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Introduction

The human eye is not just a window to the soul but also a critical portal through which

medical professionals can glean information about a patient’s overall health. Advances

in technology and research over recent decades have underscored the eye’s value as

a diagnostic tool for detecting systemic diseases. This editorial explores how ocular

assessments can be leveraged for predictive and diagnostic purposes in systemic disorders,

underlining the scientific basis and clinical applications of such practices.

Ocular manifestations of systemic diseases

Systemic diseases often manifest in the eye due to their unique vasculature and neural

composition. The retina, for instance, shares similar embryological origins with the brain

and is supplied by a rich vascular network. This makes it an ideal site for detecting

vascular and neurological changes that reflect systemic conditions. Conditions such as

diabetes, hypertension, and autoimmune diseases frequently display characteristic ocular

signs, which, when detected early, can facilitate timely interventions.

For example, diabetic retinopathy remains a prominent example of how ophthalmic

examinations can reveal the severity and progression of systemic diabetes. Retinal imaging

enables the identification of microaneurysms, hemorrhages, and neovascularization, all

hallmark features of the disease (1). The presence of these signs not only confirms the

diagnosis but can also predict the potential for systemic complications (2).
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Ocular imaging technologies

Advancements in optical coherence tomography (OCT),

fundus photography, and retinal angiography have improved the

diagnostic capabilities for systemic disorders (3). OCT, with its non-

invasive cross-sectional imaging, has been instrumental in assessing

macular edema and optic nerve health. It can reveal subtle changes

that might correspond to early signs of systemic diseases, including

multiple sclerosis and Alzheimer’s disease (4). The technique’s high

resolution enables clinicians to observe changes in the retinal

nerve fiber layer (RNFL) thickness, which is crucial in neurological

assessments (5).

Artificial intelligence (AI) has also been a game-changer in

ocular diagnostics (6). By applying deep learning algorithms

to retinal images, researchers have developed predictive models

capable of assessing cardiovascular risk factors, such as age,

gender, and blood pressure, based solely on retinal scans

(7, 8). Such models can transform the way systemic risk

stratification is conducted, making assessmentsmore accessible and

less invasive.

Cardiovascular and neurological
insights

The retinal microvasculature is often reflective of the broader

systemic vascular system. Conditions such as hypertensive

retinopathy can reveal not only the presence of high blood pressure

but also its duration and impact on vascular health (9). Retinal

vascular changes like arteriolar narrowing and arteriovenous

nicking are indicative of chronic hypertension and are predictive of

an increased risk of stroke (10). Furthermore, studies have shown

that monitoring the retinal vessel calibers can serve as an indicator

for coronary artery disease, suggesting that ocular assessments

could be included as part of a cardiovascular risk assessment

protocol (11).

In the realm of neurological disorders, the eye has shown

remarkable promise in providing early diagnostic markers.

Changes in the optic nerve head and RNFL have been associated

with diseases such as Alzheimer’s disease and Parkinson’s disease.

Retinal imaging has demonstrated a thinning of the RNFL

in patients with neurodegenerative conditions, correlating with

cognitive decline and disease severity (12). This association

opens pathways for non-invasive monitoring and early detection,

potentially preceding significant brain pathology visible on

standard neuroimaging.

Autoimmune and inflammatory
conditions

Autoimmune diseases like systemic lupus erythematosus (SLE)

and rheumatoid arthritis (RA) often exhibit ocular manifestations

such as uveitis, scleritis, or retinal vasculitis. Ocular assessment not

only aids in diagnosing these diseases but can also monitor disease

activity and guide treatment (13). Regular eye exams can serve as

a practical adjunct to systemic inflammatory markers, providing

real-time insight into disease progression.

Challenges and future directions

While the potential of ocular assessments for systemic disease

diagnosis is immense, there are challenges. The integration

of eye exams into general medical practice requires enhanced

interdisciplinary collaboration between ophthalmologists and

other healthcare providers. Additionally, the development and

standardization of AI algorithms must ensure reproducibility and

fairness across diverse populations to avoid biases that could affect

diagnostic accuracy.

Looking ahead, further research should focus on validating

ocular biomarkers and integrating these findings into routine

clinical practice. Studies exploring the longitudinal relationship

between ocular changes and systemic disease outcomes will

strengthen the clinical utility of these assessments.

Conclusion

Ocular assessments hold tremendous promise as a non-

invasive, cost-effective means of diagnosing and predicting

systemic disorders. As imaging technologies advance and AI

becomes more sophisticated, the role of the eye as a diagnostic

gateway to broader health assessments will undoubtedly expand.

The convergence of ophthalmology with general medicine is an

exciting frontier that promises to enhance patient care through

earlier detection, more accurate risk stratification, and improved

management of systemic diseases.
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As technology continues to evolve, the possibility for a wide range of dangers 
to people, organizations, and countries escalate globally. The United  States 
federal government classifies types of threats with the capability of inflicting 
mass casualties and societal disruption as Chemical, Biological, Radiological, 
Nuclear, and Energetics/Explosives (CBRNE). Such incidents encompass 
accidental and intentional events ranging from weapons of mass destruction 
and bioterrorism to fires or spills involving hazardous or radiologic material. 
All of these have the capacity to inflict death or severe physical, neurological, 
and/or sensorial disabilities if injuries are not diagnosed and treated in a timely 
manner. Ophthalmic injury can provide important insight into understanding and 
treating patients impacted by CBRNE agents; however, improper ophthalmic 
management can result in suboptimal patient outcomes. This review specifically 
addresses the biological agents the Center for Disease Control and Prevention 
(CDC) deems to have the greatest capacity for bioterrorism. CBRNE biological 
agents, encompassing pathogens and organic toxins, are further subdivided 
into categories A, B, and C according to their national security threat level. In 
our compendium of these biological agents, we address their respective CDC 
category, systemic and ophthalmic manifestations, route of transmission and 
personal protective equipment considerations as well as pertinent vaccination 
and treatment guidelines.
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1 Introduction

Recent outbreaks of Ebola virus disease, monkeypox, and the 
COVID-19 pandemic, which are public health emergencies of 
international concern (PHEIC) per World Health Organization 
(WHO) criteria, have provided insights into the clinical impact, 
socioeconomic implications, and widespread disruption of society 
(1–3). Identifying and understanding these infectious disease threats 
could be extended to potential engineered pathogens as well.

As technology evolves, a wide range of threats to service 
members, diplomats, and United States (US) citizens emerges. The 
US federal government classifies types of threats with the capability 
of inflicting mass casualties and societal disruption as Chemical, 
Biological, Radiological, Nuclear, and Energetics/Explosives 
(CBRNE) (4, 5). These incidents include accidental events like 
chemical waste spills to intentional use of technology like weapons of 
mass destruction (5, 6). CBRNE events have the potential to inflict 
death or severe disabilities in the absence of accurate diagnosis and 
timely treatment. There are various echelons of CBRNE initiatives 
within the US aimed to prevent, prepare for, respond to, and recover 
from these incidents (4–6). However, to date, we are unaware of a 
centralized resource for CBRNE incidents as they pertain to 
ophthalmic disease and countermeasures. Ophthalmic injury can 
provide key insight into understanding and treating patients 
impacted by CBRNE agents, while improper diagnosis and 
management can lead to debilitating implications for patients’ vision 
and quality of life.

CBRNE biological agents encompass pathogens and toxins from 
microbes and plants. The Center for Disease Control and Prevention 
(CDC) classifies biological agents into categories A, B, and C according 
to their national security threat level using the following elements: 
ease of dissemination; mortality and morbidity rates; capacity for 
inciting public panic and social disruption; and requirements for 
special public health preparations (Table 1) (7). Category A agents are 
of highest priority, Category B of moderate importance, and Category 
C agents are emerging in nature and require further research for 
detection, diagnosis and treatment (8).

This is a comprehensive summary of the biological agents with 
special focus in relation to CBRNE preparation and management as 
identified by the CDC. We address the CDC category, the clinical 
manifestations and ophthalmic findings, the route of transmission and 

personal protective equipment (PPE) considerations, and the current 
vaccination and treatment guidelines for each identified biological 
agent in this review.

2 Viruses

A wide array of viruses is found in biological agent Categories A, 
B, and C. Proper hand washing and surface disinfection practices aid 
in prevention of nosocomial dissemination (9). Since a considerable 
number of viral infections are zoonotic, general preventative measures 
involve limiting contact with vectors and reducing direct and indirect 
contact with natural reservoirs and intermediate hosts. For example, 
removal of standing water sources when handling mosquito-borne 
infections reduces vector propagation, thus reducing disease 
burden (10).

Multiple viruses may be shed in the tear film and subsequently 
pose additional risk to eye care providers; therefore, ophthalmologic 
environmental interventions may include transparent shields on slit 
lamps, disinfection of potentially contaminated surfaces and 
instruments between patients, and implementation of telemedicine 
initiatives. Awareness of potential aerosol generation such as air puff-
like tonometry is also critical to risk mitigation (11, 12). Appendix 1 
summarizes key viruses according to the CDC categories.

2.1 Category A

Category A viruses encompass viral hemorrhagic fevers (VHFs) 
including arenaviruses (Lassa and Machupo viruses) and filoviruses 
(Marburg and Ebola viruses), and smallpox (variola major) (7).

2.1.1 Arenaviruses: Lassa fever and Machupo virus
Arenaviruses cause zoonotic hemorrhagic diseases via rodents 

and include Lassa fever and Machupo viruses (13). Rodent-to-human 
transmission occurs through contact with urine, feces, and saliva in 
contaminated food, aerosolized particles, and epidermal barrier 
lesions. Human-to-human transmission occurs through direct 
contact with infectious body fluids and contaminated fomites (14). 
Lassa fever is an arenavirus endemic to Africa and transmitted by the 
Mastomys natalensis mouse (13). Systemic manifestations include 
fever, exudative pharyngitis, proteinuria, emesis, sensorineural 
hearing loss, and other neurologic complications. Patients may 
progress into acute hemorrhagic fever and multi-organ failure. 
Ophthalmic findings of Lassa fever are conjunctivitis and 
subconjunctival hemorrhage in an acute disease state, with potential 
for visual acuity decline over time due to anterior and posterior 
segment pathology (15).

Machupo virus is the etiologic agent of Bolivian Hemorrhagic 
Fever and is transmitted by the Calomys callosus vesper mouse (16, 
17). Systemic manifestations are a flu-like syndrome (16). Less than 
one third of cases may progress to neurologic and hemorrhagic 
syndromes culminating in multi-organ failure and death. Ophthalmic 
findings include conjunctivitis, conjunctival congestion, and 
periorbital edema. Current treatment is supportive care. Some early 
animal trials and per os administration suggest potential benefits of 
ribavirin and favipiravir as treatment and prophylaxis for Lassa fever 
and Machupo viral infections (13, 16).

TABLE 1 Biological agent characteristics by threat category.

Agent 
characteristic

Category

A B C

Priority level Highest Second highest Third highest

Ease of dissemination High Moderate High

Associated mortality High Low High

Associated morbidity High Moderate High

Other May cause 

large scale 

panic and 

social 

disruption

Require 

enhanced 

diagnostic and 

surveillance 

measures

Emergent in 

nature

Overview of biological agent characteristics according to Centers for Disease Control and 
Prevention threat category.
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2.1.2 Filoviruses: Marburg and Ebola virus 
diseases

Marburg and Ebola virus diseases are caused by members of the 
Filoviridae family—Marburg virus (MARV) and Ebola virus (EBOV), 
respectively (18). MARV is transmitted from its reservoir host, the 
African fruit bat, to humans and nonhuman primates (NHPs) 
through infectious body fluids and contaminated fruits (19). Infected 
NHPs can also serve as intermediate hosts for MARV transmission 
to humans through direct contact and bushmeat consumption while 
human-to-human transmission occurs via body fluids and 
contaminated fomites. High-risk populations for filovirus infection 
include health care workers and those involved in the burial of 
infected human corpses (19, 20). Systemic MARV manifestations are 
grouped into three phases: Phase 1: flu-like illness and fever; Phase 2: 
neurological and hemorrhagic symptoms; and Phase 3: prolonged 
phase of restoration or multi-organ failure and death (19). There have 
been reports of acute anterior uveitis three months after initial disease 
onset (21, 22). Current treatment is supportive care with no effective 
vaccines or therapeutics available (19).

EBOV is highly fatal and demonstrates similar human-to-
human transmission mechanisms as MARV especially in instances 
of accidental needlesticks by healthcare workers (20, 23). Although 
EBOV’s natural reservoir is unknown, bats are often implicated (20). 
Systemic manifestations are divided into three phases: Phase 1: 
Nonspecific symptoms and fever that progresses to intractable 
vomiting and watery diarrhea; Phase 2: Illness peaks with 
meningoencephalitis, acute kidney injury, adrenal insufficiency, 
pulmonary vascular leakage, pericarditis, and pancreatitis; and 
Phase 3: development of late-onset sequelae including ophthalmic 
and otologic complications, cognitive difficulties, and 
musculoskeletal pain and weakness (24). Ophthalmic findings 
during acute infection are conjunctival hemorrhages and vision loss, 
and after convalescence patients may present with anterior uveitis 
followed by posterior uveitis (25–27). Other ophthalmic sequelae 
include eye pain, redness, photophobia with acute or chronic 
unilateral vision loss, episcleritis, interstitial keratitis, and cataracts. 
A slit lamp exam may reveal nonspecific signs of active or old 
inflammation, as well as retinal and peripapillary lesions (Figure 1). 
Like MARV, current treatment is supportive care with no effective 
vaccines or therapeutics available.

2.1.3 Variola major: smallpox
Variola major virus, the etiological agent of smallpox, is an 

Orthopoxvirus that significantly impacted human populations for 
centuries until vaccination efforts globally eradicated this notorious 
pathogen in 1980 (28). Changes in global population health, 
vaccination hesitance, and increased intercontinental contact portend 
risks for pandemics and bioterrorism (28, 29). Transmission of variola 
virus involves inhalation of microdroplets from the respiratory tract, 
skin, and body fluids of infected patients. Systemic manifestations 
include a nonspecific prodromal phase followed by a rash of 
characteristic small cutaneous lesions that synchronously progress to 
scabs and pock scars (28). Vaccination with the vaccinia virus, a live 
attenuated poxvirus like smallpox and treatment with cidofovir are 
used to prevent and manage systemic infection (28, 29). Ophthalmic 
findings include pustular rash, edema, discharge, and dried secretions 
of the eyelids; conjunctival pustules that induce pain, photophobia, 

and lacrimation; corneal ulceration and perforation, iris prolapse, 
hypopyon, staphyloma, and endophthalmitis (9). Additional 
ophthalmic findings may include iritis, iridocyclitis, secondary 
glaucoma, and disciform keratitis, among others (9, 30–32). 
Subsequent treatments may involve topical antivirals, vaccinia 
immunoglobulins, and combination therapy with antivirals and 
topical steroids.

2.2 Category B

2.2.1 Togaviruses: Venezuelan encephalomyelitis 
and Western equine encephalomyelitis

Category B viruses consist of three alphaviruses from the 
Togaviridae family with severe morbidity and mortality—Venezuelan 
encephalomyelitis (VEEV) and Eastern and Western Equine 
encephalomyelitides (EEEV, WEEV) (7, 33, 34). Although primarily 
transmitted by mosquitos between equine, the natural reservoir, and 
humans, these viruses have been aerosolized as highly infectious 
virions employed in biowarfare (34, 35). Shared systemic 
manifestations for all three encephalomyelitides includes an 
asymptomatic febrile incubation period, symptomatic phase 
encephalopathy, and high case fatalities, especially with EEEV 
(50–75%) (33). Severe neurologic sequelae present in survivors 
(VEEV 4–14%, EEEV 50–90%, WEEV 15–30%) include emotional 
instability, seizures, and cognitive, sensory, and motor deficits (10, 33).

Ophthalmic findings in addition to those seen in encephalitis with 
papilledema from elevated intracranial pressure involve occasional 
optic neuritis and/or cranial nerve (CN) palsies (CN-VI, CN-VII) 
affecting vision (10). Those with VEEV and WEEV may also exhibit 
conjunctivitis, eye pain, and photophobia. Current treatment is 
supportive care. Although several vaccine candidates are under 
investigation, none have been approved for use in humans (34, 35). 
Preventive methods entail vector control by thorough elimination of 
standing water sources, bed nets, insect repellents and mosquito-
repellent clothing (10).

2.3 Category C

Category C agents include Nipah virus (NiV) and Hantaviruses (7).

2.3.1 Hantavirus
Hantaviruses are rodent-carried viruses transmitted by aerosols 

of excreta, saliva, and urine; however, they are rarely transmitted 
human-to-human (36, 37). These viruses are subdivided according 
to their geographic distribution and unique systemic manifestations 
following a nonspecific symptom phase. ‘New World’ hantaviruses, 
predominately in the Americas, present with cardiopulmonary 
syndrome (HCPS) that progresses to organ failure. ‘Old World’ 
hantaviruses are endemic to Europe and Asia and present as 
hemorrhagic fever with renal syndrome (HFRS) and potential renal 
failure (36, 38). The first ophthalmic finding is acute, transient 
myopia, which is primarily associated with the HFRS-causing 
Puumala hantavirus (39, 40). One case reported a co-presentation 
of assumed hantavirus necrotizing retinitis and HFRS (41). 
Additional manifestations include anterior segment changes such 
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as conjunctival chemosis, lens thickening, vitreous length 
shallowing, and macular features such as intraretinal hemorrhages, 
in addition to disc streak hemorrhages (42). Current treatment is 
supportive care with no effective vaccines or therapeutics 
available (43).

2.3.2 Nipah virus
Nipah virus (NiV), a member of the Paramyxoviridae family, is a 

zoonotic disease naturally found in fruit bats with spillover into 
intermediate hosts (pigs and horses) and humans (44). Reported 
transmission from bats was associated with bat-bitten fruit and bat 
saliva- and excreta-contaminated date palm sap (44–47). Human-to-
intermediate hosts and human-to-human NiV transmission has been 
recorded in association with urine, saliva and respiratory secretions 
in addition to direct contact, fomites, and aerosols (45, 46, 48, 49). 
Severe respiratory and neurologic systemic manifestations encompass 
acute respiratory distress syndrome pneumonia, encephalitis, 
meningitis, seizures, and multiple organ dysfunction syndrome with 
a 40–70% case fatality (44–47). Several small studies report the 
following ophthalmic findings: nystagmus, CN-VI palsy and transient 
blindness during the acute phase of the illness; branch retinal artery 
occlusion, CN-VI palsy and Horner’s syndrome upon follow up with 
a higher mortality associated with doll’s eye reflex and pin-point 
pupils (50, 51). Current treatment is supportive care with no effective 
vaccines or therapeutics available (47).

3 Bacteria

Many bacteria are noted in the CDC’s tripartite partitioning of 
biological agents within the CBRNE framework. Appendix 2 contains 
a summary of the bacteria and toxins according to CDC categories.

3.1 Category A

Category A bacteria include Bacillus anthracis, Yersinia pestis, and 
Francisella tularensis, and the botulinum toxin of Clostridium 
botulinum (7).

3.1.1 Bacillus anthracis: anthrax
Bacillus anthracis is a spore-forming, aerobic, Gram-positive rod 

that rose to public notoriety following the 2001 Anthrax letters (52, 
53). Produced by the Soviet Union in at least one military research 
facility in 1979 (54), the bacterium is capable of cutaneous, respiratory, 
and gastrointestinal forms, which arise from the entrance of 
endospores into the body via breaks in the skin, by inhalation, or by 
ingestion. The vast majority of reported cases are cutaneous, and the 
gastrointestinal form is quite rare (55). Inhalational anthrax, also 
known as wool sorter’s disease, is the cause of bioterror potential and 
involves germination of endospores in the lungs (55). Systemic 
manifestations of the disease include an early phase of fever, malaise, 
headache, and a nonproductive cough followed by a secondary phase 
of dyspnea and hypoxemia that can progress to septic shock (55). 
Ophthalmic findings of anthrax are limited and seen in the cutaneous 
form, with the characteristic black eschar seen on the eyelids (56). 
Current treatment of inhalational anthrax includes two months of 
intravenous antimicrobial combination therapy of at least one 
bactericidal drug and one protein synthesis inhibitor, an antitoxin, and 
postexposure prophylactic vaccination (57–59).

3.1.2 Botulinum toxin (Clostridium botulinum): 
botulism

The botulinum toxin, produced by Clostridium botulinum, can 
be spread via foodborne vectors (consumption of spores in children 
or preformed toxin in adults), direct wound colonization and toxin 
production by C. botulinum, inhalation of aerosolized toxin, or an 
iatrogenic route via exposure to injectable therapeutic toxin (60). 
Regardless of the mode of transmission, infection from botulinum 
toxin results in a characteristic bilateral, symmetric, flaccid paralysis 
that can lead to respiratory failure. Ophthalmic manifestations include 
photophobia, ptosis, diplopia, mydriasis, and extraocular/eyelid 
paralysis (61). Treatment of botulism includes antitoxin administration 
and supportive care, and intubation may be required in instances of 
airway protection and respiratory failure (60, 62).

3.1.3 Francisella tularensis: tularemia
Francisella tularensis, like Yersinia pestis, is a poorly staining 

Gram-negative coccobacillus that can be transmitted by ingestion or 

FIGURE 1

Anterior segment photograph of an Ebola virus disease survivor shows pigment on the lens capsule (A), indicative of prior uveitis. In a West African 
survivor who was seen late in the uveitis disease course, complete seclusion of the pupil from extensive posterior synechiae and chronic inflammation 
is observed (B).

11

https://doi.org/10.3389/fmed.2023.1349571
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Curran et al. 10.3389/fmed.2023.1349571

Frontiers in Medicine 05 frontiersin.org

inhalation and via tick bites (63). Studied by several countries in the 
20th century and probably used to some degree in World War II 
(WWII), Tularemia presents with six forms – ulceroglandular, 
glandular, oculoglandular, oropharyngeal, typhoidal and respiratory 
(64–66). Each of these forms begins with a nonspecific, flu-like phase 
of headache, fever, fatigue, chills, and myalgias (64). Given the scope 
of this article, the focus will be on the oculoglandular form. As the 
only ophthalmic form of tularemia, this localized form manifests with 
symptoms of photophobia, lacrimation, conjunctivitis, yellow 
conjunctival ulcers, chemosis, and eyelid edema (10, 63, 67). These 
symptoms coincide with the formation of regional pre-auricular or 
submandibular lymphadenopathy, and treatment should include 
10–21 days of tetracycline, aminoglycoside, or fluoroquinolone 
antibiotics (10).

3.1.4 Yersinia pestis: plague
Yersinia pestis, commonly known as plague, is a Gram-negative 

coccobacillus transmitted by flea bites, infected animal contact, and 
inhalation (68). Plague can manifest in bubonic, septicemic, and 
pneumonic forms, with pneumonic being the most likely bioterror 
threat due to the potential for particles to be aerosolized. In WWII, 
the Japanese military used plague on prisoners at Manchuria, and even 
deployed plague-infected fleas in a number of cities in China (69, 70). 
This form begins with a sudden onset of headache, chills, fever, 
tachypnea, tachycardia, and a cough that progresses from dry to 
hemoptysis (68, 71). Ocular plague has been described in mule deer, 
but no cases have been reported in humans (72). Infections can 
be successfully treated with an aminoglycoside, such as streptomycin 
(68, 71, 73).

3.2 Category B

The CDC has designated the following ten bacteria and two 
bacterial toxins as Category B agents.

3.2.1 Brucella spp.: brucellosis
Brucellosis is the clinical disease caused by species of the Brucella 

genus. Like many bacteria, Brucella can be transmitted by ingestion of 
contaminated food, inhalation, or contact with mucous membranes 
(74). The clinical manifestations of brucellosis are both numerous and 
nonspecific. Patients may present with flu-like illness, abdominal pain, 
hepatomegaly and splenomegaly, or arthralgia, with more severe cases 
reporting endocarditis, motor and cranial nerve deficits, meningitis, 
seizures, bronchopneumonia, and pleural adhesion (75). Despite the 
many clinical manifestations reported, ophthalmic manifestation is 
infrequent. One 26-year study in Peru described 52 patients with 
ocular brucellosis, with uveitis being the most common presentation 
although keratitis and conjunctivitis were also reported (76). 
Treatment of brucellosis is difficult, requiring a combination therapy 
of doxycycline plus streptomycin/gentamicin or doxycycline plus 
rifampin (77).

3.2.2 Burkholderia mallei: glanders
Burkholderia mallei is a Gram-negative intracellular bacterium, 

and the causative agent of glanders. While glanders is rarely seen in 
developed countries today, it was one of the first biological agents used 
in warfare during the World War I and employed to impact adversarial 

transport animals (78). Transmission and human infection can occur 
through direct contact with damaged skin or mucosal membranes and 
inhalation (79, 80). Clinical presentation of glanders can range from 
a localized infection to septicemia. Generalized symptoms include 
fever, fatigue, headache, myalgias, and lymphadenopathy, and 
localized infections characterized by focal areas of suppuration that 
may ulcerate. Ophthalmic symptoms are generally due to localized eye 
infection of the conjunctiva, resulting in photophobia and excessive 
lacrimation (80). Pulmonary infection due to inhalation can cause a 
productive cough, dyspnea, and chest pain with pneumonia, pleuritis, 
or abscess formation. Dissemination of infection to the bloodstream 
can lead to bacterial colonization and abscess formation in nearly any 
organ (79, 80). Due to the lack of recent human glanders cases, 
treatment options have not been well described, but B. mallei has been 
shown to be  susceptible to doxycycline, imipenem, ceftazidime, 
ciprofloxacin, piperacillin, and aminoglycosides (81).

3.2.3 Burkholderia pseudomallei: melioidosis
Despite being from the same genus, Burkholderia pseudomallei 

causes a separate clinical disease known as Melioidosis. Unlike 
glanders, human melioidosis cases are still known to occur in tropical 
and subtropical regions with endemic areas including Australia, 
southeast Asia, and India (82). Human infection typically occurs via 
inhalation or contact with contaminated water or soil (83). Pneumonia 
is the most common presentation and is associated with subsequent 
bacteremia. These patients typically present with a productive cough 
and dyspnea with fever and abscess formation following dissemination 
like glanders. Melioidosis can also present with a localized ulcerative 
infection (79, 83). Ocular melioidosis is rare but may present with 
symptoms such as orbital cellulitis, endophthalmitis, corneal 
ulceration, and dacryocystitis (84). Current regimens include 
ceftazidime or a carbapenem followed by trimethoprim-
sulfamethoxazole (81, 83). Employment of biosafety level 3 
precautions for laboratory workers has been suggested by some 
researchers (82, 83).

3.2.4 Chlamydia psittaci: psittacosis
Psittacosis is considered an atypical pneumonia caused by the 

Gram negative, intracellular bacterium Chlamydia psittaci (85, 86). 
The bacterium commonly infects both domestic and wild birds and 
can be transmitted to humans via inhalation of aerosolized feces or 
feather dust (85, 86). Systemic signs of psittacosis include an abrupt 
onset flu-like illness of fever, headache, chills, myalgias, fatigue, and 
cough, with less common manifestations of hepatosplenomegaly and 
peri-, endo-, or myocarditis (86, 87). The most commonly reported 
ophthalmic symptom of psittacosis is keratoconjunctivitis although 
this is still rare and typically reported in bird fanciers or laboratory 
workers (88). An association between psittacosis and ocular adnexal 
lymphoma has been described although this is still contested (89). 
Treatment of psittacosis with oral doxycycline is effective, and a 
macrolide such as azithromycin is considered a second line agent 
(85, 87).

3.2.5 Coxiella burnetii: Q fever
Coxiella burnetii, the causative agent of Q fever, is a Gram-

negative, obligate intracellular bacterium that spreads via inhalation 
of aerosolized body fluids or consumption of contaminated food 
material (90). In humans, the clinical disease begins with a sudden 
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onset of flu-like symptoms with pneumonia and hepatitis (91). Q fever 
can progress to a chronic form which can involve endocarditis. In 
pregnant women, Q fever has been linked to both spontaneous 
abortion and stillbirth (92). Ophthalmic manifestations of Q fever are 
limited to case reports and include acute multifocal retinitis, optic 
neuritis, and bilateral exudative retinal detachment (93–95). Both 
acute (2–3 weeks) and chronic (18–24 months) Q fever should 
be treated with doxycycline and hydroxychloroquine (91). Due to the 
aerosolized nature of transmission, PPE should include 
respirators (96).

3.2.6 Enterotoxin B (Staphylococcus spp.)
Comparable to C. botulinum, Staphylococcus species can produce 

a Category B toxin known as Enterotoxin B. It was previously studied 
for use as an aerosol biological weapon, but the toxin can also spread 
via contaminated food (97, 98). The toxin is a superantigen that causes 
widespread stimulation of the immune system, inducing fever, 
hypotension, pulmonary edema, acute respiratory distress syndrome, 
or septic shock (97–99). Ophthalmic symptoms are typically not well 
characterized, although purulent conjunctivitis following exposure to 
the toxin has been reported (100). The rapid and widespread onset of 
symptoms from Enterotoxin B make treatment difficult, and there are 
currently no approved antitoxins for clinical use (97–99).

3.2.7 Epsilon toxin (Clostridium perfringens)
The capacity for aerosolization of the epsilon toxin produced by 

Clostridium perfringens makes it a possible biowarfare agent (101). 
Despite this, little is known about the clinical manifestations, with 
only two cases ever being reported, both from 1955 (102, 103). One of 
the patients presented with only profuse diarrhea while the other 
developed a peritoneal effusion with a gangrenous ileum (102, 103). 
No ophthalmic symptoms have been reported. Moreover, there is 
currently no known treatment for infection with epsilon toxin (101).

3.2.8 Food safety threats: non-typhoid 
Salmonella spp., Shigella dysenteriae, Escherichia 
coli O157:H7

Non-typhoid Salmonella species, Shigella dysenteriae, and 
Escherichia coli O157:H7 together are classified as food safety threats 
by the CDC (7). Each bacterium is spread via the fecal-oral route 
through the consumption of contaminated food or water (Salmonella 
can also be transmitted via contact with reptiles) (104–106). While 
these pathogens exhibit shared clinical manifestations, Salmonella has 
some pertinent differences. Salmonella infection has a nonspecific 
presentation that may include fever, diarrhea, or pneumonia with 
hepatosplenomegaly common with bacteremia (105, 107). Shigella 
and E. coli O157:H7 can cause a watery diarrhea that progresses to a 
bloody diarrhea, or, in severe cases, hemolytic uremic syndrome 
(HUS) (104, 106). Infection of Shigella has been linked to reactive 
arthritis, previously known as Reiter’s syndrome, which is a rare 
presentation of infection-induced arthritis that can cause 
conjunctivitis, among other non-ocular symptoms (108). 
Non-typhoidal Salmonella species have also been implicated in 
reactive arthritis, causing keratitis, uveitis and conjunctivitis (109, 
110). While some strains of E.coli are known to impact the eye, the 
O157:H7 strain is not known to cause ocular disease. Unless 
immunocompromised, Salmonella infections are typically self-limited 
and should be treated supportively (111). The recommendation for 

E. coli treatment is similar, with antibiotic treatment demonstrating 
increased potential for developing HUS (104). Shigella, however, 
should be treated in both children and adults with ciprofloxacin or 
ceftriaxone (112, 113).

3.2.9 Rickettsia prowazekii: typhus fever
Rickettsia prowazekii is a Gram-negative bacilli and the causative 

agent of typhus fever. The disease is spread to humans via deposition 
of louse feces into bites or mucosal surfaces, or inhalation of 
aerosolized feces (114, 115). Clinical onset includes high fever, 
headache, and a rash due to hematogenous dissemination of 
R. prowazekii. Other symptoms can include nausea, vomiting, 
pneumonia, myocarditis, thrombocytopenia, jaundice, seizures, 
confusion, or even coma (114). Despite the numerous potential 
clinical manifestations of typhus fever, ophthalmic manifestations 
have not been described. Treatment of typhus fever is tetracyclines, 
with doxycycline being the preferred agent (115). Due to the louse-
borne transmission of typhus fever, proper use of gowns, gloves, and 
caps should be used to prevent louse spread.

3.2.10 Water safety threats: Vibrio cholerae and 
Cryptosporidium parvum

Akin to the previous bacteria, Vibrio cholerae is designated by the 
CDC as a water safety threat, along with the protozoan 
Cryptosporidium parvum (7). Despite its eukaryotic classification, this 
review includes C. parvum here due to the CDC grouping with 
V. cholerae. While the classical transmission route of both organisms 
is the consumption of contaminated water, both can also be acquired 
via contaminated food, and C. parvum is capable of respiratory 
transmission (116–118). Infection from either organism leads to a 
watery diarrhea. V. cholerae causes pathognomonic “rice water” stool 
that leads to severe dehydration and electrolyte imbalances (116). In 
contrast, C. parvum infection typically presents with less severe 
diarrhea along with abdominal pain, nausea, flatulence, anorexia, and 
fatigue. If inhaled, one may also demonstrate a productive cough (117).

While neither are widely known for ophthalmic manifestations, 
some cases have been reported including a single case report of 
keratitis with corneal scraping cultures that grew V. cholerae after the 
patient was struck in the right eye by a marine shrimp (119). It should 
be  noted that this infection was presumably caused by the direct 
contact of V. cholerae to the mucosal surface of the eye, and not the 
typical water-borne route. One study also reported that 9% of patients 
reported eye pain one-year post infection with C. parvum, but the 
protozoan is otherwise not linked to any other ophthalmic disease 
(120). The hallmark of cholera treatment is volume replacement and 
rehydration therapy with doxycycline indicated in severe cases (116). 
C. parvum infection should be treated with nitazoxanide (117).

4 Miscellaneous

4.1 Category B

4.1.1 Ricin toxin (Ricinus communis)
The ricin toxin is the only bioterrorism agent classified by the 

CDC that is neither viral, nor bacterial (or designated as a specific 
threat with a bacterium, as is the case with C. parvum) (Appendix 3). 
The toxin is produced by Ricinus communis, the castor bean, and when 
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extracted, it can be disseminated by a number of modalities including 
aerosol, injection, or ingestion pathways (121). Physical symptoms 
vary by route of intoxication.

If ricin is aerosolized, the inhaled toxin can cause dyspnea, fever, 
cough, nausea, chest tightness, pulmonary edema, and skin erythema. 
If injected, myalgias and circulatory collapse are common. Ingested 
ricin typically causes abdominal pain, diarrhea, cramping, and 
dehydration (121). Ophthalmic implications of ricin toxin have yet to 
be described other than conjunctival injection. An antitoxin has been 
shown to be an effective countermeasure against ricin toxin in swine 
models (122).

5 COVID-19

Although not included in the CBRNE framework, response efforts 
to novel agents such as SARS-CoV-2 involve principles shared with 
other biological pathogens. The WHO COVID-19 Dashboard shows 
that estimates of COVID-19 has exceeded 770 million affected 
individuals and nearly 7 million deaths (123). Transmission is variable 
and includes SARS-CoV-2 particles landing on or otherwise coming 
into contact with the eyes, mouth, or nose, as well as inhalation of 
aerosol particles or droplets that contain the virus (124). Those 
infected may experience a range of symptoms, including those that are 
mild, moderate, and severe, but asymptomatic infection and 
transmission may also occur. Reported symptoms include malaise, 
fever or chills, cough, new loss of taste or smell, muscle or body aches, 
and difficulty breathing (125).

Ophthalmic manifestations associated with COVID-19 have been 
reported and include findings involving both the anterior and 
posterior segments of the eye. Reported findings include conjunctival 
hyperemia and injection, eye pain and redness, photophobia, cotton 
wool spots, retinal artery occlusion, retinal hemorrhage, and 
retinopathy (126–131). In addition to these ophthalmic findings, 
SARS-CoV-2 RNA has been previously detected in the tear film of 
25% of patients in a hospitalized COVID-19 cohort (126). These 
ocular findings may provide insight into the physiologic changes of 
COVID-19, as well as the behavior of SARS-CoV-2 on the 
ocular surface.

6 Personal protective equipment

Due to the variable nature of the above biological agents, PPE 
decision-making relies on an understanding of the agent(s) of interest 
including the specific route(s) of transmission (e.g., respiratory, 
aerosolized droplets, contact), and the potential for spread during 
asymptomatic or presymptomatic infection. Agencies within the 
United States federal government, such as the National Institute for 
Occupational Safety and Health (NIOSH) and the Occupational Safety 
and Health Administration (OSHA), among others, have developed 
specific guidelines for CBRNE incident response that consider 
transmission routes (132–134).

Droplets of variola major virus, for example, can be  spread 
through a respiratory route and guidance from the CDC indicates 
appropriate PPE as: eye protection, a NIOSH-certified N95 respirator, 
and disposable gown and gloves (135). Alternatively, contact 
transmission has been implicated in a number of VHFs so the CDC 
and WHO advocate for transmission-specific PPE provisions, such as 

a disposable facemask, full face shield, fluid-resistant gown, and two 
pairs of gloves (136, 137). Other key factors related to PPE include the 
specific tasks to be  performed, duration of PPE wear, and the 
environmental conditions where patient care activities occur (e.g., 
forward, resource-austere settings vs. high resource settings).

7 Conclusion

Biologic agents can precipitate great ophthalmic injury and cause 
significant morbidity. With overlapping or limited ophthalmic 
findings, further investigations and close clinical monitoring of 
impacted patients are critical. As the global public health community 
continues to learn more about these agents, the CBRNE biological 
agent list and associated classification framework will require 
subsequent reevaluation, including potential revision of PPE guidance. 
Additionally, the appearance of emerging infectious diseases, 
especially zoonoses, necessitates continual pathogen surveillance, 
investigation, characterization, and assessment of merit for CBRNE 
status. Several zoonotic agents described here also require vector and/
or source control measures for biohazard containment, and although 
an in-depth review of vector control is out of scope for this work, its 
importance should not be minimized. Future research to improve 
understanding of known pathogens will require reevaluation of the 
current CBRNE biological agent list and pathogen classification.

As globalization continues to expand, the risk for CBRNE 
incidents increases and subsequently prompts the need for progressive, 
vigilant surveillance and timely response to incidents to ensure a 
healthy global health community. Improving healthcare response and 
outcomes starts with accurate diagnosis, agent control, and treatment. 
This paper summarizes the clinical and ophthalmic manifestations, 
transmission routes and PPE considerations, as well as the current 
management guidelines for the biologic agents the CDC deems to 
be most dangerous to public health.

Author contributions

EC: Writing – original draft, Writing – review & editing. MDD: 
Writing – original draft, Writing – review & editing. CH: Writing – 
review & editing. YH: Writing – review & editing. CC: Writing – 
review & editing. MRD: Writing – review & editing. GJ: Writing – 
review & editing. JT: Supervision, Writing – review & editing. SY: 
Conceptualization, Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This project 
was supported by the National Eye Institute of the National Institutes 
of Health under award number R01 EY029594 (SY). Grant support 
was also provided by the Macula Society Retina Research Foundation, 
ARVO Mallinckrodt Young Investigator Grant, and the Stanley 
M. Truhlsen Family Foundation, Inc. CC was supported in part by a 
Knights Templar Eye Foundation career development award and 
competitive renewal, IDeA-CTR career development award, and 
National Eye Institute of the National Institutes of Health award 
number K08 EY034892.

14

https://doi.org/10.3389/fmed.2023.1349571
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Curran et al. 10.3389/fmed.2023.1349571

Frontiers in Medicine 08 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

The content is solely the responsibility of the authors and does not 
necessarily represent official views of the National Institutes of Health 
or the views or policies of the Department of Health and Human 
Services, nor does mention of trade names, commercial products, or 
organizations imply endorsement by the U.S. Government.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2023.1349571/
full#supplementary-material

References
 1. The lancet infectious D. Ebola Pheic is over but emergency continues. Lancet Infect 

Dis. (2016) 16:507. doi: 10.1016/s1473-3099(16)30013-5

 2. Shadmi E, Chen Y, Dourado I, Faran-Perach I, Furler J, Hangoma P, et al. Health 
equity and COVID-19: global perspectives. Int J Equity Health. (2020) 19:104. doi: 
10.1186/s12939-020-01218-z

 3. Tambo E, Al-Nazawi AM. Combating the global spread of poverty-related 
monkeypox outbreaks and beyond. Infect Dis Poverty. (2022) 11:80. doi: 10.1186/
s40249-022-01004-9

 4. U.S. Department of Homeland Security. (2022). Cbrne Program. Available at: 
https://www.dhs.gov/hazardous-response-program (Accessed October 8, 2023).

 5. U.S. Department of Homeland Security. (2022). National Strategy for Chemical, 
Biological, Radiological, Nuclear, and Explosives (Cbrne) Standards. Available at: 
https://www.dhs.gov/national-strategy-chemical-biological-radiological-nuclear-and-
explosives-cbrne-standards (Accessed October 8, 2023).

 6. U.S. Department of Homeland Security. (2023). Office of Emerging Threats. 
Available at: https://www.fema.gov/about/offices/response-recovery/emerging-
threats (Accessed October 8, 2023).

 7. Centers for Disease Control and Prevention. (2018). Emergency preparedness and 
response-bioterrorism agents/diseases: U.S. Department of Health & Human Services. 
Available at: https://emergency.cdc.gov/agent/agentlist-category.asp#catdef (Accessed 
March 22, 2023).

 8. Mushtaq A, El-Azizi M, Khardori N. Category C potential bioterrorism agents and 
emerging pathogens. Infect Dis Clin N Am. (2006) 20:423–41, x. doi: 10.1016/j.
idc.2006.03.003

 9. Semba RD. The ocular complications of smallpox and smallpox immunization. Arch 
Ophthalmol. (2003) 121:715–9. doi: 10.1001/archopht.121.5.715

 10. Karesh JW, Mazzoli RA, Heintz SK. Ocular manifestations of mosquito-
transmitted diseases. Mil Med. (2018) 183:450–8. doi: 10.1093/milmed/usx183

 11. Walker DH, McCormick JB, Johnson KM, Webb PA, Komba-Kono G, Elliott LH, 
et al. Pathologic and virologic study of fatal Lassa fever in man. Am J Pathol. (1982) 
107:349–56.

 12. Britt JM, Clifton BC, Barnebey HS, Mills RP. Microaerosol formation in 
noncontact 'Air-Puff ' tonometry. Arch Ophthalmol. (1991) 109:225–8. doi: 10.1001/
archopht.1991.01080020071046

 13. Aloke C, Obasi NA, Aja PM, Emelike CU, Egwu CO, Jeje O, et al. Combating Lassa 
fever in West African sub-region: Progress, challenges, and future perspectives. Viruses. 
(2023) 15:146. doi: 10.3390/v15010146

 14. Centers for Disease Control and Prevention. (2021). Viral hemorrhagic fevers 
(Vhfs) – arenaviruses (Arenaviridae): U.S. Department of Health & Human Services.  
Available at: https://www.cdc.gov/vhf/virus-families/arenaviridae.html (Accessed July 
31, 2023).

 15. Li AL, Grant D, Gbakie M, Kanneh L, Mustafa I, Bond N, et al. Ophthalmic 
manifestations and vision impairment in Lassa fever survivors. PLoS One. (2020) 
15:e0243766. doi: 10.1371/journal.pone.0243766

 16. Frank MG, Beitscher A, Webb CM, Raabe V. South American hemorrhagic fevers: a 
summary for clinicians. Int J Infect Dis. (2021) 105:505–15. doi: 10.1016/j.ijid.2021.02.046

 17. Silva-Ramos CR, Faccini-Martínez ÁA, Calixto OJ, Hidalgo M. Bolivian 
hemorrhagic fever: a narrative review. Travel Med Infect Dis. (2021) 40:102001. doi: 
10.1016/j.tmaid.2021.102001

 18. Centers for Disease Control and Prevention. (2021). Viral hemorrhagic fevers 
(Vhfs) – filoviruses (filoviridae): U.S. Department of Health & Human Services. 

Available at: https://www.cdc.gov/vhf/virus-families/filoviridae.html (Accessed April 14, 
2023).

 19. Abir MH, Rahman T, Das A, Etu SN, Nafiz IH, Rakib A, et al. Pathogenicity and 
virulence of Marburg virus. Virulence. (2022) 13:609–33. doi: 
10.1080/21505594.2022.2054760

 20. Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis 
of Ebola virus disease. Annu Rev Pathol. (2017) 12:387–418. doi: 10.1146/annurev-
pathol-052016-100506

 21. Gear JS, Cassel GA, Gear AJ, Trappler B, Clausen L, Meyers AM, et al. Outbreake 
of Marburg virus disease in Johannesburg. Br Med J. (1975) 4:489–93. doi: 10.1136/
bmj.4.5995.489

 22. Kuming BS, Kokoris N. Uveal involvement in Marburg virus disease. Br J 
Ophthalmol. (1977) 61:265–6. doi: 10.1136/bjo.61.4.265

 23. Vingolo EM, Messano GA, Fragiotta S, Spadea L, Petti S. Ocular manifestations of 
Ebola virus disease: an Ophthalmologist's guide to prevent infection and panic. Biomed 
Res Int. (2015) 2015:487073. doi: 10.1155/2015/487073

 24. Beeching NJ, Fenech M, Houlihan CF. Ebola virus disease. BMJ. (2014) 349:g7348. 
doi: 10.1136/bmj.g7348

 25. Varkey JB, Shantha JG, Crozier I, Kraft CS, Lyon GM, Mehta AK, et al. Persistence 
of Ebola virus in ocular fluid during convalescence. N Engl J Med. (2015) 372:2423–7. 
doi: 10.1056/NEJMoa1500306

 26. Shantha JG, Crozier I, Hayek BR, Bruce BB, Gargu C, Brown J, et al. Ophthalmic 
manifestations and causes of vision impairment in Ebola virus disease survivors in 
Monrovia, Liberia. Ophthalmology. (2017) 124:170–7. doi: 10.1016/j.ophtha.2016.10.011

 27. Mattia JG, Vandy MJ, Chang JC, Platt DE, Dierberg K, Bausch DG, et al. Early 
clinical sequelae of Ebola virus disease in Sierra Leone: a cross-sectional study. Lancet 
Infect Dis. (2016) 16:331–8. doi: 10.1016/s1473-3099(15)00489-2

 28. Meyer H, Ehmann R, Smith GL. Smallpox in the post-eradication era. Viruses. 
(2020) 12:2. doi: 10.3390/v12020138

 29. Centers for Disease Control and Prevention. (2017). Smallpox: U.S. Department 
of Health & Human Services Available at: https://www.cdc.gov/smallpox/index.html 
(Accessed April 15, 2023).

 30. Patton J. Small-pox keratitis. Trans Am Acad Ophthalmol Otolaryngol. (1922) 
27:270–80.

 31. Smith CL. Disciform keratitis following smallpox. Am J Ophthalmol. (1922) 
5:32–4. doi: 10.1016/S0002-9394(22)91025-6

 32. Fleck HK. Disciform keratitis secondary to smallpox. Am J Ophthalmol. (1921) 
4:573–9. doi: 10.1016/S0002-9394(21)90487-2

 33. Ronca SE, Dineley KT, Paessler S. Neurological sequelae resulting from 
encephalitic alphavirus infection. Front Microbiol. (2016) 7:959. doi: 10.3389/
fmicb.2016.00959

 34. Kehn-Hall K, Bradfute SB. Understanding host responses to equine encephalitis 
virus infection: implications for therapeutic development. Expert Rev Anti-Infect Ther. 
(2022) 20:1551–66. doi: 10.1080/14787210.2022.2141224

 35. Sharma A, Knollmann-Ritschel B. Current understanding of the molecular basis 
of Venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses. 
(2019) 11:164. doi: 10.3390/v11020164

 36. Wells RM, Sosa Estani S, Yadon ZE, Enria D, Padula P, Pini N, et al. An unusual 
hantavirus outbreak in southern Argentina: person-to-person transmission? Hantavirus 
pulmonary syndrome study Group for Patagonia. Emerg Infect Dis. (1997) 3:171–4. doi: 
10.3201/eid0302.970210

15

https://doi.org/10.3389/fmed.2023.1349571
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2023.1349571/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2023.1349571/full#supplementary-material
https://doi.org/10.1016/s1473-3099(16)30013-5
https://doi.org/10.1186/s12939-020-01218-z
https://doi.org/10.1186/s40249-022-01004-9
https://doi.org/10.1186/s40249-022-01004-9
https://www.dhs.gov/hazardous-response-program
https://www.dhs.gov/national-strategy-chemical-biological-radiological-nuclear-and-explosives-cbrne-standards
https://www.dhs.gov/national-strategy-chemical-biological-radiological-nuclear-and-explosives-cbrne-standards
https://www.fema.gov/about/offices/response-recovery/emerging-threats
https://www.fema.gov/about/offices/response-recovery/emerging-threats
https://emergency.cdc.gov/agent/agentlist-category.asp#catdef
https://doi.org/10.1016/j.idc.2006.03.003
https://doi.org/10.1016/j.idc.2006.03.003
https://doi.org/10.1001/archopht.121.5.715
https://doi.org/10.1093/milmed/usx183
https://doi.org/10.1001/archopht.1991.01080020071046
https://doi.org/10.1001/archopht.1991.01080020071046
https://doi.org/10.3390/v15010146
https://www.cdc.gov/vhf/virus-families/arenaviridae.html
https://doi.org/10.1371/journal.pone.0243766
https://doi.org/10.1016/j.ijid.2021.02.046
https://doi.org/10.1016/j.tmaid.2021.102001
https://www.cdc.gov/vhf/virus-families/filoviridae.html
https://doi.org/10.1080/21505594.2022.2054760
https://doi.org/10.1146/annurev-pathol-052016-100506
https://doi.org/10.1146/annurev-pathol-052016-100506
https://doi.org/10.1136/bmj.4.5995.489
https://doi.org/10.1136/bmj.4.5995.489
https://doi.org/10.1136/bjo.61.4.265
https://doi.org/10.1155/2015/487073
https://doi.org/10.1136/bmj.g7348
https://doi.org/10.1056/NEJMoa1500306
https://doi.org/10.1016/j.ophtha.2016.10.011
https://doi.org/10.1016/s1473-3099(15)00489-2
https://doi.org/10.3390/v12020138
https://www.cdc.gov/smallpox/index.html
https://doi.org/10.1016/S0002-9394(22)91025-6
https://doi.org/10.1016/S0002-9394(21)90487-2
https://doi.org/10.3389/fmicb.2016.00959
https://doi.org/10.3389/fmicb.2016.00959
https://doi.org/10.1080/14787210.2022.2141224
https://doi.org/10.3390/v11020164
https://doi.org/10.3201/eid0302.970210


Curran et al. 10.3389/fmed.2023.1349571

Frontiers in Medicine 09 frontiersin.org

 37. Enría D, Padula P, Segura EL, Pini N, Edelstein A, Posse CR, et al. Hantavirus 
pulmonary syndrome in Argentina. Possibility of person to person transmission. 
Medicina (B Aires). (1996) 56:709–11.

 38. Krüger DH, Schönrich G, Klempa B. Human pathogenic hantaviruses and 
prevention of infection. Hum Vaccin. (2011) 7:685–93. doi: 10.4161/hv.7.6. 
15197

 39. Theiler G, Langer-Wegscheider B, Zollner-Schwetz I, Valentin T, Hönigl M, 
Schnedl W, et al. Blurred vision and myopic shift in Puumala virus infections are 
independent of disease severity. Clin Microbiol Infect. (2012) 18:E435–7. doi: 10.1111/j.
1469-0691.2012.03997.x

 40. Kontkanen M, Puustjärvi T, Lähdevirta J. Myopic shift and its mechanism in 
Nephropathia Epidemica or Puumala virus infection. Br J Ophthalmol. (1994) 78:903–6. 
doi: 10.1136/bjo.78.12.903

 41. Cao Y, Zhao X, Yi J, Tang R, Lei S. Hantavirus retinitis and concurrent hemorrhagic 
fever with renal syndrome. Can J Ophthalmol. (2017) 52:e41–4. doi: 10.1016/j.
jcjo.2016.09.017

 42. Mehta S, Jiandani P. Ocular features of hantavirus infection. Indian J Ophthalmol. 
(2007) 55:378–80. doi: 10.4103/0301-4738.33827

 43. Singh S, Numan A, Sharma D, Shukla R, Alexander A, Jain GK, et al. 
Epidemiology, virology and clinical aspects of hantavirus infections: an  
overview. Int J Environ Health Res. (2022) 32:1815–26. doi: 
10.1080/09603123.2021.1917527

 44. Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, et al. 
Nipah virus disease: epidemiological, clinical, diagnostic and legislative aspects of 
this unpredictable emerging zoonosis. Animals (Basel). (2022) 13:159. doi: 10.3390/
ani13010159

 45. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, et al. Recurrent 
zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect 
Dis. (2009) 15:1229–35. doi: 10.3201/eid1508.081237

 46. Chua KB. Nipah Virus Outbreak in Malaysia. J Clin Virol. (2003) 26:265–75. doi: 
10.1016/s1386-6532(02)00268-8

 47. Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, et al. Nipah 
virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine 
designing and control strategies – a comprehensive review. Vet Q. (2019) 39:26–55. doi: 
10.1080/01652176.2019.1580827

 48. Luby SP. The pandemic potential of Nipah virus. Antivir Res. (2013) 100:38–43. 
doi: 10.1016/j.antiviral.2013.07.011

 49. Islam MS, Sazzad HM, Satter SM, Sultana S, Hossain MJ, Hasan M, et al. Nipah 
virus transmission from bats to humans associated with drinking traditional liquor 
made from date palm sap, Bangladesh, 2011-2014. Emerg Infect Dis. (2016) 22:664–70. 
doi: 10.3201/eid2204.151747

 50. Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, et al. Clinical 
features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med. (2000) 
342:1229–35. doi: 10.1056/nejm200004273421701

 51. Lim CC, Lee WL, Leo YS, Lee KE, Chan KP, Ling AE, et al. Late clinical and 
magnetic resonance imaging follow up of Nipah virus infection. J Neurol Neurosurg 
Psychiatry. (2003) 74:131–3. doi: 10.1136/jnnp.74.1.131

 52. Dixon TC, Meselson M, Guillemin J, Hanna PC. Anthrax. N Engl J Med. (1999) 
341:815–26. doi: 10.1056/nejm199909093411107

 53. Bush LM, Abrams BH, Beall A, Johnson CC. Index case of fatal inhalational 
anthrax due to bioterrorism in the United States. N Engl J Med. (2001) 345:1607–10. doi: 
10.1056/NEJMoa012948

 54. Meselson M, Guillemin J, Hugh-Jones M, Langmuir A, Popova I, Shelokov A, et al. 
The Sverdlovsk anthrax outbreak of 1979. Science. (1994) 266:1202–8. doi: 10.1126/
science.7973702

 55. Kamal SM, Rashid AK, Bakar MA, Ahad MA. Anthrax: an update. Asian Pac J Trop 
Biomed. (2011) 1:496–501. doi: 10.1016/s2221-1691(11)60109-3

 56. Amraoui A, Tabbara KF, Zaghloul K. Anthrax of the eyelids. Br J Ophthalmol. 
(1992) 76:753–4. doi: 10.1136/bjo.76.12.753

 57. Hendricks KA, Wright ME, Shadomy SV, Bradley JS, Morrow MG, Pavia AT, et al. 
Centers for Disease Control and Prevention expert panel meetings on prevention and 
treatment of anthrax in adults. Emerg Infect Dis. (2014) 20:e130687. doi: 10.3201/
eid2002.130687

 58. Pillai SK, Huang E, Guarnizo JT, Hoyle JD, Katharios-Lanwermeyer S, Turski TK, 
et al. Antimicrobial treatment for systemic anthrax: analysis of cases from 1945 to 2014 
identified through a systematic literature review. Health Secur. (2015) 13:355–64. doi: 
10.1089/hs.2015.0033

 59. Chateau A, Van der Verren SE, Remaut H, Fioravanti A. The Bacillus Anthracis cell 
envelope: composition, physiological role, and clinical relevance. Microorganisms. (2020) 
8:1864. doi: 10.3390/microorganisms8121864

 60. Rao AK, Sobel J, Chatham-Stephens K, Luquez C. Clinical guidelines for diagnosis 
and treatment of botulism, 2021. MMWR Recomm Rep. (2021) 70:1–30. doi: 10.15585/
mmwr.rr7002a1

 61. Caya JG. Clostridium botulinum and the ophthalmologist: a review of botulism, 
including biological warfare ramifications of botulinum toxin. Surv Ophthalmol. (2001) 
46:25–34. doi: 10.1016/s0039-6257(01)00227-2

 62. Yu PA, Lin NH, Mahon BE, Sobel J, Yu Y, Mody RK, et al. Safety and improved 
clinical outcomes in patients treated with new equine-derived heptavalent botulinum 
antitoxin. Clin Infect Dis. (2017) 66:S57. doi: 10.1093/cid/cix816

 63. Wawszczak M, Banaszczak B, Rastawicki W. Tularaemia – a diagnostic challenge. 
Ann Agric Environ Med. (2022) 29:12–21. doi: 10.26444/aaem/139242

 64. World Health Organization. Who Guidelines on Tularaemia; Epidemic and 
Pandemic Alert and Response. Geneva: World Health Organization (2007).

 65. Hirschmann JV. From squirrels to biological weapons: the early history of 
tularemia. Am J Med Sci. (2018) 356:319–28. doi: 10.1016/j.amjms.2018.06.006

 66. Croddy E, Krčálová S. Tularemia, biological warfare, and the Battle for Stalingrad 
(1942–1943). Mil Med. (2001) 166:837–8. doi: 10.1093/milmed/166.10.837

 67. Kantardjiev T, Padeshki P, Ivanov IN. Diagnostic approaches for Oculoglandular 
tularemia: advantages of Pcr. Br J Ophthalmol. (2007) 91:1206–8. doi: 10.1136/
bjo.2007.117523

 68. Rosario-Acevedo R, Biryukov SS, Bozue JA, Cote CK. Plague prevention and 
therapy: perspectives on current and future strategies. Biomedicine. (2021) 9:1421. doi: 
10.3390/biomedicines9101421

 69. Bellamy RJ, Freedman AR. Bioterrorism. QJM. (2001) 94:227–34. doi: 10.1093/
qjmed/94.4.227

 70. Dennis DT. Plague as a biological weapon. Bioterror Infect Agents. (2009):37–70. 
doi: 10.1007/978-1-4419-1266-4_2

 71. Kool JL. Risk of person-to-person transmission of pneumonic plague. Clin Infect 
Dis. (2005) 40:1166–72. doi: 10.1086/428617

 72. Edmunds DR, Williams ES, O'Toole D, Mills KW, Boerger-Fields AM, Jaeger PT, 
et al. Ocular plague (Yersinia Pestis) in mule deer (Odocoileus Hemionus) from Wyoming 
and Oregon. J Wildl Dis. (2008) 44:983–7. doi: 10.7589/0090-3558-44.4.983

 73. Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, et al. 
Plague as a biological weapon: medical and public health management. Working Group 
on Civilian Biodefense. JAMA. (2000) 283:2281–90. doi: 10.1001/jama.283.17.2281

 74. de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and 
immunobiology of brucellosis: review of brucella-host interactions. Am J Pathol. (2015) 
185:1505–17. doi: 10.1016/j.ajpath.2015.03.003

 75. Dean AS, Crump L, Greter H, Hattendorf J, Schelling E, Zinsstag J. Clinical 
manifestations of human brucellosis: a systematic review and meta-analysis. PLoS Negl 
Trop Dis. (2012) 6:e1929. doi: 10.1371/journal.pntd.0001929

 76. Rolando I, Olarte L, Vilchez G, Lluncor M, Otero L, Paris M, et al. Ocular 
manifestations associated with brucellosis: a 26-year experience in Peru. Clin Infect Dis. 
(2008) 46:1338–45. doi: 10.1086/529442

 77. Solera J, Martínez-Alfaro E, Espinosa A. Recognition and optimum treatment of 
brucellosis. Drugs. (1997) 53:245–56. doi: 10.2165/00003495-199753020-00005

 78. Wheelis M. First shots fired in biological warfare. Nature. (1998) 395:213. doi: 
10.1038/26089

 79. Johns Hopkins Center for Health Security. (2011). Burkholderia Mallei (Glanders) 
and Burkholderia (Melioidosis) Fact Sheet: Johns Hopkins Bloomberg School of Public 
Health. Available at: https://www.centerforhealthsecurity.org/our-work/publications/
glanders-and-melioidosis-fact-sheet (Accessed March 26, 2023).

 80. Van Zandt KE, Greer MT, Gelhaus HC. Glanders: an overview of infection in 
humans. Orphanet J Rare Dis. (2013) 8:131. doi: 10.1186/1750-1172-8-131

 81. Estes DM, Dow SW, Schweizer HP, Torres AG. Present and future therapeutic 
strategies for melioidosis and glanders. Expert Rev Anti-Infect Ther. (2010) 8:325–38. 
doi: 10.1586/eri.10.4

 82. Currie BJ, Dance DA, Cheng AC. The global distribution of Burkholderia 
Pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg. (2008) 102:S1–4. 
doi: 10.1016/s0035-9203(08)70002-6

 83. Gassiep I, Armstrong M, Norton R. Human Melioidosis. Clin Microbiol Rev. (2020) 
33:2. doi: 10.1128/cmr.00006-19

 84. Yaisawang S, Asawaphureekorn S, Chetchotisakd P, Wongratanacheewin S, Pakdee 
P. Ocular involvement in melioidosis: a 23-year retrospective review. J Ophthalmic 
Inflamm Infect. (2018) 8:5. doi: 10.1186/s12348-018-0147-6

 85. Basarab M, Macrae MB, Curtis CM. Atypical pneumonia. Curr Opin Pulm Med. 
(2014) 20:247–51. doi: 10.1097/mcp.0000000000000048

 86. Knittler MR, Sachse K. Chlamydia Psittaci: update on an underestimated zoonotic 
agent. Pathog Dis. (2015) 73:1–15. doi: 10.1093/femspd/ftu007

 87. West A. A brief review of Chlamydophila Psittaci in birds and humans. J Exotic Pet 
Med. (2011) 20:18–20. doi: 10.1053/j.jepm.2010.11.006

 88. Dean D, Shama A, Schachter J, Dawson CR. Molecular identification of an avian 
strain of Chlamydia Psittaci causing severe keratoconjunctivitis in a bird fancier. Clin 
Infect Dis. (1995) 20:1179–85. doi: 10.1093/clinids/20.5.1179

 89. Raderer M, Kiesewetter B, Ferreri AJ. Clinicopathologic characteristics and 
treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue (malt 
lymphoma). CA Cancer J Clin. (2016) 66:153–71. doi: 10.3322/caac.21330

 90. Van Leuken JPG, Swart AN, Brandsma J, Terink W, Van de Kassteele J, Droogers 
P, et al. Human Q fever incidence is associated to spatiotemporal environmental 
conditions. One Health. (2016) 2:77–87. doi: 10.1016/j.onehlt.2016.03.004

16

https://doi.org/10.3389/fmed.2023.1349571
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.4161/hv.7.6.15197
https://doi.org/10.4161/hv.7.6.15197
https://doi.org/10.1111/j.1469-0691.2012.03997.x
https://doi.org/10.1111/j.1469-0691.2012.03997.x
https://doi.org/10.1136/bjo.78.12.903
https://doi.org/10.1016/j.jcjo.2016.09.017
https://doi.org/10.1016/j.jcjo.2016.09.017
https://doi.org/10.4103/0301-4738.33827
https://doi.org/10.1080/09603123.2021.1917527
https://doi.org/10.3390/ani13010159
https://doi.org/10.3390/ani13010159
https://doi.org/10.3201/eid1508.081237
https://doi.org/10.1016/s1386-6532(02)00268-8
https://doi.org/10.1080/01652176.2019.1580827
https://doi.org/10.1016/j.antiviral.2013.07.011
https://doi.org/10.3201/eid2204.151747
https://doi.org/10.1056/nejm200004273421701
https://doi.org/10.1136/jnnp.74.1.131
https://doi.org/10.1056/nejm199909093411107
https://doi.org/10.1056/NEJMoa012948
https://doi.org/10.1126/science.7973702
https://doi.org/10.1126/science.7973702
https://doi.org/10.1016/s2221-1691(11)60109-3
https://doi.org/10.1136/bjo.76.12.753
https://doi.org/10.3201/eid2002.130687
https://doi.org/10.3201/eid2002.130687
https://doi.org/10.1089/hs.2015.0033
https://doi.org/10.3390/microorganisms8121864
https://doi.org/10.15585/mmwr.rr7002a1
https://doi.org/10.15585/mmwr.rr7002a1
https://doi.org/10.1016/s0039-6257(01)00227-2
https://doi.org/10.1093/cid/cix816
https://doi.org/10.26444/aaem/139242
https://doi.org/10.1016/j.amjms.2018.06.006
https://doi.org/10.1093/milmed/166.10.837
https://doi.org/10.1136/bjo.2007.117523
https://doi.org/10.1136/bjo.2007.117523
https://doi.org/10.3390/biomedicines9101421
https://doi.org/10.1093/qjmed/94.4.227
https://doi.org/10.1093/qjmed/94.4.227
https://doi.org/10.1007/978-1-4419-1266-4_2
https://doi.org/10.1086/428617
https://doi.org/10.7589/0090-3558-44.4.983
https://doi.org/10.1001/jama.283.17.2281
https://doi.org/10.1016/j.ajpath.2015.03.003
https://doi.org/10.1371/journal.pntd.0001929
https://doi.org/10.1086/529442
https://doi.org/10.2165/00003495-199753020-00005
https://doi.org/10.1038/26089
https://www.centerforhealthsecurity.org/our-work/publications/glanders-and-melioidosis-fact-sheet
https://www.centerforhealthsecurity.org/our-work/publications/glanders-and-melioidosis-fact-sheet
https://doi.org/10.1186/1750-1172-8-131
https://doi.org/10.1586/eri.10.4
https://doi.org/10.1016/s0035-9203(08)70002-6
https://doi.org/10.1128/cmr.00006-19
https://doi.org/10.1186/s12348-018-0147-6
https://doi.org/10.1097/mcp.0000000000000048
https://doi.org/10.1093/femspd/ftu007
https://doi.org/10.1053/j.jepm.2010.11.006
https://doi.org/10.1093/clinids/20.5.1179
https://doi.org/10.3322/caac.21330
https://doi.org/10.1016/j.onehlt.2016.03.004


Curran et al. 10.3389/fmed.2023.1349571

Frontiers in Medicine 10 frontiersin.org

 91. Ullah Q, Jamil T, Saqib M, Iqbal M, Neubauer H. Q fever-a neglected zoonosis. 
Microorganisms. (2022) 10:8. doi: 10.3390/microorganisms10081530

 92. Kampschreur L, Dekker S, Hagenaars JCJP, Lestrade P, Renders NHM, de Jager-
Leclercq MGL, et al. Identification of risk factors for chronic Q fever, the Netherlands. 
Emerg Infect Dis J. (2012) 18:563–70. doi: 10.3201/eid1804.111478

 93. Mahmoud A, Abid F, Khairallah M, Affes S, Mbarek S, Amor HH, et al. Acute 
multifocal retinitis in a patient with Q fever (Coxiella Burnetii infection) with 
endocarditis. J Ophthalmic Inflamm Infect. (2022) 12:19. doi: 10.1186/
s12348-022-00295-1

 94. Ong C, Ahmad O, Senanayake S, Buirski G, Lueck C. Optic neuritis associated 
with Q fever: case report and literature review. Int J Infect Dis. (2010) 14:e269–73. doi: 
10.1016/j.ijid.2009.11.010

 95. Udaondo P, Garcia-Delpech S, Salom D, Garcia-Pous M, Diaz-Llopis M. Q fever: a new 
ocular manifestation. Clin Ophthalmol. (2011) 5:1273–5. doi: 10.2147/opth.S18771

 96. Ganter M. Zoonotic risks from small ruminants. Vet Microbiol. (2015) 181:53–65. 
doi: 10.1016/j.vetmic.2015.07.015

 97. Pinchuk IV, Beswick EJ, Reyes VE. Staphylococcal enterotoxins. Toxins (Basel). 
(2010) 2:2177–97. doi: 10.3390/toxins2082177

 98. Fries BC, Varshney AK. Bacterial toxins-staphylococcal enterotoxin B. Microbiol 
Spectr. (2013) 1:2. doi: 10.1128/microbiolspec.AID-0002-2012

 99. Krakauer T. Therapeutic Down-modulators of staphylococcal superantigen-
induced inflammation and toxic shock. Toxins (Basel). (2010) 2:1963–83. doi: 10.3390/
toxins2081963

 100. Rusnak JM, Kortepeter M, Ulrich R, Poli M, Boudreau E. Laboratory exposures 
to staphylococcal enterotoxin B. Emerg Infect Dis. (2004) 10:1544–9. doi: 10.3201/
eid1009.040250

 101. Alves GG, Machado de Ávila RA, Chávez-Olórtegui CD, Lobato FC. Clostridium 
Perfringens epsilon toxin: the third Most potent bacterial toxin known. Anaerobe. (2014) 
30:102–7. doi: 10.1016/j.anaerobe.2014.08.016

 102. Gleeson-White MH, Bullen JJ. Clostridium Welchii epsilon toxin in the intestinal 
contents of man. Lancet. (1955) 268:384–5. doi: 10.1016/s0140-6736(55)91275-7

 103. Kohn J, Warrack GH. Recovery of clostridium Welchii type D from man. Lancet. 
(1955) 268:385. doi: 10.1016/s0140-6736(55)91276-9

 104. Rahal EA, Kazzi N, Nassar FJ, Matar GM. Escherichia Coli O157:H7-clinical 
aspects and novel treatment approaches. Front Cell Infect Microbiol. (2012) 2:138. doi: 
10.3389/fcimb.2012.00138

 105. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical 
presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial 
Management of Invasive Salmonella Infections. Clin Microbiol Rev. (2015) 28:901–37. 
doi: 10.1128/cmr.00002-15

 106. Pakbin B, Brück WM, Brück TB. Molecular mechanisms of shigella pathogenesis; 
recent advances. Int J Mol Sci. (2023) 24:2448. doi: 10.3390/ijms24032448

 107. Gilchrist JJ, MacLennan CA. Invasive nontyphoidal salmonella disease in Africa. 
EcoSal Plus. (2019) 8:2018. doi: 10.1128/ecosalplus.ESP-0007-2018

 108. Hannu T, Mattila L, Siitonen A, Leirisalo-Repo M. Reactive arthritis attributable 
to shigella infection: a clinical and epidemiological Nationwide study. Ann Rheum Dis. 
(2005) 64:594–8. doi: 10.1136/ard.2004.027524

 109. Collins NE, Fitzgerald O, Murphy CC. Clinical image: keratitis in reactive 
arthritis. Arthritis Rheum. (2011) 63:2522. doi: 10.1002/art.30397

 110. Saari KM, Vilppula A, Lassus A, Leirisalo M, Saari R. Ocular inflammation in 
Reiter's disease after salmonella enteritis. Am J Ophthalmol. (1980) 90:63–8. doi: 
10.1016/s0002-9394(14)75077-9

 111. Onwuezobe IA, Oshun PO, Odigwe CC. Antimicrobials for treating symptomatic 
non-typhoidal salmonella infection. Cochrane Database Syst Rev. (2012) 11:CD001167. 
doi: 10.1002/14651858.CD001167.pub2

 112. Christopher PRH, David KV, John SM, Sankarapandian V. Antibiotic therapy for 
shigella dysentery. Cochrane Database Syst Rev. (2009):4. doi: 10.1002/14651858.
CD006784.pub2

 113. Traa BS, Walker CL, Munos M, Black RE. Antibiotics for the treatment of 
dysentery in children. Int J Epidemiol. (2010) 39 Suppl 1:i70–4. doi: 10.1093/ije/dyq024

 114. Angelakis E, Bechah Y, Raoult D. The history of epidemic typhus. Microbiol 
Spectr. (2016) 4, 2–3. doi: 10.1128/microbiolspec.PoH-0010-2015

 115. Blanton LS. The rickettsioses: a practical update. Infect Dis Clin N Am. (2019) 
33:213–29. doi: 10.1016/j.idc.2018.10.010

 116. Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, 
management, and future control of cholera. Clin Microbiol Rev. (2022) 35:e0021121. doi: 
10.1128/cmr.00211-21

 117. Helmy YA, Hafez HM. Cryptosporidiosis: from prevention to 
treatment, a narrative review. Microorganisms. (2022) 10:2456. doi: 10.3390/
microorganisms10122456

 118. DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W. 
The infectivity of Cryptosporidium Parvum in healthy volunteers. N Engl J Med. (1995) 
332:855–9. doi: 10.1056/NEJM199503303321304

 119. Chen WD, Lai LJ, Hsu WH, Huang TY. Vibrio Cholerae non-O1 – the first 
reported case of keratitis in a healthy patient. BMC Infect Dis. (2019) 19:916. doi: 
10.1186/s12879-019-4475-4

 120. Stiff RE, Davies AP, Mason BW, Hutchings HA, Chalmers RM. Long-term health 
effects after resolution of acute Cryptosporidium Parvum infection: a 1-year follow-up 
of outbreak-associated cases. J Med Microbiol. (2017) 66:1607–11. doi: 10.1099/
jmm.0.000609

 121. Rasetti-Escargueil C, Avril A. Medical countermeasures against ricin intoxication. 
Toxins (Basel). (2023) 15:2. doi: 10.3390/toxins15020100

 122. Falach R, Sapoznikov A, Evgy Y, Aftalion M, Makovitzki A, Agami A, et al. Post-
exposure anti-ricin treatment protects swine against lethal systemic and pulmonary 
exposures. Toxins (Basel). (2020) 12:354. doi: 10.3390/toxins12060354

 123. World Health Organization. (2023). Who coronavirus (COVID-19) dashboard: 
World Health Organization. Available at: https://covid19.who.int/ (Accessed December 
13, 2023).

 124. Centers for Disease Control and Prevention. (2023). COVID-19 overview and 
infection prevention and control priorities in non-U.S. healthcare settings: Centers for 
Disease Control and Prevention. Available at: https://www.cdc.gov/coronavirus/2019-
ncov/hcp/non-us-settings/overview/index.html#r1 (Accessed December 14, 2023).

 125. Centers for Disease Control and Prevention. (2022). Symptoms of COVID-19: 
Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/
coronavirus/2019-ncov/symptoms-testing/symptoms.html (Accessed December 13, 
2023).

 126. Shantha JG, Fashina T, Stittleburg V, Randleman C, Ward L, Regueiro M, et al. 
COVID-19 and the eye: systemic and laboratory risk factors for retinopathy and 
detection of tear film Sars-Cov-2 Rna with a triplex rt-Pcr assay. PLoS One. (2022) 
17:e0277301. doi: 10.1371/journal.pone.0277301

 127. Shantha JG, Auld SC, Anthony C, Ward L, Adelman MW, Maier CL, et al. 
Retinopathy and systemic disease morbidity in severe COVID-19. Ocul Immunol 
Inflamm. (2021) 29:743–50. doi: 10.1080/09273948.2021.1952278

 128. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics 
of coronavirus disease 2019 in China. N Engl J Med. (2020) 382:1708–20. doi: 10.1056/
NEJMoa2002032

 129. Gangaputra SS, Patel SN. Ocular symptoms among nonhospitalized patients who 
underwent COVID-19 testing. Ophthalmology. (2020) 127:1425–7. doi: 10.1016/j.
ophtha.2020.06.037

 130. Ma N, Li P, Wang X, Yu Y, Tan X, Chen P, et al. Ocular manifestations and clinical 
characteristics of children with laboratory-confirmed COVID-19 in Wuhan, China. JAMA 
Ophthalmol. (2020) 138:1079–86. doi: 10.1001/jamaophthalmol.2020.3690

 131. Invernizzi A, Torre A, Parrulli S, Zicarelli F, Schiuma M, Colombo V, et al. Retinal 
findings in patients with COVID-19: results from the Serpico-19 study. 
EClinicalMedicine. (2020) 27:100550. doi: 10.1016/j.eclinm.2020.100550

 132. Brown CK, Matthews DL, Thomas RJ, Edens AL. Developing a personal 
protective equipment selection matrix for preventing occupational exposure to Ebola 
virus. Health Secur. (2019) 17:213–28. doi: 10.1089/hs.2019.0014

 133. National Institute for Occupational Safety and Health. Guidance on emergency 
responder personal protective equipment (Ppe) for response to Cbrn terrorism 
incidents. Ctr Dis Control Prev. (2008) 1–13.

 134. Occupational Safety and Health Administration. Chemical-biological-radiological-
nuclear (CBRN) personal protective equipment selection matrix for emergency responders: 
U.S. Department of Labor. Occupational Safety & Health Administration, U.S. 
Department of Labor, Washington, DC, USA (2005).

 135. Centers for Disease Control and Prevention. Smallpox: Prevent Spread of Disease: 
U.S. Department of Health and Human Services. Centers for Disease Control and 
Prevention, Atlanta, GA, USA (2017).

 136. World Health Organization. Infection control for viral Haemorrhagic fevers in the 
African health care setting. Geneva: World Health Organization (1998).

 137. Centers for Disease Control and Prevention. (2023). Guidance on personal 
protective equipment (Ppe) in U.S. healthcare settings for evaluating patients suspected 
to have selected viral hemorrhagic fevers who are clinically stable and do not have 
bleeding, vomiting, or diarrhea: U.S. Department of Health and Human Service. 
Available at: https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/guidance-clinically-
stable-puis.html (Accessed November 14, 2023).

17

https://doi.org/10.3389/fmed.2023.1349571
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.3390/microorganisms10081530
https://doi.org/10.3201/eid1804.111478
https://doi.org/10.1186/s12348-022-00295-1
https://doi.org/10.1186/s12348-022-00295-1
https://doi.org/10.1016/j.ijid.2009.11.010
https://doi.org/10.2147/opth.S18771
https://doi.org/10.1016/j.vetmic.2015.07.015
https://doi.org/10.3390/toxins2082177
https://doi.org/10.1128/microbiolspec.AID-0002-2012
https://doi.org/10.3390/toxins2081963
https://doi.org/10.3390/toxins2081963
https://doi.org/10.3201/eid1009.040250
https://doi.org/10.3201/eid1009.040250
https://doi.org/10.1016/j.anaerobe.2014.08.016
https://doi.org/10.1016/s0140-6736(55)91275-7
https://doi.org/10.1016/s0140-6736(55)91276-9
https://doi.org/10.3389/fcimb.2012.00138
https://doi.org/10.1128/cmr.00002-15
https://doi.org/10.3390/ijms24032448
https://doi.org/10.1128/ecosalplus.ESP-0007-2018
https://doi.org/10.1136/ard.2004.027524
https://doi.org/10.1002/art.30397
https://doi.org/10.1016/s0002-9394(14)75077-9
https://doi.org/10.1002/14651858.CD001167.pub2
https://doi.org/10.1002/14651858.CD006784.pub2
https://doi.org/10.1002/14651858.CD006784.pub2
https://doi.org/10.1093/ije/dyq024
https://doi.org/10.1128/microbiolspec.PoH-0010-2015
https://doi.org/10.1016/j.idc.2018.10.010
https://doi.org/10.1128/cmr.00211-21
https://doi.org/10.3390/microorganisms10122456
https://doi.org/10.3390/microorganisms10122456
https://doi.org/10.1056/NEJM199503303321304
https://doi.org/10.1186/s12879-019-4475-4
https://doi.org/10.1099/jmm.0.000609
https://doi.org/10.1099/jmm.0.000609
https://doi.org/10.3390/toxins15020100
https://doi.org/10.3390/toxins12060354
https://covid19.who.int/
https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview/index.html#r1
https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview/index.html#r1
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
https://doi.org/10.1371/journal.pone.0277301
https://doi.org/10.1080/09273948.2021.1952278
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1016/j.ophtha.2020.06.037
https://doi.org/10.1016/j.ophtha.2020.06.037
https://doi.org/10.1001/jamaophthalmol.2020.3690
https://doi.org/10.1016/j.eclinm.2020.100550
https://doi.org/10.1089/hs.2019.0014
https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/guidance-clinically-stable-puis.html
https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/guidance-clinically-stable-puis.html


TYPE Original Research

PUBLISHED 04 March 2024

DOI 10.3389/fmed.2024.1367900

OPEN ACCESS

EDITED BY

Kai Jin,

Zhejiang University, China

REVIEWED BY

Ludwig M. Heindl,

University Hospital of Cologne, Germany

Bojun Zhao,

Shandong Provincial Hospital, China

*CORRESPONDENCE

Yan-ling Wang

wangyanl@ccmu.edu.cn

Zhao-yang Meng

mm1526@ccmu.edu.cn

†These authors have contributed equally to

this work

RECEIVED 09 January 2024

ACCEPTED 19 February 2024

PUBLISHED 04 March 2024

CITATION

Liu W-l, Wu L-t, Wang J-l, Sun J, Cheng X-r,

Zhou Z-h, Guan J-x, Wang Y-l and Meng Z-y

(2024) E�ect of PCI on ophthalmic artery

hemodynamics in patients with acute

coronary syndrome. Front. Med. 11:1367900.

doi: 10.3389/fmed.2024.1367900

COPYRIGHT

© 2024 Liu, Wu, Wang, Sun, Cheng, Zhou,

Guan, Wang and Meng. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

E�ect of PCI on ophthalmic
artery hemodynamics in patients
with acute coronary syndrome

Wen-long Liu, Lan-ting Wu, Jia-lin Wang, Jiao Sun,

Xue-ru Cheng, Zhuo-hua Zhou, Jia-xin Guan, Yan-ling Wang*†

and Zhao-yang Meng*†

Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China

Purpose:We aimed to explore the e�ects of percutaneous coronary intervention

(PCI) on the ophthalmic artery (OA) hemodynamics in patients with acute

coronary syndrome (ACS).

Methods: A total of 73 participants (Group0: healthy controls, Group1: Patients

with ACS underwent PCI < 3 months, Group2: Patients with ACS underwent PCI

≥ 3 months) were enrolled. Computed tomographic angiography images were

used to construct three-dimensional models of participants’ OAs. Numerical

simulations based on computational fluid dynamics were used to acquire

hemodynamic parameters.

Results: The angle between the OA and internal carotid artery in Group2 was

significantly larger comparedwith Group0 andGroup1 (P= 0.003 and P= 0.044).

Hemodynamic simulation showed a significantly slower OA blood velocity in

Group1 than in the control (P < 0.001) and Group2 (P = 0.033). Lower wall shear

stress was found in Group1 than that in control (P = 0.040). Patients after PCI

had a higher wall pressure than healthy controls (P = 0.012 and P = 0.004). Mass

flow ratios were decreased in Group1 and Group2 (P= 0.021 and P= 0.002). The

hemodynamic parameters of OA were correlated with several clinical indicators.

Conclusions: The OA blood flow velocity of patients with ACS after PCI

initially slowed down, which increased the risk of plaque formation, and then

showed an increasing trend. There was a correlation between OA hemodynamic

parameters and clinical indexes related to cardiac stress. Ischemia-reperfusion

injury and changes in blood flow status after PCI may a�ect OA morphology and

hemodynamics, leading to ocular lesions.

Trial registration: ChiCTR2100050428.

KEYWORDS

percutaneous coronary intervention, ophthalmic artery, computational fluid dynamics,

hemodynamic numerical simulation, three-dimensional reconstruction

Introduction

Cardiovascular disease is the leading cause of death worldwide. Despite the initial

results, the treatment of up to 197 million patients with ischemic heart disease worldwide

still faces significant challenges (1). Percutaneous coronary intervention (PCI) is currently

an important treatment for myocardial revascularization in patients with acute coronary

syndrome (ACS), reducing the risk of death and improving the long-term prognosis.

Advances in technology and development of antiplatelet therapy are increasing the safety

of the procedure (2). However, significant complications can still occur during and after

PCI that may be related to the puncture site, the oral catheterization of the coronary artery,
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or the intervention itself. Moreover, myocardial ischemia-

reperfusion injury (IRI) after PCI should not be ignored

(3). Different organs, including the kidney, brain, eyes, and

gastrointestinal system, may be targets of thromboembolic

events after PCI (4). Since 1985, cases of ocular complications

after PCI have been reported from around the world (5–7).

Ophthalmic complications of PCI include a wide range of clinical

manifestations, from transient visual impairment to permanent

and devastating conditions. Most cases describe retinal artery

occlusion (RAO) after PCI. The incidence of new retinal embolism

after PCI was 6.33% (8). Therefore, it is of great significance

to explore the changes of ocular blood flow after PCI for the

prevention and treatment of ocular diseases such as RAO.

Our previous study found that ophthalmic artery (OA) can

reflect changes in ocular blood supply earlier than retinal vessels

(9). Using computational fluid dynamics (CFD), we found that

OA in patients with ACS had a slower blood flow velocity (10).

The numerical simulation technology based on CFD has solved

the difficult problem of OA observation and measurement, and

provided an effective means for exploring the relationship between

OA and ischemic heart disease. However, there is a lack of

research on retrobulbar blood flow changes after PCI. Therefore,

the purpose of this study was to investigate the effects of PCI on the

OA hemodynamics in patients with ACS.

Methods

Study design and participants

This study (ChiCTR2100050428) included patients with

ACS who underwent head and neck computed tomographic

angiography (CTA) examination after PCI at Beijing Friendship

Hospital between September 2021 and January 2023, as well as

healthy controls (HCs) who received CTA for other reasons. The

study protocol was approved by the local ethics committee of the

Beijing Friendship Hospital (2020-P2-008-01) and conformed to

the tenets of the Declaration of Helsinki. All participants provided

written informed consent. Three groups were defined, prior to

recruitment: HCs (Group 0), patients with ACS underwent PCI <

3 months (Group 1), and patients with ACS underwent PCI ≥ 3

months (Group 2).

A detailed ophthalmic examination was performed on each

participant, including best-corrected visual acuity, intraocular

pressure and slit-lamp examination. The slit-lamp examination

was performed by two experienced ophthalmologists. Patients with

significant ocular lesions such as glaucoma, orbital space-occupying

diseases, and optic neuritis, as well as those caused by systemic

diseases such as diabetic retinopathy, were excluded. The electronic

medical records were collected retrospectively to record general

information, laboratory parameters, echocardiogram results,

coronary angiography results, and concomitant medications.

Ophthalmic artery computational fluid
dynamics simulation

Based on our previous research method (10), the original head

and neck CTA images of all participants were obtained, and the

three-dimensional OAmodels were reconstructed. Import the CTA

DICOM image into Mimics 21.0 (Materialize, Ann Arbor, MI,

USA). An image segmentation technique was used to reconstruct

one of the OAs visible on the CTA image for each participant.

Manually edit model boundaries to eliminate adjacent interference

structures. A solid blood vessel model was obtained after smoothing

the surface of the model in Geomagic Studio 14.0 (3D Systems,

Rock Hill, SC, USA).

Based on CFD, the finite-volume method was adopted and

ANSYS Fluent 15.0 (ANSYS, Inc., Canonsburg, PA, USA) was used

for hemodynamic numerical simulation. The blood vessels were

assumed to be rigid and non-slipped, and the simulated blood was

considered to be a steady-state, laminar, incompressible Newtonian

fluid. The governing equations for the numerical simulation

were the Navier-Stokes equation and mass conservation equation

(Equations 1, 2):

ρ
(−→u · ∇

)−→u +∇p− µ1
−→u = 0 (1)

∇ ·
−→u = 0 (2)

In the formula, −→u represents the velocity vector, p is the

pressure, ρ is the blood density, and µ is blood viscosity. The blood

viscosity and density were set to 3.5× 10−3 kg/ms and 1,050 kg/m3,

respectively. Based on the literature (11), we adopted a systolic and

diastolicmean flow velocity of 0.34m/s as the inlet velocity (velocity

of the internal carotid artery [ICA] siphon). All models were set to

the same boundary conditions.

Quantitative assessment

We measured the morphological data of the OA models. The

centerline of each model was generated to obtain the best-fit

diameter of the initial OA and the angle between the OA and ICA

centerline. The initial OA was defined as the region where OA

originates from ICA. Two experienced ophthalmologists collected

all the data.

After successful simulation, the OA hemodynamic data were

obtained by using the Ansys Fluent post-processing software. The

blood flow velocity, wall shear stress (WSS), and initial OA pressure

were obtained quantitatively. The mass flow of the OA and ICA in

flux reports was obtained. Additionally, the mass flow ratio, defined

as the mass flow of the OA accounted for ipsilateral ICA mass flow,

was calculated.

Statistical analysis

Statistical analyses were performed using SPSS Statistics 26.0

(IBM, Armonk, NY, USA). The Shapiro-Wilk test was used to

test the normality of the variables. Data for normal distribution

are expressed as mean ± standard deviation, and descriptive

data for non-normal distribution are expressed as median (25–

75%). In the multi-group comparison, one-way ANOVA with

Bonferroni correction was used for continuous variables with

normal distribution, and Kruskal-Wallis H test was used for

variables with non-normal distribution. Depending on normality,

comparisons between the two groups were made using either the t-

test or Mann-Whitney U test. Categorical variables were expressed

as numbers and percentages and analyzed using χ2 or Fisher’s exact

Frontiers inMedicine 02 frontiersin.org19

https://doi.org/10.3389/fmed.2024.1367900
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2024.1367900

FIGURE 1

Ophthalmic artery (OA) three-dimensional reconstruction and morphological measurement. (A) The reconstructed OA model; ICA, internal carotid

artery. (B) The initial OA diameter comparison between groups; ns, not significant. (C) Angle between OA and ICA comparison between groups.

tests, as appropriate. Pearson’s correlation coefficient and linear

regression were used to determine correlations between continuous

variables. Non-normally distributed variables were converted into

natural logarithms.

Results

Clinical characteristics

In total, 73 OA models were reconstructed (Figure 1A). Table 1

shows the clinical characteristics of the 73 participants. The groups

were matched for age (P = 0.084), sex (P = 0.173) and type of ACS

(P= 0.721, P= 0.801, P= 0.591, respectively). A higher proportion

of patients with ACS had diabetes, and dyslipidemia (P= 0.001 and

P = 0.011, respectively). There were no differences in peripheral

arterial disease (P = 0.577), history of ischemic stroke (P = 0.092),

family history of coronary atherosclerotic heart disease (P= 0.679),

a current smoking status or hypertension (P= 0.027, P= 0.021 not

significant after Bonferroni correction). The clinical, laboratory,

echocardiographic, and medication details of the patients after PCI

are shown in Table 2.

Coronary artery lesions of patients were assessed through

angiography: two patients in the Group1 had a single vessel lesion

(left anterior descending artery [LAD] involved), two patients had

the left main stem and three vessel lesions (left main coronary

artery, LAD, left circumflex artery [LCX], and right coronary artery

[RCA] involved); three patients in the Group2 had single-vessel

lesions (LAD or RCA involved). In addition, all the other patients

had multiple vessel lesions (involving the LAD, LCX, and RCA).

The mean time after PCI of Group1 was 10.30± 9.46 days, and that

of Group 2 was 777.10± 525.21 days.

Morphological and hemodynamic changes

We obtained the initial OA morphological data of all

participants by measuring the model. The mean diameters of the

initial OA were 1.48±0.33mm, 1.52±0.45mm, and 1.54±0.36mm

for Group0, Group1, and Group2, respectively. No significant

difference was found in the diameter (P = 0.838, Figure 1B). The

angles between the OA and ICA were 68.34 ± 16.04◦, 71.86 ±

12.16◦, and 79.16± 10.23◦ in these groups, respectively. The angles

of Group2 were greater than that of Group0 and Group1 (P= 0.003

and P = 0.044, Figure 1C).

The streamline charts of each OAmodel were drawn according

to the CFD numerical simulation results (Figure 2A). The colors in

the streamlined chart indicate blood flow velocity. The closer the

streamline is to red, the higher the speed. Through quantitative

measurement, the initial OA blood flow velocity was 0.20 m/s

(0.16–0.27 m/s), 0.05 m/s (0.03–0.07 m/s) and 0.07 m/s (0.04–0.12

m/s) in Group0, Group1 and Group2, respectively. The blood flow

velocities of the OA in all disease groups were lower than those of

the control group (P < 0.001, Figure 2B). Moreover, the Group1

had slower OA blood velocities than Group2 (P = 0.033).

Figure 2C shows the contour charts of the WSS. The OA WSS

of the three groups were 5.44 Pa (1.93–7.72 Pa), 2.57 Pa (0.85–

5.31 Pa), and 3.55 Pa (1.21–6.96 Pa), respectively. The WSS of the

initial OA in Group1 was significantly lower than that in Group0

(P = 0.040, Figure 2D). The pressure of the initial OA (Figure 2E)
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TABLE 1 Baseline characteristics of the participants.

Variables Group0 Group1 Group2 P value

(n = 20) (n = 20) (n = 33)

Age (y), mean

± SD

61.80± 4.35 62.70± 4.08 64.94± 6.18 0.084

Female sex, n

(%)

8 (40) 4 (20) 6 (18) 0.173

STEMI, n (%) - 4 (20) 8 (24) 0.721

NSTEMI, n

(%)

- 6 (30) 11 (33) 0.801

UA, n (%) - 10 (50) 14 (42) 0.591

Current

smoking, n

(%)

8 (40) 16 (80) 22 (67) 0.027

Hypertension,

n (%)

12 (60) 18 (90) 29 (88) 0.021

Diabetes

mellitus, n (%)

4 (20) 14 (70) 22 (67) 0.001

Dyslipidaemia,

n (%)

10 (50) 18 (90) 26 (79) 0.011

PAD, n (%) 4 (20) 6 (30) 11 (33) 0.577

History of

ischemic

stroke, n (%)

2 (10) 8 (40) 10 (30) 0.092

Family history

of CAD, n (%)

5 (25) 6 (30) 12 (36) 0.679

STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-STEMI; UA, unstable

angina; PAD, peripheral arterial disease; CAD, coronary atherosclerotic heart disease.

Bonferroni correction was used for multiple comparisons. Bold values are significant.

was 313.20 Pa (204.25–441.47 Pa), 424.53 Pa (298.78–910.08 Pa),

and 510.32 Pa (301.26–700.60 Pa) in Group0, Group1, and Group2,

respectively. The Group1 and Group2 had a higher OA pressure

than the control group (P = 0.012 and P = 0.004, Figure 2F).

Through calculation, we obtained mass flow data for each OA

model (Figure 2G). The mass flow ratios of the OA to the ipsilateral

ICA were 3.72% (2.47–5.32%), 1.91% (1.12–3.93%), and 1.74%

(1.13–3.41%), respectively. The mass flow ratios in Group1 and

Group2 were lower than those in Group0 (P= 0.021 and P= 0.002,

Figure 2H).

Correlation between OA characteristics
and clinical parameters

Table 3 shows the correlations between OA characteristics and

clinical parameters. The pressure of the initial OA was positively

correlated with the ratio of early to late transmitral flow velocity

(r = 0.306, P = 0.029), troponin I (TnI, r = 0.369, P = 0.006),

troponin T (TnT, r = 0.318, P = 0.020), and N-terminal pro-B-

type natriuretic peptide (NT-proBNP , r = 0.550, P < 0.001). The

pressure of the initial OA was negatively correlated with high-

density protein (r = −0.317, P = 0.021). The mass flow ratios of

the OA to the ipsilateral ICA were positively correlated with TnT (r

= 0.451, P = 0.001), hemoglobin A1c levels (r = 0.297, P = 0.043),

potassium (r = 0.372, P = 0.006). In contrast, it was negatively

correlated with sodium (r =−0.290, P = 0.035).

Discussion

In this study, the morphological and hemodynamic changes of

the OA in patients with ACS after PCI were observed using CFD.

As reported in the literature, ocular complications after PCI include

retinal complications and neuro-ophthalmic complications (8, 12).

Retinal complications range from asymptomatic cotton wool spots

and superficial hemorrhages to severe retinal thromboembolic

events with vision loss. Atherosclerotic plaque, clots at the tip of

the catheter, and foreign objects on the catheter or guide wire can

all lead to a serious thromboembolic event from the heart to the

eye (8). Neuro-ophthalmic complications of PCI may be caused

by thromboembolic events in several important nuclei of ocular

motility (13, 14).

Although reperfusion of ischemic myocardium is beneficial

for improving cardiac function, delayed reperfusion is known to

cause impaired recovery of contractile activity, induce arrhythmia,

enhance metabolic defects, and produce structural damage to

cardiomyocytes in the heart (3, 15). These abnormalities due

to reperfusion of the ischemic heart are termed as IRI. The

mechanism of myocardial IRI is related to a variety of factors. So

far, studies have mainly focused on oxidative stress, inflammation,

calcium overload, energy metabolism disorders, pyroptosis and

ferroptosis (16–21). In addition to the local adverse effects on

myocardium, myocardial IRI induces distant organ injury. It has

been reported that myocardial IRI produces proinflammatory

cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1

(IL-1), and interleukin-6 (IL-6) (22). TNF-α can induce apoptosis

by activating extrinsic apoptotic pathway (23). Apoptosis has been

reported to play an important role in the development of the acute

kidney injury (24). It was found that myocardial preconditioning

could significantly reduce renal injury and apoptosis induced by

myocardial IRI. The mechanism may be related to the inhibition of

endogenous and extrinsic apoptotic pathways (25). Moreover, IRI

damage underlies many ocular diseases, such as glaucoma, diabetic

retinopathy, and RAO (26). IRI could lead to retinal ganglion cells

death, retinal morphological degeneration, loss of retinal function

and eventual loss of vision (27). We speculated that the ocular

arteries after PCI might also be affected by IRI, which would further

cause ocular lesions.

From a hemodynamic perspective, systemic changes in blood

flow status may occur after PCI. For the most part, in the

cardiovascular system, blood flow is considered laminar. When

blood thinning drugs are taken, the whole blood viscosity

decreases, as the Reynolds number rises and the laminar flow

could be disordered and converted to turbulent. Flow turbulence

enhances the energy deficit in the friction type, which increases

the boundary layer blockage in the vessels and generates heat

and increases the internal energy that affects the reduction

of the biofluid/blood-heat-capacity-ratio. In addition, turbulence

enhances the perfusion pressure necessary to push blood flow

(28). Routine administration of blood thinning medications after

PCI increases the risk of obstruction of internal flow due to

enhanced boundary layer blockage caused by turbulence. In this
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FIGURE 2

Hemodynamics characteristics of the ophthalmic artery (OA). (A) The streamline based on OA blood velocity. (B) Comparison of OA blood velocity.

(C) The wall shear stress contour of OA. (D) Comparison of OA wall shear stress. (E) The pressure contour of OA (F) Comparison of OA pressure. (G)

Mass flow (kg/s) and mass flow ratio of OA to ipsilateral internal carotid artery (ICA) (%). (H) Comparison of mass flow ratio of OA to ICA (%); Inlet (+),

outlet (–), Blood flow direction (black arrow).
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TABLE 2 Baseline characteristics of patients after PCI.

Variables Group1 Group2 P value

(n = 20) (n = 33)

Clinical characteristics

BMI (kg/m2), mean± SD 24.76± 2.07 26.53± 2.50 0.010

DAC (cm), mean± SD 92.20± 8.57 91.64± 9.97 0.834

Heart rate (bpm), mean± SD 74.10± 10.86 68.58± 13.28 0.123

Systolic BP (mmHg), mean± SD 140.90± 23.19 136.97± 23.39 0.555

Diastolic BP (mmHg), mean± SD 80.40± 14.84 79.12± 19.10 0.799

Laboratory parameters

TnI (ng/mL), median (IQR 25%−75%) 0.59 (0.06–3.77) 0.02 (0.003–0.54) 0.061

TnT (ng/mL), median (IQR 25%−75%) 0.07 (0.03–0.78) 0.18 (0.01–0.12) 0.133

CK (U/L), median (IQR 25%−75%) 61.50 (56.00–122.50) 95.00 (59.00–250.50) 0.368

CK–MB (ng/mL), median (IQR 25%−75%) 1.80 (1.45–4.63) 1.2 (0.83–4.60) 0.349

LDH (U/L), median (IQR 25%−75%) 175.00 (154.00–186.75) 194.00 (150.00–222.00) 0.826

NT–proBNP (pg/mL), median (IQR 25%−75%) 855.00 (137.00–1438.25) 229.50 (106.00–848.75) 0.106

Scr (µmol/L), mean± SD 72.67± 10.65 67.11± 10.07 0.062

FBG (mmol/L), median (IQR 25%−75%) 6.50 (5.90–9.58) 6.35 (6.03–9.18) 0.732

HBA1c (%), median (IQR 25%−75%) 7.96 (6.03–8.65) 6.60 (6.10–7.65) 0.293

TC (mmol/L), mean± SD 3.84± 0.97 3.75± 1.01 0.747

TG (mmol/L), mean± SD 1.51± 0.60 1.32± 0.60 0.274

HDL (mmol/L), mean± SD 1.15± 0.59 1.11± 0.27 0.723

LDL (mmol/L), mean± SD 2.01± 0.81 2.06± 0.77 0.831

Sodium (mmol/L), mean± SD 140.77± 2.36 139.61± 2.00 0.075

Potassium (mmol/L), mean± SD 4.01± 0.43 3.98± 0.32 0.729

TyG index, mean± SD 7.43± 0.62 7.29± 0.58 0.447

Echocardiography, mean ± SD

LVEF (%) 60.90± 9.78 63.22± 7.16 0.324

E/A 0.77± 0.22 0.83± 0.23 0.388

Cardiac index (L/min/m2) 2.65± 0.51 2.86± 0.60 0.206

Concomitant medication, n (%)

Statin 16 (80) 31 (94) 0.184

Aspirin 16 (80) 27 (82) 0.870

Clopidogrel/Ticagrelor 18 (90) 21 (64) 0.035

ACE inhibitor/ARB 2 (10) 25 (76) <0.001

Beta blocker 12 (60) 21 (64) 0.791

Calcium channel blocker 6 (30) 13 (39) 0.489

Insulin 2 (10) 4 (12) 0.813

BMI, body mass index; BP, blood pressure; TnI, troponin I; IQR, interquartile range; TnT, troponin T; CK, creatine kinase; CK-MB, creatine kinase isoenzyme-MB; LDH, lactate dehydrogenase;

NT-proBNP, N-terminal pro-B-type natriuretic peptide; Scr, serum creatinine; FBG, fasting blood glucose; HBA1c, hemoglobin A1c; TC, total cholesterol; TG, triacylglycerol; HDL, high-density

protein; LDL, low-density protein; TyG, triglyceride glucose index, calculated as the ln [fasting triglycerides (mg/dL)×fasting plasma glucose (mg/dL)/2]; LVEF, left-ventricular ejection fraction;

E/A, ratio of early to late transmitral flow velocity; ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker. P < 0.05 is significant (bold values).

study, we found that regardless of the length of time, the OA

pressure of the disease groups was higher, and the mass flow ratio

were lower than that of the control group. It further suggests

that there are systemic changes in blood flow status after PCI.

This provides a new perspective on the causes of ocular diseases

after PCI.
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TABLE 3 Association between OA characteristics and clinical parameters.

Variables ln (pressure) ln (mass flow ratio)

Correlation coe�cient (r) P value Correlation coe�cient (r) P value

BMI (kg/m2) −0.256 0.065 −0.029 0.835

DAC (cm) −0.014 0.921 0.043 0.761

Heart rate (bpm) −0.163 0.245 0.239 0.084

Systolic BP (mmHg) −0.112 0.425 0.052 0.711

Diastolic BP (mmHg) −0.203 0.145 0.061 0.666

LVEF (%) −0.299 0.099 −0.182 0.191

E/A 0.306 0.029 0.267 0.058

Cardiac index (L/min/m2) −0.071 0.629 0.191 0.189

ln (TnI) (ng/mL) 0.369 0.006 0.217 0.119

ln (TnT) (ng/mL) 0.318 0.020 0.451 0.001

ln (CK) (U/L) 0.237 0.087 0.184 0.186

ln (CK–MB) (ng/mL) 0.213 0.125 0.174 0.214

ln (LDH) (U/L) −0.160 0.251 0.154 0.270

ln (NT–proBNP) (pg/mL) 0.550 <0.001 0.245 0.077

Scr (µmol/L) −0.034 0.808 0.111 0.430

ln (HBA1c) (%) −0.163 0.274 0.297 0.043

ln (FBG) (mmol/L) −0.036 0.815 0.261 0.087

TC (mmol/L) 0.037 0.793 −0.035 0.804

TG (mmol/L) 0.000 0.998 0.039 0.784

HDL (mmol/L) −0.317 0.021 −0.189 0.175

LDL (mmol/L) 0.167 0.233 0.072 0.609

Sodium (mmol/L) −0.027 0.846 −0.290 0.035

Potassium (mmol/L) −0.036 0.800 0.372 0.006

TyG index 0.036 0.819 0.165 0.284

Ln, natural log of the variable; BMI, body mass index; BP, blood pressure; LVEF, left-ventricular ejection fraction; E/A, ratio of early to late transmitral flow velocity; TnI, troponin I; TnT,

troponin T; CK, creatine kinase; CK-MB, creatine kinase isoenzyme-MB; LDH, lactate dehydrogenase; NT-proBNP, N-terminal pro-B-type natriuretic peptide; Scr, serum creatinine; FBG,

fasting blood glucose; HBA1c, hemoglobin A1c; TC, total cholesterol; TG, triacylglycerol; HDL, high-density protein; LDL, low-density protein; TyG, triglyceride glucose index, calculated as

the ln [fasting triglycerides (mg/dL)×fasting plasma glucose (mg/dL)/2]. P < 0.05 is significant (bold values).

The effect of ACS on retrobulbar blood flow should not be

ignored. Consistent with our previous study (10), the blood flow

velocity of the initial OA in patients with ACS after PCI was lower

than that in healthy controls. However, this study further found

that OA blood flow velocity of patients with ACS after PCI within 3

months was slower than the blood flow velocity of patients with

ACS more than 3 months after PCI. Unfortunately, retrobulbar

blood flow data after PCI are lacking. Previous studies focused

on the correlation between retinal blood vessel morphology and

ischemic heart disease, and the flow velocity data were few andmost

of them were measured using color Doppler imaging. Moreover,

there is a lack of long-term observational data on retrobulbar blood

flow status in patients with ACS. The cardiac index is calculated by

dividing the volume of blood pumped by the heart by the surface

area of the body. The higher the cardiac index, the more blood

ejection of the heart and the better the heart function. We also

collected statistics on the cardiac index of all patients, and the

cardiac index of all patients with ACS was lower than the normal

value, and the Group1 had a lower cardiac index. As mentioned

above, the OA originates from the ICA and receives blood from

the ICA. The Group1 in this study was still in the acute stage of

the disease course, and poor cardiac pumping function may be one

of the reasons for the slow flow velocity of the OA. Similarly, the

OA of patients with ACS after PCI <3 months had relatively low

WSS. WSS is an important hydromechanical index related to many

physiological and pathological phenomena in the cardiovascular

system. There was growing evidence that atherosclerotic lesions

preferentially originate in areas of flow disturbance associated

with low WSS (29). In addition, low WSS accelerates endothelial

turnover, leading to increased lipid uptake and promoting the

formation of plaque necrotic cores (30). Moreover, the principal

factor for plaque creation is time reaction between molecules and

surface. Slow blood flow increases the retention time of blood

through the artery, which increases the likelihood that blood
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particles will react with the vessel wall (31). In this study, we

analyzed OA morphological data for all participants. There was no

significant difference in the initial diameter of the OA, however, a

larger angle was found in the OA of patients with ACS more than

3 months after PCI. This suggests that although the diameter of the

OA has not changed significantly, the low flow velocity and low

WSS may still affect the OA morphology (32). This suggests that

more attention should be paid to the ocular condition of patients

after PCI, because they may be more prone to arteriosclerosis or

ocular vascular obstructive diseases.

In the correlation analysis, we found that the hemodynamic

parameters of the OA correlated with some important markers

of cardiac stress. Cardiac troponin T (cTnT) is considered as a

marker of myocardial apoptosis and necrosis (33). The alternative

mechanisms of cTnT release include increased myocardial stress

due to stress and increased volumetric load. In addition, small

increases in cTnT levels are associated with endothelial dysfunction

and small vessel disease, not just myocardial damage (34). This

suggests that cTnTmay also be related to intracranial microvascular

system lesions. NT-proBNP is a neurohormone mainly synthesized

and secreted by ventricular myocardium, which is considered

as a dynamic marker of cardiac stress (35). NT-proBNP is also

associated with the regulation of retinal epithelial cells and glial cells

and the function of retinal microvascular injury (36). Lower levels

of NT-proBNP are associated with early microvascular changes,

including loss of endothelial integrity (37), hemodynamic changes,

and decreased coronary and cerebral microvascular density, which

increase the risk of intracranial vascular disease (38).

This study has some limitations. ACS is an acute disease, and

the first consideration the cardiologist in clinical practice is to save

the life of patients. Therefore, our CTA examination was performed

after the condition was stable. Moreover, the thickness of CTA

scanning layer limits the accuracy of reconstruction. Finally, due

to the lack of relevant research data, we set the same boundary

conditions for all groups. Therefore, further research is needed to

improve the integrity of these results.

Conclusions

This study provides evidence that the OA blood flow velocity of

patients with ACS after PCI initially slowed down, which increased

the risk of plaque formation, and then showed an increasing trend.

Moreover, there was a correlation between OA hemodynamic

parameters and clinical indexes related to cardiac stress. In addition

to the improvement of systemic and ocular blood perfusion after

PCI, ocular vessels may be affected by IRI and blood flow status

changes, resulting in ocular lesions. More attention should be paid

to the ocular condition of patients after PCI. This study provides a

new perspective for the pathogenesis of ocular diseases after PCI,

which needs to be further explored.
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Segmentation of corneal layer interfaces in optical coherence tomography

(OCT) images is important for diagnostic and surgical purposes, while manual

segmentation is a time-consuming and tedious process. This paper presents a

novel technique for the automatic segmentation of corneal layer interfaces using

customized initial layer estimation and a gradient-based segmentation method.

The proposed method was also extended to three-dimensional OCT images.

Validation was performed on two corneal datasets, one with 37 B-scan images

of healthy human eyes and the other with a 3D volume scan of a porcine eye.

The approach showed robustness in extracting di�erent layer boundaries in the

low-SNR region with lower computational cost but higher accuracy compared

to existing techniques. It achieved segmentation errors below 2.1 pixels for both

the anterior and posterior layer boundaries in terms of mean unsigned surface

positioning error for the first dataset and 2.6 pixels (5.2 µm) for segmenting all

three layers that can be resolved in the second dataset. On average, it takes 0.7

and 0.4 seconds to process a cross-sectional B-scan image for datasets one

and two, respectively. Our comparative study also showed that it outperforms

state-of-the-art methods for quantifying layer interfaces in terms of accuracy

and time e�ciency.

KEYWORDS

segmentation, optical coherence tomography, cornea, layer, eye

1 Introduction

Optical coherence tomography (OCT) can produce detailed cross-sectional images of

internal structures in biological tissues (1). Because of its non-invasive and non-contact

characteristics, it has been widely used in clinical ophthalmology (1–3), particularly in the

retina (1, 2) and cornea (3). Measurements derived from OCT images, such as corneal

layer thickness and curvature, can provide important diagnostic information for the

management of ectasia, angle assessment, corneal abnormalities and anterior segment

tumors (4). Reliable and accurate segmentation methods are required for automatic

processing of corneal OCT images to obtain corneal parameters (5, 6), while manual

segmentation is not feasible due to the large volume of OCT data generated in clinics.

Several approaches to automated corneal segmentation have been proposed to

address the aforementioned issue, with varying degrees of success. Li et al. (5, 7)

proposed a fast active contour (FAC) algorithm with second-order polynomial fitting for

automated corneal segmentation. Eichel et al. (8) presented a semi-automatic segmentation

method using enhanced intelligent scissors and a global optimization method.
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Shen et al. (9) used a novel method for the anterior segment

without segmenting the posterior surface. However, none of the

above methods can effectively deal with image regions with a

low signal-to-noise ratio (SNR) or artifacts introduced during

image acquisition, such as the central and horizontal artifacts

described in Section 2. More robust methods have been proposed

in recent years. LaRocca et al. (10) presented an approach based on

graph theory and dynamic programming with better segmentation

performance in terms of robustness against artifacts. A customized

Hough transform and refinement using Kalman filtering by Zhang

et al. (11) is proposed for low computational cost. However, these

studies modeled the interface as a parabola, which is not suitable

for uneven layer interfaces. Furthermore, extrapolation into the low

SNR region is an inaccurate way to segment corneal boundaries.

William et al. proposed a level set with shape constraint model (12)

and a graph cut model (13), but both require customized optimal

weighting. Deep learning based methods have emerged in recent

years. dos Santos et al. (14) proposed a modified U-net model with

fewer parameters and fast processing speed. Unfortunately, deep

learning techniques require a large amount of labeled data and

intensive computational effort for training.

To address the above-mentioned limitations, we propose a

novel gradient-based segmentation technique for corneal layer

boundaries in this paper. It not only works in two-dimensional

(2D) B-scans, but also can be extended to three-dimensional

(3D) corneal images segmentation. The proposed method is able

to detect the corneal layer boundaries accurately with lower

computational cost compared to other state-of-the-art methods, by

equipping with novel initial estimation and refinement techniques.

The proposed method has been evaluated on two newly-

constructed AS-OCT datasets with expert manual annotation, and

the results have demonstrated the superiority.

2 Materials and methods

The proposedmethod involves three key stages: pre-processing,

estimation and refinement of the anterior corneal surface, and

estimation and refinement of the other layers including the

posterior surface and the epithelial-stromal interface (if visible).

The whole process is illustrated by the flowchart in Figure 1. In this

paper, the following notations are used to describe the proposed

segmentation technique: Y and X denote the depth and width of an

image, respectively. The width and height of an image range from

1 to X and from 1 to Y respectively. The intensity of a pixel at (x, y)

of an image I is represented by I(x, y).

2.1 Materials

This study was approved by the ethics committee of the Cixi

Institute of Biomedical Engineering, Chinese Academy of Sciences,

and adhered to the principles of the Declaration of Helsinki.

Written informed consent was obtained from each subject before

they participated in the study.

Two datasets were used in the experiments. Dataset1 consists of

37 anterior segment OCT (AS-OCT) B-scan images of healthy eyes

acquired with a Visante AS-OCT system [seeWilliams et al. (13) for

details]. Briefly, each image covers a 16mmwide region sampled by

256 A-scans of 1024 points to a depth of 8mm. The pixel resolution

is therefore 60µm×18µm. All images were manually delineated by

two ophthalmologists, one of whom marked the images twice in a

masked fashion. All 37 images were used as test data for validation.

Dataset 2 is a 3D volume scan of a porcine cornea acquired with

an in-house spectral domain OCT device at a scan rate of 100 µs

per A-scan using a light source with a central wavelength of 840

nm. It consists of 421 raster B-scan images of a 15.1 mm region.

The images have an axial resolution of 1.9 µm and a transverse

resolution of 15 µm with a gap of 20 µm between consecutive

B-scans. Three visible layer interfaces (air-epithelium, epithelium-

stroma and endothelium-aqueous) of randomly selected 6 B-

scans were manually marked twice by an experienced grader for

validation purposes.

All images in dataset 1 generated by AS-OCT were used to

evaluate the performance of the algorithm. These images were

acquired using the Visante AS-OCT system, which is a time-

domain system that acquires images at 2,000 axial scans per second

in 1,300 nm infrared light. Each B-scan, 37 B-scans in total, consists

of 816 A-scans and 406 lateral pixels in each A-scan. The scan width

and depth are 16 mm and 8 mm respectively. The pixel resolution

is therefore 19.70 µm × 19.60 µm. The layer interfaces for all 37

test datasets weremarked by three different graders simultaneously.

Test data for the second dataset, obtained from a home-made OCT,

was generated by randomly selecting 6 B-scans from a pool of

421 OCT images. The layer boundaries for the test data were then

delineated by an experienced grader. The scan rate of the home-

built spectral domain OCT system is 100 ms in each A-scan using

a light source with a central wavelength of 840 nm. Each B-scan

image contains 1000 A-scans of 15.11 mm with 1024 pixels of

1.9511 mm. The pixel resolution for the second dataset is therefore

1.905 µm× 15.113 µm.

2.2 Pre-processing

The first step is to remove unwanted structures and noise (e.g.,

the iris and high intensity artifacts at the apex position) from the

image, as shown in Figure 2, to reduce their detrimental effect on

segmentation performance. This is achieved by cropping the image,

after which all the content remaining in the image becomes a region

of interest (ROI). It is observed that the apex of the cornea in OCT

images has a relatively higher intensity than the region above it, as

the scattered light from other regions is much weaker than that

in the center. Based on this observation, the top resizing location

can be obtained by finding the first local maximum of intensity

summation in each row by the equation S(y) =
∑x=X

x=1 I(x, y) above

a threshold (in this case, mean intensity summation is used) to

reduce computational cost. Therefore, all rows 15 pixels above are

empirically cropped. Similarly, the lower resizing position can be

estimated from typical corneal thickness and the axial resolution

of the image. The left and right parts are also cropped to remove

unwanted structures and the low SNR region on both sides.

As shown in Figure 2, two main types of artifacts are present

in OCT images: horizontal artifacts and central noise artifacts. The

former appears as long horizontal stripes of high intensity, while the
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FIGURE 1

Flowchart of the proposed method to segment the corneal layer interface.

FIGURE 2

Example OCT images showing low SNR regions, horizontal artifacts, central artifacts and the iris. (A) An example image in Dataset1. (B) An

zoomed-in cornea image in Dataset2.

latter is characterized as a vertical saturation region. It is essential to

eliminate these artifacts as they have a significant negative impact

on the segmentation algorithm.

The horizontal artifact is characterized as adjacent rows with

higher mean intensity than others, an efficient way to mitigate it is

to subtract the pixel value of each row from the mean intensity of

that row.

The central noise artifact is detected by finding a sudden

increase in the average intensity of the A-scans, as it is characterized

by relatively higher intensity pixels vertically. The whole image is

divided equally into three regions and the average intensity (µ) of

the A-scans in the peripheral region is calculated. Assuming that

the central artifact only occurs in the central region, we therefore

consider the A-scan in the central region above a certain threshold

[ 43µ (10)] as the region contaminated by the central artifact. Once

the artifact is detected, the region within the artifact is not included

in the subsequent processes.

It is necessary to suppress noise in OCT images as the additive

thermal and electronic noise can degrade the performance of the

algorithm. A 5×5 Wiener denoiser (15) is used to increase the

image SNR. For simplicity, the image after artifact suppression and

denoising is still denoted as I(x, y).

2.3 Coarse segmentation of anterior
surface

In this section we will focus on approximating the position

of the anterior surface boundary, as the air-epithelium interface

is generally the region with the best quality (high SNR) in OCT

images. The main feature used in the search is the bright-to-

dark or dark-to-bright transitions in the axial (vertical) direction.

Instead of using a gradient with a directional filter to extract the

corresponding boundary (10), a novel adapted estimation method

is presented.

It is observed that relatively high pixel intensity occurs at

adjacent corneal layer boundaries as a result of over-exposure

of reflected and scattered light at the edge in the OCT system.

Therefore, the position of the anterior interface can be easily

estimated based on the prior assumption that the strongest

response of an OCT system (the pixel with the highest intensity)

in each A-scan mostly occurs near the corneal boundary instead

of random noise. In addition, only pixels with local maxima in A-

scans are considered as candidate pixels to reduce computational

cost and improve accuracy by excluding other pixels.

To estimate the anterior corneal boundary, we defined a

“boundary function” to characterize the corneal interface. In

essence, the “boundary function” is a mathematical optimisation

objective function that aims to determine the position of the

boundary in each A-scan. Therefore, the anterior boundary can be

obtained by maximizing the “boundary function” in a predefined

region according to pixel resolution and layer thickness to find the

optimal input argument. The function is defined in each A-scan in

the Equation 1.

G(x) = T+(x)− T−(x) (1)

Two constraints are used in this function to characterize the

corneal boundaries (Equation 2). T+(x) is used to account for the

difference in pixel intensity between two boundary pixels as a

result of over-exposure of scattered and reflected light. The second

constraint, T−(x), aims to test the lowest intensity of all candidate

pixels between two boundary pixels, as there is less scattered light

within the corneal layer with similar tissue. The anterior surface is
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FIGURE 3

Corneal boundaries in an A-scan.

coarsely segmented by finding the top pixel in the axial direction,

as shown in Figure 3.

T+(x) = |I(x, y1)− I(x, y2)| y1, y2 ∈ [1,Y]

T−(x) = minµ∈[y1,y2] I(x,µ)
(2)

Due to noise in low-SNR regions, the stability problem that

some candidate pixels are in random noise should be addressed. To

deal with random noise in low-SNR regions (usually in the outer

parts), a second-order polynomial approximation (5, 7, 10) is used

to fit the profile to eliminate the effect of random noise and form

a smooth boundary (other layer boundaries without a predefined

approximation model can simply use a median filter to address

this problem).

2.4 Refinement of segmentation

In this section, a novel method is proposed to refine the

boundary estimated above. In order to precisely refine the layer

boundary, the tactic used is that the latter boundary pixels are

determined based on the previously determined boundary pixels

with a constant decay weight.

The actual boundary is defined as the maximum intensity

change (dark to light or light to dark) in the axial direction.

Therefore, the actual layer boundary is found by the maximum

absolute vertical gradient. Assuming that the SNR in the center of

the corneal image is relatively high compared to the outer part, a

non-linear adjustment is considered here, which means that actual

boundary pixels at the periphery needmore actual central boundary

pixels to be confirmed, while central boundary pixels need only a

small amount of actual interface pixels to be decided. Therefore,

the whole image in the center is divided into two parts to find the

actual boundary.

First, the magnitude of the image gradient in the axial direction,

symbolized as g(x, y), is calculated using the forward difference

procedure MAXGRAD(g(x, y), fe(x)) ⊲ image

gradient:g(x, y), estimated pixels : fe(x)

limited search region: a ∈ predefined region

geometric distribution factor: p ⊲ normalized

linear distribution

fnew(x)← fe

for each pixel (I, fnew(I)), I ∈ X, from center C to

periphery do

Ta ←
∑I

i=C[g(fnew(i)+ a)× p(1− p)i−C+1] ⊲ right portion

as example

fnew(I)← argmax(Ta)

end for

return fnew(x)

end procedure

Algorithm 1. Boundary refinement.

gradient operator ∂I
∂y =

I(x,y+1)−I(x,y)
2 , and then for each of the

latter refined boundary pixels from the center to the periphery is

determined based on the maximum summation of the absolute

gradient of all previously determined boundary pixels with a

geometric distribution decay (constant p) according to Equation 3

by iteratively shifting previous refined pixels up and down in a

limited search region (in this case with 5 pixels up and down from

the approximated air-epithelium layer interface). The pseudocode

for the detailed refinement procedure is shown in Algorithm 1.

y = f (x|p) = p(1− p)x; x = 0, 1, 2, ... (3)

After the actual air-epithelium is detected with the proposed

method, to smooth the curve of the layer interface, the Savitzky-

Golay filter (16–18), with the first-order polynomial and 21-

frame length (11), is implemented. Figure 4 shows the refined

anterior surface.

2.5 Estimation of other layer interfaces

Our proposed method for approximating other layers is

based on the refined air-epithelium layer interface, as they will

have similar boundary profiles. Other layer interfaces can be

estimated by maximizing the summation of the absolute gradient,

according to the Equation 4, in a region S vertically below the air-

epithelium profile (based on typical thickness and pixel resolution).

Approximations of other layers in different datasets are shown in

Figure 4.

argmaxµ∈S
∑

g(x, f (x)+ µ) (4)

2.6 Refinement of other layer interfaces

Refinement of other layer interfaces based on the initial

estimation in Section 2.5 is performed using a similar technique

to that used to adjust the air-epithelium interface in Section

2.4. According to Liu et al. and González-Méijome et al.
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FIGURE 4

Example segmentations on di�erent datasets. Red and green lines represent the segmented anterior and posterior layer boundaries (misalignment

highlighted in cyan). The yellow line shows the epithelium-stroma interface. (A) Coarse segmentation in Dataset1. (B) Coarse segmentation in

Dataset2. (C) Final segmentation in Dataset1. (D) Final segmentation in Dataset2.

(19, 20), the cornea is relatively thinner at the center than at

the periphery, as shown in Figure 4. Therefore, a normalized

linear growth geometric distribution factor p (p ∈ [0, 1])

from the center to the periphery is used based on the locality

of the data points, which means that the approximated data

points at the periphery have more ability to explore the layer

interface instead of considering the predetermined candidate

pixels more than those at the center. However, due to the

low SNR at the periphery near the layer boundary, the issue

of segmentation stability is raised. To address this issue of

refinement flexibility, the refinement technique in the Section 2.4

is again used with a low geometric distribution factor for curve

smoothing. Figure 4 shows the final segmentation of all visual

corneal layers.

2.7 Three-dimensional segmentation

Reconstruction of 3D surface maps of the cornea follows the

method for segmentation of 2D B-scans described in the previous

sections. There are three main steps: preprocessing, estimation

and refinement.

Similar processing steps are implemented to crop the 3D

volume image to ensure that only the ROI remains and that various

artifacts are removed.

To estimate the air-epithelial interface, the “boundary function”

approximation described in Section 2.3 is used with a quadratic

surface fit to eliminate the effect of random noise. A similar

refinement technique is used in Section 2.4. In 3D segmentation,

the starting pixel is in the center of the cornea as we assume

that high resolution is presented in the center of the image while

low SNR appears in the periphery. For non-linear adaptation,

additional information from neighboring pixels was introduced.

Candidate pixels are considered using geodesic distance transform

(here the city block method is used) (21). Each candidate pixel

from the center to the periphery (the distance after transformation)

is determined based on the maximum summation of the absolute

gradient of all previously refined pixels with geometric distribution

decay in a limited region, which means that the algorithm

considers more the neighboring candidate pixels and less the

distant candidate pixels. A 3×3×3 median filter is used for

curve smoothing.

Other layer interfaces can be approximated by maximizing the

sum of the absolute gradient of all estimated pixels in a limited

region by shifting the refined air-epithelium profile, following

Equation 5.

argmaxµ∈S
∑

g(x, y, f (x, y)+ µ) (5)

Then the same refinement method mentioned above is used to

find the actual boundary pixels. The final segmentation result is

shown in Figure 5.

2.8 Experiments

The algorithm is implemented in Matlab and runs

without parallel processing on a Win10 64-bit OS

PC with Intel Core i5-7500 CPU @ 3.40 GHz and

8.00 GB RAM.

To evaluate the performance of our method and the other

(13), the segmentation results of different layer surfaces were

compared with the ground truth described in Section 2.1. The

mean unsigned surface position error (MSPE) (13) is used as a

metric to evaluate performance. In order to examine the intra-

and inter-observer agreement, for Dataset1 the annotations of the

same observers and between observers were also compared. For

Dataset2, due to data availability, only intra-observer variation

was assessed.
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FIGURE 5

Surfaces reconstructed from 3D segmentation.

TABLE 1 Results on Dataset1 in mean unsigned surface positioning error.

Corneal layer boundary Proposed
method

Williams’
method

Inter-observer
variation

Intra-observer
variation

Anterior 0.62± 0.61 1.21± 1.64 0.80± 0.90 0.92± 1.46

Posterior 2.15± 2.26 2.82± 1.26 1.25± 1.46 1.62± 2.33

3 Results and discussion

The proposed method was first compared with Williams et al.

(13), which used dataset1. The comparison results between the

proposed method and that of Williams et al. are summarized in

Table 1. A significant improvement in accuracy can be observed:

our mean ± standard deviation MSPEs on the anterior and

posterior interfaces are 0.62 ± 0.61 and 2.15 ± 2.26 pixels, while

theirs are 1.21 ± 1.64 and 2.82 ± 1.26 pixels. In addition, the

processing time of our proposed algorithm (0.74 s) is much

lower than theirs (2.53 s). Furthermore, an observer variation

test was also performed, as shown in Table 1. The mean pixel

error of our method for the anterior boundary (0.62 ± 0.61)

is lower than the interobserver variation (0.80 ± 0.90) and the

intraobserver variation (0.92 ± 1. 46), and the mean pixel error

of our method for the posterior boundary (2.15 ± 2.26) is slightly

higher than the inter-observer variation (1.25± 1.46) and the intra-

observer variation (1.62 ± 2.33). These results demonstrate the

good performance of our proposed method.

The proposed method was also tested on Dataset2 and

the results are summarized in Table 2. The MSPE in pixels

for all three layers (2.67 ± 0.40 pixels for epithelium-air, 2.30

± 0.40 pixels for epithelium-stroma and 2.62 ± 0. 44 pixels

for endothelium-aqueous) are lower than those of the intra-

observer variation (4.47 ± 5.76 pixels for epithelium-air, 5.90

± 4.25 pixels for epithelium-stroma, and 5.14 ± 3.13 pixels for

TABLE 2 Results on Dataset2 in mean unsigned surface positioning error.

Corneal layer
boundary

Mean ± standard
deviation

Intra-
observer
variation

Epithelium-air 2.67± 0.40 4.47± 5.76

Epithelium-stroma 2.30± 0.39 5.90± 4.25

Endothelium-aqueous 2.62± 0.44 5.14± 3.13

TABLE 3 3D segmentation results in Dataset2.

Mean unsigned surface positioning error (MSPE)

Corneal layer boundary Mean ± standard deviation

Epithelium-air 7.06± 9.03

Epithelium-stroma 7.03± 10.31

Endothelium-aqueous 12.47± 13.10

endothelium-aqueous). Considering the high resolution of the

images, the actual error is comparatively small, e.g. the MSPE

is 5.2 µm for the endothelium-aqueous layer interface, which

is comparable to those of other methods (10, 11, 13). The

technique has demonstrated high speed segmentation with an

average segmentation time of 0.42 seconds per image for three

visible interfaces.
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FIGURE 6

Segmentation of the epidermal layer of a fingerprint with uneven surfaces, where the red and blue curves represent the anterior and posterior layer

interfaces, respectively.

To test the performance of our extended 3D segmentation

method, the surfaces of the layer interfaces were constructed using

our proposed 2D segmentation method on each B-scan image

in Dataset2. In our experiment, B-scans from 51 to 310 were

segmented to construct the surfaces. The surfaces from the direct

3D segmentation method were compared with those from the 2D

constructed surfaces, and the results are shown in Table 3.

To further demonstrate the robustness of the proposed

algorithm, an OCT image of a fingerprint image was segmented

and the results are shown in Figure 6. Although the layer interfaces

are more irregular compared to those of the cornea, the results

are appealing and demonstrate the robustness of our method in

dealing with complex surfaces such as the diseased cornea in the

future.

4 Conclusion

A novel technique for automatic segmentation of corneal layer

interfaces in OCT images has been proposed and validated. The

proposed method outperforms state-of-the-art methods in terms

of accuracy and time efficiency. The method is extended to 3D

segmentation with relatively high accuracy. The method could

be used to segment more layer boundaries resolved by OCT

imaging techniques. Thus, the method has significant potential for

clinical care.
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and Fangkun Zhao1,2*
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Shenyang, China, 2Key Lens Research Laboratory of Liaoning Province, Shenyang, China
Background: Many observational studies have been reported that patients with

autoimmune or allergic diseases seem to have a higher risk of developing senile

cataract, but the views are not consistent. In order to minimize the influence of

reverse causality and potential confounding factors, we performed Mendelian

Randomization (MR) analysis to investigate the genetic causal associations

between autoimmune, allergic diseases and senile cataract.

Methods: Single nucleotide polymorphisms associated with ten common

autoimmune and allergic diseases were obtained from the IEU Open genome-

wide association studies (GWAS) database. Summary-level GWAS statistics for

clinically diagnosed senile cataract were obtained from the FinnGen research

project GWAS, which consisted of 59,522 individuals with senile cataracts and

312,864 control individuals. MR analysis was conducted using mainly inverse

variance weighted (IVW)method and further sensitivity analysis was performed to

test robustness.

Results: As for ten diseases, IVW results confirmed that type 1 diabetes (OR = 1.06;

95% CI = 1.05-1.08; p = 2.24×10-12), rheumatoid arthritis (OR = 1.05; 95% CI = 1.02-

1.08; p = 1.83×10-4), hypothyroidism (OR = 2.4; 95% CI = 1.42-4.06; p = 1.12×10-3),

systemic lupus erythematosus (OR = 1.02; 95% CI = 1.01-1.03; p = 2.27×10-3),

asthma (OR = 1.02; 95% CI = 1.01-1.03; p = 1.2×10-3) and allergic rhinitis (OR = 1.07;

95% CI = 1.02-1.11; p = 2.15×10-3) were correlated with the risk of senile cataract.

Celiac disease (OR = 1.04; 95% CI = 1.01-1.08; P = 0.0437) and atopic dermatitis

(OR = 1.05; 95% CI = 1.01-1.10; P = 0.0426) exhibited a suggestive connection with

senile cataract after Bonferroni correction. These associations are consistent across

weighted median and MR Egger methods, with similar causal estimates in direction

and magnitude. Sensitivity analysis further proved that these associations

were reliable.
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Conclusions: The results of the MR analysis showed that there were causal

relationships between type 1 diabetes, rheumatoid arthritis, hypothyroidism,

systemic lupus erythematosus, asthma, allergic rhinitis and senile cataract. To

clarify the possible role of autoimmune and allergy in the pathophysiology of

senile cataract, further studies are needed.
KEYWORDS

autoimmune diseases, allergy, Mendelian randomization, senile cataract, GWAS -
genome-wide association study
Introduction

Senile cataract, also known as age-related cataract, is one of the

leading causes of treatable blindness in the world, affecting 17% of

the global population (1). Senile cataract is the most common type

of cataract among adults, with onset between ages of 45 and 50.

Even with the rapid development of cataract surgery, senile cataract

still causes a huge disease and economic burden, especially in

developing countries (2). Identifying potential risk factors to

determine the mechanism of cataract formation and preventive

methods is therefore of paramount importance. Currently, risk

factors such as ageing, smoking, alcohol consumption,

hypertension, and diabetes have been proved to contribute to the

occurrence of cataract (3–7). However, the influence of immune

related diseases as risk factors on cataract is not well studied.

Protecting the host from infection is the primary function of the

immune system. The inability to distinguish self from non-self is

often referred to as a breach of tolerance and is the underlying

mechanism for autoimmune disease. The overall prevalence of

autoimmune diseases in the general population is in the range of

3-5% (8). There are almost 100 different types of autoimmune

diseases, the most common of which are autoimmune thyroid

disease and type 1 diabetes (T1D) (9). The incidence of allergic

diseases, represented by asthma, atopic dermatitis (AD) and allergic

rhinitis (AR) , has increased dramatically in the past three decades,

and now affects approximately 20% of the population, becoming a

public health problem that imposes a heavy burden on society (10).

Evidence from previous observational studies suggests that some

autoimmune and allergic diseases, such as celiac disease (CeD) (11),

systemic lupus erythematosus (SLE) (12), T1D (13), multiple

sclerosis (MS) (14), psoriasis (15), asthma (16) and AR (17) may

increase the risk of cataracts. These observational studies tend to be

susceptible to selection bias, residual confounders and reverse

causation. Thus, assessing the causal relationship between

autoimmune and allergic diseases and the development of senile

cataract can provide clues for the etiology of senile cataract.

Mendelian randomization (MR), as an epidemiological

approach, has been widely used to evaluate the potential causal

association between exposures and disease results (18). This
0236
approach minimizes residual confounding because genetic

variants are randomly assembled at the time of conception and

are therefore independent of personal lifestyle and environmental

factors (19). At the same time, the interference of reverse causality

can also be avoided (20). Compared with the gold standard

randomized controlled trial (RCT) that established causality, MR

used data from large-scale GWAS which is timelier and the sample

size is larger. In addition, sometimes randomized controlled trials

cannot be conducted because they are costly, unfair, and even

unethical. MR studies can overcome these shortcomings while

results are broadly consistent with RCTs (21).

Lens epithelial cells are the most active metabolic cells in the

lens, which undergo oxidation, insolubility and cross-linking during

cataract formation. These cells then migrate to the lens equator to

form lens fibers, which are gradually compressed in the center,

resulting in hardening and opacity of the lens nucleus (22). The

pathophysiological mechanism of lens opacity in cataract is usually

attributed to oxidative stress (23). Studies on the mechanisms of

autoimmunity or allergy in patients with cataract are not common

and have only been reported in a few publications (24–26). It is still

unclear whether autoimmune, allergic diseases and senile cataract

are linked through a shared genetic etiology. To our knowledge,

there are currently no MR study evaluating the association between

autoimmunity, allergic disease and senile cataract. Through this

study, it is possible for us to reveal the genetic characteristics and

immune related biological processes associated with senile cataract,

bridging the significant knowledge gap about the complex causes of

this disease.
Methods

MR assumptions and study design

T1D, rheumatoid arthritis (RA), hypothyroidism, SLE, CeD,

MS, psoriasis, asthma, AR and atopic dermatitis (AD) included in

our study were determined according to previously published

observational studies. In order to assess the causal connections

between senile cataract and these diseases, we conducted a two-
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sample MR analysis. Summary-level data from the GWASs were

obtained for autoimmune, allergic diseases and senile cataract. In

order to obtain reliable results, the MR analysis meets the following

three assumptions (1) instrumental variables (IVs) finally included

in the use must be closely related to autoimmune or allergic

diseases; (2) IVs and confounding factors (affecting autoimmune,

allergic diseases and senile cataract) were independent of each

other; (3) IVs only affect senile cataract only through

autoimmune or allergic disease. Figure 1 shows the flow chart of

MR research between autoimmune, allergic diseases and senile

cataract and three MR assumptions. To minimize bias due to

ethnic stratification, we restricted included individuals to

European population.
Exposure sources of autoimmune and
allergic diseases

Summary level data for all 10 exposures were obtained from

Integrative Epidemiology Unit (IEU) Open GWAS database

(https://gwas.mrcieu.ac.uk/). We prioritized using the GWAS

dataset with the largest samples size as exposures. If any of the

following three situations occur, we will select other relatively large

GWAS data: 1) insufficient instrumental variables; 2) racial

differences or sample overlap; 3) significant pleiotropy in

preliminary analysis. Ultimately, summary GWAS data for

hypothyroidism and psoriasis were from UK Biobank. The

GWAS summary data for T1D (27), RA (28), CeD (29), SLE (30),

MS (31), asthma (32), AR (33) and AD (34) were abstracted from

different publicly available GWASs. Detailed information for the

data sources was presented in Table 1.

A quality check of the single nucleotide polymorphisms (SNPs)

is performed to meet the basic assumptions of MR: (1) SNPs

associated with autoimmune diseases reached the genome-wide
Frontiers in Immunology 0337
significance threshold (P<5×10-8). (2) We further clumped the

SNPs in linkage disequilibrium (LD) analysis (R2 < 0.001,

clumping distance = 10,000kb). (3) The palindromic SNPs with

intermediate allele frequencies were eliminated. (4) When the

original SNP was not available, proxy SNPs with r2 > 0.9

according to LD link (https://ldlink.nci.nih.gov/) were used. To

ensure robust associations between instrumental and endogenous

variables and to prevent weak instrumental variable bias, we

calculated R2 [R2 = 2 × EAF × (1 − EAF) × b2], representing the

proportion of variation explained by instrumental variable SNPs.

Simultaneously, we performed calculations of the F-statistic

[F = R2 × (N − 2) / (1 − R2)] to assess the potency of IVs, whereby

IVs with an F-statistic exceeding 10 are deemed to be valid (35).
Outcome sources of senile cataract

To reduce bias due to sample overlap, the summary statistics for

the senile cataract GWAS were selected from the FinnGen research

project (https://r9.finngen.fi/), including 59,522 cases of senile

cataracts and 312,864 cases of population controls. This study

defines senile cataract by H25 of the International Classification

of Disease-10 (36).

All analyses were based on publicly shared databases and no

additional ethical approvals were required.
Statistical analysis

MR analysis
The “TwoSampleMR” R package (version 0.5.7) was used for

bidirectional univariable two-sample MR analysis between

autoimmune, allergic diseases and senile cataract. Inverse

variance weighted (IVW) methods were applied to evaluate
FIGURE 1

The flow chart of MR research and three MR assumptions.
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thecausality between autoimmune, allergic disease-related IVs

and senile cataract risk, as the IVW approach is most effective

in terms of statistical power when all IVs were valid and there

is no horizontal pleiotropy (37). Cochrane's Q test was applied to

test whether heterogeneity existed, and if so, an IVW random-

effects model was used, otherwise an IVW fixed-effects model

was used. The effect size is indicated by the odds ratio (OR)

along with its 95% confidence interval (CI). However, even if only

one genetic variation is invalid, the IVW method may provide

biased estimates. In order to solve the robustness, two other

methods are carried out, including weighted median (WM)

method and MR-Egger test. WM gives a reliable estimate

assuming that no less than 50% of the IVs are valid (35). The

results of MR Egger remain valid when SNPs with pleiotropy were

more than 50% (38).

Sensitivity analysis
If genetic variants have horizontal pleiotropy, our IVW results

will be invalidated. Intercept terms obtained from the MR-Egger

regression were used to evaluate imbalanced pleiotropic effects (39).

The MR-Egger estimate would be equal to the IVW estimate if the

intercept term was zero and the test p-value is greater than 0.05. The

MR pleiotropy residual sum and outlier (MR-PRESSO) method (R

package “MR-PRESSO” v1.0) can also detect the outliers that may

possess the characteristic of horizontal pleiotropy and provide

corrected estimates after removing outliers (40). Cochrane's Q test

was used to test heterogeneity (41). If heterogeneity exists, we will

use IVW random-effects model to calculate the main results. Leave-

one-out analysis is conducted to assess the sensitivity of results to

individual variants by sequentially excluding one SNP at a time to

estimate whether results are biased or driven by individual SNPs

(42). In order to reduce false positive rate in batch analysis, we use

Bonferroni method for multiple testing. The threshold for statistical

significance was defined as a p-value <5×10-3 (p =0.05 / (ten

exposures × one outcome) adjusted for ten exposures and one

outcome using the Bonferroni method. A p-value ranging from

0.005 to 0.05 was deemed to indicate suggestive significance.
Frontiers in Immunology 0438
Results

Selection of IVs associated with
autoimmune diseases

In this study, we reported our MR analysis according to

STROBE-MR (Strengthening the Reporting of Mendelian

Randomization Studies) guidelines to improve the clarity,

transparency and reproducibility of the study (Supplementary

Table S1).

The number of SNPs ranged from 7 to 117, after quality control

steps by LD effects and palindromic. The F-statistic of SNPs ranges

from 29.4 to 2815.2, indicating that each SNP revealed adequate

validity. The detailed information for each SNP and its R2 and F-

statistic value were shown in Supplementary Table S2.
MR analysis

IVW analysis showed that T1D (OR = 1.06; 95% CI = 1.05-1.08;

p = 2.24×10-12), RA (OR = 1.05; 95% CI = 1.02-1.08; p = 1.83×10-4),

hypothyroidism (OR = 2.4; 95% CI = 1.42-4.06; p = 1.12×10-3), SLE

(OR = 1.02; 95% CI = 1.01-1.03; p = 2.27×10-3), asthma (OR=1.07;

95% CI = 1.03-1.12; p = 1.2×10-3) and AR (OR = 1.07; 95% CI = 1.02-

1.11; p = 2.15×10-3) were causally associated with a significantly

increased risk of senile cataract in European populations. CeD

(OR = 1.04; 95% CI = 1.01-1.08; P = 0.0437) and AD (OR = 1.05;

95% CI = 1.01-1.10; P = 0.0426) exhibits a suggestive connection with

senile cataract after Bonferroni correction. There was insufficient

evidence to suggest that genetically predicted MS (OR = 1.01, 95%

CI = 0.98-1.04; P = 0.45) and psoriasis (OR = 0.18; 95% CI =0.03-1.1;

P =0.443) were associated with senile cataracts. These associations are

consistent across WM and MR Egger methods, with similar causal

estimates in direction and magnitude (Figure 2).

No genetic predisposition to any of the 10 diseases was associated

with senile cataract in the inverse analysis with IVs to senile cataract

as exposure and the 10 diseases as outcomes (Figure 3).
TABLE 1 Sources and characteristics of exposure.

Exposure GWAS-ID Author,
Journal/Consortium

Sample size PMID

Type 1 diabetes ebi-a-GCST90018925 Sakaue et al., Nat. Genet. 457,695 34594039

Rheumatoid arthritis ebi-a-GCST005569 Eyre et al., Nat. Genet. 47,580 23143596

Hypothyroidism ukb-a-77 UK Biobank 337,159 NA

Systemic lupus erythematosus ebi-a-GCST003156 Bentham et al., Nat. Genet. 14,267 26502338

Celiac disease ieu-a-1060 Dubios et al., Nat. Genet. 11,950 20190752

Multiple sclerosis ebi-a-GCST001198 Sawcer et al., Nature 26,621 21833088

Psoriasis ukb-a-100 UK Biobank 337,159 NA

Asthma ebi-a-GCST90014325 Valette et al., Commun Biol. 408,442 34103634

Allergic rhinitis ebi-a-GCST90013920 Mbatchou et al., Nat. Genet. 407,746 34017140

Atopic dermatitis ebi-a-GCST90027161 Sliz et al., J Allery Clin Immunol. 796,661 34454985
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Sensitivity analysis

Sensitivity analyses were performed to check the reliability of

the IVW results. The effect of pleiotropy of exposures may be

negligible given the intercept value, as no evidence of directional

pleiotropy was found in the MR-Egger regression analysis (p>0.05)

(Table 2). Cochrane's Q test showed that there was heterogeneity in

MR analysis results between RA, hypothyroidism, SLE, psoriasis,

asthma, AR with senile cataract (p<0.05) (Table 2). When the

number of IVs is large, the existence of heterogeneity is

unavoidable. Since we used random effects IVW as the primary

analysis method, heterogeneity is acceptable and does not affect the

estimation of causality (43). The MR-PRESSO test suggested that

there were horizontal pleiotropic outliers for RA, hypothyroidism,

MS, psoriasis and AR. The outliers-corrected results were shown in

Figure 2. The results show that removing outliers did not affect the

causal relationships implied by the main IVW results. Leave-one-

out analysis results show that all SNPs are evenly distributed on the

side of 0. It seems that no SNPs can strongly promote the overall

effect of each exposure on senile cataract. The visualized scatter

plots and Leave-one-out plots are shown in Figures 4, 5.
Discussion

In our study, a comprehensive bidirectional two-sample MR

study was performed to investigate the causal associations between

liabilities to ten diseases and the risk of senile cataract. MR analysis

suggested a significant causal relationship between T1D, RA,

hypothyroidism, SLE, asthma, AR and senile cataract. To the best

of our knowledge, this is the first study to investigate the genetic

causal links between autoimmune, allergic disease and senile

cataract, making a significant contribution to understanding of

the mechanism underlying senile cataract.

As a relatively common autoimmune disease, T1D is

charactered by a complete lack of insulin due to the destruction

of pancreatic beta cells, and insulin therapy must be given (44).

Wen-Li Lu et al. reported that T1D patients had a higher risk of

cataract compared to age- and sex-matched general population

using cohort methodology in Taiwan (n=3,622) (13). Potential

pathophysiological mechanisms may involve the aldose reductase

pathway, oxidative stress, osmotic damage and autoimmunity (45).

Papadimitriou et al. proposed an autoimmune hypothesis for acute

bilateral cataract in T1D (24). Cataract formation typically occurs

within weeks or months of the initiation of insulin therapy,

coinciding with the time when insulin autoantibody became

positive and the immunoreactivity of insulin receptors in the lens

decreases. Further studies are necessary for clarification of these

points and possibly for histological evidence of autoimmune

processes (24). RA is a common autoimmune disease associated

with hyperplasia of the joint tissues and the inflammation of the

synovium, which can eventually lead to several serious systemic

diseases, including pulmonary, cardiovascular, skeletal and

psychological diseases (46). Eye diseases such as dry eye,

glaucoma are common complications of RA, with a prevalence
FIGURE 2

Mendelian randomization estimates from instrument variants for
autoimmune and allergic diseases on risk of senile cataract.
FIGURE 3

Mendelian randomization estimates from instrument variants for
senile cataract on risk of autoimmune and allergic diseases.
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rate of about 18% (47). No related reports about RA increasing

susceptibility to senile cataract directly were retrieved in PubMed

database. However, in the treatment of RA, glucocorticoids (GCs)

are commonly used. Posterior subcapsular cataract are known as

side effects of long-term use of GCs (48), but it is still inconclusive

whether the risk of cataract will increase during the treatment of RA

with GCs (49). Our MR analysis provided genetic evidence that the

onset of RA may increase the genetic susceptibility to cataract

(OR=1.05). Primary hypothyroidism is defined by a high

thyrotropin concentration along with low thyroid hormone

concentrations or concentrations within the reference range.

Hypothyroidism is usually an autoimmune disease in adults,

which primarily affects middle-aged and elderly females (50).

Limin Wei et al. published a case report that an East Asian 19-

year-old male with Klinefelter Syndrome presenting cleft palate,

hypothyroidism, cataract, and diabetes (51). This patient did not

have congenital cataract because they were not diagnosed in

infancy. Therefore, it is inferred that the formation of cataract in

this patient may be related to hypothyroidism or diabetes, and there

may be a potential genetic relationship between these diseases (51).

Our results of MR analysis further verified this conjecture. SLE is a

long-lasting autoimmune disease affecting multiple organs. It

occurs when there is a failure in the regulation and tolerance of

the immune system, affecting both the innate and adaptive immune

responses (52). Cataract is the most prevalent ocular impairment in

SLE. According to Alderaan et al., cataract development among

patients with SLE is multifactorial and associated with the

cumulative prednisone dose equivalent, systolic blood pressure

and disease activity (12). Celiac disease, also known as gluten

intolerance, is a condition that affects the small intestine and is

characterized by an immune-mediated enteropathy. Ocular disease

associated with celiac disease can sometimes be the first sign of the

condition (53). Mollazadegan et al. conducted an European

population-based cohort study (n=28756) and identified a

moderate increase in the risk of cataract development among
Frontiers in Immunology 0640
individuals diagnosed with biopsy-verified CeD (11). The cause of

the condition has not been fully established, but research suggests

that it may be related to a lack of absorption of vitamins and trace

elements, dehydration, autoimmune factors and oxidative stress

(11). Above findings supported the results obtained from our MR

analyses, indicating that there is a positive association between

genetically proxied autoimmune diseases and the risk of

senile cataract.

Oxidative stress is the result of the imbalance between oxidant

production and antioxidant defense mechanism. Reaction

intermediates (free radicals and peroxides) that cannot be

eliminated in time can have toxic effects on cellular components

such as DNA, proteins, and lipids (54). The inflammatory response

is associated with increased production of reactive oxygen species

(ROS) and reactive nitrogen species (RNS), which is a shared

characteristic among different autoimmune diseases, including

RA, hypothyroidism, T1D, SLE, and others (55, 56). Lipid

peroxidation caused by increased free radicals due to increased

oxidative pressure of the lens or decreased ability to remove ROS is

also an important pathological mechanism for cataract formation.

Oxidative stress and autoimmunity-induced DNA damage,

telomerase inhibition, and significant telomere shortening also

accelerate aging (57, 58). Therefore, it can be inferred that the

oxidative stress state of patients with autoimmune diseases may

increase their susceptibility to senile cataract. A large amount of

evidence suggests that autophagy deficiency is related to the

development of autoimmunity. Meanwhile, the destruction of

autophagy of lens cells can also lead to the loss of anti-stress

ability and inhibit differentiation, and eventually lead to the

formation of cataract (59, 60). Ferroptosis is a newly discovered

type of iron-dependent programmed cell death characterized by

excessive iron accumulation, elevated lipid peroxides, reactive

oxygen species, reduced glutathione and glutathione peroxidase

levels. A large and emerging literature on ferroptosis demonstrates

the critical role of these pathological processes in autoimmune and
TABLE 2 The results of sensitivity analysis.

Exposure
MRPRESSO

p
Heterogeneity

p
MR-Egger intercept

Pleiotropy
p

Type 1 diabetes 0.107 0.09 0.00264 0.58

Rheumatoid arthritis 0.004* 1.18×10-4* -0.0104 0.09

Hypothyroidism <0.001* 5.27×10-6* 0.00135 0.66

Systemic lupus erythematosus 0.053 0.04* -0.00398 0.35

Celiac disease 0.219 0.174 -0.0395 0.29

Multiple sclerosis 0.048* 0.06 0.00186 0.86

Psoriasis 0.021* 4.17×10-4* -0.000765 0.14

Asthma 0.71 1.17×10-3* 0.000269 0.94

Allergic rhinitis <0.001* 2.76×10-5* 0.000518 0.85

Atopic dermatitis 0.915 0.906 0.00609 0.69
MRPRESSO, MR pleiotropy residual sum and outlier; IVW, inverse variance weighted.
*p<0.05 was considered statistically significant.
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ocular diseases (61). In addition, improper degradation of DNA

during programmed death may also lead to autoimmune diseases

and cataract (62).

Asthma is a chronic inflammatory disorder involving a large

number of cells and cellular elements in the respiratory system (63).

Li et al. found that cataracts had a positive correlation with asthma

after adjusting for confounding factors by analyzing nationally

representative samples from the National Health Interview Survey

(NHIS) (16). Asthma may be closely related to cataracts through the

PI3K-AKT-mTOR signaling pathway. In addition, allergy-induced
Frontiers in Immunology 0741
inflammation or immune dysregulation is also one of the potential

mechanisms leading to cataract formation (26). AR is a chronic

inflammatory disease of the upper respiratory tract characterized by

sneezing, itching, nasal congestion, and rhinorrhea (64). A Korean

population-based survey reported that people with asthma and AR

were more likely to develop senile cataracts but not with AD (17).

Intranasal corticosteroids, a well-established and effective treatment

for AR, does not appear to increase the risk of cataract in patients

(65). The association between allergic diseases and cataracts may be

attributed to multiple mechanisms, such as having similar risk
B

C D

E F

G H

A

FIGURE 4

Scatter plots show the MR effect of each exposure on senile cataract in different MR methods. (A) Type 1 diabetes on senile cataract. (B) Rheumatoid
arthritis on senile cataract. (C) Hypothyroidism on senile cataract. (D) Systemic lupus erythematosus on senile cataract. (E) Celiac disease on senile
cataract. (F) Asthma on senile cataract. (G) Allergic rhinitis on senile cataract. (H) Allergic dermatitis on senile cataract.
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factors, hypertension, hyperglycemia, etc. Other factors including

inflammation and oxidative stress may also increase susceptibility

to cataract (66). Our results showed that there is a suggestive genetic

association between AD and senile cataract (p=0.0426). Therefore,

as for whether AD increases the risk of senile cataract, based on our

MR analysis and previous research results, we cannot determine the

causal relationship between them, and further RCT is needed

(17, 67).

A cause-and-effect relationship between the risk of senile

cataract and MS, psoriasis could not be established in our study.

Classified as an organ-specific, T-cell-mediated autoimmune

disease, MS is the most common disabling disease in young

adults that is not caused by physical trauma (68). A European

population-based cohort study (n = 39,444) showing MS patients

under the age of 50, especially young men, are at higher risk of

developing cataract, compared with healthy controls (14). This

result is contrary to the results of our MR analysis that there is

no causal relationship between MS and the onset of cataract.

Compared to observational studies, our MR study results are

more compelling due to its ability to reduce confounding factors

and reverse-causal association bias to some extent. Nonetheless,

more advanced RCTs should be designed to confirm the causal

association between the two diseases. Psoriasis, a polygenic disease

characterized by erythematous plaques with silvery scales, is a

chronic inflammatory autoimmune skin disorder affecting 1-3%

of the world's population (69). Fuying Chen and colleagues have

identified a new condition called the CAOP syndrome, which
Frontiers in Immunology 0842
involves cataracts, alopecia, oral mucosal disorders and psoriasis-

like symptoms (70). Contrary to our results, a population-based

cohort by Chun-Yu Cheng has been observed a positive correlation

between psoriasis and cataract. The common pathogenesis of

cataract and psoriasis may be related to interleukin-6, C-reactive

protein, intracellular adhesion molecule- 1, oxidative stress and so

on (15). These differences in causality may be due to potential

confounding factors, such as steroid hormone use and ultraviolet

radiation, because observational studies are difficult to escape the

influence of confounding factors. Therefore, there is likely no causal

relationship between psoriasis and senile cataract based on

MR analysis.

Senile cataract, as a reversible blinding eye disease with a high

incidence rate, has caused great damage to labor productivity and

brought a heavy economic burden around the world, especially in

developing countries with in adequate surgical facilities.

Understanding which factors increase the risk of cataracts can

help identify high-risk individuals. Through the findings of this

paper, people with autoimmune diseases should have regular

anterior segment examinations through slit lamp microscopy

while actively treating the primary disease, which will help

ophthalmologists formulate preventive strategies in real time or

select the most appropriate time for surgical treatment.

The main strength of our study is that we conducted an MR

analysis and explored the genetic causal relationship between

autoimmune, allergic diseases and the risk of senile cataract for

the first time. Furthermore, various techniques were employed to
B C D

E F G H

A

FIGURE 5

Leave-one-out plots of the causal relationships between autoimmune, allergic diseases and senile cataract. (A) Type 1 diabetes on senile cataract. (B)
Rheumatoid arthritis on senile cataract. (C) Hypothyroidism on senile cataract. (D) Systemic lupus erythematosus on senile cataract. (E) Celiac
disease on senile cataract. (F) Asthma on senile cataract. (G) Allergic rhinitis on senile cataract. (H) Allergic dermatitis on senile cataract.
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perform sensitivity analysis, identifying outliers and correcting

any potential pleiotropy and heterogeneity. With the increasing

availability of a large amount of genetic data, the extension of

GWAS may achieve early prediction of senile cataract and make

it possible to achieve genetic-based treatment. The current

study also has several limitations. Firstly, we used conventional

methods that outcomes data were obtained from the FinnGen

database and exposures data were obtained from other GWASs

study on European ancestry in IEU Open GWAS database to reduce

sample overlap. However, it is difficult to determine whether

overlapping subjects were included in our MR analysis. Secondly,

there is a possibility that a complete identification of all SNPs linked

to these diseases was not achieved. By utilizing a restricted number

of SNPs to establish the causal associations, it is possible that the

statistical power of certain analyses may have been diminished.

Thirdly, there may be potential confounding factors, such as the use

of steroid hormone mediating the causality of autoimmune diseases

on cataract, but due to the limitations of GWAS, we are not yet able

to perform multivariate MR and mediation analysis. Last but not

least, the data related to autoimmune, allergic diseases and senile

cataracts were mostly from European ancestry. The results of our

study should not be directly generalized to other ethnic groups.
Conclusion

In summary, our current findings provide strong genetic

evidence in support of the causal relationship among type 1

diabetes, rheumatoid arthritis, hypothyroidism, systemic lupus

erythematosus, asthma, allergic rhinitis and senile cataract in a

European population. Our study confirms previous observational

studies, suggesting that autoimmune and allergy processes may be

risk factors of senile cataract. The results of this study suggest that

patients with autoimmune or allergy diseases should pay attention

to the prevention and treatment of senile cataract and further

studies are needed to clarify the potential role of autoimmune

and allergy in the pathophysiology of senile cataract.
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Cross-modality transfer learning
with knowledge infusion for
diabetic retinopathy grading

Tao Chen1,2†, Yanmiao Bai2†, Haiting Mao1,2, Shouyue Liu1,2,

Keyi Xu1,2, Zhouwei Xiong1,2, Shaodong Ma2, Fang Yang1,2* and

Yitian Zhao1,2*
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Background: Ultra-wide-field (UWF) fundus photography represents an

emerging retinal imaging technique o�ering a broader field of view, thus

enhancing its utility in screening and diagnosing various eye diseases, notably

diabetic retinopathy (DR). However, the application of computer-aided diagnosis

for DR using UWF images confronts two major challenges. The first challenge

arises from the limited availability of labeled UWF data, making it daunting to train

diagnostic models due to the high cost associated with manual annotation of

medical images. Secondly, existing models’ performance requires enhancement

due to the absence of prior knowledge to guide the learning process.

Purpose: By leveraging extensively annotated datasets within the field, which

encompass large-scale, high-quality color fundus image datasets annotated at

either image-level or pixel-level, our objective is to transfer knowledge from

these datasets to our target domain through unsupervised domain adaptation.

Methods: Our approach presents a robust model for assessing the severity

of diabetic retinopathy (DR) by leveraging unsupervised lesion-aware domain

adaptation in ultra-wide-field (UWF) images. Furthermore, to harness the wealth

of detailed annotations in publicly available color fundus image datasets, we

integrate an adversarial lesion map generator. This generator supplements the

grading model by incorporating auxiliary lesion information, drawing inspiration

from the clinical methodology of evaluating DR severity by identifying and

quantifying associated lesions.

Results: We conducted both quantitative and qualitative evaluations of our

proposed method. In particular, among the six representative DR grading

methods, our approach achieved an accuracy (ACC) of 68.18% and a

precision (pre) of 67.43%. Additionally, we conducted extensive experiments

in ablation studies to validate the e�ectiveness of each component of our

proposed method.

Conclusion: In conclusion, our method not only improves the accuracy of DR

grading, but also enhances the interpretability of the results, providing clinicians

with a reliable DR grading scheme.

KEYWORDS

ultra-wide-field image, domain adaptation, diabetic retinopathy, lesion segmentation,

disease diagnosis

Frontiers inMedicine 01 frontiersin.org46

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1400137
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1400137&domain=pdf&date_stamp=2024-05-14
mailto:yangf@nimte.ac.cn
mailto:yitian.zhao@nimte.ac.cn
https://doi.org/10.3389/fmed.2024.1400137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2024.1400137/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1400137

1 Introduction

Diabetic Retinopathy (DR), a typical fundus disease caused

by the high level of blood glucose and high blood pressure, is

one of the leading causes of visual impairment and blindness (1).

The severity of DR can be classified into five stages based

on the presence and quantity of retinal lesions, including

microaneurysms (MAs), hemorrhages (HEs), soft exudates (SEs),

and hard exudates (EXs). These stages encompass normal,

mild non-proliferative DR (NPDRI), moderate non-proliferative

DR (NPDRII), severe non-proliferative DR (NPDRIII), and

proliferative DR (PDR). Accurate grading of DR severity assumes

pivotal importance as it guides clinicians in devising personalized

treatment strategies. However, the precise determination of DR

severity levels can be a time-consuming task for ophthalmologists

and presents a formidable challenge for novice ophthalmology

residents. Therefore, the development of an automated system

for early detection and severity grading of DR holds immense

potential, offering substantial benefits to both patients and

ophthalmologists alike.

Over the past half-century, the diagnosis of DR has

predominantly relied on the utilization of Color Fundus

Photography (CFP), as illustrated in Figure 1A, wherein critical

retinal lesion anomalies are depicted. CFP serves as a reasonably

effective screening tool for early-stage DR. Nevertheless, CFP

exhibits a limited imaging range, typically spanning from 30◦ to

60◦, thereby posing challenges in the identification of anomalies

beyond this range. This limitation results in less ideal automated

DR grading results.

Optos Ultra-Wide-Field (UWF) imaging technology is a novel

non-invasive imaging method with a high resolution and short

acquisition durations of 0.25 s. Compared to CFP images, UWF

images exhibit a wide imaging range of up to 180◦−200◦, covering

approximately 80.0% of the retina in a single frame (2, 3).

This enables UWF images to more effectively detect peripheral

retinal lesions (4, 5), as shown in Figure 1B. This enables UWF

imagesto hold more advantage in diagnosing DR in comparison

to CFP images (6–10). Thus, developing an automated DR grading

algorithm based on UWF images is more meaningful.

Over the last decade, methods for automatic screening or

grading of DR severity using CFP images have been rapidly

developed with remarkable accuracy of ≥ 90.0% (11–17). This

is largely due to the large scale, high quality CFP dataset

that is publicly available, which provide pixel-level annotations

and image-level annotations, such as EyePACS (18), DDR (18),

IDRiD (19) etc. Despite several studies (20, 21) have conducted DR

grading using UWF images, the performance of these methods has

been found to be less satisfactory compared to those using the CFP

iamges. The reasons may be attributed to the following factors: (1)

The scarcity of large-scale annotated data for deep learning training

in UWF imaging poses a significant challenge in training high-

performing grading models using fully supervised methods. The

only public available dataset of UWF contains 256 UWF images

with DR (22). (2) The lesion information is crucial for enhancing

the precision of DR grading. However, the contrast divergence

between lesions and ordinary tissue in UWF images is slight, which

hampers precise grading of DR.

To address these challenges, we aim to utilize a substantial

dataset of well-annotated CFP images along with knowledge

infusion to enhance the performance of DR grading. Recent

studies have explored unsupervised domain adaptation learning

methods to mitigate the domain-shift issue between the source and

target domains (23–25). These methods leverage external labeled

datasets to acquire general knowledge of diseases and transfer this

knowledge to object categories without labels. In this study, we

design a transfer learning model utilizing the rich pixel-level and

image-level annotations available in CFP images to facilitate the DR

grading in UWF images. A preliminary version of this work has

been previously published in conference proceedings (26). In this

paper, we present the following extensions:

1) To enhance the recognition of complex lesions for the lesion

segmentation task, we introduce a novel roll-machine modulated

feature fusion block. To enable comprehensive evaluation, we

construct a new dataset called UWF-seg, which includes 27 images

with annotations of different lesions. We provide evaluations on

UWF-seg and additional result analyses to further validate the

effectiveness of our proposed method.

2) To gain deeper insights into proposed method, we conduct

extensive additional experiments, including evaluations with a

larger set of unlabeled images, exploration of different loss

weights, and analysis of different exemplar images. Moreover, we

carefully examine failure cases to identify potential limitations for

improvement.

3) We enrich the discussion in this study by providing a

more comprehensive analysis of the relationship and comparison

between our work and related studies. Additionally, we offer a

detailed technical description of our proposed method and engage

in an in-depth discussion of its limitations. Finally, we outline

future research directions to address these limitations and extend

the scope of our work.

2 Related works

2.1 Computer-aided diagnosis in UWF

In this section, we survey the current studies that utilizes

UWF imaging to identify a range of retinal diseases, with a

particular emphasis on the computer-aided diagnosis of diabetic

retinopathy. Recently, deep learning models have been applied

to UWF images with the goal of detecting various retinal

diseases. For instance, central retinal vein occlusion (27, 28),

Sickle cell retinopathy (29, 30) and retinal detachments (31, 32),

respectively. These studies have underscored the clinical advantages

of employing UWF imaging in diagnosing various peripheral

retinal pathologies. Nagasawa et al. (33) conducted a study to

assess the accuracy of utilizing UWF fundus images alongside the

VGG16 model for detecting PDR. In a subsequent investigation

(34), they extended their research by comparing the accuracy

of VGG16 using two distinct types of retinal images for DR

grading. These methodologies primarily concentrate on the binary

classification of DR, placing a premium on practical clinical

relevance over architectural enhancements in network design. In

efforts to refine the precision of DR grading, Liu et al. (35) curated
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FIGURE 1

(A, B) are samples of CFP and UWF with DR, respectively. The imaging area of (A) is approximately that of the red circle in (B). Both can show

important lesions associated with DR, but (B) gives a more complete picture of the retinopathy.

a proprietary UWF dataset comprising 101 DR fundus images.

They devised a deep learning-based automatic classification model

integrating a novel preprocessing technique, achieving an average

accuracy of 0.72. However, the utilization of UWF imaging in

detecting DR-related lesions remains relatively underexplored, with

only a few researchers delving into this domain. For example,

Levenkova et al. (36) utilized support vector machine (SVM)

algorithms to identify features of DR lesions, categorizing them

into bright lesions (such as cotton wool spots and exudates)

and dark lesions (including microaneurysms, spots, and flame-

shaped hemorrhages). However, their study exclusively focused on

segmenting bright and dark signs, neglecting the comprehensive

diagnosis of DR grade. The efficacy of these methodologies in

addressing DR challenges largely hinges on the availability of

meticulously annotated data. Nevertheless, the scarcity of UWF

data and the prohibitive costs associated with labeling pose

significant barriers, thus constraining access to this valuable

resource and hindering the broader implementation of deep

learning techniques in this domain.

Furthermore, many current learning-based methods for

grading DR lack interpretability and fail to integrate prior

knowledge to inform the classification process. Thus, there is a

critical need to develop an interpretable approach for DR grading

using UWF images in an unsupervised manner, capitalizing on

inherent lesion features. In particular, Ju et al. (7) introduced

a methodology that incorporates CFP images to aid in training

diagnostic models based on UWF images. They utilized an

enhanced CycleGAN framework to bridge the domain disparity

between CFP and UWF images, thereby generating new data

with UWF image characteristics. Subsequently, these generated

images underwent labeling via pseudo-labeling techniques. While

the model exhibited promising performance across various retinal

disease diagnosis tasks, including DR grading, its reliance primarily

on a GAN-based model for transforming CFP images into UWF

fundus images is notable. This strategy aimed to augment the

limited UWF imaging dataset with additional data. However,

the approach encountered challenges in effectively transferring

knowledge from CFP images to UWF images. Consequently, the

model’s performance remains susceptible to the potential impact of

synthesized UWF images.

2.2 Domain adaptation

Domain adaptation (DA) serves as a crucial paradigm

within the realm of transfer learning in machine learning,

aimed at mitigating the distribution disparity between domains.

Fundamentally, it involves identifying similarities between different

data distributions in related tasks and harnessing these similarities

to facilitate cross-domain recognition problems (37–39). Several

systematic reviews (40–42) offer comprehensive insights into

this method from various perspectives. For instance, domain

adaptation from general to complex situations, including methods

based on domain distribution difference (43, 44), adversarial

learning (45, 46), reconstruction-based methods (47, 48),

and sample generation-based methods (49, 50). Recently,

the efficacy of DA leveraging deep architecture has garnered

empirical support across numerous vision tasks, including textual

emotion (51), object detection (52), and pose estimation (53).

Unsupervised domain adaptation (UDA) represents a notable

advancement, facilitating the prediction of target domain data

without necessitating manual annotation (43). This approach

offers a potential and viable avenue for mitigating the challenges

associated with limited labeled data.

In the realm of medical image analysis, Unsupervised

Domain Adaptation (UDA) stands as a widely explored area

aimed at mitigating disparities between cross-domain datasets

derived from various imaging equipment types, thereby enhancing

image segmentation or classification. Kamnitsas et al. (54)
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introduced UDA techniques to biomedical imaging, presenting

an unsupervised domain-adaptive network tailored for brain

lesion segmentation. Furthermore, Chai et al. (55) delved into

the potential of reducing disparities between Optical Coherence

Tomography (OCT) images captured using Topcon and Nidek

devices, with the aim of achieving more effective segmentation

of the choroid region. Due to the substantial scarcity of data in

certain intricate medical image tasks, there has been widespread

interest in employing unsupervised transfer learning to alleviate

data constraints, leading to notable advancements as evidenced

by works (24, 56, 57). Zhang et al. (58) introduced a cooperative

UDA algorithm tailored for microscopy image disease diagnosis,

demonstrating that the integration of rich labeled data from

relevant domains can effectively enhance learning in cross-

domain detection tasks. In the domain of DR grading, the

predominant focus has been on the transition between DR lesion

detection and grading tasks (59–61). However, these approaches

have primarily been developed based on conventional color

fundus images. In our prior investigation (26), we explored the

application of UDA to train a diagnostic model for UWF images,

leveraging the assistance of CFP images. Our experimental findings

demonstrated that the proposed method effectively transfers

knowledge from CFP images pertaining to DR to UWF images,

consequently leading to enhanced performance in DR disease

recognition tasks.

3 Proposed method

3.1 Problem formulation

Given annotated color fundus photography (CFP) images XS

as the source domain and ultra-widefield (UWF) images without

any annotations XT as the target domain, our objective is to

leverage the high-quality annotated CFP images to train a robust

diabetic retinopathy (DR) grading model for UWF images in

an unsupervised manner. Additionally, we incorporate a lesion

segmentation model G(·) to augment the grading model C(·) with

extra knowledge, mirroring the clinical process of assessing DR

severity and enhancing grading accuracy. To train the segmentation

model, our aim is to minimize the disparity between the predicted

lesion maps from UWF images and the ground truth lesion maps

fromCFP images, as formulated by the following objective function

(Equation 1):

min
G

L
∑

l=1

LSeg (G(X
S),G(XT ), sSl , s

T
l ) (1)

where sS
l
denotes the the CFP lesion maps of pixel-level annotated

CFP images and sT
l
is the UWF predicted lesion maps. L is the

total number of lesion varieties related to a particular disease.

The optimization function for the disease grading model is

defined as Equation 2:

min
C

LCls

(

C
(

XT
+ G(XT )

)

· LEAM
(

G
(

XT
))

, yc
I
)

(2)

where yIc denotes the disease severity classification prediction

for image-level annotated CFP data. Thus, the pivotal aspect in

achieving collaborative learning across different modules lies in the

design and optimization of G(·), C(·), and LEAM(·). The overall

architecture of the proposed framework is illustrated in Figure 2.

3.2 Unsupervised DR grading module

The DR grading module comprises a deep feature extractor

FE(·), a label predictor C, and a domain predictor D, facilitating

unsupervised domain adaptation for knowledge transfer.

Meanwhile, to enhance the extraction of discriminative features

tailored for diabetic retinopathy (DR) classification, we employ

two classifiers, C1 and C2. These classifiers aid the feature extractor

in disregarding domain differences. Given the complexity of

domain adaptation evaluation, we employ the pretrained ResNet50

encoder (62) in the hierarchical module. Compared to ResNet128

and ResNet32, ResNet50 has moderate depth and parameter count,

making it easier to train and fine-tune for feature extraction. Thus,

it can extract n-dimensional feature vectors, denoted as f S and f T ,

corresponding to the source and target domains, respectively.

Subsequently, a class label predictor C and a domain predictor

D follow. The label predictor estimates the probability of DR

severity grading, while the domain predictor ensures learned

feature invariance across domains. The feature vector f is mapped

to d = 0 (for input from the source domain S) or d = 1

(for input from the target domain T) by the domain predictor,

ensuring similar feature distributions across domains. The domain

predictor D comprises two fully connected (FC) layers. The first

FC layer is accompanied by batch normalization (BN) and a ReLU

activation function, while the second layer is followed by BN and

a softmax activation function. The feature vector f is transformed

by D into either d=0 (when the input is XS or d=1 (when the

input is XT), ensuring that the feature distributions from both

domains remain as similar as possible. While the domain predictor

effectively achieves domain alignment, it may not guarantee class

discriminability. To ensure discriminative feature representations,

we maximize the discrepancy between the two classifiers, C1 and

C2, to obtain highly discriminative features. The details of the loss

function are as follows in Equation 3:

Lcd = Extj∼Dt

∥

∥

∥
C1

(

G
(

x̂tj

))

− C2

(

G
(

x̂tj

))∥

∥

∥

1

+

∥

∥

∥
C

(

G
(

x̂tj

))

− C1

(

G
(

x̂tj

))∥

∥

∥

1

+

∥

∥

∥
C

(

G
(

x̂tj

))

− C2

(

G
(

x̂tj

))
∥

∥

∥

1

(3)

C, C1, and C2 denote three pre-trained classifiers trained via

supervised learning on the source domain. When G and C are

fixed, maximizing the discrepancy between C1 and C2 in the target

domain enables them to identify target samples not captured by

the support vectors of the source. By training G to minimize this

discrepancy, while C1 and C2 remain fixed, the resulting target

features become highly discriminative. The primary classifier C

defines a decision hyperplane between C1 and C2, optimizing the

distance between the support vectors and the decision boundary.

It’s important to note that the class predictor C is utilized during

both training and testing procedures to obtain grading labels,

while the domain predictor D, C1, and C2 are only employed

during training.
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FIGURE 2

Framework of the proposed method. Our net includes three components: the DR grading module based on transfer learning, adversarial multi-lesion

masks generate network, and lesion external attention module. The input data consists of a very small set of unlabeled target images and a large set

of annotated source images. The adversarial multi-lesion masks generate network is used to learn multi-lesion masks, where target lesion predicted

will with the original images as inputs for training DR grading module based on transfer learning. At the same time, the lesion external attention

module aims to force classification network to pay those lesions for improving the final disease grading performance.

3.3 Adversarial lesion segmentation
module

To mimic the clinical process of assessing DR severity, we

introduce an adversarial domain adaptation (DA)-based UWF

segmentation model. This model serves as an ancillary tool for

UWF lesion segmentation. A schematic diagram of the lesion

segmentation subnet is depicted in the orange section of Figure 2.

As illustrated, the framework comprises two primary components:

the convolutional modulation-based lesion generator G(·) and

the adversarial domain discriminator D(·). We denote pixel-level

lesion annotations as XS, and the target domain data without such

annotations as XT . Here, XS and XT belong to RC×W×H , where

H, W, and C represent the height, width, and number of channels

of the input, respectively. Additionally, MS and MT represent the

lesion prediction results for the source and target domain data,

respectively. The proposed UWF lesion segmentation subnet is

elaborated as follows.

3.3.1 The convolutional modulation-based lesion
generator

Our proposed model is implemented based on a U-shaped

structure, also known as a Res-Unet proposed by Xiao et al. (63).

We extended the Res-UNet with the deeper multi-scale residual

module and modified it to be a lesion generator. Specifically, the

encoder and decoder components for the mask generator comprise

nine feature mapping tuples. Additionally, two convolutional layers

with Sigmoid activation are appended to generate a lesion mask

for the input image. This architecture serves as the segmentation

backbone network (Base) for the lesion segmentation task.

In addition, we introduce a Convolutional Modulation Feature

Fusion block (CMFF) to enhance the model’s ability to learn

complex lesions and achieve accurate segmentation in a larger

receptive field of UWF images. The convolutional modulation

operation (64) encodes spatial features to simplify self-attention

and can better leverage large kernels (≥7 × 7) nested in

convolutional layers. Inspired by U-Transformer (65), we employ

multiple CMFF blocks instead of traditional skip connections,

aiming to fully integrate multi-scale high-level feature maps with

relevant encoding features, as illustrated in Figure 2. A second

CMFF block is positioned at the end of the encoder to assimilate

distant knowledge from the input image and associate each pixel

in the high-level semantic features learned by the encoder. This

approach enables the model to capture the receptive field of the

entire image and achieve accurate lesion segmentation in UWF

images, as depicted in Figure 2. Taking the first CMFF block as

an example, for the feature maps Xi and Yi ∈ RC×W×H from
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the encoder and decoder, respectively, the CMFF operation can be

expressed as follows in Equations 4–7:

Zi = Ai ⊙ Vi (4)

Ai = DConvk×k(W1Yi) (5)

Vi = W2Xi (6)

Fi = Zi ⊙ Xi ⊕ Yi (7)

where ⊙ denotes Hadamard product, W1 and W2 are weight

matrices of two linear layers, DConvk×k denotes denotes a

depthwise convolution with kernel size k× k.

3.3.2 Adversarial domain discriminator
The lesion generator G(·) is trained on images with pixel-

level lesion annotations from the source domain (CFP images) and

unlabeled UWF images from the target domain as input, enabling

automatic lesion segmentation. With pixel-level annotated lesion

masks YS of the source domain, a combination of Dice loss LDice

and cross-entropy loss LCE is employed to minimize the difference

between the predicted lesion map MS and the ground-truths YS.

The trained G(·) is capable of outputting a segmentation result,

which represents a structured output containing feature similarity

between the source and target domains.

To further transfer knowledge from the source domain to

the target domain in the output space, an adversarial domain

discriminator D(·) needs to be introduced. The primary objective

of D(·) is to ensure that the generated sample closely resembles real

data. In our implementation, we consider the source lesion maps

MS predicted by G(·) as the real data branch and the target lesion

maps MT predicted from the UWF data as the fake data branch.

By using MS and MT as inputs for D(·), with an adversarial loss,

we aim to reduce the domain gap between the source and target

domains, thereby enhancing the accuracy of lesion prediction in

the target domain images. The total loss for optimizing the lesion

segmentation task can be defined as in Equations 8–10:

LTotal = LAdv + λLSeg . (8)

LAdv = min
G

max
D

E[log(D(MS)]+ E[log(1− D(MT )]. (9)

LSeg = LDice
(

Ms,Ys)
+ LCE

(

Ms,Ys)
=

σ
2×

∣

∣Ms ∩ Ys
∣

∣

(|Ms| + |Ys|)
+

E
[

−Ys
· logMs

−
(

1− Ys)
· log

(

1−Ms)] .

(10)

where λ the balance weight of two objective functions, σ the balance

weight of Dice loss and cross-entropy loss.

The domain discriminator consists of four convolutional

tuple maps, as illustrated in the Figure 2. Each tuple comprises

convolutional operations with varying kernel sizes aimed at

progressively encoding contextual information to expand the

receptive field. Specifically, the first tuple conducts convolutional

operations with a kernel size of 7×7 and padding of 3.

Subsequently, the second and third tuples perform convolutional

operations with a kernel size of 5×5 and padding of 2. The final

convolutional operation employs a kernel size of 3×3 and padding

of 1. A stride of 2 is applied for each tuple, with linear ReLU

activation and batch normalization also incorporated. The output

of the last convolutional layer undergoes spatial dimensionality

reduction via an adaptive average pooling layer. Subsequently, a

binary output is generated through a fully connected layer and

Sigmoid activation function, facilitating the distinction of whether

the predicted lesion map output originates from the source domain

or the target domain.

3.3.3 Lesion external attention module
Despite the integration of the generated lesion maps with the

grading module, the independent nature of the lesion generation

module and the grading module hinders the effective utilization

of lesion information to guide the learning process of the grading

module. Furthermore, the disease grading task is confronted with

challenges beyond the diverse lesion types of varying clinical

significance. The disease grading task also encounters challenges

stemming from complex background artifacts (such as eyelash and

eyelid interference) and noise present in ultra-widefield (UWF)

images, particularly when employing unsupervised approaches.

To improve the integration of filtered lesion knowledge into

the grading module, we introduce a Lesion External Attention

Module (LEAM). Unlike previous self-attention mechanisms (66),

we utilize an external module, specifically the lesion generation

module, to generate the lesion attention map. This attention

map is subsequently used to re-calibrate the features within the

grading module. The LEAM acts as a bridge, facilitating the

effective utilization of lesion information obtained from the lesion

generation module to guide the learning process of the grading

module. This mechanism assists the grading module in a human-

like manner for classification, automatically extracting task-specific

lesion regions while ignoring irrelevant information to enhance

grading accuracy.

The details of LEAM are illustrated in Figure 2. We begin

by extracting the feature maps f Li from the lesion generation

module, where i represents the i-th intermediate layer of the

generator GL(·). Max pooling and average pooling are performed

across channels to obtain two spatial lesion descriptors. Max

pooling helps capture locally important features in the image, while

average pooling aids in extracting global features and reducing

noise. Combining both enhances feature representation, enabling

the model to better understand the image. Subsequently, these

concatenated descriptors are fed into a convolutional layer followed

by a sigmoid activation layer to generate the lesion attention map.

In our approach, the disease grading module and LEAM are

intricately integrated. Initially, we utilize GL(·) to extract the lesion

feature maps. Once pre-trained, f L
l=i

(where i denotes the i-th

different intermediate base layer of the U-shaped network encoder)

serves as input to the LEAM. Following maximum pooling, average

pooling, and convolution operations, a lesion attention map mL
l=i

is produced. Subsequently, we multiply the feature maps f Gi from

the grading module (with i denoting the i-th intermediate layer

of the grading module) by mL
i . This is followed by an element-

wise summation operation with f Gi to derive the new feature maps
˜f Gi . The overall attention process can be summarized as follows in

Equation 11:

mL
i = σ

(

Conv
(

AvgPool
(

f Li

)

‖ MaxPool
(

f Li

)))

,

˜fGi = (fGi ⊗mL
i )⊕ fGi ,

(11)
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TABLE 1 The summary and distribution statistics in our project image datasets.

Dataset Annotation modes Images Nomal NPDRI NPDRII NPDRIII PDR Tasks

IDRID Pixel-level 81 - - - - - Seg-Source

EYEPACS Image-level 8,000 1,715 1,715 1,714 1,514 1,342 Grad-Source

DeepDRiD Image-level 206 60 57 56 23 4 Grad-Target

Local-UWF
Pixel-level 27 0 6 9 7 5 Seg-Target

Image-level 1212 412 202 193 218 187 Grad-Target

where ‖ denotes the concatenation operation, σ denotes the

sigmoid activation function. ⊗ and ⊕ demote the element-wise

multiplication and element-wise sum, respectively. This design

allows more multi-scale pathological information to be extracted

from UWF images, which helps our unsupervised transfer learning

framework to be more accurate and robust.

4 Experiments

4.1 Data description

In our experiment, two types of datasets were involved: source

domain and target domain. A summary of used datasets related to

this experiment is provided in Table 1.

For the source domain data, publicly accessible datasets with

annotations, such as IDRID and EYEPACS, are available. However,

for the target domain data, there is currently no publicly available

dataset with high-quality lesion segmentation labels. Therefore, one

of the primary objectives of our benchmark is to introduce a fine-

grained lesion annotated dataset to facilitate a more comprehensive

evaluation of the proposed lesion segmentation subnetwork and

enable a more interpretable diagnosis of DR. Additionally, we

assess the grading performance of our DeepMT-DR method on

the public UWF dataset, namely DeepDRiD. Detailed information

about existing datasets and our proposed dataset is provided below.

4.1.1 IDRID
IDRID is the DR dataset providing pixel-level multi-lesion

annotations, is one of the most commonly used public datasets for

DR segmentation tasks. It comprises 81 CFP images depicting DR

symptoms, with 54 allocated for training and 27 for testing. Medical

experts meticulously annotated four types of lesions–MA (80), HE

(80), EX (81), and SE (40)–using binary masks. This dataset serves

as the source domain data to train the lesion generator.

4.1.2 EyePACS
EyePACS sourced from the DR Challenge - Kaggle Diabetic

Retinopathy Detection Competition,1 comprises 88,702 CFP

images and offers image-level grading annotations across five

categories. To maximize the inclusion of diseased samples, we

randomly sampled 8,000 images (approximately 1,600 images per

1 https://www.kaggle.com/c/diabetic-retinopathy-detection/

category) from EyePACS, creating a new subset to serve as the

source domain for training the grading subnetwork.

4.1.3 DeepDRiD
DeepDRiD is the only DR dataset providing multi-grading

annotations, to the best of our knowledge. It contains 256 UWF

images with symptoms of DR and is into UWF Set-A (77 patients,

154 images) for training, UWF Set-B (25 patients, 50 images) for

testing and UWF Set-C (26 patients, 52 images) for validating. We

use the UWF Set-C to evaluate the grading performance of our

DeepMT-DR method.

4.1.4 Local UWF
We have compiled a finely annotated Diabetic Retinopathy

(DR) Ultra-Widefield (UWF) dataset, comprising two distinct

subsets. The first subset, named UWF segmentation subset (UWF-

Seg), consists of 27 images annotated with pixel-level lesion

labels and image-level grading annotations. Lesion annotations

encompass Microaneurysms (MA), Hemorrhages (HE), Exudates

(EX), and Soft Exudates (SE), making this subset specifically

tailored for evaluating segmentation performance. The second

subset, named UWF grading subset (UWF-Grad), comprises 877

images annotated with grading labels by three ophthalmologists,

ranging from 0 to 4. During the segmentation sub-network

training, UWF-Grad served as the target domain, while UWF-

Seg was utilized for testing. For training the grading model, the

person-UWF dataset was partitioned into 60% for training and 40%

for testing. It is noteworthy that our proposed method underwent

training without leveraging any labels.

Dataset construction: The UWF image data were mainly

collected from local partner hospitals. To fully protect patient

privacy, data security regulations was strictly adhered in our dataset

construction. All the images were captured by Optos Daytona

(P200T) UWF canning laser ophthalmoscope with an imaging

resolution of 3900×3072 pixels. To ensure data quality and task

accuracy, three selection principles were adopted: 1. Removal of

images with quality issues and non-standard imaging; 2. Deletion

of images with severe blurriness; 3. Prioritization of images without

laser treatment. For the UWF-seg dataset, images with higher

severity of diabetic retinopathy and a greater diversity of lesion

types were selected.

Dataset annotation: Lesion annotation in the UWF-seg dataset

was conducted using the ITK-SNAP (67) annotation software. The

annotations were based on detailed clinical features. Specifically:

Microaneurysms (MA) were annotated based on obvious borders
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FIGURE 3

Pixel-level annotation examples from UWF-seg, including four di�erent lesions. The blue, yellow, red, and green denote microaneurysm,

hemorrhage, hard exudate, and soft exudate, respectively.

TABLE 2 Values of some key hyper-parameters in the three training

stages.

Initial learning rate Weight Batch

StageI 0.0001 0.0005 8

StageII 0.0005 0.0005 32

StageIII Same as Stage II

and red spots of various sizes distributed at the ends of blood

vessels; Hemorrhages (HE) typically manifested as circular or

patchy red spots distributed throughout the entire fundus image,

often with a relatively large volume; Exudates (EX) were annotated

based on their obvious borders and sediment-like appearance,

which was relatively small and bright white or yellow-white in

color; Soft exudates (SE) usually presented as areas with unclear

borders and a fluffy texture, exhibiting a pale white or pale yellow-

white color, often growing along the direction of the nerve fiber

layer. Partial annotation examples and their corresponding lesion

annotations are illustrated in Figure 3. Additionally, DR grading

annotations strictly adhered to international DR severity scales.

Data pre-processing: The IDRID, EyePACS, DeepDRiD, and

Local-UWF datasets exhibit variations in lighting conditions and

resolutions. Consequently, a preprocessing method based on Van

Grinsven et al. (68) was employed to standardize image quality and

enhance texture details. Moreover, to address class imbalance and

improve model robustness, horizontal and vertical flipping, along

with rotation at consistent angles, were applied to both images and

labels. Notably, UWF images often contain structural artifacts like

eyelids and eyelashes, which can negatively impact tasks such as

lesion segmentation by causing model overfitting. To mitigate this

issue, a preprocessing approach similar to that of Ju et al. (7) was

adopted. Specifically, U-Net segmentation networks were trained

to remove artifacts while preserving essential semantic information.

Subsequently, all images underwent the center-cut method to trim

the edges of the UWF fundus images.

4.2 Evaluation metrics

To quantitatively evaluate the performance of the lesion

segmentation task, we compute several metrics including the Dice

Similarity Coefficient (Dice), Area Under the Curve of the Receiver

Operating Characteristic (AUC-ROC), Area Under the Curve of

the Precision-Recall (AUC-PR), and Mean Absolute Error (MAE).

The MAE is defined as:

MAE =
1

w× h

w
∑

x

h
∑

y

∣

∣Mi(x, y)− Y(x, y)
∣

∣

whereMi indicates the final prediction of the DR lesion. To evaluate

the performance of DR grading, we utilize several widely-used

metrics for multi-class classification, including Accuracy (ACC),

Weighted Sensitivity (Sen), Specificity (Spe), and the quadratic

weighted kappa metric. The kappa metric is defined as follows:

kappa =
po − pe

1− pe

where po and pe represent the extent to which raters agree and the

expected probability of chance agreement, respectively.

4.3 Implementation details

The training methodology for the DeepMT-DR model

comprises three stages. In the first stage, we train the auxiliary task

subnet, which focuses on UWF lesion segmentation. The primary

objective of this stage is to extract adequate pathological features to

support the main DR grading task. In the second stage, we pre-train

Frontiers inMedicine 08 frontiersin.org53

https://doi.org/10.3389/fmed.2024.1400137
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1400137

TABLE 3 Comparison of unsupervised segmentation of bright lesion based on convolutional modulation adversarial lesion generators.

Lesion Bright lesion (EX+SE)

Methods Dice AUC-ROC AUC-PR MAE

Base1 0.647 + 0.121 0.989 + 0.008 0.712 + 0.143 0.011 + 0.010

Base2 0.318 + 0.165 0.976 + 0.024 0.289 + 0.214 0.010 + 0.003

Base2+Adv 0.416 + 0.166 0.950 + 0.056 0.381 + 0.209 0.004 + 0.002

Base2+Adv+CMFF 0.417 + 0.161 0.970 + 0.032 0.443 + 0.203 0.006 + 0.003

TABLE 4 Comparison of unsupervised segmentation of dark lesion based on convolutional modulation adversarial lesion generators.

Lesion Dark lesion (MA+HE)

Methods Dice AUC-ROC AUC-PR MAE

Base1 0.522 + 0.127 0.963 + 0.037 0.544 + 0.175 0.013 + 0.018

Base2 0.295 + 0.181 0.890 + 0.060 0.289 + 0.203 0.029 + 0.021

Base2+Adv 0.429 + 0.150 0.906 + 0.055 0.435 + 0.199 0.015 + 0.014

Base2+Adv+CMFF 0.451 + 0.154 0.903 + 0.053 0.446 + 0.192 0.017 + 0.017

the DR grading subnet using the CFP DR severity classification

task to enhance UWF performance. In the third stage, we utilize

prior knowledge and the proposed LEAM to fine-tune the DR

grading module, leveraging the models pretrained in the first two

stages. Furthermore, in all training stages, we optimize the model

parameters using the Adam optimizer, augmented with weight

decay. Table 2 presents the values assigned to the critical hyper-

parameters during the training stages. In our implementation,

all images were resized to 512×512 pixels. We implemented the

proposed networks using Python based on the PyTorch package,

and the PC we used contained two GPUs (NVIDIA GeForce GTX

3090 Ti 24GB each).

4.4 Lesion segmentation performances

Before quantifying the impact of lesion information on

grading performance, we first demonstrate the effectiveness of the

adversarial lesion generator based on convolutional modulation for

unsupervised segmentation on the UWF-seg dataset. We evaluate

two different types of lesions: dark lesions and bright lesions,

which are key indicators of diabetic retinopathy (DR), usingmetrics

including Dice similarity coefficient, AUC-ROC, AUC-PR, and

mean absolute error (MAE). Dark lesions such as microaneurysms

(MA), blot hemorrhages, dot hemorrhages, and flame hemorrhages

are clinical signs observed in the early stages of DR. On the

other hand, bright lesions such as hard exudates (EX) and soft

exudates (SE) are characteristic of more severe stages of the

disease. Therefore, detecting both bright and dark lesions without

further subdividing them into specific types is sufficient for initial

DR grading. We investigate each proposed component of the

final model alongside two baselines. Base1: The pre-trained base

segmentation model is trained in a fully supervised manner using

54 CFP images from IDRID and evaluated using the 27 IDRID

test images, aiming to enhance the quality of knowledge learned

from the source domain. Base2: The pre-trained base segmentation

model uses 81 CFP images without an adversarial transfer strategy,

and is directly tested on the UWF-seg dataset.

The detailed segmentation performances of these methods are

reported in Tables 3, 4. For Base1, several metrics such as Dice

and AUC-ROC are already comparable to most segmentation

models trained on the same data, fully demonstrating that

the improved Base possesses good lesion extraction capabilities.

For Base2, applying the model trained on the source domain

directly to the target domain, the Dice value for bright and dark

lesions were only 31.8%, 29.5%, respectively, demonstrating a

significant domain bias problem between the source and target

domain data. On the UWF-seg dataset, a adversarial domain

adaptation based UWF lesion segmentation model consistently

outperforms Base2. the Dice value for bright and dark lesions

increases by 9.8%, 13.4%, respectively, proving that adversarial

domain adaptation can indeed benefit the UWF segmentation

results. It is worth noting that, for bright lesions, the value

of AUC-ROC actually decreased. This may be because AUC-

ROC is more sensitive to the classification boundary between

positive and negative classes, leading to more mis-classifications

on the decision boundary of the classifier. Furthermore, after

improving AUC-ROC, the AUC-PR values tend to be generally

lower. This is because pathological regions related to DR typically

represent only a small portion of the image, while normal regions

constitute the vast majority. Consequently, models often predict

normal regions more easily while neglecting pathological ones. To

address this issue, we can adjust the threshold to strike a balance

between the two. With the CMFF design, which exploits more

contextual information to improve the identification of complex

lesions, a clear improvement is observed. Specifically, significant

improvements were observed for dark lesions, with an average gain

of 2.2% for the Dice value.

Figure 4 compares the subjective segmentation results of two

different lesions for the pre-trained lesion segmentation model

adopting the limited UWF data. As seen, the lesion segmented

masks by our method are more close to the ground-truth.
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FIGURE 4

Qualitative multi-lesion segmentation results. Yellow and blue represent light and dark lesions, respectively.

4.5 DR grading performances

The proposed method was first compared the following

four representative types of UDA methods which were designed

for classification. These methods include: Domain Separation

Networks (DSN) (69), Adversarial Discriminative Domain

Adaptation (ADDA) (70), Maximum Classifier Discrepancy

(MCD) (71), Dynamic Weighted Learning (DWL) (72), and the

(ULTRA) (26), As in the top half of Table 5. Note, ULTRA is

a model specifically proposed for DR grading in UWF image.

Furthermore, although our approach is unsupervised, fully

supervised training can also be performed when the labels of

the UWF images are available, which we define as Ours⋆. So,

we also compared the proposed method to the state-of-the-art

deep-learning-based methods for UWF image DR classification,

for example, VGG-16 (73), ResNet50 (62), and CycleGAN (7).

Notably, CycleGAN method is the only method that uses CFP

images to aid the training of UWF images. As in the lower

part of Table 5.

4.5.1 Classification performance of local-UWF
In general, deep learning methods trained in a fully supervised

manner tend to yield superior classification results compared to

unsupervised DA methods, and the difference in performance is

relatively significant. This fact further underscores the significant

challenges associated with leveraging CFP images to aid in
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TABLE 5 The DR grading results over the Local-UWF dataset.

Methods Acc PRE F1 Kappa

DSN (69) 0.5027 0.3582 0.6097 0.3287

ADDA (70) 0.5396 0.5513 0.5447 0.4142

MCD (71) 0.5523 0.4816 0.5377 0.4874

DWL (72) 0.5646 0.5160 0.6049 0.4282

ULTRA (26) 0.5832 0.5210 0.5518 0.4903

VGG-16 (73) 0.6417 0.6496 0.6411 0.5370

Resnet50 (62) 0.6563 0.6423 0.6734 0.5478

CycleGAN∗ (7) 0.6292 0.6278 0.6389 0.5159

Ours 0.5912 0.5240 0.6423 0.4648

Ours∗ 0.6813 0.6743 0.6889 0.5861

∗Indicates the method is fully supervised, i.e., the grading labels of UWF images are used in

the training phase.

the diagnosis of UWF images. However, the proposed method

outperforms these UDA methods in most metrics.

For example, our method demonstrates a significant advantage

over the DWL method, with an increase in accuracy and Kappa

of approximately 2.66% and 3.66%, respectively. Furthermore,

despite incorporating a reconstruction loss in the DSN method

to capture more generalized features, this also introduces a

tendency for the model to disregard image-specific details, such as

lesions present in CFP and UWF images, resulting in suboptimal

performance of the DSN approach for this particular task. When

trained in a supervised manner, most of the models perform

well, demonstrating the feasibility of grading UWF images with

DL methods. Compared with the state-of-the-art deep learning

method, Ours⋆ demonstrated competitive performance across all

metrics. For example, our method exhibits a significant advantage

over the CycleGAN method, with increases in accuracy, precision,

F1 score, and Kappa of approximately 5.21%, 4.65%, 4.99%, and

7.02%, respectively. The main reason for this is that the CycleGAN

method generates UWF images from CFP images by style transfer,

and the performance of the grading model depends on the quality

of the synthesized images.

To analyze the performance of the proposed model for UWF

DR grading, we have provided the confusion matrix in Figure 5.

This matrix displays the recognition results of the model across

different categories. Overall, the proposed model performs well in

all classes except for class 1.

4.6 Ablation study

In this section, we perform an ablation study to analyze the

effectiveness of each key component. Our Net employs three main

components to form its classification framework: unsupervised

DR grading module, adversarial lesion segmentation module and

Lesion external attention module, so we analyze and discuss the

network under different scenarios to validate the performance

of each key component of our model. The results of different

combinations of these modules are reported in Table 6.

4.6.1 The e�ectiveness of unsupervised DR
grading module

To explore the impact of the UDA DR grading sub-network,

we employed a ResNet-50 grading model as the backbone, denoted

as MCFP, which was trained solely on the EyePACS subset and

tested on the UWF dataset. It’s important to note that the backbone

model achieves an accuracy of 26.47% (as shown in Table 6),

indicating the significant domain gap between CFP images and

UWF images.

Furthermore, we explored the C1+C2+D method, which

involves joint training using both CFP and UWF images with

UDA techniques. Encouragingly, this method outperformed the

MCFP backbone model, demonstrating significant improvements

across several indicators. This result underscores the effectiveness

of leveraging UDA to jointly train CFP and UWF images,

thereby reducing domain discrepancies and enhancing the

accuracy of DR grading. By leveraging the complementary

information from both CFP and UWF domains, our approach

showcases its efficacy in achieving superior performance in

DR grading tasks. These findings underscore the potential

of UDA techniques and the integration of diverse image

sources for enhancing the accuracy and reliability of DR

grading models.

4.6.2 The e�ectiveness of adversarial lesion
segmentation module

As described in Section 3.3, a pivotal component of our

proposed method is the adversarial lesion segmentation module,

aimed at capturing multi-lesion features from annotated UWF

images. This addresses the challenge of lacking prior guidance

during the decision-making stage of DR. Detailed ablation results

for the adversarial lesion segmentation module are presented in

Section 4.4. Specifically, we observe an increase of approximately

1.05% in accuracy (ACC) for MLesion compared to MTransfer. This

suggests that the lesion generation module provides additional

lesion information, and the specific lesion features are beneficial

for distinguishing DR subtypes, aligning with the findings of

epidemiological studies.

4.6.3 The e�ectiveness of the LEAM
In Section 3.3.3, we introduced the incorporation of fully

integrated lesion features into our approach. To ascertain

the effectiveness of the Lesion External Attention Module

(LEAM), we compared the performance of the model with and

without LEAM, denoted as MLesion and MOurs respectively.

The results demonstrated that the feature fusion strategy

facilitated by LEAM significantly enhances the classification

performance, with a 3.49% increase in accuracy (ACC)

and a 6.48% increase in kappa. This observation suggests

that the proposed LEAM effectively embeds lesion-specific

knowledge into the grading module. By focusing attention

on salient lesion features, LEAM facilitates the extraction and

integration of crucial information, thereby improving the

overall capability of the grading model to accurately classify

retinal images.
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FIGURE 5

Confusion matrix of proposed model.

TABLE 6 Performance comparisons of ablation studies.

Method Training Resnet-50 C1+C2+D Lesion LEAM ACC PRE F1 Kappa

MCFP Clabel X 0.2647 0.4397 0.2786 0.1057

MTransfer Clabel/Uunlabel X X 0.5458 0.5340 0.5955 0.4069

MLesion Clabel/Uunlabel X X X 0.5563 0.4493 0.6262 0.4001

MOurs Clabel/Uunlabel X X X X 0.5912 0.5240 0.6423 0.4648

C and U denotes the CFP and UWF datasets, respectively.

5 Discussions and conclusion

Several existing studies have highlighted the significant

advantages of ultra-widefield (UWF) imaging over color fundus

photography (CFP) in monitoring diabetic retinopathy (DR)

progression. However, due to limited datasets and annotations,

the field of UWF-based DR-assisted diagnosis remains relatively

unexplored. Moreover, most existing studies utilizing UWF images

and deep learning methods for DR diagnosis employ end-to-end

models lacking guidance from prior knowledge and interpretability

in decision-making.

In this study, we introduce a deep learning-based

method aimed at robust predictions for DR in UWF

photography, focusing on unsupervised lesion-aware domain

adaptation. However, achieving robust predictions for

DR in an unsupervised manner presents two significant

challenges: Firstly, overall metrics for segmenting UWF

lesions need improvement, and there is a lack of detailed

class information; secondly, lesion segmentation and disease

grading are separate tasks requiring individual attention

and improvement.

The main contribution of our work lies in accomplishing

the tasks of lesion segmentation and automatic grading of DR

using CFP images to assist UWF image analysis through the

innovative application of unsupervised domain adaptation (UDA)

methods. We aim to incorporate clinical priors into the deep

learning algorithm through lesion segmentation of UWF images

and the explicit utilization of light-dark lesion data to enhance
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FIGURE 6

The macula and optic cup in (A) are incorrectly identified as bright lesions; the intersection of the eyelashes and fundus in (B) is also incorrectly

detected as a dark lesion. All samples are a fusion of the pre-processed maps with the results of the lesion features.

DR classification accuracy. Our ablation study demonstrates the

effectiveness of our specifically designed components.

5.1 Limitations

5.1.1 The performance of UWF segmentation
network needs to be improved

In this work we proposes a UWF lesion segmentation network

based on adversarial domain transfer, which simulates the process

of clinical doctors diagnosing DR based on detailed lesion features.

Although this method achieved certain segmentation results on

the UWF-seg dataset, the overall performance still needs to be

improved. UWF images are often obstructed by eyelids and

eyelashes, and these artifacts may affect the screening performance

of models trained on clean images. Although pre-processing can

remove some artifacts, it also masks useful information in the

surrounding area and there are still some false positives cases.

As Figure 6A shows, the macula and the optic disc will be

wrongly detected as bright lesions, where Figure 6B shows that

the intersection of eyelashes and fundus will also be wrongly

segmented as a lesion area. Therefore, an effective method for

removing UWF image artifacts while preserving key structures is

urgently needed. In addition, the irregular shape of lesions, their

similarity to surrounding normal tissues, and mutual occlusion

make them difficult to segment correctly using unsupervised

methods. To overcome these challenges, future research can

adopt deep reinforcement learning or semi-supervised training to

improve the model’s segmentation ability for complex lesions.

5.1.2 Collaborative training framework needs to
be developed

In this work, we propose an ULTRA (Unsupervised Lesion

Transfer Learning for Disease Recognition and Assessment)

network based on UWF images for automatic grading of

diabetic retinopathy (DR), and its effectiveness has been

demonstrated through extensive experiments. However, our

approach treats lesion segmentation and disease diagnosis as

separate tasks and combines their features using a specific fusion

strategy. This requires manual selection of fusion strategies and

hyperparameter tuning, potentially resulting in information loss in

the fusion process.

To address this limitation, future research could explore the

development of a collaborative training framework and optimize

joint training strategies to ensure the accuracy of both lesion

segmentation and disease diagnosis. By enhancing the effectiveness

of joint learning, such efforts can lead to improved performance

and reliability in automated DR grading systems based on

UWF images.

5.2 Analysis on failure cases

We further analyze the failed classification cases by GradCAM.

Specifically, Figure 7A demonstrates successful predictions of DR

severity grading by the model, while Figure 7B displays examples

of misclassifications. All images are preprocessed and overlaid

with heatmaps. it is observed that in Figures 4–6A, despite the

presence of interfering factors such as eyelash artifacts, ULTRA

consistently disregards these artifacts and focuses primarily on

lesion information, resulting in accurate predictions of DR severity

with high confidence. Based on our observation on cases shown

in Figure 7A, we found that proposed model pays more attention

to lesion information, despite the presence of interfering factors

such as eyelash artifacts, resulting in accurate predictions of

DR severity with high confidence. However, at times, these

interfering factors can cause confusion, as evident in Figure 7B.

These misclassifications typically occur in the No DR or NPDRI

stages, where the model lacks sufficient reliable attention and tends

to prioritize peripheral artifacts, mistakenly identifying them as

lesions, particularly in the vicinity of eyelashes. Notably, in the first

example, the optic disc may be misinterpreted as exudates or a large

hemorrhage, and the intersection between the eyelashes and eyelid

is incorrectly identified, leading to the erroneous classification of

the case as NPDRIII instead of No DR. In the third example, a

PDR image is incorrectly diagnosed as NPDRIII primarily due to

the failure in accurately identifying the patchy hemorrhage in the

image. It also shows that our proposed use of a lesion prior as one

of the classification features is feasible, and there is reason to believe

that as lesion performance improves in future work, our model will

be able to more accurately identify the degree of DR severity.
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FIGURE 7

(A) Examples of successfully ignored the artifact model and instead focused on specific lesions and correctly identified the degree of DR severity with

a high confidence rate. (B) Examples of misclassifications.

5.3 Conclusion

In this work, we designed a specific approach and strategies

to solve the above mentioned issues. Specifically, we proposed

a novel DR grading network for unsupervised lesion-aware

domain adaptation in UWF images. Our approach tackles

the task of grading DR by leveraging unsupervised domain

adaptation techniques while explicitly considering the presence

of lesions. By incorporating lesion-specific knowledge into the

model, we aimed to improve its ability to generalize across

different domains and accurately grade UWF images. To achieve

this, we developed a comprehensive framework that combines

DA strategies with lesion-aware mechanisms. By leveraging

unsupervised learning techniques, our approach can effectively

adapt the grading model from a source domain (e.g., CFP

images) to a target domain (e.g., UWF images) without the

need for labeled data in the target domain. Moreover, our

framework incorporates lesion-aware mechanisms, such as the

Lesion Embedding Attention Module (LEAM), to ensure that

the model can effectively capture and exploit the discriminative

information present in lesion regions. By integrating these

novel components and adopting a holistic approach, our

proposed method aims to address the challenges associated

with domain shift and the unique characteristics of UWF

images in DR grading. Through experimental evaluations and

comparisons, we demonstrate the effectiveness and superiority

of our approach in accurately grading UWF images, thus

contributing to improved diagnosis and management of

diabetic retinopathy.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found here: https://www.kaggle.com/c/diabetic-

retinopathy-detection/overview.

Ethics statement

The studies involving humans were approved by

Eye Pricture Archive Communication System. The

Frontiers inMedicine 14 frontiersin.org59

https://doi.org/10.3389/fmed.2024.1400137
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
https://www.kaggle.com/c/diabetic-retinopathy-detection/overview
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1400137

studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in

this study.

Author contributions

TC: Writing – original draft, Writing – review & editing,

Supervision, Validation. YB: Writing – original draft, Writing –

review & editing, Data curation, Software. HM: Writing –

original draft, Writing – review & editing, Project administration.

SL: Writing – original draft, Writing – review & editing,

Formal analysis. KX: Writing – original draft, Writing –

review & editing, Visualization. ZX: Writing – original

draft, Writing – review & editing, Funding acquisition. SM:

Writing – original draft, Writing – review & editing, Formal

analysis. FY: Writing – original draft, Writing – review &

editing. YZ: Writing – original draft, Writing – review &

editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Yong JK, Kim BH, Bo MC, Sun HJ, Choi KS. Bariatric surgery is associated with
less progression of diabetic retinopathy: a systematic review and meta-analysis. Surg
Obes Relat Dis. (2017) 13:352. doi: 10.1016/j.soard.2016.10.002

2. Torres-Villaros H, Fajnkuchen F, Amari F, Janicot L. Giocanti-Aurégan A.
Comparison of Ultra-Wide Field Photography to Ultra-Wide Field Angiography
for the Staging of Sickle Cell Retinopathy. J Clini Med. (2022) 11:936.
doi: 10.3390/jcm11040936

3. Kiss S, Berenberg TL. Ultra widefield fundus imaging for diabetic retinopathy.
Curr Diab Rep. (2014) 14:1–7. doi: 10.1007/s11892-014-0514-0

4. Ju L, Wang X, Zhou Q, Zhu H, Harandi M, Bonnington P, et al.
Bridge the domain gap between ultra-wide-field and traditional fundus images
via adversarial domain adaptation. arXiv. (2020) [Preprint]. arXiv:2003.10042.
doi: 10.48550/arXiv.2003.10042

5. Nagiel A, Lalane RA, Sadda SR, Schwartz SD. Ultra-widefield fundus imaging:
a review of clinical applications and future trends. Retina. (2016) 36:660–78.
doi: 10.1097/IAE.0000000000000937

6. Singh RP, Hsueh J, Han MM, Kuriyan AE, Conti FF, Steinle N, et
al. Protecting vision in patients with diabetes with ultra-widefield imaging: a
review of current literature. Ophthal Surg Lasers Imag Retina. (2019) 50:639–48.
doi: 10.3928/23258160-20191009-07

7. Ju L, Wang X, Zhao X, Bonnington P, Drummond T, Ge Z. Leveraging regular
fundus images for training UWF fundus diagnosis models via adversarial learning and
pseudo-labeling. IEEE Trans Med Imaging. (2021). doi: 10.1109/TMI.2021.3056395

8. Rasmussen ML, Broe R, Frydkjaer-Olsen U, Olsen BS, Mortensen HB, Peto T, et
al. Comparison between Early Treatment Diabetic Retinopathy Study 7-field retinal
photos and non-mydriatic, mydriatic and mydriatic steered widefield scanning laser
ophthalmoscopy for assessment of diabetic retinopathy. J Diabetes Complications.
(2015) 29:99–104. doi: 10.1016/j.jdiacomp.2014.08.009

9. Silva PS, Cavallerano JD, Tolls D, Omar A, Thakore K, Patel B, et al.
Potential efficiency benefits of nonmydriatic ultrawide field retinal imaging in
an ocular telehealth diabetic retinopathy program. Diabetes Care. (2014) 37:50–5.
doi: 10.2337/dc13-1292

10. Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP.
Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and
potential impact on diabetic retinopathy severity. Ophthalmology. (2013) 120:2587–95.
doi: 10.1016/j.ophtha.2013.05.004

11. Ting D, Cheung YL, Lim G, Tan G, Quang ND, Gan A, et al. Development
and validation of a deep learning system for diabetic retinopathy and related eye
diseases using retinal images from multiethnic populations with diabetes. JAMA.
(2017) 318:2211. doi: 10.1001/jama.2017.18152

12. Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, et al. Using a deep
learning algorithm and integrated gradients explanation to assist grading for diabetic
retinopathy. Ophthalmology. (2018). doi: 10.1016/j.ophtha.2018.11.016

13. Foo A, Hsu W, Lee ML, Lim G, Wong TY. Multi-task learning for diabetic
retinopathy grading and lesion segmentation. Proc AAAI Conf Artif Intellig. (2020)
34:13267–72. doi: 10.1609/aaai.v34i08.7035

14. Sun R, Li Y, Zhang T, Mao Z, Wu F, Zhang Y. Lesion-aware transformers for
diabetic retinopathy grading. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2021). p. 10938–10947.

15. Abdelmaksoud E, El-Sappagh S, Barakat S, Abuhmed T, Elmogy M. Automatic
diabetic retinopathy grading system based on detecting multiple retinal lesions. IEEE
Access. (2021) 9:15939–60. doi: 10.1109/ACCESS.2021.3052870

16. Zhou Y, He X, Huang L, Liu L, Zhu F, Cui S, et al. Collaborative learning of
semi-supervised segmentation and classification for medical images. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2019). p.
2079–2088.

17. Zhao Y, Zhang J, Pereira E, Zheng Y, Su P, Xie J, et al. Automated tortuosity
analysis of nerve fibers in corneal confocal microscopy. IEEE Trans Med Imaging.
(2020) 39:2725–37. doi: 10.1109/TMI.2020.2974499

18. Emma Dugas J, Jorge WC. Diabetic Retinopathy Detection. Kaggle (2015).
Available online at: https://kaggle.com/competitions/diabetic-retinopathy-detection

19. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, et al.
Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy
screening research. IEEE Dataport. (2018) 3:25. doi: 10.21227/H25W98

20. Lim G, Bellemo V, Xie Y, Lee XQ, Yip MY, Ting DS. Different fundus imaging
modalities and technical factors in AI screening for diabetic retinopathy: a review. Eye
and Vision. (2020) 7:1–13. doi: 10.1186/s40662-020-00182-7

21. Oh K, Kang HM, Leem D, Lee H, Seo KY, Yoon S. Early detection of diabetic
retinopathy based on deep learning and ultra-wide-field fundus images. Sci Rep. (2021)
11:1897. doi: 10.1038/s41598-021-81539-3

22. Liu R, Wang X, Wu Q, Dai L, Fang X, Yan T, et al. Deepdrid: Diabetic
retinopathy grading and image quality estimation challenge. Patterns. (2022) 3:100512.
doi: 10.1016/j.patter.2022.100512

23. Ahn E, Kumar A, Fulham M, Feng D, Kim J. Unsupervised domain
adaptation to classify medical images using zero-bias convolutional auto-encoders and
context-based feature augmentation. IEEE Trans Med Imaging. (2020) 39:2385–94.
doi: 10.1109/TMI.2020.2971258

24. Chen C, Dou Q, Chen H, Heng PA. Semantic-aware generative adversarial nets
for unsupervised domain adaptation in chest x-ray segmentation. In:Machine Learning
inMedical Imaging: 9th InternationalWorkshop, MLMI 2018, Held in Conjunction with

Frontiers inMedicine 15 frontiersin.org60

https://doi.org/10.3389/fmed.2024.1400137
https://doi.org/10.1016/j.soard.2016.10.002
https://doi.org/10.3390/jcm11040936
https://doi.org/10.1007/s11892-014-0514-0
https://doi.org/10.48550/arXiv.2003.10042
https://doi.org/10.1097/IAE.0000000000000937
https://doi.org/10.3928/23258160-20191009-07
https://doi.org/10.1109/TMI.2021.3056395
https://doi.org/10.1016/j.jdiacomp.2014.08.009
https://doi.org/10.2337/dc13-1292
https://doi.org/10.1016/j.ophtha.2013.05.004
https://doi.org/10.1001/jama.2017.18152
https://doi.org/10.1016/j.ophtha.2018.11.016
https://doi.org/10.1609/aaai.v34i08.7035
https://doi.org/10.1109/ACCESS.2021.3052870
https://doi.org/10.1109/TMI.2020.2974499
https://kaggle.com/competitions/diabetic-retinopathy-detection
https://doi.org/10.21227/H25W98
https://doi.org/10.1186/s40662-020-00182-7
https://doi.org/10.1038/s41598-021-81539-3
https://doi.org/10.1016/j.patter.2022.100512
https://doi.org/10.1109/TMI.2020.2971258
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1400137

MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 9. Cham: Springer.
(2018). p. 143–151.

25. Du Z, Li J, Su H, Zhu L, Lu K. Cross-domain gradient discrepancy minimization
for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. (2021). p. 3937–3946.

26. Bai Y, Hao J, Fu H, Hu Y, Ge X, Liu J, et al. Unsupervised lesion-aware transfer
learning for diabetic retinopathy grading in ultra-wide-field fundus photography. In:
Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th
International Conference, Singapore, September 18-22, 2022, Proceedings, Part II. Cham:
Springer. (2022). p. 560–570.

27. Spaide RF. Peripheral areas of nonperfusion in treated central retinal vein
occlusion as imaged by wide-field fluorescein angiography. Retina. (2011) 31:829–37.
doi: 10.1097/IAE.0b013e31820c841e

28. Nagasato D, Tabuchi H, Ohsugi H, Masumoto H, Enno H, Ishitobi N, et
al. Deep neural network-based method for detecting central retinal vein occlusion
using ultrawide-field fundus ophthalmoscopy. J Ophthalmol. (2018) 2018:1–6.
doi: 10.1155/2018/1875431

29. Cho M, Kiss S. Detection and monitoring of sickle cell retinopathy using ultra
wide-field color photography and fluorescein angiography. Retina. (2011) 31:738–47.
doi: 10.1097/IAE.0b013e3181f049ec

30. Giocanti-Aurégan A, Fajnkuchen F, Amari F, Bodaghi B, Giocanti-Aurégan A.
Comparison between ultrawidefield and 7-standard field angiography for proliferative
sickle cell retinopathy screening, follow-up and classification. J Ophthalmol Clin Res.
(2019) 6:1–5.

31. Bonnay G, Nguyen F, Meunier I, Ducasse A, Hamel C, Arndt C. Screening for
retinal detachment using wide-field retinal imaging. J Francais Dophtalmologie. (2011)
34:482–5. doi: 10.1016/j.jfo.2011.02.012

32. Ohsugi H, Tabuchi H, Enno H, Ishitobi N. Accuracy of deep learning,
a machine-learning technology, using ultra wide-field fundus ophthalmoscopy
for detecting rhegmatogenous retinal detachment. Scient Rep. (2017) 7:9425.
doi: 10.1038/s41598-017-09891-x

33. Nagasawa T, Tabuchi H, Masumoto H, Enno H, Niki M, Ohara Z, et
al. Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for
detecting treatment-naive proliferative diabetic retinopathy. Int Ophthalmol. (2019)
39:2153–9. doi: 10.1007/s10792-019-01074-z

34. Nagasawa T, Tabuchi H,Masumoto H,Morita S, Niki M, Ohara Z, et al. Accuracy
of diabetic retinopathy staging with a deep convolutional neural network using ultra-
wide-field fundus ophthalmoscopy and optical coherence tomography angiography. J
Ophthalmol. (2021) 2021:6651175. doi: 10.1155/2021/6651175

35. Liu H, Teng L, Fan L, Sun Y, Li H. A new ultra-wide-field fundus dataset to
diabetic retinopathy grading using hybrid preprocessing methods. Comput Biol Med.
(2023) 157:106750. doi: 10.1016/j.compbiomed.2023.106750

36. Levenkova A, Sowmya A, Kalloniatis M, Ly A, Ho A. Automatic detection of
diabetic retinopathy features in ultra-wide field retinal images. In: Medical Imaging
2017: Computer-Aided Diagnosis. vol. 10134. Bellingham: SPIE. (2017). p. 409–416.

37. You K, Long M, Cao Z, Wang J, Jordan MI. Universal domain adaptation.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(IEEE). Cham: Springer (2019). p. 2715–24.

38. Kundu JN, Venkat N, Rahul M, Babu RV. Universal source-free domain
adaptation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (IEEE). IEEE Computer Society (2020). p. 4543–52.

39. Chen M, Weinberger KQ, Blitzer JC. Co-training for domain adaptation. In:
Proceedings of the 24th International Conference on Neural Information Processing
Systems. Red Hook, NY: Curran Associates Inc. (2011). p. 2456–64.

40. Wang M, Deng W. Deep visual domain adaptation: a survey. Neurocomputing.
(2018) 312:135–53. doi: 10.1016/j.neucom.2018.05.083

41. Ribani R, Marengoni M. A survey of transfer learning for convolutional neural
networks. In: 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images
Tutorials (SIBGRAPI-T). Rio de Janeiro: IEEE. (2019). p. 47–57.

42. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer
learning. In: Artificial Neural Networks and Machine Learning-ICANN 2018: 27th
International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7,
2018, Proceedings, Part III 27. Cham: Springer. (2018). p. 270–279.

43. Kang G, Jiang L, Yang Y, Hauptmann A. Contrastive adaptation network for
unsupervised domain adaptation. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Long Beach, CA: IEEE Computer Society (2019). p.
4888–97.

44. Wang W, Ma L, Chen M, Du Q. Joint correlation alignment-based graph
neural network for domain adaptation of multitemporal hyperspectral remote sensing
images. IEEE J Selected Topics Appl Earth Observat Remote Sens. (2021) 14:3170–84.
doi: 10.1109/JSTARS.2021.3063460

45. Pei Z, Cao Z, Long M, Wang J. Multi-adversarial domain adaptation. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence. Washington, DC: AAAI
Press (2018). p. 3934–41.

46. Long M, Cao Z, Wang J, Jordan MI. Conditional adversarial domain adaptation.
In: Proceedings of the 32nd International Conference on Neural Information Processing
Systems. Red Hook, NY: Curran Associates Inc. (2018). p. 1647–57.

47. Zhuang F, Cheng X, Luo P, Pan SJ, He Q. Supervised representation learning:
transfer learning with deep autoencoders. In: Twenty-fourth International Joint
Conference on Artificial Intelligence. Washington, DC: AAAI Press (2015).

48. Zheng H, Fu J, Mei T, Luo J. Learning multi-attention convolutional neural
network for fine-grained image recognition. In: 2017 IEEE International Conference
on Computer Vision (ICCV). Venice: IEEE Computer Society (2017). p. 5219–27.

49. Yi Z, Zhang H, Tan P, Gong M. Dualgan: Unsupervised dual learning for image-
to-image translation. In: Proceedings of the IEEE International Conference on Computer
Vision. (2017). p. 2849–2857.

50. Kim T, Cha M, Kim H, Lee JK, Kim J. Learning to discover cross-domain
relations with generative adversarial networks. In: International Conference onMachine
Learning. New York: PMLR. (2017). p. 1857–1865.

51. Peng S, Zeng R, Cao L, Yang A, Niu J, Zong C, et al. Multi-source domain
adaptation method for textual emotion classification using deep and broad learning.
Knowl-Based Syst. (2023) 260:110173. doi: 10.1016/j.knosys.2022.110173

52. Hsu HK, Yao CH, Tsai YH, Hung WC, Tseng HY, Singh M, et al. Progressive
domain adaptation for object detection. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. IEEE Computer Society (2020). p.
749–57.

53. Cao J, Tang H, Fang HS, Shen X, Lu C, Tai YW. Cross-domain adaptation for
animal pose estimation. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). IEEE Computer Society (2019). p. 9497–506.

54. Kamnitsas K, Baumgartner C, Ledig C, Newcombe V, Simpson J, Kane A, et
al. Unsupervised domain adaptation in brain lesion segmentation with adversarial
networks. In: International Conference on Information Processing in Medical Imaging.
Cham: Springer. (2017). p. 597–609.

55. Chai Z, Zhou K, Yang J,Ma Y, Chen Z, Gao S, et al. Perceptual-assisted adversarial
adaptation for choroid segmentation in optical coherence tomography. In: 2020 IEEE
17th International Symposium on Biomedical Imaging (ISBI). Iowa City, IA: IEEE.
(2020). p. 1966–1970.

56. Dong J, Cong Y, Sun G, Zhong B, Xu X. What can be transferred: Unsupervised
domain adaptation for endoscopic lesions segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2020). p.
4023–4032.

57. Kadambi S, Wang Z, Xing E, WGAN. domain adaptation for the joint optic
disc-and-cup segmentation in fundus images. Int J Comput Assist Radiol Surg. (2020)
15:1205–13. doi: 10.1007/s11548-020-02144-9

58. Zhang Y, Wei Y, Wu Q, Zhao P, Niu S, Huang J, et al. Collaborative unsupervised
domain adaptation for medical image diagnosis. IEEE Trans Image Proc. (2020)
29:7834–44. doi: 10.1109/TIP.2020.3006377

59. Zhou Y, Wang B, Huang L, Cui S, Shao L, A. benchmark for studying diabetic
retinopathy: segmentation, grading, and transferability. IEEE Trans Med Imaging.
(2020) 40:818–28. doi: 10.1109/TMI.2020.3037771

60. Cao P, Hou Q, Song R, Wang H, Zaiane O. Collaborative learning of weakly-
supervised domain adaptation for diabetic retinopathy grading on retinal images.
Comput Biol Med. (2022) 144:105341. doi: 10.1016/j.compbiomed.2022.105341

61. Song R, Cao P, Yang J, Zhao D, Zaiane OR. A domain adaptation multi-instance
learning for diabetic retinopathy grading on retinal images. In: 2020 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). Seoul: IEEE. (2020). p. 743–750.

62. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society (2016). p. 70–8.

63. Xiao X, Lian S, Luo Z, Li S. Weighted res-unet for high-quality retina vessel
segmentation. In: 2018 9th International Conference on Information Technology in
Medicine and Education (ITME). Hangzhou: IEEE. (2018). p. 327–331.

64. Hou Q, Lu CZ, Cheng MM, Feng J. Conv2former: a simple transformer-
style ConvNet for visual recognition. arXiv. (2022) [Preprint]. arXiv:2211.11943.
doi: 10.48550/arXiv.2211.11943

65. Petit O, Thome N, Rambour C, Themyr L, Collins T, Soler L. U-net transformer:
self and cross attention for medical image segmentation. In: Machine Learning in
Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with
MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12. Cham: Springer.
(2021). p. 267–276.

66. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, et al. Dual attention network for scene
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. (2019). p. 3146-3154.

67. Yushkevich PA, Gao Y, Gerig G. ITK-SNAP: An interactive tool for semi-
automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). New York: IEEE (2016). p. 3342–3345.

68. Van Grinsven MJ, van Ginneken B, Hoyng CB, Theelen T. Sánchez
CI. Fast convolutional neural network training using selective data

Frontiers inMedicine 16 frontiersin.org61

https://doi.org/10.3389/fmed.2024.1400137
https://doi.org/10.1097/IAE.0b013e31820c841e
https://doi.org/10.1155/2018/1875431
https://doi.org/10.1097/IAE.0b013e3181f049ec
https://doi.org/10.1016/j.jfo.2011.02.012
https://doi.org/10.1038/s41598-017-09891-x
https://doi.org/10.1007/s10792-019-01074-z
https://doi.org/10.1155/2021/6651175
https://doi.org/10.1016/j.compbiomed.2023.106750
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1109/JSTARS.2021.3063460
https://doi.org/10.1016/j.knosys.2022.110173
https://doi.org/10.1007/s11548-020-02144-9
https://doi.org/10.1109/TIP.2020.3006377
https://doi.org/10.1109/TMI.2020.3037771
https://doi.org/10.1016/j.compbiomed.2022.105341
https://doi.org/10.48550/arXiv.2211.11943
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1400137

sampling: Application to hemorrhage detection in color fundus images.
IEEE Trans Med Imag. (2016) 35:1273–84. doi: 10.1109/TMI.2016.252
6689

69. Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D. Domain
separation networks. In:Advances in Neural Information Processing Systems. RedHook,
NY: Curran Associates Inc. (2016). p. 29.

70. Tzeng E, Hoffman J, Saenko K, Darrell T. Adversarial discriminative domain
adaptation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, HI: IEEE (2017). p. 2962–71.

71. Saito K, Watanabe K, Ushiku Y, Harada T. Maximum classifier discrepancy for
unsupervised domain adaptation. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. IEEE (2018). p. 3723–32.

72. Xiao N, Zhang L. Dynamic weighted learning for unsupervised domain
adaptation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Nashville, TN: IEEE (2021). p. 15237–46.

73. Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. arXiv. (2014) [Preprint]. arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Frontiers inMedicine 17 frontiersin.org62

https://doi.org/10.3389/fmed.2024.1400137
https://doi.org/10.1109/TMI.2016.2526689
https://doi.org/10.48550/arXiv.1409.1556
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


fmed-11-1418048 August 2, 2024 Time: 17:56 # 1

TYPE Original Research
PUBLISHED 07 August 2024
DOI 10.3389/fmed.2024.1418048

OPEN ACCESS

EDITED BY

Shida Chen,
Sun Yat-sen University, China

REVIEWED BY

Jiàn xióng,
Second Affiliated Hospital of Nanchang
University, China
Guoming Zhang,
Shenzhen Eye Hospital, China

*CORRESPONDENCE

Shengzhan Wang
wangshengzhan886@163.com

Kai Jin
jinkai@zju.edu.cn

Juan Ye
yejuan@zju.edu.cn

RECEIVED 15 April 2024
ACCEPTED 23 July 2024
PUBLISHED 07 August 2024

CITATION

Wang S, Shen W, Gao Z, Jiang X, Wang Y,
Li Y, Ma X, Wang W, Xin S, Ren W, Jin K and
Ye J (2024) Enhancing the ophthalmic AI
assessment with a fundus image quality
classifier using local and global attention
mechanisms.
Front. Med. 11:1418048.
doi: 10.3389/fmed.2024.1418048

COPYRIGHT

© 2024 Wang, Shen, Gao, Jiang, Wang, Li,
Ma, Wang, Xin, Ren, Jin and Ye. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Enhancing the ophthalmic AI
assessment with a fundus image
quality classifier using local and
global attention mechanisms
Shengzhan Wang1*, Wenyue Shen2, Zhiyuan Gao2,
Xiaoyu Jiang3, Yaqi Wang4, Yunxiang Li5, Xiaoyu Ma6,
Wenhao Wang1, Shuanghua Xin1, Weina Ren1, Kai Jin2* and
Juan Ye2*
1The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang, China, 2Eye Center, School
of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China, 3College
of Control Science and Engineering, Zhejiang University, Hangzhou, China, 4College of Media,
Communication University of Zhejiang, Hangzhou, China, 5College of Computer Science
and Technology, Hangzhou Dianzi University, Hangzhou, China, 6Institute of Intelligent Media,
Communication University of Zhejiang, Hangzhou, China

Background: The assessment of image quality (IQA) plays a pivotal role in

the realm of image-based computer-aided diagnosis techniques, with fundus

imaging standing as the primary method for the screening and diagnosis of

ophthalmic diseases. Conventional studies on fundus IQA tend to rely on

simplistic datasets for evaluation, predominantly focusing on either local or

global information, rather than a synthesis of both. Moreover, the interpretability

of these studies often lacks compelling evidence. In order to address these

issues, this study introduces the Local and Global Attention Aggregated Deep

Neural Network (LGAANet), an innovative approach that integrates both local

and global information for enhanced analysis.

Methods: The LGAANet was developed and validated using a Multi-Source

Heterogeneous Fundus (MSHF) database, encompassing a diverse collection

of images. This dataset includes 802 color fundus photography (CFP) images

(302 from portable cameras), and 500 ultrawide-field (UWF) images from

904 patients with diabetic retinopathy (DR) and glaucoma, as well as healthy

individuals. The assessment of image quality was meticulously carried out by a

trio of ophthalmologists, leveraging the human visual system as a benchmark.

Furthermore, the model employs attention mechanisms and saliency maps to

bolster its interpretability.

Results: In testing with the CFP dataset, LGAANet demonstrated remarkable

accuracy in three critical dimensions of image quality (illumination, clarity and

contrast based on the characteristics of human visual system, and indicates

the potential aspects to improve the image quality), recording scores of 0.947,

0.924, and 0.947, respectively. Similarly, when applied to the UWF dataset, the

model achieved accuracies of 0.889, 0.913, and 0.923, respectively. These results

underscore the efficacy of LGAANet in distinguishing between varying degrees

of image quality with high precision.

Conclusion: To our knowledge, LGAANet represents the inaugural algorithm

trained on an MSHF dataset specifically for fundus IQA, marking a significant
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milestone in the advancement of computer-aided diagnosis in ophthalmology.

This research significantly contributes to the field, offering a novel methodology

for the assessment and interpretation of fundus images in the detection and

diagnosis of ocular diseases.

KEYWORDS

fundus photography, attention mechanism, image quality assessment, spatial
information, multiscale feature extraction

Introduction

Fundus photography stands as a cornerstone in the diagnosis
of diabetic retinopathy (DR), glaucoma, age-related macular
degeneration (AMD), among various ocular disorders (1). With
the advent of artificial intelligence (AI), the automation of disease
screening through fundus imaging has emerged as a focal area
of research and clinical application (2). Several algorithms have
been explored, with a notable number being translated into clinical
settings (3–5). The quality of fundus images is critical to the
diagnostic accuracy of these models, necessitating a robust Image
Quality Assessment (IQA) for automated systems.

Manual IQA, though reliable, places a significant burden on
medical professionals which requires direct assessment of images to
ensure pathological structures are discernibly visible. Conversely,
automated IQA methods offer a less labor-intensive alternative,
utilizing algorithms to evaluate image quality. These methods
range from structure-analysis-based to generic image-statistics
approaches (6). In the era of deep learning, innovations in IQA
have significantly benefited from the advanced feature-extraction
capabilities of convolutional neural networks (CNNs) (7–9),
employing strategies such as hallucinated reference generation
and distortion identification to enhance quality prediction and
feature weighting through visual saliency (10). DeepFundus, a deep
learning-based fundus image classifier, addresses the data quality
gap in medical AI by offering automated, multidimensional image
sorting, significantly enhancing model performance across various
retinopathies and supporting a data-driven paradigm for the entire
medical AI lifecycle (11).

Despite these advancements, challenges persist, particularly
in the generalizability of algorithms across diverse imaging
conditions and the integration of both local and global information
critical for comprehensive quality assessment. Furthermore, the
interpretability of deep learning models in this context remains
uncertain. In order to fill these gaps, this study introduces the
Local and Global Attention Aggregated Deep Neural Network
(LGAANet), designed to leverage both local and global information
in assessing the quality of fundus images. Most existing IQA
datasets are single-center collections that overlook variations
in imaging devices, eye conditions, and imaging environments.
Our approach involves training on a multi-source heterogeneous
fundus (MSHF) database (12), encompassing a broad spectrum
of normal and pathological images captured through various
imaging modalities, to enhance the model’s generalizability and
interpretability. This database was selected due to its diverse and
representative nature, which allows for robust validation of the
LGAANet model across various imaging conditions and sources.

Materials and methods

An overview of the study approach and methodology is
presented in Figure 1. Our MSHF dataset consisted of various sub-
databases collected from different devices and exhibited diverse
appearance patterns. The dataset comprises 802 color fundus
photography (CFP) images (302 from portable fundus cameras)
and 500 ultrawide-field (UWF) images. These images originate
from 904 patients, encompassing DR and glaucoma patients, in
addition to normal individuals. Such samples collected via various
domains are capable of providing more diversity during training
of CNNs, which is beneficial for improving the generalization
ability of models. Three critical dimensions of image quality:
the illumination, clarity and contrast are selected based on the
characteristics of human visual system, and indicates the potential
aspects to improve the image quality. In order to validate the
performance of our approach, we used an external dataset and noise
dataset. A detailed description of each stage follows.

The spatial-information-retained
multi-scale feature extractor

Multi-scale features and spatial attention mechanisms have
shown potential for quality prediction (13–19). However, existing
multi-scale-feature-incorporated quality-prediction studies tend
to leverage Multi-Level Spatially Pooled (MLSP) strategy to
aggregate features from various scales, i.e., using Global Average
Pooling (GAP) to extract the multi-dimensional activations into
a one-dimensional vector and concatenate vectors from various
scales. The MLSP method yields one-dimensional vectors and
inevitably leaves out much spatial information. Therefore, it is
challenging to integrate spatial attention mechanisms into the one-
dimensional feature.

In order to improve prediction accuracy and combine
both multi-scale features and spatial mechanisms into our
quality prediction model, we included a spatial-information-
retained (SIR) multi-scale feature extractor to combine both
local and global quality-aware features through an attention-
incorporated perspective.

Specifically, let X denote the input image with size [3,H,W],
and denote the multi-scale feature (Scale#1 to Scale #3) extracted
from ResNet50 as:

si = f (X|Stagei), i ∈ {1, 2, 3} (1)
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FIGURE 1

An overview of the study approach and methodology. The multi-source heterogeneous fundus (MSHF) dataset is collected, and then serves as an
input to train the local and global attention aggregated deep neural network (LGAANet). The output is the image quality of each image based on
three metrics, and a heap map is created to show the interpretability.

Where f (·|Stagei) denotes the activations extracted from
the last convolutional layer of ResNet50 in Stage#i. The si
is rescaled channel-wise via a convolutional layer with kernel
size 1x1 and followed by a batch-normalization and a RELU
layer, i.e., s′i = g(si|T1,0

Ii,Oi
), in which g(·|Tk,p

Cin,Cout
) denotes the

convolutional unit mentioned above with kernel size, padding,
input channel size Cin, and output channel size Cout . In the
architecture of ResNet50, [I1, I2, I3] = [256, 512, 1024], and we
set [O1,O2,O3] = [16, 32, 64] to prevent the channel size after
concatenation from being too large. Therefore, the size of s′1, s′2, s′3
is [16,W/4,H/4], [32,W/8,H/8], [64,W/16,H/16], respectively.

In order to maintain the detailed spatial information of features
extracted from each scale and simultaneously rescale them to
coordinate with features extracted from the last Stage of ResNet50
(i.e., Stage#4 with spatial size [W/32,H/32]), the s′1, s′2, s′3 are
non-overlapped and spatially split into several chunks with spatial
size [W/32,H/32], i.e.,:

chunki = split
(

s
′

i

)
=


c(i)1,1 · · · c(i)1,ki
...
. . .

...

c(i)ki,1
· · · c(i)ki,ki

 (2)

Where chunki denotes the set of chunks after spatial split from
s′i, and each of the chunks is denoted as c(i)m,n (m and n denote the
spatial index of the chunk) with a channel size coordinated with s

′

i
and a spatial size of [W/32,H/32]. In addition, k1 = 64, k2 = 16,
k 3 = 4.

As for each chunki, its elements are concatenated channel-wise
by,

s′′i = concat(
{

c(i)m,n

∣∣∣ m ∈ ki, n ∈ ki

}
, dim channel_wise) (3)

After this, the size of s′′1,s′′2,s′′3 is
[16∗64,W/32,H/32], [32∗16,W/32,H/32], [64∗4,W/32,H/32].
Finally, s′′1,s′′2,s′′3 and the activations extracted via f (·|Stage4)

are fed into g(·|T1,0
Cin,128) and yield 4 multi-dimensional features

with the same size, representing both local and global information.
Channel-wise concatenation is then employed to obtain a
local spatial-information-retained multi-scale feature with size
[128∗4,W/32,H/ 32].

The above-described spatial-information-retained multi-scale
feature extraction is also illustrated in Figure 2, taking Stage#1 as
an example, and the pseudocode is listed in Table 1.

LGAANet

Based on the proposed SIR multi-scale feature extractor, we
developed the LGAANet, as shown in Figure 3. Our LGAANet is
comprised of a ResNet50-based SIR multi-scale feature extractor
f (·; θ), an attention module Att(·; γ), and a feature-aggregation
module g(·; δ). Let X denote the input image; the final quality
prediction q̂ is obtained via,

q̂ = g(f (X; θ) × att
(
f (X; θ) ; γ

)
; δ) (4)

Since the quality label q is binary, the loss to be optimized,
denoted as L, is calculated by,

L = BCE(Sigmoid
(
q̂
)
, q) (5)

Where Sigmoid(·) denotes the Sigmoid layer and BCE(·)
denotes the binary cross-entropy.

The attention mechanism could be implemented via various
CNN architectures. Here spatial attention [denoted as BaseLine
(BL) + SpatialAtt + MultiScale (MS)] and self-attention (denoted
as BL+SelfAtt+MS) are leveraged to learn the spatial weighting
strategy for multi-scale quality-aware features. The spatial
attention is implemented by several stacks of convolutional-batch
normalization-RELU units while the self-attention is following
(20). Also, we constructed a multi-scale excluded and attention-
incorporated CNN framework for the ablation study, denoted
as BL+SpatialAtt.

For the sake of comparison, we considered the BL in the
performance comparison, in which the feature extracted from
ResNet50 was directly fed into a GAP followed by stacks
of the fully-connected layer. The MASK-incorporated model
is also involved (denoted as BL+MASK) and has an overall
pipeline similar to the BL, but the extracted features are
multiplied elemental-wise with the MASK signal before being fed
into the GAP layer.
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FIGURE 2

Illustration of spatial-information-retained (SIR) multi-scale feature extraction. The activations extracted from Stage#1 of ResNet50, denoted as s1,
are first rescaled into s′1 by a convolutional layer with kernel size 1x1. Then s′1 is spatially split into multiple chunks whose spatial size is coordinated
with the features extracted from Stage#4 of ResNet50. The chunks are concatenated into s′′1 and rescaled to a size of [128, H/32, W/32]. In this way,
the spatial information of multi-scale features is retained while the feature size within each scale is consistent.

Network hyperparameters: the minibatch size is 8, and the
learning rate is 1e-3. The optimizer is Adam, and the weight-
decay is 5e-4. The ratio of the learning rate of the ResNet
model parameters to the subsequent newly added layer is 1:10;
that is, the learning rate of the newly added layer is 1e-3,
and of the ResNet layer is 1e-4. The training process traverses
the training data in the database 20 times, which means the
epoch = 20, and the highest test accuracy is selected as the
final result. The division of training-test samples is randomly
generated (a total of two, namely round = 2). The image index
being used for training/testing is in the supplementary files
teIdx01.mat (first test index), trIdx01.mat (first-time training
index), teIdx02.mat (second test index), trIdx02.mat (second
training index). The host configuration is i7-8700 CPU @3.2GHz
& 32GB RAM + GTX1080@8GB.

To facilitate the development of deep learning models
using the MSHF dataset, it was manually segmented into
an 80% training set and a 20% test set. The training set
facilitated model learning, while the test set served for
performance evaluation. There was no overlap between these
two sets, ensuring a fair distribution of image variety. Each set
maintained an approximately equal proportion of high- and
low-quality images.

Statistical methods

For statistical validation, we employed a stratified 5-fold cross-
validation technique to ensure that each subset of data was
representative of the overall distribution, thus mitigating any
potential bias due to imbalanced data. This method involved
dividing the data into 5 of folds, each containing an equal
proportion of images from different categories and quality
levels, ensuring that each fold was used once as a test set
while the others served as the training set. We utilized the
Receiver Operating Characteristic (ROC) curve to evaluate the
sensitivity and specificity of LGAANet across different thresholds
of classification.

TABLE 1 Pseudocode of spatial-information-retained multi-scale
feature extractor.

Let X denote the input image

Step1. Extract multi-scale feature si , i = {1, 2, 3} from ResNet50 according to
Equation 1

Step2. For each scale i:

Rescale si via s′ i = g(si|T1,0
Ii,Oi

) channel-wise

Spatially split si into chunki according to Equation 2

Concatenate elements in chunki channel-wise according to Equation 3 and
obtain s′′ i

Rescale s′′ i channel-wise via g(·|T1,0
Cin,128) according to Equations 4, 5 and obtain

fti

End

Step3. Get ft4 by feeding f (X|Stage4) into g(·|T1,0
Cin,128)

Step4. Concatenate
{

fti|iε[1, 4]
}

channel-wise and obtain the final
spatial-information-retained multi-scale feature

Results

Experimental settings

We cropped blank areas of each image so that the width and
height were equal and then scaled the cropped image to a resolution
of 512 × 512. The eye-area mask was obtained through brightness
and edge information, which was the alpha channel, denoted as
MASK. The prediction model outputs a real value in the range of
[0,1], outputs a 0/1 signal through the threshold judgment, and
then compares it with the ground truth. In the experiment, the
threshold (TH) was selected as 0.5.

Color fundus photography dataset

The dataset annotations are listed in Table 2. For the
color fundus photography (CFP) dataset, images with good I/C
accounted for 61.0%, while GLU contained 86.5% of the poor I/C
images. As for ‘blur’, the CFP dataset had 58.6% images without
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FIGURE 3

Overall pipeline of proposed local and global attention aggregated deep neural network (LGAANet) for quality prediction. (A) ResNet50 structure.
(B) Spatial-information-retained (SIR) multi-scale feature extractor illustrated in Figure 2 and Section Methods-D. The green sphere labeled “C”
denotes channel-wise concatenation of SIR features extracted at each scale. (C) The attention module is leveraged to learn the spatial weighting
strategies and multiplied elemental-wise with the SIR multi-scale feature. (D) The global average pooling layer is incorporated and followed by
several fully connected layers to aggregate the quality prediction.

TABLE 2 Dataset annotations.

Item I/C Blur LC Overall

0 1 0 1 0 1 0 1

LOCAL_1 158 41 94 105 85 114 142 57

LOCAL_2 78 25 59 44 41 62 77 26

DR_1 31 156 34 153 6 181 40 147

DR_2 36 199 120 115 78 157 117 118

GLU 45 7 48 4 42 10 50 2

NORMAL 2 24 0 26 0 26 0 26

DRIMDB 54 140 74 120 76 118 70 124

DRIVE 0 40 0 40 0 40 0 40

DR_UWF 215 285 163 337 50 450 168 332

noticeable blur conditions, where DRIVE and NORMAL datasets
had no blurry images. The same thing happened with regard to LC,
and 68.3% of the images in the CFP dataset showed eligible contrast.
In each aspect, images from LOCAL_1 and LOCAL_2 were inferior
to those from DR_1 and DR_2.

Except for the DRIVE database, 80% of the CFP databases
were randomly selected as the training set and 20% as the test
set. We calculated the average prediction accuracy of the test set,
attaining an acceptable result for the baseline; and with the addition
of MASK, the accuracy increased to over 0.9. Spatial attention,
multiscale, and self-attention algorithms all improved accuracy:
BL+SelfAtt+MS achieved the best I/C and blur results, with
accuracies of 0.947 and 0.924, respectively, and BL+SpatialAtt+MS
produced the best results for LC, with an accuracy of 0.947.

Also, we added Gaussian white noise (Gauss) with a mean of 0
and a variance of 0.05 to images in the CFP datasets to improve the
competence of the human visual system (HVS) -based algorithm.
We conducted the experiments on each model, and the results
showed robust properties, with the best accuracy over 0.85.

ROC curves were drawn to further evaluate the performance
of the models, as shown in Figure 4, and the areas under the ROC
curves (AUCs) were calculated. For the CFP dataset, the AUC of
each model on every item was over 0.95. Detailed information
on accuracy and AUCs of the datasets is presented in Tables 3,4,
respectively.

Visualization of the prediction is interpreted by heat map, as
shown in Figure 5. For high-quality images, the activated area is
even and covers the whole image. When an image is suspected of
poor quality, such as an area of uneven illumination, the model will
not activate the designated area.

Ultra-wide field fundus image dataset

In the UWF dataset, images with good quality accounted for
66.4%. Blurring was less common in UWF images, and the overall
contrast was acceptable. The UWF dataset was not exploited for
training, and we tested it with the proposed model as an external
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FIGURE 4

ROC curve of different items for (A–D) CFP datasets. (E–H) UWF datasets. (A,E) Detection of uneven illumination or color. (B,F) Detection of blur.
(C,G) Detection of low contrast. (D,H) Overall quality.

TABLE 3 Overall accuracy of different models on various datasets.

Model CFP dataset UWF dataset Noise dataset

I/C Blur LC Overall I/C Blur LC Overall I/C Blur LC Overall

BL 0.886 0.874 0.874 0.897 0.826 0.839 0.852 0.876 0.802 0.802 0.819 0.809

+MASK 0.922 0.902 0.917 0.919 0.852 0.862 0.889 0.893 0.819 0.822 0.839 0.826

+SpatialAtt 0.927 0.914 0.929 0.932 0.869 0.899 0.903 0.909 0.832 0.813 0.852 0.849

+SpatialAtt+MS 0.947 0.919 0.947 0.944 0.883 0.909 0.916 0.926 0.852 0.856 0.879 0.873

+SelfAtt+MS 0.947 0.924 0.942 0.939 0.889 0.913 0.923 0.923 0.862 0.869 0.873 0.869

The bold values in the table represent the highest values in the respective columns.

TABLE 4 The AUC of different models on various datasets.

Model CFP dataset UWF dataset Noise dataset

I/C Blur LC Overall I/C Blur LC Overall I/C Blur LC Overall

BL 0.957 0.959 0.956 0.972 0.909 0.936 0.891 0.962 0.862 0.879 0.874 0.884

+MASK 0.979 0.975 0.972 0.983 0.931 0.938 0.925 0.958 0.874 0.877 0.878 0.854

+SpatialAtt 0.968 0.967 0.983 0.981 0.907 0.956 0.956 0.972 0.888 0.899 0.89 0.922

+SpatialAtt+MS 0.976 0.969 0.986 0.986 0.923 0.954 0.948 0.974 0.891 0.915 0.928 0.931

+SelfAtt+MS 0.977 0.972 0.972 0.969 0.906 0.936 0.952 0.944 0.905 0.894 0.88 0.917

The bold values in the table represent the highest values in the respective columns.

FIGURE 5

Heat map of the proposed model. (A) is a high-quality fundus image; the activated area is even and covers the whole image. (B) is a fundus image
that contains a small area of uneven illumination, and therefore the top of the image is not activated. (C) contains a large area of strong light around
the optic disk as well as the top of the image, and the rest area is properly activated.

dataset. Performance on the BL was moderate, and compared
with the BL, the following models all achieved better results.
BL+SelfAtt+MS attained accuracies of 0.889, 0.913, and 0.923 for
I/C, Blur, and LC separately.

The ROC curves for UWF images exhibited similar
performance. BL+SpatialAtt+MS attained an AUC of 0.923
for I/C. Nevertheless, the AUCs for Blur and LC reached their
maximums (both 0.956) in the BL+SpatialAtt model.
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TABLE 5 Appendix explains key technical terms and concepts.

Term and Concepts Simple Explanation

Image Quality Assessment (IQA) Evaluating how clear and useful an image
is for medical purposes.

LGAANet A smart system assessing eye images by
analyzing both local details and the
overall picture.

Multi-Source Heterogeneous
Fundus (MSHF) Database

Collection of eye images from various
sources and cameras.

Color Fundus Photography (CFP) Standard color images of the retina.

Ultrawide-Field (UWF) Imaging Wide-angle images capturing a broad
view of the retina.

Attention Mechanisms Focuses on significant parts of the image
for analysis.

Saliency Maps Highlights important image regions for
decision-making in the neural network.

Multi-Level Spatially Pooled
(MLSP)

Combines information from multiple
levels of image analysis.

Global Average Pooling (GAP) Computes the average of all feature maps
in a neural network layer.

Spatial-Information-Retained
(SIR)

Method preserving spatial details during
image processing.

Receiver Operating Characteristic
(ROC)

Graphical representation of a classifier’s
performance.

Human Visual System (HVS) System responsible for processing visual
information in humans.

Areas Under the ROC Curves
(AUCs)

Measure of the overall performance of a
classifier.

Table 5 provides a clear overview of the key technical terms and
concepts used in the study, making it easier for readers from diverse
backgrounds to understand the key aspects of the research.

Discussion

In the realm of IQA, much of the existing literature has
concentrated on singular modalities, predominantly CFP. The
incorporation of alternative imaging modalities, such as portable
fundus photography and UWF fundus imaging, which may
be preferable in certain clinical scenarios, has been relatively
overlooked. Wang et al represented a notable exception, employing
both portable fundus camera images and public CFP datasets,
demonstrating the machine learning model’s robust performance
across these modalities (21).

To date, our research indicates a scarcity of research employing
UWF images for fundus IQA, particularly studies that integrate
CFP, portable fundus photography, and UWF imaging. Given
that each imaging method addresses specific clinical requirements,
developing an IQA system capable of accommodating this diversity
is crucial. Furthermore, the challenge of ’domain variance’ has been
partially addressed in the prior research, which involved collecting
images from both the source and target domains to train the
network (22). Therefore, to fill these gaps, we compiled a multi-
source heterogeneous fundus (MSHF) dataset, designed to meet

the varied demands of clinical practice and mitigate the issue of
domain variability.

Our Local and Global Attention Aggregated Deep Neural
Network (LGAANet) was initially trained on images from
portable and tabletop cameras, yet it demonstrated commendable
adaptability and effectiveness when applied to UWF images. This
underscores our model’s potential and versatility across different
clinical settings. Previous contributions have introduced several
notable networks, focusing on segmentation or generic evaluation,
leveraging both conventional machine learning techniques and
advanced deep learning methodologies. Our LGAANet, aimed at
enhancing algorithmic performance and accommodating multi-
source heterogeneous data, integrates both local and global
information, resulting in incremental improvements in accuracy
and AUC with each enhancement.

The advent of AI in clinical practice has underscored the
importance of medical imaging quality assessment. Li et al.
introduced DeepQuality, a deep learning-based system for
assessing and enhancing the quality of infantile fundus images
to mitigate misdiagnosis risks in infant retinopathy screening,
demonstrating significant improvements in diagnostic models’
performance through analysis of over two million real-world
images (23). This study introduces the innovative LGAANet for
evaluating the quality of fundus images. Our MSHF dataset
encompasses three primary types of retinal images: those captured
by portable cameras, CFP images, and UWF images. These
images were annotated by clinical ophthalmologists based on three
distinct HVS characteristics and overall quality. The diversity of
our dataset is visually represented through a spatial scatter plot.
Developed on the sophisticated multi-level feature extractor SIR
and incorporating an attention mechanism, the LGAANet was
trained with images from portable cameras and CFP images. To
evaluate the model’s robustness, we also tested it with UWF images
and noisy data, analyzing overall accuracy and generating ROC
curves to calculate the AUC for each set. Additionally, we propose
the use of a salience map as a post hoc interpretability tool.
This model paves the way for further exploration into AI-driven
diagnostics, especially in the field of ophthalmology.

While the LGAANet has demonstrated significant
advancements in fundus IQA, there are notable limitations
that must be addressed in future research. One such limitation
is the current model’s inability to enhance poor-quality images.
Although LGAANet excels at assessing image quality, it does
not yet possess the capability to improve subpar images to meet
diagnostic standards. Future work should focus on developing
algorithms that can transform low-quality images into high-quality
ones, thereby increasing their diagnostic utility. Additionally, the
reliance on a manually annotated dataset for model training and
validation could introduce biases; thus, expanding the dataset and
incorporating more diverse imaging conditions will be crucial for
further validation. Finally, the generalizability of LGAANet to other
imaging modalities and diseases outside of diabetic retinopathy
and glaucoma remains to be explored. Addressing these limitations
will be essential to fully realize the potential of LGAANet in clinical
applications and to enhance the robustness and versatility of
computer-aided diagnostic systems in ophthalmology.
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Introduction: Systemic lupus erythematosus (SLE) is a chronic autoimmune 
disease affecting multiple systems and classified under connective tissue 
disorders. Ocular involvement occurs in up to 30% of SLE cases, with the cornea 
being particularly susceptible to thinning due to immune-complex deposits and 
its predominantly type I collagen composition. This corneal thinning is clinically 
significant in glaucoma, where patients with reduced central corneal thickness 
(CCT) may have up to a threefold increased risk of developing glaucoma, as well 
as in refractive surgery. However, existing studies on CCT in SLE are limited and 
marked by substantial heterogeneity in methodology, technology, criteria, and 
participant numbers, resulting in conflicting findings. Based in our hypothesis that 
SLE-related corneal lysis may result in decreased CCT, this study aims to determine 
and compare the mean CCT values between SLE patients and healthy controls to 
obtain a more precise understanding of the potential relationship.

Methods and analysis: A cross-sectional observational study will be conducted, 
enrolling SLE patients and age-and sex-matched healthy controls recruited from 
ophthalmology consultations. Exclusion criteria will be applied to rule out other 
corneal thinning risk factors. A pilot study estimated a minimum sample size of 
34 participants per group. CCT measurements will be obtained using Zeiss HD 
Cirrus 5,000 optical coherence tomography (OCT) on a randomly selected eye, 
following concordance analysis using the Kappa index. Statistical analysis will 
include descriptive, bivariate, and multivariate methods. The study protocol was 
approved by the ethics committee.

Discussion: The cornea’s vulnerability to thinning and lysis in SLE, which impacts 
CCT, is crucial for the accurate assessment of glaucoma, the leading cause of 
irreversible blindness worldwide and the second leading cause in Europe. Given 
that patients with reduced CCT are at a significantly higher risk of developing 
glaucoma, further research is necessary to understand the association between 
SLE and CCT. Our study aims to enhance methodological rigor compared 
to prior research by determining an appropriate sample size and exclusively 
enrolling SLE patients to increase participant homogeneity. If a significant 
difference in CCT between groups and an association between CCT and SLE 
are found, a prospective study will be considered.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune 
multisystemic disease of unknown etiology, classified under “connective 
tissue diseases.” It is relatively rare, with a prevalence of 39 per 100,000 in 
Europe (1), and is more common among young women and individuals 
of Black, Asian, and Hispanic descent (2). The European League against 
Rheumatism (EULAR)/American College of Rheumatology (ACR) 
developed classification criteria for SLE, with a sensitivity and specificity 
of 96.1 and 93.4%, respectively (3). However, not all patients meet these 
criteria, complicating and delaying diagnosis.

Regarding SLE manifestations, most patients experience 
constitutional syndrome (fever, weight loss, and asthenia) at some 
point during the disease (1). The musculoskeletal system, skin and 
kidney are also commonly affected (4). However, the eye can also 
be involved, with ocular manifestations in up to 30% of patients (1, 5).

Most ocular alterations are not considered in the overall 
assessment of SLE, as recognized by the British Isles Lupus Assessment 
Group (BILAG) (1). However, these disorders often occur in the 
context of systemic disease activity, with many being asymptomatic 
(1, 6), delaying specific treatment and worsening visual prognosis. 
This suggests that ophthalmologic evaluation could be  key for 
diagnosing and especially monitoring SLE activity.

These ocular manifestations vary widely and can affect nearly any 
ocular structure. Common changes include secondary dry eye 
syndrome—due to secondary Sjögren’s syndrome (1, 5)—and bilateral 
small vessel retinal vasculitis (1, 4, 5, 7). Other manifestations include 
recurrent corneal erosions, stromal corneal infiltration, corneal opacity, 
peripheral ulcerative keratitis, corneal edema, interstitial keratitis (4), 
choroidal effusion, optic neuropathy (1), as well as orbital or eyelid 
inflammation, and various retinal vascular alterations such as vascular 
occlusions related to associated antiphospholipid syndrome (1).

The cornea, primarily composed of type I connective tissue (4, 5), 
is particularly vulnerable to thinning and lysis phenomena in SLE (4, 
8) due to inflammation triggered by autoantibodies (specifically anti-
double-stranded DNA antibodies—anti-dsDNA—and anti-Smith 
antibodies—anti-Sm) and immune complexes deposited in its 
basement membrane (4). Consequently, various research efforts have 
aimed to elucidate the relationship between SLE and the central 
corneal thickness (CCT). These investigations were conducted by 
Zang et al. (9), Çağlayan et al. (10), Yazici et al. (4), Mahendradas et al. 
(8), Eissa et al. (5), Kaya et al. (11) and Mahmoud et al. (6).

These previous studies examining CCT in SLE patients report 
conflicting results. Çağlayan et al. (10) and Zhang et al. (9) reported 
thicker CCT in SLE compared to controls. Conversely, Yazici et al. (4), 
Mahendradas et al. (8), Eissa et al. (5), Kaya et al. (11) and Mahmoud 
et  al. (6), reported a reduced CCT in SLE compared to controls 
(4–6, 8, 11).

Additionally, these studies present certain limitations that hinder 
the extraction of definitive conclusions. The study by Zhang et al. (9) 
does not directly measure CCT, but rather evaluates corneal hysteresis 
and assumes an association with CCT based on previous studies. 
Regarding sample size, several investigations do not provide a sample 

size calculation and exhibit highly variable sizes. The studies by 
Mahendradas et  al. (8) and Oğurel et  al. (12) are notable for their 
particularly small samples 7 and 4 patients with SLE, respectively, 
sometimes only performing a descriptive statistical analysis of the SLE 
patients, as in the case of Mahendradas et al. (8), or analyzing both eyes, 
as in the case of Mahmoud et al. (6).

Furthermore, there are differences in the inclusion of patients with 
active or inactive SLE between the studies. While the studies by Yazici 
et al. (4), Zhang et al. (6), and Mahmoud et al. (9) do not mention the 
activity status of SLE, others, such as Mahendradas et al. (8), include 
patients with both active and inactive SLE. The study by Eissa et al. (5) 
includes only patients with active SLE, whereas the studies by Kaya 
et al. (10) and Çağlayan et al. (11) focus exclusively on patients with 
inactive SLE.

Measurement of CCT, a biomechanical property of the cornea, is 
essential for interpreting intraocular pressure (IOP) measurements (13) 
and it is considered one of the main sources of error in applanation 
tonometry (14). A thicker cornea (greater CCT) leads to artificially 
increased IOP measurements, whereas a thinner cornea (lower CCT) 
results in an underestimation of IOP (13). Therefore, evaluating CCT is 
crucial for diagnosing significant conditions such as glaucoma or 
keratoconus, as well as for assessing suitability for corneal refractive 
surgery techniques such as Laser Assisted in Situ Keratomileusis 
(LASIK) or photorefractive keratectomy (PRK) (14–16).

Glaucoma is the leading cause of irreversible blindness globally (17) 
and the second leading cause in Europe (18), with an estimated 111.8 
million people projected to have glaucoma by 2040 (17). Glaucoma is 
typically asymptomatic until very advanced stages, with up to 50% of 
cases going undiagnosed (18). Despite its unknown etiology, elevated 
IOP is the primary risk factor for developing glaucoma (15, 18), making 
IOP and CCT evaluation essential in clinical practice. In SLE, this risk 
may be exacerbated by the disease’s distinctive vascular characteristics, 
including retrobulbar artery narrowing and increased sensitivity to 
vasoconstriction (7).

Additionally, CCT measurements are crucial for predicting 
potential outcomes or complications of refractive surgery in SLE 
patients, who predominantly fall within the 30–50 age range and are 
therefore in their productive years (4). Misdiagnosis or inappropriate 
treatment strategies could significantly impact their quality of life and 
increase healthcare costs.

Apart from disease manifestations, it is important to consider the 
ocular toxicity and side effects of medications used to treat 
SLE. Commonly prescribed drugs include corticosteroids and 
hydroxychloroquine (HCQ). Corticosteroids can induce cortical or 
posterior subcapsular cataracts and secondary glaucoma (1). HCQ, 
meanwhile, can affect the cornea (19), leading to verticillate keratopathy 
(1), changes in endothelial cell density and may result in CCT thickening 
(10, 12). HCQ can also have an impact on the ciliary body and retinal 
pigment epithelium (RPE), causing maculopathy (1). These side effects 
necessitate regular ophthalmologic monitoring as they can pose a 
significant threat to vision (1).

Given the cornea’s susceptibility to thinning and lysis phenomena 
in SLE (4, 8), and considering the limited number of studies on CCT 

73

https://doi.org/10.3389/fmed.2024.1483930
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Saldaña-Garrido et al. 10.3389/fmed.2024.1483930

Frontiers in Medicine 03 frontiersin.org

and SLE relationship and their conflicting conclusions, further 
investigations to enhance our understanding of this association is 
crucial. Therefore, based on the hypothesis that CCT is reduced in SLE 
patients compared to healthy individuals, we  are conducting this 
cross-sectional study with the main objective of determining whether 
there are differences in mean CCT between SLE patients and 
healthy controls.

Methods and analysis

Aims and objectives

The primary aim of this study is to determine and compare the 
mean CCT values between SLE patients and age-and sex-matched 
healthy controls using Zeiss HD Cirrus 5,000 optical coherence 
tomography (OCT). Additionally, the study aims to enhance 
methodological rigor relative to prior research by determining sample 
size and exclusively enrolling SLE patients to increase 
participant homogeneity.

Other secondary objectives are:

 - To determine the agreement of CCT between the right eye 
and left eye in both the SLE group and the healthy 
control group.

 - To describe the proportion of patients with decreased and normal 
CCT in both the SLE group and the healthy control group.

 - To compare glaucoma-related variables – IOP, retinal nerve fiber 
layer (RNFL) thickness, and visual field (VF)—between the SLE 
group and the healthy control group.

 - To identify the number of new glaucoma diagnoses in SLE group.
 - To establish the association between patient and disease 

characteristics and CCT in patients with SLE.

Study design

Based on the hypothesis and the main objective, we are conducting 
a cross-sectional observational study at the Department of 
Ophthalmology at General University Hospital of Elda, in 
collaboration with the University of Miguel Hernández of Elche, 
Spain, where participants will be part of one of two groups:

 - Group 1: patients with SLE diagnosis, without ocular or systemic 
pathology affecting CCT.

 - Group  2: patients without SLE diagnosis, without ocular or 
systemic pathology affecting CCT.

Study subjects

Study population and sampling method

Catchment population includes all patients served by the Health 
Department of Elda (~200,000 patients). Study participants included 
both healthy control subjects and patients diagnosed with SLE, who 
meet all inclusion criteria, but none of the exclusion criteria. Patients 
will be recruited consecutively.

Sample size calculation

Given the limited available literature, with few studies, 
heterogeneous sample sizes and conflicting results, there is insufficient 
evidence to estimate the necessary sample size. Therefore, a pilot project 
was conducted with 20 patients (10 patients with SLE and 10 healthy 
patients) where the mean CCT value was 525 ± 25 μm for the group of 
patients with SLE and 510 ± 24 μm for the group of healthy patients. 
Establishing a bilateral hypothesis with a type 1 error or α of 5% and a 
type 2 error or β of 20% (equivalent to a power of 80%), the resulting 
effect size was 0.61. This calculation indicated a requirement of a 
minimum of 34 participants per group.

Inclusion criteria

 - Patients 18 years of age or older.
 - Patients diagnosed with and under follow-up for SLE by the 

Rheumatology Department of the Health Department of Elda, 
and not exhibiting disease activity according to the 
treating rheumatologist.

 - Patients without SLE and without ocular or systemic pathology 
affecting the CCT (as specified in the exclusion criteria), from the 
Health Department of Elda.

Exclusion criteria

 - Pregnancy or lactation.
 - Patients of African descent.
 - Previous ocular disease that may affect the CCT (keratoconus, 

corneal edema, uveitis) or previous diagnosis of glaucoma.
 - Patients with systemic diseases that may affect the CCT (diabetes 

mellitus, chronic obstructive pulmonary disease—COPD).
 - Severe astigmatism (> 3 diopters) or severe myopia [axial length 

(AL) > 26 mm or sphere ≥ − 6 diopters].
 - Patients undergoing topical ocular treatment, except for artificial 

tears or with a history of ophthalmic surgery and regular contact 
lens users.

 - Patients treated with topical or inhaled corticosteroids in the last 
3 months.

 - Patients receiving periocular corticosteroids or systemic 
prednisone at doses ≥7.5 mg/day in the last 6 months.

Study variables

Qualitative dichotomous variables

 - SLE (Yes/No)
 - Hydroxychloroquine (Yes/No)
 - Sex (Male/Female)
 - Schirmer Test Type 2 (Normal/Abnormal): Considered abnormal 

when the test shows <10 mm wetting after 5 min.
 - VF 24–2 (Glaucomatous/Non-glaucomatous): A glaucomatous VF 

will be considered when typical glaucoma defects are present: defects 
not respecting the vertical line but respecting the horizontal line, 
Rönne’s nasal step, Bjerrum’s arcuate defects, and centrocecal defects.
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 - Raynaud’s Phenomenon (Yes/No)
 - Constitutional Syndrome (fever, fatigue, and weight loss)

 o Previous (Yes/No)
 o Current (Yes/No)

 - Mucocutaneous Involvement (malar rash, oral or nasal ulcers, 
photosensitivity)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Musculoskeletal Involvement (arthritis, arthralgia)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Renal Involvement (glomerulonephritis)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Cardiac Involvement (pericarditis)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Gastrointestinal Involvement (esophagitis, peritonitis, lupus 
hepatitis, pancreatitis)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Pulmonary Involvement (pleuritis, pneumonitis)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Neuropsychiatric Involvement (delirium, psychosis, depression, 
anxiety, epilepsy, motor disorder)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Hematologic Involvement (anemia, leukopenia, thrombocytopenia)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Ocular Involvement (dry keratoconjunctivitis, retinal vasculitis, 
scleritis/episcleritis)
 o Previous (Yes/No)
 o Current (Yes/No)

 - Current use of Methotrexate (Yes/No)
 - Current use of Mycophenolate (Yes/No)
 - Current use of Azathioprine (Yes/No)
 - Current use of Belimumab (Yes/No)
 - Current use of Leflunomide (Yes/No)
 - Current use of Tacrolimus (Yes/No)

Qualitative ordinal variables

 - CCT: This is the main variable. It will be coded according to the 
following classification:
 o Decreased: < 510 μm. CCT is classified as decreased when 

measurements fall below the threshold defined as normal by 
the European Glaucoma Society (EGS), specifically values less 
than 510 μm.

 o Normal: > 510 μm. In categorizing CCT as “normal,” all 
participants with CCT values falling within the normal 
range (510–570 μm) or higher (> 570 μm) are grouped 
together. CCT is considered normal or increased if 
measurements are equal to or greater than the thresholds 
established by the EGS, specifically starting from 510 μm.

 - Color Code for Average RNFL Thickness of the Optic Nerve, 
measured by OCT:

 o Normal: Green
 o Abnormal: Yellow or Red

 - Antinuclear Antibody Pattern

 o Nuclear Dots
 o Nucleolar
 o Speckled
 o Homogeneous
 o Cytoplasmic
 o Centromere

Quantitative discrete variables

 - CCT (μm). Considered as the dependent variable, it is the 
main variable.

 - IOP measured by Goldman applanation tonometry (GAT) (mmHg)
 - Average RNFL Thickness of the Optic Nerve, measured by 

OCT (μm)
 - Duration of SLE Disease (years)
 - Time since last inflammatory flare-up (months)
 - Age (years)
 - Antinuclear Antibody Titers (fraction)
 - Duration of hydroxychloroquine use (months)

Quantitative continuous variables

 - Sphere (diopters)
 - Cylinder (diopters)
 - Spherical Equivalent (SE) (diopters): This simplifies and 

effectively represents the behavior of the optical system using an 
ideal spherical lens that represents the circle of least confusion 
where a clear image is produced in the patient, facilitating 
analysis. It is the result of the sum of the spherical refractive 
error and half of the cylindrical refractive error of the patient.

 - AL (mm)
 - Anti-dsDNA Antibodies (IU/mL). For statistical analysis, 

participants with values <9.8 IU/mL were assigned a value of 0, 
as values below 9.8 IU/mL are clinically considered 
“undetectable,” allowing for clearer statistical analysis.

 - Anti-Smith Antibodies (U/mL). For statistical analysis, 
participants with valued <3.3 U/mL were assigned a value of 0, as 
values below 3.3 U/mL are clinically considered “undetectable,” 
allowing for clearer statistical analysis.

 - Anti-Ro Antibodies (U/mL). For statistical analysis, participants 
with values <2.3 U/mL were assigned a value of 0, as values below 
2.3 U/mL are clinically considered “undetectable,” allowing for 
clearer statistical analysis.

 - Anti-La Antibodies (U/mL). For statistical analysis, participants 
with values <3.3 U/mL were assigned a value of 0, as values below 
3.3 U/mL are clinically considered “undetectable,” allowing for 
clearer statistical analysis.

 - Keratometry 1 (K1) -flat- (diopters): Measures the anterior 
curvature in the central 3 mm of the cornea in its flattest 
meridian. Normal value is 43–44 diopters.

 - Keratometry 2 (K2) -steep- (diopters): Measures the anterior 
curvature in the central 3 mm of the cornea in its steepest 
meridian. Normal value is 43–44 diopters.
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 - Average Keratometry (KM) (diopters): Measures the average 
anterior curvature in the central 3 mm of the cornea. Normal 
value is 43–44 diopters.

Data analysis

Statistical analysis

The statistical analysis will be performed using the Statistical 
Package for the Social Sciences (SPSS) version 26.0 developed by 
IBM Corp. (Armonk, NY) for Windows. The study will 
be conducted, first considering the whole sample, and additionally, 
a sub-analysis will be  carried out considering only patients 
with SLE.

To determine the concordance between the right eye and the left eye 
to decide whether both eyes or only one eye per participant will 
be  analyzed, a concordance analysis using the Kappa index will 
be performed.

Descriptive analysis based on the type of 
variable

Proportions will be  calculated for qualitative variables, while 
mean and standard deviation will be  computed for quantitative 
variables. Additionally, 95% confidence intervals will be determined 
for the most pertinent variables.

Bivariate analysis

The normality of the variables will be determined using the 
Kolmogorov–Smirnov test. Parametric tests will be employed if the 
dependent variable conforms to a normal distribution: when 
comparing two qualitative variables (two proportions), the 
Chi-Square test will be  used. When comparing a qualitative 
variable with a quantitative variable (two means), the Student’s 
T-test will be  used. For comparisons involving more than two 
means, analysis of variance (ANOVA) will be conducted. When 
comparing two quantitative variables, the measure of association 
used will be  Pearson’s linear correlation coefficient, and the 
statistical test will be the Student’s T-test.

Non-parametric tests will be used if the dependent variable does 
not follow a normal distribution, tailored to the types of variables 
being compared.

Statistical significance will be  set at p < 0.05 and the 95% 
confidence limits for the differences in proportions (qualitative 
variable) and mean differences (quantitative variable) between the two 
groups will be calculated.

Multivariate analysis

To minimize confounding bias in comparisons and to adjust and 
evaluate possible interactions, a multivariate analysis will 
be conducted. The most methodologically reasonable model based on 
the results will be  selected and all necessary assumptions will 
be validated. Statistical significance will be defined as a p-value <0.05.

Data collection of study variables

Primary data collection (study variables) will be  conducted 
through clinical interviews, review of computerized medical records, 
and complementary tests. Patients diagnosed with SLE, will 
be  conducted by reviewing computerized medical records for the 
patients diagnosed with “Systemic Lupus Erythematosus” according 
to the 10th edition of the International Classification of Diseases 
(ICD-10), who are under follow-up by the Rheumatology Department 
of the Health Department of Elda.

For the selection of participants in group 1 (SLE), patients will 
be  recruited consecutively from those attending follow-up 
appointments in the Rheumatology Department. Information from 
their medical records regarding the inclusion and exclusion criteria 
will also be considered to avoid including those who are not suitable 
candidates for the study. Potential candidates will be contacted by 
phone, informed about the study and invited to participate. Interested 
individuals will be scheduled for ophthalmology consultations where 
they will receive all necessary information (information sheet and 
informed consent) and initiate variable collection.

For the generation of group 2 (healthy controls), patients attending 
ophthalmology consultations for occupational check-ups, presbyopia 
evaluations or other minor eye issues not included in the study’s exclusion 
criteria will be invited to participate. Additionally, companions of patients 
with SLE attending the consultation will also be invited, provided they 
meet the inclusion and exclusion criteria. Among these, patients without 
an SLE diagnosis and without ocular or systemic conditions affecting the 
CCT, who belong to the Health Department of Elda, will be selected.

Selected patients will be  scheduled for ophthalmology 
consultations in the morning from 9:00 AM to 2:00 PM to avoid 
diurnal variations in measurements. After providing the information 
sheet and obtaining informed consent, a clinical interview and the 
following complementary tests will be conducted in a single visit. An 
ophthalmological examination will be performed on all subjects by a 
single observer, including refraction, visual acuity, anterior segment 
with slit-lamp, fundus examination, pachymetry using Zeiss Cirrus 
HD-OCT 5000, GAT, Schirmer 2 test, biometry (including 
keratometry), VF 24–2, and optic nerve OCT pupil dilation with 
tropicamide. In all cases, corneal OCT will be performed before the 
instillation of anesthetic and GAT to avoid alterations in the tear film 
and possible corneal deformations secondary to contact that could 
interfere with pachymetry. For pachymetry, a minimum of three 
images will be obtain with the best being selected for analysis. If none 
of the initial three images meet the quality standards specified by the 
device, which are indicated by a green signal, additional images will 
be taken as needed until a sufficiently high-quality image is acquired.

All data regarding the demographic and clinical characteristics of 
the participants will be recorded in a data collection form, which will 
serve as a database for statistical analysis using SPSS Statistics. This 
database will be managed by the principal investigator and will only 
be accessible to the supervisor, co-supervisor, and the statistical analyst.

Discussion

Error control and bias

To minimize random error, a representative sample size was 
calculated using a consecutive sampling method, as random or 
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systematic sampling is not feasible in this patient population. A 
multivariate analysis will be  conducted to minimize potential 
confounding bias and interactions.

Furthermore, to enhance the homogeneity, participants from both 
groups will be selected from the same population sample of the Health 
Department of Elda and matched based on controllable variables such 
as sex and age. Patients with conditions or diseases that could 
independently affect CCT, including keratoconus, corneal edema, 
diabetes mellitus and COPD, will be  excluded from the sample. 
Regarding keratoconus, individuals with confirmed or suspected 
diagnosis will be excluded based on the identification of characteristic 
signs such as Vogt’s striae or Fleischer’s ring during slit-lamp examination, 
keratometry readings with K readings exceeding 47 diopters and high 
astigmatism, despite the absence of confirmatory topography.

It is important to note a potential selection bias among the healthy 
group, as participants are selected based on the absence of a SLE 
diagnosis without additional confirmation through complementary 
tests. However, according to the Spanish Society of Rheumatology’s 
EPISER study, which included 4,900 participants to determine the 
prevalence of rheumatic diseases in Spain, 12 cases of SLE were 
identified through a telephone interview screening. Participants 
meeting positive screening criteria underwent further evaluation in 
rheumatology clinics for diagnostic confirmation, with 11 cases already 
diagnosed prior to screening (20). Therefore, given the estimated low 
prevalence of SLE, the likelihood of misclassifying patients without 
self-reported or documented SLE in their medical history is low (1/12).

To minimize measurement bias, data for the primary objective 
will be  collected through clinical interviews using validated and 
calibrated instruments. Additionally, all participants will undergo 
standardized evaluations conducted by the same investigator, ensuring 
consistency between groups.

Limitations

The main study limitation is the lack of prior knowledge regarding 
the required sample size. Therefore, a pilot study was conducted to 
determine the minimum sample size necessary for representativeness. 
Furthermore, selecting participants consecutively, a form of 
non-probabilistic sampling, may not fully achieve the desired 
representativeness, thereby potentially limiting the generalizability of 
the findings.

The study design’s cross-sectional nature presents a limitation in 
terms of temporality, as both disease and exposure data are collected 
simultaneously, precluding the establishment of a cause-and-effect 
relationship due to the absence of temporal sequencing. Additionally, 
it remains unknown whether CCT varies over the course of the 
disease or remains stable. Therefore, if a significant difference in 
CCT between groups and association between CCT and SLE are 
found upon study completion, a prospective study will 
be considered.

Finally, a limitation associated with CCT measurement using 
the Zeiss Cirrus HD-OCT 5000 is that measurements are taken 
from the tear film to the Descemet membrane (21), which may 
result in less precise measurements for patients with ocular surface 
pathology, such as reduced tear production or a decreased tear 
meniscus. To minimize potential measurement bias, artificial tears 
will be administered to all patients before performing pachymetry. 

While OCT is not considered the gold standard for CCT 
measurement compared to ultrasound pachymetry, both devices 
are considered interchangeable and quantification of CCT using 
corneal OCT offers several advantages over USP, including faster 
results acquisition, reduced need for patient cooperation and the 
elimination of topical anesthesia requirement, thereby minimizing 
risks of epithelial damage, corneal deformation and potential 
ocular contamination (21). Additionally, utilizing OCT for CCT 
measurement enables the use of a single device for multiple 
assessments, as OCT is already routinely employed for other 
evaluations in daily clinical practice. This streamlines the process, 
enhancing efficiency and reducing the need to transfer the patient 
between devices. Therefore, opting for OCT aligns with the 
increasing demand within the scientific community and among 
patients for faster and less invasive tests, without compromising 
measurement accuracy.
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Purpose: The aim of this study is to develop and validate a novel multivariable 
prediction model capable of accurately estimating the probability of cataract 
development, utilizing parameters such as blood biochemical markers and age.

Design: This population-based cross-sectional study comprised 9,566 
participants drawn from the National Health and Nutrition Examination Survey 
(NHANES) across the 2005–2008 cycles.

Methods: Demographic information and laboratory test results from the patients 
were collected and analyzed using LASSO regression and multivariate logistic 
regression to accurately capture the influence of biochemical indicators on 
the outcomes. The SHAP (Shapley Additive Explanations) scale was employed 
to assess the importance of each clinical feature, excluding age. A multivariate 
logistic regression model was then developed and visualized as a nomogram. 
To assess the model’s performance, its discrimination, calibration, and clinical 
utility were evaluated using receiver operating characteristic (ROC) curves, 10-
fold cross-validation, Hosmer-Lemeshow calibration curves, and decision curve 
analysis (DCA), respectively.

Results: Logistic regression analysis identified age, erythrocyte folate (nmol/L), 
blood glucose (mmol/L), and blood urea nitrogen (mmol/L) as independent risk 
factors for cataract, and these variables were incorporated into a multivariate 
logistic regression-based nomogram for cataract risk prediction. The area 
under the receiver operating characteristic (ROC) curve (AUC) for cataract risk 
prediction was 0.917 (95% CI: 0.9067–0.9273) in the training cohort, and 0.9148 
(95% CI: 0.8979–0.9316) in the validation cohort. The Hosmer-Lemeshow 
calibration curve demonstrated a good fit, indicating strong model calibration. 
Ten-fold cross-validation confirmed the logistic regression model’s robust 
predictive performance and stability during internal validation. Decision curve 
analysis (DCA) demonstrated that the nomogram prediction model provided 
greater clinical benefit for predicting cataract risk when the patient’s threshold 
probability ranged from 0.10 to 0.90.

Conclusion: This study identified blood urea nitrogen (mmol/L), serum glucose 
(mmol/L), and erythrocyte folate (mmol/L) as significant risk factors for cataract. 
A risk prediction model was developed, demonstrating strong predictive 
accuracy and clinical utility, offering clinicians a reliable tool for early and 
effective diagnosis. Cataract development may be delayed by reducing levels 
of blood urea nitrogen, serum glucose, and erythrocyte folate through lifestyle 
improvements and dietary modifications.
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1 Introduction

Cataracts, characterized by the clouding of the lens, are a leading 
cause of vision impairment and blindness among older adults 
worldwide (1). In China, the prevalence of cataracts among 
individuals aged 45–89 exceeds 22% (2). Further research indicates 
that the cataract prevalence among individuals aged 60 and older 
ranges between 53 and 58% (3). With population growth and aging, 
the incidence of cataracts and the demand for cataract surgeries are 
expected to rise steadily (4). Although cataract surgery significantly 
improves vision, it remains prohibitively expensive, and many 
low-income countries face a shortage of skilled surgeons (5). 
Reducing cataract incidence is essential. Cataracts are associated with 
multiple factors, including smoking, diabetes, UV exposure, and 
blood metabolites (6). Identifying and targeting modifiable risk 
factors can substantially reduce the health and economic burden 
of cataracts.

Aging is the predominant factor influencing cataract development; 
however, additional factors also contribute to their onset (7). 
Numerous researchers have explored the impact of nutritional status 
on cataract formation and the potential use of biochemical markers to 
assess the risk of cataractogenesis, as these parameters can be modified 
by lifestyle changes (8, 9). Blood biochemical markers serve as key 
indicators of the body’s overall metabolic state (10). Therefore, we aim 
to develop a logistic regression model incorporating blood 
biochemical markers and age to visualize the components contributing 
to cataract risk via a nomogram. However, to the best of our 
knowledge, no existing model currently predicts cataracts based on 
blood biochemical markers and age.

This article presents the findings of a cross-sectional study using 
data from the National Health and Nutrition Examination Survey 
(NHANES) conducted between 2005 and 2008. The aim of our study 
was to develop and validate a novel multivariate predictive model to 
accurately assess the probability of cataract onset based on blood 
biochemical markers and age. Additionally, we sought to explore the 
potential causes of cataracts.

2 Materials and methods

2.1 Data source and study population

NHANES is an extensive nationwide survey conducted by the 
National Center for Health Statistics. Its purpose is to evaluate the 
health and nutritional condition of the American people. It is a 
department of the U.S. Centers for Disease Control and Prevention. 
The survey data in NHANES were organized in a biennial style. 
We utilized data from two consecutive survey cycles (2005–2006 and 
2007–2008) about cataracts. Of all 20,497 participants in NHANES 
2005–2008, we excluded those without complete information on 
cataracts (n = 9,592). Further, we  excluded participants under 
20 years old without complete information on other covariates 

(n = 1,339). Finally, 9,566 subjects were included in the analytic 
population. The process of participant selection is summarized in 
Figure 1.

2.2 Cataract assessment

Consistent with other epidemiological research, a cataract 
operation was used as a surrogate for a cataract (11). The occurrence 
of a cataract operation was ascertained by inquiring participants about 
their history of undergoing a cataract operation. (VIQ071), with 
responses limited to “yes” or “no.” If the response was affirmative, the 
subject was diagnosed with a cataract (12).

2.3 Covariates assessment

According to previous epidemiological studies concerning cataracts 
(13), potential confounding factors studied in the current work included 
sociodemographic factors (gender, age, race) and blood biochemical 
parameters. The sociodemographic characteristics were obtained using 
self-reported questionnaires, which included information on gender 
(male or female), age (continuous), and race (non-Hispanic white, 
non-Hispanic black, Mexican American, etc.). The source of the blood 
biochemical parameter specimen is serum. The serum specimens 
undergo processing, storage, and shipment to the Collaborative 
Laboratory Services for analysis. The NHANES Laboratory/Medical 
Technologists Procedures Manual (LPM) provides in-depth instructions 
on how to collect and prepare specimens. The NHANES QA/QC 
processes adhere to the requirements set by the 1988 Clinical Laboratory 
Improvement Act. The NHANES Laboratory/Medical Technologists 
Procedures Manual (LPM) provides comprehensive guidance for 
quality assurance and quality control (QA/QC) procedures. Refer to the 
General Documentation of the Laboratory Data file for comprehensive 
quality assurance and quality control techniques.

The subsequent blood biochemical values were gathered from 
patients with cataracts for further study. The laboratory examined 
the following values: albumin (g/L), alanine aminotransferase (ALT) 
(U/L), aspartate aminotransferase (AST) (U/L), alkaline phosphatase 
(U/L), and blood urea nitrogen (mmol/L). Blood calcium 
concentrations were measured in millimoles per liter (mmol/L), 
cholesterol levels in millimoles per liter (mmol/L), and bicarbonate, 
creatinine, and gamma glutamyltransferase concentrations in 
millimoles per liter (mmol/L), micromoles per liter (μmol/L), and 
units per liter (U/L), respectively. The serum’s glucose concentration 
was measured in millimoles per liter (mmol/L), while the iron 
content was measured in micromoles per liter (umol/L) and needed 
to be kept in a refrigerator. The concentration of bilirubin in the 
blood is measured in micromoles per liter (umol/L). The following 
measurements are provided in the given units: total protein 
concentration (g/L), triglycerides (mmol/L), uric acid (mmol/L), 
sodium (mmol/L), potassium (mmol/L), chloride (mmol/L), 
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osmolality (mmol/kg), globulins (g/L), C-reactive proteins (mg/dL), 
erythrocyte folate (mmol/L), serum folate (mmol/L), and glycated 
hemoglobin (%).

3 Statistical analysis

The median (interquartile range) was employed to represent 
continuous data, while categorical data were expressed as number 
(percentage) (14, 15). Comparisons between cataract and 
non-cataract groups were conducted using statistical tests such as the 
unpaired t-test, Wilcoxon rank-sum test, Pearson Chi-square test, or 
Fisher’s exact test, as appropriate. Cases from the NHANES dataset 
were randomly allocated into a training set (n = 6,696) and a 
validation set (n = 2,870) in a 7:3 ratio. The outcome variable for this 
study was cataract status. To manage data dimensionality and 
predictor selection, the researchers employed the least absolute 
shrinkage and selection operator (LASSO) regression and 
multivariable logistic regression (16). Multivariable logistic regression 
analysis was used to develop a predictive model and a nomogram of 
cataract (17). The model’s discriminative ability was assessed by 
calculating the area under the curve (AUC) (18). To enhance the 
estimation of model performance, 10-fold cross-validation was 
employed for evaluation. The model’s calibration was assessed using 
the Hosmer-Lemeshow test and calibration curve, while its clinical 
utility was evaluated through decision curve analysis (DCA) (19). All 
statistical analyses were performed using R software (version 4.3.2; R 
Foundation for Statistical Computing, Vienna, Austria) and Python 
(version 3.12). A significance threshold of p < 0.05 was applied to 
determine statistical significance.

LASSO regression (Least Absolute Shrinkage and Selection 
Operator) efficiently integrates variable selection with regularization, 
enhancing both the predictive accuracy and interpretability of 
statistical models. Through the introduction of an L1 penalty, LASSO 

reduces specific coefficients to zero, thus enabling efficient variable 
selection. The optimal lambda (λ) is typically determined via 10-fold 
cross-validation, aiming to minimize prediction error while balancing 
model complexity and fit. In this study, 20-fold cross-validation was 
employed, which, despite the higher computational costs, produces 
more stable and accurate model evaluations.

The analysis commenced with data preprocessing, wherein 
categorical variables such as sex, diagnosis, and race were 
transformed into factor variables to ensure appropriate handling 
during modeling. Numerical variables were subsequently normalized 
using a min-max scaling function, which transformed each variable 
into a range of [0,1]. This normalization is critical in LASSO 
regression, as the model is sensitive to the scale of the input variables. 
The transformation was applied to all numeric variables within the 
dataset using the mutate_if function within a pipeline, and the 
resultant dataset was converted into a data frame for further 
processing. To ensure reproducibility, a random seed was set [set.
seed (123)], and the preprocessed data was partitioned into a matrix 
of predictors (x) and a response vector (y). The response vector y was 
further converted to numeric form to be  compatible with the 
modeling functions. The LASSO regression was executed using the 
glmnet function, specifying a binomial family to accommodate the 
binary nature of the outcome variable. The function was configured 
to evaluate 1,000 distinct values of the regularization parameter 
lambda (n lambda = 1,000), enabling the model to thoroughly 
explore the regularization path. This extensive range of lambda 
values ensures that the model can identify the optimal level of 
penalization, balancing model complexity with predictive 
performance. Following the initial fitting of the LASSO model, the 
regularization path was visualized using a plot of the model 
coefficients against the logarithm of lambda. This plot facilitates 
understanding of how the coefficients shrink as the penalization 
increases, and which variables remain significant across varying 
levels of lambda. To validate the model and prevent overfitting, a 
20-fold cross-validation was conducted using the cv. glmnet 
function. This process involves partitioning the data into 20 subsets, 
fitting the model on 19 subsets, and validating it on the remaining 
one. This procedure is repeated 20 times, ensuring that each subset 
serves as a validation set once. The cross-validation results were 
plotted to visualize the relationship between lambda and the cross-
validated error, aiding in the selection of the most appropriate 
lambda value. Two key lambda values were identified from the cross-
validation results: Lambda. min: The lambda value that minimizes 
the cross-validated mean squared error (MSE), representing the 
point at which the model achieves the best predictive accuracy. 
Lambda.1se: The lambda value that is one standard error above the 
minimum MSE. This value typically results in a more parsimonious 
model, as it provides a simpler model with fewer predictors, while 
still maintaining a reasonable level of accuracy. Finally, the model 
coefficients corresponding to lambda. 1se were extracted using the 
coef function. These coefficients indicate which variables are most 
influential in predicting the outcome, offering insights into the 
underlying relationships within the data.

For multivariable logistic regression:variable selection criteria 
are based on significance testing (p  < 0.05). LASSO-screened 
variables were included in the multivariable logistic regression, 
and variables with p less than 0.05 were selected for the 
prediction model.

FIGURE 1

Flow chart of the study population.
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4 Results

4.1 Patient characteristics

Out of the individuals involved in the study, 9.4% (899 out of 9,556) 
were diagnosed with cataracts. Table 1 displays the demographic and 
clinical characteristics of the individuals who participated in the study. 
Out of the 30 variables obtained from patients, 5 were chosen based on 
non-zero coefficients produced by LASSO regression analysis (Figure 2).

4.2 Identification of the risk factors for 
cataract

The variables consisted of blood urea nitrogen (mmol/L), blood 
glucose (mmol/L), erythrocyte folate (mmol/L), serum folate (mmol/L), 
and age. The logistic regression prediction model was created using a 
multivariable method, incorporating the five factors chosen by LASSO 
regression as independent variables. The research’s findings demonstrate 
that blood urea nitrogen (mmol/L), glucose (mmol/L), serum 

TABLE 1 Demographic and clinical characteristics of study participants.

Characteristic Total 
(n  =  9,566)

Cataract 
(n  =  899)

Non-cataract 
(n  =  8,667)

p

Gender, n (%) 0.089

Male 4,637 (48) 411 (46) 4,226 (49)

Female 4,929 (52) 488 (54) 4,441 (51)

Age, Median (Q1,Q3) 48 (34, 64) 78 (70, 80) 46 (33, 61) < 0.001

Ethnicity, n (%) < 0.001

Mexican American 1821 (19) 72 (8) 1749 (20)

Other Hispanic 719 (8) 56 (6) 663 (8)

Non-Hispanic White 4,678 (49) 633 (70) 4,045 (47)

Non-Hispanic Black 1957 (20) 112 (12) 1845 (21)

Other Race - Including Multi-Racial 391 (4) 26 (3) 365 (4)

Albumin (g/L), Median (Q1,Q3) 42 (40, 44) 41 (39, 44) 42 (40, 44) < 0.001

alanine aminotransferase (ALT) (U/L), Median (Q1,Q3) 21 (16, 28) 19 (15, 24) 21 (17, 29) < 0.001

Asparate aminotransferase (AST) (U/L), Median (Q1,Q3) 23 (20, 28) 24 (21, 28) 23 (20, 28) 0.001

Alkaline phosphotase (U/L), Median (Q1,Q3) 67 (55, 82) 71 (59, 86) 67 (55, 82) < 0.001

Blood urea nitrogen (mmol/L), Median (Q1,Q3) 4.28 (3.21, 5.36) 6.07 (4.28, 7.85) 4.28 (3.21, 5.36) < 0.001

Total calcium (mmol/L), Median (Q1,Q3) 2.35 (2.3, 2.42) 2.35 (2.3, 2.42) 2.35 (2.3, 2.42) 0.319

Cholesterol (mmol/L), Median (Q1,Q3) 5.04 (4.37, 5.82) 4.89 (4.19, 5.77) 5.07 (4.4, 5.82) < 0.001

Bicarbonate (mmol/L), Median (Q1,Q3) 25 (23, 26) 25 (24, 27) 25 (23, 26) < 0.001

Creatinine (μmol/L), Median (Q1,Q3) 76.91 (63.65, 89.28) 88.4 (72.49, 106.08) 74.26 (63.65, 88.4) < 0.001

Gamma glutamyl transferase (U/L), Median (Q1,Q3) 21 (15, 32) 20 (15, 30) 21 (15, 32) 0.18

Glucose, serum (mmol/L), Median (Q1,Q3) 5.16 (4.72, 5.77) 5.61 (5, 6.61) 5.11 (4.66, 5.72) < 0.001

Iron, refigerated (umol/L), Median (Q1,Q3) 14.3 (10.7, 18.75) 13.6 (10.6, 18.1) 14.5 (10.7, 18.8) 0.003

Lactate dehydrogenase LDH (U/L), Median (Q1,Q3) 128 (113, 146) 140 (122, 160) 127 (112, 144) < 0.001

Phosphorus (mmol/L), Median (Q1,Q3) 1.23 (1.1, 1.32) 1.23 (1.1, 1.32) 1.23 (1.1, 1.32) 0.595

Bilirubin, total (umol/L)(umol/L), Median (Q1,Q3) 11.97 (8.55, 15.39) 11.97 (10.26, 15.39) 11.97 (8.55, 15.39) < 0.001

Total protein (g/L), Median (Q1,Q3) 71 (68, 74) 70 (68, 74) 71 (68, 75) < 0.001

Triglycerides (mmol/L), Median (Q1,Q3) 1.42 (0.94, 2.2) 1.55 (1.05, 2.23) 1.41 (0.93, 2.2) < 0.001

Uric acid (umol/L), Median (Q1,Q3) 315.2 (261.7, 374.7) 333.1 (279.6, 395.55) 315.2 (261.7, 374.7) < 0.001

Sodium (mmol/L), Median (Q1,Q3) 139 (138, 141) 140 (138, 141) 139 (138, 140) < 0.001

Potassium (mmol/L), Median (Q1,Q3) 3.95 (3.7, 4.2) 4.1 (3.8, 4.3) 3.9 (3.7, 4.1) < 0.001

Chloride (mmol/L), Median (Q1,Q3) 104 (102, 106) 104 (101, 105) 104 (102, 106) < 0.001

Osmolality (mmol/Kg), Median (Q1,Q3) 278 (275, 281) 281 (277, 284) 278 (275, 281) < 0.001

Globulin (g/L), Median (Q1,Q3) 29 (26, 32) 29 (26, 32) 29 (27, 32) 0.125

C-reactive protein(mg/dL), Median (Q1,Q3) 0.21 (0.08, 0.49) 0.25 (0.1, 0.56) 0.21 (0.08, 0.49) < 0.001

RBC folate (nmol/L), Median (Q1,Q3) 840.3 (586.6, 1,220) 1112.1 (758.8, 1,620) 820 (576, 1184.6) < 0.001

Serum folate (nmol/L), Median (Q1,Q3) 31.5 (21.5, 45.9) 43.9 (29.5, 71.05) 30.6 (21, 44) < 0.001

Glycohemoglobin (%), Median (Q1,Q3) 5.4 (5.2, 5.8) 5.7 (5.4, 6.2) 5.4 (5.1, 5.7) < 0.001
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(mmol/L), erythrocyte folate (nmol/L), and age have been identified as 
risk factors for cataract. These results are presented in Table 2.

4.3 Comparison of predictive influence

It is crucial to compare the impact of biochemical indicators with 
the influence of age, given that age remains the most significant 
predictor of cataracts. When age was used as the sole predictor in this 
study’s dataset, the area under the ROC curve (AUC) was 0.9167 (95% 
CI: 0.9066–0.9267) in the training set and 0.904 (95% CI: 0.8853–
0.9228) in the validation set. While age alone demonstrated robust 
predictive performance, incorporating models identified through 
LASSO and multivariate logistic regression further enhanced 
predictive accuracy. In this study, the AUC for the training set was 
0.917 (95% CI: 0.9067–0.9273), and for the validation set, the AUC 
was 0.9148 (95% CI: 0.8979–0.9316).

4.4 Utilizing SHAP to highlight variable 
importance

To facilitate the visual interpretation of the selected variables, we 
employed SHAP (20) to elucidate the specific contributions of these 
variables to the model’s prediction of cataract formation. Figure 8 
highlights the 19 most significant features in the logistic regression 
model, which was developed using 29 variables. Each feature’s 
contribution to the outcome is represented by colored dots along the 
significance line, with red indicating high-risk values and blue 
representing low-risk values. Among the top five features, elevated 
levels of blood urea nitrogen, serum folate, erythrocyte folate, 

osmolality, and potassium were associated with an increased risk of 
age-related cataract formation. Figure 9 presents the ranking of the 19 
risk factors, evaluated by the mean absolute SHAP value, with the 
SHAP value on the X-axis reflecting each factor’s importance in the 
predictive model. Without variable screening, the ROC curve for the 
test set was 0.8 when all variables were included in the model, and 0.73 
when only blood urea nitrogen was included. After applying the 
stacked formula sequentially, model performance did not improve 
with the inclusion of the third variable, erythrocyte folate. The area 
under the ROC curve for the test set was 0.77, decreasing slightly to 
0.76 following the inclusion of erythrocyte folate. Two variables, blood 
urea nitrogen and erythrocyte folate, were consistently selected 
through LASSO and multivariate logistic regression screening, 
indicating their significant impact on cataract prognosis. However, 
based on the SHAP scores, blood urea nitrogen, serum folate, and 
erythrocyte folate were ranked 1st, 2nd, and 3rd, respectively, while 
serum glucose was ranked 11th in terms of importance. In summary, 
the model constructed using variables identified through LASSO and 
multivariate logistic regression screening proved to be feasible.

4.5 Construction of predictive model for 
cataract

Based on the four variables indicated above that were chosen 
using the LASSO regression approach and the logistic regression 
technique, multivariable logistic regression analysis was carried out to 
create a predictive model for cataract. The differentiation of the 
cataract risk prediction model was assessed using the ROC curve. The 
training group’s AUC was 0.917 (95%CI = 0.9067–0.9273) and the 
validation group’s was 0.9148 (95%CI = 0.8979–0.9316), according to 

FIGURE 2

Predictor selection using the LASSO regression analysis with twenty fold cross-validation. (A) Tuning parameter (lambda) selection of deviance in the 
LASSO regression based on the minimum criteria (left dotted line) and the 1-SE criteria (right dotted line). (B) A coefficient profile plot was created 
against the log (lambda) sequence. In the present study, predictor’s selection was according to the 1-SE criteria (right dotted line), where 5 nonzero 
coefficients were selected. LASSO, least absolute shrinkage and selection operator; SE, standard error.
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the data (Figure 4). A nomogram was created in order to depict the 
predictive model, offering a useful customized tool for assessing the 
probability of cataract development (Figure 5). The suggested model 
(Figure 6) has good calibration. For the Hosmer-Lemeshow test, a 
p-value of less than 0.05 is typically seen as indicating a poor model 
fit and a significant discrepancy between the predicted and true 
values. However, this study’s huge sample size is associated with the 
HL test results (21). With bigger and larger sample sizes, it is more 
likely that simply uncorrelated disparities between estimated and true 
probability will result in the rejection of the perfect fit hypothesis since 
the power of classic goodness-of-fit tests grows with sample size (22). 
As a result, an HL test p-value of less than 0.05 does not always signify 
a poor model fit. In this study, the relatively small deviation of the 
calibration curves from the reference line indicates that the fit between 
predicted and observed values is not statistically significantly biased 
and is therefore highly credible. To further assess model calibration, 
we computed the Brier score (23), a metric that evaluates the accuracy 
of probabilistic predictions, particularly for binary outcomes. A Brier 
score of 0.057 in the training set indicates strong model calibration, 
reflecting the model’s accurate probabilistic performance. We utilized 
10-fold cross-validation for model evaluation, and the resulting 
performance metrics are presented in Figure 7. Based on these results, 
our 10-fold cross-validation analysis confirms that the logistic 
regression model exhibits moderate-to-strong predictive ability and is 
likely to perform robustly in external validation studies.

DCA was also carried out to evaluate its clinical utility 
(Figure 3). In decision curve analysis (DCA), the model optimizes 
true positive rates while minimizing false positives, confirming its 
capacity to improve clinical decision-making by delivering 
considerable net benefit across a range of threshold probabilities. 
The decision curve consistently remains above the “None” line 
(representing no intervention) across a broad spectrum of 
threshold probabilities, demonstrating a positive net benefit. This 
illustrates the model’s clinical utility in identifying high-risk 
patients likely to benefit from intervention. Conversely, red and 
blue curves falling below the “None” line at higher threshold 
probabilities suggest that treating all patients results in 
unnecessary interventions, thereby diminishing net benefit.

Decision curve analysis demonstrates that the nomogram 
provides optimal predictive performance for cataract risk within high-
risk thresholds of 0.10 to 0.90, delivering superior net benefit 
compared to treating all patients or none. At a threshold of 0.4, where 
patients with a 40% predicted probability are classified as high-risk 
and receive treatment, the model yields a net benefit of 0.2. This 
signifies that 20 out of every 100 patients benefit from treatment 
without undergoing unnecessary interventions. At a threshold of 0.5, 
the net benefit decreases to 0.15, indicating that 15 out of every 100 
patients benefit from the model’s recommendations.

5 Discussion

This study employed LASSO regression alongside multivariate 
logistic regression to identify key factors associated with cataract risk 
and to construct a predictive model. Four predictors were evaluated: 
age, erythrocyte folate (nmol/L), blood glucose (mmol/L), and blood 
urea nitrogen (mmol/L). Additionally, a logistic regression model was 
developed using the identified factors. The predictive model 
demonstrated excellent discriminatory power, calibration, and clinical 
utility, and was visualized through a nomogram, allowing easy 
interpretation of the predicted probability.

The LASSO regression technique was used to select independent 
risk factors for the purpose of modeling and predicting variables of 
various types. The application of penalized regression reduced the 
coefficients of less significant independent variables to zero, thereby 
enhancing model stability. Numerous studies have also employed 
machine learning techniques to improve and train nomogram-based 
prediction models for accurately predicting the survival outcomes 
of patients with breast and colon cancer (24, 25). Multiple factors 
have been reported to influence cataract development, including 
socio-demographic and lifestyle factors (4), nutrient intake (12), 
blood components (26), and genetic predispositions (27). The 
primary objective of this study was to investigate the influence of 

TABLE 2 Multivariate logistic regression was used to analyze the influencing factors of cataract.

variable β SE z value OR 2.5–97.5%CI p value

Blood urea nitrogen (mmol/L) 0.041 0.016 2.563 1.042 1.009–1.074 <0.001

Glucose, serum (mmol/L) 0.069 0.017 4.168 1.072 1.036–1.107 0.01

RBC folate (nmol/L) 0.0003 0 3.281 1 1.0001–1.0004 <0.001

Serum folate (nmol/L) 0.0016 0.001 1.054 1.002 0.998–1.004 0.291

Age 0.134 0.005 28.811 1.143 1.133–1.152 <0.001

FIGURE 3

The benefit curve represented by the prediction model. The y-axis 
indicates the overall net benefit, which is calculated by summing the 
benefits (true positive results) and subtracting the harms (false 
positive results). The x-axis indicates the threshold that used to 
decide whether it is high risk to have cataracts. All: net benefit curve 
when all cataract patients are treated. None: net benefit curve when 
all cataract patients are not treated.
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blood components and age on cataract formation, visualizing the 
results through a nomogram. To our knowledge, this is the first 
study to utilize a nomogram to illustrate cataract risk. Multivariate 
logistic regression analysis in this study revealed statistically 
significant differences across four variables: blood urea nitrogen 
(mmol/L), serum glucose (mmol/L), RBC folate (nmol/L), and age. 
Each of these factors will be discussed in detail in the subsequent 
sections. The study by C. Y. Huan et  al. identified a significant 
correlation between chronic kidney disease (CKD) and an increased 
incidence of both prevalent and incident cataracts (28). B. E. Klein 
et al. suggested that elevated serum blood urea nitrogen (BUN) and 
creatinine levels are associated with the development of posterior 
subcapsular cataracts in continuous models (29). These findings, 

consistent with those of the present study, suggest that elevated 
blood urea nitrogen is a risk factor for cataract development, with 
an odds ratio of 1.042 and a 95% confidence interval of 1.009–1.074. 
Several potential mechanisms are outlined below. The initial 
hypothesis suggests that chronic hypocalcemia in patients with 
chronic kidney disease may disrupt glucose metabolism in the lens 
(30). The interplay between calcium levels, glucose metabolism, and 
lens health is complex. Nevertheless, in this study, blood urea 
nitrogen exerted a more pronounced influence on cataract formation 
compared to calcium and glucose, likely due to its impact on lens 
osmolarity, thus promoting cataract development. The second 
hypothesis proposes that elevated blood urea nitrogen levels disrupt 
enzymes critical to lens metabolism. Oxidative stress is widely 

FIGURE 4

The predictive model’s performance was assessed using ROC curves for both the training (A) and validation (B) groups, yielding AUC values of 0.917 
and 0.9148, respectively. These results demonstrate good discriminative capacity and excellent generalizability.

FIGURE 5

Nomogram for predicting cataract risk and its algorithm. First, a point was found for each variable of a people who may have cataracts on the 
uppermost rule; then all scores were added together and the total number of points were collected. Finally, the corresponding predicted probability of 
people who may have cataracts was found on the lowest rule.
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acknowledged as a major contributor to cataract formation, with 
antioxidant enzymes like glutathione synthase, thioredoxin 
reductase, glutathione reductase, and thioltransferase playing pivotal 
roles in slowing cataract progression (31). Elevated blood urea 
nitrogen may impair the activity of these antioxidant enzymes, 
thereby accelerating cataract progression. These potential 
mechanisms require experimental validation. Kang K H, Shin D, Ryu 
I  H, et  al. found that fatty liver disease (FLD) may serve as an 
independent risk factor for cataracts (32), likely due to its role in 
systemic metabolic disorders. These systemic disorders, often 
resulting from dyslipidaemia and chronic inflammation linked to 
FLD, can disrupt metabolic processes throughout the body. One 
such disruption involves altered biochemical indices, including 
elevated blood urea nitrogen (BUN) (33). Elevated BUN levels may 
indicate impaired renal function or increased protein catabolism, 
both of which could contribute to cataract pathophysiology by 
promoting oxidative stress and osmotic imbalances in the lens. 
Therefore, our findings suggest that the heightened risk of cataracts 
observed in patients with FLD may be mediated, at least in part, by 

elevated blood urea nitrogen levels. This underscores the need for 
further investigation into the specific mechanisms connecting FLD, 
abnormal biochemical markers, and cataract formation, as well as 
the potential for targeted interventions to mitigate these metabolic 
disruptions. L. Li et  al. identified a significant increase in the 
likelihood of cataract development among individuals diagnosed 
with type 2 diabetes mellitus (34). According to this study, elevated 
glucose levels were associated with an increased likelihood of 
cataract development. The role of folic acid as a risk factor for 
cataracts remains debatable. A. Tan et al. showed the 5-year PSC 
incidence with no significant associations with homocysteine, B12, 
and folate (35). But C. Ma et al. showed lower serum folate levels in 
cataract patients compared to controls (36). In addition, W. G. et al. 
found that in a randomized, double-masked, placebo-controlled 
trial, combined folic acid, vitamin B6, and vitamin B12 
supplementation may increase the risk of cataract extraction surgery 
(37). The results of W. G. et  al. are similar to ours in that folate 
(nmol/L) was higher in cataract patients compared to non-cataracts, 
and higher RBC folate (nmol/L) may be a risk factor for cataracts, 

FIGURE 6

The calibration curve of predictive nomograms for predicting cataracts. The nomogram shows the predicted probability on the x-axis and the actual 
probability on the y-axis.

FIGURE 7

Provides a summary of the results from 10-fold cross-validation.
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but to a lesser extent with an OR close to one. Among the previous 
studies, folic acid supplementation was considered protective against 
cataracts (38). Tan, A. and colleagues utilized posterior subcapsular 
cataract (PSC) as the outcome measure in a 5-year follow-up study, 
revealing that elevated homocysteine levels (per SD; OR 1.17; 95% 
CI 1.00–1.37) and reduced folic acid levels (per SD; OR 1.24; 95% CI 
0.99–1.56) were associated with a higher prevalence of PSC36. Ma, 
C., Liu, Z., Yao, S., Hei, L., and Guo, W. prospectively recruited 60 
patients with senile cataracts and 58 age-matched healthy controls, 
finding that blood folate levels were significantly lower in cataract 
patients than in healthy controls. Kuzniarz, M. and Mitchell, 
P. conducted a cross-sectional study with 2,873 participants, 
categorizing cataract types and concluding that folic acid 
supplementation had a protective effect against cortical cataracts. 
Despite differences in methodology, all three research teams 
consistently found that cataract patients had lower folic acid levels 
and that folic acid supplementation may confer a protective effect 
against cataracts. However, the findings of Christen, W. G. and 
colleagues were unexpected. In contrast to the previous three 
studies, Christen, W. G. and colleagues conducted a randomized, 
double-blind, placebo-controlled trial under more stringent 
conditions, involving 3,925 participants and yielding more robust 
results over a follow-up period of up to 7.3 years. In this large-scale 
randomized trial of women at high risk for cardiovascular disease, 
daily supplementation with folic acid, vitamin B6, and vitamin B12 
had no significant impact on cataract incidence but may have 
increased the risk of cataract extraction. The findings of Christen, 
W. G. and colleagues, which aligned with our results that also 
focused on cataract removal, indicated a facilitating effect of folic 

acid with an OR close to 1 (95% CI 1.0001–1.0004). The 
aforementioned studies varied considerably in design, encompassing 
both observational studies and randomized controlled trials (RCTs). 
The study populations also differed in demographics, baseline health 
conditions, and genetic predispositions, all of which may have 
influenced the observed association between folic acid levels and 
cataract risk. For example, both this study and the work by C. Ma 
et al., which used cataract surgery as the outcome measure, reached 
the same conclusion: higher folic acid levels increased the risk of 
cataract extraction. These findings underscore the need for 
longitudinal studies with extended follow-up periods to 
comprehensively assess the role of folic acid in cataract development. 
Given the findings of this study, we recommend exercising caution 
when considering folic acid supplementation as a means to delay the 
onset of cataracts. It is well established that age is a major 
determinant of cataract development and requires little further 
discussion (6).

This study has several limitations. In the absence of direct lens 
assessments in the NHANES dataset, cataract surgery was used as a 
surrogate marker for cataract occurrence. A similar approach has 
been employed in previous epidemiological studies11. However, the 
distinctions between the two approaches should not be overlooked. 
The decision to undergo cataract surgery is influenced by a multitude 
of factors, including cataract severity, visual acuity, ocular 
measurements, the surgeon’s clinical expertise, and patient 
preferences (39). The decision to opt for cataract surgery is heavily 
contingent upon financial resources (40), which also shape health 
literacy and behavioral patterns, subsequently influencing blood 
biochemical markers (41). When cataract surgery is employed as an 
outcome measure, this economic disparity introduces significant 
selection bias (42). Individuals with higher disposable income and 
better access to healthcare are more likely to undergo regular 
ophthalmologic evaluations, facilitating early cataract detection and 
timely intervention. Conversely, individuals from lower 
socioeconomic backgrounds frequently delay or forgo surgery due 
to financial barriers, leading to pronounced disparities in health 
outcomes. Furthermore, health literacy—the capacity to access, 
interpret, and comprehend essential health information—tends to 
be  higher in wealthier populations. Wealthier individuals are 
generally more proactive in managing their health, frequently 
engaging in preventive behaviors such as regular medical check-ups 
and strict adherence to medical advice. This often results in more 
favorable biochemical profiles (e.g., better glycemic control), 
potentially influencing study outcomes. The direct correlation 
between socioeconomic status and improved access to nutrition, 
healthcare, and healthier lifestyles is well-documented (43). 
Populations of lower socioeconomic status typically present with 
more abnormal biochemical markers and a higher prevalence of 
severe cataracts (44). Failure to account for these socioeconomic 
factors may lead to an overestimation of the impact of biochemical 
markers on cataract risk. This overestimation may partly arise from 
the fact that individuals of lower socioeconomic status are more 
likely to adopt unhealthy lifestyles, such as poor diets and lack of 
exercise, and face limited access to quality healthcare. Consequently, 
the observed association between biochemical indicators and 
cataract risk may be  confounded by underlying socioeconomic 
conditions. Additionally, cataract surgery reflects a relatively 
advanced stage of the disease, and the relationship between early 

FIGURE 8

Feature contributions in SHAP: each line represents a feature, with 
the SHAP value plotted on the x-axis. Red dots indicate higher 
feature values, while blue dots indicate lower feature values. The 
spread of the dots along the x-axis illustrates the impact of each 
feature on the model’s prediction.

87

https://doi.org/10.3389/fmed.2024.1452756
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang and Yi 10.3389/fmed.2024.1452756

Frontiers in Medicine 10 frontiersin.org

lens opacity and biochemical markers could not be assessed using 
NHANES data. Furthermore, the data derived from cataract surgery 
do not allow for differentiation between distinct types of cataracts in 
individual patients.

Nevertheless, several limitations exist in this study. The risk factor 
analysis did not account for potential variables such as patients’ daily 
living environments and dietary habits, which were not integrated into 
the predictive model. Incorporating these factors would likely enhance 
the model’s predictive accuracy and overall performance. This study 
was conducted retrospectively at a single center, and the predictive 
validity of the model was not assessed through external validation. 
This study was a retrospective analysis conducted at a single center. 
The predictive validity of the model was established using internal 
validation methods; however, external validation was not performed. 
It is important to note that while the model shows promise based on 
its internal validation, the lack of external validation limits our ability 
to generalize the findings to other settings or populations. Future 
research will focus on validating the model using large datasets from 
multiple regions and centers to enhance its predictive accuracy and 
broader applicability.

6 Conclusion

This study identified blood urea nitrogen (mmol/l), serum 
glucose (mmol/l), erythrocyte folate (mmol/l), and age as significant 
risk factors for cataracts, and subsequently developed a cataract risk 

prediction model. This model demonstrated strong predictive 
accuracy and clinical applicability, offering clinicians a valuable tool 
for early and accurate diagnosis. Cataract progression may 
be delayed by lowering blood urea nitrogen, serum glucose, and 
erythrocyte folate levels through lifestyle modifications and 
dietary improvements.

Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found here: https://www.cdc.gov/nchs/nhanes/ and 
in the article/Supplementary material.

Ethics statement

The studies involving humans were approved by the National 
Centre for Health Statistics (NCHS) Research Ethics Review 
Board. The studies were conducted in accordance with the local 
legislation and institutional requirements. The human samples 
used in this study were acquired from Institutional Review Board 
Statement: The National Centre for Health Statistics (NCHS) 
Research Ethics Review Board (protocol 2005–06) granted 
approval for this investigation. Extensive information can 
be  found at the following website: https://www.cdc.gov/nchs/
nhanes/irba98.htm (accessed on February 16, 2024). Informed 
consent was obtained from all subjects involved in the study. 
Written informed consent for participation was not required 
from the participants or the participants’ legal guardians/next of 
kin in accordance with the national legislation and 
institutional requirements.

Author contributions

GW: Conceptualization, Data curation, Funding acquisition, 
Investigation, Methodology, Resources, Software, Supervision, 
Validation, Visualization, Writing – original draft, Writing – review & 
editing. X-LY: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Project administration, Supervision, 
Investigation, Resources, Writing – review & editing.

Funding

The author(s) declare that financial support was received for 
the research, authorship, and/or publication of this article. The 
Natural Science Foundation of Xinjiang Uygur Autonomous 
Region, China, is funding the key project with the reference 
number 2022D01D68.

Acknowledgments

The authors express their gratitude to all the participants and 
personnel involved in the National Health and Nutrition Examination 

FIGURE 9

Feature importance ranking by SHAP: this matrix diagram ranks the 
importance of each covariate in the development of the final 
predictive model, highlighting which features contribute most 
significantly to the model’s output.

88

https://doi.org/10.3389/fmed.2024.1452756
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.cdc.gov/nchs/nhanes/
https://www.cdc.gov/nchs/nhanes/irba98.htm
https://www.cdc.gov/nchs/nhanes/irba98.htm


Wang and Yi 10.3389/fmed.2024.1452756

Frontiers in Medicine 11 frontiersin.org

Survey for their significant contributions to the collection, 
management, and release of data. In the course of preparing this 
manuscript, we employed OpenAI’s ChatGPT (version GPT-4.0) as a 
tool to aid in refining and enhancing the linguistic clarity and 
coherence of the article. We gratefully acknowledge the valuable 
contributions of this technology in improving the overall textual 
quality and presentation.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2024.1452756/
full#supplementary-material

References
 1. Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB, et al. 

Causes of blindness and vision impairment in 2020 and trends over 30 years, and 
prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an 
analysis for the global burden of disease study. Lancet Glob Health. (2021) 9:e144–60. 
doi: 10.1016/s2214-109x(20)30489-7

 2. Song P, Wang H, Theodoratou E, Chan KY, Rudan I. The national and subnational 
prevalence of cataract and cataract blindness in China: a systematic review and meta-
analysis. J Glob Health. (2018) 8:010804. doi: 10.7189/jogh.08.010804

 3. Singh S, Pardhan S, Kulothungan V, Swaminathan G, Ravichandran JS, Ganesan S, 
et al. The prevalence and risk factors for cataract in rural and urban India. Indian J 
Ophthalmol. (2019) 67:477–83. doi: 10.4103/ijo.IJO_1127_17

 4. Purola PKM, Nättinen JE, Ojamo MUI, Rissanen HA, Gissler M, Koskinen SVP, 
et al. Prevalence and 11-year incidence of cataract and cataract surgery and the effects 
of socio-demographic and lifestyle factors. Clin Ophthalmol. (2022) 16:1183–95. doi: 
10.2147/opth.S355191

 5. Yan W, Wang W, van Wijngaarden P, Mueller A, He M. Longitudinal changes in 
global cataract surgery rate inequality and associations with socioeconomic indices. Clin 
Experiment Ophthalmol. (2019) 47:453–60. doi: 10.1111/ceo.13430

 6. Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. (2017) 
390:600–12. doi: 10.1016/s0140-6736(17)30544-5

 7. Hashemi H, Pakzad R, Yekta A, Aghamirsalim M, Pakbin M, Ramin S, et al. Global 
and regional prevalence of age-related cataract: a comprehensive systematic review and 
meta-analysis. Eye (Lond). (2020) 34:1357–70. doi: 10.1038/s41433-020-0806-3

 8. Bunce GE, Kinoshita J, Horwitz J. Nutritional factors in cataract. Annu Rev Nutr. 
(1990) 10:233–54. doi: 10.1146/annurev.nu.10.070190.001313

 9. Leske MC, Wu SY, Hyman L, Sperduto R, Underwood B, Chylack LT, et al. Biochemical 
factors in the lens opacities. Case-control study. The Lens opacities case-control study group. 
Arch Ophthalmol. (1995) 113:1113–9. doi: 10.1001/archopht.1995.01100090039020

 10. Lee YW, Lin YY, Weng SF, Hsu CH, Huang CL, Lin YP, et al. Clinical significance 
of hepatic function in graves disease with type 2 diabetic mellitus: a single-center 
retrospective cross-sectional study in Taiwan. Medicine (Baltimore). (2022) 101:e30092. 
doi: 10.1097/md.0000000000030092

 11. García-Layana A, Ciufo G, Toledo E, Martínez-González M, Corella D, Fitó M, 
et al. The effect of a Mediterranean diet on the incidence of cataract surgery. Nutrients. 
(2017) 9:453. doi: 10.3390/nu9050453

 12. Zhou J, Lou L, Jin K, Ye J. Association between healthy eating Index-2015 and 
age-related cataract in American adults: a cross-sectional study of NHANES 2005-2008. 
Nutrients. (2022) 15:98. doi: 10.3390/nu15010098

 13. Theodoropoulou S, Theodossiadis P, Samoli E, Vergados I, Lagiou P, Tzonou A. 
The epidemiology of cataract: a study in Greece. Acta Ophthalmol. (2011) 89:e167–73. 
doi: 10.1111/j.1755-3768.2009.01831.x

 14. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard 
deviation from the sample size, median, range and/or interquartile range. BMC Med Res 
Methodol. (2014) 14:135. doi: 10.1186/1471-2288-14-135

 15. Rosner B, Glynn RJ. Power and sample size estimation for the Wilcoxon rank sum 
test with application to comparisons of C statistics from alternative prediction models. 
Biometrics. (2009) 65:188–97. doi: 10.1111/j.1541-0420.2008.01062.x

 16. Green MA. Use of machine learning approaches to compare the contribution of 
different types of data for predicting an individual's risk of ill health: an observational 
study. Lancet. (2018) 392:S40. doi: 10.1016/s0140-6736(18)32877-0

 17. Sun S, Wang J, Yang B, Wang Y, Yao W, Yue P, et al. A nomogram for evaluation 
and analysis of difficulty in retroperitoneal laparoscopic adrenalectomy: a single-center 
study with prospective validation using LASSO-logistic regression. Front Endocrinol. 
(2022) 13:1004112. doi: 10.3389/fendo.2022.1004112

 18. de Hond AAH, Steyerberg EW, van Calster B. Interpreting area under the receiver 
operating characteristic curve. Lancet Digit Health. (2022) 4:e853–5. doi: 10.1016/
s2589-7500(22)00188-1

 19. Van Calster B, Wynants L, JFM V, Verbakel JY, Christodoulou E, et al. Reporting 
and interpreting decision curve analysis: a guide for investigators. Eur Urol. (2018) 
74:796–804. doi: 10.1016/j.eururo.2018.08.038

 20. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv 
Neural Inf Proces Syst. (2017) 30:arXiv:1705.07874.

 21. Paul P, Pennell ML, Lemeshow S. Standardizing the power of the Hosmer-Lemeshow 
goodness of fit test in large data sets. Stat Med. (2013) 32:67–80. doi: 10.1002/sim.5525

 22. Nattino G, Pennell ML, Lemeshow S. Assessing the goodness of fit of logistic 
regression models in large samples: a modification of the Hosmer-Lemeshow test. 
Biometrics. (2020) 76:549–60. doi: 10.1111/biom.13249

 23. Rufibach K. Use of brier score to assess binary predictions. J Clin Epidemiol. (2010) 
63:938–9. doi: 10.1016/j.jclinepi.2009.11.009

 24. Lin S, Mo H, Li Y, Guan X, Chen Y, Wang Z, et al. Development and validation of 
a nomogram for predicting survival of advanced breast cancer patients in China. Breast. 
(2020) 53:172–80. doi: 10.1016/j.breast.2020.08.004

 25. Wang Z, Wang Y, Yang Y, Luo Y, Liu J, Xu Y, et al. A competing-risk nomogram to 
predict cause-specific death in elderly patients with colorectal cancer after surgery (especially 
for colon cancer). World J Surg Oncol. (2020) 18:30. doi: 10.1186/s12957-020-1805-3

 26. Mirsamadi M, Nourmohammadi I. Correlation of human age-related cataract with 
some blood biochemistry constituents. Ophthalmic Res. (2003) 35:329–34. doi: 
10.1159/000074072

 27. Zou X, Wang H, Zhou D, Liu Z, Wang Y, Deng G, et al. The polymorphism rs2968 
of LSS gene confers susceptibility to age-related cataract. DNA Cell Biol. (2020) 
39:1970–5. doi: 10.1089/dna.2020.5872

 28. Huang CY, Lee JI, Chang CW, Liu YH, Huang SP, Chen SC, et al. Chronic kidney 
disease and its association with cataracts-a cross-sectional and longitudinal study. Front 
Public Health. (2022) 10:1029962. doi: 10.3389/fpubh.2022.1029962

 29. Klein BE, Knudtson MD, Brazy P, Lee KE, Klein R. Cystatin C, other markers of 
kidney disease, and incidence of age-related cataract. Arch Ophthalmol. (2008) 
126:1724–30. doi: 10.1001/archophthalmol.2008.502

 30. Berlyne G, Danovitch G, Ari JB, Blumenthal M. Cataracts of chronic renal failure. 
Lancet. (1972) 299:509–11. doi: 10.1016/S0140-6736(72)90175-4

 31. Bejarano E, Weinberg J, Clark M, Taylor A, Rowan S, Whitcomb EA. Redox 
regulation in age-related cataracts: roles for glutathione, vitamin C, and the NRF2 
signaling pathway. Nutrients. (2023) 15:3375. doi: 10.3390/nu15153375

 32. Kang KH, Shin D, Ryu IH, Kim JK, Lee IS, Koh K, et al. Association between 
cataract and fatty liver diseases from a nationwide cross-sectional study in South Korea. 
Sci Rep. (2024) 14:77. doi: 10.1038/s41598-023-50582-7

 33. Liu X, Zhang H, Liang J. Blood urea nitrogen is elevated in patients with non-
alcoholic fatty liver disease. Hepato-Gastroenterology. (2013) 60:343–5.

 34. Li L, Wan XH, Zhao GH. Meta-analysis of the risk of cataract in type 2 diabetes. 
BMC Ophthalmol. (2014) 14:94. doi: 10.1186/1471-2415-14-94

89

https://doi.org/10.3389/fmed.2024.1452756
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2024.1452756/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2024.1452756/full#supplementary-material
https://doi.org/10.1016/s2214-109x(20)30489-7
https://doi.org/10.7189/jogh.08.010804
https://doi.org/10.4103/ijo.IJO_1127_17
https://doi.org/10.2147/opth.S355191
https://doi.org/10.1111/ceo.13430
https://doi.org/10.1016/s0140-6736(17)30544-5
https://doi.org/10.1038/s41433-020-0806-3
https://doi.org/10.1146/annurev.nu.10.070190.001313
https://doi.org/10.1001/archopht.1995.01100090039020
https://doi.org/10.1097/md.0000000000030092
https://doi.org/10.3390/nu9050453
https://doi.org/10.3390/nu15010098
https://doi.org/10.1111/j.1755-3768.2009.01831.x
https://doi.org/10.1186/1471-2288-14-135
https://doi.org/10.1111/j.1541-0420.2008.01062.x
https://doi.org/10.1016/s0140-6736(18)32877-0
https://doi.org/10.3389/fendo.2022.1004112
https://doi.org/10.1016/s2589-7500(22)00188-1
https://doi.org/10.1016/s2589-7500(22)00188-1
https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1002/sim.5525
https://doi.org/10.1111/biom.13249
https://doi.org/10.1016/j.jclinepi.2009.11.009
https://doi.org/10.1016/j.breast.2020.08.004
https://doi.org/10.1186/s12957-020-1805-3
https://doi.org/10.1159/000074072
https://doi.org/10.1089/dna.2020.5872
https://doi.org/10.3389/fpubh.2022.1029962
https://doi.org/10.1001/archophthalmol.2008.502
https://doi.org/10.1016/S0140-6736(72)90175-4
https://doi.org/10.3390/nu15153375
https://doi.org/10.1038/s41598-023-50582-7
https://doi.org/10.1186/1471-2415-14-94


Wang and Yi 10.3389/fmed.2024.1452756

Frontiers in Medicine 12 frontiersin.org

 35. Tan AG, Mitchell P, Rochtchina E, Flood VM, Cumming RG, Wang JJ. Serum 
homocysteine, vitamin B12, folate and the prevalence of age-related cataract. Invest 
Ophthalmol Vis Sci. (2009) 50:510–0.

 36. Ma C, Liu Z, Yao S, Hei L, Guo W. Correlation between serum homocysteine, 
folate, vitamin B6 and age-related cataract. Pteridines. (2019) 30:142–5. doi: 10.1515/
pteridines-2019-0017

 37. Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE. Folic acid, vitamin B6, 
and vitamin B12  in combination and age-related cataract in a randomized trial of 
women. Ophthalmic Epidemiol. (2016) 23:32–9. doi: 10.3109/09286586.2015.1130845

 38. Kuzniarz M, Mitchell P, Cumming RG, Flood VM. Use of vitamin supplements 
and cataract: the Blue Mountains eye study. Am J Ophthalmol. (2001) 132:19–26. doi: 
10.1016/s0002-9394(01)00922-9

 39. Mailu EW, Virendrakumar B, Bechange S, Jolley E, Schmidt E. Factors associated 
with the uptake of cataract surgery and interventions to improve uptake in low-and 
middle-income countries: a systematic review. PLoS One. (2020) 15:e0235699. doi: 
10.1371/journal.pone.0235699

 40. Wang W, Yan W, Müller A, He M. A global view on output and outcomes of 
cataract surgery with National Indices of socioeconomic development. 

Invest Ophthalmol Vis Sci. (2017) 58:3669–76. doi: 10.1167/iovs.17- 
21489

 41. Slopen N, Goodman E, Koenen KC, Kubzansky LD. Socioeconomic and other 
social stressors and biomarkers of cardiometabolic risk in youth: a systematic review 
of less studied risk factors. PLoS One. (2013) 8:e64418. doi: 10.1371/journal.
pone.0064418

 42. Fang R, Yu YF, Li EJ, Lv NX, Liu ZC, Zhou HG, et al. Global, regional, 
national burden and gender disparity of cataract: findings from the global burden 
of disease study 2019. BMC Public Health. (2022) 22:2068. doi: 10.1186/
s12889-022-14491-0

 43. Svendsen MT, Bak CK, Sørensen K, Pelikan J, Riddersholm SJ, Skals RK, et al. 
Associations of health literacy with socioeconomic position, health risk behavior, and 
health status: a large national population-based survey among Danish adults. BMC 
Public Health. (2020) 20:565. doi: 10.1186/s12889-020-08498-8

 44. Sonron EA, Tripathi V, Hariharan S. The impact of sociodemographic and 
socioeconomic factors on the burden of cataract in Small Island developing states (SIDS) 
in the Caribbean from 1990 to 2016. Ophthalmic Epidemiol. (2020) 27:132–40. doi: 
10.1080/09286586.2019.1700534

90

https://doi.org/10.3389/fmed.2024.1452756
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1515/pteridines-2019-0017
https://doi.org/10.1515/pteridines-2019-0017
https://doi.org/10.3109/09286586.2015.1130845
https://doi.org/10.1016/s0002-9394(01)00922-9
https://doi.org/10.1371/journal.pone.0235699
https://doi.org/10.1167/iovs.17-21489
https://doi.org/10.1167/iovs.17-21489
https://doi.org/10.1371/journal.pone.0064418
https://doi.org/10.1371/journal.pone.0064418
https://doi.org/10.1186/s12889-022-14491-0
https://doi.org/10.1186/s12889-022-14491-0
https://doi.org/10.1186/s12889-020-08498-8
https://doi.org/10.1080/09286586.2019.1700534


Frontiers in Medicine 01 frontiersin.org
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to analyze retinal vascular 
parameters of diabetic 
nephropathy
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Introduction: By using spectral domain optical coherence tomography (SD-
OCT) to measure retinal blood vessels. The correlation between the changes 
of retinal vascular structure and the degree of diabetic nephropathy is analyzed 
with a full-pixel Semantic segmentation method.

Methods: A total of 120 patients with diabetic nephropathy who were treated 
in the nephrology department of Quzhou People’s Hospital from March 2023 
to March 2024 were selected and divided into three groups according to the 
urinary albumin creatinine ratio (UACR). The groups included simple diabetes 
group (UACR < 30  mg/g), microalbuminuria group (30  mg/g  ≤  UACR <300  mg/g) 
and macroalbuminuria group (UACR ≥300  mg/g). SD-OCT was used to scan the 
arteries and veins in the superior temporal area B of the retina. The semantic 
segmentation method built into the SD-eye software was used to automatically 
identify the morphology and structure of the vessels and calculate the 
parameters of arteriovenous vessels. The parameters of arteriovenous vessels 
are as follows: outer diameter of the retinal artery (RAOD); inner diameter of the 
retinal artery (RALD); arterial wall thickness (AWT); arterial wall to lumen ratio 
(AWLR); cross sectional area of arterial wall (AWCSA); retinal vein outer diameter 
(RVOD); retinal vein inner diameter (RVLD); vein wall thickness (VWT); vein wall 
to lumen ratio (VWLR); cross sectional area of vein wall (VWCSA). Statistical 
analysis software was used to compare and analyze the parameters of retinal 
arteriovenous vessels of the three groups.

Results: The study revealed statistically significant differences in RAOD and 
RALD among the three groups (p  <  0.05) with the RAOD and RALD of the 
macroalbuminuria group and microalbuminuria group being lower than those 
of the simple diabetes group. Conversely, there were no significant differences 
in AWT, AWLR and AWCSA among the three groups (p  >  0.05). Additionally, 
the differences in RVOD and RVLD among the three groups were found to 
be  statistically significant (p  <  0.05) with the RVOD and RVLD of the simple 
diabetes group being lower than those of the microalbuminuria group and 
macroalbuminuria group. No significant differences were observed in VWT and 
VWL among the groups. Additionally, RVOD and RVLD were weakly associated 
with UACR (R  =  0.247, p  =  0.007; R  =  0.210, p  =  0.021). Full-pixel semantic 
segmentation method combined with OCT images is a new retinal vascular 
scanning technology, which can be used as a new method for early diagnosis of 
diabetic nephropathy. The structural changes of retinal vessels can be used to 
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predict the severity of diabetic nephropathy during the development of diabetic 
nephropathy.

KEYWORDS

optical coherence tomography, urinary protein creatinine ratio, full pixel semantic 
segmentation method, diabetic nephropathy, vascular structure

1 Introduction

Diabetic nephropathy (DN) is a severe complication of diabetes 
(DM) resulting from poor blood sugar control over an extended 
period. It is characterized by tiny vascular lesions. At the same time, 
diabetic nephropathy causing renal failure is the important cause 
leading to the terminal uremia. In early diabetic nephropathy patients, 
hyperlipidemia and high blood sugar are accompanied by an increased 
abnormal glomerular filtration rate, proteinuria, serum creatinine, 
blood urea nitrogen index and progressive changes in renal function. 
In recent years, the diagnosis of diabetic nephropathy has advanced 
significantly with various methods such as the serology detection of 
proinflammatory factors (1–5), inflammatory factors (6), and gene 
diagnosis (7). However, accurately diagnosing the lesions of diabetic 
nephropathy remains challenging. Retinal and renal vessels share 
anatomical, physiological and pathological traits. Diabetes-induced 
hyperglycemia harms microvessels including those in the retina and 
kidneys. Retinal vessels which are visible without invasive methods 
can indicate diabetic microangiopathy severity. Many studies (8–10) 
show a strong link between retinal microangiopathy and diabetic 
nephropathy progression. Therefore, by measuring changes in retinal 
blood vessels, the progression of diabetic nephropathy can 
be  indirectly assessed. This study utilizes the full pixel semantic 
segmentation method to identify individuals with diabetic 
nephropathy based on retinal vascular parameters. It also examines 
the various stages of diabetic nephropathy by analyzing retinal 
vascular structures, abnormal changes in retinal blood vessel structure 
and the correlation between the severity of diabetic nephropathy.

2 Subjects and methods

2.1 Ethical approval

A cohort of 120 patients diagnosed with diabetic nephropathy and 
admitted to the Department of Nephrology at Quzhou People’s Hospital 
between March 2023 and March 2024, all of whom were aged 50 years or 
older, were selected for this study. The research protocol was approved 
by the Research Ethics Committee of Quzhou People’s Hospital and 
conducted in compliance with the guidelines outlined in the Helsinki 
Declaration. Informed written consent was obtained from all participants.

2.2 General information and grouping

The inclusion criteria of subjects in this study needed to meet 
the diagnostic criteria for diabetes nephropathy in the 2021 version 
of the Chinese Guidelines for the Prevention and Treatment of 
diabetes Nephropathy, exclude kidney diseases caused by other 
reasons and meet one of the following conditions: (1) two out of 

three times over a six-month period, the UACR was found to be at 
least 30 mg/g; (2) GFR less than 60 mL/min/1.73 m2 lasts for more 
than 3 months. Exclusion criteria: (1) type 1 diabetes, gestational 
diabetes and special type diabetes; (2) acute complications of 
diabetes (such as diabetic ketoacidosis); (3) chronic nephritis or 
kidney combined with other diseases that could lead to proteinuria 
and hematuria; (4) recent use of hormones, immunosuppressants 
or diuretics; (5) intraocular pressure over 21 mmHg; (6) eye 
blinding disease history (such as: optic nerve diseases, senile 
cataracts, history of closure angle glaucoma, open angle glaucoma, 
anterior uveitis and retinal vascular disease) and poor vision 
correction operation difficulties; (7) other causes of proteinuria 
including acute infection, hypertension and obesity. According to 
the urinary albumin creatinine ratio (UACR), 120 patients with 
diabetic nephropathy were divided into diabetic non-nephropathy 
group (35 subjects), diabetic microalbuminuria group (49 subjects) 
and diabetic macroalbuminuria group (36 subjects). The UACR of 
patients in the diabetic non-nephropathy group was less than 
30 mg/g and the UACR of patients in the diabetic macroalbuminuria 
group was greater than or equal to 30 mg/g when the UACR of the 
patients in diabetic microalbuminuria group was greater than or 
equal to 30 mg/g and less than 300 mg/g.

2.3 Routine inspection items

All participants underwent blood pressure, fasting blood glucose, 
glycated hemoglobin, triglycerides, cholesterol, liver and kidney function, 
urine routine, ophthalmic intraocular pressure (IOP) measurement, 
anterior slit-lamp examination and fundus retinal examination.

2.4 OCT image acquisition and parameter 
measurement of retinal vessels

All the study objects of OCT imaging were checked by skilled and 
highly qualified doctors of ophthalmology through SD-OCT 
scanning. The subject’s head was fixed on the SD-CT operating table 
and they were asked to maintain the correct sitting posture during the 
operation. At the same time, the subject was asked to fixate on the blue 
fixation light in the lens. The SD-OCT scanner was used to scan the 
retinal arteries and accompanying retinal veins in the superior 
temporal region of the right eye of each subject. Zone B was defined 
as the superotemporal range extending 1–2 disc diameters from the 
edge of the optic disc. A linear scan with a corresponding depth image 
was selected for scanning and the scanning line was maintained 
perpendicular to the vascular axis (Figure 1A). Each eye was scanned 
three times to select the clearest images of blood vessel walls for the 
next study. After the scan was completed, the first OCT images of the 
vertical level ratio was adjusted to 1:1 microns. After 8x magnification, 
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it was saved as a vascular cross-section of a 512 × 512 pixel image 
(Figure 1B). The image was fed into Eye Recognition Software to 
identify and measure blood vessels (Figures  1C,D). The software 
calculated the retinal artery diameter (RAOD) and inner diameter 
(RALD); vein diameter (RVOD) and inner diameter (RVLD); arterial 
blood wall thickness (AWT) = (RAOD − RALD)/2; arterial vessel wall 
to lumen ratio (AWLR) = (RAOD − RALD)/2/RALD; Venous blood 
wall thickness (VWT) = (RVOD − RVLD)/2; the artery wall cross 
sectional area (AWCSA) = (RAOD2 − RALD2) × 3.14/4; wall to lumen 
ratio of venous vessels (VWLR) = (RVOD − RVLD)/2/RVLD; venous 
wall cross-sectional area (VWCSA) = (RVOD2-RVLD2) × 3.14/4.

2.5 A new type of image segmentation 
method

The semantic segmentation method is a method of image 
processing based on computer vision and deep learning. It is able 
to classify each pixel in an image into a specific category or region, 

which enables detailed parsing and recognition of the image 
content. This method uses a model of training to learn and 
understand the semantic information in the medical image, 
specifically the meaning or object representing different areas and 
applies this understanding to the categorization of each pixel in the 
image. In the process of semantic segmentation method analysis, 
each pixel in the image is analyzed according to its features such as 
color, texture and shape to determine its category and area. In this 
way, the different objects in the image of the semantic segmentation 
method can realize accurate positioning and recognition for 
subsequent image analysis, scene understanding and various 
applications providing strong support. The application of semantic 
segmentation method in the recognition and measurement of 
retinal vascular parameters is a new technology in the field of 
medical image processing. The recognition software uses the full-
pixel semantic segmentation method to identify the image contour 
of retinal blood vessels. The artery and vein structures in each 
image can be captured by the software at the same time and the 
parameters of blood vessels can be automatically calculated and the 

FIGURE 1

operation process (A): The green straight line represents the OCT linear scan line. the shaded (B) area is the linear scan area. When the blue arrow 
marks the artery, the green arrow marks the vein. B: The image shows the corresponding cross-sectional area image of the arterial and venous vessels 
in Figure A. (C): The interface is displayed after the initial startup of the Huiyan OCT vascular automatic measurement system (D): the corresponding 
arterial and venous parameters are measured after importing into the Huiyan software OCT vascular automatic measurement system.
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vascular structural parameters of multiple images can be exported 
in batches.

2.6 Statistical analysis

SPSS 26.0 statistical software was used for data processing and 
analysis. The measurement data of the three groups exhibited a normal 
distribution with the mean ± standard deviation utilized to depict the 
central tendency and variability. Analysis of variance (ANOVA) was 
employed to compare the groups while frequency (%) was utilized for 
categorical data. Correlation analysis was conducted to investigate the 
relationship between urinary albumin creatinine ratio and retinal 
vascular parameters in patients with diabetic nephropathy when 
statistical significance was defined as p < 0.05.

3 Results

3.1 Comparison of general data among the 
three groups

Single factor analysis of variance showed that there were no 
significant differences in gender, age, systolic blood pressure, diastolic 
blood pressure, body mass index, glycosylated hemoglobin, uric acid, 
triglyceride and total cholesterol among the three groups (p > 0.05) 
(Table 1).

3.2 Comparison of arterial vascular 
parameters among the three groups

Table 2 showed the comparison results of retinal artery vascular 
parameters in the three groups. The statistical results showed that WLR, 
AWT, and WSCA of the three groups had no statistical significance 
(p > 0.05). The RAOD and RALD of the diabetic non-nephropathy group 
were 103.69 ± 9.10 μm and 80.34 ± 6.48 μm, which were the largest in the 
three groups. When the RAOD and RALD of diabetic microalbuminuria 
group had values of 96.12 ± 11.16 μm and 75.24 ± 10.13 μm, those of 
diabetic macroalbuminuria group had values of 90.23 ± 9.66 μm and 
70.38 ± 13.13 μm. The RAOD and RALD among the three groups were 
statistically significant (p < 0.05).

3.3 Comparison of venous vascular 
parameters among the three groups

Table  3 presented a comparison of retinal vein parameters 
across the three groups. The findings indicated that there was no 
statistically significant difference in terms of WLR, VWT, and 
WSCA among the groups (p > 0.05). Specifically, the RVOD and 
RVLD measurements for the diabetic non-nephropathy group 
were 114.17 ± 11.00 μm and 99.69 ± 12.74 μm representing the 
smallest values among the three groups. In contrast, the RVOD 
and RVLD measurements for the diabetic microalbuminuria 
group were 123.73 ± 18.33 μm and 107.05 ± 17.88 μm while those 
for the diabetic macroalbuminuria group were 130.80 ± 11.70 μm 
and 115.18 ± 14.25 μm. The differences in RVOD and RVLD 
among the three groups were found to be statistically significant 
(p < 0.05).

3.4 Correlation between parameters of the 
retinal arteriole and urine creatinine, 
microalbumin and UACR in the three 
groups

Table  4 illustrated the weak association between AWT, WSCA 
(R = 0.190, p = 0.037; R = 0.210, p = 0.021) and Urinecreatinine. 
Additionally, RAOD (R = 0.174, p = 0.058), RALD (R = 0.125, p = 0.174), 
and WLR (R = 0.079, p = 0.391) showed no significant correlation with 
Urinecreatinine. Furthermore, there was no relationship between RAOD, 
RALD, WLR, AWT, WSCA, Microalbumin, and UACR (p > 0.05). The 
AWT (R = 0.020, p = 0.827), WLR (R = 0.119, p = 0.194), WSCA (R = 0.089, 
p = 0.334) also did not exhibit a clear correlation with UACR.

3.5 Correlation between parameters of the 
retinal vein and urine creatinine, 
microalbumin and UACR in the three 
groups

Table 5 presented the correlation analysis results indicating that 
RVOD, RVLD, VWT, WLR and WSCA did not show significant 
correlations with Urinecreatinine. However, RVOD and RVLD 
exhibited a significant positive correlation with Microalbumin levels 

TABLE 1 Clinical baseline characteristics of the three groups.

Variables Non-nephrotic Microalbuminuria Macroalbuminuria X2/F P

Age (y) 61.57 ± 7.34 64.67 ± 10.34 66.61 ± 13.26 2.05 0.181

Sex, male/female 18/17 25/24 25/21 3.42 0.134

Total cholesterol (mmol/L) 4.11 ± 1.01 4.39 ± 1.12 4.41 ± 1.35 0.76 0.471

uric acid (μmol/L) 323.25 ± 79.50 320.86 ± 86.89 350.16 ± 108.76 1.20 0.305

Triglyceride (mmol/L) 2.29 ± 1.62 2.44 ± 1.11 2.51 ± 2.48 0.15 0.862

body mass index (kg/m2) 25.25 ± 3.35 25.12 ± 1.96 24.80 ± 2.42 0.29 0.747

diastolic pressure (mmHg) 80.63 ± 9.97 79.86 ± 12.75 82.69 ± 9.92 0.69 0.505

Systolic pressure (mmHg) 141.71 ± 14.76 143.45 ± 12.96 143.45 ± 12.96 1.51 0.226

Glycosylated hemoglobin (HbAlc %) 7.74 ± 2.42 8.59 ± 3.09 13.67 ± 31.28 1.27 0.285
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(R = 0.207, p = 0.024; R = 0.194, p = 0.034). Conversely, VWT, WLR, 
and WSCA did not show significant correlations with Microalbumin. 
Additionally, RVOD and RVLD were weakly associated with UACR 
(R = 0.247, p = 0.007; R = 0.210, p = 0.021) while VWT, WLR, and 
WSCA did not exhibit significant correlations with UACR.

4 Discussion

Suboptimal glycemic controlin diabetic patients can lead to 
chronic vascular complications including diabetic retinopathy and 
diabetic nephropathy. Chronic high blood sugar causes diabetic 
microangiopathy damaging the kidney and retina’s small blood 
vessels. In the kidneys, it alters blood flow, increases filtration pressure 
and harms glomerular cells and membranes. In the retina, it disrupts 
the link between capillary cells and the pigment layer, causing vascular 
leakage and microaneurysms. The emergence of diabetic nephropathy 
is often associated with changes in the choroid (11–14), retina (15), 
and optic nerve (16, 17). One study showed that with the increase of 
UACR, the mean vessel density of the deep retinal capillary plexus 
decreased significantly in DN (8). In addition, according to a study 
(9), as the DN lesion degree deepened, not only the deep retinal 
capillary density decreased, but the shallow retinal capillary density 
was also significantly reduced. At the same time, Yao and Li (10) also 
measured the avascular area of the macular fovea and the choroidal 
vessel density in DN patients and found that the fundus structure of 
DN changed significantly. They suggested that the enlargement of the 
avascular area in the fovea might be  due to abnormalities in the 
choroidal vessels and proposed the possibility of macular ischemia 
While the decrease in choroidal vessel density suggested retinal and 
choroidal ischemia. High sugar (18), oxidative stress (19), and 
inflammation factors (20) only aggravate vascular reactions which are 
thought to be  caused by retinal ischemia and hypoxia and the 
important reason for the change in the structure of the retina. Through 
checking the retinal blood vessels, fundus and systemic microvascular 
changes can be more directly and objectively observed in DN patients.

In this study, RAOD and RALD of the diabetic macroalbuminuria 
group and diabetic microalbuminuria group were significantly lower 
than those of the diabetic non-nephropathy group. This may be related 
to damage to the arterial endothelium caused by hyperglycemia (21). 
Oxidative stress induced by hyperglycemia is believed to cause vascular 
endothelial damage to retinal arteries in the fundus through the 
secretion of inflammatory cytokines by infiltrating macrophages (22) 
leading to vascular blood supply and relaxation dysfunction. At the 
same time, inflammation promotes fibrosis of the vascular wall and 
further narrowing of the blood vessels. Microalbuminuria is an early 
marker of endothelial injury (23). The increase in microalbuminuria 
not only indicates serious changes in renal pathological structure in 
patients, but also indicates the continuous increase of endothelial 
damage to microvessels throughout the body. Feng et al. (24) measured 
the diameter of retinal microvessels in 690 diabetic patients through an 
automatic retinal image analysis system and found that narrow retinal 
arteriolar diameter was positively correlated with the risk of DN in type 
2 diabetic patients. This is consistent with the results of this study.

In this study, a large amount of proteinuria was observed in the 
diabetic microalbuminuria group with RVOD and RVLD being 
significantly higher than in the diabetic non-nephropathy group. 
Additionally, the albuminuria group had the highest levels of RVOD 
and RVLD. This may be related to the increased secretion of vascular 
endothelial growth factor (VEGF). VEGF (25–27) plays a positive role 
in promoting vascular endothelial proliferation. Multiple factors (28–
32) mediated endothelial damage and VEGF levels increased 
significantly. These lead to increased permeability of retinal blood 
vessels, an increase in endovascular blood volume, and an increase in 
the diameter and flexibility of blood vessels. A high glucose 
environment leads to decreased deformability of red blood cells in the 
blood and enhanced aggregation ability (33). Meanwhile, vascular 
endothelial damage further activates platelets and the physiological 
mechanism of coagulation (34), thus keeping blood in a 
hypercoagulable state. This may be another important reason for the 
increase in retinal vein diameter. Nusinovici et al. (35) measured the 
vascular diameters of retinal arterioles and venules in 703 white 

TABLE 2 Comparison of retinal arteriole parameters among the three groups.

Parameters RALD RAOD WLR AWT WSCA

Non-nephrotic 80.34 ± 6.48 103.69 ± 9.10 0.09 ± 0.03 8.81 ± 3.29 3507.11 ± 1203.17

Microalbuminuria 75.24 ± 10.13 96.12 ± 11.16 0.08 ± 0.01 8.07 ± 0.97 3295.85 ± 557.08

Macroalbuminuria 70.38 ± 13.13 90.23 ± 9.66 0.09 ± 0.01 8.32 ± 0.93 3189.40 ± 626.95

F 8.30 15.67 2.53 1.50 1.40

P <0.05 <0.05 0.084 0.227 0.251

RALD, Rentinal arteriolar lumen diameter; RAOD, Rential arteriolar outer diameter; WLR, wall-to-lumen ratio; AWT, Arteriolar wall thickness; WCSA, Wall cross-sectional area.

TABLE 3 Comparison of retinal vein parameters among the three groups.

Parameters RVLD RVOD WLR VWT VWSCA

Non-nephrotic 99.69 ± 12.74 114.17 ± 11.00 0.06 ± 0.01 6.37 ± 0.78 3468.73 ± 616.71

Microalbuminuria 107.05 ± 17.88 123.73 ± 18.33 0.05 ± 0.01 6.57 ± 0.84 3668.00 ± 673.86

Macroalbuminuria 115.18 ± 14.25 130.80 ± 11.70 0.05 ± 0.01 6.69 ± 0.89 3511.99 ± 772.71

F 8.92 11.56 2.64 1.35 0.99

p <0.05 <0.05 0.076 0.263 0.373

RVLD, Rentinal venular lumen diameter; RVOD, Rential venular outer diameter; WLR, wall-to-lumen ratio; VWT, Vein wall thickness; WCSA, Wall cross-sectional area.
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diabetic patients and found that a higher RVOD in white diabetic 
patients was positively correlated with the risk rate of DN. The 
findings of this study align closely with those of previous research.

Optical coherence tomography (SD-OCT) combined with semantic 
segmentation can quickly scan and analyze the parameters of retinal 
blood vessels. Semantic segmentation is a newly emerging automatic 
recognition algorithm for identifying, measuring image structure and 
analyzing vascular parameters. The semantic segmentation method uses 
deep learning technology to train a large number of retinal blood vessel 
image data. So that the model can automatically identify and segment 
the blood vessel regions in the image. During the segmentation process, 
the algorithm will classify each pixel and label it as a vascular or 
non-vascular category in order to obtain an accurate blood vessel 
segmentation result. Based on the segmented vascular regions, the 
semantic segmentation method can further extract and measure the 
vascular parameters. By calculating the pixel width of the vessel area, the 
diameter information of the vessel can be obtained. At the same time, the 
algorithm can also analyze the direction and tortuosity of blood vessels 
to evaluate the morphological characteristics of blood vessels. Through 
the analysis of the overall structure of the network of blood vessels, 
we can also understand the vascular distribution density and complexity. 
In practice, semantic segmentation method can be combined with other 
medical image processing techniques to further improve the accuracy 
and reliability of retinal vascular parameter measurement.

4.1 Advantages and disadvantages

Compared to traditional manual measurement and semi-
automatic FWHM image segmentation methods (36, 37), the semantic 
segmentation method (38) facilitates the automated measurement 
through artificial intelligence (39–42) mitigating manual errors and 
enhancing both efficiency and accuracy relative to the semi-automatic 
FWHM image segmentation method. In practical applications, 
semantic segmentation method can be integrated with other medical 
image processing techniques to further augment the accuracy and 
reliability of retinal vascular parameter measurements (43–45).

The semantic segmentation method can understand the eye 
lesions more comprehensively. Semantic segmentation method of 
ophthalmic images allows for a more detailed analysis of lesion areas, 
which aids in accurate disease evaluation. However, there are some 

shortcomings. Firstly, the semantic segmentation method is based on 
artificial intelligence to learn the blood vessel structure parameters 
and then recognize the blood vessel structure. Manual calculation of 
blood vessel parameters will inevitably have errors which will directly 
affect the effectiveness of artificial intelligence learning. Secondly, The 
semantic segmentation method accurately identifies the vascular 
structure and measures the vascular parameters by analyzing the pixel 
differences in the image. Image quality significantly impacts the 
measurement precision of the segmentation software Thirdly, 
semantic segmentation method for complex analytical ability of eye 
disease is limited. Serious eye diseases often have complex pathological 
mechanisms and intricate texture images. Segmentation based solely 
on gray level information may not be accurate. This can lead to errors 
in the segmentation process affecting subsequent analysis and 
diagnosis. Fourthly, semantic segmentation method has achieved 
substantial advancements in the domains of image recognition and 
segmentation. However, it often lacks the sensitivity required to 
accurately delineate fine boundaries and intricate details in complex 
images. Conversely, Optical Coherence Tomography Angiography 
(OCTA) exhibits superior capability in rendering detailed structures 
and boundaries with greater clarity attributable to its high resolution 
and significant penetration depth. Furthermore, unlike OCTA which 
is a non-invasive imaging modality grounded in physical principles 
and does not necessitate supplementary labeled data, semantic 
segmentation techniques typically demand extensive pixel-level 
labeled datasets for effective training. Semantic segmentation method 
is not only time-consuming and labor-intensive, but also affected by 
the error of labeling data. Therefore, further improvement of Huiyan 
software in the later stages requires time to supervise artificial 
intelligence learning and select a large number of high-definition 
pictures for artificial intelligence training in order to realize the 
automatic measurement of vascular structure parameters in a true 
sense. Considering the aforementioned limitations, there exists 
substantial potential for future research in the domain of semantic 
segmentation for the measurement of retinal vessels in patients with 
diabetic nephropathy. Initially, efforts can be  directed toward 
optimizing the algorithmic model to enhance the accuracy and 
efficiency of vessel segmentation, thereby facilitating the detection of 
more nuanced vascular lesions. Secondly, integrating clinical data like 
renal function and blood glucose is examined to create a 
comprehensive disease monitoring model. Finally, the study will 

TABLE 4 Correlation analysis between parameters of the retinal arteriole 
and urine creatinine, microalbumin and UACR in the three groups.

Parameters RAOD RALD AWT WLR AWSCA

Urinecreatinine

R 0.174 0.125 0.190 0.079 0.210

P 0.058 0.174 0.037 0.391 0.021

Microalbumin

R −0.1390 0.066 0.020 0.099 0.085

P 0.129 0.472 0.827 0.282 0.353

UACR

R −0.177 −0.002 0.020 0.119 0.089

P 0.053 0.985 0.827 0.194 0.334

RALD, Rentinal arteriolar lumen diameter; RAOD, Rential arteriolar outer diameter; WLR, 
wall-to-lumen ratio; AWT, Arteriolar wall thickness; WCSA, Wall cross-sectional area.

TABLE 5 Correlation analysis between parameters of the retinal vein and 
urine creatinine, microalbumin and UACR in the three groups.

Parameters RVOD RVLD VWT WLR VWSCA

Urinecreatinine

R 0.021 0.049 −0.134 −0.091 0.117

P 0.824 0.594 0.144 0.322 0.202

Microalbumin

R 0.207 0.194 0.041 −0.141 0.058

P 0.024 0.034 0.654 0.125 0.532

UACR

R 0.247 0.210 0.135 −0.113 0.011

P 0.007 0.021 0.142 0.219 0.905

RVLD, Rentinal venular lumen diameter; RVOD, Rential venular outer diameter; WLR, 
wall-to-lumen ratio; VWT, Vein wall thickness; WCSA, Wall cross-sectional area.
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be  converted into clinical tools to aid early diagnosis, disease 
monitoring, and personalized treatment plans for diabetic nephropath.

In this study, advanced semantic segmentation technology was 
employed to conduct an in-depth analysis of fundus images from 
diabetic patients. Retinal blood vessels were automatically segmented 
and various vascular parameters were successfully extracted. The 
findings indicate that abnormal changes in these vascular parameters 
are significantly associated with an elevated risk of diabetic 
nephropathy. In addition, these studies also show a significant 
correlation between changes in vascular parameters and progressive 
progression of diabetic nephropathy. This provides a novel and 
objective method for the early diagnosis and risk assessment of 
diabetic nephropathy. This study applies the semantic segmentation 
method in deep learning to the domain of medical image processing, 
addressing the limitations inherent in traditional manual 
measurement techniques and enhancing the accuracy and efficiency 
of analysis. A notable limitation of this study is the relatively small 
sample size, which constrains the generalizability and reliability of the 
findings. This limited sample size may undermine the 
representativeness of the sample, thereby impeding the extrapolation 
of the results to the broader population. To address this limitation, 
future research should consider increasing the sample size to 
encompass a more diverse cohort of patients with varying backgrounds 
and degrees of illness severity. Such an approach would enhance the 
study’s credibility and applicability. Despite the need for further 
research in model optimization and the exploration of 
pathophysiological mechanisms, this investigation offers valuable 
insights and guidance for clinical research and therapeutic practices 
related to diabetic nephropathy. Furthermore, it underscores the 
significant potential and promising applications of semantic 
segmentation method within the medical field.
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Purpose: Age-related macular degeneration (AMD) is the leading cause of low 
vision and even blindness in the elderly population worldwide. However, no 
studies have been conducted to analyze the causal relationship between the 
cathepsin family and AMD. The present study aimed to explore and analyze this 
potential association using Mendelian randomization (MR).

Methods: In this study, AMD was classified into two types: exudative AMD and 
atrophic AMD. Inverse-variance weighting (IVW) was used as the main analysis 
method. The association between nine cathepsins and the two classifications 
of AMD were analyzed using multivariable Mendelian randomization (MVMR). 
Sensitivity analysis included Cochran’s Q-test and the MR-Egger intercept test.

Results: Two-sample MR analysis showed that higher levels of cathepsin L2 were 
associated with a delay in the development of atrophic AMD (IVW: p  =  0.017; 
OR  =  0.885; 95% CI  =  0.799–0.979). Reverse MR analysis indicated that cathepsin 
E levels were increased in individuals with atrophic (IVW: p  =  0.023; OR  =  1.058; 
95% CI  =  1.007–1.111) and exudative AMD (IVW: p  =  0.018; OR  =  1.061; 95% 
CI 1  =  1.010–1.115). MVMR analysis indicated a causal relationship between 
cathepsin G (IVW: p  =  0.025; OR  =  1.124; 95% CI  =  1.014–1.245), cathepsin O 
(IVW: p  =  0.043, OR  =  1.158, 95% CI  =  1.004–1.336), and exudative AMD after 
coordinating for other types of cathepsin.

Conclusion: This study demonstrated a potential link between the cathepsin 
family and the onset of AMD. Elevated serum concentrations of cathepsin L2 
may serve as a protective factor for atrophic AMD, while increased levels of 
serum cathepsin G and O concentrations may promote the development of 
exudative AMD. Besides, the development of AMD may be  associated with 
elevated serum concentrations of cathepsin E.

KEYWORDS

cathepsins, age-related macular degeneration, Mendelian randomization, causal 
analysis, multivariable Mendelian randomization
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1 Introduction

Age-related macular degeneration (AMD) is the leading cause 
of low vision and blindness in the elderly population (1). 
Currently, the global prevalence of AMD is approximately 8.69% 
(age range: 45–85 years), with the number of affected patients 
projected to increase to 288 million by 2040 (2). Therefore, 
preventing AMD risk factors has become an important area of 
research in clinical practice. AMD-related risk factors include age, 
immune system-related genetic variants, smoking, obesity, 
excessive cholesterol intake, and various known cardiovascular 
metabolic factors (3). In addition, some studies have shown that 
hyperglycemia can affect the development of AMD through the 
accumulation of highly stable advanced glycation end products, 
oxidative stress, and hemodynamic perturbations related to 
inflammatory responses, such as mitochondrial dysfunction (4). 
Cathepsins represent a group of lysosomal proteolytic enzymes 
that play an important role in maintaining cellular homeostasis 
(5). Common cathepsins belong to the papain superfamily of 
cysteine proteases (6). They are integral to almost all physiological 
and pathophysiological cellular processes, such as protein and 
lipid metabolism, autophagy, antigen presentation, growth factor 
receptor recycling, cellular stress signaling, extracellular matrix 
degradation, and lysosome-mediated cell death (7). The cathepsin 
family is closely involved in regulating proinflammatory signaling 
pathways, and cathepsin D and S can promote the degradation of 
the photoreceptor outside the retina (8). Moreover, Thomas (9) 
found a causal relationship between cathepsin F and early AMD.

However, no study has explored the mechanism further. Some 
scholars believe that the abnormal regulation of cathepsin activity 
may be  related to the occurrence and development of 
AMD. However, no previous study in China has been conducted to 
analyze systematically whether a potential link exists between 
cathepsins and the occurrence and development of AMD (2). An 
increasing number of studies have revealed the role of genetics in 
disease etiology with the advancement of genomics. Mendelian 
randomization (MR) relies on genome-wide association studies 
(GWAS) using one or more genetic variants as instrumental 
variables (IVs) for causal analysis. These variables are strongly 
associated with the exposure and are unaffected by confounding 
factors. MR studies can infer the causal effect of exposure on 
outcomes (10). In this context, this study analyzed the potential 
causal associations between different types of tissue proteins and 
both AMD classifications using two-sample and multivariate 
MR methods.

2 Materials and methods

2.1 Instrumental variables (IVs)

The IV for tissue proteins (μg/L) was obtained from the 
INTERVAL study, which included 3,301 Europeans (11). The data 
source is https://questions.mrcieu.ac.uk. The cathepsin-related IV 
screening conditions for MR analysis are as follows: p < 5×10−8, linkage 
disequilibrium (LD, r2 ≤ 0.001), satisfying Hardy–Weinberg balance, 
and a genetic distance of <10,000 kb (12).

2.2 Outcome data source

Based on clinical presentation, the Age-related Eye Disease Study 
team classified AMD into AMD-free, early, middle, and advanced 
stages. Two distinct manifestations emerged in the late stages of AMD 
(13). One is the development of confluent areas of atrophy involving 
photoreceptors and retinal pigment epithelium, known as geographic 
atrophy (atrophic AMD). The other is the growth of abnormal blood 
vessels in the macular region, referred to as neovascular AMD 
(exudative AMD) (13). Thus, the AMD data were obtained from the 
FinnGen database. This study divided the outcome (AMD) into 
previous studies of exudative AMD (4,848 case group, 252,277 
controls; European population) and atrophic AMD (6,065 case group, 
251,042 controls; European population). Table 1 shows the details.

3 Analytical methods

MR refers to an analytic approach to assess the causality of an 
observed association between a modifiable exposure or risk factor and 
a clinically relevant outcome (14). It uses genetic variation as an IV to 
analyze whether exposure would have a causal effect on the outcome 
(14). For two-sample MR, the causal effect of the exposure (X is 
cathepsins) on the outcome (Y is AMD) via the GIV (G) can then 
be  estimated by βMR  = βY ~ G/βx ~ G; βMR (known as the Wald ratio 
estimate) represents the causal effect estimate obtained from βY ~ G and 
βx ~ G, the regression coefficients obtained from the regression of the 
outcome on the GIV and the regression of the exposure on the GIV, 
respectively (15) (Figure 1). MVMR is an extension of MR that allows 
for the causal effects of multiple exposures on an outcome to 
be estimated (16).

MVMR estimates the “direct” causal effects of each exposure 
included in the estimation of the outcome, conditional on the other 
exposures included in the model (17). It is particularly useful where 
two or more potentially related exposures are of interest, and the 
researcher wishes to understand whether both exposures exert a 
causal effect on the outcome or, as described later, where one exposure 
is potentially a mediator of another exposure. With individual-level 
data, MVMR is implemented through two-stage least-squares 
regression of the model: Y = β0  + β1X1  + β2X2  + Vy, where Y is the 
outcome of interest; X1 and X2 are the exposures of interest; β0, β1, and 
β2 are the intercept and effects of X1 and X2 on the outcome, 
respectively. Vy is a random error term that is assumed to be normally 
distributed (18) (Figure 2).

The selected IVs must meet three criteria. First, they should 
be highly correlated with the exposure. Second, the SNP should not 
confound the relationship between exposure and outcome. Finally, the 
SNP cannot be associated with the outcome through any pathway 
other than exposure. When the last two conditions are violated, the 
SNP is considered to exhibit horizontal pleiotropy (19).

In previous studies, inverse variance weighting (IVW) has been 
used as the primary method for estimating the overall effect size (20). 
In particular, the causal effect estimates from each genetic variant are 
combined using an IVW meta-analysis framework. Thus, the IVW 
method is a weighted average of the causal effects derived from the 
genetic variants. This approach is akin to fitting a weighted linear 
regression of the associations between the instruments and the 
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outcome, with the intercept term set to zero. Notably, this method 
assumes that all instruments are valid and that no pleiotropic effects 
exist, meaning the genetic variants are not associated with multiple 
exposures. Thus, any differences in the causal estimates derived from 
each genetic variant can be attributed to sampling variability, adhering 
to the homogeneity assumption (21, 22). Supplementary methods 
such as MR-Egger (23) and weighted median (WM) (24) were used to 
verify the robustness of the MR results.

In short, in the presence of pleiotropy, one could fit a weighted 
linear regression of the associations between the instruments and the 
outcome while assuming an unconstrained intercept term (in contrast 
to the IVW approach, where the intercept term is constrained and set 
to zero), resulting in the MR-Egger regression method (20). The slope 
of the MR-Egger regression is a robust estimate of the causal effect 
accounting for potential horizontal pleiotropy. An estimator of the 
WM method (15) is a median, where the individual MR estimates are 
weighted proportionally according to their precision. When up to 50% 
of genetic variants are invalid instruments, a causal effect can 

be estimated as the median of the weighted ratio estimates using the 
reciprocal of the variance of the ratio estimate as weights (24). MR 
analysis (including IVW, MR-Egger, and WM) was performed using 
the R TwoSampleMR package.

Sensitivity analysis and statistical tests were performed in this 
study to evaluate the validity of the hypotheses. The heterogeneity of 
SNPs was judged using Cochran’s Q test, with a p-value of >0.05, 
indicating a lack of heterogeneity (12). The MR-PRESSO global test 
and the MR-Egger intercept were used to identify outliers and 
horizontal pleiotropic effects (25).

The MR-Egger intercept represents the average multidirectional 
effect (intercept p < 0.05), and the slope can produce robust 
multidirectional MR estimates.

The MR-PRESSO outliers test was used to correct for pleiotropy 
by removing or lowering outliers when pleiotropy was significant 
(tested here using p < 0.05) (25).

Multivariate MR is an extension of the two-sample MR (19). This 
study not only included the causal relationship between individual 

TABLE 1 Two-sample forward MR analysis.

Database Data name The first 
author

Sample 
capacity

The year of 
publication

Race Sex Website

IEU Cathepsins Jialin Li 3301 2023 European Men and 

women

https://gwas.

mrcieu.ac.uk

FinnGen Dry age-related 

macular 

degeneration

NA 257107 2023 European Men and 

women

https://storage.

googleapis.com/

finngen-public-

data-r9/

summary_stats/

finngen_R9_

DRY_AMD.gz

Wet age-related 

macular 

degeneration

NA 257125 2023 European Men and 

women

https://storage.

googleapis.com/

finngen-public-

data-r9/

summary_stats/

finngen_R9_

WET_AMD.gz/

FIGURE 1

Diagram of the approach used by Mendelian randomization studies, which compare the observed genotype-outcome association with the expected 
genotype-outcome association: βx  ~  G: regression coefficient of the genetic variant-exposure association. βY  ~  G: regression coefficient of the genetic 
variant-outcome association. βMR: regression coefficient of the exposure-outcome association.
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cathepsins and AMD but also explored the association between nine 
cathepsins and AMD through multivariate MR. In addition, this study 
included two AMD classifications as exposure factors by using 
cathepsins as the outcome to assess reverse causality and demonstrate 
the existence of bidirectional causality. These reverse MR analyses 
used the same GWAS dataset described above.

4 Results

4.1 Two-sample MR analysis clarified the 
causal relationship between nine 
cathepsins and different subtypes of AMD

As detailed in Figure  3, a two-sample MR analysis of nine 
cathepsins (B, E, F, G, H, L2, O, S, and Z) and both AMD classifications 

was performed to assess the effect of nine cathepsins on AMD 
subtypes. The results showed that for atrophic AMD, the increased 
concentrations of serum cathepsin L2 delayed its progression (IVW: 
p = 0.017; OR = 0.885; 95% CI = 0.799–0.979).

However, a weak association existed between cathepsin O and 
atrophic AMD, with elevated serum cathepsin O concentrations 
protecting against it (WM: p = 0.038; OR = 0.882; 95% CI = 0.783–
0.993). For exudative AMD, none of the nine cathepsins showed 
a significant correlation with them. None of the above studies 
showed pleiotropy or heterogeneity. All the analyses are detailed 
in Table 2.

Reverse MR analysis was performed in this study to explore 
whether reverse causality existed. The occurrence of atrophic AMD 
caused increased cathepsin E (IVW: p = 0.023; OR = 1.058; 95% 
CI = 1.007–1.111), and the MR-Egger intercept and the MR-PRESSO 
analysis showed no significant pleiotropy (0.757 and 0.811, 

FIGURE 2

A simple multivariable Mendelian randomization model with two exposures. β1 and β2 are the intercept and effects of exposure on the outcome.

FIGURE 3

Two-sample MR analysis: (A) forward analysis of atrophic AMD, (B) forward analysis of exudative AMD, (C) reverse analysis of atrophic AMD, and 
(D) reverse analysis of exudative AMD.
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respectively). Exudative AMD also led to elevated cathepsin E (IVW: 
p = 0.018; OR = 1.061; 95% CI = 1.010–1.115).

Moreover, the MR-Egger intercept and the MR-PRESSO analysis 
showed that the results did not show significant pleiotropy (0.291 and 
0.248, respectively). The rest of the analysis did not demonstrate a 
causal link between the two AMD classifications and other cathepsins 
(Table 2).

4.2 MVMR analysis clarified the causal 
relationship between nine cathepsins and 
different subtypes of AMD

In this study, the relationship between the genetic propensity of 
multiple cathepsins and different subtypes of AMD was assessed by 
multivariate MR. The results showed that after the coordination of 
other types of cathepsin enzymes, serum cathepsin G (IVW: p = 0.025; 
OR = 1.124; 95% CI = 1.014–1.245) and the increased concentration of 

cathepsin O (IVW: p = 0.043; OR = 1.158; 95% CI = 1.004–1.336) could 
promote the occurrence of exudative AMD. For atrophic AMD, no 
significant cathepsins were found after the coordination of other types 
of cathepsins (Figure 4 and Table 3). The above analysis results do not 
have pleiotropy and heterogeneity.

5 Discussion

This study revealed a potential causal relationship between the 
cathepsin family and the occurrence of AMD through MR analysis, 
thereby providing a favorable reference for further studies.

AMD is the major cause of low vision and even blindness in the 
elderly population (1). The number of patients with AMD worldwide 
is expected to reach 288 million in 2040 (2). The prevalence of AMD 
in people older than 70 years in China is 20.2% (2). The number of 
patients with AMD continues to increase with the aging of China’s 
population. The authors of the previous studies believe that the onset 

TABLE 2 Two-sample forward MR analysis.

Cathepsin SNPs Inverse variance weighted MR-Egger Weighted median

OR (95%CI) p OR (95%CI) p OR (95%CI) p

Cathepsin B

Atrophic AMD 18 1.02 (0.96–1.09) 0.38 1.01 (0.87–1.17) 0.85 0.97 (0.89–1.07) 0.65

Exudative AMD 18 1.01 (0.93–1.11) 0.65 1.07 (0.87–1.31) 0.48 1.03 (0.93–1.14) 0.45

Cathepsin E

Atrophic AMD 9 0.98 (0.91–1.05) 0.61 0.99 (0.88–1.12) 0.95 0.96 (0.86–1.06) 0.46

Exudative AMD 9 0.99 (0.87–1.13) 0.92 0.90 (0.72–1.12) 0.39 0.94 (0.84–1.05) 0.28

Cathepsin F

Atrophic AMD 10 1.00 (0.93–1.08) 0.82 1.03 (0.86–1.24) 0.73 1.00 (0.91–1.10) 0.91

Exudative AMD 10 1.01 (0.91–1.12) 0.79 1.19 (0.91–1.55) 0.22 0.96 (0.86–1.07) 0.48

Cathepsin G

Atrophic AMD 11 0.98 (0.90–1.07) 0.78 1.05 (0.87–1.26) 0.57 0.99 (0.88–1.12) 0.97

Exudative AMD 11 1.10 (0.97–1.24) 0.11 1.18 (0.90–1.54) 0.24 1.12 (0.97–1.28) 0.10

Cathepsin H

Atrophic AMD 10 1.00 (0.95–1.06) 0.81 0.97 (0.90–1.04) 0.47 0.99 (0.94–1.04) 0.77

Exudative AMD 10 0.97 (0.92–1.01) 0.24 0.92 (0.86–0.98) 0.04 0.95 (0.90–1.00) 0.07

Cathepsin L2

Atrophic AMD 11 0.88 (0.79–0.97) 0.01 0.77 (0.59–1.01) 0.09 0.93 (0.81–1.07) 0.34

Exudative AMD 11 0.90 (0.78–1.04) 0.19 1.39 (1.03–1.88) 0.05 0.92 (0.79–1.08) 0.34

Cathepsin O

Atrophic AMD 12 0.92 (0.84–1.00) 0.07 1.04 (0.85–1.28) 0.64 0.88 (0.78–0.99) 0.03

Exudative AMD 12 1.02 (0.91–1.14) 0.67 1.02 (0.78–1.33) 0.86 0.99 (0.87–1.13) 0.95

Cathepsin S

Atrophic AMD 23 0.99 (0.93–1.05) 0.84 0.89 (0.80–0.98) 0.03 0.91 (0.84–0.99) 0.03

Exudative AMD 23 0.99 (0.94–1.06) 0.99 0.93 (0.84–1.03) 0.22 0.94 (0.86–1.03) 0.20

Cathepsin Z

Atrophic AMD 13 1.02 (0.96–1.08) 0.42 0.95 (0.87–1.05) 0.38 0.98 (0.90–1.06) 0.66

Exudative AMD 13 0.98 (0.91–1.05) 0.60 0.96 (0.86–1.06) 0.49 0.96 (0.88–1.04) 0.37

AMD, age-related macular degeneration; CI, confidence interval; OR, odds ratio.
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of AMD, a multifactorial disease, is associated with many risk factors, 
such as age, immune system-related genetic variants, smoking, obesity, 
excessive cholesterol intake, and known cardiovascular and metabolic 

factors (3). In addition, a study showed that the development of AMD 
is closely associated with numerous activated microglia and 
macrophages (2). However, no study has proposed definite 

FIGURE 4

Multivariate MR analysis: (A) atrophic AMD analysis and (B) exudative AMD analysis.

TABLE 3 Two-sample reverse MR analysis.

Cathepsin SNPs Inverse variance weighted MR-Egger Weighted median

OR (95%CI) p OR (95%CI) p OR (95%CI) p

Cathepsin B

Atrophic AMD 21 0.99 (0.94–1.04) 0.78 0.99 (0.91–1.07) 0.92 1.00 (0.93–1.08) 0.86

Exudative AMD 20 1.00 (0.96–1.05) 0.73 0.97 (0.90–1.04) 0.44 1.00 (0.94–1.07) 0.84

Cathepsin E

Atrophic AMD 21 1.05 (1.00–1.11) 0.02 1.03 (0.95–1.12) 0.35 1.05 (0.98–1.11) 0.12

Exudative AMD 20 1.06 (1.01–1.11) 0.01 1.00 (0.93–1.08) 0.89 1.04 (0.98–1.10) 0.11

Cathepsin F

Atrophic AMD 21 1.02 (0.96–1.09) 0.42 0.96 (0.87–1.07) 0.56 1.00 (0.93–1.08) 0.84

Exudative AMD 20 1.03 (0.97–1.10) 0.22 0.97 (0.88–1.07) 0.61 1.02 (0.95–1.08) 0.49

Cathepsin G

Atrophic AMD 21 0.98 (0.92–1.05) 0.72 0.99 (0.89–1.11) 0.92 1.02 (0.95–1.09) 0.47

Exudative AMD 20 0.99 (0.94–1.04) 0.87 0.98 (0.90–1.07) 0.68 1.01 (0.96–1.07) 0.49

Cathepsin H

Atrophic AMD 21 1.01 (0.96–1.06) 0.57 0.97 (0.89–1.05) 0.54 1.00 (0.93–1.08) 0.86

Exudative AMD 20 1.03 (0.98–1.08) 0.22 0.98 (0.90–1.06) 0.71 1.05 (0.98–1.12) 0.12

Cathepsin L2

Atrophic AMD 21 0.99 (0.94–1.04) 0.75 0.96 (0.88–1.04) 0.39 0.98 (0.91–1.05) 0.61

Exudative AMD 20 0.98 (0.94–1.03) 0.58 0.99 (0.91–1.07) 0.82 1.00 (0.94–1.06) 0.91

Cathepsin O

Atrophic AMD 21 1.01 (0.96–1.06) 0.53 0.98 (0.90–1.06) 0.71 1.01 (0.94–1.09) 0.64

Exudative AMD 20 1.02 (0.97–1.06) 0.30 1.00 (0.93–1.08) 0.81 1.03 (0.96–1.10) 0.31

Cathepsin S

Atrophic AMD 21 0.99 (0.94–1.04) 0.95 1.04 (0.96–1.13) 0.30 0.99 (0.92–1.05) 0.76

Exudative AMD 20 1.00 (0.96–1.05) 0.74 1.02 (0.95–1.10) 0.44 1.01 (0.95–1.07) 0.68

Cathepsin Z

Atrophic AMD 21 1.00 (0.95–1.05) 0.96 0.96 (0.88–1.04) 0.36 1.02 (0.94–1.09) 0.58

Exudative AMD 20 1.01 (0.96–1.06) 0.68 0.95 (0.88–1.03) 0.31 1.01 (0.95–1.07) 0.70

AMD, age-related macular degeneration; CI, confidence interval; OR, odds ratio.
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observations related to the onset of AMD. Given the high blindness 
rate of the disease, exploring and analyzing the surveillance indicators 
of AMD pathogenesis is valuable for early diagnosis and treatment.

Previous studies have found that oxidative stress may affect the 
occurrence and development of AMD through microglia. In normal 
retinal tissue, continuous monitoring of harmful stimuli is performed 
by microglia, which are mostly confined to the plexiform layer, where 
they exhibit complex branching processes to sense the local retinal 
microenvironment (26).

These cells play an important role in retinal homeostasis and 
contribute to neuroprotection against transient pathophysiological 
insults. However, when stress is permanent, persistent microglial 
inflammatory responses may cause changes in retinal integrity and 
induce neuronal death. These changes lead to retinal degeneration and 
may also be caused by direct damage to glial cells by stress (27). Active 
microglia phagocytose retinal myelin debris and promote retinal 
regeneration. However, the ability of microglia to maintain immune 
surveillance and tissue repair decreases with age (28). Microglial 
senescence is associated with the production and release of 
proinflammatory cytokines, which are involved in the pathogenesis of 
AMD and other retinal neurodegenerative diseases (29). In addition, 
under oxidative stress, with the occurrence of aging retinal pigment 
epithelium (RPE), the production and accumulation of advanced 
glycation end products (AGEs) and the activation of AGE receptors 
(RAGE) are enhanced (30). AGE receptors are present in cells, such as 
endothelial cells, pericytes, microglia, monocytes, and macrophages 
(30). Experimental studies have shown that exposure of RPE cells to 
the RAGE ligand AGEsorS100B can cause retinal tissue damage 
through RPE-mediated VEGF expression, leading to pathological 
angiogenesis (31). Therefore, abnormal microglial function plays an 
important role in the occurrence and development of AMD.

The cathepsin family is involved in protein and lipid metabolism, 
autophagy, and antigen presentation and has great value for cell 
homeostasis (7). In the absence of external stimuli, cathepsins are 
generally affected by transcription, translation, and epigenetic 
regulation, and extracellular cathepsins can accumulate in the 
extracellular environment by activating immune cells, osteoclasts, 
fibroblasts, glial cells, endothelial cells, and smooth muscle cells (32). 
Cathepsin release plays a role when pathological conditions, such as 
cancer, inflammation, and immune imbalance, occur (32). Previous 
studies showed that cathepsins are important in the activation of 
microglia during chronic neuroinflammation (33, 34). This finding 
proves that cathepsins promote the development of AMD by activating 
microglia in response to external stimulation. As one of the 
characteristics of exudative AMD, the production mechanism of 
retinal neovascularization is also the focus of the current research. 
Wang (34) found that cathepsins can effectively affect the expression 
of proteins closely related to angiogenesis, such as phosphorylated 
endothelial-type nitrogen oxide synthase and phospho-glycogen 
synthase kinase-3 protein. Moreover, cathepsins can promote 
angiogenesis in response to hypoxia and ischemic stress.

Moreover, Jan (35) found that dysregulation of cystatin (cathepsin 
inhibitors) in humans may increase susceptibility to exudative 
AMD. This finding also provides further evidence for the potential 
role of cathepsins in exudative AMD.

Based on previous studies, the present study used multiple MR 
methods to comprehensively analyze the potential causal relationship 
between the cathepsin family and atrophic and exudative AMD.

The findings suggest that cathepsin L 2 may be a protective 
factor for atrophic AMD, while cathepsin G and O are risk factors 
for exudative AMD. In addition, atrophic and exudative AMD may 
be accompanied by increased cathepsin E concentrations. Previous 
studies have found that the cathepsin E-sTRAIL axis is involved in 
communication between microglia and neurons during the 
progression of Alzheimer’s disease (36). Given that Alzheimer’s 
disease and AMD are diseases of aging, this indirectly suggests 
that cathepsin E may also play an important role in the 
pathogenesis of AMD and is closely associated with the cathepsin 
E-sTRAIL axis (36). When other types of cathepsins were adjusted 
in multivariate analysis, no causal relationship existed between 
cathepsins and atrophic AMD. This result may be  due to the 
functional compensation of other cathepsins, and multivariate MR 
analysis helped mitigate these potential biases that may affect 
traditional observational studies (12). This study explored and 
analyzed the possible causal relationship between the cathepsin 
family and AMD pathogenesis through MR, thereby providing a 
reference for the subsequent exploration of the effective 
monitoring indicators of AMD pathogenesis. Given that the 
pathogenesis of AMD is mediated by multiple factors and the 
cathepsin family is involved in many cellular physiological 
processes, further research is needed to analyze the specific link 
between the two.

With the continuous development of medical technology and 
science, the early screening, diagnosis, and treatment of AMD have 
become the focus of ophthalmologists. The results of this study 
provide new monitoring indicators for the early screening of AMD.

This study demonstrated a potential link between the cathepsin 
family and AMD pathogenesis, where elevated serum cathepsin L 2 
concentration may be a protective factor for atrophic AMD.

Moreover, elevated serum concentrations of cathepsin G and O 
may promote the development of exudative AMD. However, the 
development of AMD may be  accompanied by elevated serum 
cathepsin E concentrations.

Given the high blindness rate of AMD, recognizing and 
controlling the risk factors for AMD are crucial for reducing its 
prevalence and enabling early diagnosis and treatment.

Although this MR-designed investigation has several strengths 
that complement traditional epidemiological studies, it also has some 
limitations to be considered. First, the study was limited to individuals 
of European ancestry, which suggests that our findings should not 
be directly extrapolated to other populations. Second, while we did 
not observe evidence of pleiotropy for the causal association using 
different MR approaches, there remains a possibility that the variants 
used in the MR confer a risk of AMD through a pleiotropic pathway. 
Therefore, further MR analysis using individual-level data should 
be conducted to evaluate the potential causal relationship between the 
cathepsin family and the risk of AMD. In addition, further studies, 
such as ablation experiments, should be conducted to elucidate the 
underlying mechanism, which will help verify these findings.
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