and windy conditions with approximately three nodes per square meter. In summary, the source location method of airborne plant diseases based on the non-local-interpolation algorithm can realize the early diagnosis and location tracing of plant diseases.
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K, turbulent kinetic energy (m2·s-2); ϵ, turbulent dissipation rate (m2/s3); Gk, turbulent kinetic energy generated by mean velocity gradient (J/kg); Dkeff, effective diffusion coefficient of k (-); Dεeff, effective diffusion coefficient of ϵ (-); t, time (s); 𝛁2, Laplace operator; Si, Nonlinear properties in diffusion process; z, wind speed at different node locations (m/s); σsc, scattering cross-sectional area (m2); l, number of incoming waves; ɑn, amplitude of the nth electrical bias wave; bn, amplitude of the nth magnetic bias wave; B, boundary condition; C, concentration of the substance (kg/m3); D, diffusion coefficient; C0, the initial concentration distribution obtained from these nodes; v, regional wind speed (m/s); α, power law parameter.
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The germination potential of corn seeds, a key index for assessing their quality and directly associated with the ultimate corn yield, is currently defined in a way that cannot effectively portray the seed germination rate, and the prevalent measurement methods are traditional, consuming substantial process resources. To tackle these issues, this paper employs a public corn seed germination dataset, adds noise to it to simulate real - world production conditions, and ultimately acquires a dataset comprising 8148 images. It then proposes an enhanced YOLOv8 target detection model, EBS - YOLOv8, for detecting corn seed germination. Specifically, the ECA lightweight attention mechanism is introduced to decrease small - target feature loss, assist in accurate target recognition, and remove redundant features; simultaneously, the P2BiFPN multiscale feature fusion technique is utilized to boost the detection ability for small targets; furthermore, the ScConv convolution is adopted to enhance the feature - extraction capacity and improve detection accuracy. Combined with the improved model, this paper also proposed a mathematical modeling algorithmnew method for measuring seed germination potential and observing seed germination rate. The results indicate that the proposed model attains a mean average precision at 50% Intersection over Union (mAP50) value of 98.9%, a mean average precision in the range of 50% - 95% Intersection over Union (mAP50 - 95) value of 95.8%, an accuracy of 96.7%, and a recall of 96.3%. In comparison with the original model, the mAP50 has increased by 0.9% and the mAP50 - 95 value has witnessed a 3.7% increment. The experiments have demonstrated that the research method for germination potential put forward in this paper can effectively depict the rate variation of seeds during the germination process, thus offering a novel perspective for future research on seed germination potential.
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1 Introduction

Corn is one of the most important food crops in the world, widely grown all over the world, i.e. it is the main source of food for human beings and is also widely used in animal feed and industrial raw materials. The quality of corn seed is directly related to the yield of corn, and seed germination rate and germination potential an important indexes for evaluating the quality of corn seed, which is directly related to the germination ability of the seed and the beginning of growth and development (seed germination rate refers to the percentage of the seed that germinates and forms a normal seedling under certain conditions. Germination potential, on the other hand, refers to the speed and intensity of seed germination in a certain period, which is one of the manifestations of seed vitality), it can be said that the two are based on germination rate, while the concept of germination potential is further extended from the basis of germination rate. Seed germination status testing is important in the process of plant growth (Yuting and Yuji, 2021; Šerá and Hnilička, 2023), and an in-depth understanding of the germination rate and germination potential of maize seeds is an important guide for growers to select high-quality seeds, increase yields, and improve the quality of their products (Yang et al., 2017; He et al., 2022; Divya Venkata et al., 2023; Zhang et al., 2023).

Seeds with high germination rates show rapid germination in the field and possess greater resistance to adversity; on the contrary, seeds with low germination rates usually germinate slowly in the field, emerge irregularly, and are susceptible to the growing environment, which may lead to lower yields of agricultural products (Reed et al., 2022). Traditional methods of seed germination detection usually rely on experienced personnel who mark seed categories by observing seed radicle and germ length (Yang et al., 2013). In this process, germination detection is carried out by human observation and counting to determine the number of seeds that have germinated within 7 days. However, this method requires a high level of experience on the part of the inspector, and the process of repeating the germination rate test is cumbersome, time-consuming, and laborious, and is prone to introduce subjective errors, resulting in inconsistent and poorly reproducible results between different inspectors. With the development of smart agriculture, germination tests are gradually transforming into intelligence (Zhang et al., 2017; Zhang et al., 2018; Party Satisfaction et al., 2020). However, traditional testing methods rely heavily on finely controlled conditions, which are difficult to realize. The strict experimental conditions and long testing time (usually 7 days) as well as many methods using chemical measurements may cause potential damage to the seeds, resulting in non-reusability (Filho, 2015). Therefore, the limitations of traditional germination rate and germination potential assays highlight the urgency of developing a rapid, nondestructive, and accurate assay that reduces the cost of the assay while increasing the speed and accuracy of the assay.

In recent years, deep learning has developed rapidly and has been widely used in agriculture, especially in seed germination detection, and many researchers have begun to explore its potential (Party Satisfaction et al., 2020; Zhang et al., 2021). Joosen et al. (2010) proposed a semi-automatic method to design a germination instrument that determines whether a seed has germinated or not using a high-throughput score. The instrument can handle many samples that may germinate under different environmental conditions. However, the method requires good contrast between the radicle and the seed coat, a requirement that may limit its application in some crops. Zhao et al. (2022) utilized techniques such as image segmentation, transform encoder, small target detection layer, and CDIOU loss to improve the accuracy of detection. They developed a convolutional neural network (YOLO-r) that can effectively detect the germination status of rice seeds and automatically evaluate the total number of germination with an average accuracy of 0.9539 and an average absolute error of predicting germination rate mainly within 0.1. Bai et al. (2023) constructed a seed germination discrimination model named DB-YOLOv5 by combining machine vision technology and deep learning methods to rapidly detect the germination rate, germination potential, germination index, and average germination days of wheat seeds, and verified in experiments that the accuracy of the model for wheat seed germination discrimination was as high as 98.5%. Zheng et al. (Yao et al., 2023) designed a semi-automatic germinator through the YOLO algorithm, which successfully realized the detection of the germination rate of rice seeds in the field and assessed the seed germination rate through image analysis. Liu et al. (2023) tried to improve the local linear embedding with different distance metrics and proposed a fast detection method for corn seed germination based on improved local linear embedding and near-infrared spectroscopy. Aiming at the physiological and physical differences of rice seeds at different aging times, Fang et al. (2016) proposed a fast and nondestructive detection method for rice seed germination based on infrared thermography and a generalized regression neural network. Mark et al. (Iradukunda et al., 2024) explored cost-effective imaging techniques for rapid assessment of seedling vigor, providing practical solutions to common problems in agricultural research. Zhang et al. (2025) proposed an improved safflower detection model named WED-YOLO based on YOLOv8n, which enables accurate identification of safflowers in complex environments and has made outstanding contributions to the automated harvesting of safflowers. All indicators of the new model have been improved compared with those of the baseline model. In order to accurately detect safflower filaments under different lighting conditions, with foliage obstruction and various weather conditions, Shi Ruiming et al (Zhang et al., 2023) proposed an improved Fast R-CNN filament model. This model enables accurate and rapid identification of safflower filaments on sunny, cloudy, and overcast days, as well as under conditions of sunlight, backlight, foliage obstruction, and dense occlusion. It provides technical support for the identification of small-scale crops. Although the above studies achieved good accuracy in germination rate detection, their definitions of germination potential are still relatively simple and based mainly on the consideration of germination time, while failing to delve into more complex metrics such as germination rate and germination germination trend.

To address the shortcomings of existing studies in the detection of germination rate and germination potential of maize seeds, this paper proposes an improved model based on YOLOv8n for fast, accurate, and non-destructive detection. First, the diversity of the dataset was enhanced by data enhancement techniques to enhance the learning ability of the model. Second, the structure of the model was innovated by adding three new modules to improve the accuracy of detecting small target corn seeds while effectively controlling the number of parameters of the model. To further analyze the characteristics of germinating seeds, this paper uses traditional algorithms to measure the germinating seed portion of the image, combines statistical methods to process the data, and fits regression equations through mathematical modeling methods to depict the trend of seed germination. Finally, the equation was derived and the curve obtained was able to effectively represent the germination potential of corn seeds within a specified period. The experimental results show that the model has high robustness and generalization performance in detecting maize seed germination, possessing the potential for practical application in mobile applications, and the proposed method of fitting the equation provides a new idea for accurately depicting the seed germination potential. The contributions are summarized as follows:

	(1) Dataset construction: A specialized dataset for corn seed germination detection was constructed using data enhancement based on the existing public dataset to improve the diversity of the data;

	(2) Lightweight Attention Mechanism: A lightweight ECA attention mechanism is introduced to discard redundant features such as noise - interfering points in the background of seed images, focus on effective features related to the germination rate, and simultaneously avoid increasing the number of model parameters;

	(3) Small-target detection and feature fusion: adding a small-target detection layer and BiFPN structure to increase the multi-scale feature fusion capability and improve the detection accuracy of small-target corn seeds;

	(4) Improvement of convolutional layer: add a layer of ScConv convolution to increase the depth of the network and strengthen the feature extraction ability, and at the same time reduce the redundant parameters in the upper layer, to improve the overall performance of the model;

	(5) Redefinition of germination potential: by combining deep learning techniques with mathematical modeling, germination potential has been redefined to depict the germination potential of seeds.






2 Materials and methods



2.1 Dataset construction



2.1.1 Image acquisition

This experiment utilizes a publicly accessible dataset, which employs digital imaging techniques to capture images of seeds in three distinct germination states. In the experimental setup, seeds were carefully placed in Petri dishes and then positioned on a black cloth. This was done to guarantee a high contrast between the emerging radicle and the background, facilitating clear image capture.During the experiment, the seeds were irrigated with tap water. To minimize water evaporation, the Petri dish was covered with a lid, as depicted in Figure 1. All images were captured under the same artificial light source over a period of 48 hours, with intervals of 30 minutes between each shot. This systematic approach ensured comprehensive documentation of the entire germination process.The dataset used in this experiment can be accessed at ‘http://dx.doi.org/10.17332/4wkt6thgp6.2’. In this study, the part of the maize seeds in the dataset was used. There are a total of 84 culture dishes in this part, and a total of 8,148 images were taken, covering the entire germination process of maize seeds from the initial stage to 48 hours, as shown in Figure 2.

[image: Setup with a Raspberry Pi and camera module suspended above petri dishes containing a medium with pink objects. The right side shows a close-up of the dishes, highlighting the objects.]
Figure 1 | Image acquisition device.

[image: Six petri dishes containing red seeds placed on a dark medium. Each dish displays a similar arrangement of seeds, suggesting a scientific experiment or study.]
Figure 2 | Seed germination images.




2.1.2 Data augmentation

In this study, the original dataset is expanded using image enhancement techniques. Adding noise is a commonly used method for image enhancement, such as Gaussian noise, salt and pepper noise, Poisson noise, and uniform noise. The purpose in this paper is to increase the richness and interference of the images, and further improve the detection performance of the model. Poisson noise is more suitable for medical imaging, and the interference effect added by uniform noise has relatively low randomness. Gaussian noise and salt and pepper noise perform better in terms of the degree of interference. However, the principle of salt and pepper noise is to change some pixel points to white or black, which is obviously more suitable for the actual situation of corn seed germination and conforms to our research. Therefore, salt and pepper noise is chosen for data augmentation. A portion of the data from the 8,148 original images underwent processing by applying the sp_noise function, with the noise factor configured as 0.2. Subsequently, the dataset was partitioned into a training set, a test set, and a validation set according to a ratio of 7:2:1. Post - processing, a total of 5,703 training - set images, 1,630 test - set images, and 815 validation - set images were ultimately acquired, as illustrated in Figure 3. The enhanced dataset is only used for model training to improve the model’s comprehensive performance and enhance its detection ability. In the subsequent experiments on germination rate and germination potential, we used the original dataset without noise enhancement. The reason for this is that the focus of this part of the research is to evaluate the germination potential of seeds, which requires high precision. Using the model trained with the enhanced dataset to identify the original image data can better assist us in our research.

[image: Six petri dishes arranged in a row, each containing several small, red seeds with varying degrees of white sprouting. The background is a beige surface.]
Figure 3 | Seed germination image after adding noise.





2.2 Selection of models

Deep - learning - based target detection networks play a vital role in detecting seed germination. At present, numerous networks exhibit excellent performance in the field of target detection, including RCNN, SSD, CenterNet, and the YOLO series. The YOLO series of algorithms adopts an end - to - end approach. This not only remarkably enhances the detection speed but also allows for the direct acquisition of the target’s positional coordinates and classification labels, which is of great significance for our subsequent research on germination potential.YOLOv8, as a more recent iteration of the YOLO series of algorithms, demonstrates a substantial improvement in performance compared to its predecessors. Its advantages such as easy deployment, rapid detection, and high accuracy rate make it a crucial tool for detecting corn seed germination. In this paper, YOLOv8n is compared with Rcnn, SSD, and CenterNet - ResNet50, as presented in Table 1.

Table 1 | Model selection comparison.


[image: Comparison table of four models: YOLOv8n, Faster R-CNN-ResNet50, SSD-VGG, and CenterNet-ResNet50. Key metrics include Precision, Recall, mAP50, mAP50-95, and Params. YOLOv8n has high scores: 95.1% Precision, 94.0% Recall, 98.0% mAP50, 92.1% mAP50-95, and 3.00M Params. CenterNet-ResNet50 excels in Precision at 96.5% and better mAP50-95 at 88.7%. Key metrics are bolded.]



2.3 EBS-YOLOv8 construction

The YOLOv8n model consists of a Backbone, Neck, and Head. Among them, the Backbone serves as the backbone network, which mainly consists of Conv module and C2f(Cross Stage Partial - 2 with Fused Shortcut) and SPPF(Spatial Pyramid Pooling - Fast) modules for feature extraction; the Neck fuses features at different scales; and the Head network is used for final target prediction. The model performs well in the task of germination detection of corn seeds. To further improve its performance this paper improves YOLOv8n and names it EBS-YOLOv8 as shown in Figure 4. In Backbone, the ECA(Efficient Channel Attention) lightweight attention mechanism (a) is introduced to enhance the attention to useful information features during feature extraction to optimize resource allocation. This improvement not only enhances the model performance but also alleviates the conflict between performance and complexity, with a small number of additional parameters. The next layer of ECA incorporates the ScConv(Spatial and Channel Reconstruction Convolution) module (b), which utilizes spatial and channel redundancy in features for compression, reducing redundant computation and enhancing feature learning. In addition, a small target detection layer is added to the Neck network, and the traditional FPN(Feature Pyramid Network) is upgraded to a P2BiFPN(Bidirectional Feature Pyramid Network based on P2 layer) for efficient fusion of features to further improve the detection accuracy.

[image: Flowchart depicting a neural network architecture. It is divided into three sections: Backbone, Neck, and Head. The Backbone includes layers like Conv, C2f, ECA, ScConv, and SPPF. The Neck section shows operations like BiFPN_Add2 and Upsample, with layers connected sequentially. The Head section contains multiple Detect nodes. Detailed operations such as Conv, Split, Bottleneck, and Concat are described at the top. Improvement points are indicated on the right side.]
Figure 4 | EBS-YOLOv8 network structure.



2.3.1 ECA attention mechanism

In the dataset of germinated seeds with added noise, the characteristics of seeds in the early germination stage were not distinct. When detecting newly germinated seeds, the model faced challenges in accurately identifying whether they had germinated, particularly when noise points partially overlapped with the seed buds and the similarity between the noise and the buds was high.

To address this issue, eliminate redundant features, and prevent overfitting, this paper incorporates the ECA (Efficient Channel Attention) attention mechanism into the Backbone network, as depicted in Figure 5. The ECA attention mechanism processes the input feature maps through global average pooling. This operation transforms the feature maps from the initial [h, w, c] matrix into a [1, 1, c] vector. Subsequently, an adaptive 1D convolution kernel size is calculated based on the number of channels in the feature map. This kernel is then utilized for 1D convolution to obtain the weight values for each channel of the feature map. Finally, the normalized weights are multiplied channel - by - channel with the original input feature maps to generate weighted feature maps.

[image: Diagram showing an adaptive selection of kernel size process in a neural network. It begins with a 3D cube labeled with height, width, channels, and X. This is processed through global average pooling (GAP), resulting in a set of interconnected blue and yellow circles indicating different operations. Output undergoes activation function sigma (σ), leading to a transformation in an orange cylinder, finally producing an updated 3D cube representing the output. Arrows indicate the direction of data flow, highlighting key transformations and operations.]
Figure 5 | ECA attention mechanism.

In this process, the ECA mechanism directly applies a 1x1 convolution after the global average pooling layer. By doing so, it circumvents the use of a fully connected layer, thereby preventing dimensionality reduction and effectively capturing cross - channel interaction information. This design significantly enhances the model’s detection performance while only slightly increasing the number of parameters.




2.3.2 Fusion of small target layer and BiFPN structure

Figure 6a illustrates the traditional Feature Pyramid Network (FPN) structure. It achieves multi - scale feature fusion of P3 - P7 by introducing a top - down path. Nevertheless, this method might result in less comprehensive utilization of feature information. Consequently, PANet incorporates a bottom - up path into the FPN, as presented in Figure 6b. Although this improvement enhances the information features to a certain extent, there is still room for further improvement.

[image: Diagrams compare three network architectures: FPN with a top-down, single-path design; PANet with bottom-up and top-down paths; BiFPN with multiple connected paths and repeated blocks for enhanced feature fusion.]
Figure 6 | (a) conventional FPN structure, (b) PANet structure, (c) BiFPN structure.

In this research, a small - target detection layer P2 is introduced in EBS - YOLOv8. This enables the fusion of tiny features and their combination with Bi - FPN (Bidirectional Feature Pyramid Network). The Bi - FPN structure, depicted in Figure 6c, introduces bidirectional feature propagation, involving both top - down and bottom - up feature flows. This mechanism facilitates more comprehensive and rich information transfer and feature fusion among different layers.

Furthermore, Bi - FPN incorporates the operations of feature adjustment and feature selection. Feature tuning optimizes the feature weights to enhance the overall fusion results, thereby improving the fusion performance. Meanwhile, during the feature selection stage, useful features are dynamically selected based on different importance and confidence levels. This design not only enables higher accuracy in the detection process but also strikes a balance between efficiency and accuracy. It reduces the computational load while enhancing the model’s performance.




2.3.3 Space and channel reconstruction convolution

Convolution holds an irreplaceable position and plays a pivotal role in deep - learning architectures. Appropriately augmenting the network depth can enhance its performance. However, when adding convolutional layers, it is essential to prevent resource waste caused by the extraction of redundant features.

Consequently, in this study, a ScConv convolutional layer is incorporated into the Backbone network to boost both the network depth and performance. As depicted in Figures 7, 8 respectively, ScConv consists of two components: the Spatial Reconstruction Unit (SRU) and the Channel Reconstruction Unit (CRU).

[image: Diagram of a Spatial Reconstruction Unit showcasing the process from input feature \(X\) to spatial-refined feature \(X^w\). It has sections labeled "Separate" and "Reconstruct." Components include group normalization, normalization, sigmoid, threshold, multiplication, summation, and concatenation. Two paths split and converge, with elements \(Y\) and weights \(W\), culminating in the spatially refined feature.]
Figure 7 | Space reconstruction unit.

[image: Flowchart of a channel reconstruction unit. It begins with spatial-refined feature \(X^w\), splits into two pathways using \(1 \times 1\) convolutions. The \(X_{up}\) and \(X_{low}\) paths involve element-wise summation and concatenation using GWC and PWC. Outputs \(Y_1\) and \(Y_2\) go through pooling and SoftMax, then element-wise multiplication with \(\beta_1\) and \(\beta_2\). Final outputs are fused to form channel-refined feature \(Y\). Symbols denote operations, including element-wise summation, concatenation, and multiplication.]
Figure 8 | Channel reconstruction unit.

The SRU adopts a separation - reconstruction method to effectively suppress spatially redundant features. Specifically, it decomposes the input feature map into multiple sub - feature maps, processes them separately, and then reconstructs the output. This approach can capture local spatial information more accurately and eliminate redundant spatial components.

The CRU, on the other hand, uses a segmentation - transformation - fusion strategy. It first divides the input channels into several groups, applies different transformations to each group, and then fuses the transformed channels. This way, it can successfully reduce channel redundancy and enhance the representational power of the channels.

This design, which strategically introduces the ScConv convolution at the bottom layer of the Backbone network, not only deepens the network but also optimizes its performance while keeping the number of parameters in check. As a result, it strikes a balance between the model’s accuracy and complexity, enabling more efficient and accurate processing in deep - learning tasks.





2.4 Method for measuring germination potential

In this study, a novel method is proposed with the aim of measuring the germination potential of seeds. The core concept of this method is to utilize a trained model to identify germinating seeds and then conduct research on their germination potential based on this identification. In this paper, the germination potential is defined as the germination rate, and the degree of change is characterized by the deformation of the seed during the germination process.

In the implementation of this method, the first step involves binarizing the images of germinating seeds into black - and - white images, where black represents the background and white represents the seed. Subsequently, the number of white pixel points is counted. This count serves to approximate the morphological changes that occur during seed germination. These data are then fitted to an equation that depicts the curve of change during germination. Through a process of derivation, a new equation is obtained, which represents the rate of change, namely, the germination potential as defined in this paper.

By employing this method, the germination potential of seeds can be effectively quantified, thereby offering theoretical support for subsequent research.

The specific operational steps are as follows: First, utilize a labeled dataset file in XML format to identify the target labeled as a germinating seed within it and extract its coordinates. Then, crop the germinating seed according to these coordinates to acquire an image containing only that particular seed.

Subsequently, perform black - and - white binarization on the image. After parameterization, a threshold value of 120 is set. Pixels with values less than 120 are classified as black, representing the background, while pixels with values greater than 120 are classified as white, representing the target seed, which includes the seed itself and its outgrowth parts.

Next, traverse the binary image and count and record the number of white pixel points. Finally, through mathematical modeling, fit the obtained data to a regression equation. After deriving this equation, a new equation is obtained for plotting a curve, which is used to describe the germination potential of the seeds. The pseudocode is presented as follows  (i.e., Algorithm 1).


 Algorithm 1 Algorithm for measuring germination potential.

[image: Code snippet showing a process to calculate white and black pixel ratios from an image. It involves reading and parsing an XML file to extract image dimensions and bounding box coordinates. The image is cropped, converted to grayscale, and thresholded to obtain binary data, which is used to calculate the ratio of white to total pixels. The code includes loops and conditionals for processing multiple objects in the XML data.]






2.5 Experiment environments

In this experiment, the server’s runtime environment consists of the Pytorch deep - learning framework, operating on the Windows 10 Professional system. The system is equipped with an Intel(R) Xeon(R) W - 2245 CPU running at 3.90GHz, an NVIDIA Quadro RTX5000 GPU, and 64GB of RAM. It operates on CUDA 12.0 and utilizes libraries such as OpenCV to implement model training and subsequent measurements of the germination potential.




2.6 Evaluation indicators

In this experiment, when assessing the accuracy of the model regarding the germination status of corn seeds, the primary metrics employed are precision (Precision, Equation 1), recall (Recall, Equation 2), and mean average precision (mAP, Equations 3, 4). For the evaluation of the fitted regression equation, this paper utilizes the coefficient of determination (R2, Equation 5) as the assessment criterion. The relevant calculation formulas are presented as follows:

[image: Precision formula, where precision equals true positives (TP) divided by the sum of true positives and false positives (TP + FP), multiplied by one hundred percent.]

[image: Formula for recall: Recall equals true positives divided by the sum of true positives and false negatives, multiplied by one hundred percent.]

[image: The formula shows the calculation of average precision (AP) as the integral from zero to one of P(r) with respect to r, multiplied by one hundred percent. The equation is labeled as equation three.]

[image: Formula for mean average precision (mAP) is shown: the sum from one to N of the integral from zero to one of P(r) dr, all divided by N, multiplied by 100 percent. Equation is labeled as equation four.]

[image: Mathematical equation for R-squared: R-squared equals SSE divided by SST, which equals the sum from i equals one to N of the difference between y sub i and y-bar squared, divided by the sum from i equals one to N of the difference between y sub i and y-bar squared, labeled as equation five.]

Where TP (True Positive) refers to the correct detection frame, which means that the prediction frame matches the labeled frame accurately. FP (False Positive) refers to the false detection frame, i.e., the background is incorrectly predicted to be an instance of the target object. FN (False Negative) denotes the missed detection frame, i.e., the model fails to detect a target object that should have been recognized. mAP (mean Average Precision) is used to assess the overall performance of the model, where AP refers to the detection precision of a single category and mAP is the average precision of multiple categories. SSE stands for explained sum of squares, sst stands for total sum of squares, and r2 represents the model’s ability to explain the dependent variable, with values ranging from 0 to 1. The closer the value is to 1, the better the model fits the data. The better the fit of the model to the data.





3 Results



3.1 Training process

In the experiments described in this paper, consistent initial training parameter settings are applied for each individual experiment. The input image size is set to 640x640. The number of model training epochs is 100. The learning rate is configured as 0.01. The intersection - over - union (IoU) ratio is set at 0.7. The momentum is set to 0.937, the weight decay is 0.0005, and the batch size of the dataset used for each training iteration is 8. The detailed parameter values are presented in Table 2.

Table 2 | Training parameter.


[image: Table displaying parameters and their corresponding values. Input size pixels: six hundred forty by six hundred forty. Epochs: one hundred. Learning rate: zero point zero one. Weight decay: zero point zero zero zero five. Momentum: zero point nine three seven. Batch size: eight.]
Figure 9 illustrates that during the training process, the model’s training loss value varies according to the number of iterations, with the loss values gradually converging from the 30th iteration onwards. Regarding detection accuracy, it witnessed a substantial rise in the early stages, then started to improve slowly from the 10th iteration and stabilized after the 50th iteration. This trend indicates that the EBS - YOLOv8 model was trained without issues of overfitting and gradient vanishing, suggesting its effectiveness for the seed germination detection task.

[image: Graphs showing eight training and validation metrics over 100 epochs. The top row displays training losses: box, class, and DFL, which decrease over time, along with precision and recall that improve. The bottom row shows validation losses, also decreasing, and mAP metrics improving. Solid and dotted lines represent results and smoothed trends.]
Figure 9 | Model effect curve.




3.2 Ablation experiment

In this study, mAP50 is defined as Mean Average Precision at IoU = 0.50, and mAP50-95 is defined as Mean Average Precision at IoU = 0.50:0.05:0.90.The first point of improvement was the introduction of the ECA attention mechanism, which improved the model’s accuracy by 0.7, recall by 1.2, mAP50 by 0.4, and mAP50-95 by 2.0 compared to the original model, while the number of parameters increased by only 0.17%. The second improvement point is the fusion of the small target detection layer with BiFPN, and this improvement results in an increase of 0.4 in accuracy, 1.8 in recall, 0.5 in mAP50, and 1.5 in mAP50-95 compared to the original model, while the number of parameters is reduced by 4.03%. The third point of improvement was the introduction of ScConv convolution, which showed an improvement of 0.2 in accuracy over the original model, 1.3 in recall, 0.3 in mAP50, 1.3 in mAP50-95, and a 3.98% increase in the number of parameters. Overall, all three improvement points effectively improve the base performance of the model without significantly increasing the number of parameters of the model, especially the second improvement point also successfully reduces the number of parameters of the base model. Next, we combine these three improvement points two by two to observe their impact on the results. The experimental results indicated that the mixing of two and two improved all the metrics compared to the original model. Finally, combining the three resulted in a 1.6 increase in accuracy, 2.3 increase in recall, 0.9 and 3.7 increase in mAP50 and mAP50-95, respectively, over the original model, while the number of parameters was reduced by 0.2% compared to the original model. This result indicated that the model performance was significantly improved without increasing the model complexity. The specific results are shown in Table 3.

Table 3 | Ablation experiment.


[image: A table comparing metrics for ECA, P2BiFPN, and ScConv models. Columns include Precision, Recall, mAP50, mAP50-95, and Params. Key values are Precision: 96.7%, Recall: 96.3%, mAP50: 98.9%, mAP50-95: 95.8%, Params: 2.99M. Bold highlights outstanding performance. Crosses indicate model utilization.]



3.3 Comparison experiments

To further demonstrate the superiority of the EBS - YOLOv8 model presented in this paper, we conducted a comparison between the EBS - YOLOv8 model and several well - known counterparts, including Faster RCNN - ResNet50, SSD - VGG, YOLOv5s, CenterNet - ResNet50, and YOLOv7. The test results are detailed in Table 4.

Table 4 | Model comparison.


[image: Table comparing various models with metrics including Precision, Recall, mAP50, mAP50-95, and Parameters. EBS-YOLOv8 has the highest precision, recall, mAP50, and the lowest parameters, highlighted in bold.]
As shown in the table, the EBS - YOLOv8 model excels across all evaluation metrics. Specifically, its mAP50 and mAP50 - 95 values reach 98.9 and 95.8 respectively, significantly outperforming the other models. Moreover, the EBS - YOLOv8 model has the lowest number of parameters (Params), with only 2.99. This parameter count is the smallest among all the models involved in the comparison.

These findings clearly indicate that the EBS - YOLOv8 model manages to maintain high - level detection performance while effectively reducing the model’s complexity.




3.4 Germination rate test results

To accurately evaluate the model’s performance, this paper selects images from the later germination stages of corn seeds for germination detection, with the relevant results presented in Figure 10. In the petri dish, as the corn seeds germinate, the buds exhibit overlapping and crossing, and their sizes vary significantly due to different growth rates. Despite these complex and diverse states, the EBS - YOLOv8 model demonstrates strong analytical capabilities, effectively identifying buds in various conditions.

[image: Grid showing sixteen images of petri dishes, each containing red-labeled samples arranged in a heart shape pattern. Each dish is under different lighting conditions or angles, emphasizing variations in appearance.]
Figure 10 | EBS-YOLOv8 model inspection chart.

In the experiment, a comparison was made between the results of manual observation and those of the EBS - YOLOv8 model’s detection on a test set consisting of 1223 sheets. Given that the germination - rate experiment aims solely to test the model’s effectiveness in detecting germinated seeds, in this experimental segment, this paper disregards the fact that some Petri dishes in the test set are duplicates and focuses on detecting the occurrence of germination. The obtained germination rate merely reflects the comparison between manual - observation and model - detection effects and does not represent the actual germination rate of the batch of seeds.

Manual observation was carried out throughout the germination cycle. To guarantee the experiment’s accuracy, three researchers independently observed the number of germinated maize seeds in the test set. For a total of 11,858 seeds, they finally recorded an average of 2,820 germinations, yielding a calculated germination rate of 23.8%. In contrast, based on the same number of seeds, the EBS - YOLOv8 model detected 3018 germinations, achieving a germination rate of 25.5%.

Regarding the detection of germination in each image, the manual - observation time per image was approximately 2.5 seconds. The cumulative total observation time for 1223 images was around 3057.5 s. When using the EBS - YOLOv8 model for seed - germination detection, in marked contrast, it significantly cuts down the time cost. With an average inference time of only 0.045 s per image, the total time amounts to 55.03 s, thus remarkably enhancing the detection efficiency. The detailed results are presented in Table 5.

Table 5 | Statistical table of manual and modeled tests for germination.


[image: Table comparing artificial observation and model detection in germination metrics. Artificial observation shows 2,820 germinations, a 23.8% rate, and 3,057.5 seconds detection time. Model detection shows 3,018 germinations, a 25.5% rate, and 30.8 seconds detection time. Key metrics are bolded.]



3.5 Germination test results

In this study, the germination potential is defined as the germination rate, different from the traditional definition which is the number of germinations within three days. In this paper, eight Petri dishes were randomly chosen and labeled as 1 - 8. By analyzing the bounding box coordinates output from the germinating seeds detected by the model, the best - performing germinating seeds are manually located through observation, and their time - series germination images are obtained for subsequent relevant research. After this series of binarization processes, the white portion in the image represents the seeds, while the black portion represents the background. Given that the main change in seeds during germination is the growth of buds, in this experiment, the number of white pixel points in the image was counted to objectively mirror the dynamic changes of germination. It was noted that the majority of seeds began to germinate 24 hours after the commencement of the germination experiment. Thus, 24 hours was set as the starting point, and the values of white pixel points at each time point were counted at 1 - hour intervals, followed by an analysis of the relationships among these data. In mathematical modeling, there are many methods for data fitting. Interpolation can be used to fit curves for function approximation, and a curve that meets the requirements is determined through a given set of data. However, the fitted curve will pass through all the given points, which fails to achieve our goal of observing the germination potential. This study aims to obtain a relatively simple approximation of the function by reflecting the overall changing dynamics of the data. Therefore, this study chose curve fitting to fit the regression equation. Among various equations, including exponential functions, linear functions, logarithmic functions, power functions, and polynomial functions, it was found that the polynomial function had the best fitting effect with the highest R² coefficient, as shown in Table 6. During the polynomial fitting process, based on the principles of mathematical modeling, generally, the higher the polynomial order, the higher the fitting accuracy tends to be initially, but it will reach a plateau after attaining the maximum value. This study revealed that the fitting accuracy of a third - order polynomial is superior to that of a second - order polynomial. Although the accuracy of a fourth - order polynomial is slightly higher than that of a third - order polynomial, when attempting to plot the curves for fourth - order and higher - order polynomials, it was observed that the fitted curves exhibited a decreasing trend, which is inconsistent with the experimental expectations. Therefore, in this experimental segment, third - order polynomial regression equations among the polynomials were selected for fitting, as depicted in Figures 11a-h, corresponding to Petri dishes 1 - 8 respectively.

Table 6 | Comparison results of data fitting equations.


[image: A table lists eight groups of equations, each with five equation types: exponential, linear, logarithmic, power, and third-order polynomial. Each type shows its R-squared value and expression. Third-order polynomial equations consistently have the highest R-squared values, highlighted in bold. The section notes that key metrics with outstanding performance are highlighted.]
[image: Graphs (a) to (h) depict "Sprouting Seed Time Chart" with germination time on the x-axis and the number of white spots on the y-axis. Each graph shows a polynomial equation and an R-squared value between 0.97 and 0.99. The blue data points depict observations, while the green line represents the fitted curve. Each chart varies slightly in its polynomial coefficients and the fitted line's trajectory, reflecting differences in the relationship between germination time and the number of white spots.]
Figure 11 | Numbers a-h represent the fitted equation curves for Petri dishes 1-8, respectively.

In this study, the independent variable x of the one-dimensional cubic equation under consideration represents the change in time of germination in hours, while the dependent variable Y represents the increase in the number of white pixel dots of germinated seeds over time. This equation describes the change in the number of white pixel points of the seeds over time. To quantify the germination rate, the first-order derivative of the independent variable x of this equation was calculated to obtain a new equation whose derivative curve represents the change in germination potential, as shown in Figure 12a-h. In the figure, x is the time variation of germination, and Y is the derivative value corresponding to the value of x at that point, and the germination and derivative equations in each petri dish are shown in Table 7.

[image: Eight germination rate graphs, labeled (a) to (h), display derivative value versus germination time. Each graph features a plotted polynomial curve, showing different trends. For example, graph (a) depicts a quadratic increase, while graph (e) shows a peak followed by a decline. Each includes a polynomial equation with coefficients and an R-squared value of 1.0.]
Figure 12 | Numbers a-h correspond to Petri dish equation derivative curves 1-8, respectively.

Table 7 | Germination equation and derivative equation results.


[image: A table with four columns labeled: Name, Curvilinear equation, R2, and Derivative equation. Rows contain entries numbered 1 to 8 with corresponding equations and R2 values. The R2 values range from 0.97 to 0.99, showing the fit of each equation. The derivative equations correspond to the curvilinear equations provided in each row.]
In summary, Figure 11 depicts the temporal variation of seed morphology during the germination process. From a macroscopic perspective, by observing the curves, it is evident that the seed - morphology variable steadily increases throughout the entire germination process. Microscopically, the slopes of these curves mirror the magnitude of change at different time points, and this magnitude corresponds to the rate of change during various periods.

To conduct a more in - depth analysis of this process, the equation curve in Figure 11 was differentiated, yielding a new equation curve presented in Figure 12. Mathematically, the derivative represents the slope. In this study, the graph of the derivative equation reflects the rate of change of germinating seeds over different germination times.

An analysis of Figure 12 leads to the following conclusions: In Petri dish No. 1, the seed germination rate remained constant from 25 to 28 hours and then gradually rose after 28 hours. In Petri dish No. 2, the seed germination rate continuously increased starting from 25 hours. Petri dish No. 3 was similar to Petri dish No. 2, with a gradual upward trend. In Petri dishes Nos. 4, 5, and 8, the germination rates initially showed an increasing tendency, reaching their peak values at 38, 37, and 39 hours respectively, after which the rates began to decline gradually. Petri dish No. 6 exhibited a gradually increasing germination rate initially, which leveled off at 42 hours and then slightly decreased towards the end. Petri dish No. 7 had a relatively slow germination rate at the start, reaching its lowest point at 33 hours, after which the germination rate gradually increased.





4 Discussion

In summary, the EBS - YOLOv8 detection model put forward in this study demonstrated remarkable accuracy in detecting seed germination. The algorithm proposed for researching germination potential exhibits excellent feasibility and is capable of effectively characterizing the germination rate of seeds during the germination process. Consequently, this research furnishes a certain theoretical foundation and technical support for the issue of corn seed germination. Moreover, it offers novel perspectives for the study of the growth potential of other types of crop fruits. This is of substantial practical significance for the advancement of smart agriculture.

The dataset utilized in this study is composed of corn seed germination images captured over a 48 - hour span. This approach significantly cuts down the time cost in comparison to traditional 7 - day experiments. Although it deviates from the traditional 7 - day germination definition requirement, the changes in the seeds are highly conspicuous, and the emergence of germination is more pronounced. As a result, it offers abundant data support for training deep - learning models to detect seed germination.

After training, the proposed EBS - YOLOv8 detection model shows excellent performance on the test set, with an error rate of only 7% compared to actual manual observations. Through model improvement, the model’s adaptability in seed germination detection has been enhanced, demonstrating a substantial improvement over the original model. It can effectively identify germinated seeds. In contrast to traditional germination experiments, this method not only conserves human and material resources, reducing costs, but also enables non - destructive seed detection, thus increasing the reuse rate of experimental seeds.

The algorithm proposed in this paper for measuring germination potential uniformly classifies the seed itself and its germinating part as white pixel points. By analyzing the changes in these white pixel points and fitting the equation curve, it describes the deformation process of seed germination. Further derivation of the equation yields a new equation curve that can be used to depict the rate of seed germination deformation. Experimental results have proven the theoretical feasibility of this method, and the germination rate of seeds at different stages has been observed through curve analysis.

Compared with traditional germination potential studies, this research is more sensitive to seed quality. It is no longer restricted to simply counting the number of germinations but instead delves deeply into describing the germination trend and rate, which are more representative indicators. This study not only enables the measurement of the seed germination rate but also allows for the observation of seed germination potential, thereby providing theoretical support for seed selection and breeding.

However, this study has certain problems and limitations. The research on germination potential, which was based on the germination rate, revealed that some seeds were misclassified during germination detection, as illustrated in Figure 13. Analysis of the confusion matrix (Figure 14) showed that 11279 seeds were correctly classified during training, while 544 were misclassified. This phenomenon might be due to the dataset’s resolution issues and the fact that some non - germinated seeds at the time of detection had noise points misidentified as buds by the model, leading to misclassification as germinated seeds. Future research should further enhance the model’s ability to detect minute features to minimize the occurrence of false - detection phenomena.

[image: A grid of labeled circular objects, each featuring red text tags. The tags read "zm_im" and highlight specific sections on the objects. Green arrows point to particular areas. The layout consists of five rows and four columns.]
Figure 13 | Model misdetection situation.

[image: Confusion matrix displaying predicted versus actual classifications. True positives: 8,223, false negatives: 261, false positives: 283, true negatives: 3,055. A color gradient bar indicates scale from zero to eight thousand.]
Figure 14 | Confusion matrix.

When conducting germination potential measurements, we noticed that for certain individual images, during the process of counting the white pixel points, a downward trend emerged. This led to negative values when calculating the derivative curve, a situation that runs counter to the actual biological principles. Through further in-depth investigation, we have identified that there are two primary causes contributing to this phenomenon:

One of the reasons is that the volume of individual seeds is likely to undergo changes during the germination process. Such changes may stem from the occurrence of drying out during germination, which in turn influences the statistical count of white pixel points. In the subsequent verification process, this assumption was corroborated by analyzing the image data, as depicted in Figure 15. The cropping dimensions utilized in the figure are uniform across all cases. It is evident that as time progresses, while the shoot part of the seed gradually grows, there is a concurrent tendency for the seed itself to shrink. This observed phenomenon indicates that fluctuations in seed volume can have a substantial impact on the measurement of germination potential, thereby affecting the accuracy of the model. Through an in-depth analysis of this phenomenon, we are of the opinion that future research endeavors should incorporate a quantitative analysis of seed volume variations. This approach is expected to enhance the accuracy and reliability of germination potential measurements.

[image: Sequential images of a red cell-like structure viewed from a left angle, with a white-tipped probe approaching it progressively from left to right. The images capture slight variations in the cell's orientation or focus.]
Figure 15 | Seed time series germination images.

Secondly, upon binarizing the images, we noticed that the morphology of certain seeds in consecutive germination images was inconsistent. This inconsistency might be attributed to the image’s own resolution and the conditions within the Petri dish. These factors can lead to edge defocusing and poor contour definition after binarization. Moreover, there are interference points surrounding the seeds that are imperceptible to the naked eye. These interference points may originate from impurities in the culture solution or dust particles that enter when the Petri dish lid is opened, ultimately influencing the experimental results.

We carried out experimental adjustments on multiple binarization methods and discovered that these issues were widespread, and they also had an impact on the fitting curves of our statistical data, as presented in Figure 16. This phenomenon indicates that optimizing the image - processing algorithm to enhance the capacity to detect the minute features of seeds will be beneficial in reducing errors and, consequently, improving the model’s ability to identify the germination status.

[image: Six silhouettes of different animal profiles on a black background. Each silhouette resembles an abstract, head-shaped form with a tapering extension resembling a beak or snout, gradually varying in size and shape from left to right.]
Figure 16 | Binarised time series germination images.

Therefore, the experimental results of germination potential in this study primarily provide an approximate depiction of the seed germination process, and in future research, the key problem to be resolved is how to describe the seed germination rate more precisely and rigorously on the existing foundation; the root cause of this problem is that in the current study, the seed body and the shoot body are regarded as an entirety, which can characterize the seed germination potential yet still has a certain error, so future research efforts should center on separating the seed body from the shoot body to carry out more accurate subsequent calculations, and with this enhancement, it is expected that the accuracy of germination potential measurements will be improved, thereby offering more reliable data support for the study of mechanisms related to plant growth.




5 Conclusion

Based on the YOLOv8n model, this paper presents an enhanced target - detection model, EBS - YOLOv8. This model is capable of effectively detecting germinating seeds, thereby providing crucial technical support for calculating seed germination rates in agricultural production and demonstrating great potential for real - time applications.

To achieve this, the ECA attention mechanism is incorporated to boost feature - extraction capabilities while maintaining the model’s lightweight nature. A small - target detection layer is added and upgraded to a BiFPN network, which significantly improves the detection accuracy of seed buds in the early germination stage. The ScConv convolution is applied to increase network depth, enhancing feature - extraction capabilities and optimizing model complexity. Moreover, the concept of “germination potential” is redefined and integrated with algorithms and mathematical - modeling techniques to enable visual measurement of the seed germination rate. These innovative measures substantially enhance the model’s performance and practical application value in seed - germination testing.

Through experimental verification, the EBS - YOLOv8 model exhibits excellent performance in seed - germination detection and can fully meet the requirements for measuring germination rates in agricultural production. This study holds significant application value in improving labor cost - effectiveness, production quality, and agricultural productivity. Additionally, by reducing computational resources and time consumption, it enhances the efficiency of practical applications, thus being of great practical significance for the promotion and utilization of target - detection technology.
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Reference
1 Ma
et al. (2022)
2 Huang
etal. (2023)
3 Li et al. (2023)
Cao
4

et al. (2021)

Seyyedhasani
5 and
Dvorak (2018)

6 Chen
et al. (2023)
7 This study

Objective

Agricultural machinery
dynamic scheduling

Multi-region agricultural
machinery scheduling

Harvester and grain
transport vehicle
coordination,
dynamic scheduling

Multi-agricultural
machinery
cooperative scheduling

Agricultural machinery
dynamic scheduling

Crop protection, drone
scheduling,
dynamic scheduling

Harvester malfunction
scheduling,
dynamic scheduling

NSGA-III, non-dominated sorting genetic algorithm I1L.

Method

Multi-population cooperative
co-evolutionary
genetic algorithm

Hybrid particle swarm
optimization algorithm

Hybrid optimization
algorithm of NSGA-III and
ant colony algorithm

Improved ant
colony algorithm

Dynamic routing algorithm

Levy simulated
annealing algorithm

Hybrid optimization
algorithm of genetic
algorithm and ant
colony algorithm

eatures

Agricultural machinery scheduling meeting dynamic demands,
reasonably inserting dynamic orders into the initial scheduling plan.

Divide areas using a Voronoi diagram and assign farmlands to service
centers within the region.

Implemented dynamic time windows for grain transport vehicles and
local dynamic obstacle avoidance routes, minimizing the transfer
distance and number of grain transport vehicles.

Resolved the “proximity” issue in task allocation, avoiding overloading
of some agricultural machinery and idleness of others, thus shortening
the operation cycle.

For three dynamic scenarios, scheduling within a single farmland is
planned, providing an adaptive scheduling capacity to handle
continuous changes.

The proposed algorithm performs better in both static and dynamic
planning scenarios. It offers more advantages in terms of drone
adjustment distance and total operation time.

Comparing the three algorithms, the improved genetic algorithm
satisfies the dynamic scheduling of harvesters in case of malfunction,
better ensuring the timeliness of scheduling.





OPS/images/fpls.2024.1413595/table6.jpg
Input: V_[Fault %Fault harvester;
T_Fault_Time %Fault time;
Initial_V %Number of original harvesters;
Initial_Route %Qriginal scheduling route
Initial_Time %QOriginal scheduling time

Output: Farmland, V %harvester

1: Farmland=[];

2: V=Initial_V;

3: V_Fault=0

4: while Extraction of farmland to be operated do:

5:  if V= V_Fault then

6 if breakdown in the field then

7 a=[Find (Initial_Time > =T_Fault_Time)

8: V_Fault = V_[Fault+1

9: else

10: a=Find (Initial_Time > T_Fault_Time)

11: V_Fault = V_Fault+1

12: else if

13:  else

14: a=Find (Initial_Time > T_Fault_Time)

15: end if

16: update Farmland=Initial_Route{a};

17: end while

18: V=V-V_Fault;
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ZInput: Parent_1 and Parent_2% Paternal chromosome;
Output: Child_I and Child_2% Child chromosome;

1: i=ie(1 chromosome_length);% Generate random numbers i
2: j=j&(1 chromosome_length);% Generate random numbers j
3: while i==j do

4: j= je(1,chromosome_length);% Generate random numbers j
5: end while

6: if i<j then % Compare the size

7: C=lijl;

8: else

9: C=[j.il;

10: end if

11: Segment_1=Parent_1(C) and Segment_2=Parent_2(C)

12: Parent_1(C)=Segment_2% Switch the location of two sets of genes
13: Parent_2(C)=Segment_1% Switch the location of two sets of genes
14: While Duplicate numbers exist in Parent_1 do % Conflict detection
15: Establish mapping relationship

16: end while

17: Child_1=Parent_1

18: While Duplicate numbers exist in Parent_2 do % Conflict detection
19: Establish mapping relationship

20: end while

21: Child_2=Parent_2
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Symbol Meaning

y Integrated scheduling costs

S; Farmland area

\4 Traveling speed

K Faulty harvester number

tij Node i to node j traveling time

G Operating hours for farmland j

d Distance from node i to node j (Euclidean distance)
Py Agricultural machinery k penalty cost

Qx The maximum operation of agricultural machinery k
Dy The maximum driving distance of agricultural machinery k
Xijk Agricultural machinery k travels from i to j

Xik Agricultural machinery k servicing farmland i

Waiting time incurred by agriculture machinery k earlier than the

Wi earliest operating time at farm site j
Cp, Cy Cs Unit transfer cost, unit operation cost, unit delay cost (CNY)
C. C The unit time penalty cost C; for early arrival and C, for late
2 arrival (CNY)
, The time in the emergency scheduling plan when agriculture
% . - .
machinery k starts servicing farmland i
. The time in the initial scheduling plan when agriculture machinery
Kt k starts serving farmland i
. The time in the initial scheduling plan when agriculture machinery
ki k starts serving farmland j
Ei The earliest working time of node i

Li The latest working time of node i
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Longitude Latitude Area Time Longitude Latitude Area Time

() () (Mu) window (h) N7 ) (°) (Mu) window (h)
0 104.77427378 30.96110084 - - 36 104.82819557 30.94522465 8.99 10:40-12:00
1 104.77103233 3095354261 7.54 ‘ 08:00-09:00 37 104.82519150 30.94978858 7.79 10:20-12:20
2 104.76270676 30.96060863 10.18 08:00-09:00 38 104.81763840 30.95177602 7.71 10:20-11:20
3 104.75777149 30.96605499 6.29 12:50-16:00 39 104.79274750 3095413147 748 08:00-09:40
4 104.76262093 30.97061793 8.76 13:30-16:10 40 104.78416443 3095519876 859 08:00-10:20
5 104.76545334 30.97786665 7.94 14:00-18:50 41 104.80673790 30.95670766 7.27 09:00-10:10
6 104.75163460 30.97904406 10.12 11:30-13:00 42 104.81463432 30.95976221 7.99 09:30-11:00
7 104.75244999 30.97098590 8.87 12:00-13:20 43 104.82690811 3095781173 7.61 11:10-16:30
8 104.73957539 30.97444473 9.36 11:00-12:00 44 104.82828140 30.96406784 8.55 11:10-17:20
9 104.72708702 30.97562218 9.79 12:20-16:00 45 104.81622219 3096793171 7.24 13:30-17:30
10 104.73567009 30.96701176 8.24 10:00-11:20 46 104.80201721 30.96829969 7.18 13:10-17:40
11 104.74566936 30.96506142 6.02 16:00-18:00 47 104.78837013 3096572381 8.94 12:20-18:00
12 104.72880363 30.96465663 8.62 12:00-17:00 48 104.78892803 30.97234737 [ 8.41 12:00-18:00
13 104.74635601 30.95788533 7.58 09:00-10:20 49 104.78120327 30.97852895 9.16 13:20-18:00
14 104.73155022 30.95449950 6.73 11:00-14:20 50 104.79892731 3097834498 8.62 11:00-18:00
15 104.72700119 30.94780109 7.65 10:40-14:20 51 104.80360508 3097470230 7.58 10:20-18:00
16 104.75450993 30.95365302 9.88 08:00-10:00 52 104.81575012 30.97451833 6.73 10:20-17:40
17 104.73043442 30.93823111 6.99 13:00-16:30 53 104.82600689 30.97113308 7.65 10:20-17:00
18 104.73815918 30.94669691 7.79 14:00-17:40 54 104.82974052 30.93948262 7.88 10:20-17:20
19 104.74905968 30.94794831 9.71 12:00-17:00 55 104.77626801 30.92873381 6.99 10:20-17:10
20 104.73944664 30.93778940 7.48 13:00-16:50 56 104.71867561 3096944042 7.58 10:20-17:50
21 104.75343704 30.93874644 8.59 08:00-09:50 57 104.70674515 3096053503 673 10:20-17:20
22 104.74940300 30.92843930 7.27 08:00-12:00 58 104.71876144 30.95759091 7.65 10:20-17:40
23 | 104.76489544 30.94448851 9.99 08:00-10:00 59 | 104.70966339 30.95030384 I 9.88 10:20-17:40
24 104.76210594 30.93108981 7.61 09:30-11:20 60 104.71803188 30.94187518 9.99 10:20-11:40
25 104.77309227 30.94191198 8.55 08:00-09:30 61 104.71670151 30.93322490 7.79 10:00-11:20
26 104.78150368 30.93425561 7.24 14:00-17:50 62 104.72382545 3093182606 9.71 12:00-17:00
27 10477927208 30.94897886 7.18 12:00-18:00 63 104.71858978 30.92630411 748 09:00-10:30
28 104.79257584 30.93285678 8.94 13:00-17:30 64 104.73215103 30.92350620 859 11:10-17:00
29 104.79012966 30.94474616 8.41 08:00-10:00 65 104.74192500 30.93159598 727 11:10-17:00
30 104.79699612 30.93966667 9.16 08:00-10:30 66 104.76210594 30.92453702 6.99 10:00-11:20
31 104.80261803 30.92773985 8.62 12:20-17:00 67 104.77532387 3092497880 7.61 10:20-17:20
32 104.82373238 30.93035357 7.58 11:20-17:00 68 104.76991653 3093668510 855 09:00-11:00
33 104.81317520 30.93686915 6.73 09:30-11:20 69 104.73708630 30.96082943 7.24 10:00-11:30
34 104.82098579 30.94062370 7.65 10:20-11:20 70 104.76146221 30.95196005 7.18 11:40-18:00

35 104.80622292 30.94651288 7.88 09:00-10:30 71 104.77558136 30.97495987 9.94 10:20-17:20
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Initial movement of costs (CNY)

Harvester no. Operating route Optimum total cost (CNY)
Distance =Operating Penalty

M, 29>30>35>33>34>36>54>32>31>28>67>55>26>27 179.79 332.58 0 512.37
M, 1>25>68>24>66>22>65>64>62>17>20>18>19>70 155.15 333.69 0 488.84
M; 2>6>13>69>10>8>6>7>3>4>5>71>49>47 168.76 368.22 0 ' 536.98
M, 40>39>41>42>38>37>43>44>53>52>45>46>51>50>48 155.51 349.20 0 504.71

M 23>21>63>61>60>15>14>58>59>57>56>9>12>11 221.29 342.75 0 564.76
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Various costs (CN

Broken Optimum = Average
Algorithm SN down ptc>tal costg SEIeEI
time Distance Operatin Penalt deviation
harvester 9 Y cost (CNY) (CNY)
Time 11 M, 1,314.11 1,726.44 4521 2,712.75 5,798.51 5,804.71 363
Improved
genetic Time 12 M, 944.79 1,726.44 0.00 513.29 3,184.52 319352 5.74
algorithms |
Time 13 M; 958.73 172644 6.67 995.94 3,687.78 3,692.98 2.79
Time f1 M, 2,410.02 1,726.44 30022 6,605.95 11,042.63 11,052.63 631
Genetic Time 12 M, 1,306.54 1,726.44 0.00 927.82 3,960.8 39703 7.63
algorithm
Time 3 M 1,719.40 172644 15.01 1,998.55 54594 54729 8.62
Time t1 M, 1,431.03 1,726.44 12136 5,600.34 8,879.17 8,890.87 7.66
Ant
colony Time 12 M, 1,091.41 172644 0.00 919.88 3,737.73 3,749.43 7.85
algorithm
Time 3 M 1,231.07 172644 1654 1,904.44 4,878.49 4,891.49 8.66
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ok

nx

n.s.

0.109¢

0.155¢

0.247d

0.327bc

0.307bc

0.394a

0.294cd

0.361ab

0.132d

0.287¢

0.350a

0.327b

0.239a

0.309b

Shoot/

root ratio

ns.

ns.

3.13¢

2.80c

5.59b

6.17ab

7.34a

7.02a

7.32a

6.96a

2.96¢

5.88b

7.18a

7.14a

5.84a

5.74a

ns.

ns.

1.67a

1.56ab

091c

0.85¢

0.68¢

0.83¢

1.15bc

1.04c

L6la

0.88bc

0.76¢

1.09b

1.10a

1.07a

Chlorophyll
(mg g™t FW)

ot

ns.

0.92b

1.13ab

1.35ab

1.72a

1.38ab

1.65a

1.06ab

1.42ab

1.04b

1.53a

L.51a

1.27ab

1.19a

1.47b

Carotenoid
(mg g™ FW)

ns.

o

ns.

0.230ab

0.260ab

0.273ab

0.315ab

0.232ab

0.354a

0.213b

0.278ab

0.247a

0.294a

0.281a

0.252a

0.238b

0.298a

Ascorbic
acid

(mg 100g™
FW)

9.88a

10.2a

5.38bed

7.44ab

3.59d

7.3lacb

2.58d

3.92cd

10.0a

6.30b

5.45b

3.15¢

5.09b

7.25a

Eens

ox

ns.

** and ***, significant at the 0.01 and 0.001 levels; n.s., not significant (n=4~7). Different letters indicate significant differences among treatments according to Tukey’s test (p < 0.05).
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mber type R2 Expression
Exponential equation 091 3886.6%00
linear equation 0.90 41.265x+3556.8
1 Logarithmic equation 0.65 309.17In(x)+3375.9
Power equation 0.67 -3428.4x752
Third-order polynomial equation 0.97 0.062x-4.9082x>+147.9527x+2144.1588
Exponential equation 0.88 2704.9¢™0186
linear equation 0.84 67.196x + 2606.2
2 Logarithmic equation 0.54 473.88In(x) + 2380.3
Power equation 0.59 253075137
Third-order polynomial equation 0.98 0.0603x-2.2675x%-9.5724x+3729.579
Exponential equation 091 3258.8¢"00%%
linear equation 0.90 33.052x + 3236.5
3 Logarithmic equation 0.62 242.29In(x) + 3104
Power equation 0.65 3141.33000%
Third-order polynomial equation 0.97 0.0046x+1.0051x%-57.441 1x+4141,1599
Exponential equation 0.98 353570094
linear equation 0.97 37.843x + 3513.4
4 Logarithmic equation 0.76 294.47In(x) + 3322.1
Power equation 0.79 3366.4x"°7%
Third-order polynomial equation 0.99 -0.0712x*+8.3181x"
277.671x+6509.3051
Exponential equation 0.97 4155¢>071%
linear equation 097 32.312x + 4141.9
. Logarithmic equation 0.80 259.44In(x) + 3960
Power equation 0.82 3988.7x0%57
Third-order polynomial equation 0.98 -0.0886x+9.7247x*
314.9538x+7424.7836
Exponential equation 097 4061.1e%020%%
linear equation 0.96 110.65x + 3917.6
6 Logarithmic equation 0.70 836.56In(x) + 3415.2
Power equation 0.76 367770473
Third-order polynomial equation 0.99 -0.1153x +15.6859x*-
559.5365x+10383.6654
Exponential equation 0.95 3767.2e"00%x
linear equation 0.94 36.468x + 3746.1
7 Logarithmic equation 0.73 284In(x) + 3561.2
Power equation 0.76 3601x™67
Third-order polynomial equation 0.98 0.1096x°-10.9386x>+387.634x-719.1204
I Exponential equation 0.96 2699.6¢"1*
linear equation 0.95 53.944x + 2647.1
8 Logarithmic equation 0.70 410.57In(x) + 2395.8
Power equation 0.75 2497.7x%123
Third-order polynomial equation 0.99 -0.2138x°+24.1921x*-
836.4996x+12029.3196

Key metrics with outstanding performance are highlighted in bold.
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Name mber of germination Germination rate Detection time(s)
Artificial observation 2820 23.8 3057.5
Model detection 3018 255 30.8

Key metrics with outstanding performance are highlighted in bold.
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Model Precision(%) Recall(%) AP50(%) AP5
YOLOv8n 95.1 94.0 98.0 92.1
Faster Renn-ResNet50 929 916 89.9 55.5 137.1
SSD-VGG 93.6 89.9 90.1 81.9 263
YOLOvSs 943 945 97.4 90.4 %1
CenterNet-ResNet50 9.5 908 926 88.7 3267
EBS-YOLOVS 9.7 9.3 98.9 95.8 2.99

Key metrics with outstanding performance are highlighted in bold.
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Positive ideal solution Negative ideal

W distance D+ solution distance D- MBS ey €
GIRI 3.117 1737 0.358 7
GIR2 ‘ 4346 0.996 0.186 8
GIR3 4.298 0.773 0.152 10
G2R1 1.796 2919 0.619 4
G2R2 0526 4607 0.897 1
G2R3 1.946 2735 0584 5
G3R1 2647 2042 0435 6
G3R2 1363 3.368 0.712 2
G3R3 1.509 3.575 0.703 3
CK 4.397 0.88 0.167 9
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ECA P2BiFPN cConv Precision(%) Recall(%) AP50(%) mAP50-95(%) Param(s/M)
95.1 940 98.0 92.1 301
v 95.8 952 98.4 94.1 301
v 95.5 95.8 98.5 93.6 288
v 95.3 95.3 98.3 93.4 212
v v 955 96.0 98.7 94.6 2.88
v v 96.4 949 98.6 94.4 312
v v 95.7 94.8 98.4 94.1 3.00
v v v 96.7 9.3 98.9 95.8 299

Key metrics with outstanding performance are highlighted in bold.
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Index

. ¥ Information Information Index Parameter
DR entropy value e utility value d Attribute \Al/?i,ge;t layer weight

P, 0.9983 0.0017 + 0.58%
C; 0.9337 0.0663 - 22.13%

Photosynthetic parameter 24.51%
T 0.997 0.003 + 1.01%
G, 0.9976 0.0024 + 0.79%
A 0.9629 0.0371 + 12.39%
B, 0.9788 0.0212 + 7.07%
a, 0.9846 0.0154 + 5.16%
Ry 0.9336 0.0664 + 22.19%

X f;l:::‘:;i: :::i::;e'::dd LsP 0.9991 0.0009 + 0.29% 7116%
LCP 09485 0.0515 + 17.20%
AQY 0.9822 0.0178 + 593%
Priviae 0.9981 0.0019 + 0.65%
Al 0.9992 0.0008 + 0.28%
ss 0.9946 0.0054 + 1.82%

Grain nutrient parameters Ng 0.9961 0.0039 + 1.30% 3.27%
sC 0.9995 0.0005 + 0.15%
100-kw 0.999 0.001 + 0.32%

Yield parameter Gps 0.9998 0.0002 + 0.07% 1.05%
Y 0.998 0.002 + 0.66%

“+” indicates that the index is a positive indicator, where a larger value represents a better outcome. Conversely, “-” indicates a negative indicator, where a larger value represents a worse outcome.
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Parameter Value

Input size pixels 640%640
Epochs 100
Learning rate 0.01
Weight decay 0.0005
Momentum 0.937
Batch size 8
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Treatment

GIR1
0.04 0.0002 0.001 0.72 18.2 1510.26 1643 0.03 1493.83
GIRZ 0.1 0.0001 0.0036 0.63 19.53 1738.32 6.72 0.06 1731.6
GIR3
0.07 0.0001 0.0025 0.51 18.53 1667.39 7.35 0.04 1660.04
GeRL 0.07 0.0001 0.0019 221 20.39 1694.56 34.13 0.05 1660.43
G2R2
0.06 0.0001 0.0015 0.95 233 1917.02 15.57 0.05 1901.45
Gk 0.05 0.0001 0.0011 1.09 2293 1788.37 21.1 0.03 1767.27
G3R1
0.05 0.0002 0.001 0.83 19.57 1613.88 18.17 0.03 1595.71
GIR2 0.08 0.0001 0.0024 1.98 21.24 1744.09 2534 0.07 171875
GRS 0.07 0.0001 0.0017 1.74 21.01 1616.32 27.2 0.04 1589.12
CK
0.05 0.0001 0.0014 0.3 16.95 1678.9 6.73 0.04 1672.17
G o o P P o P o . o
MANOVA R o ke o o ke e i i e
G*R o i o P ke e ke e o

Different letters in the same column indicate significant differences at the 0.05 level, * indicates significant differences at the 0.05 level, and ** indicates significant differences at the 0.01 level. The
same is below.
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Model call(% P50(%) mAP50-95(%
YOLOv8n 95.1 94.0 98.0 92.1
Faster Renn-ResNet50 929 916 89.9 55.5 137.10
SSD-VGG 93.6 89.9 90.1 819 2629
CenterNet-ResNet50 96.5 90.8 92.6 88.7 32,67

Key metrics with outstanding performance are highlighted in bold.
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Name Curvilinear equation R2 Derivative equation

1 0.062x-4.9082x*+147.9527x+2144.1588 097 0.186x°-9.8164x+147.9527
2 0.0603x-2.2675x>-9.5724x+3729.579 098 0.1809x%-4.535x-9.5724

3 0.0046x°+1.0051x>-57.4411x+4141.1599 097 0.0138x>+2.0102x-57.4411
4 -0.0712x*+8.3181x%-277.671x+6509.3051 0.99 -0.2136x*+16.6362x-277.671
= -0.0886x7+9.7247x>-314.9538x+7424.7836 0.98 -0.2658x7+19.4494x-314.9538
6 -0.1153x7+15.6859x>-559.5365x+10383.6654 0.99 -0.3459x%+31.38x-559.5

‘4 0.1096x°-10.9386x°+387.634x-719.1204 0.98 0.3288x>-21.8801x+387.601

8 -0.2138x7+24.1921x>-836.4996x+12029.3196 0.99 -0.6414x%+48.3769x-836.4475
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Input: XML file path xnl_path

Output : White ratio and black ratio

1: Read XML file at path xml_path

2: Parse XML file to obtain DOM tree donTree

3: Get root node rootNode from DOM tree

4: Get object nodes object_node by tag name “object”

5: Get shape nodes shape_node by tag name *size”

6: Get image node image_node by tag name “f1ilename”

7: Extract image name image_name from inage_node

8: for each size in shape_node do

9: Get width and height from size nodes

10:  width — int(size.getElenentsByTagName  ‘width’)
(0] .childNodes(0] .data)

1 height « int(size.getElementsByTagName
(‘height’)[@].childNodes(0] .data)

12: end for

13: Initialize empty list boxes for bounding boxes

14: for each obj in object_node do

15:  Get class name class_name from “name” node

16:  if class_name equals “zm_el” then

17:  Get bounding box nodes bbox from obj
18:  for each bbox in bbox do

19: Extract coordinates x1, y1, x2, y2 from
bbox nodes

20: X1 « int(float(bbox. getElementsByTagName
('xmin’)[@].childNodes[0] .data))

21 y1 « int(float(bbox. getElementsByTagName
(*ymin')[@].childNodes(0] .data))

22: X2 « int(float(bbox.getElementsByTagName
(*xmax')[@].childNodes(0] .data))

23: y2 « int(float(bbox.getElementsByTagName
(‘ymax*) (@] .childNodes(@] .data))

24: Read image img from path

25: Crop image to get cropped_inage

26: Convert cropped_image to grayscale gray._image
27: Apply thresholding to get binary image thresh
28: white pixels ratio

29: Count white pixels white_pixels in thresh

30: Calculate total number of pixels total_pixels
av: Calculate white ratiowhite_ratio

32: Calculate white ratio white_ratio

33: end for

34:  endif

35: end for
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Grapevine bunch detection Grapevine bunch condition detection

P(%) R(%) mAP50 mAP50- T P(%) R(%) mAP50 mAP50- T

(%) 95 (%) (%) 95 (%)
YOLOvS5s 7.0 16.0 94.4 91.3 94.6 756 23 90.1 87.0 89.1 69.5 24
YOLOv5Sm 209 48.2 95.3 90.4 95.7 78.8 36 89.6 88.0 89.3 72.7 3.6
YOLOv6n 4.6 114 - - 94.8 75.2 28 - - 90.0 714 2.9
YOLOv6s 18.5 453 - - 938 76.1 34 - - 89.4 726 34
Gold- 5.6 121 = = 95.0 750 32 - - 88.9 70.6 3.1
YOLO-N
Gold- 215 46.0 - - 94.1 753 37 - - 88.7 70.7 37
YOLO-$
YOLOV7- 6.0 132 90.8 90.7 93.8 64.6 33 87.1 86.2 86.6 60.1 33
tiny
YOLOv7 372 105.1 93.0 90.7 954 74.8 64 88.2 84.6 87.9 68.2 6.4
YOLOX-s 89 26.8 - - 93.6 61.9 50 - - 87.1 58.0 4.7
PP- 7.6 164 = - 959 77.3 44 o = 86.2 69.8 4.4
YOLOE-s
PP- 234 49.6 = - 95.7 78.6 20.1 = = 86.3 70.5 234
YOLOE-m
DAMO- 8.6 18.2 = - 95.0 733 6.0 = = 89.5 68.8 6.0
YOLO-T
DAMO- 163 38.0 - - 94.0 72.8 9.8 - - 90.0 70.2 9.8
YOLO-$
YOLOV8s 111 28.6 94.7 90.4 95.2 80.5 23 89.2 87.3 90.1 76.0 23
YOLOvS8s- 9.6 26.3 94.7 90.3 95.5 824 27 91.4 86 91.4 78.6 27
grape

‘The bold values highlight that the proposed modules and models perform better compared to other benchmark methods.





OPS/images/fpls.2024.1433543/im4.jpg





OPS/images/fpls.2025.1557261/crossmark.jpg
©

2

i

|





OPS/images/fpls.2024.1395796/table1.jpg
Annotations

Val Test

Grapevine Bunch 10,010 6,912 2,329 2431 11,672
bunch detection

Grapevine bunch OptimalBunch 7,678 4,958 1,637 1,826 8,421

condition detection
DamageBunch 3,045 1,954 692 605 3,251
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Class

Targeted analysis

Untargeted analysis

Categof

g
3
g
g
=
S
£
5
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3
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Genetic techniques

Phenotypic techniques

Biochemical techniques

Advanced techniques

Molecular techniques

Phenotypic techniques

Biochemical techniques

Advancedtechniques

Technique

Quantitative RT-PCR (RT-qPCR)

Northern blotting

Western blotting

Reporter gene assays

Genetic mutants

Phenotypic assays

Enzyme activity assays

CRISPR/Cas9

RNA sequencing (RNA-Seq)

Small RNA sequencing (small
RNA-Seq)

Visual observation

Microscopy

Metabolite profiling

Proteomics

Chromatin immunoprecipitation
sequencing (ChIP-Seq)

Description

Quantification of specific RNA
molecules to assess reduction in target
or off-target genes.

advantages: high specificity;
disadvantages: limited to a minimum
RNA size, sequence information
required, single gene analysis

Quantification of specific RNA
molecules to assess reduction in target
or off-target genes as well as specific
detection of siRNAs.

advantages: high specificity, detection
of fragments possible, detection of
short RNA molecules;

disadvantages: sequence information
required, time-intensiveness, single
gene analysis

Quantification of specific proteins to
assess reduction in target or off-target
genes at the protein level.

advantages: quantification of gene
products, integrated assessment of
mRNA degradation and translation
inhibition;

disadvantages: requires specific
antibodies, single protein analysis

Assessment of the effect of RNAi on
target gene expression in a GM
reporter system.

advantages: quick assessment, clear
read out;

disadvantages: artificial system, single
gene analysis

Comparison of RNAI effects with
genetic mutants to validate phenotypic
effects of gene knockdown.
advantages: coverage of all phenotypic
effects;

disadvantages: mutant required, no
discrimination between target and off-
target effects

Measurement of physiological
parameters such as photosynthetic
efficiency and hormone levels
comparing RNAi-based GMP with
unmodified comparator.
advantages: identification of
physiological parameters;
disadvantages: no discrimination
between target and off-target effects

Measurement of activity of enzymes
encoded by target genes to confirm
functional consequences.

advantages: assessment of functional
consequences;

disadvantages: restriction to the target
gene, no assessment of off-

target effects

CRISPR/Cas9 gene editing for
validation of RNAI effects by knocking
out target genes; Editing of potential
off-target genes to assess phenotypic
outcomes compared to RNAi
treatments.

advantages: specific analysis of
phenotypic changes induced by target
knockout;

disadvantages: knowledge about off-
target required, time consuming for a
number of off-targets

Next generation sequencing of RNA
and differential gene expression
analysis to assess target and off-target
genes.

advantages: global detection of gene
expression changes;

disadvantages: time consuming, ideally
availability of (high quality) reference
genome required (workaround: de
novo transcriptome assembly)

Next generation sequencing of small
RNAs for siRNA and miRNA
quantification e.g. to inform
bioinformatic off-target predictions.
advantages: global analysis of small
RNAs;

disadvantages: time consuming

Observation of plant phenotypes such
as growth rate, seed weight, leaf shape,
and flower development.

advantages: global assessment of
phenotypic effects;

disadvantages: no discrimination
between target and off-target effects

Microscopic observation cellular and
subcellular changes.

advantages: assessment of effects at the
cellular and subcellular level;
disadvantages: no discrimination
between target and off-target effects

Gas chromatography (GC) coupled
mass spectrometry (MS) analysis of
changes in metabolite levels to provide
insights into affected metabolic
pathways.

advantages: global assessment of
metabolites;

disadvantages: time-consuming, no
discrimination between target and off-
target effects

Liquid chromatography coupled mass
spectrometry (LC-MS) to identify
changes in protein abundance and
post-translational modifications.
advantages: global detection of gene
expression changes at the protein
level;

disadvantages: lower sensitivity,

time consuming

Assessment of changes in DNA
methylation or histone modifications
and transcription factor binding as a
result of RNAi.

advantages: global assessment of
epigenetic TGS;

disadvantages: time consuming

References

(Chi et al., 2008; Sun and Rossi, 2009;
Holmes et al., 2010; Varkonyi-Gasic
and Hellens, 20115 Augustine et al.,
2013; Kitzmann et al,, 2013; Liu et al,,
2014; Czarnecki et al., 2016; Keykha
et al,, 2016; Manske et al., 2017; Betti
et al, 2021; Sarkar and Roy-Barman,
2021; Xu et al,, 2021; Zhou et al.,
2021; Lopez-Marquez et al,, 2023;
Kyslik et al., 2024)

(Chi et al., 2008; Fukuhara et al., 2011;
Augustine et al., 2013; Manske et al.,
2017; Sarkar and Roy-Barman, 2021)

(Kumar et al., 2003; Sahin et al., 2007;
Sun and Rossi, 2009; Holmes et al.,
2010; Liang et al., 2013; Han, 2018;
Vidarsdottir et al., 2019; Kyslik

et al,, 2024)

(Kumar et al.,, 2003; Smart et al., 2005;
Rinaldi et al,, 2008; Sun and Rossi,
2009; Manske et al., 2017; Lopez-
Marquez et al., 2023)

(Chan et al., 2006; Czarnecki et al.,
2016; Krzyszton and Kufel, 2022)

(Chi et al,, 2008; Liu et al., 2014; Xu
et al., 2021; Zhou et al,, 2021; Tao
et al, 2023)

(Chi et al., 2008; Betti et al., 2021;
Sarkar and Roy-Barman, 2021)

(Moore, 2015; Kanchiswamy et al.,
2016; Peretz et al., 2018; Kleter, 2020;
Mujtaba et al., 2021; Bock et al., 2022)

(Chan et al., 2006; Surget-Groba and
Montoya-Burgos, 2010; Haque and
Nishiguchi, 2011; Narzisi and Mishra,
2011; Jiao et al., 2021; Xu et al,, 2021;
Gaffo et al., 2022; Krzyszton and
Kufel, 2022; Nguyen et al, 2022; Tyagi
et al, 2022; Dong et al., 2023; Lopez-
Marquez et al., 2023; Budnick et al.,
2024; Cazares et al., 2024)

(Huang et al,, 2024)

(Augustine et al., 2013; Manske et al.,
2017; Lopez-Marquez et al., 2023)

(Chi et al., 2008; Kitzmann et al.,
2013; Betti et al., 2021; Sarkar and
Roy-Barman, 2021; Xu et al, 2021;
Zhou et al., 2021; Kyslik et al., 2024)

(Chen et al., 2012; Huang et al., 2022;
Baysoy et al., 2023; Bressan et al.,
2023; Naik et al,, 2023; Huang

et al,, 2024)

(Chi et al,, 2008; Lacourse et al., 2008;
Asano and Nishiuchi, 2011; Chen
et al,, 2012; Naik et al., 2023)

(Warnatz et al., 2011; Muhammad
et al,, 2020; Navarro-Mendoza
et al, 2023)
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Category

Post — Transcriptional Gene Silencing (PTGS)

Transcriptional Gene Silencing (TGS)

Mechanism

SiRNA — Mediated mRNA Degradation

SIRNA — Mediated Translation inhibition

miRNA — Mediated mRNA Degradation

DNA Methylation

Histone Modification

Description

siRNAs guide RISC to
complementary mRNA, leading to
its cleavage and degradation.

SiRNAs guide RISC to
complementary mRNA, leading to
translation inhibition

miRNAs guide RISC to
complementary or partially
complementary mRNASs, resulting
in cleavage or repression.

siRNAs guide DNA methylation
machinery to specific genomic
regions, repressing transcription.

siRNAs direct histone-modifying
enzymes to specific loci, causing
chromatin condensation and
gene silencing.

Source of siRNA

Trans-Acting siRNAs
(ta-siRNAs)

References

(Vazquez et al., 2004; Allen
et al., 2005; Axtell
et al., 2006)

Natural Antisense
Transcripts (NATSs)

Exogenous short hairpin
RNA (shRNA)

(Borsani et al., 2005; Jen
et al., 2005; Zhang
et al,, 2012)

(Wesley et al., 2001;
Helliwell and Waterhouse,
2003; Senthil-Kumar and
Mysore, 2011)

Long Non-Coding
RNAs (IncRNAs)

Virus-derived siRNAs

Heterochromatic siRNAs
(hc-siRNAs)

Trans-Acting siRNAs
(ta-siRNAs)

Natural Antisense
Transcripts (NATSs)

Exogenous short hairpin
RNA (shRNA)

Long Non-Coding
RNAs (IncRNAs)

(Kim and Sung, 2012; Liu
etal, 2012; Wu
etal, 2012)

(Ruiz et al., 1998; Lu et al.,
2003; Burch-Smith
et al,, 2004)

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

(Vazquez et al., 2004; Allen
et al., 2005; Axtell
et al., 2006)

(Borsani et al., 2005; Jen
et al,, 2005; Zhang
etal, 2012)

(Wesley et al., 2001;
Helliwell and Waterhouse,
2003; Senthil-Kumar and
Mysore, 2011)

(Heo and Sung, 2011; Kim
and Sung, 2012; Liu
etal, 2012)

Virus-Derived siRNAs (VIGS)

Endogenously
expressed miRNAs

Long Non-Coding
RNAs (IncRNAs)

Heterochomatic siRNAs
(he-siRNAs)

Pol IV/Pol V-derived siRNAs

Endogenously
expressed miRNAs

Trans-Acting siRNAs
(ta-siRNAs)

Natural Antisense
Transcripts (NATSs)

Exogenous short hairpin
RNA (shRNA)

Long Non-Coding
RNAs (IncRNAs)

Heterochomatic siRNAs
(hc-siRNAs)

(Ruiz et al., 1998; Lu et al,,
2003; Burch-Smith
et al., 2004)

(Jones-Rhoades et al., 2006;
Mallory and Vaucheret,
2006; Voinnet, 2009)

(Wierzbicki et al., 2008;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Movahedi et al,, 2015)

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

(Wu et al,, 2010; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

(Allen et al., 2005; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

(Borsani et al., 2005; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

(Waterhouse and Helliwell,
2003; Zhang and Zhu,
2011; Matzke and

Mosher, 2014)

(He et al,, 2011; Zhang and
Zhu, 2011; Liu et al,, 2012)

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

Pol IV/Pol V-derived siRNAs

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

Trans-Acting siRNAs
(ta-siRNAs)

Natural Antisense
Transcripts (NATSs)

(Axtell et al., 2006; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

(Borsani et al., 2005; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

Exogenous short hairpin
RNA (shRNA)

Virus-Derived siRNAs (VIGS)

(Helliwell and Waterhouse,
2003; Law and Jacobsen,
2010; Senthil-Kumar and
Mysore, 2011)

(Baulcombe, 2004; Blevins
et al,, 2006; Matzke and
Mosher, 2014)
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nosZ nosZ

ROC O keystone taxa bacterial diversity
Direct effects ~0.04 | -0.18 085025 -0.36 | 0 ‘ 0]083 005 | 0.08
Indirect effects 01]0.07 0]-022 0.04 | ~0.61 [ 0]0 0lo
I Total effects ~0.04 | -0.11 085 0.03 ~032 | ~0.61 0]083 005 | 0.08

The numbers to the left and the right of the vertical bar (|) represent the parameters from structural equation modeling of non-R and R modes, respectively.





OPS/images/fpls.2024.1433543/im15.jpg





OPS/images/fpls.2025.1541202/table2.jpg
Network metrics non-R mode R mode

Number of nodes 202 262
g‘::;zz/‘;;:gdagt:e) 440 (82.1%/17.9%) 606 (88.0%/12.0%)
Average degree 4.35 4.63
Clustering coefficient 0.45 0.53
Modularity 0.82 0.81
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NS 7.10a 6.79¢ 9.05a 1.29a 2.01c 19.58¢ 99.2b 5.17a 2.07a 1.75b 12.66b

ws 6.95ab 9.04b 6.16¢ 1.00ab 2.15b 23.05b 110.5b 3.39b 1.63cd 2.09ab 14.07ab
RS 6.80b 10.23a 6.53b 0.99b 2.25ab 25.44ab 129.4a 3.73ab 1.70be 2.18a 15.87a
WRS 6.63b 10.44a 6.44bc 1.10ab 2.38a 26.13a 135.6a 3.47b 1.79b 2.11a 16.25a

Indicators with and without “w” represent those properties in standing water and soil, respectively. Different lowercase letters in the same column indicate significant differences (P < 0.05)
according to the Tukey’s HSD post-hoc test. SON, soil organic nitrogen; DOC, dissolved organic C; DON, organic nitrogen; NS, no straw; RS, rice straw only; WS, wheat straw only; WRS, rice
straw and wheat straw.
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Source Yy Y> Y3
Model 0.0018 ** <0.0001 ** < 0.0001 **
X, o7 0.0010 ** 0.1549
X 0.0017 ** < 0.0001 ** < 0.0001 **
XX, 0.7151 0.6386 0.6238
X2 0.8484 0.0360 0.6788
X2 0.0009 ** 0.0116 * 0.0030 **

* means significant, and ** means highly significant.
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Material Parameter Value
Poisson’s ratio 0.4
Seed particles Solids density (kg-m’3) 1197
Shear modulus (Pa) 1.37E+08
Poisson’s ratio 0.33
Seed-metering device 3
lids density (kg:m 27
(Al alloy) Solids density (kg-m™) 00
Shear modulus (Pa) 2.7E+10
Coefficient of restitution 0.182
Cogfﬁcgnf of &
Seed to seed static friction
fhici f
Co.e c1e.nt.o 0.02
rolling friction
Coefficient of restitution 0.62
Seed to seed- Coe.fﬁm.enf of 0.3
. . static friction
metering device
Coefficient of 0.09

rolling friction
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The The

The P-value of

Eoger origina_vl conclu-sioh without
conclusion publication bias
Yield 0.1 # 3,
rice iz(;r:rlltage 0.02 )
rice gilr]i:iltage 0.009
Flour yield 0.088 ¥ ki
Chalky grain rate 0.249 ¥ *
C}:iae];z:“ 0.001 *
Grain volume 0.201
Amylose content 0.235
Gel consistency 0 *
Flavor ‘ 0.004 ‘ *
Grain hardness 0.719 * *
Sedil‘r,l;rlllteation 0.012
Resistance/
extensibility 0.442
relation
gluter‘llvce(:ntent 0.161
Water absorption 0.08 * *
Oil/fat content 0.004
Protein content 0.777 * *
Histidine 0 *
Threonine 0.033 *
Valine 0.428
Methionine ‘ 0.107 ¥ ki
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Phenylalanine 0.496
Lysine 0.605
Arginine 0.007 *
Total amino
acids 0.056 ¥ ki
concentration
N 0.001
P 0.158 * *
K 0.158
Fe 0.011
Zn 0.478
We used the Egger’s test (HO: no small-study eﬁfercts) to test the publication bias in our result, p >

.

0.05 means without publication bias. “*’means the effect of straw return was significant (p > 0.05).
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ResNet164- DenseNet40-

VGG16-VGG8

ResNet8 DenseNet10
Teacher = 90.77% 88.00% 90.59%
Student | 89.48% 82.66% 77.12%
Fitnets 90.41% 84.50% 79.15%
AT 90.27% 84.31% 84.50%
SP 66.60% 73.62% 72.14%
CcC 81.33% 76.01% 80.81%
VID 90.41% 80.81% 81.92%
RKD 90.54% 83.95% 84.32%
PKT 67.16% 64.02% 61.99%
FT 89.67% 82.84% 81.18%
NST 90.42% 85.05% ‘ 84.87%

The bold values indicate the highest accuracy achieved under the same structure in
the experiment.





OPS/images/fpls.2025.1494741/fpls-16-1494741-g004.jpg
(A) 15 mm Control
= 32 *%K
= 128 ]
— 512 | ol \
* %k *%
* |* T % %k

%k %k Xk

-
(=)

* %k %k

H,O, [umol g FW-1]

Leaves Caryopsis

W
o

MDA [nmol g FW-1]
N
o

RN
o

Caryopsis
k%
(C) 20 .
=
ﬁ
5 T
I; 1.5
LL
(@)
[s
E 10
-
& u i
3
+ 0.5
L
0p]
Q)

=
o

Leaves Stem Roots Caryopsis





OPS/images/fpls.2024.1413595/table9.jpg
ZInput: elite
Output: new_population
1: %Select the best individuals from the current population
elite «— get_best_individual(current_population)
2: %Duplicate the best individuals
elite_copy « copy_individual(elite)
3: %Add the duplicated best individuals, elite_copy, to the offspring
generated by crossover and mutation
offspring «— crossover_and_mutate(selected_parents)
offspring « offspring U {elite_copy}
4: % Directly add the original best individuals, elite, to the next
generation population
current_population < {elite} U select_from(offspring, population_size - 1)
5: %Update the population to the new generation

new_population « current_population
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3:  while i==j do

4: j=je(1 chromosome_length);% Generate random numbers j
5:  end while

6: tI=chromosome(i);

7: t2=chromosome(j);

8: chromosome(i)=t2;

9: chromosome(j)=t1;

10: New_chromosome=chromosome;
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Grapevine bunch detection Grapevine bunch condition detection

P (%) R (%) mAP50 (%) mAP50-95 (%) R (%) mAP50 (%) mAP50-95 (%) FPS

Baseline 94.7 90.4 952 80.5 107.5 89.2 87.3 90.1 76.0 106.4
(CloU)

Foca EloU 93.5 90 95.5 80.7 107.5 89.5 86.2 89.3 75.7 105.2

‘WIoUv3 1 94.8 90.2 954 80.2 108.7 89.4 85.6 89.3 75.5 105.2

MPDIoU 94.8 90.6 95.1 81 107.5 89.8 86.1 90.1 76.7 106.4

The bold values highlight that the proposed modules and models perform better compared to other benchmark methods.
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Grapevine bunch detection Grapevine bunch condition detection

R mAP50 mAP50- P R mAP50 mAP50- FPS
(%) (] 95 (%) (%) (%) (VA] 95 (%)
Baseline 11.1 28.6 94.7 90.4 95.2 80.5 107.5 89.2 87.3 90.1 76.0 106.4
(upsample)
CARAFE 112 28.8 939 903 953 807 67.1 909 855 88.8 755 66.2
DySample 112 287 946 9L1 95.3 81.7 980 908 851 90.4 76.8 96.2

The bold values highlight that the proposed modules and models perform better compared to other benchmark methods.





OPS/images/fpls.2024.1433543/M2.jpg





OPS/images/fpls.2025.1557261/fpls-16-1557261-g007.jpg
PC2 (20.9%)

20 AL 0 1 2 3
PC1 (30.7%)

AH *p<-0.05 ** p<=0.01

FFF e





OPS/images/fpls.2024.1395796/table7.jpg
Method Params GFLOPs Grapevine bunch detection Grapevine bunch condition detection

2 P R mAP50 mAP50— EESHlENE R mAP50 mAP50— FPS
(%) (%) 95 (%) (&) (%) (%) 95 (%)

Baseline 111 286 947 | 904 95.2 80.5 5 892 873 90.1 76.0 106.4
SE 11.2 287 958 | 899 95.2 80.7 ( 9.1 | 861 89.4 75.6 99.0
ECA 1.2 28.7 946 909 95.2 813 X 90.4 87 89.9 754 99.0
NAM 111 287 94 90.2 95.1 80.7 X 902 | 873 90.6 76.1 98.0
EMA 111 28.7 958 | 887 94.7 80.4 . 92 85 90.4 76.3 84.0
MECA 111 287 952 908 9% 81.3 % 904 | 864 90.6 769 97.1

‘The bold values highlight that the proposed modules and models perform better compared to other benchmark methods.
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Datasets  Baseline A Params GFLOPs 2 R mAP50 mAP50-

(M) (VA 95 (%)

Grapevine v 11 286 947 | 904 952 805 1075
bunch

detection v v 11 287 939 908 959 812 98.0

v v 99 266 945 895 958 820 962

v v 108 284 955 900 959 810 1064

v v 112 287 916 911 953 817 980

v v 111 286 948 906 951 810 1075

Grapevine v 11 286 892 | 873 90.1 760 106.4
bunch

oo v v 11 287 904 | 864 906 769 971

detection 7 v 99 266 896 869 909 77 943

v v 108 284 913 860 904 767 1053

v v 112 287 908 851 904 768 962

7 v 111 2856 898 86.1 90.1 767 1064
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Metrics Abbreviation Formula Short descriptiol

Precision P _ TP P is the proportion of the samples that the model predicted to be positive samples that are
TP + FP actually positive samples. R is the proportion of the actual positive samples and the model-
Recall R o ™ predicted positive samples.
" TP+FN
Average AP 4 AP is the average precision of detecting one class.
2n AP = PRdR
precision o
Mean mAP E.C AP; mAP is used to evaluate the performance of the model for all classes of mean average precision,
average Lo C where C is the total number of classes and AP; is the average precision for the ith class, where
precision mAPS50 represents the mean average precision for all classes when IoU = 0.5; mAP50-95
represents the mean average precision for all classes across various IoU thresholds, ranging from
0.5 to 0.95 in increments of 0.05.
Frames FPS EPS = 1000 FPS is used to evaluate the speed of object detection, which is the number of images that can be
per (tpre—process * tinference *+ tnms) | processed per second or the time required to process one image to evaluate the detection speed.

second
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Nanomaterials/ Dose and Effect on Effect on Pathogenic Reference
Nanoparticles mode Pathogenic microbes functions/
of microbes Effect on plant
application
Metal Silver 2nm 2.16 pg/mL, Both the surface and intracellular organelles of Affects several energy (Wen
(Ag) related direct Ustilaginoidea virens were disrupted, and affect mycelial utilization and metabolic et al, 2023)
application growth, conidiation, and virulence of U. virens processes in
to soil Ustilaginoidea virens
21/29 400 pg/mL, Ralstonia solanacearum envelope is damaged, the cells The cellular metabolic activity | (Haroon
5nm direct bulge and form small pits. and surface adhering ability et al,, 2019)
application of R. solanacearum were
to soil completely lost
18 nm 100 ppm, direct | Led to cell deformation and loss of the rod-shaped Significantly reduced the (Ocsoy
application structure of the Xanthomonas perforans severity of bacterial et al, 2013)
to soil spot disease
5-35 nm 20 pg/mL, Ralstonia solanacearum cell wall and plasma membrane Inhibit the growth, (Abd Alamer
direct rupture, as well as nucleic acid material leakage community and swimming et al,, 2022)
application movement of
to soil Ralstonia solanacearum
Metal copper 10-100 nm 100 mg/L, Cell wall damage of; such as rough and convex cell Activated a series of defense (Chen
(Cu) related direct envelope, accompanied by obvious local collapse enzyme activities in tobacco et al., 2022)
application and distortion
to soil
29.11- 100 pg/mL, Induced oxidative stress, biofilm inhibition and cell Regulate host’s active (Noman
7856 nm  foliar spray integrity destruction in Acidovorax citrulli immune response to inhibit et al, 2023)
watermelon
bacterial fruit blotch
200- 0.5 mg/mL, Damage the cell membrane of Fusarium oxysporum f. sp. | Effectively treats Fusarium (Lopez-Lima
500 nm direct Iycopersici, altering the permeability of the cell membrane, | wilt while promoting the etal, 2021)
application leading to the disintegration of the cell membrane, and growth of tomato plants
to soil eventually to cell death
Metal iron 86 nm 250 pg/mL, Xanthomonas oryzae pv. oryzae cell membrane Maintaining ionic (Ahmed
(Fe) related foliar spray destruction, ROS formation, DNA damage, protein and homeostasis,and improving etal, 2022)
enzyme degeneration, and leakage of intracellular contents = the photosynthetic profile
ultimately lead to cell death
Metal zinc 30 nm 200 mg/L, Direct antifungal activity against M. oryzae by inhibiting Fight against blast disease;and | (Qiu
(Zn) related direct its conidiation and appressorium formation enhance the tolerance of rice et al., 2023)
application to seedlings to abiotic stress
soil or
foliar spray
0.323 nm 100 pg/mL, Destroyed Pseudomonas syringae pv. tomato DC3000 Protect tomato against the (Elsharkawy
foliar spray membrane and induces deformation of the contents of the = bacterial speck pathogen,and et al., 2020)
cytoplasm, leading eventually to cell death promote plant growth
Silica (Si) related 5-15 nm 0.2 g/L, Fusarium oxysporum f. sp. lycopersici and Alternaria Enhance plant growth, (Parveen and
foliar spray solani showed disturbed and fragmented mycelium photosynthetic pigments and Siddiqui,
reduce the disease indices 2022)
80-100 nm 300 mg/L, Phytophthora infestans structurally distorted with terminal = Prevented the appearance of (Chen
foliar spray deformity and local shrinkage small brown spots and aerial et al,, 2023)
mycelium on the
potato tubers
Chitosan NA Ig/Linoculated  Inhibited the mycelial growth and spore germination of | The antioxidant defense (Zhang
nanoparticles into the ginger Fusarium solani system of ginger at a high et al., 2024)
rhizomes level in response to hence
wound reduced disease indices

#NA, Not available.
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Negative ions (mg/L)

Treatment time

NOs~ S04~ PO,3 -
0 min 739.4* 209.6 735
5 min 788.0 222.8 78.9

10 min 795.4 2243 779

*Each value was assessed from one experimental measurement.
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Primer name

Sequence (5'— 3')

Reference

HHP3-F CAGAGACACCTTCCTTAGT
(Wang et al., 2019)
HHP3-R TTACCACCATCATCCACAT
WRKY2-F CGGTTACTCGTTCGGTTTAGG
(Tang et al., 2013)
WRKY2-R CGGTTGAGTCATATACGGGTG
ABII-F AACTGCCCTTCCTTTGTCC
(Kong et al., 2018)
ABI1-R AGGAATGATCGACGGTTTCA
Actin-F CTCAGTCCAAAAGAGGTATTCT

Actin-R

GTAGAATGTGTGATGCCAGATC

(Wang et al., 2019)
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Treatment Chlorophyll = Chlorophyll = Chlorophyll

group a (mg/qg) b (mg/g) a+b (mg/qg)
CK 1.07 + 0.04* 0.51 + 0.02° 1.58 + 0.05*
i 1.03 % 0.05* 0.53 + 0.01° 1.56 + 0.06*
T2 1.75 + 0.03° 0.77 + 0.02* 2.52 + 0.05°

CK is the control group, T1 is the Bv-116 treatment group, and T2 is the bio-organic fertilizer
treatment group. The data are presented as mean + SD. Within the same column, different

letters (a-b) indicate significant differences at p < 0.05 level.
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(g per plant)

Treatment Plant Stem diameter

group height (cm) (mm) leaf Leaf root root
fresh weight dry weight fresh weight dry weight
CK 65+ 0.14° 254 +0.04° 3.11+028° 0.45 + 0.02° ‘ 028 + 0.05° 003 + 0.00°
Tl 7.1£021° 351 = 0.08" 7.74 £ 021° 1.07 +0.07° ‘ 1.03 0.03" 0.11 +0.02°
T2 10.47 + 0.17° 446 + 0.04* 181017 279 + 0.04° ‘ 153 + 0.06° ' 0.24 + 0.06*

CK is the control group, T1 is the Bv-116 treatment group, and T2 is the bio-organic fertilizer treatment group. The data are presented as mean + SD. Within the same column, different letters (a-c) indicate
significant differences at p < 0,05 level.
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AgNPs concentra-

tion (ug mL™) % Germination Vigor index | Vigor index Il MGT (days) GRI (%/day)
0 94.3 3980.6 6259.7 | 32 31.0
32 957 4384.7 7759.7 | 52 314
128 929 41853 ‘ 7660.5 ‘ 32 310
512 914 4334.3* 8096.1* 32 30.5

MGT, mean germination time; GRI, germination rate index; AgNPs, silver nanoparticles.
*Statistical significance (p-value < 0.05) between AgNPs treatment and control (n=65).
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