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Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of in situ samples induced by environmental fluctuations. An approach of functional metabolome interpretation of field samples would be desirable in order to be able to identify and trace back the impact of environmental changes on plant metabolism. To test the applicability of metabolomics studies for a characterization of plant populations in the field, we have identified and analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular biological model system in plant biology with one of the best functionally annotated genomes representing a reference system for all other plant genome projects. The genomes of these novel natural populations were sequenced and phylogenetically compared to a comprehensive genome database of A. thaliana ecotypes. Experimental results on primary and secondary metabolite profiling and genotypic variation were functionally integrated by a data mining strategy, which combines statistical output of metabolomics data with genome-derived biochemical pathway reconstruction and metabolic modeling. Correlations of biochemical model predictions and population-specific genetic variation indicated varying strategies of metabolic regulation on a population level which enabled the direct comparison, differentiation, and prediction of metabolic adaptation of the same species to different habitats. These differences were most pronounced at organic and amino acid metabolism as well as at the interface of primary and secondary metabolism and allowed for the direct classification of population-specific metabolic phenotypes within geographically contiguous sampling sites.
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INTRODUCTION

Natural variation, as first described by Darwin (1859), is the ultimate point of attack for natural selection and still the only known process that is able to produce adaptive evolutionary change. Arabidopsis thaliana has become a powerful model organism for studying many aspects of plant biology and adaptation to the environment (Somerville and Koornneef, 2002; Hancock et al., 2011). After the publication of a first complete reference genome sequence (Arabidopsis, 2000), it was discovered that it is inappropriate to think about ‘the’ genome of a species (Weigel and Mott, 2009). In fact, all species are exposed to specific environmental clines differently affecting individual plants’ phenotypic performance (Turesson, 1922; Ellenberg, 1953; Hoffmann, 2002; Weckwerth, 2003, 2011a; Lasky et al., 2012; Weigel, 2012). Therefore, they comprise different populations colonizing different habitats. These habitats may impose differing directions of natural selection upon the coenospecies, and thus, together with genetic drift, lead to diverging allele frequencies and to an inhomogeneous genetic structure. This inhomogeneity is called natural genetic variation and potentially provides insights in genome evolution, population structure, and selective mechanisms (Mitchell-Olds and Schmitt, 2006). However, the genetic side represents only one level in the complex molecular architecture, which builds up the basis for physiological and morphological responses of plants to environmental stimuli (Pigliucci, 2010). The experimental analysis and interpretation of these molecular architectures is nonintuitive, particularly because of the highly complex organization of plant molecular networks. Numerous studies have shown that a multitude of genes, proteins, metabolites, and underlying regulatory processes are involved in plant-environment interactions (Koornneef et al., 2004; Wienkoop et al., 2008; Keurentjes, 2009; Chan et al., 2010; Macel et al., 2010; Lasky et al., 2012). However, interpreting these findings in the context of environmental conditions and, particularly, in an ecological context is highly challenging. This is particularly due to a missing stringent definition of the genotype–phenotype relationship, which can hardly be expected to be derivable from a single methodology but rather from a comprehensive platform of experimental and theoretical strategies (Weckwerth, 2003, 2011a; Diz et al., 2012). Recording environmentally induced fluctuations in a metabolic homeostasis has been shown to be a promising approach to unravel complex patterns of metabolic regulation and adaptation. For example, the metabolism of floral anthocyanins, which is a central group of secondary metabolites, was found to represent a suitable metabolic system to characterize the process of environmental regulation (Lu et al., 2009). The authors suggested that environmental regulation of the anthocyanin pathway is mainly affected by daily average temperature and UV light intensity modulating anthocyanin transcript levels at floral developmental stages. In another study, a metabolomics approach has been applied to elucidate in situ allelopathic relationships of individual species to phytosociological gradients (Scherling et al., 2010). We demonstrated that in situ metabolic signatures of five different plant species correlated with a biodiversity gradient. More general, metabolomics approaches can be expected to provide detailed information about metabolic processes in context of genomic signatures (Chae et al., 2014). Particularly in model systems with functionally annotated genomes this makes it the method of choice to unravel and interpret molecular ecological properties.

For the genetic and molecular biological model plant A. thaliana, one of the best functionally annotated genomes (Baerenfaller et al., 2012; Lavagi et al., 2012) and a comprehensive catalog of genome information is available1. Recently, an in vitro study of the physiological homeostasis of 92 A. thaliana accessions in multiple growth settings has demonstrated the devastating impact of varying environmental conditions on the correlation of in vitro metabolism to geographic origin (Kleessen et al., 2012). Yet, as microhabitats may vary significantly on relatively small spatial scales and are not necessarily corresponding to geographic distance, the investigation of the molecular performance of plants in situ seems inevitable to get a realistic picture of plant–environment interactions and their ecophysiological consequences. A well-known example indicating the need of such in situ studies is Ellenberg’s Hohenheimer groundwater table experiment (Ellenberg, 1953; Hector et al., 2012). Here, it was shown that the phenotypic performance of plants in vitro significantly differ from their in situ physiological homeostasis, as important microhabitat parameters may not be included in the in vitro growth setting (Shulaev et al., 2008). Both plant communities and plant populations seem to be an appropriate target for the development and tuning of in situ methodologies due to their sessile nature and the availability of a large set of in vitro reference data for some species. This enables the intersection of individual molecular with environmental data, and even ecosystem properties can be accounted for via geographic information systems. Genotyping approaches in A. thaliana have already been established (Atwell et al., 2010; Platt et al., 2010; Todesco et al., 2010; Hancock et al., 2011; Horton et al., 2012; Long et al., 2013) and are easily transferable to in situ samples (Hunter et al., 2013). Metabolomics and proteomics technologies provide the means for generating upstream molecular phenotypes (Morgenthal et al., 2005; Hoehenwarter et al., 2008; Wienkoop et al., 2008; Scherling et al., 2010; Weckwerth, 2011a; Doerfler et al., 2013). Thus, these techniques are suitable for experimental high-throughput analysis at the molecular level, representing the basis for strategies of multivariate statistics and mathematical modeling to identify biochemical perturbation sites and gain predictive power (Nägele and Weckwerth, 2013; Nägele, 2014). In this context, particularly metabolomic analysis has proven to be a suitable approach for the comprehensive and representative investigation of complex metabolic networks with respect to the underlying phenotypic diversity (Weckwerth et al., 2004a; Keurentjes, 2009; Scherling et al., 2010).

In the present study, the genomes and metabolomes of in situ samples from three Austrian natural populations of A. thaliana were characterized. Applying a combination of metabolomics, multivariate statistics, and mathematical modeling based on genome-derived biochemical pathway information, biochemical and physiological signatures of in situ Arabidopsis populations could be identified (Figure 1). Different metabolic steady states on a population level and general patterns common to all populations were distinguished by this integrative approach, which finally allowed the prediction of characteristic processes of in situ metabolic adaptation.
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FIGURE 1. By the application of metabolomics, multivariate statistics and mathematical modeling based on genome-derived biochemical pathway information, biochemical and physiological signatures of in situ Arabidopsis populations can be identified. Different metabolic steady states on a population level and general patterns common to all populations can be distinguished by this metabolic modeling approach in combination with eco-metabolomics. This finally allows for the prediction of characteristic processes of in situ metabolic adaptation. For details see text and Materials and Methods.



MATERIALS AND METHODS

Plant Material and Sampling Strategy

In situ sampling of A. thaliana leaf rosettes was performed in three Austrian locations (see Figure 2) The first location (OOE1) was a hay meadow, the second (OOE2) was a rocky spot with variable substrate thickness, and the third sampling site (OOE3) was an unused meadow with steep slope and a nearby valley. All populations were located in close proximity to intensively used grassland. Each sample consisted of one whole leaf rosette without inflorescence. Global positioning system (GPS) coordinates of the sampling sites were recorded using a Garmin Oregon300 handheld GPS receiver (Garmin®, Schaffhausen, Switzerland) with an accuracy of approximately 3 m. The waypoints were imported into Garmin Mapsource Version 6.15.6 (Garmin®, Schaffhausen, Switzerland) and projected on the OpenStreetMap2. The sampling was performed according to Scherling et al. (2010) with a minimized cycle of time accounting for diurnal changes. The sampling began at 12 am at OOE1, then OOE2 and OOE3. The sampling was repeated three times at the same day comprising about 20 min each and was finished at 4 pm. The sampling day had continuous cloudy and constant weather conditions. All Arabidopsis rosettes were sampled at a developmental stage in which inflorescence and mature leaf rosettes had been established (example pictures are provided in Supplementary Data Sheet S1). Altogether we sampled n = 13, 15, and 15 biological replicates for OOE1, OOE2, and OOE3, respectively, for GC-MS and n = 10, 7, and 13 biological replicates for OOE1, OOE2, and OOE3, respectively, for LC-MS analyses. Rosettes were cut and immediately frozen in liquid nitrogen. Samples were stored at -80°C until further processing.
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FIGURE 2. Projection of sample coordinates within OpenStreetMap® (http://www.openstreetmap.org). The air-line distance between populations is given in meters.



DNA Sequencing and SNP Calling

Sequencing was performed for individual plants of the different populations OOE1, OOE2 and OOE3. Genomic DNA preparation, and SNP calling was performed as described previously (Alonso-Blanco et al., 2016). The samples were sequenced using 100 bp paired-end reads on an Illumina HiSeq platform. Pairwise genetic differences (θp) between these accessions and a set of additional 24 accessions for which DNA sequence is publically available (see footnote 1) has been calculated by dividing the number of polymorphic sites by the number of informative sites. These values have been used to create a hierarchical clustering using the McQuitty method within the function hclust in R (McQuitty, 1966)3. To extract the most diverse genes from the three populations, we calculated the amount of variation between the populations for each gene. We used only sides where we had SNP calls for one representative of each population. We created a list for each population containing only genes that differ by at least 50 polymorphisms from the other two populations. These lists are available as Supplementary Data Sheets S2–S4. Furthermore, we created population-specific clustered protein interaction networks with these genes using STRING (Szklarczyk et al., 2017). In Supplementary Presentation S1 the networks and gene functions are shown. All SNP data are stored at the public repository (see footnote 1).

Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry

Frozen sample rosettes were homogenized in a ball mill (Retsch®, Haan, Germany) under frequent cooling with liquid nitrogen for 3 min. Polar metabolites were extracted and derivatized as described previously (Weckwerth et al., 2004b). Gas chromatography coupled to mass spectrometry (GC-MS) analysis was performed on an Agilent 6890 gas chromatograph (Agilent Technologies®, Santa Clara, CA, United States) coupled to a LECO Pegasus® 4D GCxGC-TOF mass spectrometer (LECO Corporation, St. Joseph, MI, United States). Compounds were separated on an Agilent HP5MS column (length: 30 m length, diameter: 0.25 mm, film: 0.25 μm). Deconvolution of the total ion chromatograms was performed using the LECO Chromatof® software. All details about injection, gradient, deconvolution, and library search parameters can be found in Doerfler et al. (2013). A calibration curve was recorded for absolute quantification of central primary metabolites.

GC–MS Data Analysis and Inverse Approximation of Jacobian Matrix Entries

For ANOVA and computation of p-values adjusted for sample size by Tukey Honest Significant Differences R was used (R, 2013). For multivariate analysis, outliers (all values that were lower/higher than 1.5∗interquartile range from the 25%/75% quantile) were removed from the dataset. Missing values of variables, which were missing in more than half of all measurements in a population were filled with half of the matrix minimum. The remaining missing values were imputed by random forest computation (Stekhoven and Buhlmann, 2012; Gromski et al., 2014). This dataset was centered and scaled to unit variance prior to sPLS regression. Sparse partial least squares (sPLS) regression analysis was performed using the mixOmics package (Le Cao et al., 2009; Gonzalez et al., 2011, 2012) for the statistical software environment R (R, 2013).

The functional integration of GC–MS metabolomics data into a metabolic network was performed, as previously described (Nägele et al., 2014), by the approximation of the biochemical Jacobian matrix. This approximation directly connects the covariance matrix C, which was built from the experimental metabolomics data, with a metabolic network structure derived from Arabidopsis genome information. Linkage of covariance data with the network structure follows equation 1 (Steuer et al., 2003; Sun and Weckwerth, 2012):
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Here, J represents the Jacobian matrix and D is a fluctuation matrix which integrates a Gaussian noise function simulating metabolic fluctuations around a steady state condition. In context of a metabolic network, entries of the Jacobian matrix J represent the elasticity of reaction rates to any change of metabolite concentrations which are characterized by equation 2:
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N is the stoichiometric matrix or a metabolic interaction matrix if reactions and reactants have been modified in the original network. r represents the rates for each reaction, and M represents metabolite concentrations. As stated before, the Jacobian approximation comprises the stochastic term D. Therefore, we performed 10 × 105 inverse approximations for each population, finally resulting in 10 technical replicates of the Jacobian matrices.

All calculations of Jacobian matrices were performed based on a modified version of the toolbox COVAIN (Sun and Weckwerth, 2012) within the numerical software environment MATLAB® (V8.4.0 R2014b).

LC–MS Analysis

The frozen plant leaf material was homogenized and extracted as the samples for the GC–MS analysis as described recently (Weckwerth et al., 2004b; Doerfler et al., 2013). The polar fraction of metabolites was dried in a speedvac. Extracts were weighed and dissolved in 5% Acetonitrile 0.5% Formic acid to an extract concentration of 0.5 g/L. From these solutions, 3 μL where injected to an Agilent Ultimate 3000 LC-system and separated on a reversed-phase column on a 60-min effective gradient prior to data-dependent mass spectrometric analysis of +1 – charged ions (Doerfler et al., 2013, 2014). Acquired LC–MS runs were converted to the open mzXML data format using the MassMatrix File Conversion Tools. Subsequently, MS1 intensities of all mass traces that were fragmented at least once in a sample were summed over the whole runs with ProtMAX2012 (Hoehenwarter et al., 2011; Doerfler et al., 2013; Egelhofer et al., 2013). The data set was filtered for features that were measured in at least half of the replicates of one population and remaining variables were normalized to the sum of all variables of the respective sample. The resulting values were used to fit ANOVA models. Tukey Honest Significant Differences were used to estimate sample-size adjusted p-values in R (R, 2013). VENNY was used to visualize the number of detected significant differences (Oliveros, 2007).

For multivariate analysis, outliers (all values that were lower/higher than 1.5∗interquartile range from the 25%/75% quantile) were removed from the dataset. Missing values of variables, which were missing in more than half of all measurements in a population were filled with half of the matrix minimum. The remaining missing values were imputed by random forest computation (Stekhoven and Buhlmann, 2012; Gromski et al., 2014). This dataset was centered and scaled to unit variance prior to sPLS regression (see above).

RESULTS

Metabolomic Analysis of in situ Samples

In situ sampling of A. thaliana leaf rosettes was performed on three nearby locations in Upper Austria (Oberoesterreich; OOE; see Figure 2 and See section “Materials and Methods”). All Arabidopsis rosettes were sampled at a developmental stage in which inflorescence and mature leaf rosettes had been established (example pictures are provided in Supplementary Data Sheet S1). For a set of metabolites from untargeted GC–MS based metabolomics data, we performed absolute quantification using calibration curves. This set of metabolites comprised concentrations of 39 central compounds of the C/N metabolism including sugars and sugar alcohols, organic acids, amino acids, and polyamines (Figure 3). Results of an ANOVA indicated that only levels of fumaric acid discriminated all three populations significantly (Figure 3B). Populations OOE1 and OOE3 could be discriminated significantly by the concentrations of galactose, melibiose, threitol, ascorbic acid, fumaric acid, gluconic acid, malic acid, threonic acid, alanine, and proline (p < 0.05; Figure 3). For populations OOE2 and OOE3, significant differences were found to exist for absolute levels of galactinol, raffinose, threitol, myo-inositol, ascorbic acid, fumaric acid, succinic, and threonic acid as well as for the amino acids alanine, glutamic acid, lysine, methionine, and ornithine (p < 0.05; Figure 3). Populations OOE1 and OOE2 could be discriminated by levels of citric acid, fumaric acid, gluconic acid, and malic acid. To summarize these findings, most significant differences between absolute metabolite levels of populations OOE1, 2, and 3 were determined for the class of organic acids (13 out of 27, i.e., ∼50%).
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FIGURE 3. Absolute levels of primary metabolites. Metabolites are grouped according to the substance classes of (A) sugars, sugar alcohols, and polyamines; (B) organic acids; (C) amino acids. Significant differences evaluated by ANOVA are indicated by asterisks (∗p < 0.05). Metabolite levels from samples of OOE1 are indicated by blue bars, OOE2 by orange bars, and OOE3 by gray bars.



Multivariate Analysis Indicates a Discrimination of in situ Populations by Metabolic Phenotypes

Sparse partial least squares (sPLS) regression analysis of primary metabolites versus a response matrix comprising geographical coordinates and altitude above sea level indicated a separation of population OOE3 from populations OOE1 and OOE2 across latent variable 1 (Figure 4). The metabolite levels of fumaric acid, melibiose, alanine, putrescine, gluconic acid, threonic acid, myo-inositol, galactinol and succinic acid were identified to contribute most to this separation with elevated levels in OOE3 whereas mainly ascorbic acid and threitol were elevated in OOE1 and OOE2. Discrimination of populations OOE1 and OOE2 was indicated on latent variable 2 (Figure 4). Here, a higher abundance of 2-oxoglutaric acid, glutamic acid, raffinose, glycine, succinic acid, serine and threonic acid in OOE1 and malic acid, gluconic acid and citric acid in OOE2 was observed (see Supplementary Table S1 for a complete list of loadings, table sheet “Loadings GCMS”, and Supplementary Figure S1 for a PCA analysis of the primary metabolites).
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FIGURE 4. Projection of samples on latent variables of the primary metabolite matrix (GC-MS data) after sPLS regression. Detailed information on the loadings are provided in the supplement (Supplementary Table S1).



Entries of Jacobian Matrices Indicate Different Biochemical Phenotypes of the in situ Populations at the Interface of Primary and Secondary Metabolism

While absolute metabolite levels can provide a representative view on a metabolic homeostasis, it can hardly be directly interpreted in terms of biochemical regulation. Instead, strategies of multivariate statistics and modeling were shown to be essential to provide a comprehensive view on the biochemical regulation of a metabolic homeostasis (Weckwerth, 2011b). Based on a biomathematical strategy developed and applied in former studies, entries of Jacobian matrices were directly inferred from experimental metabolomic covariance data (Doerfler et al., 2013; Nägele et al., 2014) (Figure 1). As described in our previous work, we derived a metabolic network model comprising reactants and reactions indicated in the Supplementary Table S2. The metabolic covariance information was linked to a genome-information derived biochemical network structure, finally satisfying a Lyapunov matrix equation [for more details about the method and the metabolic network model, we refer to the section Materials and Methods as well as to our previous work (Nägele et al., 2014)]. The calculation procedure, that is, solving the equation after stochastic perturbation, was performed 10 × 105 times and median values of all entries of the Jacobian matrices were determined. Principal component analysis (PCA) of the entries revealed a clear separation of the population-specific Jacobian information in which the technical variance was found to be significantly lower than the biological variance (Figure 5). Loadings of the PCA revealed that the strong separation of population OOE1 from OOE2 and 3 on component 1 (PC1) was predominantly due to differences in organic and amino acid, polyamine, and raffinose metabolism but also aromatic amino acid biosynthesis and interconversion (Supplementary Tables S2, S3). This output indicated a potential difference in the regulation of secondary metabolism, or, at least, at the interface between primary and secondary metabolism. Hence, secondary metabolite abundance of the three Austrian Arabidopsis populations was recorded applying LC–MS analysis. The quantitative analysis of specific mass traces in the chromatograms showed that there was no feature separating all of the populations significantly (ANOVA, p < 0.05). Yet, we were able to identify 70 features that discriminated at least two of the populations (Figure 6).
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FIGURE 5. Principal component analysis (PCA) of Jacobian matrix entries for populations OOE1, OOE2, and OOE3. PC1 strongly separates OOE1 (black filled circles) from OOE2 (black filled crosses) and OOE3 (gray filled diamonds). PC2 separates OOE2 from OOE1 and OOE3 most significantly. Detailed information about the Jacobian entries and the loadings can be found in Supplementary Tables S2, S3.
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FIGURE 6. Venn diagram showing the number of LC–MS features, which significantly discriminated the three Arabidopsis populations OOE1, 2, and 3.



To statistically evaluate the separation of populations by secondary metabolites, LC–MS data were analyzed by sPLS regression analysis. The first latent variable was found to separate OOE1 from OOE2 and OOE3 (Figure 7; Loadings are provided in Supplementary Table S1, table sheet “Loadings LCMS”). The second latent variable indicated a separating effect of several putative anthocyanins attached to sinapoyl moieties [A6, A7/A17, A8, A10, A11, and m/z 1329, respectively, for further annotation see Doerfler et al. (2014)] in the OOE2 population by which it was discriminated from OOE1 and OOE3.
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FIGURE 7. Projection of samples on latent variables of the secondary metabolite matric (LC–MS data) after sPLS regression. Detailed information on the loadings are provided in the supplement (Supplementary Table S1).



Genotyping of in situ Natural A. thaliana Populations

A SNP-based genotyping approach was performed to unravel the genomic relationship of the three populations. Genotyping showed clear differences between the three populations (Figure 8). Different individual plants of population OOE2 were found to be nearly identical (12, 23, and 13 SNPs, respectively). The population OOE2 was found to differ by approximately 300,000 SNPs from both populations OOE1 and OOE3, which were likewise separated by more than 300,000 SNPs. Interestingly, individual plants that have been sequenced from the OOE3 population were genetically different as well but to a minor extent (∼260,000 SNPs). The comparison with genomic data from other ecotypes show the expected genetic differences not only between these populations but also with respect to global samples, in which accessions from Austria, Italy, and the Czech Republic are most similar (Figure 8). To extract the most diverse genes from the three populations, we created a list for each population containing only genes that differ by at least 50 polymorphisms from the other two populations. These lists are available as Supplementary Data Sheets S2–S4. Furthermore, we created population-specific clustered protein interaction networks with these genes using STRING (Szklarczyk et al., 2017). These protein interaction networks showed highly diverse functional pattern between the three different populations (see Supplementary Presentation S1).


[image: image]

FIGURE 8. SNP genotyping of three Austrian Arabidopsis populations. All three plants that have been sequenced from the population OOE2 are nearly genetically identical. OOE2 differs by nearly 300,000 SNPs from both the OOE1 and OOE3 population, which are likewise separated by more than 300,000 SNPs. The comparison with genomic data from other ecotypes showed the expected genetic differences not only within these populations but also to global samples, in which accessions from Austria, Italy, and the Czech Republic are most related. The genome information of all accessions is publically available at www.1001genomes.org.



DISCUSSION

Eco-Metabolomics and Metabolic Modeling

The importance and central role of metabolomics in an ecological context has extensively been outlined in previous studies and overview articles [see e.g., Sardans et al., 2011; Jones et al., 2013). One of the central issues of eco-metabolomic approaches is the detection and characterization of environmentally induced phenotypic mechanisms in context of key metabolic processes and ecologically relevant parameters, that is, all kinds of environmental cues (Scherling et al., 2010). Yet, due to the non-linear relationship between single levels of molecular organization, the reliable interpretation of metabolomics results is highly challenging. The metabolic output or homeostasis of a biochemical system depends on numerous molecular parameters and variables, and, finally, a metabolic network sums up to a highly branched, interlaced and non-linearly behaving molecular system (Nägele, 2014).

While under controlled conditions such plasticity of molecular systems already significantly limits our ability to intuitively draw conclusions about regulatory mechanisms, in situ data interpretation has to cope even more with a potential ambiguousness introduced by environmental dynamics and fluctuations (Macel et al., 2010). In the present study, such fluctuations were taken into account by considering (co)variance information of metabolite pools and by a modeling approach, which focuses on the characterization of dynamical behavior of metabolic systems around a metabolic homeostasis (Nägele et al., 2014) (see Figure 1). In detail, data dimensionality reduction via PCA indicated a clear separation of all populations by Jacobian entries being related to the biochemistry at the interface of primary and secondary metabolism as well as the metabolism of metabolic stress-markers, such as polyamines and raffinose, which have been discussed to be involved in the protection of the photosynthetic apparatus against various stress types (Bouchereau et al., 1999; Alcázar et al., 2006, 2011; Knaupp et al., 2011).

Plasticity of Plant Primary Metabolism in in situ Populations and Correlation With Geographical Coordinates

Statistics on absolute primary metabolite levels revealed major differences between natural in situ Austrian A. thaliana populations. Almost all classes of analyzed substances, comprising sugars, carboxylic, and amino acids displayed significant differences indicating different homeostasis in primary metabolism of all three populations. The TCA intermediate fumaric acid was found to significantly differ between all in situ samples indicating suitability to classify these populations. While it has been shown that fumaric acid metabolism plays a central role in diurnal carbon allocation (Pracharoenwattana et al., 2010), and, hence, indirectly affects the orchestration of photosynthesis in Arabidopsis leaves, it remains to be demonstrated whether it can directly report on changes in plant–environment interactions. In addition, due to the complex regulation of plant primary metabolism, it can hardly be assumed that one metabolite level provides representative information for robust metabolic in situ classification. Yet, together with the finding of a significant difference in potential photosystem-protective substances, for example, polyamines and flavonoids, it can be hypothesized that differential metabolic homeostasis evolved due to differences in the microenvironment of the three populations being characteristic enough to separate them according to the resulting metabolic signatures. We further asked the question whether we can identify metabolite marker, which show significant correlations with geographical coordinates even within this proximate distribution of populations. In Supplementary Presentation S2 a correlation network is shown between geographical coordinates and primary metabolites of the three different populations. Indeed, there is a clear distinction between several metabolites showing significant correlations to altitude, E and N coordinates. This further provides evidence that metabolic homeostasis is related to environmental differences between these different locations of the natural populations.

The Interface of Primary and Secondary Metabolism as a Key Regulatory Point for Genotypic and Phenotypic Plasticity

Predictions about the differentiation via signatures in secondary metabolism were validated by LC–MS metabolomics focusing on a central set of secondary metabolite backbones with close similarity to previously identified anthocyanins attached to sinapoyl moieties (Doerfler et al., 2014). Such metabolic differences are in line with previous findings reporting on metabolic signatures, which are due to characteristic differences in specialized or secondary metabolism (Wink, 2003; Lu et al., 2009; Scherling et al., 2010; Doerfler et al., 2013; Chae et al., 2014; Moore et al., 2014). The accumulation of anthocyanin pigments in vegetative tissue of plants represents an approved metabolic stress and acclimation output (Winkel-Shirley, 2002). Moreover, we demonstrated earlier that most of the statistical significant metabolic responses of individual plant species to in situ biodiversity are attributed to secondary metabolism including flavonoid structures (Scherling et al., 2010). Hence, the molecular analysis provided a detailed view on the differential population-specific metabolic composition of secondary metabolites and anthocyanin-related leaf color. With this, evidence is provided for the suitability of metabolic phenotyping of in situ samples by a combined GC–MS and LC–MS platform (Scherling et al., 2010; Doerfler et al., 2013). While, at this point, we can only speculate on the environmental cues which initiated the observed differences in secondary stress-associated metabolism, flavonoid metabolites in general are heavily discussed in context of their UV absorption and reactive oxygen species (ROS) scavenging properties (Winkel-Shirley, 2002; Agati and Tattini, 2010; Doerfler et al., 2014; Hectors et al., 2014). Together with the finding of a differentially regulated polyamine metabolism between the populations, which became visible rather by covariance information than by mean values, our results point toward a differential macro- or microclimatic environment at the three Austrian in situ sampling sites (see also description of the sampling sites in Materials and Methods).

In addition, results of SNP-based genotyping revealed three genetically different populations, which are, however, closer related to each other than to other European accessions (Figure 8). In terms of temperature regimes and low temperature tolerance, which can be expected to have major influence on the geographic range of A. thaliana (Hoffmann, 2002), the genetic distance between the Austrian populations can be regarded as relatively small when compared to sensitive (Cvi, Co-1) and tolerant accessions (Rsch-4) (Hannah et al., 2006). Based on this observation, we hypothesize that the variance in observed metabolic phenotypes are a mixture of plasticity effects and conceptual differences in the acquisition of abiotic stress tolerance. This again might indicate a high intraspecific metabolic variation, which would affect the evolutionary capacity of Arabidopsis in context of adaptation to macro- and micro-environmental fluctuation (Moore et al., 2014).

Jacobian Entries Are Potentially Linked to Intraspecific Genotypic Variation

The combination of in depth genotypic and metabolomic profiling and modeling opens up the opportunity to search for direct correlations of polymorphisms and metabolic changes. Here, we applied this concept to an in situ study for the first time and revealed a significant intraspecific biochemical plasticity within three close-by natural populations in their natural habitat. We have extracted the genes of the individual populations which distinguish them most (Supplementary Data Sheets S2–S4). By further analysis of the corresponding clustered protein interaction networks different functional modules between the different populations became visible (Supplementary Presentation S1). The three populations OOE1, 2, and 3 showed severe differences in these protein interaction networks. Especially, the OOE3 population showed a cluster of genes which is clearly involved in organic acid and amino acid metabolism including genes for pyruvate dehydrogenase, aconitase, NAD-malic enzyme 1, pyruvate–phosphate dikinase, lactate-dehydrogenase, and several others (see Supplementary Presentation S1). These functional patterns, which distinguish OOE3 from OOE1 and 2 coincide with the calculation of Jacobian entries. The strongest loadings separating OOE3, 2, and 1 on PC1 in Figure 4 include df(Glu)/d(Pyr), df(Mal)/d(Fum), df(Cit)/d(Pyr), df(Glu)/d(Asp), df(Glu)/d(2-oxoglutarate), df(Succ)/d(Put). All of these entries point to organic acid metabolism and key entry points for amino acid metabolism, especially nitrogen assimilation and transamination reactions. In future studies, we will investigate these relationships in more detail also by integrating proteomics studies. There is a great potential that the calculation of Jacobian entries of a biochemical matrix gives important clues about different dynamics in the same set of metabolites based on intraspecific but also interspecific genetic variance and biochemical regulation. This is due to the explicit linkage of the metabolite covariance matrix C – representing the dynamic part of the equation – and the Jacobian J, which relies on the metabolite interaction matrix defined by genome-scale metabolic reconstruction and biochemical pathways. Accordingly, the covariance matrix C is representative for the different ecotype dynamics whereas the Jacobian structure preserves the reconstructed metabolic network. Just the combination of both J and C in the Lyapunov matrix equation will reveal the dynamics of each ecotype individually (for further details see also Weckwerth, 2011a,b).

CONCLUSION

In summary, it was demonstrated that intraspecific metabolic phenotypes of geographically nearby-grown Arabidopsis plants can be characterized and differentiated by their primary–secondary metabolic signature. In future studies, monitoring of micro-climatic properties will enable the characterization of sampling sites by continuous quantitative environmental data and thus improve the understanding of the ecological context of in situ molecular profiles. Additionally, biotic and abiotic habitat parameters, such as soil properties and phytosociological association, might even promote our current understanding of individual plants’ physiology. Finally, our study points to the importance of considering variance and covariance information in biological data sets (Weckwerth et al., 2004b; Violle et al., 2012) which, together with genome-derived pathway information, potentially provide information about environmental fluctuations, and associated biochemical system properties. The findings contribute to the comprehensive understanding of ecological processes and may contribute to the design of future studies focusing on the estimation of the impact of climate change on plant societies and evolution using combined multiomics and modeling strategies (Ward and Kelly, 2004; Weckwerth, 2011a).
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Holm oak (Quercus ilex) is the most important and representative species of the Mediterranean forest and of the Spanish agrosilvo-pastoral “dehesa” ecosystem. Despite its environmental and economic interest, Holm oak is an orphan species whose biology is very little known, especially at the molecular level. In order to increase the knowledge on the chemical composition and metabolism of this tree species, the employment of a holistic and multi-omics approach, in the Systems Biology direction would be necessary. However, for orphan and recalcitrant plant species, specific analytical and bioinformatics tools have to be developed in order to obtain adequate quality and data-density before to coping with the study of its biology. By using a plant sample consisting of a pool generated by mixing equal amounts of homogenized tissue from acorn embryo, leaves, and roots, protocols for transcriptome (NGS-Illumina), proteome (shotgun LC-MS/MS), and metabolome (GC-MS) studies have been optimized. These analyses resulted in the identification of around 62629 transcripts, 2380 protein species, and 62 metabolites. Data are compared with those reported for model plant species, whose genome has been sequenced and is well annotated, including Arabidopsis, japonica rice, poplar, and eucalyptus. RNA and protein sequencing favored each other, increasing the number and confidence of the proteins identified and correcting erroneous RNA sequences. The integration of the large amount of data reported using bioinformatics tools allows the Holm oak metabolic network to be partially reconstructed: from the 127 metabolic pathways reported in KEGG pathway database, 123 metabolic pathways can be visualized when using the described methodology. They included: carbohydrate and energy metabolism, amino acid metabolism, lipid metabolism, nucleotide metabolism, and biosynthesis of secondary metabolites. The TCA cycle was the pathway most represented with 5 out of 10 metabolites, 6 out of 8 protein enzymes, and 8 out of 8 enzyme transcripts. On the other hand, gaps, missed pathways, included metabolism of terpenoids and polyketides and lipid metabolism. The multi-omics resource generated in this work will set the basis for ongoing and future studies, bringing the Holm oak closer to model species, to obtain a better understanding of the molecular mechanisms underlying phenotypes of interest (productive, tolerant to environmental cues, nutraceutical value) and to select elite genotypes to be used in restoration and reforestation programs, especially in a future climate change scenario.

Keywords: Quercus ilex, omics, metabolome, proteome, transcriptome

INTRODUCTION

Holm oak (Quercus ilex) is the most representative species of the Mediterranean forest, of great importance from an environmental and economic point of view (Rigo and De Caudullo, 2016). Being the key element of the Spanish agro-forestry-pastoral ecosystem “Dehesa,” its fruit, the acorn, is the basis of the staple food of the renowned “black leg” pork (Cantos et al., 2003). Quercus spp. have been used in the construction of wine barrels, contributing to the organoleptic properties of the maturing wine (Chira and Teissedre, 2014). The use of acorns in human nutrition and for pharmaceutical purposes has a long history. Employed in ancient civilizations, mainly in Italy and Spain, as food or beverage, nowadays it is far from being consumed like other common nuts (Rakić et al., 2006; Al-Rousan et al., 2013; Meijón et al., 2016). As a nutritionally rich product, and because of its high nutraceutical value, the interest of integrating acorns into the human diet or as a functional food has been raised (Vinha et al., 2016a; Hadidi et al., 2017).

Despite its environmental and economic interest, Holm oak is still an orphan species whose biology is almost unknown, especially at the molecular level. Nevertheless, the work of our group and others, has contributed to acquiring the knowledge on this species, focusing on natural variability (Valero-Galván et al., 2011; Akcan et al., 2017), seed germination and seedling growth (Echevarría-Zomeño et al., 2009; Romero-Rodríguez et al., 2015), physiology (Valero-Galván et al., 2012a), and biotic and abiotic stress-responses (Echevarría-Zomeño et al., 2009; Sghaier-Hammami et al., 2013; Sardans et al., 2014; Simova-Stoilova et al., 2015). The above publications, provide fragmented information, mostly derived from classical biochemical approaches and, to a much lesser extent, those of proteomics (Valero-Galván et al., 2011; Romero-Rodríguez et al., 2014, 2015) transcriptomics (Guerrero-Sanchez et al., 2017), or metabolomics (Rakić et al., 2006; Rabhi et al., 2016; Vinha et al., 2016a; López-Hidalgo, 2017), but lacking a validation and effective integration of the different molecular multilevels.

In spite of their difficulty as orphan, recalcitrant plant species, forest trees, like other experimental plant systems, deserve to be considered at the wide system level, that implicates the use of multidisciplinary approaches, from visual phenotype, to molecular – omics, through physiological and biochemical approaches (Correia et al., 2016; Meijón et al., 2016; Escandón et al., 2017). Systems Biology approaches require the optimization of protocols for both wet and in silico analysis.

In this direction, trying to fill this gap with the use of the available high-throughput – omics, its combination and also the implementation of required methodology, we hoped to gain knowledge on the chemical composition and metabolism of the Q. ilex tree species, its variability among and within populations, the effect on endogenous ones and their environmental factors, and the search for molecular markers to select elite genotypes. The lack of information available in public databases on the Holm oak genome, transcriptome (Guerrero-Sanchez et al., 2017), or proteome (Romero-Rodríguez et al., 2014) and the absence of standardized laboratory and analytical protocols make this approach a real challenge.

In this work, we employed a wide range of in silico techniques allowing a system biology approach for a non-sequenced species. To obtain the maximum level of biochemical complexity the plant sample employed were multi-organ pools, generated by mixing equal amounts of homogenized tissue from acorn embryo, leaves, and roots. In setting up protocols for transcriptome (NGS-Illumina), proteome (shotgun LC-MS/MS) and metabolome (GC-MS) analysis, and bioinformatic pipelines for annotating transcripts, proteins and metabolites, the Holm oak metabolic pathways were partially reconstructed. This research constitutes the basis for ongoing and future studies to obtain a better understanding of the molecular bases underlying phenotypes of interest (productive, tolerant to environmental cues, nutraceutical value) and the selection of elite genotypes to be used in restoration and reforestation programs, especially in the current climate change scenario. In order to reveal the particularities of the species under study, data have been compared with those reported for model plant species, including Arabidopsis, rice, poplar, and eucalyptus.

MATERIALS AND METHODS

Plant Material

Mature acorns from Holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) were collected on December 2015 from a tree located in Aldea de Cuenca (province of Córdoba, Andalusia, Spain). Acorns were transported to the lab, sterilized, and germinated as previously reported (Simova-Stoilova et al., 2015). Germinated seeds were sown in pots (500 mL) with perlite and grown in a greenhouse under natural conditions for 4 months up to the 10-leaves stage. Plants were periodically watered at field capacity and once a week with a Hoagland nutrient (Hoagland and Arnon, 1950) solution after the second month. Germinated embryos, cotyledons, leaves, and roots were collected separately, washed with distilled water and frozen in liquid nitrogen. Then, each tissue was separately homogenized in a mortar until a fine powder was obtained and finally stored at -80°C. The experiments were performed with a pool of fresh weight equivalents of the homogenized tissue from acorn embryo, cotyledons, leaves, and roots. Depending on the organ, samples from individual trees or plantlets in number of 18 (roots and leaves) to 50 (seed embryos and cotyledons) were collected and mixed. Three independent extractions were performed and only consistent proteins or metabolites, those present in the three replicates, were considered.

Transcriptomics Analysis

RNA Extraction and Sequencing

Total RNA was extracted from the frozen homogenized pool tissue following the procedure previously reported by (Guerrero-Sanchez et al., 2017). 50 mg pooled fresh tissue according the procedures previously set up in our laboratory for Q. ilex samples was employed (Echevarría-Zomeño et al., 2012). Contaminating genomic DNA was removed by DNase I (Ambion) treatment. Total RNA was quantified spectrophotometrically (DU 228800 Spectrophotometer, Beckman Coulter, TrayCell Hellma GmbH & Co., KG. The high quality and integrity of the RNA preparation were tested electrophoretically (Agilent 2100 Bioanalyzer). Only high-quality RNAs with RIN values >8 and A260:A280 ratios near 2.0 were used for subsequent experiments.

The library construction of cDNA molecules was carried out using Illumina TruSeq Stranded mRNA Library Preparation Kit according to the manufacturer’s instructions using 2 μg of total RNA followed by poly-A mRNA enrichment using streptavidin coated magnetic beads and thermal mRNA fragmentation. The cDNA was synthesized, followed by a chemical fragmentation (DNA library) and sequenced in the Illumina Hiseq 2500 platform, using 100 bp paired-end sequencing (De Wit et al., 2012).

Data Processing

The raw reads obtained from the sequencing platform were preprocessed to retain only high-quality sequences to be subsequently used in the assembly. Each original sequence was quality trimmed considering several parameters (quality trimming based on minimum quality scores, ambiguity trimming to trim off, for example, stretches of Ns, base trim to remove specified number of bases at either 3′ or 5′ end of the reads). The processed reads were assembled de novo using the assembly software MIRA 4.9.6 (Chevreux and Suhai, 1999). Redundancy reduction of the assembled sequenced was carried out by using the CD-HIT 4.6 clustering algorithm (Li et al., 2001, 2002).

Gene Ontology

Assembled sequences were blasted against UniRef90 (UniProt1) using the software Sma3s (Casimiro-Soriguer et al., 2017) in order to obtain the annotated sequences with the most probable gene name and protein description, EC numbers for enzymes, GO terms, and UniProt keywords and pathways. In addition, their functions were identified using MERCATOR2.

Proteomics Analysis

Protein Extraction and Digestion

Proteins were extracted from the frozen homogenized pool tissue by using the TCA-acetone-phenol protocol as reported in Jorrin-Novo et al. (2014). Protein extracts [600–1000 ng BSA equivalents quantified with Bradford assay (Bradford, 1976)] were subjected to Orbitrap analysis after SDS–PAGE (12%) prefractionation. Electrophoresis was stopped when the sample entered the resolving gel, so that a unique protein band was revealed after Coomassie staining (Pascual et al., 2017).

Protein bands were manually excised, destained, and digested with trypsin Sequencing grade (Roche) as is described in Castillejo et al. (2015) with minor modifications. Briefly, gel plugs were destained by incubation (twice for 30 min) with a solution containing 100 mM ammonium bicarbonate (AmBic)/50% acetonitrile (AcN) at 37°C. Then, they were dehydrated with AcN and incubated in 100 mM AmBic containing first 20 mM DTT for 30 min, and then in the same solution containing 55 mM Iodoacetamide instead DTT for 30 min. They were washed with 25 mM AmBic and 25 mM AmBic/50% AcN two times each. After dehydration in AcN, the trypsin at a concentration of 12.5 ng/μl was added in a buffer containing 25 mM NH4HCO3, 10% AcN and 5 mM CaCl2, and the digestion proceeded at 37 C for 12 h. Digestion was stopped, and peptides were extracted from gel plugs by adding 10 μL of 1% (v/v) trifluoroacetic acid (TFA) and incubating for 15 min.

Shotgun LC-MS Analysis

Nano-LC was performed in a Dionex Ultimate 3000 nano UPLC (Thermo Scientific) with a C18 75 μm × 50 Acclaim Pepmam column (Thermo Scientific). The peptide mix was previously loaded on a 300 μm × 5 mm Acclaim Pepmap precolumn (Thermo Scientific) in 2% AcN/0.05% TFA for 5 min at 5 μL/min. Peptide separation was performed at 40°C for all runs. Mobile phase buffer A was composed of water, 0.1% formic acid. Mobile phase B was composed of 80% AcN, 0.1% formic acid. Samples were separated during a 60-min gradient ranging from 96% solvent A to 90% solvent B and a flow rate of 300 nL/min.

Eluted peptides were converted into gas-phase ions by nano electrospray ionization and analyzed on a Thermo Orbitrap Fusion (Q-OT-qIT, Thermo Scientific) mass spectrometer operated in positive mode. Survey scans of peptide precursors from 400 to 1500 m/z were performed at 120K resolution (at 200 m/z) with a 4 × 105 ion count target. Tandem MS was performed by isolation at 1.2 Da with the quadrupole, CID fragmentation with normalized collision energy of 35, and rapid scan MS analysis in the ion trap. The AGC ion count target was set to 2 × 103 and the maximum injection time was 300 ms. Only those precursors with charge state 2–5 were sampled for MS2. The dynamic exclusion duration was set to 15 s with a 10 ppm tolerance around the selected precursor and its isotopes. Monoisotopic precursor selection was turned on. The instrument was run in top 30 mode with 3 s cycles, meaning that the instrument would continuously perform MS2 events until a maximum of top 30 non-excluded precursors or 3 s, whichever was shorter.

Protein Identification

Spectra were processed using the SEQUEST algorithm available in Proteome Discoverer© 1.4 (Thermo Scientific, United States). The following settings (Romero-Rodríguez et al., 2014) were used: precursor mass tolerance was set to 10 ppm and fragment ion mass tolerance to 0.8 Da. Only charge states + 2 or greater were used. Identification confidence was set to a 5% FDR and the variable modifications were set to: oxidation of methionine and the fixed modifications were set to carbamidomethyl cysteine formation. A maximum of two missed cleavages were set for all searches. The protein identification, was carried out against the annotated Q. ilex transcriptome, previously described. A six-frame translation for each sequence in the transcriptome was performed by using EMBOSS (Rice et al., 2000), filtering and keeping peptides longer than 50 amino acids. Considering the identified proteins, the protein peak areas were normalized and missing values corrected. Mean values and standard deviation (SD), as well as the coefficient of variation (CV) of the peak areas of protein species were determined for three independent analysis (Supplementary Table S8). The remaining sequences were used as a database for the protein identifications and their functions were identified using MERCATOR (Lohse et al., 2014).

Metabolomics Analysis

Metabolite Extraction

Metabolites were extracted from plant tissue as described by Valledor et al. (2014), with three independent extractions. A buffer containing 600 μL of cold methanol: chloroform: water (5:2:2) was added to 15 mg of frozen tissue, vortexed (10 s), and the mixture sonicated (ultrasonic bath, 40 kHZ for 10 min). After centrifugation (4°C, 4 min, 20,000 × g) the supernatant was transferred to new tubes containing 400 μL of cold chloroform: water (1:1). For phase separation, the tubes were centrifuged (4°C, 4 min, 20,000 × g). The upper (polar) and the lower (apolar) phases were re-extracted with 200 μL of cold chloroform (upper) and water (lower), respectively. After combining on one hand the water: methanol (upper) and, on the other the chloroform (lower) phases, they were vacuum dried at 25°C (Speedvac, Eppendorf Vacuum Concentrator Plus/5301).

GC-MS Analysis

GC-MS analysis was performed as reported Furuhashi et al. (2012) and Meijón et al. (2016) with some modifications. Polar (water: methanol dissolved) metabolites were derivatized by re-suspending the dried extract in 20 μL of anhydrous pyridine containing 40 mg/mL of methoxyamine hydrochloride. The mixture was incubated at 30°C for 30 min under agitation. Next, 60 μL of N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA) was added, samples incubated at 60°C for 30 min, centrifuged (3 min, 20,000 × g), and cooled to room temperature. Then, 80 μL of the supernatant was transferred to GC-microvials. Apolar (chloroform solubilized) metabolites were methylesterified with 295 μL tert-methyl-Butyl-Ether (MTBE), and 5 μL of trimethylsulfonium hydroxide solution (TMSH) for 30 min at room temperature. The tubes were centrifuged (3 min, 20,000 × g) to remove insoluble particles before transferring the supernatants to GC-microvials.

Polar metabolites were resolved and analyzed with a Gas Chromatograph/Mass Spectrometer Agilent 5975B GC/MSD. Inlet temperature was set at 230°C. Samples were injected in discrete randomized blocks with a 1.2 mL/min flow rate. GC separation was performed splitless on a HP-5MS capillary column (30 m × 0.25 mm × 0.25 mm) (Agilent 19091J-433) over a 70–76°C gradient at 0.75°C/min, 76–180°C gradient at 6°C/min, 180–200°C gradient at 3.5°C/min, and then to 310°C at 6°C/min. The mass spectrometer operated in electron-impact (EI) mode at 70 eV in a scan range of m/z 40–800. For apolar metabolites a different temperature gradient was employed: 80–190°C at 8°C/min, 190–220°C at 5°C/min, and then to 270°C at 5°C/min. The mass spectrometer was operated in EI mode at 70 eV in a scan range of m/z 40–600.

Metabolite Identification

Metabolites were “tentatively assigned” based on GC retention times (RT) and m/z values (Supplementary Tables S1, S2) through searches in different databases, including the Gölm Metabolome Database (Nielsen and Jewett, 2007), Alkane, Fiehn library 1 y 2 (Kind et al., 2010), GC-TSQ, MoSys, and NIST/EPA/NIH Mass Spectral Library. Three different softwares were used for metabolite identification: MZmine 2 (2.24 version3) (Pluskal et al., 2010), AMDIS software (2.66 version4), and NIST.MS Search (2.01 version5). Mean values and SD, as well as the CV of the peak areas of metabolites were determined for three independent extraction (Supplementary Table S2). Moreover, the metabolites were annotated using the KEGG compound reference database6. Metabolomics pathways of each metabolite (Supplementary Table S3) were searched against KEGG pathway maps7. For other general biological networks, we employed MapMan (3.5.1 version8).

Interspecies Comparison

The annotated Q. ilex transcriptome was compared against the complete in silico proteomes of Arabidopsis thaliana (UP0000065489, Oryza sativa subsp. japonica (UP00005968010), Populus trichocarpa (UP00000672911), and Eucaliptus grandis (UP00003071112) in order to elucidate the unique and shared sequences. This comparison was performed by using BLAST13 with blastX alignment with an e-value of 10-10. Also, the EC numbers of each proteome were contrasted to achieve a complete picture of the metabolic pathways coverage differences among proteomes studied in previously mentioned species (Supplementary Table S4). For the comparison, we represented a Venn diagram plotted using VennDiagram R package (Chen and Boutros, 2011).

Integrated Pathway

By using MERCATOR web application14 (Supplementary Tables S5, S6) (Lohse et al., 2014), we could assign MapMan “Bins” to arbitrary transcript or protein input sequences (Usadel et al., 2009). The output was a text file mapping each input (proteins or transcripts) identifier to one or more Bins by searching a variety of reference databases (TAIR Release 10, SwissProt/UniProt Plant Proteins, Clusters of Orthologous Eukaryotic Genes Database (KOG), Conserved Domain Database (CDD), and InterProScan). The functional predictions generated could directly be used as a “mapping file” for the high-throughput data visualization and meta-analysis software MapMan (3.5.1 version15. The ImageAnnotator module allowed us to visualize the data on a gene-by-gene basis on schematic diagrams (maps) of the biological processes described.

RESULTS AND DISCUSSION

This paper reports the study and view of the metabolism as it occurs in Holm oak, the most representative and valuable forest tree species in the Mediterranean region. For that purpose, a biological sample containing equal fresh weight amount of the different organs as starting plant material and a combination of high-throughput, -omics approaches (transcriptomics, proteomics, and metabolomics) as analytical tools were used. As each analytical platform has its own limitations (Schrimpe-Rutledge et al., 2016; Tian et al., 2016; Viant et al., 2017), is their integration that will provided more confident biological knowledge of them.

The Systems Biology approach for research with species that, like Holm oak are orphan and recalcitrant is very challenging (Abril et al., 2011), and it required the optimization of experimental protocols and, more limitative, the creation of custom-made databases, and pipelines. Beyond the reconstruction of different metabolic pathways as they may occur in Holm oak, and the comparison with model plant species (A. thaliana, O. sativa subsp. japonica, P. trichocarpa, and E. grandis) we aimed to prove that employing state-of-the-art instrumentation and a similar workflow to those employed in model species is feasible, even though quite uncommon in the current literature.

Transcriptome Analysis

The first transcriptome of Q. ilex has recently been reported. For that reason, the Illumina Hiseq 2500 platform was employed to analyze the tissue mix sample, resulting in 119889 contigs, and 31973 Blast2GO annotated transcripts (Guerrero-Sanchez et al., 2017). The number of annotated sequences have been increased to 62628 after a UniRef90 database search through Sma3s software (Muñoz-Mérida et al., 2014; Casimiro-Soriguer et al., 2017). Among them, 27089 sequences corresponded to unique genes. Comparatively, Sma3s performed faster than Blast2GO and allowed more elaborated results, including functional categories, such as biological processes, cellular components or molecular functions (Supplementary Figures S1–S3). The total transcriptome sequences were categorized in 35 MERCATOR functional plant categories. The result of this categorization showed a high percentage (41.8%) of non-assigned transcripts (Figure 1). Response to stress and biosynthetic process, and the nucleus and plastids, were, respectively, the biological processes and organelles most represented (Supplementary Figures S1, S2). With respect to molecular functions, ion binding and kinase activity were those most abundant, with around 11225 and 6372 sequences, respectively (Supplementary Figure S3).
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FIGURE 1. Functional categorization and distribution in percentage of the identified metabolites, proteins and transcripts, according to the categories establish by MERCATOR. (A) Metabolome. (B) Transcriptome. (C) Proteome. The pie charts show different functional categories: PS (Photosynthesis), major CHO metabolism, minor CHO metabolism, glycolysis, fermentation, gluconeogenesis/glyoxylate cycle, OPP (Oxidative Pentose Phosphate), TCA/org transformation, mitochondrial electron transport/ATP synthesis, cell wall, lipid metabolism, N-metabolism, amino acid metabolism, S-assimilation, metal handling, secondary metabolism, hormone metabolism, co-factor and vitamin metabolism, tetrapyrrole synthesis, stress, redox, polyamine metabolism, nucleotide metabolism, biodegradation of xenobiotics, C1-metabolism, miscellanea, RNA, DNA, protein, signaling, cell, micro RNA, natural antisense, etc., development, transport, and not assigned.



The number of annotated transcripts, 62628, is double that previously found for the close relative Q. robur (38292 sequences; Tarkka et al., 2013), similar to the figure of 27655 protein-coding genes in Arabidopsis (35386 identified proteins; Araport1116), and below the 82190 unique transcripts corresponding to 34212 genes also reported in Arabidopsis by Zhang et al. (2017).

The annotated sequences in Q. ilex transcriptome were compared with the in silico proteomes of A. thaliana, O. sativa subsp. japonica, P. trichocarpa, and E. grandis (UniProt) to elucidate the unique and shared sequences. The comparative results are shown in Supplementary Table S2. The highest percentage of similarity corresponded to P. trichocarpa (91.7%), and lowest to O. sativa subsp. japonica (77.8%), with intermediate values for E. grandis (88.5%) and A. thaliana (85.6%). The percentage of similarity correlated with the phylogenetic distances among the compared species as reported by The Angiosperm Phylogeny Group III (2009) (Figure 2).
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FIGURE 2. Phylogenetic tree of angiosperms. The tree shows the five-species compared (Arabidopsis thaliana, Eucalyptus grandis, Oryza sativa subsp. japonica, Populus trichocarpa, and Quercus ilex). The sequence similarity of species coincides with the classification in the phylogenetic tree. Species are ranked from highest to lowest similar to Q. ilex: P. trichocarpa (91.7%), E. grandis (88.4%), A. thaliana (85.6%), and O. sativa subsp. japonica (77.8%).
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FIGURE 3. Venn diagram for the comparison of enzymes in Arabidopsis thaliana, Eucalyptus grandis, Oryza sativa subsp. japonica, Populus trichocarpa in silico proteomes, and Quercus ilex proteome. The Venn diagram shows the overlap of enzymes detected.



Among the annotated transcripts, 2103 corresponded to enzyme transcript products. These enzymes were assigned to 123 KEGG metabolic pathways (Supplementary Table S3). The most represented pathways (Table 2) were: the carbohydrate metabolism (starch and sucrose metabolism and glycolysis/gluconeogenesis, with 26 and 30 enzyme transcripts, respectively). Also, the amino acids metabolism, primarily the cysteine and methionine metabolism, where 37 enzyme transcripts were detected. This pathway has an important role in plants. Cysteine constitutes the sulfur donor for the biosynthesis of methionine, phytochelatins, sulfhydryl compounds, glutathione, and coenzymes. The homeostasis of sulfur metabolism in trees is more robust than in herbaceous plants. Also, a greater change in conditions to initiate a response in trees is required (Rennenberg et al., 2007). This fact is coherent with the requirement for highly flexible defense strategies in woody plant species because of longevity. In addition, the lipid metabolism (glycerophospholipid metabolism with 32 enzyme transcripts) has an important function as a mediator in hormone signal transduction in plants (Janda et al., 2013).

Proteome Analysis

The protein profile of the Q. ilex tissue mix sample was analyzed using a shotgun proteomics platform. Protein extracts were obtained by using a TCA-acetone-phenol protocol. After trypsin digestion, peptides were subjected to UPLC-Q-OT-qIT MS. The resulting peptides and corresponding proteins were identified by matching MS and MS/MS m/z data against the protein database resulting from the six-frame translation of the Q. ilex transcriptome. The employment of species specific databases instead of generic Viridiplantae ones improved the number and confidence of the identifications, as previously published (Romero-Rodríguez et al., 2014). By using Viridiplantae (SwissProt), 891 proteins were identified. Nevertheless, with our custom-built specific database, 58584 peptides were detected corresponding to 2830 proteins (with at least one unique peptide (Supplementary Tables S7, S8). Mean, SD, and CV (%) values of normalized identified protein peak areas were determined for three replicates (Supplementary Table S8). The mean of the CV obtained was 36.75% (Supplementary Table S8), which was slightly higher than the CV mean previously described using a 2-DE gel analysis (28.9%) (Jorge et al., 2005, 2006). This is due to the number proteins, considering that this number is much lower in a 2-DE gel analysis and usually highly represented than in a shotgun LC-MS/MS. However, despite having a slightly higher value of CV, the shotgun LC-MS/MS shows greater sensitivity and wide dynamic range. Proteins were categorized in 34 MERCATOR functional plant categories (Figure 1). 21.2% of the proteins was not assigned to a functional plant category. Up-to 18.1% proteins were related to protein fate (assembly, folding, degradation, and protein posttranslational modifications), this group being the one most represented.

The Holm oak proteome was filtered manually looking for proteins corresponding to enzymes based on the EC number. This resulted in 228 enzyme proteins, corresponding to 10% of the protein species with EC deduced from the in silico predicted Holm oak transcriptome (2103 enzyme proteins) and around 20–50% of the enzymes predicted for the sequenced A. thaliana and O. sativa subsp. japonica systems at UniProt.

The proteins identified were assigned to 93 KEGG metabolic pathways (Supplementary Table S3). The most represented pathways were: the carbohydrate metabolism (starch and sucrose metabolism and glycolysis/gluconeogenesis) and the amino acids metabolism (Table 2). The least represented one was the enzymes related to transcription (Supplementary Table S3). These figures are much higher than those previously reported for Q. ilex and other forest tree species (Valero-Galván et al., 2012b; Pascual et al., 2017; Szuba and Lorenc-Pluciñska, 2017), maybe due to the use of the powerful LTQ-Orbitrap mass instrument (Kalli et al., 2013) and the search in custom-built specific database.

Out of the 228 enzyme proteins identified, 23 were specific for Holm oak, and 202, 157, 88, and 87, shared with, respectively, A. thaliana, O. sativa subsp. japonica, P. trichocarpa, and E. grandis (Figure 2). 84 enzymes were common to all the species, and 471, and 35 specific for A. thaliana and O. sativa subsp. japonica. It is worthnoting that, for P. trichocarpa and E. grandis no unique enzymes were found, this proving the quality and validity of our data, with, consequently, a more complete annotated transcriptome and proteome database. Holm oak unique enzymes were related to the biosynthesis of hormones and secondary metabolites. They included those involved in the zeatin biosynthetic pathway (ath00908), such as cis-zeatin O-beta-D-glucosyltransferase (EC:2.4.1.215) and zeatin O-beta-D-xylosyltransferase (EC:2.4.2.40). Zeatin, one of the growth promoting hormones, is the predominant xylem-mobile cytokinin in many plant species (Kamboj et al., 1999). In the Holm oak unique enzymes involved in the secondary metabolism [6′-deoxychalcone synthase (EC:2.3.1.170) and prenylcysteine oxidase (EC:1.8.3.5)] were involved in flavonoid biosynthesis and terpenoid backbone biosynthesis, respectively. This is not surprising as secondary metabolites are species specific. Thus, in Holm oak, the flavonoids epicatechin gallate and epigallocatechin were found (Vinha et al., 2016b).

The 84 enzyme proteins common to the five-species corresponded mostly to pathways of the central metabolism, such as those of starch and sucrose (e.g., sucrose synthase, EC: 2.4.1.13, and glucose-6-phosphate isomerase, EC: 5.3.1.9), glycolysis and gluconeogenesis [e.g., phosphoglycerate kinase (EC:2.7.2.3) and pyruvate kinase. (EC:2.7.1.40)], and citrate cycle [e.g., malate dehydrogenase (EC:1.1.1.37), pyruvate dehydrogenase (EC:1.2.4.1), and aconitate hydratase (EC:4.2.1.3)].

The 228 enzyme proteins identified belonged to 109 pathways, with some of them being represented by only one enzyme [e.g., caffeine metabolism (ath00232) and arachidonic acid metabolism (ath00590)] and up to 20 enzymes [e.g., carbon fixation in photosynthetic organisms (ath00710)]. Analysis of the UniProt in silico enzyme proteome revealed 106 and 107 pathways for, respectively, P. trichocarpa and E. grandis, with the figure being higher for A. thaliana (121 pathways) and O. sativa subsp. japonica (112 pathways) (Supplementary Table S8).

The pathways most represented in Holm oak were those of the intermediate and central metabolism, including glyoxylate and dicarboxylate metabolism (ath00630) with 16 enzyme proteins and amino sugar and nucleotide sugar metabolism (ath00520) with 12 enzyme proteins (Table 2). For the glycolysis (Supplementary Figure S4), just as an example, there were only two enzyme proteins non-detected: phosphofructokinase (EC:2.7.1.11) and phosphoglycerate mutase (EC:5.4.2.12) (Supplementary Table S9). These results are more complete than the ones found from the in silico analysis of the other two woody plants used for comparisons P. trichocarpa and E. grandis, with only 5 out of the 10 glycolytic enzymes.

Metabolome Analysis

The metabolites present in the pooled samples were analyzed by using GC-q-MS. Two different extraction solvents, methanol:water and chloroform, were, respectively, used for compounds of different polarities. Up to 155 and 19 peaks were resolved by gas chromatography using the above mentioned solvents. A complete list of the identified compounds with their respective RT and the mass-to-charge ratios (m/z) is included in Supplementary Tables S1, S2. From the m/z values, and after a search in seven public databases (Alkane, Fiehn library 1 and 2, Gölm Metabolome Database, GC-TSQ, MoSys, and NIST/EPA/NIH Mass Spectral Library) a total of 62 compounds were identified, 57 in the methanol:water extract and 5 in the chloroform one. The normalized peak areas of the metabolites were employed for the mean, SD, and CV determinations. The average of the CV obtained (13.70%) was lower than the obtained with proteins data (36.75%), revealing the existence of a greater variability in proteins analysis. The higher CV could be related with the higher number and diversity of identified proteins versus the metabolites identified.

Identified compounds were in the 60–500 Da and mostly belonged to the primary metabolism (59), with only three being secondary metabolites (catechin, epigallocatechin, and anthraquinone). The identified metabolites were grouped in six chemical families according to the KEGG database17, including carbohydrates (19), organic acids (19), amino acids (11), fatty acids (4), polyols (2), and phenolic compounds (2) (Table 1). The family most represented was that of organic acids (19) and carbohydrates (19), followed by amino acids (11). Fatty acids (4) and phenolic compounds (2) were much less represented. They were included in at least 64 different KEGG pathways (Supplementary Table S3), and in 15 functional plant categories according to MapMan classification (Figure 1).

TABLE 1. Metabolite families from GC-MS data of Quercus ilex.
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These metabolites are starting metabolites or final products from primary metabolism pathways, like glyoxylate and dicarboxylate metabolism (ath00630), starch and sucrose metabolism (ath00500), citrate cycle (TCA cycle) (ath00020) of carbohydrate metabolism; alanine, aspartate, and glutamate metabolism (ath00250) of amino acid metabolism and biosynthesis of unsaturated fatty acids (ath01040) of fatty acids metabolism. Many were intermediate metabolites, with 5 (citrate, cis-Aconitate, succinate, fumarate, and malate), out of the total 8 corresponding to the Citrate cycle (Figure 4 and Table 2). The pathways most represented were carbohydrate and amino acid metabolisms. However, the number of secondary metabolites (catechin, epigallocatechin, and anthraquinone) was smaller than the number of secondary metabolites reported for Quercus spp. acorns (Vinha et al., 2016a). Due to the small number of secondary metabolites detected, the metabolic pathways related to the biosynthesis of secondary metabolites, like carotenoid biosynthesis (ath00906), anthocyanin biosynthesis (ath00942), and monoterpenoid biosynthesis (ath00902) are not highly represented (Supplementary Table S3). In Arabidopsis, the total number of secondary metabolites is still unknown due to metabolite identification being one of the bottlenecks in untargeted metabolomic studies (Wu et al., 2017). Still, in AraCyc 15.0, the total number of compounds described are 2971 and the number of metabolic pathways 610 (PMN; Plant Metabolic Network18).
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FIGURE 4. Metabolites and enzymes (protein or transcript level) assigned to the citrate cycle (TCA cycle). Omics data are highlighted in red (metabolites), blue (proteins), yellow (transcripts), and green (both proteins and transcript). The enzymes (proteins and transcripts) are named by their EC number. EC numbers and respective detected TCA cycle enzymes: 2.3.3.1 (Citrate synthase), 4.2.1.3 (Aconitate hydratase), 1.1.1.42 [Isocitrate dehydrogenase (NADP+)], 1.2.4.2 (alpha-ketoglutarate dehydrogenase), 6.2.1.4 (Succinyl coenzyme A synthetase), 1.3.5.1 (Succinate dehydrogenase), 4.2.1.2 (Fumarate hydratase), 1.1.1.37 (Malate dehydrogenase). There are two full reactions (metabolite, protein and transcript level) This figure was adapted from KEGG reference pathway.



TABLE 2. Number of metabolites and enzymes (proteomic and transcriptomic level) in KEGG pathways.
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The identification of 62 metabolites is in the order of what has been reported for non-model plant systems by using a similar approach (Warren et al., 2012; Cadahía et al., 2014, Asai et al., 2016; Pascual et al., 2017), but far from the figure obtained when using model systems such as A. thaliana, or complementary techniques such as LC-MS. The employment of complementary LC-MS strategies would increase the number of metabolites identified, as shown, for example, with A. thaliana, although it would greatly reduce the number of metabolites identified with no doubts. Kim et al. (2015) detected 4483 distinct metabolite peaks from leaves using 11 mass spectrometric platforms, but only identifying 1348 metabolites. These results revealed that the available databases and repositories are incomplete and pointed to the need for new algorithms for elucidating structures from MSn analyses.

Data Integration

To seek insights into the metabolic pathways as they occur in Holm oak, transcriptomics, proteomics, and metabolomics data have been integrated. (Table 1 and Supplementary Tables S8, S10). We obtained a deeper view of the metabolic pathways by implementing proteomics or transcriptomics data as the potential of these techniques is much higher than that of metabolomics. However, although technological advances and bioinformatic tools and resources for making those analyses and data interpretation have been extended to plant biology research, this has mostly been for model plants. The unique and specialized biology of such diversified species requires the adaptation of strategies conceived primarily for model organisms and the development of designed and specific methods. For their integration, we employed EC numbers (proteins and transcripts) and KEGG identifiers (metabolites). With the latter and with KEGG pathway maps we obtained the three-different level of information of 61 metabolic pathways (Supplementary Table S3). The metabolic pathways most represented are shown in Table 2. In order to obtain a metabolic overview. The “BINS” generated from the proteome/transcriptome were employed as a “mapping file,” then introducing identified metabolites. The representation obtained of the general map (Figure 5A) for the dataset as shown from ImageAnnotator module of MapMan, showed common metabolism points between metabolites and proteins/transcripts (Figure 5B). From the total number of pathways reported in the plants, for example, in KEGG (127 pathways in Arabidopsis), we procured data from 124 of them at the metabolomic, proteomic, and transcriptomics level (Supplementary Figure S3). Table 2 summarizes the most representative pathways visualized, including carbohydrate metabolism [glycolysis/gluconeogenesis (ath00010), glyoxylate and dicarboxylate metabolism (ath00630), citrate cycle (TCA cycle) (ath00020), starch and sucrose metabolism (ath00500)], amino acid metabolism [alanine, aspartate, and glutamate metabolism (ath00250) and phenylalanine metabolism (ath00360), lipid metabolism (biosynthesis of unsaturated fatty acids (ath01040)], and energy metabolism [carbon fixation in photosynthetic organisms (ath00710)]. The one most represented was the TCA, with 5 metabolites out of a total of 10, and protein and transcript corresponding to, respectively, 6 and 8 enzymes (Figure 2). On the other hand, there were clear gaps in the hypothetical plant metabolic chart, mainly corresponding to the secondary metabolism and hormones [anthocyanin biosynthesis (ath00942), brassinosteroid biosynthesis (ath00905)] and lipid metabolism [steroid biosynthesis (ath00100)]. For example, the brassinosteroid biosynthesis pathway, which produces plant steroidal hormones that play important roles in many stages of plant growth, has only reported 1 protein and 1 transcript (Supplementary Table S4). Also, the Figure 3 shows the low representation of the different metabolic pathways, also with a multi-omics data integration. From metabolomics, proteomics, and transcriptomic data we were able to identify 64, 109, and 118, pathways, respectively. The total number reported at the PMN and deduced from genome sequencing were 610 (A. thaliana), 519 (E. grandis), and 538 (P. trichocarpa). From these figures we can conclude that the current wet methodologies only allow the visualization of a low percentage of enzyme gene products in a single experiment.
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FIGURE 5. MapMan overview of general metabolism for the metabolites and proteins/transcripts of Quercus ilex. (A) Visualization of 58 metabolites in the context of general metabolism using the using MapMan software. (B) Visualization of 58 metabolites in different MapMan pathways. Each red square represents a metabolite and each gray circle represents a protein or transcript. More details can be found in Usadel et al. (2009).



The work and dataset generated, even considering future methodological improvements, will be the basis of ulterior studies on the particularities of the metabolism as it occurs in different organs and developmental processes, as well the changes in response to environmental cues, thus complementing our previous studies in which morphology, phenology, classical physiological and biochemical analysis, and the holistic proteomics have been employed (Echevarría-Zomeño et al., 2009, 2012; Valero-Galván et al., 2011, 2012a; Sghaier-Hammami et al., 2013; Romero-Rodríguez et al., 2014, 2015; Romero-Rodríguez, 2015; Simova-Stoilova et al., 2015; Guerrero-Sanchez et al., 2017). These previously published studies provided quite fragmented and speculative biological information. Hence to go one step ahead, data validation and integration at the different molecular levels would be necessary in order to obtain an unbiased molecular interpretation of the plant biology.

CONCLUSION

We have proven that – omics integration, in the Systems Biology direction, is feasible not only with model organisms, but also with orphan and recalcitrant species such as the Holm oak, the most emblematic and representative tree species of the Mediterranean forest. The methodological bases, including wet protocols and in silico analysis, have been established, allowing the implementation of transcriptome, proteome, and metabolome databases, comprising 27089 transcripts (unigenes), 2380 protein species, and 62 metabolites (Supplementary Table S11).

Integrated analysis allowed the visualization and reconstruction of the metabolism in Holm oak. Up to 123 metabolic pathways, out of the 127-total reported in KEGG, can be visualized at the transcriptome, proteome, and metabolome level. Thus, as an example, for the Krebs cycle, six metabolites out of the eight have been detected. This route comprises eight enzymes detected at the transcriptome or proteome level. These figures are like those reported for the model plant A. thaliana. There is still room for improvement, and there are pathways underrepresented in the created database, including the brassinosteroid biosynthesis pathway. The Q. ilex genome sequencing, the use of alternative and complementary strategies such as LC-MS will improve the number of pathways visualized.

The current metabolic reconstruction achieved for this species can be considered to be sufficient to progress in the biological knowledge of this species.
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Metabolite Profiles of Sugarcane Culm Reveal the Relationship Among Metabolism and Axillary Bud Outgrowth in Genetically Related Sugarcane Commercial Cultivars
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Metabolic composition is known to exert influence on several important agronomic traits, and metabolomics, which represents the chemical composition in a cell, has long been recognized as a powerful tool for bridging phenotype–genotype interactions. In this work, sixteen truly representative sugarcane Brazilian varieties were selected to explore the metabolic networks in buds and culms, the tissues involved in the vegetative propagation of this species. Due to the fact that bud sprouting is a key trait determining crop establishment in the field, the sprouting potential among the genotypes was evaluated. The use of partial least square discriminant analysis indicated only mild differences on bud outgrowth potential under controlled environmental conditions. However, primary metabolite profiling provided information on the variability of metabolic features even under a narrow genetic background, typical for modern sugarcane cultivars. Metabolite–metabolite correlations within and between tissues revealed more complex patterns for culms in relation to buds, and enabled the recognition of key metabolites (e.g., sucrose, putrescine, glutamate, serine, and myo-inositol) affecting sprouting ability. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites can be potentially used as indicators for the genetic background.
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INTRODUCTION

Plants have an extraordinarily complex metabolism, and a comprehensive understanding on how it operates pose a challenge due to the coordination among various biochemical processes in specialized tissues and subcellular compartments (Lunn, 2007; Sweetlove and Fernie, 2013). Their sessile nature adds an extra layer of difficult, as there is a constant need to adjust to changes in the surrounding environment (Jaillais and Chory, 2010; Kooke and Keurentjes, 2012). This significant level of organization allows the production of a plethora of chemical compounds, which differ in their properties (e.g., size, polarity, stability, and quantity) and biological functions, representing a readout of the physiological status of a cell. Traditionally, plant metabolomics studies have focused on elucidating the function and regulation of particular biosynthetic routes involving a number of metabolites (Stitt et al., 2010; Fernie and Tohge, 2017). However, advances in large-scale automated analytical platforms have increasingly enabled high-throughput detection of metabolites, allowing the elucidation of metabolic networks in terms of structure and connectivity and/or bridging the genotype-to-phenotype gap to elucidate certain biological processes. Although knowledge about the role of specific enzymes was extended by targeted reverse genetics approaches (Alex et al., 2004; Tohge et al., 2005; Zheng et al., 2005; Seki et al., 2011; Goulet et al., 2015), duplication of enzymes and their different subcellular localization hampers metabolic engineering modifications relying on a single transgenic (Huang et al., 2010; Qin et al., 2011; Ren et al., 2014; Fernie and Tohge, 2017). Means to surpass this problem include the use of natural/genetic variance to enhance our understanding about the genetic architecture of metabolic traits and monitor gene-phenotype combinations in a wide range of plant species (e.g., Arabidopsis, tomato, and rice) or important agronomic traits such as fruit composition (Bernillon et al., 2013; Monti et al., 2016), grain yield (Obata et al., 2015; Dan et al., 2016), and tolerance to abiotic stresses (Glaubitz et al., 2014; Todaka et al., 2017; Sprenger et al., 2018).

As metabolism is strongly influenced by interactions between the environment and genetic regulation, there is a limitation to extrapolate the complete picture of plant metabolomes by evaluating a single condition (i.e., developmental stage, genetic background and environment) (Soltis and Kliebenstein, 2015). Furthermore, apart from having their biosynthesis and accumulation in a tissue-specific manner, metabolites can be produced and transported across tissues and/or organs to mediate certain biological processes. One example of this kind of regulation is the fate of axillary buds, which is governed by a complex interplay among environmental factors, genetic background and endogenous metabolites (Huang et al., 2012). Metabolite signals arising from other parts of the plant such as shoots or stems are sensed prior to trigger systemic responses that will promote bud outgrowth (Dun et al., 2012; Barbier F.F. et al., 2015; Brewer et al., 2015). Several hormones have been long recognized as the main signaling molecules in this process (Umehara et al., 2008; Domagalska and Leyser, 2011; Durbak et al., 2012). However, the availability of sugars, especially sucrose, was recently found to be crucial for bud outgrowth release prior to alterations in hormone levels (Mason et al., 2014; Barbier F. et al., 2015). Manipulation of sucrose supply via decapitation or defoliation was able to promote or suppress bud outgrowth, respectively (Mason et al., 2014; Barbier F. et al., 2015; Fichtner et al., 2017). Interestingly, dormant buds present a transcriptional response related to carbon starvation that seems to be conserved among different species (Tarancón et al., 2017). Primary metabolites, such as sugars and amino acids, are integral parts of sophisticated signaling networks linking the energetic status and external cues to regulate growth accordingly (Nunes-Nesi et al., 2010; Smeekens et al., 2010; Xiong et al., 2013; Chellamuthu et al., 2014; Yadav et al., 2014). Collectively, this new information placed primary metabolites as essential molecules with more immediate roles in bud development and outgrowth.

The regulation of axillary bud outgrowth is crucial for crops in which either vegetative propagation or tillering are important traits, as it is the case of the perennial C4 grass sugarcane (Saccharum × officinarum). In sugarcane, axillary buds are also naturally in a dormant state (Jain et al., 2009), however, when segments of the culms containing portions of internode and node with embryo roots and at least one viable bud are isolated from the plant body and placed into soil, bud outgrowth is released and a new plant is generated. Sugarcane is capable of accumulating impressive amounts of sucrose in its stems, in a very complex and dynamic process characterized by a continuous cycle of synthesis and degradation (Whittaker and Botha, 1997; Zhu et al., 1997; Botha and Black, 2000; Rose and Botha, 2000), which involves various enzymes and their isoforms. There is a gradient of sucrose accumulation along the stem, with younger internodes containing less sucrose than older internodes (Zhu et al., 1997; Pereira et al., 2017). Interestingly, the stored carbon in the form of sucrose is used for bud outgrowth and formation of a new sugarcane plant (O’Neill et al., 2012). Due to the fact that sucrose was shown to be crucial for bud outgrowth in other species (Mason et al., 2014; Barbier F. et al., 2015; Kebrom and Mullet, 2015), it remains to be elucidated whether the remarkably high levels of sucrose or other components of the primary metabolism are important to promote bud outgrowth release in sugarcane. The complex genetic architecture of sugarcane (e.g., high polyploidy, high heterozygosity, large amount of repetitive sequences, aneuploidy, and large genome size) (Zhang et al., 2012) has hampered the use of genetic information to dissect biological mechanisms in this species (de Setta et al., 2014; Song et al., 2016; Riaño-Pachón and Mattiello, 2017; Hoang et al., 2017). All these characteristics make the application of metabolomics a great alternative for investigating complex agronomic traits such as sprouting potential.

In the present study, we assessed the metabolic profile of two tissues involved in the sprouting potential, namely culm and bud, from 16 highly planted sugarcane varieties from a Brazilian sugarcane breeding program (varietal census 2016/20171). The cultivars studied herein rank among the most cultivated genotypes in the world as they cover about 65% of the sugarcane planted area in Brazil, the major sugarcane producer worldwide. These cultivars are therefore a worthy sample of sugarcane commercial genotypes with greater field performance. Our results demonstrate that the culm metabolism plays an important role as primary energy source to provide carbon skeletons and building blocks for protein synthesis for triggering bud outgrowth. Overall, our results suggest that both factors, genetic background and bud sprouting rates, jointly influenced the metabolite profile of sugarcane, opening perspectives for the use of metabolomics to assist sugarcane breeding programs.

MATERIALS AND METHODS

Plant Material

A collection of 16 relevant genotypes was chosen from the leading Brazilian sugarcane-breeding program The Inter-University Network for the Development of Sugarcane Industry (RIDESA) (Supplementary Table S1). Out of 16, the varieties RB867515, RB966928 and RB92579 cover 42% of total sugarcane fields in the country (2016/2017 varieties census: see footnote text 1). Sugarcane breeding programs have been indirect selected genotypes with high sprouting potential by choosing experimental plots with higher density and stalk yield. Consequently, the current commercial cultivars have low variability to this trait and tend to present medium to high sprouting potential under field conditions (Cargnin et al., 2008). The sugarcane breeding programs rely generally on a limited number of elite plant material as parental lines. Therefore, these 16 selected genotypes were also used as a proof of concept to evaluate whether even under a narrow genetic basis metabolic profiles could be used to discriminate their metabolic status. Information on the parents of the selected genotypes was recorded from RIDESA database, the pedigree tree (Supplementary Figure S1) was drawn using the R packages synbreed (Wimmer et al., 2012) and diagram (Soetaert, 2017). The degree of kinship among the cultivars is represented as the coefficient of relationship between the individuals (Wright, 1922) computed using AGHmatrix package (Amadeu et al., 2016; Supplementary Figure S2).

Experimental Conditions

Field and greenhouse experiments were conducted at the Federal University of São Carlos (UFSCar)/RIDESA in Araras, São Paulo, Brazil located at 22°21′25′′ S, 47°23′03′′ W, about 611 m above sea level; in a typic eutroferric red latosol soil. Mature sugarcane plants (approximately 11 months old) were decapitated 24 h before the harvest in the field, to facilitate the loss of apical dominance. After that, three stems of each genotype from independent plants were randomly harvested around 2 h after dawn. For each stem, internodes were counted and divided into three parts. Due to variations in sprouting performance throughout the stem according to bud position, only internodes belonging to the middle portion of the stem were further cut close to the bud, and had their diameter and weight measured to guarantee uniformity. Considering the existence of a sucrose gradient as well as different developmental stages along the sugarcane stem, the selection of the middle third portion of this organ would allow a better comparison among the genotypes. It is worth mentioning that usually entire sugarcane stems are planted in commercial field environments.

This material, also known as setts, was used for both metabolite profiling analysis and sprouting performance evaluation. In case of metabolite profiling, buds and the region of the culm in which they were inserted in were precisely isolated with the help of a scalpel and cork borer, respectively. A total of 3 biological replicates (representing three independent stalks), each containing a pool of three individual buds or culms, was collected. After the harvesting process, which took approximately 5 min per genotype, tissues were immediately frozen into liquid nitrogen and stored at -80°C for metabolic profiling analysis.

Setts were planted with buds oriented toward the light into 200 ml pots containing commercial substrate Plantmax® for sprouting evaluation. Since sugarcane initial development is sensitive to soil water content and changes in temperature (Oliveira et al., 2001; Singels and Smit, 2002; Smit, 2011), the experiment was performed in the greenhouse during May 2016 with automated irrigation system (six times along the diel cycle) and the temperature was set to 35 and 29°C before and after sprouting, respectively. Each genotype was planted in three completely randomized trays containing 24 individuals each.

Sprouting Rate Evaluation

Sprouting performance was assessed in the greenhouse by monitoring bud outgrowth during the first 14 days after planting. Even considering the lack of synchronization in bud outgrowth release and their potential to be viable over longer terms, dormant buds would hardly become seedlings under field conditions after this period. Sprouting was considered successful when the seedling stem crossed the soil surface (a layer of 2 cm of soil over the bud) and was able to issue the first leaf. In order to classify the genotypes according to the sprouting rate, a descriptive quartile analysis was performed, in which varieties belonging to the top or down 25% of data distribution were considered with high or low sprouting potential, respectively. To further improve the classification of the genotypes belonging to the middle 50% quartile of data distribution, a second quartile analysis was performed to distinguish them as intermediate-low or -high sprouting potential. For assessing the variances, a parametric test (F-test) was applied to all genotypes at 5% of significance levels.

Metabolite Profiling Analysis

Prior to metabolite profiling analyses, sugarcane tissues were ground to a fine powder in liquid nitrogen and aliquots of 20 or 50 mg for culms and buds, respectively, were used for metabolite extraction, following the methodology described by Giavalisco et al. (2011). A fraction of 100 μl from the organic phase was dried and derivatized as described in Roessner et al., 2001. Afterwards, 1 μl of the derivatized samples was analyzed on a Combi-PAL autosampler (Agilent Technologies GmbH, Waldbronn, Germany) coupled to an Agilent 7890 gas chromatograph and a Leco Pegasus 2 time-of-flight mass spectrometer (LECO, St. Joseph, MI, United States) in both split (1:40 and 1:65 for buds and culm, respectively) and splitless modes (Weckwerth et al., 2004). Chromatograms were exported from Leco ChromaTOF software (version 3.25) to R software. Peak detection, retention time alignment, and library matching using the Golm Database2 were performed using TargetSearch R package (Cuadros-Inostroza et al., 2009). Metabolites were quantified by the peak intensity of a selective mass. Metabolites intensities were normalized by dividing the fresh weight of each biological replicate, followed by the sum of total ion count and log2 transformation.

Statistical Analyses

Statistical analyses and graphical representations were performed using R version 3.2.33. Multivariate analyses, including PCA and PLS-DA, were carried out using mixOmics (Rohart et al., 2017) and pcaMethods (Stacklies et al., 2007) R packages. Correlation analysis, heatmap and network visualization were done using corrplot (Wei and Simko, 2017), d3heatmap (Cheng et al., 2018), and qgraph (Epskamp et al., 2012) packages, respectively.

RESULTS

Commercial Sugarcane Varieties Displayed Mild to Low Variability in Bud Outgrowth Under Controlled Environmental Conditions

During the initial period of seedling establishment (14 days), an overall high sprouting homogeneity was observed among genotypes. The first quartile analysis allowed the classification of 31, 56, and 13% of the genotypes into low, intermediate, and high sprouting potential, respectively. To refine this classification, a second quartile analysis was performed only using the intermediate genotypes. However, due to the fairly homogenous sprouting ability of the genotypes observed in the present study, the subdivision of this group resulted only in 19 and 38% of genotypes with intermediate–low and intermediate–high sprouting potential, respectively. Out of the 16 selected genotypes, RB975375 and RB935744 were classified as high sprouting rate, whereas RB937570, RB975201, RB835486, RB966928, and RB72454 were considered with low sprouting potential (Supplementary Figure S3). Despite these major groups, the sprouting rate was in the range of 89–100% and no statistical differences among the genotypes were observed at level of 5% of significance. Due to the nature of vegetative propagation of this crop, breeding programs have indirectly favored genotypes with high sprouting rates. However, there is still a severe lack of synchronization of the bud outgrowth in the Brazilian field conditions, especially in areas susceptible to drought, leading to massive reduction in sprouting and consequently jeopardizing yield (Cargnin et al., 2008). Furthermore, the sprouting rate estimation was based on the establishment of a new plant, and although this is the measured trait in the field, which indirectly reflects the bud outgrowth performance, it does not enable the assessment of the internal factors involved in the control of bud release.

Metabolite Profiling Revealed Differential Metabolic Responses of Genotypes in Distinct Tissues

As it is challenging to morphologically and molecularly monitor the factors triggering bud outgrowth release in this crop, we next investigated whether the metabolite profiling could be a great tool to understand the control of bud outgrowth using GC-MS. This platform allows the assessment of molecules involved mainly in central metabolism, which was already reported to be closely linked to plant growth (Meyer et al., 2007; Lisec et al., 2008). Due to the fact that no significant differences were found in water content of the studied genotypes (data not shown), we used fresh weight for normalizing the metabolite levels. A major portion of the metabolites (76.7 %) was found in all samples. Due to the saturation of sucrose levels, the same samples were also injected in a split mode (diluted 1:40 or 1:65 for buds and culms, respectively) to accurately quantify this sugar. We detected a total of 66 metabolites with known structures (e.g., amino acids, sugar, sugar alcohols, organic acids, and polyamines), of which 16 and 15 were specifically identified in bud and culm, respectively (Figure 1A). Figure 1B shows a heatmap including the metabolite abundance of genotypes in each tissue and Supplementary Table S2 summarizes the effect of individual metabolites. By applying ANOVA, we found that most metabolites were significantly affected by the genotype in both tissues (Supplementary Figure S4), indicating enough variability in metabolic features among genotypes even under a narrow genetic basis (Supplementary Figures S1, S2).
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FIGURE 1. Metabolic composition of buds and culms in different sugarcane commercial cultivars. (A) Number of metabolites identified in culm, bud, and common to both tissues; (B) Differential abundance of metabolites in culms and buds according to their compound class. Each column represents the genotype mean, and each row represents a metabolite. Variations in the relative abundance of metabolites are displayed in blue (low) to red (high).



Metabolite–Metabolite Correlations Provide New Insights on the Regulation of Metabolic Networks Intra- and Inter-Tissues

To decipher the relationships among metabolites, we performed correlation-based network analysis using significant pairwise correlations (r ≥ 0.5, p ≤ 0.05) (Figure 2), which are summarized in Supplementary Table S3. As expected, metabolites belonging to the same biochemical pathway tended to present a high degree of connectivity as it was the case for valine, isoleucine and leucine (r > 0.8) in both tissues. In total, there were 148, 414, and 47 significant correlations among metabolites detected in buds, culms and between these two tissues, respectively, suggesting that the metabolite–metabolite correlations were diverse in the different tissues. An exception was a subnetwork containing positive correlations among the branched amino acids leucine, isoleucine and valine, and threonine, conserved in both tissues. Interestingly, those amino acids were only linked to each other and methionine in buds, whereas in culm this network became more complex. Apart from the branched amino acids and threonine, further highly positive connections were built among glutamine, serine and the sugars sucrose, fructose and myo-inositol in culms. This expanded subnetwork was negatively linked to another subnetwork including GABA, putrescine, benzoate, galacturonate, nicotinate, and a metabolite with similarity to itaconate, which in turn were all positively correlated to each other. The strongest negative correlation (r = -0.9679, p = 0.05) was between sucrose and putrescine that is one of the links between these two subnetworks in culms. Remarkably, the role of those two metabolites in controlling bud dormancy have been recently shown (Cui et al., 2010; Mason et al., 2014; Barbier F. et al., 2015). Interestingly, the compound similar to itaconate, which displayed the strongest positive correlation in culm with galacturonate (r = 0.977, p = 0.05) presented distinct correlations with amino acids in culms and buds. One example is the connection with glutamate that seems to be the opposite in both tissues. Glutamate and serine are the only metabolites that significant connect the bud and culm network. With respect to the bud, its network is much less interconnected when compared to culm. In addition to the amino acids subnetwork, another highly interconnected subnetwork containing galactose, quinate and sorbose (r > 0.83, p = 0.05) was identified. Altogether, these results revealed that the metabolic network of culm is more coordinately regulated than that of bud. A logical explanation is that culms constitute more active tissues with pivotal role as strong sinks, not only related to sucrose, but also including amino acids, which will act as primary energy source to provide carbon skeletons and building blocks for protein synthesis during bud outgrowth.
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FIGURE 2. Metabolite–metabolite correlations within and between tissues in different sugarcane commercial cultivars. Metabolites are indicated by codes available at the Supplementary Table S2. Positive and negative correlations are represented in red and blue, respectively. Different color of nodes denotes distinct tissues.



Culm Metabolic Composition Is Important for Bud Outgrowth Performance

We also investigated whether the metabolic composition of both tissues among the selected commercial cultivars would have an impact on sprouting even under low trait variability. Based on the role of polyamines and sugars controlling axillary meristem dormancy and tillering/branching (Zheng et al., 2005; Ge et al., 2006; Purohit et al., 2007; Cui et al., 2010; Mason et al., 2014; Barbier F. et al., 2015), we hypothesized that the metabolic composition of the culm could be one of the key factors determining bud outgrowth. Although our analysis was restricted to few compounds of the primary metabolism, it covers key metabolites known to play fundamental roles in promoting sink to source transitions and plant growth. A partial least squares discriminant analysis (PLS-DA) was applied in an attempt to understand the role of culms in bud outgrowth (Figure 3). Our results showed that the bud metabolomic data solely did not result in a good separation among genotypes according to the sprouting potential (Figure 3A). One plausible reason is that different genotypes might be at distinct stages of dormancy, which could exert influence on their metabolism hampering the discrimination based on the metabolome. Furthermore, as the metabolic activities of mature culms are committed to sucrose storage and reduced in comparison to fast growing stages of the plant life cycle, we cannot exclude the possibility that changes in metabolic contents among cultivars are partially masked at this specific phase. In contrast to bud, the PLS-DA revealed a significant difference in the culm metabolism for low and high sprouting rate at least for the most contrasting genotypes (Figure 3B).
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FIGURE 3. Partial least squares discriminant analysis (PLS-DA) score plots corresponding to a model using genotypes and metabolites as two latent variables. (A,B) represent the discriminant analysis of bud and culm, respectively. The different genotypes are referred as numbers from 1 to 16, listed in Supplementary Table S1. The color of the numbers denotes its sprouting group.



To identify the metabolites responsible for the separation among genotypes, a cluster image analysis was performed by building a similarity matrix with the PLS-DA results (Figure 4). A total of five well-defined groups was obtained and although there was no clear association in three of the clusters with respect to sprouting rate, two groups presented a very clear trend in relation to bud outgrowth performance. Interestingly, the levels of several metabolites including lysine, histidine, phenylalanine, GABA, methionine, xylose, benzoate, tetradecanoate, putrescine, nicotinate, galacturonate, the compound similar to itaconate, putrescine, nicotinate, benzoate, and galacturonate seemed to correlate positively with the high sprouting rate genotypes. In contrast, the levels of glycerol, quinate, fructose, sucrose, myo-inositol, leucine, glutamine, isocitrate, glutamate, ornithine, serine, threonine, and isoleucine appeared to have a negative impact on bud outgrowth. Taken together, our results showed that the culm, but not the bud metabolome, enabled the discrimination of the genotypes based on their sprouting performance only among the most contrasting cultivars. Furthermore, the culm metabolism turned up important to determine bud outgrowth efficiency as shown by the correlation of contrasting genotypes with antagonistic metabolites such as sugars and polyamines, this latter suggested as a signaling mediator in bud dormancy, and also by the presence of glutamate and serine, both involved in the connection of culm and bud networks.
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FIGURE 4. Heat map of metabolites in culms selected by the PLS-DA VIP score. Each row represents a metabolite identified in at least three biological replicates (the number of squares represent the exact number of replicates), whereas columns represent the metabolic abundance among genotypes. Changes in the abundance of metabolites from the overall mean concentration for each genotype are shown in blue (low correlation) or red (high correlation).



Sugarcane Metabolome Reflects Sprouting Rate and the Genetic Relatedness of Commercial Genotypes

As the culm metabolome permitted to rank at some extend the genotypes according to the sprouting rate, we next investigated how central metabolism was influenced by the genetic background of the selected cultivars in the conditions of this experiment. For that, we compared the hierarchical clustering analysis (HCA) considering only the culm metabolome (Figure 5) to numerator relationship matrix (Supplementary Figure S2) obtained from pedigree information shown in Supplementary Figure S1.
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FIGURE 5. Hierarchical cluster analysis revealed that metabolite profiling from culms discriminates sugarcane commercial cultivars. Genotypes are color-coded as follows: red, orange, blue, and green represent low, intermediate-low, intermediate-high, and high sprouting groups, respectively.



The HCA analysis revealed the presence of two defined clusters (Figure 5). The first cluster represents a very similar group of eleven genotypes with low to moderate-high sprouting rates. Interestingly, pairs of individuals with a relationship coefficient of 0.5 (parent-offspring or full-sib) in the numerator relationship matrix (Supplementary Figure S2) tended to be kept in this HCA cluster. This cluster was mainly composed of individuals genetically related to the genotype RB72454, which was used as parental of several crossings of this panel (Supplementary Figure S1). The mismatch individual, RB975375, displayed 100% of sprouting rate. The other exception was the genotype RB835486, which clustered together with RB72454 despite their complete absence of relatedness as per pedigree information (Supplementary Figure S1). Interesting to note that RB835486 displayed the third lowest sprouting rate (93.1%), which main explain its placement at this first cluster.

The second cluster represents cultivars with high and moderate-high sprouting rates (RB935744 and RB975375 – high; RB985476 and RB975242 – moderate-high) with the exception of cultivar RB966928 that presents low sprouting rate. All the cultivars located in this cluster tended to display parentage coefficient below 0.25, among themselves and with other cultivars of this panel (Supplementary Figure S2), according to the information from our pedigree. This fact is reflected in the height of the HCA dendrogram, which confirms their relative weaker genetic relationship.

It is worth to mention that our pedigree estimate is incomplete due the lack of information about the fathers of cultivars obtained from multiparental crosses. Besides, the estimation of the kinship matrix (Supplementary Figure S2) could also be improved using informative molecular markers, which were out of the scope of this work. Despite this, the numerator relationship matrix (Supplementary Figure S2) revealed that the parentage coefficient was already high among cultivars (average of 0.114), suggesting a close relationship among cultivars (i.e., such value is almost the coefficient between cousins, 0.125). Apart from RB92579 and RB975242, all the clones share some degree of relatedness with at least one individual in the panel (Supplementary Figures S1, S2). Overall, our results suggest that both factors, genetic background and bud sprouting rates, jointly influenced the metabolomic profile of sugarcane revealed by HCA when evaluated under a single environmental condition.

DISCUSSION

Metabolomics has been widely used as a powerful tool to elucidate mechanisms involved in metabolic regulation as well as bridging the gap between genotype and phenotype (Saito and Matsuda, 2010; Kusano et al., 2011; Kumar et al., 2017). Over the last decade, metabolomics has been also used in association with natural variation to unravel the genetic architecture of several agronomic traits controlled by metabolism (Meyer et al., 2007; Toubiana et al., 2012; Witt et al., 2012). Although these studies have provided many insights into biological properties, the complexity of the metabolome and its dependency on the environment, genetics and development, precludes the generation of a full complete picture (Soltis and Kliebenstein, 2015). In this study, we minimized this complexity by fixing the environmental conditions to assess whether the primary metabolism of two organs involved in the sprouting potential is regulated to trigger bud outgrowth in 16-highly planted sugarcane cultivars, representing a good sampling of commercial cultivars with overall good field performance, including good sprouting rate. Under our experimental conditions (controlled temperature and water availability), the selected sugarcane genotypes presented low variability in their sprouting rate (about 10%). Optimal sprouting conditions rarely occur in important production areas, when buds are often exposed to several abiotic constraints. One example is the Brazilian central region, in which the impact of limiting environmental conditions resulted in sprouting rates ranging from 29,17 to 76,92% among 8 commercial cultivars. This work evaluated 4 cultivars (RB867515, RB855453, RB835486, RB855536) also studied herein, but only RB8555453 and RB855536 presented sprouting ratios over 70% under those environmental conditions (Cargnin et al., 2008). Furthermore, it is important to mention that a mix of internodes from top, middle and bottom portions of the stem is planted in commercial fields. In our experimental setup, we selected only internodes belonging to the middle part of the stem to minimize the variation in sprouting rate dependent on developmental stage and bud position among the varieties (Manhães et al., 2015; Baracat-Neto et al., 2017).

It is widely known that there is a gradient concentration of sucrose along the sugarcane stem, with mature internodes having higher sucrose levels that decrease toward the top immature internodes. Strikingly, the bud sprouting performance along the stem follows the opposite gradient of sucrose (Whittaker and Botha, 1997; Zhu et al., 1997; Vorster and Botha, 1999; Uys et al., 2007) and the culm metabolism is apparently essential to determine the dormant status of the axillary meristem and bud outgrowth (Boussiengui-Boussiengui et al., 2016). Although few studies aimed to investigate the mechanisms responsible for successful germination/sprouting in this species (Verma et al., 2013; Singh et al., 2016; Boussiengui-Boussiengui et al., 2016), very little is known about the biochemical and molecular aspects related to this process, especially concerning sink and source interactions of the bud and culm. Plant growth and development is modulated by the balance between source and sink strengths (Paul and Foyer, 2001; Dingkuhn et al., 2007; Smith and Stitt, 2007; Patrick and Colyvas, 2014), namely production of photoassimilates in leaves and their use in non-photosynthetic organs. In sugarcane, sucrose can be quickly metabolized in sink tissues to maintain its levels within a proper range, enabling fast responses to alterations in sucrose supply and demand. However, depending on the carbon demand, the culm starts to act as an additional source tissue, mobilizing sucrose to sustain developmental transitions. In the case of sprouting, sucrose will be used to promote axillary bud outgrowth and seedling establishment (O’Neill et al., 2012). The amino acids leucine and isoleucine seem also to play a later role during this process (O’Neill et al., 2012) and isotopic analysis demonstrated that nitrogen reserves from the culms are important for seedling establishment in the first 50–60 days of development (Carneiro et al., 1995). In this sense, remobilization of carbon and nitrogen mediated by sucrose and amino acids from the culm is crucial for the establishment of a new shoot from the axillary meristem. However, it still remains to be elucidated which key metabolites participate in breaking the axillary meristem dormancy. It is known that bud outgrowth is inhibited by the action of hormones in a phenomenon termed apical dominance, which can be suppressed by excision, developmental transitions or diseases (Botha et al., 2013; Rameau et al., 2015; Barbier et al., 2017). In this work we focused on investigating how primary compounds of central metabolism, rather than hormones, behave and interact in buds and culms during sugarcane bud outgrowth. Unraveling the interaction between hormone and central metabolite signaling will be crucial to dissect the temporal cascade controlling bud outgrowth release.

As plant growth regulation is closed modulated by the primary metabolism, our study used GC-MS-based metabolomics to unravel these relationships in culm and bud among different genotypes. Due to the fact that the modern commercial sugarcane varieties have narrow genetic basis, we first addressed if metabolic features would display any degree of variability among the selected sugarcane cultivars. Statistical tests (ANOVA) on metabolome data did not only confirm metabolic variability, but also unravel differences between the studied organs.

In order to further unravel small molecules involved in this process, metabolite–metabolite correlation analysis was performed within and between tissues. Several studies pinpointed the high connectivity of amino acids in Arabidopsis, tomato and maize (Schauer et al., 2006; Toubiana et al., 2015; Wen et al., 2015), suggesting that their network is controlled by a high degree of metabolic regulation (Galili and Höfgen, 2002). Accordingly, our results showed that overall amino acids were highly correlated. Interestingly, glutamate and serine were among the few metabolites presenting correlations between culm and bud. Glutamate, a hub in amino acid metabolism, is substrate of glutamine synthetase (GS) to generate glutamine or is formed by the conversion of glutamine and 2-oxoglutarate in the presence of either reduced ferredoxin (Fd) or NADH by glutamate synthase (GOGAT) during inorganic ammonium assimilation (Lea and Miflin, 1974; Yamaya and Oaks, 2004). In rice, transgenic plants lacking the cytosolic glutamine synthetase 1;2 (GS1;2) exhibited a severe suppression of bud outgrowth (Ohashi et al., 2015), suggesting a role of glutamate as signal molecule for sensing nitrogen status and controlling this process. Furthermore, glutamate is also a precursor of serine biosynthesis in a non-photorespiratory route called phosphorylated pathway, which was the other metabolite linking culm to bud metabolism and has been shown to control cell proliferation (Cascales-Minana et al., 2013; Ros et al., 2014). In this context, metabolomics is a powerful tool for identifying candidate metabolic pathways involved in diverse biological processes.

With respect to the tissue-specific metabolic networks, the culm presented a more coordinately regulated metabolism than the bud. Due to its high concentration in parenchyma cells of stem internodes, sucrose was one of the main hubs in the culm network, as expected. This disaccharide was responsible for the most negative correlation in the network with the putrescine, an important precursor for polyamine biosynthesis. Polyamines are aliphatic nitrogen compounds that have been proposed to be involved in many processes during plant growth and development in response to environmental cues (Kusano et al., 2007; Gill and Tuteja, 2010) and are crucial for plant survival as blockage of their biosynthesis leads to lethal phenotypes (Urano et al., 2005; Ge et al., 2006). Interestingly, deletion in one of the genes encoding for the enzyme S-adenosylmethionine decarboxylases, involved in both spermidine and spermine biosynthesis, leads to a bushy and dwarf phenotype in Arabidopsis by affecting cytokinin homeostasis (Cui et al., 2010). This mutant, namely bud2-1, has 25% higher levels of putrescine in comparison to the wild-type. Apparently, bud2-1 has also enhanced root growth, supporting previous work that suggests putrescine as a growth promoter (Cui et al., 2010). Cytokinin levels are controlled by auxin (IAA) during bud outgrowth via apical dominance maintenance (Müller and Leyser, 2011). In this sense, opposite to putrescine, myo-inositol displays a positive correlation with sucrose. This glycoside conjugates IAA to temporarily control its availability, being hydrolyzed to set free IAA (Kowalczyk et al., 2003). Moreover, IAA conjugates with amino acids in plants, but only few conjugates (e.g., IAA–Ala, –Leu, and –Phe) are hydrolyzed to form free IAA. IAA-Asp and -Glu are in the degradation pathway or inhibition of the IAA action as IAA-Trp (Ludwig-Müller, 2011). Myo-inositol and galacturonate pathways are interconnected for ascorbate biosynthesis (Shen et al., 2009; Zhang et al., 2009), which is necessary for cell division and elongation (Tullio et al., 1999), biosynthesis of secondary metabolites and phytohormones (Smith et al., 2007). Taken together, our results suggested that the culm metabolism encompasses a complex metabolic network and confirmed the dual function fulfilled by this tissue: its initial sink role is replaced by the novel task as a nutrient source for the emergence of a new organ or seedling during the development of axillary meristem and bud outgrowth.

As the metabolic network of the culm unravel metabolites with putative role on bud outgrowth, we next investigated whether the metabolic composition among the selected commercial cultivars could be associated with sprouting rate. Our data shows that bud metabolome solely cannot explain the differences in the sprouting rate among the genotypes. In contrast, the culm metabolome could be used to classify at least the most contrasting genotypes. Interestingly, genotypes with higher sprouting rates tended to have higher levels of certain metabolites, as it was the case of putrescine, whereas genotypes with low sprouting rates presented higher levels of sugars and amino acids, especially the branched-chain amino acids. These metabolites were positively correlated within their groups but were negatively correlated to each other in the metabolite–metabolite network. These findings suggest that carbon and nitrogen metabolism is not only involved on bud outgrowth but can also regulate this process mediating crosstalk with signaling pathways as, for example, forming conjugated compounds with phytohormones (Kowalczyk et al., 2003; Ludwig-Müller, 2011). Such approach has the potential for selecting metabolic markers and pathways associated to a certain agronomic traits in sugarcane as it was already successfully shown for other crop species (Meyer et al., 2007; Toubiana et al., 2012; Witt et al., 2012).

Our data also demonstrated that the sugarcane metabolome and bud sprouting rate are partially influenced by the genotype at least for the studied cultivars. As these commercial cultivars share part of their genetic background, we considered their genetic relatedness using pedigree information. In breeding programs, sugarcane flowering requires specific environmental conditions and it is highly genotype-dependent. Therefore, synchronization of panicles and flowering time is a challenge, and in many cases, precludes the accomplishment of desirable bi-parental crosses. In order to circumvent this limitation, multi-parental crosses can be performed as an alternative to achieve seed production. In those crosses, only the identity of the mother plant is known, and the pollens come freely from diverse male individuals. Out of the 16 genotypes used in this work, 7 presented an unknown male parental, indicating that these genotypes were obtained from multi-parental crosses. Furthermore, some genotypes, as TUC71-7, SP70-1143, RB855536 and particularly RB72454, are parental of several pedigree crosses leading to an overrepresentation of their genetic background in the selected genotypes, indicating the presence of genetic relatedness (kinship) in this panel.

Despite the incomplete record of both parentals in multi-crosses presented in this pedigree, it was partially possible to correlate bud sprouting and metabolome with the genetic information. We speculate that this correlation would be higher if more contrasting cultivars were analyzed. Even so, these results suggest that metabolic profile can be partially conserved at the parent-progeny degree in sugarcane, but not at more distant parentage levels. The use of metabolome as a proxy for genetics is appealing in sugarcane due to the complexity of its genome. Our results indicate that this approach should be feasible, opening the perspective for its application to assist sugarcane breeding programs.

CONCLUSION

The work presented here clearly shows how metabolomics can be used to enrich the understanding of agronomic traits dependent on metabolic composition focusing on bud sprouting, a crucial process determining yield in sugarcane. Variability in metabolic features were identified even under a narrow genetic background typical for modern sugarcane cultivars. Metabolite–metabolite correlation analysis was performed within and between tissues in order to add information on how the metabolism of buds and culms interact to promote sprouting. Metabolic networks revealed more complex patterns for culms in relation to buds, and enabled the recognition of key metabolites (e.g., sucrose, putrescine, glutamate, serine, and myo-inositol) affecting sprouting ability. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites can be potentially used as indicators for the genetic background. Analysis of association panels with broader genetic variability and the use of informative genetic molecular markers could be used in the future to confirm the predictive power of metabolomics.
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FIGURE S1 | Pedigree of the sixteen selected sugarcane genotypes and their corresponding parentals. Gray circles represent parental genotypes that were not evaluated in this study; red, orange, blue, and green circles are genotypes ranked as low, intermediate-low, intermediate-high, and high sprouting, respectively. The arrows connecting genotypes are in the same color as their respective relatedness.

FIGURE S2 | Numerator relationship matrix among selected sugarcane commercial cultivars. The colors indicate the grade of relationship from low (red) to high (blue).

FIGURE S3 | Box plots of sprouting index of the sixteen selected sugarcane genotypes. For comparison among cultivars, the sprouting average considering the quartile analysis to classify them as low, intermediate-low, intermediate-high, and high sprouting was plotted. The groups are displayed in red, orange, blue, and green, respectively.

FIGURE S4 | Effect of genotypes on the levels of individual metabolites. Histograms show the number of metabolites whose levels changed according to the significance indicated by P-values. Bonferroni-corrected ANOVA was used to evaluate the effects of genotypes on culm (A) and bud (B).

TABLE S1 | Summary of the selected sugarcane genotypes and classification of their agronomic traits. Genotypes are coded from 1 to 16 and ranked as low (red), median-low (orange), intermediate-high (blue), and high sprouting (green) ability. ∗POL: percentage by weight of apparent sucrose; 1Data obtained from RIDESA breeding program (Carneiro, personal communication). 2Data obtained from greenhouse experiments performed in this study.

TABLE S2 | Levels of all detected metabolites in culm and bud of the selected sugarcane cultivars.

TABLE S3 | Metabolite–metabolite correlations for bud, culm, and common to both tissues. Significant pairwise correlations within and between tissues (r ≥ 0.5, p ≤ 0.05) were highlighted in blue and yellow, representing positive and negative correlations, respectively.

FOOTNOTES

1https://www.ridesa.com.br/censo-varietal

2http://gmd.mpimp-golm.mpg.de/

3https://www.r-project.org/
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Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone
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Aiming to mimic a more realistic field condition and to determine convergent and divergent responses of individual stresses in relation to their combination, we explored physiological, biochemical, and metabolomic alterations after drought and heat stress imposition (alone and combined) and recovery, using a drought-tolerant Eucalyptus globulus clone. When plants were exposed to drought alone, the main responses included reduced pre-dawn water potential (Ψpd) and gas exchange. This was accompanied by increases in malondialdehyde (MDA) and total glutathione, indicative of oxidative stress. Abscisic acid (ABA) levels increased while the content of jasmonic acid (JA) fell. Metabolic alterations included reductions in the levels of sugar phosphates accompanied by increases in starch and non-structural carbohydrates. Levels of α-glycerophosphate and shikimate were also reduced while free amino acids increased. On the other hand, heat alone triggered an increase in relative water content (RWC) and Ψpd. Photosynthetic rate and pigments were reduced accompanied by a reduction in water use efficiency. Heat-induced a reduction of salicylic acid (SA) and JA content. Sugar alcohols and several amino acids were enhanced by the heat treatment while starch, fructose-6-phosphate, glucose-6-phosphate, and α-glycerophosphate were reduced. Contrary to what was observed under drought, heat stress activated the shikimic acid pathway. Drought-stressed plants subject to a heat shock exhibited a sharp decrease in gas exchange, Ψpd and JA, no alterations in electrolyte leakage, MDA, starch, and pigments and increased glutathione pool in relation to control. Comparing this with drought stress alone, subjecting drought stressed plants to an additional heat stress alleviated Ψpd and MDA, maintained an increased glutathione pool and reduced starch content and non-structural carbohydrates. A novel response triggered by the combined stress was the accumulation of cinnamate. Regarding recovery, most of the parameters affected by each stress condition reversed after re-establishment of control growing conditions. These results highlight that the combination of drought and heat provides significant protection from more detrimental effects of drought-stressed eucalypts, confirming that combined stress alter plant metabolism in a novel manner that cannot be extrapolated by the sum of the different stresses applied individually.

Keywords: plant metabolism, isolated stress, combined stress, recovery, network analysis

INTRODUCTION

Forest trees, as all sessile plants, have evolved many mechanisms that enable them to thrive in variable environmental conditions, ranging from circadian regulation (Dodd et al., 2005) to recovery from overpowering stress (Brodribb and Cochard, 2009). Despite these physiological adaptations, the long life-span of trees does not allow for rapid genetic adaptation to environmental changes, rendering forests particularly susceptible to climate change (Lindner et al., 2010). Therefore, climate-driven forest vulnerability and tree die-off have become emerging concerns for forest sustainability worldwide (Anderegg et al., 2012; Allen et al., 2015).

Decades of research have significantly improved our understanding of how abiotic stresses that plants encounter in the field, such as drought and heat stress, affect plant development and growth (Rennenberg et al., 2006). However, predominant abiotic stress factors have been mostly tested individually and under controlled laboratory conditions (Mittler and Blumwald, 2010). In contrast, relatively little attention has been given to the combined effects of abiotic stresses, for example, in the field water deficit does not occur alone but associated with high temperature or high light (Chaves et al., 2002).

There is a growing body of evidence that the impacts of a combination of different stress factors on plant functioning traits do not necessarily lead to an additive response but rather to unique responses as a consequence of a synergistic or antagonistic effect of both stress factors (Bansal et al., 2013; Pandey et al., 2015). The high degree of complexity results from the fact that when two stresses co-occur, plant adaptation to the stress combination is governed by the interaction of the two stresses, controlled by different signaling pathways that may interact, inhibit one another or be prioritized differentially by the plant (Zandalinas et al., 2017).

A particular abiotic stress induces a plant response tailored to that specific environmental condition and, when encountering different combined stresses, a plant might actually require conflicting adjustments (Mittler and Blumwald, 2010). Under combined drought and heat stress, for example, plants have to act and balance stomatal responses between preventing water loss and cooling their leaves by transpiration, meaning that a proper defense response depends simultaneously on decreasing and increasing stomatal conductance (Mittler and Blumwald, 2010).

The previous example leaves no doubt on the challenging task of researching abiotic stress combination. Several studies have already researched this subject mainly focusing on the drought and heat combination (Valladares and Pearcy, 1997; Dobra et al., 2010; Silva et al., 2010; Arend et al., 2013; Duan et al., 2014). The results indicate a plethora of plant responses ranging from stomatal and non-stomatal limitations to photosynthesis (Arend et al., 2013), photo-inhibition (Valladares and Pearcy, 1997), changes in key stress signaling components, such as reactive oxygen species (Silva et al., 2010) and plant hormones (Dobra et al., 2010), up to rapid mortality through loss of stem hydraulic conductivity (Duan et al., 2014). Furthermore, the conclusions are very species/experiment dependent: elevated temperature is beneficial when imposed alone but is detrimental when combined with drought (Arend et al., 2013); elevated temperature triggers rapid mortality through hydraulic failure, which is induced by drought (Duan et al., 2014); drought greatly disturbs photosystem II activity and oxidative metabolism, which are strongly stimulated by heat stress (Silva et al., 2010). Given the known impact of abiotic stress on the plant metabolome (Warren et al., 2011; Hochberg et al., 2013), we would also expect extensive research on this topic, but the available knowledge is limited (Obata et al., 2015).

Among forest plantations, Eucalyptus species play an increasingly essential role to guarantee the world’s demand for wood products, and assessing the impact of drought and heat on such economically important plants is highly pertinent since both factors are considered the main drivers controlling vulnerability of Eucalyptus plantations (Booth, 2013). Our previous research which compared results from a controlled climate chamber experiment with field-grown Eucalyptus globulus Labill. corroborated that the knowledge acquired from imposing the stress individually to test stress-tolerant plants cannot be extrapolated to field-grown plants (Correia et al., 2018). This urged us to evaluate the impact of combined drought and heat stress in E. globulus plants, mimicking a more realistic field condition. Since assessing recovery may also be very informative and provide better insights of the severity of the combined stress than observations done at the stress imposition (Mitchell et al., 2013), we have also included a post stress period.

This study hence arises from the need to elucidate the major responses that take place in E. globulus under combined drought and heat stress. Aiming to determine convergent and divergent responses of the individual stress in relation to their combination, we explored physiological and biochemical alterations after stress imposition (alone and combined) and recovery using a drought-tolerant clone. An additional key goal was to get an extra dimension by identifying and integrating major metabolomic alterations.

MATERIALS AND METHODS

Plant Material and Experimental Design

Rooted cuttings of E. globulus (clone AL-18) were obtained from the breeding program of Altri Florestal SA (Portugal) and transplanted to 1 L plastic pots filled with equal weight of a 3:2 (w/w) peat:perlite mixture. The potted cuttings were then divided and placed in two climate chambers (Fitoclima 1200, Aralab, Portugal) for a one-month acclimation period. Conditions were 25/20°C (day/night), 16/8 h (day/night) photoperiod, 50% relative humidity and 600 μmol m-2 s-1 photosynthetic photon flux density. During the acclimation period, plants were watered up to 70% field capacity (FC) and fertilized weekly with a NPK (5:8:10) nutritive solution. Pot weight was monitored every day and the percentages of FC were maintained by adding the amount of water lost. During the experiment, environmental conditions inside the climate chambers were maintained as in the acclimation period and only watering was altered. Half of the cuttings in each climate chamber was assigned to a control well-watered regime (C: water supplied every day until soil water content reached 70% FC) and the other half was assigned to a drought regime (D: water supplied every day until soil content reached 18% FC). This lasted for 5 days. Air temperature inside the second climate chamber was then gradually increased, and plants from both groups (C and D) were subject to 40°C during 4 h (H – heat stress; and D∗H – combined (combination of both drought and heat) stress, respectively). At this moment, the first sampling took place: C and D plants were sampled from the first climate chamber, H, and D∗H plants were sampled from the second climate chamber. In order to perform a realistic experiment, corresponding with the dawn, heat exposure treatment began with an increasing temperature gradient from 20 to 40°C for 3 h, which was then maintained for 4 h. Lightweight expanded clay aggregate (LECA®), together with a refrigeration system, was used around the pots in order to mimic a fresher field soil temperature under heat stress. After that, environmental conditions inside the climate chambers were restored and all cuttings were well-watered (70% FC). The recovery of all groups was then evaluated at the second sampling point after 4 days under environmental and watering control conditions. In order to minimize the effects of environmental heterogeneity, the pots were periodically moved to the neighboring position during the whole experiment.

At each sampling point (first sampling point: stress; second sampling point: recovery), five plants per group (i.e., C, D, H, and D∗H) were used to evaluate plant water potential. Homogenous leaves from six individuals were used for in vivo measurements of leaf gas exchange parameters and subsequently used to determine plant relative water content (RWC) and electrolyte leakage. Also, homogeneous leaves from six individuals were immediately frozen in liquid nitrogen and kept at -80°C for further analysis (lipid peroxidation, redox couples ascorbate and glutathione, quantification of starch and pigments, hormonal alterations and metabolomics).

Water Relations

Predawn water potential (Ψpd) was measured using a Scholander-type pressure chamber (PMS Instrument Co., Corvallis, OR, United States). Four leaf discs (diameter = 11 mm) per individual were also collected to determine RWC, by using the equation: RWC = (FW-DW)/(TW-DW) × 100, in which FW is the fresh weight, TW is the turgid weight after rehydration of the leaf discs for 24 h at 4°C in the dark, and DW is the dry weight after oven-drying the leaf discs at 70°C until they reached a constant weight.

Gas Exchange and Stomatal Conductance

Leaf gas exchange measurements were performed on fully expanded leaves using an infrared gas analyzer, LCpro-SD (ADC BioScientific Ltd., United Kingdom), equipped with the broad leaf chamber. Measurements were performed maintaining the following conditions inside the chamber: ambient temperature, CO2 and H2O concentration, air flow 200 μmol s-1 and light intensity 400 μmol m-2 s-1. Data were recorded when the measured parameters were stable (2–6 min). Net CO2 assimilation rate (A), transpiration rate (E), stomatal conductance (gs), and internal CO2 concentration (Ci) were determined. Water use efficiency (WUE) was calculated based on leaf gas exchange, using the formulae WUE = A/E.

Starch Quantification

Starch concentration was determined by using the anthrone method. Total soluble sugars were extracted from 50 mg of frozen leaves in 80% (v/v) ethanol for 1 h at 80°C. After centrifugation, the pellet was used to quantify starch, as described by Osaki et al. (1991). The pellet was resuspended with 30% (v/v) perchloric acid and incubated at 60°C for 1 h. The mixture was then centrifuged and anthrone was added to the supernatant. After heating the mixture at 100°C for 10 min, absorbance was read at 625 nm (Thermo Fisher Scientific Spectrophotometer, Genesys 10-uv S) and starch concentration was determined according to a D-glucose standard curve.

Pigments Quantification

Concentration of chlorophyll a, b, and carotenoids was determined according to Sims and Gamon (2002). Pigments were extracted using cold acetone:50 mM Tris buffer pH 7.8 (80:20) (v/v). Following centrifugation, supernatant absorbance was read at 470, 537, 647, and 663 nm (Thermo Fisher Scientific Spectrophotometer, Genesys 10-uv S). Chlorophyll a, b, and carotenoids were then quantified by using the formulae presented by the author.

Electrolyte Leakage and Lipid Peroxidation

To determine electrolyte leakage (EL), four leaf discs (diameter = 11 mm) were collected. Conductivity was measured (CONSORT C830, Consort bvba, Turnhout, Belgium) and EL was determined using the equation: EL = (Ci - Wc)/(Cf - Wc) × 100, in which Wc represents water conductivity, Ci is the initial conductivity of water plus the leaf discs, and Cf is the final conductivity of water plus the leaf discs after 5 min at 121°C and 24 h at 4°C.

The extent of lipid peroxidation on leaves was estimated by measuring the amount of malondialdehyde (MDA), following an adaptation of the procedure described by Hodges et al. (1999). About 100 mg of leaves were ground in 2.5 mL of cold 0.1% (w/v) trichloroacetic acid (TCA) and centrifuged. A 250 μL aliquot of the supernatant was added to 1 mL of 20% (w/v) TCA containing 0.5% (w/v) TBA (positive control), and another 250 μL was added to 1 mL of 20% (w/v) TCA (negative control). Both positive and negative controls per sample were heated at 95°C for 30 min. After stopping the reaction on ice, absorbance was read at 440, 532, and 600 nm (Thermo Fisher Scientific Spectrophotometer, Genesys 10-uv S, Waltham, MA, United States), and MDA content was determined by the formulae presented by the author.

Non-protein Redox Couples Ascorbate and Glutathione

Ascorbate (reduced, AsA) and dehydroascorbate (DHA) concentrations, as well as oxidized (GSSG) and reduced (GSH) glutathione were determined according to the microplate method described by Queval and Noctor (2007).

Hormone Quantification

Abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) were extracted and analyzed following the procedure described by Durgbanshi et al. (2005), with slight modifications. Freeze-dried tissue (50 mg) was mixed with 100 ng of ABAd6, 100 ng of SAd6 and 100 ng of dihydrojasmonic acid and homogenized with 5 mL of distilled water. After cold centrifugation, supernatants were recovered and pH adjusted to 3 with 30% acetic acid. The acidified water extract was partitioned twice against 3 mL of diethyl ether. The organic upper layer was recovered and vacuum evaporated in a centrifuge concentrator (SpeedVac, Jouan, Saint Herblain, France). The dry residue was then resuspended in a 10% methanol solution by gentle sonication. The resulting solution was passed through 0.22 μm regenerated cellulose membrane syringe filters (Albet S.A., Barcelona, Spain) and directly injected into a UPLC system (Acquity SDS, Waters Corp., Milford, MA, United States). Analytes were separated by reversed-phase (Nucleodur C18, 1.8 μm 50 × 2.0 mm, Macherey-Nagel, Barcelona, Spain) using a linear gradient of ultrapure water (A) and methanol (B) (both supplemented with 0.01% acetic acid) at a flow rate of 300 μL min-1. The gradient used was: (0–2 min) 90:10 (A:B), (2–6 min) 10:90 (A:B) and (6–7 min) 90:10 (A:B). Hormones were quantified with a Quattro LC triple quadrupole mass spectrometer (Micromass, Manchester, United Kingdom) connected online to the output of the column through an orthogonal Z-spray electrospray ion source. The analytes were quantified after external calibration against the standards.

Metabolomics Analysis

Metabolites were extracted, derivatized and analyzed by gas chromatography-mass spectrometry (GC-MS), as previously described by Foito et al. (2013). Eucalyptus leaves were lyophilized and 100 mg of dried, powdered material were weighed into glass tubes. Lyophilized material was extracted sequentially in methanol, water and chloroform for 30 min at 30°C each. Internal standards (aqueous ribitol and methanolic n-non-adecanoic acid) were added during the initial methanol extraction step. Finally, an additional aliquot of water was added and the polar and non-polar phases were separated, evaporated to dryness and derivatized independently. Metabolite profiles of the polar and non-polar fractions were acquired following separation of compounds on a DB5-MSTM column (15 m × 0.25 mm × 0.25 μm; J&W, Folsom, CA, United States) using a Thermo-Finnigan DSQ II GC-MS system (Thermo Finnigan, United Kingdom). The samples were analyzed as a single batch, in a randomized order, while quality control samples as well as blanks were incorporated at the beginning and the end of the sequence. Peak areas were calculated in relation to respective internal standard and normalized to respective extracted weight. Metabolites were identified based on their mass spectral characteristics and GC retention times, by comparison with retention times of reference compounds from an in-house reference library as previously described (Correia et al., 2016b).

Statistical Analysis

Data are presented as mean ± SE (standard error) of three to six independent biological replicates. Statistical procedures were performed using SigmaPlot for Windows v. 11.0 (Systat Software Inc., San Jose, CA, United States), except metabolites that were analyzed using GenStat v16 (VSN International Ltd., Hemel Hempstead, United Kingdom). One-way analysis of variance (ANOVA) followed by the Fisher’s LSD post hoc all pairwise multiple comparison tests were employed separately for each sampling point (i.e., stress and recovery) to estimate the significance of the results. Different lower cases indicate significant differences between treatments (C, D, H, and D∗H) at p ≤ 0.05. In order to integrate the results, a complete dataset comprising all physiological, biochemical and metabolomic data was subjected to principal component analysis (PCA), sparse partial least squares (sPLS) and network analyses using the software R v3.1.2 core functions (R Core Team, 2014) plus the package mixOmics (Lê Cao et al., 2016). For building the sPLS model, the performance was first evaluated over 10 components, and two components (total Q2 > 0.1) were selected. Variables were then selected according to individual Q2, and those variables with a value lower than 0.1 were filtered out to prevent later overfitting of the model. The network was plotted employing the mixOmics network function, establishing a cut-off of 0.65 (which roughly correspond to plotting the variables with a Q2 > 0.35 for at least one of the two components).

RESULTS

The effect of drought (D) and heat (H) stress applied alone and combined (D∗H) in E. globulus plants was analyzed by assessing physiological, biochemical, hormonal and metabolomic alterations after stress imposition and recovery. The plant water status was evaluated by Ψpd, RWC and WUE. Drought and combined stress induced a significant reduction in Ψpd, with the extent of reduction being higher in the drought stress alone than in the combined stress (Figure 1A). After recovery, although increased, Ψpd of drought and combined stress was still lower than the control (Figure 1A). RWC was only slightly decreased after the drought treatment (not significant), significantly increased in heat, and was unaffected in the combined stress (Figure 1B). Finally, WUE revealed a reduction in heat and combined stress, with the combined stress exhibiting the most severe reduction in WUE (Figure 1C). Both RWC and WUE fully recovered after returning to control conditions (Figures 1B,C).
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FIGURE 1. Predawn shoot water potential (Ψpd, A); relative water content (RWC, B), and water use efficiency (WUE, C) of Eucalyptus globulus exposed to control conditions (C), drought (D), heat (H), and combined stress (D∗H) and respective recovery. Different lowercase letters indicate significant differences among the four treated groups (C, D, H and D∗H), after stress and after recovery, separately (p ≤ 0.05).



Gas exchange varied in response to the imposed stresses (Figure 2). Net photosynthetic rate (A) was reduced following all stress treatments (Figure 2A) with the combined stress leading to the greatest reduction, followed by drought and heat stress. Transpiration rate (E) and stomatal conductance (gs) were similarly affected with only drought and combined stress resulting in a decrease (Figures 2B,C). On the other hand, internal CO2 concentration (Ci) significantly increased in drought, and decreased in heat, remaining unchanged in the combined stress (Figure 2D). Most of these responses only slightly leveled off following recovery (Figures 2A–C).
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FIGURE 2. Net photosynthetic rate (A, A), transpiration rate (E, B), stomatal conductance (gs, C), and internal CO2 concentration (Ci, D) of Eucalyptus globulus exposed to control conditions (C), drought (D), heat (H), and combined stress (D∗H) and respective recovery. Different lowercase letters indicate significant differences among the four treated groups (C, D, H, and D∗H), after stress and after recovery, separately (p ≤ 0.05).



Leaf starch content increased in drought, decreased in heat and slightly although not significantly decreased in the combined stress. After recovery leaf starch was similar regardless of prior treatment (Figure 3).
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FIGURE 3. Starch of Eucalyptus globulus exposed to control conditions (C), drought (D), heat (H), and combined stress (D∗H) and respective recovery. Different lowercase letters indicate significant differences among the four treated groups (C, D, H and D∗H), after stress and after recovery, separately (p ≤ 0.05).



Chlorophyll a, b, and carotenoids were differentially modulated by the imposed stresses (Figure 4). Chlorophyll a decreased in drought and heat (Figure 4A) while chlorophyll b was only reduced after the heat treatment (Figure 4B). After recovery, chlorophyll a was higher in previously drought stressed plants than in control plants (Figure 4A). The carotenoid abundance profile matched chlorophyll b exhibiting a major reduction only in the heat stress and an increase in drought stressed plants after recovery (Figure 4C).
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FIGURE 4. Chlorophyll a (A), chlorophyll b (B), and carotenoids (C) of Eucalyptus globulus exposed to control conditions (C), drought (D), heat (H), and combined stress (D∗H) and respective recovery. Different lowercase letters indicate significant differences among the four treated groups (C, D, H, and D∗H), after stress and after recovery, separately (p ≤ 0.05).



Membrane integrity was assessed by leaf EL and MDA accumulation. Electrolyte leakage revealed a significant increase during drought stress (Figure 5A) that was accompanied by a trend towards higher MDA at the same point (Figure 5B). After recovery, all plants exhibited equivalent EL and MDA content (Figures 5A,B).
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FIGURE 5. Electrolyte leakage (EL, A) and malondialdehyde content (MDA, B) of Eucalyptus globulus exposed to control conditions (C), drought (D), heat (H), and combined stress (D∗H) and respective recovery. Different lowercase letters indicate significant differences among the four treated groups (C, D, H, and D∗H), after stress and after recovery, separately (p ≤ 0.05).



The total AsA pool was not affected by the imposed stresses; on the contrary the total glutathione pool was increased in the drought and combined stress (Figure 6). This induction was not accompanied by an increase in the oxidized pool (Figure 6). After recovery, an increase in the oxidation status of AsA pool was observed without major alterations in the total AsA content. Glutathione content of leaves subjected to drought or combined stress return to control levels following recovery (Figure 6).
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FIGURE 6. Total ascorbate [incorporating reduced (AsA) and oxidized (DHA) forms; A] and total glutathione [incorporating reduced (GSH) and oxidized (GSSG) forms; B] quantified in the leaves of Eucalyptus globulus exposed to control conditions (C), drought (D), heat (H), and combined stress (D∗H) and respective recovery. Different lowercase letters indicate significant differences in the total AsA or GSH pools among the four treated groups (C, D, H, and D∗H), after stress and after recovery, separately (p ≤ 0.05).



The imposed stresses significantly affected the leaf hormonal dynamics and major differences were found regarding ABA, SA, and JA, as shown in Figure 7. On one hand, ABA significantly accumulated in drought and combined stress (Figure 7A). On the other hand, SA levels decreased exclusively after heat (Figure 7B) and JA content decreased under all stress conditions in a descending order: drought, heat, and combined stress (Figure 7C). No hormonal differences were detected after recovery from stress.
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FIGURE 7. Abscisic acid (ABA, A), salicylic acid (SA, B), and jasmonic acid (JA, C) of Eucalyptus globulus exposed to control conditions (C), drought (D), heat (H), and combined stress (D∗H) and respective recovery. Different lowercase letters indicate significant differences among the four treated groups (C, D, H, and D∗H), after stress and after recovery, separately (p ≤ 0.05).



The foliar metabolite profile of E. globulus subjected to drought, heat, combined stress and recovery were compiled using GC–MS. This analysis yielded the detection of 106 metabolites (Supplementary Table S1), distinguishing between 64 polar and 42 non-polar metabolites. Only a small part of the detected metabolites could not be identified after data processing (7 polar and 5 non-polar metabolites). From the identified metabolites, 48 showed significant changes due to the applied stress and/or recovery, including 12 carbohydrates (Table 1), 5 organic acids and 17 amino acids (Table 2), 2 phenolic acids, 6 fatty acids/alcohols, 1 phytosterol, and 5 unknown metabolites (Table 3).

TABLE 1. Metabolomic analysis, relative abundance of carbohydrates.

[image: image]

TABLE 2. Metabolomic analysis, relative abundance of organic acids and amino acids.
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TABLE 3. Metabolomic analysis, relative abundance of phenolic acids, fatty acids/alcohols, phytosterols, and unknown metabolites.
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Regarding carbohydrates (Table 1), mannose, galactose and two separate peaks assigned to glucose increased exclusively after drought. Mannitol, sorbitol and inositol contents increased under all stress conditions, and maltose increased in drought and combined stress. On the contrary, abundances of fructose-6-phosphate and glucose-6-phosphate were negatively affected by drought, heat, and combined stress. Dihydroxydihydrofuranone also exhibited decreases under all stress conditions, but with lower magnitude. After recovery, both fructose-6-phosphate and glucose-6-phosphate of heat and combined stressed plants reversed to control levels, but drought stressed plants still kept significantly lower content (Table 1). All other carbohydrates reversed the alterations caused by stress after recovery, except inositol that maintained higher levels in plants previously exposed to drought and combined stress (Table 1).

Five organic acids – succinate, malate, citrate, quinate, and glycerate – were modulated by stress (Table 2). Succinate, quinate, and glycerate abundances were reduced under both drought and combined stress. From these, glycerate was also decreased under heat. Citrate was elevated in response to drought, heat, and combined stress (Table 2). Malate abundance was enhanced by drought and reduced after heat, staying unchanged in the combined stress. Following recovery, none of the organic acids showed significant changes relative to control plants (Table 2).

Amino acids constitute the largest group of compounds showing significant differences under stress, mainly combined stress (Table 2). Aspartate, glutamate, leucine, isoleucine, and proline abundances were significantly increased in drought and heat, and to a greater extent, in the combined stress. Threonine, lysine, histidine, tryptophan, methionine, and GABA were only positively regulated under drought and combined stress, and valine showed an over accumulation only in the combined stress. After recovery, only oxoproline (generated from glutamine during the derivatization procedure), tryptophan and methionine revealed significant alterations (Table 2). Oxoproline decreased in previously droughted and combined stressed plants, tryptophan could only be detected in previously drought stressed plants, and methionine decreased in the combined stress, although showing a slight decrease in previously heat stressed plants. Drought, heat, and combined stress positively induced urea levels, which were restored after recovery (Table 2).

Regarding phenolic acids (Table 3) shikimate decreased under drought and combined stress. Conversely, cinnamate abundance increased under combined stress, although a slight increase was also observed in drought. Neither of these phenolic acids showed significant differences after recovery. Alterations in fatty acids and fatty alcohols were mainly detected in recovery (Table 3), with the exception of C14:0, which increased under every stress, and C18:2, which slightly reduced under drought and combined stress. After recovery, C14:0 abundance in previously stressed plants largely reversed to control levels and only plants previously subject to combined stress still presented a significantly higher content. Recovery from drought induced C23:0 and C29:0 accumulation; recovery from heat reduced C21:0 and C26 alcohol; and recovery from combined stress resulted in enhanced C29:0 and reduced C26:0 alcohol. Avenasterol was the only identified phytosterol showing significant changes (Table 3); however, the difference observed is due to a lower level of avenasterol on drought in relation to heat and combined stress, representing only a slight decrease when compared with control.

From the unidentified metabolites (Table 3), pU2020 increased under drought and pU1585 raised under combined stress, pU1598 and pU2367 increased under both conditions. Moreover, npU1680 revealed an increase after recovery from combined stress.

The supervised and unsupervised integrated analysis provided us a comprehensive overview of the plant stress responses, identifying the most relevant interactions. Initial comparison based on principal component analysis (PCA) exhibited a clear separation between control and differentially stressed samples in E. globulus (Figure 8). Control sample scores were grouped together at the bottom left quadrant. Sample scores of plants subject to heat were located more to the right and downwards compared to control, whereas drought sample scores were also placed on the right quadrant but upwards. The combined sample scores were all found together on the bottom right quadrant, farther from the control scores compared to the other stress conditions. The separation between control and heat was mainly related to increased levels of phenylalanine, RWC and some non-polar metabolites, whereas drought separation is mainly driven by accumulation of several sugars (fructose, mannose, glucose), starch, ABA, MDA, and glutathione (Supplementary Table S2). On the other hand, the most separated condition, combined, is mainly driven by increased phenylalanine, RWC and some non-polar metabolites, as seen in heat samples, accumulation of starch, ABA, MDA, and glutathione, as seen in drought samples, together with higher levels of several amino acids (leucine, isoleucine, histidine, tryptophan, asparagine; Supplementary Table S2). After recovery, these differences were mostly reversed and the sample scores of the stressed conditions were found near control sample scores (Figure 8).
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FIGURE 8. Principal Component Analysis (PCA) of a complete dataset of physiological, biochemical and metabolomic alterations occurring in Eucalyptus globulus after several stress conditions (drought, heat, and combined) and recovery. First two components are plotted in the graph. The proportion of variance explained by each component is indicated on axis labels.



The constructed network based on sparse partial least squares (sPLS) allowed the determination of the specific components behind the observed phenotypical changes considering the complete metabolomic, biochemical and physiological changes of the experiment (Figure 9). This network highlighted photosynthesis (A), MDA, glutathione (GSH.GSSG) and ascorbate (AsA.DHA) as biochemical central points, which are positively and negatively correlated with the studied hormones (ABA and JA) through several metabolomic alterations (Figure 9). Specifically, JA and AsA.DHA are negatively correlated with glutamic acid, isoleucine, lysine, aspartic acid, proline, and tryptophan (Figure 9). Most of these are positively correlated with glutathione and MDA and also mediating a positive correlation between these and other amino acids (GABA, histidine, leucine), and ABA. Finally, another key interaction places A with a positive relation with putrescine, glucose-6-phosphate, fructose-6-phosphate, and quinic acid (Figure 9). This last one, quinic acid, also mediates a positive interaction between A, on one side, and Ψpd, E and gs, on the other. All of these reveal negative interactions with most of the intervening amino acids.
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FIGURE 9. sPLS-based interaction network of the major alterations occurring in Eucalyptus globulus after several stress conditions (drought, heat, and combined) and recovery. Network is presented using the force-directed layout, which is based on the “force-directed” paradigm. Color and size of nodes illustrate radiality on a small to large and green to red scale (radiality of a node is calculated by computing the shortest path between the node and all other nodes in the graph); color and size of edges reflect weight with red and green edges illustrating positive and negative correlations, respectively.



DISCUSSION

Considerable research advances have been accomplished focusing on plant responses to single stress factors under controlled environments (Mittler and Blumwald, 2010). However, plants growing in the field encounter a number of different co-occurring abiotic stresses that most probably cannot be extrapolated by the sum of the different stresses applied individually, altering plant metabolism in a novel manner (Rizhsky et al., 2002; Zandalinas et al., 2016). Bearing this in mind, we aimed to determine convergent and divergent responses of the individual stresses in relation to their combination, evaluating the impact of drought and heat stress (alone and in combination) and respective recovery using a drought-tolerant E. globulus clone.

Regarding drought stress alone, the main responses included reduced Ψpd, gas exchange, JA, fructose-6-phosphate, glucose-6-phosphate, α-glycerophosphate, and shikimate, and increases in MDA, glutathione pool, ABA, amino acids, starch, and non-structural carbohydrates. Most of these results are in agreement with other reports that analyzed the isolated effect of drought on E. globulus (Warren et al., 2011; Correia et al., 2014b, 2016a,b), and indicate that water deficit negatively affects plant water relations and photosynthesis, causing a moderate oxidative stress, and inducing enhanced osmoprotection and other defence-related pathways.

On the other hand, heat stress alone triggered an increase in RWC, Ψpd, mannitol, sorbitol, inositol and several amino acids that were accompanied by a reduction in the photosynthetic rate and pigments, WUE, starch, fructose-6-phosphate, glucose-6-phosphate, α-glycerophosphate, SA, and JA. The reduction in the photosynthetic rate and pigments in parallel with unaffected transpiration rate and stomatal conductance confirms the particular sensitivity of photosynthesis to heat stress (Sharkey, 2005), even in a short heat shock (4 h at 40°C). It also indicates that the main limitations are non-stomatal and mostly related to heat-induced alterations in enzyme activity (Larkindale et al., 2005). A decrease in photosynthetic pigments, fructose-6-phosphate, glucose-6-phosphate, and starch was also documented in potato leaves growing at a moderately elevated 30°C (Hancock et al., 2014). No major oxidative impairment was detected and this can be explained by the shifts in the polyols mannitol, sorbitol, inositol and several amino acids, such as proline, possibly indicating that these compatible solutes were effective hydroxyl radical scavengers (Smirnoff and Cumbes, 1989; Wang et al., 2003). In addition to their role as radical scavengers, the accumulation of the polyols under heat stress is most likely responsible for the observed increase in RWC and Ψpd, reinforcing their primary role as osmoprotectants (Bokszczanin et al., 2013).

The heat-induced reduction in SA and JA is an unexpected result since both hormones are reported to play an important role as signal molecules in abiotic stress tolerance (Horváth et al., 2007; Xu et al., 2016) and SA has been reported to protect plants from heat stress (Wang et al., 2014). However, the downregulation of JA has already been described in E. globulus under water deficit (Correia et al., 2014a). Our results further confirm the downregulation of JA under drought stress, highlighting a similar response triggered by heat stress regarding not only JA but also SA. The way these abiotic stresses influence these two phytohormones in E. globulus is yet to be discovered. However, SA and JA, together with ethylene, are known to play major roles in regulating plant defense. SA is usually associated with the activation of defense against biotrophic and hemi-biotrophic pathogens, and the establishment of systemic acquired resistance (SAR). JA and ethylene are generally involved in defense against necrotrophic pathogens and herbivorous insects [reviewed by Bari and Jones (2009)]. Hence, this result has significance in terms of the impact of abiotic stress on biotic interactions, suggesting that these abiotic stresses can negatively influence defense against other biotic threats.

A divergent response between isolated drought and heat stress is related to changes in the TCA cycle intermediates. In heat, citrate increase went along with reduced malate, whereas drought-induced increases of citrate and malate were accompanied by reduced succinate. Together with the different amino acids that accumulate in each stress this result highlights two different metabolic regulations. In heat, the TCA cycle flux appears to be changed to two weakly connected branches, with malate functioning as a mitochondrial respiratory substrate to produce citrate, which is then converted to glutamate and proline. Similar cases of the non-cyclic flux mode of TCA cycle has been reviewed elsewhere (Sweetlove et al., 2010). However, the prevailing pathway activated under this condition appears to be the shikimic acid pathway, revealed by the over accumulation of shikimate and phenylalanine. Conversely, the shikimic acid pathway is downregulated under drought conditions. In this stress scenario, an induction in the first steps of the TCA cycle likely supplies higher demands for citrate that is metabolized to amino acids of the glutamate family; and succinate is converted to malate, which in turn is redirected to produce amino acids of the oxaloacetate/aspartate family.

Still on this subject, comparing the isolated stresses with the combined one reveals novel responses. In the combined conditions of drought and heat stress, the highest accumulation of citrate was accompanied by reduced succinate without major alterations in malate. The higher content of α-glycerophosphate together with the major accumulation in amino acids of the glutamate family, the oxaloacetate/aspartate family and leucine/valine indicates that glycolysis is enhanced in this combined condition, sustaining the higher demand for amino acids. Still, we should also note the possibility for amino acid mobilization resulting from protein breakdown as protein turnover has been described as an important regulatory mechanism that allows plant cells to respond to drought and recovery (Lyon et al., 2016). The absence of significant changes in the fatty acids/alcohols and phytosterols detected at this new stress state does not support the premise of a regulation by changes of membrane lipids as we could assume (Falcone et al., 2004).

A novel response triggered only by the combined effect of drought and heat was the induction of cinnamate. Cinnamate originates all phenylpropanoids through the action of phenylalanine ammonia-lyase (PAL) on phenylalanine (Dixon and Paiva, 1995). We are yet uncertain of which phenylpropanoids are generated under this condition since a number of different phenylpropanoids can be involved (Dixon and Paiva, 1995).

Drought-stressed plants subject to a heat shock revealed a decrease in gas exchange (sharp), WUE, Ψpd and JA, no alterations in EL, MDA, starch and pigments and increased glutathione pool in relation to control. Comparing with drought stress alone, this reveals that subjecting drought stressed plants to an additional heat stress alleviated Ψpd and MDA, maintaining an increased glutathione pool and reducing starch content and non-structural carbohydrates. Interestingly, and in contrast to the expected negative effect of the stress combination on plant growth reported for other species (Silva et al., 2010), these results highlight that the combination of drought and heat provides significant protection from more detrimental effects of drought-stressed eucalypts. A similar conclusion has been described for tomato plants under the combined effect of salinity and heat (Rivero et al., 2014).

Regarding recovery, most of the parameters affected by each stress condition reversed after re-establishment of the control growing condition. This is a common reported response (Correia et al., 2014a,b, 2016b; Escandón et al., 2016). Gas exchange and some carbohydrates reversed at a slower pace after drought and combined stress, which reveals the sensitivity of the photosynthetic apparatus (Chaves et al., 2009) and points out the most restrictive effect of these two stress conditions. On the other hand, the different modulation of several fatty acids/alcohols and phytosterols after recovery from drought and combined stress uncovers a putative regulation that allows restoration after stress through changes of membrane lipids (Falcone et al., 2004).

In accordance with the idea that relatively few studies have attempted to correlate metabolite content with physiological data, and the advantages of those (Tohge et al., 2015), we decided to introduce an integrative approach to analyze our dataset. The PCA and network results summarize the overall knowledge acquired in our study, aligning with some regulatory networks already described for their involvement in tolerance and recovery to drought (Brossa et al., 2015; Lyon et al., 2016), as well as other stresses (Das and Roychoudhury, 2014; Xu et al., 2015).

At present, information on the combined effect of heat and drought stress in Eucalyptus is rather limited although much needed from the application point of view (e.g., finding suitable markers for selecting the most tolerant genotypes to field establishment). In this work, we have reported different physiological, biochemical and metabolic adjustments that enable E. globulus to thrive under conditions of drought and heat applied alone or in combination. Although a few mechanisms were convergent to all stress conditions, the response magnitude was very dependent on the specific stress, and most of the metabolic pathways responded uniquely to each specific stress. Rather than presenting an additive outcome, the combination of heat stress ameliorated part of the negative effect of drought. The information collected here confirms that the biological processes switched on by an environmental factor are very specific to that exact condition and are likely to differ from those activated by a slightly different environmental condition (Mittler, 2006; Atkinson and Urwin, 2012). The need for studies that focus on the actual field stress conditions is thus evident and imperative for selecting plants with enhanced tolerance to naturally occurring environmental conditions.

AUTHOR CONTRIBUTIONS

GP designed and supervised the experimental procedure. RDH designed and supervised the biochemical and metabolomic characterization. AG-C designed and supervised the hormonal quantification. BC, JA, and GP performed the experiment, the physiological, and the biochemical characterization. BC and RDH performed the metabolomic profiling and analysis. LV designed and performed the PCA and network analysis. BC, RDH, and GP wrote the manuscript. All authors discussed the data and reviewed the manuscript.

FUNDING

This research was supported by FEDER within the PT2020 Partnership Agreement and Compete 2020 (Programa Operacional Fatores de Competitividade) and by National Funds through the Portuguese Foundation for Science and Technology (FCT), which financed CESAM (UID/AMB/50017 - POCI-01-0145-FEDER-007638) and the project PTDC/AGR-CFL/112996/2009. FCT also supported the fellowships of BC (SFRH/BD/86448/2012), JA (SFRH/BD/120967/2016), and GP (SFRH/BPD/101669/2014). LV was supported by the Ramón y Cajal Program (RYC-2015-17871) (Spanish Ministry of Economy and Competitiveness). The James Hutton Institute receives support from the Rural and Environmental Science and Analytical Services Division of the Scottish Government.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2018.00819/full#supplementary-material

REFERENCES

Allen, C. D., Breshears, D. D., and Mcdowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:129. doi: 10.1890/ES15-00203.1

Anderegg, W. R., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg, L. D., and Field, C. B. (2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl. Acad. Sci. U.S.A. 109, 233–237. doi: 10.1073/pnas.1107891109

Arend, M., Brem, A., Kuster, T., and Günthardt-Goerg, M. (2013). Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Plant Biol. 15, 169–176. doi: 10.1111/j.1438-8677.2012.00625.x

Atkinson, N. J., and Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63, 3523–3543. doi: 10.1093/jxb/ers100

Bansal, S., Hallsby, G., and Nilsson, M.-C. (2013). Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant. Tree Physiol. 33, 451–463. doi: 10.1093/treephys/tpt019

Bari, R., and Jones, J. D. G. (2009). Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488. doi: 10.1007/s11103-008-9435-0

Bokszczanin, K. L., Fragkostefanakis, S., Bostan, H., Bovy, A., Chaturvedi, P., Chiusano, M. L., et al. (2013). Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant Sci. 4:315. doi: 10.3389/fpls.2013.00315

Booth, T. H. (2013). Eucalypt plantations and climate change. For. Ecol. Manage. 301, 28–34. doi: 10.1016/j.foreco.2012.04.004

Brodribb, T. J., and Cochard, H. (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584. doi: 10.1104/pp.108.129783

Brossa, R., Pintó-Marijuan, M., Francisco, R., López-Carbonell, M., Chaves, M. M., and Alegre, L. (2015). Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery. Planta 241, 803–822. doi: 10.1007/s00425-014-2221-0

Chaves, M. M., Flexas, J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551–560. doi: 10.1093/aob/mcn125

Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M., Ricardo, C. P. P., Osorio, M., et al. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 89, 907–916. doi: 10.1093/aob/mcf105

Correia, B., Hancock, R. H., Valledor, L., and Pinto, G. (2018). Gene expression analysis in Eucalyptus globulus exposed to drought stress in a controlled and a field environment indicates different strategies for short- and longer-term acclimation. Tree Physiol. doi: 10.1093/treephys/tpy067

Correia, B., Pintó-Marijuan, M., Castro, B. B., Brossa, R., López-Carbonell, M., and Pinto, G. (2014a). Hormonal dynamics during recovery from drought in two Eucalyptus globulus genotypes: from root to leaf. Plant Physiol. Biochem. 82, 151–160. doi: 10.1016/j.plaphy.2014.05.016

Correia, B., Pintó-Marijuan, M., Neves, L., Brossa, R., Dias, M. C., Costa, A., et al. (2014b). Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiol. Plant. 150, 580–592. doi: 10.1111/ppl.12110

Correia, B., Valledor, L., Hancock, R. D., Jesus, C., Amaral, J., Meijón, M., et al. (2016a). Depicting how Eucalyptus globulus survives drought: involvement of redox and DNA methylation events. Funct. Plant Biol. 43, 838–850. doi: 10.1071/FP16064

Correia, B., Valledor, L., Hancock, R. D., Renaut, J., Pascual, J., Soares, A. M., et al. (2016b). Integrated proteomics and metabolomics to unlock global and clonal responses of Eucalyptus globulus recovery from water deficit. Metabolomics 12:141. doi: 10.1007/s11306-016-1088-4

Das, K., and Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53. doi: 10.3389/fenvs.2014.00053

Dixon, R. A., and Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097. doi: 10.1105/tpc.7.7.1085

Dobra, J., Motyka, V., Dobrev, P., Malbeck, J., Prasil, I. T., Haisel, D., et al. (2010). Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J. Plant Physiol. 167, 1360–1370. doi: 10.1016/j.jplph.2010.05.013

Dodd, A. N., Salathia, N., Hall, A., Kévei, E., Tóth, R., Nagy, F., et al. (2005). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633. doi: 10.1126/science.1115581

Duan, H., Duursma, R. A., Huang, G., Smith, R. A., Choat, B., O’grady, A. P., et al. (2014). Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 37, 1598–1613. doi: 10.1111/pce.12260

Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J. V., and Gómez-Cadenas, A. (2005). Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J. Agric. Food Chem. 53, 8437–8442. doi: 10.1021/jf050884b

Escandón, M., Cañal, M. J., Pascual, J., Pinto, G., Correia, B., Amaral, J., et al. (2016). Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol. 36, 63–77. doi: 10.1093/treephys/tpv127

Falcone, D. L., Ogas, J. P., and Somerville, C. R. (2004). Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4:17. doi: 10.1186/1471-2229-4-17

Foito, A., Byrne, S. L., Hackett, C. A., Hancock, R. D., Stewart, D., and Barth, S. (2013). Short-term response in leaf metabolism of perennial ryegrass (Lolium perenne) to alterations in nitrogen supply. Metabolomics 9, 145–156. doi: 10.1007/s11306-012-0435-3

Hancock, R. D., Morris, W. L., Ducreux, L. J., Morris, J. A., Usman, M., Verrall, S. R., et al. (2014). Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 37, 439–450. doi: 10.1111/pce.12168

Hochberg, U., Degu, A., Toubiana, D., Gendler, T., Nikoloski, Z., Rachmilevitch, S., et al. (2013). Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol. 13:184. doi: 10.1186/1471-2229-13-184

Hodges, D. M., Delong, J. M., Forney, C. F., and Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. doi: 10.1007/s004250050524

Horváth, E., Szalai, G., and Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 26, 290–300. doi: 10.1007/s00344-007-9017-4

Larkindale, J., Hall, J. D., Knight, M. R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138, 882–897. doi: 10.1104/pp.105.062257

Lê Cao, K.-A., Rohart, F., Gonzalez, I., and Dejean, S. (2016). mixOmics: Omics Data Integration Project. R Package. Available at: https://CRAN.R-project.org/package=mixOmics

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709. doi: 10.1016/j.foreco.2009.09.023

Lyon, D., Castillejo, M. A., Mehmeti-Tershani, V., Staudinger, C., Kleemaier, C., and Wienkoop, S. (2016). Drought and Recovery: Independently regulated processes highlighting the importance of protein turnover dynamics and translational regulation in Medicago truncatula. Mol. Cell. Proteomics 15, 1921–1937. doi: 10.1074/mcp.M115.049205

Mitchell, P. J., Battaglia, M., and Pinkard, E. A. (2013). Counting the costs of multiple stressors: is the whole greater than the sum of the parts. Tree Physiol. 33, 447–450. doi: 10.1093/treephys/tpt031

Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19. doi: 10.1016/j.tplants.2005.11.002

Mittler, R., and Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61, 443–462. doi: 10.1146/annurev-arplant-042809-112116

Obata, T., Witt, S., Lisec, J., Palacios-Rojas, N., Florez-Sarasa, I., Yousfi, S., et al. (2015). Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol. 169, 2665–2683. doi: 10.1104/pp.15.01164

Osaki, M., Shinano, T., and Tadano, T. (1991). Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Sci. Plant Nutr. 37, 117–128. doi: 10.1080/00380768.1991.10415017

Pandey, P., Ramegowda, V., and Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front. Plant Sci. 6:723. doi: 10.3389/fpls.2015.00723

Queval, G., and Noctor, G. (2007). A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal. Biochem. 363, 58–69. doi: 10.1016/j.ab.2007.01.005

R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rennenberg, H., Loreto, F., Polle, A., Brilli, F., Fares, S., Beniwal, R., et al. (2006). Physiological responses of forest trees to heat and drought. Plant Biol. 8, 556–571. doi: 10.1055/s-2006-924084

Rivero, R. M., Mestre, T. C., Mittler, R., Rubio, F., Garcia-Sanchez, F., and Martinez, V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 37, 1059–1073. doi: 10.1111/pce.12199

Rizhsky, L., Liang, H., and Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 130, 1143–1151. doi: 10.1104/pp.006858

Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 28, 269–277. doi: 10.1111/j.1365-3040.2005.01324.x

Silva, E. N., Ferreira-Silva, S. L., De Vasconcelos Fontenele, A., Ribeiro, R. V., Viégas, R. A., and Silveira, J. A. G. (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J. Plant Physiol. 167, 1157–1164. doi: 10.1016/j.jplph.2010.03.005

Sims, D. A., and Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 337–354. doi: 10.1016/s0034-4257(02)00010-x

Smirnoff, N., and Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 1057–1060. doi: 10.1016/0031-9422(89)80182-7

Sweetlove, L. J., Beard, K. F., Nunes-Nesi, A., Fernie, A. R., and Ratcliffe, R. G. (2010). Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 15, 462–470. doi: 10.1016/j.tplants.2010.05.006

Tohge, T., Scossa, F., and Fernie, A. R. (2015). Integrative approaches to enhance understanding of plant metabolic pathway structure and regulation. Plant Physiol. 169, 1499–1511. doi: 10.1104/pp.15.01006

Valladares, F., and Pearcy, R. (1997). Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ. 20, 25–36. doi: 10.1046/j.1365-3040.1997.d01-8.x

Wang, W., Vinocur, B., and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14. doi: 10.1007/s00425-003-1105-5

Wang, Y., Zhang, H., Hou, P., Su, X., Zhao, P., Zhao, H., et al. (2014). Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense. Plant Growth Regul. 73, 289–297. doi: 10.1007/s10725-014-9889-9

Warren, C. R., Aranda, I., and Cano, F. J. (2011). Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. Plant Cell Environ. 34, 1609–1629. doi: 10.1111/j.1365-3040.2011.02357.x

Xu, Y.-H., Liao, Y.-C., Zhang, Z., Liu, J., Sun, P.-W., Gao, Z.-H., et al. (2016). Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Sci. Rep. 6:21843. doi: 10.1038/srep21843

Xu, Z., Jiang, Y., and Zhou, G. (2015). Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front. Plant Sci. 6:701. doi: 10.3389/fpls.2015.00701

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., and Gómez-Cadenas, A. (2017). Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162, 2–12. doi: 10.1111/ppl.12540

Zandalinas, S. I., Rivero, R. M., Martínez, V., Gómez-Cadenas, A., and Arbona, V. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol. 16:105. doi: 10.1186/s12870-016-0791-7

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Correia, Hancock, Amaral, Gomez-Cadenas, Valledor and Pinto. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.







	 
	ORIGINAL RESEARCH
published: 08 June 2018
doi: 10.3389/fpls.2018.00771





[image: image]

Molecular Profiling of Pierce’s Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection

Paulo A. Zaini1†, Rafael Nascimento2†, Hossein Gouran1, Dario Cantu3, Sandeep Chakraborty1, My Phu1, Luiz R. Goulart2 and Abhaya M. Dandekar1*

1Department of Plant Sciences, University of California, Davis, Davis, CA, United States

2Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil

3Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States

Edited by:
Glória Catarina Pinto, University of Aveiro, Portugal

Reviewed by:
Jorge Martin-Garcia, University of Valladolid, Spain
Mónica Meijón, Universidad de Oviedo, Spain

*Correspondence: Abhaya M. Dandekar, amdandekar@ucdavis.edu

† These authors have contributed equally to this work.

Specialty section: This article was submitted to Plant Systems and Synthetic Biology, a section of the journal Frontiers in Plant Science

Received: 17 February 2018
Accepted: 18 May 2018
Published: 08 June 2018

Citation: Zaini PA, Nascimento R, Gouran H, Cantu D, Chakraborty S, Phu M, Goulart LR and Dandekar AM (2018) Molecular Profiling of Pierce’s Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection. Front. Plant Sci. 9:771. doi: 10.3389/fpls.2018.00771

Pierce’s disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa. Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels’ secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

Keywords: defense response, Xanthomonadaceae, plant–bacteria interaction, vascular pathogen, transcriptome, proteome, metabolome

INTRODUCTION

Plants have evolved complex responses to adapt to both biotic and abiotic environmental stresses, with an increase in the production of reactive oxygen species (ROS) as a key mechanism common to several types of stress conditions (Mittler, 2017). Genome sequencing and other high-throughput approaches have greatly advanced the identification of specific responses, enabling the classification of hundreds of genes responsive to particular stresses. In Vitis vinifera for example, different abiotic and biotic stressors have been studied (Lin et al., 2007; Choi et al., 2013; Abou-Mansour et al., 2015; Burger and Maree, 2015; Czemmel et al., 2015; Dadakova et al., 2015; Kelloniemi et al., 2015; Savoi et al., 2016), which have provided important insights on the molecular aspects of Pierce’s disease (PD) development following infection by the bacterium Xylella fastidiosa. The disease can be transmitted by infected plant material and tools, as well as by many species of xylem sap-feeding insects that vector the pathogen from plant to plant (Chatterjee et al., 2008). Detection and spread of different strains in the European continent in recent years have raised great concern, given its potential to colonize plant hosts already attacked in the American continent such as grapevines and oranges among others. It also poses the threat of causing new diseases like olive quick decline syndrome, which is annihilating olive groves in southern Italy and progressively spreading in the Mediterranean area (Martelli et al., 2016). Disease progression varies widely depending on environmental conditions and genotypes of pathogen and host scion and rootstocks, collectively contributing to different chemical microenvironments of scion sap (Wallis et al., 2013; Katam et al., 2015). Successful microbe proliferation and long distance movement across xylem elements are mediated by secreted virulence factors such as the polygalacturonase PglA, the lipase/esterase LesA, and protease PrtA that are able to modify xylem integrity by enzymatic activity (Agüero et al., 2005; Roper et al., 2007; Gouran et al., 2016; Nascimento et al., 2016), and together contribute to disease progression. Vascular occlusions caused by pathogen biofilm formation, host cell-wall thickening by callose deposition and lignification, as well as tylose formation all contribute to reduction of sap flow leading to water and nutrient limitation as symptoms progress (Chatterjee et al., 2008; Choi et al., 2013; Sun et al., 2013). Despite significant advances, however, the grapevine response circuitry to PD is still not thoroughly characterized. Here we report a systems biology approach to expand our understanding of the cellular and molecular changes during PD development in Thompson seedless grapevines. Our data highlighted major metabolites accumulated in PD and also revealed novel members of the pathogen-sensing and stress response network. This enabled us to select which genes within paralog groups play a more pronounced role in the defense response to PD and thus can be further explored as early disease markers or therapeutic targets in case of disease susceptibility genes. Since current mitigation strategies to control PD rely on intensive insecticide applications to prevent vectors from disseminating X. fastidiosa across grapevines, understanding disease susceptibility and the host molecular responses to infection can lead to improved resistance breeding and novel control approaches.

MATERIALS AND METHODS

V. vinifera Inoculation With X. fastidiosa and Preparation of Leaf Extracts

Controlled inoculations of 3-month-old clonally propagated grapevines (V. vinifera var. Thompson Seedless) were performed according to (Dandekar et al., 2012). Briefly, plants were laid horizontally and 10 μL of succinate-citrate buffer containing ∼106 cells of X. fastidiosa strain Temecula1 (NCBI Accession PRJNA285) was deposited on the cane ∼10 cm above soil level and punctured with a needle to allow for uptake of bacterial suspension into the xylem. Plants were kept in greenhouse conditions (20–25°C and watered daily) and leaf samples collected 12 weeks post inoculations. Preparation of grapevine leaf extracts was done as described in Nascimento et al. (2016) using three complete leaves excluding petioles from eight infected and eight control (inoculated with succinate-citrate buffer without X. fastidiosa) plants. Briefly leaves were flash frozen in liquid nitrogen, ground with mortar and pestle, and kept at -80°C until use.

Nuclear Magnetic Resonance Imaging

Nuclear magnetic resonance imaging (1H-MRI) was done in an Avance 400 spectrometer equipped with Bruker DRX console microimaging accessory according to (Dandekar et al., 2012). Stem transverse sections of all non-infected and infected plants were collected between internodes located at the top (apical), middle, and bottom of the central stem (three cuts per plant) and subjected to MRI. Figure 1C shows representative results.
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FIGURE 1. Grapevines developing Pierce’s disease in controlled inoculations. (A) Twelve weeks after inoculation of X. fastidiosa, grapevines already displayed Pierce’s disease symptoms as leaf scorching, match stick petioles from fallen leaves, and darkened patches on stems. (B) Detail of leaf showing scorching symptoms. (C) Nuclear magnetic resonance imaging of representative transversal cuts of stems exhibiting intensive secondary wall deposition in infected vines. Yellow arrows point to electron-denser material more abundant in infected samples. Scale bar is 6 mm for both images.



RNA Extraction, Library Preparation, and Sequencing

RNA extraction from 1 g of ground leaf tissue was done with MasterPure Complete kit (Epicentre, IL) from five infected and five healthy (control) plants. Strand-specific RNA-seq libraries were generated by the UC Davis Genome Center DNA Technologies Core Facility from the ribo-depleted RNA samples using an Apollo 324 liquid handler (Wafergen, CA) and PrepX RNA library preparation kits (Wafergen, CA) following the instructions of the manufacturer. After a cleanup step using 1x volume of Ampure XP beads (Beckman Coulter, CA), the single-end RNA-seq libraries were PCR-amplified using Phusion High-Fidelity polymerase (NEB, MA) following standard procedures, cleaned up again using a 1x volume of Ampure XP beads, and then quantified by fluorometry (Qubit; LifeTechnologies, CA). Libraries were analyzed with a Bioanalyzer 2100 instrument (Agilent, CA) and then pooled in equimolar ratios according to the fluorometric measurements. The pooled libraries (from five infected plants and five non-infected plants) were quantified by qPCR with a Kapa Library Quant kit (Kapa, South Africa) and sequenced on one lane of an Illumina HighSeq 2500 (Illumina, CA).

Transcriptome Data Analysis and Validation

RNA-seq read quality and contamination were assessed with FastQC v.0-.10.11. Scythe v.0.991 and Sickle v.1.2102 were used for Illumina adapter and quality-based trimming, respectively. Reads trimmed to less than 25 bases were discarded. V. vinifera genome assembly version IGGP 12x and annotation data used in this analysis can be found at Genoscope (Jaillon et al., 2007) and Ensembl Gramene release 51 (Tello-Ruiz et al., 2016).

Reads were aligned to the V. vinifera genome using bowtie2 v.2.1.0 (Langmead and Salzberg, 2012). A reference transcriptome was generated from the NCBI files, using the gffread program within cufflinks v.2.1.1 (Roberts et al., 2011). BWA’s short read aligner v.0.6.2 (Ardales et al., 2009) was then used to align the reads to the augmented transcriptome. Raw counts per gene were generated from the bwa alignments using sam2counts.py3. The raw counts from each of the five diseased and five control samples were statistically analyzed with EdgeR (Robinson et al., 2010) to produce tables of expression values, fold changes, and selection of differentially expressed (DE) transcripts, using p < 0.05 or 0.01 from the fitted negative binomial generalized linear models and quasi-likelihood F-test (Supplementary Tables S2–S5). Enrichment of gene ontology terms of DE transcripts was performed with PANTHER using Bonferroni correction and p-value cutoff of 0.05 (Mi et al., 2016). Reverse transcription – quantitative polymerase chain reaction (RT-qPCR) was performed as detailed in Dandekar et al. (2012) as a means to verify the expression data obtained with RNA-seq, encompassing genes with distinct overall expression levels and ratios between infected and non-infected samples, as well as distinct functional categories. A two-tailed paired sample Student’s t-test (alpha = 0.05) was performed with XLSTAT software on delta-Cq values to determine statistical significance of differences between infected and non-infected samples (three biological replicas assayed in duplicate each). One and two asterisks indicate, respectively, p-values < 0.05 and 0.01. Oligonucleotide primers used in RT-qPCR are listed in Supplementary Table S6. Transcriptome data have also been deposited in NCBI SRA under BioProject accession number PRJNA390670.

Proteome Analysis

Protein extraction from 500 mg of ground grapevine leaf preparations (three diseased samples vs. three healthy controls) was performed with P-PER plant protein extraction reagent (Thermo Scientific). Samples were reconstituted in phosphate buffer saline (PBS) and 300 μg were precipitated with 4x volume of precipitation reagent (CalBiochem) according to manufacturer’s instructions. Precipitated samples were reconstituted in 100 μl of 6 M urea + 5 mM 1,4-dithiothreitol (DTT) and incubated at 37°C for 30 min; 15 mM iodoacetoamide (IAA) was added and incubated at room temperature for 30 min. IAA was then quenched with 30 mM DTT and incubated for 10 min. Lys-C/trypsin was added to a 1:25 enzyme:protein ratio and incubated at 37°C for 4 h; 50 mM ammonium bicarbonate was added to dilute urea and activate trypsin and digestion occurred overnight at 37°C. Digested peptides were then de-salted using Aspire RP30 Desalting Tips (Thermo Scientific) and resuspended in loading buffer.

The digested peptides were analyzed using a QExactive mass spectrometer (Thermo Fisher Scientific) coupled with an Easy-LC (Thermo Fisher Scientific) and a nanospray ionization source. The peptides were loaded onto a trap (100 micron, C18 100 Å 5U) and desalted online before separation using a reverse phased column (75 micron, C18 200 Å 3U). The gradient duration for separation of peptides was 60 min using 0.1% formic acid and 100% acetonitrile for solvents A and B, respectively. Data were acquired using a data-dependent ms/ms method, which had a full scan range of 300–1,600 Da and a resolution of 70,000. The ms/ms method’s resolution was 17,500 and an isolation width of 2 m/z with normalized collision energy of 27. The nanospray source was operated using 2.2 kV spray voltage and a heated transfer capillary temperature of 250°C. Raw data were analyzed using X!Tandem (Fenyo and Beavis, 2003) and visualized using Scaffold Proteome Software (version 4.4.1). A protein was considered identified when at least two peptides were mapped to it with >99% confidence threshold. Proteins with differential abundance between infected and non-infected samples were chosen by p < 0.05 obtained from the Mann–Whitney test. Samples were searched against Uniprot databases appended with the cRAP database, which contains common laboratory contaminants. Reverse decoy databases were also applied to the database prior to the X!Tandem searches. Raw and differential analysis data are presented in Supplementary Tables S7, S8. The proteome procedure was performed at the UC Davis Proteomics Core.

Immunodetection of Proteins

Anti-ferritin HRP-conjugated polyclonal antibody was generated in rabbit by injecting synthetic peptides corresponding to structural epitopes (GenScript, NJ). Antibody was diluted in PBS-M 1% (PBS plus 1% non-fat dried milk) at a 1:500 dilution. Blocking and washing used PBS-M 5% (PBS plus 5% non-fat dried milk) and PBS-T 0.1% (PBS plus 0.1% Tween 20), respectively, and blots were developed using ECL Plus Western Blotting Detection Reagents (GE Life Sciences, United States) and visualized using a ChemiDoc-It TS2 (BioRad, CA) imaging instrument.

Metabolome Analysis

Metabolomic analysis was performed at the NIH West Coast Metabolomics Center, UC Davis. Sample preparation and gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF/MS) followed the protocols in Sana et al. (2010), including data filtering, BinBase assignment, and statistics. Eight samples from diseased plants vs. eight control healthy samples were compared. Metabolite extraction was done on 100 mg of ground leaf tissue extracted for 20 min at -20°C in pre-cooled 2:3:3 v/v/v solvent mixture of water/acetonitrile/isopropanol and centrifuged 16,000 g for 3 min. The liquid phase supernatant was used for GC-TOF/MS performed on an Agilent 6890 gas chromatograph (Santa Clara, CA, United States) controlled by the Leco ChromaTOF software vs. 2.32 (St. Joseph, MI, United States). A 30 m long, 0.25 mm internal diameter rtx5Sil-MS column with 0.25 μm 5% diphenyl/95% dimethyl polysiloxane film and additional 10 m integrated guard column was used (Restek, Bellefonte, PA, United States). Absolute spectra intensities were processed by a filtering algorithm implemented in the metabolomics BinBase database (Fiehn et al., 2005). Quantification was reported as peak height using the unique ion as default, unless a different quantification ion was manually set in the BinBase administration software Bellerophon. Metabolites were unambiguously assigned by the BinBase identifier numbers, using retention index and mass spectrum as the two most important identification criteria. Additional confidence criteria were given by mass spectral metadata, using the combination of unique ions, apex ions, peak purity, and signal/noise ratios as given in data preprocessing. All database entries in BinBase were matched against the Fiehn mass spectral library of 1,200 authentic metabolite spectra and the NIST05 commercial library (Kind et al., 2009). BinBase entries were named manually by both matching mass spectra and retention index. Statistical evaluation was performed using univariate Student’s t-test for independent pairs of groups. Values of p < 0.05 were considered statistically significant. Raw data and differential analysis are presented in Supplementary Tables S9, S10. Multivariate statistical analysis was performed with XLSTAT software by considering the Pearson correlation among the samples and plotted using Circos (Krzywinski et al., 2009).

RESULTS

Multiomic Analysis of Pierce’s Disease Delineates the Pathogen Perception and Host Response Circuitry

Xylella fastidiosa-infected grapevines under controlled greenhouse conditions started to show initial PD symptoms on leaves and stems ∼8 weeks post inoculation. These were initially limited to scorching of leaf blades near margins, progressing inward toward petioles. By the time, our samples were collected 12 weeks post inoculation, brownish patches were already visible on stems, and some leaves had already dropped off leaving typical “matchstick” petioles and an overall dehydrated appearance (Figures 1A,B). Transversal cuts of stems near the apical meristem showed that besides the brownish patches on canes, intensive alterations were also occurring inside the stems, marked by an increase in secondary cell wall deposition and thickening on infected vines (Figure 1C). Under these conditions, the leaf samples were collected and processed for RNA-seq deep sequencing, isobaric labeling proteome mass spectrometry, and GS-TOF/MS metabolite profiling. With all three methodologies, we were able to identify analytes over- and under-represented in symptomatic vines, both of known and unknown functions (Table 1). Multivariate analysis was used to determine the correlation among the datasets used in this work (Figure 2), which shows as expected that experimental technique (transcriptome, proteome, or metabolome) is a stronger determinant of higher correlation than experimental group (infected or non-infected). Considering only transcripts with low variability among replicas (p < 0.05), we found only 16 genes that we also detected as DE in the proteome dataset. These encompass ATP synthase subunit alpha (VIT_00s0733g00010), ADP/ATP carrier (VIT_08s0007g02450), HtpG chaperone family protein (VIT_02s0025g04340), dehydrin (VIT_04s0023g02480), lipid-transfer protein (VIT_05s0020g03750), beta 1,3-glucanase 3 (VIT_06s0061g00120), alpha-beta hydrolase (VIT_07s0005g01240), ferritin 3 (VIT_08s0058g00410), thioredoxin superfamily protein (VIT_12s0028g03010), chitinase-18 (VIT_14s0066g00610), subtilisin-like proteins (VIT_15s0048g01180, VIT_18s0001g14870), PHB domain-containing membrane-associated protein (VIT_16s0100g00090), MYB4 (VIT_17s0000g04750), glycine-rich RNA-binding protein (VIT_18s0001g11930), and a Clp protease (VIT_19s0014g03160). Although these overlapping results from the transcriptome and proteome datasets illustrate fragments of the host response to infection, many other details were captured in each dataset and will be presented next. A complete dataset of detected metabolites, including their relative levels compared to those in healthy vines, are available as Supplementary Materials, and grouped by transcriptomic, proteomic, and metabolomic data (Supplementary Tables S1–S11). Among the methods employed in this work, our RNA-seq dataset is the most comprehensive and revealed expression for 23,991 unique protein coding sequences (CDS), representing 80% of the 29,971 CDS predicted in the CRIBI V1 grape genome annotation. To further validate the transcriptome data, we performed RT-qPCR on 15 CDS from X. fastidiosa-infected leaf extracts encompassing a wide range of response intensities (Figure 3A) and western blot of ferritin (Figure 3B). These additional techniques also show that while some ferritins respond to disease, other paralogs do not, as previously suggested by the transcriptome and proteome data. More details on the ferritins will be presented ahead.

TABLE 1. Summary of multiomics data from grapevine leaves with Pierce’s disease.
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FIGURE 2. Multivariate analysis of datasets used in this work. (A) Circos plot of correlation matrix of all 32 samples, including infected (I) and non-infected (N), transcriptome (T), proteome (P), and metabolome (M) samples. Samples are represented by segments on the circumference and ribbons connecting samples indicate the relative contribution of each interaction to the total of that sample. Interactions only among the 10 transcriptome samples (B), 6 proteome samples (C), and 16 metabolome samples (D) are also shown. Correlation matrix is shown in Supplementary Table S1.
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FIGURE 3. Evaluation of expression levels of selected CDS and proteins. (A) RT-qPCR analysis of CDS selected based on RNA-seq data encompassing various functions and modulation intensities in samples from diseased leaves. Fold changes compared to healthy control plants were calculated from three biological replicas assayed in triplicate each. One and two asterisks indicate, respectively, p-values < 0.05 and 0.01, according to two-tailed t-test for two paired samples with alpha = 0.05. (B) Immunodetection of ferritin 3 in leaf samples (P1, P2: two plants per treatment) infected with X. fastidiosa (Xf).



Among the 1,240 DE CDS, 47 were detected only in infected tissues including laccases, polygalacturonase, pectin lyase, and fasciclin-like arabinogalactan protein (FLA) genes mainly involved in cell-wall remodeling and lignification (Wang et al., 2015). A gene ontology analysis of all DE CDS shows enriched terms describing biological processes and molecular functions of these and other DE genes, as listed in Table 2. Clustering of transcripts by sequence similarity also reveals enriched functions in the transcriptome data, such as chalcone and stilbene synthases, laccases, and other cell wall remodeling enzymes (Supplementary Table S5). The systems approach was further extended to MapMan functional analysis (Thimm et al., 2004), revealing various aspects of the metabolic shift accompanying PD development, from perception of the pathogen to cell wall modification, onset of oxidative stress response, and polyphenol metabolism to counteract chronic oxidative damage (Figure 4). Although convenient to visualize fold-changes of specific genes of major metabolic functions affected by the disease, we also sought to identify robust disease markers by including the notion of expression level of each marker, as shown in Figure 5. Taken together, these parameters of relative abundance provide a wealth of information describing the molecular events that will be explored in the following sections.

TABLE 2. Summary of PANTHER statistical overrepresentation test results for enrichment of GO terms in differentially expressed genes.
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FIGURE 4. Molecular functions affected by Pierce’s disease. Comparative transcriptome data grouped by functional categories are available in MapMan. Color scale represents log2 ratios of diseased vs. healthy grapevine leaves, in which each protein coding sequence is represented by a square within a selected functional category. Leaf diagram represents the transition of from healthy to diseased tissues analyzed in this comparison. Pale rods on leaf represent X. fastidiosa cells occurring within xylem vessels, at higher density near the petiole, and gradually decreasing toward margin, where outer membrane vesicles and secreted proteins are still abundant (n = 5 diseased vs. 5 healthy plants).
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FIGURE 5. Selected functional categories responsive to Pierce’s disease. Representation showing expression ratio and level of transcripts with altered abundance in grapevines leaves showing Pierce’s disease symptoms mentioned in this work. Log2 expression ratios were calculated from averages of five symptomatic samples compared to five healthy samples, with padj < 0.05. Normalized expression levels are represented in reads per kilobase of transcript per million mapped fragments (FPKM), from the sum of average values of symptomatic and healthy samples. 1Al. deh. = alcohol and aldehyde dehydrogenases and 2RFO = raffinose family of oligosaccharides. A complete list of genes and values shown in this figure is given in Supplementary Table S11.



Differentially expressed CDS related to extracellular signal perception including 22 leucine-rich repeat (LRR) receptor-like kinases (RLKs) were highlighted, with emphasis to VIT_14s0128g00550 and VIT_10s0003g01430. We used the genes encoding LRR-RLKs as an example of the power of genome-wide investigations to select the paralogous members within the functional family group that are relevant to PD (Figure 6A). Transcripts encoding five cysteine-rich RLKs also showed increased abundance (VIT_00s0262g00120, for example), indicating a multitude of input signal sources. CDS encoding an array of ankyrin-repeat proteins were also strongly modulated, especially VIT_13s0106g00200 positively and VIT_05s0165g00260 negatively. Signal transduction cascade MAPKs were also upregulated (VIT_06s0004g06850, VIT_07s0031g00530, and VIT_12s0059g00870) plus many other cytosolic kinases of various types. We also detected WRKY9 (VIT_12s0055g00340), MYB108 (VIT_05s0077g00500), GRAS (VIT_13s0019g01700), and an AGAMOUS-like (VIT_17s0000g01230) transcription factors (TFs) as the most responsive to PD, among many others modulated less intensively (Supplementary Table S4). Another interesting group of DE transcripts encode members of four of the seven families of nodulin-like proteins, including seven MtN21/UMAMIT-like (VIT_04s0044g00450), five MtN3/SWEET-like (VIT_11s0016g04920), two early nodulin-like (VIT_14s0066g01420), and three vacuolar iron transporter/nodulin-like (VIT_00s0267g00030).
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FIGURE 6. Selection of paralogs responsive to Pierce’s disease. Four examples are shown, in which the members of paralogous groups that are considered responsive to disease can be selected based on confidence levels (variability among replicas). In each panel, the green line indicates the p-value of 0.05 selection threshold used by us. (A) A total of 291 leucine-rich repeats receptor-like kinases were detected as expressed, and while only 19 were considered responsive to disease, 14 showed increased transcript abundance, and 5 reduced. (B) Seventeen thaumatin-like genes were detected as expressed, being three with increased transcript abundance. (C) From the 122 2-oxoglutarate oxygenase paralogs detected as expressed, seven were responsive to disease, with five showing increased transcript abundance. (D) From the 74 cellulose synthases detected as expressed, 12 were responsive to disease and of these only one shows reduced transcript abundance.



Pathogenesis-Related Proteins and Antimicrobial Compounds

Among the responses to X. fastidiosa infection, we found accumulation of transcripts encoding pathogenesis-related (PR) proteins, which constitute a complex repertoire of defense strategies aimed at inhibiting pathogen proliferation (Sels et al., 2008). These encompassed several β-1,3-glucanases (for example, VIT_05s0077g01150), class I, II, III, and V chitinases (PR-11, PR-4, PR-8, PR-3, with VIT_14s0066g00610 most intensively modulated), thaumatin-like proteins (PR-5, such as VIT_18s0001g14480; Figure 6B), proteinase inhibitors (PR-6, VIT_05s0020g05040), proteinases (PR-7, VIT_07s0104g00180), peroxidases (PR-8, VIT_14s0066g01670), ribonucleases (PR-9, VIT_14s0060g01530), lipid transfer proteins (PR-14, VIT_06s0004g08060 upregulated and VIT_08s0058g01210 downregulated), and oxalate oxidase germins (PR-15 VIT_09s0002g01340, and PR-16 VIT_07s0005g02370). The proteome data also highlight the chitinase VIT_14s0066g00610 as one of the most modulated in infected tissues, corroborating the transcriptome data. Among the PR proteins, 12 CDS encoding germin-like proteins from the RmlC-like cupins superfamily were upregulated, with VIT_14s0128g00600 in greater intensity. Three Kunitz-type protease inhibitors were also strongly induced (VIT_17s0119g00150, among others).

Specialized (secondary) metabolism was also strongly influenced by disease onset. Twenty-two upregulated CDS for chalcone and stilbene synthases, involved in phytoalexin production against microbes (Aoki et al., 2016), and plant defense against abiotic stress such as UV-radiation were highlighted in our dataset, with VIT_16s0100g01040 most intensively, and others in the same genomic vicinity of chromosome 16. Terpene metabolism was also modified according to our data, with increased abundance of transcripts for terpene synthases VIT_18s0001g04120 and VIT_00s0692g00020, while reducing that of 10 others with VIT_19s0014g04930 and VIT_00s0271g00010 most intensively. Enrichment of compounds known to inhibit pathogen growth and biofilm formation was also detected in our metabolome data such as erythritol and 2-deoxyerythritol (Ghezelbash et al., 2012), 1,2-anhydro-myo-inositol and arbutin; these latter glycosidase and tyrosinase inhibitors, respectively (Falshaw et al., 2000; Supplementary Table S10 and Figure 7). The pathogen might also benefit from increased concentration of nutritional compounds such as fructose, tryptophan, and glutamine.
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FIGURE 7. Major metabolites with increased abundance in V. vinifera affected by Pierce’s disease. PubChem structures of metabolites with known antimicrobial and signaling functions accumulated in symptomatic grapevines (n = 8 diseased vs. 8 healthy plants).



Oxidative, Drought, and Osmolarity Stress-Related Responses

Iron sequestration was triggered by disease onset, with ferritin isoforms VIT_08s0058g00410, VIT_08s0058g00430, and VIT_08s0058g00440, being strongly induced, along with aconitase (VIT_12s0059g02150) and nicotianamine synthase 4 (VIT_11s0052g01150), involved in phytosiderophore production (Mizuno et al., 2003). Interestingly, these three ferritins encoded in chromosome 8 were intensively upregulated, while another present on chromosome 6 (VIT_06s0004g07160) was not selected based on expression ratio, but remained highly expressed also in healthy samples. Another ferritin on chromosome 13 (VIT_13s0067g01840) had very low expression in grapevine leaves with or without disease. Three vacuolar iron transporters on the other hand were downregulated (most markedly VIT_00s0267g00030). Modulation of other iron-associated redox proteins such as ferric reductase, iron superoxide dismutase, and ferredoxin were not significant. Besides limiting iron availability to microbes, storing free iron within ferritin nanocages reduces ROS production and oxidative damage (Mehterov et al., 2012). Like in the transcriptome data, ferritin-3 (VIT_08s0058g00410) was intensively upregulated in the proteome data and further confirmed by western blot (Figure 3B), emerging as a robust feature of PD onset.

Other intense responses included upregulation of proteins and transcripts for low molecular weight heat shock proteins, glyoxalase I for methylglyoxal detoxification (for example, VIT_09s0002g06430), and anthocyanidin reductases such as VIT_15s0046g01150 involved in general stress tolerance (Xie et al., 2003; Hasanuzzaman et al., 2017). Anthocyanins evidenced in symptomatic leaves (Figure 1B) might come from the upregulated biosynthetic pathway encompassing phenylalanine ammonia-lyase (VIT_11s0016g01640 and other copies), cinnamate-4-hydroxylase (VIT_11s0078g00290), 4-coumarate CoA ligase (VIT_06s0061g00450), chalcone synthase (VIT_16s0100g01040 plus several others in this genomic vicinity), chalcone isomerase (VIT_04s0008g02030), flavanone 3-hydroxylase (VIT_18s0001g14310), leucoanthocyanidin dioxygenase (VIT_02s0025g04720), UDP-glucosyl transferase (VIT_18s0001g12040 and others), and finally methyltransferases (VIT_16s0100g00570 and others), possibly providing an array of different anthocyanins yet to be further characterized. Moreover, CDS for 21 NADP-binding Rossman-fold enzymes with oxidoreductase activity were modulated, with VIT_15s0046g01150 as the most prominent. Concurrent to this, our proteome data also showed photosynthesis components such as photosystem I and II, electron transport, carbon fixation, and ATP synthesis with decreased abundance, which could also contribute to a reduction of chlorophyll levels unmasking anthocyanins already present.

The metabolite with highest increased abundance detected on symptomatic leaves was gamma-aminobutyric acid (GABA), a known response for water, oxidative, and wounding stress in Arabidopsis thaliana (Kinnersley and Turano, 2000; Coleman et al., 2001; Scholz et al., 2017). On the other hand, its precursor, glutamic acid, showed decreased abundance, supporting this intense metabolic flow (Supplementary Table S10 and Figure 7). These metabolome data are consistent with upregulation of two CDS encoding glutamate decarboxylase (GAD) in our transcriptome data (VIT_01s0011g06600 and VIT_01s0011g06610), which perform this enzymatic conversion. Our metabolome data also indicate several sugars upregulated in infected tissues, besides other metabolites with known antioxidant properties, including galactinol, catechin, cellobiose, and gentiobiose. These metabolites follow a trend observed in the transcriptome and proteome data in which several ROS-scavenging systems were also upregulated, such as three paralogs of galactinol synthase (VIT_05s0077g00430 among others) and a raffinose hydrolase known as seed imbibition 2 (VIT_08s0007g08310) which also helps to increase galactinol levels in response to pathogen attack and oxidative stress (Couee et al., 2006; Sengupta et al., 2015). Two other raffinose synthase family protein CDS (VIT_11s0016g05770 and VIT_07s0005g01680) were also highly upregulated possibly providing the substrate for galactinol synthesis. We also detected modulation of various cytochrome P450s with emphasis to VIT_07s0129g00820, besides seven peroxidases (six with increased abundance lead by VIT_14s0066g01670 and VIT_18s0001g06840). Other modulated enzymes involved in ROS turnover include five alcohol and five aldehyde dehydrogenases (VIT_18s0001g15410 and VIT_01s0026g00220, for example), glutathione S-transferases including VIT_04s0079g00690 and Tau7-like VIT_16s0039g01070, and quinone reductases encoded by VIT_00s0271g00110 and VIT_00s0274g00080, all of these playing a role in ROS turnover and byproduct detoxification. Interestingly, however, while some enzymes such as cysteine peroxiredoxin (VIT_05s0020g00600) and thioredoxin (VIT_12s0028g03010) accumulated both in the transcriptome and proteome data, other classical ROS-detoxifying enzymes such as superoxide dismutase, catalase and glutathione peroxidase did not. Other DE transcripts involved in ROS signaling also include CDS that bind calcium such calmodulins (VIT_18s0122g00180 and five others), calcineurins (VIT_17s0000g09480 with increased abundance and VIT_17s0000g09470 with a sharp decrease), Ca2+-binding EF-hand family proteins (VIT_12s0059g00340 and two others), as well as Ca2+-dependent lipid-binding (CaLB domain) family proteins. The EF-hand proteins are known to activate respiratory burst oxidase homologs (RBOH, VIT_14s0060g02320 also upregulated in our data), capable of ROS production upon pathogen perception (Kadota et al., 2015). Moreover, three CDS encoding lactoylglutathione lyase/glyoxalase I (methyglyoxal detoxification), which are also calcium binding proteins are among the most induced in our dataset, particularly VIT_11s0016g05010. Many of the responses to oxidative stress listed above are also detected in other kinds of stresses such as drought and osmolarity, exemplifying how PD results in various stresses to the plant host. All these responses interconnect resulting in the scorched leaves and other symptoms observed in diseased vines as shown in Figure 1. Another interesting connection between different stresses is major facilitator superfamily proteins for which eight CDS including VIT_05s0020g02170 were upregulated and two were downregulated. Besides responding to salt stress, these sugar/H+ symporters have being shown to be tightly correlated with programmed cell death (Norholm et al., 2006), as has flavin-dependent monooxygenases encoded by VIT_11s0016g00570 and VIT_07s0104g01260, also with increased abundance in diseased vines.

Modulation of Hormone Biosynthesis and Signaling

Jasmonate biosynthesis was a strong hormonal response detected given the intensive positive regulation of seven 12-oxophytodienoate reductases including VIT_18s0041g02020 and two allene oxide synthases (VIT_03s0063g01820 and VIT_18s0001g11630), known routes for jasmonic acid formation (Schaller et al., 2000). However, transcripts encoding downstream jasmonate O-methyltransferases (VIT_04s0023g02230 among three other paralogs) and other DE CDS encoding enzymes of salicylic acid formation displayed a strong reduction in abundance. Despite the suggested inhibition of salicylic acid production, transcripts encoding the AGD2-like defense response protein 1 (ALD1, VIT_18s0001g04630), accumulated to higher levels in diseased vines. On the catabolic side, the methyl salicylate esterase VIT_00s0253g00140 was upregulated, possibly also contributing to lowered accumulation of salicylic acid. Gibberellin (GA) production also seems repressed as indicated by downregulation of 2 GA oxidases (VIT_18s0001g01390 and VIT_19s0177g00030), a MEP pathway member (VIT_11s0052g01730), and a gibberellin-regulated protein (VIT_08s0007g05860). Abscisic acid (ABA) biosynthesis epoxycarotenoid dioxygenase (VIT_19s0093g00550), and ABA-responsive protein (VIT_18s0001g10450), and two PP2C phosphatases (VIT_06s0004g05460 and VIT_16s0050g02680) were upregulated, another indication of the multiple stress physiology state of grapevines during PD. Although increased abundance of auxin biosynthesis enzymes was not detected, several auxin-responsive CDS were, including VIT_12s0057g00420, three auxin efflux carriers VIT_04s0044g01860, VIT_05s0062g01120, and VIT_04s0044g01880, auxin-induced protein VIT_05s0049g01970, auxin-responsive of the GH3 type (VIT_19s0014g04690, among three others), and TFs (VIT_11s0016g04490, VIT_18s0001g13930). We also detected 2-oxoglutarate and Fe2+-dependent oxygenase superfamily proteins with members both up and downregulated (Supplementary Table S4 and Figure 6C), which catalyze the formation of hormones, such as ethylene, gibberellins, and pigments such as anthocyanidins and other flavones (Turnbull et al., 2004), again illustrating the broad spectrum and interconnectivity of responses observed.

Modulation of Functions Involved in Cell Wall Remodeling

Since the thickening of secondary walls of xylem vessels is one of the most striking anatomical changes during PD onset (Figure 1C), we analyzed various host responses that could be classified as related to cell wall metabolism. We detected several molecular systems working in cohort to produce the conspicuous thickening of xylem vessel walls. Some of the aforementioned enzymes of the phenylpropanoid biosynthesis pathways involved in the early steps of anthocyanin synthesis also generate precursors of monolignols. These are further processed and polymerized by oxidative enzymes, including peroxidases and copper-binding laccase-like polyphenol oxidases. Many laccases are highlighted in our data, with emphasis to VIT_18s0001g00680 and VIT_18s0122g00690 among 19 others, as well as six peroxidases including VIT_14s0066g01670. Transcripts encoding 6 FAD-binding Berberine family proteins involved in monolignol oxidation were also accumulated, as well as for cytochrome P450-dependent monooxygenases known to be involved in lignin biosynthesis (Daniel et al., 2015), including VIT_11s0078g00290 and VIT_11s0065g00350 (cinnamate-4-hydroxylase) and also VIT_04s0023g02900 (ferulic acid 5-hydroxylase).

Among other enzymatic functions involved with cell wall modification, we found reduced levels of two neighboring polygalacturonases (VIT_01s0127g00850 and VIT_01s0127g00870) and increased levels of a polygalacturonase inhibitor (VIT_08s0007g07690) and of five dehiscence zone polygalacturonases orthologs of AT2G41850, eight pectin lyases including VIT_07s0005g05520, 7 pectin invertase/methylesterase inhibitors such as VIT_06s0009g02590, 11 cellulose synthases with emphasis to VIT_02s0025g01940 (Figure 6D), the xyloglucan endotransglucosylase/ hydrolase VIT_06s0061g00550, and two uclacyanins, all established in cell wall modification and/or lignin biosynthesis (Minic et al., 2009). Our proteomic analysis also identified upregulated gluconeogenic enzymes fructose-bisphosphate aldolase and alpha-glucan water dikinase, as well as TCA cycle enzymes citrate synthase and isocitrate dehydrogenase, possibly contributing to generation of carbon backbones for cell wall thickening and ROS detoxification (Supplementary Table S8). Another protein with increased abundance was cinnamoyl-CoA reductase 1, known to participate in lignin biosynthesis (Ruel et al., 2009). Other modulated functions involved in cell wall modification functions encompassed eight expansins including VIT_13s0067g02930, the exostosin VIT_06s0061g00560, the beta galactosidase VIT_11s0016g02200, five beta glucosidases both positively and negatively regulated (VIT_07s0005g00360 and VIT_13s0064g01660, for example), two beta xylosidases (VIT_05s0077g01280), three beta 1,3-glucanases including VIT_06s0061g00100, and four hydroxyproline-rich LEA proteins (VIT_04s0069g01010 in greater abundance). DE transcripts also include 18 UDP-glucosyl transferases with emphasis to VIT_06s0004g07230, UDP-glucosyl epimerase VIT_02s0025g04210, and the UDP-glucosyl dehydrogenase VIT_17s0000g06960, all involved in callose formation and deposition (Ellinger and Voigt, 2014).

DISCUSSION

Much of our understanding of the plant responses to bacterial pathogens has been interpreted by the gene-for-gene response mediated by the secretion of type 3 effectors and their interaction with host R-proteins as a means to identify sources of resistance genes. Yet X. fastidiosa is a very successful pathogen for many economically important crops despite lacking a type 3 secretion system (T3SS) and other elicitors of plant immunity such as flagella. It uses, however, a T2SS that has been shown to secrete a number of hydrolytic enzymes that correlate to the observed disease symptoms. Our data further depict a wealth of molecular details of its complex interaction with grapevines leading to PD that suggest: (1) activation of a complex defense response that includes both pathogen- and damage-associated molecular pattern (PAMP/DAMP)-triggered immunity (PTI), but impairment of downstream salicylic acid-mediated immune response; (2) chronic oxidative stress despite activation of antioxidant metabolism; and (3) intensive cell wall remodeling and lignification, which can lead to reduced sap flow and increased water and nutrient deficiency. This is an expansion from the previous transcriptome investigation of the early events of PD development performed by Choi et al. (2013), in which the molecular events leading to water stress were also detected.

Given the xylem-dwelling characteristic of the pathogen, deep within the plant, and its ability to form biofilms and secrete virulence factors, pathogen clearance is not achieved in susceptible hosts despite the array of responses observed, including PR proteins and phytoalexins. Our data expand the set of PR proteins previously detected in the xylem sap of X. fastidiosa-infected grapevines (Chakraborty et al., 2016) further reinforcing their importance in the defense response. Though fastidious in growth, X. fastidiosa can actively migrate with and against xylem sap flow (Meng et al., 2005) and colonize the plant systemically, overcoming host strategies to halt pathogen proliferation. Callose and tylose formation are commonly seen throughout affected branches, and symptoms on leaves are not always associated with X. fastidiosa presence on the vicinity of scorched areas, suggesting the recognition and response to secreted effectors, PAMPs, and/or DAMPs (Gambetta et al., 2007; Nascimento et al., 2016; Rapicavoli et al., 2018). These signals might be associated to long range outer membrane vesicles, bacterial molecular signals, or products of host tissue degradation (Lindow et al., 2014; Nascimento et al., 2016; Rapicavoli et al., 2018). Pathogen and damage perception is suggested by induction of many LRR-RLKs, as well as downstream MAPKs and TFs of WRKY, and other types, all important for PTI (Banerjee and Roychoudhury, 2015). These receptors are the first layer of pathogen perception on the plant cell surface and directly or indirectly activate MAPK signaling cascades that affect a large group of TFs controlling the response circuitry (Zipfel, 2014). A large group of CDS encoding a wide array of ankyrin-repeat proteins were also strongly modulated, which have been suggested to be intermediates between membrane-kinase receptors and downstream MAPKs (Yang et al., 2012), and were shown to increase resistance against bacterial blight caused by Xanthomonas oryzae (Wang et al., 2006) among other examples. It would be interesting to identify specific elicitors and signaling molecules recognized as PAMPs in X. fastidiosa pathosystems, and their cognate receptor pairs, as done, for example, between grapevine and Burkholderia phytofirmans (Trouvelot et al., 2014). In the case of Xylella that lacks flagella, this might help the pathogen to reduce the amount of immunogenic epitopes, as shown in other Xanthomonads that can regulate their flagellin biosynthesis, express multiple flagellin types, shed, or completely lack flagella (Darrasse et al., 2013), affecting their immunogenicity. We are currently pursuing this by expressing candidate Xylella proteins in grapevines, in order to better understand the host response to specific elicitors and assess whether PD symptoms derive from host responses to pathogen perception or from activity of the pathogen’s effectors. Another interesting aspect of this plant-microbe crosstalk is the strong induction of GABA. Besides being part of the host response, it can also be used by bacterial quorum sensing, as exemplified by Agrobacterium tumefaciens in tobacco (Chevrot et al., 2006). Its precise effect on X. fastidiosa cellular behavior remains to be verified.

Our work also suggests that grapevines susceptible to PD go through intensive oxidative stress during disease development, as sources of ROS from PTI and also from photooxidative stress were evident in our data. ROS-generating systems were activated, such as germins, cupins, RBOH, and copper amine oxidases, possibly as a means to restrict pathogen proliferation. On the other hand, chronic exposure to high ROS levels is also detrimental to the host, as suggested by several ROS-scavenging strategies activated, among which we highlight the iron-sequestration ferritin nanocages, phenylpropanoid biosynthesis pathways, plus other proteins, and many metabolites aforementioned. Iron is needed to produce chlorophyll (Kumar and Soll, 2000), and hence its persistent chelation and consequent deficiency might intensify the conspicuous chlorosis symptoms and reduction of photosynthetic activity associated with PD. Our work provides further detail of this complex crosstalk between responses to pathogen and oxidative and drought stresses, as previously investigated in A. thaliana (Huang et al., 2008).

The intensive secondary metabolism modulation occurring during disease progression involves phytoalexin pathways (stilbene synthases) and also more macroscopic features such as cell wall thickening by phenylpropanoid and lignin biosynthesis. Although these are known components of grapevine’s defense arsenal (Vannozzi et al., 2012), X. fastidiosa is able to evade these defense mechanisms and reach sufficient population thresholds that induce bacterial aggregation, biofilm formation, and efficient vector acquisition and transmission (Almeida et al., 2012). Exploring whether the upregulated metabolites can limit the bacterium’s ability to reach such thresholds might be a promising way for delaying of preventing vectored disease transmission. Other insights toward rational disease control can come from the characterization of host susceptibility genes that can be exploited by the pathogen to harness nutrients. The nodulins identified in this work are strong candidates in this path, as are the enzymes involved in salicylic acid metabolism that displayed decreased abundance possibly delaying immune responses. The sustained jasmonic acid-related responses coupled with inhibition of salicylic acid-related responses even after 12 weeks post-infection suggest that grapevines recognize X. fastidiosa as a necrotroph. Interestingly, this pattern of responses has also been observed in resistant citrus inoculated with X. fastidiosa during early stages of infection (1 day post-infection; Rodrigues et al., 2013). However, in the case of Thompson seedless grapevines, pathogen clearance is not attained and chronic exposure to oxidative stress combined with the virulence arsenal of the pathogen leads to plant death. Further investigations of particular pathways/analytes including more time-points will clarify the details and dynamics of the observed responses. As Xylella pathogens can switch between a more aggregated (biofilm) to a solitary/planktonic bioform, identifying the specific responses associated with each bioform is also warranted.

CONCLUSION

Our work provides a set of molecular markers modulated by PD onset, as detected by different omics strategies. Our work attests the usefulness of using different omics strategies to dissect a pathosystem. Although some general features are clear on all of them such as the oxidative stress the host is going through, many are only evident in one or two of the techniques used. Integrating the omics data still presents many challenges, such as uniform annotation and nomenclature used by different tools and databases. The very different depth of the data, such as between the transcriptome and the proteome, also limit the extent to which an integrated analysis can be done. Nonetheless, we see a trend toward greater depth on all omics approaches as equipment and protocols advance. At this stage, our data already enable the selection among the various paralogs of given functions, for example, among the LRR-RLKs, thaumatin-like proteins, 2-oxoglutarate oxygenases, and cellulose synthases, as shown in Figures 5, 6. Understanding which paralogs respond most intensively to PD provides a valuable resource for targeted future investigations. The molecular markers for PD symptoms include proteins of various families plus antioxidant and antimicrobial metabolites that can now be further explored individually to evaluate their potential in disease detection and resistance. An integrated overview of the most intense responses detected is presented in Figure 8. Comparative studies with the available breeding germplasm, analyzing specifically the markers highlighted herein, and engineering specific enhanced or reduced gene functions in order to increase resistance or reduce detrimental immune responses by silencing susceptibility genes are promising ways to address this.


[image: image]

FIGURE 8. Model of molecular events occurring in V. vinifera with Pierce’s disease. Depiction based on transcriptomic, proteomic, and metabolomic analyses, highlighting perception of X. fastidiosa PAMPs and DAMPs, signaling cascades and stress response. The lower box lists prominent members in each functional category based on their expression ratios between diseased and healthy grapevines. Gene identifiers are based on the Ensembl Gramene release 51 V. vinifera annotation.
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The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.
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INTRODUCTION

As a consequence of climate change, the intensity and frequency of extreme weather events, such as heat waves, are projected to increase, these being one of the major global risks (EEA, 2012). Heat waves (when the temperature rises at least 5°C above normal values) can have a short duration (about a few days). Although plants are known to be able to respond to altered climatic conditions(e.g., Schworer et al., 2014), in woody plants, and specifically the response and heat adaption rate have been barely studied. In forest ecosystems, climate change could have significant implications in timber production (Martinich et al., 2017). Therefore, in order to reach the future demand for wood products, it is necessary to focus research in improving the production, health, and performance of the commercially valued forest species, such as Pinus radiata, in future scenarios of increased temperature.

In plants, it has been reported that high temperature has negative effects in various physiological processes such as photosynthesis, primary and secondary metabolism, water relations, or lipid metabolism (Xu et al., 2006). Specifically, it is known that heat stress generates damage to the cell membrane, overproduction of reactive oxygen species (ROS), senescence, inhibition of photosynthesis, and cell death. However, plants have designed specific protection mechanisms to minimize and repair the damage caused by high temperatures in order to cope with heat waves that they will inevitably face during their lifespan.

When a plant perceives environmental stress, multiple signaling cascades are activated. These include the intricate cross-talk between the different plant hormones and other signaling pathways involving kinases and phosphatases, calcium, ROS, and lipids. Previous studies in P. radiata showed salicylic acid (SA) and abscisic acid (ABA) as crucial factors in the initial response to heat stress (Escandón et al., 2016), probably due to the rush of the plant to quickly regulate stomatal closure as observed in other species (Acharya and Assmann, 2009). Other phytohormones such as cytokinins (CKs) and indolacetic acid (IAA) seem to be more important for the acclimation and recovery of the plant (Skalák et al., 2016). Nevertheless, how these hormones interact and trigger changes in the plant metabolome to deal with heat stress is still unknown.

Environmental stress results in a reorganization of the metabolism in order to assure homeostasis, which is often accomplished by maintaining essential metabolism and synthesizing metabolites with stress-protective and signaling properties (Fernández de Simón et al., 2017). Changes in secondary metabolism are usually triggered by environmental stresses (Routaboul et al., 2012; Fernández de Simón et al., 2017) such as extreme temperatures, salinity, water availability, or high light intensity, being involved in most plant adaptive responses in combination with signaling mechanisms regulated by plant hormones. Phenolic compounds are one of the most important classes of secondary metabolites in plants as they play important roles in the response to high-temperature stress. Specifically, high-temperature stress promotes the production of phenolic compounds such as flavonoids, phenylpropanoids, anthocyanins, and lignins which are related to the suppression of stress-induced oxidation of most cell molecules (Wahid et al., 2007).

Lipid metabolism is also altered by high-temperature stress as a basic mechanism to control membrane fluidity, cell signaling, and movement of substances (Falcone et al., 2004). According to Grover et al. (2000) and Umesha (2005), the accumulation of highly saturated fatty acids might confer tolerance to high-temperature stress by means of reducing structural membrane fluidity when this is increased by environmental warmth.

Metabolomics profile analyses can be considered an important diagnostic tool for verifying the physiological responses of plant species to environmental changes and to understand the mechanisms behind the complex biological response (Gibbons et al., 2015; Zhang et al., 2015; Meijón et al., 2016), providing a snapshot of the physiological status of the plant in response to an environmental stress (Gibbons et al., 2015; Patel and Ahmed, 2015; Zhang et al., 2015). The feasibility of metabolome analysis for biomarker discovery relies on the assumption that metabolites are important players in biological systems (Monteiro et al., 2013) and stress situations cause drastic changes of metabolomics pathways, which are not new concepts (Shulaev et al., 2008; de Leonardis et al., 2015; Pascual et al., 2017). Currently, using MS-based platforms and combining different analytical technologies, it is possible to increase metabolome coverage. The use of GC-MS technique allows measuring the most of the primary metabolites, while LC-MS provide a better coverage of large hydrophobic metabolites predominant in secondary metabolisms (Doerfler et al., 2013). Both techniques together can assure a better metabolome, allowing the elicitation of a complete view of metabolic dynamics involved in the heat response of P. radiata. However, these kinds of studies also require a system biological approach using bioinformatics tools to understand their implications for cell function and to attach the missing connections between molecules and plant physiology (Bruggeman and Westerhoff, 2007; Meijón et al., 2016).

In this study, P. radiata plants were exposed to high temperatures aiming to mimic future scenarios of increased warmth. Metabolome and physiological data were analyzed comprehensively using a multivariable approach combining both sets of data. The analysis revealed the dynamic behavior of the metabolic and signaling transduction pathways, as well as connections among the pathways. Classical physiological measurements combined with cutting-edge technologies such as mass spectrometry-based analytical procedures for characterizing the variations in the metabolome revealed key metabolites related to high-temperature response in P. radiata. These key metabolites have a possible use as biomarkers in P. radiata and other species, due to the similarity of metabolites and basic metabolic pathways between very different species, while proteins, genes, and mRNAs are diversified from one species to another (Peng et al., 2015). Altogether, this work provides a deep knowledge of the response and acclimation process to heat stress in P. radiata, as well as the selection of possible universal thermotolerance biomarkers or crucial metabolites which can be further considered by breeders and forest managers.

MATERIALS AND METHODS

Plant Material and Experimental Design

The assay was conducted in a climate chamber under controlled conditions (Fitoclima 1200, Aralab). One-year-old P. radiata seedlings (plant size about 33 ± 4 cm) in 1-dm3 pots (blond peat:vermiculite, 1:1) were kept under a photoperiod of 16 h (400 μmol m-2.s-1) at 25°C and 50% relative humidity (RH), and 15°C and 60 % RH during the night period. The plants had been previously acclimated over a 1-month period inside the climate chamber, being watered with nutritive solution (NPK, 5:8:10).

Control plants (C) were collected before starting the heat exposure and were maintained at 25°C for the duration of the trial. Heat exposure treatment began with an increasing temperature gradient from 15 to 40°C over 5 h and maintained for 6 h. This experimental procedure was repeated for 5 days. Sampling was performed at: 3 h after 40°C was reached on day 1 (T1/2) and at the end of the 6-h heat exposure on day 1 (T1), day 2 (T2), day 3 (T3), and day 5 (T5). Plants were watered every day to 80% FC (full capacity) and weekly fertilized with a nutritive solution (NPK, 5:8:10). Plants of each treatment were allowed to recover for 1 month under the control conditions. Recovered plants (R) represent an intermediate exposure time (T3 recovered plants) because there was no significant difference (at the morpho-physiological level) between recovered plants exposed to the different heat exposures. This experimental design aimed to cover the entire stress sensing–response–adaption process, increasing the density of analysis at short-term (T1/2, T1, T2), longer exposures (T5), and recovered plants (R), complementing previous short-term response (C, T1, and T3) analysis (Escandón et al., 2017).

Mature needles from each plant (16 plants/exposure) were sampled, cleaned with a moistened cloth, and immediately frozen in liquid nitrogen until metabolites were extracted. Pools of 3 plants for each biological replicate were performed. Data of physiological measurements – electrolyte leakage (EL), relative water content (RWC), maximum quantum efficiency of PSII (Fv/Fm), quantum yield of photosystem II photochemistry (φPSII), malondialdehyde content (MDA), proline content, starch content, total soluble sugars (TSS), chlorophyll a content (Chla), chlorophyll b content (Chlb), and carotenoid content (Carot) – and fitohormone data – SA, indol-3-acetic acid (IAA), ABA, zeatin riboside (ZR), dihydrozeatin riboside (DHZR), gibberellin 7 (GA7), jasmonic acid (JA), gibberellin 9 (GA9), isopentenyl adenosine (iPA), isopentenyl adenine (iP), and castasterone (BK) – were taken from Escandón et al. (2016) for multivariable and integrative analysis.

Metabolite Extraction

Metabolite extraction was performed according to Valledor et al. (2014a) using 100 mg of needle fresh weight. Briefly, samples (C, T1/2, T1, T2, T3, T5, R) were ground in liquid nitrogen and 600 μL of cold (4°C) metabolite extraction solution – Methanol:Chloroform:H2O (2.5:1:0.5) – was immediately added to each tube. Then, samples were centrifuged at 20,000 g for 4 min at 4°C and the supernatant transferred to new tubes. Finally, 800 μL of Chloroform:water (1:1) were added and the tubes vortexed and again centrifuged at 20,000 g for 4 min at 4°C. Two layers formed: an upper aqueous layer, containing the polar metabolites and a lower organic layer, containing the non-polar. Both fractions were transferred to new tubes and dried in a speed vac.

Polar Metabolite Identification and Quantitation Using LC-Orbitrap-MS Analysis

The polar fraction of each sample was analyzed twice on an LC-Orbitrap-MS, first in positive ion mode and then in negative. A Dionex Ultimate 3000 (Thermo Fisher Scientific, United States) UHPLC was used and a LC-Orbitrap LTQ XL-MS system (controlled by Xcalibur version 2.2, Thermo Fisher Corporation) was run according to the procedure described in Escandón et al. (2017). The resolution and sensitivity of the Orbitrap were controlled by the injection of a mixed standard after the analysis of each batch, and the resolution was also checked with the aid of lock masses (phthalates). Blanks were also analyzed during the sequence.

LC-Orbitrap-MS raw data were processed and compared using MZmine software version 2.10 (Pluskal et al., 2010). MS1 spectra were filtered establishing a noise threshold at 5.5E03 and minimum peak height at 6E03 with a minimum time peak of 0.15 min. Peaks were smoothed and deconvoluted by using a local minimum search algorithm (98% chromatographic threshold, minimum retention range 5 min, minimum relative height of 90%, and minimum ratio top/edge of 1.2). Chromatograms were aligned using the RANSAC algorithm with a tolerance of 5 ppm of and 1.0 min retention time. Normalized peak areas were used for quantification, and their values were log transformed before statistical analyses (Supplementary Table S1a).

The individual peaks were identified following different approaches; the first step was performed against an in-house library (>100 compounds) and manual annotation considering m/z and retention times. In the second step, masses were assigned using the KEGG, PubChem, METLIN, MassBank, HMDB, and Plantcyc databases as reported by Escandón et al. (2017) with built-in MZmine plugins with a 5 ppm threshold and considering as “identified” beyond doubt those metabolites that were defined after the comparison to our standard compound library or by a matching of MS/ MS to the small number of plant compounds for which their MS/MS is available in public databases (Meijón et al., 2016); and as “tentatively assigned” those with molecular ions with exact masses corresponding to identified metabolites in databases. Metabolite identification against our library was confirmed by retention time (RT), mass, isotopic pattern, and ring double bound parameters. Supplementary Data S1 includes the detailed interpretation of experimental MS/MS spectra which support our tentative identifications of the candidate metabolites that were not identified beyond doubt in the first term.

Non-polar Metabolite Identification and Quantitation Analysis

Non-polar metabolites were derivatized with 295 μL tert-methyl-Butyl-Ether (MTBE) and 5 μL of trimethylsulfonium hydroxide (TMSH) for 30 min at room temperature. The tubes were centrifuged for 3 min at 20,000 g to remove insoluble particles before transferring the supernatants to GC-microvials. GC-MS measurements were carried out following a previously developed procedure (Valledor et al., 2014b) on a triple quad instrument (TSQ Quantum GC; Thermo, United States). The mass spectrometer was operated in electron-impact (EI) mode at 70 eV in a scan range of m/z 40–600. Metabolites were identified based on their mass spectral characteristics and GC retention times through comparison with the retention times of reference compounds in an in-house reference library and the current version of Golm Metabolome Database (Hummel et al., 2007) using LC-Quant software (Supplementary Table S1b).

Quantitative Real-Time PCR of Selected Genes

RNA was extracted from 100 mg of needle fresh weight as described by Valledor et al. (2014a). cDNA was obtained from 1,000 ng of RNA using the RevertAid kit (Thermo Scientific, United States) and random hexamers as primers following the manufacturer’s instructions. Later, qPCR reactions were performed in a CFX Connect Real Time PCR machine (Bio-Rad) with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, United States); three biological and two analytical replicates were performed for each treatment.

ACTIN (ACT), RIBOSOMAL PROTEIN 18S, GLYCERALDEHYDE 3-212 PHOSPHATE DEHYDROGENASE (GAPDH), and UBIQUITINE (UBI) genes were tested as endogenous control employing geNorm following the criteria of Hellemans et al. (2007). ACT and UBI were the most stable and consequently selected as endogenous genes. Normalized Relative Quantities (NRQ) and Standard Errors of RQ were determined according to Hellemans et al. (2007). Primers were designed using transcript sequences available in a P. radiata in-house database obtained from RNA-Seq data (unpublished results). Detailed information about the primers used for qPCR experiments is available in Supplementary Table S2.

Statistical and Bioinformatics Analysis

Five biological replicates were used for metabolites and physiological parameter statistical analysis. The procedures were conducted with the R programming language running under the open-source computer software R v2.15.2 (R Development Core Team, 2015) and RStudio (RStudio Team, 2015). Metabolome datasets were pre-processed following the recommendations of Valledor et al. (2014c). In brief, missed values were imputed using a k-nearest neighbors approach, and variables were filtered out if they were not present in all replicates of one treatment or in at least 45% of the analyzed samples. Data was transformed following a sample-centric approach followed by log transformation. Centered and scaled values (z-scores) were subjected to multivariate analysis and Heatmap clustering. The calculation of the number of common metabolites for all combinations of treatments and unique metabolites in a single treatment was performed using core functions of R.

Metabolomics pathways of each metabolite (Supplementary Table S3a) were searched against KEGG pathway maps (KEGG Mapper, Kanehisa et al., 2012) and p-values of each metabolomics pathways (Supplementary Table S3b) in MBROLE 2.0 (López-Ibánez et al., 2016). Heat mapping was carried out using the Manhattan distance method to group metabolites in different KEGG pathways with an MBROLE FDR correction of less than 0.05. Multivariate analysis of metabolites and physiological parameters (Supplementary Table S4) were conducted with mixOmics (Lê Cao et al., 2009) using Principal Component Analysis (PCA), Sparse Partial Least Squares (sPLS), and network analyses. The normalization of the datasets was performed before combining them. sPLS algorithm was used to find correlations between predictor (metabolites matrix) and response variables (physiological parameters) and its graphic representation in the network analysis. Network topology was defined after applying sPLS regression using the function network() of the mixOmics package and filtered (only edges equal or higher than |0.60| were maintained) in Cytoscape v.3.3.0 (Cline et al., 2007). Univariate analyses were conducted: one-way ANOVA, p < 0.05 for metabolites and physiological parameters and Student’s t-test, p < 0.1 for qPCR analysis. Graphics were plotted employing ggplot2 (Wickham, 2009) and pheatmap (Kolde, 2015).

RESULTS

Characterization of the Metabolome During Heat Treatment

The combination of LC-Orbitrap-MS for polar and GC-MS for non-polar metabolites allowed the reliable quantification of a total of 2,287 ions based on the obtained m/z and retention times (Supplementary Table S1). These different ions can be considered different metabolites since each combination of m/z and retention time should be unique for each metabolite and spatial conformation. The fusion of a customized searching/identification algorithm based on in-house and public databases resulted in the unequivocal identification of 41 ions (identical matches to our compound library) and 747 ions that were tentatively assigned after comparing its very accurate mass against reference compound databases (Supplementary Table S1). The combination of both ionization modes (GC-MS and LC-Orbitrap-MS) gave a broad characterization of the pine metabolomes during heat-induced response, which covered most of the primary and secondary metabolism pathways.

Metabolome analysis showed that most of the metabolites are present in all treatments or at least in two different treatments (880 or 2,014 metabolites, respectively, “common” in Figure 1 and Supplementary Table S5). Conversely, a total of 273 metabolites were identified only in one of the treatments (Figure 1), Control (C) being the sample that showed the highest number of characteristic metabolites (78), followed by T5 (44) and R (42). Otherwise, T5 and C were the treatments that shared a greater number of metabolites (106 metabolites; Supplementary Table S5).
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FIGURE 1. Total metabolite diagram: Qualitative common metabolites (2,014) and unique metabolites (273) for each treatment. C, control; R, recovered; T1/2, 3 h after 40°C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5; common, qualitative common metabolites in at least two treatments.



The complexity of the metabolome data was reduced by focusing on the specific pathways in relation to the relative abundance of the metabolites identified. Heatmap-clustering analysis (Figure 2 and Supplementary Figure S1), distinguished four different groups in relation to metabolic pathways identified: C, T1/2-T1, T2-T3, and T5-R group that is highly separated of C and shorter-term treatments.
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FIGURE 2. Heatmap-clustering analyses of KEGG pathways considering only the pathways that exceed MBROLE FDR-correction (p < 0.05). Numbers inside the boxes indicate normalized abundance of each pathway (as a percentage) calculated as the sum of all identified/assigned metabolites within each pathway according to KEGG pathway. C, control; R, recovered; T1/2, 3 h after 40°C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.



On the other hand, the clustering based on the profile of KEGG pathways did not show any clear trend, each group presenting a different pathway profile across the sample times, e.g., glucosinate biosynthesis and flavone and flavonol biosynthesis increased their activities in treatments T1/2, T1, T2, or T3; conversely, pentose phosphate pathway and flavonoid biosynthesis showed the maximum in T5 and/or R. Other pathways, such as the biosynthesis of unsaturated fatty acids increased the activity in T2, T3, and T5 or only in the longer-term exposure (T3 and T5) as arginine and proline metabolism pathways. In contrast, pathways related with phenylalanine metabolism enhance their activity during the stress but decrease at T5 (at the levels of C and R). Lastly, riboflavin metabolism showed a substantial increase only in T5 and glutathione metabolism showed a fluctuating tendency, highlighting its maximum in T3.

These results seem to underlie two different types of heat-response in P. radiata (shorter-term and longer-term response) where different pathways are necessary at a different time of stress.

Shorter-Term and Longer-Term Responses to Heat Stress Were Confirmed by Integrative Analysis of Metabolome and Physiological Datasets

To simplify the dimensionality of the results and integrate metabolome data with physiological datasets, sPLS (Figure 3A and Supplementary Table S6) and PCA (Supplementary Figure S2 and Supplementary Table S7) analyses were used. sPLS and PCA scores revealed a trajectory of the different sampling times by the combination of the two main components. Recovered (R) and long-term exposed (T5) plants were separated from the other treatments by the first component, which seems to be gathering the variance related to long-term stress adaption, while the second component, considering top correlated variables (Supplementary Figure S2 and Supplementary Table S6) is related to heat-response/tolerance. This component revealed differences between Control-Recovered and heat-treatments.
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FIGURE 3. Multivariate analysis of metabolome, and physiological parameters in needles during heat treatment. (A) Classification of the different samples according to sPLS. Components 1 and 2 allowed the clustering of treatments analyzed according to shorter-term (T1/2, T1, T2, and T3) and longer-term (T5 and R) heat-stress responses. (B) Interaction networks constructed after sPLS analysis using metabolites as the predictor matrix and physiological measurements as the response matrix. Edge color represents the correlation value. Only those correlations equal or higher, in absolute value, than 0.6 are shown. Color nodes reflect the amount of control that this node exerts over the interactions of other nodes in the network (higher control = lighter color). EL, electrolyte leakage; ZR, zeatin riboside; iPA, isopentenyl adenosine; IAA, indol-3-acetic acid; DHZR, dihydrozeatin riboside; BK, castasterone; GA7, gibberellin 7; C, control; R, recovered; T1/2, 3 h after 40°C on day 1; T1 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.



Altogether, multivariate results provided hints about two different responses to stress. First, an initial response to stress (shorter-term response), involves increased ABA and SA activities in samples T1/2, T1, T2, and T3 (Figure 3A, Supplementary Table S6a, Comp 1). Secondly, adaptive mechanisms, such as TSS and ZR, seem to be involved in the distinction between T5 and T3, as well as between the recovered and control plants according to sPLS analysis (Figure 3A, Supplementary Table S6a, Comp 1).

The interaction networks built from this analysis (Figure 3B and Supplementary Table S6) showed a complex correlation between different metabolites and hormones and physiological parameters. The important role of CKs was demonstrated during heat response, as well as the links of these hormones with different compounds of the metabolome and physiological parameters in response to high temperatures. Two main nodes in the constructed network were detected: ZR and iPA nodes. The ZR node was negatively correlated with numerous saturated and unsaturated fatty acids (C16:0 and C18:0 with their unsaturated forms), flavonoids (including kandelin A-1 or eujambolin), amino acids (such as L-proline and L-serine), and L-phenylalanine (key metabolite in several pathways, such as phenylalanine metabolism, phenylpropanoid biosynthesis and biosynthesis of plant hormones). The presence of L-proline in the network indicates the relevance of the accumulation of this amino acid in longer-term response (T3 and T5) to high temperatures in P. radiata, as it has already been showed in Escandón et al. (2016) and confirmed by the increased activity of its metabolism (Figure 2, arginine and proline metabolism). Additionally, ZR was positively correlated with fatty acids involved in sphingolipid metabolism, terpenoids (including abscisic-alcohol 11-glucoside) and other secondary metabolites: dihydrokaempferol (related to flavonoid biosynthesis) and cis-1,2-dihydro-3-ethylcatechol (implicated in the degradation of aromatic compounds). In this node, it is also important to note that the physiological parameter, EL, appeared negatively correlated by an unknown metabolite (p537) to IAA and DHZR which, in turn, were also positively linked to tetracosanoic acid (saturated fatty acid, C24:0). This confirms the relevance of these hormones (Du et al., 2013; Černý et al., 2014) and fatty acid signaling (Los and Murata, 2004) to repair membrane damage related to heat stress. On the other hand, iPA was positively correlated with fatty acids, such as tetradecanoic acid and (9Z)-octadecenoic acid, as well as metabolites involved in diterpenoid biosynthesis (sclareol); and this hormone was negatively correlated with compounds involved in flavonoid biosynthesis, such as dihydromyricetin.

Interestingly, the analysis of the network dynamics and particularly the quantitation of the represented variables showed a two-step response, with T3 as the transition point between shorter-term and longer-term responses (Supplementary Movie S1). This observation is consistent with the conducted sPLS and PCA analyses. This behavior can be considered an adaptive mechanism to cope with rapid environmental changes that occur daily (i.e., sun heat following a rainy period). In this case, plants require a mechanism to quickly overcome the first impact of stress; however, the physiology should return to ideal values after the removal of the stress factor in order to achieve an optimal energetic balance. A previous work (Escandón et al., 2016) showed that photosynthetic state was only slightly affected in the first impact to heat stress (T1/2, T1 and T2), recovered to control levels in T3, and even improved on T5, probably related to the beginning of the acclimation process; while lipids peroxidation analysis showed a slight accumulation of MDA in shorter-term exposures (T1/2, T1 and T2) prior to the activation of acclimation mechanisms. On the other hand, if the stress persists the plant must adapt to the new situation with the cost of reducing its growth and reproductive capacity compared to an ideal situation (Bradford and Hsiao, 1982).

Using Metabolomics to Explore Possible Thermotolerance Biomarkers

The metabolome analysis revealed the essential role of specific metabolites (Figure 3) and pathways (Figure 2 and Supplementary Figure S1) in relation to high-temperature adaptation in P. radiata.

The accumulation of three different metabolites belonging to pathways with higher significant changes across high-temperature treatments is showed in Figure 4. One of these three key compounds is L-phenylalanine which participates in numerous pathways (Meyermans et al., 2000; Wittstock and Halkier, 2000; Teufel et al., 2010; Tzin and Galili, 2010; Yoo et al., 2013), such as phenylalanine metabolism, phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, glucosinolate biosynthesis, and biosynthesis of plant hormones, most of them highly related/interconnected. Its accumulation profile reflected a level increase from T1/2 to T3 (Figure 4A), decreasing to control levels in T5 and reaching the lowest accumulation values in R. Phenylpropanoids and flavonoids play a key role in protecting plants against abiotic stress, largely by inhibiting the formation of ROS through a number of different mechanisms (Mierziak et al., 2014). The increment of L-phenylalanine in the shorter treatments may be related to the need to cope with the production of ROS. The decrease in L-phenylalanine in T5 and R could be related to the increased activity of PHENYLALANINE AMMONIA LYASE (PAL; crucial enzyme in phenylpropanoid pathway), which transforms L-phenylalanine into trans-cinnamic acid (Rivero et al., 2001). The activity increase of this enzyme is considered one of the most important ways of cell acclimation against stress in plants (Levine et al., 1994; Leyva et al., 1995; Rivero et al., 2001).
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FIGURE 4. Time-course accumulation of key metabolites involved in phenylalanine metabolism (L-phenylalanine) (A), glutathione metabolism (Ascorbic acid) (B), and pentose phosphate pathway and ABC transporters (D-Ribose) (C). Box plot representation of the LOG transform data (Supplementary Table S4). The ID of each metabolite is upper the identification by in-house database. C, control; R, recovered; T1/2, 3 h after 40°C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.



Other pathway highlighted by heatmap-clustering (Figure 2 and Supplementary Figure S1) was the glutathione metabolism, which showed the highest accumulation in T3. Ascorbic acid is key in this pathway; however, it showed decreased levels in short-term treatments (Figure 4B), reaching the highest values in T5 and R. Ascorbic acid and glutathione are both antioxidants, which are crucial for plant defense against oxidative stress (Noctor and Foyer, 1998). The decrease of ascorbic acid in shorter treatments could be explained by their use in this defense against oxidative damage.

D-(-)-ribose (Figure 4C), which participates in pentose phosphate and ABC transporters pathways, showed a decline in shorter-term, recovering the control values in T5 and R. This may indicate that plants reduce their metabolism until T3, recovering the activity in T5 and R when the plants are adapted. Although sugars play an important role against heat stress in many species (Wahid et al., 2007), in P. radiata it has been showed that the total amount of soluble sugars tends to decrease in the first moments of stress (Escandón et al., 2016). This may be because plants maintains growth patterns although they are driven by consuming carbohydrates reserves (Mitchell et al., 2013; Escandón et al., 2016).

Under high temperatures, plants alter lipid composition, causing membranes to become more fluid and thus interrupting membrane processes (Falcone et al., 2004). High-temperature-tolerant plants show an increased presence of saturated fatty acids to counteract increased fluidity during heat stress (Grover et al., 2000; Umesha, 2005). Levels of candidate metabolites related to biosynthesis of unsaturated fatty acids pathway are represented in Figure 5 including both saturated fatty acids (Figures 5A,D) and unsaturated fatty acids (Figures 5B,C,E,F). Saturated fatty acids, hexadecanoic acid (C16:0, Figure 5A) and C18:0 (Figure 5D), shared an increasing tendency in short-term response, starting to fall in T3 (in the case of C16:0) or earlier in T2 (C18:0). In both, the lowest accumulation values were reached in R. This saturated fatty acids raise is consistent with the hypothesis by Grover et al. (2000), which indicates the plants increase saturation until seems to be already acclimated to the heat stress.
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FIGURE 5. Levels of key metabolites of unsaturated fatty acids metabolism across high-temperature treatments. C16: Saturated fatty acid (A) and their unsaturated fatty acids C16:2 (B) and C16:3 (C). C18: Saturated fatty acid (D) and their unsaturated fatty acids C18:2 (E) and C18:3 (F). Box plot representation of LOG transform data for the total content of each fatty acid C16 or C18, respectively. C, control; R, recovered; T1/2, 3 h after 40°C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.



In the case of unsaturated fatty acids, they showed different patterns depending on the studied fatty acid. C16:2 and C18:2 showed a slight decrease in short-term response (Figures 5B,E), conversely, C16:3 and C18:3 (Figures 5C,F) presented increased levels in T1/2 and T1. In longer-term response, the most common tendency is the recovery at the control values (Figures 5B,C,E) even surpassing them, except for C18:3 where this only occurs in R (Figure 5F). This differential accumulation patterns seems to evidence the different roles of each unsaturated fatty acid during heat-stress response.

Flavonoids related pathways are also crucial elements according to heatmap-clustering analysis (Figure 2 and Supplementary Figure S1). Bibliography indicate that flavonoids and anthocyanins are essential compounds to prevent and protect the plants against different abiotic and biotic stress (Dao et al., 2011; Zhang et al., 2012). Results showed that dihydromyricetin (Figure 6A), key metabolite in flavonoid biosynthesis pathway, continuously decreases its levels until T3, to then begin its accumulation, reaching the control values in R. On the contrary, flavonoids eujambolin and kandelin A-1 (Figures 6B,C), showed the lowest accumulation in T5 and R. Eujambolin presented a decreasing tendency in shorter treatments, showing a strong decrease in T5 and later in R. Conversely, kandelin A-1 showed an increase in shorter treatments in relation to control, displaying a strong decrease in T5 and R.
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FIGURE 6. Levels of key metabolites related to flavonoid biosynthesis across high-temperature treatments: Dihydromyricetin (A), eujambolin (B), and kandelin A-1 (C). Box plot representation of the LOG transform data (Supplementary Table S4). ID of the three metabolite, previously tentatively identified using public database, was validated by the interpretation of their MS/MS spectra (Supplementary Data S1). C, control; R, recovered; T1/2, 3 h after 40°C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.



Dihydromyricetin (along with dihydroquercetin and dihydrokaempferol) is a dihydroflavonols implicated in the synthesis of anthocyanidins (Falcone Ferreyra et al., 2012). While, kandelin A-1 is a proanthocyanidin which are synthesized as oligomeric or polymeric end products of one of several branches of the flavonoid pathway, which shares the same upstream pathway with anthocyanins (He et al., 2008). Anthocyanins are usually accumulated during heat stress in vegetative tissues (Wahid and Ghazanfar, 2006) in order to decrease the transpirational losses caused by lower osmotic potential of the leaf (Chalker-Scott, 2002). However, the complexity of its metabolism and the high number of these compounds makes their study difficult.

Gene expression of PAL (Figure 7A), two DESATURASE (DES, Figures 7B,C) and a central gene involved in anthocyanins and proanthocyanins biosynthesis pathways, DIHYDROFLAVONOL 4-REDUCTASE (DFR, Figure 7D) (Ayabe et al., 2010; Katsu et al., 2017) were analyzed in order to confirm the possible role of these elements as biomarkers and validate the relevance of L-phenylalanine, fatty acid and flavonoid metabolism in the high-temperature response of P. radiata.
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FIGURE 7. Analysis of the relative quantity (RQ) measured by RT-qPCR of selected genes in highlight pathways related to high-temperature response of Pinus radiata. (A) PHENYLALANINE AMMONIA LYASE (PAL) involved in phenylpropanoid biosynthesis; (B) DESATURASE (contig57599) and (C) DESATURASE (contig04128) in unsaturated fatty acids metabolism; (D) DIHYDROFLAVONOL 4-REDUCTASE (DFR) in anthocyanins and proanthocyanins biosynthesis. Expression levels are shown regarding the Control and were normalized using ACT and UBI as housekeeping genes. Error bars show the SE of normalized RQ for each gene and each sample scaled to the control. Asterisks (∗) denote statistically different values compared to the corresponding control group (according to Student’s t-test, p < 0.1). C, control; R, recovered; T1/2, 3 h after 40°C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.



These data showed that PAL (Figure 7A) increases its expression in the first moments to stress (T1/2 and T1), returning to the control values in T2 and T3. In T5 and R its expression increases drastically, confirming the pattern of decrease of L-phenylalanine (Figure 4A) in these treatments by its consumption. In the case of DES (Figures 7B,C), both genes showed a reduction of the expression in shorter-term treatments: contig5799 presented the decrease in T1/2, T1 and T2, while contig04128 only in T2. This reduction is consistent with the increase of saturated fatty acids identified (C16:0 and C18:0, Figures 5A,D). Finally, DFR (Figure 7D) showed an increase of expression across of stress time, reaching a peak in T5 and return to the control values in R. These results are according dihydromyricetin levels quantified (Figure 6A), which seems to be being consumed for the production of anthocyanins in response to high-temperature stress.

DISCUSSION

Metabolome Characterization: Dynamic of Metabolism Throughout High-Temperature Stress

The plant metabolome responds to an unfavorable environment in a dynamic way, being favored a characteristic type of metabolic pathways at every moment of stress. Depending on the timing, different compounds can be identified, as stress signal transduction molecules, stress metabolism by-products, or molecules that are part of the plant acclimation response (Shulaev et al., 2008). According to this, the results of this work showed that the response of P. radiata at high temperatures activates the synthesis of specific metabolites at each time of the stress (Figure 1) showing every sample-time a significant number of unique metabolites. Additionally, these results seem to reveal the beginning of the acclimation process in T5 that showed the greatest number of unique metabolites but also the greatest number of shared metabolites with the control plants (106 metabolites, Supplementary Table S4).

In-depth analysis of metabolite accumulation in relation to KEGG pathways (Figure 2 and Supplementary Figure S1) allowed to confirm the high dynamism of the metabolome in relation to high-temperature response (Escandón et al., 2017). Although two main trends in the KEGG pathways have been identified by heatmap-clustering (Figure 2 and Supplementary Figure S1), each pathway seem to have a specific role in a particular moment of the stress, seemingly following an orchestrated succession, particularly, in the case of flavonoids related pathways. Thus, phenylpropanoid biosynthesis seems to be activated in the first contact with stress (T1/2-T1), while in T2-T3 the most active route is flavone and flavonol biosynthesis, to finally increase the activity of the general pathway of flavonoid biosynthesis in T5 and R. The importance of the flavonoids across the heat stress is evident. According to bibliography the compounds in this group act as antioxidants, contributing to the adaptation to environmental changes such as cold, high temperatures or irradiation (Gould et al., 2002; Doerfler et al., 2013, 2014; Meijón et al., 2016).

Fatty acids also play a fundamental role in the response to stress in P. radiata. Biosynthesis of unsaturated fatty acids is a very active pathway in the longer exposure treatments (T2, T3 and T5), while saturated fatty acid biosynthesis is more relevant in the first moments of exposure to heat (T1/2 and T1). A reduction of unsaturated fatty acid content and increase in saturated fatty acids content has been positively associated with heat tolerance as they counteract the increase in membrane fluidity caused by high temperature (Grover et al., 2000; Larkindale and Huang, 2004). However, this hypothesis has not been fully confirmed since that unsaturated fatty acid are also known to be key elements in heat stress signaling (Königshofer et al., 2008) and to provide other essential characteristics to lipid membrane (Falcone et al., 2004), showing an increase in its accumulation at high temperatures.

In the case of P. radiata, biosynthesis of fatty acid is a key mechanism to overcome the fluidization of the membrane until T2 at the beginning of the stress, when the plants had overcome this fluidization. The global increment in saturated fatty acid would be consequence of the increase of the amount of a specific saturated fatty acid (e.g., hexadecanoic acid) or the accumulation of fatty acids with lower numbers of double bonds (the reduction of C18:3 to C18:2 or C18:1; Wang et al., 2017). From T2, plants activate the biosynthesis of unsaturated fatty acids which may be necessary to stabilize photosynthesis (Gombos et al., 1994) or activate signaling (e.g, lipid or calcium signaling) (Königshofer et al., 2008). These observations support the idea of Falcone et al. (2004) that the unsaturation level of lipid membranes also plays an important role in the plant’s ability to tolerate high temperatures, although other characteristics of plants membrane lipids are also likely to be important.

The study of the metabolome across heat stress and recovery, has given the possibility to deepen in the different dynamics of the metabolomic pathways in P. radiata, establishing the existence of key pathways in different moments of the stress response.

Integrative Analysis of Physiological Response and Metabolome Dynamic

This work revealed that high temperature has a complex impact on cell function, suggesting that many and complex processes are involved in heat-resistance processes. However, the use of system-wide approach and integrative bioinformatics tools have allowed the understanding of the molecular basis, the identification of injury mediators, and the characterization of associated biomarkers. Thus, CKs, fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most relevant pathways related to shorter-term and longer-term response clusters confirmed by multivariate analysis (Figure 3A), being ZR and iPA the key hormones that coordinate the different response processes (Figure 3B).

Some of the secondary metabolites with a higher loading in the shorter-term and longer-term response cluster included dihydrokaempferol, cis-1,2-dihydro-3-ethylcatechol and dihydromyricetin, which are all crucial elements in flavonoid metabolism. Flavonoids are a biologically and chemically diverse group widely represented in plants. Their diversity and multi-functionality demonstrate their importance in plants. Terpenoids are the other significant group of secondary metabolites identified in relation to the clusters, which are produced by a variety of plants and particularly in conifers (Zulak and Bohlmann, 2010). These volatile compounds are emitted by plants and play an important role in the interaction with their environment (Tholl, 2015). The best known and most studied group of terpenoids is the sesquiterpenoid plant hormone ABA, the central element in the plant stress response (McCourt et al., 2005; Raghavendra et al., 2010). Abscisic alcohol 11-glucoside, the glycosylated form of ABA, was also positively correlated to ZR as a key element in the network (Figure 3B). Both groups of secondary metabolites, flavonoids and terpenoids, are important in plant growth, development, and response against biotic and abiotic stress (Alder et al., 2012), as well as in plant adaptation to variable environmental conditions (Kliebenstein, 2004). Plasma membrane fluidity has been described to be an important temperature sensor in plants that appears to lie upstream of the unfolded protein response (Wu et al., 2012). Increased membrane fluidity appears to open calcium channels in the plasma membrane and the resultant inflow of calcium triggers signaling cascades, including an H2O2 burst (Königshofer et al., 2008), which activates the heat-stress response. In fact, fatty acids are the most prominent group of compounds revealed in the heat-stress response network, after CKs.

Integrated physiological and metabolome analysis across high-temperature treatments (Supplementary Movie S1) in P. radiata emphasizes the complex dynamics of the metabolome in response to heat stress and suggests the existence of a turning point (T3) at which P. radiata plants changed from an initial stress response (shorter-term response) to an acclimation one (longer-term response). The video highlights how the metabolites that are positively related to ZR increase drastically its accumulation in T5 and R. This is regulated by a complex interaction network that involves multiple pathways and groups of compounds where possible biomarkers of thermotolerance processes could be found.

Evaluation of Proposed Thermotolerance Biomarkers in P. radiata

In plants, the concept of biomarker could be defined as “a characteristic that is objectively measured or evaluated as a predictor of plant performance” (Fernandez et al., 2016). The use of biomarkers originated from the field of medicine, but in plants in recent years, many authors have used metabolites as indicators for estimating plant performance under stress conditions (Quistian et al., 2011; Degenkolbe et al., 2013; Nam et al., 2015; Obata et al., 2015). One of main goals in this study is to find metabolic markers of high-temperature tolerance, potentially useful for P. radiata breeding programs.

L-phenylalanine, hexadecanoic acid (C16:0), and dihydromyricetin were confirmed as the three strongest biomarkers between the proposed candidates related to the results of this work. Their biological relevance, statistical strength in integrative analysis, and accumulation profile across the samples times analyzed validate their future use as thermotolerance biomarkers in P. radiata.

L-phenylalanine seems to be one of the clearest candidates. L-phenylalanine is crucial in numerous KEGG pathways which changed significantly during stress, particularly in shorter-term treatments (e.g., phenylalanine metabolism, phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, glucosinolate biosynthesis, and biosynthesis of plant hormones). In addition, integrative analysis of metabolome and physiological measurements showed its relevance as a key compound in the network related to high-temperature response (Figure 3B). L-phenylalanine showed a direct correlation with the CKs associated with the trigger of response (negatively with ZR and positively with iPA). Old studies (Dedio and Clark, 1971; Deikman and Hammer, 1995) have already seen how the application of CKs stimulated flavonoids pathways in which L-phenylalanine is involved (flavonoids are synthesized by the phenylpropanoid metabolic pathway), such as the production of isoflavone and anthocyanins synthesis. More recently, Angelova et al. (2001) and Ali and Abbas (2003) have debated the impact of CKs on the accumulation of flavonol glycosides and Hamayun et al. (2015) found out how kinetin modulates isoflavone contents under salinity stress. Furthermore, PAL expression analysis (Figure 7A) confirms the beginning of the acclimation process in T5 when L-phenylalanine levels (Figure 4A) showed a significant decrease, validating the high value of this metabolite as a biomarker.

The second candidate biomarker was chosen within saturated fatty acids, given their importance in stabilizing membrane fluidity during heat stress (Grover et al., 2000; Larkindale and Huang, 2004; Wang et al., 2017). Hexadecanoic acid (also known as palmitic acid or C16:0) increases its accumulation in shorter heat exposures, suffering a decrease in T5 and R, when the plant can be already acclimatized to stress (Figure 5E). Moreover, the low expression levels of both DES (Figures 7B,C) in shorter treatments underline the importance of saturated fatty acids, such as hexadecanoic acid, in the early response to high temperatures. This saturated fatty acid has already been studied by other authors such as Alfonso et al. (2001), Falcone et al. (2004), and Larkindale and Huang (2004) in relation to high-temperatures response. It has been even observed that the thermotolerance of an Arabidopsis mutant deficient in palmitic acid unsaturation is enhanced (Kunst et al., 1989). Furthermore, hexadecanoic is showed as an important element by the performed integrative analysis, appearing interconnected with the master regulator ZR in the network.

The last strong biomarker proposed is dihydromyricetin, also known as ampelopsin. Dihydromyricetin is a flavanonol included in anthocyanin biosynthesis inside flavonoid biosynthesis pathway. Flavonoids and anthocyanins have a photoprotective and antioxidant role (Dao et al., 2011; Zhang et al., 2012). Dihydromyricetin is consumed during anthocyanins synthesis, reducing its accumulation in shorter treatments and reaching the lowest levels in T3 (Figure 6A). This is validated by the increased expression of DFR across the exposure to high temperatures (Figure 7D), showing its maximum expression in T5 when dihydromyricetin begins to be accumulated again. Anthocyanins are produced under a variety of stresses such as UV-B (Valledor et al., 2012), low temperatures (Krol et al., 1995), or salinity (Wahid and Ghazanfar, 2006), although only a few studies have dealt with the effect of high temperatures on anthocyanin accumulation (Wahid and Close, 2007; Correia et al., 2014; de Leonardis et al., 2015). Dihydromyricetin was also prominent in multivariate and integrative analysis showing a negative correlation with iPA and BK. Cytokinin increases anthocyanin content and the transcript levels of PRODUCTION OF ANTHOCYANIN PIGMENT 1 (Das et al., 2012) which is according to the dropping levels of dihydromyricetin (anthocyanin precursor) observed in the first impact of the heat stress. Among many other biological functions, anthocyanins are considered the first line of defense against oxidative stress (Gould et al., 2002), scavenging oxygen radicals, and inhibiting lipid peroxidation (Chalker-Scott, 2002; Ling et al., 2007).

CONCLUSION

This work shows that high temperatures induced a quick and dynamic change in the metabolome of P. radiata, in order to maintain homeostasis and facilitate survival. Integrative study of metabolome across high-temperature exposure and recovery plants allowed reaching a global view of molecular mechanism behind high-temperature response in P. radiata, revealing complex interaction networks that involve CKs, fatty acid metabolism, and flavonoid and terpenoid biosynthesis being ZR and iPA the master regulators that trigger the global response. Additionally, novel potential thermotolerance biomarkers such as L-phenylalanine, hexadecanoic acid and dihydromyricetin have been proposed. However, these potential biomarkers need to be validated in further studies in P. radiata and their possible universality analyzed in other species.
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Cyclotides are a family of plant proteins that are characterized by a cyclic backbone and a knotted disulfide topology. Their cyclic cystine knot (CCK) motif makes them exceptionally resistant to thermal, chemical, and enzymatic degradation. By disrupting cell membranes, the cyclotides function as host defense peptides by exhibiting insecticidal, anthelmintic, antifouling, and molluscicidal activities. In this work, we provide the first insight into the evolution of this family of plant proteins by studying the Violaceae, in particular species of the genus Viola. We discovered 157 novel precursor sequences by the transcriptomic analysis of six Viola species: V. albida var. takahashii, V. mandshurica, V. orientalis, V. verecunda, V. acuminata, and V. canadensis. By combining these precursor sequences with the phylogenetic classification of Viola, we infer the distribution of cyclotides across 63% of the species in the genus (i.e., ~380 species). Using full precursor sequences from transcriptomes, we show an evolutionary link to the structural diversity of the cyclotides, and further classify the cyclotides by sequence signatures from the non-cyclotide domain. Also, transcriptomes were compared to cyclotide expression on a peptide level determined using liquid chromatography-mass spectrometry. Furthermore, the novel cyclotides discovered were associated with the emergence of new biological functions.

Keywords: cyclotide evolution, viola phylogeny, sequence signature, cyclotide precursor, neofunctionality, novel cyclotide, precursor domain

INTRODUCTION

Cyclotides are proteins of ~30 amino acid residues that are characterized by the cyclic cystine knot (CCK) motif (Craik et al., 1999; Burman et al., 2014). The CCK motif consists of six conserved cysteines that form three disulfide bonds and a head to tail cyclic backbone (Figure 1A). The cyclotides have been classified into two main subfamilies, the Möbius and the bracelets, based on a single structural trait: the presence or absence of a conceptual 180° twist in the cyclic backbone caused by a conserved cis-Pro residue in loop 5 (Craik et al., 1999; Figure 1B). Aside from the CCK, two loops (defined as sequences between adjacent cysteines) have high sequence similarity between subfamilies (loop 1 and 4), whereas loops 2 and 3 are conserved only within individual subfamilies.
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FIGURE 1. Cyclotide sequence, structure and distribution. (A) Schematic representation of the structure of a cyclotide and the CCK framework. The cyclization point between the C- and N-termini (NE and CE, respectively) is highlighted, and the cysteine residues are labeled with Roman numerals. (B) Sequence alignment of representative cyclotides and their distribution in flowering plants. The cyclotides have been classified into five groups on the basis of their structural traits: Möbius cyclotides, bracelets, hybrids, linear cyclotides, and trypsin inhibitors (TI). Abbreviation code in plant orders: Poaceae (Poa), Malphigiales (Mal), Rosales (Ros), Fabales (Fab), Solanales (Sol) and Cucurbitales (Cur). The loops sharing sequence similarity are boxed. (C) Phylogeny of cyclotide-expressing flowering plants. To date, cyclotides have only been found in the eudicots. The family Violaceae belongs to the order of Malphigiales, Rubiaceae to Gentianales, and Cucurbitaceae to Cucurbitales. (D) Diversity of cyclotide precursor architectures. Precursor sequences consist of multiple domains: endoplasmic reticulum targeting signal (ER, black), N-terminal propeptide (NTPP, light blue), N-terminal repeat (NTR, green), cyclotide domain (CD), and C-terminal tail (CTR). Precursor architecture varies with both plant species and structural subfamily. Architecture types are labeled with Greek letters in (D), and their distribution is shown in (C). Oak1 (α) and Vok1 (β), precursors of kb1, are found in the Rubiaceae and Violaceae, respectively. Vok1 contains repeated domains. VocA (δ) and panitide pL1 (ε) are precursors of linear cyclotides and are found in the Violaceae and Poaceae, respectively. Precursors of these linear cyclotides do not contain a CTPP domain. TI subfamily precursors (ζ) contain both linear and cyclic cyclotides in the same sequence. Several architectures are often found in a single plant species. For example, Viola species contain VoK1 (α), VoC1 (β), and VocA (δ). In the precursor of Cter M, the cyclotide domain replaces the albumin-1b chain.



The discovery of other cyclotides has created a need for a more versatile classification system (Ireland et al., 2006; Nguyen et al., 2013; Ravipati et al., 2015). These varieties include so-called hybrid cyclotides that exhibit sequence characteristics of both the Möbius and bracelet subfamilies (Daly et al., 2006), as well as minor subfamily known as the trypsin inhibitors originating from gourd plants (Hernandez et al., 2000). They contain the CCK motif but do not otherwise exhibit any sequence similarity with the other subfamilies. In addition, linear cyclotide derivatives that exhibit sequence similarity with conventional cyclotides but lack their cyclic backbone have been reported (Ireland et al., 2006; Nguyen et al., 2013). The high sequence diversity of the cyclotides appears to be due to natural selection in angiosperms, the flowering plants, but little is known about the evolutionary mechanisms underpinning the corresponding selection processes or the evolutionary background of cyclotide diversity.

Cyclotides and the CCK motif have only been found in angiosperms, but proteins having one of their two defining structural motifs—cyclic peptides/proteins without the cystine-knot (Trabi and Craik, 2002; Arnison et al., 2013) or linear proteins with a cystine-knot (Zhu et al., 2003)—are found in a wide range of organisms across all kingdoms of life. In angiosperms, the occurrences of cyclotides differ between “basal” angiosperms, monocots and eudicots (Figure 1C): “linear cyclotides,” i.e., peptides that exhibit sequence similarity with cyclotides but lack their head-to-tail cyclic structure, are prevalent in both monocots and eudicots, but true cyclotides have been found only in eudicots (Mulvenna et al., 2006; Zhang et al., 2015a). However, neither linear nor true cyclotides have yet been found in the “basal” angiosperms. It has therefore been proposed that linear cyclotides are ancestral (more primitive) to the true cyclic cyclotides (Mulvenna et al., 2006; Gruber et al., 2008).

To date, cyclotides have been discovered in the eudicot families of Rubiaceae (coffee) (Gran, 1973a), Violaceae (violet family) (Schöpke et al., 1993; Claeson et al., 1998), Fabaceae (legume family) (Poth et al., 2011a), Solanaceae (potato) (Poth et al., 2012), and Cucurbitaceae (cucurbit) (Hernandez et al., 2000), as well as in the monocot family Poaceae (grass family) (Nguyen et al., 2013). Cyclotides appear to have functions in host defense because they exhibit insecticidal (Jennings et al., 2001), anthelmintic (Colgrave et al., 2008a), antifouling (Göransson et al., 2004), and molluscicidal (Plan et al., 2008) activities. In addition, native cyclotides have uterotonic (Gran, 1973b), anti-neurotensin (Witherup et al., 1994), antibacterial (Tam et al., 1999; Pränting et al., 2010), anti-HIV (Gustafson et al., 1994), anticancer (Lindholm et al., 2002), and immunosuppressive (Gründemann et al., 2012) activities. This plethora of activities and the stability of the CCK motif make them of interest for drug development (Northfield et al., 2014).

Many of these activities appear to be due to cyclotides' ability to interact with and disrupt biological membranes (Colgrave et al., 2008b; Simonsen et al., 2008; Burman et al., 2011; Henriques et al., 2011). The membrane disruption is mediated by physicochemical interactions between cyclotides and the lipid membrane, and is governed by the distribution of lipophilic and electrostatic properties over the molecular surfaces of the cyclotides. We recently developed a quantitative structure-activity relationship (QSAR) model for these interactions (Park et al., 2014). However, the relationships between cyclotide sequence diversity, evolutionary selection, and the functions of the cyclotides in planta remain unknown.

Cyclotides are expressed as precursor proteins, which undergo post-translational processing including enzymatic cleavage and subsequent cyclization (Jennings et al., 2001; Harris et al., 2015). The multi-domain architecture of these precursor proteins varies slightly between different types of cyclotides and plant families, but in sequential order from the N- to the C-terminus, they generally feature the following domains: an endoplasmic reticulum (ER) targeting signal, an N-terminal propeptide (NTPP), an N-terminal repeat (NTR), the cyclotide domain (CD), and finally a C-terminal tail (CTR) (Figure 1D). In some cases, the modular domains NTR, CD, and CTR are repeated more than once. The cyclotides have been suggested to co-evolve with asparaginyl endopeptidase (AEP) because of its suggested role in cyclization (Mylne et al., 2012). Moreover, the divergent evolution of cyclotides from ancestral albumin domains was suggested based on the architecture of cyclotide precursors found in the Fabaceae plant family (Nguyen et al., 2011; Poth et al., 2011b). However, the relationship between the precursor proteins' architecture and sequences and the evolutionary selection of cyclotides is still unknown.

To date, cyclotide and precursor sequences have been most extensively explored in the family Violaceae Batsch. (Malpighiales), and especially in the genus Viola L. (Burman et al., 2015). The Violaceae are a medium-sized family including ~1,100 species worldwide. The phylogeny of the Violaceae has recently been inferred from chloroplast and nuclear markers (Tokuoka, 2008; Wahlert et al., 2014), and its systematics has been revised accordingly; currently ~30 genera are accepted in nomenclature (Wahlert et al., 2014). Viola is the largest genus in the family, with 580–620 species, representing over 50% of all known species (Ballard et al., 1998; Yockteng et al., 2003; Marcussen et al., 2012; Wahlert et al., 2014). Viola is distributed all around the world in temperate regions and at high elevation habitats in the tropics. The genus is old (~30 million years) and comprises at least 16 extant lineages, referred to as sections, with a complex, reticulate phylogenetic history owing to allopolyploidy (Marcussen et al., 2012, 2015). The species included in this study belong to four north-temperate sections, the diploid sect. Chamaemelanium Ging. (V. canadensis L., V. orientalis W.Becker) and the three allotetraploid sections Melanium Ging. (V. tricolor L.), Plagiostigma Godr. (V. albida Palibin. var. takahashii (Nakai) Kitag., V. mandshurica W.Becker, V. verecunda A.Gray) and Viola (V. acuminata Ledeb.).

In the current study, we explore cyclotide evolution using an integrated approach, exploiting transcriptomics and peptidomics to analyze the sequences of cyclotide precursors and the expression of cyclotides in Viola in light of the phylogeny of the genus. In particular, full precursor sequences are used to obtain insights into the evolutionary history of the cyclotides, and we connect the evolution of new mature cyclotides with the emergence of new functions.

MATERIALS AND METHODS

Collection of Violets

Violets were collected at the sites indicated in Table 1, and those sites are their natural habitats. When collected, the plant individuals were in adult stage; however, the exact ages of those plant individuals were not determined. The plant vouchers were deposited at the Kangwon National University herbarium; Viola albida var. takahashii (KWNU93021), V. mandshurica (KWNU93022), V. orientalis (KWNU93023), V. verecunda (KWNU93024), and V. acuminata (KWNU93025). All plant material was collected on September 23, 2014.


Table 1. The origins of the plant material examined in this work.
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Sample Collection, RNA Isolation, and RNA Sequencing

For the five Viola species—V. albida var. takahashii, V. mandshurica, V. orientalis, V. verecunda, and V. acuminata—, total RNA was sequenced by Next Generation Sequencing (NGS), outsourced to Macrogen Inc. (Seoul, South Korea). For each Viola species, the RNA sample was prepared from one plant individual; also, the plant tissues were pooled from all of the plant's major organs, i.e., the roots, stems, flowers, and leaves. The collected tissues were immediately frozen in liquid nitrogen, and directly extracted by RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturers' protocols. Quality and quantity of RNA were measured using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) with an RNA Integrity Number (RIN) and rRNA ratio. The measured RIN values (rRNA ratios) are: 6.9 (1.2) for V. albida var. takahashii, 7.4 (1.6) for V. mandshurica, 7.2 (0.2) for V. orientalis, 6.4 (0.9) for V. verecunda and 5.9 (0.7) for V. acuminata. For mRNA library preparation, a TruSeq RNA preparation kit was used according to the manufacturer's instructions (Illumina, San Diego, U.S.A.). Briefly, the poly-A containing mRNAs were purified using poly-T oligo-attached magnetic beads. The purified mRNAs were fragmented into short sequences by use of divalent cations. Using these short sequences as templates, the first-stranded cDNA was synthesized using random hexamers. A second-strand cDNA was then synthesized using DNA polymerase I and RNase H. The synthesized cDNA went through an end repair process, the addition of a single “A” base, and then ligation of the adapters. The PCR was performed to enrich the selected DNA sequences, and then those selected sequences were sequenced using Illumina HiSeq 2000 Sequencing System (Illumina, USA) that generates paired-end reads with 2 × 100 base pairs (bp) read length.

Sequencing Data Analysis and Assembly

FASTQC (version 0.11.3) was used to determine the quality of RNA sequencing data (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were cleaned using Trimmomatic (v. 0.32; Bolger et al., 2014), and the sequences with Phred score ≥33 and a minimum length of 36 bp were retained for assembly. De novo assembly of these processed reads was performed using the Trinity RNA-Seq assembly (release 17.07.2014; https://sourceforge.net/projects/trinityrnaseq/) with the default setup, which allows the identification of cyclotide-coding transcripts larger than 200 bp. Also, the reads were assembled separately for the individual species. We summarized the detailed information on the de novo transcriptome assembly for those individual species in Supplementary Table 1. The transcript abundance, Fragments Per Kilobase of transcript per Million mapped reads (FPKM; Trapnell et al., 2010), was calculated using Trinity based on RSEM algorithm (Li and Dewey, 2011).

Identification of Precursor Sequences from Transcriptome

The assembled transcriptomes were searched for similar sequences to the cyclotides from Cybase (cutoff date: 3.02.2014; http://www.cybase.org.au/) by the standalone NCBI-blast+ service (2.2.28) (tblastn, E-value cutoff: 50) in the Ugene software package (Okonechnikov et al., 2012). In parallel, a motif search was done using PROSITE for cyclotide precursor sequences [motifs PS60009 and PS60008 for Möbius and bracelet cyclotides, respectively (Sigrist et al., 2002)]. To assist sequence identification, the Fuzzpro service of EMBOSS (v. 5.0.0) (Rice et al., 2000) was used. The combined PROSITE and blast results were filtered to remove duplicates. The result file was further processed by manual inspection after clustal omega (v.1.2.0) alignment. In the manual inspection, we assumed that the sequence is a cyclotide precursor if the sequence contains the six conserved cysteines aligned with previously known cyclotides, and if the conserved N-terminal domain showed sequence similarity to known cyclotide precursors.

Collection of Precursor Sequences

In total, 312 (= 157 + 155) precursor sequences were utilised in this study: (i) 157 (= 138 + 19) precursor sequences were identified and collected from transcriptome analyses conducted in the current study. Among them, 138 sequences were collected from the five Viola species (i.e., Viola albida var. takahashii, V. mandshurica, V. orientalis, V. verecunda, and V. acuminata) by the RNA sequencing in this study. The remaining 19 sequences were collected the transcriptomic data of V. canadensis obtained from the 1kp-project (www.onekp.com). (ii) Another 155 (= 126 + 29) precursor sequences were collected from recent published studies. Among them, the 126 sequences were collected from other seven Viola species (i.e., V. baoshanensis, V. odorata, V. uliginosa, V. adunca, V. tricolor, V. biflora, and V. pinetorum), and the 29 sequences from other Violaceae genera, i.e., Gloeospermum, Melicytus, and Pigea. The name of Viola species where the precursor sequences collected from and the corresponding references are listed in the Table 2, and the sequence alignment of those 312 precursors are recorded in the Supplementary Data 1.


Table 2. Violaceae species sampled for the analysis of precursor sequences.

[image: image]



Nomenclature of Cyclotides and Precursors

Each cyclotide sequence was assigned a tripartite name. The first part is derived from the Latin binomial of the plant in which the corresponding precursor was found, the third part specifies the molecular species of the cyclotide, and the second part specifies the rank of the cyclotide among all the cyclotides having that particular molecular species that were identified in that particular plant species (Supplementary Table 2). The Latin binomials of the violet species considered in this work are Viola albida var. takahashii (valta), Viola mandshurica (viman), Viola orientalis (vorie), Viola verecunda (viver), and Viola acuminata (vacum). Thus, the cyclotide named vacum2-HS4 is the second cyclotide of the HS4 molecular species derived from V. acuminata. The molecular species are named after their NTR signature sequences, i.e., the identities of the two residues at the consensus positions 11 and 12. The precursor sequences were also assigned tripartite names in a similar way to the cyclotides: the first part of the name is derived from the Latin binomial of the species in which the sequence was discovered, the second specifies the numerical rank of the sequence (which is independent of that assigned to the cyclotides), and the third specifies the molecular species of the precursor. Any cyclotide or precursor that had been named in an earlier publication was assigned the same name in this work. However, for previously unnamed precursors, we added the prefix “prc” to the tripartite name to help readers distinguish between precursor and cyclotide sequences. Thus, prc-viul A is the name of the precursor sequence of Viul A from Viola uliginosa Bess.

Sequence Alignment for Phylogenetic Analysis

The cyclotide precursor sequences from transcriptome were aligned before the phylogenetic analysis i.e., construction of Bayesian phylogenetic tree, maximum parsimony and splits networks. A total of 92 precursor sequences (two sequences from each of the 46 molecular species) were prepared as DNA sequence for the sequence alignment, and the sequences include only three domains of the precursor, i.e., NTPP, NTR, and cyclotide domains. To guide the alignment of DNA sequences of the precursors, they were translated into protein sequences and aligned independently for each molecular species using Clustal in BioEdit v.7.2.5 (Hall, 1999), and those alignments were in turn combined and realigned (i.e., keeping the indel positions from the alignment of each of the molecular species). The resulting protein-guided alignment of nucleotide sequences was then subject to manual adjustments within reading frames. The aligned DNA sequences are shown in the Supplementary Data 2.

The Construction of Bayesian Phylogenetic Tree

Nucleotide substitution model was selected based on the AICc criterion using JModelTest v.2.1.10 (Guindon and Gascuel, 2003; Darriba et al., 2012). A Bayesian phylogenetic analysis was conducted in BEAST v.1.7.4 (Drummond and Rambaut, 2007; Drummond et al., 2012). The analysis file was set up in BEAUti (part of the BEAST package) with the following priors: GTR+G as substitution model with empirical frequencies and four gamma categories, a lognormal relaxed clock prior with rate set to 1.0, and a Yule tree prior (birth-only process). Two MCMC chains were run for 50 million generations each, using a BEAGLE library, and parameters logged every 10,000 generations. We checked the two chains for proper mixing and convergence (i.e., ESS >500) in Tracer v.1.6.0 (http://tree.bio.ed.ac.uk/software/tracer/), removed a visually determined burn-in of 1 million generations from each and merged the two chains in LogCombiner v.1.7.4 (part of the BEAST package), and summarized the data in a maximum credibility tree with mean node heights using TreeAnnotator v.1.7.4 (part of the BEAST package). The resulting tree was visualized and edited in FigTree v.1.4.3 (http://tree.bio.ed.ac.uk/software/tracer/). The input file for the BEAST and the resulting phylogenetic tree are found in the Supplementary Data 3, 4, respectively.

The Construction of Splits Networks

In order to visualize the data, neighbor splits-networks of uncorrected P distance were produced, both for the nucleotide alignment and for the translated alignment, using SplitsTree (Huson and Bryant, 2006).

Extraction of Plant Material

Between 250 and 500 mg of dried plant material was homogenized and incubated overnight in 6 ml of 60% acetonitrile in water containing 0.05% triflouoroacetic acid (TFA) to extract cyclotides. Extracts were lyophilized and then dissolved in 2.5 ml of solvent A (Milli-Q H2O with 0.05% TFA). Redissolved extracts were then subjected to gel filtration using PD-10 columns (GE Healthecare) according to the manufacturer's instructions to remove small molecules. The high molecular weight fractions were collected, lyophilized and then dissolved in solvent A to a concentration proportional to the original amount of extracted material (2 μl/1 mg) for LC-MS analysis.

LC-MS

The samples were analyzed using ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (nanoAcquity UPLC/QTof Micro; Waters, Milford, MA). Samples were eluted using a gradient of acetonitrile (1 to 90% over 50 min) containing 0.1% formic acid. A nanoLC column (Waters BEH, 75 μm (i.d) × 150 nm) operated at 0.3 μl/min flow rate was used. The capillary temperature was set at 220°C and the spray voltage at 4 kV. The mass-to-charge (m/z) range was set from 1,000 to 2,000. LC-MS chromatogram and MS spectra were analyzed with the help of MassLyxn V4.1 (Waters, Milford, MA).

Reduction and Alkylation

Dried peptide extracts were reduced in a buffer containing 0.05 M Tris-HCl, pH 8.3, 4.2 M guanidine-HCl, and 8 mM DTT. The extraction solutions were incubated at 37°C for 2 h in the dark, followed after O2 removal with Nitrogen gas. The reduced peptides were then further alkylated in a buffer containing 0.2 M Tris-HCl, pH 8.3, and 200 mM iodoacetamide for 1 h.

Identification of Cyclotides from the Plant Extracts

On the original LC-MS chromatogram, all chromatographic peaks were manually investigated if they include a cyclotide-like mass spectrum. We assumed that peaks stemmed from cyclotide-like substances if their masses fell within the range of 2,700–3,300 Da, as deconvoluted from their doubly- and triply charged ions. Then, the presence of three disulfide bonds was used to support their identification as cyclotides: if peaks in the extract showed an increase in mass by 348.18 Da, we considered that the peak stemmed from a true cyclotide (Figure 2).
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FIGURE 2. Identification of cyclotides by alkylated mass changes on LC-MS. Mass spectra of a cyclotide (cyO2) are shown with a comparison between the mass spectra of the plant extract before alkylation (A) and after alkylation (B). (A) We identified the mass spectra of the cyclotide-like using the mass distance on their isotopic peaks. The triple-charged monoisotopic mass of the cyO2 (marked as [cyO2]+3 in the box) is observed as 1047.1Da, and the double-charged monoisotopic mass ([cyO2]+2) is observed as 1570.2Da. In each mass spectrum, the distances between isotopic peaks are observed with ~0.3Da for [cyO2]+3, and 0.5Da for [cyO2]+2. The monoisotopic mass of the cyO2 is 3138.4Da (calculated) and 3138.3Da (observed), and the mass difference is 0.1Da. (B) The monoisotopic mass of the cyO2 after the alkylation reaction is 3486.6Da (calculated) and 3486.9Da (observed), and the mass difference is 0.3Da. The calculated mass is based on the triple-charged monoisotopic mass of cyO2 (1163.3Da), and its related mass spectrum is shown in the box marked [cyO2-Alk]+3.



Matching Transcriptomic Data to Cyclotides on the Protein-Level

Presence of possible cyclotides identified in precursor sequences from transcriptome analyses was determined as follows: putative cyclotide sequences were listed and their monoisotopic mass were calculated. The listed cyclotide sequences were comprised of N-terminal residues ranging from [−3, 2] on the consensus position of their precursor sequences. The C-terminal residues were found differently between cyclic cyclotides and linear cyclotides, i.e., the highly conserved N/D residue located at loop 6 for cyclic cyclotides, and the residue located next to stop codon in their mRNA sequences for linear cyclotides. These calculated monoisotopic mass were then compared to the observed monoisotopic mass from the identified cyclotides in plant extracts using LC-MS. We regarded that the transcriptomic cyclotides were expressed in the protein-level if the difference of the monoisotopic mass <0.40 Da.

Determination of Cyclotides' Abundance Levels in the Proteome

For each cyclotide-like substance, the chromatographic peaks were identified together with their own retention time from the original LC-MS chromatogram. These chromatographic peaks were further investigated in relation with their mass spectral peaks to estimate the signal intensity (SI) of the cyclotide-like substance. The SI is estimated as a summed signal intensity of triple-charged mass spectral peaks. According to the SI, we assigned the cyclotide abundance into three levels, i.e., the abundance level is: low if SI <250, high if SI > 1,000, and medium if 250 < SI < 1,000.

The Calculation of Molecular Descriptors

The physicochemical properties of selected cyclotides (Park et al., 2014), i.e., the total lipophilicity and the exposure ratio, were calculated using scientific vector language (SVL), implemented in MOE 2012 (Chemical Computing Group Inc., Montreal, Canada).

Accession Numbers

The accession numbers of Sequence Read Archive (SRA) and Transcriptome Shortgun Assembly (TSA) for transcriptome of the five Viola species are: V. acuminata (TSA: GFWD00000000, SRA: SRR5320546), V. orientalis (TSA: GFXR00000000, SRA: SRR5322130), V. albida var. takahashii (TSA: GFWC00000000, SRA: SRR5320531), V. mandshurica (TSA: GFWG00000000, SRA: SRR5320533), and V. verecunda (TSA: GFWF00000000, SRA: SRR5322180).

RESULT AND DISCUSSION

The family Violaceae and the genus Viola are an excellent system for studying the evolution of cyclotides. All investigated species express large numbers of these proteins (Burman et al., 2015) as well as their precursor sequences. Furthermore, the species-level phylogeny of Viola (Marcussen et al., 2012, 2015) and chloroplast phylogeny of Violaceae (Wahlert et al., 2014) are well-understood as a result of recent studies. In the current study, 312 (= 157 + 155) sequences were analyzed in total to investigate the evolution of cyclotides. Among them, 157 precursor sequences were discovered from the transcriptomes of the six Viola species, i.e., V. albida var. takahashii, V. mandshurica, V. orientalis, V. verecunda, V. acuminata, and V. canadensis (listed in the Supplementary Table 3). Those discovered 157 sequences were pooled with the other 155 precursor sequences recently found from the other Viola species (i.e., V. baoshanensis, V. odorata, V. uliginosa, V. adunca, V. tricolor, V. biflora, and V. pinetorum) and from other Violaceae genera (i.e., Gloeospermum, Melicytus, and Pigea).

The Sequence Signature of the Prodomain Can Be Used for the Classification of Cyclotides

The structural classification of cyclotides into Möbius cyclotides, bracelets, and hybrids thereof based on the structure and sequence of the mature cyclotide is here replaced by a classification based on the sequences of the cyclotide precursors, including both the prodomain (i.e., the NTPP and NTR domains) and the cyclotide domain. We focused on these three domains (i.e., the NTPP, NTR, and cyclotide domains) because they are present in all of the precursors that have been completely sequenced. The ER domain was not included in the analysis because ER domain sequences often vary strongly with the quality of the sequencing data. Other domains (i.e., the CTR domain and repeats of the NTR and cyclotide domains) are not present in all precursors, and were therefore also excluded.

Precursors were classified by their sequence signatures, i.e., the patterns of insertions and deletions (indels) and conserved sequences in the prodomains (NTPP and NTR). The N-terminal cleavage site of the cyclotide domain was defined as position 0, and a large indel region was detected upstream in the NTPP at positions [−56, −38] (Figure 3). Within this indel, the insertion region features sequence variations with minor gaps, and the deletion region has definite sequence gaps [−56, −54], [−50, −38]. Interestingly, the insertions coincide with cyclotide domains of archetypical bracelet cyclotides (e.g., cycloviolacin O2), while deletions coincide with cyclotide domains of archetypical Möbius cyclotides (e.g., kalata B1). Based on these observations, we suggest that these indels in the NTPP domain can be used as a criterion for classifying precursors into the Möbius and bracelet lineages. The term lineage is used instead of subfamily in order to avoid confusion with the structural classification of the cyclotides.
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FIGURE 3. Classification of cyclotide precursors based on the sequence signature. Consensus sequences of the molecular species identified in this work. Based on the sequence signatures in the prodomain, 249 cyclotide precursors were classified into the Möbius and bracelet lineages, 13 molecular series and 46 molecular species (14 Möbius and 32 bracelet species). Species are named for their signature sequences, and numbers within brackets show the numbers of complete and total (complete and partial) precursor sequences for each species. The left box shows the NTPP indel region [−56, −38], which contains defining sequence gaps at [−56, −54], and [−50, −38] in the Möbius lineage. Within a lineage, specific prodomain sequence-traits are associated with different structural subfamilies. In the Möbius lineage, the sequence (Y∧/F∧/H)−9-(S∧/A/Y)−8 at position [−9, −8] is associated with cyclic cyclotide precursors (where “∧” indicates high occurrence of the labeled residue), while Y−9-Y−8 is associated with linear cyclotide precursors. Precursors of structural hybrids exhibit have an insertion at [−32, −31], whereas the archetypical Möbius precursors have a deletion at this position. In the bracelet lineage, the sequences (H∧/N∧/S/T/G/K/P)−9-(L/N/S/F/A)−8 and (Q/E/P/K)−9-(D/N)−8 are associated with cyclic and linear precursors, respectively. In addition, linear precursors contain a deletion that is flanked by two defining insertions, (P∧/A/L)−49-(N∧/A)−48 and (D/E)−39, in the NTPP at [−49, −48] and [−39]. Conserved amino acids are indicated by their one-letter codes, and variable residues are represented by symbols indicating the physicochemical properties of their side chains: hydrophilic (~), hydrophobic ($), flexible (G), rigid (P), disulfide-forming (C) and indels (–). Hydrophilic residues are further divided into positively charged (+), negatively charged (=) and uncharged hydrophilic (*); hydrophobics ($) are divided into aromatic (#) and alkyl (<) groups. Numbers are used as consensus symbols for multiple physicochemical categories.



Within each lineage, precursors can be further divided by analogy to their structural classifications. That is to say, it is possible to identify sequence traits associated with linear and cyclic cyclotides within each lineage, and sequence traits associated with archetypical and hybrid subfamilies within the cyclic cyclotides of the Möbius lineage. Signature sequences of residues [−56, −38] were used to subdivide the bracelets, and residues [−32, −31] for the Möbius lineages, together with residues [−9, −8] of the NTR. Within the bracelet lineage, the sequence signatures associated with linear and cyclic cyclotide precursors differ in two ways. First, linear cyclotide precursors contain a signature sequence in the NTPP domain defined by two sequence insertions at [−49, −48] and [−39], together with a sequence deletion between those two sequence insertions. The signature sequences at these two locations are (P∧/A/L)−49-(N∧/A)−48 and (D/E)−39, where the symbol ∧ denotes a residue that occurs most frequently at the indicated position. Conversely, precursors of cyclic peptides have variable sequences with minor gaps in the [−47, −40] region. Second, whereas positions [−9, −8] in the NTR of precursors of linear cyclotides are conserved, having the signature sequence (Q/E/P/K)−9-(D/N)−8, the precursors of cyclic cyclotides show higher diversity, having sequences of (H∧/N∧/S/T/G/K/P)−9-(L/N/S/F/A)−8. Different signature sequences were also identified between the three structural subfamilies of the Möbius lineage, i.e., linear, hybrid and archetypical Möbius cyclotides. First, while precursors of both linear and hybrid cyclotides contain a sequence insertion in the NTPP domain at [−32, −31], precursors of archetypical Möbius cyclotides contain a deletion at this position. Second, while the sequence at [−9, −8] in the NTR domain of linear cyclotides is highly conserved (Y−9-Y−8), it is more variable in the precursors of cyclic cyclotides (Y∧/F∧/H)−9-(S∧/A/Y)−8.

On the basis of these findings, i.e., the combined sequence signatures of the NTPP and NTR domains and the conservation of residues with similar physicochemical properties in the cyclotide domain, two new classification orders were defined and used to classify the members of each lineage. These new orders were termed the molecular species and molecular series. Precursors with the same sequence signatures in both the NTPP and NTR domains are assigned to the same molecular species, while precursors that only share signature sequences in the NTR domain are assigned to the same molecular series.

Of 283 precursor sequences, 80 were classified into the Möbius lineage and 181 into the bracelet lineage (Figure 3; see Supplementary Figure 1). Of these 261 sequences, 249 were classified into 13 molecular series and 46 molecular species. Thus, 78 sequences representing the Möbius lineage were classified into five molecular series and 14 molecular species, while 171 sequences representing the bracelet lineage were classified into 8 molecular series and 32 molecular species. The remaining precursor sequences (34 of the initially examined 283, or 12.0% of the total) could not be grouped with any other sequences, and not be classified with molecular species (Supplementary Figure 2). Most of these sequences (31/283, or 10.9% of the total) were either partial sequences or lone unique sequences. Only three of all the precursor sequences (3/283) did not exhibit features enabling their classification into a given lineage on the basis of their NTPP domain sequences.

Informal hierarchical ranks were then assigned to this system for classifying precursors, with lineage being the highest ranking classification, followed by molecular series and then molecular species. We further investigated the evolutionary relevance of this classification system by performing the phylogenetic analysis using the full DNA precursor sequences (Figure 4). We assumed that if the sequence signatures are highly conserved in the course of the evolution, the phylogenetic relationship of the precursor sequences has the hierarchical ranks as classified based on the sequence signatures. In this evaluation, we adopted a Bayesian phylogenetic approach using BEAST, because substitution model-based methods are in most cases better than Maximum Parsimony or distance-based methods at handling homoplasy, which is prominent among the cyclotide precursor sequences (Splits network shown in Supplementary Figure 3), and because BEAST sets a prior on the branch lengths that is particularly suitable also for analysis of short DNA sequences, such as cyclotide precursors.
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FIGURE 4. Phylogenetic tree of cyclotide precursors. The tree contains 92 precursor sequences in total, with two representative sequences from each of the 46 molecular species. Except from the nine molecular species (i.e., GA2, GP1, NS2, NS5, NL2, HS4, PN1, QD1, and YY1), all other 37 molecular species (80%, 37/46) are grouped as one monophyletic clade (posterior probability (pp) ≥ 0.75). Also, except from four molecular series (i.e., FA, HF, HS, and YA), the molecular species belong to other nine molecular series are monophyletic (pp ≥ 0.97). In the phylogenetic tree, DI1 is a single exception from the lineage classification based on sequence signature. DI1 is grouped into Möbius lineage in the phylogenetic tree (pp ≥ 0.70), even though it is classified as bracelet lineage based on the sequence signature.



The two lower hierarchical ranks (i.e., molecular species and series) are consistently recovered in the phylogeny, but not the upper hierarchical rank (i.e., molecular lineage), as indicated by the low posterior support values at the base of the phylogeny (Figure 4). Most of precursor sequences belong to the same molecular species are grouped as one monophyletic clade (80%, 74/92) or to the different clades but more closely than the precursor sequences derived from the different molecular series. Among 13 molecular series, the molecular species belong to the four molecular series (i.e., HF, YA, FA, and HS) are not monophyletic. Only one molecular species (DI1) is exceptionally grouped into Möbius lineage in the phylogenetic tree, even though the DI1 is classified as the bracelet lineage based on the sequence signature. In the phylogenetic analysis, we selected a total of 92 precursor sequences by the random selection of two sequences from each of the 46 molecular species. We assumed that such precursor selection would be enough to show a phylogenetic support for the classification system based on the sequence signature approach, because we randomly selected two sequences from each molecular species, and these sequences were mostly paired or grouped into monophyletic clades in accordance with the classification at the level of molecular species and series.

The Distribution of Cyclotide Precursors Reflects the Phylogeny of the Genus Viola

Precursor sequences were compared to the established phylogenetic relationships between the four infrageneric sections of Viola (i.e., sects. Melanium, Plagiostigma, Viola, and Chamaemelanium), and between the genus Viola and the other Violaceae genera. The presence of a molecular species in different Viola taxa, such as species or sections, indicates that the molecular species evolved prior to the most recent common ancestor of these taxa. However, such inferences in Viola are complicated by the network-like phylogeny of the genus, owing to repeated ancient events of allopolyploidy (Marcussen et al., 2015). Hence, out of four sections in the current analysis, three (i.e., sects. Melanium, Plagiostigma, Viola) are allotetraploids originated by independent hybridizations between the same two parental lineages MELVIO and CHAM around 15 million years ago. The last section, sect. Chamaemelanium, is diploid and descends from the CHAM lineage. Because the parental MELVIO lineage is now extinct, it is impossible to infer with certainty the distribution of the molecular species in the common ancestor of these parental lineages, i.e., the CHAM and MELVIO lineages, especially without diploid outgroups from sister sections (e.g., Rubellium and Andinium). Gene flow by introgression between species potentially occurs between closely related species only, i.e., within the same subsection, and can be ruled out for this dataset (e.g., Marcussen et al., 2015).

The current analysis revealed several points about the distribution of cyclotide precursors within the genus Viola. Firstly, the classification into infrageneric sections is reflected in the distribution of the cyclotide precursors. Some molecular species occurred sporadically or commonly across the four infrageneric sections: 2% of molecular species were found across all sections, and 5% of the studied precursor sequences belong to those molecular species (Figure 5; see Supplementary Figure 4). Also, 17% of molecular species (34% of precursor sequences) were found across three sections, and 45% of molecular species (41% of precursor sequences) were found in at least two sections. This indicates that the molecular species likely originated both from the common ancestor of Viola sections and from the hybridization between the parental lineages. Also, there are some molecular species that could have occurred by the genetic changes from Viola speciation. It should be emphasized that the degree of concurrence is likely higher at the genomic level than at the transcriptomic level estimated from the current study, because all genomic presence of the molecular species can not be captured by the transcriptome. Some molecular species might not be expressed, and the RNA sequence of some molecular species might be degraded during the transcriptomic assay.
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FIGURE 5. Distribution of molecular species and molecular series over the established phylogenetic relationships of Viola. Proportions of the total number of cyclotide molecular species and molecular series found in four different Viola sections. (A) The values shown in the outer rings shows results obtained by considering numbers of molecular species, and while those in the inner rings show results obtained based on numbers of precursor sequences. (B) The values shown in the outer rings shows results obtained by considering numbers of molecular series, and while those in the inner rings show results obtained based on numbers of precursor sequences. Those results are based on data for complete sequences. The result based on both complete and partial sequences is shown in Supplementary Figure 4. (C) Phylogenetic relationships between sections and genera of Violaceae used in the analyses conducted within this work. Viola Sections are abbreviated as follows: Plagiostigma as PLA, Viola as VIO, Melanium as MEL, Chamaemelanium as CHA, Rubellium as RUB, and Andinium as AND. Dotted lines indicate the complex ancestries of the three allotetraploid sections Melanium, Plagiostigma, and Viola, all derived from hybridization between the CHAM and MELVIO lineages 15–20 Ma ago. Genera and sections studied using transcriptomic methods are indicated with asterisks (*). The total number of species within Viola is estimated to be 580–620, most of which (61–65%) belong to these four sections. The first ancestor of the genus (α) is dated to 31 Mya, and the common ancestor of the four studied sections (β) is dated to 24 Mya (Marcussen et al., 2015). The phylogeny of Viola is based on the work of Marcussen et al. (2015) and that of Violaceae is based on the work of Wahlert et al. (2014).



Secondly, signature sequences are conserved between Viola and other Violaceae genera, i.e., Gloeospermum, Melicytus, and Pigea (Supplementary Figure 5). In particular, the sequence signature of the NTR [−9, −8] region is largely conserved in the Möbius and bracelet lineages: Y−9-A−8 is found in the Möbius lineages of Viola and Melicytus, G−9-A−8 in the bracelet lineages of Viola and Gloeospermum, and H−9-S−8 in the bracelet lineages of Viola and Pigea. In addition, the sequence signature of the NTPP [−56, −38] is conserved in the bracelet lineage. That region shows high sequence similarity between some precursors, i.e., molecular species NS2 and HS3 from the genus Viola and precursors from Melicytus and Pigea, respectively. Interestingly, the protein sequence of Gpc3, a precursor belonging to the bracelet lineage, is identical in both Viola and Gloeospermum. These observations indicate that these sequence signatures have been conserved at least since the divergence of their most recent common ancestor some 50 million years ago (Marcussen, Wahlert et al., in prep.).

Thirdly, the cyclotide sequence diversity of Viola is expected to be dependent on the differentiation into sections. It is estimated that 67–88% of the Viola sections are allopolyploids (Marcussen et al., 2015) that combine genomes from different diploid lineages. Also, increase in ploidy has been shown experimentally to increase also sequence diversity of cyclotides by mutation, e.g., in Oldenlandia affinis (Seydel et al., 2007). However, the cyclotide sequence diversity could not only be very huge by the sequence variations within molecular species, but also be limited by sharing the same molecular species across different sections. The sequence diversity can be large by allowing conservative substitution within the same molecular species. Under the current classification (Marcussen et al., 2015), Viola comprises at least 16 sections and some 600 species, of which 10 sections (~454 species, 76%) possess at least one CHAM genome, either alone or, as a result of allopolyploidization, in combination with other CHAM genomes or MELVIO genomes. These 10 sections include the four (~380 species, 63%) inspected by the current study; and the current depth analysis reveals that most of cyclotide precursor sequences across different sections are likely grouped into the molecular species. The precursors identified in the current transcriptome and those reported previously all exhibit striking sequence similarity (Zhang et al., 2009, 2015b; Hellinger et al., 2015; Slazak et al., 2015).

Expression Profiles of Cyclotides and Their Structural Diversity

The expression profiles of cyclotides were analyzed at transcriptomic and peptidomic levels both. At the transcriptomic level, expression levels of precursor RNA were evaluated by their FPKM values. The expression of those sequences cyclotide sequences were then assayed at the peptidomic level by LC-MS.

At the transcriptomic level, a structurally diverse set of cyclotides were found, including archetypical, linear, hybrid and the novel types of cyclotides described above. In the bracelet lineage, the majority of cyclotide precursors were archetypical bracelets (73%, 125/171). In the Möbius lineage, the proportion of archetypical Möbius (33%, 26/78) was only second largest after the structural hybrids (35%, 28/78). However, judged by FPKM values, the expression levels of archetypical cyclotides were highest within each lineage. Most archetypical precursors have FPKM values higher than 150, i.e., 64% (= 9/14) and 79% (= 43/54) of the precursors in Möbius lineage and in bracelet lineage, respectively have values larger than the cutoff at 150 (Supplementary Table 4). On the other hand, precursors of novel cyclotides have low FKPM values, i.e., 53% (= 7/13) and 100% (= 13/13) of the precursors of novel cyclotides in the Möbius lineage and in the bracelet lineage, respectively. Moreover, in the Möbius lineage, 50% (= 6/12) of the precursors encoding structural hybrids exceed the FPKM-cutoff value.

At the peptidomic level, numbers ranging from 19 to 44 cyclotides were detected in each of the Viola species. This number is similar to the number of precursor sequences found at transcriptomic level (23 to 37). Only few of the cyclotides (4–26%) were detected at both levels (Figure 6; see Supplementary Table 5). Most of those cyclotides were archetypical Möbius (kB1 and kS) and archetypical bracelets (cyO2, cyO8, cyO13, mram8, and viba12). Only two of the novel cyclotides were found at both levels, and both were found eluting with very early retention time and at low protein levels of abundance. Cyclotides found at the peptidomic-level only were identified by matching their calculated MW, assuming that they could belong to any type, e.g., be hybrid, archetypical Möbius and bracelet. Discrepancy between expression at transcriptomic- and peptidomic levels has been reported previously (Burman et al., 2010; Hellinger et al., 2015). In those studies cyclotides expressed as peptides were all hybrids, or archetypical Möbius or bracelets. The failure of detection the novel cyclotides using LC-MS could be either from the large hydrophilicity of those novel cyclotides (Supplementary Figure 6) or from their low expression at the peptidomic level. Interestingly, kS (varv A) and kB1 were not found in the transcriptome from two Viola species (V. orientalis and V. albida var. takahashii), whereas these particular cyclotides were found at the protein level in all five Viola species. Such expression differences could be related to the molecular stability and regulation mechanism. However, it is clear that cyclotides accumulate after their expression in plant tissues.
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FIGURE 6. Cyclotide expression on peptidomic level. LC-MS chromatogram of the five Viola species used for transcriptome assays in current study (left panel). The abundance of cyclotides is linked to their signal intensity (Right panel). For each Viola species, the LC-MS chromatogram (Base Peak Ion) and mass distribution of the cyclotides are shown with retention times and abundance levels (High/Medium/Low). The symbols + and ◦ denote cyclotides that were not found in the transcriptome and were found in the transcriptome, respectively. The cyclotides (kB1, kS, cyO2, cyO8, and cyO12) were confirmed by comparing the retention time and isotopic mass derived from the LC-MS of V. tricolor and V. odorata as reference chromatogram.



Major Sequence Changes Are Linked to Neofunctionality

In some cases, the differences between the precursor sequences of closely related molecular species were small (Figure 7A) while in other they were quite large (Figures 7B–D). In this context, a large difference is defined as an indel of more than five residues. With the exception of these indel regions, the precursor sequences are homologous, and the homologous sequence regions contain unique sequence traits found only in those molecular species. This implies that despite their large sequence differences, those molecular species are closely related. Such an outcome is analogous to that predicted by the theory of punctuated equilibrium (Eldredge and Gould, 1997), which describes evolutionary trends and speciation at the organism level. Another possible explanation for the observations is that mutations gradually accumulate in cyclotide precursors, leading to the loss or inactivation of intermediate sequences.
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FIGURE 7. Sequence diversity between closely related molecular species. Some molecular species differ by only a few residues, e.g., (A) while others exhibit pronounced sequence variation, e.g., (B–D) Sequence differences are highlighted by red boxes. Common sequence traits (indicated by blue boxes) are found in closely related precursors. (E) Differences in the residues forming the CCK structural motif (green boxes). Additional cysteines are found in loop 2 of valt1-FS3U and loop 6 of prc-vitri60-RS1V. The cyclisation-enabling N/D residues are absent in loop 6 of valt1-FS3U. Vima1-FA1V lacks a cysteine residue in loop 6, which is elongated. (F) and (G). Emergence of a cyclic backbone in the Möbius and bracelet lineages, respectively. Both lineages exhibit large sequence variation in the C-terminal loop 6. (H,I) Proline-rich sequence regions (indicated by yellow boxes).



Some of the cyclotide domains exhibited unusual sequences, which fell into three main groups (Figure 7E). The first such group contained sequences whose cyclotide domains have an uneven number of cysteines (five or seven). Having uneven number of cysteines makes the formation of a cystine knot impossible, and can create the possibility of forming disulfide bridges not associated with the cystine knot, as well as the potential for dimerization. The second group consists of sequences that lack a residue required for AEP-mediated cyclisation, i.e., an N or D residue in loop 6. Abnormal precursor sequences of this sort are presumably the result of mutations in the genes encoding cyclic cyclotide precursors rather than being inherited from an ancestral linear cyclotide because they exhibit strong sequence similarity with the former class of precursors in both loop 6 and the C-terminal tail. Conversely, typical linear cyclotide precursors have short loop 6 sequences, lack a C-terminal tail, and are quite abundant. The third group of abnormal precursor sequences included sequences with one or more unusually short or long loops. Only five such sequences were identified (among a total of 283), but the three types of abnormality often co-occurred in the same precursor. For example, valt1-FS3U contains one additional cysteine in loop 2, and lacks an N/D residue in loop 6. All of these precursors are only weakly expressed.

The cyclic backbone seems to have emerged by molecular speciation. Comparing sequences from linear and cyclic molecular species, i.e., the cyclic YY1 and linear YY2 in Möbius lineage, and the cyclic PS1 and HS4 to the linear PN1 in the bracelet lineage (Figures 7F,G), suggests that linearity is likely to be the primitive (ancestral) trait, rather than linear cyclotides having evolved from cyclic ancestors via the mutational loss of the N/D residue in loop 6 that is needed for cyclisation. Although the cyclotide precursor sequences are too variable at the nucleotide level to resolve the relationships between linear and bracelet (Huson and Bryant, 2006), linearity being ancestral is supported by three facts. First, linear cyclotides that have undergone such mutational losses normally have elongated loop 6 sequences with mutations in the C-terminal tail. Second, the prodomain sequences of these molecular species are well-defined (all of them share the same sequence signature). Third, the molecular species corresponding to these putative primitive linear cyclotides are found in all four studied sections of Viola and also in other genera (Mra13).

Some precursors sequences could also be grouped as rich in prolines (Figures 7H,I). The common structure-based criterion used to identify mature Möbius cyclotides is the presence of a cis Pro in loop 5. Classification based on this approach is not generally consistent with the evolutionary classification into lineages: many precursor sequences assigned to the Möbius lineage lack this Pro residue in loop 5 (P32) of the cyclotide domain. Examples include the molecular species YA1, HF1, and YS1-3, which exhibit appreciable sequence similarity with archetypical Möbius cyclotides in loops 2 and 3. These sequence intermediates, which have characteristics of both bracelet and Möbius cyclotides, have been classified as the hybrid subfamily, and it has been suggested that they are genetic chimeras of bracelets and Möbius cyclotides (Daly et al., 2006). Our analysis suggests that this is not the case, at least in the Violaceae. Instead, these structural hybrids and archetypical Möbius cyclotides seem to originate from the molecular species YY1 of the Möbius lineage, which in turn is closely related to the linear ancestor YY2.

A key question is whether the emergence of the cyclic backbone changed the properties of the membrane-interacting surfaces of the linear cyclotide sequences. To answer this question, we analyzed the structural traits (i.e., the exposed ratio and physicochemical properties) of the residues that differ between linear and cyclic cyclotides within Möbius and bracelet lineages. The lineages were considered separately, so the cyclic Möbius cyclotide kalata B1 was compared to the linear cyclotide violacin A from the Möbius lineage. Similarly, the cyclic bracelet cyclotide cyO2 was compared to the linear verec1-PN1 from the bracelet lineage. In both cases, the linear cyclotide appeared to be ancestral to its cyclic counterpart. Linear and cyclic cyclotides from the same lineage exhibit substantial sequence similarity, with extensive conservation of residues' physicochemical properties at key positions. This is illustrated by the example of the residues in loop 6 (Figure 8B). In the linear cyclotides, loop 6 is conformationally flexible, and the charged groups of the termini are largely exposed on the molecular surface (Figures 8A,B). The exposed ratios and physicochemical properties of the corresponding residues in the cyclic cyclotides are very similar to those in their linear counterparts, implying that the structural framework favoring membrane interaction emerged before the cyclic backbone.
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FIGURE 8. Membrane-interactive properties of linear and cyclic cyclotides within the Möbius and bracelet lineages. (A) Structures of kalata B1 and violacin A from the Möbius lineage, and cyO2 and verec1-PN1 from the bracelet lineage. Surface-exposed side-chains are shown in blue if positively charged, red if negatively charged, and green if hydrophobic. Notably, the N-terminal residues (S2) of the linear cyclotides always give rise to an exposed positive charge on the molecular surface. The numbering of residues follow the consensus sequence of the cyclotide domain in Figure 3. (B) Exposed ratios of linear and cyclic cyclotides' residues within each lineage. The exposure ratio compares the solvent-exposed surface area (SASA) of each residue in a protein to its SASA in the tripeptide Gly-X-Gly (ψ = ϕ = 180°); the more exposed the residue is, the greater the value. With the exception of the residues in loop 6, residues of cyclic and linear cyclotides have similar exposure ratios at corresponding positions. For each residue, the boxes show the range between the first and third quartiles, and the upper and lower error bars represent the minimum and maximum exposure ratios, respectively.



Some of the cyclotide domains exhibit very high levels of sequence diversity between different molecular species. Some molecular species (e.g., YS1-4, RS2 and FA1) contain cyclotide domain sequences that are highly dissimilar to archetypical cyclotide sequences (Figure 9). We found that these molecular species occur across Viola sections, which means that they must have evolved before the differentiation of these sections some 15 million years ago. Although the biological function of all cyclotide forms is currently unclear, their maintenance within the genome suggests that they fulfill vital and divergent functions in their host plants.
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FIGURE 9. A potential link between precursor architecture and neofunctionality. (A) Suggested modes of duplication in precursor genes. In Viola, the precursor architecture differs between lineages. Precursors of bracelet lineages appear to contain only one modular domain (i.e., a concatenated NTR and a cyclotide domain), whereas precursors of the Möbius lineage may contain one to three such domains. The repeats in the Möbius lineage probably originated from internal gene duplication events. All precursors sharing the same architecture, in both the Möbius and bracelet lineages, probably originated from external gene duplication. (B) Sequence alignment between new types of cyclotides and previously identified archetypes. In the Möbius lineage, sequences vary between repeated cyclotide domains within the same precursor and cyclotide domains of different precursors. There are high levels of sequence conservation within repeated cyclotide domains, as exemplified by kB1 and kS within Vok1. However, the sequences of cyclotide domains in precursors containing multiple cyclotide domains in general are frequently very different, as exemplified by kalata S and viul F within prc-Viul F[C]-FS4U, and viba 19 and viba 21 within VbCP14. Of the precursor sequences shown in the figure, the molecular species YS7, which belongs to the Mobius lineage, has a similar sequence to archetypical bracelet cyclotides. For example, valta3-YS4 lacks a proline residue in loop 5 and has an elongated loop 3. Conversely, the molecular species FA1 contains lipophilic residues in loops 2 and 5, while loop 3 consists mainly of negatively charged residues. (C) Comparison of cyclotides' surfaces and electrostatic potentials. New types of cyclotides— viman-FA1, viman1-RS2, and valta3-YS4, and viul-F—are shown with their electrostatic potential surfaces. The distributions of their electrostatic potentials are generally dissimilar to those seen in typical bracelet and Mobius cyclotides. Residues with high exposed ratios are indicated by solid and dashed lines on the molecular surfaces. Residues highlighted with solid lines have dissimilar physicochemical properties to those found in the corresponding positions of archetypical cyclotides. Residues whose physicochemical properties match those of the archetypical cyclotides are indicated by dotted lines. Residues are numbered in accordance with their sequence positions in (B). Negatively charged surface regions are colored in red, positively charged regions in blue, and hydrophobic regions in green. The numbering of residues follow the consensus sequence of the cyclotide domain in Figure 3.



It is likely that some cyclotides may have biological functions based on mechanisms other than membrane binding and disruption (Burman et al., 2011). For example, the cyclotides-FA1 might have different orientations to archetypical cyclotides, even when one compares them to others from the same lineage. They have lipophilic residues in loops 2 and 5 with large exposed areas on the molecular surface. The lipophilicity of this loop differs from that of archetypical cyclotides: the archetypal Möbius cyclotides do not have lipophilic residues in loop 2, and the archetypal bracelets do not have lipophilic residues in loop 5. In addition, loop 3 of the FA1 cyclotides is rich in negatively charged residues, making them unique among the molecular species found in the genus Viola and suggesting that their functions may be unrelated to membrane binding.

Contradicting previous hypotheses, it appears that the cyclotides of the Möbius lineage exhibit a somewhat greater diversity of sequence traits than those of the bracelet lineage. Such large sequence diversity of the Möbius lineage may be correlated with the combined occurrence of internal and external gene duplications in the cyclotide domain. Precursor architecture with such duplication of the cyclotide domain is illustrated in the Figure 9A. A large proportion of the precursors (72%; 56/78) belonging to the Möbius lineage contain multiple cyclotide domains that appear to have originated from internal duplication events. Conversely, no bracelet precursors having repeated cyclotide domains have yet been identified in the Violaceae. There are large sequence differences in certain precursors' cyclotide domains at positions close to the N-terminal prodomains, as can be seen by comparing the sequences of the FA1 and YS4 molecular species to the archetypal Möbius cyclotides varv A and kalata S (Figures 9B,C). Pronounced sequence differences also exist between repeated cyclotide domains in some individual precursors, as in the case of the precursor of Viul F. Together with the rest of our findings, this implies that combined internal and external duplications can synergistically produce large changes in cyclotides' sequences and structures, giving rise to new biological functions: neofunctionality.

AUTHOR CONTRIBUTIONS

SP, TM, KJR, ID, AB, and UG designed experiments. SP carried out interpretation of precursor sequences, modeling and mass spectrometry. UG supervised the experiments. K-OY collected plant material for the transcriptome sequencing. EJ identified cyclotide genes from transcriptomic data. TM and SP performed the phylogenetic analyses. All authors contributed to the writing and revision of the manuscript.

FUNDING

This research was supported by Swedish Research Council (#2012-5063). KJR is an ARC Future Fellow (FT130100890).

ACKNOWLEDGMENTS

We are thankful to Dr. Kyeong-Sik Cheon at Kangwon National University for valuable discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2017.02058/full#supplementary-material

REFERENCES

 Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., et al. (2013). Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160. doi: 10.1039/C2NP20085F

 Ballard, H. E., Sytsma, K. J., and Kowal, R. R. (1998). Shrinking the violets: phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 23, 439–458. doi: 10.2307/2419376

 Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

 Burman, R., Gruber, C. W., Rizzardi, K., Herrmann, A., Craik, D. J., Gupta, M. P., et al. (2010). Cyclotide proteins and precursors from the genus Gloeospermum: filling a blank spot in the cyclotide map of Violaceae. Phytochemistry 71, 13–20. doi: 10.1016/j.phytochem.2009.09.023

 Burman, R., Gunasekera, S., Strömstedt, A. A., and Göransson, U. (2014). Chemistry and biology of cyclotides: circular plant peptides outside the box. J. Nat. Prod. 77, 724–736. doi: 10.1021/np401055j

 Burman, R., Herrmann, A., Tran, R., Kivelä, J. E., Lomize, A., Gullbo, J., et al. (2011). Cytotoxic potency of small macrocyclic knot proteins: structure-activity and mechanistic studies of native and chemically modified cyclotides. Org. Biomol. Chem. 9, 4306–4314. doi: 10.1039/c0ob00966k

 Burman, R., Yeshak, M. Y., Larsson, S., Craik, D. J., Rosengren, K. J., and Göransson, U. (2015). Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front. Plant Sci. 6:855. doi: 10.3389/fpls.2015.00855

 Claeson, P., Göransson, U., Johansson, S., Luijendijk, T., and Bohlin, L. (1998). Fractionation protocol for the isolation of polypeptides from plant biomass. J. Nat. Prod. 61, 77–81. doi: 10.1021/np970342r

 Colgrave, M. L., Kotze, A. C., Huang, Y. H., O'Grady, J., Simonsen, S. M., and Craik, D. J. (2008a). Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 47, 5581–5589. doi: 10.1021/bi800223y

 Colgrave, M. L., Kotze, A. C., Ireland, D. C., Wang, C. K., and Craik, D. J. (2008b). The anthelmintic activity of the cyclotides: natural variants with enhanced activity. Chembiochem 9, 1939–1945. doi: 10.1002/cbic.200800174

 Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999). Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336. doi: 10.1006/jmbi.1999.3383

 Daly, N. L., Clark, R. J., Plan, M. R., and Craik, D. J. (2006). Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem. J. 393(Pt 3), 619–626. doi: 10.1042/BJ20051371

 Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772. doi: 10.1038/nmeth.2109

 Drummond, A. J., and Rambaut, A. (2007). BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214. doi: 10.1186/1471-2148-7-214

 Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. doi: 10.1093/molbev/mss075

 Dutton, J. L., Renda, R. F., Waine, C., Clark, R. J., Daly, N. L., Jennings, C. V., et al. (2004). Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J. Biol. Chem. 279, 46858–46867. doi: 10.1074/jbc.M407421200

 Eldredge, N., and Gould, S. J. (1997). On punctuated equilibria. Science 276, 338–341. doi: 10.1126/science.276.5311.337c

 Göransson, U., Sjögren, M., Svangård, E., Claeson, P., and Bohlin, L. (2004). Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. J. Nat. Prod. 67, 1287–1290. doi: 10.1021/np0499719

 Gran, L. (1973a). On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol. Toxicol. (Copenh). 33, 400–408. doi: 10.1111/j.1600-0773.1973.tb01541.x

 Gran, L. (1973b). Oxytocic principles of Oldenlandia affinis. Lloydia 36, 174–178.

 Gruber, C. W., Elliott, A. G., Ireland, D. C., Delprete, P. G., Dessein, S., Göransson, U., et al. (2008). Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20, 2471–2483. doi: 10.1105/tpc.108.062331

 Gründemann, C., Koehbach, J., Huber, R., and Gruber, C. W. (2012). Do plant cyclotides have potential as immunosuppressant peptides? J. Nat. Prod. 75, 167–174. doi: 10.1021/np200722w

 Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. doi: 10.1080/10635150390235520

 Gustafson, K. R., Sowder, R. C., Henderson, L. E., Parsons, I. C., Kashman, Y., Cardellina, J. H., et al. (1994). Circulin-A and B. novel HIV-inhibitory macrocyclic peptides from the tropical tree chassalia-parvifolia. J. Am. Chem. Soc. 116, 9337–9338. doi: 10.1021/ja00099a064

 Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Series 41, 95–98.

 Harris, K. S., Durek, T., Kaas, Q., Poth, A. G., Gilding, E. K., Conlan, B. F., et al. (2015). Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat. Commun. 6:10199. doi: 10.1038/ncomms10199

 Hellinger, R., Koehbach, J., Soltis, D. E., Carpenter, E. J., Wong, G. K., and Gruber, C. W. (2015). Peptidomics of circular cysteine-rich plant peptides: analysis of the diversity of cyclotides from viola tricolor by transcriptome and proteome mining. J. Proteome Res. 14, 4851–4862. doi: 10.1021/acs.jproteome.5b00681

 Henriques, S. T., Huang, Y. H., Rosengren, K. J., Franquelim, H. G., Carvalho, F. A., Johnson, A., et al. (2011). Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J. Biol. Chem. 286, 24231–24241. doi: 10.1074/jbc.M111.253393

 Hernandez, J. F., Gagnon, J., Chiche, L., Nguyen, T. M., Andrieu, J. P., Heitz, A., et al. (2000). Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39, 5722–5730. doi: 10.1021/bi9929756

 Herrmann, A., Burman, R., Mylne, J. S., Karlsson, G., Gullbo, J., Craik, D. J., et al. (2008). The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry 69, 939–952. doi: 10.1016/j.phytochem.2007.10.023

 Huson, D. H., and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. doi: 10.1093/molbev/msj030

 Ireland, D. C., Colgrave, M. L., Nguyencong, P., Daly, N. L., and Craik, D. J. (2006). Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins. J. Mol. Biol. 357, 1522–1535. doi: 10.1016/j.jmb.2006.01.051

 Jennings, C., West, J., Waine, C., Craik, D., and Anderson, M. (2001). Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. U.S.A. 98, 10614–10619. doi: 10.1073/pnas.191366898

 Kaas, Q., and Craik, D. J. (2010). Analysis and classification of circular proteins in CyBase. Biopolymers 94, 584–591. doi: 10.1002/bip.21424

 Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. doi: 10.1186/1471-2105-12-323

 Lindholm, P., Göransson, U., Johansson, S., Claeson, P., Gullbo, J., Larsson, R., et al. (2002). Cyclotides: a novel type of cytotoxic agents. Mol. Cancer Ther. 1, 365–369. Available online at: http://mct.aacrjournals.org/content/1/6/365

 Marcussen, T., Heier, L., Brysting, A. K., Oxelman, B., and Jakobsen, K. S. (2015). From gene trees to a dated allopolyploid network: insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64, 84–101. doi: 10.1093/sysbio/syu071

 Marcussen, T., Jakobsen, K. S., Danihelka, J., Ballard, H. E., Blaxland, K., Brysting, A. K., et al. (2012). Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst. Biol. 61, 107–126. doi: 10.1093/sysbio/syr096

 Mulvenna, J. P., Mylne, J. S., Bharathi, R., Burton, R. A., Shirley, N. J., Fincher, G. B., et al. (2006). Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins? Plant Cell 18, 2134–2144. doi: 10.1105/tpc.106.042812

 Mulvenna, J. P., Sando, L., and Craik, D. J. (2005). Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A. Structure 13, 691–701. doi: 10.1016/j.str.2005.02.013

 Mylne, J. S., Chan, L. Y., Chanson, A. H., Daly, N. L., Schaefer, H., Bailey, T. L., et al. (2012). Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis. Plant Cell 24, 2765–2778. doi: 10.1105/tpc.112.099085

 Nguyen, G. K., Lian, Y., Pang, E. W., Nguyen, P. Q., Tran, T. D., and Tam, J. P. (2013). Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J. Biol. Chem. 288, 3370–3380. doi: 10.1074/jbc.M112.415356

 Nguyen, G. K., Zhang, S., Nguyen, N. T., Nguyen, P. Q., Chiu, M. S., Hardjojo, A., et al. (2011). Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. J. Biol. Chem. 286, 24275–24287. doi: 10.1074/jbc.M111.229922

 Northfield, S. E., Wang, C. K., Schroeder, C. I., Durek, T., Kan, M. W., Swedberg, J. E., et al. (2014). Disulfide-rich macrocyclic peptides as templates in drug design. Eur. J. Med. Chem. 77, 248–257. doi: 10.1016/j.ejmech.2014.03.011

 Okonechnikov, K., Golosova, O., Fursov, M., and team, U. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167. doi: 10.1093/bioinformatics/bts091

 Park, S., Strömstedt, A. A., and Göransson, U. (2014). Cyclotide structure-activity relationships: qualitative and quantitative approaches linking cytotoxic and anthelmintic activity to the clustering of physicochemical forces. PLoS ONE 9:e91430. doi: 10.1371/journal.pone.0091430

 Plan, M. R., Saska, I., Cagauan, A. G., and Craik, D. J. (2008). Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J. Agric. Food Chem. 56, 5237–5241. doi: 10.1021/jf800302f

 Poth, A. G., Colgrave, M. L., Lyons, R. E., Daly, N. L., and Craik, D. J. (2011a). Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proc. Natl. Acad. Sci. U.S.A. 108, 10127–10132. doi: 10.1073/pnas.1103660108

 Poth, A. G., Colgrave, M. L., Philip, R., Kerenga, B., Daly, N. L., Anderson, M. A., et al. (2011b). Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem. Biol. 6, 345–355. doi: 10.1021/cb100388j

 Poth, A. G., Mylne, J. S., Grassl, J., Lyons, R. E., Millar, A. H., Colgrave, M. L., et al. (2012). Cyclotides associate with leaf vasculature and are the products of a novel precursor in Petunia (Solanaceae). J. Biol. Chem. 287, 27033–27046. doi: 10.1074/jbc.M112.370841

 Pränting, M., Lööv, C., Burman, R., Göransson, U., and Andersson, D. I. (2010). The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J. Antimicrob. Chemother. 65, 1964–1971. doi: 10.1093/jac/dkq220

 Ravipati, A. S., Henriques, S. T., Poth, A. G., Kaas, Q., Wang, C. K., Colgrave, M. L., et al. (2015). Lysine-rich cyclotides: a new subclass of circular knotted proteins from violaceae. ACS Chem. Biol. 10, 2491–2500. doi: 10.1021/acschembio.5b00454

 Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277. doi: 10.1016/S0168-9525(00)02024-2

 Schöpke, T., Hasan, A. M. I., Kraft, R., Otto, A., and Hiller, K. (1993). Haemolytisch aktive Komponenten aus Viola tricolor L. und Viola arvensis murray. Sci. Pharm. 61, 145–153.

 Seydel, P., Gruber, C. W., Craik, D. J., and Dörnenburg, H. (2007). Formation of cyclotides and variations in cyclotide expression in Oldenlandia affinis suspension cultures. Appl. Microbiol. Biotechnol. 77, 275–284. doi: 10.1007/s00253-007-1159-6

 Sigrist, C. J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., et al. (2002). PROSITE: a documented database using patterns and profiles as motif descriptors. Brief. Bioinformatics 3, 265–274. doi: 10.1093/bib/3.3.265

 Simonsen, S. M., Sando, L., Ireland, D. C., Colgrave, M. L., Bharathi, R., Göransson, U., et al. (2005). A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17, 3176–3189. doi: 10.1105/tpc.105.034678

 Simonsen, S. M., Sando, L., Rosengren, K. J., Wang, C. K., Colgrave, M. L., Daly, N. L., et al. (2008). Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J. Biol. Chem. 283, 9805–9813. doi: 10.1074/jbc.M709303200

 Slazak, B., Jacobsson, E., Kuta, E., and Göransson, U. (2015). Exogenous plant hormones and cyclotide expression in Viola uliginosa (Violaceae). Phytochemistry 117, 527–536. doi: 10.1016/j.phytochem.2015.07.016

 Tam, J. P., Lu, Y. A., Yang, J. L., and Chiu, K. W. (1999). An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. U.S.A. 96, 8913–8918. doi: 10.1073/pnas.96.16.8913

 Tokuoka, T. (2008). Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences. J. Plant Res. 121, 253–260. doi: 10.1007/s10265-008-0153-0

 Trabi, M., and Craik, D. J. (2002). Circular proteins-no end in sight. Trends Biochem. Sci. 27, 132–138. doi: 10.1016/S0968-0004(02)02057-1

 Trabi, M., Mylne, J. S., Sando, L., and Craik, D. J. (2009). Circular proteins from Melicytus (Violaceae) refine the conserved protein and gene architecture of cyclotides. Org. Biomol. Chem. 7, 2378–2388. doi: 10.1039/b823020j

 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621

 Wahlert, G. A., Marcussen, T., Paula-Souza, J., and Ballard, H. E. Jr. (2014). A phylogeny of the Violaceae (Malpighiales) inferred from plastid DNA sequences: implications for generic diversity and intrafamilial classification. Syst. Bot. 39, 239–252. doi: 10.1600/036364414X678008

 Witherup, K. M., Bogusky, M. J., Anderson, P. S., Ramjit, H., Ransom, R. W., Wood, T., et al. (1994). Cyclopsychotride, A., a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J. Nat. Prod. 57, 1619–1625. doi: 10.1021/np50114a002

 Yockteng, R. H. E. B. J. G., Mansion, I., Dajoz, S., and Nadot (2003). Relationships among pansies (Viola section Melanium) investigated using ITS and ISSR markers. Plant Syst. Evol. 241, 153–170. doi: 10.1007/s00606-003-0045-7

 Zhang, J., Hua, Z., Huang, Z., Chen, Q., Long, Q., Craik, D. J., et al. (2015a). Two Blast-independent tools, CyPerl and CyExcel, for harvesting hundreds of novel cyclotides and analogues from plant genomes and protein databases. Planta 241, 929–940. doi: 10.1007/s00425-014-2229-5

 Zhang, J., Liao, B., Craik, D. J., Li, J. T., Hu, M., and Shu, W. S. (2009). Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity. Gene 431, 23–32. doi: 10.1016/j.gene.2008.11.005

 Zhang, J., Li, J., Huang, Z., Yang, B., Zhang, X., Li, D., et al. (2015b). Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis. J. Plant Physiol. 178, 17–26. doi: 10.1016/j.jplph.2015.01.017

 Zhu, S., Darbon, H., Dyason, K., Verdonck, F., and Tytgat, J. (2003). Evolutionary origin of inhibitor cystine knot peptides. FASEB J. 17, 1765–1767. doi: 10.1096/fj.02-1044fje

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Park, Yoo, Marcussen, Backlund, Jacobsson, Rosengren, Doo and Göransson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.







	
	OPINION
published: 13 December 2017
doi: 10.3389/fpls.2017.02146





[image: image2]

The Challenge to Translate OMICS Data to Whole Plant Physiology: The Context Matters


Marcelo N. do Amaral and Gustavo M. Souza*


Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil

Edited by:
Paulo Mazzafera, Universidade Estadual de Campinas, Brazil

Reviewed by:
Anthony Trewavas, University of Edinburgh, United Kingdom

* Correspondence: Gustavo M. Souza, gmsouza@ufpel.edu.br

Specialty section: This article was submitted to Plant Systems and Synthetic Biology, a section of the journal Frontiers in Plant Science

Received: 13 September 2017
 Accepted: 04 December 2017
 Published: 13 December 2017

Citation: do Amaral MN and Souza GM (2017) The Challenge to Translate OMICS Data to Whole Plant Physiology: The Context Matters. Front. Plant Sci. 8:2146. doi: 10.3389/fpls.2017.02146



Keywords: downward causation, emergent properties, hierarchical systems, plant signaling, systems biology

INTRODUCTION: SOME CHALLENGES

The exponential development of high-throughput technologies in the last decades, supporting and improving the OMICS science, has allowed uncovering successfully the complexity of the organizational network patterns in the cell's metabolism to the plant phenome, founding the science of system biology (Mochida and Shinozaki, 2011). Further, the huge data sets and growing computational power have stimulated scientists to glimpse about how plants respond to the environmental changes, and how such knowledge could engender new technologies, for instance, to increase crop yields (Edwards and Batley, 2004; Tardieu et al., 2017). Through these technologies, researchers are describing deeply the different hierarchical levels of plant organization, improving the possibility to predict the behavior of whole plant (phenome). Based on extensive analyses of gene expression (genome and transcriptome) and/or metabolic networks (metabolome), it has been possible to monitor and control cellular responses to genetic perturbations or environmental changes (Fukushima et al., 2009).

However, different constrains can make both the predictability and the controllability difficult from the bottom-up cause-effect approach that underpins the deterministic view of science based on an upward chain of causality (Figure 1) (Noble, 2008; Sheth and Thaker, 2014). The first “bottleneck” is how to integrate the massive datasets from molecular high-throughput technologies with the growing high-throughput information on the crop scale, i.e., plant phenomics (Fukushima et al., 2009; Tardieu et al., 2017), which is a typical problem of finding a proper (if it does exists indeed) scaling law (Souza et al., 2016).
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FIGURE 1. Representation of the different levels of organization (hierarchical scales) considered in different OMICS scales. Alongside the main arrow, the different scales follow an upward causation chain, when the lower level (e.g., genome) “determines” the subsequent higher-level properties (e.g., transcriptome). The small arrows depicted in the opposite direction of the main arrow represent the top-down effects (downward causation) regulating the processes operating at lower scales of organization. The whole picture represents the concept of “non-privileged level of causation” (Noble, 2008).



The second constrain comes from the common assumption in biochemical models that the system sampled should be in a metabolic steady-state at a given moment, characterized by constant metabolite levels, and that the different metabolic pathways operate in isolation (Toubiana et al., 2013), which is an obvious oversimplification. For instance, at intracellular level, compartmentalization into organelles enables differences in metabolite concentrations acting as a barrier to passive diffusion between organelles and cytoplasm, creating a non-homogenous cellular metabolic space (Sweetlove and Fernie, 2013; de Souza et al., 2017). Moreover, each metabolic pathway, somehow, is integrated in a dynamical metabolic network (Toubiana et al., 2013), which is challenging for static networks mathematical models that often bypass the network modulation over time. For instance, the stomatal movement depends on a range of environmental and endogenous plant stimuli that affect the internal networks at multiple levels of cellular spatio-temporal organization, generating species-specific responses to combined external stimuli (Merilo et al., 2014). From the modeling of a single guard cell at steady-state, researches seek for elucidate how these interactions determine the phenotype of plants. However, due of this hierarchy of scales, the interpretation of a large set of data from OMICS tools becomes quite difficult, then it is necessary to develop new methods to allow investigations of dynamic aspects of large scale models (Medeiros et al., 2015).

The first “bottleneck” refers to the problem of emergent properties at the higher level organizations of the system that are not fully determined by the properties of the lower levels (Souza et al., 2016), for example, changes in the transcriptome or in the proteome do not always result in respective alterations in the metabolome (biochemical phenotype) that exhibits its own dynamics (Ryan and Robards, 2006). Additionally, there is the influence of downward causation processes (Noble, 2008) (Figure 1), when higher levels of organization affect the functioning of the lower levels. For instance, interlocked transcriptional/translational feedback loops are involved in the generation of circadian rhythm in plants, and the functional clock (higher level) controls a wide range of cellular processes such as gene expression (lower level; Fukushima et al., 2009).

The second constraint is related to the different sources of “uncertainty” operating in different levels of plant organization, blurring the predictability from lower levels. For instance, at cellular level, the sources of uncertainty emerge from the spontaneous thermodynamical noise of molecular activity constraining the flux of distributions in metabolic networks (Hoppe et al., 2007), interactions between genes that enable alternative routes for the same phenotype (Kohl et al., 2010), and epigenetic effects changing genes expression (Crisp et al., 2016). Moreover, at the level of whole plant integration, there are many types of long-distance signaling processes (chemical and electrical) over toping each other and engendering a highly complex informational network that feedback on the regulation of cells metabolism (Choi et al., 2016).

Further, it's worth to consider that, especially under stressful conditions, the different sources of external “noise” often affect the way that plants respond to environmental changes (Bertolli and Souza, 2013; Prasch and Sonnewald, 2015). Environmental fluctuations potentiate the accumulation of conserved cellular signals such as reactive oxygen species (ROS) and the modulation of intracellular Ca2+ (Chi et al., 2015; de Souza et al., 2017). Different types of ROS and oxidized molecules produced in different subcellular compartments, together with a spatial and temporal modulation of Ca2+ elicit different transcriptional responses and, in several cases, the expression of nuclear genes can be altered without altering the total concentration of the signaling molecule in the cell as a whole (Tuteja and Mahajan, 2007; Leister, 2012).

INTERCELLULAR AND WHOLE PLANT SIGNALING POTENTIATE THE CHALLENGES TO INTEGRATE OMICS INFORMATION ACROSS SCALES

In addition to intracellular complexity, the interaction between neighboring cells plays an important role in the responses to environmental conditions, and the plant metabolism organization as a whole. In plants, plasmodesmata connect the cytoplasts of adjacent cells across the cell wall, allowing intercellular transport and communication to adjacent cells within a tissue or organ, allowing exchange of small molecules, such as ions, sugars, and phytohormones, as well as larger molecules, including proteins, RNA, and viruses (Brunkard et al., 2013). The exchanges of different types of molecules among cells generate, within the same tissue or organ, different gradients of molecules and metabolites, increasing the complexity of physiological processes. In addition, the same type of signal often induces different calcium-dependent responses between two cells of the same type (Gilroy and Trewavas, 2001). Intercellular communication through plasmodesmata plays a crucial role in specifying the fate of cells, as well as in different responses of the same tissue to environmental conditions (Pyott and Molnar, 2015). An example of this can be seen in one of the mechanisms of root development regulation through the short-range cell-to-cell movement of miR165/6 (Carlsbecker et al., 2010). The expression of mobile miR165/6 in the endoderm results in a morphogenic gradient, which extends into the xylem layers toward the root center. This generates an opposite PHABULOSA (PHB) expression gradient (regulated by miR165/6), which therefore has a higher concentration in internal xylem tissue. Thus, xylem tissue within the stele is defined, among other factors, by the expression of PHB, which is restricted to xylem and procambium by miR165/6, specifically expressed in the endoderm.

This intercellular communication through non-autonomous mobile signals adds a further challenge to OMICS approaches, because organs and plant tissues present a great heterogeneity in expression patterns and metabolite profiles, and this information can be lost upon tissue homogenization for downstream analyses.

Besides local communication mechanisms, plants developed long distance signaling processes that enable communication and systemic responses. This type of communication responds to a wide range of environmental stimuli in which the perceived signals are transmitted to the distal organs, inducing systemic responses. Several messengers have been proposed to mediate this systemic communication in plants such as ROS, electrical signals and Ca2+, appearing to be integrated, demonstrating a fast, complex, and finely tuned communication system (Gilroy et al., 2014).

The systemic responses increase system complexity (plant as a whole), and thus increase the uncertainties of the bottom-up predictability models, since physiological changes in specific tissues may have non-local causes. For instance, a local application of high light results in the activation of a ROS wave, allowing an increase in stress tolerance accompanied by the accumulation of photorespiratory amino acids, including Glycine and Serine, in non-stimulated tissues (Suzuki et al., 2013). Examples also demonstrate that Ca2+ propagation increase in aerial parts of the plant induced by local root treatment with NaCl, showing propagation kinetics differences of leaf-to-leaf (Xiong et al., 2014). The miRNAs also act on systemic responses, such as miR399 that function as a signaling molecule between the aerial tissues and roots to regulate the uptake of inorganic phosphates (Pi) (Chiou et al., 2006).

Actually, the cell is the result of the properties that emerge from the complex interactions and spatial structures among the thousands of molecules and enzymes of which it is composed. In addition, the environmental context, whether from outside or inside the plant, contributes to shape the way that information is processed by each cell (Gilroy and Trewavas, 2001), and these properties expand at different scales within the plant (Souza et al., 2016). According to Vítolo et al. (2012), the observation of different scales of plant organization, under the same circumstances, can show remarkable differences in the responses to the same stimuli, allowing different interpretations if considering each scale as isolated (Stressed or not stressed? It's the question…). For instance, when plants of soybean were subjected to drought, it was observed, in one hand, significant decreases in gas exchanges (reflecting reduction in plant growth) but, on the other hand, non-significant alterations in chlorophyll florescence neither in enzymatic antioxidant activity (Bertolli et al., 2014). Therefore, different scales of organization can show different homeostatic capacities when disturbed, supporting the hypothesis that there is not a privileged level of causation in biological systems (Noble, 2012).

CONCLUDING REMARKS

The Cartesian method proposed by René Descartes in the seventeenth century set that the first step in order to understand some natural phenomenon is to analyze it, i.e., to decompose the phenomenon in its constitutive parts and to understand them separately. This first step is based on the mechanistic assumption that the ultimate components of a particular phenomenon “determine” the properties of the phenomenon itself, supporting the raising of the reductionist approach. The second main step in the Cartesian method is the synthesis, i.e., from knowledge gathered of each isolated part build the “whole picture”. Thus, starting from the Galilean scientific revolution (sixteenth century) until the end of twenty and beginning of twenty-first centuries, occidental science was successful to uncover the layers of complexity underlying to the biological organisms, opening the OMICS era with the genome. But the “whole picture” was not clear yet. As exemplified in the previous sections, some problems have challenged the determinism from below, and then the Cartesian synthesis was boosted to explore higher levels of organization, inaugurating the System Biology thinking. The knowledge that has being built on transcriptome, proteome and, specially, the metabolome (Ryan and Robards, 2006) has showed that the higher levels of organization contribute to regulate the lower levels in a downward causation chain (Figure 1), indicating that there is no a privileged level of causation in the organization of biological systems (Noble, 2012).

Therefore, the main message herein is: the context matters. Whatever the scale of observation is taken (from genes to the whole plant), the interpretation of the data shall consider the context in which the particular scale is embedded. Ultimately, in studies that intent to contribute for improvement of crop yield, the plant phenotype (biomass, root, and shoot architecture and/or the crop yield) should have the final word of the meaning of the changes from the lower levels of organization, since one genotype can be translated in many phenotypes when developed under different environmental conditions (Tardieu et al., 2017). Thus, studies tacking into account specific lower levels of organization should maintain their interpretation restricted to those particular levels, avoiding excessive speculative inferences on the higher levels.
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A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS) gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.
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INTRODUCTION

Seed development is a complex metabolic process, which involves both synthesis and breakdown of macromolecules for growth and maintenance of the embryo (Weber et al., 2005; Le et al., 2007). During seed development, glucose-6-phosphaste is converted to myo-inositol, an intracellular signaling molecule, which is phosphorylated several times to form phytic acid (Raboy, 1997). Seeds with reduced phytic acid content are commercially more valuable because consumption of low phytic acid seeds by monogastric animals alleviates mineral deficiency and reduces phosphorus pollution from animal waste (Raboy, 2007). Mutations that block the phytic acid biosynthesis pathway have been shown to alter the seed metabolite levels in soybean, rice, maize, and other plant species (Wilcox et al., 2000; Shi et al., 2003, 2005; Stevenson-Paulik et al., 2005; Raboy, 2007; Glover, 2011; Jervis et al., 2015). For example, a mutation in myo-inositol phosphate synthase (MIPS) gene results in reduced phytic acid, stachyose, raffinose, and elevated sucrose, and low seed emergence in soybean (Hitz et al., 2002; Saghai Maroof and Buss, 2008). Other non-biosynthetic pathway genes such as multi-drug resistance protein (MRP) genes encoding ATP-binding cassette transporters that are believed to be involved in the transport of phytic acid to storage vacuoles, are also known to regulate phytic acid levels and affect seed emergence (Shi et al., 2007; Nagy et al., 2009; Saghai Maroof et al., 2009; Xu et al., 2009; Jervis et al., 2015).

Transcriptome analysis is a valuable tool for the characterization of the regulatory networks that mediate this complex interaction. The expressions of genes involved in the metabolic activities in seeds are tightly regulated by the synergistic action of many transcription factors and other regulatory genes (Weber et al., 2005; Le et al., 2007). Two independent studies, one with barley low phytic acid (lpa) mutant, and another with soybean mips1/mrp-l/mrp-n (‘3mlpa’) triple mutant have reported the effect of lpa mutations on the transcriptomic profiles of developing seeds (Bowen et al., 2007; Redekar et al., 2015). The differential expression of transcription factor genes such as WRKY and CAMTA (Calmodulin-binding Transcription Activator), was linked to phytic acid biosynthesis pathway, suggesting a complex regulatory mechanism (Redekar et al., 2015). Association of WRKY transcription factors and Ca2+ binding activity with inositol metabolism was also confirmed by another independent study with maize low phytic acid breeding line Qi319 (Zhang et al., 2016). Zhang et al. (2016) also identified ABC transporter gene candidates associated with low phytic acid phenotype in maize using co-regulatory network. In this article, we focus on the discovery of transcription regulatory networks to further investigate the inositol metabolism in soybean.

One type of the widely applied method of network inference is the use of Pearson Correlation Coefficient or related methods for data analysis (Langfelder and Horvath, 2008; Bassel et al., 2011; Li et al., 2012). Although such correlation analyses can cluster genes with similar functions, the resultant networks do not predict the direction of gene regulation. Many other approaches, such as mutual information (Faith et al., 2007), partial correlation (Faith et al., 2007), random forest (Huynh-Thu et al., 2010), and least angle regression (LARS) (Haury et al., 2012), have been developed to perform inference of directed gene regulatory networks. For well-characterized model organisms such as Arabidopsis, known interactions from ChIP-chips or ChIP-seq experiments can be used as prior knowledge in supervised machine learning approaches (Maetschke et al., 2014; Ni et al., 2016). However, for biological systems where little prior information is available, such as in soybeans, unsupervised methods have to be used for network inference. In particular, three methods including co-expression analysis (Bassel et al., 2011), decision trees (Zhu et al., 2013) and mutual information (Gonzalez-Morales et al., 2016) have been successfully applied to identify functional networks in Arabidopsis and soybean seeds. With numerous inference methods available, it has been found that congregating the prediction results from multiple methods (so-called “community-based method”) improves the prediction accuracy as compared to any individual method (Marbach et al., 2012).

In this study, we performed computational inference of gene regulatory networks in low phytic acid mutants and the corresponding non-mutant soybean seeds from time course transcriptomic data. In addition to previously published RNA-seq data (Redekar et al., 2015), we generated new RNA-seq data of developing seeds using a pair of soybean isogenic lines, one carrying the mips1 mutation (‘1mlpa’) and the other the corresponding wild type allele. We implemented a computational pipeline for unsupervised gene regulatory network inference using five different methods: ARACNE (Margolin et al., 2006), Random Forest (Huynh-Thu et al., 2010), LARS (Haury et al., 2012), partial correlation (Schafer and Strimmer, 2005b), and context likelihood relatedness (CLR) (Faith et al., 2007). To improve computational efficiency and interpretability of the inferred network, we adopted the widely used module network approach by which genes were grouped into co-expression modules and inference of gene regulation was performed between transcription factors and gene modules (Segal et al., 2003). We found that many gene modules included genes with meaningful biological functions and some gene modules showed genotype-specific expression patterns. We identified several transcription factors that were differentially expressed between developmental stages and some of the inferred regulatory interactions were specifically found in mutants or non-mutants. Genes involved in phytic acid metabolism and related metabolic processes were found in multiple modules and were predicted to be regulated by different transcription factors. For validation, the predicted interactions were compared with known regulatory interactions observed in the model plant species, Arabidopsis thaliana. These findings provide important hypotheses on expression regulation of myo-inositol metabolism, and phytohormone signaling in developing lpa soybeans. The computational method for inferring regulatory networks is freely available at https://lilabatvt.github.io/LPANetwork/. This method can be used to perform network inference using time series data from soybean or any other crop species.

MATERIALS AND METHODS

Genetic Materials

Four soybean experimental lines designated as: (i) 3mlpa, (ii) 3MWT, (iii) 1mlpa, and (iv) 1MWT were used in this study (Figure 1). The lpa mutant line, ‘3mlpa’, carrying three mutations mips1/mrp-l/mrp-n, and its non-mutant sibling line with normal phytic acid, ‘3MWT’, were derived from crossing of ‘CX-1834’ (lpa line with two mpr-l/mrp-n mutations on soybean chromosomes 19 and 3, respectively) with ‘V99-5089’ (lpa line with single mips1 mutation) (Saghai Maroof et al., 2009). The low phytic acid causing mutations in the parental lines have been mapped to genes Glyma.11G238800 (MIPS1), Glyma.19g169000 (MRP-L), and Glyma.03g167800 (MRP-N) (Saghai Maroof et al., 2009). Another lpa line, ‘1mlpa’, carrying a single mips1 mutation on soybean chromosome 11, and its isogenic sibling line with normal phytic acid, ‘1MWT’, were derived from crossing of ‘Essex’ (a normal phytic acid line with no mutations) with V99-5089 (Saghai Maroof and Buss, 2008; Glover, 2011).
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FIGURE 1. Experimental design and computational pipeline. Samples used in this study include both published (Redekar et al., 2015) and newly generated data. Differential expression analysis and clustering analysis were used to produce the initial candidate genes and gene modules. Machine learning algorithms were used to construct gene regulatory networks.



Plant Growth and Tissue Sampling

Four seeds from each of experimental lines—3mlpa, 3MWT, 1mlpa, and 1MWT, were planted in each of 12 pots containing Metro-Mix®; 360 (Sun Gro) media topped with GardenPro ULTRALITE soil (Redekar et al., 2015). These plants (48/line) were grown in growth chambers with 14 /10 h photoperiod, 24°C/16°C temperature, 300–400 μE light and 50–60% relative humidity. Developing seeds were sampled in triplicates for each experimental line based on seed lengths corresponding to 2–4 mm (S1), 4–6 mm (S2), 6–8 mm (S3), 8–10 mm (S4), and 10–12 mm (S5), respectively. Samples were flash frozen using liquid nitrogen and stored at −70°C. High-quality total RNA (RIN 9–10) was extracted from frozen samples using RNeasy Plant Mini Kit, with on-column DNase digestion (QIAGEN). Total of 60 mRNA libraries were prepared from total RNA samples and sequenced as 100SE using HiSeq2000 at the Genome Quebec Innovation Center, Canada.

Sequence Data Processing and Differential Gene Expression

Reads were aligned to the latest soybean reference genome (‘Williams 82’ Wm82.a2.v1, downloaded from Phytozome1 with STAR (version 2.4.2) and number of reads mapped to each gene was counted using featureCount (version 1.4.6). Differential gene expression was analyzed using DESeq2 (version 1.8.2) in R (version 3.2.4). Four genotypes, 3mlpa, 3MWT, 1mlpa, and 1MWT, were analyzed in this data. For each pair of mutant and corresponding non-mutant, stage-wise comparison was performed to identify differentially expressed genes for each stage (Supplementary Figure 1A) (Redekar et al., 2015). For each genotype, between-stage comparisons were performed to identify differentially expressed genes between adjacent developmental stages (Supplementary Figure 1B). These analyses were performed using DESeq2 with default parameters. Between-stage comparisons and stage-wise comparisons address different type of biological question. Between-stage comparisons find genes that change between stages, but do not directly identify genes that are affected by mutations. Stage-wise comparison, on the other hand, directly finds genes that change between mutant and non-mutant lines, but does not find genes with interactions. Differentially expressed genes were the genes with FDR adjusted p < 0.01 and log2 fold change >1. Differentially expressed genes and their log2 fold changes are provided as Supplementary Tables 1–3. RNA-Seq data used in this study have been deposited into the NCBI Gene Expression Omnibus (GEO) repository under accession number GSE101692.

Inference of Gene Regulatory Networks

Expression Clustering, Gene Ontology, and Gene Function Analysis

Gene expression levels for each gene were normalized using DESeq2 and summarized as FPKM (Fragments Per Kilo-base pair per Million reads) values. The gene expression levels (FPKM values) were averaged across replicates and only differentially expressed genes were used in the clustering analysis. K-means clustering (Sherlock, 2000) was performed using R packages, and the number of clusters (K) was determined using the minimum Bayesian Information Criteria (BIC) method (Ramsey et al., 2008). In brief, K was set to be an integer number from 20 to 100 with an incremental step size of 5. For each K-value, k-means clustering was performed and BIC statistics were computed. The minimum BIC was achieved with K = 60 (Supplementary Figure 2). Gene Ontology (GO) annotation of all soybean genes was downloaded from Soybase2 GO enrichment analyses were performed for each gene module. Significantly enriched GO categories were selected using Fisher's exact test with FDR < 0.05 (Supplementary Table 4). Transcription factor annotation was downloaded from plant TFDB (Jin et al., 2015, 2017). Metabolic pathway genes were downloaded from the SoyCyc 7.03 database from the Plant Metabolic Network4 website.

Network Inference Methods

To infer regulatory networks, we adopted the methods of module networks (Segal et al., 2003). First, genes were grouped into modules using the k-means clustering method. Second, differentially expressed transcription factors were used as putative regulators for network inference. In our data, we found 60 clusters (gene modules) and 1245 transcription factors that were differentially expressed in at least one comparison. The mean expression profile for each of the 60 modules was computed and the expression levels of 1245 transcription factors were included to construct an expression matrix with 1305 rows (genes) and 20 columns (five developmental stages for four experimental lines). Five distinct network inference algorithms: ARACNE (Margolin et al., 2006), Random Forest (Huynh-Thu et al., 2010), LARS (Haury et al., 2012), partial correlation (Schafer and Strimmer, 2005b), and CLR (Faith et al., 2007), were applied to this expression matrix to infer putative regulatory interactions between each transcription factor and gene modules. These methods were chosen because they represent a diverse set of computational methods for gene network inference. These methods were selected also because they were ranked as top performers in a recently published benchmark of network inference methods (DREAM challenge) (Marbach et al., 2012). Details of each method, statistical analysis of network and network validation are provided as supplementary text.

RESULTS

Summary of Differential Gene Expression Analysis

Transcriptome sequencing data from five developing seed stages of four soybean lines (3mlpa, 3MWT, 1mlpa, and 1MWT) were analyzed (Figure 1). Stage-wise comparisons were performed for mutants (3mlpa, 1mlpa) and their corresponding non-mutants (3MWT, 1MWT), to determine the number of genes affected by the mutation at each stage (Figure 2). For stage-wise comparisons, when 1mlpa was compared with 1MWT, we found fewer than 250 differentially expressed genes in all time points (Supplementary Figure 2). However, we found more than 4000 differentially expressed genes between 3mlpa and 3MWT (Supplementary Figure 2). It is expected to have higher number of differentially expressed genes for comparison between recombinant inbred lines (3mlpa vs. 3MWT) as opposed to that between near-isogenic lines (1mlpa vs. 1MWT). Few genes are differentially expressed in all five stages when comparing 3mlpa vs. 3MWT (Figure 2B). These results suggest that genes affected by mutations are unique at each developmental stage. Between-stages comparisons were performed for each genotype separately (Figure 1, Supplementary Figure 1). Results of the stage-wise and between-stages differential expression analyses are provided as Supplementary Tables 1, 2, respectively. For between-stages comparisons (Supplementary Figure 1B), we found that hundreds of genes are differentially expressed when comparing adjacent developmental stages (Supplementary Figure 2). However, there are few genes differentially expressed across all stages. For example, in 3mlpa mutant, only 2 genes are differentially expressed between any two adjacent stages (Figure 2A). We found 1643 genes that are differentially expressed between developmental stages and found in all four genotypes in this study (Figure 2C), suggesting these genes are a core set of genes that change expression between developmental stages and are not affected by the genotypes. We determined the number of differentially expressed genes in each of the comparisons (Supplementary Figure 2). Interestingly, the highest numbers of differentially expressed genes were found in two comparisons: between stage 1 and stage 2 for 1MWT and for 3MWT (3MWT S2 vs. S1 and 1MWT S2 vs. S1) suggesting that non-mutant plants have a high number of differentially expressed genes in the early stages of seed development than mutants.
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FIGURE 2. Venn diagrams. S1, S2, S3, S4, and S5 represent five developmental stages. (A) Number of genes differentially expressed between consecutive stages in 3mlpa seeds. (B) Number of genes differentially expressed for each stage when comparing 3mlpa to 3MWT seeds. (C) Number of genes differentially expressed for different genotypes for between stage comparisons.



The two sets of low-phytic acid causing mutations (mips1 and mrp-l/mrp-n) interrupt the phytic acid biosynthesis and transmembrane transporter activity, ultimately reducing the seed emergence potential in our mutant lines. We were, therefore, interested in studying the behavior of genes associated with phytic acid metabolism, abscisic acid (ABA) and auxin signaling and metabolism, and transmembrane transport. The log2 fold change for significantly differentially expressed genes that belonged to this category is summarized in Supplementary Table 3.

Co-expression Modules Represent Distinct Functional Categories

We identified 12998 genes that are differentially expressed in at least one of the comparisons and these genes were used for K-means clustering analysis to identify co-expressed gene modules (Figures 1, 3). We found that the optimal number of clusters (modules) is 60 based on BIC (Supplementary Figure 3). Average expression levels of all genes in each module were used to generate a heat map (Figure 3A) and GO enrichment analyses were performed for each of the modules (Figure 3B, Supplementary Table 4). The expression modules can be approximately classified into three main patterns. In pattern 1, there are 29 modules highly expressed at the early stage of seed development as shown in upper half of the heat map (Figure 3A, cluster 24 to cluster 18). In pattern 2, there are 11 modules highly expressed in the later stage of seed development as shown by the lower portion of the heat map (Figure 3A, modules 9 to 47, except for module 14, which shows high expression at both first and last developmental stages). In pattern 3, 12 modules showed high expression in the middle of the developmental stages but low expression levels in the early and late developmental stages. Genotype-specific expression patterns were also found by clustering analysis. For example, modules 24, 57, and 15 are highly expressed in 3mlpa at the first time point, whereas the expression levels are not high in the other three genotypes. The modules identified in near isogenic lines (1mlpa and 1MWT) showed highly similar expression patterns than those identified in recombinant inbred lines (3mlpa and 3MWT).
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FIGURE 3. Clustering and gene function analysis. (A) Gene expression clusters. Color indicates normalized expression levels. Genes were clustered based on the K-means clustering algorithm. Hierarchical clustering was performed on the rows of the average expression levels for each cluster. Numbers on the right of the heatmap represent cluster id (CID, 1 to 60). (B) GO functional enrichment analysis. Rows of this heatmap is organized as the same order as the expression clusters. Each column represents a GO category. Color represents -log10 FDR from enrichment analysis. Some enriched categories were summarized and annotated under the heat map. The complete set of enriched GO categories is provided as supplementary information.



GO enrichment analyses showed that many gene modules are enriched with genes in specific functional categories (Supplementary Table 4). For example, genes in modules 22, 49, 53, and 55 are highly expressed during the early stages of seed development and are enriched with genes with functions in hormone signaling and responses (Figure 3B, box b). Of these, several genes showed increased expression in 3mlpa (S1) while decreased in 1mlpa (S1) when compared with respective non-mutant lines at stage 1 (Table 1). We also found that genes in module 42 are highly expressed at the last stage of seed development and this module is enriched with genes functioning in seed dormancy, seed germination and lipid storage (Figure 3B). Genes in module 36 are highly expressed in the middle stages of seed development and are enriched with genes in starch and lipid biosynthesis (Figure 3B, box d). The functional enrichment of genes in these modules indicates that our clustering analysis can find genes representing biological functions that are known to be active at different stages of seed development. We also found that some modules have genotype-specific expression patterns. For example, module 7 is highly expressed only in 3MWT, which is enriched with genes functioning in photosynthesis, translations, and transcription (Figure 3B, boxes a,c). This result shows some gene modules have genotype-specific expression pattern and are enriched with specific functional genes.


Table 1. Differentially expressed genes from co-expression modules in early stages of seed development.
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Regulatory Network Interactions

Five different network inference algorithms were used to infer putative regulatory interactions between regulators and their targets (Figures 1, 4). Fifty-four interactions between 54 transcription factors and 32 modules were predicted by all five algorithms (Supplementary Table 5). Some modules were predicted to be regulated by more than one transcription factor and no transcription factor was predicted to regulate two modules. The identified interactions represent highly stringent predictions and are a very conservative estimation of all possible interactions since only 0.06% of all 74,700 possible interactions were found to be significant by all five computational methods. Four hundred six interactions between 348 transcription factors and 60 modules were supported by four or more methods (Supplementary Figure 4, Supplementary Table 6), representing a larger number for predicted regulatory interactions. The network figure includes both directed and undirected edges (Figure 4). Each directed edge connects a transcription factor with its targeted gene module. Such edge represents predicted regulatory interactions. Each undirected edge connects a transcription factor to the module this factor belongs to. These undirected edges reflect the fact that each transcription factor is also co-expressed with other genes in the genome and can be assigned to a specific gene module. The regulatory interactions (directed edges) are further classified based on the differential expression pattern of the regulatory TFs. We found 10 TF-module interactions (black arrows) in which the TFs are differentially expressed between stage comparisons (Supplementary Figure 1B) in both mutants (3mlpa and 1mlpa) and both non-mutants (3MWT and 1MWT). These interactions are not affected by the mutations or genetic backgrounds. We found 10 interactions (Figure 4, green arrows) in which the TFs are differentially expressed between stage comparisons for non-mutants but not in mutants. These interactions are potentially lost due to the mutations. We also found nine interactions (blue arrows) that are not present in the non-mutants, but are present in either one of the mutants, suggesting that these interactions are gained in the mutants. Finally, we found 14 interactions (red arrows) that are not present in either the mutants or the non-mutants, but the TFs are differentially expressed when comparing 3mlpa to 3MWT at one or more developmental stages. These interactions are altered in 3mlpa/3MWT and do not change the trajectory of gene expression between stages but affect gene expression within specific stages. We found that many TFs are also connected to the target modules by undirected edges, indicating that these genes are co-expressed with their target genes. We also found several cases where a TF does not regulate its own module but is regulating other modules, suggesting our method can find non-linear interactions between TF and target modules. All the predicted regulatory interactions are provided as a (Supplementary Tables 5, 6).
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FIGURE 4. Gene regulatory networks in low phytic acid mutants and non-mutant seeds. Directed edges (with arrowheads) represent predicted regulatory interactions. Undirected edges (without arrowheads) connect each transcription factor and the co-expression module to which the transcription factor belongs. Black arrows: the TFs are differentially expressed in between stage comparisons in both mutants (3mlpa and 1mlpa) and both non-mutants (3MWT and 1MWT). Green arrows: the TFs are differentially expressed in between stage comparisons for non-mutants but not in mutants. Blue arrows: the TFs are not differentially expressed in the non-mutants but are differentially expressed in either one of the mutants. Red arrows: the TFs are differentially expressed when comparing 3mlpa to 3MWT at one or more developmental stages. Grey arrows: interactions that do not belong any of the above four categories.



Validation of Predicted Regulatory Networks

To validate the results from the computational inference, we compared the regulatory network as predicted by our methods with published regulatory interactions observed in the model plant species, Arabidopsis. We combined three recently published Arabidopsis genome-wide gene regulatory networks (Sparks et al., 2016), including 2,914 regulatory interactions between 578 regulators and 717 targets. We mapped soybean genes to Arabidopsis genome and searched for predicted regulator-module interactions, which are also found in Arabidopsis. Among 54 interactions we predicted, five TF-module interactions and 13 TF-gene interactions from this dataset are also found in the Arabidopsis regulatory networks (Supplementary Table 7), providing support for the predicted gene regulatory networks. This small overlapping is expected because the current Arabidopsis interaction network (2914 interactions) is only a tiny fraction of true interactions that happen in-vivo (see discussion).

Transcription factors regulate their target through binding of sequence specific motifs in the promoter regions of the target genes. To further validate the predicted regulatory networks, we performed promoter motif search. Among many programs that are available for motif discovery, the MEME suite contains the most comprehensive sets of programs that allows users to perform motif discovery, motif search and motif comparison. We used the MEME program to identify motifs in the promoter regions of genes in each gene module. We tested the enrichment of these newly discovered motifs and identified 101 motifs that are enriched in 36 modules, with each module having one or more enriched motifs. In our predicted interaction networks, there are 54 transcription factors that regulate 32 modules. We found that 21 out of these 32 modules contain one or more enriched motifs (Supplementary Table 8). These motifs are putative binding sites of the 54 transcription factors that are regulating genes in these modules.

To further validate the results of the motif search, we compared our newly discovered motifs to a database of motifs generated by direct sequencing of binding sites of over 400 Arabidopsis TFs. The pattern of these motifs is represented by position specific weight matrices (PSWM) (Bailey et al., 2009). This comparison aims at testing whether any of the enriched motifs are similar to the binding motifs of the genes in the same gene family in Arabidopsis. For example (Table 2), we found that a bZIP transcription factor (Glyma.19G244800, whose most similar Arabidopsis gene is AT5G28770) is regulating module 57 in our predicted network. Our analysis found a GCCACGT motif enriched in the promoter regions of module 57 (p < 1.21e-3). This motif is highly similar to the binding motif (GCCACGT) of an Arabidopsis bZIP transcription factor (p < 1.82e-10). Four such examples are shown in Table 2. Among the 21 modules with enriched motifs in our predicted regulatory networks, we found that 17 motifs are highly similar to the corresponding Arabidopsis motifs in the same TF gene family (Supplementary Table 8), providing strong support to the validity of our predictions.


Table 2. Motifs enrichment analysis.
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Regulatory Network Changes and Genes in Phytic Acid Metabolic Pathways

To understand the connections between transcription regulation and metabolic pathways that were altered in the 3mlpa and 1mlpa mutant lines, we downloaded the metabolic pathway annotation from the SoyCyc 7.0 database. We mapped genes in myo-inositol metabolism, stachyose metabolism and sucrose metabolism to different gene modules, because these metabolites are altered as a result of lpa mutations (Supplementary Table 3). We found that there were 64 genes involved in these metabolic pathways, which mapped to 34 gene modules (Supplementary Table 3). Twelve of the 64 genes were involved in stachyose (or raffinose family oligosaccharides (RFOs)) biosynthesis and eight were associated with inferred gene regulatory networks (Figure 5). In module 29, which is up-regulated in the first stage of seed development, two genes (Glyma.02G303300 and Glyma.14G010500, both encoding raffinose synthase / seed imbibition protein 1) were found to be regulated by a bZIP transcription factor (Glyma.02G131700). This bZIP transcription factor is homologous to ABF1 (ABA response element-binding factor 1) in Arabidopsis, providing a potential connection between ABA response and stachyose biosynthesis (Figure 5). Some of the enzymes involved in myo-inositol biosynthesis are regulated similarly in mutant and non-mutant lines. For example, inositol-polyphosphate 5-phosphatase (Glyma.20G170500) and inositol-phosphate phosphatase (Glyma.09G011100) are found in module 16. Genes in this module are up-regulated during mid-stages of seed development. Module 16 is predicted to be regulated by two transcription factors, a bHLH transcription factor (Glyma.13G040100) and a C2H2 transcription factor (Glyma.13G327500). The bHLH transcription factor is homologous to SPCH, which regulates stomatal lineage specification during embryo development (Danzer et al., 2015). Some regulatory interactions are only found in non-mutants. For example, genes from module 40 are predicted to be regulated by Glyma.17G085600, a MYB-related transcription factor, and this module contains two genes related to myo-inositol biosynthesis (Glyma.07G107000 encoding inositol-polyphosphate 5-phosphatase and Glyma.05G180600 encoding inositol-1-phosphate synthase). This module is highly expressed in the early stage of seed development and the MYB-related transcription factor is similar to RSM1 in Arabidopsis, which has been found to be related to auxin signaling in early morphogenesis (Hamaguchi et al., 2008). Several target genes associated with regulation of phytic acid biosynthesis pathway matched with those discovered in co-expression network of developing maize kernel with low phytic acid content (Zhang et al., 2016). These predictions provide genotype-specific, testable hypotheses that may connect gene expression patterns with putative regulatory TFs and hormone regulations during different seed developmental stages.
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FIGURE 5. Schematic diagram of regulation of inositol pathway in low phytic acid soybean mutants. Black arrows represent the flow of myo-inositol in multiple pathways in non-mutant plants. Red solid arrows with mips1 label represent mutation in the rate-limiting first step of inositol pathway, catalyzed by myo-inositol phosphate synthase. Red dashed double arrows represent mutation in MRP-type ABC transporters (mrp-l/mrp-n) that block the last step in the inositol pathway, which is the movement of phytic acid to storage vacuoles. The myo-inositol pathway is blocked in single mutant (mips1 or 1mlpa) at the first step, and in triple mutant (mips1/mrp-l/mrp-n) at both first and last steps. Blue triangles represent predicted positive regulation in non-mutants. Red triangles represent predicted gene regulations in both single and triple mutants. For example, a bZIP transcription factor (Glyma.02G131700) is homologous to the well-known ABF1, and is involved in ABA signaling. This transcription factor is predicted to positively regulate raffinose synthase in non-mutant genotypes. A DOF transcription factor (Glyma.17G101000) is predicted to regulate inositol phosphatase in mutants. This enzyme is involved in breakdown of inositol pathway intermediates to form myo-inositol. A MYB transcription factor (Glyma.13G309200) is predicted to regulate myo-inositol transporter in mutants.



DISCUSSION

In this study, we performed computational inference of gene regulatory networks using data from developing soybean seeds from two mutants (3mlpa and 1mlpa), with lpa-causing mutations, and the respective non-mutant siblings (3MWT and 1MWT). We identified co-expression gene modules with distinct and genotype specific expression patterns. These gene modules are also enriched with genes with various functional categories that are related to different stages of seed development. We identified transcription factors and their putative targets using supervised machine learning methods. Some of these transcription factors are differentially expressed only in non-mutants or only in mutants, suggesting that their regulations are lost or gained due to mutations. Many genes that encode enzymes in the metabolic processes of phytic acid, myo-inositol, sucrose, and stachyose and related oligosaccharides are found in these gene modules. Overall, our analysis provides a framework to connect transcription factors with genes in biological processes such as phytic acid metabolism, auxin-abscisic acid signaling and seed dormancy.

Importance of Regulatory Network Inference

The predicted interactions provide a testable hypothesis for experimental validation using transgenic plants or ChIP-seq experiments. The results from this analysis can also be used to guide interpretation of other genomic mapping experiments such as genome wide association studies or quantitative trait loci analyses and to provide guidance for refining candidate gene lists. Soybean has a complex genome, which encodes over 4,500 putative transcription factors and over 46,000 coding genes. Although transcriptome data have become widely accessible for research in soybean and other crop species, it is still challenging to identify mechanistic connections between the observed transcriptome data with underlying regulatory networks. Differential gene expression analyses can be used to identify candidate genes that change under certain conditions or in specific mutants. However, in most situations, one still faces the problem of interpreting a long list of differentially expressed genes.

Our approach provides one alternative solution to this problem using well-developed machine learning methods to infer regulatory interactions. Our method implements the “community approach,” which has been shown to provide better performance than any individual method alone. The five computational methods are based on fundamentally different statistical and mathematical formulations thus complement each other and provide a list of highly confident prediction results. Our approach successfully reduces the total number of candidate genes from over 10,000 genes that change in at least one comparison to 54 transcription factors, providing a much shorter list of key genes that can be focused on for validation experiments. However, combining five methods also limited the total number of predicted interactions (54 predicted interactions), because each method predicts some interactions that are not predicted by other methods.

We validated the predicted interactions using Arabidopsis gene regulatory networks. Arabidopsis is the model plant species, which provides most gene regulatory network information among all plant species. Although soybean and Arabidopsis diverged over 120 million years ago, key genes in metabolic pathways and signaling networks are conserved in both species (Jung et al., 2000; Hegeman et al., 2001; Le et al., 2010; Xu et al., 2011; Leite et al., 2014; Gerrard Wheeler et al., 2016), which is expected for a physiological process as conserved as seed development. Therefore, one can expect some regulatory interactions to be conserved between these two species. In fact, 13 interactions predicted by our method are also found in the Arabidopsis gene regulatory networks (Supplementary Table 7). The Arabidopsis genome contains approximately 2200 TFs and more than 27000 genes (Jin et al., 2015, 2017; Cheng et al., 2016). There are more than 59 million possible interactions between these TF and genes. Although the number of biologically active interactions is probably < 1% of all possible interactions, the total number of true interactions is still far more than the 2914 interactions that were used in this comparison. Therefore, it is not surprising that we found a small overlap between the predicted interactions and those identified in Arabidopsis. As more interactions will be identified in both plant species, we would expect such overlap to increase. In our analysis, 17 motifs from 21 enriched modules (Supplementary Table 8) similar to the motifs identified in Arabidopsis orthologous genes, indicating that the interactions identified in this study are likely to be conserved between the two species. The actual number of conserved interactions is likely to be underestimated, because the regulatory network from Arabidopsis is far from complete. Nevertheless, our results provide an important first step toward characterizing gene regulatory networks in soybeans and other crop species.

One would expect more transcription factors being active during the seed development process. To observe a larger number of predicted interactions, we also provide results that are predicted by four out of five methods (Supplementary Table 6). This can be further extended to include predictions from fewer methods. Although aggregating multiple methods has been shown to outperform individual methods, some predictions by a specific method can represent interactions that cannot be detected by other approaches. If a specific target gene or specific function is of interest, one can also use our method to generate a ranked list of all predictions for the target of interest and use predicted regulators as candidate genes.

Regulation of myo-Inositol Metabolism in 3mlpa Mutant Line

Myo-inositol is an essential signaling molecule with multifunctional properties including gene regulation, chromatin modeling, mRNA transport, signal transduction, cell death, pathogen resistance, vesicle trafficking, plasma membrane, and cell wall formation (Martin, 1998; Stevenson et al., 2000; Chen and Xiong, 2010). It is synthesized in a two-step pathway (Figure 5), where glucose-6-phosphate is first converted to inositol monophosphate (IMP), a rate-limiting step catalyzed by MIPS1 enzyme, followed by dephosphorylation of IMP to form myo-inositol (Loewus and Murthy, 2000). Upon synthesis, myo-inositol is utilized in and recycled from multiple metabolic pathways such as biosynthesis of phytic acid and RFOs (such as stachyose and raffinose), inositol and phosphatidylinositol intermediates, auxin-inositol conjugates and glucuronic acid.

The mips1 mutation in Arabidopsis is associated with reduction in cellular myo-inositol levels and defects in early embryogenesis (Meng et al., 2009; Chaouch and Noctor, 2010; Chen and Xiong, 2010; Donahue et al., 2010). The mips1 mutation in soybean (as in parent V99-5089, 1mlpa of this study) is associated with decreased levels of phytic acid and RFOs such as raffinose and stachyose, increased levels of sucrose and low emergence. The soybean mips1 mutants also displayed normal RFO phenotype upon application of exogenous myo-inositol (Hitz et al., 2002). It is likely that, similar to Arabidopsis, the mips1 mutation in soybean reduces myo-inositol levels, preventing RFO biosynthesis in parent V99-5089 (or in 1mlpa), as myo-inositol is one of the starting substrates in this pathway. Since myo-inositol is not consumed by synthesis of RFO (it is a necessary intermediate, but recycled along the pathway), it is possible that the concentration of myo-inositol is reduced to such a low level such that synthesis of RFOs is greatly reduced. Sucrose is consumed in stachyose synthesis; it is therefore possible that inhibition of this pathway by the absence of myo-inositol is causing the increase in sucrose levels in V99-5089, due to accumulation of unused sucrose substrate.

The mrp-l/mrp-n mutations resulted in reduced seed phytic acid and low emergence, but did not alter the RFOs composition. In addition, the myo-inositol content in mrp-l/mrp-n mutant increases during the seed development phase prior to maturation (Israel et al., 2011). This suggests that in the presence of mrp-l/mrp-n mutations, the mips1-associated decrease in RFOs composition is restored, despite the reduced myo-inositol production due to the mips1 mutation. This supports the prevalent hypothesis that the lack of transporters in the mrp-l/mrp-n mutant may trigger hydrolysis of cytoplasmic phytic acid to form inositol intermediates and myo-inositol, hence elevating the myo-inositol levels and preventing phytic acid synthesis, diverting the metabolic pathways to myo-inositol production (Figure 5). Another possibility is that lack of intracellular myo-inositol or phytic acid triggers feedback regulation that up-regulates transporters which can import inositol from the outside of the seed, hence elevating myo-inositol levels. This is in agreement with increase in the expression of inositol transporter genes during early stages of seed development in 3mlpa mutant (Redekar et al., 2015).

In the present study, the inositol transporter gene (Glyma.09G011400) is also up-regulated in 1mlpa, a single mips1 mutant. This common up-regulation of inositol transporter in mips1 and in mips1/mrp-l/mrp-n mutants suggests that these mutations are triggering the same signaling pathway (Figure 5). This inositol transporter gene belongs to module 5 and is predicted to be regulated by a MYB transcription factor (Glyma.13G309200), which represents a promising target for experimental validation (Figure 5). These target genes are in agreement with those identified in developing maize kernel with low phytic acid content (Zhang et al., 2016).

We identified over 30 genes associated with myo-inositol metabolism in this network analysis (Supplementary Table 3). Some of these genes belong to the modules that are only regulated in mutants. For example, an inositol-polyphosphate 5-phosphatase (Glyma.01G200500) is predicted to be regulated by a DOF transcription factor (Glyma.17G101000). This enzyme catalyzes an intermediate step in converting phytic acid to myo-inositol. The DOF transcription factor is differentially expressed when comparing 3mlpa with 3MWT at stages 1, 3, and 5 and is not differentially expressed in any other comparisons. This observation is consistent with our hypothesis that in 3mlpa mutant, phytic acid is recycled to produce myo-inositol, which participates in RFO synthetic pathways.

Regulation of Auxin-ABA Signaling and Seed Dormancy-Related Genes in lpa Mutants

A main goal of this work was to elucidate the molecular basis of negative downstream impacts of lpa mutations. Here we found one possible component of this: that in soybean these mutations greatly impact phytohormone pathways. In addition to myo-inositol, the importance of phytohormones such as auxin and ABA, in seed development is well-documented (Locascio et al., 2014). Auxin is a key hormone through all phases of seed development including embryogenesis, organ differentiation, endosperm formation, and seed maturation, whereas ABA is involved in onset and maintaining seed dormancy, and is active in the seed maturation and desiccation phases (Locascio et al., 2014). Cross signaling between auxin and ABA are involved in regulating seed dormancy and hence germination (Liu et al., 2013). Hormone signal transduction is controlled by regulating their biosynthesis, accumulation and distribution in different sections and stages of developing seeds by factors such as myo-inositol. The Arabidopsis mips1 mutants have demonstrated defects in cotyledon development and reduced expression of basipetal auxin efflux carriers such as PIN1 and PIN2 (Chen and Xiong, 2010; Luo et al., 2011). The factors regulating cellular myo-inositol levels might therefore also regulate cross signaling of auxin and ABA. However, it is still unclear to what extent auxin-ABA cross signaling is disturbed in lpa-mutants.

In this study, nearly the entire spectrum of the auxin signaling pathway was identified and was differentially regulated in 1mlpa and 3mlpa mutants as compared to the corresponding wild types. We identified 188 auxin-related genes differentially expressed in one or more comparisons tested in this study (Supplementary Table 3). These included genes involved in auxin metabolism, transport, signal transduction, and transcription regulation. We also observed 36 genes from the ABA signaling pathway differentially expressed in one or more comparisons. The 1mlpa vs. 1MWT comparison identified down regulation of two ABA catabolism genes in 1mlpa (Glyma.01G153300 and Glyma.09G218600, which remove active ABA), whereas, in 3mlpa vs. 3MWT comparison, these two genes are up-regulated.

In summary, we identified potential candidate genes that may play a role in regulating inositol metabolism, auxin-ABA signaling and seed maturation-dormancy in low phytic acid soybean during seed development. Although follow up experiments are required to validate these findings, the comprehensive regulatory network and the computational analysis pipeline of this study has set the necessary groundwork for future hypothesis driven investigations.
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Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

Keywords: rice, seed, endosperm, embryo, multi-omics, translation, starch, glutelins

INTRODUCTION

Seeds of high nutritional and physiological quality are essential for the benefit of mankind. Seeds are also at the forefront for the preservation of biodiversity through the plant conservation strategies in seed banks (Wyse Jackson and Kennedy, 2009; Westengen et al., 2013; Hay and Whitehouse, 2017). The quality of seeds comprises physiological, ecological and nutritional traits for agriculture, agroecology, and agro-food system. In terms of botanical provenance, the mature seed of Angiosperms is a patchwork of maternal and filial tissues (Walbot and Evans, 2003; Olsen, 2004; Nowack et al., 2010; Lafon-Placette and Kohler, 2014). The double fertilization of the haploid egg cell and diploid central cell by the two haploid sperm cells gives rise to a diploid embryo and to a triploid endosperm respectively. In addition, the seed coat (testa) is composed of several cell layers coming from the mother plant ovule and ovary. In cereals (Poaceae), the embryo is composed of the embryonic axis surrounded by a single cotyledon (scutellum) and it will form the future seedling. The mature endosperm is composed of four differentiated regions: the endosperm transfer cell (ETC) region, the embryo-surrounding region (ESR), the aleurone layer (AL), and the starchy endosperm (SE) cells (Olsen, 2004). While the ETC and AL cells remain alive at the end of cereal seed development, most of the ESR and SE cells have undergone programmed cell death (PCD) with characteristic DNA laddering and organelle degradation.

From an evolutionary point of view, one hypothesis stipulates that the endosperm would have derived from a supernumerary embryo originating from double fertilization and that would have evolved into an embryo-supporting structure (Friedman, 1998). Subsequently, the endosperm has evolved multiple roles related to the embryo. First, the endosperm protects the embryo from atmospheric oxygen that eventually leads to the formation of hydroperoxides and cell death (De Giorgi et al., 2015). In addition, critical cross-talk between abscisic acid (ABA) and gibberellin (GA) regulating seed development, size, dormancy or storage breakdown during germination are also the results of endosperm—embryo interactions (Fincher, 1989; Penfield et al., 2006; Bethke et al., 2007; Folsom et al., 2014; Yan et al., 2014; Bassel, 2016). Still, so far, few reports have addressed seed quality issues in terms of functional tissue specialization.

During seed maturation, orthodox seeds acquire desiccation tolerance (DT) and storability (longevity) as defined by the ability to withstand extreme water loss (to values around 0.1 g water per gram of dry weight) and to survive in the dry state (Hoekstra et al., 2001; Alpert, 2005). Among the mechanisms that promote DT, the formation of a glassy cytoplasm and the subsequent decrease in molecular mobility is positively correlated with seed longevity (Buitink and Leprince, 2008). During the late phase of seed maturation, the accumulation of late embryogenesis abundant (LEA) proteins, heat shock proteins (HSPs), antioxidants and non-reducing sugars all together contribute to glassy state establishment (Boudet et al., 2006; Farrant and Moore, 2011; Kaur et al., 2016; Sano et al., 2016). How different tissues cooperate to establish seed DT and storability is still unclear especially in cereals with a persistent endosperm. Among the few existing studies, a proteomic analysis on maize viviparous5 (vp5) mutant showed that LEA and HSPs were affected in the ABA-deficient embryos of the vp5 mutants contrarily to the endosperm (Wu et al., 2014). Furthermore, a consequence of lipid degradation during storage, detoxification of the lipid peroxidation by-product malondialdehyde (MDA) by the rice aldehyde dehydrogenase 7 (OsALDH7) proved to be essential for DT (Shin et al., 2009). The null rice mutants of OsALDH7 showed increased MDA resulting in reduced seed viability (Shin et al., 2009). Yet, the exact site of MDA generation during dry storage and seed aging remains unknown. The impact of active lipid degradation on rice seed quality was further reinforced by transgenic analysis of two rice lipoxygenases OsLOX2 and OsLOX3 since silencing and overexpression of these two enzymes acts in opposite directions on seed germination and longevity (Huang et al., 2014; Xu et al., 2015). Interestingly, the suppression of OsLOX3 expression in the rice endosperm improved resistance to seed aging (Xu et al., 2015). The endosperm outer cuticle layer permeability can also preserve the embryonic components from oxidation by atmospheric oxygen (De Giorgi et al., 2015). A recent paper showed that during rice seed aging, the endosperm and embryo were differentially affected by seed aging in particular regarding glycolytic enzymes that decreased in abundance in the endosperm while increasing in the embryo (Zhang et al., 2016). Last but not least, seed storage proteins can also buffer the oxidative stress caused by seed aging as shown for Arabidopsis cruciferins (Rajjou et al., 2008; Nguyen et al., 2015). Despite these relevant studies, the majority of the molecular determinants of both DT and seed longevity in different seed tissues are still to be established especially in the embryo of cereal crops.

The generation of energy, digestion of seed storage proteins (SSPs), carbohydrates and/or triacylglycerols (TAGs) proved to be of paramount importance to obtain highly vigorous seeds. Within a few hours of imbibition, the seed embryo is rapidly resuming respiration thanks to the presence of a functional electron transport chain in undifferentiated pro-mitochondria (Ehrenshaft and Brambl, 1990; Logan et al., 2001; Howell et al., 2006). Later on, the differentiation of these pro-mitochondria in fully functional mitochondria participates to full metabolic resumption through establishment of the tricarboxylic acid cycle (TCA) (Lawlor and Vince, 2014). In contrast, it is less clear how the AL cells produce the requested energy to synthesize the large amounts of α-amylases for starch degradation (Fincher, 1989). During barley seed development, the inner SE is mildly to severely hypoxic while the AL is not (Rolletschek et al., 2011). Still, the precise investigation of oxygen requirement and consumption during germination in the different cereal seed tissues remains to be established.

The metabolic system for mRNA translation and protein synthesis is the most energy-requiring process in most organisms. Through the use of the translational inhibitor cycloheximide, it has been shown that translation of stored mRNAs is necessary and sufficient for both Arabidopsis and rice germination (Rajjou et al., 2004; Sano et al., 2012, 2013). On the other hand, DNA transcription by RNA polymerase II is necessary for seed vigor and seedling growth (Rajjou et al., 2004; Sano et al., 2012). In cereal seeds, the importance of mRNA translation in the AL during germination is crucial. Indeed, a strong synthesis and accumulation of α-amylases, in response to gibberellic acid, participates to starch mobilization that in turns fuel the germinating embryo with oligosaccharides (Fincher, 1989). Interestingly, the scutellum also provides α-amylases contributing to the amylolytic activity of the starch endosperm during germination (Subbarao et al., 1998) suggesting a close relationship between endosperm tissues and embryo. Nevertheless, only few studies have addressed the precise content of the cereal endosperm in terms of translational machinery especially compared to that of the cereal embryo that was historically used as a model cell-free system to translate mRNAs in vitro (Takai and Endo, 2010).

As a model species for cereals with a well-annotated genome (International Rice Genome Sequencing Project, 2005), rice seeds are widely studied by taking advantage of “omics” approaches (Koller et al., 2002; Tarpley et al., 2005; Xu et al., 2008; Jiao et al., 2009; Wang et al., 2010; Lee and Koh, 2011; Nguyen et al., 2012; Xue et al., 2012). Most studies on cereal seed focused either on the isolated embryo (Howell et al., 2009; Kim et al., 2009; Han et al., 2014) or on the whole seed (Yang et al., 2007). In contrast, a small number of works were performed on both the embryo and endosperm in the same experiment (Gallardo et al., 2007; Sreenivasulu et al., 2008).

Here, we used an integrated “multi-omics” approach combining transcriptomics, label-free quantitative shotgun proteomics and gas chromatography coupled to mass spectrometry (GC-MS)-based metabolomics on dry mature rice seeds from a reference rice cultivar (Oryza sativa ssp japonica cv Nipponbare). The present work was firstly aimed at comparing the compartmentalization of nutritionally relevant pathways between the endosperm and embryo (nutritional quality). These pathways could be further improved through metabolic engineering based on knowledge of the fine composition of both embryo and endosperm. Secondly, we highlighted genes potentially important for seed storability and germination (agricultural quality). Thirdly, a targeted study of the factors associated with the seed storage compounds (starch and proteins) were analyzed carefully. Altogether, these exhaustive datasets emphasize determinants of rice seed quality in a tissue-specific manner.

METHODS

Rice Biological Material

Dry mature rice seeds (Oryza sativa ssp japonica cv Nipponbare) were harvested in September 2011 at the “Centre Français du Riz” (Mas du Sonnailler, Arles, France). At the lab, seeds were dehulled and dissected in one embryo (E0) and one endosperm (A0) fraction with a sharp scalpel. The white rice (SE) fraction was obtained thanks to a lab bench rice milling machine as previously described (Galland et al., 2014a). Dry weight was determined on 10 bulks comprising 10 rice seeds. The corresponding E0, A0, and SE were placed in a dry oven at 105°C for 48 h and weighted on a precision lab balance (XP204, Mettler-Toledo, France).

Optical and Confocal Microscopy

Fixation, inclusion into historesin and cutting of 5 μm semi-thin sections were done exactly as previously described (Galland et al., 2014a). Proteins and complex carbohydrates were revealed using a Periodic Acid (PA)—Schiff /Naphthol Blue Black (NBB) staining. Samples semi-thin sections (5 μm) were first hydrolyzed 5 min in 1% periodic acid (w/v), rinsed with tap water and distilled water and then colored with Schiff's reagent for 10 min in complete darkness. Subsequently, sample slices were washed with sulfurous water that contains 5% (w/v) sodium metabisulfite, 250 mM HCl and distilled water for 1 min before washing with tap water and distilled water. NBB staining was done using a pre-heated (65°C) working solution that contains 0.1% (w/v) NBB, 10% (v/v) acetic acid and distilled water in which samples were placed for 5 min. One final thorough washing was done in tap water and samples sections were finally placed in acetic acid (7%, v/v) for 1 min or more if PA-Schiff staining was too weak. Finally, samples sections were mounted between glass slides in glycerol (Histomount, National Diagnostics, UK) for visualization before imaging with Leica optical microscopy (Leica Zeiss Axioplan, Leica Microsystems, Wetzlar, Germany).

Neutral lipids were imaged by confocal scanning fluorescence microscopy (Leica TCS SP2, Leica Microsystèmes SAS, France) using the Nile red dye (Greenspan et al., 1985). For neutral lipid observation, 100 μm wide sections of rice dry mature seeds were cut using a vibrating blade microtome (Leica VT1000 S, Leica Microsystèmes SAS, France) in sterile distilled water. Then, sections were quickly put on a glass slide in 100 μl of a Nile Red solution that contained 0.1% Nile Red (w/v) in 50% glycerol. The cell walls were counterstained by adding 100 μl of a Calcofluor solution that contained 1% Fluorescent Brightener 28 (w/v) in a carbonate/bicarbonate buffer pH 9.2. For Nile Red imaging, 488 nm was used for excitation and emission was collected between 593 and 654 nm. For Calcofluor imaging, 405 nm was used for excitation and emission was collected between 412 and 483 nm.

Metabolome Analysis by Gas Chromatography Coupled to Mass Spectrometry (GC-MS)

For each tissue (i.e., embryo, endosperm), metabolite samples were obtained starting from three replicates of 100 rice seeds manually dissected in embryo and endosperm fractions. 100 embryos and 100 endosperms were grinded with mortar and pestle under liquid nitrogen for the embryos and with a Cyclotec™ 1093 Sample Mill (FOSS, Hillerød, Danemark) for the endosperms. All samples were lyophilized and around 20 mg dry weight (DW) of each sample were placed in 2 ml Safelock Eppendorf tubes (Eppendorf AG, Hamburg, Germany). All analysis steps including extraction, derivatization, analysis, and data processing were adapted from the original protocol described by Fiehn et al. (2008) and following the procedure described by Avila-Ospina et al. (2017). The extraction solvent was prepared by mixing water:acetonitrile:isopropanol at the volume ratio 2:3:3 allowing to extract metabolites with a broad range of polarities. For derivatization step, N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA; Sigma-Aldrich) was used in silylation procedure of metabolites. Samples were analyzed on an Agilent 7890A gas chromatograph coupled to an Agilent 5975C mass spectrometer. Raw Agilent datafiles were converted in NetCDF format and analyzed with AMDIS (Automated Mass Deconvolution and Identification System; http://chemdata.nist.gov/mass-spc/amdis/). A home retention indices/mass spectra library built from the NIST, Golm, and Fiehn databases and standard compounds was used for metabolites identification. Peak areas were then determined using the QuanLynx software (Waters, Milford, USA) after conversion of the NetCDF file in MassLynx format.

RNA Isolation and Microarray Analyses

Total mRNAs were isolated from three replicates of 100 embryos and 50 endosperms and hybridizations on the Affymetrix GeneChip® Rice Genome Array (Affymetrix, Santa Clara, CA, USA) were performed as previously described (Galland et al., 2014a). To obtain presence/absence calls for each probe, we normalized the CEL files by the MAS5 algorithm (Affymetrix). The CEL files were then normalized with the GC-RMA algorithm using the “gcrma” library available from the R Bioconductor suite of open-source softwares (Huber et al., 2015). To determine differentially expressed genes in the embryo and endosperm transcriptomes, we performed a usual two group t-test that assumes equal variance between groups. The raw P-values were adjusted by the Bonferroni method. We considered a gene as differentially expressed if adjusted-value is < 0.01. To establish the Pearson correlation, we plotted the embryo against the endosperm normalized mean probe intensity. All raw CEL files are available from the Gene Expression Omnibus under the accession GSE43780 (for the embryo: GSM1071216, GSM1071217, GSM1071204; for the endosperm: GSM1071199, GSM1071201, GSM1071210).

Proteome Analysis

Protein Extraction and In-Gel Digestion

For embryo protein extraction, three replicates of 50 embryos were ground in liquid nitrogen using mortar and pestle. Then, total soluble proteins were extracted at room temperature in 400 μl thiourea/urea lysis buffer (7 M urea, 2 M thiourea, 6 mM Tris-HCl, 4.2 mM Trizma® base (Sigma-Aldrich, Lyon, France), 4% (w/v) CHAPS) supplemented with 50 μl of the protease inhibitor cocktail Complete Mini (Roche Diagnostics France, Meylan, France). Then, 15 μl of dithiothreitol (DTT, 1 M, Sigma-Aldrich), 2 μl of DNase I (Roche Diagnostics) and 5 μl of RNase A (Sigma-Aldrich) were added to the sample. For endosperm protein extraction, three replicates of 5 endosperms were ground in liquid nitrogen using mortar and pestle. Then, total soluble proteins were extracted at room temperature in 1 ml thiourea/urea lysis buffer (same composition as above) supplemented with 35 μl of DTT, 2 μl DNAseI and 10 μl RNAse A. Finally, protein extracts were let to agitate for 2 h at 4°C. All samples were then centrifuged at 20,000 g at 4°C for 15 min. The resulting supernatant was submitted to a second clarifying centrifugation as above. The final supernatant was kept and protein concentrations in the various extracts were measured according to Bradford (1976) using Bovine Serum Albumin as a standard.

Twenty-five microgram of embryo and endosperm soluble protein extracts (n = 3 biological replicates) were subjected to SDS-PAGE analysis with 10% acrylamide (Figure S1). Each lane was systematically cut in 16 bands and submitted to in-gel digestion with the Progest system (Genomic Solution) according to a standard trypsin protocol. Gel pieces were washed twice by successive separate baths of 10% acetic acid, 40% ethanol, and acetonitrile. They were then washed twice with successive baths of 25 mM NH4CO3 and ACN. Digestion was subsequently performed for 6 h at 37°C with 125 ng of modified trypsin (Promega) dissolved in 20% methanol and 20 mM NH4CO3. The peptides were extracted successively with 2% trifluoroacetic acid (TFA) and 50% ACN and then with ACN. Peptide extracts were dried in a vacuum centrifuge and suspended in 20 μl of 0.05% TFA, 0.05% HCOOH, and 2% ACN.

LC-MS/MS Analysis

Peptide separation by NanoLC was performed as described previously (Bonhomme et al., 2012). Eluted peptides were analyzed on-line with a Q-Exactive mass spectrometer (Thermo Electron) using a nano-electrospray interface. Peptide ions were analyzed using Xcalibur 2.1 with the following data-dependent acquisition parameters: a full MS scan covering 300–1,400 range of mass-to-charge ratio (m/z) with a resolution of 70,000 and a MS/MS step (normalized collision energy: 30%; resolution: 17,500). MS/MS Step was reiterated for the 8 major ions detected during full MS scan. Dynamic exclusion was set to 45 s. A database search was performed with X!Tandem (Craig and Beavis, 2004). Enzymatic cleavage was declared as a trypsin with two possible misscleavage. Cys carboxyamidomethylation was set to static modifications. Met oxydation was set as possible modifications. Precursor mass and fragment mass tolerance were 10 ppm and 0.02 Th, respectively. The 7th annotation of the Rice Genome Annotation Project database (Kawahara et al., 2013; 66,338 proteins) and a contaminant database (trypsin, keratins) were used. Only peptides with an E-value smaller than 0.1 were reported.

Peptide quantification was performed by extracted ion current (XIC) using MassChroQ software (Valot et al., 2011). A 5 ppm precision windows was set for XIC extraction. We eliminated the peptide ions not specific of a single protein and, since a peptide ion was detected several times in one biological sample, we summed the Total Ionic Current (TIC) area under peak corresponding to the same peptide ion. We also removed peptide ions that were not reliably detectable by keeping only peptide ions detected at least twice out of the three biological replicates. We obtained a final number of 34,179 and 11,824 peptide ions in the embryo and endosperm respectively corresponded to 2,099 and 786 non-redundant proteins. Since several peptide ions corresponded to the same protein, we summed the total peptide ions' TIC area to get the overall protein abundance and we then log2-transformed this protein abundance.

Gene Singular Enrichment Analysis

Gene Singular Enrichment Analysis were performed using the Gene Ontology analysis toolkit provided by the AgriGO web resource (Du et al., 2010) with the Affymetrix (transcriptome) or the corresponding tissue proteome (2099 embryo or 786 endosperm proteins) as backgrounds. The p-values generated by a classical hypergeometric overrepresentation test were adjusted by the Yekutieli False Discovery Rate.

Phylogenetic Analysis

The amino acid sequence of the 12 known glutelins and the putative new glutelin, namely Glu-X, were retrieved from the Rice Genome Annotation Project (Ouyang et al., 2007). Protein sequences were aligned with Clustal Omega (Sievers et al., 2011) with allowed gaps and a distance matrix computed (BLOSUM62 matrix). The corresponding phylogenetic tree was built using the Neighbor-joining method.

Measurement of Translational Activity

We imbibed three biological replicates of 20 isolated embryos and 5 embryoless endosperms in 4 ml of sterile distilled water with 50 μCi of [35S]-Met (PerkinElmer) at 30°C during 24 h in the dark. Samples were placed on filter papers to remove excess water and grinded with mortar and pestle using liquid nitrogen. Proteins were then extracted according to previously published protocols (Rajjou et al., 2006). To avoid measuring the non-specific incorporation of radioisotopes into contaminants, we purified the total soluble proteins. In addition, dead seeds (autoclaved seeds) were used as a negative control in order to measure the background level related to non-specific incorporation of [35S]-Met. Finally, 10 μl of protein extracts were added to 5 ml of scintillation liquid cocktail [Ecolite(+), MP Biomedicals, France]. Radioactivity was finally measured (3 biological and 3 technical replicates) using a liquid scintillation analyzer (Tri-Carb 2810TR, PerkinElmer, MA, USA) set between 5 and 100 keV with 10 min integration per sample.

RESULTS

Tissue Anatomy of the Rice Mature Seed

The pericarp, testa and AL were removed using a lab-polishing machine to obtain the inner part of the rice seed i.e., the starchy endosperm (Galland et al., 2014a; Figure 1A). On a dry weight basis, the embryo represents only 2% of the whole dry seed with the endosperm accounting for the remaining 98% (Figure 1B). Within the endosperm, the starchy endosperm represents 87.8% of the endosperm dry weight (Figure 1B). To describe the anatomy and content of the rice seed tissues, 5 μm semi-thin sections of dry seeds were obtained and embedded in resin and stained with specific reagents (Figures 1C–E). The embryo appeared as a very cell-dense tissue rich in proteins with no complex sugars detectable except in cell walls and around the radicle (Figures 1C,D). In contrast, the endosperm appeared as heterogeneous tissue displaying a marked differentiation between the inner starchy endosperm (rich in starch and storage proteins) and the living AL (visible nuclei and numerous protein bodies) (Figure 1E). Lipids were detected by Nile Red tissue staining in both rice endosperm and embryo (Figures 2A–C), with local enrichments in the aleurone/subaleurone layers (Figure 2B) and scutellum epidermis (Figure 2C). These cytological observations show the important degree of compartmentation within the dry mature rice seed.
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FIGURE 1. Description of the dry mature rice seed. (A) The dry mature rice seed (Oryza sativa ssp. japonica cv Nipponbare) is composed of several tissues including the embryo, endosperm (pericarp, testa, aleurone layer and starchy endosperm) and inner starchy endosperm. Scale bar, 1 mm. (B) Dry weight per seed of the isolated embryo (E0), starchy endosperm and the aleurone layer/pericarp tissue. The average percentage of each seed tissue is indicated (average % per seed) along with its standard-deviation (n = 10). The endosperm (A0) is the combination of the starchy endosperm (SE) and of the aleurone layer/pericarp tissue. (C–E) Proteins (blue) and complex carbohydrates (including starch, pink) were revealed using a Periodic Acid Schiff—Naphthol Blue Black staining on 5 μm historesin-embedded semi-thick sections. Stained sections of the embryo shoot apical meristem (C, longitudinal cut), embryo radicule (D, transversal cut) and endosperm dorsal side (E) were visualized by optic microscopy. Scale bars represent 100 μm in (C,D) and 25 μm in (E). Al, Aleurone layer; Cp, coleoptile; Pl, plumule; P/T, pericarp/testa; Rad, radicle; Sc, scutellum; SE, starchy endosperm.
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FIGURE 2. Precise localization of oil bodies and compartmentation of fatty acids between rice seed tissues. (A–C) Lipids were visualized by confocal microscopy on fresh 100 μm sections of mature rice seeds. Fresh sections were stained by both Nile Red (red channel) to monitor neutral lipids and Calcofluor (green channel) to reveal cell walls. Scale bars are 100 μm in (A), 50 μm in (B), and 10 μm in (C). Sc, scutellum; Endo, endosperm; Al, aleurone layer; Subal, subaleurone layer; ESR, embryo surrounding region. (D) Bar plots represent the mean seed equivalent lipid abundance (n = 3). Asterisks indicate significant (p < 0.05, False Discovery Rate) different means. A0, endosperm; E0, embryo.



Metabolic Composition of the Rice Mature Seed Compartments

Metabolomic data were generated from both embryo and endosperm (Table S1). Thus, 124 unique metabolites were identified at least once either in the rice seed embryo or endosperm and most of them (i.e., 117) were detected in all seed compartments (Figure 3A). Indeed, we only identified six embryo-specific metabolites i.e., γ-tocopherol, feruloylquinic acid, maltotriose, adenosine-5-P and two galactinol isomer (m/z equal to 204 and 433, Table 1). In contrast, ascorbate was detected only in the endosperm (Table 1). A quantitative analysis was performed on the 117 common metabolites detected in both seed compartments. The abundances of the metabolites were normalized according to the dry weight of the embryo and endosperm and a differential analysis performed that revealed 72 differentially accumulated metabolites (p < 0.05, Table 1). We found a strong correlation between the embryo and endosperm metabolite abundance per seed (Figure 3B). Thus, despite the differential ploïdy and origin of the mature rice seed tissues, the composition in terms of primary metabolites is rather similar on a per seed basis. Nevertheless, most of these metabolites were more abundant in the endosperm such as unsaturated fatty acids: oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3) (Figure 2D). Only a few of them (e.g., raffinose, citrate, α-tocopherol, glucaric acid, digalactosylglycerol) were significantly more abundant in the embryo (Table 1).
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FIGURE 3. Tissue-specificity and correlations between component tissue molecular apparatus. (A,C,E) Venn diagrams of the number of metabolites (A), probe sets (B), and proteins (C) detected in the dry embryo and endosperm. (B,D,F) Pearson correlations were calculated based on the metabolite level (B), probe signal (D) and protein abundance (F) in the embryo and endosperm. Protein and metabolites are plotted on a log2 and log10 scale respectively. Transcript (probe sets) intensities are log2 transformed during normalization and are plotted on non-transformed axis. Pearson correlation coefficients are indicated on each graph along with their significance level (***p < 0.001).




Table 1. Tissue-specific and differentially accumulated metabolites between embryo and endosperm of the dry mature rice seed.
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Analysis of Long-Lived Stored mRNAs in the Embryo and Endosperm

The transcriptome of both the embryo and endosperm was analyzed using the Affymetrix Rice Genome Array and a dedicated workflow (Table S2, Figure S2A, Jung et al., 2008). Ambiguous and “absent” probe sets were removed which gave a final number of 15,339 and 16,998 detectable probe sets in the endosperm and embryo, respectively (equivalent to 12,964 and 14,150 unique genes representing 33 and 36% of the total genes) (Table S2C). The existence of a large overlap with 14,227 probe sets commonly detected in both endosperm and embryo was highlighted by these data (Figure 3C). Furthermore, a high significant correlation (R = 0.948, p < 0.001) was found between the normalized probe intensities in the embryo and endosperm transcriptomes (Figure 3D). Yet, some tissue-specific transcripts were detected with 2771 embryo-specific (E0) probe sets (corresponding to 2613 single genes) and 1112 endosperm-specific (A0) probe sets (corresponding to 903 single genes, Figure 3C). Altogether, these results suggest that the endosperm transcriptome is comparable qualitatively and quantitatively to that of the embryo.

The biological roles for the genes that were strongly (superior to median) and differentially regulated (p < 0.01) between the endosperm and the embryo were then analyzed, which yielded to 787 and 1,921 probes (corresponding to 728 and 1746 single genes, respectively) that showed a preferential accumulation in the endosperm and embryo, respectively. Among the GO terms enriched in the 787 endosperm-favored probe sets, the “serine-type endopeptidase inhibitor activity” category, which contains known rice allergenic proteins (RAL2-5) associated with α-amylase or trypsin inhibitory functions, was found (AgriGO, Du et al., 2010, p < 0.05, Figure S3). Concerning the 1,921 probes with an embryo-favored expression, highly overrepresented GO terms related to “ribosome biogenesis,” “translation,” “rRNA binding,” “ribosomal large and small subunit,” and “structural constituent of ribosome” was detected (Figure S4). It seems therefore that a large proportion of the embryo long-lived mRNAs will serve as the basis for translation, a conserved and essential process for seed germination (Rajjou et al., 2012).

Proteome Analysis of the Rice Dry Mature Seed

Regarding seed biology, post-transcriptional and translational regulations add a significant level of complexity as exemplified by studies on developing Arabidopsis and Medicago seeds where numerous examples of delays between mRNA accumulation and protein synthesis have been documented (Gallardo et al., 2007; Hajduch et al., 2010; Verdier et al., 2013). Thus, to complete the description of each rice seed compartment, a proteomic analysis was carried out. The total soluble proteins of embryo and endosperm tissues were extracted and these samples were subjected to a label-free quantitative shotgun proteomic analysis (Figure S1, Figure S2B, S5; Table S3). A total of 2212 single proteins were identified of which only 30.4% (673 proteins) were common to both compartments thereby revealing 1426 embryo-specific and 113 endosperm-specific proteins (Figure 3E). These results showed that the embryo proteome is much more diversified than the endosperm proteome. Furthermore, the abundance of the 673 common proteins is poorly correlated (Figure 3F) contrasting with what was observed at the transcriptome and metabolome levels (Figures 3B,D). For each of the 673 common proteins, the endosperm to embryo protein log2 ratio was calculated and we found 76 and 267 proteins with an endosperm-favored or embryo-favored abundance respectively (log2 ratios superior to the median i.e., 1.7 and −2.9 for the endosperm and embryo). By combining these proteins showing a tissue-favored profile with the tissue-specific proteins, we obtained a list of 189 endosperm and 1,693 embryo proteins that we subsequently analyzed using the AgriGO tool (Du et al., 2010). In the endosperm, several expected enriched GO terms were retrieved such as “carbohydrate metabolic process” or “plastid” related to starch biosynthesis (Figure S6). In addition, others interesting enriched GO terms such as “response to endogenous stimulus,' “cell wall,” and “vacuole” were highlighted. These functions are probably related to the developed vesicle trafficking occurring during endosperm development and PCD. In the embryo, a strong GO enrichment for biological processes related to “translation,” “embryonic development,” “post-embryonic development” but also “response to stress” was found (Figure S7). At the subcellular level, several key organelles related terms were also overrepresented such as those related to the “mitochondrion,” “plastid,” or “ribosome” (Figure S7). Since the distribution of the log2 ratios was similar to a normal distribution (Shapiro-test p = 0.95, Figure S5G), a z-score analysis was also performed. This revealed 64 proteins as being differentially accumulated between the embryo and the endosperm (p < 0.05; Table S3D). Among these 64 differentially accumulated proteins, 47 are more abundant in the endosperm with several classical proteins classically found enriched in the endosperm such as SSPs (glutelins, prolamins, globulin) and starch biosynthesis enzymes (Table 2). Among the 10 glutelins commonly detected to both seed tissues, all of them were significantly (p < 0.05) more abundant in the endosperm (7–13 fold, Figure 4A). An additional protein (Os08g03410, called Glu-X), annotated as a putative glutelin, is preferentially accumulated in the embryo (11 fold, Figure 4A). Glu-X display high sequence homology to other proteins belonging to the glutelin GluA/B/C/D families (Figures 4B,C). Furthermore, we were able to find one eukaryotic translation factor eIF4A-1 or the rice homolog of the MOTHER of FT and TFL1 as two endosperm-favored proteins not directly related to classical endosperm proteins (Table 2).


Table 2. Proteins differentially accumulated between endosperm and embryo.
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FIGURE 4. Identification of a putative new glutelin with a preferential embryo accumulation. (A) Boxplots of protein abundances (log2 transformed) for the 10 glutelins that are commonly detected in the endosperm (A0, dark red) and the embryo (E0, blue). The Glu-X protein corresponds to a newly discovered glutelin which is the only glutelin more abundant in the embryo although not significantly. Significantly different means are indicated according to the z-score analysis with p-values inferior to 0.01 (**) or 0.05 (*). (B) Close-up view of the conserved cleavage site of glutelin precursor into acidic and basic subunits. The GluC-1 protein sequence does not exibit the characteristic NG motif. (C) Phylogenetic tree built from the 12 glutelin protein sequences together with the newly putative Glutelin, namely Glu-X (neighbor joining, BLOSUM62 matrix)



Identification of Post-transcriptional and Translational Regulations in the Mature Seed

The strong seed tissue differentiation observed at the proteome level could be well connected to the delay between transcript and protein accumulation observed at the end of seed development (Gallardo et al., 2007; Hajduch et al., 2010; Arc et al., 2011; Verdier et al., 2013). We quantitatively compared the 673 proteins fold-change between seed tissues with that of their corresponding mRNA level. These 673 proteins matched with 672 non-redundant genes that were used to retrieve their corresponding probe sets among the 14,227 common probe sets (Figure 3C). The probe sets corresponding to the same gene were removed leading to 504 unique probe set/protein pairs (Table S4). Then, the endosperm to embryo log2 ratios of these 504 probe set/protein pairs were compared (Figure 5). From this analysis, it was obvious that the majority of the 504 protein log2 ratios were poorly correlated to their corresponding mRNA log2 ratio. On the one hand, proteins with an endosperm-favored log2 ratio (>0) also have similar endosperm-favored mRNA log2 ratios. On the other hand, the proteins favorably accumulated in the embryo (log2 ratio < 0) show poorly concordant mRNA profiles. These results once again highlight the seed as a tissue with major strong post-transcriptional and translational regulations probably related to the presence of long-lived mRNAs and to the seed metabolism being brought to a halt (Galland and Rajjou, 2015).
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FIGURE 5. Post-transcriptional regulations in the dry rice mature seed. By keeping unique mRNA-protein pairs among the 673 proteins common to both endosperm and embryo, we obtained 504 pairs. We plotted the mRNA to protein endosperm to embryo log2 ratio to display post-transcriptional regulations.



Measurement of Translational Activities from Isolated Embryos and Embryoless Endosperms

During cereal seed germination, both embryo and endosperm tissues actively transcribe RNA and translate both stored mRNAs and de novo synthetized mRNAs (Fincher, 1989). The presently used rice seeds exhibited high vigor (T50 = 16 HAI; Gmax = 24 HAI). The isolated rice embryos were also capable of germination as evidenced by coleoptile emergence upon 24 h of imbibition (Figure 6A). Thus, the translational activities from isolated embryos and embryoless endosperms were assessed. As known for decades, the cereal embryo is an efficient system for in vitro translation of mRNAs (Takai and Endo, 2010) while the aleurone layer is actively synthetizing starch-degrading enzymes during germination (Fincher, 1989). Accordingly, considering a single seed, the endosperm had a slightly higher significant translational activity by comparison to the embryo (Figure 6B). By contrast, relatively to total protein content, translational activity is significantly higher in the embryo than in the endosperm (Figure 6C). This result indicates that protein synthesis is more active in the embryo. In support of this statement, the proteomic data revealed that the embryo is better equipped with proteins involved in the translation initiation machinery compared with the endosperm (Figure 6D).
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FIGURE 6. Translational activity and machinery in rice seed tissues. (A–C) Translational activities in isolated embryos and embryoless endosperms during germination sensu stricto. (A) Germination of isolated rice embryos (top panel) or complete seeds (lower panel) as evidenced by coleoptile emergence (arrows). Scale bars represent 2 mm. (B,C) Radiolabeled [35S]-Methionine incorporation during 24 h of imbibition in 20 isolated embryos (E0) or five embryoless endosperm (A0). (B) [35S]-Methionine incorporation per seed in isolated embryo (E0) and embryoless endosperm (A0). (C) [35S]-Methionine incorporation per microgram of total protein in E0 and A0. Results are the mean (± SD) of three biological replicates and are expressed on a seed equivalent basis for comparison. Signal integration was performed during 10 min. Student's t-tests were applied to identify statistically significant differences (* means statistically significant as P < 0.05 and ** means statistically highly significant as P < 0.01). (D) Embryo and endosperm proteins involved in translation initiation identified in the dry mature rice seed. For each protein family, the number of proteins found in the rice seed proteome is indicated. Embryo-specific proteins (E0) are indicated along with their locus number. eIF, eukaryotic translation initiation factor; Met, methionine; PABP, polyadenylate-binding protein.



DISCUSSION

Origin and Roles of the Endosperm, a Key Tissue in Seed Biology

The supernumerary embryo origin of the endosperm is backed by several results in our study and that of others. As previously observed in the case of developing (Belmonte et al., 2013) or germinating Arabidopsis seeds (Penfield et al., 2006), the transcriptomes of the rice embryo and endosperm are highly similar both quantitatively and quantitatively (Figures 3C,D). In developing maize kernels (8 days after pollination), tissue-specific transcriptomics showed that the embryo transcriptome resembled that of aleurone cell layers but also that of other endosperm regions as Spearman correlations ranged from 0.73 (central starchy endosperm) to 0.80 (aleurone layer) (Zhan et al., 2015). In this latter study, the observed total number of maize endosperm-specific expressed genes (3140) is in the same order of magnitude as ours (1112; Figure 3C). Similar conclusions can be drawn in for the embryo (2235 vs. 2771). Embryo and endosperm transcriptomes in developing and mature cereal caryopses could therefore be quite comparable to each other.

Stored Reserves, Building Blocks, and Energy Source for Germination

Starch

In rice, starch can account for nearly 70–85% of the total seed weight and is made in different proportions of linear amylose and ramified amylopectin (Bao et al., 2008). Historically, the degradation of starch during germination has been considered as a key mechanism that produced the oligosaccharides required for energy production during germination (Fincher, 1989). Here, the AMY3E α-amylase protein (Os08g36900) was among the most abundant embryo-specific proteins (Table S3C) while a probe signal for the AMY3E mRNA was detectable in both embryo and endosperm (Table S2B). It is worth noting that no amylase activity could be measured in dry rice seeds (Guglielminetti et al., 1995) suggesting that the preformed embryo AMY3E enzyme is not functional at this stage. In the endosperm, only one α-amylase protein was detected (Os01g51754) mildly ortholog of the Vigna mungo AMY1.1 enzyme (Table S3C). Finally, as reported before, no β-amylase protein was detected in rice seed compartments. Still, many β-amylase transcripts were found also suggesting that post-transcriptional and/or translational regulation is likely to occur for these enzymes.

Along with the presence of few starch-degrading enzymes, a number of starch biosynthesis enzymes were identified (Figure 7A). Starch biosynthesis originates from glucose-1-phosphate that is converted to ADP-glucose by ADP-glucose pyrophosphorylases (AGPases). ADP-glucose serves for α-glucan chain elongation by starch synthases with participation of starch branching enzymes and starch debranching enzymes (Jeon et al., 2010). Most of the studies on rice starch biosynthesis have focused on the endosperm. Accordingly, a complete enzymatic machinery for starch biosynthesis and ADP-glucose transport (OsBT1-1) was detected in the endosperm (Figure 7A). While the presence of these enzymes is not surprising, the present work highlighted a complete starch synthesis enzymatic set already present in the quiescent embryo i.e., AGPS2a, SSIIIb, GBSSII and Pho2 indicating that plastid is the main site of embryonic ADP-glucose synthesis (Figure 7B). In contrast, as a characteristic feature of graminaceous, ADP-glucose synthesis can occurs in the endosperm thanks to a cytosolic ADP-glucose pyrophosphorylase (Beckles et al., 2001). Our results reveal a molecular specificity of each rice seed compartment for starch biosynthesis possibly related to starch synthesis in the embryo during germination (Han et al., 2014).
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FIGURE 7. Strong tissue-specificity of starch biosynthesis enzymes between endosperm and embryo. Specific endosperm (A) and embryo (B) proteins related to starch biosynthesis are displayed on their corresponding enzymatic reactions. AGPL, glucose-1-phosphate adenyltransferase large subunit; AGPS, glucose-1-phosphate adenyltransferase small subunit; BT1-1, brittle 1; PHO, Starch phosphorylase; SS, soluble starch synthase; BE, branching enzyme; ISA, isoamylase; GBSS, granule-bound starch synthase; PEP, phosphoenolpyruvate, PPT, phosphoenolpyruvate/phosphate translocator; NTT, ATP carrier protein.



Seed Storage Proteins (SSPs)

Glutelins are the major SSPs accumulated in rice corresponding to approximately 60–80% of the total proteins in the endosperm. During germination, these proteins are mobilized by proteases hereby releasing free amino acids that can readily be incorporated into new proteins requested for germination. Based on amino acid sequence similarity, previous studies established that 12 genes classified into GluA, GluB, GluC, and GluD families encode for rice glutelins (Kawakatsu et al., 2008). The present proteomic data evidenced 11 glutelin forms belonging to the GluA/B/C/D classification (Table S3C). Since the endosperm was separated from the embryo, it is remarkable to note that only two glutelin isoforms belonging to GluB class (i.e., Os02g15150.2 and Os02g15070.1) were specific of this storage tissue (Table S3C). In agreement with a storage function of the endosperm, among the 10 glutelins common to both seed tissues, all glutelins were significantly (p < 0.05) more abundant in the endosperm (7–13 fold, Figure 4A). Unexpectedly, one protein (Os08g03410), annotated as a putative glutelin, is strongly accumulated in the embryo (11 fold, Figure 4A). This protein, hereby named Glu-X, is not classified in the glutelin GluA/B/C/D families but nevertheless presents the characteristic asparagine/glycine (NG) cleavage site specifically recognized by the vacuole-processing enzyme OsVPE (Wang et al., 2009) to process glutelin precursors into the corresponding acidic and basic subunits (Figure 4B; Kumamaru et al., 2010). This Glu-X protein is not closely related to the other glutelin families and could have a distinctive function in the embryo (Figure 4C). For instance, in Arabidopsis, cruciferins seed storage proteins protect the embryo from oxidative stress during seed aging (Rajjou et al., 2008; Nguyen et al., 2015).

Lipids

In most cereal seeds, lipids generally account for only 2–3% of the dry weight (Barthole et al., 2012). In seeds, lipids are present in the form of TAGs that are stored in oil bodies corresponding to small vesicles composed of an inner TAG core surrounded by lipid monolayer containing dedicated proteins such as oleosins, caleosins and steroleosins (Murphy, 1993; Murphy et al., 2001; Jolivet et al., 2009). Lipids were detected in both rice endosperm and embryo with local enrichments in the aleurone/subaleurone layers (Figure 2B) and scutellum epidermis (Figure 2C). This precise localization is very similar to that of barley (Neuberger et al., 2008). Yet, the composition of unsaturated fatty acids such as oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3) were more abundant in the endosperm (Figure 2D).

The nutritional and organoleptic quality of the rice seed is highly dependent on polyunsaturated fatty acid peroxidation caused by lipoxygenases (LOXs). The Aldo-Keto Reductases (AKRs) protein family detoxifies a wide variety of lipid peroxidation compounds. Correspondingly, overexpression of Aldo-ketoreductase-1 from Pseudomonas strain (PsAKR1) in rice improved seed viability and germination vigor (Narayana et al., 2017). Two AKRs were specifically present in the embryo (Os04g26910 and Os05g38230) while one AKR was common to both embryo and endosperm (Os01g43090). Plant AKRs were recently proposed as potential breeding targets for developing stress tolerant varieties (Sengupta et al., 2015). In our proteomic data, we detected two rice lipoxygenases (OsLOX2, Os03g52860; OsLOX3, Os03g49350) specifically in the dry embryo in accordance with ancient biochemical results (Table S3C; Ida et al., 1983). Functional analysis showed that OsLOX2 and OsLOX3 negatively affect the germination performance of seeds submitted to artificial or natural aging (Huang et al., 2014; Xu et al., 2015). The higher occurrence of lipid hydroperoxides in aged seeds has been linked with a decrease in seed longevity (Sattler et al., 2004). In addition, the overexpression or silencing of OsLOX2 accelerates or slows germination sensu stricto (Huang et al., 2014). Rice LOX2 gene expression is induced upon germination presumably to degrade TAGs present in oil bodies and fuel seedling establishment. Therefore, TAGs that are stored in the AL oil bodies would release free fatty acids, fuel carbohydrate synthesis and energy metabolism in the AL and ETC cells during rice seed germination. It has been shown that TAG degradation occurs very early in the embryo and AL cells during the germination process (Clarke et al., 1983; Leonova et al., 2010). Following that hypothesis, the present work reveals in an unexpected way that several mRNAs encoding for glyoxylate cycle enzymes i.e., glyoxysomal malate dehydrogenase (MDH, Os12g43630 and Os05g50940), malate synthase (MLS, Os04g40990) and isocitrate lyase (ICL, Os07g34520) were more abundant in the rice endosperm (Table S2). Notably, ICL was also found as endosperm-favored at the protein level (Table 2). These glyoxylate cycle enzymes preferentially found in the rice endosperm might be associated with anoxia and stressful conditions (Lu et al., 2005). This would also explain the endosperm-favored accumulated of the pyruvate phosphate dikinase 1 (PPDK1, Table 2). In contrast, at the protein level, the rice embryo appears favorably equipped with enzymes involved in glycolysis, tricarboxylic acid cycle and ATP synthesis (Figure 8). The degradation of membrane phospholipids during seed storage is also detrimental to seed quality (Devaiah et al., 2007). In particular, phospholipase D (PLD) enzymes that cleave membrane phospholipids to phosphatidic acid (PA) are proposed to be one the earliest event of deterioration. In Arabidopsis, silencing of the most abundant PLD enzyme, phospholipase D alpha 1 (AtPLDα1), improves seed longevity (Devaiah et al., 2007). Among the 17 phospholipase D (PLD) rice genes (Li et al., 2007), the PLDα1 (OsPLDα1, Os01g07760) is the only one expressed and the corresponding enzyme is among the most abundant embryo-specific proteins (Table S3C). Among all rice PLD proteins, OsPLDα1 is closest relative of AtPLDα1 suggesting that their negative roles on seed longevity are probably conserved. In conclusion, the genetic manipulation of TAGs and phospholipid-related enzymes, in particular OsLOX2 and OsPLDα1, present in the rice embryo, have the potential to improve rice seed storability and organoleptic value.
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FIGURE 8. MapMan overview of differentially accumulated proteins with a preferential abundance in the endosperm or embryo. The log2 ratios of the 335 proteins with a log2 ratio superior to the median were mapped to a seed specific visualization (Joosen et al., 2011). A total of 241 proteins are visible. Red and blue colors represent endosperm and embryo-favored protein abundance respectively.



A Tissue-Specific Equipment Possibly Involved in Desiccation Tolerance and Seed Storability

Glassy State Establishment

Historically, rice seed longevity has been strongly linked to desiccation tolerance (Ellis and Hong, 1994). Among the mechanisms involved, the accumulation of non-reducing sugars (sucrose, trehalose) and raffinose family oligosaccharides (RFO) at the end of seed development converts the cellular cytoplasm into a “glassy state” that restricts molecule mobility and halt enzymatic reactions (Buitink and Leprince, 2004; Rajjou and Debeaujon, 2008; Farrant and Moore, 2011; Hand et al., 2011). RFO are galactosyl-sucrose carbohydrates that are formed by the sequential addition of galactose moieties by galactinol synthase, raffinose synthase, and stachyose synthase. In the present metabolomic data, sucrose, fructose, glucose, and raffinose were the major simple carbohydrates detected in the dry mature rice seed (Table 1 and Table S1). Furthermore, raffinose is preferentially accumulated in the embryo while non-RFO carbohydrates such as sucrose and trehalose are more highly accumulated in the endosperm (Table 1). Interestingly, a colocalization between QTL of longevity and QTL controlling oligosaccharide contents (sucrose, raffinose, and stachyose) has been pointed out in Arabidopsis and rice (Bentsink et al., 2000; Zhu et al., 2007). Together with raffinose, trehalose can also protect proteins and membranes damages induced by desiccation (Fernandez et al., 2010). It was recently found that the trehalose-6-phosphate phosphatase 7 (Os09g20390, OsTPP7) allele from an Indica cultivar was likely to be the underlying QTL for enhanced seed longevity in two Nipponbare near-isogenic lines (Sasaki et al., 2015). The rice genome harbors at least nine trehalose-6-phosphate synthase (OsTPS) and nine OsTPP genes (Fernandez et al., 2010). One natural candidate for favored trehalose synthesis in the endosperm aleurone layer could be OsTPP10 (Os07g30160) whose transcript is only reliably detected in the endosperm (Table S2E) whereas OsTPP8 protein (Os05g50940) was only detected in the embryo (Table S3C). Thus, the present work provides novel knowledge on the spatial regulation of genes involved in trehalose accumulation in rice seed and possibly related to desiccation tolerance and seed longevity. Thus, in the rice endosperm and aleurone layer in particular, the glassy state seems to be dependent on trehalose, sucrose and raffinose while in the embryo, it depends mostly on raffinose (Table 1).

Protein Folding Protection by Molecular Chaperones

From the mapping of preferentially accumulated proteins, seed categories related to heat stress, protein folding and LEA proteins were quite noticeable (Figure 8). These categories contain protein chaperone roles such as the LEA proteins, (Wang et al., 2007; Hincha and Thalhammer, 2012), the small HSP (Sarkar et al., 2009; Waters, 2013), annexins (Clark et al., 2012), lipocalins (Grzyb et al., 2006), and ClpB chaperones. Most of these proteins were described to be involved in the maintenance of protein folding, prevent membrane aggregation and can also have a synergic effect with non-reducing sugars and RFO to promote glassy state establishment (Boudet et al., 2006; Rajjou and Debeaujon, 2008; Hand et al., 2011). Commonly related with desiccation and abiotic stress tolerance, LEA proteins are members of intrinsically disordered proteins in aqueous solution. They undergo desiccation-induced folding during cell drying suggesting that these proteins could carry out distinct functions under different water states. Rice comprises 34 LEA proteins encoding genes (Wang et al., 2007). Our proteomic analysis identified 12 LEA proteins detected in both embryo and endosperm and 9 only detected in the embryo (Table 3). LEA proteins were previously associated to seed longevity (Chatelain et al., 2012). It was remarkable to note that several LEA proteins, including the dehydrin family were detected exclusively in the embryo, and could be involved in dry storage survival (Table 3). Indeed, a previous study showed that dehydrin RAB18 was very abundant in Arabidopsis dry mature seeds. The abundance of this protein progressively disappeared in aged seeds (Rajjou et al., 2008). Furthermore, it has been demonstrated that down-regulation of seed-specific dehydrins reduced Arabidopsis seed survival in the dry state (Hundertmark et al., 2011). Out of the 23 predicted sHSP proteins (Sarkar et al., 2009), the HSP17.4 was exclusively found in the endosperm (Table 3). This contrasts with the eight sHSP proteins exclusively found in the embryo of which the OsHSP18.2 (Os01g08860) is capable of protecting the Arabidopsis embryo during artificial aging (Kaur et al., 2015). Furthermore, all three common sHSP proteins (HSP16.9, HSP17.9 and HSP26.7) are preferentially more accumulated in the embryo (Table 3). Remarkably, the HSP16.9 protein was shown to stabilize rice soluble proteins from heat denaturation under in vitro conditions (Yeh et al., 1995). Altogether, these results support the finding that such proteins would primarily serve to protect the embryo against desiccation injuries during late maturation program. The present proteomic analysis also revealed several other categories of chaperone proteins such as annexins, lipocalins, and Clp (caseinolytic protease) chaperones which have never been characterized in cereal dry seeds. First, annexins are probably essential for seed longevity since the overexpression of a sacred lotus (Nelumbo nucifera) isofom in Arabidopsis proved to enhance seed viability under heat stress (Chu et al., 2012). In the present proteomic data, three annexins with one exclusively present in the embryo (Os09g23160) and one significantly more accumulated in the embryo (Os02g51750, p < 0.05) were detected in the present study (Table 3). The last annexin (Os06g11800) was reported to be up-accumulated during germination suggesting a possible role on the embryo membrane dynamics (Yang et al., 2007). Secondly, lipocalins, a family of proteins that transport small hydrophobic molecules such as steroids, bilins, retinoids, and lipids, are classified in plants as temperature-induced lipocalins (TILs) and chloroplastic lipocalins (CHLs) (Charron et al., 2005). It has been demonstrated that both TILs and CHLs are involved in lipid protection, which is critical for stress adaptation. Two TIL proteins are predicted from the rice genome sequence (Charron et al., 2005) and they were detected in the mature rice embryo while the plastidial form OsCHL was undetectable in this tissue (Table 3). These results on the relative abundance of the OsTILs and OsCHL are consistent with those showed in Arabidopsis since the accumulation of AtCHL protein in the AtTIL KO mutant and vice versa suggests a functional overlap between these two lipocalin types (Boca et al., 2013). Interestingly, seed longevity is correlated with the accumulation of these proteins in Arabidopsis (Boca et al., 2013).


Table 3. Proteins involved in folding and chaperone functions found in the embryo and endosperm.
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Protein Repair Systems

Several enzymes involved in protein repair, were presently detected specifically in the rice embryo proteome. This was the case for three Methionine Sulfoxide Reductases (MSR) proteins namely MSRB5, MSRA2-1 and MSRA4 (Table S3C; Rouhier et al., 2006). MSRs are involved in the reversal of oxidized Met residues (Met sulfoxide, MetSO) in altered proteins thereby preventing aging-associated diseases in all organisms (Moskovitz, 2005). The MSRA4.1 is a plastidial enzyme potentially involved in oxidative stress resistance and that can repair free and protein-bound MetSO in vitro (Guo et al., 2009). MSR repair system in Medicago and Arabidopsis promote seed longevity (Châtelain et al., 2013). Secondly, the protein-L-isoaspartate O-methyltransferase can repair abnormal isoaspartyl occurring in damaged proteins (Thapar et al., 2001). In seeds, PIMT are actively involved with the maintenance of seed viability in Arabidopsis (Ogé et al., 2008) and rice (Petla et al., 2016). In wheat, PIMT activity is very high in dry mature seeds, increase up to 4 h after imbibition and then decrease during subsequent germination (Mudgett and Clarke, 1994). Amongst the two rice PIMT genes, we found the OsPIMT2 (Os04g40540; Petla et al., 2016) among the most abundant embryo-specific proteins (rank #188). More precisely, this could be ΔOsPIMT2, a truncated yet functional version of OsPIMT2 (Petla et al., 2016). This rice PIMT protein is accumulated during the very late stages of seed development in relation due to the formation of aspartyl residues during desiccation (Petla et al., 2016).

ROS Homeostasis

The control of Reactive Oxygen Species (ROS, e.g., H2O2) homeostasis during both desiccation and early germination is of paramount importance for seed vigor and longevity (Sattler et al., 2004; Bailly et al., 2008). Proteomic and Metabolomic results emphasized several mechanisms that could help the embryo to cope with desiccation-induced oxidative stress.

First, tocopherols and tocotrienols participate to seed longevity by limiting lipid peroxidation (Sattler et al., 2004). In our data, α- and γ-tocopherols were found to be preferentially, if not exclusively, accumulated in the embryo (Table 1). Several proteins involved in tocopherol biosynthesis pathway were specifically found in the embryo such as the 4-hydroxyphenylpyruvate dioxygenase (HPPD, Os02g07160; Table S3C), which is involved in the production of both plastoquinone and tocopherol essential for plant survival (Sano et al., 2016). In the same way, OsVTE1 protein (Os02g17650), that is responsible for γ-tocopherol synthesis, was specifically detected in the rice embryo (Table S3C). Finally, part of the same pathway, we found expression of Arabidopsis VTE2 (Os06g44840) and VTE3 (Os12g42090) homologs with a favored embryo gene expression (5 and 2.5 fold respectively, Table S2F).

Along with vitamin E, ascorbate is also a very important antioxidant molecule. Ascorbate (AsA) and dehydroascorbate (DHA) were specifically or favorably detected in the endosperm (Table 1 and Table S1). Ascorbate and DHA can be degraded to threonate upon non-enzymatic reaction with H2O2 or enzymatically. Interestingly, threonate is also present in high amounts in the endosperm compared to the embryo (Table 1). This suggests that a complete AsA to threonate pathway exist in the endosperm. In developing wheat kernels, ascorbate level decrease from mid- to final seed developmental stage and the ascorbate pool becomes progressively oxidized (Paradiso et al., 2012). From our data, it seems that ascorbate de novo synthesis could be restricted to the embryo since a putative mannose-1-phosphate guanyltransferase (Os03g11050) and the two GDP-mannose 3,5-epimerase 1 and 2 (GME1, GME2) are specifically detected in the embryo at similar abundances (Table S3C). In contrast, the ascorbate salvage pathway from monodehydroascorbate (MDHA) by MDHA reductase (MDHAR) is present in both rice endosperm and embryo (Table S3C). In addition, the conversion of DHA back to AsA is also possible thanks to DHA reductases (OsDHAR1, Os05g02530) present in both rice embryo and endosperm proteomes at similar levels (Table S3C). Ascorbate could interact with ABA metabolism and/or signaling to modulate seed germination ability. Indeed, exogenous application of low concentrations of ascorbate is able to rescue rice seed germination from abscisic acid treatment (Ye et al., 2012).

The present proteome reveals a wide diversity of antioxidant enzymes that are already present in the dry seed with an embryo-favored accumulation (Figure 8). These enzymes include 4 superoxide dismutases (SODCC1, SODCC2, SODA, SODCP, Table S3C), two embryo-specific catalases (CATA and CATB, Table S3C) and 11 embryo-specific peroxidases including several ascorbate peroxidase i.e., the cytosolic OsAPX2, the peroxisomal OsAPX4 and the stromal OsAPX7 (Table S3C). These results seem to argue in favor of a more abundant ROS detoxification enzymatic apparatus in the rice embryo.

The Mature Seed Is the Crossroad of Post-transcriptional and Translational Regulations Essential for Germination Success

Studies in various species demonstrated that the developmental transition from a maturing to a germinating seed is the place of strong post-transcriptional and translational regulations (Gallardo et al., 2007; Hajduch et al., 2010; Verdier et al., 2013; Galland et al., 2014b; Layat et al., 2014). In this study, we investigated that post-transcriptional and translational regulations occuring in both tissues of the rice seed at the end of its development (Figure 5). Since germination sensu stricto in both monocot and dicot seeds is only dependent on mRNA translation (Rajjou et al., 2004; Sano et al., 2012), we took a closer look at the translational machinery at the tissue-level.

Stored mRNAs and the Translational Machinery

We were wondering whether these comparable translational activities in the endosperm and embryo relied on different translational machinery sets. Indeed, we could show that, in Arabidopsis germinating seeds, stored mRNAs were differentially translated (Galland et al., 2014b) making selective mRNA translation a way to distinguish stored and neosynthesized mRNAs. For these reasons, proteins involved in translation and present in the embryo and endosperm were screened. Thus, 292 proteins related to mRNA translation processes (BIN 2.2.1–2.2.4) were identified in the embryo (Table S3F, Figure 6D). Specifically, 109 different ribosomal proteins could be identified. Initiation of translation is controlled by specific cap-dependent initiation factors (Roy and von Arnim, 2013). First, the 43S pre-initiation complex is formed through association between the 40S ribosomal subunit, a charged methionyl-tRNA and the eIF1, eIF2, eIF3 and eIF5 translation initiation factors. A complete set of the 43S pre-initiation complex was retrieved in the proteomic data (Table S3F). Out of the eight eIF3 protein subunits (B-C-D-E-F-H-K-H) monitored, the present data showed that two isoforms of eIF3E (Os07g12110 and Os07g07250) and one isoform of eIF3F (Os05g01450) are restricted to the embryo. In Arabidopsis, the eIF3F is a key regulator of embryo development particularly in actively developing tissues (Xia et al., 2010). In addition, it interacts with eIF3E suggesting that the observed rice eIF3E/3F proteins would play significant roles during embryonic or post-embryonic cellular processes. Upon formation, the multifactor complex (MFC) associates with the 40S ribosome thereby establishing the 43S pre-initiation complex (Figure 6D).

In parallel, the mRNA cap is recognized by the eIF4F complex composed of both a eIF4E and a eIF4G protein family (Roy and von Arnim, 2013). In plants, a very important feature is the presence of isoforms of eIF4E and eIF4G named eIF(iso)4E and eIF(iso)4G. These different isoforms participate to the mRNA translational selectivity (Mayberry et al., 2009; Martinez-Silva et al., 2012). In our data, we found that the eIF4E and eIF4(iso)4E subunits, responsible for recognition of the mRNA cap, were restricted to the rice embryo and present in relatively similar abundances (Table S3F, Figure 6D). The 43S pre-initiation complex subsequently associates to the eIF4 complex and binds to the mRNA. Translation initiation factors eIF4A with ATP-dependent helicase activity unwind mRNA 5′UTR secondary structures. The eIF4A-1 and eIF4A-3 were detected in our proteomic data (Table S3F, Figure 6D). The eIF4A-1 translation initiation factor is present in both endosperm and embryo, but, in contrast to almost all translation initiation factors, this protein is significantly and strongly up-accumulated in the endosperm (Table S3F, Figure 6D). The eIF4A-3 protein was strictly observed in the embryo suggesting that embryo and endosperm use different eIF4A helicases during mRNA translation initiation. The translation initiation factor eIF6-2 interacts with RACK1, a negative regulator of ABA response and positive regulator of GA signaling (Guo et al., 2011; Fennell et al., 2012). Especially relevant in seed biology, it was demonstrated that ABA inhibited RACK1 and eIF6 gene expressions (Guo et al., 2011). In Arabidopsis, three homologs of the mammalian RACK1, namely RACK1A, RACK1B and RACK1C were characterized. In our proteomic description of rice seeds, it was interesting to observe the presence of two RACK1 proteins with OsRACK1A detected in both tissues and OsRACK1B only detected in the embryo along with the embryo-specific eIF6-2 (Table S3C, Figure 6D). Recently, the OsRACK1A gene has been shown to positively regulate rice seed germination through promotion of ABA catabolism and H2O2 synthesis (Zhang et al., 2014). Thus, in addition to RACK1A, RACK1B could also play a major role in the embryo during seed germination. RACK1A and B could also link ABA and GA signaling with mRNA translation. We only detected the eIF6-2 protein in the embryo suggesting that RACK1A/B regulations of mRNA translation only apply to the embryo and not to the endosperm. Together with the absence of the two cap recognition eIF4E proteins in the endosperm, it further confirms that embryo and endosperm may have contrasted qualitative mRNA translation regulations. Very recent evidences showed that eIFiso4G1 translation initiation factor has a role in the fatty acid profile of Arabidopsis developing seeds through the balance of plastic and nucleus-encoded mRNAs involved in fatty acid biosynthesis (Li et al., 2017). Moreover, this role of eIFisoG1 is not be compensated by eIFiso4G2 suggesting a very specific effect. Further work should distinguish the translational machinery at the tissue level and its consequences on seed metabolism.

CONCLUDING REMARKS

Starch and SSPs were long associated with the endosperm storage function. Thus, it was remarkable to pinpoint, in our proteomic dataset, the presence of glutelins and starch biosynthesis enzymes at non-negligible level also in the embryo (Figures 4, 7). These results refine and expand previous proteomic results on whole developing rice seeds (Koller et al., 2002). Altogether, this would also support the supernumerary embryo hypothesis with both ancestral tissues being equipped with different molecular apparatus before divergence. Classically, the inner SE has been seen as a dead storage tissue since the central parts of the endosperm undergo PCD (Young and Gallie, 2000). Yet, we could show that, as expected, the embryoless endosperm (aleurone and SE) showed an important translational activity however, the embryo display a higher protein synthesis (Figures 6B,C). While the functional consequences of this mRNA translational activity remain to be established, it is clear that the seed endosperm has emerging new roles regarding the control of seed germination and environmental adaptation (Yan et al., 2014; Bassel, 2016). New determinants of agricultural seed quality both in monocots and dicots crops will undoubtedly benefit from tissue-specific combined “multi-omics.” The genetic and tissue heterogeneity of the mature seed is a considerable challenge to seed biologists. In addition, the seed definitely constitute a fascinating plant organ in which post-transcriptional regulations and translational selectivity fine-tune the biological processes that are spatially and temporally regulated within a few hours. A renewed vision of seed biology by integrative systems biology would certainly dig out meaningful new genetic determinants of seed quality.
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Figure S1. Protein SDS-PAGE gels used for label-free shotgun proteomics. (A,B) Proteins were extracted, quantified by the Bradford assay and 25 μg of embryo (A) or endosperm (B) proteins were subjected to SDS-PAGE (10% acrylamide) and Coomassie staining. (C) Protein quantification in each lane according to the Multi Gauge 3.0 software. Areas quantified are shown on the gels.

Figure S2. Transcriptome (A) and proteome (B) analysis workflows applied in this study.

Figure S3. Gene Singular Enrichment Analysis of genes preferentially expressed in the endosperm. From the list of the differentially expressed genes, we extracted 787 probe sets with a preferred expression in the endosperm (log2 ratio > +1.4, p < 0.01). The resulting list of 787 probe sets was then submitted to the AgriGO Gene Singular Enrichment Analysis (Hypergeometric test corrected by Yekutieli False Discovery Rate correction, Affymetrix Rice Genome Array set as background, p < 0.05) to detect enriched Biological Process (A), Cellular Compartment (B), and Molecular Function (C) GO categories. 722 probes were classified. Light yellow, dark yellow and red boxes indicates GO terms significant enrichment at p < 0.05, < 0.01, and < 0.001 respectively.

Figure S4. Gene Singular Enrichment Analysis of genes preferentially expressed in the embryo. From the list of the differentially expressed genes, we extracted 1,921 probe sets with a preferred expression in the embryo (log2 ratio< −1, p < 0.01). The resulting list of 1,921 probe sets was then submitted to the AgriGO Gene Singular Enrichment Analysis (Hypergeometric test corrected by Yekutieli False Discovery Rate correction, Affymetrix Rice Genome Array set as background, p < 0.05) to detect enriched Biological Process (A), Cellular Compartment (B), and Molecular Function (C) GO categories. 1,712 probes were classified. Light yellow, dark yellow and red boxes indicates GO terms significant enrichment at p < 0.05, < 0.01, and < 0.001 respectively.

Figure S5. Embryo and endosperm peptide and protein distributions. (A–D) Distributions of the gene-specific peptide and protein abundances from (A,C) embryo and (B,D) endosperm on a log2-transformed axis. (E,F) Quantile-quantile comparison of embryo and endosperm (E) peptide and (F) protein abundances (log2-transformed). (G) Distribution of the log2 ratios (endosperm vs. embryo) for the 673 common proteins. The comparison with the theoretical normal law (red line with a mean equal to the estimated mean i.e., −1.89 and standard deviation 2.89) is shown.

Figure S6. Gene Singular Enrichment Analysis of endosperm-specific or endosperm-favored proteins. The list of the 113 endosperm-specific and 76 endosperm-favored (log2 ratio > 1.7) was subjected to a Gene Singular Enrichment Analysis tool (hypergeometric test corrected by Yekutieli False Discovery rate, whole transcriptome set as background, p < 0.05) to detect enriched endosperm protein Biological Process (A), Cellular Compartment (B), and Molecular Function (C) GO categories. 164 proteins were classified. Light yellow, dark yellow and red boxes indicates GO terms significant enrichment at p < 0.05, < 0.01, and < 0.001 respectively.

Figure S7. Gene Singular Enrichment Analysis of embryo-specific or embryo-favored proteins. The list of the 1,426 embryo-specific and 267 embryo-favored (log2 ratio < −2.9) was subjected to a Gene Singular Enrichment Analysis tool (hypergeometric test corrected by Yekutieli False Discovery rate, whole transcriptome set as background, p < 0.05) to detect enriched embryo protein Biological Process (A), Cellular Compartment (B), and Molecular Function (C) GO categories. 1,627 proteins were classified. Light yellow, dark yellow and red boxes indicates GO terms significant enrichment at p < 0.05, < 0.01, and < 0.001 respectively.

ABBREVIATIONS

AL, aleurone layer; ALDH, aldehyde dehydrogenase; AsA, ascorbate; DHA, dehydroascorbate; DT, desiccation tolerance; eIF, eukaryotic initiation factor; ESR, embryo surrounding region; ETC, endosperm transfer cells; HAI, hours after imbibition; HSP, heat shock protein; LEA, late embryogenesis abundant; LOX, lipoxygenase; MDA, malondialdehyde; MDHA, monodehydroascorbate; MSR, methionine sulfoxide oxidase; NBB, naphthol blue black; PA, periodic acid; PCD, programmed cell death; PIMT, protein-L-isoaspartate O-methyltransferase; PLD, phospholipase D; QTL, quantitative trait locus; RFO, raffinose family oligosaccharides; ROS, reactive oxygen species; SE, starchy endosperm; SSPs, seed storage proteins; TAGs, triacylglycerols; TCA, tricarboxylic acid cycle; TIC, total ion current; XIC, extracted ion current.
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Compound? Class Endosperm/embryo  FDR®
log, ratio®

vtocopherol Apolar NA Embryo
Maltotriose Carbohydrate NA Embryo
Ascorbate Organic acids NA Endosperm
Feruoylquinic acid Organio acids NA Embryo
Adenosine-5-P. Purine_Pyrimidine NA Embryo
Galactinol_isomer_1  Sugar alcohol NA Embryo
Galactinol isomer_2  Sugar aloohol NA Embryo
4-hydroxyproline Amino acids 195 005
Alanine Amino acids 088 004
beta-Alanine Amino acids 176 003
3-cyano-alanine Amino acids 331 003
Oystein Amino acids 177 005
4-Aminobutyrate (GABA) Amino acids 229 oot
Glutamine Amino acids 300 oot
Isoleucine Amino acids 230 004
Leucine Amino acids 221 003
Lysine Amino acids 132 000
Ornithine 084 003
Phenylalanine 257 003
Pyroglutamate Amino acids 097 003
Serine Amino acids 205 003
Threonine Amino acids 159 004
Tryptophan Amino acids 1.20 oot
Valine Amino acids 239 004
«-Tocopherol Apolar -256 003
p-Sitosterol Apolar 257 000
Campesterol Apolar 172 000
Monopalmitin Apolar 383 003
Monostearin Apolar 462 002
Stigmasterol Apolar 318 000
N-acetylmannosamine  Other 249 002
Acabinose Carbohydrate 438 002
Celiobiose Carbohydrate 195 003
Galactose Carbohydrate 564 002
Glucopyranose Carbohydrate 430 002
Mannose Carbohydrate 154 oot
Melibiose Carbohydrate 1.49 oot
Ribose Carbohydrate 507 oot
Sedoheptulose Carbohydrate 356 002
Trehalose Carbohydrate 153 000
Xylose Carbohydrate 442 002
Raffinose Carbohydrate -076 002
Sucrose Carbohydrate 098 001
Linoleic acid Fatty acids 476 001
Linolenic acid Fatty acids 461 002
Caffeate Organio acids 473 003
Citrate Organio acids ~1.24 001
Erythronate Organio acids 357 005
Fumarate Organio acids 320 005
4-hydroxybutancate  Organic acids 534 oot
Glucaric acid Organic acids ~269 001
Gluconate Organic acids 196 003
Glycerate Organic acids 3.80 003
Glycolate Organic acids 457 003
Malate Organic acids 277 001
Maleate Organic acids 390 001
Malonate Organic acids 235 005
Nicotinate Organic acids 211 003
Phosphate Organc acids 1.15 001
Pipecolate Organc acids 068 001
Salicylate Organic acids 403 005
Sinapinate Organc acids 390 003
Sinapinate-trans Organic acids 401 001
Succiate Organic acids 328 003
Threonate Organic acids 1.50 000
Spermidine Polyamine 276 001
Guanine Purine_Pyrimidine 431 003
Uracil Purine_Pyi 362 004
Enythiitol Sugar alcohol 359 000
Glycerol Sugar alcohol 419 003
Glycerol2-P Sugar alcohol 1.56 001
Glyceroh3-P Sugar alcohol 056 001
Inositol_isomer_3 Sugar alcohol 215 003
Inositol_isomer_4 Sugar alcohol 159 001
Inositol_isomer_§ Sugar alcohol 266 003
Inositol-1-P Sugar alcohol 315 003
Mannitol Sugar alcohol 398 003
Digalactosylglycerol  Sugar alcohol -061 000
Galactosylglycerol Sugar alcohol 438 003

2See additional file 1 for compound identification details (/z and retention index)

®The average seed metabolite abundance in each tissue (endosperm or embryo) was
used to calculate the logz ratio. A positive log, ratio indicates an endosperm-favored
metabolite accumulation (negative for embryo-favored logz ratio).

“For each metabolite, a Student t-test followed by a False Discovery Rate (FDR) correction
was computed. This table contains only metabolites with a p < 0.05. Tissue-specifi
metabolites are indicated (e.g., "Embryo”).






OPS/images/fpls-08-02146/logo.jpg
, frontiers
in Plant Science





OPS/images/fpls-09-00485/cross.jpg
3,

i





OPS/images/fpls-09-00771/fpls-09-00771-t001.jpg
Transcriptome Increased? Decreased Total

CDS with putative function 854 238 19140
CDS without putative function 1283 25 4907
Total detected qr7 263 23991
Proteome

Proteins with putative function 20 15 98
Proteins without putative function 69 23 263
Total detected 89 38 361
Metabolome

|dentified metabolites 14 4 121
Unidentified metabolites 29 3 230
Total detected 43 7 351

8Increased and decreased abundance in diseased leaves compared to healthy
controls.
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VIT_03s0088g00810 / Pathogenesis-related protein 1 (PR-1)
VIT_18s0001g11930 / Thaumatin (PR-5)
VIT_05s0094g00200 / EPC3-3 chitinase (PR-8)
VIT_08s0058g00210 / Heat shock protein HSP18
VIT_04s0008g01520 / Heat shock protein HSP17
VIT_07s0031g00670 / Heat shock factor 4
VIT_01s0127g00520 / Nucleoredoxin 1
VIT_00s1677g00010 / Peroxidase
VIT_13s0067g01840 / Ferritin-5
VIT_07s0005g00750 / Sucrose synthase
VIT_06s0061g00550 / Xyloglucan hydrolase 32
VIT_00s0309g00050 / Expansin-like B1
VIT_14s0066g01060 / Pectin lyase
VIT_17s0000g04750 / UDP-Glycosyltransferase
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Nature of the compounds

Amino acids

Organic acids

Carbohydrates

Polyols

Fatty acids

Phenolic compounds (flavonoids)
Others

Metabolite name

L-Glutamate (C00025), L-aspartate (C00049), L-alanine (CO0041), L-asparagine (C00152), L-serine (CO006S), L-threonine
(C00188), L-leucine (CO0123), L-valine (C00183), L-isoleucine (C00407), L-proline (C00148), L-phenylalanine (C00079)
Ascorbate (C00072), pyruvate (C00022), L-lactate (C00186), succinate (C00042), fumarate (C00122), malate (C00149),
citrate (CO0158), aconitate (C00417), gluconolactone (C00198), D-glycerate (CO0258), glucarate (CO0818), galactarate
(C00879), maleate (C01334), salicylate (CO0805), pyroglutamic acid (C01879), oxalate (C00209), gallate (CO0627), quinate
(C00296), D-ribonate (CO1685)

D-Glucose (C00031), L-arabinose (C00259), D-xylulose (C00310), D-galacturonate (C00333), D-fructose (C00095),
L-sorbose (C00247), mannitol (C00392), L-rhamnose (CO0507), b-sorbitol (C00794), sucrose (CO0089), D-galactose
(C00124), melibiose (C05402), myo-inositol (C00137), b-glucose 6-phosphate (C00092), maltose (CO0208), maltotriose
(C01835), D-cellobiose (C00185), D-galactonate (CO0880), D-erythrose (CO1796)

Glycerol (C00116), viburnitol (C08259)

Palmitic acid (C00249), oleic acid (C00712), stearic acid (C01530), linoleic acid (C01595)

Gatechin (C06562), epigallocatechin (G12136)

Urea (CO0086), 4-aminobutanoate (GABA) (C00334), tridecane (C13834), anthraquinone (G16207)

Six main chemical familles of metabolites are represented. Carbohydrates (19), organic acids (19), amino acids (11), fatty acids (4), polyols (2), phenolic compounds (2),
and four unique compound classes (others). Data in the brackets are KEGG compound identifier of each metabolite.
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Pathways

Carbohydrate metabolsm
Glycolysis/gluconeogeness (ath00010)

Glyoxylate and dicarboxylate metabolism (ath00630)
Gitrate cycle (TCA cycle) (ath00020]

Amino sugar and nucieotide sugar metabolism (ath00520)
Starch and sucrose metabolism (ath00500)

Pentose phosphate pathway (ath00030)

Galactose metaboism (ath00052)

Anmino acid metabolism

Aaine, aspartate, and glutamate metabolism (ath00250)
Gysteine and methionine metabolism (ath00270)

Giycine, serine, and threonine metabolism (ath00260)
Phenyalanine metabolsm (ath00360)

Lipid metabolism

Biosynthesis of unsaturated fatty acids (ath01040)

Energy metabolism

Garbon fixation in photosynthetic organisms (ath00710)
Biosynthesis of other secondry metabolites.
Phenylpropancid biosynthes's (ath00940)

Metabolites

Pyruvate, 0-glucose, Llactate
Pyrwvate, L-glutamate, succinate, L-serine, malate, cirate, glycolate, oxalate, glycerate, aconitate
Pyruvate, succinate, fumarate, malat, citrate, aconitate

©-Glucose, L-arabinose, b-galacturonate

0-Glucose, sucrose, D-glucose 6-phosphate, o-fructose, celobiose, maltose

Pyruvate, 0-glucoss, gluconolactone, glycerate

©-Glucose, sucrose, D-fructose, giycerol, D-galactose, myo-nasitol, 0-sorbitol, b-galactonate, melbiose

Pyruvate, L-glutamate, L-alanine, succinate, L-aspartate, fumarate, L-asparagine, Gitrate, 4-aminobutanoate (GABA)
Pyruvate, L-alanine, L-aspartate, L-serine

Pyruvate, L-aspartate, L-serine, L-threonine, glycerate

Pyruvate, succinate, L-phenylalanine, fumarate, salicylate

Paimitic acid, oleic acid, stearic acid, iinoleic acid

Pyruvate, L-alanine, L-aspartate, malate

L-Phenylalanine, gallate

3w

©so 0o

oo s o

2

Proteins.

20
16

12
18

10
11

20

7

Transeripts

20
27
16
38
%
17
15

27
a7
31
14
13

23

17

Pathways according to the KEGG pattway maps based on Arabidopsis thaliana. The Arabidopsis pathway identifers are in brackets. The table shows the most representative pathways. The complete st of pattways

is in the Supplementary Material Table S9.
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Abundance data is presented on a scale relative to the lowest value among
treatments. Different lowercase letters indicate significant differences between the
control (C), drought (D), heat (H), and combined stress (D*H) plant groups, under
stress and after recovery, absent relative abundance indicates that no differences
were found (p < 0.05).
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Abundance data is presented on a scale relative to the lowest value among
treatments. Different lowercase letters indicate significant differences between the
control (C), drought (D), heat (H), and combined stress (D*H) plant groups, under
stress and after recovery; absent relative abundance indicates that no differences
were found (p < 0.05).
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Abundance data is presented on a scale relative to the lowest value among
treatments. Different lowercase letters indicate significant differences between the
control (C), drought (D), heat (H), and combined stress (D*H) plant groups, under
stress and after recovery; absent relative abundance indicates that no differences
were found (p < 0.05).
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Genus. Section Species

Viola Plagiostigma V. mandshurica W.Becker [37)%, V. albida Palib. var. takahashii (Nakai) Kitag. [29]%, V. verecunda A.Gray [23]?, V/
baoshanensis W.S.Shu, W.Liu & C.Y.Lan [44)>
Viola V. odorata L. 51°, V. uliginosa Bess. [18]Y V. acuminata Ledeb. [23]" V. adunca Sm. [2)°
Melanium V. tricolor L. [49)f
Chamaemelanium V. orientalis W.Becker [26]", V. bifra L. [6)9, V. canadensis L. 19]", V. pinetorum Greene [2)°
Gloeospermum G. blakeanum (Standl) Hekking.[5]', G. paucifiorum Hekking. (4
Meicytus M. ramiflorus J.R Forst. & G.Forst. [14]
Pigea P floribunda Lindl. (=Hybanthus floribundius (Lindl) F-Muell) (6}

The numbers in parentheses atter the species name show the number of precursor sequences derived from that spacies. The name of species, used for the transcriptomic assay of the
current study is marked with bold. Sections are incicated within Viola. Within sect. Plagiostigma, V. mandshurica, and V. albida var. takahashil belong i subsect. Pateleres (Boiss,) Rouy
& Foucaud, V. verecunda in subsect. Biobatae (W.Becker) W.Becker and V. baoshanensis in subsect. Diffusae (W.Backer) Chang. Within sect. Viola, V. odorata belongs to subsect. Viola
and V. acuminata, V. adunca, and V. uliginosa in subsect. Rostratae (W.Becker) W.Becker. No subsections are applicable to sect. Chamaemelanium. @ Transcriptomes from the current
study, V. mandshurica, V. albida var. takahashi, V. verecunds, V. acuminata and V. orientals; °V. baoshanensis (Zhang ot al, 2009, 2015b); °V. odorata (Dutton et el 2004; Ireland
et al, 2006); °V. ulginosa (Slazak et al, 2015); °V. pinetorum and V. adunca (Keas and Craik, 2010); 'V, tricolor (Mulvenna et al, 2005; Hellrger et al, 2015); OV, biflra (Hermarn
et al, 2008); PTranscriptome data for V. canadensis were obtained from the Tkp project (www.onekp.com), and the cyclotide precursor sequences were determined in this work; 'G.
blakeanum and G. paucifiorum (Burman et al., 2010); IM. ramifiorus (Trabi et al., 2009); XP. floribunda (as H. forbundus) (Simonsen et al., 2005).
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Plants collected (Scientific name)
V. albida var. takahashii

V. mandshurica

V. orientalis

V. verecunda

V. acuminata

Locality
Mt. Cheonma, Namyangju-si, Gyunggi-do, South Korea

Kangwon National University Gampus, Chuncheon-si, Gangwon-do, South Korea
Mt. Daeryong, Sumit area, Chuncheon-si, Gangwon-do, South Korea

Mt. Daeryong, Valley area, Chuncheon-si, Gangwon-do, South Korea

Mt. Oeum, Hoengsung-gun, Gangwon-do, South Korea

Geographic Coordinates and altitudes

NB7°4143.0" E127°17'25.5",
213m
N37°5225.9" E127°44'68.6"
110m
N37°50'68.8” E127°49/12.5"
860m
NB7°50'03.5” E127°49'80.7"
415m
N37°36'34.9" E127°56/12.9"
619m
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TF name TFfamily  Targetmodule ~ ATHTFname  Motif enrich MEME motif DAP-seq motif Motif similarity

s adip-valuo paalus
Gyma 1062400 bZP 5 Aiscosiol | i2iEos ‘];QCCACGTM ’]aﬁ?CACGIS@ oe10
Smatcoo WAy 5 OSSR 7311 I 1 10 SR
GhmaostiOT00 B g U 7 "\ W ] (R

O?yszMG 8.87E-05

“ATH TF name" is Arabidopsis transcription factor gene homologous to the soybean transcription factor gene. “Molif enrich adf p-value” s the enrichment p-value for each of the moltf
found in the promoter regions of predicted gene modes. “DAP-seq motif” s the most similar moltf from DAP-seq database. “Motl similrty p-value" represents the signifcance of
similrity between the motis found in promoters in the gene mocules and the DAP-seq motifs. Al significantly enriched motifs and their corresponding DAP-seq motifs are provided in
Supplementary Table 8.
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Cluster
D

GO Term

GO:0048838: release
of seed from dormancy
GO:0009738: abscisic
acid-activated signaling
pathway

G0:0000845: seed
germination

GO:0009738: abscisic
acid-activated signaling
pathway

GO:0009737: response
to abscisic acid

G0:0000738: abscisic
activated signaling
pathway
G0:0000733: response
to auxin

Gene Name

Glyma.01G153300
Glyma.12G073000
Glyma.U021800

Glyma.07G023300
Glyma. 106082400
Glyma.08G27 1900
Glyma,03G138000
Glyma.05G194100

Giyma.17G126400

Glyma.17G086400

Glyma, 156078600
Glyma, 14G066400
Glyma.13G119500
Glyma.12G186800

Glyma,12G186800

Glyma. 136094900

Log? fold change
3mipa vs. 1mlpa vs.
IMWT-S1 1MWT-1
313805 —~2.84401

267451 —2.55671

25946 250453
296832 —2.24850
1.40473 ~1.55483
204156 ~1.54550
0 —1.46586
o —1.41822
1.18340 —1.31950
156707 0

o -1.84111

0 -1.10638
160068 ~2.02755
275115 —1.95635
275115 ~1.95635
414408 ~2.26796

Arabidopsis

homolog

AT4G19230

AT3GAS640

AT3GA5640

AT1G80840

AT3G11820

AT1G32640

AT3G57530

AT3G52430

AT3G48360

AT3GO1570

AT1G28480
AT3G11410
AT3G17510
AT2G27310

AT2G27310

AT5G57560

Gene Symbol

CYP707A1
MPK3

MPK3
WRKY40
SYP121, SYRI,

PENT
RD22BP1, JAIT,

JINT, MYC2, ZBF1
CPK32, CDPK32
PAD4

BT2

GRX480, roxy19
PP2CA, AHG3

CIPK1, SnRK3.16

TCH4, XTH22

Description

Cytochrome P450, family 707,
subfamily A, polypeptice 1
Mitogen-activated protein
kinase 3

Mitogen-activated protein
kinase 3

WRKY DNA-binding

protein 40

Syntaxin of plants 121

Basic helix-loop-helix (oHLH)
DNA-binding famil protein
Calcium-dependent protein
kinase 32
Apha/beta-Hydrolases
superfamily protein

BTB and TAZ domain
protein 2

Oleosin family protein

Thioredoxin superfernly
protein
Protein phosphatase 2CA

CBL-interacting protein
kinase 1

F-box family protein
F-box family protein

Xyloglucan
endotransglucosylase/
hydrolase family protein
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Protein Description Endosperm  p-value®

to embryo
logy ratio®
0s02906410.1  Putative SNF-1 related protein -8.13 0.01
kinase
05129204001 GRAM domain containing protein,  ~8.02 002
expressed
0505392501  PEBP -7.67 0.02
(phosphatidylethanolamine-binding)
family protein
0505494402 DUF1264 domain containing ~7.62 0.02
protein
0s03g15960.1  17.9 kDa heat shock protein -7.49 002
0s03g14180.1 267 kDa heat shock protein ~7.47 003
0s02g32860.1 Poly [ADP-ribose] polymerase 3 ~7.46 003
0s03919290.1  Chioroplastic outer enveloppe pore  ~7.42 003
protein
05089044101 Aconitase -7.41 0.03
0s05g37330.1  60S acidic ribosomal protein -7.38 0038
05029517501 Annexin -7.32 003
0s10g30150.1 ~ Universal stress protein -7.22 008
0s03906360.1 ~ Late embryogenesis abundant ~7.18 008
protein D-34
0s01g50910.1  Late embryogenesis abundant -687 0.04
protein LEA_4 domain
0505443401 Chaperone protein CpB1, heat -686 0.04
shock protein 101
0s0841390.1  Putative 70 kDa peptidyiprolyl -674 0.04
isomerase
0s10g17280.1  ATP synthase gamma chain —671 0.04
05079424901~ Sucrose synthase 3 880 0.00
0s07g11630.1  LTPL163 LTP famiy protein 7.94 0.00
05129140701 70 kDa heat shock-related protein ~ 7.93 0.00
0s05026350.1 13 kDa prolamin PROLM4 693 0.00
0s05g41970.1 19 kDa globulin 674 0.00
Os11g47520.1  Xylanase inhibitor protein 2 674 0.00
0s0609450.1 ~ Sucrose synthase 4 662 0.00
0s02g14600.1  Glutelin GluB-7 653 0.00
0s02g32660.1 ~ Starch branching enzyme 653 000
0s07g11410.1  Seed allergenic protein RAG2 619 0.00
0s01g44220.1  ADP-glucose pyrophosphoryiase  6.08 000
0s06951084.1 Starch branching enzyme 1 607 0.00
0s07g10570.1 13 kDa prolamin PROLM25 598 0.00
0502915080.1 ~ Gltelin GluD-1 584 0.00
05069042001 Granule-bound starch synthase 1 5.81 0.00
(Waxy)
0s05g33570.1  PPDK1 Pynuvate phosphate 579 0.00
dikinase 1
0s07g11650.1  LTPL164 LTP family protein 5.46 0.01
0s07g11380.1  Seed allergenic protein RAG2 533 0.01
0s07g10580.1 18 kDa prolamin PROLM26 529 0.01
0s07g11360.1  Seed allergenic protein 527 0.01
0s0622060.1 ~ 6-phosphofructokinase 511 0.01
pyrophosphate dependent
05029266401~ Gltelin GIuC-1 508 0.01
0502g15169.1  Gluten GluB-1b 488 001
0s07g11510.1  Seed allergenic protein 482 oot
0s07g34520.1  Isocitrate lyase 479 001
05029168201 Gltelin GluB-5 477 001
05079113301 Seed allergenic protein 468 0ot
0s04g40660.1 MA3 domain containing protein ~ 4.59 001
05069310701 13 kDa prolamin PROLM24 457 0ot
0s03955000.1 ~ Starch phosphorylase 454 001
0s03g16440.1 Translocon at outer-enveloppe 451 0ot
membrane of chioroplast
0s03931360.1 ~ Glutelin GluA-3 434 002
0s04g33150.1 ~ desiccation-related protein 414 002
05109350101 Translocon at inner-enveloppe 4.00 002
membrane of chioroplast
05029151501~ Glutelin GluB-2 379 003
0510926060.1 ~ Gltelin GluA-2 369 003
0s06948750.1 el 4A-1 Eukaryotic translation 356 003
initiation factor 4A-1
0502g50350.1  Dihydropyrimicine dehydrogenase  3.55 003
05019556901~ Glutein GluA-1 351 003
05119405301 LTPL162 LTP family protein 344 003
0507119001~ 18 kDa prolamin PROLM19 330 004
0s01g47410.1  Aspartic proteinase oryzasin-1 324 004
0s06946284.1  Probable alpha-glucosidase 315 004
05069303701 OSMFT1 homologous to Mother of ~ 3.08 005
FTand TFL1
0s07g11310.1  LTPL166 LTP family protein 306 005
0s05g02060.1  Chioroplastic outer envelope pore  3.03 005
protein
0502932030.1 ~ Elongation factor 300 005

*The average seed protein abundance in each tissue (endosperm or embryo) was used to
calculate the log, ratio. A positive logs ratio indicates an endosperm-favored metabolite
accumulation (negative for embryo-favored ogs ratio).

bP.yalue obtained from z-score analysis of endosperm to embryo loga ratios.
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Protein Family Description Specificity Rank? Endosperm to embryo logy ratio®

0s0836150.1 ASAT Heat shock protein 90 co-chaperone Common s -39
0s05g44340.1 clpA/CIpB Chaperone protein CipB1 Common - -69
0s10g42439.1 DnaJ DnaJ homolog Embryo 1312 =
0s01g04370.1 HSP20 16.9 kDa class | heat shock protein 1 Gommon - -54
0s01g08860.1 HSP20 18.0 kDa class Il heat shock protein Embryo 74 =
0502g52150.1 HSP20 24.1 KDa heat shock protein Embryo 362 -
0s02g54140.1 HSP20 18.8 kDa class Il heat shock protein Embryo 49 -
0s03g14180.1 HSP20 Chioroplastic 26.7 kDa heat shock protein ‘Common s -75
0s03g15960.1 HSP20 17.9 kDa class | heat shock protein Gommon - -75
0s03916020.1 HSP20 17.4 KDa class | heat shock protein Endosperm 75 -
0s03g16030.1 HSP20 18.1 kDa class | heat shock protein Embryo 304 -
0s03916040.1 HSP20 17.7 KDa dlass | heat shock protein Embryo 195

0s04g36750.1 HSP20 23.2 KDa heat shock protein Embryo 9

0s06g11610.1 HSP20 Mitochondial 26.2 kDa heat shock protein Embryo 1210

Os11g13980.1 HSP20 21.9 kDa heat shock protein Embryo 1,350

0s01908560.1 HSPTO 70 kDa Heat shock protein Common -

0501g62290.1 HSP70 70 kDa Heat shock protein Common

0s02g48110.1 HSP70 70 kDa Heat shock protein Common

0s02953420.1 HSPTO 70 kDa Heat shock protein Common -

0s03902260.1 HSP70 70 kDa Heat shock protein Embryo 135

0s03g11910.1 HSP70 70 kDa Heat shock protein Embryo 218 -
0s03g16860.1 HSP70 70 kDa Heat shock protein Embryo 280

0s03916920.1 HSP70 70 kDa Heat shock protein Gommon - -35
0s03g60620.1 HSP70 70 kDa Heat shock protein ‘Common - 06
0s05908840.1 HSP70 70 kDa Heat shock protein Gommon - -40
0s05g23740.1 HSP70 70 kDa Heat shock protein ‘Common - 08
0s05g38530.1 HSP70 70 kDa Heat shock protein Embryo 206 -
Os11g47760.1 HSP70 70 kDa Heat shock protein ‘Common = 23
0s12g14070.1 HSP70 70 kDa Heat shock protein ‘Common = 79
0s04g01740.1 HSP9O 90KDa heat shock protein Embryo £ -
0s06g50300.1 HSPYO Endoplasmin homolog Common . 29
0s08¢38086.3 HSP9O 90 kDa heat shock protein Endosperm 109 -
0s08¢89140.1 HSPYO Heat shock protein 81-1 Embryo 129 -
0509929840.1 HSPO 90 kDa heat shock protein Gommon - 05
0509g80412.1 HSPYO Heat shock protein 81-2 Embryo 551

0s09g30418.1 HSP9O Heat shock protein 81-3 Gommon - 03
0s12932086.1 HSPYO 90 KDa heat shock protein Embryo 179

0s01g06630.1 LEA Late embryogenesis abundant LEA_S Embryo 21

0s0112580.1 LEA Late embryogenesis abundant LEA_2 Gommon - -55
0s01g50700.1 LEA Dehydrin Rab25 Common - 44
0s01g50910.1 LEA Late embryogenesis abundant LEA_4 Common - -69
0s02g15250.1 LEA Late embryogenesis abundant protein Gommon - 45
0s02g44870.1 LEA Dehydrin Embryo 728

0s03906360.1 LEA Late embryogenesis abundant protein Gommon -

0s08g20880.1 LEA Late embryogenesis abundant protein 1 Common

0s03g53620.1 LEA Late embryogenesis abundant protein Embryo 262

0s08962620.2 LEA Late embryogenesis abundant LEA_2 Common

0s04g52110.1 LEA Late embryogenesis abundant protein Gommon

0s05g28210.1 LEA Embryonic abundant protein 1 Embryo 14 .
0s05g46480.1 LEA Late embryogenesis abundant protein Gommon - -59
0s05g50710.1 LEA Late embryogenesis abundant LEA 2 Embryo 321

0s06923350.1 LEA Late embryogenesis abundant protein Common 2 —45
0508923870.1 LEA Late embryogenesis abundant LEA_1 Embryo 110

Os11g26570.1 LEA Dehydrin ‘Common - -2.98
Os11g26750.1 LEA Dehycin Rab16D Embryo 1,396

Os11926780.1 LEA Dehycrin Rab168 GN = RAB168 Embryo 330

0s12g43140.1 LEA Late embryogenesis abundant protein Embryo 69

0502943020.1 PR Heat shock protein stress-induced TPLR 2 Gommon - -24
0508904150.1 Lipocalin OSTIL-2 Temperature-induced ipocalin 2 Embryo 644

0502939930.1 Lipocalin OsTIL-1 Temperature-induced lipocalin 1 Embryo 1,424

0503931300.1 CIpA/CIpB Chloroplastic chaperone protein CipB2 Gommon - -0.12
0s02908490.1 clpA/clpB Mitochondiial chaperone protein ClpB3 Embryo 165

“Rank of the protein respectively to the other tissue-specific proteins.
©The average seed protein abundance i each tissue (endosperm or embryo) was used to calculate the logs ratio. A positive logz ratio indicates an endosperm-favored metabolite
accumulation (negative for embryo-favored logz ratio).





