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Editorial on the Research Topic 
Assessment and monitoring of human movement


The study of human movement is a well-established multidisciplinary research field that draws expertise from biomechanics, functional anatomy, physiology, and neuroscience, with an ever-increasing emphasis on technology and engineering (Verrelli et al., 2021a; 2023; Xu et al.; Edriss et al., 2024b; Gao et al.; Jiang et al.; Jiang et al.; Khan et al.; Miao et al.; Zhang et al.; Zhang et al.; Zhou et al.; Zhu et al.; Romagnoli et al., 2025b). The demand for accurate and reliable tools to assess physical performance continues to rise, particularly in sports science and clinical practice (Chen and Shen, 2017; Fan et al., 2019; Annino et al., 2021; Verrelli et al., 2021b; Zanela et al., 2022; Yang et al.; Zając et al.). Traditionally, functional assessments were confined to controlled environments, where gold-standard technologies such as motion capture systems, force platforms, and metabolic analyzers could guarantee precision (Cavagna, 1975; Luhtanen and Komi, 1978; Ehara et al., 1997; Hausswirth et al., 2007; Lucía et al., 2008). However, despite their accuracy, these tools often lacked ecological validity: performance observed under laboratory conditions did not reflect the biomechanical aspect of movement and, in particular, lost the specificity of sports performance (Sale and MacDougall, 1981). Bridging this gap has become a central challenge in sports science. For this reason, sport engineering has allowed us to bring the laboratory assessment directly to the race/training field (Bosco et al., 1995; Cormie et al., 2007; Bonaiuto et al., 2020; Romagnoli et al.; Goreham and Ladouceur). The miniaturization and increased affordability of sensors, coupled with advances in wireless data transmission and computational power, have paved the way for a new generation of wearable, non-invasive devices (Chambers et al., 2015; Aroganam et al., 2019; Xu et al.; Edriss et al., 2024b; Xiang et al.; Yang). These tools can now measure a range of biomechanical, physiological, and kinematic variables such as acceleration, angular velocity, muscle activity, joint angles, heart rate, and more during actual sporting performances or daily activities (Hausswirth et al., 2007; Giggins et al., 2022; Bonfiglio et al.; Hermosilla Perona et al., 2024; Papini et al.; Ren et al.; Romagnoli et al.; Caprioli et al., 2025). The impact of this transition is profound: by enabling the monitoring of athletes, patients (Alahmari and Reddy; Herrera-Valenzuela et al.; Kang et al.; Liu and Bai; Miyazaki et al.; Mo et al.), and healthy individuals in their natural contexts (Chen et al.; Guo et al.; Ko et al.; Liang; Xiang et al.), movement science is gaining unprecedented depth and relevance. In elite sports, the potential of such devices is well recognized. The ability to collect and analyze real-time data during training or competition allows coaches and practitioners to fine-tune performance variables with precision, in addition to monitoring fatigue and recovery (Taborri et al., 2020; Guppy et al., 2022; Daniel et al.). Whether tracking running load via GPS in soccer or analyzing stroke dynamics with inertial sensors in kayaking or swimming, the quantitative approach to sports performance is now a cornerstone of evidence-based practice (Romagnoli et al., 2022; Romagnoli et al.; Santos et al., 2022; Goreham and Ladouceur). Moreover, the integration of these tools with video analysis systems—particularly those enhanced by deep learning and 3D reconstruction-offers new possibilities for unobtrusive and highly detailed motion analysis, even in competitive scenarios (Annino et al., 2023; Blanco-Coloma et al.; Edriss et al., 2024a; 2025b; 2025a; Najlaoui et al., 2024; Romagnoli et al., 2025a). The clinical relevance of these technologies is equally promising. In rehabilitation and neurodegenerative disease management, wearable sensors are being used to assess gait patterns, balance, and motor coordination in patients with conditions such as Parkinson’s disease, multiple sclerosis, and Alzheimer’s disease (Das et al., 2022; Zhao et al., 2023). Functional metrics (e.g., symmetry, kinematic and dynamic parameters, EMG activity, harmony of motion, and temporal variability) are now being used as objective markers to guide and to help therapeutic decisions and track disease progression. Despite these advances, important challenges remain. One of the most pressing needs is the standardization and validation of sensor-based measures across populations, devices, and contexts. As the ecosystem of wearable technologies expands, ensuring data reliability and interoperability becomes essential for scientific progress and clinical translation. Equally important is the development of user-friendly interfaces that make advanced analytics accessible to non-expert users, including coaches, clinicians, and patients, without compromising data integrity or interpretability. A further frontier lies in the integration of multimodal data. Combining information from different sources, such as inertial sensors, electromyography, video, and physiological monitors, can provide a more holistic picture of motor function (Fan et al., 2019; Stetter et al., 2019; Zago et al., 2019; Meng et al., 2021; Zanela et al., 2022). The application of artificial intelligence and machine learning is proving valuable here, enabling the extraction of meaningful patterns from complex datasets and the construction of predictive models for performance outcomes, injury risk, and therapeutic response (Nasr et al., 2021; Ammar et al.; Bogaert et al.). This Research Topic [63 articles submitted, with 36 studies accepted (57%) and 27 rejected (43%)] reflects the vitality of the field and the growing interest in the functional assessment of human movement as a tool for both performance enhancement and health promotion. The contributions gathered here showcase methodological innovations, application-specific protocols, and novel devices tailored to diverse populations and environments. Together, they underscore a central message: the future of movement science lies in its ability to operate seamlessly across settings, to speak the language of multiple disciplines, and to generate knowledge that is not only reliable and valid but also actionable. In conclusion, the technological transformation of human movement analysis marks a turning point in how we understand, measure, and apply physical performance data. From elite athletes striving for excellence to patients seeking autonomy in daily life, the ability to assess movement with accuracy, in context, and over time is becoming a cornerstone of both sports science and healthcare. We hope that this collection of research contributions will foster new collaborations and inspire further innovations aimed at making movement analysis ever more accessible, meaningful, and impactful.
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Objective: Objectively and efficiently measuring physical activity is a common issue facing the fields of medicine, public health, education, and sports worldwide. In response to the problem of low accuracy in predicting energy consumption during human motion using accelerometers, a prediction model for asynchronous energy consumption in the human body is established through various algorithms, and the accuracy of the model is evaluated. The optimal energy consumption prediction model is selected to provide theoretical reference for selecting reasonable algorithms to predict energy consumption during human motion.
Methods: A total of 100 subjects aged 18–30 years participated in the study. Experimental data for all subjects are randomly divided into the modeling group (n = 70) and validation group (n = 30). Each participant wore a triaxial accelerometer, COSMED Quark pulmonary function tester (Quark PFT), and heart rate band at the same time, and completed the tasks of walking (speed range: 2 km/h, 3 km/h, 4 km/h, 5 km/h, and 6 km/h) and running (speed range: 7 km/h, 8 km/h, and 9 km/h) sequentially. The prediction models were built using accelerometer data as the independent variable and the metabolic equivalents (METs) as the dependent variable. To calculate the prediction accuracy of the models, root mean square error (RMSE) and bias were used, and the consistency of each prediction model was evaluated based on Bland–Altman analysis.
Results: The linear equation, logarithmic equation, cubic equation, artificial neural network (ANN) model, and walking-and-running two-stage model were established. According to the validation results, our proposed walking-and-running two-stage model showed the smallest overall EE prediction error (RMSE = 0.76 METs, Bias = 0.02 METs) and the best performance in Bland–Altman analysis. Additionally, it had the lowest error in predicting EE during walking (RMSE = 0.66 METs, Bias = 0.03 METs) and running (RMSE = 0.90 METs, Bias < 0.01 METs) separately, as well as high accuracy in predicting EE at each single speed.
Conclusion: The ANN-based walking-and-running two-stage model established by separating walking and running can better estimate the walking and running EE, the improvement of energy consumption prediction accuracy will be conducive to more accurate to monitor the energy consumption of PA.
Keywords: physical activity, METs, artificial neural network, tri-axis accelerometer, energy consumption, metabolic prediction model, predicting energy expenditure, high accuracy

1 INTRODUCTION
Physical activity (PA) deficiency has become the fourth leading cause of death in the world. About 5 million people die of PA deficiency every year (WHO, 2020). Positive PA is closely related to health; for example, moderate physical activity (MPA) is inversely proportional to the occurrence of depression (Dishman et al., 2021). Proper PA can help reduce the risk of abnormal blood lipids, improve the levels of cholesterol and high-density lipoprotein cholesterol, and promote the development of blood indicators in a healthy direction (Delavar et al., 2011; Montesi et al., 2013). There is a dose–effect relationship between PA and health. Wen et al. found that 90 min of MPA per week (or 15 min per day) can significantly reduce the risk of death related to all causes, cancer, cardiovascular disease, and diabetes (Wen et al., 2011). The WHO recommends that adults engage in MPA for more than 30 min at least 5 times a week, or vigorous physical activity (VPA) for more than 20 min at least 3 times a week (Bull et al., 2020).
Objective measurement1 of PA is an essential basis for monitoring whether one has reached the recommended levels. Currently, wearable devices based on triaxial accelerometers are the primary means of objectively measuring PA. According to the 2023 Global Fitness Trend Survey Report by the American Sports Medical Association, wearable technology is ranked first. However, numerous studies have shown that wearable devices are ineffective in predicting EE to meet the needs of consumers. A meta-analysis of 158 articles, which included Apple, Fitbit, Garmin, Mio, Misfit, Polar, Samsung, Withings, and Xiaomi commercial wearable devices, demonstrated that none of the products can effectively predict EE (Fuller et al., 2020).
The accuracy of estimating EE using three-axis accelerometers primarily depends on the establishment of a prediction model based on the relationship between three-axis acceleration data of the accelerometer and METs. This involves calculating the various intensities of physical activity and then determining EE using the model. Building a prediction model between acceleration data and METs is crucial to the accuracy of the estimation. Currently, there are many models used to predict physical activity based on triaxial accelerometers. Initially, the most widely established models were linear equations, with the linear equations developed by Freedson being the most classic. The equation is based on z-axis acceleration: METs = 1.439008 + 0.000795 × ACz, which is widely accepted among scholars (Freedson et al., 1998).
As research progresses, the nonlinear equations developed by Campbell et al. has been increasingly utilized in the creation of EE prediction models. This equation employs a multiple stepwise regression method to analyze various factors and establish the nonlinear equation [image: Mathematical formula displaying \( E_{Eact}(k) = aN \times (k)1 + bN \times V(k)p2 \).], where a and b, and p1 and p2 represent the coefficients associated with height and weight, respectively (Campbell et al., 2002). Couter et al. proposed the establishment of subsection equations based on linear or nonlinear equations to enhance the accuracy of EE monitoring. The findings indicate that the difference between the measured and predicted values of the subsection equations is significantly smaller compared to other types of equations (Crouter et al., 2006).
With the development of AI, machine learning, as a subset of AI, has received extensive attention in recent years. Taking the features extracted from acceleration data as the input variables, through a series of machine-learning algorithms, such as the ANN model (Mackintosh et al., 2016), random forest (Ellis et al., 2014), support vector machine (Liu et al., 2011) etc., the functional relationship with the output variables is obtained (i.e., the machine-learning model is generated). Mackintosh established an ANN model through the characteristic values of the mean and variance of the accelerometer within 15 s and evaluated the model. The results showed that there was no significant difference between the predicted value and measured value, and that the accuracy of the MET prediction was better than that of Freedson’s linear EE prediction equation for children (Mackintosh et al., 2016). Ellis established a regression forest based on the wrist accelerometer and proved that it effectively improved the accuracy of the model prediction (Ellis et al., 2014).
This study was aimed at the problem of the dependence of the accuracy of the three-axis accelerometer in the estimation of the EE of human motion on the built prediction model. Using acceleration data collected from wrist accelerometers, we constructed multiple prediction models for EE during walking and running and evaluated their accuracies. Based on the evaluation, we selected the superior model to provide a theoretical reference for choosing an appropriate EE prediction model for walking and running. At the same time, it is conducive to promoting the scientific development of sports.
2 MATERIALS AND METHODS
2.1 Participants
A total of 100 students aged 18–30, including 50 men and 50 women. Experimental data for all participants were recruited and randomly assigned to either the modeling group (n = 70) or the validation group (n = 30) while maintaining gender balance in each group. The gender, height, weight, BMI, and body fat ratio of the participants are shown in Table 1. All participants completed a Physical Activity Readiness Questionnaire (PAR-Q) and pre-exercise health screening questionnaire and provided signed informed consent. Inclusion criteria required no restrictions on sports participation and the ability to complete the physical activities of the experimental tests. All of the procedures in this study were performed in accordance with the Declaration of Helsinki. The study was approved by the Review Committee of the Capital University of Physical Education and Sports.
TABLE 1 | Characteristics of participants (mean ± SD).
[image: Table comparing characteristics between total, modeling, and validation groups. For age: total is 24.4 ± 1.6 years, modeling 24.2 ± 1.6, validation 24.7 ± 1.6. Height: all groups 1.7 ± 0.08-0.09 meters. Body mass: total 64.0 ± 10.6 kg, modeling 64.0 ± 10.2, validation 64.8 ± 11.6. BMI: total 22.0 ± 2.1 kg/m², modeling 22.0 ± 2.1, validation 22.1 ± 2.2. Body fat rate: total 21.6 ± 6.5%, modeling 21.5 ± 6.7, validation 22.0 ± 6.2. Note: SD is standard deviation.]2.2 Experimental design
Prior to the experiment, participants were asked to refrain from strenuous exercise for 24 h, and avoid consuming any food or drink containing caffeine. The experiment was conducted 1.5–2 h after a meal. Upon arrival at the laboratory, participants rested for at least 10 min, during which their height, weight, and body composition were measured. Triaxial accelerometers, a QUARK PFT, and heart rate monitors were attached to participants for the sitting, walking, and running experiments. For the walking experiment, participants walked on a treadmill at speeds of 2 km/h, 3 km/h, 4 km/h, 5 km/h, and 6 km/h, with a uniform step frequency and natural arm swing. For the running experiment, the participants ran on the treadmill at speeds of 7 km/h, 8 km/h, and 9 km/h, with a uniform step frequency and arms bent at the elbows and clenched fists while naturally swinging their arms back and forth. The walking and running tests were each performed for 4 min with rest periods between the different speeds. Figure 1 shows the flow of the study design and framework.
[image: Flowchart illustrating a process from subjects to performance comparison. Subjects wear a smartphone and smartwatch while walking and running. Data undergoes Kalman filtering and processing. Processed data is used for modeling, displayed as graphs, and verified against ANN walking and running models for performance comparison.]FIGURE 1 | Research structure chart.
2.3 Experimental equipment
2.3.1 Triaxial accelerometer
The digital attitude sensor used in this study was the WT901SDCL model with storage function, manufactured by China Shenzhen Weite Intelligent Technology Co., Ltd., as shown in Figure 2. It had dimensions of 51.3 mm × 36 mm × 15 mm and a battery capacity of 200 mAh, and could sample at frequencies ranging from 0.1 Hz to 200 Hz with acceleration options of ±2/4/8/16 g. The module incorporated high-precision gyroscopes, accelerometers, and geomagnetic field sensors, and had a built-in rechargeable battery. Measured data were recorded on an SD card inside the module. The module supported a serial TTL interface for flexible connectivity options, and the serial port rate was adjustable from 2,400 bps to 921,600 bps. The accelerometer data were analyzed using the MiniIMU.exe software. Before the experiment, the sampling frequency was set to 100 Hz (Migueles et al., 2017), and the sensor was secured to the non-dominant wrist with a wrist strap.
[image: Diagram showing the dimensions of a rectangular device. Front view dimension is 39 mm by 63.3 mm. Side view shows a thickness of 16 mm. Arrows indicate axes labeled X, Y, Z with a website link: www.shi-eshion.com.]FIGURE 2 | Accelerometer appearance.
2.3.2 Quark PFT
In this study, the Quark PFT system (Cosmed, Italy) was used as the gold standard for measuring energy expenditure (METs). The Quark PFT is an advanced pulmonary function tester for gas-exchange analysis (VO2, VCO2). It ensures the accuracy and reliability of lung gas exchange and analysis, whether during exercise tests or rest periods, even during high-intensity exercise, using high-quality components and an ultrafast analyzer. The Quark PFT is a fixed system that utilizes both successive breathing and mixing chamber sampling technology, and has been scientifically verified for use in a wide range of exercise intensities. Before the experiment, the Quark PFT was calibrated using the flow sensor and standard gas, and participants’ information such as height, weight, and age were recorded on the Quark PFT for further analysis. The subjects wore the oxygen mask, and the tightness of the mask was adjusted and fixed with a head cap. After the mask was checked for airtightness, the data recording started.
2.4 Statistical analysis
The original acceleration data was preprocessed and the ANN model was established using Python 3.8. The relationship between acceleration data and METs was analyzed using SPSS 26.0, and the regression models for EE prediction were established using curve estimation. The accuracy of EE prediction under different models was compared by calculating the RMSE and Bias and measuring the consistency based on the Bland-Altman plot. The formulas used for calculating RMSE and Bias were as follows: 
[image: Formula for RMSE: RMSE equals the square root of the sum of squared differences between forecasted and measured METs, divided by N.]
[image: Bias is calculated using the formula: the sum of the differences between forecasted METs and measured METs, divided by measured METs, divided by N.]
3 DATA PREPROCESSING AND MODEL CONSTRUCTION
3.1 Data preprocessing of multiple regression equations
The original acceleration data was preprocessed using Python 3.8. The processing of acceleration data includes three steps: Kalman filtering, correction gravity trend, and calculation of the vector magnitude (VM) of three-axis acceleration.
3.1.1 Kalman filtering
The original acceleration data were processed using a Kalman filter, a versatile autoregressive filter often used for state estimation in dynamic multivariable systems. This filter is capable of estimating uncertain information and predicting the state at the next moment, even in the presence of noise interference, and can identify correlations between multiple variables that might otherwise be imperceptible. In this study, the data processed using the Kalman filter were less volatile and more stable.
3.1.2 Correction of gravity trend
In the experiment, we found that the accelerometer produced a small value even in the static state, which was attributed to the influence of gravity. Each axis was affected by the component of gravity. Following the suggestion of reference (Sekine et al., 2000), the acceleration data filtered by the three axes should be de-trended simultaneously. The formula is [image: Mathematical equation showing \(X_t = X_t - X_{t-5 \sim t}\).]. Figure 3 presents a comparison chart of the individual x-axis acceleration before and after the trend removal. Because the acceleration was generated in two directions, the processed acceleration in this study was closer to zero, which could effectively remove the gravity trend.
[image: Two line graphs compare acceleration over time. The left graph shows data before x-axis correction, ranging from -6 to 6. The right graph depicts data after x-axis correction, showing reduced fluctuation within the same range. Both graphs have time on the x-axis from 0 to 120 seconds.]FIGURE 3 | Regression equations expression of x-axis acceleration before and after trend removal.
3.1.3 Calculation of VM
Considering that wrist movement occurs in multiple axes, a single axis is insufficient to characterize the motion. Therefore, we combine the three-axis acceleration data into a composite acceleration called VM. The formula for calculating VM is: [image: VM equals the square root of x squared plus y squared plus z squared.]. The data synthesis method of the ActiGraph accelerometer is the integral value of the acceleration in every minute (i.e., counts/min). In this study, the mean value was used to replace the integral value (i.e., the mean value of the VM in 1 min, expressed as Mean). Corresponding Mean, and METs one by one to form multiple regression equations database.
3.2 Construction of regression equations
METs will increase with the increase in the Mean; however, when the Mean increases to a certain value, the METs will gradually slow down and conform to the characteristics of the logarithmic equation. Therefore, based on the established linear equation, we also established a logarithmic equation. In the regression equation, R2 represents the goodness of fit of the model. The larger the R2, the better the goodness of fit. SEE represents the standard error of the estimate of the model. The smaller the SEE, the better the prediction result of the regression equations. By comparing the R2 and SEE, the cubic equation with the larger R2 and SEE is selected from the established multiple regression equations. Therefore, a linear equation, logarithmic equation, and cubic equation were established in this study. The equation expressions are shown in Table 2.
TABLE 2 | Expressions of regression equations.
[image: Table comparing three models with details: Model 1 is a linear equation with expression METs = 8.33 Mean + 3.36, R² = 0.856, SEE = 0.96. Model 2 is a logarithmic equation with METs = 2.56 × ln(Mean) + 10.04, R² = 0.889, SEE = 0.84. Model 3 is a cubic equation with METs = 29.65 Mean³ - 52.67 Mean² + 33.46 Mean + 1.22, R² = 0.891, SEE = 0.83. Note: R² is R-Squared; SEE is standard error of estimate.]3.3 Construction of ANN model
3.3.1 Selection of indicators
In this study, a feedforward ANN with a single hidden layer was adopted, which was mainly composed of an input layer, hidden layer, and output layer. In the process of establishing the input layer, there are multiple ways to extract input features and select window size. The input feature is obtained by first calculating the vector of magnitude (VM) of the original threeaxis acceleration data, and the features are then extracted from VM sequence with fixed window. The window is the fixed interval of the feature extraction. To determine the input features of the ANN model, the RMSE was compared under three windows (10 s, 30 s, 60 s), and 9 indicators were finally selected: the mean, sd, max, min, and 10th, 25th, 50th, 75th, and 90th percentiles of the VM sequence in the 60 s window. The number of neurons in the hidden layer was determined by adjusting the parameters, and the output was the predicted METs using ANN.
3.3.2 Data normalization
To avoid unnecessary numerical computing and reduce the network training time, the input data are normalized: [image: It seems like you've entered a formula instead of providing an image. Please upload the image or provide a URL for me to generate the alternate text.], where x represents the original data, x_std represents the data after the normalization operation, and the values of x_std range from 0 to 1.
3.3.3 Parameters of the model
The model parameters mainly include weight attenuation, the number of hidden neurons, and the number of iterations. In order to determine the optimal parameters, all the weights are attenuated between 0.1 and 0.9, and the number of hidden neurons is iterated between 1 and 30. The number of iterations is determined through model training. During the training process, when the number of iterations is 2,000, the model has converged. Finally, 2,000 iterations are used as the standard to stop the training to prevent overtraining. The weight attenuation and hidden neurons are adjusted using RMSE. When the weight attenuation is 0.8 and the number of hidden neurons is 8, the RMSE does not increase, the model achieves the optimal accuracy, and the ANN model is finally established (Model 4). Figure 5 shows the ANN model.
3.4 Construction of walking-and-running two-stage model
3.4.1 Construction basis
This study developed separate EE prediction models for walking and running by modeling them separately. However, in order to build separate models for walking and running, it is necessary to have a good classification of these two activities. Through observation of the data, it was found that there was a large difference in the independent variable "Mean” between walking and running in the regression equation data preprocessing process. Figure 3 shows the scatter plot of Mean at various walking and running speeds. This study used the ROC curve method to classify Mean into two categories: walking and running. The ROC curve, also known as the “receiver operating characteristic curve,” is a curve that reflects the relationship between sensitivity and specificity. The entire graph is divided into two parts, and the area under the curve (AUC) of the part below the curve is used to indicate the prediction accuracy. The higher the AUC value, the higher the prediction accuracy. The maximum Youden index was used to find the cut-off point of Mean for walking and running, and the final cut-off point was determined to be Mean = 0.23375 (AUC = 1). Figure 4 shows the mean scatter at different paces. This cut-off point was then validated with a validation group, and the results showed that this method achieved 100% accuracy in classifying walking and running, laying the foundation for the development of the next two-stage model.
[image: Box plot illustrating the mean values against speed in kilometers per hour, ranging from 2 to 9 km/h. The plot shows low variability from 2 to 7 km/h, with increased variability at higher speeds. The overall mean is marked at 0.23375.]FIGURE 4 | Mean scatter at different paces. Mean: Independent variables in linear regression equations.
3.4.2 Description of model
In this study, walking and running were separated. Based on the above modeling method of the ANN model, by adjusting the attenuation weight and number of hidden neurons, the ANN walking model achieved the best overall accuracy when the weight attenuation was 0.8 and the number of hidden neurons was 9. When the weight attenuation was 0.7 and the number of hidden neurons was 4, the ANN running model achieved the best overall accuracy. Finally, the ANN walking model and ANN running model were established separately from walking and running [that is, the walking-and-running two-stage model based on the ANN (Model 5)]. The model construction diagram is shown in Figure 5.
[image: Diagram of a neural network with three layers: an input layer, a hidden layer, and an output layer. The input layer has nodes for mean, standard deviation, maximum, minimum, and several percentiles. The hidden layer comprises ten nodes, and the output layer has a single node. Nodes are connected by lines, indicating the flow of data through the network.]FIGURE 5 | Diagram of two-stage model walking and running. ANN, Artificial Neural Network; VM, Vector Magnitude.
4 RESULT
4.1 Overall prediction error of models
We compared the RMSE and Bias of EE prediction under five models. The smaller the RMSE and Bias values, the smaller the error between the predicted and measured METs. As shown in Figure 6, the RMSE and Bias under walking-and-running two-stage model were the smallest: 0.76 METs and 0.02 METs, respectively.
[image: Two bar charts compare models based on RMSE and bias. The first chart shows Model 1 with the highest RMSE value, and Model 5 with the lowest. The second chart displays Model 1 with the highest bias, while Model 5 has the lowest.]FIGURE 6 | Overall RMSE and Bias comparison diagram of model. RMSE, Root Mean Square Error.
Based on the Bland–Altman plot, the consistency between the predicted METs of the five models and measured METs was further analyzed. As shown in Figure 7, the middle solid line represents the average value of the difference, and the two dotted lines represent the upper and lower lines of the 95% consistency limit. The fewer the points in the figure outside the dotted lines, the higher the consistency between the predicted and measured METs, and the more accurate the prediction. The five models have 22, 21, 24, 26, and 21 points outside the consistency interval, accounting for 4.58%, 4.38%, 5.00%, 5.42%, and 4.38% of the total points, respectively. The predicted METs of the logarithmic equation and walking-and-running two-stage model were highly consistent with the measured METs.
[image: Five scatter plots compare the Mean Bias Deviation (MBD) against the Mean Absolute Percentage Error (MAPE) for different models. Each plot features a horizontal MBD axis and a vertical MAPE axis. The models, labeled from 1 to 5, display data points in blue, representing different predictions. Horizontal and vertical lines may indicate benchmarks or thresholds, and text annotations are present near each plot.]FIGURE 7 | Bland–Altman plots of predicted and measured METs.
4.2 Prediction error of model for walking and running
Figure 8 shows the RMSE and Bias of walking and running under five models. By comparing the RMSE of walking and running, we found that the walking and running model can obtain the smallest error in walking (RMSE = 0.66 METs) and running (RMSE = 0.90 METs). By comparing the Bias of walking and running, the lowest Bias was obtained by walking-and-running two-stage model (Bias = 0.03 METs). In running, the linear equation, logarithmic equation, ANN model, and walking-andrunning model had lower Bias values (Bias <0.01 METs). In summary, the error of the walking and running in the two-step walking-and-running model was smaller than those of the other four models.
[image: Line graphs comparing different models. The left graph shows RMSE values for Rvol_B (blue circles) and DMSP (red triangles), with Model 4 exhibiting the lowest RMSE for Rvol_B. The right graph displays Bias values for Rvol_Y (blue circles) and Rvol_S (red triangles), with Model 1 showing the highest Bias for Rvol_Y.]FIGURE 8 | Comparison between RMSE and Bias for walking and running. RMSE: Root Mean Square Error.
4.3 Prediction error of the models under different speeds
Figure 9 shows the mean value of measured METs (x-axis) and predicted METs (y-axis). The reference line is y = x, and each point represents the mean value of the METs at different speeds. In the figure, the closer that the point is to the reference line, the smaller the prediction error of the model. The numbers of points on the reference lines of the linear equation, logarithmic equation, cubic equation, ANN model, and walking-and-running two-stage model were 3, 3, 3, 4, and 5, respectively. The walking-and-running two-stage model can obtain the maximum number of points on the reference line and the smallest error.
[image: Scatter plots of five models comparing forecast METs on the y-axis to measured METs on the x-axis. Each plot includes data points, labeled one to eight, and a diagonal line indicating perfect correlation. Models one to five are shown, displaying various correlation levels between forecasted and measured METs.]FIGURE 9 | Mean value distribution of predicted METs and measured METs at various walking speeds. Measured METs, Average value of measured METs; Predicted METs, Predict the average value of METs.
Next, we describe the comparison of the predicted METs and measured METs of five models at different walking/running speeds, by comparing the RMSE and Bias of the predictions. According to Tables 3, 4, the linear equation model had 3 speeds with prediction errors exceeding 10%, the logarithmic equation model had 2, the cubic equation model had 2, and the ANN model had 2. In contrast, the walking-and-running two-stage model had prediction errors below 10% for all speeds, with the highest error being 7%. Furthermore, the EE prediction error is within 5% for five different speeds. When comparing the RMSE for each speed, except for the speeds of 4 km/h and 5 km/h, the walking-and-running two-stage model had the lowest RMSE for the other 6 speeds. In summary, the walking-and-running two-stage model had better EE prediction accuracy than the other four models at different walking/running speeds.
TABLE 3 | Error table of EE prediction under single step speed (RMSE).
[image: Table showing RMSE values for different models and speeds. Models 1 to 5 across speeds 2 to 9. RMSEs range from 0.40 to 1.40. Note: EE, energy expenditure; RMSE, root mean square error.]TABLE 4 | Error table of EE prediction under single step speed (Bias).
[image: A table compares bias values across five models at different speeds. Speeds range from two to nine. Each model, labeled Model 1 to Model 5, has corresponding bias values and uncertainties. Model 1 shows bias values decreasing from 0.28 ± 0.13 at speed two to -0.02 ± 0.14 at speed nine. Model 2 values range from 0.13 ± 0.18 to -0.05 ± 0.09. Model 3 ranges from 0.14 ± 0.16 to -0.03 ± 0.10. Model 4 shows values from 0.13 ± 0.14 to -0.02 ± 0.13. Model 5 starts at 0.05 ± 0.12 and ends at -0.04 ± 0.08.]5 DISCUSSION
The accuracy of the EE prediction of the model was verified through the validation group data. The results showed that the walking-and-running two-stage model established by dividing walking and running into two stages exhibited good EE prediction accuracy, whether in overall prediction, walking and running separately, or at various walking speeds. The walking-and-running two-stage model performed better than other models established in this study. This can also indicate that establishing a single exercise energy consumption algorithm for physical activity, and then comparing physical activity with its energy consumption algorithm through classification, can effectively improve the accuracy of energy consumption prediction for physical activity. The improvement of energy consumption prediction accuracy is conducive to more accurate monitoring of sports energy consumption, selecting appropriate exercise measures based on one’s own situation, participating in sports more scientifically, and promoting physical health.
5.1 Accuracy analysis of model EE prediction
The linear equation showed the lowest accuracy in predicting EE among all the models. By wearing accelerometers on both wrists, Montoy compared the linear equation with the ANN model. The results showed that the two linear equations had lower correlations and higher RMSE than the ANN model (Montoye et al., 2017). Although the initial model established in the field of accelerationbased energy consumption prediction was a linear model, with the continuous progress of research and the constant changes in the wearing position, the linear equation established by the wrist-worn accelerometer has significant errors in predicting EE. The applicability of the linear equation in wrist model construction is poor.
The accuracy of logarithmic and cubic equations for EE prediction is better than that of linear equation, showing lower RMSE and Bias in overall prediction errors, and good performance in consistency measurements. The logarithmic equation performs better than the ANN model in all three indicators, indicating good prediction accuracy. Combining the validation results of walking and running separately and at various speeds, the logarithmic equation has higher EE prediction accuracy and more stable performance, especially during the running phase, with RMSE lower than that of the cubic equation and the ANN model, and Bias less than 0.001 METs. Considering that the oxygen uptake gradually increases to a maximum and then remains constant during exercise, the accuracy of EE prediction during running by the logarithmic equation is affirmed. When evaluating the cubic equation, according to its graph and expression, as the speed increases, the Mean value gradually increases, and METs gradually tends to be stable. However, when the Mean is greater than 0.59, the energy consumption gradually increases again, and the rate of increase gradually becomes larger. Therefore, although the cubic equation exhibits good energy consumption prediction accuracy in this study, caution should be exercised when using it in practical applications.
The difference between this study and the research of other scholars is that the overall prediction accuracy of the ANN model built in this study was 0.90 METs, which was not lower than the logarithmic equation and cubic equation. The excessive noise in the original data may have had a certain impact on the modeling. In this study, we also established the ANN model through the data after noise reduction and trend removal in the regression equation; however, the results show that the RMSE did not decrease. Staudenmayer established an ANN model and verified the models of other scholars, indicating that the ANN model is better than the equation model in EE prediction (Staudenmayer et al., 2009). In this study, the accuracy of the ANN model in predicting the walking EE was higher than those of the logarithmic equation and cubic equation in the verification of the accuracy of the walking–running EE prediction. At the same time, based on the ANN model, the accuracy of the EE prediction is the best in all models through the walking-and-running two-phase model established by separating the walking and running.
5.2 Analysis of model construction mode
5.2.1 ANN model input-layer index selection
The construction of the ANN model was based on the original acceleration and MET data. The nine features of the input layer were determined through a literature review; however, this does not mean that the accuracy of the model could not be improved after the inclusion or replacement of other features. Rothney extracted the median, skewness, kurtosis, and other features from the original data in the input layer, and the built model had good prediction accuracy (Mackintosh et al., 2016). Ruch constructed the model by incorporating the acceleration count, VM, steps, and inclination of the three axes, and it also had a good prediction performance (Ruch et al., 2013). However, the selection of features in this study was performed by summarizing the methods of feature extraction in most studies. The mean value reflects the concentration trend of the dataset, the standard deviation reflects the dispersion degree of the dataset, the maximum value and minimum value reflect the extreme values of the dataset, the percentile is used to measure the data position, the 25th, 50th, and 75th are commonly used in the description of the box diagram, and the 10th and 90th refer to the low and high values in unit time in a stable state during signal processing, respectively. In this study, the ANN model was established by incorporating nine features. The results showed that the ANN model was more accurate in predicting the walking EE, and that the accuracy of the walking-and-running two-stage model was better than those of the other models built in this study.
5.2.2 Establishment of EE model with walking speed as independent variable
In the experiment, Brooks established an EE prediction model based on wearing hip-mounted CSV accelerometers and walking on horizontal terrain. The results showed that the speed-based energy consumption model was more accurate than the CSA-based energy consumption model (Brooks et al., 2005). In this study, we also attempted to construct the model based on the acceleration data and adding walking speed as an independent variable. The results showed that adding walking speed as an independent variable improved the accuracy of both the regression equation and the ANN model for predicting energy consumption, and was lower than the walking-and-running two-stage model constructed in this study. However, considering that in practical applications, this model is only limited to predicting EE on a treadmill with known walking speed, but requires accurate prediction of walking speed in a free state. This study also attempted to use 9 features of ANN as input variables and walking speed as output variable to predict walking speed using an ANN model, but did not achieve satisfactory results. In addition, walking speed can be predicted by a mobile phone or a sports bracelet, and this study used multiple mobile apps to conduct experiments on a treadmill, but found that the predicted speed had a certain deviation from the actual speed of the treadmill, especially at faster or slower speeds.
Therefore, this study did not construct a model with walking speed as an independent variable, but adding walking speed as an independent variable can improve the accuracy of EE prediction for various walking speeds.
5.2.3 Selection of window size of ANN model
Trost points out that the ANN window size has a certain impact on the accuracy of the EE prediction. The window size increases from 10 s to 60 s, the Bias decreases from 0.3 METs to 0.2 METs, and the RMSE decreases from 1.1 METs to 0.9 METs, which is the most significant in a variety of physical activities (Trost et al., 2012). As the window size increases from 10 s to 60 s, the Bias decreases from 0.6 METs to 0.2 METs, and the RMSE decreases from 1.1 METs to 0.7 METs (Trost et al., 2012). In the selection of the model window, the index is selected through the 60 s window. In addition, the 10 s and 30 s windows are also tried to select the index. According to the results of the correlation analysis, the correlation between the Mean and METs under the 10 s and 30 s windows was reduced, and the correlation under the 10 s window was the lowest. ANN models are established based on 10 s and 30 s windows, and the RMSE under different windows are obtained. The results show that the RMSE under the 10 s (RMSE = 0.99 METs) and 30 s (RMSE = 0.93 METs) windows were bigger than the RMSE under the 60 s (RMSE = 0.90 METs) window, which is consistent with Trost’s experimental results (Trost et al., 2012). To improve the accuracy of the EE prediction in various speeds, the 60 s window was selected.
5.3 Limitations
The subjects of this study were college students aged 18–30 years, and the effectiveness in other age groups has not yet been verified. The experiment was carried out on a treadmill, which is limited by the experimental environment and conditions and lacks the verification of asynchronous speed and EE in real life. In this study, we only conducted the establishment of the EE prediction model for walking and running and did not conduct experiments for other sports. In future experiments, we will further establish EE prediction models for other sports.
5.4 Future outlook
In addition, the walking-and-running two-stage model was the optimal model in this study; however, its calculation process is relatively complex, and to obtain the accurate classification of walking and running, a large number of computations need to be implemented. However, in future research, we hope to classify physical activity, establish the EE prediction models of various physical activity types, and create an EE algorithm corresponding to physical activity that will be called the physical-activity-type recognition algorithm, which can be used as a method to improve the accuracy of model EE prediction.
5.4.1 EE prediction algorithm based on physical-activity-type recognition
In recent years, with the continuous development of artificial intelligence, PA-type recognition based on accelerometers has become a research hotspot. In future research, through the EE prediction experiment of a single sports event, we hope to establish the corresponding EE prediction model, and to establish an algorithm library of EE prediction models through multiple sports. In application, different sports events can be classified through the PA-type recognition algorithm, and then different EE prediction models can be established, constantly improving the accuracy of the EE prediction.
5.4.2 Monitoring motion load based on acceleration data
The monitoring of the external loads of athletes using accelerometers is simple, noninvasive, and the operation is easy. Based on the prediction model of the EE of a single sports item, it can be applied in sports training to monitor the exercise load and to establish a scientific exercise load evaluation system to achieve a reasonable combination of training and rest and reduce the occurrence of sports injuries.
6 CONCLUSION
Through the processing of original data, the establishment of various models, and the verification of the accuracies of the EE predictions of the models, we found that the construction method of the EE prediction model affects the accuracy of the three-axis accelerometer in the estimation of the EE of human motion. In estimating the accuracy of walking and running EE prediction, the ANN-based walking-and-running two-stage model established by separating walking and running is superior to the other models built in this study, can better estimate the walking and running EE. The improvement of energy consumption prediction accuracy is conducive to more accurate monitoring of sports energy consumption, selecting appropriate exercise measures based on one’s own situation, participating in sports more scientifically, and promoting physical health.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.
ETHICS STATEMENT
The studies involving human participants were reviewed and approved by the Ethics Committee of the Capital University of Physical Education and Sports. The patients/participants provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS
ZZ was responsible for the procurement of finding, conceptualization and design of the study, development and implementation of the study protocol, and drafted the manuscript, CL was responsible for the conceptualization and design of the study, development and implementation of the study protocol, and drafted the manuscript. LX, ZJ, and YL collected the data. LX and JZ analyzed the results. LX and JZ drafted the manuscript. ZZ, JZ, ZL, and XH critically revised the manuscript. All authors contributed to the article and approved the submitted version.
FUNDING
This work was funded by the National Key Research and Development Program of China (No. 2020YFC2006200). This work was supported by Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
FOOTNOTES
1The original data is available at https://figshare.com/projects/Raw_data_of_accelerometer_and_MET_values/178782 and the code is available at https://github.com/zjxcode666/Predicting-Energy-Expenditure-Based-on-a-Wristwear-Three-axis-Accelerometer.

REFERENCES
	 Brooks A. G., Gunn S. M., Withers R. T., Gore C. J., Plummer J. L. (2005). Predicting walking METs and energy expenditure from speed or accelerometry. Med. Sci. sports Exerc. 37 (7), 1216–1223. doi:10.1249/01.mss.0000170074.19649.0e
	 Bull F. C., Al-Ansari S. S., Biddle S., Borodulin K., Buman M. P. Cardon G., et al. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. sports Med. 54 (24), 1451–1462. doi:10.1136/bjsports-2020-102955
	 Campbell K. L., Crocker P. R., McKenzie D. C. (2002). Field evaluation of energy expenditure in women using Tritrac accelerometers. Med. Sci. sports Exerc. 34 (10), 1667–1674. doi:10.1097/00005768-200210000-00020
	 Crouter S. E., Clowers K. G., Bassett D. R. (2006). A novel method for using accelerometer data to predict energy expenditure. J. Appl. physiology 100 (4), 1324–1331. doi:10.1152/japplphysiol.00818.2005
	 Delavar M., Lye M., Hassan S., Khor G., Hanachi P. (2011). Physical activity, nutrition, and dyslipidemia in middle-aged women. Iran. J. public health 40 (4), 89–98.
	 Dishman R. K., McDowell C. P., Herring M. P. (2021). Customary physical activity and odds of depression: a systematic review and meta-analysis of 111 prospective cohort studies. Br. J. sports Med. 55 (16), 926–934. doi:10.1136/bjsports-2020-103140
	 Ellis K., Kerr J., Godbole S., Lanckriet G., Wing D., Marshall S. (2014). A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol. Meas. 35 (11), 2191–2203. doi:10.1088/09673334/35/11/2191
	 Freedson P. S., Melanson E., Sirard J. (1998). Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. sports Exerc. 30 (5), 777–781. doi:10.1097/00005768-199805000-00021
	 Fuller D., Colwell E., Low J., Orychock K., Tobin M. A. Simango B., et al. (2020). Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: systematic Review. JMIR mHealth uHealth 8 (9), e18694. doi:10.2196/18694
	 Liu S., Gao R. X., John D., Staudenmayer J., Freedson P. S. (2011). SVM-based multisensor fusion for free-living physical activity assessment. Annu. Int. Conf. 2011, 3188–3191. doi:10.1109/IEMBS.2011.6090868
	 Mackintosh K. A., Montoye A. H., Pfeiffer K. A., McNarry M. A. (2016). Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach. Physiol. Meas. 37 (10), 1728–1740. doi:10.1088/09673334/37/10/1728
	 Migueles J. H., Cadenas-Sanchez C., Ekelund U., Delisle Nyström C., Mora-Gonzalez J. Löf M., et al. (2017). Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. Auckl. N.Z.) 47 (9), 1821–1845. doi:10.1007/s40279-017-0716-0
	 Montesi L., Moscatiello S., Malavolti M., Marzocchi R., Marchesini G. (2013). Physical activity for the prevention and treatment of metabolic disorders. Intern. Emerg. Med. 8 (8), 655–666. doi:10.1007/s11739-013-0953-7
	 Montoye A. H. K., Begum M., Henning Z., Pfeiffer K. A. (2017). Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data. Physiol. Meas. 38 (2), 343–357. doi:10.1088/1361-6579/38/2/343
	 Ruch N., Joss F., Jimmy G., Melzer K., Hänggi J., Mäder U. (2013). Neural network versus activity-specific prediction equations for energy expenditure estimation in children. J. Appl. physiology 115 (9), 1229–1236. doi:10.1152/japplphysiol.01443.2012
	 Sekine M., Tamura T., Togawa T., Fukui Y. (2000). Classification of waist-acceleration signals in a continuous walking record. Med. Eng. Phys. 22 (4), 285–291. doi:10.1016/s1350-4533(00)00041-2
	 Staudenmayer J., Pober D., Crouter S., Bassett D., Freedson P. (2009). An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J. Appl. physiology 107 (4), 1300–1307. doi:10.1152/japplphysiol.00465.2009
	 Trost S. G., Wong W. K., Pfeiffer K. A., Zheng Y. (2012). Artificial neural networks to predict activity type and energy expenditure in youth. Med. Sci. sports Exerc. 44 (9), 1801–1809. doi:10.1249/MSS.0b013e318258ac11
	 Wen C. P., Wai J. P., Tsai M. K., Yang Y. C., Cheng T. Y. Lee M. C., et al. (2011). Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet (London, Engl. 378 (9798), 1244–1253. doi:10.1016/S0140-6736(11)60749-6
	 WHO (2020). World health organization [EB/OL]. (2020-11-26)[2023-02-15]. Available at: https://www.who.int/zh/news-room/fact-sheets/detail/physical-activity.

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Xu, Zhang, Li, Liu, Jia, Han, Liu and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 08 February 2024
doi: 10.3389/fbioe.2024.1337540


[image: image2]
Effects of different contact angles during forefoot running on the stresses of the foot bones: a finite element simulation study
Huiyu Zhou1,2, Datao Xu1,3, Wenjing Quan1,3, Ukadike Chris Ugbolue2 and Yaodong Gu1*
1Faculty of Sports Science, Ningbo University, Ningbo, China
2School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
3Faculty of Engineering, University of Pannonia, Veszprem, Hungary
Edited by:
Cristian Romagnoli, Università telematica San Raffaele, Italy
Reviewed by:
Weijie Fu, Shanghai University of Sport, China
Jiangyinzi Shang, University of Pittsburgh, United States
* Correspondence: Yaodong Gu, guyaodong@nbu.edu.cn
Received: 13 November 2023
Accepted: 29 January 2024
Published: 08 February 2024
Citation: Zhou H, Xu D, Quan W, Ugbolue UC and Gu Y (2024) Effects of different contact angles during forefoot running on the stresses of the foot bones: a finite element simulation study. Front. Bioeng. Biotechnol. 12:1337540. doi: 10.3389/fbioe.2024.1337540

Introduction: The purpose of this study was to compare the changes in foot at different sole-ground contact angles during forefoot running. This study tried to help forefoot runners better control and improve their technical movements by comparing different sole-ground contact angles.
Methods: A male participant of Chinese ethnicity was enlisted for the present study, with a recorded age of 25 years, a height of 183 cm, and a body weight of 80 kg. This study focused on forefoot strike patterns through FE analysis.
Results: It can be seen that the peak von Mises stress of M1-5 (Metatarsal) of a (Contact angle: 9.54) is greater than that of b (Contact angle: 7.58) and c (Contact angle: 5.62) in the three cases. On the contrary, the peak von Mises stress of MC (Medial Cuneiform), IC (Intermediate Cuneiform), LC (Lateral Cuneiform), C (Cuboid), N (Navicular), T (Tarsal) in three different cases is opposite, and the peak von Mises stress of c is greater than that of a and b. The peak von Mises stress of b is between a and c.
Conclusion: This study found that a reduced sole-ground contact angle may reduce metatarsal stress fractures. Further, a small sole-ground contact angle may not increase ankle joint injury risk during forefoot running. Hence, given the specialized nature of the running shoes designed for forefoot runners, it is plausible that this study may offer novel insights to guide their athletic pursuits.
Keywords: contact angle, forefoot running, finite elements, foot, foot injury

1 INTRODUCTION
The sport of running has gained widespread popularity owing to its ease and accessibility, resulting in a steady rise in the number of individuals engaging in this physical activity with each passing year (Van Middelkoop et al., 2008). According to reports, running has been found to be an effective means of managing body weight, enhancing exercise tolerance, and mitigating the likelihood of cardiovascular disease (Taunton et al., 2002). Due to the fact that running does not necessitate specific facilities or gear, a considerable number of individuals opt to engage in running as a form of physical activity. The likelihood of sustaining an injury escalates with the increasing number of individuals engaging in running activities. Consequently, based on the sustained investigation and findings of researchers in recent times, it can be concluded that the impact load incurred during running strike patterns is significantly associated with the probability of sustaining injuries in the lower limbs (Lieberman et al., 2010; Thompson et al., 2015; Dempster et al., 2021; Pan et al., 2023; Yang et al., 2023).
A cohort of long-distance runners was subjected to analysis by researchers (Hasegawa et al., 2007; Larson et al., 2011; de Almeida et al., 2015), revealing that a significant majority of runners, approximately 95%, demonstrate a rearfoot strike pattern, whereby they make initial contact with the ground using their heel. The remaining proportion of individuals exhibit midfoot strike, flat foot landing, or forefoot strike, characterized by landing on the anterior part of the foot (Zhou and Ugbolue, 2019). However, there is a lack of scientific proof to establish which is the better running strike pattern. The investigation conducted by the researchers revealed that the long-distance runners who belong to the elite the level exhibited a forefoot and midfoot strike patterns during their running (Hanley et al., 2021). This finding suggests that rearfoot strike pattern may not be a favorable choice for high-performing athletes. Conversely, numerous sports companies are presently manufacturing forefoot running footwear tailored towards top-tier athletes, indicating a proclivity among elite long-distance runners to utilize forefoot running techniques.
The proposition put forth by the researchers suggests that forefoot strikes have the capacity to store a greater amount of elastic potential energy (Perl et al., 2012) and also have the ability to decrease vertical loading rates when compared to rearfoot strikes (Squadrone and Gallozzi, 2009; Crowell and Davis, 2011). On the other hand, certain academics posit that utilizing a forefoot strike while running can significantly impact the stresses on the foot bones, potentially resulting in metatarsal stress fractures (Li et al., 2017). At this point, we ask whether it is possible to change the contact angle between different sole-ground to further improve the lack of forefoot running? To the best of our knowledge, no studies have investigated the biomechanics of sole-ground contact angles. We speculate that this may be because the running characteristics of each athlete are different, and the running characteristics of different contact angles cannot be used as a classification index.
In situations where it is not feasible to meet the experimental requirements, the finite element analysis assumes a crucial role. The finite element method has the capability to accurately simulate real scenarios and provide insights into issues that are beyond the traditional biomechanics (Chang et al., 2008; Mabrouk et al., 2022). Finite element analysis is a reliable and controlled method for conducting foot simulations. This approach offers greater precision in defining individual modules, resulting in a more accurate representation of real situation (Cheung et al., 2009; Telfer et al., 2014; Wang et al., 2015; Wang et al., 2016). Moreover, finite element analysis finds application in various other analyses, including but not limited to car crash (Chang et al., 2008; Shin et al., 2012), running stance phase (Qian et al., 2013; Chen and Lee, 2015), and landing impact (Cho et al., 2009; Farhang et al., 2016).
The purpose of this study was to compare the changes in foot at different sole-ground contact angles during forefoot running. In light of the fact that elite long-distance runners predominantly utilize forefoot running techniques, an investigation to help forefoot runners better control and improve their technical movements by comparing different sole-ground contact angles is paramount. In addition, we further hope to provide inspiration for the future direction of running shoe design through this research. We hypothesized that the overall bone stress changes as the sole-ground contact angle changes. More specifically, perhaps the smaller the sole-ground contact angle, the greater the bone stress in the rear foot.
2 METHODS
2.1 Participant
A male participant of Chinese ethnicity was enlisted for the present study, with a recorded age of 25 years, a height of 183 cm, and a body weight of 80 kg. This participant maintained a running habit for a long time, at least 3 times a week. The investigation focused on forefoot strike patterns. The subject’s lower limbs were devoid of any documented medical conditions, and no surgical interventions were detected within the participant’s medical history in the 12 months preceding the experiment that could have potentially influenced the results. Upon receiving a comprehensive explanation of the research’s purpose and methodology, the participant provided written consent in acknowledgement of their informed decision to participate. Approval for this study was obtained from the Ethics Committee of Ningbo University (protocol code: RAGH 20220918).
2.2 Biomechanics parameters collection and processing
All tests were conducted in a biomechanics laboratory, specifically the Research Academy of Grand Health at Ningbo University. The study employed a Kistler force platform and an eight-camera Vicon motion capture system (Oxford Metrics Ltd., Oxford, UK) to collect data on dynamics and kinematics, synchronized. The present investigation involved the acquisition of kinematic and dynamic data, which were respectively sampled at frequencies of 200 and 1000 Hz. Figure 1A displays the spatial distribution of 39 markers. The subject proceeded and ran on a 10-m running way at a speed of 3.3 m/s in order to collect kinetic information (Figure 1B). The infrared timers were placed on either side of the 10-m track to measure the participants’ running speed. The initial contact was operationally defined as the time when the ground reaction force (GRF) surpassed the 10 N threshold (Xu et al., 2022; Zhou et al., 2022). The subject conducted one hundred data trials.
[image: Illustration with three panels: (A) shows human skeletons with highlighted muscles from front, side, and back views. (B) depicts sequential human figures demonstrating walking with motion arrows and a 10-meter reference. (C) shows a shoe on a slope indicating initial speed, ankle angle, ankle moment, and various contact points.]FIGURE 1 | Acquisition of kinematic and dynamic data and setup of finite element boundary conditions are detailed.
The present study utilized OpenSim software (Stanford University in Stanford, CA, USA) to investigate and compute biomechanical parameters to take into the FE analysis. Three models were established in this study, each representing a distinct situation (Figure 2). Initially, the mean value of the sole-ground angle was computed for a sample of 100 data sets. This resulted in the establishment of the first model, with an angle of b (b = 7.58°) as the designated value. Moreover, we extracted the minimum angle c (c = 5.62°) and maximum angle a (a = 9.54°) from one hundred datasets to take into consideration for two additional situations of the angle between the sole and the ground.
[image: Illustration showing three foot positions labeled A, B, and C on a flat surface. A has an angle of 9.54 degrees with an area of 5477.46 square millimeters. B has an angle of 7.58 degrees with an area of 6834.53 square millimeters. C has an angle of 5.62 degrees with an area of 8112.19 square millimeters.]FIGURE 2 | Schematic diagram of three different bottoming angles and the contact area between the shoe and the ground under different sole-ground contact angles.
2.3 The process of obtaining and reconstructing geometric data
The right foot of the participant was imaged using CT and MRI techniques with a 2 mm interval. The segmentation of the two-dimensional image was performed using Mimics 21.0 (Materialise, Leuven, Belgium), while the creation and refinement of the bone, ligaments, Achilles tendon, bulk soft tissue, and shoes were carried out using Geomagic Studio 2021 (Geomagic, Inc., Research Triangle Park, NC, United States). The SolidWorks 2017 software was utilized for importing the components and subsequently converting them into solids (SolidWorks Corporation, Waltham, MA, United States). The structure of cartilage has been simulated through the construction of a solid material that fills the space between the surfaces of two adjacent bones.
The contacts of the models were meshed and established utilizing Workbench 2021 (ANSYS, Inc. located in Canonsburg, PA, USA). Tetrahedral meshes were employed to decompose each solid. The age matching model, having undergone successful mesh convergence testing, underwent modifications to the mesh sizes of the bulk soft tissue, bone, shoes, and cartilage at 3 mm, 2 mm, 2 mm, and 0.5 mm, respectively. Furthermore, the process of local refining was executed with consideration given to the geometric characteristics of the contact zone. The Workbench software facilitated the automated detection of component contacts. Possible contact pairings were generated through the utilization of an algorithm that relies on surface proximity. The physical interaction between the bone surface and cartilage was emulated through direct face-to-face contact. The surface of the bone made frictionless contact with the cartilage. The soft tissue that was encapsulated served as an anchor for both the bones and cartilage. A contact surface with a friction coefficient of 0.6 was employed to replicate the interaction among the foot, shoes, and ground. All the constituents of the footwear were assembled to bond, along with the other remaining elements.
2.4 Boundary and loading condition
An explicit dynamic solver was used to perform a simulation of the forefoot running stance phase. First, fix the ground, and set and define the position of the foot model. In the finite element model, the ankle joint angle was set by adjusting the angle between the tibial axis and the longitudinal axis of the foot on the sagittal plane. The global coordinate system remained consistent with the original coordinate system of OpenSim (Delp et al., 2007). The set initial velocity was added to the finite element model. The slipring connectors and tibiotalar articular surface of the talus were applied to the ankle joint moment and ankle joint reaction force, respectively. The joint force of the MPJ was exerted onto the upper surface of the middle cuneiform bone to simulate the force of inertia experienced during landing. Calculated by OpenSim, the time from initial contact to maximum ground reaction force was 0.115 s, so the time step was set to 0.115 s. Table 1 displays the specific value of the loading condition.
TABLE 1 | Running kinematics and kinetics gait characteristics.
[image: Table listing experimental variables with their measurements. Initial Speed: 3.3 meters per second, Ankle Angle: 7.37 degrees plantarflexion, Ankle Moment: 3.56 newton meters per kilogram, Ankle Joint Force: 18.33 newtons per kilogram, MPJ Force: 9.77 newtons per kilogram, Peak GRF: 2.39 body weight, Contact Time: 0.115 seconds. Note: BW equals body weight.]All materials, except for the encapsulated soft tissue and skin, were assumed to be isotropic and linear elastic materials, and their properties were obtained from prior research (Crowninshield and Nakamura, 1981; Siegler et al., 1988; Hurschler et al., 1994; Kitaoka et al., 1994; Cook and McDonagh, 1996; Davis et al., 1996; Milz et al., 1998; Gefen et al., 2000; Kura et al., 2001; Wren et al., 2001; Bayraktar et al., 2004; Cheung et al., 2005; Cheung and Zhang, 2005; Wu, 2007; Pailler-Mattei et al., 2008; Gu et al., 2010; Chen et al., 2012; Wong et al., 2016; Wang et al., 2021). The two material parameters, including Young’s modulus (E) and Poisson’s ratio (v), were chosen to characterize the elastic properties of the material. Table 2 enumerates the material properties of each constituent.
TABLE 2 | Material properties of the components in the finite element model.
[image: A table listing various materials, their properties, and mechanical characteristics. Columns include material type (e.g., skin, bone), material property (e.g., hyperelastic, linearly elastic), Young's modulus, Poisson's ratio, and density in kilograms per cubic meter. For skin, the hyperelastic first-order Ogden model is used with parameters and density of 950 kg/m³. For bone, linearly elastic properties are provided with a Young's modulus of 7300 MPa, Poisson's ratio of 0.3, and density of 1500 kg/m³. Other materials are listed with similar details.]3 RESULTS
To verify the accuracy of the FE foot model, a simulation of forefoot running was conducted and subsequently compared to the navicular bone’s deformation. The displacement of the navicular bone is utilized as a surrogate measure for the foot deformation index in clinical contexts. The tuberosity of the navicular bone on the medial side is frequently employed as the reference point in manual measurements. Graphing the vertical displacement from a given node during the period in which the entire body weight is being sustained. Using 14 data sets, the intraclass correlation coefficient (ICC) were used to assess the level of agreement between in-vivo measurements and predictions. According to (Koo and Li, 2016), the ICC estimate was classified as weak below 0.50, moderate between 0.50 and 0.75, strong between 0.75 and 0.9, and excellent reliability beyond 0.90. Our results show that the ICC test displayed an excellent ICC score (0.95). Figure 3 illustrates the comparison between the measured deformation of the navicular bone (Picciano et al., 1993; Nielsen et al., 2009) and the result obtained through finite element simulation.
[image: Comparison of vertical displacement of the navicular bone in two foot models. The left foot shows a displacement of 7.919 millimeters, while the right shows 7.621 millimeters.]FIGURE 3 | Vertical displacement validation of model.
Figure 4A shows the peak von Mises stress of the foot bones in three different cases. It can be seen that the peak von Mises stress of M1-M5 of a is greater than that of b and c in the three cases. On the contrary, the peak von Mises stress of MC, IC, LC, C, N, T in three different cases is opposite, and the peak von Mises stress of c is greater than that of a and b. The peak von Mises stress of b is always between a and c. The peak von Mises stress values of the three situations of M1 are a = 10.804 MPa, b = 8.4528 MPa, c = 6.538 MPa (Figure 5A); the peak von Mises stress values of the three situations of M2 are a = 12.233 MPa, b = 9.1617 MPa, c = 6.957 MPa (Figure 5B); the peak von Mises stress values of the three situations of M3 are a = 11.217 MPa, b = 8.4798 MPa, c = 6.5787 MPa (Figure 5C); the peak von Mises stress values of the three situations of M4 are a = 10.804 MPa, b = 8.5715 MPa, c = 6.4046 MPa (Figure 5D); the peak von Mises stress values of the three situations of M5 are a = 8.5177 MPa, b = 7.5378 MPa, c = 6.6033 MPa (Figure 5E); the peak von Mises stress values of the three situations of MC are a = 6.3358 MPa, b = 7.5269 MPa, c = 9.1735 MPa (Figure 6A); the peak von Mises stress values of the three situations of IC are a = 5.7616 MPa, b = 7.6709 MPa, c = 9.8504 MPa (Figure 6B); the peak von Mises stress values of the three situations of LC are a = 5.4932 MPa, b = 7.3485 MPa, c = 9.6318 MPa (Figure 6C); the peak von Mises stress values of the three situations of C are a = 4.263 MPa, b = 5.6439 MPa, c = 6.9989 MPa (Figure 6D); the peak von Mises stress values of the three situations of N are a = 11.994 MPa, b = 15.042 MPa, c = 19.383 MPa (Figure 6E); and the peak von Mises stress values of the three situations of T are a = 18.802 MPa, b = 22.366 MPa, c = 25.881 MPa (Figure 6F).
[image: Three bar graphs labeled A, B, and C compare bone stress in different situations, measured in megapascals (MPa). Graph A shows three conditions: a, b, and c. Graph B highlights changes in growth rates of a and b, with red arrows and percentage changes. Graph C focuses on changes in growth rates of b and c, with green arrows and percentages. Each graph includes x-axis labels from M1 to T, representing different conditions or treatments.]FIGURE 4 | Illustration of the peak von Mises stress values and percentage increases and decreases of the different bones in three different situations.
[image: Five rows of 3D heat maps labeled A to E, each depicting the front and back views of feet under different conditions. The color scale, ranging from blue to red, represents varying pressure levels across the foot surface.]FIGURE 5 | Illustration of the von Mises stress distribution of the first-fifth Metatarsal bones.
[image: Grid of thermal maps labeled A to F, each row displays a series of 3D shapes in columns A, B, and C. Each shape has "The front" and "The back" views with color gradients from blue to red indicating different heat levels. Legends on the side show temperature scales.]FIGURE 6 | Illustration of the von Mises stress distribution of the Medial Cuneiform, Intermediate Cuneiform, Lateral Cuneiform, Cuboid, Navicular and Tarsal.
Figure 4B depicts the percentage variation in the peak von Mises stress values of a certain bone in situations a and b. When comparing a and b, the M1 of a decreased by 27.82%; the M2 of a decreased by 33.52%; the M3 of a decreased by 32.28%; the M4 of a decreased by 26.05%; the M5 of a decreased by 13.00%; the MC of a increased by 15.82%; the IC of a increased by 24.89%; the LC of a increased by 25.25%; the C of a increased by 24.47%; and the N of a increased by 20.26%; the T of a increased by 15.93%.
Figure 4C depicts the percentage variation in the peak von Mises stress values of a certain bone in situations b and c. When comparing b and c, the M1 of b decreased by 29.29%; the M2 of b decreased by 31.69%; the M3 of b decreased by 28.90%; the M4 of b decreased by 33.83%; the M5 of b decreased by 14.15%; the MC of b increased by 17.95%; the IC of b increased by 22.13%; the LC of b increased by 23.71%; the C of b increased by 19.36%; the N of b increased by 22.40%; and the T of b increased by 13.58%.
4 DISCUSSION
The purpose of this study was to compare the changes in foot bone stress at different sole-ground contact angles during forefoot running. We tried to help forefoot runners better control and improve their technical movements by comparing different sole-ground contact angles. In addition, we further hope to provide inspiration for the future direction of running shoe design through this research. We hypothesized that the overall bone stress changes as the sole-ground contact angle changes. More specifically, the smaller the sole-ground contact angle, the greater the bone stress in the rear foot. The findings of this research align with our initial hypothesis.
Metatarsal stress fractures constitute approximately 10%–20% of all stress fractures observed in athletes and exhibit a notable prevalence among runners (Matheson et al., 1987). The possibility of experiencing metatarsal stress fractures is greater for forefoot runners as compared to rearfoot runners (Kernozek et al., 2014). Prior research has shown that assessing the magnitude of metatarsal stress values is a crucial factor in the assessment of metatarsal stress fractures (Madjarevic et al., 2009). It can be seen that from our findings reported in Figure 4A the peak von Mises stress change of the foot bones will change with respect to changes to the sole-ground contact angle. In the situation of a, the peak von Mises stress of the five metatarsal bones is larger than that of the other two situations. This observation suggests that a decrease in sole-ground contact angle may be associated with a lower probability of metatarsal stress fractures. In comparison to previous studies (Matheson et al., 1987; Madjarevic et al., 2009; Kernozek et al., 2014), we observed that situation c exhibited the lowest probability of stress fractures occurring in the metatarsals.
On the contrary, the MC, IC, LC, C, N and T of a produced less peak von Mises stresses when compared to the other two situations. Reducing the sole-ground contact angle results in a decrease in the peak von Mises stress on the metatarsals; however, this concurrently leads to an increase in the peak von Mises stress exerted on the midfoot bones. Prior research has suggested that this particular condition may also result in an elevated potential to midfoot fractures (Zhang and Zhang, 2022). At the same time, the researchers further pointed out that the T bone exhibits frequent movement along the coronal axis within the sagittal plane, while infrequently undergoing non-physiological joint movements. Therefore, a situation like c may not place the talus in a particularly risky state. In other words, even though we still need more evidence to be certain, it seems that a minor sole-ground contact angle may not raise the risk of injury to the ankle joint. Also, it might be an effective way for reducing the peak von Mises stress on the metatarsals without causing further damage to the ankle joint.
A preliminary speculation of this outcome suggests that the midfoot bone serves as a central component of the skeletal structure situated between the forefoot and the rear foot. Its primary function is to facilitate the transfer of impact from the tibia, fibula, and heel bone to the five metatarsals, ultimately redistributing the load to the forefoot. The navicular and cuneiform bones located in the midfoot region play a crucial role in the mechanical transmission of the foot. The transmission of impact through the human foot occurs via the tibia and fibula, which subsequently transmit it through the talus to the navicular bone. At the navicular bone, the load is transmitted to the three cuneiform bones and ultimately to the metatarsals. In brief, the research findings presented in this study may be attributed to the principle of leverage. In the stance phase of running, the longitudinal foot is considered a lever with the ground contact part serving as the fulcrum. A decrease in sole-ground contact angle could be positively correlated with an increase in peak von Mises stress on the midfoot and rearfoot bones.
Eliud Kipchoge stands as the only athlete to have accomplished a marathon in a time frame of under 2 hours. Whilst acknowledging the existence of multiple contributing factors, it is noteworthy that the utilization of specific running shoes (namely, the Nike ZoomX Alphafly) played a significant role. Subsequently, forefoot running shoes garnered increased attention from researchers (Lu et al., 2022; Quan et al., 2023), prompting other sports brands to engage in the development and innovation of such footwear. Hence, given the specialized nature of the running shoes designed for forefoot runners, it is plausible that this study may offer novel insights to guide their athletic pursuits. Modifying the sole-ground contact angle has the potential of decreasing the possibility of injury to the athlete or enhance their athletic competence.
It is imperative that we acknowledge that the current study exhibits limitations. Initially, the selection process for this study involved the inclusion of a single male participant who exhibited good health. Due to inherent individual variability, the conclusions drawn from the study may vary. Secondly, the ligaments were assumed to possess linear elastic properties, despite the fact that they may exhibit hyperelastic or viscoelastic behavior. The chosen methodology may result in an underestimation of the collective rigidity of the model. However, this approach is frequently employed in finite element foot models as a means of achieving computational efficiency. Additionally, it is important to note that the material properties of certain foot ligaments are not completely represented (Morales-Orcajo et al., 2016). Furthermore, the boundary conditions for all three models, each characterized by distinct sole-ground contact angles, are identical. Ultimately, different material property, mesh size and mesh behavior et al. settings conditions will also have a great impact on the final result. It must be acknowledged that this situation is inconsistent with the actual state of situations. However, through the manipulation of variables, we can delve more profoundly into the potential underlying principles.
5 CONCLUSION
In summary, the present study was to investigate the changes in foot bone stress at different sole-ground contact angles during forefoot running. We found that a decrease in sole-ground contact angle may be associated with a lower probability of metatarsal stress fractures. We further found that a minor sole-ground contact angle may not raise the risk of injury to the ankle joint; and it might be an effective way for reducing the peak von Mises stress on the metatarsals without causing further damage to the ankle joint. Going forward further work would involve an investigation of the maximum principle stresses, directional stresses (i.e., what bones are in compression or in tension) and different failure theories. Fatigue failures in bone and a review of the stress fractures using the model would be worth investigating.
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   Introduction: Professional rugby union players can improve their performance by engaging in small-sided games (SSGs), which simulate the movement patterns of the game. This study collected metrics related to running performance and mechanical workload and their relative values from both forward and back positions, aiming to explore the impact of different SSGs factors on athlete workload, as well as the workload difference between official games (OGs) and SSGs.
Methods: The monitored GPS data were collected from SSGs with different player numbers and pitch sizes (five sessions), SSG rules (5 weeks, four sessions per week), and OGs conducted throughout the year. Additionally, the study compared changes in players’ sprinting performance before and after two SSG sessions.
Results: Backs had greater workload than forwards. Less space and number of players SSG (4 vs. 4, 660 m2) was conducive to facilitating training for players in acceleration and deceleration. Conversely, larger spaces were associated with improved running performance. However, the introduction of a floater had no significant impact on performance improvement. Additionally, the 7 vs. 4 model (seven players engaged with four opponents) resulted in the greatest workload during medium-hard accelerations (F = 52.76–88.23, p < 0.001, ηp2 = 0.19–0.28). Japan touch model allowed for more high-speed running training (F = 47.93–243.55, p < 0.001, ηp2 = 1.52). The workload performed by SSGs can almost cover that of OGs (F = 23.36–454.21, p < 0.05, ηp2 = 0.03–0.57). In the context of ηp2, values around 0.01, 0.06 and 0.14 indicate small, medium and large effects respectively.
Discussion: However, given the significantly higher workload of SSGs and the slight decrease in sprinting performance, further research is required to examine the training patterns of SSGs. This study provided insight into the impact of player numbers, pitch size, and rules on rugby-specific SSGs. Coaches should optimize SSG setups for enhanced training outcomes, ensuring the long-term development of physical capacity, technical and tactical skills.
Keywords: constraints-led approach, external load, global positioning system, team sports, intermittent exercise

INTRODUCTION
Rugby union (RU) is a dynamic, field-based team sport that combines high-intensity (collisions, accelerations, and changes of direction) with low-intensity (jogging and walking) activity (Duthie et al., 2003a). This multifaceted movement requires players to detain a vast and varied skill set. It is therefore essential that the training strategy is optimized and organized to focus on the development of technical (tackling, rucks, mauls) and tactical (game situation adaptability) skills. Moreover, the development of physical attributes such as maximal strength, power, cardiovascular capacity and tendomuscular robustness is a crucial aspect of a RU player’s preparation. These attributes greatly influence a team’s performance as they engage in various running activities throughout the game (Gabbett et al., 2007). Repeated high-intensity and skill exercises are typical training methods in RU, but they are insufficient to satisfy the demands of the professional setting. To date, strength and endurance training rarely expose athletes to on-field situations. This omission may hinder the players’ opportunity to develop decision-making skills in a dynamic environment (Gabbett et al., 2012; Davids et al., 2013), which is essential to achieve gameplay performance outcomes. In RU training where time dedicated to physical enhancement is scarce, the necessity for concurrent training methods has led to the inclusion of small-sided games (SSGs).
Over the last 20 years, coaches have adopted SSGs as a training method for team sports (Gamble, 2004; Gabbett, 2006; Dellal et al., 2011a). Indeed, SSGs provide a dynamic environment that is simple to adapt to, requiring fewer players and smaller pitch sizes than traditional games. The aim is to create sub-environments that imitate the stress and fatigue players experience during games, while developing an athlete’s stamina, muscular strength, mental fortitude, and game-play abilities (Gabbett et al., 2009). Coaches can manipulate the impact of SSGs on players’ physiological and perceptual responses.
Workload quantification is essential for a more profound comprehension of the dose-response relationship between stress and internal responses. It requires meticulously recording the demands of both training and competition (Meir et al., 1993; Bourdon et al., 2017; Impellizzeri et al., 2023). This quantification can manifest as external load, representing the work completed by an athlete independently of their internal characteristics (Wallace et al., 2009), or internal load, encompassing all psychophysiological responses occurring during the execution of exercise prescribed by the coach (Impellizzeri et al., 2019). To date, many research investigations have analyzed the workload of different SSG models by manipulating pitch size, player density, rules, and other variables. Specifically, most studies have demonstrated that larger playing pitch size was correlated with increased heart rate (HR) (Atlı et al., 2013), lactate concentration and subjective ratings of perceived exertion (RPE) (Kennett et al., 2012b). Furthermore, reducing the amount of participating players could raise HR reserves (Dellal et al., 2011b). Recent advancements in global positioning systems (GPS) technology have made it possible to obtain valid and reliable assessments of external load (Teixeira et al., 2021; Clavel et al., 2022; Crang et al., 2022). In this regard, recent studies in soccer and rugby have indicated that the SSG models involving reduced player numbers or larger fields led to the highest time-motion variables (Hill-Haas et al., 2010; Kennett et al., 2012a). In addition, when the rules changed (e.g., the number of ball contacts allowed was reduced), the high-speed running distance (HSR) increased (Castellano et al., 2013).
When utilizing GPS data collection, the primary focus often centers around speed zone distances, with a particular emphasis on HSR as crucial metrics for performance assessment. Total distance (TD) is the second most commonly captured metric, followed by sprints and meters per minute (West et al., 2019). These parameters are closely associated with the skill level of athletes and the scores in match play (Dalton-Barron et al., 2020). Players with excellent repeated sprinting abilities demonstrate higher rates of running at speeds greater than 5 m.s−1 per minute in match play (7.9 ± 1.0 m.min−1). Players with long-duration and high-intensity intermittent running capabilities exhibit longer TD covered (6,800 ± 1,969 m), with distances for speeds between 0 and 5 m·s−1 (6,309 ± 1,582 m) and exceeding 5 m.s−1 (490 ± 141 m) being greater (Gabbett et al., 2013). Among winning teams, displacement variables are notably high, encompassing TD, low-speed running distance, acceleration (Gabbett, 2013) and decelerations times (Kempton et al., 2017). The purpose of the acceleration-based external load indicator therein is to provide an estimate of whole-body mechanical load (Hollville et al., 2021) (i.e., external forces applied to the body/biomechanical loading experienced by the musculoskeletal system) (Vanrenterghem et al., 2017). In addition to fundamental motion analysis measurements, player load (PL) is an index based on acceleration measurements that can be effectively utilized to quantify running demands (Roe et al., 2016), with relative values reaching 7.2 to 10.4 (SD: 0.8–2.0) during the match (Gabbett, 2015). Repeated high-intensity effort (RHIE), as a composite matric of contact, acceleration, or sprint, were associated with higher HR and perceived exertion (Johnston and Gabbett, 2011), occurring in proximity to key events (11 ± 6) (Gabbett and Gahan, 2016; Sheehan et al., 2022). Relevant professionals can utilize the above information to devise strategies for physical training of sufficient intensity and implement recovery protocols.
However, it might be challenging for coaches to plan the optimal training framework and to manage the exercise’s overall intensity as physical and technical demands are highly sensitive when SSGs settings change (Dellal et al., 2008; Owen et al., 2012). Additionally, poorly designed drills, such as those with inappropriately sized width, too many participants or inappropriate rules, can also have detrimental effects by raising the possibility of contact injuries (Clemente, 2020). To address these limitations, training goals must be accurately and thoroughly established when SSG sessions are designed and implemented. Moreover, there is a lack of comparative research between the external load of SSGs and official games (OGs) in RU. Hence, more research is required to establish the validity of these training methods and to explore their potential in provoking specific physiological, technical, and tactical adaptations.
The aims of this study were twofold, first we wanted to quantify performance outcome by investigating the effects of different numbers of players (4 vs.4 to 8 vs. 8), pitch sizes (660, 900, 1,080, 2,500 m2), and rules during SSGs. Secondly, we aimed to describe and compare the external load of OGs and SSG models in relation to their goals. Given that a RU player’s physical demands differ according to their position (Darrall-Jones et al., 2015), it is critical to analyze these effects on the forwards and backs groups as independent populations. Thus, we hypothesized that changing different settings in SSGs would result in varying workload differences among forwards and backs (Dudley et al., 2023), and that the physical demands of external load indicators in SSGs would fulfil the requirements observed during games (Sarmento et al., 2018).
METHODS
Participants
Forty professional RU players (age: 25.07 ± 4.82 years; height 1.85 ± 0.09 m, with forwards 1.88 ± 0.09 m and backs 1.84 ± 0.09 m; body mass 102.48 ± 15.7 kg, with forwards 111.07 ± 14.79 kg and backs 90.29 ± 5.74 kg) from the same team (French second division rugby championship, Pro D2) participated voluntarily in the research. A minimal sample size was estimated a priori with G*Power software3.1.9.7 (University of Dusseldorf, Dusseldorf, Germany). The estimation was performed using a small-to-medium effect size (ES) f = 0.25, partial eta squared (ηp2) = 0.06, α error prob = 0.05, power (1-β error prob) = 0.8, numerator df = 3. The result showed a suitable total sample size of 22 players for actual high power (80.03%). Before the start of the protocol, subjects attended a presentation to receive information outlining the experimental procedures. All players were provided informed consent, aligning with the principles outlined in the Declaration of Helsinki. They retained the freedom to discontinue their involvement in the study at any point without facing any adverse consequences. The execution of the study protocol received assistance from both the medical and technical personnel affiliated with the professional team. Finally, the study respected the ethical guidelines of Rennes University and the research laboratory associated with this study.
Study design and settings
This research was based on two main categories of SSG models that investigate the impact of modifying pitch size, player numbers and different game rules on external workload in RU. Data collection occurred during the 31 OGs in an entire season. 7 days separated each game (Figure 1). All SSG models and OGs were conducted on the same field and under similar temperature and relative humidity (Varley et al., 2012). All SSGs assessment protocols were completed after a 15-minute warm-up (i.e., dynamic stretching, mobility, and muscle activation). The coach supervised and ensured, through verbal encouragement, that athletes provided maximal exertion. During the study phase, every player was required to standardize their caloric intake and hydration status at least 24 h before each test day.
[image: Schedule chart illustrating a warm-up and five sessions of small-sided games (SSGs) with varying field sizes and player numbers. Sessions occur over five weeks with different game rules. The chart displays a weekly schedule with rugby or soccer activities in the morning and running or tests in the afternoon. Sundays are off days. An asterisk note indicates no official game for specific sessions. Data on physical workloads per session is included at the bottom.]FIGURE 1 | The arrangement of SSGs and organization of the 2022–2023 Pro D2 season.
Procedures
Performance monitoring
The application of GPS devices, for quantifying physical attributes (the player’s speed, acceleration, distance covered, etc.) in team sports, demonstrates remarkable effectiveness and reliability (Houy, 2020). GPS signals provide information about speed, distance, position, and acceleration of player movements during drills and official matches. Training sessions on different SSG models were recorded using GPS and Global Navigation Satellite System (GLONASS) technology (Vector Stadium Receiver, Optimeye X7 sensors, Catapult Sports®, Australia). When compared to cells sampled at lower frequencies, the 10 Hz cell produces the most efficient and reliable data (Akenhead et al., 2014). The GPS unit also includes a tri-axial accelerometer and gyroscope sampled at 100 Hz to provide higher velocity and acceleration accuracy, physical collision, and RHIE data. Each GPS sensor is equipped with a stretch vest that all players wear between their shoulder blades. These devices were activated 30 min before each training session to ensure a clear satellite reception. The GPS data were exported by applying specialist software (Openfield Console 3.7) for subsequent analysis.
10-m and 20-m sprint test
Given that RU typically involves short sprints of 10 m with player’ average sprint distance ranging between 15 and 21 m (Gabbett, 2012), we conducted 10-m and 20-m sprint test. These tests were employed both before and after two training sessions using S-SSG model to assess each player’s acceleration ability and their performance changes.
Sprint speed was assessed by 10- and 20-m sprint times using dual beam electronic timing gates (Swift Performance Equipment, New South Wales, Australia). All running tests were conducted on a rugby pitch (natural turf). After a standardized warm-up, players performed two sprint trials interspersed with 1-min rest periods. Light gates were positioned at the 10 m and 20 m marks to evaluate the time taken to reach each distance. All players started with the front foot positioned 0.5 m behind the starting line, and players were instructed to run as fast as possible for a distance of 20 m from standing. The best score for each distance was recorded as the test score (Gabbett et al., 2008; Comfort et al., 2012; Zabaloy et al., 2021). The within-trial validity and reliability of the above procedure have been established (Chiwaridzo et al., 2017).
Task design of SSGs
Effects of modifying pitch size and player numbers
SSG models included free play with a focus on ball possession. In this category of models, SSGs played on strength training days were described as strength SSG (S-SSG) models, whereas SSGs performed on endurance training days were referred as endurance SSG (E-SSG) models. The SSGs training protocols were specially prescribed and implemented by the team coaches. In the framework of the team’s tactical approach, players were involved in five SSG models: Three S-SSG models (4 vs. 4, 4 vs. 5, and 5 vs. 5) and two E-SSG models (7 vs. 7, and 8 vs. 8) (Table 1). Where 4 vs. 5 employs the 4 vs. 4 + 1 floater format, which essentially represented the coach’s attempt to introduce a variant based on the 4 vs. 4 SSG. In this session, both the pitch size and the rules of the SSG remained consistent with the 4 vs. 4 SSG.
TABLE 1 | Training organization of five small-sided games models in eight sessions.
[image: Table detailing small-sided games (SSGs) sessions with columns: Number of players/bouts, Number of bouts, Bout duration (minutes), Rest interval between bouts (minutes), Pitch size (m²), and Relative pitch size (m²). Sessions one to five vary from four versus four to eight versus eight, with pitch sizes ranging from six hundred sixty to two thousand five hundred square meters. Each session consists of three bouts, with a duration of one to one and a half minutes, and a one-minute rest interval. Notes explain S-SSG and E-SSG contexts and the role of a "floater" player.]Effects of modifying game rules
The SSG models were structured around four distinct rules (Table 2). With the aim of enhancing endurance and acceleration, touch rugby league (TRL) sessions were conducted on Monday mornings. 7 vs. 4 sessions were employed on Monday afternoons to target small-space acceleration. Touch continuity (TC) sessions took place on Tuesday mornings to achieve high intensity. Japan touch (JT) sessions were held on Thursday mornings with the purpose of emphasizing speed. The changes in pitch size and number of players in 7 vs.4 SSGs were made within the constraints of the rules. There were inherent correlations between these changes, and therefore they can be considered as a whole for comparison with SSGs of other rules. The four models were carried out over a period of 5 weeks, with four training sessions per week.
TABLE 2 | Small-sided games models with four sets of rules.
[image: Comparison chart of four touch rugby formats: Touch rugby league, 7 vs. 4, Touch continuity, and Japan touch. Categories include number of players, number of bouts, pitch size, bout duration, rest intervals, scoring method, restart of play, kicking, contact rules, number of touches, and objectives. Each format has unique rules, focusing on aspects such as aerobic, strength, speed, and continuity.]Study variables
The metrics of running capability were reported as TD covered, maximum running velocity (Vmax), HSR (>15 km.h−1) (Waldron et al., 2011; Kempton et al., 2014), very high-speed running (VHSR) (>21 km.h−1) (Waldron et al., 2011; Kempton et al., 2014), and sprint running (SR) (>25 km.h−1) (Dubois et al., 2017; Vachon et al., 2022) distance. Mechanical workload metrics were reported as PL (arbitrary unit, AU), the number of medium acceleration (MA) (>2 m.s−2), distance of medium acceleration (D-MA) (>2 m.s−2), the number of hard acceleration (HA) (>2.5 m.s−2), distance of hard acceleration (D-HA) (>2.5 m.s−2), the number of medium deceleration (MD) (>2 m.s−2), the number of hard deceleration (HD) (>2.5 m.s−2) and RHIE. These metrics were expressed in absolute (ball in play) values. To allow for comparison between SSGs and OGs, these metrics were reported as per minute values.
Statistical analysis
A total of 900 SSG data points were evaluated during the S-SSG and E-SSG training sessions. The number of participating players in S-SSG models was twenty-seven, with fourteen for forwards and thirteen for backs. E-SSG models involved thirty-three participating players, including sixteen for forwards and seventeen for backs. The SSGs with the rules of TRL, 7 vs. 4, TC, and JT were examined on a total of 9604 SSG data points. To describe the workload requirements of SSG models and OGs, a descriptive analysis was performed using the data as mean and standard deviation (mean ± SD). The coefficient of variation (CV) for SSG models was calculated to determine the variability of performance indicators. Before initiating the analysis of variance, we used the Shapiro-Wilk test and Levene’s test to determine the normality and homogeneity of variance in all of the data. When the data exhibited normal distribution and homogeneity of variance, Student’s t-test was employed to compare the differences between S-SSG model and E-SSG model. Considering the varying training participants and pitch sizes, this study employed a two-way analysis of variance (ANOVA) to investigate the interactions among these factors. A least significant difference (LSD) post hoc test was performed after significant main effects and factor interactions (Perneger, 1998). The paired samples t-test is employed to compare the differences in 10 m and 20 m sprint performance before and after training sessions using four S-SSG models. The Mann-Whitney U test, Kruskal-Wallis H-test and its subsequent post hoc comparison procedure (Dunn’s post hoc analysis) were applied due to the non-normal distribution of the GPS metrics, the heterogeneity of the variance and the comparison of SSG models and OGs. The statistical significance was set at p < 0.05. ES was evaluated using Cohen’s d and partial eta squared (ηp2) along with a 95% confidence interval. Cohen’s d = 0.2, 0.5, and 0.8, ηp2 = 0.01, 0.06 and 0.14 correspond to small, medium and large effects respectively (Cohen, 1992).
RESULTS
Effects of modifying pitch size and player numbers
High variability was observed in the metrics of VHSR (CV = 0.63) and SR (CV = 1.10). Conversely, mechanical workload and TD exhibited low variability (CV = 0.11–0.41) (Table 3). When evaluating the running performance, our results show that the TD of backs and HSR of both positions in E-SSG models outperformed S-SSG models (Figures 2A, B, p < 0.01, ES = 1.52, 1.14 and 1.58). This trend was further supported by the statistical results presented in Table 3, where the p-values and Cohen’s d effect sizes highlighted significant differences. For example, the ES for the absolute value of TD was −1.3, and it was −1.13 for HSR. Similarly, with respect to mechanical workload, S-SSG models usually outperformed higher values compared to E-SSG models (Figure 2C, p < 0.05, ES = 0.01–0.91). These trends were also corroborated by the results presented in Table 3, where the corresponding p-values and Cohen’s d values emphasized substantial effect sizes. The relative values of MA+MD and HA+HD were specifically noticeable, with effect sizes of 1.33 and 1.41, respectively. Figure 2D illustrates the differences between the pre-performance and post-performance tests on neuromuscular function, and the results show no significant difference in sprint performance.
TABLE 3 | Mean ± SD values of metrics taken from S-SSG and E-SSG models.
[image: Table comparing S-SSG and E-SSG models across several metrics: Ball in play, TD, HSR, VHSR, SR, MA+MD, HA+HD. Includes absolute and relative values, CV, p-value, and Cohen's d for each metric. Significant differences highlighted, with detailed footnotes explaining terms and measurements.][image: Four charts depicting workload and performance tests. Chart A: Total distance covered by different player roles. Chart B: Running workload comparison between forwards and backs. Chart C: Mechanical workload for forwards and backs with numerical data. Chart D: Pre- and post-performance test results shown in standardized change scores, with key statistical markers noted.]FIGURE 2 | Comparison of workload and performance changes in S-SSG and E-SSG models. (A) Comparison of TD for forwards and backs. (B) Running workload comparison for forwards and backs. (C) Mechanical workload comparison for forwards and backs. (D) Difference between pre-and post-performance test on neuromuscular function in 10 m and 20 m. S-SSG, small-sided game played on strength training day; E-SSG, small-sided game performed on endurance training day; HSR, high-speed running (>15 km.h−1); VHSR, very high-speed running (>21 km.h−1); SR, sprint running (>25 km.h−1); MA, the number of medium accelerations (>2 m.s−2); HA, the number of hard accelerations (>2.5 m.s−2); MD, the number of medium decelerations (>2 m.s−2); HD, the number of hard decelerations (>2.5 m.s−2); RHIE, repetitive high-intensity exercise. *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 3 highlights the impact of varying player numbers within the SSG models on performance outcomes as a function of position. In Figures 3A, B, the TD and HSR covered by forwards was highest (p < 0.05, ηp2 = 0.46 and 0.44) in the 7 vs. 7 model. Among backs, the 4 vs. 5 model demonstrate a notably lower (p < 0.05, ES = 0.95) D-MA performance compared to the 4 vs. 4 model (Figure 3C). Furthermore, the D-HA metric values within the 4 vs. 5 model were the lowest (p < 0.05, ηp2 = 0.40) among all S-SSG models (Figure 3D).
[image: Four scatter plots compare performance metrics for forwards and backs in different match scenarios. Plot A shows total distance for forwards; Plot B shows distance above 15 kilometers per hour for forwards. Plot C displays distance of acceleration above 2.5 meters per second squared for backs; Plot D shows distance of deceleration above 2.5 meters per second squared for backs. Scenarios compared are 4 vs. 4, 4 vs. 5, 5 vs. 5, 7 vs. 7, and 8 vs. 8. Symbols indicate statistical significance, with specific markers next to data points. Error bars indicate variation.]FIGURE 3 | Effect of player numbers on performance in SSG models for forwards and backs. (A) Impact of the number of players on TD performance for forwards. (B) Impact of the number of players on HSR performance for forwards. (C) Impact of the number of players on D-MA performance for backs. (D) Impact of the number of players on D-HA performance for backs. §: Compared to 7 vs. 7, p < 0.05; †: Compared to 4 vs. 4, p < 0.05; #: Compared to 5 vs. 5, p < 0.05.
Effects of modifying game rules
The results provided in Table 5 present the distinctions among the four SSG models. In the 7 vs. 4 model, TD, Vmax, HSR, VHSR, SR, and PL showed the minimum values (F = 47.93–243.55, p < 0.001, ηp2 = 0.17–0.52). On the contrary, players performed the best (F = 52.76–88.23, p < 0.001, ηp2 = 0.19–0.28) in terms of both distance covered and times during acceleration and deceleration in this model. Maximum velocity, HSR and VSHR represented the biggest workload (F = 99.12–243.55, p < 0.05, ηp2 = 0.22–0.52) than the other three SSG models during JT, while players in the TRL model had the lowest (F = 10.08, p < 0.05, ηp2 = 0.04) RHIE. In the TC model, the player’s workload covered maximum TD and PL. Besides, differences (p < 0.05, ES = 1.3) in PL were observed between 7 vs. 4 and TRL models, as well as RHIE (p < 0.05, ES = 0.42) in the forwards and not in the backs. No significant differences were observed between TRL, TC, and JT models for acceleration and deceleration-related metrics (Table 5).
Comparison between forwards and backs
In both the S-SSG and E-SSG models, the workload of the backs consistently remained higher (Table 4, p < 0.01) than that of the forwards, with the exception of TD. Meanwhile, as for the SSG models with four different rules, forwards had lower values (p < 0.01, ES = 0.17–0.54) compared to backs, except for TD in the 7 vs. 4, TC, and JT models and PL across all models. Also, the SR metric did not exhibit a significant difference (Table 5, p = 0.15, ES = 0.13) between forwards and backs in the 7 vs. 4 model.
TABLE 4 | Comparison between forwards and backs workload (mean ± SD) in S-SSG and E-SSG models.
[image: A comparison table of S-SSG and E-SSG models showing values for forwards and backs across various metrics. It includes columns for p-values and Cohen's d. Metrics listed are total distance (TD), maximum running velocity (Vmax), high-speed running (HSR), very high-speed running (VHSR), sprint running (SR), medium and hard accelerations (MA+MD), hard accelerations (HA+HD), medium acceleration (MA), hard acceleration (HA), distance of medium acceleration (D-MA), distance of hard acceleration (D-HA), medium decelerations (MD), hard decelerations (HD), and repetitive high-intensity exercise (RHIE).]TABLE 5 | Descriptive statistics (mean ± standard deviation) for the workload characteristics for SSG models with four rules.
[image: Table comparing metrics across different models: TRL, 7 vs. 4, TC, and JT. Metrics include TD, \(V_{max}\), HSR, VHSR, SR, MA+MD, HA+HD, MA, HA, D-MA, D-HA, HD, PL, and RHIE. Each model reports values for "Forwards" and "Backs" with p-values and effect sizes. Statistical significance markers are noted.]Comparison between SSGs and OGs
In terms of OGs demand profiles, players had a relative distance (m.min−1) of 121.47 ± 22.08, a relative PL (PL.min−1) of 14.42 ± 2.71, and a relative RHIE (RHIE.min−1) of 0.54 ± 0.24. The relative workload of TD in S-SSG and E-SSG models exceeded the OGs requirements (Figures 4A, B, p < 0.001, ES = 1.45 and 1.44). However, E-SSGs did not cover the workload of OGs in RHIE.min−1 metrics (Figure 4C, p < 0.001, ES = 1.13). Besides, the 7 vs. 7 and 8 vs. 8 SSG models did not fulfill the RHIE.min−1 requirements of OGs (Figure 4D, p < 0.05, ES = 0.18 and 0.51).
[image: Bar and scatter plots comparing different training methods. Chart A shows bar plots of total distance for OG, S-SSG, and E-SSG, with S-SSG and E-SSG having higher values. Chart B displays a corresponding scatter plot with significant differences indicated. Chart C shows bar plots of RHIE for the same groups, with E-SSG scoring highest. Chart D is the related scatter plot, again showing significant differences. Both charts indicate statistically significant differences, as marked by asterisks.]FIGURE 4 | Comparison of relative performance metrics between SSG models and OGs. (A) Comparison of TD relative values (m.min−1) for S-SSG models, E-SSG models, and OGs. (B) Comparison of TD relative values (m.min−1) for different player numbers in SSG models and OGs. (C) Comparison of RHIE relative values (RHIE.min−1) for S-SSG, E-SSG, and OGs. (D) Comparison of RHIE relative values (RHIE.min−1) for different player numbers in SSG models and OGs. S-SSG, small-sided game played on strength training day; E-SSG, small-sided game performed on endurance training day; OG, official game. ‡: Compared to OG, p < 0.001; △: Compared to OG, p < 0.05.
As for SSGs with different rules, overall, the relative workload of TC was the highest. Common to all SSG models, m.min−1 for forwards and backs were all more required than OGs (Figures 5A, B, p < 0.05, ηp2 = 0.57). Only the forwards in the 7 vs. 4 model had a lower PL.min−1 than the OG (Figure 5C, p < 0.05, ES = 0.03), the rest of the models met the game requirements in backs (Figure 5D, p < 0.05, ηp2 = 0.14). For both forwards and backs, OG had a higher RHIE.min−1 requirement than the JT model (Figures 5E, F, p < 0.05, ES = 0.29), and that value of backs was also lower than OG in the TRL model (Figure 5F, p < 0.05, ES = 0.06).
[image: Six radar charts comparing forward and back rugby players: (A) Forwards' values in m·min⁻¹, (B) Backs' values in m·min⁻¹, (C) Forwards' PL·min⁻¹, (D) Backs' PL·min⁻¹, (E) Forwards' RHE·min⁻¹, (F) Backs' RHE·min⁻¹. Each chart shows data on jacks, tackles, touches, early leagues, and conditional sprints. The scales vary per chart.]FIGURE 5 | Pairwise comparison for forwards and backs in (A, B) m.min−1, (C, D) PL.min−1, and (E, F) RHIE.min−1 about SSGs and OGs analyzed. Each node showed the sample average rank of SSGs and OGs. The black line represented significant differences among groups (p < 0.05). m.min−1: relative value of total distance, PL.min−1: relative value of player load, RHIE.min−1: relative value of repetitive high-intensity exercise.
DISCUSSION
This study conducted a comprehensive workload analysis of different SSG models and their effects on male professional RU players whilst taking playing positions in consideration. Specifically, the research examined SSG workload with different numbers of players and pitch sizes on strength and endurance training days. It also investigated the differences in workload between SSGs using four different rules. In addition, the study checked whether all SSGs complied with OG requirements. The primary findings of this study provide evidence that running-related metrics of SSGs were higher on endurance days, whereas mechanical workload was higher on strength training days. When comparing the effect of different numbers of players on SSGs, the TD of the players was greatest in the 7 vs. 7 S-SSG model. Furthermore, SSG models with four rules show that forwards usually have lower workload values than backs with respect to position. Among these SSG models, acceleration and deceleration related metrics were highest in the 7 vs. 4 model. The Vmax, HSR, VSHR, and RHIE were all observed with JT model. Players had the highest TD and PL during TC model. Moreover, the relative TD of both S-SSG and E-SSG models, as well as the SSGs set by four rules, fully meet or significantly exceeded the OGs requirements, thereby confirming our initial working hypothesis.
Data variabilities
One of the objectives of this study throughout the data evaluation process was to investigate the repeatability of the data due to the limited sample size of the data from S-SSG and E-SSG models. TD and mechanical metrics had low variability, suggesting that coaches can confidently establish similar distance and acceleration-deceleration training programs for SSGs. However, the reproducibility of running performance cannot be guaranteed. Given this, coaches must be aware that high- and very high-speed running should be suitably formed in dedicated or specialized training sessions, or that conditions need to be modified to make these metrics replicable (Clemente et al., 2019). For instance, when comparing players within similar positional groups, the significant variability issue should be taken into consideration. We encourage future research to further refine the categorization of players within the forward and back positions (e.g., “front row,” “inside backs,” etc.) in training interventions (Quarrie et al., 2013; McLaren et al., 2016).
Comparison between forwards and backs
There has always been a difference in the workload of forwards and backs (Cahill et al., 2013), so the data should be processed in accordance with the characteristics of each position. Typically, when conducting rugby training or games, backs are subject to higher external workload than forwards (McLellan et al., 2011; Hu et al., 2023). The same tendency was observed in this study. This is due to the fact that players in different positions were required to comply with the characteristics of the game in daily training. Backs spend more time performing strenuous running activities, acceleration and deceleration movements because of the nature of their role which requires them to cover longer distances to reach their opponents. Additionally, they must sprint while carrying out additional duties like kick chases and returns. These factors inevitably lengthen their running distance (King et al., 2009). Forwards should prioritize training acceleration due to the comparatively shorter average distance covered in high-intensity running reported for this positional group (Austin and Kelly, 2013).
Effects of modifying pitch size and player numbers
Manipulating the number of players and the pitch sizes in SSGs affects the skills and performance of RU players (Fleay et al., 2018; Zanin et al., 2021). Foster et al. (2010) compared the effects of 4 vs. 4 and 6 vs. 6 and three pitch sizes (15 × 25 m, 20 × 30 m, and 25 × 30 m) on the HR responses of rugby league players. Their findings revealed that a suitable method for raising SSG intensity was to reduce the number of players while maintaining the same pitch size. Research by Kennett et al. (2012b) also supported this, claiming that the time-motion demands were higher in smaller SSG models (4 vs. 4). In our study, the workload of players during 7 vs. 7 was greater than during 8 vs. 8 when pitch size was set at 2,500 m2. Our study also showed that a combination of 4 vs. 4 and 660 m2 had most demands in accelerations and decelerations, hence the findings were consistent. However, among elite youth junior rugby league players, pitch size had no effect on their physical demands (Dudley et al., 2023). Moreover, Hill-Haas et al. (2010) demonstrated that adding a floater (3 vs. 3 + 1 floater) during SSGs could offer a training stimulus that was more favorable to aerobic adaptation. However, the presence of a floater in the 4 vs. 4 model did not play a positive role in this study. When programming SSGs to address different training objectives, these findings may have practical implications. For instance, on endurance training days, specifying larger pitch dimensions or a greater number of players (7 vs. 7, 2500 m2, 178.57 m2 per player) can maximize distance and high-speed running training. Conversely, on speed training days, prescribing smaller pitch dimensions or fewer players (4 vs. 4, 660 m2, 82.5 m2 per player) can achieve optimal acceleration training. Therefore, these recommendations can assist coaches in adjusting SSGs more purposefully to meet various training needs (Tee et al., 2018).
Effects of modifying game rules
An interesting result of this study is that the 7 vs. 4 model resulted in the highest workload on the players during medium-to-hard-acceleration movements because of the smallest pitch size used. This increased workload can be attributed to the players’ necessity to change direction quickly and perform acceleration and deceleration movements over shorter distances. From a practical standpoint, it informs the implementation of SSGs designed to expose players to the strength demands such as explosiveness, agility and acceleration of games (Baker and Newton, 2008). Besides, players can obtain more HSR training by practicing the JT model. TRL model with its primary focus on aerobic training, was designed to be more moderate in workload. As a result, given its avoidance of extreme high-intensity training, it was often used at the beginning of the training week to avoid excessive workload and aligns more closely with the demands of RU. The objective of the TC model was to enhance stamina and power capabilities through a combination of aerobic and speed training; hence its intensity was likewise quite modest. Consequently, SSGs can be chosen or altered based on the training objective.
Comparison between SSGs and OGs
Another objective of this study was to use several relative metrics to compare the movement patterns of SSGs and OGs in RU, indicating that SSGs can partly meet game expectations. Similar studies have been reported in other team sports. For instance, field hockey has shown that acceleration counts were higher in SSGs than in games when normalized to 70 min of game time (Gabbett, 2010). Moreover, all SSG models (5 min; 2 vs. 2, 3 vs. 3, and 4 vs. 4; on pitches of 30 × 20, 35 × 25, and 40 × 30 m) in field hockey had higher mean acceleration, deceleration, and change-of-direction events than the maximum average over a 5-min period of game. However, the average speed was significantly lower during SSG models (Duthie et al., 2022). In football research, only 4 vs. 4 SSG showed the same PL and accelerations as OGs, whose values were obtained by calculating the rolling average over a 5-minute period and selecting the highest ones (Dalen et al., 2021). Additionally, Casamichana et al. (2012) found that VHSR and all RHIE variable metrics were observed to be higher in friendly games compared to SSGs. By contrast, only SSGs exhibited higher values compared to friendly games in VHSR and RHIE/min. In this study, when the SSG models did not satisfy the OGs, it was mainly due to differences in model functionality. For example, the TRL model was primarily used to recover or restart training due to the lower workload it encompasses. The differences in these results are limited by the different sports and metrics, necessitating additional research on RU (e.g., development and modification of SSG models., integrating video analysis or physiological indicators into research).
Limitations
There have been a few limitations to this study. Considering the training demands of players’ actual preparation for matches, we did not conduct a controlled experiment. When designing the protocol, we considered controlling the number of players to change the pitch size, as well as controlling the pitch size to change the number of players, but then this experimental design would be very long and take a lot of time. This would not be supported as it would put a lot of extra burden on the professional players (the same situation for pre-post performance tests on the S-SSG models). In addition, most of the SSGs research in rugby is controlling the pitch size to change the number of players or controlling the number of players to change the pitch size (Halouani et al., 2014). This study could be a new attempt at the format of SSGs for the purpose of using SSGs on strength training days and endurance training days. In our study, no improvement in performance was found after training, and also extremely significant differences between SSGs and OGs warrants consideration of overtraining (Gómez-Carmona et al., 2018), implying that future studies should take this into account. Furthermore, due to the training schedules and testing feasibility for professional players, we had no chance of obtaining internal workload data (such as sRPE, blood lactate, and HR values). Moreover, since forwards tend to have heavier physical tasks as they engage in mauls, rucks, and scrums (Duthie et al., 2003b), only the high-intensity work of backs can be reflected in the GPS data, we should have assessed metrics that are more reflective of the workload on the forwards (such as sRPE and sprint momentum). Finally, considering all of the players were from the same team, it is uncertain whether the results can be extrapolated to other teams and other playing levels.
CONCLUSION
This study served as a practical reference for coaches to develop training regimens for SSGs and provided evidence to quantify the differences in workload between SSGs and OGs for male professional RU players. SSGs usually showed higher requirements in external workload metrics and can therefore cover the workload of games. In the context of consistent training strategies, coaches can optimize different SSGs to meet physical and game goals. To guarantee that players will receive adequate stimulation for training, it is also necessary to maintain a suitable number of players, maintain the proper size of the field, and select appropriate rules according to the characteristics of the position. Further studies utilizing the methods described here are warranted due to the interest in this topic for rugby training.
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Human activity recognition (HAR) plays a pivotal role in various domains, including healthcare, sports, robotics, and security. With the growing popularity of wearable devices, particularly Inertial Measurement Units (IMUs) and Ambient sensors, researchers and engineers have sought to take advantage of these advances to accurately and efficiently detect and classify human activities. This research paper presents an advanced methodology for human activity and localization recognition, utilizing smartphone IMU, Ambient, GPS, and Audio sensor data from two public benchmark datasets: the Opportunity dataset and the Extrasensory dataset. The Opportunity dataset was collected from 12 subjects participating in a range of daily activities, and it captures data from various body-worn and object-associated sensors. The Extrasensory dataset features data from 60 participants, including thousands of data samples from smartphone and smartwatch sensors, labeled with a wide array of human activities. Our study incorporates novel feature extraction techniques for signal, GPS, and audio sensor data. Specifically, for localization, GPS, audio, and IMU sensors are utilized, while IMU and Ambient sensors are employed for locomotion activity recognition. To achieve accurate activity classification, state-of-the-art deep learning techniques, such as convolutional neural networks (CNN) and long short-term memory (LSTM), have been explored. For indoor/outdoor activities, CNNs are applied, while LSTMs are utilized for locomotion activity recognition. The proposed system has been evaluated using the k-fold cross-validation method, achieving accuracy rates of 97% and 89% for locomotion activity over the Opportunity and Extrasensory datasets, respectively, and 96% for indoor/outdoor activity over the Extrasensory dataset. These results highlight the efficiency of our methodology in accurately detecting various human activities, showing its potential for real-world applications. Moreover, the research paper introduces a hybrid system that combines machine learning and deep learning features, enhancing activity recognition performance by leveraging the strengths of both approaches.
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1 INTRODUCTION
The advancement of sensing technologies (Jiang and He, 2020; Zheng et al., 2023a), notably has catalyzed progress in human activity recognition (HAR). These sensors, pivotal in health (Sobhan et al., 2021; Hussain et al., 2022; Zheng et al., 2023b) and safety monitoring (Reddy et al., 2016; Mao et al., 2022a) in smart environments (Guo et al., 2022; Jiawei et al., 2022; Liu et al., 2023g), aim to be both accurate and nonintrusive. Wearable sensors (Saboor et al., 2020; Bhelkar and Shedge, 2016; Perez and Zeadally, 2021) with their potential to capture granular movement data, have introduced new possibilities in HAR (Liu et al., 2023a). However, their challenges (Saboor et al., 2020; Liu and Schultz, 2019; Bhelkar and Shedge, 2016) concerning battery life and user acceptance underscore the importance of a balanced approach. Tools like infrared sensors (Perez and Zeadally, 2021; Liu et al., 2022a) and recent 3D data acquisition systems (Yu et al., 2023; Bruno et al., 2015) such as Microsoft Kinect (Zhao et al., 2023; Liu et al., 2022b; Shen et al., 2022) are emerging as robust alternatives, offering precision without compromising user privacy. As HAR technologies evolve, integrating wearables and non-intrusive sensors, the field is poised to offer deeper insights into human behavior (Zhang et al., 2012b; Puangragsa et al., 2022) enhancing security, health monitoring, and infrastructure management (Kamarudin, et al., 2014; Hu et al., 2022; Hassan and Gutub, 2022).
This research paper discusses the application of a Smart inertial measurement unit (IMU), global positioning system (GPS), and audio sensors, along with ambient sensors, for human activity recognition (Zheng et al., 2022; Meng et al., 2022). The combination of these sensors offers a comprehensive approach to capturing diverse aspects of human movements and actions. IMUs, which consist of accelerometers, gyroscopes, and magnetometers, provide precise motion and orientation data. In conjunction with Ambient Sensors that capture contextual information, these sensors provide insight into human activities in real-world scenarios. To achieve accurate and context-aware activity recognition, advanced signal processing techniques are used to extract relevant features from the data these sensors collect. Novel feature extraction methods have been designed for signal (Hartmann et al., 2022; Hartmann et al., 2023), GPS, and audio sensor data, enriching the system’s ability to discern patterns and characteristics associated with different activities. To effectively process the information from GPS, Audio, and IMU Sensors, a Yeo-Johnson power transformation is applied for optimization. Simultaneously, IMU and Ambient features are optimized and harnessed for the identification of locomotion activities, showcasing the versatility of the proposed approach. Given the complexity and diversity of human activities, state-of-the-art deep learning techniques are employed to develop a robust and accurate HAR system (Qi et al., 2022; Wang et al., 2022; Yan et al., 2023; Ronald et al., 2021; Poulose et al., 2022; Poulose et al., 2019a). Convolutional neural networks (CNN) (Zhang et al., 2023; Wen et al., 2023a; Gangothri et al., 2023; Leone et al., 2022) are used for recognizing indoor/outdoor activities, while long short-term memory (LSTM) (Yao et al., 2023; Zheng, Y. et al., 2022) networks are chosen for locomotion activity recognition (Hu et al., 2023; Liu and Schultz, 2018; Liu et al., 2022c). The integration of CNN and LSTM allows the system to leverage spatial and temporal dependencies, thus enhancing overall recognition performance. The proposed HAR system (Zhou and Zhang, 2022; Xue and Liu, 2021; Zhao et al., 2022) is evaluated using the Opportunity and Extrasensory datasets, which are well-established benchmarks in the field of localization activity recognition (Zhu et al., 2023; Qu et al., 2023a; Qu et al., 2023b; Liu et al., 2023a). The results underscore the effectiveness of the approach, achieving remarkable accuracies of 97% and 89% for locomotion activity over the Opportunity and Extrasensory datasets, respectively, and 96% for localization activity over the Extra-sensory dataset. These findings attest to the potential of Smart IMU, GPS, Audio, and Ambient Sensors in precisely identifying and classifying a range of human activities (Gioanni et al., 2016). Beyond exploring deep learning techniques, this research paper introduces a hybrid system (She et al., 2022; Liang et al., 2018; Liu et al., 2022d; Vrskova et al., 2023; Surek et al., 2023) that blends machine learning and deep learning features. By capitalizing on the strengths of both paradigms, the hybrid system further sharpens activity recognition, signaling a promising avenue for future research and development. The primary findings and contributions of this study are outlined below:
	• Development of robust denoising techniques tailored for signal and Audio sensor data, enhancing activity recognition accuracy.
	• Extracting novel features for detecting human localization information.
	• Development of a hybrid system that combines machine learning and deep learning features to further improve activity recognition performance.
	• Furthermore, a comprehensive analysis was performed on well-known benchmark datasets, which feature diverse human actions and advanced sensors.

The subsequent sections of this paper are organized as follows:
Section 2 presents a comprehensive literature review of existing methods in the field of human activity recognition. In Section 3, the proposed system is thoroughly discussed. The experimental setup and the results obtained from the conducted experiments are outlined in Section 4. In Section 5, we discuss the system’s performance, limitations, and future directions. Finally, in Section 6 conclusions drawn from the research are presented.
2 LITERATURE REVIEW
Various methods exist for recognizing human activity, with some researchers utilizing RGB cameras, others employing wearable sensors, and some leveraging multimodal sensor approaches.
2.1 Visual sensor-based human locomotion recognition
A new technique for pulling out details about joints and skeletons from images was introduced in a study (Batchuluun et al., 2021). The method started by changing an original thermal image, which had 1 channel, into an image with 3 channels. This change was done to combine the images in a way that would help get better results when pulling out information. The study used a tool called a generative adversarial network (GAN) to help extract details about joints and skeletons. Furthermore, the study tried to recognize different human actions using the information pulled out about joints and skeletons. The recognition of human actions was done by using two tools together: a CNN and LSTM. When they tested their method using their own collected data and also open data, the study found that their method worked well compared to other top methods. However, the system could not detect images that have low spatial textual information, due to which the system causes low performance. The study (Yin et al., 2021) developed a model to detect different human actions in a real-time healthcare environment. The authors utilized a multichannel LSTM. This system, built to detect actions through three-dimensional skeleton data, incorporated a unique loss function to enhance its accuracy. They used two benchmark datasets: one is NTU RGB + D and the second is TST fall detection datasets. However, the system has limitations in achieving flawless skeleton data due to a frame-level error detection approach and struggles with identifying the roots of issues related to dimensionality, which in turn impacts the overall accuracy of the system. In another study (Chen et al., 2023), the authors concentrated on recognizing actions through different video frames. Residual CNN and a second spatial attention module are utilized for the recognition of actions. The proposed system does not have integrated optical flow maps, which adversely impacts the performance of the system.
2.2 Human locomotion recognition via wearable technology
In the work conducted by Mutegeki and Han, (2020), an integrative deep learning architecture for activity recognition was introduced, utilizing a CNN-LSTM model. This approach aimed to enhance predictive accuracy for human activities derived from raw data while simultaneously reducing model complexity and negating the necessity for intricate feature engineering. The pro-posed CNN-LSTM network was devised to be deep in both spatial and temporal dimensions. The model manifested a 99% accuracy rate on the iSPL dataset (an internal dataset) and 92% on the publicly available UCI HAR dataset. However, the findings indicate a decline in performance when addressing complex actions, such as atomic-level activities. Additionally, as the model complexity amplified, the SoftMax loss also escalated, suggesting that the concurrent use of CNN and LSTM layers did not enhance the outcomes. Jaramillo et al. (2022) utilized a technique called Quaternion filtration by using single sensor data. In the next step, different segmentation techniques have been used to segment the data. Subsequently, features are extracted. Finally, for the classification of activities, the LSTM classifier has been utilized. We identified that the system is more computationally expensive. Hu et al. (2023), presents a system for human activity recognition is presented using IMU sensors, and the data was collected from Wearable devices. Different techniques are utilized to preprocess the data, including moving averages, sliding overlap windows, and data segmentation. For recognition of activities, five different classifiers are used including CNN, recurrent neural network, LSTM, bidirectional LSTM (BiLSTM), and gate recurrent unit. Due to a huge number of epochs, the proposed system is very expensive in terms of time complexity. Recently, the hidden Markov model (HMM) has entered the field of vision of researchers (Liu and Schultz, 2018). Its inherently logical modeling capability of time series endows human activity recognition with a certain degree of interpretability.
2.3 Human locomotion recognition through multisensor systems
The study (Hanif et al., 2022) presents a multimodal locomotion system, utilizing the Opportunity++ and HWU-USP datasets for their study. The data was subjected to various pre-processing techniques; for image-based data, the skeleton was initially extracted, while for inertial sensors, the noise was removed followed by segmentation. Various features, including Pearson correlation, linear prediction, and cepstral coefficients, were extracted. The classification of locomotion was performed using a recursive neural network. Nonetheless, the confidence levels obtained for each extracted skeleton body point do not meet the desired standards, particularly for both ankle points. In another multimodal system, proposed (Nafea et al., 2022) data was collected using smart devices. For preprocessing the raw sensor data, different methods such as filtration, windowing, and segmentation were utilized. Multiple features were extracted, including time-based, statistical, frequency-based, and rotational features. Furthermore, various machine learning classifiers have been explored to classify both complex and basic activities, such as [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] nearest neighbour ([image: Please upload the image you'd like me to generate alt text for. If you need assistance on how to upload it, let me know!]-NN), neural networks, and Naïve Bayes. However, these learning approaches tend to be susceptible to errors and often deliver suboptimal accuracy in the context of human locomotion recognition (HLR), resulting in performance that does not achieve satisfactory outcomes. In another study (Ma et al., 2023) a system was proposed to remotely monitor people, utilizing multimodal sensors to monitor activities. CNN and gated recurrent unit (GRU) were explored for recognizing different human activity patterns. Nonetheless, the suggested approach did not yield strong results due to significant losses in both the training and validation sets (M. Ronald. et al., 2021). use the iSPLInception model a deep learning architecture based on the synergistic combination of Inception modules and ResNet strategies. By refining these components, the model achieves a significant balance between depth and computational efficiency, essential for real-time processing. The researchers focused on enhancing predictive accuracy for HAR while ensuring the model’s feasibility on devices with constrained computational resources. Through extensive benchmarking across diverse datasets, the iSPLInception demonstrates robustness in classifying a variety of activities. A comparison with other deep learning models such as LSTMs and CNNs confirmed its superior performance, making a notable contribution to the HAR domain. The methodology outlined by the authors provides a scalable solution that paves the way for future research in activity recognition using wearable sensor data. Poulose. et al. (2022) proposes an innovative approach to human activity recognition (HAR) using a system referred to as HIT (Human Image Threshing) machine. This system employs a smartphone camera to capture activity videos, which are then processed using a mask region-based convolutional neural network (R-CNN) for human body detection. The process also includes a facial image threshing machine (FIT) for image cropping and resizing. The core of the HIT machine’s methodology is its ability to clean and preprocess data, followed by deep feature extraction and model building for activity classification. The system is tested with various deep learning models like VGG, Inception, ResNet, and EfficientNet, achieving remarkable accuracy in classifying activities such as sitting, standing, walking, push-ups, dancing, sit-ups, running, and jumping. This approach significantly outperforms traditional sensor-based HAR systems, demonstrating the effectiveness of vision-based activity recognition using deep learning models.
3 MATERIALS AND METHODS
3.1 System methodology
In this work, we follow a multistep approach to process and analyze data from different types of sensors (Ahmad, 2022; Zhang et al., 2022a; Latha et al., 2022). Initially, we address the issue of noise in the raw signal and use distinct filters for each sensor type. Specifically, we use a Butterworth filter for the IMU and Ambient sensors and a median filter for GPS and audio data. Next, to efficiently handle large sequence data, we utilize windowing and segmentation techniques. This allows us to break down the data into smaller segments, facilitating more effective processing. In the third step, we focus on extracting advanced features from different types of sensors. These features include statistical, phase angle, autoregressive modelling, and linear prediction features. Additionally, for the IMU and audio data, we extract various features such as step count, step length, and Mel-frequency cepstral coefficients (MFCCs). All of these features are further optimized and combined using the Yeo-Johnson power transformation. Optimized GPS, IMU, and audio sensor features are then sent to a CNN for localization activity analysis, while the IMU and ambient sensor features are directed to an LSTM network for locomotion activity recognition (Jaiwei et al., 2022; Zhang et al., 2022b; Rustam et al., 2020). The proposed system’s architecture is visually represented in Figure 1.
[image: Flowchart depicting the processing of sensor data for activity classification. Steps include preprocessing with Butterworth and median filters, windowing with a Blackman window, feature extraction from GPS, audio, and IMU, feature optimization using Yeo-Johnson power, and classification into locomotion and location-based activities using LSTM and CNN.]FIGURE 1 | The architecture of the proposed system.
3.2 Noise removal
The data was collected from raw sensors that include noise. Noise is unwanted data or irrelevant data due to many reasons during data collection. So, to handle the noise, we used 2 types of filters because of different types of sensor data. To remove noise from the IMU and ambient sensors, we used a third-order Butterworth filter (Bae et al., 2020; Liu et al., 2023f; Cömert et al., 2018; Sulistyaningsih et al., 2018) (i.e., [image: Please upload the image or provide a URL for me to generate the alt text.]) was used. The choice of this order strikes a balance between achieving a reasonable roll-off and minimizing signal distortion. The critical frequency [image: Please upload the image or provide a URL so I can generate the alternate text for it.], was set to 10% of the Nyquist frequency, represented as [image: The image shows the mathematical notation \( W_n = 0.1 \).]. This ensures that frequencies beyond 10% of the Nyquist frequency are attenuated, providing a smooth output while preserving the essential characteristics of the input signal. The magnitude response of a Butterworth filter in the frequency domain is given by
[image: Magnitude of transfer function \( |H(f)| = \frac{1}{\sqrt{1 + \left( \frac{f}{f_c} \right)^{2n}}} \), where \( f \) is frequency, \( f_c \) is the cutoff frequency, and \( n \) is the order.]
[image: It seems like the image link or data was incorrect or broken. Could you please upload the image or provide a proper URL?] represents the magnitude of the filter response at frequency [image: Please upload the image you would like me to generate alt text for.]. [image: It seems there is no image attached. Please upload the image or provide a URL, and I will generate the alternative text for you.] is the critical frequency, which is the frequency at which the filter’s response is [image: A mathematical expression showing one divided by the square root of two.] of its maximum (or passband) response, n denotes the order of the filter, dictating the steepness of the roll-off. Higher order results in a sharper transition between the passband and the stopband. Similarly, for the GPS and microphone sensors, we used a median filter (Altun and Barshan, 2010). To apply the median filter, we used a kernel of size 3, which essentially means that for each data point, the filter considered it and one neighboring data point on each side. The median value of these three points then replaced the original data point. Mathematically, for each component, the median of the current value and its neighbors was computed, producing the filtered data. Mathematically, the filtered acceleration for each component can be expressed as
[image: Mathematical formula depicting the median of a sequence. It is denoted as \( S_i = \text{median}(x[i-k], x[i-k+1], \ldots, x[i+k]) \), where \( i \) is the index and \( k \) is the offset.]
[image: \( S_y = \text{median}(y[i-k], y[i-k+1], \ldots, y[i+k]) \)]
[image: A mathematical formula: \( S_i = \text{median}(z[i-k], z[i-k+1], \ldots, z[i+k]) \).]
where [image: Please upload the image or provide a URL for me to generate the alt text.], [image: It seems you mentioned something like a mathematical notation or term, but I can't see an image. Please upload the image or provide a URL for me to generate the alt text.], and [image: It appears you're trying to describe a mathematical symbol, "S" with a subscript "z". If you have an accompanying image or need specific interpretation, please upload the image for further assistance.] are the signal.
Post the filtering process, to synthesize a unified representation of the signal component, we then employed the Pythagorean theorem:
[image: Mathematical formula for filtered magnitude equals the square root of the sum of the squares of S-sub-x, S-sub-y, and S-sub-z.]
However, it is important to note that the GPS sensor has less noise compared to other sensors, which can be seen in Figure 2B.
[image: Two line graphs labeled A and B, both comparing original and filtered data. Graph A shows X-acceleration against timestamp, with fluctuating blue and red lines. Graph B depicts Euler angles against timestamp, with red lines showing distinct steps and blue lines displaying original data variations. Both graphs include a legend indicating original in blue and filtered in red.]FIGURE 2 | (A) Butterworth filter for accelerometer sensor; (B) median filter for GPS sensor.
3.3 Windowing and segmentation
To window and segment large sequence data for efficient processing, we turned to the Blackman window (Kwapisz et al., 2011) windows technique to modulate the signal. Windows plays an important role in this phase. By applying a Blackman window to the signals during segmentation, we smooth the abrupt beginnings and endings of segments, thereby reducing spectral leakage, a phenomenon where energy from one frequency leaks into another, potentially obscuring important features. This ensures that the Fourier transform of the windowed signal provides a more faithful representation of its frequency content. Furthermore, in human activity recognition, activities can span varying durations and might be best represented by capturing their essence within specific windows (Poulose et al., 2019b). The Blackman window, with its inherent properties, ensures that each segmented frame is appropriately weighted, reducing discontinuities at the boundaries. This results in improved frequency domain representations, enabling more accurate feature extraction, and consequently more precise activity recognition. Mathematics of the Blackman Window is
[image: Mathematical formula for a Hamming window: \( W_n = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.8 \cos \left( \frac{4 \pi n}{N - 1} \right) \).]
where W [image: It seems there is no image attached. Please upload the image or provide a URL, and I will generate the alt text for you.] is the window function. [image: Please upload the image you would like me to generate the alt text for.] is the total number of points in the window, and [image: It seems there was an error in processing the image. Please try uploading the image again or provide more details about it so I can assist you better.] ranges from 0 to [image: Certainly! Please upload the image or provide its URL, and I will generate the alternate text for you.]. For our specific implementation, we used a 50-sample window to represent 5 s (He and Jin, 2008; Hao, 2021; Liu et al., 2021; Hatamikia et al., 2014) of activity with 25% overlap. After generating the Blackman window values based on the formula, we multiplied each point in our data segments with its corresponding Blackman window value. To bring clarity to our process, we visualized the results through distinct line plots, with each of the five windows represented in a unique color in Figure 3, and Algorithm 1 shows the working of the Blackman windowing technique.
[image: Graph depicting the magnitude of acceleration against the sample index, showing five distinct data segments (windows) differentiated by color: red, blue, green, yellow, and purple. Each window is separated by vertical dashed lines matching the respective window color. The graph includes a legend indicating the colors representing each window. The data shows varying trends within each window, with noticeable declines and fluctuations.]FIGURE 3 | Blackman windows for the first five segments.
Algorithm 1. Blackman Windowing and Segmentation
	Input: Time-series data array D
	   Window size N
	Output: List F containing feature vectors for each segment
	Method: Create a Blackman window W of size N
	   Initialize an empty list F to store feature vectors for each segment
	For i = 0 to length of D − N with a step size of N:
	   Extract a segment S from D [ i: i + N ]
	   Multiply S with W element-wise to get [image: Mathematical notation showing a capital "S" with a subscript "windowed" in a stylized font.]​
	   Compute features [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] from [image: Stylized letter "S" with the word "windowed" in a smaller font directly below it, creating a design effect.] Append f to F.
	return list F containing feature vectors for each segment

3.4 Feature extraction for locomotion activity
Another essential step in this research is the extraction of features, ensuring that the model effectively recognizes data patterns. We derived unique features for various sensor types. For both IMU and Ambient sensors, we extracted features such as phase angle, linear predictions, FFT Max/Min, Shannon entropy, skewness, kurtosis, and autoregressive analysis.
3.4.1 Phase angle
Phase angles hold significance in signal analysis, particularly in the field of human activity recognition. Phase angles capture the temporal alignment and synchronization of cyclic movements, helping in the extraction of valuable information from complex signals (Zhang, 2012; Liu et al., 2022a). These angles provide insight into the relative timing of movements in different dimensions, enabling the identification of specific activities and patterns. Mathematically, the phase angle between two signals [image: Please upload the image you'd like me to generate alt text for.] and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] can be calculated using the arctangent function, which takes into account the ratio of their spectral components in the frequency domain. For accelerometer data, the phase angle between the [image: Please upload the image or provide a URL, and I can help generate the alt text for you.] and [image: Please upload the image or provide a URL for me to generate the alternate text.] components ([image: Mathematical notation showing phi subscript x y, often used to represent a specific function, value, or variable relationship in equations.]), [image: Please upload the image or provide a URL, and optionally, you can include a caption for additional context.] and [image: Please upload the image or provide a URL to generate the alternate text.] components ([image: Lowercase phi symbol subscripted with lowercase x, z.]), and [image: It seems there was an error in your request. Please upload the image or provide a URL, and I will help generate the alternate text for it.] and [image: Please upload the image or provide a URL to generate the alternate text.] components ([image: Mathematical expression featuring the Greek letter phi with subscript yz.]), can be computed as
[image: The equation shows \( \Phi_{xy} = \operatorname{arctan} \left( \frac{\operatorname{FFT}(Ay)}{\operatorname{FFT}(Ax)} \right) \).]
[image: The formula shows \(\phi_{xz} = \arctan\left(\frac{\text{FFT}(A_z)}{\text{FFT}(A_x)}\right)\), where FFT represents the Fast Fourier Transform, and \(A_z\) and \(A_x\) are components within the transform.]
[image: The equation shows phi subscript y z equals arctan open parenthesis FFT of A z divided by FFT of A y close parenthesis.]
where [image: It appears that there is an error in your request as there is no image to analyze. Please upload an image or provide a URL for me to generate the alternate text.], [image: The image contains the mathematical expression "FFT A subscript y," indicating the Fast Fourier Transform applied to matrix A with respect to the y-axis.], and [image: "FFT A subscript z" in bold serif font, resembling a mathematical or technical notation.] represent the fast Fourier transforms of the [image: Please upload the image you would like me to generate alt text for. You can do this by selecting the image file from your device.], [image: Please upload the image, and I'll generate the alternate text for you. You can also include a caption for additional context if you'd like.], and [image: It seems there is no image attached. Please upload the image or provide a URL, and I will generate the alt text for you.] components of the sensor data, respectively. Figure 4 exemplifies the phase angles calculated in [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL, and I will be happy to help with the alt text.] graphically.
[image: Scatter plot showing amplitude versus time in seconds, with time values ranging from approximately 3000 to 6500. Orange data points are concentrated around zero amplitude initially, then fluctuate dramatically between negative three and two before stabilizing.]FIGURE 4 | Phase angles were calculated from the accelerometer data over the Opportunity dataset.
3.4.2 Auto regressive model
Autoregressive (AR) modeling (Li et al., 2020; Xu et al., 2016; Gil-Martin et al., 2020a) is a powerful technique in signal analysis, particularly for human activity recognition. It involves predicting a data point in a time series based on previous data points and capturing temporal dependencies and patterns. This is especially useful in recognizing periodic or rhythmic activities, as the model captures the repeating patterns inherent in activities like walking, running, or cycling. By comparing the predicted and actual values, deviations can be detected, helping to identify anomalies or changes in activity patterns (Bennasar et al., 2022; Liu et al., 2021). For example, variations in step lengths, gait irregularities, or sudden changes in motion can be indicative of different activities or health conditions (Wen et al., 2023). We used an AR model to model the time series data for the walking activity opportunity dataset. In an AR model, the value at time t is predicted as a linear combination of the p previous values. For an AR model of order p, the value [image: Please upload the image or provide a URL to it so that I can generate the appropriate alt text for you.] at time t is modeled as
[image: Mathematical formula representing an autoregressive model: \( X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \varepsilon_t \), where \( X_t \) is the current value, \( c \) is a constant, \( \phi_i \) are parameters, and \( \varepsilon_t \) is the error term.]
where: [image: Please upload an image or provide a URL for the image you would like described.], is the value at time t, c is a constant, [image: The image shows the Greek letter phi (φ) with the subscript i.] are the parameters of the model and [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the white noise. After fitting the AR model to the data, we used the model to make predictions for future points. The prediction step is based on the AR model equation. For each future point [image: It seems like there's an issue with the image upload. Please try uploading the image again, or provide a URL if available.], the predicted value is calculated as
[image: Mathematical equation representing a time series model: X hat sub t is equal to c plus the summation from i equals one to p of phi sub i times X sub t minus one.]
The difference between the actual AR model and the prediction step is that the actual AR model includes a noise term [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] while the prediction step does not. The noise term represents uncertainty and random fluctuations that cannot be predicted by the AR model. Thus, it is not included in the prediction step. Finally, we plotted the difference between original and predicted time series data in Figure 5.
[image: Two side-by-side line graphs show data trends. The left graph titled "Original Signal" displays data fluctuations over time. The right graph titled "Difference between Original and Predicted Signal" highlights variations between actual and predicted values over the same period. Both graphs include time on the x-axis and signal amplitude on the y-axis.]FIGURE 5 | Difference between the original and predicted time series from the accelerometer data of the activity “walking” over the Opportunity dataset.
3.4.3 Linear prediction for signal
After calculating the autoregression, we then calculated the linear prediction. Linear prediction is a powerful method employed in signal analysis for uncovering meaningful patterns and trends in data. This approach is particularly useful when dealing with time-series data, such as movement patterns. This concept finds the relationship between current and previous data points; linear prediction enables us to forecast how the signal might evolve over time. This predictive capability enables the identification of distinctive movement patterns and characteristics that are indicative of specific activities. We preprocess the accelerometer data to ensure its quality and reliability. We then apply linear prediction techniques to model the temporal patterns of each activity. This involves training linear models that predict future data points based on a history of previous observations. The optimization of model coefficients is carried out to minimize prediction errors, resulting in predictive models that capture the underlying motion dynamics. For a time, series x_t, linear prediction estimates [image: Please upload the image or provide a URL so I can generate the alt text for you.]​ as a weighted sum of p previous values [image: Math expression \( x_{t-1} \) represents a variable \( x \) at the previous time step \( t-1 \).], [image: Mathematical expression showing "x" with a subscript "t minus 2".],…… [image: The mathematical expression consists of a subscript variable \( a_p \) multiplied by \( x \) with a subscript of \( t-p \).]:
[image: \( x_t = c + a_1 x_{t-1} + a_2 x_{t-2} + \cdots + a_p x_{t-p} \)]
where c is a constant term and [image: Please upload the image you would like me to generate alternate text for.], [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.],…., [image: Please upload the image or provide a URL, and optionally add a caption for context. I will then generate the alternate text for you.]​ are the coefficients of the linear model. These coefficients are determined through optimization methods that minimize the prediction error. Figure 6 portrays the linear prediction for walking activity.
[image: Two line graphs display data over time. The left graph, titled "Original Signal," shows a blue line fluctuating in amplitude. The right graph, "Difference Between Original and Predicted Signal," shows an orange line representing signal differences. Both graphs share the time axis from zero to one hundred seconds.]FIGURE 6 | Difference between the original and linear predicted time series from the accelerometer data of the activity “walking” over the Opportunity dataset.
3.4.4 Fast fourier transformation (FFT) min/max and entropy
We first calculated FFT (Javeed et al., 2021; Li et al., 2018), a mathematical algorithm that unveils the frequency-domain representation of a time-domain signal. By applying FFT to sensor data, it becomes possible to uncover the underlying frequency components inherent in various human activities. Peaks and patterns in the resulting frequency spectrum can be associated with specific motions or actions, offering crucial insights into the dynamic nature of movements (Liu, 2021). We calculated the minimum and maximum components from the FFT spectrum. It can be calculated as
[image: Mathematical equation of the Fourier transform: \(X(f) = \int_{-\infty}^{\infty} x(t) e^{-2\pi i ft} \, dt\).]
where [image: The mathematical expression shown is "X(f)".], is the frequency-domain representation, [image: Mathematical notation representing a function \( x(t) \), where \( x \) is a function of the variable \( t \).], is the time-domain signal, [image: It seems there was an error in your request. Please upload the image or provide a URL to the image you would like me to describe.] is the frequency, and j is the imaginary unit. Furthermore, we extracted the Shannon entropy feature. In the context of signal analysis for human activity recognition, Shannon entropy (Khairy, 2022) can reveal the complexity and diversity of frequency components in the signal. Higher entropy values suggest a broader range of frequencies and more varied motion patterns. Mathematically, it can be computed as
[image: The formula for entropy: \( H = -\sum_{{i=1}}^{N} p(f_i) \log_2 p(f_i) \), represents the average uncertainty in a set of outcomes \( f_i \), where \( p(f_i) \) is the probability of each outcome.]
where N is the number of frequency bins, [image: Please upload the image for which you need alternate text, and I will help generate it for you.] is the ith frequency bin and [image: The image shows a mathematical expression: \( p(f_i) \).] is the probability of occurrence of [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if available. You may also add a caption for additional context.] in the signal’s frequency distribution These features are demonstrated in Supplementary Figure S1.
3.4.5 Skewness
Skewness and kurtosis (Wang et al., 2021; Ramanujam et al., 2019; AlZubi et al., 2014) are statistical measures that describe the shape and characteristics of a distribution. Skewness quantifies the extent and direction of the skew in the data. A negative skew indicates that the left tail is longer, while a positive skew indicates a longer right tail. The mathematical equation for skewness (Yu et al., 2021; Zhang et al., 2021; Qi et al., 2022; Zheng et al., 2023c) is
[image: Skewness formula depicted: Skewness equals the sum from i equals 1 to n of the cube of the difference between x sub i and x bar, divided by the product of N minus 1 and s cubed.]
where [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] are the individual sample points, [image: If you upload or provide a URL for an image, I'd be happy to help you generate alt text for it.] is the sample mean, s is the standard deviation (Liu et al., 2021; J, X. et al., 2022; Mao et al., 2022b; Guo et al., 2022; Xu et al., 2022b), and N is the number of samples. Figure 7 shows skewness for different activities over both datasets.
[image: Three-dimensional scatter plot displaying data with axes labeled as energy, retention time, and four-point-eight mass. Points are colored from blue to green, with blue indicating higher density areas and green indicating lower density concentrations.]FIGURE 7 | Skewness is calculated from the Opportunity (left) and Extrasensory (right) datasets.
3.4.6 kurtosis
Kurtosis (Lu et al., 2023; Liu et al., 2023b; Liu et al., 2023c; Liu et al., 2023d) on the other hand, measures the tailedness of the distribution. Higher kurtosis indicates a more extreme result, meaning that more of the variance is the result of infrequent extreme deviations, as opposed to frequent modestly sized deviations (Miao et al., 2023; Di et al., 2023; Ahmad et al., 2020; Liu et al., 2023e). The mathematical equation for kurtosis is
[image: Kurtosis formula: the sum from i equals 1 to N of \((x_i - \bar{x})^4\) divided by \((N - 1) \cdot s^4\), minus 3.]
Both skewness and kurtosis provide valuable information on the nature of variability in a set of numbers and are especially useful in the field of Human Activity Recognition (HAR) to distinguish between different types of activity. Skewness could provide clues about the symmetry of the user’s motion, and kurtosis could indicate the extremity of the user’s activities. We extracted kurtosis for different types of activities in Figure 8.
[image: Two line graphs depict sensor data for standing, walking, and sitting. The left graph shows lower variation in samples for all activities. The right graph illustrates higher variation in sitting and walking compared to standing. Different colors and markers represent each activity.]FIGURE 8 | Kurtosis calculated from the Opportunity (left) and Extrasensory (right) datasets.
3.5 Feature extraction for location-based activity
For localization activity, we extracted separate features. These features include step count detection, step length calculation (Gu et al., 2017; Kang et al., 2018), and MFFCs. We describe each feature in detail one by one.
3.5.1 Step count detection
In indoor localization and activity recognition, the step count (Sevinç et al., 2020; Gu et al., 2019) emerges as an important metric with multifaceted applications. It serves as a fundamental parameter for activity profiling, aiding in the differentiation of various human movements such as walking, running, or standing. Key features like step count and heading angle are integral to the development of robust and precise indoor localization systems, especially in environments where GPS signals are weak or entirely absent (Zhang and Jiang, 2021; Xu et al., 2023).
The step count was determined using accelerometer data (Pham et al., 2021) collected from the waist of the subject during walking activity. First, we combined the raw acceleration data along the [image: Please upload the image you want me to generate alt text for. If you have already uploaded it, please try again.], [image: Please upload the image you want me to generate the alternate text for.], and [image: Please upload the image or provide a URL for me to generate the alternate text.] axes to form a composite magnitude signal. This signal was then shifted to ensure that all values were positive. The mean of the shifted signal was calculated, and peaks that exceeded this mean were identified and counted as steps in Supplementary Figure S2. The magnitude of the acceleration A was calculated as
[image: Mathematical formula showing \( A = \sqrt{x^2 + y^2 + z^2} \).]
3.5.2 Step length estimation
Step length, or stride length (Ahn and Yu, 2007; Hu et al., 2020) is important in the domain of indoor localization (Yoon and Kim, 2022) and human activity tracking. This metric essentially quantifies the distance covered in a single stride and serves as an essential parameter for accurately estimating an individual’s location within a confined space. We utilized valley points in the position-time curve to estimate the stride length. Valley points in the position-time curve typically represent instances where the same foot hits the ground in successive strides. The curve itself is derived from double-integrating the acceleration data. This method is particularly beneficial in indoor settings, where GPS data may be unreliable or unavailable. Mathematically, the first step involves calculating the velocity V by integrating the acceleration [image: It seems there was an error with your request. Please upload the image or provide a URL, and I would be happy to help generate the alternate text for it.]:
[image: The image shows the mathematical equation \( V = \int Adt \), representing the integral of variable A with respect to time t.]
Following this, the position [image: Please upload the image or provide a URL, and I'll be happy to generate the alternate text for you.] is calculated by integrating the velocity:
[image: P equals the integral of V with respect to t.]
We then identified valley points in this position-time curve. These points are local minima in the curve and represent the moments where a complete stride has occurred, that is, the same foot has hit the ground twice. The time difference between successive valley points is calculated as
[image: A mathematical expression depicting the difference between two variables: \( t_{\text{valley}_{n-1}} \) subtracted from \( t_{\text{valley}_{n}} \).]
This time difference Δt, when multiplied by a constant or average speed, gives the stride length for that particular step. In Figure 9, step lengths calculated for indoor and outdoor activities can be seen intuitively.
[image: Two line charts compare different activities over samples. The left chart shows the temperature of three rooms over nine samples, with lines for living room, start, and end. The right chart shows heart rates for sitting, standing, and walking, with fluctuations across fifty samples.]FIGURE 9 | Step length calculated from indoor (left) and outdoor (right) activities over the Extrasensory dataset.
3.5.3 Heading angles
The calculation of the heading angle (Javeed and Jalal, 2023; Azmat et al., 2022) is an important component in indoor localization (Jiang et al., 2023), as it provides the orientation or directional information of an individual in relation to Earth’s magnetic North. This orientation data is particularly for accurate path tracking and route reconstruction within indoor environments, where GPS signals are often weak. In our study, the heading angle, was calculated using magnetometer data, which measures the Earth’s magnetic field components along the x, y, and z-axes. Given that the magnetometer can capture the Earth’s magnetic field, it serves as a reliable sensor for determining orientation. To compute the heading angle, we employed the arctangent function on the y and x components of the magnetic field as per the following equation:
[image: Equation showing theta equals arctan2 of the ratio of M sub y over M sub x.]
The resulting angle θ was calculated in radians and later converted to degrees for easier interpretation and application. This angle gives us an understanding of the individual’s orientation at any given point in time, significantly enhancing indoor localization systems. Supplementary Figure S3 displays the heading angles for indoor and outdoor activities over the Extrasensory dataset.
3.5.4 Mel-frequency cepstral coefficients (MFCCs)
The Mel-frequency cepstral coefficients (MFCCs) (González et al., 2015; Hou et al., 2023) are widely used in various applications. They serve as a compact representation of an audio signal, capturing essential characteristics while ignoring less informative variations. In the context of location recognition, MFCCs can help distinguish between different types of environments based on ambient noise or specific sound patterns. For instance, an indoor location might exhibit different MFCC patterns compared to an outdoor location due to the presence of echoes, HVAC noise, or human activity. MFCCs are computed through a series of transformations. We already segmented the audio data in section B. Each segment is passed through an FFT to obtain its frequency spectrum. Then we applied a set of Mel-filters to the frequency spectrum to capture the human perception of pitch. The logarithm of the energies of these Mel-frequencies is then taken, and a discrete cosine transform (DCT) is applied to the log energies. The resulting coefficients are the MFCCs. The equation for the [image: The image depicts the mathematical expression "k" raised to the "th" power, represented as \(k^{th}\).] MFCC ([image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption or specific details you would like included, feel free to add them.]) can be summarized as
[image: Mathematical equation displaying the calculation of \(c_k\) as the sum from \(n=1\) to \(N\) of \(\log(MF_n)\) multiplied by \(\cos\left(\frac{\pi k(n-0.5)}{N}\right)\).]
where [image: If you would like me to generate alt text for an image, please upload the image or provide a URL. If there is any specific context or detail you would like included, feel free to add that in a caption.]​ is the Mel-filtered energy of the [image: It seems there is no image uploaded. If you have an image, please upload it, and I will generate the alternate text for you.] frequency bin, and N is the total number of Mel-filters. The MFFCs calculated for indoor and outdoor activities over the Extrasensory dataset can be seen in Supplementary Figure S4.
3.6 Feature optimization using Yeo-Johnson power transformation
The Yeo-Johnson transformation (Xu et al., 2023) is a power transformation technique aimed at making the data more closely follow a Gaussian distribution, thereby optimizing its characteristics for further analysis. The transformation is similar to the Box-Cox transformation, but it has the advantage of handling negative numbers as well. We started by extracting various features from the time-series data. Each of the features serves as a column in our feature matrix. To apply the Yeo-Johnson transformation, we used the PowerTransformer class from the sklearn. preprocessing package, which internally fits the optimal λ for each feature based on the likelihood maximization. After fitting, the transformation was applied to each feature vector to create an optimized feature set. Here it is important to note that after optimization, we got two feature vectors, one for localization activities and the second for locomotion activities. We plotted two feature vectors the original versus optimized for Walking, Sitting, and Lying activities using only a few features including (Alazeb et al., 2023), FFT-Min/Max, Shannon entropy, and Kurtosis over the Extrasensory dataset in Figure 10. The transformation is defined as
[image: Equation defining \( y' \) in four cases: \(\frac{[(y_{t}+1)^{\gamma} - 1]}{\gamma}\) if \(y_{t} \geq 0\) and \(\gamma \neq 0\); \(\log(y_{t}+1)\) if \(y_{t} \geq 0\) and \(\gamma = 0\); \(-\frac{[-(y_{t}+1)^{\gamma} - 1]}{\gamma}\) if \(y_{t} < 0\) and \(\gamma \neq 2\); and \(-\log(y_{t}+1)\) if \(y_{t} < 0\) and \(\gamma = 2\).]
[image: Line graph showing shifted magnitude over time with blue line and red dots indicating peaks. A green dashed line represents the mean value. Notable peaks occur at regular intervals throughout the timeline.]FIGURE 10 | (A) original feature vector; (B) optimized feature vector over the Extrasensory dataset.
Here, [image: Please upload the image you'd like the alternate text for.] is the [image: Mathematical notation showing "i" with a superscript "t" and subscript "h," representing the "i-th" element in a sequence or set.] observation, [image: Interpretation of the character "y" with a hat accent, followed by the subscript "i".] is the transformed value, and λ is the transformation parameter. It is important to mention that the Yeo-Johnson transformation is often determined by optimizing a likelihood function to find the best λ that minimizes the deviation from normality. The objective function for this is usually the negative log-likelihood, given by
[image: The equation depicts the log-likelihood function: \( L(\gamma) = -\log \left( \prod_{t=1}^{n} \int \left( \frac{\dot{y}_t}{\gamma} \right) \right) \).]
where [image: Integral of dx over y, represented by the notation integral symbol, fraction with dx as the numerator and y as the denominator inside parentheses.] is the probability density function of the transformed data.
3.7 Feature evaluation analysis and comparisons
In order to validate and evaluate the robustness of the proposed feature set, we compare the extracted features in this study with other latest existing state-of-the-art methods. Initially, we categorize all features into different sets, from the latest SOTA systems (Bennasar et al., 2022; Tian et al., 2019; Muaaz et al., 2023). The features are partitioned into 4 sets. Each set is subjected to model training and validation. Our observations indicate that our proposed feature set outperforms other sets in performance, thereby validating the effectiveness, robustness, and novelty of our proposed features in enhancing model performance. The details of feature sets and their description are given in Table 1.
TABLE 1 | Comparison of the proposed feature extraction with the latest SOTA.
[image: Table comparing feature sets and accuracy percentages from different sources. Bennasar et al. (2022) features include mean and standard deviation with 76% accuracy. Tian et al. (2019) features include mean and kurtosis with 83% accuracy. Muaaz et al. (2023) features include mean and energy with 88% accuracy. The proposed method features include skewness and regression with 96% accuracy.]4 EXPERIMENTAL SETUP AND DATASETS
4.1 Experimental setup
The research experiments were carried out on a laptop equipped with an Intel Core i5-8500U processor running at 3.10 GHz, 16.0 GB of RAM, and the Mac operating system. The Jupyter Notebook was utilized as the primary programming environment. We conducted comprehensive experiments using two widely recognized benchmark datasets, Opportunity and Extrasensory. The Opportunity dataset, a renowned benchmark in the field, captures data from various sensors. Another dataset used in our research is the Extrasensory dataset. With its rich sensory data, it offers an extensive range of human locomotion and localization activity. The time-series data was partitioned into approximately equal-length segments for the purpose of cross-validation (Xu et al., 2022a). In each of the [image: It seems there was an error with the image upload. Please try uploading the image again, and I will help you generate the alt text.] iterations, [image: Mathematical expression showing "k minus 1".] segments were designated for training, and the remaining segment was set aside for testing. This procedure was repeated [image: Please upload the image or provide a URL for it so I can generate the alt text for you.] times, guaranteeing that each segment served as a test set once, the rest being used as training sets. Importantly, we maintained a strict separation between training and test sets in every iteration, preventing any overlap or data sharing between them.
4.2 Dataset description
In the subsequent subsection, we provide comprehensive and detailed descriptions of each dataset used in our study. Each dataset is thoroughly introduced, highlighting its unique characteristics, data sources, and collection methods.
4.2.1 The opportunity dataset
The Opportunity dataset (Lukowicz et al., 2010) stands as a key benchmark in the domain of human activity recognition. It was collected from 12 subjects participating in various daily activities, ensuring a diverse representation. The dataset captures data from different sensors, such as accelerometers, gyroscopes, and magnetometers, strategically positioned on the participants’ bodies and on certain daily-use objects. These sensors record data during both dynamic and static human activities. The dynamic activities include actions like walking, jogging, and opening doors, while the static activities encompass states like standing, sitting, and lying down. Additionally, there are more complex activities, like making coffee or preparing a sandwich, which involve interactions with objects and the environment. In total, the Opportunity dataset covers 17 different activities, ranging from basic locomotion tasks to more intricate, multi-step actions. These activities were recorded in diverse scenarios, both scripted and unscripted, to ensure a comprehensive representation of real-world conditions.
4.2.2 The extrasensory dataset
The Extrasensory dataset (Vaizman et al., 2017) is a robust collection of data sourced from 60 distinct participants, each uniquely identified by a UUID. These participants contributed thousands of data samples. While the majority of these samples were recorded at consistent 1-min intervals, there are instances where time gaps exist. Each data sample encompasses measurements derived from a variety of sensors present in the participants’ personal smartphones and a provided smartwatch. Furthermore, a large portion of these data points come furnished with context labels, as self-reported by the individual participants. In terms of device usage, the dataset includes data from 34 iPhone users and 26 Android users. The gender distribution is fairly balanced, with 34 females and 26 males. Sensors integrated into the dataset include accelerometer, gyroscope, magnetometer (He and Jin, 2008), GPS, audio, compass, and smartwatch sensors. The dataset provides a variety of human activities, including indoor, outdoor, transportation, and locomotion.
5 RESULTS AND ANALYSIS
In this section, we performed different experiments for the proposed system. The system is evaluated using different matrices, including confusion matrix, precision, recall, F1 score and receiver operating characteristic (ROC) curve. The detailed discussion and analysis are described below.
5.1 Confusion matrices for locomotion activities
We assessed our system’s performance for locomotion activities across both datasets. Impressively, the system achieved a 97% accuracy rate on the Opportunity dataset and 89% on the Extrasensory dataset. Figures 11, 12 present the confusion matrices for both datasets.
[image: Two line graphs compare sensor data. The left graph shows "Indoor" data with red lines and markers, fluctuating prominently over 30 steps. The right graph displays "Outdoor" data with blue lines and markers, showing less pronounced fluctuations over 25 steps. Both graphs have "Steps" on the x-axis and "Step Length (meters)" on the y-axis.]FIGURE 11 | Confusion matrix: locomotion activities in the Extrasensory dataset.
[image: Two line graphs compare balance data in degrees. The left graph in red shows a series of spikes peaking at four degrees, with most data near zero, labeled "Indoor." The right graph in yellow, labeled "Outdoor," also shows fluctuations with spikes reaching sixteen degrees, presenting more volatility. Both graphs plot balance angle against samples.]FIGURE 12 | Confusion matrix: locomotion activities in the Opportunity dataset.
The system shows high performance in identifying stationary activities. The system shows excellent performance in correctly identifying Sitting and Standing, with accuracies of 97% and 99%, respectively. This suggests that the system is highly effective in recognizing stationary activities. This capability is particularly applicable in contexts like workplace ergonomics or patient monitoring, where it is important to track the amount of time spent sitting or standing.
5.1.1 Moderate performance in dynamic activities
The performance in recognizing Walking is moderate, with an accuracy of 67%. The system seems to confuse Walking with Lying Down in some cases, which might be due to similar sensor patterns during slow walking or transitional movements. This indicates a potential area for improvement, especially in applications like fitness tracking or elderly care, where accurate recognition of walking is crucial.
5.1.2 Strong recognition of lying down
The system accurately identifies Lying Down in 96% of the cases, indicating its effectiveness in distinguishing this activity from others. This could be particularly relevant in healthcare applications, like patient monitoring systems, where detecting prolonged periods of lying down is important.
5.1.3 Near-perfect recognition of all activities in the opportunity dataset
The system shows near-perfect accuracy in recognizing all four activities: Standing, Walking, lying, and sitting, with accuracies of 100%, 98%, 96%, and 95% respectively. This high level of accuracy is significant for applications that require precise activity recognition, such as in advanced assistive technologies or smart home environments.
5.1.4 Applicability across diverse scenarios
Given the high accuracy in all activities, this system can be confidently applied to diverse real-world scenarios, from fitness tracking to elderly care, where accurate activity recognition is crucial. The system’s ability to distinguish between similar activities (like lying and sitting) demonstrates its sophistication and reliability.
5.1.5 General observations
The higher overall mean accuracy in the Opportunity dataset (97.25%) compared to the Extrasensory dataset (89.75%) could be attributed to differences in sensor quality, data collection protocols, or the inherent nature of the activities in each dataset. The system’s performance on the Opportunity dataset suggests its potential effectiveness in environments with structured activities, while the Extrasensory dataset results indicate the need for refinement in more complex or less structured environments.
5.2 Precision, recall, and F1 score values for locomotion activities
We continued to investigate in more depth the evaluation of our system using precision, recall, and F1 score. Across both datasets, the system demonstrated strong performance in all of these metrics. Tables 2 and 3 showcase the system’s performance.
TABLE 2 | Precision, recall, and F1 score: locomotion activities in the Extrasensory dataset.
[image: Table displaying classification metrics for activities. Precision, recall, and F1 score are listed for each class: Sitting (0.97, 0.98, 0.97), Walking (1.00, 0.33, 0.50), Lying Down (0.96, 0.93, 0.95), Standing (0.88, 1.00, 1.00). Macro-average values are 0.95 for precision, 0.81 for recall, and 0.85 for F1 score.]TABLE 3 | Precision, recall and F1 score: locomotion activities in the Opportunity dataset.
[image: Table displaying performance metrics for various activities. For Standing and Sitting, precision, recall, and F1 score are all 1.00. For Walking, metrics are 1.00, 0.95, 0.99, respectively. For Lie, the metrics are 0.99, 0.98, and 0.99. The macro-average shows precision of 0.99, recall of 0.98, and F1 score of 0.99.]The performance evaluation of our system on the Extrasensory and Opportunity datasets, as reflected in Tables 4 and 5, highlights its strengths and areas for improvement in activity recognition. In the Extrasensory dataset, the system exhibits high precision across all activities, particularly for ‘Sitting’ and ‘Lying Down’, with scores of 0.97 and 0.96, respectively. This indicates a strong capability to correctly identify these activities when they occur. However, there is a notable discrepancy in the recall for ‘Walking’, at only 0.33, despite a perfect precision score. This suggests that while the system is accurate when it detects walking, it frequently misses walking instances. The overall macro-average scores of 0.95 for precision and 0.81 for recall, with an F1 score of 0.85, reflect competent performance but highlight the need for improvements in consistently recognizing walking activities. In contrast, the system’s performance on the Opportunity dataset is exemplary, achieving near-perfect scores across all activities. Precision and recall are both 1.00 for ‘Standing’, ‘Walking’, and ‘Sitting’, with ‘Lie’ closely following at 0.99 for both metrics. This exceptional performance, encapsulated in macro-average scores of 0.99 for both precision and recall, and an F1 score of 0.99, demonstrates the system’s high efficacy in structured environments with clear activity definitions.
TABLE 4 | Precision, recall, and F1 Score: localization activities in the Extrasensory dataset.
[image: Table displaying precision, recall, and F1 scores for different classes. Indications are: Indoors (1.00, 1.00, 1.00), At School (0.88, 1.00, 0.93), Location Home (1.00, 1.00, 1.00), Location Workplace (1.00, 1.00, 1.00), Outside (1.00, 0.93, 0.96), with macro-average values of 0.97, 0.98, and 0.97 respectively.]TABLE 5 | Comparisons of the proposed system with other systems.
[image: Chart comparing accuracy of different methods in "Opportunity" and "Extrasensory" categories. Javeed and Vanijakchorn show 0.88 in Opportunity. Han has 0.87 in Opportunity. Gil-Martin shows 0.67 and Gioanni 0.74 in Opportunity. Vaizman shows 0.83, Asim and Abdullah both 0.87 in Extrasensory. Proposed system shows 0.97 in Opportunity and 0.96 in Extrasensory.]5.3 Receiver operating characteristic curves for locomotion activities
To further investigate the system and stability of the system, we evaluated the system using the roc curve. The receiver operating characteristic (ROC) curve is a graphical representation used to evaluate the performance of a classifier across various decision thresholds. An important aspect of the ROC curve is the area under the curve (AUC). The AUC provides a single-number summary of the classifier’s performance. A value of 1 indicates perfect classification, while a value of 0.5 suggests that the classifier’s performance is no better than random guessing. In Supplementary Figures S5, S6, the ROC curves for both datasets can be observed clearly.
5.3.1 The Opportunity dataset
Standing (AUC = 1.00): The model’s perfect score in identifying standing activities underscores its precision in environments such as elderly care, where detecting prolonged stationary periods is crucial for monitoring wellbeing and preventing health risks.
Walking (AUC = 0.98): The high AUC value for walking reflects the model’s strong capability in accurately tracking walking movements, which is particularly beneficial for applications in fitness tracking and urban navigation systems.
Lying (AUC = 0.99): This near-perfect score indicates the model’s effectiveness in recognizing lying down postures, an essential feature for patient monitoring in healthcare settings, especially for bedridden individuals.
Sitting (AUC = 1.00): The model’s flawless detection of sitting activities is critical to workplace ergonomics and sedentary lifestyle analysis, aiding in developing interventions for prolonged inactivity.
5.3.2 The extrasensory dataset
Sitting (AUC = 0.97): The high AUC for sitting activities demonstrates the system’s reliability in identifying sedentary behaviors, which is vital in office settings for promoting active work habits.
Lying Down (AUC = 0.96): This score reflects the model’s adeptness in detecting lying down positions, applicable in sleep analysis and residential healthcare monitoring.
Walking (AUC = 0.67): The lower AUC in this category suggests challenges in distinguishing walking from other movements in complex environments, pointing to potential areas for improvement in applications requiring precise motion tracking.
Standing (AUC = 0.99): The high accuracy in identifying standing positions is crucial in varied contexts such as retail analytics and customer behavior studies, where understanding patterns of movement and pause can enhance service strategies.
5.4 Confusion matrix for localization activities
We conducted experiments to recognize localization activities. These experiments were conducted using the extrasensory dataset, which offers a variety of human localization activities. Initially, we generated a confusion matrix, followed by an assessment of the system’s performance using precision, recall, and the F1 score. Moreover, to assess the system’s stability and effectiveness, we employed the ROC curve. Each experiment is thoroughly discussed, and the resulting outcomes are presented below.
In this experiment, we evaluate the system for localization activities. We observed a good accuracy rate of 96%. The confusion matrix is given in Figure 13.
[image: Two adjacent heat maps display MTTC calculations over time. The left map shows a gradient from light to dark blue, indicating values from 0 to 600. The right map features a gradient from light beige to dark red, representing values from 0 to 800. Both graphs have time on the x-axis and MTTC calculations on the y-axis.]FIGURE 13 | MFCCs feature.
The confusion matrix for the Extrasensory dataset’s localization activities provides valuable insights into the system’s capability to accurately distinguish between different environmental contexts. Indoors (accuracy = 100%): The perfect accuracy in identifying indoor activities showcases the model’s precision in environments like homes, offices, or malls. This is crucial for applications such as smart home automation, where accurate indoor localization can trigger context-specific actions like adjusting lighting or temperature. At School (accuracy = 90%): The high accuracy in recognizing activities at school is significant for educational applications, such as attendance tracking or student activity monitoring. The confusion with other locations, although minimal, suggests room for improvement in differentiating between similar educational and other public environments. Location Home (accuracy = 100%): Flawless detection of activities at home points to the model’s effectiveness in residential settings, crucial for applications like security systems or elder care monitoring, where distinguishing home activities is essential for providing personalized and situational services. Outside (accuracy = 100%): The model’s ability to perfectly identify outdoor activities is vital for location-based services, such as navigation aids and outdoor fitness tracking. This can enhance user experiences in applications that rely on outdoor localization. Location Workplace (accuracy = 94%): The high accuracy in identifying workplace activities is important for enterprise solutions, like workforce management and safety compliance monitoring. The slight confusion with other locations highlights the need for further refinement to distinguish workplace activities from similar environments with greater accuracy.
5.5 Precision, recall, and F1 score values for localization activities
To check the performance of the system for localization activities, we calculated the precision, recall, and F1 score. In Table 4.
5.6 Receiver operating characteristic curve for localization activities
We plotted the ROC curve of localization activities to ensure that the proposed system is well trained, accurate, and stable. The system showed very impressive results in recognizing location-based activities. The ROC curve can be examined in Supplementary Figure S7.
5.7 Detailed performance analysis
In this subsection, we delve deeper into the performance metrics across different datasets and activities, shedding light on the trade-offs between accuracy and computational efficiency.
5.7.1 Locomotion activities
For the Opportunity dataset, as the number of iterations increased from 5 to 50, the accuracy improved from 74.76% to 97.14%, while the computation time increased from 2.53 s to 19.49 s. For the Extrasensory dataset’s locomotion activity, accuracy improved from 61.76% at 5 iterations to 89.14% at 50 iterations, with computation time increasing from 1.49 s to 14.49 s. It is evident that the model trained on the Opportunity dataset achieved a relatively higher accuracy with more iterations compared to the Extrasensory dataset. However, the computational cost was also higher for the Opportunity dataset. The time complexity and efficiency plot can be seen in Supplementary Figure S8.
5.7.2 Localization activities
For the Extrasensory dataset’s localization activity, the accuracy improved from 85.76% at 10 iterations to 95.61% at 50 iterations. The corresponding computation time rose from 1.93 s to 11.90 s. The model’s accuracy for localization showed a steady improvement with increased iterations, and the computational cost was relatively consistent, indicating efficient model performance. The time complexity and efficiency plot for the localization activities can be seen in Supplementary Figure S9.
5.8 Comparison between locomotion and localization activities
For the Extrasensory dataset, the model’s performance for localization activities was consistently higher in terms of accuracy compared to locomotion activities, across the same number of iterations. However, the computation time for localization was slightly longer, indicating a trade-off between accuracy and computational efficiency.
Finally, our system was subject to a comparative analysis against other existing systems, revealing that our model excels in terms of accuracy. Table 5 provides a comprehensive overview of the comparisons between our system and state-of-the-art techniques.
6 DISCUSSION
A system for recognizing human locomotion and location-related activities is introduced in this work. This system utilizes advanced noise filtering techniques, signal segmentation methods, feature extraction processes, and hybrid models to effectively identify both locomotion and localization activities. It is designed to be versatile and can find applications in various real-world scenarios such as sports, healthcare, security, location recognition, and many more real-world applications. Our system, while advanced, has certain limitations. The sensors we utilized, especially GPS and IMU, have inherent challenges; GPS may not always be accurate indoors or amidst tall urban structures, and IMUs can drift over time. Second, our reliance on the Opportunity and Extrasensory datasets, although reputable, does not capture all human activity nuances, as evidenced by the challenge of recognizing walking activities. Additionally, our experiments were conducted on a specific laptop configuration. When transitioning to real-world wearable devices, differing computational capabilities might influence the system’s performance. Moving forward, we plan to enhance our system by exploring advanced sensor fusion techniques, allowing for more robust data integration from various sensors. We also recognize the need to diversify our datasets and will seek collaborations to gather more varied and balanced human activity data. Importantly, to ensure our system’s efficacy on wearable devices, we will explore optimizations customized to devices with varied computational constraints, ensuring our HAR system remains efficient and real-time in practical scenarios.
7 CONCLUSION
This study introduces a new and resilient system designed to identify human locomotion and localization activities effectively. The system was developed with a focus on utilizing advanced techniques such as sensor data filtering, windowing, and segmentation, along with innovative methods for feature extraction. It is important to mention that our primary emphasis was on recognizing localization activities, for which we employed robust feature extraction techniques, including step count, step length, and heading angle. In addition to manual feature extraction, we introduced a hybrid model that harnesses both machine learning and deep learning approaches to enhance accuracy in recognition tasks. As a result, the presented system demonstrates precise and efficient recognition of both locomotion and localization activities.
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In this paper, we present a quantitative assessment of muscle fatigue using surface electromyography (sEMG), a widely recognized method that is conducted through various analytical approaches, including analysis of spectral and time-frequency distributions. Existing research in this field has demonstrated considerable variability in the computational methods used. Although some studies highlight the efficacy of wavelet analysis in dynamic motion, few offer a comprehensive method for determining fatigue and applying it to specific movements. Previous research has focused primarily on discerning differences based on sport type or gender, with a notable absence of studies that presented results for quantifying fatigue during exercise with rowing ergometers. Developing on our previous work, where we introduced a method for determining muscle fatigue through wavelet analysis, considering biomechanical aspects of limb position changes, this current article serves as a continuation. Our study refines the research approach for a selected group, focusing on fatigue determination using the previously established method. The results obtained confirm the effectiveness of DWT analysis in assessing muscle fatigue, as evidenced by the achievement of negative values of the regression coefficients of Median Frequency (MDF) during exercises performed to maximal fatigue. Furthermore, it has been confirmed that the homogeneity of the group and, in the case of the examined group, the results previously achieved or lower limb strength do not have an impact on the results. Finally, we discuss the main limitations of our study and outline the subsequent steps of our investigation, providing valuable information for future investigations in this field.
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1 INTRODUCTION
Electromyography (EMG) is a method of measuring electrical signals generated in skeletal muscles to quantitatively assess muscle fatigue or exertional force (Hou et al., 2021; Son et al., 2022). Quantitative assessment of muscle fatigue using surface electromyography (sEMG) has been the subject of numerous studies (Zhang et al., 2019; Yun et al., 2020a; Yun et al., 2020b) leading to the need to develop electromyographic models that can correlate changes in sEMG signals with muscle fatigue (González-Izal et al., 2012). Evaluation of muscle fatigue based on EMG signals can be performed using various methods, including spectral analysis, time-frequency distribution analysis, fractal analysis, and signal entropy analysis (González-Izal et al., 2012; Sun et al., 2022). One of the most popular methods for quantitatively determining muscle fatigue based on non-invasive sEMG measurements is spectral analysis, specifically analyzing the frequency parameters: mean frequency (MNF) and median frequency (MDF) of the electromyographic signal (Phinyomark et al., 2012a; Kim et al., 2020). Numerous studies have shown that an increase in muscle fatigue leads to a decrease in the values of MDF and MNF over time (Dantas et al., 2010; Yousif et al., 2019a; Özgören and Arıtan, 2022). This is attributed to the relationship between these frequency parameters and changes in muscle fiber conduction velocity (González-Izal et al., 2012).
Research on the quantitative assessment of muscle fatigue encompasses both dynamic and static movements (Masuda et al., 1999; Wang et al., 2007; Wan et al., 2010; Chowdhury and Nimbarte, 2017). In one study, the indirect use of the MDF parameter as an indicator of local muscle fatigue during static arm movements was discussed (Kuthe et al., 2018). The study demonstrated, among other findings, that the mean slope of the linear regression of MDF for the untrained group (−0.2470) was lower than that of the trained group (−0.2155). Together with force measurements, the authors concluded that applied EMG analysis could be used as a quantitative indicator of fatigue in static muscle contractions (Kuthe et al., 2018). In the field of dynamic movement research, it has been shown, for example, that the slope of the linear regression of MDF determined by Fast Fourier Transform (FFT) analysis for the lateral vastus muscle during dynamic elliptical exercises is lower for women (−0.0224) than for men (−0.0170). Additionally, no correlation was found between sEMG parameters and strength levels (Chang et al., 2012). Another intriguing example from dynamic movement research involved determining the values of linear regression coefficients for MDF and MNF using FFT analysis for muscles: Rectus Femoris (RF), Biceps Femoris (BF), and Gastrocnemius Lateralis (GL) during two running strategies. This study demonstrated that both intensity and running styles impact not only muscle fatigue, but also the potential for muscle recovery during physical activity. This was observed through an increase in MDF and MNF values over time (Yousif et al., 2019b). A further example focuses on the analysis of the values of the dynamics of changes in the linear regression coefficient of the MDF parameter during walking, considering both the active phase and the rest phase. The analysis revealed a decrease in MDF values during walking, indicative of muscle fatigue. On the contrary, during the rest phase, an increase in this parameter occurred, attributed to muscle regeneration (Siecinski et al., 2022).
The current study serves as a continuation of the previous work of the authors, in which the methodology for determining the values of the MDF and MNF parameters of the linear regression coefficient was described, exemplified by a single participant in the context of muscle fatigue in selected muscles. Furthermore, a detailed review of the tools employed in spectral analysis was conducted, considering two types of movement, static and dynamic, with a focus on assessing the level of muscle fatigue. In previous work, it was emphasized that few studies describe the use of the wavelet transform, despite its acknowledged effectiveness in fatigue analysis in dynamic movement (Daniel and Malachowski, 2023) In the absence of research specifically addresses quantitative determination of fatigue during dynamic movement on a rowing ergometer, the algorithm outlined in the previous study was applied to derive fatigue parameters within a defined group. Unlike other scrutinized studies, the current investigation seeks to discern variations within the examined group of athletes. The purpose of this study is detailed as follows:
	• validation of proprietary algorithm:

	- the study rigorously validated the proposed proprietary algorithm, building on the authors’ previous work. The validation process involved a practical investigation conducted on the sports section of the Academic Sports Association (AZS) at the Military University of Technology (WAT),
	- EMG signals from three major muscle groups (GAS, BF, RF) of both legs were meticulously measured during dynamic rowing ergometer exercise. Notably, athletes executed the exercise under conditions of maximum subjective fatigue,
	- consistent with the theoretical framework outlined in the previous work, the EMG signals underwent DWT analysis (Wodarski et al., 2020). Subsequently, the spectral parameters, specifically MNF and MDF, were computed based on the obtained power spectral density.
	- the linear regression equations were then derived from the MNF and MDF distributions for each muscle group. A quantitative assessment of fatigue for the selected muscle groups during the rowing ergometer exercise was performed, utilizing the linear regression coefficient,
	- based on evidence supporting the effectiveness of both MNF and MDF, and their similar behaviour in EMG signals (Phinyomark et al., 2012b), a strategic decision was made to exclude the MNF parameter from further analysis,

	• statistical analysis for group homogeneity:

- a meticulous statistical analysis was conducted to confirm the homogeneity of the studied group. This step was intended to ensure the robustness and reliability of the experimental findings,
	• verification of force moments and timing on muscle fatigue index:

- the study went beyond algorithm validation to investigate the practical implications of force moments and timing on the muscle fatigue index,
- through systematic verification, the research explored how force moments and timing factors contribute to the overall muscle fatigue index, providing valuable information on the nuanced dynamics of fatigue during rowing ergometer exercise. The underlying hypothesis behind this analysis was to investigate whether the group remains homogeneous despite variations in strength and achievements, aiming to discern if diverse outcomes are achieved.
These purpose and contributions collectively contribute to a comprehensive understanding of the algorithm’s validity, group homogeneity, and the practical implications of force moments and timing on muscle fatigue.
2 MATERIALS AND METHODS
2.1 Participants
Eight healthy young volunteers (8 men) who are members of the rowing ergometer sports section (Military University of Technology Ergometer Section) were recruited for the study. The athletes were not overweight and had no history of musculoskeletal changes. The physical characteristics of the participating athletes are presented in Table 1:
TABLE 1 | Participants characteristics.
[image: Table presenting statistics on various attributes, including mean, standard deviation, minimum, and maximum values. Attributes are: Age (mean 21.5 years), Body height (mean 183 cm), Body mass (mean 86.5 kg), BMI (mean 25.8 kg/m²), and Activity per week (mean 4 days). Minimum and maximum values are also listed for each attribute.]The median (± standard deviation) of the participants is as follows: age 21.5 ± 1 year; height 183 ± 6 cm; body mass 86.5 ± 8 kg; body mass index (BMI) 25.8 ± 1.89. Each participant is physically active and participates in physical training (gym, ergometer, running) an average of 4 ± 1 sessions per week. The participants were interviewed about their history of athletics and achievements. Of particular relevance to the study was the discernment of disparities in performance on the rowing ergometer. Consequently, the optimal times attained over a 1000 m distance are collated in Table 2. Each participant was assigned points (100 points for the fastest time, 0 points for the slowest time, with proportional values for intermediate performances) for subsequent analytical procedures and simplified data presentation.
TABLE 2 | Comparing time results on the ergometer at a distance of 1000 m.
[image: Table showing participants' times and scores for a 1000-meter rowing ergometer race. P1 recorded 177.9 seconds and scored 100. Times and scores decrease with P8 having 207.7 seconds and scoring 0.]The frequency of consumption of potentially harmful health foods by participants is similar to the frequency of consumption of potentially beneficial health foods. Consequently, it has been determined that the diet has a neutral impact on health within the examined group. This implies that the studied cohort does not show differences in terms of overall dietary characteristics.
Participants with a history of cardiovascular disease, lower extremity pathologies, lower extremity surgeries, or neurological disorders were excluded from the study, as verified by a sports medicine physician. Participants were familiar with the measurement procedure and the possible risks of the test and confirmed their willingness to participate by giving their written consent. The study is carried out according to the decision of the Ethics Committee for Research with Human Participation of SGGW number 19/22.
2.2 Data collections
The entire study was conducted under standard training conditions for all participants. Participants were instructed to arrive in the laboratory in a well-hydrated and rested state, at least 3 h after eating, and were asked to avoid increased activity the day before the study (Rodrigues et al., 2022). Furthermore, following the coach’s recommendations, the meal consumed should primarily consist of carbohydrates to improve performance during exertion.
The measurement of limb torque was performed for each participant for the lower leg at the knee joint. Participants were asked to assume a specific sitting position and then secured with straps to the isokinetic dynamometer chair (Biodex Medical Systems Inc., Shirley, NY, USA) (Dejneka et al., 2022). Data on concentric flexion and extension of the knee were collected in the following ranges of motion: 30°, 60°, 90°. Participants were instructed to push the knee away as much as possible and then flex the knee toward them as strongly as possible. The purpose of this measurement was to determine the dominant leg for each participant.
The main stage of the research involved measuring the EMG activity of the muscles of the lower extremities during rowing ergometer exercise, specifically the gastrocnemius muscle (GAS), the rectus femoris muscle (RF), and the biceps femoris muscle (BF). A 32-channel Ultium EMG system (Noraxon, DTS, Desktop Direct Transmission System, Scottsdale, Arizona, USA) with a sampling frequency of 4 kHz was used for recording the EMG signal (MacEira-Elvira et al., 2019). To read the recorded data and continuously monitor the EMG signals in real time, the dedicated MyoResearch XP Master Edition system was applied. According to SENIAM standards, surface electrodes made of Ag/AgCl material were placed on the skin with a 2 cm spacing between them. Before electrode placement, the skin was shaved and thorough cleaning with a mixture of alcohol and ether was performed to minimize impedance. An important aspect of signal registration was the positioning of the participant’s foot, distinguishing the work of individual muscle groups based on the pressure on the ergometer base.
During the EMG measurements, changes in the position of the lower extremity were recorded using the Myo Video software, which is part of the Noraxon system. The task of the software was to register the location of the markers in individual video frames, and with the use of calibration data, measurements were obtained, including the distance between them (Joel Martin and St Andrews Crossfit Nittany, 2012; Daniel and Malachowski, 2023). Record changes in the position of the lower extremity to determine the knee flexion of each participant. Therefore, markers were placed, among other areas, at the ankle, knee, and hip. The setup of the measurement apparatus in the starting position is illustrated in Figure 1.
[image: A person uses a rowing machine, with an inset showing foot position affecting muscle activity. Three muscles—Rectus Femoris, Biceps Femoris, Gastrocnemius Lateralis—are examined using the EMG Noraxon System. Motion analysis markers are visible.]FIGURE 1 | The object of study along with the specified equipment, the muscles examined, and the measurements details.
The initial scenario involved the angle of flexion of the direct measurement of the knee as the angle between segments L1 and L2, facilitated by the MyoVideo software. Due to the movement characteristics of the rowing ergometer for some participants, leading to the obstruction of the knee marker by their hand, a direct measurement of the angle was not feasible. Instead, an indirect measurement of the angle was conducted by monitoring the distance between markers placed on the participant’s ankle and hip as a function of time. Additionally, before the test, the segmental lengths of the lower extremities of all participants were measured. Table 3 presents the results of the anatomical measurements, which are absolute values measured from the hip to the knee (L1) and from the knee to the ankle (L2).
TABLE 3 | Comparison of distances between significant markers.
[image: Table showing distances between hip and knee (L1) and knee and ankle (L2) in millimeters for eight participants. P1: 475, 445; P2: 485, 490; P3: 520, 485; P4: 490, 465; P5: 465, 460; P6: 455, 485; P7: 440, 435; P8: 445, 440.]The collected data allow the calculation of the knee flexion angle based on the formula derived from the law of cosines (graphic visualization of this case in Figure 1.):
[image: The formula shows the angle alpha as the inverse cosine of the fraction: the numerator is \( L_1^2 + L_2^2 - D^2 \), and the denominator is \( 2L_1L_2 \).]
where:
	- [image: It seems like there's an issue with your request as no image was uploaded. Please try uploading the image again and I'll be happy to help generate alt text for it.] – distance between hip and knee,
	- [image: It seems there is no image to describe. Please upload the image or provide a URL, and I can help generate the alt text for it.] – distance between knee and ankle,
	- [image: Please upload the image or provide a link so I can generate the alternate text for it.] – distance between hip and ankle.

Before starting the experiments, subjects were asked to warm up on a 500 m indoor rowing machine (Model E, Concept II, Morrisville, NC, USA) (Joel Martin and St Andrews Crossfit Nittany, 2012) to get used to the rowing machine. Subsequently, they rested for 10 min, during which the measurement devices were verified. After confirming the functionality of the measurement equipment, participants were instructed to assume the starting position and initiate movement upon the first auditory signal. They then proceeded to perform the test, which involved rowing on the rowing ergometer to the rhythm of the sound signal (30bpm). In the first minute of the exercise, participants set the resistance on the rowing ergometer at level 4, in the subsequent minute to level 3, then 2, and in the fourth minute to level 1. At level 1 resistance, participants continued rowing until reaching a state of maximal fatigue.
During movement, participants were corrected based on the previous analysis of their rowing technique in terms of common errors such as leg straightening or pulling hands towards the rowing machine. During the exercise, participants were asked about their level of fatigue each minute using the Borg Rating of Perceived Exertion (RPE) scale (Daniel et al., 2023). RPE is based on the physical sensations experienced by an individual during physical activity, including increased heart rate, increased breathing or breath frequency, increased perspiration, and muscle fatigue. Although it is a subjective measure, the evaluation of exertion, based on a scale ranging from 6 to 20, can provide an estimate of muscle fatigue during physical activity (Williams, 2017). In this study, the scale was used to determine the end of the exertion, with the participants reporting a maximum level of 20.
2.3 Data processing
To perform the EMG signal analysis, data was collected during tests involving eight participants. Each participant performed three tests, and in each trial, EMG signals from six muscles were recorded: L–GAS, R–GAS, L - RF, R–RF, L–BF and R–BF. Each EMG signal was pre-processed by applying a Butterworth filter with cutoff frequencies of 20 Hz and 500 Hz to delimit the physiological frequency band of the EMG signal and to remove high- and low-frequency interference (Daniel et al., 2023). Data processing was carried out based on the diagram presented in Figure 2.
[image: Flowchart depicting a process with three levels. Top level: Participants [P1 to P8]. Middle level: Muscles [L-GAS, L-RF, L-BF, R-GAS, R-RF, R-BF]. Bottom level: Trials [1, 2, 3]. These connect to processes: Average of Muscle Activity, Segmentation, Median Frequency, Slope of Linear Regression.]FIGURE 2 | Data processing algorithm.
Based on the determined function of the changes in the knee flexion angle and the EMG signal, the average muscle activity was calculated. At the moments when the knee flexion angle function reached a minimum value, the boundary between adjacent segments was identified. Based on this, the EMG signal was divided into segments lasting approximately 2 s (2 ± 0.082 s), covering a complete, single cycle performed by the participant. The segmentation of the EMG signal allowed for DWT analysis for each cycle of activity, enabling the determination of MDF as a frequency parameter. Wavelet transformation is a spectral estimation technique that represents the signal as a linear combination of functions obtained through transformations, such as scaling and translation, based on mother wavelets. In this work, the Daubechies4 mother wavelet was used due to its effectiveness in analyzing the power spectrum of the EMG. To determine the mentioned frequency parameter, the signal was decomposed, resulting in detailed and approximation coefficients. The decomposition process involves a series of operations on low-pass and high-pass filters, as well as down-sampling. In Figure 3, an example DWT analysis of EMG signal segments from three different muscles of a selected participant is illustrated.
[image: Series of graphs depicting EMG and four sets of waveforms labeled D1 to D4 across three muscle groups: Gastrocnemius, Biceps Femoris, and Rectus Femoris. Each set shows distinct waveform patterns with varying amplitudes and frequencies, demonstrating muscle activity over time. Vertical dashed lines indicate key points within the data across samples.]FIGURE 3 | Analysis of DWT for segments of EMG signals from selected muscles (GAS, BF, RF). The details: D1, D2, D3, D4, Original EMG signal: EMG.
Subsequently, for signal reconstruction, the reverse decomposition process was applied using a synthesis filter. On the basis of the obtained wavelet coefficients, MDF values for a single cycle of activity were determined. For each EMG segment, one MDF value was obtained. Using the entire range of the EMG signal, it was possible to calculate the slope coefficient of the linear regression of the MDF variable. Wavelet analysis, determination of MDF values, and calculation of the slope coefficient of the linear regression of the MDF variable were performed using Matlab software.
The analysis of the EMG signal conducted resulted in obtaining a set of linear regression coefficients for the MDF variable for each participant, allowing for a series of statistical analyses. The distribution of MDF for each of the dominant leg muscles of one of the participants is presented accordingly in Figures 4, 5, along with the calculated slope coefficient of the linear regression of these variables. The decrease in MDF over the duration of the exercise indicates an increase in the degree of muscle fatigue.
[image: Three line graphs display muscle frequency over time for different muscles: GAS, BF, and RF. Each graph shows a red trend line with slopes of -0.14302, -0.0109645, and -0.029963 respectively, indicating a decrease in frequency. Time is measured in seconds, and frequency in hertz.]FIGURE 4 | Typical distribution of the MDF parameter and linear regression of MDF for a selected participant during a rowing ergometer test for the dominant leg.
[image: Three line graphs display frequency (Hz) against time (seconds) for muscle activity. The top graph for muscle GAS shows a nearly horizontal trend line with a slope of -0.017. The middle graph for muscle BF displays a trend line with a slope of 0.006. The bottom graph for another muscle RF shows a downward trend line with a slope of -0.072. Each graph has scattered blue data points with a red trend line.]FIGURE 5 | Typical distribution of the MDF parameter and linear regression of MDF for a selected participant during a rowing ergometer test for the nondominant leg.
2.4 Statistical analysis
The characteristics of the participants and the measured measurements analyzed were used for the descriptive statistics performed using OriginPro 2023 software (OriginLab Corporation). To assess the normality of the distribution, the Shapiro-Wilk test was used with a significance level set at p < 0.05. Data were presented as median ± interquartile range. Furthermore, a statistical test was performed that compared the mean muscle fatigue parameters between the dominant and non-dominant legs using the Mann-Whitney test, with a significance level set at 0.05.
3 RESULTS
The regression results for the muscle group, including GAS RF and BF were calculated during the rowing ergometer test under the same conditions described in the Materials & Methods section. The values obtained from the wavelet analysis for each muscle during each trial were analyzed in two analyses. The first analysis focused on the times’ influence achieved at 1000 m distance on the fatigue index, while the second analysis aimed to examine the impact of the force moment of each participant on the level of muscle fatigue.
3.1 Analysis of fatigue data for rowing ergometer exercise and relationships with previous rowing performance results
As muscle fatigue allows for the assessment of overall body fatigue, it was decided to average the fatigue results for all muscles in all trials (Chang et al., 2012). The muscle fatigue data tested in each trial for each person did not exhibit a normal distribution in all tests. Table 4 presents the results of the normality test.
TABLE 4 | Result of the normality test.
[image: Table displaying normality test results for eight participants (P1 to P8). It includes the statistic, p-value, and decision on normality at a 5% level. Participants P2, P3, P4, and P6 reject normality, while P1, P5, P7, and P8 do not reject normality.]The results of the normality test indicate that tests based on normal distributions cannot be applied to compare the data. Therefore, the data are presented in the form of median and interquartile range in Figure 6.
[image: Scatter plot with slope of linear fit versus time/score, featuring points P1 to P8. A linear fit is shown with a regression line and a 95% confidence band shaded in red. A table provides statistical details, including the equation, intercept, slope, residual sum, Pearson's r, R-Square, and adjusted R-Square values, indicating the fit quality.]FIGURE 6 | Distribution of the MDF parameter for all participants according to their achieved scores (Table 2) on the rowing ergometer.
As part of the conducted study, participants (P1-P8) were classified according to the results achieved, according to the data presented in Table 2. The median values obtained for all participants (except P3) are characterized by negative values, consistent with the findings of the scientific literature, suggesting the appearance of muscle fatigue due to the physical effort taken. Furthermore, a similarity can be observed in the median fatigue values between the participant with the best time (P1 = −0.08615) and the participant with the worst time (P8 = −0.07872). The median distribution of the remaining participants shows no correlation between the achieved times and the level of muscle fatigue (P2 = −0.02946, P3 = 0.00804, P4 = −0.00927, P5 = −0.02979, P6 = −0.01644, P7 = −0.02043). To analyse the differences between groups of participants, the interquartile range was applied. On this basis, no differences were observed with respect to the test conducted for this specific group of participants.
Based on the analysis conducted, an ANOVA test was performed to determine the relationship between the previous ergometer performance of the participants (Table 2) and muscle fatigue. One-way analysis of variance (ANOVA) was used to compare the means of muscle fatigue levels in different time achievement groups. Specifically, the participants were categorized based on the results presented in Table 2. The test results are presented in Table 5.
TABLE 5 | The result of the ANOVA test in the case of studying the relationship between time achievement and muscle fatigue.
[image: Table displaying statistical data for ANOVA analysis. The columns are Sum of Squares, Mean Square, F Value, and Prob>F. Rows include Model with values 0.21291, 0.21291, 0.31427, 0.59537; Error with values 4.0648, 0.67747, and Total with 4.27771.]The results of the ANOVA include information on the F-statistic, degrees of freedom, and p-value. It is important to note that the ANOVA test was chosen as it allows for the comparison of means among multiple groups simultaneously. The significance level was set at 0.05 to determine whether there were statistically significant differences in muscle fatigue levels between participants with different time achievements.
3.2 Analysis of data on the dominant and non-dominant leg. The relationship between the strength level of the dominant leg and muscle fatigue
From the measurements on the isokinetic dynamometer, the force moment values were obtained at positions of 30°, 60°, and 90° during knee extension for both limbs. Subsequently, the average values within each limb were calculated, and the higher of these values was used to determine the dominant leg. This value was also considered in the further analysis. Table 6 presents the complete results of the force moment measurements, and the points were assigned in a manner analogous to the participants’ achieved times.
TABLE 6 | Comparison of force results.
[image: Table displaying data for eight participants. Columns include participant identifiers (P1 to P8), force moment for the dominant leg in newton meters (ranging from 190.3 to 303.7), and scores (ranging from 0 to 100).]Despite the results of the dynamometer indicating which leg is dominant, the decision was made to analyse the fatigue results for both legs, taking into account the established dominant and non-dominant character for each limb. For this purpose, it was checked, using the normality test, that the data did not exhibit such a character. Subsequently, the Mann-Whitney test was conducted, which did not confirm significant differences between dominant and non-dominant legs in terms of their impact on muscle fatigue.
Despite the lack of identified differences between the legs, the relationship between fatigue for all muscles (linear fit slope) of the dominant leg and the moment of force was analyzed (Table 6). Data depicting the relationship between force and fatigue are presented in Figure 7.
[image: Scatter plot showing points labeled P1 to P8, depicting the slope of a linear fit against force/score with a linear trend line for MDF. The red shaded area represents the 95% confidence band. A legend indicates the symbols for MDF, its linear fit, and confidence band. Key statistics are provided, including intercept, slope, residual sum of squares, Pearson's R, R-square, and adjusted R-square.]FIGURE 7 | Distribution of the MDF parameter for all participants according to the force score (Table 6).
Similarly to the previous subsection, an ANOVA test was performed to determine the relationship between fatigue and the moment of force. One-way analysis of variance allowed for the comparison of means across different force levels. The results of the ANOVA test are presented in Table 7, which provides information on the F-statistic, degrees of freedom, and the p-value. The chosen significance level was 0.05. This analysis aimed to determine whether there were statistically significant differences in muscle fatigue levels related to different force levels.
TABLE 7 | The result of the ANOVA test in the case of studying the relationship between forces and muscle fatigue.
[image: ANOVA table displaying statistics for a median comparison. The model has a sum of squares of 1.01735, a mean square of 1.01735, an F value of 1.87221, and a Prob>F of 0.22025. The error shows a sum of squares of 3.26036 and a mean square of 0.54339. The total sum of squares is 4.27771.]The test conducted indicates that the slope of the line in both cases is not different from zero, meaning that there is no statistical evidence of the impact of time or force on fatigue. Based on this, one can conclude that the level of fatigue does not depend on the results achieved by the participants on the rowing ergometer.
4 DISCUSSION
Muscle fatigue is considered in both static and dynamic movements, employing various advanced signal processing techniques. Furthermore, research on the quantitative determination of fatigue is conducted in comparative group settings, such as between genders (female-male) and different levels of fitness (trained-untrained individuals). In addition, these studies often focus on a single muscle (or muscle group) and typically involve a single measurement repetition. They also include various sports disciplines. Consequently, the decision was made to propose an analysis and confirm homogeneity as a basis for subsequent comparative research and communication. For the current study, the authors selected participants from the student sports section of AZS WAT, who, as military students, share a similar lifestyle. Each participant had participated in sports competitions and their results were consistently ranked, allowing their arrangement from the least to the most trained athletes. The authors conducted a series of tests to assess their homogeneity, exploring the impact of diet on health, general characteristics, history of injuries, and history of sports activity. The participants underwent a test involving maximum subjective effort at a rhythm of 30 bpm. This form allowed determination of angle changes, muscle activation and deactivation, and subsequently, the segmentation of the signal. In addition, the measurements were performed under controlled conditions, including participant preparation, test procedure, and real-time signal monitoring, all contributing to the quality of the results obtained.
The authors of the study operated under the assumption that muscle fatigue translates into overall bodily fatigue (Chang et al., 2012). Consequently, they decided to perform calculations for all tests and muscles simultaneously. Regression coefficients were determined for each muscle, each trial, and each participant. One of the main objectives of the study was to verify whether the results obtained using the algorithm developed in previous work (Daniel and Małachowski, 2023) align with the actual occurrence of muscle fatigue, resulting in a decline in MDF values over time. In some cases, positive regression coefficients for MDF were observed, which may be due to various limitations. One such limitation is the individual characteristics of the participants, which inherently vary among them (for example: displacement and modification of the volume of the muscle being analysed influence on EMG measure (Romero and Gual, 2010) or sweating during the long duration of exercise (Bala and Joshi, 2022)). Furthermore, distortions and interference of the sEMG signal, which can result from, e.g., crosstalk of EMG signals of adjacent muscles, cannot be eliminated during the data analysis phase, which can also affect these results (Zhang et al., 2022). In dynamic movement, changes in sensor positioning may occur and cause sEMG signal artifacts (Perpetuini et al., 2023), which adds an additional layer of limitation to this type of measurement. Moreover, investigations into the prediction of fatigue-induced electromyographic signals are also of interest (Bala and Joshi, 2022). One study explored this by analyzing initial sEMG recorded over a shorter time period during bicep flexion with a load. Another important area of focus is the investigation of stimulation patterns based on muscle synergy, which holds the potential to decrease muscle fatigue (Bala et al., 2023). However, when applied to dynamic movements, this approach may require the consideration of additional factors. Nevertheless, this aspect presents an intriguing point for future research in the field.
Subsequently, data analysis was performed to assess individual muscle fatigue or specific trials; however, no significant differences were found between the fatigue parameters analyzed. This lack of significance may be due to various factors. One limitation in this case could be the sample size of the studied data or incomplete input data (lack of data from the third measurement for three participants).
To assess whether other factors, such as torque or times achieved over a 1000 m distance, influence muscle fatigue, a data distribution analysis was conducted. The analysis did not indicate that such dependencies exist. However, a limitation in this case may be that torque measurement was performed in a static context, while the activity on the ergometer is dynamic. Monitoring torque values during movement would be beneficial for future research.
The practical application of the conducted research could be implemented in the future by modifying the measurement conditions to more accurately assess fatigue. Additionally, the utilization of such data could serve as a reference point not only for achieving fatigue levels on a rowing ergometer, but also for conducting and comparing results in other types of dynamic movements.
The present study is innovative in testing both the algorithm developed and analyzing the studied group regarding the distribution of data related to the MDF linear regression coefficients. Additional tests were used to determine whether other factors might influence the trend in the subjects’ data (e.g., whether a person with the lowest MDF regression coefficient is associated with their ranking or whether someone with the highest torque value exhibits the lowest quantitative fatigue value). As these analyses did not reveal such dependencies, the current group is considered homogeneous. The authors found this result satisfactory, as the presented findings will be utilized in a future study involving virtual reality (VR).
5 CONCLUSION
The method utilized to calculate fatigue using wavelet analysis in the study group of rowers from AZS WAT appears to be effective in assessing muscle fatigue during dynamic rowing exercises. Taking into account the proposed methodology, conducted tests, and results obtained, the following conclusions have been formulated:
	• Wavelet analysis of sEMG presents a promising approach to quantitative assessment of muscle fatigue during rowing ergometer exercises, as evidenced by the achievement of negative regression values in nearly all cases examined.
	• The obtained results suggest diversity in the assessment of muscle fatigue, encompassing the muscles studied, trial variations, and individual participants.
	• The influence of diet, injury history, and individual characteristics of participants can impact the assessment of muscle fatigue, which is a significant limitation.
	• Despite attempts to analyse the relationship between force moments and muscle fatigue, the current study did not reveal significant correlations in the examined group.
	• The results presented lay the foundations for future research, particularly in the context of using virtual reality to analyse muscle fatigue during rowing ergometer exercises. The hypothesis for future research involves determining the impact of using virtual scenery on fatigue. Therefore, the present study examined other potential factors that could influence the homogeneity of the group.
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Diabetes mellitus and chronic kidney disease represent escalating global epidemics with comorbidities akin to neuropathies, resulting in various neuromuscular symptoms that impede daily performance. Interestingly, previous studies indicated differing sensorimotor functions within these conditions. If assessing sensorimotor features can effectively distinguish between diabetes mellitus and chronic kidney disease, it could serve as a valuable and non-invasive indicator for early detection, swift screening, and ongoing monitoring, aiding in the differentiation between these diseases. This study classified diverse diagnoses based on motor performance using a novel pinch-holding-up-activity test and machine learning models based on deep learning. Dataset from 271 participants, encompassing 3263 hand samples across three cohorts (healthy adults, diabetes mellitus, and chronic kidney disease), formed the basis of analysis. Leveraging convolutional neural networks, three deep learning models were employed to classify healthy adults, diabetes mellitus, and chronic kidney disease based on pinch-holding-up-activity data. Notably, the testing set displayed accuracies of 95.3% and 89.8% for the intra- and inter-participant comparisons, respectively. The weighted F1 scores for these conditions reached 0.897 and 0.953, respectively. The study findings underscore the adeptness of the dilation convolutional neural networks model in distinguishing sensorimotor performance among individuals with diabetes mellitus, chronic kidney disease, and healthy adults. These outcomes suggest discernible differences in sensorimotor performance across the diabetes mellitus, chronic kidney disease, and healthy cohorts, pointing towards the potential of rapid screening based on these parameters as an innovative clinical approach.
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1 INTRODUCTION
Globally, diabetes mellitus (DM) has significantly impacted healthcare costs and socioeconomic burdens, escalating from 966 billion United States dollars (USD) in 2021 to a projected 1,054 billion USD by 2045. A recent epidemic report estimated the global prevalence of diabetes at approximately 10.5%, set to rise to 12.2% by 2045 (Sun et al., 2022). Similarly, a recent epidemiological report indicated that the prevalence of chronic kidney disease (CKD) was 10.0% in adult populations globally; however, this value may be underestimated. Akin to DM-related impacts, CKD-related healthcare stands as the primary driver of medical and social costs in most countries (Sundström et al., 2022). Patients with severe DM often progress to CKD, which can impose greater care challenges; hence, CKD could be considered a more severe condition in patients with DM (Parving et al., 2006; Thomas et al., 2016). To monitor DM progression and prevent the development of severe disease, a low-cost, quick, and noninvasive method is needed.
Individuals with DM and CKD commonly experience peripheral nerve disorders (Baumgaertel et al., 2014), particularly peripheral neuropathy (Pop-Busui et al., 2017; Ezzeldin et al., 2019; Feldman et al., 2019; Karlsson et al., 2019). Clinical symptoms associated with neuropathies include pain, impaired thermal discrimination, sensory deficits, reduced motor function, and diminished or absent distal reflexes (Callaghan et al., 2015; Pop-Busui et al., 2017; Ezzeldin et al., 2019; Feldman et al., 2019). These symptoms significantly impact daily activities and could be critical in pre-DM and early stages of CKD (Singleton et al., 2001; Ziegler et al., 2008; Im et al., 2012; Smith and Singleton, 2012; Bongaerts et al., 2013; Asghar et al., 2014; Moorthi et al., 2019). Monitoring changes in sensorimotor function, an evident neurological feature, might be a feasible strategy to monitor the progression of both diseases. Early detection of these diseases could aid patients and clinicians in comprehending disease progression and subsequently achieving improved prognosis (Tesfaye et al., 2010; Bernardi et al., 2011; Bril et al., 2011; Dyck et al., 2011; Kempler et al., 2011; Spallone et al., 2011; Finnerup et al., 2015; Pop-Busui et al., 2017). Despite easily identifying neuropathies in both groups, the mechanism of neuropathies in DM and CKD remains unclear and may result in different neuropathic symptoms or sensorimotor features in these two diseases (Biessels et al., 2014; O Brien et al., 2014; Vincent et al., 2011; Zenker et al., 2013). For example, patients with CKD were found to exhibit poorer light touch sensory function than non-CKD participants, even after excluding the effects of DM (Moorthi et al., 2019). In other words, sensorimotor performance might vary between DM and CKD, despite both having neuropathies as diagnoses. Due to potential differences in sensorimotor performance between DM and CKD, evaluating sensorimotor function to monitor disease progression could prove to be a valuable, low-cost method.
Recent studies introduced a novel pinch-holding-up-activity (PHUA) test, using sensorimotor function measurements with robust psychometric properties (Chiu et al., 2009). These investigations aimed to discern disparities in hand sensorimotor performance hand between patients with DM and healthy adults (Chiu et al., 2014; Hsu et al., 2015), as well as differences between patients with CKD and healthy adults (Tu et al., 2019). These studies showed significant differences in sensorimotor performance between healthy adults and patients with peripheral neuropathic hands. Sensorimotor parameters—such as force ratio and percentage of maximal pinch force—were notably larger in patients with neuropathy, indicating that the use of inefficient or improper hand performance strategies. Furthermore, these parameters displayed medium-to-high correlations between sensory conditions and fine motor function (Shieh et al., 2011; Hsu et al., 2013).
However, these studies primarily relied on a limited set of parameters—such as force ratio or maximal pinch ratio—derived from specific events within the signals to determine the inferior sensorimotor performance in individuals with neuropathic hands. Unfortunately, these parameters proved insufficient for distinguishing sensorimotor features between the DM and CKD groups using current analytical approaches.
In recent years, machine learning has rapidly developed for human motion analysis. For fundamental research, Liu et al. proposed several base studies for extracting interpretable and explainable features to help build machine learning models for human activity recognition (HAR) (Liu et al., 2021; Hartmann et al., 2022; Liu et al., 2023) and published a feature extraction library for time-series data (Barandas et al., 2020). Hartmann et al. also found that high-level and interpretable features can be used in few-shot learning, and the results were promising (Hartmann et al., 2023). At the same time, a new branch in machine learning, called deep learning, has found widespread use in complex and noisy signal applications, where conventional analyses might struggle to extract pertinent information (LeCun et al., 2015; Goodfellow et al., 2016). Ideal deep learning models use original data or parameters without preprocessing or human-selected procedures. Previous studies have demonstrated the efficacy of convolutional neural networks (CNN) in appropriately handling time-series images or signals of human motion (Hannink et al., 2016; Hannink et al., 2017; Kautz et al., 2017). Architectures like VGG (Hannink et al., 2016; Hannink et al., 2017; Kautz et al., 2017), ResNet (Wang et al., 2017; Cheng et al., 2021), and dilation CNN (Arık et al., 2017; Bai et al., 2018; Lei et al., 2019) have emerged as strong candidates for processing time-series signals. Despite their demonstrated capabilities in processing time-series data, current studies rarely classify different peripheral neuropathies based on sensorimotor features of hand performance. Therefore, this study aimed to develop three distinct CNN models for classifying DM and CKD diagnoses based on hand sensorimotor function.
2 MATERIALS AND METHODS
2.1 Study participants
All the data used in this study were retrospective and anonymized from previous research (Chiu et al., 2014; Hsu et al., 2015; Tu et al., 2019). Participant demographics from these studies are shown in Table 1. Sensorimotor function data were collected from participant hands between 2006 and 2018 using a standardized device and measurement protocol. The flowchart for the sampling inclusion and exclusion is described in Figure 1. The datasets included hand data from healthy controls and DM groups for both hands, whereas the dataset of the CKD group contained data solely from hand without a venous fistula. Neuropathies in DM and CKD arise from metabolism issues, including poor blood glucose control and the presence of toxic substance in blood. As a result, damage to neurons on both the right and left side is expected to be equal. Consequently, data from the right and left hands were assumed to be similar and were not segregated during training and testing. Inclusion criteria for DM followed the diagnostic guidelines of the American Diabetes Association in 1997, whereas all CKD participants were stage-5 (GLR <15 mL/min) and undergoing hemodialysis. To prevent complexities arising from comorbid conditions, participants with both DM and CKD were excluded. The control group exclusion criteria were as follows: (Sun et al., 2022): upper limb nerve injuries; (Sundström et al., 2022) acquired or congenital hand or wrist anomalies; (Parving et al., 2006) skin infections or diseases; (Thomas et al., 2016) diagnoses of DM, CKD, or any cardiovascular disease; (Baumgaertel et al., 2014) grade ≥2 arterial hypertension; and (Ezzeldin et al., 2019) cognitive dysfunction, and an inability to follow instructions. Informed consent was obtained from all participants, and the study adhered to the instructions of the Institutional Review Boards of Chi Mei Medical Center and Chiayi Christian Hospital (Chiu et al., 2014; Hsu et al., 2015; Tu et al., 2019).
TABLE 1 | The demographic information of the three groups of participants.
[image: Table comparing control, diabetes mellitus (DM), and chronic kidney disease (CKD) groups. It includes details on age, onset, dominance, gender ratio, and total samples. Each group's dataset is divided into training, validation, and testing samples with percentages and cases listed for intra and inter ratios.][image: Flowchart illustrating a dataset recruitment process. Three initial groups are shown with their sample sizes: DM with 159 participants, HA with 75, and CKD with 68. CKD splits into two: 29 with DM comorbidity who dropout, and 39 without. Sources noted as studies by Hsu and Tu from 2014 to 2019.]FIGURE 1 | The flowchart for the dataset inclusion and exclusion from previous research.
2.2 Instruments and data-collecting protocols
Sensorimotor hand function data were collected using a custom designed apparatus comprising a specific device (size: 6.0*4.5*9 cm, weight: 480 g), incorporating a six-axes loadcell (Nano-25, ATI Industrial Automation, Apex, NC) and tri-axial accelerometer (Model 2,412, Silicon Designs, Inc., Issaquah, WA) for the PHUA test. Previous studies have affirmed the validity and reliability of the PHUA test in assessing hand sensorimotor performance (Chiu et al., 2009; Shieh et al., 2011; Hsu et al., 2013; Chiu et al., 2014; Hsu et al., 2015; Tu et al., 2019). The load cell and accelerometer were set to a sampling rate of 100 Hz. The data collection protocols for PHUA were standardized across the three groups. Participants were instructed to: (Sun et al., 2022): pinch the device with the thumb and index fingertips, (Sundström et al., 2022), lift the device approximately 5 cm above the table and maintain for 5 s, (Parving et al., 2006), lift the device to approximately 30 cm at a self-determined speed, and (Thomas et al., 2016) slowly lower the device after 10 s. Each PHUA trial lasted approximately 15 s, with only the initial 10 s used for data collection to minimize bias during uncontrolled lowering periods. Each participant performed ten trials for each hand. The demographic information of the three groups of participants, final sample size, and the dataset after splitting are summarized in Table 1.
2.3 Dataset and preprocessing
In the collection of medical signals, resampling one participant is a common strategy for expanding the sample size. To resample, each of our subjects were asked to repeat the same protocol to generate the data samples. In this study, the PHUA data of one participant was resampled four to ten times. For the DM, data collection was resampled four to six times. For the healthy adults and CKD, the resampling was nine to ten times more than DM due to fewer participants and an imbalanced dataset. Although this method easily increases the sample size, it often leads to overfitting and data leakage. To prevent these issues and ensure model robustness, two different dataset splitting methods were employed: (Sun et al., 2022) inter-participants: the dataset was split based on participants, ensuring that the model did not encounter repeated participants during training, validation, or testing; and (Sundström et al., 2022) intra-participants: data splitting occurred within the trial of each participant. Each participant data were segregated for training, validation, and testing, ensuring that trials did not overlap across these phases. No other methods were used to expand the dataset used in this study.
The dataset was arranged for testing first, and then the remaining data were utilized for training and validation. The percentage of each group differed between the two data-splitting methods. When employing the inter-subject method to split the dataset, variations in the number of resample trials per subject could have led to slight differences in sample numbers. The sample sizes for training, validation, and testing are provided in Table 1. All hyperparameters and model structures were adjusted during the cross-validation phase. Once optimal validation results were obtained, the entire training and validation dataset were combined for final model training. Model performance was then evaluated using the dedicated testing set, without any modifications to the model to prevent data leakage.
2.4 Algorithm development and evaluations
Due to the PHUA protocol, we assumed that the features are present during the rising phase, and the time point of the rise is not restricted to every subject. Consequently, the features of the obtained signals in this study were presumed to exhibit time-translation symmetry and can be regarded as local features. The assumption of time-translation symmetry implies that the features would have similar forms but can appear any time without strict constraints. Under this assumption, the CNN structure is a suitable choice for searching for features over time by shifting the windows on the signal. Recent research has demonstrated the superiority and efficiency of CNN architectures over recurrent neural networks for analyzing time-series signals (Pascanu et al., 2012; Pascanu et al., 2013; Längkvist et al., 2014; Fawaz et al., 2019). Therefore, CNN models were constructed for three groups: healthy adults, DM, and CKD. The first model is derived from the VGG model (Simonyan and Zisserman, 2014), which uses a linear structure without shortcuts. The benefits of the VGG-like model (fully convolutional network [FCN]) offers simplicity and ease of comprehension but has limited depth. Its straightforward structure and fewer parameters make it a widely used option for testing deep learning models. The second model is based on ResNet (He et al., 2016). ResNet is structured with a shortcut, allowing residuals to traverse through the shortcut and learn, despite the network being extremely deep. A deep model is sufficiently robust for approximating a wide array of functions (Lin and Jegelka, 2018). The third proposed model, a dilation CNN (dil-CNN), represents the latest advancement capable of handling exceptionally long time-series data (Bai et al., 2018; Lei et al., 2019). This architecture compels nodes to glean essential features and transmit them through lengthy time series without necessitating a deeply layered design. In this study, we introduced FCN, ResNet, and dil-CNN architectures to distinguish among healthy adults and patients with DM and CKD.
The input data are raw data with absolute values from 0 to 10 s (100 Hz), comprising 1,000 frames. To aid the model’s convergence, the pinch force vector sum and load force vector sum are included in the input. No other pre-processing or human-selected features were utilized for the model input. The trial sample is depicted in Figure 2.
[image: Line graph depicting pinch force and load force over 1000 time frames. Multiple colored lines represent different force variables, showing fluctuations and general trends. The x-axis is labeled time frames, and the y-axis is force in Newtons.]FIGURE 2 | Input data for CNN models. This figure shows a trial of a healthy adult. The input includes a three-axis pinch force (Nt) and three-axis load force (Nt), which is calculated through the accelerations (a*0.48*9.8). The vector sum was calculated from the three axes of the pinch and load forces.
The model architecture is illustrated in Figure 3. The receiver operating characteristic curve (ROC) curve and area under the ROC curve (AUC) were used to evaluate model performance. The F1 score and confusion matrix were calculated to provide a comprehensive evaluation of accuracy and detailed category-specific performance.
[image: Diagram of three deep learning model architectures labeled A, B, and C. Panel A shows a sequence of layers including Conv1D and MaxPool with varying filter sizes and kernel sizes. Panel B depicts a similar sequence with residual connections using identity blocks and convolutional blocks. Panel C showcases a more detailed model with specific arrangements of Conv1D layers and pooling layers, highlighting identity and convolutional blocks. Convolutional blocks include shortcuts and batch normalization. Global averaging pooling is used at the end of the sequences in each model.]FIGURE 3 | (A) The architecture of FCN (VGG-like) model. (B) The architecture of dil-CNN (dilation CNN) model. (C) The architecture of ResNet model and the details of identity block and convolutional block.
The optimizer of CNN was RMSProp (lr = 0.0001, rho = 0.9, epsilon = 1e-7), and the L1 and L2 regularization was used for the parameters in the CNN models. A SoftMax function is used to output layer for deciding the category.
The CNN models were built by Python 3.9.9 and based on TensorFlow 2.6. The hardware for training and programming was i7-9,700, GTX3080 with 10 GB G and 40 GB RAM. The operating system was Windows 10.
The accuracy, confused matrix, ROC, and AUC are shown to evaluate the model performance. Also, the weighted F1 score is calculated in this study. Considered as the imbalance dataset, the F1 score with sample-weighted could show more information. All training, validation, and testing evaluation results were shown and discussed to display the overfitting situations.
3 RESULTS
The model parameters used to demonstrate the model efficiency are listed in Table 2. In the FCN model, the total parameters employed were 502,979, whereas dil-CNN, shallower in structure, used 205,123 parameters. In ResNet, the total parameters is 379,907 (Table 2). The model structures of the FCN and dil-CNN were similar; however, the FCN was deeper, with two additional convolutional layers. The FCN and dil-CNN differed in its dilation rate, increasing from 2 to 4 in the seven–10 convolutional layers (Figures 3A, B). ResNet, following the structure of the original study with two blocks (He et al., 2016) repeated four times (Figure 3C). To mitigate overfitting risks, our models were designed with reference to the original article were not replicated at the same depth, such as VGG-19 or ResNet-34, we opted for a shallower architecture during the validation phase, refining it iteratively through trial and error.
TABLE 2 | The parameters of the CNN models.
[image: Comparison table showing parameters for three models: VGG, ResNet, and Dil-CNN. Trainable parameters are 500,867 for VGG, 376,643 for ResNet, and 204,035 for Dil-CNN. Non-trainable parameters are 2,112 for VGG, 3,264 for ResNet, and 1,088 for Dil-CNN. Total parameters are 502,979 for VGG, 379,907 for ResNet, and 205,123 for Dil-CNN.]The final test results indicate intra-participant accuracies for FCN, ResNet, and dil-CNN as 0.926, 0.874, and 0.953, respectively. Meanwhile, inter-participant accuracies for FCN, ResNet, and dil-CNN stand at 0.879, 0.875, and 0.898, respectively (Table 3). The weighted F1 scores (wF1) for intra-participant assessments of these models were 0.927, 0.873, and 0.953, whereas the inter-participant wF1 scores were 0.877, 0.869, and 0.897, respectively (Table 3).
TABLE 3 | The evaluation results of the CNN models.
[image: Table comparing intra-subject and inter-subject performance metrics for VGG, ResNet, and Dil-CNN models across train, valid, and test datasets. Metrics include Accuracy and weighted F1 score. VGG shows higher intra-subject accuracy and wF1 scores compared to ResNet, with Dil-CNN generally outperforming both in several cases. Inter-subject performance is slightly lower, particularly in validation, but Dil-CNN maintains strong results.]The evaluation of the model performance using the AUC is shown in Table 4; Figure 4. Across the intra-participant dataset, the AUCs for healthy adults were 0.984, 0.954, and 0.993 for FCN, ResNet, and dil-CNN, respectively. In the inter-participant dataset, these AUCs were 0.968, 0.966, and 0.966, respectively. The AUCs of the three models for DM in the intra-participant dataset were 0.983, 0.961, and 0.994, respectively. Assessing DM within the interparticipant dataset yielded AUCs of 0.972, 0.952, and 0.973. Finally, for CKD in the intra-participant dataset, AUCs were 0.995, 0.938, and 0.999. For the inter-participant dataset, the AUCs of the three models were 0.953, 0.916, and 0.977, respectively (Table 4).
TABLE 4 | The Area Under the ROC Curve (AUC) of three groups under three CNN methods.
[image: Comparison table of inter and intra syndrome scores for three conditions: healthy adults, diabetes mellitus, and chronic kidney disease. Models include VGG, ResNet, and Dil-CNN. Highest intra score is 0.999 for chronic kidney disease using Dil-CNN.][image: Six ROC curve plots comparing intra and inter methods (A, B, C panels). Each plot shows a true positive rate against a false positive rate, with curves for different algorithms. The diagonal represents random chance.]FIGURE 4 | (A) The ROC curve of (left) intra-subjects and (right) inter-subjects of the del-CNN model. (B) The ROC curve of (left) intra-subjects and (right) inter-subjects of the VGG model. (C) The ROC curve of (left) intra-subjects and (right) inter-subjects of the ResNet model.
4 DISCUSSION
The contemporary diagnosis of DM and CKD in clinical settings relies on blood tests (Harris and Eastman, 2000; Stevens and Levey, 2009), considered the golden standard. However, the proposed PHUA test and the findings in this study do not aim to replace this gold standard in clinical practice. Instead, the PHUA test, combined with a deep learning model, offers a quicker and less invasive method for distinguishing between patients with DM and CKD in medical scenarios that require rapid screening or in places where laboratory examinations are not readily available. Our findings suggest that PHUA with a deep learning model could potentially discern differences in the sensorimotor features of the hand between CKD and DM. Therefore, this study may suggest a simple test to aid in consistently monitoring the progression of DM and preventing its advancement to CKD (Parving et al., 2006; Thomas et al., 2016). Previous studies demonstrated that regular follow-up examinations can reduce the severity of complications, particularly for individuals >45 or <45 but with significant risk factors such as obesity and a family history of DM (Pippitt et al., 2016). Assessing sensorimotor capability is typically simple and rapid in clinical, community, or home-based scenarios. To mitigate evaluation difficulties and potential inter-tester errors, the PHUA could serve a suitable apparatus for clinical assessments due to its well-define design rationale. Its design was developed to challenge participant reflex motor responses while performing upward movements by pinching a glossy surface (Chiu et al., 2009; Hsu et al., 2009; Shieh et al., 2011). The findings of this study indicate that the PHUA test, coupled with a deep learning model, could serve as a potential tool to evaluate the sensorimotor function of the hands, and differentiate between DM and CKD based on sensorimotor impairments, owing its high accuracy and AUC. Given its higher accuracy, our proposed model with the PHUA test could be a viable option for swift clinical screening and monitoring, particularly for subjects who may be neglecting risks while being away from medical providers.
Neuropathy in both DM and CKD typically manifests as neural system damage that impairs sensorimotor performance (Tesfaye et al., 2010; Baumgaertel et al., 2014), but research on distinctions between DM and CKD in this context is limited. Our proposed models suggest that deep learning models can uncover variations in sensorimotor patterns between DM and CKD (Figure 5) and marked the sample numbers in Figure 5 because of the imbalanced sample size between different groups (Jannat et al., 2023). The confusion matrix generated by the dil-CNN model implies potential differences in PHUA-based sensorimotor performance between DM and CKD, aligning with previous findings (Moorthi et al., 2019). Earlier research demonstrated that patients with CKD exhibit poorer light touch sensation compared with healthy adults and those with DM (Moorthi et al., 2019). However, the impact of worsened sensory sensation on clinical evaluation of sensorimotor patterns remains unexplored. The study findings indicate that a robust model could discern specific differences in sensorimotor features between DM and CKD. Despite similarities in impaired sensorimotor function—such as sensory impairment and motor function deficit—between DM and CKD, this discovery suggests that the decline in sensorimotor function in these conditions might arise from different mechanisms or conditions. However, although the deep learning model highlights differences in sensorimotor patterns between DM and CKD, it remains a black box, unable to specify the exact degenerative processes causing these differences (Castelvecchi, 2016). Notably, sensory or motor function impairment affects PHUA performance (Chiu et al., 2009; Shieh et al., 2011; Hsu et al., 2012; Hsu et al., 2013). Previous studies have suggested that neuropathies and the underlying mechanisms causing sensorimotor degeneration in individuals with DM or CKD may differ (Tesfaye et al., 2010; Callaghan et al., 2015; Pop-Busui et al., 2017; Ezzeldin et al., 2019; Feldman et al., 2019; Karlsson et al., 2019). Neuropathy in DM stems from uncontrolled blood glucose levels, deforming blood vessels and leading to insufficient neuronal nourishment (Tabatabaei-Malazy et al., 2011; Baumgaertel et al., 2014). Damage primarily occurs in the distal body parts (Ezzeldin et al., 2019). In contrast, neuropathy in CKD results from toxic substances in the blood (Baumgaertel et al., 2014; Arnold et al., 2016), affecting nervous tissues throughout the body, including the muscles, neural system, and metabolic system (Arnold et al., 2016). Although these models solely differentiate motor patterns between DM and CKD, prior research suggests that differing neuropathic mechanisms also imply varying severity levels and affected the body system ranges (Moorthi et al., 2019).
[image: Six confusion matrices labeled A, B, and C, each with two variations: Intra and Inter. The matrices display actual vs. predicted labels with color gradients indicating values. Axes and labels are consistent across matrices, focusing on correct and incorrect classifications.]FIGURE 5 | (A) The confusion matrix of (left) intra-subjects and (right) inter-subjects of the dil-CNN model. (B) The confusion matrix of (left) intra-subjects and (right) inter-subjects of the VGG model. (C) The confusion matrix of (left) intra-subjects and (right) inter-subjects of the ResNet model.
During the model design and adjustment phase, a smaller kernel size resulted in higher accuracy within the modified model structure. This finding aligns with previous research suggesting that smaller kernels may lead to better convergence, a principle noted in the original VGG designer work on image recognition (Simonyan and Zisserman, 2014). The three proposed model architectures suffer from overfitting. During the design phase, regularization to prevent overfitting, such as the batch norm layer, L1 or L2 regularization (Krogh and Hertz, 1992; Schmidhuber, 2015), and dropout (Srivastava et al., 2014), was tested, and the overfitting condition did not improve. Moreover, ResNet displayed severe overfitting compared with the other dil-CNN models, but with more parameters included in the model (Table 2). This could be attributed to the shortcut structure of ResNet, as demonstrated in previous research where a neural network with shortcuts can fit signals effectively given enough layers (Lin and Jegelka, 2018). Although ResNet structure in this study was not extremely deep, overfitting persisted. Attempts were made to explore models with fewer layers, but they resulted in underfitting compared with the final proposed structure. Further research on shortcut-designed models for time-series sensorimotor performance data is warranted to address these challenges.
To accommodate the increased computational power and memory requirements of larger models, the final model included only six convolutional layers in the FCN and dil-CNN, whereas six identity blocks were used in ResNet. Notably, the last layer of average pooling outperformed the flattened layer (Lin et al., 2013). No additional dense layer followed global average pooling, a strategy that mitigated overfitting and increased testing accuracy. This aligns with the findings in deep learning model design for image recognition post-2013 (Lin et al., 2013; He et al., 2016; Szegedy et al., 2016).
The dil-CNN showed superior robustness with fewest parameters among compared models. The total number of parameters in the dil-CNN was 205,123, nearly half that of ResNet (Table 2) and one-third that of the FCN. The dil-CNN had a higher accuracy than the FCN (0.953 vs. 0.926 in intra-participant; 0.898 vs. 0.879 in inter-participant; Table 3). In the proposed model, dil-CNN exhibited the best performance. Leveraging the design of dilation in convolution, the dil-CNN effectively combines information across extended time-series data. In our study, the structure based on VGG remains unchanged, with dilation being the sole modification, yet it notably enhances accuracy. However, we did not evaluate the dilation kernel with a residual network (Bai et al., 2018) in our proposed models because of observed overfitting in ResNet. Future research should explore additional adjustments to the dil-CNN, potentially incorporating a shortcut connection. Nevertheless, for classification tasks involving sensorimotor signals, the dilation CNN might prove superior to other structures.
Previous studies have relied on several human-selected parameters, resulting in a lower AUC for patients with DM and healthy adults (AUC = 0.724) (Chiu et al., 2014), as well as for CKD and healthy adults (AUC = 0.848) (Tu et al., 2019), whereas the dil-CNN exhibited higher AUC values (AUC > 0.96, Table 4). Notably, complete raw data were included in our analysis, contributing to improved prediction accuracy and potential for handling multiple classes using deep-learning models, as indicated by our results.
Our study has several limitations that warrant acknowledgement. All proposed models in this study faced challenges related to overfitting, despite incorporating regularization and batch-normalization layers. This issue might stem from the restricted total number of participants, suggesting the need for a larger sample size, particularly for machine-learning models reliant on deep learning. Increasing the sample size could enhance model stability and mitigate overfitting concerns in real-world applications. In addition, few-shot learning with pre-processing and feature engineering (Hartmann et al., 2023) could be a possible solution for PHUA testing, especially using the model in following subjects with a high potential risk of DM and CKD. Moreover, the models based on deep learning represent black boxes in this study, lacking explicit explanations for distinguishing sensorimotor performance in DM from that in CKD. Although visualization methods such as Grad-CAM (Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al., 2018), and I-GOS (Qi et al., 2019) exist to potentially elucidate model attention, these approaches offer visual insights without statistical significance and are susceptible to misleading interpretations (Subramanya et al., 2019). Developing interpretable AI warrants further investigation, involving visualization techniques like Grad-CAM, sensitivity analysis, and generative models. In the other way, human-selected features with interpretable feature engineering can be an innovative method for developing a explainable machine learning model (Hartmann et al., 2022; Hartmann et al., 2023). These efforts aim to assist clinical staff identifying meaningful features or key points for evaluating patient sensorimotor performance. Another limitation lies in the insufficient variety of diagnoses considered, limiting the model adaptability in clinical scenarios. Future studies should encompass diagnoses with similar sensorimotor impairments, such as carpal tunnel syndrome, peripheral neural damage, or neuromuscular disorders, to refine the model output accuracy. An additional limitation is that our study represents just the initial step toward rapid screening using PHUA with a DNN. Furthermore, participants with DM and CKD were exclusively recruited at severe stages. To establish a comprehensive clinical solution for rapid screening or sensorimotor evaluation, different stages and progressions of DM and CKD should be considered, ensuring model robustness across diverse patient profiles.
Our findings underscored the potential of PHUA coupled with a deep learning model to differentiate various sensorimotor patterns among healthy adults and patients with DM and CKD. For the evaluation of human sensorimotor performance based on time-series signals, the dilated CNN structure demonstrated notable accuracy and efficiency. Future studies require larger sample sizes encompassing varying disease severities and considerations for the comorbidity of DM and CKD to advance the next-generation model. Developing an interpretable model is crucial to facilitate its practical application in clinical settings.
In conclusion, our study highlights the capacity of the DNN model to distinguish between healthy adults, participants with DM, and CKD participants through the innovative motor performance evaluation tool, PHUA. PHUA integrated with the dil-CNN model exhibits remarkable stability and accuracy, presenting sensorimotor performance assessment as a novel approach to aid in evaluating CKD and DM diagnosis stages and offering an effective screening method for both disorders. This study presents an innovative application of machine learning in clinical evaluation, particularly for patients with DM and CKD.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.
ETHICS STATEMENT
The studies involving humans were approved by the Institutional Review Board at National Cheng Kung University Hospital. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS
P-CM: Investigation, Methodology, Writing–original draft, Writing–review and editing. H-YH: Conceptualization, Investigation, Resources, Writing–review and editing. C-FL: Investigation, Resources, Writing–review and editing, Writing–original draft. Y-SC: Writing–review and editing, Conceptualization, Methodology. I-TT: Conceptualization, Writing–review and editing, Funding acquisition, Investigation, Resources. L-CK: Conceptualization, Methodology, Writing–review and editing, Formal Analysis, Funding acquisition, Investigation, Resources, Writing–original draft. F-CS: Conceptualization, Funding acquisition, Methodology, Resources, Writing–review and editing, Project administration.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research work was financially supported by the Chi-Mei Medical Center and College of Medicine in National Cheng Kung University under grant no: CMNCKU-10815. This work was also financially supported by the Medical Device Innovation Center, National Cheng Kung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
ABBREVIATIONS
DM, diabetes mellitus; CKD, CKD chronic kidney disease; PHUA, pinch-holding-up-activity; HAR, human activity recognition; CNN, convolutional neural networks; FCN, fully convolutional network; ROC, receiver operating characteristic curve; AUC, area under the ROC curve; wF1, weighted F1 scores; VGG, VGG is a model name, naming after the Visual Geometry Group.

REFERENCES
	 Arık, S. Ö., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., et al. (2017). “Deep voice: real-time neural text-to-speech,” in Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia ( PMLR) 70. 
	 Arnold, R., Issar, T., Krishnan, A. V., and Pussell, B. A. (2016). Neurological complications in chronic kidney disease. JRSM Cardiovasc. Dis. 5, 204800401667768. doi:10.1177/2048004016677687
	 Asghar, O., Petropoulos, I. N., Alam, U., Jones, W., Jeziorska, M., Marshall, A., et al. (2014). Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care 37 (9), 2643–2646. doi:10.2337/dc14-0279
	 Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:180301271. 
	 Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., et al. (2020). TSFEL: time series feature extraction library. SoftwareX 11, 100456. doi:10.1016/j.softx.2020.100456
	 Baumgaertel, M. W., Kraemer, M., and Berlit, P. (2014). Neurologic complications of acute and chronic renal disease. Handb. Clin. neurology 119, 383–393. Elsevier. doi:10.1016/B978-0-7020-4086-3.00024-2
	 Bernardi, L., Spallone, V., Stevens, M., Hilsted, J., Frontoni, S., Pop Busui, R., et al. (2011). Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes. Metab. Res. Rev. 27 (7), 654–664. doi:10.1002/dmrr.1224
	 Biessels, G., Bril, V., Calcutt, N., Cameron, N., Cotter, M., Dobrowsky, R., et al. (2014). Phenotyping animal models of diabetic neuropathy: a consensus statement of the diabetic neuropathy study group of the EASD (Neurodiab). J. Peripher. Nerv. Syst. 19 (2), 77–87. doi:10.1111/jns5.12072
	 Bongaerts, B. W., Rathmann, W., Heier, M., Kowall, B., Herder, C., Stöckl, D., et al. (2013). Older subjects with diabetes and prediabetes are frequently unaware of having distal sensorimotor polyneuropathy: the KORA F4 study. Diabetes Care 36 (5), 1141–1146. doi:10.2337/dc12-0744
	 Bril, V., England, J., Franklin, G. M., Backonja, M., Cohen, J., Del Toro, D., et al. (2011). Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American academy of neurology, the American association of neuromuscular and electrodiagnostic medicine, and the American academy of physical medicine and rehabilitation. Am. Acad. Phys. Med. Rehabilitation 3 (4), 345–352. e21. doi:10.1016/j.pmrj.2011.03.008
	 Callaghan, B. C., Price, R. S., and Feldman, E. L. J. (2015). Distal symmetric polyneuropathy: a review. Jama 314 (20), 2172–2181. doi:10.1001/jama.2015.13611
	 Castelvecchi, D. (2016). Can we open the black box of AI?Nat. News 538 (7623), 20–23. doi:10.1038/538020a
	 Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. N. (2018). “Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) ( IEEE).
	 Cheng, W. X., Suganthan, P. N., and Katuwal, R. (2021). Time series classification using diversified ensemble deep random vector functional link and resnet features. Appl. Soft Comput. 112, 107826. doi:10.1016/j.asoc.2021.107826
	 Chiu, H. Y., Hsu, H. Y., Kuo, L. C., Chang, J. H., and Su, F. C. (2009). Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control. J. Orthop. Res. 27 (8), 1116–1121. doi:10.1002/jor.20859
	 Chiu, H.-Y., Hsu, H.-Y., Kuo, L.-C., Su, F.-C., Yu, H.-I., Hua, S.-C., et al. (2014). How the impact of median neuropathy on sensorimotor control capability of hands for diabetes: an achievable assessment from functional perspectives. PloS one 9 (4), e94452. doi:10.1371/journal.pone.0094452
	 Dyck, P. J., Albers, J. W., Andersen, H., Arezzo, J. C., Biessels, G. J., Bril, V., et al. (2011). Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes. Metab. Res. Rev. 27 (7), 620–628. doi:10.1002/dmrr.1226
	 Ezzeldin, N., Abdel Galil, S. M., Said, D., Kamal, N. M., and Amer, M. J. I. (2019). Polyneuropathy associated with chronic hemodialysis: clinical and electrophysiological study. Clin. Electrophysiol. study 22 (5), 826–833. doi:10.1111/1756-185x.13462
	 Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019). Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33 (4), 917–963. doi:10.1007/s10618-019-00619-1
	 Feldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne, D. W., Wright, D. E., Bennett, D. L., et al. (2019). Diabet. neuropathy5 (1), 1–18. doi:10.1038/s41572-019-0092-1
	 Finnerup, N. B., Attal, N., Haroutounian, S., McNicol, E., Baron, R., Dworkin, R. H., et al. (2015). Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 14 (2), 162–173. doi:10.1016/s1474-4422(14)70251-0
	 Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press. 
	 Hannink, J., Kautz, T., Pasluosta, C. F., Barth, J., Schülein, S., Gaßmann, K.-G., et al. (2017). Mobile stride length estimation with deep convolutional neural networks. IEEE J. Biomed. health Inf. 22 (2), 354–362. doi:10.1109/jbhi.2017.2679486
	 Hannink, J., Kautz, T., Pasluosta, C. F., Gaßmann, K.-G., Klucken, J., and Eskofier, B. M. (2016). Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J. Biomed. health Inf. 21 (1), 85–93. doi:10.1109/jbhi.2016.2636456
	 Harris, M. I., and Eastman, R. C. (2000). Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes/metabolism Res. Rev. 16 (4), 230–236. doi:10.1002/1520-7560(2000)9999:9999<::aid-dmrr122>3.3.co;2-n
	 Hartmann, Y., Liu, H., Lahrberg, S., and Schultz, T. (2022). “Interpretable high-level features for human activity recognition,” in 15th International Conference on Bio-inspired Systems and Signal Processing, Vienna, Austria ( BIOSIGNALS).
	 Hartmann, Y., Liu, H., and Schultz, T. (2023). High-level features for human activity recognition and modeling. Cham: Springer Nature Switzerland. 
	 He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition.
	 Hsu, H. Y., Chiu, H. Y., Lin, H. T., Su, F. C., Lu, C. H., and Kuo, L. C. (2015). Impacts of elevated glycaemic haemoglobin and disease duration on the sensorimotor control of hands in diabetes patients. Diabetes/metabolism Res. Rev. 31 (4), 385–394. doi:10.1002/dmrr.2623
	 Hsu, H. Y., Kuo, L. C., Chiu, H. Y., Jou, I. M., and Su, F. C. (2009). Functional sensibility assessment. Part II: effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release. J. Orthop. Res. 27 (11), 1534–1539. doi:10.1002/jor.20903
	 Hsu, H.-Y., Kuo, L.-C., Kuo, Y.-L., Chiu, H.-Y., Jou, I.-M., Wu, P.-T., et al. (2013). Feasibility of a novel functional sensibility test as an assisted examination for determining precision pinch performance in patients with carpal tunnel syndrome. Plos one 8 (8), e72064. doi:10.1371/journal.pone.0072064
	 Hsu, H.-Y., Lin, C.-F., Su, F.-C., Kuo, H.-T., Chiu, H.-Y., and Kuo, L.-C. (2012). Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients. J. neuroengineering rehabilitation 9 (1), 26–29. doi:10.1186/1743-0003-9-26
	 Im, S., Kim, S.-R., Park, J. H., Kim, Y. S., and Park, G.-Y. (2012). Assessment of the medial dorsal cutaneous, dorsal sural, and medial plantar nerves in impaired glucose tolerance and diabetic patients with normal sural and superficial peroneal nerve responses. Diabetes Care 35 (4), 834–839. doi:10.2337/dc11-1001
	 Jannat, M. K. A., Islam, M. S., Yang, S.-H., and Liu, H. (2023). Efficient wi-fi-based human activity recognition using adaptive antenna elimination. IEEE Access 11, 105440–105454. doi:10.1109/access.2023.3320069
	 Karlsson, P., Hincker, A. M., Jensen, T. S., Freeman, R., and Haroutounian, S. J. P. (2019). Structural, functional, and symptom relations in painful distal symmetric polyneuropathies: a systematic review160(2), 286–297. doi:10.1097/j.pain.0000000000001381
	 Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., and Eskofier, B. M. (2017). Activity recognition in beach volleyball using a deep convolutional neural network. Data Min. Knowl. Discov. 31 (6), 1678–1705. doi:10.1007/s10618-017-0495-0
	 Kempler, P., Amarenco, G., Freeman, R., Frontoni, S., Horowitz, M., Stevens, M., et al. (2011). Gastrointestinal autonomic neuropathy, erectile-, bladder-and sudomotor dysfunction in patients with diabetes mellitus: clinical impact, assessment, diagnosis, and management. 
	 Krogh, A., and Hertz, J. A. (1992). A simple weight decay can improve generalization. Adv. neural Inf. Process . 
	 Längkvist, M., Karlsson, L., and Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 42, 11–24. doi:10.1016/j.patrec.2014.01.008
	 LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature. 521 (7553), 436–444. doi:10.1038/nature14539
	 Lei, X., Pan, H., and Huang, X. (2019). A dilated CNN model for image classification. IEEE Access 7, 124087–124095. doi:10.1109/access.2019.2927169
	 Lin, H., and Jegelka, S. (2018). Resnet with one-neuron hidden layers is a universal approximator. Adv. neural Inf. Process. Syst. 31. doi:10.48550/arXiv.1806.10909
	 Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint arXiv:13124400. 
	 Liu, H., Hartmann, Y., and Schultz, T. (2021). “Motion Units: generalized sequence modeling of human activities for sensor-based activity recognition,” in 29th European Signal Processing Conference, EUSIPCO 2021,  (Dublin, Ireland, August 23–27, 2021) ( IEEE).
	 Liu, H., Xue, T., and Schultz, T. (2023). “On a real real-time wearable human activity recognition system,” in 2021, 29th European signal processing conference (EUSIPCO), Lisbon, Portugal ( IEEE).
	 Moorthi, R. N., Doshi, S., Fried, L. F., Moe, S. M., Sarnak, M. J., Satterfield, S., et al. (2019). Chronic kidney disease and peripheral nerve function in the health, aging and body composition study. Nephrol. Dial. Transplant. 34 (4), 625–632. doi:10.1093/ndt/gfy102
	 O Brien, P. D., Hinder, L. M., Sakowski, S. A., Feldman, E., and signaling, R. (2014). ER stress in diabetic peripheral neuropathy: a new therapeutic target. Antioxid. Redox Signal 21 (4), 621–633. doi:10.1089/ars.2013.5807
	 Parving, H. H., Lewis, J. B., Ravid, M., Remuzzi, G., and Hunsicker, L. G. (2006). Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 69 (11), 2057–2063. doi:10.1038/sj.ki.5000377
	 Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the exploding gradient problem. Corr. abs/ 2 (417), 1, 12115063. 
	 Pascanu, R., Mikolov, T., and Bengio, Y. (2013). “On the difficulty of training recurrent neural networks,” in International conference on machine learning,  (Atlanta, Georgia, United States, June 17–19, 2013) ( PMLR). 
	 Pippitt, K., Li, M., and Gurgle, H. E. (2016). Diabetes mellitus: screening and diagnosis. Am. Fam. physician 93 (2), 103–109.
	 Pop-Busui, R., Boulton, A. J., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., et al. (2017). Diabetic neuropathy: a position statement by the American diabetes association. Am. Diabetes Assoc. 40 (1), 136–154. doi:10.2337/dc16-2042
	 Qi, Z., Khorram, S., and Li, F. (2019). Visualizing deep networks by optimizing with integrated gradients. arXiv preprint arXiv:190500954. 
	 Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Netw. 61, 85–117. doi:10.1016/j.neunet.2014.09.003
	 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). “Grad-cam: visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision.
	 Shieh, S. J., Hsu, H. Y., Kuo, L. C., Su, F. C., and Chiu, H. Y. (2011). Correlation of digital sensibility and precision of pinch force modulation in patients with nerve repair. J. Orthop. Res. 29 (8), 1210–1215. doi:10.1002/jor.21365
	 Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. 
	 Singleton, J. R., Smith, A. G., and Bromberg, M. (2001). Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 24 (8), 1448–1453. doi:10.2337/diacare.24.8.1448
	 Smith, A. G., and Singleton, J. (2012). Diabetic neuropathy. Contin. Minneap Minn 18 (1), 60–84. doi:10.1212/01.con.0000411568.34085.3e
	 Spallone, V., Ziegler, D., Freeman, R., Bernardi, L., Frontoni, S., Pop-Busui, R., et al. (2011). Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Assess. diagnosis, Manag. 27 (7), 639–653. doi:10.1002/dmrr.1239
	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (1), 1929–1958. 
	 Stevens, L. A., and Levey, A. S. (2009). Current status and future perspectives for CKD testing. Am. J. Kidney Dis. 53 (3), S17–S26. doi:10.1053/j.ajkd.2008.07.047
	 Subramanya, A., Pillai, V., and Pirsiavash, H. (2019). “Fooling network interpretation in image classification,” in Proceedings of the IEEE/CVF international conference on computer vision.
	 Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., et al. (2022). IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119. doi:10.1016/j.diabres.2021.109119
	 Sundström, J., Bodegard, J., Bollmann, A., Vervloet, M. G., Mark, P. B., Karasik, A., et al. (2022). Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: the CaReMe CKD study. Lancet Regional Health–Europe 20, 100438. doi:10.1016/j.lanepe.2022.100438
	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition.
	 Tabatabaei-Malazy, O., Mohajeri-Tehrani, M., Madani, S., Heshmat, R., and Larijani, B. (2011). The prevalence of diabetic peripheral neuropathy and related factors. Iran. J. public health 40 (3), 55–62.
	 Tesfaye, S., Boulton, A. J., Dyck, P. J., Freeman, R., Horowitz, M., Kempler, P., et al. (2010). Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33 (10), 2285–2293. doi:10.2337/dc10-1303
	 Thomas, M. C., Cooper, M. E., and Zimmet, P. (2016). Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat. Rev. Nephrol. 12 (2), 73–81. doi:10.1038/nrneph.2015.173
	 Tu, I.-T., Cheng, Y.-S., Mo, P.-C., Hsu, H.-Y., Kuo, L.-C., Jou, I.-M., et al. (2019). Classifying hand sensorimotor functions of the chronic kidney disease patients using novel manual tactile test and pinch-holding-up activity. PloS one 14 (7), 0219762. doi:10.1371/journal.pone.0219762
	 Vincent, A. M., Callaghan, B. C., Smith, A. L., and Feldman, ELJNRN (2011). Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 7 (10), 573–583. doi:10.1038/nrneurol.2011.137
	 Wang, Z., Yan, W., and Oates, T. (2017). “Time series classification from scratch with deep neural networks: a strong baseline,” in 2017 International joint conference on neural networks (IJCNN) ( IEEE).
	 Zenker, J., Ziegler, D., and Rjtin, C. (2013). Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci. 36 (8), 439–449. doi:10.1016/j.tins.2013.04.008
	 Ziegler, D., Rathmann, W., Dickhaus, T., Meisinger, C., and Mielck, A. (2008). Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care 31 (3), 464–469. doi:10.2337/dc07-1796

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Mo, Hsu, Lin, Cheng, Tu, Kuo and Su. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 25 March 2024
doi: 10.3389/fphys.2024.1340513


[image: image2]
A preliminary exploration of the regression equation for performance in amateur half-marathon runners: a perspective based on respiratory muscle function
Houyuan Zhu1,2, Xiaowei Han2, Guoqing Miao2 and Qi Yan1*
1China Institute of Sport Science, Beijing, China
2School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
Edited by:
Elvira Padua, Università telematica San Raffaele, Italy
Reviewed by:
Beat Knechtle, University of Zurich, Switzerland
Cristiano Maria Verrelli, University of Rome Tor Vergata, Italy
José Bragada, Polytechnic Institute of Bragança (IPB), Portugal
* Correspondence: Qi Yan, 13501302943@126.com
Received: 18 November 2023
Accepted: 12 March 2024
Published: 25 March 2024
Citation: Zhu H, Han X, Miao G and Yan Q (2024) A preliminary exploration of the regression equation for performance in amateur half-marathon runners: a perspective based on respiratory muscle function. Front. Physiol. 15:1340513. doi: 10.3389/fphys.2024.1340513

This document presents a study on the relationship between physical characteristics, respiratory muscle capacity, and performance in amateur half-marathon runners. The aim of this study was to establish a preliminary predictive model to provide insights into training and health management for runners. Participants were recruited from the 2023 Beijing Olympic Forest Park Half-Marathon, comprising 233 individuals. Personal information including age, gender, height, weight, and other relevant factors were collected, and standardized testing methods were used to measure various parameters. Correlation analysis revealed significant associations between gender, height, weight, maximum expiratory pressure, maximal inspiratory pressure, and half-marathon performance. Several regression equations were developed to estimate the performance of amateur marathon runners, with a focus on gender, weight, maximum expiratory pressure, and height as predictive factors. The study found that respiratory muscle training can delay muscle fatigue and improve athletic performance. Evaluating the level of respiratory muscle capacity in marathon athletes is crucial for defining the potential speed limitations and achieving optimal performance. The information from this study can assist amateur runners in optimizing their training methods and maintaining their physical wellbeing.
Keywords: half marathon, respiratory muscle, maximum expiratory pressure, multiple linear regression, running

1 INTRODUCTION
With the changing modern lifestyle and the heightened health consciousness among individuals, an increasing number of people are actively engaging in running activities, considering it as one of the means to promote physical fitness and derive enjoyment from life. As a highly popular long-distance running event, the half marathon has garnered significant participation from amateur runners (Anthony et al., 2014; Knechtle et al., 2016; Divine et al., 2018; Cuk et al., 2020). For these amateur runners, the pursuit of running extends beyond the pleasure it brings; they also seek to gain insights into their physical condition and athletic prowess, aiming to optimize their training methods and maintain optimal physical wellbeing (Hammer and Podlog, 2016; Zach et al., 2017).
The marathons is long-distance running races that cover a distance of 42.195 km. Since the first modern Olympic Games held in Athens in 1896 to the inaugural “city marathon” in New York City in 1976 (Burfoot, 2007), the popularity of marathon events has grown steadily, transforming into a global social phenomenon (Vitti et al., 2020). Among them, the half marathon, as a challenging yet relatively shorter marathon race, has also gained popularity among running enthusiasts (Nikolaidis et al., 2019). The number of participants in half marathons has been increasing annually in Europe and America (Anthony et al., 2014; Knechtle et al., 2016), while in China, there has been a rise in marathon events that include a half marathon category (Zuo et al., 2019). As the enthusiasm for these events continues to grow (Burfoot, 2007; Knechtle et al., 2018; Vitti et al., 2020)], the range of participants has expanded, accommodating both amateur and elite runners, and the performance of participants has steadily improved (Gómez-Molina et al., 2017). Marathon events are influenced by various uncontrollable factors for runners, such as climate conditions including temperature, humidity, and atmospheric pressure, which exhibit seasonal characteristics (Weiss et al., 2022a; Weiss et al., 2022b). Individual characteristics such as age, gender, physical fitness, psychological traits, and conditions, as well as training variables including tactics and pacing strategies, also play a significant role (Boullosa et al., 2020; Cuk et al., 2021). For instance, regarding environmental factors (Weiss et al., 2022a), temperature and humidity have different effects on the pacing of marathon runners in different age groups. In terms of body measurements, some studies have found a negative correlation between half marathon times and body weight (Hoffman, 2008; Knechtie et al., 2009; Zillmann et al., 2013). Regarding training variables, performance of athletes is positively correlated with certain training variables, such as weekly running distance (in kilometers), weekly training frequency, average exercise speed, and weekly training hours (Rüst et al., 2011). Overall, males tend to be faster than females (Vitti et al., 2020), experienced runners have higher step frequencies and lower energy expenditure compared to novices (De Ruiter et al., 2014), and better athletic performance can be achieved through shorter ground contact times (Santos-Concejero et al., 2013).
During long-distance running, the function of the respiratory muscles plays a crucial role in athletes’ endurance and performance (Tiller, 2019). An increasing body of research indicates a significant association between respiratory muscles and running performance and athletic ability (HajGhanbari et al., 2013). During running, the respiratory muscle group needs to generate sufficient force to meet the demands of gas exchange, and robust respiratory muscles can provide better breathing efficiency and oxygen supply, thereby influencing the endurance and speed of running (Aliverti et al., 1997). The respiratory muscles refer to the group of muscles involved in the breathing process, with the diaphragm being the most vital muscle responsible for the normal execution of respiratory movements (West, 2012). The strength of the respiratory muscles plays a critical role in the breathing process and is considered an important marker of respiratory capacity and overall performance (Silva et al., 2018). Fatigue of the respiratory muscles during high-intensity or sustained exercise increases sympathetic nervous system activity and constriction of blood vessels in the exercising limbs, which can impair blood flow to the muscles, subsequently affecting athletic performance (St Croix et al., 2000; Dempsey et al., 2002). Therefore, incorporating respiratory muscle training can help delay muscle fatigue and improve athletic performance (Held and Pendergast, 2014). Among the various parameters used to assess respiratory muscle strength, Maximal Inspiratory Pressure (MIP) and Maximum Expiratory Pressure (MEP) are crucial indicators that hold significant implications for evaluating respiratory function and predicting changes in lung capacity (Pessoa et al., 2014). They are widely employed as effective measures for assessing respiratory muscle strength (Li et al., 1986) and provide a fast and non-invasive method to gauge diaphragm strength (Sachs et al., 2009). The measurement of MIP and MEP typically involves using specialized devices such as a negative pressure peak flow meter or respiratory muscle strength meter, allowing the individual being tested to measure the maximum negative pressure generated during maximum inhalation or exhalation (Schoser et al., 2017).
In recent years, with the advancement of runners’ capabilities, there has been a proliferation of research on predicting marathon performance. However, most studies have primarily focused on variables such as maximal oxygen uptake, body composition, and running mechanics (Nikolaidis and Knechtle, 2023) Surprisingly, there is a dearth of research concerning the evaluation of respiratory muscle levels in marathon runners, despite evidence suggesting that improvements in respiratory muscle function can enhance endurance performance in middle to long-distance running (Chang et al., 2021). Evaluating the respiratory muscle levels in marathon runners holds significant importance in defining the athletes’ potential speed limits and achieving optimal performance.
The aim of this study is to develop a preliminary predictive model of runner training and health management by surveying and measuring amateur marathoners. Also, a standardized test of respiratory muscle capacity will be used to collect personal information including age, gender, height, weight and related factors. We hypothesize that MIP and MEP are associated with half-marathon performance.
2 OBJECTS AND METHODS
2.1 Research object
Participants were recruited from the official “Olsen Exercise 2023 Beijing Olympic Forest Park Half Marathon” held at the Beijing Olympic Forest Park in 2023. Inclusion criteria were as follows: 1) registered participants of the half marathon who completed the race; 2) voluntary participation in the testing process; 3) good physical condition; 4) abstained from food intake within 3 h before the testing. Exclusion criteria included: 1) failure to complete the race; 2) engagement in high-intensity exercise or staying up late within 24 h before the testing; 3) use of medications that could affect respiratory function. After careful screening and data cleansing, a total of 233 participants’ data were selected (Table 1). These participants’ data were randomly divided into two groups: a modeling group consisting of 183 individuals and a validation group consisting of 50 individuals. There were no statistically significant differences in the basic characteristics between the two groups of participants.
TABLE 1 | Basic Overview of Metrics for modeling group and validation group.
[image: Table comparing two groups: The modeling group (n=183) has an average age of 41.80 ± 11.73 with a gender split of 92 males and 91 females. The validation group (n=50) has an average age of 40.74 ± 9.42, with 26 males and 24 females. The p-value is 0.455.]2.2 Height and weight measurement
2.2.1 Testing instruments
Instrumentation The Inbody720 body (Biospace, Seoul, South Korea) composition analyzer was used for the measurements.
2.2.2 Test methods
Measurement Procedure Participants were instructed to stand barefoot and dry on the electrode plates of the analyzer, ensuring full contact between their feet and the electrodes. They were also asked to hold the device’s handle while maintaining contact between their fingers and the electrodes. Once the measurement was completed, the data were recorded.
2.3 Maximum inspiratory pressure and maximum expiratory pressure testing
2.3.1 Testing instruments
Instrumentation The respiratory muscle assessment and training device (model JL-REX01F, with pressure sensors from ATS in the United States and ERS in Europe, with an error margin of 0.5 cmH2O) was used for the testing.
2.3.2 Test methods
The subject sat in the front 1/2 of the chair in an upright position, cleaned the foreign matter in the nasal cavity, put on a nose clip, opened the legs stepped on the ground with shoulder width, and kept the upper body straight. The MIP test requires the subject to completely exhale to the residual volume, then wrap the mouthpiece tightly with the mouth immediately after exhaling, and inhale through the mouth for about 3 s. The test operator encourages the subject verbally. The MEP test requires the subject to inhale completely to saturation, then wrap the mouthpiece with his mouth immediately after inhaling, and exhale through the mouth for about 3 s. The test operator encourages the subject verbally. For time reasons, instead of providing a specific warm-up, subjects were allowed 2 maximal attempts per test, with approximately 60 s between each attempt. If the procedure is performed incorrectly (e.g., using the buccinator muscle), the measurement for that attempt is not recorded. During the measurement process, the same operator performs the measurement using the above-unified process.
2.4 Establishment of prediction equation and cross-validation
Multiple linear regression analysis was employed to establish a regression equation, with the participants’ half-marathon time as the dependent variable and their age, gender, height, weight, MEP, and MIP as independent variables in a stepwise manner. After establishing the equation, the measurement data of the 50 participants in the validation group were inputted into the regression equation for cross-validation. The predicted half-marathon time was compared with the actual measured half-marathon time, and the correlation was analyzed.
2.5 Statistical analysis
The collected data were double-entered into Microsoft Excel 2019, and the results were presented as mean ± standard deviation. Statistical analysis was performed using SPSS 21.0 software. The normal distribution of the data was assessed using the Kolmogorov-Smirnov test. Pearson correlation coefficient was used to evaluate the relationship between half-marathon performance and influencing factors (significance level set at p < 0.05 and highly significant at p < 0.01). The coefficient of determination (R2) was used to assess the strength of the explanatory variables on half-marathon performance. Paired t-tests were conducted to analyze the differences between the actual and predicted values, with a significance level of p < 0.05.
Gender was represented using dummy coding, with males assigned a value of 1 and females assigned a value of 2. Significant variables were selected as independent variables, and half-marathon performance was considered the dependent variable. Regression analysis was conducted using a stepwise approach to establish the regression equation. The regression model was evaluated through hypothesis testing, goodness of fit testing, residual analysis, multicollinearity testing, and cross-validation.
3 RESULTS
3.1 Performance and relevant metrics of the model group in half marathon
Table 2 presents the basic characteristics of the 183 participants in the modeling group with respect to various running indicators. The results indicate that the mean Maximal Inspiratory Pressure (MIP) was 100.55 ± 30.62, Maximum Expiratory Pressure (MEP) was 101.44 ± 30.50, height was 168.28 ± 7.89, weight was 65.29 ± 10.97, and age was 42.91 ± 11.25. In terms of gender differences, males exhibited significantly higher values than females in all the measured indicators (p < 0.01).
TABLE 2 | Basic overview of metrics for the model group.
[image: A table comparing indices between male (n = 92) and female (n = 91) groups, including ensemble data. Indices include age, height, weight, MIP, MEP, and grades. The female group shows statistically significant differences in height, weight, MIP, MEP, and grades compared to males, indicated by an asterisk and a p-value less than 0.01.]3.2 Correlation analysis between various metrics and half marathon time in the model group
Based on the correlation analysis, as shown in Table 3, it was found that gender, height, weight, MEP, and MIP were all significantly correlated with the half marathon performance (p < 0.01). However, age showed no significant correlation with the half marathon performance (p > 0.05).
TABLE 3 | Correlation analysis of various metrics with half marathon performance in the model group.
[image: Table displaying correlation coefficients (r) and significance values (p) for different indicators: Gender (r = 0.697, p < 0.001), Age (r = 0.065, p > 0.05), Height (cm) (r = -0.284, p < 0.001), Weight (kg) (r = -0.132, p < 0.05), MIP (r = -0.254, p < 0.005), MEP (r = -0.438, p < 0.01).]3.3 Establishing a regression equation to predict half marathon performance
The stepwise regression analysis was performed by including gender, height, weight, MIP, and MEP as predictors in the regression equation. The regression analysis results are presented in Table 4 and Table 5; Figure 1.
TABLE 4 | Summary of regression models.
[image: Table displaying statistical data for four models with columns: Model, R, R2, Adjusted R-square, Standard error, and Durbin-Watson values. Models use predictors: constant and gender; constant, gender, weight; constant, gender, weight, MEP; constant, gender, weight, MEP, height.]TABLE 5 | Correlation coefficients in Equation 4.
[image: A table presents regression analysis results with columns for indicators, beta coefficients, standard error, standardized coefficients, t-values, p-values, and VIF. Indicators include constant, gender, weight (kg), MEP, and height (cm). Beta coefficients range from -0.251 to 86.113, with corresponding standard errors, standardized coefficients, and t-values. The p-values for all indicators are significant, with the highest VIF being 4.004 for weight.][image: Scatter plot showing the relationship between half-marathon time and three variables: height (red circles), weight (blue squares), and MEP (green triangles). The x-axis represents half-marathon time, while the y-axis represents the respective measurements of each variable. A line of best fit appears for MEP. Equation 4 and a formula are displayed above and within the graph.]FIGURE 1 | Variation of correlation coefficients in Equation 4.
Based on the regression results, the following equations can be derived to estimate the performance of amateur marathon runners:
Equation 1: Half-marathon time = 107.219 + 14.325 * gender.
Equation 2: Half-marathon time = 42.499 + 25.821 * gender (male = 1, female = 2) + 0.728 * weight.
Equation 3: Half-marathon time = 50.238 + 24.193 * gender (male = 1, female = 2) + 0.779 * weight—0.086 * MEP.
Equation 4: Half-marathon time = 86.113 + 23.223 * gender (male = 1, female = 2) + 0.905 * weight—0.090 * MEP - 0.251 * height.
Based on the results in Table 4:
Model 1 has a correlation coefficient (R) of 0.697, indicating a moderate positive correlation between half-marathon time and gender. The coefficient of determination (R-squared) is 0.486, suggesting that this model can explain 48.6% of the variance in half-marathon time. The adjusted R-squared is 0.483, indicating a slight improvement in the model’s explanatory power after considering the number of independent variables and sample size. The standard error is 7.406, representing the average standard deviation of the prediction errors.
Model 2 has a correlation coefficient (R) of 0.880, indicating a strong positive correlation between half-marathon time and gender and weight. The coefficient of determination (R-squared) is 0.774, suggesting that this model can explain 77.4% of the variance in half-marathon time. The adjusted R-squared is 0.772, indicating a slight improvement in the model’s explanatory power after considering the number of independent variables and sample size. The standard error is 4.924, slightly higher than in Model 1, indicating a slightly increased average standard deviation of the prediction errors.
Model 3 has a correlation coefficient (R) of 0.907, indicating a strong positive correlation between half-marathon time and gender, weight, and MEP. The coefficient of determination (R-squared) is 0.823, suggesting that this model can explain 82.3% of the variance in half-marathon time. The adjusted R-squared is 0.820, indicating a slight improvement in the model’s explanatory power after considering the number of independent variables and sample size. The standard error is 4.378, slightly lower than in Model 2, indicating a slightly reduced average standard deviation of the prediction errors.
Model 4 has a correlation coefficient (R) of 0.912, indicating a strong positive correlation between half-marathon time and gender, weight, MEP, and height. The coefficient of determination (R-squared) is 0.832, suggesting that this model can explain 83.2% of the variance in half-marathon time. The adjusted R-squared is 0.828, indicating a slight improvement in the model’s explanatory power after considering the number of independent variables and sample size. The standard error is 4.266, slightly higher than in Model 3, indicating a slightly reduced average standard deviation of the prediction errors. The Durbin-Watson statistic is 1.939, which is close to 2, indicating that the errors in this model are relatively independent.
In conclusion, Model 4 exhibits a strong explanatory power with high R-squared and adjusted R-squared values. It takes into account the influence of gender, weight, MEP, and height variables. The small standard error suggests a good fit for the model. The Durbin-Watson statistic indicates relatively independent error terms in the model. Overall, the results show that factors such as gender, weight, MEP, and height significantly influence half-marathon performance. These models have relatively strong explanatory power and small standard errors, providing valuable insights for further research.
3.4 Backward elimination test
Based on the results in Table 6, a validity test was conducted to compare the actual half-marathon times of the validation group with the predicted half-marathon times obtained from Model 4. The paired sample t-test was performed to assess the differences between the two sets of data, and a correlation analysis was conducted to examine the relationship between them.
TABLE 6 | Discrepancy and correlation between actual and predicted values of half-marathon performance.
[image: Table displaying statistical analysis results. Observed data: 128.04 ± 9.75. Verified data: 128.40 ± 9.64. Paired-sample t-test shows t = -0.439, P = 0.663. Pearson correlation test shows r = 0.880, P = 0.000.]The results indicate that there is no statistically significant difference in the differences between the two sets of data (p > 0.05). Additionally, a significant correlation (p < 0.05) exists between the predicted and actual half-marathon times. Furthermore, based on Figure 2, it can be observed that there is a good linear relationship between the predicted MIP and the measured MIP.
[image: Scatter plot showing predicted values versus actual values, with a diagonal line indicating a trend. The equation y = 15.96 + 0.87x is displayed, and the R-squared value is 0.77, indicating a strong correlation.]FIGURE 2 | Scatter plot of predicted half-marathon and observed half-marathon values in Equation 4.
These findings suggest that the predicted half-marathon times obtained from Model 4 are in agreement with the actual half-marathon times of the validation group. The lack of a significant difference and the presence of a significant correlation indicate the validity of the model’s predictions. Additionally, the satisfactory linear relationship between the predicted and measured MIP further supports the reliability of the model’s estimations.
4 DISCUSSION
4.1 The scientific validity of the regression equation
Maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) are important indicators for assessing respiratory muscle strength and aerobic capacity (Mizuno et al., 2022). In the context of running, the development of respiratory muscle strength and aerobic capacity is crucial for running performance and endurance. Higher respiratory muscle strength is closely associated with improved running performance. By enhancing respiratory muscle strength, athletes can improve gas exchange efficiency in the lungs, enhance breathing efficiency, and effectively supply oxygen to the working muscles, thus delaying the onset of fatigue (Katayama et al., 2019). The present study revealed correlations between MIP, MEP, and half-marathon performance, with MEP exhibiting the highest correlation among all variables (−0.438,p < 0.01). This indicates the feasibility of using respiratory muscle levels to predict half-marathon perfor mance. This finding holds particular significance for long-distance running and endurance training, as sustained oxygen supply is vital for maintaining prolonged athletic performance. Moreover, higher MIP and MEP are also associated with running speed and explosive power. Robust respiratory muscle strength enables greater respiratory flow rate and lung capacity, allowing athletes to maintain normal breathing frequency and depth during high-intensity exercise (Romer and Polkey, 2008; Kilding et al., 2010). These findings underscore the importance of respiratory muscle strength not only for endurance-related activities but also for short-distance sprints, accelerations, and explosive power training. In such activities, rapid and efficient breathing supports high-intensity muscle contractions and precise technical movements.
In this study, a stepwise regression analysis was employed to establish four regression equations for predicting half-marathon performance. Comparing the multiple correlation coefficient (R), coefficient of determination (R-square), adjusted coefficient of determination (adjusted R-square), and standard error of estimate (SEE) among the established regression equations, it is evident from Table 4 that Equation 4 exhibited the best fit (R-square = 0.832). The regression equation for this model is half-marathon performance = 86.113 + 23.223 * gender (male = 1, female = 2) + 0.905 * weight—0.090 * MEP—0.251 * height. Validation of the variables in this equation against the validation dataset revealed no significant differences between the two groups (t = −0.439, p > 0.05), yet a significant correlation was observed (r = 0.880, p < 0.01).
In the subsequent steps of building the regression equation, gender entered the model in the first step, consistent with the prediction results of the other regression equations. Gender was found to have a significant influence on half-marathon performance. In the second step, weight entered the model as the second independent variable. This could be attributed to the fact that half-marathon runners, as amateur enthusiasts without professional training, exhibit variations in body weight, which is indicative of their athletic abilities. The negative correlation between weight and half-marathon performance aligns with common understanding, as individuals who engage in regular physical activity, particularly in long-distance running, tend to have lower body weight compared to their counterparts of the same age group. In the third step, MEP entered the model as the third variable. This parameter demonstrated a moderate correlation with half-marathon performance (−0.438, p < 0.01). Previous research has also demonstrated that improvements in respiratory muscle strength can enhance performance in various exercise modalities, including running, cycling, swimming, and rowing (Shei, 2018).
4.2 The value of assessing respiratory muscle strength in half-marathon runners
Half-marathon performance is influenced by multiple factors. Numerous scholars, both domestically and internationally, have established different prediction models based on the underlying mechanisms and influencing factors of half-marathon performance. These models primarily focus on variables such as weekly running distance, weekly running frequency, and maximal oxygen uptake, often employing multiple linear regression as the primary analytical approach (Doherty et al., 2020). However, the incorporation of respiratory muscle strength, represented by maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP), in regression equations has been rarely explored.
Additionally, higher MIP and MEP levels are associated with running speed and explosive power. Robust respiratory muscle strength enables greater respiratory flow and lung capacity, allowing athletes to maintain normal breathing frequency and depth even at higher exercise intensities (Romer and Polkey, 2008; Kilding et al., 2010).This is especially significant for short-distance running, sprinting, and explosive training, as rapid and efficient respiration supports high-intensity muscle contractions and facilitates precise execution of technical movements.
Previous studies on respiratory muscles have primarily focused on patients and non-exercising healthy individuals. As early as 2000, researchers investigated the lower limit of normal reference values for maximal inspiratory pressure (MIP) in healthy adults aged 18–82 years with normal lung function. These reference values were intended for use in pulmonary function laboratories for both young and elderly patients (Hautmann et al., 2000). In healthy young Indonesian adults, a rapid and convenient measurement of chest expansion was found to be useful for screening respiratory muscle strength in patients (Gopalakrishna et al., 2011). A study examining maximal respiratory pressures in healthy Brazilian children revealed that boys had higher values than girls, and respiratory pressure increased with age. Age and gender were included in the formula for maximal inspiratory pressure, while age and body weight (for boys) were included in the formula for maximal expiratory pressure (Marcelino et al., 2022). Furthermore, several researchers have explored the correlation of factors other than lung function. In a 2016 study, a strong correlation (r = 0.76) was found between MIP and handgrip strength in healthy young and middle-aged individuals. A multiple linear regression model was established, suggesting that this indirect assessment could aid in evaluating the relationship between hand and inspiratory muscles, particularly the diaphragm (Raab et al., 2016). In a recent 2023 study, the relationship between inspiratory muscle strength and balance in women aged 41–80 years in the northeastern region of Brazil was investigated. The results showed that weaker inspiratory muscle strength tripled the risk of poor performance in balance testing. Early identification of individuals at risk of respiratory muscle weakness or balance impairment is crucial for preventive measures and targeted interventions (Azevedo et al., 2023). Additionally, respiratory system diseases or conditions can also affect MIP (Raab et al., 2016). Although previous studies on respiratory muscles have provided insights into healthy individuals and patients, the limited sample size and restricted generalizability, as well as the lack of standardized evaluation criteria and varying reported reference values, make them less applicable to the athletic population.
Marathon running, as a highly challenging endurance sport, places significant demands on respiratory muscle strength during prolonged and intense physical activity, playing a crucial role in maintaining respiratory function and exercise performance. Multiple studies have indicated that marathon running exerts an influence on athletes’ respiratory muscle strength. Following the completion of a marathon, athletes often experience respiratory muscle fatigue, attributed to the prolonged and intense nature of the exercise, leading to a decline in respiratory muscle strength (Loke et al., 1982). In ultra-marathon events, athletes may face even more severe respiratory muscle fatigue (Ker and Schultz, 1996). In high-altitude ultra-marathons, it has been observed that respiratory muscle fatigue is more pronounced, likely due to the hypoxic environment and increased load at high altitudes (Wuthrich et al., 2015). However, despite the changes in respiratory muscle strength and lung function following marathon running, recovery occurs relatively rapidly. Thus, the impact of marathon running on respiratory muscle strength is transient, as athletes’ respiratory muscle strength can return to normal levels within a certain recovery period (Ross et al., 2008).
Respiratory muscle strength holds significant importance for marathon performance. Following a consecutive 10-day marathon race, notable changes occur in athletes’ respiratory muscle strength and lung function. This highlights the enduring and extreme demands placed on respiratory muscle strength during marathon running, crucial for maintaining stable breathing and gas exchange (Tiller et al., 2019). Moreover, athletes’ respiratory muscle strength is closely linked to peripheral muscle strength and respiratory function. Optimal respiratory muscle strength contributes to increased lung capacity, enhanced respiratory efficiency, and provides stable respiratory support for prolonged endurance activities (Akınoğlu et al., 2019).
Due to the impact of respiratory muscle strength on marathon performance, training the respiratory muscles in marathon runners is of paramount importance. Analysis of multiple studies reveals that respiratory muscle training has positive effects on athletes’ performance. Training targeted at the respiratory muscles enhances respiratory muscle strength, increases lung capacity, and improves respiratory efficiency (HajGhanbari et al., 2013). Furthermore, respiratory muscle training improves athletes’ maximal oxygen uptake (VO2max) and respiratory threshold, positively influencing lung function. This enhances athletes’ respiratory muscle endurance and coordination, improving respiratory stability and efficiency during prolonged endurance activities (Amonette and Dupler, 2002). Training methods focusing on respiratory muscle strength, such as the use of respiratory muscle training devices and specific respiratory muscle exercises, can be incorporated into running training programs to enhance running performance and overall physical adaptation (Harms et al., 1998; Gething et al., 2004).
Marathon running has a certain impact on athletes’ respiratory muscle strength, potentially leading to respiratory muscle fatigue. Respiratory muscle strength holds significant importance for marathon performance, as it enhances lung function, improves respiratory efficiency, and provides stable respiratory support during prolonged endurance activities. Respiratory muscle training is considered an effective strategy for improving marathon performance, as it strengthens respiratory muscle strength, improves lung function, and enhances the respiratory threshold, thereby improving athletes’ respiratory stability and endurance.This study explores the association between these factors and half-marathon performance and predicts runners’ half-marathon performance through statistical analysis and regression modeling. The results of this study can provide a useful reference for scientific research and health management of running sports.
4.3 Limitations of the study and future directions for improvement
This study still has some limitations. The analysis of specific training activities and sports performance was not collected in the previous data collection. The research object of this study focuses on amateur marathon runners who have not received professional track and field training. Only exercise in their spare time, and do not have a fixed training time or specific training means. It is precisely for this reason that the data of these runners are beneficial to most amateurs. Still, in the future, we will further expand the amount of data and categorize them according to specific training. In addition, this study did not analyze the data separately by gender, and due to the sample size number, the DW value of the regression results due to non-open analysis is far from 2. The results are not representative, and it is speculated that the regression results will improve after the sample size is further increased. Future studies could further explore the relationship between full marathon performance and respiratory muscle strength, consider a wider sample population, and incorporate maximal inspiratory pressure (MIP) into the equation to improve its predictive value for marathon performance. In summary, increasing test density, expanding sample size, standardizing performance stratification, and collecting physiological and biomechanical data will be key to further deepening the understanding of the influencing factors and improving the accuracy of the prediction equation in future studies.
5 CONCLUSION
This study focused on 233 amateur half-marathon runners as participants and analyzed the correlations between respiratory muscle strength and various variables with half-marathon performance. The results indicated significant correlations (p < 0.05) between gender, weight, height, Maximum Expiratory Pressure (MEP), and half-marathon performance. Consequently, these variables were selected as independent variables in the regression equation. The regression equation was as follows: Half-Marathon Performance = 86.113 + 23.223 Gender (Male = 1, Female = 2) + 0.905 Weight—0.090MEP—0.251Height. Furthermore, the reliability and validity of this equation were tested and confirmed. Therefore, using gender, height, weight, and MEP as predictors yields a reasonably accurate estimation of half-marathon performance. The findings of this study provide valuable insights for scientific research and health management in the field of running.
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In sports science, the use of wearable technology has facilitated the development of new approaches for tracking and assessing athletes’ performance. This narrative review rigorously explores the evolution and contemporary state of wearable devices specifically engineered for continuously monitoring lactate levels in sweat, an essential biomarker for appraising endurance performance. Lactate threshold tests have traditionally been integral in tailoring training intensity for athletes, but these tests have relied on invasive blood tests that are impractical outside a laboratory setting. The transition to noninvasive, real-time monitoring through wearable technology introduces an innovative approach, facilitating continuous assessment without the constraints inherent in traditional methodologies. We selected 34 products from a pool of 246 articles found through a meticulous search of articles published up to January 2024 in renowned databases: PubMed, Web of Science, and ScienceDirect. We used keywords such as “sweat lactate monitoring,” “continuous lactate monitoring,” and “wearable devices.” The findings underscore the capabilities of noninvasive sweat lactate monitoring technologies to conduct long-term assessments over a broad range of 0–100 mM, providing a safer alternative with minimal infection risks. By enabling real-time evaluations of the lactate threshold (LT) and maximal lactate steady state (MLSS), these technologies offer athletes various device options tailored to their specific sports and preferences. This review explores the mechanisms of currently available lactate monitoring technologies, focusing on electrochemical sensors that have undergone extensive research and show promise for commercialization. These sensors employ amperometric reactions to quantify lactate levels and detect changes resulting from enzymatic activities. In contrast, colorimetric sensors offer a more straightforward and user-friendly approach by displaying lactate concentrations through color alterations. Despite significant advancements, the relationship between sweat lactate and blood lactate levels remains intricate owing to various factors such as environmental conditions and the lag between exercise initiation and sweating. Furthermore, there is a marked gap in research on sweat lactate compared to blood lactate across various sports disciplines. This review highlights the need for further research to address these shortcomings and substantiate the performance of lactate sweat monitoring technologies in a broader spectrum of sports environments. The tremendous potential of these technologies to supplant invasive blood lactate tests and pioneer new avenues for athlete management and performance optimization in real-world settings heralds a promising future for integrating sports science and wearable technology.
Keywords: wearable devices, sweat lactate, sports performance, continuous monitoring, biosensors

1 INTRODUCTION
In contemporary sports, gaining a competitive edge hinges on the precise understanding and vigilant monitoring of athletes’ physiological states. The ability to track physiological changes in real-time during sports is paramount to sustaining optimal athletic performance (Mujika, 2017). Recent advancements in wireless sensors and wearable technology have revolutionized the measurement and interpretation of key physical markers. Among these, lactate is a crucial indicator used for assessing physiological reactions in the body. Monitoring lactate levels is especially significant, as it provides insights into an athlete’s aerobic and anaerobic capacities that provide valuable insights for developing tailored training and recovery strategies (Goodwin et al., 2007; Buono et al., 2010; Casado et al., 2022). The balance between lactate production and elimination in tissues affects blood lactate concentration (Stallknecht et al., 1998). This balance fluctuates even with minor, short-lasting changes; thus, even slight changes in the balance can have significant diagnostic implications for athletes (Brooks, 2018).
The current gold standard for lactate monitoring is invasive and episodic, requires toleration of discomfort (e.g., needle pricks, blood leakage, and potential infection risks), and also has limitations in detection speed and portability (Daboss et al., 2022; Aguilar-Torán et al., 2023). This has led to a surge in interest and demand for noninvasive monitoring technologies within sports science (Yang et al., 2022; Rabost-Garcia et al., 2023). One of the primary body fluids studied in noninvasive lactate monitoring is sweat (Van Hoovels et al., 2021). Compared to other fluids, sweat is easier to collect and less prone to contamination than blood (Xuan et al., 2023a). In light of these factors, wearable devices that offer continuous monitoring of sweat lactate levels have attracted much interest in sports.
This review provides an overview of the technological advancements and potential applications of wearable devices for continuous sweat lactate monitoring currently emerging in the market (Figure 1). It specifically examines the current technological progress and potential feasibility of real-time monitoring wearable technologies in sports. This study begins by highlighting the importance of lactate in sports and its impact on elite athletes, underscoring the need for wearable devices by addressing the limitations of conventional lactate measurement methods. It also discusses the current state of technological development and industry trends and how sweat biomarker monitoring technologies can contribute to advancements in sports science. Thus, we ultimately aim to enhance the understanding of the innovative potential applications of real-time lactate monitoring wearable technologies in sports. In doing so, we seek to propose ways in which these technologies can be utilized to improve athletes’ performance and foster optimized training environments.
[image: Diagram illustrating different methods of monitoring lactate, pyruvate, and glucose levels. Sections A, C, and D show invasive procedures using blood collection, while sections B, E, and F display non-invasive methods involving sweat glands and biosensors. A cyclist represents exercise as a source of sweat for analysis.]FIGURE 1 | An overview of the physiological changes in our body during exercise and invasive and non-invasive monitoring technologies. (A) During exercise, glucose is broken down into lactate through glycolysis in the muscles, and lactate is transported to the liver, where it is resynthesized into glucose through gluconeogenesis and transported back to the muscles. (B) Lactate is transported through blood vessels to microscopic vessels and organs throughout the body. (C) The traditional method to measure lactate is through invasive blood sampling from fingertips, earlobes, etc. (D) After blood collection, an analyzer is used to analyze the level of lactate in the blood. Multiple blood sampling is required and is discontinuous. (E) Sweating system. Sweat contains substances produced by sweat glands (lactate, urea, cytokines) and substances produced by apocrine glands (lipids, proteins, sugars, ammonia) (Baker and Wolfe, 2020). (F) Sweating system. Sweat contains substances produced by sweat glands (lactate, urea, cytokines) and substances produced by apocrine glands (fat, protein, sugar, ammonia). Recreated with BioRender.com.
2 LITERATURE SEARCH METHODS AND RESULTS
This narrative review used online databases such as PubMed, Web of Science, and ScienceDirect to search for articles published between 1975 and 2024. The search incorporated a combination of terms and keywords, including “sweat lactate monitoring,” “continuous lactate monitoring,” “noninvasive,” “biosensor,” “amperometric,” “electrochemical,” “colorimetric,” and “wearable device.” We focused on original articles and reviews published in English. The titles and abstracts of the articles were reviewed to ensure the inclusion of relevant studies. After a preliminary review, full texts of the articles were reviewed; G.Y., S.-B.P. and J.H. evaluated each article to determine eligibility.
The flowchart of the literature search and identification of relevant articles for review are depicted in Figure 2. After the initial search, 274 articles were identified from the mentioned databases. We excluded 27 duplicate search results. Of the 246 screened articles, 94 were excluded because they were only related to one of the keywords, “sweat,” “lactate,” or “monitoring,” or lacked relevance to the core topic. Upon further review of the titles and abstracts of all selected studies, an additional 55 articles were excluded for not reporting on lactate monitoring, and 36 articles were excluded for using a technology other than the noninvasive technology. From the remaining 61 articles, 27 were excluded due to a lack of useful data related to sports or the inclusion of information similar to that reported in other screened studies, resulting in a total of 34 key articles. Of these, 17 articles that included validation of biosensors through exercise were categorized and reviewed in Table 3. We also included nine reviews to provide an overall understanding of the trends in this field, along with eight articles introducing monitoring technologies for other bodily fluids, such as “saliva” and “tears,” and those related to “continuous glucose monitoring.”
[image: Flowchart depicting the identification and screening process for studies via databases. Initially, 274 records were identified: PubMed (135), Web of Science (56), ScienceDirect (83). After removing duplicates, 246 records remained. After title and abstract review, 152 articles were excluded, and 61 were assessed for eligibility. Full text exclusions led to 34 studies included in the final review. These are categorized into verification through exercise (17), reviews (9), and others (8).]FIGURE 2 | Flow chart of study selection for this review.
3 UTILIZATION OF LACTATE IN SPORTS
Lactate is produced by the anaerobic glycolytic system (fast glycolysis), meaning lactate metabolism is an essential pathway in physical exercise (Brooks, 2020). The concentration of lactate in the blood reflects the balance between lactate production and elimination (Maciejewski et al., 2020), which should be within the range of 0.5–2.2 mmol/L in healthy individuals (Pundir et al., 2016). Lactic acid exists in equilibrium with lactate, and the equilibrium is maintained by the body’s pH level (Schmidt et al., 2021). At the normal body pH of 7.4, lactic acid exists predominantly as lactate, which has one less hydrogen ion (Crapnell et al., 2021; Certo et al., 2022). However, in many studies, the terms “lactic acid” and “lactate” are used interchangeably (Cairns, 2006; Hall et al., 2016).
Robergs et al. (2004) reported that while ‘lactic acid’ has historically been perceived as a fatiguing substance resulting from continuous muscle contraction, recent understanding emphasizes that ‘lactate’ is, in fact, a beneficial compound capable of sustaining exercise. The mechanism underlying this phenomenon involves the simultaneous production of lactate and hydrogen ions (H+), where the latter contributes to metabolic acidosis. Lactate, generated through the conversion of NADH + H+ and pyruvate, serves as an energy source, while oxidized NAD+ aids in regenerating pyruvate in step 6 of glycolysis (Chandel, 2021; Luengo et al., 2021). Notably, Brooks et al. (2005) emphasized the role of lactate in improving endurance by delaying metabolic acidosis. Lactate, upon entering Type 1 muscle fibers, is utilized for energy production within mitochondria via Monocarboxylate Transporters (MCTs) (Brooks et al., 2022). Consequently, it is crucial to distinguish between ‘lactic acid’ and ‘lactate’ (Hall et al., 2016). In contrast, lactate serves as an energy source for sustained exercise, and the primary contributor to metabolic acidosis is the accumulation of H+ ions and Phosphate (Pi) (Woodward and Debold, 2018). By measuring glucose and lactate levels during exercise, the primary energy sources used at different performance intensities and durations can be determined (Heinonen et al., 2012; Alghannam et al., 2021). This understanding can enable trainers to design training programs that set exercise intensities to minimize unnecessary expenditure of energy sources (carbohydrates) and sustain optimal performance over extended periods (Flockhart et al., 2021; Casado et al., 2022).
This is particularly important in high-intensity, intermittent sports. Compared to speed sports where maximum anaerobic performance is key given the need to cover short distances in minimal time (Heck et al., 2003), most sports requiring repeated transitions between high- and low-intensity movements over an extended period, the ability to recover by utilizing lactate produced in the preceding exercise as an energy source (glucose) becomes a crucial step (Schünemann et al., 2023). Sports such as middle-distance rowing, cycling, and marathons require athletes to have the ability to exert higher power output during initial sprints and final spurts than the average output during the entire race. In ball sports such as soccer, American football, and hockey, players repeatedly alternate between numerous sprints and low-intensity jogging, albeit across different positions (Iaia et al., 2009). In these sports, the phosphagen and glycolytic energy systems with high flux rates need to be primarily utilized during high-intensity actions, which requires the oxidative system that contributes the most to energy metabolism during the game, to support the capacity to accommodate such intense actions (Bangsbo et al., 1990; Xu and Rhodes, 1999; Gastin, 2001; Balasekaran et al., 2023).
Repeated training using glucose and lactate data can increase the endurance of athletes, enabling them to train at high intensities without accumulating lactate in muscle tissues (Lee et al., 2021). Such training enhances energy efficiency in trained athletes by increasing the contribution of the aerobic energy system at the same exercise intensities compared to in untrained athletes (Zapata-Lamana et al., 2018; Hebisz et al., 2022). Marathon runners with high cardiopulmonary endurance minimize glucose utilization during the race and predominantly rely on fat oxidation, where lactate and fats serve as the main energy sources (Sjödin and Svedenhag, 1985; van Loon, 2004; Aengevaeren et al., 2020).
The lactate threshold (LT) refers to two critical points where lactate accumulation increases sharply with progressively increasing exercise intensity (e.g., speed, resistance) (Binder et al., 2008) (Figure 3). LT1 is known as the first inflection point where lactate level starts to increase, and LT2 is the exercise intensity at which the blood lactate concentration exceeds 4 mmol/L (Heck et al., 1985). Based on these two points, exercise intensity zones are defined as zone 1 (low intensity), zone 2 (moderate intensity), and zone 3 (high intensity).
[image: Graph illustrating the relationship between exercise intensity, heart rate, and blood lactate levels. The red line represents heart rate, increasing steadily. The green curve shows blood lactate levels, rising sharply after LT1 and LT2 thresholds. The graph is divided into three zones: Zone 1 (low intensity), Zone 2 (moderate intensity), and Zone 3 (high intensity).]FIGURE 3 | Typical blood lactate (green line) and heart rate (red line) response to the multi-stage test based on exercise intensity. The three aerobic training zones (Zones 1–3) are determined by the multi-stage test’s first (LT1) and second (LT2) lactate thresholds. The LT1 represents the rise in blood lactate above the initial value. The LT2 denotes an acceleration of blood lactate accumulation.
In Zone 1, which is below the LT1 threshold, the body primarily relies on fats rather than carbohydrates for energy. During exercises in this intensity zone, the rate of lactate elimination effectively matches its production, so there is no marked rise in blood lactate levels even during prolonged exercise (Nordheim and Vøllestad, 1990; Schrauwen et al., 2002).
In Zone 2, which is between LT1 and LT2, there is a noticeable increase in lactate production, resulting in elevated blood lactate concentrations. This zone includes the maximal lactate steady state (MLSS), characterized by a balance between lactate production and elimination maintained for about 30 min with minimal fluctuations in lactate concentration (under 1 mmol/L) (Aunola and Rusko, 1992).
Zone 3 encompasses exercise intensities surpassing LT2. Exercise in this zone leads to a sustained increase in blood lactate levels throughout the duration of activity (Jacob et al., 2023). Typically, this zone is reached at higher exercise intensities, often exceeding 85% of [image: The symbol "VO2 max" is displayed, with "V" and "O" subscript "2" indicating the maximum rate of oxygen consumption measured during incremental exercise.] (maximal oxygen uptake), at 90% of heart rate max (HRmax) and ventilatory threshold (VT) 2 (Coutts et al., 2003; Bentley et al., 2007; Plato et al., 2008).
There are several criteria for categorizing exercise intensity, including HR, [image: Text representing the symbol for VO2 max, indicating maximum oxygen consumption or uptake during exercise.], and VT, but lactate is considered one of the most sensitive biomarkers (Beneke et al., 2011; Jamnick et al., 2020). Therefore, using the LT test to gauge exercise intensity enables optimal preparation for competition, including season readiness, training periodization, and performance enhancement for elite athletes (Henritze et al., 1985).
In their study of 23 healthy participants and 42 participants with cardiovascular diseases, Seki et al. (2021) reported a correlation between sweat LT1 and blood LT1 as well as between sweat LT1 and VT1 during progressively intense cycling on a cycle ergometer. Based on these results, they recommended the potential use of real-time sweat lactate monitoring for observing LT1. In another study where elite kayakers performed submaximal and maximal self-paced tests using a kayak ergometer, the previously stable sweat lactate levels increased sharply when the blood lactate level had reached LT2. Similar results were observed for cyclists in the same study (Karpova et al., 2020).
Xuan et al. (2023a) conducted a study involving elite cyclists and triathletes. They used a cycle ergometer test while the participants increased the cycling intensity every 15 min. They observed that the sweat/blood lactate ratio that remained consistent after exercise varied between the two LT points, indicating the utility of sweat lactate monitoring in providing individualized physiological data (Okawara et al., 2023). Mao et al. (2020) reported that physiological responses measured through sweat lactate monitoring using biosensors during cycling were consistent with the ranges of MLSS in professional speed skaters.
Periodization based on the measurement of blood metabolites has limitations due to the invasive nature of such measurements, making it challenging to monitor physiological changes in athletes in real-time during training (Jia et al., 2013). As a result, monitoring during training often relies on HR even when training management is based on blood lactate levels. Therefore, the development of real-time lactate monitoring wearable devices presents a promising alternative to HR monitors, offering the potential for precise monitoring of physiological parameters. Considering the importance of training periodization not only for performance enhancement but also for injury prevention in athletes, real-time data collected during training can be used to measure training load and adjust training volume flexibly based on the predicted fatigue levels. Previous studies have primarily focused on validating the accuracy and durability of sensors. In this regard, there is a need for more field-friendly physiological protocols to enhance the credibility and applicability of developed wearable devices in real-life sports settings.
4 INVASIVE AND NONINVASIVE ANALYTICAL TECHNIQUES
4.1 Traditional invasive analysis
Most clinical or research settings involve the use of invasive procedures to analyze lactate and glucose. The lactate and glucose levels are determined by running invasively sampled blood specimens through analyzers. Typically, lactate is measured in fully automated clinical chemistry analyzers in pathology departments using whole anticoagulated blood samples.
Blood samples are typically drawn from arteries, veins, fingertips, or earlobe capillaries. Arterial sampling is less preferred owing to the need to access deeper blood vessels and consequent risks (Dassonville et al., 1998). Venous samples are collected via intravenous access lines (Crapnell et al., 2021). Capillary blood collected from fingertips or earlobes is often analyzed using lactate analyzers based on enzyme amperometric sensor chip systems, allowing measurements with small sample volumes (20 μL). Lactate levels tend to be higher in samples drawn from fingertip samples than those drawn from earlobe samples (Forsyth and Farrally, 2000). In sports settings, individual measurements may need to be repeated at rest, during exercise, and post-exercise, depending on the research procedure and objective to observe changes in lactate levels.
Yellow spring Instruments (YSI) analyzers are commercial laboratory analyzers designed for measuring lactate and glucose in blood, plasma, and serum. These analyzers utilize two interference-selective membranes with immobilized substrate-specific enzymes. The membranes are connected to platinum electrodes, which allow for highly specific and accurate measurements. Biosen analyzers are available in two variants: single-channel and dual-channel glucose systems. These devices employ specialized chip sensor technology to achieve highly specific measurements (Moradi et al., 2024).
The traditional method of measuring blood glucose and lactate levels involves pricking the fingertip or earlobe with a special needle to draw blood, so the process can cause some discomfort and stress (Daboss et al., 2022). The needles and solutions used for sampling are consumable, entailing high maintenance costs. While feasible in research settings, this approach has limitations in sports environments. A significant concern is the need to momentarily stop the activity for sampling during certain sports, which can disrupt athlete performance (Shitanda et al., 2023). This interruption may lead to differences between physiological responses measured during the testing and those that occur in actual competition scenarios.
4.2 Noninvasive analytical technique
In recent years, noninvasive technologies for collecting and analyzing biological fluids have been extensively researched to overcome these limitations and realize real-time monitoring. Tears, saliva, interstitial fluid (ISF), and sweat are typical bodily fluids that can be analyzed for metabolites in a completely noninvasive manner and thus suitable for use in clinical or sports settings (Moradi et al., 2024) (Figure 4).
[image: Silhouette of a running person surrounded by images representing biosensing fluids and tools. Labels indicate: A) Tear - contact lens, glasses, B) Saliva - mouth guard, C) ISF - microneedle, D) Sweat - patch, watch, tattoo, band.]FIGURE 4 | Body fluids used for non-invasive biomarker monitoring. (A) Instruments designed to analyze tears are created in the shape of lenses or spectacles. (B) Devices that analyze Saliva were developed in the form of a mouthguard. (C) ISF analysis devices consist of a microneedle that is affixed to the skin in order to monitor biomarkers. (D) Sweat analysis devices may manifest as various wearable technologies that incorporate biosensors. Recreated with BioRender.com.
Tears allow for the monitoring of health and physiological parameters in clinical or sports settings simply through the wearing of contact lenses. Yao et al. (2011) reported that contact lenses with an integrated amperometric glucose sensor are capable of detecting glucose at concentrations below 0.01 mM with rapid response (20 s), high sensitivity (240 μAcm−2mM−1), and good reproducibility. Amorphous indium gallium oxide field-effect transistor is a promising technology that can act as a transducer for detecting glucose in vitro and can be embedded in contact lenses for glucose monitoring via tears (Du et al., 2016; Gao et al., 2018). However, continuous extraction of tears for real-time monitoring is not feasible.
Saliva can be conveniently and continuously sampled by integrating sensors into mouthguards, and due to the correlation between biological biomarkers collected from saliva and those from the blood, saliva is considered a promising medium for noninvasive monitoring (Kim et al., 2014). Kim et al. (2014) described a mouthguard biosensor for continuous lactate detection in undiluted saliva samples (Gao et al., 2018). However, saliva is prone to contamination from factors such as food intake.
Chang et al. (2022) introduced a noninvasive wearable device technology capable of real-time monitoring of ISF glucose. While ISF demonstrates a good correlation with blood physiological biomarkers, most technologies, with a few exceptions, require minimally invasive procedures (Crapnell et al., 2021). These reasons may be why measuring biological biomarkers in sweat, which is relatively easier to collect and less prone to contamination-induced data errors, is being actively researched. Recent advancements suggest the feasibility of developing wearable devices capable of measuring concentrations of glucose, lactate, sodium ions, and potassium ions in sweat produced during exercise (Gao et al., 2018). This technology could enable regular glucose monitoring in patients with diabetes mellitus without resorting to traditional invasive blood glucose testing methods. Recent studies propose using biological fluid-based glucose detection technologies that creatively combine wearable devices with noninvasive glucose monitoring to enhance diabetes management. Typically, glucose concentrations are lower in sweat than in blood. Further, during exercise, the glucose concentration in sweat initially rises and falls with sustained activity. Clear elucidation of the relationship between blood and sweat glucose concentrations is crucial for sweat to be considered a viable alternative for continuous glucose monitoring (CGM).
The concentration of lactate in sweat is usually higher than that in blood, and precise observation within the range determining the LT (<4 mM) is essential for its application in sports. While blood lactate levels can remain stable or decrease with constant exercise power output over time, sweat lactate level tends to continuously increase. Therefore, the correlation between blood and sweat lactate levels needs to be further investigated, and technologies capable of producing reliable results at varying exercise intensities and durations need to be developed.
4.3 Continuous glucose monitoring using ISF
ISF is the most widely used body fluid for monitoring patients with diabetes. The U.S. Food and Drug Administration (FDA)-approved ISF glucose-based CGM technologies utilize electrochemical methods, where currents generated when ISF glucose is broken down by glucose-degrading enzymes such as glucose oxidase (GOx) are measured using microneedle sensors (Gao et al., 2018). An alternative method, fluorescence glucose sensing, can offer more accurate monitoring than electrochemical approaches, but some fluorescing chemicals used in this method can be toxic and thus have safety concerns (Klonoff, 2012). Nemaura Medical (UK) has released a wearable device using reverse iontophoresis to measure glucose noninvasively in the ISF. This product has received the Conformité Européene (CE) mark, a certification as reputable as the FDA in Europe (Gao et al., 2018). There is a strong correlation between glucose concentrations in ISF and blood (Kim et al., 2019). Simple devices enabling real-time glucose monitoring during training or competitions could allow for individualized and practical athlete management. The U.S. Women’s Olympic Cycling Team already used ISF-based CGM technology at the 2012 London Olympics. Nevertheless, most studies still utilize minimally invasive procedures to measure ISF glucose (Gao et al., 2018).
4.4 Benefits and limitations of traditional and noninvasive methods in sports
The traditional method of lactate measurement through blood sampling is well-established, offering proven accuracy and extensive research on protocols and practical applications for sports settings. Blood lactate concentration provides a sensitive indicator of physiological changes associated with exercise intensity. However, blood sampling is non-continuous, as it restricts the patient’s movement, which can lead to significant discrepancies between the real competition and the actual measurement time.
Conversely, noninvasive methods reduce discomfort for the patient and enable continuous, real-time monitoring. However, each body fluid has limitations (e.g., tears are challenging to collect, saliva is prone to contamination, and sweat has higher concentrations than blood). The technology is relatively new, necessitating further research. With more studies improving technology for consistent fluid collection in varying environments, shedding light on the differences with blood lactate, or establishing new standards related to sports performance, the technology will potentially replace traditional lactate measurement and contribute to enhancing sports performance.
5 INDUSTRY TRENDS AND DEVELOPMENTS
5.1 Athlete management system
Many attempts have been made to introduce technologies in sports that enable real-time monitoring of athletes’ activities and biometric data through wearable devices to enhance performance and provide systematic coaching (Li et al., 2016; Moore and Willy, 2019). The most common forms of wearable devices include biosensors integrated into smartwatches, bands that can be worn on arms and legs, and patches that can be placed on the desired body part. These wearables can be used not only for athlete management but also for monitoring the fitness and wellness of non-athletes as well as for real-time diagnosis of metabolic and cardiovascular diseases.
Athlete management systems that evaluate and manage athletes’ performance based on biometric data and real-time activity information are offered by many sports-related companies. Orreco (Ireland) collects biometric information through invasive methods and provides solutions based on this data. Companies such as Kinduct (Canada) and Edge10 (United Kingdom) have systems that simultaneously analyze biometric data and activity information, but they collect data via an external service. Obelab (South Korea) has launched a product that estimates blood lactate levels using real-time muscle oxygen saturation (SmO2) data measured by a wearable device worn on the thigh and offers individualized training programs. Garmin (United States of America) is researching algorithms to estimate LT based on the HR measured by smartwatches, although the smartwatches do not directly measure blood lactate.
Displaying real-time biometric data is as important as measuring them. For athletes or coaches to immediately apply the given data in training, they must have access to the monitoring data as needed without interrupting the training. Devices that analyze pace, HR, exertion, and oxygen saturation based on GPS data through smartwatches have become popular among recreational runners. Companies such as Solos (United States of America) and Everysight (Israel) launched products that display real-time information on lenses integrated into glasses, and Form (Canada) released smart swim goggles. While some have attempted to integrate sensors that collect biometric data into glasses-style devices, most rely on external devices to transmit and display measured data. This allows athletes to conveniently check simplified data in real time during exercise, and detailed information is stored on smartphones or tablets for post-training analysis.
5.2 Noninvasive glucose/lactate monitoring technology
Many invasive or minimally invasive sensors have been commercialized for patient monitoring. However, many companies are researching noninvasive fluid collection and analysis technologies, which could have the potential to replace the current invasive methods and become more mainstream.
Pkvitality (France) is developing a technology where a sensor is embedded in the back of a watch to measure glucose and lactate every 5 minutes and is aiming to launch the product in 2024. The company is currently conducting clinical trials for medical device certification. Abbott (United States of America) is in the research and development phase of integrating lactate measurement into its already commercialized glucose management systems. Lingo is a convenient wearable sensor attached to the back of the arm. Quantum Operations (Japan) is developing technology to measure glucose in the bloodstream through the skin using spectral detection techniques. Samsung (South Korea) is collaborating with the Massachusetts Institute of Technology (MIT) to develop glucose monitoring technology using Raman spectroscopy. This technology is anticipated to be featured in Samsung’s new generation of smartwatches, but it has not been implemented yet. Apple (United States) has been attempting to develop a glucose monitoring sensor for over 12 years but has failed to produce significant data. Currently, the company is focusing on research for sensing algorithms and accuracy. Noviosense (Netherlands) is working on a technology to measure glucose through tears using a device placed inside the lower eyelid.
Additionally, research teams from UCLA/Stanford (United States), HME Square (South Korea), Bioptx™ (United States), Verily (United States), and Cygnus (United States) are either in the research phase or have halted development for noninvasive real-time monitoring wearable device technologies. The significant investment and involvement of many companies and research institutions in this field attest to the growing demand and need for such technology in the field (Tables 1, 2).
TABLE 1 | Current progress in the development of noninvasive glucose monitoring technologies.
[image: A table comparing companies developing glucose monitoring technologies. Columns include Company (country), Commercialization status, Stage of development, and Current progress. Companies listed: Pkvitality (France), Novio Sense (Netherlands), Quantum Operations (Japan), Bioptx (United States), Verily (United States), Apple (United States), Samsung (Republic of Korea), Cygnus (United States), HME Square (Republic of Korea). Details cover research phases, technology features, and commercialization timelines.]TABLE 2 | Current progress in the development of noninvasive lactate monitoring technologies.
[image: Table comparing current progress of companies in smartwatch technology for biosensing. Companies include PKvitality (France), UCLA/Stanford (U.S.), Abbott (U.S.), and Garmin (U.S.). PKvitality targets commercialization in 2024 with ongoing research since 2016 on glucose monitoring. Other companies are in research stages, with varying focuses on biosensing through sweat, glucose management, and lactate monitoring.]6 SWEAT GLUCOSE/LACTATE BIOSENSORS
6.1 Enzymes
The interest and investment in developing noninvasive technologies for lactate measurement have been increasing significantly. Glucose is broken down into the intermediate metabolite pyruvate. Under aerobic conditions, pyruvate is converted into acetyl coenzyme A by pyruvate dehydrogenase (PDH) before entering the Krebs cycle. However, under anaerobic conditions, pyruvate is transformed into lactate by lactate dehydrogenase (LDH).
Two primary methods are used for lactate measurement: (1) using LDH and (2) using lactate oxidase (LOx) (Saha et al., 2022). The LDH method relies on spectrophotometric measurements of light absorption before and after adding LDH to the sample, and this reflects the amount of NADH formed as a result of lactate metabolism (Crapnell et al., 2021). The second method using LOx is the one used in most devices. In this approach, lactate reacts with LOx to form hydrogen peroxide (H2O2), and the resulting current is measured using amperometry. Although there are other methods involving lactate monooxygenase, flavocytochrome b2, and cytochrome b2, these methods are less commonly employed.
LOx is preferred to LDH in noninvasive monitoring devices because the latter, while accurate, requires an additional coenzyme (NAD+). LOx oxidizes L-lactate to pyruvate through the reduction of its cofactor, flavin mononucleotide (FMN). Designed to be less sensitive to oxygen, LOx essentially utilizes artificial electron acceptors to reoxidize FMN. The reduced artificial electron acceptor can transfer electrons between LOx and the electrode. However, a limitation of the LOx method is that it can produce erroneous readings due to glycolate, a metabolite of ethylene glycol (Crapnell et al., 2021).
6.2 Biosensors
To detect signs of disease and prevent progression to advanced disease, technology capable of sensitively monitoring even minor physiological changes is essential. This sensitivity is crucial in sports settings as well, where monitoring athletes’ training intensity is key to planning schedules and preventing injuries. In response to these needs, there has been significant progress over the past decade in developing wearable devices that integrate sensors for analyzing fluid data collected through the skin using wristwatches, headbands, and clothes (Khan et al., 2022; Wang et al., 2022; Konno and Kudo, 2023) (Figure 5).
[image: Diagram illustrating three parts related to a lactate sensor. A) Biochemical reaction process: Lactate reacts with an enzyme producing peroxide and hydroxide, interacting with the transducer, generating electrons. B) Diagram of electrodes configuration: counter, reference, and working electrodes are labeled. C) Graph showing current over time, with a trend that spikes, plateaus, and repeats, suggesting periodic lactate detection.]FIGURE 5 | Illustration of biosensors used in sweat lactate monitoring technologies. (A) Lactate detection mechanism operating at a working electrode. Lactate reacts with the lactate oxidase of the sensor to produce pyruvate and H2O2. H2O2 reacts with the Prussian blue transducer and releases electrons (Xuan et al., 2023a). (B) Illustration of sensor chip (Seki et al., 2021). (C) A hypothetical graph showing the amperometric reaction according to changes in lactate concentration. La−: Lactate, Pyr: Pyruvate, LOx: lactate oxidase, PBred: Prussian blue reduced, PBox: Prussian blue oxidized, e−: electron. Created with BioRender.com.
For noninvasive monitoring, efficient sampling of the analyte, precise binding between the analyte and its receptor, and accurate signal transmission of the energy generated during the receptor-analyte reaction are crucial aspects (Moradi et al., 2024). Additionally, such sensor technologies need to be compatible with wearable devices such that they do not hinder the performance of the wearer during physical activities. The electrochemical approach is the most extensively researched method for transmitting lactate signals detected in sweat. Electrochemical sensors measure lactate by detecting changes in electrical potential generated by enzymatic oxidation-reduction reactions. These devices are becoming increasingly compact, allowing easy integration with wearable devices, precise detection, low detection limits, and suitability for long-term use. Despite the relative ease of collecting sweat in sports settings compared to collecting sweat from patients with limited mobility in clinical situations (Ghaffari et al., 2021), there are several challenges to be addressed.
The technology for collecting sweat must maintain qualitative and quantitative performance for analysis in conditions with both low perspiration (e.g., resting or cold environments) and high perspiration (e.g., exercise or in humid environments). Additionally, aquatic conditions such as swimming and diving must also be considered. Even with efforts to induce high perspiration, there is often a delay between the start of physical activity and the onset of sweating. In a study by Imani et al. (2016), early levels could not be measured in intense cycling sprints lasting 15–30 min due to insufficient sweating. However, in a study by Martín et al. (2017), the microfluidic system directly transferred sweat from the glands to an 8.72 μL sample chamber, and the chamber was filled in 13.4 min by targeting four sweat glands producing sweat at 20 nL/min. Some studies employ passive methods to stimulate and maintain consistent sweating. These methods include the use of cholinergic agonists, such as pilocarpine (Baker and Wolfe, 2020). Pilocarpine stimulation does not affect sweat lactate concentration (Derbyshire et al., 2012), can increase resting sweat rates by 5–10 times, and induces more sweating during exercise. However, this step requires additional power consumption, necessitating a larger power supply unit that would increase the product’s size and weight. To counter these disadvantages, Saha et al. (2022) examined the effectiveness of a lactate monitoring platform that allowed the collection of sweat over extended periods using hydrogels for osmotic sweat extraction and paper microfluidic channels for sample evaporation. They reported sweat lactate concentrations of approximately 2–3 mM in sweat collected for up to 100 min at rest, 7–9 mM in sweat collected during 1 h of moderate-intensity exercise, and 10–12 mM in sweat collected during 30 min of high-intensity exercise. Komkova et al. (2022) used two high-accuracy, low-power wearable controllers (UMKA) on the same muscle to independently verify sweating intensity and lactate concentration and confirmed that sweating intensity and lactate concentration are independent of each other. They found that this is the major cause of real-time monitoring errors based on electrochemical sensors relying on flow. Integrating such sweat induction technologies could address the challenges of limited sweat collection due to varying sweating rates in different environmental conditions. Moreover, it can circumvent the oversight of early lactate monitoring during physical activity (Imani et al., 2016).
Given their design, wearable devices must be attached to the body using adhesives or bands, which may lead to detachment from the skin or alteration of the skin surface during vigorous competition, potentially resulting in measurement inaccuracies. Jia et al. (2013) introduced an electrochemical tattoo biosensor that minimized restrictions posed by the appearance of the wear site and maintained high stability even in the presence of skin deformations during movement. This sensor used LOx-based amperometric detection and employed a CNT/TTF composite to facilitate effective electron transfer and address potential electroactive interferences. Additionally, the sensor successfully detected LT, demonstrating the potential for sports performance monitoring. Wang et al. (2022) developed a tiny, 1.5 mm × 1.5 mm MS02 chip capable of measuring glucose, lactate, Na+, and K+. Its small size facilitated wearability during physical activities and has limited sample volumes. The participants wore the MS02 chip on the forehead during a 10-min cycling session, and the detection ranges were 0–300 μM for glucose and 5–25 mM for lactate. The data collected by the chip were transmitted to a separate application for analysis. These two studies demonstrate the potential to avoid errors arising from device detachment from the skin by using materials that can flexibly change shape according to skin deformation or sensors of small size that are minimally affected by deformation. When using a biosensor, it is equally important to maintain accurate results over a long period of time as it is to accurately measure the concentration of biomarker. The sensor introduced by Jia et al. (2013) had a highly linear response in the 1–20 mM range, with high stability over 8 h of use. Regarding the biosensor’s shelf-life, the sensor’s sensitivity decreased by less than 10% after 5 months of storage. Xuan et al. (2023a) developed sensors unaffected by pH over long-term use and successfully measured sweat lactate data in canoeists and cyclists. Shitanda et al. (2023) addressed the issue of unstable sensor responses and monitoring errors due to air bubbles trapped in conventional microfluidic channels by introducing a bubble-trapping region in the channel, thus mitigating the effects of air bubbles.
Colorimetric methods offer a simpler structure than devices based on electrochemical techniques, allowing more intuitive monitoring of lactate measurements. Electrochemical methods enable real-time monitoring data to be transmitted to external display devices, such as tablet computers, allowing coaches or managers to observe the athlete’s physiological changes. Furthermore, compared to colorimetric methods, accuracy and detail are superior. However, colorimetric approaches offer the simplest way for athletes to assess their condition with minimal interruption to their training. Analytes such as AnNP used in colorimetry change color based on the concentration of the target compound, enabling users to easily identify their status (Moradi et al., 2024). Kim et al. (2022) introduced a technology where hydrogen peroxide produced by the reaction between lactate with LOx reduced polyaniline (PAni) in the form of emeraldine base (EB) to emeraldine salt (ES) to monitor lactate levels based on the color reflecting this change. Each state changes with pH levels, allowing visual monitoring of pH as well. Promphet et al. (2019) developed a fiber-based colorimetric sensor capable of simultaneously detecting pH and lactate in sweat by depositing three different layers on cotton fabric: chitosan, sodium carboxymethyl cellulose, and indicator dyes or reagents for lactate analysis. The sensor visualizes concentrations, where color changes from red to blue with increasing pH (1–14), and various intensities of purple develop according to the lactate concentration (0–25 mM). Koh et al. (2016) examined a device that measures not only lactate but also total sweat loss, pH, chloride, and glucose concentrations through colorimetric detection. LDH was used for lactate detection, showing color changes across the range of 1.5–100 mM. For glucose detection, H2O2 produced by the reaction between glucose and GOx oxidized iodide to iodine, the color change from yellow to brown became more prominent as the glucose concentration increased. While sweat glucose concentrations are lower than blood glucose concentrations, the range detected by this device was sufficient for diagnosing hyperglycemia.
6.3 Comparison of noninvasive lactate monitoring biosensors
Table 3 highlights studies that have validated the performance of biosensors during exercise. Electrochemical methods are the most commonly utilized in this field. Colorimetric approaches have been less extensively researched, as even minor differences of 0.five to one mM can alter result interpretation for lactate evaluations for sports performance. Thus, electrochemical methods may be preferred for their higher precision.
TABLE 3 | Comparative analysis of noninvasive sweat lactate monitoring biosensors in sports performance studies.
[image: A table presenting studies on biosensors for exercise monitoring. It includes the study references, biosensor methods, exercise modalities (e.g., SC, CE), collection sites (e.g., arm, chest, thigh), measurement ranges in millimoles per liter, enzymes used such as lactate oxidase, and key findings. Each study varies in methods and conclusions, highlighting aspects like sensor accuracy, placement, and variations in lactate monitoring across different body sites and exercises.]Running and cycling were the primary exercises used for exercise evaluation. This could be due to their widespread use in studies on traditional lactate measurement. Xuan et al. (2023a) validated performance in cycling and kayaking ergometers. Moreover, Koh et al. (2016) validated performance in both indoor and road cycling, demonstrating the potential for using sweat lactate monitoring in research and games (or training) without restrictions.
Once the performance of these biosensors is validated for sports traditionally used in lactate-related research, such as marathon, rowing, combat sports, and ball sports, as well as in areas in which research was challenging due to the limitations of the traditional methods, the benefits of sweat lactate monitoring would become more evident.
Many studies collected sweat samples from one area of the body, but Karpova et al. (2020), Klous et al. (2021), Seki et al. (2021), Daboss et al. (2022), Khan et al. (2022), Xuan et al. (2023a) and Koh et al. (2016) collected sweat samples from two different areas of the body. As previously mentioned, sweat lactate concentration varies across the site of collection. Therefore, these studies may provide guidelines on sensor placement specific to each type of sport.
The range of linear detection of sweat lactate concentrations varied widely from 0 mM to 100 mM. Accuracy within the 1–5 mM is particularly important for exercise performance evaluations (especially LT test), as this is the reference range for physiological changes during exercise. Martín et al. (2017), Komkova et al. (2022), and Wang et al. (2022) showed measurements beyond this range. However, this may be attributed to the fact that lactate concentrations tend to run higher in sweat than in blood. Thus, the relationship between blood and sweat lactate levels should be clarified.
Koh et al. (2016) and Promphet et al. (2019) successfully measured lactates during exercise using the colorimetric approach. Although electrochemical methods also allow real-time monitoring, the visual indications provided by a colorimetric method could be more user-friendly for the athletes to monitor their physiological changes in real-time. Most studies used LOx. As previously mentioned, this may be attributed to the advantages of LOx over other enzymes, such as LDH.
7 RELATIONSHIP BETWEEN BLOOD LACTATE AND SWEAT LACTATE
Determining the correlation between metabolites measured in blood and sweat is a crucial issue in the field that must be addressed before implementing sweat lactate monitoring using wearable devices. The rate of sweat production, collection site, and method can all impact this correlation, highlighting the need for detailed and systematic research.
Xuan et al. (2023a) analyzed the correlation between blood and sweat (back and thigh) lactate levels during progressively intense cycling on an ergometer and revealed a significant correlation between blood and thigh sweat lactate concentrations during cycling. Karpova et al. (2020) studied 10 adult men (age, 18–35 years) and reported a positive correlation between variability in blood and sweat (arm and thigh) lactate levels during progressively intense cycling, based on which they argued that variability should be the focus, as opposed to lactate concentrations in the blood and sweat. Most participants showed an increase in thigh sweat lactate concentrations during exercise, but not arm sweat lactate concentration, and some even showed a decrease. This may be attributed to the nature of cycling.
In a study that revealed a correlation between blood and sweat (back) lactate levels during progressively intense aero-bike exercise in men in their 40 s, Shitanda et al. (2023) demonstrated that blood lactate showed changes at the onset of exercise, while sweat lactate data was observable only 1,600 s after starting the exercise. This finding can be attributed to the time required to collect sufficient sweat for detection. Similar limitations have been observed in several other studies, albeit varying, depending on the sensor technology, underscoring the need to consider these characteristics when interpreting real-time sweat monitoring data.
Green et al. (2000) reported that increments in blood lactate levels were not correlated with changes in sweat lactate levels in a study of participants cycling at 40% [image: Text displaying "V O two max" with a dot above the V, representing the maximum rate of oxygen consumption measured during incremental exercise.] for 30 min and participants performing interval cycling trials at a two-fold higher load. Klous et al. (2021) analyzed the correlation between six biomarkers in blood and sweat (arm and back) in 12 trained adults (age, 21–29 years) during cycling at 60%, 70%, and 80% of the HRmax. They found no significant correlations at any exercise intensity, though a significant correlation was observed between blood and upper back sweat glucose at 70% HRmax.
While many studies have observed a high correlation between blood and sweat metabolites (Xuan et al., 2023b; Rabost-Garcia et al., 2023), others have claimed no such correlation (Lamont, 1987). However, the studies that reported no correlation had small sample sizes, employed non-standard methods of sample collection and analysis, did not distinguish between active and latent muscles, and had imprecise research designs (Karpova et al., 2020). Nevertheless, the lack of consistency in the ratios of biomarkers in sweat and blood in many studies might be due to relatively scant data (Xuan et al., 2023b). However, the clear difference in metabolite amounts in sweat (5–40 mmol/L) and blood (0.5–25 mmol/L) (Baker and Wolfe, 2020) suggests that correlation and regression analyses specific to the situation and environment are needed (Rabost-Garcia et al., 2023). Moreover, given the differences in metabolite concentrations based on the site of sweat collection, further research is needed to examine concentrations depending on the type of exercise and placement of the wearable device on the body.
8 CONCLUSION
This review highlights that non-invasive lactate monitoring through sweat during exercise has been extensively researched, and relevant devices are close to being commercialized. This review sheds light on the potential of sweat in offering a more stable and convenient means for lactate measurement than other bodily fluids through wearable devices that provide real-time data. For the successful commercialization of noninvasive lactate monitoring devices, several key challenges must be addressed. Particularly, the focus should be on improving device accuracy and reliability. Current research on the quantitative relationship between lactate levels in blood and sweat remains inadequate. As there is clearly a gap between the concentrations in blood and sweat, sophisticated algorithms that can accurately estimate blood metabolite levels from sweat measurements are needed. Continuous research is needed to determine the precision of measurements based on lactate in sweat induced by exercise, to examine whether data can be corrected in real-time when the lactate level decreases with increasing sweat volume over time, and to address the limitations posed by the differences in concentrations across body sites. While the majority of the studies are focused on estimating biomarker concentrations in sweat, the practical aspects, such as whether these new methods can fully replace traditional blood lactate measurement protocols and the reliability of real-time monitoring data during training and competitive scenarios also need to be explored. Additionally, safeguarding data security is an essential consideration when sharing the data of elite athletes via cloud systems.
Future research should aim at refining device performance and delve deeper into sophisticated data analysis and interpretation techniques. In addition, more field experiments are needed to expand the applicability of this technology, which requires continued interaction between the sports and technical fields. Such endeavors will help enhance athletic performance, aid in injury prevention, and optimize training periodization. Considering these challenges and competencies, the use of wearable devices for monitoring sweat lactate is paving the way for innovative technology in sports science, underscoring the need for continued research and progress in this burgeoning field.
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This study presents a comprehensive review of the correlation between tibial acceleration (TA), ground reaction forces (GRF), and tibial bone loading, emphasizing the critical role of wearable sensor technology in accurately measuring these biomechanical forces in the context of running. This systematic review and meta-analysis searched various electronic databases (PubMed, SPORTDiscus, Scopus, IEEE Xplore, and ScienceDirect) to identify relevant studies. It critically evaluates existing research on GRF and tibial acceleration (TA) as indicators of running-related injuries, revealing mixed findings. Intriguingly, recent empirical data indicate only a marginal link between GRF, TA, and tibial bone stress, thus challenging the conventional understanding in this field. The study also highlights the limitations of current biomechanical models and methodologies, proposing a paradigm shift towards more holistic and integrated approaches. The study underscores wearable sensors’ potential, enhanced by machine learning, in transforming the monitoring, prevention, and rehabilitation of running-related injuries.
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1 INTRODUCTION
The external loading generated during locomotion is essential for generating momentum necessary for movements such as propelling, braking, and changing direction. Metrics of ground reaction forces (GRF) are crucial in understanding the biomechanical mechanisms during running (Johnson C. D. et al., 2020). This understanding plays a pivotal role in preventing musculoskeletal injuries and in evaluating rehabilitation processes (Van der Worp et al., 2016; Willwacher et al., 2022; Pan et al., 2023; Yang et al., 2023). Proper analysis and interpretation of these reaction forces can provide invaluable insights into the efficiency and safety of movement, thus informing strategies for injury prevention and the effectiveness of rehabilitation techniques (Zadpoor and Nikooyan, 2011; Johnson C. D. et al., 2020).
The piezoelectric force plate is a widely recognized and direct method for assessing external loading in biomechanical contexts (Novacheck, 1998). This technology operates on the principle that an applied force results in sensor distortion on the plate, leading to measurable voltage changes proportional to the force’s intensity (Bobbert and Schamhardt, 1990). These force plates are instrumental in capturing three-dimensional force and moment data, which are essential for conducting inverse dynamics analyses (Delp et al., 2007). Inverse dynamics is a standard process in motion analysis where the net moment at body joints is calculated based on their acceleration and velocity. This approach is crucial for understanding the mechanics of movement and the forces acting upon the body’s joints (Delp et al., 2007). In addition, the assessment of static loads is also considered a non-negligible issue in postural control rehabilitation and athletic training. A previous study (Martelli et al., 2011) underscores the critical influence of sub-optimal neuromotor control strategies on the internal load dynamics of the hip joint during regular walking activities, suggesting a potential for significantly elevated fracture risks beyond what is estimable through external loading measurements alone.
Gait lab-based kinetic measurements have been used as indictors to assess tibial acceleration (TA), which is utilized for quantifying shock attenuation (Hennig and Lafortune, 1991; Lafortune et al., 1995; Xiang et al., 2022c). The impact shock has been discussed linked with the incidence of chronic overuse injuries (Hennig et al., 1993). Given the advances of wearable technology in the past twenty decades, trial-axis acceleration and angular velocity could be measured from accelerometer and gyroscope in a single inertial sensor (Afaq et al., 2020; Xiang et al., 2022d; Xiang et al., 2022e; Mason et al., 2023; Xiang et al., 2024; Yamane et al., 2024). This made segment acceleration measurements easier and more convenient, shifting the question to: Can we use portable and affordable inertial sensors to evaluate external loading rather than the force plate, which is conventionally embedded in the floor in a gait lab and is cost-prohibitive (Sheerin et al., 2019; Hutabarat et al., 2021; Xiang et al., 2022e)?
Many studies have been conducted attempting to address this question. Johnson et al. (2023) demonstrated a moderate correlation between vertical loading rates and peak vertical TA during walking with load carriage. Tenforde et al. (2020) found that vertical TA could seers as a reliable indicator of load rates in runners with injuries, regardless of their varying foot strike patterns, based on the correlation of coefficient. The findings from Johnson et al. (2021) showed a strong correlation between TA and instantaneous loading rates in the medal-lateral axis while running on a treadmill with rearfoot strike style. Van den Berghe et al. (2019) demonstrated axial and resultant peak TA are highly correlated to peak vertical impact loading rate across different overground running speeds.
Contrarily, recent empirical studies, such as the one by Zandbergen et al. (2023), show no correlation between peak TA and tibial compressive forces. Similarly, Matijevich et al. (2019) demonstrated that metrics of GRF are not strongly correlated with tibial bone load. Therefore, linking GRF metrics with tibial forces or the risk of overuse injuries during running may be misleading (Matijevich et al., 2019).
This leads to a paradox: if TA is an index of running injuries, associated with impact loading rate, then why is there no correlation between TA and tibial bone loading, which is a crucial parameter for tibial stress fractures during running? In other words, while external acceleration is associated with generated external force, it does not correlate with internal force on tibial bone loading (Matijevich et al., 2019; Sheerin et al., 2019; Zandbergen et al., 2023). Therefore, the biomechanics or sports medicine community may need to reconsider whether external acceleration should be an indicator for running injuries, or if internal adaptation is more significant in causing injuries (Matijevich et al., 2019) (Figure 1).
[image: Three-panel chart analyzing biomechanics during a stance phase. Panel A shows a graph of tibial acceleration in red, with a peak labeled. Panel B depicts vertical ground reaction force in green, marking impact and active peaks, with associated foot diagram. Panel C illustrates joint forces on the tibia and talus in blue, orange, and green curves, with annotated foot anatomy.]FIGURE 1 | An illustration depicting (A) vertical tibial acceleration, (B) vertical ground reaction force, and (C) tibial force during running.
One of the most significant advancements in biomechanics facilitated by wearable sensors is their capability to enable data-driven approaches, offering portable and innovative solution (Halilaj et al., 2018; Gholami et al., 2020; Hernandez et al., 2021; Xiang et al., 2022e; Mason et al., 2023; Xiang et al., 2023). Notably, the prediction of GRF metrics from inertial sensors using deep learning algorithms has shown high accuracy, as evidenced in studies (Ngoh et al., 2018; Johnson W. R. et al., 2020; Tan et al., 2020). Similarly, projections of inner tibial bone load have been successfully explored through machine learning (Matijevich et al., 2020). Understanding the role of external TA in both external impact loading and internal tibial bone loading, therefore, becomes crucial (Matijevich et al., 2019). Enhancing the evaluation of these factors through machine learning not only presents an intriguing area of research but also holds substantial potential implications for future applications in sports medicine, injury prevention, and rehabilitation strategies (Zadpoor and Nikooyan, 2011; Johnson C. D. et al., 2020; Xiang et al., 2022a; Xiang et al., 2022b; Gao et al., 2023; Lloyd et al., 2023; Uhlrich et al., 2023; Xiang et al., 2023).
This systematic review aims to bridge a critical gap in our understanding of the relationship among GRF, TA, tibial bone loading, and running-related injuries, a topic of significant importance to both athletes and recreational runners. By focusing on the burgeoning role of wearable technology in this domain, we seek to analyze and synthesize recent advancements in this field, considering their increased accessibility and application in both research and practical settings. Our review will methodically examine existing literature, employing rigorous criteria to evaluate the validity and reliability of various measurement techniques. Ultimately, this review endeavors to provide valuable insights into running mechanics and injury prevention, potentially informing future research directions, training methodologies, and rehabilitative practices, thereby leveraging the latest advancements in technology and data analysis.
2 METHODS
The protocol of this systematic review was designed in alignment with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (Moher et al., 2010). Additionally, the protocol was officially registered with PROSPERO (Registration Number: CRD42023483210).
2.1 Search strategy
PubMed, Scopus, SPORTDiscus, and IEEE Xplore electronic databases were searched for the period from 2000 to November 2023, using the specified terms combined with the Boolean operators outlined in Table 1. Additionally, relevant studies were identified by reviewing bibliographies in academic articles. The titles, abstracts, and full texts of the retrieved documents were meticulously evaluated to determine their relevance. Only papers published in English that specifically measured TA/tibial loading and GRF in the context of running were considered. Exclusion criteria included papers that exclusively assessed GRF signals, those with sensor placements other than the tibial region, and studies involving participants using any form of aid or equipment during running.
TABLE 1 | Electronic databases retrieve strategy.
[image: Search parameters table with columns for "Search items" and "Limit conditions." Under "Search items," databases like PubMed, Scopus, and IEEE Xplore are listed with specific search terms related to wearable sensors and running. ScienceDirect has similar terms. "Limit conditions" specify keywords across all fields, language as English, journal articles, and a publication date range from 2000 to November 2023. Bold values indicate electronic databases.]2.2 Eligibility criteria
In accordance with the Participants, Intervention, Comparisons, and Outcomes (PICO) criteria, information was extracted from thirteen included studies. This extraction focused on participant details, correlation variables, and data-driven approaches. The participant information encompassed the number of participants, their gender, age, height, weight, and running speed during data collection. The Pearson correlation coefficient was used for the correlation evaluation in included studies. The correlation variable included data calculated by the acceleration sensor and/or the force plate, as well as running conditions (speeds and surfaces) for data collection. Machine learning including deep learning were extracted from the included studies. The calculation of the Vertical Average Loading Rate (VALR) is based on the gradient of the initial impact transient, specifically over its linear section, typically spanning from 20% to 80% of the vertical impact peak. In contrast, the Vertical Instantaneous Loading Rate (VILR) is determined by identifying the maximum slope between any two consecutive data points within the same region of interest (Davis et al., 2015).
Two independent reviewers (Z.G. and L.X.) conducted the selection process. Disagreements between these authors regarding article inclusion were resolved through further discussion. In cases where consensus was unattainable, a third reviewer (J.F.) was consulted for resolution. Studies were excluded if they met the following criteria: 1) Participants exhibiting physical injuries during testing; 2) TA measured from the proximal tibia or medial aspect of the distal tibia; 3) Absence of correlation or data-driven approaches; 4) Studies that scored below 75% in the quality assessment. The collation of articles and the removal of duplicates were carried out using EndNote X9 (Thomson Reuters, Carlsbad, California, United States).
2.3 Quality assessment
The assessment protocol for appraising the quality of the included articles was based on a modified version of established scales in the fields of sports science, healthcare, and rehabilitation. This approach, commonly used in analyzing studies in an exercise-based training context, adopted the study quality scoring system developed by Black et al. (2016). Two assessors, Z.G. and L.X., independently employed this scoring system to evaluate the quality of the graded articles. The results were then reviewed and confirmed by a third reviewer (J.F.). The evaluation included nine distinct criteria, each contributing to a cumulative score (range: 0–18). The criteria were as follows: (1) inclusion criteria stated (score: 0–2); (2) appropriate assignment of subjects (random/equal baseline); (3) description of intervention; (4) definition of dependent variables; (5) practicality of assessments; (6) practicality of training duration (acute vs. long term); (7) appropriateness of statistics (variability, repeated measures); (8) detailed results (mean, standard deviation, percent change, effect size); (9) insightful conclusions (clear, concise, future directions), with each criterion graded from 0 (no) to 1 (maybe) or 2 (yes). To maintain impartiality in the quality assessment of the included studies, the scores were converted to a percentage scale, ranging from 0% to 100%.
2.4 Data synthesis
2.4.1 Data processing and subgroup analysis
Fisher’s Z transformation is utilized in meta-analysis to synthesize correlation coefficients from diverse studies. This transformation stabilizes the variance of the correlation coefficients, effectively converting them to a scale where they approximate a normal distribution. Consequently, this method facilitates a more precise and dependable estimation of the overall correlation across the compiled studies. In meta-analysis, moderator analysis was performed to analyze the factors of running surface (overground and treadmill running) and foot strike patterns (RFS: rearfoot strike pattern, MFS: midfoot strike pattern, and FFS: forefoot strike pattern). That might influence the size or direction of the effect between vertical peak TA and GRF, i.e., VALR and VILR.
The I2 statistic quantifies the percentage of total variation across studies attributable to heterogeneity rather than random chance. Conventionally, I2 values of 25%, 50%, and 75% are interpreted as indicative of low, moderate, and high heterogeneity, respectively (Higgins et al., 2003). Tau-squared (τ2) serves as an estimate of the variance between studies within the framework of a random-effects model, with larger τ2 values signaling increased heterogeneity. For all tests conducted, an alpha level of 0.05 was established to determine statistical significance. The meta-analysis was conducted using the Meta statistical analysis package in R (version 4.3.2, R Foundation for Statistical Computing, Vienna, Austria).
2.4.2 Sensitivity analysis
Sensitivity analyses were performed to identify potential factors contributing to the observed high heterogeneity and to assess the robustness of the synthesized results. This involved conducting the analysis multiple times, each time sequentially excluding the study with the lowest weight, and then the two studies with the lowest weights, and so on, until the n-1 studies with the lowest weights were excluded (where n equals the total number of included studies). Considering the diversity in the studies included in this review and the variation in effect sizes from one study to another, random effects models were employed in the meta-analysis to accommodate these discrepancies.
3 RESULTS
3.1 Search results
A total of 503 articles were identified via electronic databases retrieve (PubMed = 81, SPORTDiscus = 149, Scopus = 120, IEEE Xplore = 2, ScienceDirect = 151). Of these, 182 duplicate records were removed, and a further 294 articles were excluded based on the title and the abstract screening. Twenty-seven full-text articles were then evaluated, with seven being excluded. Reasons for exclusion included four articles not applying a correlation or data-driven approach, two focusing on jumping and walking studies, and one not addressing vertical direction. Five articles were not included in the quantitative synthesis due to data ineligibility for meta-analysis. The details of the search strategy are presented in Figure 2.
[image: Flowchart depicts a systematic review process. It shows records identified from databases and included in the study. After removing duplicates, records are screened, with exclusions noted. Full-text articles are assessed for eligibility, leading to studies included in qualitative and quantitative synthesis. Records progress from identification to screening, eligibility assessment, and synthesis stages.]FIGURE 2 | The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram illustrating the search strategy used in this review.
3.2 Quality assessment
The quality appraisal ratings for each article are presented in Table 2. Overall, the risk of bias was moderate. Methodological quality scores ranged from 14 to 17 out of a possible 18. The average quality assessment rate for the selected articles in this systematic review was 86.75%. The highest average quality assessment among the quality scores was 1.92 (Q2, Q4, and Q9), and the lowest was 1.38 (Q7). Additionally, seven articles were included in the meta-analysis (Laughton et al., 2003; Greenhalgh et al., 2012; Zhang et al., 2016; Cheung et al., 2019; Van den Berghe et al., 2019; Tenforde et al., 2020; Bradach et al., 2023).
TABLE 2 | Quality assessment scoring of 13 included studies.
[image: A table compares multiple studies based on responses to nine questions (Q1 to Q9), their total scores, percentages, and inclusion in a meta-analysis. Each question scores between +1 and +2, with some marked as N/A. The total column shows scores ranging from 14 to 18, with percentages from 77.78 to 94.44. Inclusion in the meta-analysis is indicated by "Yes" or "No." An average row at the bottom shows mean scores for each question, a total average of 15.62, and an average percentage of 86.75.]3.3 Study characteristics of data synthesis
As indicated in Table 3, seven studies included in this review assessed the relationship between TA and GRF metrics (Laughton et al., 2003; Greenhalgh et al., 2012; Zhang et al., 2016; Cheung et al., 2019; Van den Berghe et al., 2019; Tenforde et al., 2020; Bradach et al., 2023). Four studies (Zhang et al., 2016; Cheung et al., 2019; Tenforde et al., 2020; Bradach et al., 2023) were conducted on a treadmill, while three studies (Laughton et al., 2003; Greenhalgh et al., 2012; Van den Berghe et al., 2019) involved overground running. Two studies employed tri-axial accelerometers (Greenhalgh et al., 2012; Van den Berghe et al., 2019), one used a bi-axial accelerometer (Cheung et al., 2019), and one used a uniaxial accelerometer (Laughton et al., 2003), while two other studies utilized IMU sensors (Tenforde et al., 2020; Bradach et al., 2023). The frequency of IMU sensors was 1000 Hz in four studies (Greenhalgh et al., 2012; Cheung et al., 2019; Tenforde et al., 2020; Bradach et al., 2023), followed by 960 Hz in one (Laughton et al., 2003), 400 Hz in one (Zhang et al., 2016), and 100 Hz in another (Van den Berghe et al., 2019). Furthermore, the variable from IMU sensors was peak TA (in 7 studies), and the most common GRF variables were VILR (in 6 studies) (Greenhalgh et al., 2012; Zhang et al., 2016; Cheung et al., 2019; Van den Berghe et al., 2019; Tenforde et al., 2020; Bradach et al., 2023) and VALR (in 4 studies) (Laughton et al., 2003; Zhang et al., 2016; Cheung et al., 2019; Tenforde et al., 2020). Extremely strong (3 occurrences), strong (3 occurrences), medium (4 occurrences), weak (1 occurrence), and extremely weak (1 occurrence) correlations between peak TA and GRF metrics were reported in the seven collected literatures.
TABLE 3 | Details of studies information of the relationship of tibial acceleration and GRF.
[image: A table summarizes various studies involving running mechanics. Columns include study names, sample sizes, participant demographics, running conditions, foot strike patterns, sensor types and frequencies, sensor placements, and variables with correlation coefficients. Specific data entries vary per study, detailing treadmill or overground running, foot strike patterns like FFS, MFS, and RFS, and accelerometer placements. Correlation coefficients indicate strengths and directions of observed relationships between variables like PTA, VALR, and VILR. Notations clarify terms like IMU and correlation strength levels.]3.4 Meta-analysis
3.4.1 The correlation between overground and treadmill running
Figure 3 presents a forest plot comparing the Pearson correlation coefficients between peak vertical TA and GRF, specifically VALR and VILR. The sensitivity analysis results were shown in Supplementary Material A (Supplementary Table SA1). For subgroup analysis, the moderating variable of running surfaces was considered, with the overground group comprising 3 studies (5 items) and the treadmill group consisting of 4 studies (7 items). In the overground and treadmill groups, the correlations were 0.62 and 0.73, respectively, with 95% confidence intervals (CI) of 0.42–0.76 for the overground group and 0.68 to 0.77 for the treadmill group. The I2 values were 0% for the overground group (p = 0.69) and 30% for the treadmill group (p = 0.3), indicating heterogeneity levels. The overall correlation between peak vertical acceleration and both VALR and VILR is 0.72, with a 95% CI of 0.67–0.76, and an I2 heterogeneity of 15% (p = 0.3).
[image: Forest plot illustrating the correlation of running surfaces, categorized into Overground and Treadmill, with various studies listed. The plot shows correlation coefficients (COR) with 95% confidence intervals (CI) and weight percentages for each study. The overall random effects model is summarized at the bottom, indicating a pooled COR of 0.72 with a 95% CI of 0.67 to 0.76. Heterogeneity statistics include I² at 15% and a p-value greater than 0.30.]FIGURE 3 | Meta-analysis compares the Pearson correlation coefficient between peak vertical acceleration and both VALR and VILR between overground and treadmill running. Note: VALR represents vertical average load rate, and VILR denotes for vertical instantaneous load rate.
3.4.2 The correlation among different foot strike patterns
Figure 4 displays a forest plot comparing the Pearson correlation coefficients between peak vertical TA and both VALR and VILR across various foot strike patterns. The sensitivity analysis results were shown in Supplementary Materia1 A (Supplementary Table SA2). For the subgroup analysis, the foot strike pattern was used as a moderating variable. The RFS group included 4 studies (comprising 7 items), the FFS group encompassed 2 studies (4 items), and the MFS group consisted of 1 study (2 items). The correlations in the RFS, FFS, and MFS groups were 0.73, 0.75, and 0.74, respectively, with 95% confidence intervals (CI) of 0.61–0.82 for RFS, 0.62–0.83 for FFS, and 0.51–0.86 for MFS. The I2 values indicated heterogeneity levels of 49% for the RFS group, and 0% for both the FFS and MFS groups. Collectively, the correlation coefficient across all groups was 0.71 with a 95% CI of 0.65–0.76, and an I2 value of 14% (p = 0.3).
[image: Forest plot showing the correlation between different studies on foot strike patterns and their effects. The plot displays individual study correlations, confidence intervals, and weights, along with a summary random effects model with a correlation of 0.71. Heterogeneity is low with I-squared at 14%.]FIGURE 4 | Meta-analysis compares the Pearson correlation coefficient between peak vertical acceleration and both VALR and VILR among different strike patterns. Note: VALR represents vertical average load rate, VILR denotes for vertical instantaneous load rate, RFS is rearfoot strike pattern, MFS is midfoot strike pattern, and FFS is forefoot strike pattern.
3.5 The relationship between TA/GRF, and tibial bone load
As shown in Table 4, two studies included in this review assessed the relationship between TA/GRF and tibial bone load (Matijevich et al., 2019; Zandbergen et al., 2023). Both studies were conducted on treadmills with participants wearing self-selected running shoes. Only one study reported the foot strike pattern as RFS (Zandbergen et al., 2023). In this study (Zandbergen et al., 2023), an IMU sensor, specifically the Xsens model with a sampling frequency of 240 Hz, was used to measure peak TA. Moreover, both studies utilized the Pearson correlation coefficient for correlation analysis. These studies explored correlations between GRF variables (weak correlations) and peak TA (extremely weak correlations) in relation to tibial load.
TABLE 4 | Details of studies information of the relationship between tibial acceleration/GRF, and tibial bone load.
[image: A table comparing studies by Matijevich et al. (2019) and Zandbergen et al. (2023). It includes columns for study, sample size, running surface, foot strike pattern, sensor type, sensor placement, variables, and correlation coefficient. Matijevich employs 10 participants, using a treadmill and no sensors, focusing on impact peak. Zandbergen uses 13 participants with treadmills, employing IMU sensors on the tibia, focusing on PTA. Correlation coefficients are provided for each study. A note section defines abbreviations and correlation strength.]3.6 Data-driving approaches
As presented in Table 5, three studies employed data-driven approaches to predict GRF metrics using acceleration data (Komaris et al., 2019; Derie et al., 2020; Tan et al., 2020), and one study used this approach to predict tibial loading force using IMU signals (Komaris et al., 2019). Additionally, three studies were conducted on treadmills (Komaris et al., 2019; Matijevich et al., 2020; Tan et al., 2020), and one was conducted overground (Derie et al., 2020). One study utilized IMU sensors (Tan et al., 2020), one used tri-axial accelerometers (Komaris et al., 2019), and two used virtual accelerometers (Derie et al., 2020; Matijevich et al., 2020), where the acceleration data were derived from kinematic measurements. Various data-driven methods were applied: gradient boosted regression trees (XGB) (Derie et al., 2020), artificial neural networks (ANN) (Komaris et al., 2019), convolutional neural networks (CNN) (Tan et al., 2020), and LASSO regression (Matijevich et al., 2020). The studies consistently showed high predictive accuracy: mean absolute percentage error (MAPE) was below 10% in two studies (Derie et al., 2020; Matijevich et al., 2020), normalized root mean square error (NRMSE) was under 10% in one study (Tan et al., 2020), and RMSE remained less than 0.2 BW across all (Komaris et al., 2019).
TABLE 5 | Details of studies information of data-driving approaches.
[image: Table comparing four studies on running mechanics. Each study lists sample size, running surface and conditions, foot strike pattern, sensor type and placement, predictor variables, machine learning algorithm used, and accuracy. Details include specific metrics like mean absolute percentage error (MAPE), root mean square error (RMSE), and normalized root mean square error (NRMSE). The studies involve different technologies such as tri-axial accelerometers and virtual accelerometers, and algorithms like XGB, ANN, CNN, and LASSO regression.]4 DISCUSSION
This review critically evaluates the correlation between tibial acceleration, ground reaction forces, and tibial bone loading in running. It highlights the mixed results obtained from existing research in this domain and emphasizes the marginal link found between these biomechanical factors and tibial bone stress. The discussion also underscores the pivotal role of wearable sensor technology in measuring these forces, and its potential when combined with machine learning techniques, in redefining our approach to monitoring, preventing, and rehabilitating running-related injuries.
4.1 Peak tibial acceleration and impact loading rate
The body segment acceleration is shaped by GRF and dampening from bodily shock absorbers. Capturing peak positive acceleration at distal locations allows measurement before attenuation as the shock wave propagates proximally. Notably, vertical acceleration correlates directly with vertical GRF: higher vertical GRF load rate leads to increased vertical axial acceleration prior to attenuation (Lafortune et al., 1995). This findings from the data synthesis analysis showed only moderate correlation of coefficient between peak TA and GRF loading rate, which does not support with the general hypothesis under many studies that peak TA is an indicator of impact loading rate (Bigelow et al., 2013; Lucas-Cuevas et al., 2017; Raper et al., 2018; Cheung et al., 2019; Van den Berghe et al., 2019; Johnson et al., 2021; Ryu et al., 2021; Bradach et al., 2023; Johnson et al., 2023; van Middelaar et al., 2023; Zandbergen et al., 2023). This aligns with findings from the meta-analysis in this study, particularly for overground running.
The prevailing hypothesis in gait retraining research posits a robust positive correlation between the vertical GRF load rate and TA (Cheung et al., 2019; Tirosh et al., 2019; Sheerin et al., 2020; Van den Berghe et al., 2020; Derie et al., 2022). This assumption underpins studies suggesting that mitigating peak TA could be instrumental in reducing overuse injury risks by concurrently diminishing the load rate (Milner et al., 2006; Huang et al., 2019; Tavares et al., 2020; Warden et al., 2021). However, reliance on this correlation as a foundation for gait retraining strategies may result in oversimplified approaches that overlook the complexities of individual gait patterns and the multifaceted nature of injury risk factors (Pohl et al., 2008; van Gelder et al., 2023).
4.2 The correlation between GRF or acceleration and tibial bone load
TA is often used as a proxy for impact forces during running because it's relatively easy to measure, especially with the advent of wearable technology (Ryu et al., 2021; Xiang et al., 2022c; Xiang et al., 2022d; Bradach et al., 2023; van Middelaar et al., 2023; Xiang et al., 2023). However, the relationship between external forces (such as GRF and TA) and internal stresses (such as bone loading) is not always straightforward (Matijevich et al., 2020). Several factors can influence this relationship. Individual biomechanics, such as gait patterns, muscle strength, and joint stability, can significantly alter how external forces are translated into internal stresses (Baggaley et al., 2022). Moreover, the body’s adaptive responses to running, such as increased bone density or changes in soft tissue properties, can also affect this relationship. These adaptations can provide a buffering effect, reducing the impact of external forces on internal structures. A more holistic approach that considers both external forces and individual biomechanical factors could be more effective in understanding and preventing running-related injuries.
Concerning the relationship between GRF and internal bone loads, it is pertinent to note that recent studies, including those by Zandbergen et al. (2023); Matijevich et al. (2019), have provided compelling evidence challenging the traditionally assumed strong correlation. Zandbergen et al. (2023) found no significant correlation between acceleration and internal bone loads in the tibia, nor between GRF features and tibial bone load during running. Consistent with these findings, our meta-analysis demonstrates that peak TA does not directly correlate with the external loading rate. Further, Matijevich et al. (2019) substantiated that GRF metrics are not consistently correlated with tibial bone load across varied running speeds and slopes, thereby questioning the reliability of GRF as a predictor of internal bone stress in different running conditions. Considering that tibial compression forces encompass both external and internal forces, internal biomechanical adaptations may impact internal forces, even in the presence of external overload, thus influencing the prevention of related injuries (Baggaley et al., 2022). This is supported by recent studies (Milner et al., 2006; Van der Worp et al., 2016; Milner et al., 2023). These insights necessitate a reconsideration of existing biomechanical models and wearable technology applications in running injury prevention. It also highlights that the strategy of reducing peak TA or GRF to mitigate tibial stress fracture risk may be misleading (Van der Worp et al., 2016; Zandbergen et al., 2023).
In the realm of running biomechanics, the interplay between neuromotor control and muscle co-contraction presents a critical avenue for understanding the complex dynamics of tibial acceleration, GRF, and tibial bone loading. The coordinated muscle actions, steered by sophisticated neuromotor control, significantly dictate the force distribution and magnitudes transmitted through the musculoskeletal system during running (Kellis et al., 2011; Di Nardo et al., 2015). Insights from Martelli et al. (2011) shed light on how sub-optimal neuromotor strategies can amplify joint loads, potentially leading to increased tibial bone stress in runners. Furthermore, while muscle co-contraction is crucial for joint stabilization, it's important to note that excessive co-contraction might paradoxically decrease stability by increasing the mechanical loads on the tibia, without proportionally enhancing stability (Benjuya et al., 2004; Cenciarini et al., 2009; Tassani et al., 2019). This highlights the importance of identifying an optimal level of muscle co-contraction that ensures joint stability without contributing to unnecessary stress, aligning with the perspectives offered by Martelli et al. (2011).
The advent of wearable sensor technology, capable of capturing these complex neuromotor and muscle dynamics in real-time, opens up new vistas. By amalgamating this data with traditional measures such as GRF and TA, wearable sensors can offer a more nuanced understanding of running biomechanics. This comprehensive approach not only challenges traditional paradigms but also heralds a new era of integrated strategies in monitoring, preventing, and rehabilitating running-related injuries, emphasizing the shift towards more holistic models in running biomechanics studies.
4.3 Data-driven approach to external and internal predictions
The ongoing progression in machine learning and wearable technology has facilitated the innovative use of data from inertial sensors, particularly in the prediction of GRF metrics (Higgins et al., 2003; Cheung et al., 2019; Hernandez et al., 2021). This advancement is notable in its potential to offer a more dependable methodology compared to approaches reliant on the correlation between peak TA and impact loading rate. The latter method’s assumption of a strong correlation may not always hold true (Laughton et al., 2003; Greenhalgh et al., 2012; Zhang et al., 2016), underscoring the significance of this novel application of inertial sensor data in biomechanics studies.
Nevertheless, caution is warranted when asserting that reducing the impact loading rate could effectively mitigate musculoskeletal injuries in running, such as tibial stress fractures (Milner et al., 2006; Milner et al., 2007; Matijevich et al., 2019; Milner et al., 2023). The data-driven approach has also yielded favorable outcomes in projecting tibial bone force using wearable sensor data (Matijevich et al., 2020; Elstub et al., 2022). This approach incorporates the muscular forces acting on the tibia, potentially offering a more comprehensive understanding of musculoskeletal injuries (Matijevich et al., 2019). By integrating this data with external impact loading rates, a more holistic view of the biomechanical factors contributing to injury risk can be achieved, enhancing the precision and effectiveness of injury prediction and prevention strategies. Although data-driven approaches using wearable sensors show promise for predicting external loading (Derie et al., 2020; Tan et al., 2020) and internal muscular force (Matijevich et al., 2019; Matijevich et al., 2020), their opaque “black-box” nature presents a challenge in terms of data interpretability or explainable artificial intelligence (XAI) (Halilaj et al., 2018; Uhlrich et al., 2023). This area warrants further investigation to understand how wearable sensor signals correlate with biomechanical forces (Kaji et al., 2019; Schlegel et al., 2019; Jeyakumar et al., 2020; Gandin et al., 2021; Xiang et al., 2024). Therefore, personalized biomechanical adaptation strategies, tailored for precise injury prevention and rehabilitation monitoring, can be more effectively applied once a deeper understanding of these correlations is achieved.
4.4 Implications for future studies

	➢ The utility of peak TA as an indicator of GRF, particularly VALR and VILR during running, is subject to skepticism in the context of current literature, especially with respect to overground running.
	➢ A moderate to strong correlation exists between peak TA and vertical loading rate, irrespective of the foot strike patterns. However, it is important to note that the sample sizes for RFS and MFS are relatively limited, warranting caution in generalization of these findings.
	➢ Strategies for gait retraining that focus on diminishing loading rates through the reduction of peak TA may not be adequately supported by empirical evidence.
	➢ While a correlation between peak TA and impact loading is observed, this does not necessarily imply a direct linear relationship between either GRF or TA and the internal forces exerted on the tibial bone.
	➢ Data-driven models, which utilize acceleration data from inertial wearable sensors, exhibit a proficient capability in accurately predicting both external impact loading and internal tibial bone loading.
	➢ Future studies should focus on enhancing XAI to augment interpretability of data-driven biomechanical models. This advancement is crucial for effectively correlating wearable sensor data with biomechanical forces.
	➢ Embracing multifactorial methodologies that integrate insights from biomechanics, data science, kinesiology, and clinical practice not only minimizes confounding factors but also enriches the interpretation and applicability of research outcomes in real-world settings.

5 CONCLUSION
In conclusion, this study critically assesses the relationship between TA, GRF, and tibial bone loading in the context of running. It highlights the limited correlation between these biomechanical factors and tibial bone stress, challenging traditional beliefs. The research underscores the significant potential of wearable sensors and machine learning in advancing our understanding of running biomechanics. These technologies offer promising avenues for injury monitoring, prevention, and rehabilitation, suggesting a need for a shift towards more integrated and holistic approaches in running biomechanics.
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Background: Dancers represent the primary demographic affected by ankle joint injuries. In certain movements, some Latin dancers prefer landing on the Forefoot (FT), while others prefer landing on the Entire foot (ET). Different stance patterns can have varying impacts on dancers’ risk of ankle joint injuries. The purpose of this study is to investigate the differences in lower limb biomechanics between Forefoot (FT) dancers and Entire foot (ET) dancers.
Method: A group of 21 FT dancers (mean age 23.50 (S.D. 1.12) years) was compared to a group of 21 ET dancers (mean age 23.33 (S.D. 0.94) years), performing the kicking movements of the Jive in response to the corresponding music. We import data collected from Vicon and force plates into OpenSim to establish musculoskeletal models for computing kinematics, dynamics, muscle forces, and muscle co-activation.
Result: In the sagittal plane: ankle angle (0%–100%, p < 0.001), In the coronal plane: ankle angle (0%–9.83%, p = 0.001) (44.34%–79.52%, p = 0.003), (88.56%–100%, p = 0.037), ankle velocity (3.73%–11.65%, p = 0.017) (94.72–100%, p = 0.031); SPM analysis revealed that FT dancers exhibited significantly smaller muscle force than ET dancers around the ankle joint during the stance phase. Furthermore, FT dancers displayed reduced co-activation compared to ET dancers around the ankle joint during the descending phase, while demonstrating higher co-activation around the knee joint than ET dancers.
Conclusion: This study biomechanically demonstrates that in various stance patterns within Latin dance, a reduction in lower limb stance area leads to weakened muscle strength and reduced co-activation around the ankle joint, and results in increased ankle inversion angles and velocities, thereby heightening the risk of ankle sprains. Nevertheless, the increased co-activation around the knee joint in FT dancers may be a compensatory response for reducing the lower limb stance area in order to maintain stability.
Keywords: Latin dancers, ankle sprain, muscle force, biomechanics, stance patterns

1 INTRODUCTION
The ankle joint, located at the convergence of the lower leg and the foot (Palastanga et al., 2006), assumes a critical role in providing structural stability and facilitating biomechanical support for the body (Simon et al., 2014). It facilitates a diverse spectrum of movements, encompassing flexion, extension, rotation, and lateral shifts in the foot (Palastanga et al., 2006; Khuyagbaatar et al., 2024). Consequently, once an individual’s ankle joint is injured, it not only limits physical activities but also hinders daily life (Houston et al., 2015; Hubbard-Turner and Turner, 2015; Wright et al., 2017). This joint is particularly susceptible to injuries during athletic activities (Taghavi Asl et al., 2022), predominantly encompassing ankle sprains, ligament strains, muscle tears, among others. Among these injuries, ankle sprains are a particularly common form of injury (Guillo et al., 2013), accounting for approximately 15% of all injuries (Garrick, 1977; Fong et al., 2007; Hootman et al., 2007; Doherty et al., 2014). For example, in the context of basketball, athletes frequently engage in high-intensity maneuvers such as jumping and rapid directional changes, presenting a significant challenge to the stability of basketball players (Hertel, 2002). Additionally, athletes often collide or come into contact with opponents, further impacted by the inherent physicality of the performance. A robust biomechanical foundation is required to effectively manage the weight and force encountered during these physical engagements. When the ankle joint’s ability to maintain balance significantly decreases, susceptibility to ankle sprains notably increases (McKay et al., 1996; Messina et al., 1999; Kovács et al., 2023).
Ankle sprain issues are also prevalent in the field of dance (Russell, 2010), with reports indicating that approximately 90% of dancers experience injuries over the course of their extensive dance careers, and the ankle and foot account for approximately 40% of all injuries (Garrick, 1977; Schafle et al., 1990). In terms of injury types, among every 100 contemporary dancers, the proportion of foot and ankle injuries ranges from 17% to 24% (Garrick, 1977; Nilsson et al., 2001; Byhring and Bø, 2002; Bronner et al., 2003; Kadel, 2006; Simon et al., 2014). In ballet, the incidence rate of foot injuries ranges from 65% to 79% (O'Loughlin et al., 2008; Costa et al., 2016; Hung et al., 2021). As Latin dance gains in popularity, the community of Latin dance enthusiasts continues to grow, making the provision of scientific guidance increasingly crucial. It is worth noting that compared to ballet, there has been relatively less research on lower limb biomechanics in Latin dance. Nevertheless, in recent years, more and more researchers have shifted their focus towards Latin dance. Some studies suggest that Latin dance can enhance body balance (Kiliç and Nalbant, 2022; Liu et al., 2022), further highlighting its potential for rehabilitative interventions in individuals with Parkinson’s disease (Hulbert et al., 2017; Ismail et al., 2021). Despite its benefits for balance improvement, the intricate movements involved in Latin dance also present a notable risk of ankle injuries. Dancers need to engage in extensive ankle flexion, extension, turning, and rotation during dance training, which may lead to overstretching or twisting of the ankle muscles. Research indicates that the probability of lower limb injuries in sports dance is 34.3%, with the likelihood of ankle joint injuries at 23.5% and knee joint injuries at 15.7% (Kuisis et al., 2012). It is evident that there is a relatively high probability of ankle joint injuries. Although previous research has focused on the injury concerns of Latin dancers, we have found that there is relatively limited research on lower limb injuries among dancers. The lower limbs play a crucial role in dance, and any injury to them can have a detrimental impact on a dancer’s career. Therefore, in-depth research into the biomechanical characteristics of dancers’ lower limbs has become particularly important. In the flawless rendition of Latin dance, seamless coordination between male and female dancers is imperative. In Latin dance, males primarily take on the roles of leading and partnering, while females, akin to the core within a flower, play a crucial role. Diverging from their male counterparts, female dancers showcase their footwork in a more intricately woven manner, encompassing various spins, precisely delineated rhythmic divisions, and elegant movements involving ankle flexion and extension. The complexity of these movements demands proficient posture control abilities (Leanderson et al., 1996) as the foundation for maintaining balance, and prolonged practice induces adaptive changes in biomechanics (Ödemiş et al., 2022), particularly in relation to the ankle joints.
In specific Latin dance movements, dancers adopt diverse body gravity distribution patterns, some favoring the FT while others distributing it across the ET. In the kicking movement of Jive, the process primarily consists of three stages: draw or lift (where the dancer lifts the leg, bringing the leg curve towards the body, preparing for the next move), extend or kick (where the dancer quickly stretches the leg from the drawn position to complete the kicking action, reaching the highest point of the leg movement), and return or drop (where the dancer, after the kicking motion, swiftly returns the leg to the initial position or prepares for the subsequent dance move). The combination and fluid transition of these stages are crucial in the Jive kicking action. When executing the kicking motion, FT dancers have their supporting leg with the half foot on the ground, and the body center consistently placed over the front ball of the foot. In contrast, ET dancers, during the kicking motion, maintain the supporting leg with the entire foot on the ground, and the body center is positioned over the dancer’s entire foot. These distinct leg support methods and body center positions result in noticeable differences in the kicking movements between the two types of dancers. Previous research has indicated that alterations in the lower limb stance area might lead to changes in the musculoskeletal structure of the lower limbs (Polat and Kabakcı, 2021). FT dancers typically have a smaller lower limb stance area compared to ET dancers. Consequently, FT dancers may adapt their lower limb usage during dancing to accommodate the reduced stance area. In the evaluation of the significance of foot functionality and the preservation of body posture stability, the pivotal roles played by muscle activation and muscle synergy come to the forefront (Cai et al., 2023). Additionally, the FT movement pattern increases plantar flexion at the ankle joint, effectively increasing the distance between the heel and the ground, akin to an increase in heel height. Studies have confirmed a correlation between heel height and an increased risk of foot injuries (Polat and Kabakcı, 2021). Moreover, the use of high-heeled shoes may increase the risk of ankle sprains (Ebbeling et al., 1994; Gajdosik et al., 1999). Based on this research, we speculate that FT dancers might be more prone to ankle joint sprains compared to ET dancers.
Therefore, the main objective of this study is to systematically explore the variation in ankle joint sprain risk among Latin dancers under different support modes. Through in-depth analysis and comparison of dancers’ ankle joint kinematics, dynamics, and lower limb muscle activity, we aim to thoroughly investigate the impact of these support modes on the biomechanics of the dancers’ lower limbs from a biomechanical perspective. Ultimately, we aspire to offer more precise insights through scientific research to assist dancers in effectively mitigating potential injury risks, thereby extending their sustainable development in the field of dance profession.
2 MATERIALS AND METHODS
2.1 Participants
Based on previous research, we calculated the sample size determination using G- Power software (version: 3.1.9.7; Henry University of Düsseldorf, Düsseldorf, Germany). An independent samples t-test was conducted, with an effect size of 0.8 (significance level: 0.05) (Gao et al., 2023). In this experiment, a total of 21 dancers habitually placing their body weight on the forefoot while dancing (age: 23.50 ± 1.12 years; height: 165.50 ± 2.92 cm; body weight (BW): 53.13 ± 2.52 kg), and the remaining 21 habitually distributing their body weight across the entire foot (age: 23.33 ± 0.94 years; height: 165.89 ± 2.64 cm; body weight (BW): 52.22 ± 2.48 kg) were investigated. The participants all had at least 5 years of dance experience, with a minimum of two or more professional training sessions per week. All participants were free from any injuries for the past 6 months prior to data collection. All were informed about the study procedures, conditions, and requirements, and provided written informed consent before data collection. This study was approved by the Ethics Review Committee of Ningbo University (Approval Code: RAGH20230620).
2.2 Experimental procedure
This experiment was conducted in the Sports Biomechanics Laboratory at Ningbo University. Drawing from prior research, we affixed 38 standard markers, each with a diameter of 12.5 mm, onto the participants to precisely capture their motion trajectories (Zhou et al., 2021). Eight infrared cameras were utilized to record motion, and the Vicon motion capture system was intricately combined with a force plate (AMTI, Watertown, MA, United States) for the comprehensive acquisition of both kinematic and kinetic data. The sampling frequencies for kinematics and kinetics were 200 and 1,000 Hz (Xu et al., 2022), respectively. The EMG system (Delsys, Boston, Massachusetts, United States) was used to collect surface muscle activation and force data at a frequency of 1,000 Hz (Cai et al., 2023; Cai et al., 2024). Surface electromyography (EMG) sensors were placed on the subjects’ vastus medialis, vastus lateralis, rectus femoris, tibialis anterior, medial gastrocnemius, and lateral gastrocnemius muscles. Maximum Voluntary Contractions (MVC) were also collected for these six muscle groups to standardize muscle activation.
Prior to the formal experiment, participants were instructed to wear specialized Latin dance shoes with 7.5 cm heels and attire featuring a snug fit, facilitating warm-up procedures. Subsequently, the participants were familiarized with experimental environments and the experimental procedures. In the formal experiment, participants were required to provide a set of static data (Xu et al., 2023). They received instructions to stand in an anatomical position, step onto the force plate, upon hearing a command, and prepare for data collection. The data was collected as participants followed the rhythm of the music, performing kicking movements in the jive from one end of the force platform to the other. Throughout the entirety of the experiment, the dancers maintained a consistent posture, with both hands gracefully resting on their waists. Participants were specifically instructed to coordinate the contact of their right foot with the force plate on the “two” beat (as shows in the Figure 1). The data collection commenced when the ground reaction force exceeded 10 N (Xu et al., 2024). When collecting surface electromyography, it was necessary to remove excess hair from the test areas to reduce impedance at the skin-electrode interface (Xu et al., 2023). Throughout the experiment, researchers closely monitored participant performance. In instances where a participant deviated from the music rhythm or failed to fully place their foot on the force plate, the trial was deemed invalid, prompting the repetition of measurements to ensure accuracy and reliability of the data.
[image: Three panels illustrate human anatomy and movement. Panel A shows detailed anatomical drawings of muscles from the front, side, and back views. Panel B displays muscle names and locations for the same views, with an EMG sensor indicated. Panel C compares biomechanical modeling of two squatting movements, labeled FT and ET, with a series of figures showing the transition from a squatting to a standing position. Blue arrows indicate movement direction.]FIGURE 1 | (A): Illustration of the musculoskeletal model; (B): Illustration of the EMG acquisition; (C): Illustration of the motion capture process (FT: Forefoot; ET: Entire foot).
2.3 Data processing and analysis
The Vicon Nexus software was employed to export data in c3d format for the acquisition of participants’ kinematic and kinetic data (Li et al., 2022). Subsequently, the data undergoes processing using MATLAB R2022a (The MathWorks, Natick, MA, United States) (Cai et al., 2023), involving operations such as coordinate transformation, low-pass filtering, data extraction, and format conversion. The coordinate systems of kinematic and kinetic data were transformed into the coordinate system used in subsequent simulations. Biomechanical data pertaining to kinematics and ground reaction forces were subjected to filtering using fourth-order zero-phase-lag Butterworth low-pass filters with cutoff frequencies set at 10 and 20 Hz. Kinematic and ground reaction force data were extracted and transformed into the trc format (marker trajectories) and force plate data format essential for the OpenSim simulation software. OpenSim (Stanford University, Stanford, CA, United States) was employed in this study for the processing and computation of biomechanical parameters. Static models were imported into OpenSim 4.4 software, and the scale tool was utilized to obtain body measurement models for each participant. Muscle origin and insertion points were identified to align with the limb lengths of the participants. Using the inverse kinematics (IK) tool in OpenSim 4.4 software, joint angles during the stance phase of kicking movements were computed, and motion files (mot) were created. The residual reduction algorithm (RRA) was applied to smooth the kinematic data, improving the accuracy of dynamic data and making it consistent with the measured data. The calculation of Center of Mass (CoM) position and velocity was achieved through consecutive utilization of OpenSim’s Inverse Kinematics and Body Kinematics Tools.
Muscle activation and muscle forces were determined using static optimization, employing the smoothed kinematic data obtained during the process. The EMG data underwent a fourth-order band-pass filtering from 10 to 500 Hz to prepare for full-wave rectification. Subsequently, a 10 Hz low-pass filter was applied to further refine and smooth the data (Zhou et al., 2021). At the same time, the EMGc signals were normalized by dividing the EMG amplitude by the maximum root mean square amplitude, which was further divided by MVC to obtain the activation level of each muscle (Xu et al., 2023). EMGc activation variables were qualitatively compared with OpenSim simulated muscle activation to assess the reliability of the OpenSim model. The comparative findings, depicted in Figure 2, demonstrate a favorable correlation between the expected muscle activation throughout the stance phase and the electromyographic (EMGc) signals.
[image: Twelve graphs showing EMG activation levels for various leg muscles: vastus lateralis, rectus femoris, vastus medialis, tibialis anterior, lateral gastrocnemius, and medial gastrocnemius. Each graph compares two conditions, labeled as continuous red and shaded gray lines, across a time scale from zero to one hundred. The graphs indicate variations in muscle activation patterns.]FIGURE 2 | Illustration of the EMG/activation of muscle. The red line represents the results of EMGc activation, and the gray shaded area represents musculoskeletal modeling activation results. The left scale ranges from 0 to 1, indicating muscle activation from no activation to full activation. The bottom scale ranges from 0 to 100, representing the stance phase.
To derive the co-activation of lower limb muscles during the descending phase, based on prior research we employed the following formula (Márquez et al., 2013; Lin et al., 2019):
[image: Formula showing muscle co-activation percentage calculation: \( \text{Muscle co-activation} (\%) = \left(\frac{\text{RMS EMG}_{\text{antagonist}}}{\text{RMS EMG}_{\text{agonist}}}\right) \times 100 \).]
2.4 Statistical analysis
Prior to engaging in statistical analysis, the dataset was subjected to a Shapiro-Wilk normality test to evaluate the adherence of the data to a normal distribution. Subsequently, an independent t-test was employed to scrutinize distinctions between the two modes of movement. In the context of statistical parametric mapping (SPM) analysis, the entire dataset was extracted, and a bespoke MATLAB script was utilized to unfold the data from the stance phase into time-series curves comprising 101 data points. Following this data preparation, statistical analysis was carried out using the open-source SPM1d paired-sample t-test script, with a predetermined significance threshold established at p < 0.05.
3 RESULTS
Differences were found between FT dancers and ET dancers. Figure 3 shows the difference in ankle joint angle, joint moment and joint velocity between FT and ET during the stance phase. Figure 4 shows the difference in knee joint angle between FT and ET during the stance phase. Figure 5 shows the difference in Tibialis Anterior, Tibialis Posterior, Peroneus Longus, Peroneus Brevis, Lateral Gastrocnemius, and Medial Gastrocnemius between FT and ET during the stance phase. Figure 6 shows the difference in muscle co-activation ratio between FT and ET during descending phase. Figures 7, 8 shows the difference in COM between FT and ET during the stance phase.
[image: A grid of six graphs visualizing ankle joint kinematics during gait. Each row displays data for dorsiflexion/plantarflexion, and eversion/inversion angles, moments, and velocities. Colored lines represent different foot sections, with overlapping shaded areas indicating variability. Significant p-values are noted in each graph, suggesting statistical differences between sections. The x-axis shows percentage of gait cycle, while the y-axis varies per graph theme.]FIGURE 3 | Illustration of the results between FT and ET the lower limb showing the statistical parametric mapping outputs for the ankle angle, moment, velocity during the stance phase. The values of t* are shown on the left of each image. Grey shades represent the significant differences and t-values of the SPM or all participants, dashed red lines represent the results at p = 0.05.
[image: Two graphs display knee joint angles. The top left graph shows flexion and extension, with data for the forefoot and entire foot, featuring smooth curves in green and blue. The top right graph represents abduction and adduction, with similar color coding. Both bottom graphs show statistical significance, with dashed lines.]FIGURE 4 | Illustration of the results between FT and ET the lower limb showing the statistical parametric mapping outputs for the knee angle during the stance phase. The values of t* are shown on the left of each image. Grey shades represent the significant differences and t-values of the SPM or all participants, dashed red lines represent the results at p = 0.05.
[image: Six line graphs display muscle forces in newtons against the stance phase percentage of gait for different leg muscles: Tibialis Anterior, Tibialis Posterior, Peroneus Longus, Peroneus Brevis, Lateral Gastrocnemius, and Medial Gastrocnemius. Each graph compares forefoot and entire foot conditions, showing muscle force variations and statistical significance with p-values. Green and purple areas indicate confidence intervals. Below each graph, smaller plots depict additional statistical data, highlighting differences in muscle activation patterns throughout the gait cycle.]FIGURE 5 | Illustration of the results between FT and ET the lower limb showing the statistical parametric mapping outputs for the Tibialis Anterior, Tibialis Posterior, Peroneus Longus, Peroneus Brevis, Lateral Gastrocnemius, and Medial Gastrocnemius during the stance phase. The values of t* are shown on the left of each image. Grey shades represent the significant differences and t-values of the SPM or all participants, dashed red lines represent the results at p = 0.05. BW: Body Weight.
[image: Bar chart showing muscle co-activation ratios for four muscle groups: BF/RF, BF/VM, SOL/TA, and MG/TA. Two categories are compared: Forefoot and Entire foot. BF/VM shows the highest ratios, and MG/TA the lowest.]FIGURE 6 | Illustration of lower limb muscle co-activation results between FT and ET during the descending phase. Abbreviations: TA: tibialis anterior; MG: medial gastrocnemius; BF: biceps femoris; RF: rectus femoris; VM: vastus medialis; SOL: soleus.
[image: Two graphs are displayed. The top left graph shows position in meters over time, comparing forefoot and entire foot, with significant differences indicated by p<0.001. The top right graph depicts velocity in meters per second showing a similar comparison. The bottom graphs present statistical analysis of these comparisons, including Spatiotemporal Phase (SPM) with critical values and significance levels.]FIGURE 7 | Illustration of COM vertical position and velocity results between FT and ET during the stance phase. The values of t* are shown on the left of each image. Grey shades represent the significant differences and t-values of the SPM or all participants, dashed red lines represent the results at p = 0.05.
[image: Bar chart comparing center of mass displacement between two groups, FT and ET. Both groups show similar values, around 0.1, with a p-value of 0.709, indicating no significant difference.]FIGURE 8 | Illustration of COM displacement results between FT and ET during the stance phase.
3.1 Ankle angle, moment, velocity
The SPM analysis revealed the results of ankle joint kinematics and kinetics during the stance phase, comparing FT dancers with ET dancers. In the sagittal plane: ankle angle (0%–100%, p < 0.001), ankle moment (7.67%–39.17%, p < 0.001), SPM analysis revealed in the ankle velocity that there was no significant difference between FT and ET during the stance phase. In the coronal plane: ankle angle (0%–9.83%, p = 0.001) (44.34%–79.52%, p = 0.003), (88.56%–100%, p = 0.037), ankle velocity (3.73%–11.65%, p = 0.017) (94.72–100%, p = 0.031). SPM analysis revealed in the ankle moment that there was no significant difference between FT and ET during the stance phase. Table 1 displays significant differences in ankle dorsiflexion angle (p < 0.001), ankle plantarflexion angle (p < 0.001), ankle version angle (p < 0.001), ankle inversion velocity (p < 0.001).
TABLE 1 | Comparison of all joint angle, moment, velocity variables change between FT dancers and ET dancers during the stance phase.
[image: Comparison table of parameters in sagittal and coronal planes, showing peak values and means with standard deviations for FT and ET. Significant differences marked with an asterisk, assessed by p-values. Parameters include angles, moments, and velocities, with variances in dorsiflexion, plantarflexion, eversion, and inversion. Notable significance in dorsiflexion and inversion angle changes.]3.2 Knee angle
The SPM analysis revealed in the knee angle that there was no significant difference between FT and ET in both the sagittal and coronal planes during the stance phase.
3.3 Muscle force
The SPM analysis revealed the results of muscle force during the stance phase, comparing FT dancers with ET dancers. Tibialis Posterior: (44.84%–50.23%, p = 0.016); Lateral Gastrocnemius: (4.08%–9.17%, p = 0.020) (43.25%–51.32%, p = 0.005); Medial Gastrocnemius (1.60%–10.15%, p = 0.006) (40.89%–48.70%, p = 0.008); SPM analysis revealed in the Tibialis Anterior, Peroneus Longus, Peroneus Brevis that there was no significant difference between FT and ET during the stance phase. Table 2 displays significant differences in the Tibialis Posterior between FT dancers and ET dancers (p < 0.027).
TABLE 2 | Comparison of all muscle force variables change between FT dancers and ET dancers during the stance phase.
[image: Table showing peak muscle force in body weight (BW) for specific muscles with FT and ET means and standard deviations, including p-values. The tibialis posterior has a significant difference with a p-value less than 0.027.]3.4 Muscle co-activation ratio
Figure 6 shows the difference in the muscle co–activation ratio (%) between FT dancers and ET dancers during the descending phase, and the SPM analysis revealed that FT depicted a significantly smaller co-activation ratio than ET around ankle during the descending phase.
3.5 Center of mass (COM)
In the horizontal: Figure 7 shows the difference in the COM vertical position and velocity between FT dancers and ET dancers during the stance phase. The SPM analysis revealed that FT exhibited postural performance with a significantly higher CoM at almost 60% of the stance compared to ET, while there was no significant difference in velocity during the stance phase. In addition, Figure 8 shows that there was no significant difference in COM displacement between FT (13.60 ± 0.70 cm) and ET (13.20 ± 0.30 cm) during the stance phase.
4 DISCUSSION
This study has investigated the biomechanical differences in the lower limb stance patterns between FT (forefoot) dancers and ET (entire foot) dancers. Initially, our hypothesis suggested that FT dancers might face a heightened susceptibility to ankle sprains in comparison to ET dancers. Our findings substantiated this hypothesis, revealing that FT dancers displayed a more pronounced plantarflexion angle, inversion angle, and inversion velocity in their ankle joint in contrast to ET dancers. Moreover, the FT dancers exhibited reduced co-activation of the muscles surrounding the ankle joint compared to their ET counterparts. These outcomes corroborate our initial assumptions and contribute substantially to comprehending the mechanisms underlying the risk of lower limb injuries among these distinct types of dancers from a biomechanical standpoint.
Previous studies have demonstrated a direct correlation, establishing that increased heel height corresponds with amplified plantarflexion activity within the ankle joint (Polat and Kabakcı, 2021). When FT dancers adopt the forefoot landing method, they effectively extend the distance between their heels and the ground, akin to the effect of wearing higher heels. As a result, this technique induces an escalated degree of ankle joint plantarflexion. Our study findings concur with this observation, notably illustrating that FT dancers consistently displayed a larger plantarflexion angle compared to ET dancers throughout the stance phase (p < 0.001). We speculate that the diminished dorsiflexion angle observed in the ankle joint of FT dancers might be attributed to two factors. Firstly, dancers limit the ankle joint’s range of motion to sustain bodily balance during high-speed movements. Secondly, the partial forefoot contact method used by dancers decreases the contact area between the ankle joint and the ground, enabling swifter directional changes and body movement transitions. Past studies have indicated that a reduced ankle dorsiflexion angle corresponds with increased peak landing forces, thus elevating stress around the ankle joint (Fong et al., 2011). Over an extended dance career, subjecting the ankle joint to prolonged periods of high-pressure conditions may result in fatigue, potentially heightening susceptibility to ankle sprains. In addition, another reason for the reduced dorsiflexion angle in FT dancers may be attributed to the influence of the long loop reflex. The decrease in contact area with the ground may impact stability reflexes triggered by somatosensory stimuli, resulting in a sensory loss experienced in the fusion of an upright stance (Binder et al., 2009). To maintain body stability, the long loop reflex engages in motor control and posture regulation by reducing the range of motion in the ankle joint to preserve balance.
Various modes of stance can exert an influence on the body’s stability (Horak et al., 1990; Winter et al., 1996), with the Center of Mass (COM) standing out as a pivotal metric for the assessment of human stability (Willaert et al., 2024). During the execution of kicking movements, the most profound alterations in the COM manifest in the vertical dimension. Rigorous computations of the vertical COM displacement, revealing no marked disparities in the transformations between FT and ET dancers (as shown in Figure 1). This phenomenon may be attributed to the similarity of Latin dance kicking motions to stationary single-leg ankle movements. With singular limb support, the muscle groups responsible for equilibrium maintenance exhibit heightened activity (Alfuth and Gomoll, 2018), inducing a subtle COM shift towards the supporting limb. The body endeavors to uphold equilibrium through nuanced muscle adjustments (Kaye and Jahss, 1991; Murley et al., 2014), implicating the neural system’s governance of the body in the vertical plane. While these movements contribute to the conditioning of lower limb musculature and the refinement of balance, the COM displacement is apt to be inconspicuous due to the singular support point. Under usual circumstances, such variations are typically governable and improbable to give rise to perceptible complications. Hence, our primary emphasis is directed towards discerning alterations in muscular activity.
The stance area of the lower limbs upon landing is noticeably smaller in FT dancers compared to ET dancers, potentially resulting in alterations in the musculoskeletal structure of the lower limbs (Polat and Kabakcı, 2021). These changes can significantly affect muscle force distribution around the ankle joint, to the extent of affecting the dancer’s balance. Our study found no significant differences between FT and ET dancers in the tibialis anterior muscle. However, during the (44.84%–50.23%, p = 0.016) stance phase, we noted slightly lower muscle force in the tibialis posterior muscle among FT dancers compared to ET dancers. The tibialis posterior muscle, situated in the lower leg’s posterior part, extends to the inner aspect of the foot, contributing to maintaining the foot arch’s concave shape and providing enhanced stance, balance, and load dispersion (Kaye and Jahss, 1991; Murley et al., 2014). Reduced muscle strength may result in inadequate control of ankle joint inversion angles during the stance phase, subsequently leading to increased inversion velocity (Murley et al., 2014). Our findings revealed that FT dancers demonstrated greater inversion angles than ET dancers during the (0%–9.83%, p = 0.001), (44.34%–79.52%, p = 0.003), and (88.56%–100%, p = 0.037) stance phases. Additionally, FT dancers exhibited higher inversion velocities, reaching a peak velocity of 291.09°/s during the initial ground contact phase. This increased inversion angle upon initial ground contact in FT dancers, possibly due to insufficient muscle strength, leads to challenges in controlling inversion speed, thereby elevating the risk of ankle injuries upon landing (Lin et al., 2019). Previous reports have highlighted that greater inversion angles and velocities are primary factors contributing to ankle joint sprains (Xu et al., 2022). Consequently, FT dancers may face an increased risk of ankle joint injuries (Gehring et al., 2014). The plantar fascia is a type of connective tissue located on the sole of the foot, playing a crucial role in controlling the complex tension of the metatarsal arch through the windlass mechanism (Hicks, 1954). It is pivotal in maintaining the shape of the foot and providing support by supporting and sustaining the concave structure of the foot arch through the intricate movements of the windlass mechanism. Additionally, the plantar fascia is involved in absorbing and transmitting body weight during walking and movement, while simultaneously maintaining the stability of the foot (Menz et al., 2005; Kleiner et al., 2011). The uneven distribution of foot strength in FT dancers may increase the load on the plantar fascia, leading to inflammation or strain. Therefore, this could also be one of the factors influencing the balance of FT dancers. In the future, we can delve deeper into the physiological mechanisms and related mechanics of Latin dancers’ feet, especially those related to ankle joint stability.
Our study found notable differences in muscle force between FT and ET dancers. Specifically, FT dancers exhibited lower lateral gastrocnemius muscle force than ET dancers during the (4.08%–9.17%, p = 0.020) and (43.25%–51.32%, p = 0.005) stance phases. Similarly, reduced medial gastrocnemius muscle force was observed in FT dancers compared to ET dancers during the (1.60%–10.15%, p = 0.006) and (40.89%–48.70%, p = 0.008) stance phases. The gastrocnemius muscle plays a crucial role in mitigating excessive lateral ankle deviation in response to external forces or ankle eversion tendencies, thereby reducing susceptibility to ankle inversion sprains (Lin et al., 2019). This mechanism is particularly important in preventing ankle injuries within the realm of Latin dance. The intricate footwork involved in Latin dance routines, encompassing external and internal rotations, swift directional changes, and rotational maneuvers, places a substantial demand on ankle joint stability. Inadequate strength in the peroneal muscles to counteract external forces inherent in these complex movements significantly increases susceptibility to ankle sprains.
In this study, we utilized electromyography (EMG) to validate the OpenSim model, revealing a strong correlation between predicted muscle activations by the model and the actual EMG recordings. This alignment allowed us to identify both agonist and antagonist muscles involved in the movements under study. Leveraging muscle activation data extracted from OpenSim, we applied established methodologies to calculate muscle co-activation in both FT and ET dancers (Lin et al., 2019). Our analysis primarily focused on muscles surrounding the knee and ankle joints, revealing lower co-activation around the ankle, notably in SOL/TA and MG/TA, among FT dancers. This signifies less ankle joint stability and poorer muscle control in this group. Studies have highlighted that lower limb joint stability heavily relies on muscle co-activation (Pan et al., 2023; Yang et al., 2023). Particularly crucial for Latin dancers, swift weight shifts between feet are common in this dance style, such as during kicks performed in the jive. These movements demand rapid transitions between ankle dorsiflexion and plantarflexion. Hence, maintaining robust stability is fundamental for providing adequate support and forms the bedrock of a dancer’s movement quality. The discerned subjective preference upon landing in FT mode, particularly the discernible reduction in moment arms along the longitudinal and anteroposterior axes, may be intricately linked to individuals’ perceptual acuity and adaptive prowess in the realm of posture control. The extant literature posits that as the support base diminishes, a paradigmatic shift occurs in the dominant mode of posture control, transitioning from the ankle joint towards more proximal anatomical structures, notably adopting knee or hip-centric strategies (Keshner and Allum, 1990). Within the purview of our investigation, we observed a lack of statistically significant alterations in knee joint angles during FT mode. Nonetheless, a conspicuous augmentation in the co-activation of muscles encircling the knee joint was noted, indicative of an adaptive response to the distinctive support paradigm inherent in FT. This phenomenon potentially serves as a pivotal determinant for dancers navigating FT mode to uphold stability. Consequently, despite the absence of overt changes in knee joint angles, adaptation manifested at the level of muscular co-activation, thereby contributing substantively to stability maintenance in FT mode and proffering a plausible elucidation for the attested subjective preference. This discovery underscores the pivotal role of muscular activity and co-activation within the milieu of posture control research, especially in the context of adaptive modulations when confronted with divergent stance patterns.
While the current study extensively explored various aspects of Latin dance biomechanics, including the intricate footwork and its impact on ankle joints, the trajectories of the free functional leg (left) in terms of movement variability were not specifically analyzed in this research. This indeed represents a limitation of our study. Examining the trajectories of the free leg could potentially provide valuable insights into the preferred stance modality of individual participants, offering a more comprehensive understanding of their movement patterns. We acknowledge this limitation and consider it an avenue for future research to delve deeper into the nuanced aspects of Latin dance biomechanics.
5 CONCLUSION
This study biomechanically demonstrates that in various stance patterns within Latin dance, a reduction in lower limb stance area leads to weakened muscle strength and reduced co-activation around the ankle joint, and results in increased ankle inversion angles and velocities, thereby heightening the risk of ankle sprains. The diminished muscle strength and co-activation affect their ability to effectively control the inward and outward movements of the ankle, resulting in reduced regulation of ankle joint motion. The increased co-activation around the knee joint in FT dancers may be a compensatory response for reducing the lower limb stance area in order to maintain stability. As a result, FT dancers may significantly heighten their risk of ankle sprains during dance activities. To mitigate such risks, dancers should prioritize safeguarding the health of their ankle joints. This involves not only mastering proper dance techniques and postures but also integrating customized strength training specifically targeting ankle joint stability. This proactive approach is crucial for maintaining balance and injury resistance during rigorous dance training and performances.
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Introduction: This study aimed to model below and above anaerobic threshold exercise-induced heart rate (HR) drift, so that the corrected HR could better represent [image: Sure, please upload the image or provide a URL so I can generate the alt text for you.] kinetics during and after the exercise itself.
Methods: Fifteen healthy subjects (age: 28 ± 5 years; [image: \( \dot{V}O_{2Max} \), representing maximal oxygen uptake in exercise physiology, shown in a stylized mathematical format with a dot above the V to indicate rate.]: 50 ± 8 mL/kg/min; 5 females) underwent a maximal and a 30-min submaximal (80% of the anaerobic threshold) running exercises. A five-stage computational (i.e., delay block, new training impulse-calculation block, Sigmoid correction block, increase block, and decrease block) model was built to account for instantaneous HR, fitness, and age and to onset, increase, and decrease according to the exercise intensity and duration.
Results: The area under the curve (AUC) of the hysteresis function, which described the differences in the maximal and submaximal exercise-induced [image: The image contains the notation for oxygen consumption, represented as \( \dot{V}O_2 \), where the dot over the V indicates a rate or flow.] and HR kinetics, was significantly reduced for both maximal (26%) and submaximal (77%) exercises and consequent recoveries.
Discussion: In conclusion, this model allowed HR drift instantaneous correction, which could be exploited in the future for more accurate [image: Mathematical notation for oxygen uptake, represented by a capital letter V with a dot above it, followed by a subscript O and the number two.] estimations.
Keywords: cardiovascular drift, training impulse, VO2 max, hysteresis, wearables

1 INTRODUCTION
After a few minutes (e.g., 5–10 min) (Coyle, 1998) of submaximal aerobic or below anaerobic threshold exercise (BTE, e.g., 70% [image: Text showing the symbol for V̇O₂Max, which represents the maximum rate of oxygen consumption measured during incremental exercise, an indicator of cardiovascular fitness.]) at a constant workload (Hamilton et al., 1991), a progressive increase in the heart rate (HR) is observed. Invasive studies showed that this progressive increase in the HR is associated with a decrease in the stroke volume (SV) (Ekelund, 1967; Rowell, 1974). This phenomenon, where, for a given oxygen removal [image: Arterial-venous oxygen content difference, depicted as the equation: \(C_{\text{a}}O_2 - C_{\bar{\nu}}O_2\).], cardiac output (CO = HR ⋅ SV) matches [image: Symbol representing oxygen consumption rate, denoted as "V" with a dot above it, followed by "O" in subscript and the number two.] by an increase in the HR while SV decreases, follows the Fick equation (Eq. 1):
[image: Equation for \(V_{\text{O}_2}\) is shown. It equals \((\text{HR} \cdot 1.5 \text{V}) \cdot (C_{\text{aO}_2} - C_{\text{vO}_2})\).]
and it is referred to as cardiovascular (CV) drift. Hamilton et al. (1991) showed that during 2 h of cycling exercise at 70% [image: \( \dot{V}O_{2\,Max} \) represents the maximum rate of oxygen consumption measured during incremental exercise. It is a common measure used to assess aerobic endurance in athletes and individuals.], the HR was elevated for at least two reasons: a response to the hypovolemic-induced decrease in SV to maintain adequate CO and a response to the increase in catecholamine circulating levels. In this respect, the continuous increase in catecholamine concentrations with exercise duration at a fixed [image: The symbol "V̇O₂" appears, representing the rate of oxygen consumption, commonly used in physiology and exercise science to measure aerobic fitness levels.] is well documented (Zouhal et al., 2008). Although [image: An image showing the scientific notation for "dot V O subscript two" used to represent the rate of oxygen consumption in physiology and exercise science.] should match the exercise-induced energy requirements as determined by the exercise workload, a small [image: The image contains the notation "V̇O₂," representing the rate of oxygen consumption in scientific contexts, such as exercise physiology or metabolic studies.] drift has been observed in prolonged aerobic submaximal exercises, and it is most probably related to increased liver gluconeogenesis (Hamilton et al., 1991). However, HR drift and [image: The symbol \( \dot{V}O_2 \) represents the rate of oxygen consumption, commonly used in physiology to measure cardio-respiratory fitness and metabolic activity.] drift are notably different as they differ in origin, magnitude, onset, and kinetics. The first is mainly hemodynamically driven, while the second is mainly metabolically driven. Moreover, [image: Interpreting equations and symbols typically requires visual input. Please upload the image so I can help create the alternate text for it.] drift (≈200 mL O2 in exercise [image: Please upload the image or provide a URL so I can generate the alternate text for you.] min) should not be confused with the slow component of [image: I'm unable to view or identify specific characters or mathematical symbols in images directly. However, based on the information given,  \(\dot{V}O_2\) represents the rate of oxygen consumption, commonly used in exercise physiology. If you have an image, please upload it or provide a URL, and I will help create an appropriate alt text.] kinetics (1,000–1,500 mL ⋅ min−1), which arises when the submaximal exercise is above the anaerobic threshold, and it is mainly due to loss in muscle efficiency (Jones et al., 2011). Still, HR drift in those submaximal, yet above-anaerobic threshold, exercises shows a “slow component” that is similar to that observed for [image: A mathematical notation showing a dot above the letter "V" followed by an underscore "O" and the subscript "2". It represents the rate of oxygen consumption, typically used in physiology and exercise science.], despite their different mediating factors (Pettitt et al., 2008; Zuccarelli et al., 2018). The [image: A mathematical symbol representing the maximal oxygen consumption, often used in exercise physiology. It consists of a capital V with a dot above it, followed by a subscript O and the number two.] slow component is independent of the catecholamine levels, whereas the HR drift during above-threshold exercises is governed by neurohumoral events to match metabolic demands (Pettitt et al., 2008). Furthermore, heavy exercise-induced hyperthermia is another known cause of HR drift (Matsui et al., 1978).
Interestingly, CV elevation persists during the post-exercise recovery phase, with SV and HR remaining depressed and elevated, respectively, for several minutes even after exercise termination [see Figure 7 in the study by Miyamoto et al. (1982)]. When studying the excess post-exercise oxygen consumption, it is clear that, after a consistent rapid recovery component, [image: Symbol representing the maximum rate of oxygen consumption measured during incremental exercise, denoted as \(\dot{V}O_2\).] stays elevated for several minutes proportionally to the exercise intensity and exercise duration (Borsheim and Bahr, 2003). The prolonged [image: I'm unable to view the image you've referenced. Please upload the image or provide a URL so I can generate the alt text for you.] recovery component accounts mainly for metabolic substrate replenishment, while the catecholamine levels may affect it indirectly (Borsheim and Bahr, 2003). Similar to what is argued for the exercise phase, [image: Equation representing oxygen uptake (\( \dot{V}O_2 \)), indicating the volume of oxygen consumed per unit time, often used in physiological and exercise contexts.] and HR do not exactly follow the same kinetics during recovery. Since the high level of post-exercise catecholamines is mainly due to higher exercise-induced secretion (Zouhal et al., 2008), it is also reasonable to think that HR “drift” during and after maximal aerobic exercise (MAX) is heavily influenced by catecholamines. Next to a high level of circulating catecholamines, the HR “drift,” or HR elevation, during the post-exercise recovery phase is affected by heat accumulation (Rowell et al., 1996) when facing dehydration (Astrand et al., 2003). In order to clearly show the discrepancy that we have so far introduced between HR and [image: Text representation showing "V̇O₂", where "V̇" indicates the rate of oxygen consumption and "O₂" represents oxygen.] drifts during and after maximal and submaximal exercise, these two variables can simply be plotted against each other. When [image: The image shows the symbol for oxygen consumption, represented as \(\dot{V}O_2\), commonly used in exercise physiology to denote the rate of oxygen uptake.] and HR values during exercise and recovery of both above or below anaerobic-threshold exercises are related to each other, a hysteresis trend can be observed (Figure 1). The existence of this hysteresis clearly shows the discrepancy between [image: A formula symbol representing the rate of oxygen consumption, denoted as V̇O₂, where the dot over the V indicates a rate of change over time.] and HR kinetics.
[image: Two radar charts labeled A and B display relationships between normalized variables NR and VO. Chart A shows points F, B, C, and E, forming a polygon. Chart B includes points F, E, B, and D, creating a different shape. Both charts highlight distinct data patterns with shaded areas connecting the points.]FIGURE 1 | (A) Hysteresis derived from the maximal aerobic exercise (MAX) for a subject representative of the group. Data points: A = pre-MAX resting; B = pre-MAX self-selected speed (SSS) walking; C = beginning of MAX; D = half of MAX; E = end of MAX; and F = post-MAX resting. (B) Hysteresis derived from below anaerobic-threshold exercise (BTE) for a subject representative of the group. Data points: A = pre-BTE SSS walking; B = first phase of BTE (8th and 10th minute); C = middle phase of BTE (20th minute); D = end phase of BTE; E = post-BTE SSS walking; and F = post-BTE SSS + 1-km/h 2nd walking. The blue area represents the hysteresis when normalized VO2 is related to normalized heart rate (HR) values.
As we have previously shown, the relationship between [image: It appears there is no image uploaded. Please upload the image, and I will help generate the alternate text for it.] and HR does not have a purely academic interest, but it can be exploited for several applications, such as energy expenditure estimation (Altini et al., 2014; Bonomi et al., 2015; Kraal et al., 2016) and cardio–respiratory fitness assessment (Altini et al., 2016; Sartor et al., 2016; Bonomi et al., 2020). However, in light of the hysteresis formed by the kinetics of those two parameters, [image: Equation for oxygen consumption, denoted as \( \dot{V}O_2 \), typically used in exercise physiology to measure the uptake of oxygen by the body during physical activity.] cannot merely be estimated from the HR, and a correction should be applied. The correction should account for exercise intensity and duration and individual differences in body characteristics and aerobic fitness. Such models are not new in the literature; for instance, Banister in Calvert et al. (1976) introduced a model of cardiovascular endurance performance (Eq. 2), which is as follows:
[image: It seems like you're referring to a mathematical expression rather than an image. Please upload the image or provide a URL for the image you want described. Optionally, adding a caption for context would be helpful.]
where ω(t) is the amount of training per session and is referred to as the training impulse (TRIMP), D is the exercise duration, ΔHRratio provided the personalized exercise intensity as it was calculated by dividing the difference between exercise HR and rest HR by HR reserve, and [image: The mathematical expression shows Y equals e raised to the power of b times ΔHR subscript ratio, within parentheses.] is a weighting factor that gave more weight to high-intensity training, where b reflects the exponential increase in blood lactate levels, as explained by Morton et al. (1990). This model is useful for predicting the cardiovascular effects, “fatigue,” and “fitness” of cyclical exercises, such as running, cycling, and rowing. Nevertheless, these effects refer to a complete training session, and the TRIMP model is affected by the HR drift. According to what we have introduced so far, it is easy to demonstrate how the same exercise stimulus (e.g., 10 km of running at a constant speed) performed by the same person at a given fitness level would lead to two very different TRIMPs when performed under either thermal comfort–euhydration conditions or under heat and dehydration. Moreover, as just mentioned, the TRIMP model provides a computation per training session, whereas the HR drift correction would require being activated and deactivated at the right time and instantaneously.
The aim of this study was to model low (below anaerobic threshold)- and high (above anaerobic threshold)-intensity components of exercise-induced HR drift so that the corrected HR could better represent [image: A mathematical expression displaying the symbol for oxygen uptake, represented as "V" with a dot above it and a subscript "O2".] kinetics during and after the exercise itself, reducing, for instance, the area under the curve (AUC) of the hysteresis function between [image: I'm sorry, I cannot generate alt text for an image that has not been provided. Please upload the image or provide a URL, and I'll be happy to help.] and the HR.
2 METHODS
2.1 Participants and study design
In order to develop a model to estimate [image: Mathematical notation for oxygen uptake rate, represented as V with a dot above it followed by O and a subscript 2.] from the HR accounting for HR “drift” in exercises above and below the anaerobic threshold, 15 healthy adult subjects were recruited (Table 1) and asked to perform a graded maximal running test and a 30-min submaximal running test at 80% of their anaerobic threshold. The study protocol was approved by the Internal Ethics Committee of Philips Research, Eindhoven, in accordance with the Declaration of Helsinki.
TABLE 1 | Participant characteristics.
[image: A table presents physiological data for a sample of 15 males and 5 females, including mean values and standard deviations. Variables listed are age (27.9 ± 5.4 years), height (1.79 ± 0.09 meters), weight (72.4 ± 10.2 kilograms), VO₂ max (49.75 ± 8.40 mL/kg/min), resting heart rate (64.2 ± 7.8 bpm), maximum heart rate (182.1 ± 13.7 bpm), percentage of maximal heart rate (90.78 ± 8.33%), blood lactate at maximum exertion (9.69 ± 2.35 mmol/L), respiratory exchange ratio at maximum (1.16 ± 0.07), and rate of perceived exertion at maximum (18.7 ± 1.0 on a scale of 6 to 20).]2.2 Maximal graded running exercise
Maximal exercise testing was executed on a treadmill, where subjects were instructed to follow Gerkin’s graded run test (Mier and Gibson, 2004) to physical exhaustion. The criteria for maximal physiological effort were set for all subjects as blood lactate >7 mmol/L, respiratory exchange ratio (RER) > 1.15, and rating of perceived exertion (RPE) [image: Please upload the image or provide a URL so I can generate the alternate text for it.] (on a 6–20 scale), except for one female subject aged between 20 and 29 years, who had a blood lactate level of 4.4. mmol/L, a maximum RER of 1.6, an RPE of 17, and a peak [image: I'm unable to see the image you're referring to. Please upload the image or provide a URL so I can generate the alternate text for it.] of 45.67 mL/kg/min, whose data were included in the analysis.
This session began with the subjects wearing the monitoring equipment. Then they were asked to sit down at rest for 7 min, at the end of which they were asked to walk on a treadmill at 0% incline at a self-selected speed (SSS) for 3 min. At the end of the SSS walking, the subjects were asked to rest for 3 min, and then they were asked to start with the maximal test until exhaustion. When exhaustion was reached, the subjects stopped or were stopped, and they were asked to sit down resting for 1 h. Blood lactate was drawn from the earlobe during the resting period before the first walking activity, immediately after stopping with the maximal test, and 1 h after the maximal test was concluded. High-resolution (20 grams) body weight was measured at the very beginning of the session two times, once when subjects were wearing sports clothes without shoes and the second time after the subjects wore the monitoring equipment and with shoes so that this second weight could be compared with the weight at the end of the exercise. The third weighing took place after drawing the blood lactate at the end of the exercise and drying the subjects thoroughly with towels. Maximal voluntary contractions (MVCs) were originally recorded before and immediately after the end of the exercise for a secondary research purpose. However, because of some technical difficulties, only a subset of subjects had usable data, and the results of the analysis were regarded as not worth reporting.
2.3 Submaximal constant speed running exercise
There were at least 48 h between visits. The intensity for the submaximal running exercise was determined using the V-slope method (Beaver et al., 1986) by two researchers using the maximal exercise test data. This intensity corresponded to 73% ± 10% of [image: The image shows the notation for VO2 Max, indicating maximal oxygen consumption. The "V" has a dot above it, and the "O" is followed by a subscript "2," with "Max" as a subscript, representing a measure of aerobic fitness.]. The session began with the subjects wearing the monitoring equipment and resting sitting down for 7 min. They were then asked to walk on a treadmill for 3 min at the SSS chosen during the maximal exercise session. After an additional 3 min of rest sitting down, the subjects were asked to run on the treadmill at a constant submaximal intensity. They were asked to reach a target HR by adjusting the running speed; the target HR corresponded to the HR at 80% of the anaerobic threshold intensity calculated, as mentioned above (Beaver et al., 1986). After 2–3 min of exercise intensity stabilization, the running speed was fixed for the remaining 30-min run. At the end of 30 min, the subjects were asked to rest sitting down for 3 min and then walk for 3 min at the SSS chosen during the first session and used for the pre-submaximal exercise treadmill walking activity of the current session. After another 3-min pause of resting while sitting down, the subjects were asked to walk once more for 3 min at the SSS plus 1 km/h. Finally, the subjects were asked to sit down and rest for 3 more minutes. Blood lactate was drawn from the earlobe at three time points: during the resting period before the first walking activity, immediately after the 30-min submaximal run, and at the end of the very last 3 min of recovery sitting down that followed walking at an SSS plus 1 km/h. This last walk was introduced to appreciate the effect of workload increase on the performance of the algorithm. High-resolution body weight was measured just after the subjects wore the measuring equipment at the very beginning of this session and at the end of the 30-min run after the blood lactate was drawn and the subjects were thoroughly dried with towels. As mentioned in the previous paragraph, during this session, the MVC was recorded three times in this case, i.e., before, after the exercise, and after the SSS + 1 km/h walking. Yet, because of a lack of quality data, it was decided not to report the results here.
2.4 Monitoring equipment
Each subject was equipped with a wearable metabolic system (K5, COSMED), by which [image: I'm unable to view the visual content directly. Please upload the image file or provide a URL for me to generate the appropriate alt text.], [image: A mathematical expression showing a dot above the letter "V," followed by a subscript "CO" and a subscript "2," representing the rate of carbon dioxide production in physiology.], and respiratory volumes were monitored. Moreover, a chest-strap HR monitor (RS800CX, Polar) and a PPG and 3D accelerometry optical HR monitor (OHRM, Philips Research) were used to monitor the HR and body motion. Body temperature was inferred using a tympanic thermometer (MC510, Omron). Body weight was measured on a high-resolution scale (resolution of 20 g and capacity of 200 kg) developed and calibrated in-house (Philips Research). Finally, the whole blood lactate level was evaluated using a portable kit (Lactate Pro2, ARKRAY). Temperature, body weight (dried of sweat), and lactate levels were measured immediately before and after exercise.
2.5 Exertion index model
The primary inputs of our model were the HR signal, the activity duration, and subjects’ characteristics like [image: The image shows the notation for VO2 Max, with a dot above the V to indicate volume per unit of time.] and age. These were used to derive two exertion indexes, namely, a high-exertion index (EIHigh) and a low-exertion index (EILow), which characterized each exercise intensity component. Ultimately, these exertion indexes were used to correct the measured HR for HR drift. This model consisted primarily of five computational stages: delay block, new TRIMP calculation component, sigmoid correction block, and an increase and decrease component (Figure 2). The HR correction was computed each second following the HR sampling frequency, which was set at 1 Hz in this work (Eq. 3).
[image: Flowchart illustrating a process involving various equations and functions. It starts with inputs \(\dot{R}(t)\) and \(\dot{RR}_{input}(t)\) and involves a sequence with "Delay(t)" leading to a decision point based on "Activity duration > Delay(t)." If yes, it proceeds through "TRIM\(_P(t)\)" and "Sigmoid Correction" towards equations generating outputs \(\Delta E_{low}(t)\), \(\Delta E_{med}(t)\), and \(\Delta E_{high}(t)\).]FIGURE 2 | Flowchart of the heart rate-drift correction model.
The delay block forced a lag between the beginning of an exercise and the onset of the exertion indexes, where 20 is an arbitrary constant (see Eq. 6). By design, the exertion indexes began to increase only when the time spent performing the exercise was above the “delay” threshold. The delay function is described by Eq. 6, and it was computed for each subject and each timestamp. It can be observed in Eq. 6 that the delay function is dependent on the fitness level, so fitter subjects would require more time for the onset of the exertion indexes. The delay ranged from zero to infinity depending upon the proximity of a given HR to the HR range boundaries: the closer to resting values, the longer time required for the onset of the exertion index and vice versa. The boundaries were represented by [image: Logo featuring the letters "HR" with a small roof-like symbol above them, followed by the words "Above Rest" in italicized font.] Eq. 4 and [image: Text showing "HR" with a hat-like symbol above, followed by "BelowMax" in italics.] Eq. 5. HRMax was simply estimated using the accessible 220 - age or 230 - age in the case of subjects with physical activity rating above 5, as described by Jackson et al. (1990). HRRest was defined as the 10th percentile of the HR during the trial. This block was designed to guarantee that the increase in the exertion indexes coincided with the beginning of the HR drift.
[image: It seems there's no image provided. Please upload an image or provide a URL, and I can help generate the alternate text for it.]
[image: Heart rate function \( \widehat{HR}_{AboveRest}(t) \) defined as a piecewise function. It equals \(\widehat{HR}(t) - HR_{Rest}\) if \(\widehat{HR}(t) > HR_{Rest}\), and zero otherwise.]
[image: Formula for HR below max at time t: If HR_corrected(t) is less than HR_max, HR_belowMax(t) equals HR_max minus HR_corrected(t); otherwise, it is zero.]
[image: Equation showing delay as a function of time, expressed as: delay(t) equals twenty times V˙O₂max, multiplied by the ratio of HR below max(t) to HR above rest(t), labeled as equation 6.]
The new TRIMP block consisted of updating the traditional TRIMP formula Eq. 2 using the corrected HR, which was used for recalculating HRReserve, providing [image: Text logo displaying "HR Reserve" with a stylized roof-like accent over the "H" in "HR" and "Reserve" in italic font.] (Eq. 7). The constant k is the same as used by Desgorces et al. (2007), and b is the same as used by Morton et al. (1990) (Eq. 8).
The sigmoid function Sigm promoted a substantial accumulation of the high-intensity-related exertion index only when the TRIMP exceeded 80% of the maximum TRIMP reachable by a subject (TRIMPmax, i.e., TRIMP calculated with the HR equal to HRmax). The Sigm function was introduced to mimic the exponential increase in lactate accumulation once the exercise intensity crossed the anaerobic threshold.
We designed this model so that the increase block provided the increase in exertion indexes ([image: Mathematical expression showing Delta E I plus subscript Low, indicating a change in some form of energy or information at a low level.] Eq. 9 and [image: ΔEI with a superscript plus sign and the subscript "High".] Eq. 11) in relation to the exercise intensity, where [image: Mathematical expression showing delta E I superscript plus subscript Low.] was directly proportional to the “new” TRIMP, while [image: ΔEI with a superscript plus sign, followed by the word "High" in subscript.] was proportional to the “new” TRIMP and was mediated by the sigmoid function described in Eq. 10.
[image: Equation representing heart rate reserve, \( \hat{HR}_{\text{Reserve}}(t) = \frac{HR_{\text{AboveRest}}(t)}{HR_{\text{Max}} - HR_{\text{Rest}}} \), labeled as equation 7.]
[image: Formula depicting TRIMP as a function of time, \(TRIMP(t) = HR_{Reserve}(t) \cdot k \cdot \exp(b \cdot HR_{Reserve}(t))\), labeled as equation eight.]
[image: It appears there was an error in your message. Could you please provide the image for which you need alternate text? You can upload it directly or provide a link.]
[image: An equation defining a sigmoid function: Sigm(t) equals the inverse of one plus the exponential of the difference between \(0.8\) times \(TRIMP_{\text{max}}\) and \(TRIMP(t)\).]
[image: Certainly, please upload the image first, and I will help you generate the alt text.]
The decrease block returned the decrease factors ([image: Delta E, I, subscript "Low".], [image: Delta E I subscript High with a horizontal bar over the I.]) to be multiplied by the exertion indexes accumulated. The factors are intensity-specific and defined by Eqs 13, 14, where the TRIMPMin was the average between the TRIMP(t) and the TRIMP obtained from a HRcorr(t) above rest of 10 bpm. This guaranteed, through TRIMPDecr(t) Eq. 12, avoiding an excessive decrease in [image: Mathematical expression showing the symbol delta followed by EI with a horizontal bar above, and the subscript "Low".] and an insufficient [image: Delta EI with a bar over it and a subscript "High".]. The time constants τLow and τHigh were 864,000 and 86,400 s, respectively (corresponding to 10 days and 1 day). They were chosen in order to capture the different dynamics of the two exertion indexes.
[image: Mathematical equation depicting \( \text{TRIMP}_{Dev}(t) \) as equal to \( \text{TRIMP}(t) \) if \( \text{TRIMP}(t) \) is greater than \( \text{TRIMP}_{min}(t) \); otherwise, it equals \( \text{TRIMP}_{min}(t) \). The expression is labeled equation (12).]
[image: Mathematical equation showing Delta E Low of t equals the exponential of negative VO2 Max divided by tau Low times TRIMP Dec of t, labeled as equation thirteen.]
[image: Equation depicting the change in high-intensity exercise effect over time. It shows that AE sub High at time t equals the exponential of negative V O sub 2 Max times TRIMP sub Decay of t, divided by tau sub High.]
The delay, [image: Mathematical expression showing "ΔEI" with a superscript plus sign and subscript "Low".], [image: Delta E I superscript plus subscript High.] and [image: Delta E I subscript Low.], [image: Delta EI bar subscript High.] were used in accumulated EILow and EIHigh Eqs 15, 16 in order to obtain the current EILow and EIHigh values:
[image: Mathematical notation representing the expected lifetime \( EL_{\text{inv}}(t) \) with a conditional expression. If the activity duration exceeds a delay at time \( t \), the formula is \( \frac{\Delta EL_{\text{inv}}(t) - EL_{\text{inv}}(t-1) + \Delta EL_{\text{EN}}(t)}{\Delta EL_{\text{inv}}(t) - EL_{\text{inv}}(t-1)} \). Otherwise, it remains unnamed. This is equation (15).]
[image: Mathematical equation defining El_High(t) with conditional cases. The first case calculates using a formula when activity duration is greater than delay(t). The otherwise case uses a different formula. It is equation number sixteen.]
Finally, the exertion indexes were used to remove the HR drift component from the HR according to the following equations:
[image: Mathematical equation showing the correction energy, denoted as \( E_{\text{correction}}(t) \), calculated as the minimum between 30 and the sum of \( E_{\text{low}}(t) \) and \( E_{\text{high}}(t) \).]
[image: Mathematical formula detailing an "AHR Correction." It states: AHR\_Correction(t) equals (1 minus HR\_Reserve(t)) times E\_Correction(t) if HR\_Reserve(t) is less than 1. Otherwise, it equals 0. Marked as equation 18.]
[image: An equation displays a recursive formula: HR(t + 1) equals HR(t + 1) minus delta HR_correction(t), labeled as equation number nineteen.]
The EICorrection was bound to a maximum of 30 bpm in order to avoid overcorrection of the HR drift in Eq. 17. The HR drift correction (see Eqs 18, 19) was mediated by [image: Logo with the letters "HR" in bold font and an arrow above the "R" pointing upwards. The word "Reserve" in italicized font is written to the right of "HR".] since the HR drift is inversely proportional to the cardiac load during the activity (Ekelund, 1967).
2.6 Statistical analysis
Difference analysis between uncorrected and HR drift-corrected parameters (e.g., AUCs) was performed by one-tail paired t-tests, setting the significance level at 0.05. Pearson’s linear regressions were used to assess the correlation between the biomarkers and exertion indexes. MATLAB software (MathWorks) was used for both data processing and statistical analysis.
3 RESULTS
The aim of this study was to model the high (above anaerobic threshold)- and the low (below anaerobic threshold)-intensity components of the HR and [image: Symbol representing the rate of oxygen consumption in physiological contexts, often used in exercise physiology and cardiopulmonary studies.] hysteresis. Our research hypothesis was that once the HR “drift” is properly modeled for these exercises, it can be eliminated from the HR-based [image: Sorry, I cannot generate the alt text without the image. Please upload the image or provide a link to it.] estimation, which otherwise would lead to a clear overestimation.
3.1 Heart rate–oxygen consumption hysteresis
In this investigation, we defined hysteresis as the drift of the HR in relation to [image: A mathematical notation representing the rate of oxygen consumption, denoted by a capital V with a dot above it, followed by the subscript O and the number two.] during and when recovering from exercise. In order to investigate this phenomenon, we normalized the HR and [image: VO2 with a dot above the V, representing the rate of oxygen consumption in physiology or exercise science.] accounting for their individual ranges.
3.1.1 Maximal exercise hysteresis correction
The [image:   \(\dot{V}O_2\) is the mathematical notation representing the rate of oxygen consumption, often used in exercise physiology to measure aerobic endurance.] and HR values used to build the hysteresis functions for the maximal test were normalized by subtracting an offset (i.e., the mean value of 60 s taken from the pre-test resting period) from [image: Equation showing the symbol \(\dot{V}O_2\), which represents the rate of oxygen consumption. The dot above the V indicates a rate per unit of time.] and HR values and by dividing this difference by a delta obtained by subtracting the end value of the running exercise from the same offset. For the maximal exercise, we used the following points: A was the [image: The mathematical notation represents the rate of oxygen consumption, depicted with a V and O₂. A dot above the V signifies a rate, commonly used in physiology to measure aerobic metabolism.] and HR values corresponding to the mean value of 60 s were taken from pre-test resting, which were also used as the offset; B was the [image: The image shows the symbol "V̇O₂" which represents the volume of oxygen uptake. It is commonly used in exercise physiology to measure oxygen consumption rates.] and HR values corresponding to the steady-state mean value of the pre-maximal exercise SSS walking activity; C was the [image: Sure, please upload the image you would like me to describe or provide a URL if it's available online.] and HR 60-s mean values were taken after 120 s from the beginning of the maximal exercise test; D was calculated as 60-s mean values of [image: I'm sorry, but I cannot view the image. To help, please upload the image directly or provide a URL along with any additional context or details you wish to include.] and HR halfway to the end of the maximal exercise test (i.e., maximal exercise end time - maximal exercise start time/2); for E, the [image: Could you please upload the image or provide a URL for me to generate the alt text?] and HR values were means of 60 s taken during the last 30 s of the maximal exercise run; and finally, F was computed by taking 60-s mean values of [image: A mathematical symbol representing oxygen consumption, denoted as V-dot O-sub-2, often used in exercise physiology to indicate the rate of oxygen uptake.] and HR 1,200 s after the end of the exercise when the subjects were resting while sitting down (see Figure 3A, blue area). When applying the HR drift correction, the same six data points were computed as just described but with an adjusted HR, so that the hysteresis was reduced (see Figure 3A, orange area). Data from all 15 subjects were usable for this analysis. When we quantitatively analyzed the difference between the two hysteresis curves with and without HR-drift correction, we found that the AUC without correction was AUCMAX = 0.099 ± 0.060, and the AUC after the HR-drift correction was corrAUCMAX = 0.071 ± 0.056; the correction did significantly reduce the AUC when the HR-drift correction was applied [t(14) = 3.396, p = 0.002]. At a group level, the AUC decreased by 26.14% ± 27.54%, but for three subjects, it increased by 33.45, 4.80, and 13.98%, respectively.
[image: Two line graphs, labeled A and B, compare normalized values of HR (x-axis) and VO2 (y-axis). Shaded areas in blue and orange indicate uncorrected HR and corrected HR respectively. Both graphs show a linear trend with marked points labeled A to F. Legends at the bottom identify the color-coding.]FIGURE 3 | (A) Hysteresis derived from the maximal aerobic exercise (MAX) for a subject representative of the group. Data points: A = pre-MAX resting; B = pre-MAX SSS walking; C = beginning of MAX; D = half of MAX; E = end of MAX; and F = post-MAX resting. (B) Hysteresis derived from below anaerobic-threshold exercise (BTE) for a subject representative of the group. Data points: A = pre-BTE SSS walking; B = first phase of BTE (8th and 10th minute); C = middle phase of BTE (20th minute); D = end phase of BTE; E = post-BTE SSS walking; and F = post-BTE SSS + 1-km/h 2nd walking. The blue area represents the hysteresis when normalized VO2 is related to uncorrected normalized HR values, whereas the orange area depicts the hysteresis between the normalized VO2 and corrected normalized HR.
3.1.2 Submaximal exercise hysteresis correction
The [image: Symbol depicting \(\dot{V}O_2\), representing the rate of oxygen consumption in physiology, commonly used in exercise science and respiratory studies.] and HR values used to build the hysteresis functions for the submaximal exercise were normalized by subtracting an offset (i.e., mean steady-state value of SSS walking executed for the submaximal exercise; first 30 s were removed) from [image: Mathematical notation for the rate of oxygen consumption, represented by a capital V with a dot above it, followed by a subscript O and subscript 2.] and HR values and dividing this difference by a delta obtained by subtracting the end value of the submaximal running exercise from the same offset. For the submaximal exercise hysteresis, we used the following points: A was the [image: The symbol "V with a dot above O subscript 2" represents the rate of oxygen consumption, often used in exercise physiology and biochemistry contexts.] and HR values corresponding to the mean steady-state value of SSS walking executed for the submaximal exercise after removing the first 30 s, which was also used as the offset; B was the [image: I'm sorry, it seems there was an error. Please upload the image or provide a description, and I'll help generate the alternate text for it.] and HR values corresponding to the mean value of 120 s starting at the 8th minute of the exercise up to the 10th minute; C was the [image: It appears there is a title resembling a mathematical notation or variable, specifically related to the rate of oxygen consumption, denoted as \(\dot{V}\text{O}_2\). Please provide an image or more details for accurate alt text generation.] and HR 120-s mean values of 20 min after the start of the submaximal exercise; D was calculated at the end of the exercise taking the mean of 120 s and 30 s before the end of the submaximal exercise; for E, [image: I can't view images directly. Please upload the image or provide more details about it, and I can help create alt text for you.] and HR values were means of the SSS walking (i.e., speed chosen during the first session) after removing 30 s at the beginning and the end of the walking activity; and finally, F was computed by taking the means of the second post-submaximal running exercise walk (i.e., this was at the SSS + 1 km/h) after removing 30 s at the beginning and the end of the walking activity (see Figure 3B, blue area). When applying the HR drift correction, the same six data points were computed as described in the paragraph above but with an adjusted HR, with the aim to reduce the hysteresis (see Figure 3B, orange area). Data from 11 subjects were usable for this analysis. When we quantitatively analyzed the difference between the two hysteresis curves with and without HR-drift correction, we found that the AUC without correction was AUCBTE = 0.241 ± 0.145, and the AUC after the HR-drift correction was corrAUCBTE = 0.058 ± 0.056; the correction did significantly reduce the AUC when the drift correction was applied [t(10) = 6.299, p < 0.001]. At a group level, the AUC decreased by 77.00% ± 10.29%, and it decreased for all subjects (11 of 11).
3.2 Heart rate-drift correction
An additional way to test the performance of the combined EIlow and EIhigh-based HR correction model was to calculate HR deltas between pre-exercise and post-exercise states. For the MAX, uncorrected and corrected post-resting and pre-resting differences were tested using a right-tailed paired t-test. This showed that the HR drift for the corrected HR (10.57 ± 9.07 bpm) was significantly lower than that for the uncorrected original HR (20.77 ± 10.77 bpm) [t(14): 8.739, p < 0.001] (Figure 4). For the BTE deltas that analyzed the difference between HRs post- and pre-BTE SSS walks, the corrected drift was significantly lower (6.16 ± 4.03 bpm) than the uncorrected original drift (23.92 ± 3.34 bpm) [t(11): 14.391, p < 0.001] (Figure 5A). The same was found for the difference between HRs post-BTE SSS + 1 km/h and pre-BTE SSS walks, where the uncorrected drift (26.39 ± 8.29 bpm) was reduced significantly (6.58 ± 5.18 bpm) [t(11): 11.040, p < 0.001] (Figure 5B). Finally, and probably more interestingly, the difference between the uncorrected (2.47 ± 4.64 bpm) and corrected HR (4.95 ± 5.69 bpm) of the two post-BTE walks, namely, post-BTE SSS + 1 km/h and post-BTE SSS walks, resulted in significantly greater delta for the corrected values [t(11): −4.794, p < 0.001] (Figure 5C). This was to be expected because the difference between the uncorrected HR of the two post-BTE walks accounts for two phenomena: i) a workload increase of 1 km/h (e.g., + 5 bpm) and ii) a slow decay in the HR drift (e.g., −3 bpm). Meanwhile, theoretically, in the case of the corrected HR, only the workload increase was accounted for.
[image: Bar graph comparing dHR\(_{rest}\) and Corrected dHR\(_{rest}\) across 15 participants. Blue bars represent dHR\(_{rest}\), while orange bars show Corrected dHR\(_{rest}\). Highest discrepancy is in participant 14.]FIGURE 4 | Bar graph of uncorrected and corrected HR drifts of the individual subjects for the maximal aerobic exercise (MAX) session. Blue bars represent the difference between post-MAX resting and the pre-MAX resting of the uncorrected HR. Orange bars show the difference between post-MAX resting and the pre-MAX resting of the corrected HR.
[image: Three bar graphs labeled A, B, and C compare heart rate peaks for fifteen participants. Each graph includes blue and orange bars representing different datasets: dHR\(_{\text{peak}}\) and corrected dHR\(_{\text{peak}}\), respectively, and red crosses for missing data. The y-axis indicates heart rate (HR) in beats per minute (bpm), ranging from zero to fifty.]FIGURE 5 | Bar graph of uncorrected and corrected HR drifts of the individual subjects for the below anaerobic-threshold exercise (BTE) session. (A) Blue bars represent the difference between post-BTE SSS walking (post 1) and the pre-BTE SSS walking (pre) of the uncorrected HR. Orange bars represent the difference between post-BTE SSS walking (post 1) and the pre-BTE SSS walking (pre) of the corrected HR. (B) Blue bars represent the difference between post-BTE SSS + 1-km/h walking (post 2) and the pre-BTE SSS walking (pre) of the uncorrected HR. Orange bars represent the difference between post-BTE SSS + 1-km/h walking (post 2) and the pre-BTE SSS walking (pre) of the corrected HR. (C) Blue bars represent the difference between post-BTE SSS + 1-km/h walking (post 2) and post-BTE SSS walking (post 1) of the uncorrected HR. Orange bars represent the difference between post-BTE SSS + 1-km/h walking (post 2) and the post-BTE SSS walking (post 1) of the corrected HR.
3.2.1 High- and low-intensity components for HR-drift correction
A distinctive feature of the correction model presented in this work was the coexistence of two components, EILow and EIHigh. The low exertion index was designed to detect below-threshold exercises and those high above the threshold. The qualitative analysis given in Figures 6, 7 shows that HR-drift correction (green dashed line in the top panels) does not onset as soon as the exercises start, as intended by the dealy function. In the bottom panels of Figures 6, 7, EIHigh is clearly greater than EILow for the MAX activity, and the opposite is true for the BTE. However, the magnitude of EIHigh and EILow is greater for BTE because the exercise duration is far greater than dealy, accounting for greater HR drifts.
[image: Two graphs depict heart rate and exertion over time. The top graph shows heart rate (HR) in beats per minute, with a peak during a marked period labeled "MAX" and various points (A-F). The bottom graph shows exertion levels, highlighting low and high exertion index areas, peaking in the same marked period. Both graphs share a time axis spanning 0 to 8000 seconds.]FIGURE 6 | Top panel: original (blue) and corrected (green) HR time series before, during, and after the maximal aerobic exercise (MAX) of a representative subject. Data points A, B, C, D, E, and F are as described in Figures 1A, 3A. Bottom panel: cumulative time series of the low-exertion index (blue) and the high-exertion index (red) as a result of the activities performed during the MAX session. The yellow banner indicates the pre-MAX walking activity at a self-selected speed. The red banner indicates the MAX activity.
[image: Two line graphs representing heart rate data over time. The top graph shows heart rate with points A to F labeled, indicating changes across different intervals marked as warm-up, run, and rest. The bottom graph displays exercise intensity with a shaded area indicating low and high exercise indices. Time is measured in seconds on the x-axis, with distinct color backgrounds highlighting exercise phases.]FIGURE 7 | Top panel: original (blue) and corrected (green) HR time series before, during, and after the below anaerobic-threshold exercise (BTE) of a representative subject. Data points A, B, C, D, E, and F are as described in Figures 1B, 3B. Bottom panel: cumulative time series of the low-exertion index (blue) and of the high-exertion index (red) as a result of the activities permed during the BTE session. The yellow banner indicates all walking activities, pre- and first post- at a self-selected speed, while the third yellow bar indicates walking at the self-selected speed plus 1 km/h. The red banner indicates the BTE activity.
3.3 Correlations with lactate levels and water loss
To understand how the two components (i.e., EILow and EIHigh) of the exercise exertion model actually related with the low- and high-exercise intensities, linear correlations were performed (Figure 8). It is clear that EIHigh is approximately 10 times smaller than EILow. Moreover, as expected, the lactate levels, chosen here as a marker of anaerobic exertion, were higher after MAX activity than BTE, and EIHigh clustered around lower values for BTE running. Meanwhile, EILow showed a very clear divide, displaying greater values for the BTE activity. In order to check whether cardiorespiratory fitness would affect these indexes, lactate levels were normalized by [image: Symbol for VO2 Max, representing maximal oxygen uptake or the maximum rate of oxygen consumption during intense exercise.], but this showed no change in those correlations.
[image: Four scatter plots labeled A, B, C, and D show relationships between exertion indices and lactate measurements. Blue circles represent "After BTE" data, red stars represent "After MAX" data. Dotted lines indicate per-participant trends. Plots A and B display high exertion index, with lactate in millimoles per liter and lactate VO2 max in millimoles per liter per kilogram squared, respectively. Plots C and D show low exertion index with the same measurements. Each plot includes a legend explaining symbols and trends.]FIGURE 8 | Correlations of lactate and high exertion index (EI) and low EI. Blue open circles refer to below anaerobic-threshold exercise (BTE), red asterisks refer to maximal aerobic exercise (MAX), dotted lines represent linear trendlines.
As introduced in this article, it is well documented that CVD is affected by dehydration. A simple way to estimate exercise dehydration is weight loss when no solid or fluid intake and excretion (e.g., feces and urine) are ensured. Under these conditions, weight loss is due to water loss + CO2 expiration. According to our [image: Mathematical notation representing the rate of carbon dioxide production, denoted as V with a dot above it, followed by subscript "CO" and "2".] measurements, we expect weight loss due to CO2 expiration to be approximately 70 g for the MAX running and 225 g for the BTE. Measurement errors could not be excluded as the weighing scale resolution was 20 g, and the procedure of drying off sweat may have caused external errors. Therefore, weight loss values below 70 g for MAX and 225 g for BTE were not considered valid. We observed that weight loss for MAX running seemed less pronounced than that for the BTE running sessions (Figure 9). EILow showed a much stronger relation to dehydration (i.e., weight loss) than EIHigh.
[image: Scatter plots comparing weight change with exertion index. Panel A shows high exertion index with positive and negative weight changes, using blue circles and red stars for different conditions. Panel B presents low exertion index, showing negative weight changes. Both panels include dashed lines for trends.]FIGURE 9 | Correlations of weight and high EI and low EI. Blue open circles refer to below anaerobic-threshold exercise (BTE), red asterisks refer to maximal aerobic exercise (MAX), dotted lines represent linear trendlines.
4 DISCUSSION
We developed an HR-based model that can significantly correct for HR drift during and after maximal and submaximal exercises by using cardiovascular fitness information, exercise activity intensity, and duration.
As expected, MAX running did not show an evident HR drift during the incremental exercise test itself (see Figure 1A, points B–E). However, an evident HR elevation was present during the recovery phase, which can be appreciated by observing the horizontal distance between points A and F in Figure 1A. In most cases, [image: Image depicting the symbol representing oxygen consumption rate, denoted as "V" with a dot above, followed by "O" in subscript and "2" in subscript, commonly used in physiology and exercise science.] elevation (e.g., slow component) was observable during the recovery phase. This can be appreciated from the hysteresis Figure 1A when point F is above 0 on the y-axis (i.e., [image: Sorry, I need an image or a URL to generate alternate text. Please upload the image or provide a link, and I will help you with the description.]). The hysteresis figure of BTE prolonged running activities confirmed the occurrence of an HR drift during and after the exercise. This could be seen by observing the horizontal shift toward the right from point B to point D, which represented a constant workload (see Figure 1B). As for the MAX test and the BTE case, a light [image: The mathematical notation represents the rate of oxygen consumption, often used in physiology. It is denoted as "V" with a dot above it, followed by "O" in subscript and "2".] drift was observable at point E, often not back at the level of point A on the y-axis. However, on the x-axis, a clearer HR drift could be observed during recovery, as shown by the distance between points E and A on this axis (see Figure 1B). Our proof-of-concept model showed that the hysteresis could be reduced by an instantaneous HR correction. Quantitatively, we showed that our model reduced the AUC of the hysteresis for the MAX session by 26% and for the BTE session by 77%. In the MAX activity, HR drift was present only during recovery, whereas in the BTE activity, it was present for both exercise and recovery phases, and this cumulative effect could explain the greater AUC correction our model performed for BTE. Our model corrected the HR drift in all subjects for both MAX and BTE activities, as shown in Figures 4, 5. Interestingly, when the two post-BTE walking activities were compared, one at SSS and the other at SSS + 1 km/h, we observed that our model corrected only for the increase in workload (see Figure 5C).
Our model was designed so that it started correcting for HR drift only when the exercise intensity was high enough and when the duration was prolonged enough. For instance, short and very intense exercise would not impact the dehydration component of the drift. On the other hand, long but very mild exercise (e.g., walking) would require far more time to produce a dehydrating effect. Since EIHigh and EILow indexes are HR-based, the model should theoretically work when mild exercise is performed under exceptional conditions (e.g., very hot and dry) that significantly affect the HR. In this study, the EI correction accounted for the high-intensity exercises via the EIHigh component, which, on the one hand, could rapidly increase but, on the other hand, did not have the time to reach high magnitudes (see Figure 5), whereas the EI correction during lower intensities, EILow component, such as for BTE running, had a smaller slope of increase, but it had the time to reach greater (2-fold) magnitudes (see Figure 7).
In order to evaluate how these two components, high and low, related to the exercise intensity and duration, we used two rather “simple” markers. We used blood lactate levels as markers of anaerobic exercise exertion (Faude et al., 2009), and we correlated these to our EIHigh and EILow. Our results showed that EIHigh was particularly unresponsive to BTE running, but it did show some spread in response to the MAX sessions (see Figures 8A, B). EILow was clearly, by design, able to increase 10 times more than EIHigh, and higher levels were shown in response to BTE sessions (Figures 8C, D). Moreover, cardiovascular fitness did not seem to influence these relationships (Figure 9A did not differ from Figure 9B). Exercise-induced dehydration was estimated by weight loss. Although we experienced some difficulties in obtaining reliable weight loss measurements in all subjects, by setting some boundaries (i.e., Δweight >70 g for MAX and Δweight >125 g for BTE), we attempted limiting the measurement errors and drawing wrong conclusions. We observed that weight loss for MAX running seemed less pronounced than for the BTE running sessions. EILow showed a much stronger relation to dehydration (i.e., weight loss) than EIHigh. This was in accordance with our expectations. The lactate and the weight loss evidence seemed to confirm that EILow better reflected the below-anaerobic threshold exercise, whereas EIHigh reflected the above-anaerobic threshold.
Souissi et al. (2021) recently reviewed the causes of CV drift, concluding that it has a multifactorial nature. For prolonged exercise, hyperthermia, dehydration, hypovolemia, and consequent SV decrease (thus, HR increase) are known causes. However, there are more reasons for CV drift than HR drift alone, for example, decrease in left ventricular compliance (Souissi et al., 2021). In our study, HR drift was clearly present during the submaximal exercise and its recovery and during recovery from maximal exercise. HR elevation above resting levels is well documented; for instance, Facioli et al. (2021) showed that even cardiovascularly fit subjects needed more than 36 min to recover from submaximal exercise at 90%–95% of HRmax. We designed our model so that it would mimic similar kinetics.
The main implication of our proof-of-concept work is that whenever in the future [image: The image shows the symbol \(\dot{V}O_2\), representing the rate of oxygen consumption. The dot over the V indicates a rate per unit time, commonly used in exercise physiology.] or [image: The image shows the symbol for VO2 Max, which represents the maximum rate of oxygen consumption measured during incremental exercise. It is a common indicator of aerobic endurance in exercise physiology.] or energy expenditure are estimated using the HR, HR drift must be at least acknowledged and best accounted for. Several limitations exist in this work. First, being a proof-of-concept model, our model is based on certain arbitrary decisions, such as the constants k and b taken from the literature (Morton et al., 1990; Desgorces et al., 2007) or the arbitrary constant of 20 in the delay (Eq. 6). Second, we used only two types of exercise and one modality, while in the future, the model should be tested under diverse conditions, such as above-threshold but submaximal exercise, high-intensity interval exercise, and in modalities like cycling. Additionally, we limited the monitoring period to 1 h after the end of the maximal exercise test, but it would be interesting to investigate how this model would perform after many hours and even days. Water loss was only indirectly estimated by measuring body weight using a high-resolution scale before and after exercise. However, wiping sweat off the participants was not an error-free process. We tried to mitigate these errors by setting a minimum for CO2 loss. Yet, these results should be considered with caution. Although we collected free-living data (not shown and disclosed in this work), a general limitation in those types of investigation is assessing [image: The image shows the symbol for oxygen consumption, represented as \(\dot{V}O_2\), where the dot indicates the rate of consumption.] under free-living conditions. All these considerations should inspire future research.
5 CONCLUSION
In this study, differences in maximal and submaximal exercise-induced [image: I'm unable to generate alternate text for the image without seeing it. Please upload the image, and I'll be happy to help!] and HR kinetics were graphically described by a hysteresis relation. The proof-of-concept model encompassing both low- and high-intensity exercise exertion showed a significant reduction in the hysteresis area during exercise and consequent recovery. This model allowed HR drift instantaneous correction, which could be exploited in the future for achieving improvement in HR-based [image: I'm sorry, I cannot access or view images directly. Please provide the image through an upload or share a URL if available.] estimates.
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Introduction: The electromechanical efficiency of skeletal muscle represents the dissociation between electrical and mechanical events within a muscle. It has been widely studied, with varying methods for its measurement and calculation. For this reason, the purpose of this literature review was to integrate the available research to date and provide more insights about this measure.
Methods: A systematic search of the literature was performed across three online databases: PubMed, ScienceDirect, and SPORTDiscus. This yielded 1284 reports, of which 10 met the inclusion criteria. Included studies have used different methods to measure the electromechanical efficiency (EME) index, including electromyography (EMG), mechanomyography and tensiomyography (TMG).
Results: The EME index was used to assess muscle conditions such as muscle atrophy, pain syndromes, or to monitor rehabilitation in patients with knee problems, fatigue and the effects of exercise and rehabilitation. TMG has been shown to be one of the most reliable methods to obtain the EME index, but its use precludes obtaining the index during voluntary muscle contractions.
Conclusion: Standardizing the EME index is crucial for its diverse applications in clinical, sport, and rehabilitation contexts. Future research should prioritize standardization of measurement protocols for establishing the most repeatable, and reliable approach that can be used for inter-individual comparisons or for assessing an individual for multiple times over a longer period.
Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023440333 Identifier: CRD42023440333.
Keywords: EME index, muscle function, tensiomyography, electromyography, rehabilitation, athletic performance

1 INTRODUCTION
Muscle contraction occurs as a result of electromechanical coupling, which determines the shortening of sarcomeres and hence of entire muscle fibers, while the simultaneous contraction of thousands of muscle fibers causes the muscle to shorten in the longitudinal direction (Valencic et al., 2001; Macgregor et al., 2018). Mechanical muscle function can be quantified using a relatively new non-invasive technique, mechanomyography (MMG), that evolved from sensing muscle vibrations into a sophisticated tool that can capture changes in the geometry of muscle fibers during contractions, specifically lateral oscillations generateded by active muscle, and its own resonance frequency (Ibitoye et al., 2014). These oscilations are independent of the electrical activity of the motor units as measured by electromyography (EMG) (Beck et al., 2005). Specifically, the MMG amplitude is thought to reflect motor unit recruitment, whereas the EMG amplitude reflects both motor unit recruitment and the degree of motor unit integration (Farina and Enoka, 2023). Recent advances in sensor technology and signal processing have improved the capabilities of MMG, giving it insight into muscle mechanics and motor unit activation patterns. Specifically, the MMG amplitude is thought to reflect motor unit recruitment, whereas the EMG amplitude reflects both motor unit recruitment and the degree of motor unit integration (Ebersole and Malek, 2008).
The electromechanical efficiency of skeletal muscle represents the dissociation between electrical and mechanical events of muscle function (i.e., electromechanical coupling), which can be captured by examining the changes in the ratio between MMG and EMG amplitudes, thus creating an electromechanical efficiency (EME) index (Barry et al., 1990). The importance of quantitative insight into the electromechanical function of the vastus medialis muscle during ergometer cycling was highlighted in the study Oka and colleagues (Oka et al., 2014). Authors combined EMG and MMG assessment to objectively quantify muscle performance during dynamic exercise. Several authors have emphasized this approach as simple and desirable in sports and rehabilitation due to different advantages, such as simultaneous assessment of muscle activation and mechanical properties (Beck et al., 2005; Anders et al., 2019; Fukuhara et al., 2021). This provides a comprehensive insight into muscle function and its non-invasive nature, making it practical for use in a variety of settings, from clinical rehabilitation to athletic training (Beck et al., 2005; Anders et al., 2019; Fukuhara et al., 2021).
The EME analysis can provide important information about the status of various muscles including facial and limb muscles (Ioi et al., 2006). It has been used in clinical settings to assess muscle atrophy after disease (Berg et al., 1997), or as a potential indicator of patellofemoral pain syndrome and to assess muscle adaptation after exercise (Ebersole and Malek, 2008). A quite recently, EME index has also been used to assess lower limbs muscle function changes following total knee replacement in end-stage osteoarthritis patients (Paravlic et al., 2020). The EME index can discriminate concentric and eccentric contraction, as well as changes in intrinsic contractile muscle properties after experimentally induced muscle pain (Madeleine and Arendt-Nielsen, 2005). The later findings arguing the importance of EME index, as EMG alone was not being sensitive enough to detect those changes as MMG did during simultaneous measurements (Madeleine and Arendt-Nielsen, 2005). The EME index showed to be useful tool to discriminate between apparently healthy and subjects diagnosed with muscular dystrophy, as reduced EME index has been found in symptomatic compared to healthy subjects (Barry et al., 1990). The age-related muscular dysfunction was investigated using the EME index on patients with chronic low back pain to understand the electrical and mechanical aspects of the pain induced (Sakai et al., 2019). A comparison of EME between vastus medialis and vastus lateralis muscles was performed in a study conducted by (Ebersole and Malek, 2008). EME measurements offer a distinctive perspective on the impact of fatigue on skeletal muscle contractile properties, encompassing changes in intrinsic electric and mechanical components. EME might be valuable in evaluating clinically significant asymmetries in vastus medialis and vastus lateralis muscle function among individuals with knee injuries. The utility of the above has been applied to evaluation of plyometric training effect on the gastrocnemius muscle electromechanical properties (Zubac et al., 2019). Authors reported improvement of EME index in gastrocnemius muscle following 9 weeks of plyometric training in older adults.
The aforementioned studies substantially varied in methods used to evaluate the EME index. The most common methods of MMG signal acquisition refer to acoustomyography using microphones (Jaskólski et al., 2007), vibromyography using piezoelectric accelerometers (Madeleine and Arendt-Nielsen, 2005; Ebersole and Malek, 2008; Sakai et al., 2019); and measurement of perceived skin over muscle movements by detecting changes in the magnetic field (Ioi et al., 2006). A novel method of obtaining the EME index is using tensiomyography (TMG), designed to assess the evoked contraction of individual superficial skeletal muscles (Paravlić et al., 2017; Paravlic et al., 2020). TMG is essentially an MMG method where a TMG sensor is used to detect radial displacement of muscle belly. In study of Paravlic and colleagues, it was used simultaneously with EMG signal (M-wave) to obtain EME index. From the TMG response, the peak-to-peak amplitude of muscle radial displacement (Dm, measured in millimetres [mm]) and the peak-to-peak amplitude of the M-wave (Mptp) are analyzed. It can be said that TMG uses the same principles as mechanomyography, but is designed to work only when the muscle contraction is electrically elicited and uses a unique sensor to detect radial muscle displacement (Valencic et al., 2001). The EME index obtained using tensiomyography was calculated as the ratio of Dm to Mptp (Paravlić et al., 2017).
By overview of the published literature, we found that different methods were used to measure and calculate the EME index. These includes EMG, MMG, and TMG. Moreover, the EME index was used for different purposes and among different populations. For this reason, the purpose of this literature review was to integrate the available research to date and to provide the answers on the following questions: a) What methods have been used so far to measure and calculate the EME index; b) Evaluate the strengths and weaknesses of these methods; c) Suggest guidelines for future research in this field.
2 METHODS
The review was carried out in accordance with PRISMA 2020 guidelines (Page et al., 2021). The protocol for present study was prospectively registered on PROSPERO online registry (ID: CRD42023440333).
2.1 Exploratory search strategy
The literature review was carried out by searching PubMed, ScienceDirect, and SPORTDiscus databases from 17 to 27 July 2023. No restriction on the year of publication or language was applied. In all databases, the following keywords or phrases were used: “Electromechanical efficiency,” “Electromechanical efficiency index,” “EME,” “EME index,” “Muscle,” “Skeletal muscle.” The Boolean “OR” and “AND” where used where possible.
2.2 Eligibility criterion for selecting a study
The inclusion criteria were formulated based on the PICO approach, which covers population (P), intervention (I), comparison (C) and outcome (O) (Page et al., 2021): P—men or women of all ages; I—any intervention that used an electromechanical index for neuromuscular status assessment regardless of the method of measurement; C—the case of original research designs with a control group, the control group would be a stand-alone intervention, and in the case of cross-sectional studies, the comparison would look at different individuals (older versus younger, left versus right limb, non-affected versus affected limb, etc.), and; O—electromechanical efficiency of skeletal muscles.
Studies were excluded according to the following criteria: 1) studies that did not investigate the electromechanical efficiency of skeletal muscle and, 2) not meeting inclusion criteria mentioned before.
2.3 Screening strategy
The screening was performed by the first author (GT). After the first screening by GT, the screening was performed by the second author (AP), and based on a compromise between the two authors, the study was included or excluded from the review. As the original studies did not include randomized controlled trials with an experimental design, the methodological quality of the studies was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies developed by National Heart, Lung, and Blood Institute, National Institute of Health (National Heart Lung, and Blood Institute, 2021).
2.4 Data extraction
The information about study design, population (sample type, size and age), perceived variable—EME (mode of integration and which muscles/locations it was performed on) and additional information (tools used in the study and its purpose) were extracted from the original studies included in present review.
2.5 Methodological quality assessment
The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies (National Heart Lung, and Blood Institute, 2021) was used to assess the methodological strength and risk of bias of the 9 studies included in the review. The methodological assessment of the studies was performed independently by both authors. The NIH Quality Assessment Tool consists of a checklist of 14 questions designed to assess the internal validity (potential risk of selection, information, or measurement bias) of cross-sectional and cohort studies. The criteria were answered “yes,” “no,” or other (not specified; not applicable; not reported). The total score would be the number of affirmative responses. For the qualitative assessment of the final score, scores higher than 12 were considered good, those lower than 9 were considered weak, and those falling in the range 9–12 represented moderate-quality studies. All included studies were rated as good, fair, or poor quality on the basis of a rating sheet with quality assessment instructions.
3 RESULTS
3.1 Basic characteristics of the included studies
The process of searching and selecting articles is presented in Figure 1. In total, ten articles met the inclusion criteria. The basic characteristics of the studies and subjects are presented in Table 1. The total number of subjects in all studies was 267, and their mean age was 38.69 ± 4.02 years. In all studies, the main inclusion criterion was that the EME index reflects the excitation-contraction process in active skeletal muscle. In most studies, the EME index was obtained by EMG and MMG analysis. An exception was the use of the new TMG technology (Zubac et al., 2019; Paravlic et al., 2020). The EME index obtained using TMG technology was shown to be highly reliable in the study by Paravlić et al. (2017). The EME index was used over large superficial muscles in all included studies.
[image: Flowchart illustrating the study selection process. Records start from databases and registers, with 1,282 identified initially. After removing duplicates and other exclusions, 121 reports were assessed for eligibility from databases, and further reports identified via other methods. Ultimately, 45 studies were included in the review.]FIGURE 1 | PRISMA flow diagram of the literature selection process.
TABLE 1 | Characteristics of the included studies.
[image: A detailed table summarizes various studies related to muscle-specific changes and evaluation techniques. Columns include authors, study type, sample characteristics, search variables, muscles/location, tools used, purpose, and findings. Each row details a particular study's methodology and outcomes, such as muscle contractile properties, effects of eccentric contractions, validation of MMG signals, and improvements in muscle function among different demographics.]3.2 Methodological quality assessment
Both authors (GT and AP) blinded to each other’s results, screened the full text against the NLHBI criteria and rated methodological quality independently. The median NIH score was 9.9 (SD:1.4), with values ranging from 8 to 12, suggesting that the included studies were generally of fair quality (Table 2).
TABLE 2 | The methodological quality of included studies assessed by the quality assessment tool for observational cohort and cross-sectional studies.
[image: A table lists 10 references with 14 criteria columns. Each cell contains either "YES," "NO," "NA" (not applicable), "NR" (not reported), or "CD" (cannot determine). Criteria range from research question clarity to confounding variables.]3.3 Detailed presentation of the results of the included studies
The experimental research to gain complementary knowledge from EMG and MMG signal recordings was conducted by Madeleine and colleagues in 2001 (Madeleine et al., 2001). Grosprêtre and colleagues compared EME index of triceps surae muscles between power trained athletes engaged in parkour and untrained individuals. Authors found a higher electromechanical efficiency in parkour athletes confirming the greater excitation-contraction coupling efficiency in power trained athletes then non-trained individuals (Grosprêtre et al., 2018). The reliability of the EME obtained by TMG was presented in study of (Paravlić et al., 2017). EME was used to compare muscles before and after muscle fatigue in two studies (Ioi et al., 2006; Ebersole and Malek, 2008), and for comparison between healthy muscles and affected muscles due to chronic knee osteoarthritis (Paravlic et al., 2020) or lower back pain (Sakai et al., 2019). Finally, Zubac and colleagues used EME index to evaluate the effects of plyometric training on medial gastrocnemii muscle in older adults, whereas Jaskólski and colleagues (Jaskólski et al., 2007) used EME index to investigate the effects of acute eccentric training on agonist and antagonist muscles during the elbow flexion movement.
4 DISCUSSION
The aim of this systematic literature review was to investigate various aspects of the EME index, including its utility in assessing muscle conditions, muscle atrophy, pain syndromes, and the effects of exercise and rehabilitation. Additionally, it aimed to provide guidelines for further research and use of the EME index. Ten relevant studies were identified that employed the EME index for diverse purposes and utilized different methods to capture electro-mechanical signals of skeletal muscle. Overall, the EME index appears to offer detailed insights into muscle function and holds potential clinical relevance, as discussed in the following sections.
4.1 Methodology for estimating the EME index
The EME index is a measure of muscle function derived from the assessment of electrical and mechanical muscle actions. The most common calculation technique is the ratio of MMG RMS (root mean square) to EMG RMS [mV/uV] (Madeleine et al., 2001; Jaskólski et al., 2007; Sakai et al., 2019). The Ebersole & Malek, (2008) used the relationship between the normalized MMG amplitude and the normalized EMG amplitude (each repetition separately), by incorporating linear, quadratic and cubic polynomial regression models. A specific calculation of the EME index appears in the study of Ioi and colleagues, where the calculation is made from average rectified value for MMG and EMG values in order to determine how much muscle action potential is converted into muscle contraction. In other studies used a new MMG technique called TMG, where the EME index was calculated using the parameter extracted from the TMG (Dm) and the M-waves (Mptp) to form the EME index (Dm/Mptp) (Paravlić et al., 2017; Zubac et al., 2019; Paravlic et al., 2020). A similar extraction strategy was used in the study of Grosprêtre et al. (2018) where the EME index was obtained from the ratio of the average muscle twitches measured by MMG obtained at the maximum M-wave (Mmax). Given that both methods used in later studies calculate the EME index from electrically elicited muscle contraction in isometric conditions, it can be said that these two methods are the most similar, differing primarily in the assessment of the maximum mechanical response of the muscle. Common to all studies is the introduction of the EME index, representing the ratio of the mechanical response normalized to the electrical muscle activity. However, the question arises as to which method of EME index derivation is the most reliable, a factor dependent on how the signals are acquired and processed. The measurement of the mechanical response of muscles varies between studies, utilizing accelerometers, piezoelectric contact sensors, condenser microphones, laser distance sensors, etc., but the reliability of these methods poses a challenge (Ibitoye et al., 2014). For instance, a considerable amount of the variation in the reliability among the above-mentioned methods might be explained by the initial setting of the measurements, which differs between methods studied. This includes factors such as the type of muscle contraction studied (isometric vs dynamic; voluntary or electrically elicited). For example, Al-Zahrani and colleagues (2009) employed the isometric contractions, where the reliability of the MMG signal in the assessment of quadriceps fatigue was investigated and found to be high (ICC = 0.79–0.83) and low (ICC = 0.43–0.66) for intra-day and inter-day assessments, respectively. Paravlić and colleagues (2017) summarised the findings of other studies where different muscles are studied but under the same conditions (isometric contraction) and reported a very high coefficient of variance among studies. Authors also found the highest reliability measured by acoustomyography (excluding the TMG technique) that is achieved at the lowest levels of muscle activity. During the analysis of dynamic muscle function, which is of greater importance in clinical applications numerous factors affecting MMG have been identified (Stokes, 1993; Herda et al., 2008). These include changes in the length of the muscle and consequently torque, the ambient temperature, and the thickness of the tissue overlying the muscle being studied (Herda et al., 2008; Ibitoye et al., 2014). MMG obtained by means of a capturing radial muscle displacement triggered by an electrical stimulation pulse has been shown to be much more reliable compared to voluntary contractions (Ibitoye et al., 2014). These parameters seem to be reliable physiological parameters of the measured muscles that highly correlate with torque measurements and have also been used to assess muscle fatigue, stiffness and endurance, respectively (Uwamahoro et al., 2021).
A TMG represents a specific MMG technique that captures radial displacement of muscle belly after electrically elicited muscle contractions. The results of a quantitative summary of individual reliability studies confirm high to excellent relative reliability for all the basic TMG parameters including (muscle displacement (ICC, Dm = 0.98), time of contraction (Tc = 0.95) and time of delay (Td = 0.91)) (Lohr et al., 2019). Thus, Dm was used to calculate the EME index when utilizing the TMG method. Paravlic and colleagues showed very high reliability with an average ICC of 0.88 for Dm, 0.90 for Mptp and 0.92 for the EME index (Paravlić et al., 2017). This was also the first study to demonstrate the high reliability of the EME index obtained using the TMG and M-wave techniques. It can be said that the most appropriate and reliable method of obtaining the EME index is by TMG technique. It must be stressed that TMG operates during isometric muscle conditions and electrically induced muscle contraction with submaximal electrical stimuli. Further studies aimed at investigating the discriminative validity of EME index are warranted.
4.2 The EME index’s applied relevance
The EME index has been shown to have clinical relevance (Ebersole and Malek, 2008; Paravlic et al., 2020). The authors reported that EME provides insight into the impact of muscle fatigue on skeletal muscle function and is a useful tool to assess and quantify clinically relevant asymmetries in vastus medialis and vastus lateralis muscle function in patients with knee problems (Ebersole and Malek, 2008). Based on these findings, the EME index can be used as a screening tool to monitor rehabilitation protocols, in particular patellofemoral syndrome, or to improve exercise control and muscle function. Furthermore, Paravlic and colleagues assessed the EME index of gastrocnemii medialis muscle following the total knee arthroplasty that decreased for 38% (Paravlic et al., 2020). Orizio and colleagues (Orizio et al., 1997) investigated difference in muscle function between healthy and affected muscles in patients with cerebral palsy and muscular dystrophy. Observed differences in reduced electromechanical coupling in affected muscles were prescribed to reduction in type II muscle fiber content and overall number of efficient motor units in affected subjects (Orizio et al., 1997). Similarly, Barry and colleagues, suggested that the reduction in the EME index in adolescents with various neuromuscular disorders may be due to atrophy of muscle fibers which, although generating electrical activity, have very little mechanical activity (Barry et al., 1990). By providing objective measurements of muscle function and quality, clinicians can assess asymmetries, monitor progress, and tailor interventions to individual patient needs to improve outcomes across different clinical settings.
Given that the EME index has been shown to be clinically relevant, it would be reasonable to translate its usefulness into sports diagnostic practice. It has been shown to be a valid tool for the diagnosis of muscle fatigue, and this was confirmed in a study Ioi et al. (2006) where the mean EME values after fatigue were lower than those of the pre-fatigue trials at all levels expressed as a percentage of maximal voluntary contraction, namely, for the masseter muscle. In the study Kapadia, (2022) the authors report similar findings, namely, that the EME index has the potential to help characterise the influence of fatigue on force production. These factors cannot be accurately determined from EMG and MMG data alone, as a decrease in the index may be explained by impaired coupling of actin and myosin during muscle contraction, as a result of the accumulation of metabolic by-products, namely, hydrogen ions and diprotonated phosphate (Layzer, 1990). The sport-diagnostic relevance of the EME index has been demonstrated in a study by Jaskólski et al. (2007) who observed a reduction in EME values following 25 eccentric contractions at 50% MVC compared to pre-protocol. The authors reported that EMG and MMG recordings were differently altered immediately after and 120 h after the eccentric protocol, suggesting that several factors, including a) reduced rate of calcium release from the sarcoplasmic reticulum (acute effect); b) altered motor control (chronic effect); and c) increased muscle stiffness (chronic effect), mediated these results. These findings suggest that simultaneous measurements of electromechanical coupling may provide more insights into the mechanisms driving changes in neuromuscular function following the fatiguing protocols, than either parameter alone.
Despite all the sports-diagnostic advantages brought about by the introduction of the EME index, we cannot avoid the fact that the latter can be the simplest tool for evaluating the training cycle, which is the foundation of any successful training process. A 10-week plyometric training program has been shown to increase the EME index by 22.9% compared to a control group that continue with their habitual physical activity (Zubac et al., 2019). Therefore, we can conclude that the EME index can serve as useful tool for evaluating the electromechanical changes after physical training, as well as an indicator of improved jumping performance. Moreover, in the study conducted by Grosprêtre et al. (2018), EME index showed that parkour athletes had a significantly higher EME index compared to untrained athletes. Thus, suggesting that EME index may be used to distinguish more and less trained athletes.
4.3 Limitations of this review article
The findings of all the inclusion studies demonstrate the benefits offered by the introduction of an EME index, but some limitations should also be highlighted. One of these is certainly the number included studies. However, it is important to note that the introduction of an EME index is still a relatively new method with a limited body of research. For this reason, we believe that more studies are needed to investigate other emerging questions where EME index can serve its purpose in differentiating between several muscle groups, various exercise modalities and populations. The difficulties arising from crosstalk from adjacent muscles, which can affect the reliability of EMG and MMG signal capture, have been highlighted and this alone represents a major limitation for incorporating EME index into clinical practice. This could lead to misinterpretation of the results and limit the usefulness of the EME index. Further research should focus more on developing and testing methods to reduce the error of measurement in order to provide more reliable assessment. A limitation can also be seen in the limited generalisability of the results obtained. Many of the included studies focused on specific populations, such as athletes or people with specific health conditions. Despite all the results pointing in favour of the EME index, it would be reasonable to generalise the meaning in the sense that the EME index could be used as a measurement tool to determine muscle status in the general population. Also, one of the limitations is that included studies is extremely difficult to compare, as they use different approaches to obtain the EME index. For the latter reason, it would be useful to consider standardising the methods used to measure the EME index, as this would allow better comparability of results and facilitate the future research in this field.
5 CONCLUSION
The EME index is a promising parameter that provides a comprehensive and in-depth view of muscle function by describing the excitation-contraction process of skeletal muscle. The EME index is calculated by comparing the mechanical muscle response with its electrical potentials. The latter can be used to assess muscle conditions such as muscle atrophy, pain syndromes, or to monitor rehabilitation in patients with knee problems, fatigue and the effects of exercise and rehabilitation. Therefore, it can be said that the EME index has both clinical and sport-diagnostic relevance.
Various studies have used different methods to measure the EME index, including EMG, MMG, and TMG. TMG has been shown to be one of the most reliable methods to obtain the EME index, but its use precludes obtaining the index during voluntary muscle contractions.
Given the diversity of applicability and the different methods of capturing the EME index, which are presented in the paper, we expect advances in technology to obtain the EME index and thus improvements in psychometric properties. With standardized protocols, EME index can facilitate widespread use in clinical settings. In addition, ongoing research may uncover a new holistic insight into muscle function that helps with targeted clinical conditions.
Improved understanding and use of the EME Index is likely to lead to specific changes in clinical, sports and rehabilitation settings. Clinically, it could facilitate earlier detection and more targeted interventions for muscle dysfunction whereas in sports, it could be used for optimization of training regimes and injury prevention strategies. From arehabilitation point of view, it could help with personalised treatment plans and improved patient outcomes.
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Background: Sedentary behaviour has been associated with an increased risk of falls among older adults. Although gait initiation (GI) is a promising tool used to assess fall risk, it has yet to be quantitatively evaluated for dynamic stability in sedentary populations. Tai Chi exercise is believed to be effective in preventing falls in older adults, but its effect on GI stability has not been quantified. This study aims to compare the stability of GI in sedentary older individuals versus those who are long-term Tai Chi exercisers by using a quantitative approach.
Methods: This study included 17 sedentary older women without exercise habits (age: 65.59 ± 3.66 years, average daily sitting time: 8.735 ± 1.847 h/day) and 19 older women who regularly engage in Tai Chi exercise (age: 65.58 ± 3.63 years, years of exercise: 9.84 ± 3.48 years). Every participant underwent five trials of self-paced GI walking tests. Eight cameras and four force plates were used to obtain kinematic and kinetic parameters. The trajectory of the centre of mass (CoM) and the position of the foot placement were recorded. The anterior–posterior (A-P) and medio–lateral (M-L) dynamic stability at the onset and end moments of the single-legged support was calculated using CoM and gait spatiotemporal parameters. The stepping dynamic stability and foot placement positions of both groups were compared.
Results: The Tai Chi group had greater stability in the M-L directions at the swing leg’s toe-off moment and in the M-L and A-P directions at the heel-strike moment, as well as significantly larger step length, step width and step speed during locomotion than sedentary older women. However, the stability in the A-P directions at the swing leg’s toe-off moment and the foot inclination angle was not statistically different between the two groups.
Conclusion: Long-term regular Tai Chi exercise can enhance the dynamic stability of GI in older women, and effectively improve their foot placement strategy during GI. The findings further confirm the negative effect of sedentary on the stability control of older women and the positive role of Tai Chi in enhancing their gait stability and reducing the risk of falls.
Keywords: Tai Chi, gait initiation, dynamic stability control, margin of stability, foot placement strategy, older women

BACKGROUND
Falling is an increasingly serious public health issue encountered by many aging countries. According to the fourth national health service survey conducted by the Ministry of Health in China, falls are the primary cause of injury (defined as undergoing medical treatment or having restricted activity for over a day after being injured) among key disease prevention and control measures. Falls account for the highest percentage (45.9%) of such injuries (Ministry of Health, 2008). The Centres for Disease Control and Prevention (CDC) in the United States issued a report (Centers for Disease Control and Prevention, 2023a), which highlights that falls are the principal cause of injuries and injury-related fatalities for persons aged 65 years and older. About one in four elderly people, or more than 14 million, experience a fall each year. Medical expenses incurred by such falls surpass $ 50 billion, with Medicare and Medicaid covering 75% of the cost (Kakara, 2023). The report indicates a higher proportion of falls amongst females (28.9%) than males (26.1%). Accidental falls caused the death of 38,742 elderly persons at a rate of 78.0 per 100,000 population in 2021. The mortality rate due to falls has been increasing, with a 30% increase over the past decade (Haddad et al., 2019; Centers for Disease Control and Prevention, 2023b).
The U.S. Preventive Services Task Force (USPSTF) recommends exercise interventions to prevent falls in community-dwelling adults 65 years or older who are at increased risk for falls (U.S.Preventive Services, 2018). Evidence-Based Falls Prevention Programs state that Tai Chi to be one of the most effective exercises for preventing falls (National Council on Aging, 2023). Studies have indicated a significant correlation among physical activity, reaction time and fall risk (Vala et al., 2023; Wang et al., 2023). Engaging in physical activity and avoiding prolonged sedentary behaviour can help reduce the risk of falls among older adults (Lee, 2020). In addition, dynamic stability of gait and lower limb support are considered important risk factors for falls among the older population (Yang and Liu, 2020). Community-dwelling older adults tend to experience falls most frequently during walking activities (Talbot et al., 2005).
With the advancement of sensor technology, wearable sensors of human daily activities provide significant opportunities for the development and evaluation of interventions aimed at improving the mobility of older adults (Boyer et al., 2023). For example, task-oriented movement learning programmes facilitated by sensor technology can enhance the mobility of older adults by improving the skills required for walking (Brach and VanSwearingen, 2013). In addition, neural networks and machine-learning approaches can help monitor human activity and detect and predict potential fall risks (Hartmann et al., 2023). Xue and Liu (2021) provided a comprehensive review of Hidden Markov Models, highlighting their considerable potential in handling sequential data and predicting hidden states, enabling the monitoring of human activities, gait and fall behaviour.
However, older adults are at a high risk of falling whilst performing common daily tasks, such as walking, changing posture or initiating steps in different environments (Talbot et al., 2005). However, there is currently a lack of simple and effective methods for predicting the risk of falls during gait initiation (GI). GI is one of the highest proportions of falls among older adults during motor activities (Robinovitch et al., 2013).
GI refers to the transition from a static standing posture to steady-state walking, which poses challenges to systems responsible for postural control (Winter 1995). GI necessitates the transition from standing to a stable gait, so it provides an ideal task for studying the mechanisms of falls in older adults and the effect of ageing on mobility (Muir et al., 2014). Evaluating the stability of GI in sedentary older adults, who engage in activities, such as sitting, lying down or reclining with energy expenditure ≤1.5 metabolic equivalents while awake (Atkin et al., 2012; Edwardson et al., 2012), may serve as a valuable tool for assessing fall risk.
Tai Chi exercise is an effective intervention for reducing falls among older adults (Chen et al., 2021; National Council on Aging, 2023). Tai Chi movements require slow, continuous and smooth actions, which involve the continuous transformation of weight-bearing and non-weight-bearing movements and maintaining body stability. Various studies have highlighted the positive effects of Tai Chi on balance control and fall prevention in older adults (Chen et al., 2023). The present study aims to quantitatively assess the stability of GI in sedentary older adults and long-term Tai Chi exercisers by using this functional task to determine the risk level of sedentary individuals and the effectiveness of Tai Chi intervention.
Voluntary movement of GI is a means to accomplish stable walking tasks. The human body constantly adapts to natural instability triggered by variations in the supporting surface during movement. The central nervous system (CNS) employs stable and effective mechanisms to handle instability inherent in GI. The effectiveness of executing GI tasks, which refers to the output efficiency of sensory–motor system integration, is typically evaluated based on movement performance during GI, such as speed and accuracy (Bouisset and Do, 2008). The process of GI involves two skills, namely, forward propulsion and balance control, which are accompanied by posture–locomotion coupling (Mille et al., 2014). Successful initiation of gait requires two biomechanical requirements, which are generation of momentum (forward direction and towards the supporting leg) and maintenance of balance (Polcyn et al., 1998). Lifting the swing leg and taking a step forward can result in a potential sideway imbalance of the body, which can be effectively stabilised by the CNS. This task is accomplished by shifting the centre of pressure (CoP) of the anticipatory postural adjustments (APAs) towards the swing leg, moving the centre of mass (CoM) towards the supporting leg and partly through effective stepping (Winter 1995).
A few definitive quantitative studies have been conducted on the stability of GI in sedentary individuals and Tai Chi exercisers. The most commonly used indicator for quantifying dynamic stability during GI is the concept of ‘margin of stability (MoS)’ proposed by Hof et al. (Hof et al., 2005). MoS is a composite variable that considers the relationship among CoM position, velocity and support surface and has been widely applied to quantify stability during GI tasks. MoS is a measure of walking stability derived from dynamic stability theory and the human inverted pendulum model; it represents the minimum distance from a given CoM position–velocity state point to the backward imbalance boundary. Stability during GI is evaluated by calculating MoS in the medial–lateral (M-L) and anterior–posterior (A-P) directions, with the M-L side being considered a key indicator of walking stability.
This study utilises Hof’s gait stability assessment method (Hof et al., 2005; Hof, 2008) to collect biomechanical data on the kinematics and kinetics involved in the GI of older participants. The method calculates the stability of M-L and A-P directions during the double-support to single-support transition of the swing leg’s toe-off as well as at the end of the swing leg heel–strike when shifting from single to double support. The study compares the dynamic stability of sedentary and long-term regular Tai Chi practising older females during voluntary GI and evaluates the foot placement characteristics at the end of GI to explore the potential fall risk for sedentary individuals and the effectiveness of Tai Chi in preventing falls. Based on research findings, older women may be more susceptible to falls than older men (Stevens and Sogolow, 2005; Johansson et al., 2016; Yogi et al., 2018; Peng et al., 2019; Moreland et al., 2020). To minimise gender bias, this study exclusively focused on female participants. The research aims to: (1) determine differences in the dynamic stability of GI between sedentary individuals and those who engage in regular long-term Tai Chi exercise; and (2) compare foot placement strategies during stepping. The hypotheses are as follows: (1) sedentary individuals are expected to present significantly lower dynamic stability of GI than Tai Chi exercisers; and (2) both groups are assumed to exhibit distinct foot placement strategies. Results will provide evidence regarding factors contributing to fall risk in older individuals and the effects of exercise interventions.
METHODS
Study sample
The sample size was estimated using G*power software, which determined that an effect size of 0.5 and a statistical power of 80% (α = 0.05) are necessary to detect a significant difference (Zhang et al., 2002), requiring at least 51 trials in each group. The study finally recruited 128 elderly participants, with ineligible individuals, dropouts and invalid data excluded, included 36 participants, each of them completed five trials, resulting in 166 trials, which satisfied the requirement for statistical significance.
Participants
The inclusion criteria for the participants were as follows: female, right-leg dominance; good physical health; absence of back and pelvic system issues, neuromuscular disorders or balance impairments; and normal cognitive function. The sedentary group (SG) was defined as those who reported no exercise habits and an average sedentary time greater than 6 h per day in the past 7 days, and the Tai Chi group (TC) had more than 6 years of training.
Participants with a Mini-mental State Examination (MMSE) functional score of 24, frailty, lower limb injuries or surgeries within the past 6 months, a history of falls in the previous 2 years and fatigue or poor condition prior to the experiment were excluded.
All participants were informed about the specific test procedures and signed written informed consent forms. The study was approved by Henan Sports Science and Technology Centre (Henan Anti-Doping Centre), China.
Instrumentations
Kinematic data were obtained using eight 3D near-infrared high-speed cameras (Qualisys, Sweden, model: Oqus 600) with a sampling frequency of 100 Hz. Fifty-two infrared reflective marker points (diameter of 14 mm) were attached to the participants to collect GI kinematic information. The placement method of the markers follows the Helen Hayes model. Kinetic testing was conducted using four Kistler force plates (90 cm × 60 cm ×10 cm, Switzerland, model: 9287C), with a sampling frequency of 1,000 Hz. A remote-controlled start signal lamp was self-constructed and used.
Experimental procedures
Participants were instructed to refrain from engaging in strenuous physical activities for 3 days prior to the experiment and to avoid consuming stimulating beverages, such as alcohol or coffee, which might affect the nervous system on the day before the experiment. Sufficient sleep was ensured. On the day of formal testing, participants were required to familiarize themselves with the experimental procedures and exercise them thoroughly. After the experimental preparations were completed, the participants performed a 5-min warm-up activity before proceeding to the formal testing. The starting action involved participants standing on a force plate with standardised footwear and clothing, with each foot placed on a force plate. They were instructed to stand naturally in a static position with their feet shoulder-width apart. The signal indicator is located at the endpoint, which is opposite to the walking direction of the subject 1.2 m above the horizontal plane and 6 m away from the starting position of GI.
The GI walking test was performed under the experimental condition designed in this study. The participants stood naturally on the force plate for 3–5 s and then initiated a step forward voluntarily. Trials started with the subject in quiet standing, with their feet placed in their preferred natural stance. Following a verbal cue of ‘anytime’, the subjects waited for a self-selected time interval (no less than 3 s) then initiated forward stepping at their self-chosen pace. Five valid trials were collected and reviewed online to ensure a steady-state baseline before the ‘anytime’ instruction. Trials without a period of steady-state standing were discarded and repeated.
Data of gait evaluation were analysed using Visual3D software (C-Motion, USA, v6.01.36). Kinematic and kinetic data were filtered and denoised by using a lowpass filter, with cut-off frequencies of 6 Hz for kinematics and 20 Hz for kinetics.
The GI process is divided into two phases: the APA phase and the locomotion (LOC) phase. This study focused on analysing the stability of the LOC phase. The MoS at the onset of LOC as well as the forward and lateral control stability at the end of LOC were computed.
DYNAMIC STABILITY OF GAIT INITIATION
Margin of stability at the onset stepping of locomotion phase
Next to the position and the velocity of the CoM, we can introduce the ‘extrapolated centre of mass (XcoM)’, as shown in Eqs 1, 2, where ω0 is a constant related to stature. XcoM allows the requirements for stable walking to be formulated simply based on the inverted pendulum model of balance.
[image: Formula for angular frequency of a simple pendulum: omega naught equals the square root of g over l, where omega naught is angular frequency, g is gravitational acceleration, and l is pendulum length.]
[image: Equation for extrapolated center of mass position: \( X_{\text{CoM}} = \text{CoM} + \frac{V_{\text{CoM}}}{\omega_0} \).]
Where XcoM represents the XcoM position, [image: The image displays the mathematical notation "V" with the subscript "CoM".] is the CoM velocity and normalised by the eigenfrequency [image: It seems there's an error in displaying the image. Please try uploading the image again or provide a URL. If needed, you can also add a caption for additional context.], [image: It seems there is an error with the image upload. Please try uploading the image again, and I will assist you with generating the alternate text.] is the leg length measured from the lateral malleolus to the greater trochanter and [image: Please upload an image or provide a URL so I can help generate the alt text for you.] represents the gravity acceleration (Hof et al., 2005).
The minimum M-L margin of stability MoSML and A-P margin of stability MoSAP were computed as follows in Eqs 3, 4:
[image: Mathematical equation showing MoS subscript MI equals BoS of x minus XCoM of x, labeled as equation 3.]
[image: The image displays a mathematical equation: MoS subscript AP equals BoS parentheses gamma parentheses minus X CoM parentheses gamma parentheses, followed by an equation number in parentheses, four.]
MoSML and MoSAP were calculated as the distance between XcoM and the boundaries of the base of support (BoS) during the single stance from the foot markers, namely, the fifth metatarsal–phalangeal joint for the lateral border and the medial malleolus for the medial border (Hof et al., 2005; Osada et al., 2022), as illustrated in Figure 1.
[image: Skeletal figure demonstrating walking mechanics on a grid. The stride is marked with red and blue vectors. Labels detail step width, length, and angle, with points A, P, M, and L representing support edges.]FIGURE 1 | Base of support and position of foot placement.
STABILITY CONTROL AT THE END OF THE LOCOMOTION PHASE
Lateral stability control
We calculated lateral stability with a constant offset control by positioning the right foot BML to the right of the XcoM, which is related to the desired step width SW in Eq. 5 (Hof, 2008).
[image: Formula showing B subscript ML equals fraction with numerator SW and denominator e to the power hν over kT plus 1, labeled as equation 5.]
Where [image: It seems like there was an error in your request. Please upload an image or provide a URL, along with any additional context or caption you wish to include.] is the stability of lateral control, [image: If you can provide an image or a URL, I'll be happy to help generate the alternate text for you!] is the step width and [image: Please upload the image or provide the URL for which you would like me to generate alt text.] is the time of LOC.
Forward stability control
The simplest stable control of CoP position could be made by positioning the CoP at a constant distance behind the ‘constant offset control’ of XcoM. The offset value BAP is represented as a constant distance. The equation is as follows in Eq. 6 (Hof, 2008).
[image: Mathematical equation for \( B_{AP} = \frac{SL}{e^{c/t} - 1} \), labeled as Equation 6, showing a fraction with exponential terms.]
Where [image: A small, slightly blurry mathematical notation, \( B_{AP} \), is presented in italics, with "AP" as a subscript to "B".] is the stability of forward control, [image: Please upload the image you'd like me to describe, or provide a URL if that's more convenient for you.] is the step length and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the time of LOC.
Foot placement at the end of stepping
Foot placement was determined based on step length, step width and foot inclination angle, as illustrated in Figure 1.
Statistical analysis
Statistical analysis was performed using SPSS software (version 22, SPSS Inc., Chicago, IL USA). Shapiro–Wilk test was used to verify the normal distribution of parameters; if the parameters were normally distributed, the Independent Samples t-test was applied to compare data between SG and TC groups, if the parameters were not normally distributed, the Mann–Whitney U test was applied. Effects were considered to be significant at p < 0.05.
RESULTS
The recruitment process for participants of both surveys is illustrated in Figure 2.
[image: Flowchart showing participant enrollment for a study. Initially, 128 assessed; 51 excluded for regular exercise habits, 12 for health problems, 8 for cognitive impairments, 7 for less than 6 years of exercise, and 10 for sedentary time under 6 hours daily. Forty eligible participants, split into sedentary (20) and Tai Chi (20) groups. Thirty-six involved in the test; 17 sedentary and 19 Tai Chi. Gait initiation walk test conducted with 81 trials for the sedentary group and 85 for the Tai Chi group.]FIGURE 2 | Recruitment of participants in sedentary and Tai Chi groups.
Sample characteristics
The study included 17 older females who did not engage in regular exercise (age: 65.59 ± 3.66 years; height: 1.62 ± 0.53 m; mass: 65.41 ± 12.25 kg; BMI: 26.04 ± 7.79; MMSE scores: 28.7 ± 0.40) and 19 older females who participated in long-term Tai Chi exercise (age: 65.58 ± 3.63 years; height: 1.58 ± 0.43 m; mass: 60.94 ± 7.27 kg; BMI: 24.32 ± 2.72; MMSE scores: 28.9 ± 0.49). Table 1 provides detailed information about these individuals.
TABLE 1 | Information of participants in sedentary and Tai Chi groups.
[image: Table comparing sedentary group (SG) and Tai Chi group (TC) with mean and standard deviation for trials, age, height, mass, BMI, MMSE, sedentary time, physical activity frequency and duration, and exercise years. Notable difference in sedentary time, p-value less than 0.001.]Dynamic stability
Table 2 indicates statistically significant differences in lateral stability between the SG and TC groups at the beginning of the single-support phase during the transition from double to single support during GI. The MoSML result in SG is significantly lower than that in the TC group (p = 0.19, η2 = 0.342, 95%CI: −0.011, −0.001). M-L and A-P stability also show statistically significant differences at the end of GI when the swing leg touches the ground and shifts from single to double support. The BML (p = 0.002, η2 = 0.455, 95%CI: −0.013, −0.003) and BAP (p = 0.001, η2 = 0.473, 95%CI: −0.009, −0.002) results in SG are significantly lower than those in the TC group.
TABLE 2 | Dynamic stability of sedentary and Tai Chi groups on the onset and end of locomotion.
[image: Table comparing mean and standard deviation of two groups: sedentary (SG) and Tai Chi (TC). Metrics include MoSML, MoSAP, BML, and BAP with significant p-values for MoSML (0.019), BML (0.002), and BAP (0.001). Additional columns show effect size (η²) and confidence intervals (CI).]Foot placement
Table 3 shows that the TC group has a greater step length, step width and step speed than SG at the end of the GI process when the swing leg heel makes contact with the ground and transitions from single to double support. The statistical analysis reveals significant differences between the two groups, with a more pronounced difference observed in SL and SW. The foot inclination angle (SG: 33.097 ± 29.219; TC: 31.333 ± 20.671, p = 0.821, η2 = 0.352, 95% CI: 13.893, 17.42) is higher in SG than in the TC group.
TABLE 3 | Foot placement in sedentary and Tai Chi groups at the end of gait initiation.
[image: Comparison table showing mean and standard deviation for variables between sedentary (SG) and Tai Chi (TC) groups: SL, SW, SV, and SA. Significant p-values for SL, SW, and SV are less than 0.05, indicating differences. Effect size (η²) and 95% confidence intervals are provided. Abbreviations: SL - step length, SW - step width, SV - step velocity, SA - step angle.]DISCUSSION
GI is a voluntary movement task that involves the transition from standing to walking. During GI, the CNS continuously compares the expected movement with the actual movement in the environment, modifying the control of movement to identify the most effective and efficient method to achieve the goal (Hadders-Algra, 2010). The stability of the body’s control changes due to changes in the support surface during GI, and the CNS uses stable and effective mechanisms to deal with the inherent instability of GI. The function of the CNS during GI is to shift the CoM in the desired direction and to determine the placement of the swing foot upon landing (Winter 1995). The efficiency of GI performance, which refers to the output efficiency of sensory–motor system integration, is typically evaluated based on GI movement characteristics, such as speed and accuracy. The present study aims to assess differences in GI performance efficiency between sedentary older women and those who have undergone long-term Tai Chi training by assessing stability at the moment of transition from double support to single support during swing leg initiation and at the moment of transition from single support to double support when the swing leg lands as well as foot placement at the completion of the GI task. The findings will provide valuable insights for the clinical assessment of gait-related neurological disorders and the evaluation of the effectiveness of rehabilitation interventions in older people.
Dynamic stability
GI involves internal self-perturbations of balance, known as endogenous ‘action equilibration’ (Bouisset and Do, 2008). MoS, derived from dynamic stability theory and the human inverted pendulum model, is a measure of walking stability by representing the shortest distance between a given CoM position–velocity state point and the backward imbalance boundary. Gait stability can be evaluated by calculating stability margins in the A-P and M-L directions, with the M-L dynamic MoS as a key indicator of walking stability.
The results show a statistically significant difference in M-L stability between SG and TC groups at the moment the swing leg is lifted off the ground during the transition from double-to single-leg support. M-L stability is an important predictor of fall risk, and the results suggest that sedentary older women are potentially at risk of falling. Nakano et al. also suggested that age-related changes in M-L balance control may increase the risk of lateral falls during GI (Nakano et al., 2016). Breniere and Do. (1986) reported that steady-state gait conditions are achieved at the end of the first step when walking at a habitual speed. The goal of GI is to place participants under steady-state gait conditions during the first step. At the end of the first step, the M-L and A-P stability in SG are significantly lower than those in TC, indicating that Tai Chi significantly improves the stepping gait stability during GI. At the onset of GI, sufficient APAs will ensure that the CoM is repositioned over the new support base (standing/supporting leg), preventing the body from tilting towards the swing leg after transitioning from bipedal to unipedal stance. If APAs fail to effectively reposition the CoM onto the new support surface, then walkers will need to rely on CPAs to reduce the effect of this instability, typically by taking more side steps with the stepping foot to increase the range of the support surface (Zettel et al., 2002). Some adaptation effects are consistent with the role of motor predictions in coupling posture and movement. The CNS anticipates the direction and magnitude of the initial lateral body movement, corresponding to the expected position of the M-L foot placement. Foot placement is adapted by altering posture and movement before stepping to ensure stability during stepping. These adaptations during movement may directly alter stepping performance. Disruptions in frontal plane postural control prompt movement adjustments to maintain stability and efficiency (e.g., maintaining step length) during the first step (Mille et al., 2007).
This study compares the displacement results of the CoP during GI at different angles (45° left anterior, 45° right anterior and 90° right lateral). A 16-week Tai Chi intervention significantly increases the displacement and speed of lateral steps in sedentary older adults. Tai Chi may improve dynamic postural control during the initial phase of GI in older adults by altering the movement characteristics of the CoP. Another study revealed that a 12-week Tai Chi exercise can improve posture control on unstable platforms and reduce the risk of falls in older individuals with sarcopenia (Huang et al., 2023). However, a previous research that compared the minimum postural sway ability of older adults suggested that a 15-week Tai Chi intervention did not improve measures of platform postural stability (Wolf et al., 1997). Our study includes stability calculations and reports that during the end stage of step advancement, the M-L and A-P stability of older women in the TC is significantly higher than that in sedentary older adults. Hence, Tai Chi exercise has a positive effect on improving the stability of GI in older adults. The different results of Tai Chi in improving postural stability may be due to the specific movement characteristics of Tai Chi, such as stable shifts in the centre of gravity (CoG) and slow, smooth transitions in step movements, which may manifest stability in controlling step movements.
Foot placement
A potential method used to improve postural stability during GI is modifying the initial foot position (IFP). The human body achieves safe and efficient step advancement by adjusting the step length and position of the swing leg foot at ground contact. Considering the significance of appropriate IFP for GI and recovery response, the observed changes in step length during the first step of older fallers may serve as an important predictor of posture-related problems (Azizah Mbourou et al., 2003). During GI, coarse balance control is achieved through the placement of the swing leg’s foot (Jian et al., 1993). This study found statistically significant differences in the step length, width and speed of older females in the SG and TC group, with SG exhibiting significantly shorter step length and width. These findings align with previous research, which indicated that step length and step speed significantly decrease with age during GI (Muir et al., 2014) and that older fallers demonstrate significantly shorter first steps (Azizah Mbourou et al., 2003). Additionally, older adults can modulate their step width to maintain dynamic balance in the M-L direction (Nakano et al., 2016). Muir et al. (2014) compared age-related changes in the first four steps of gait, including the GI phase, for three age groups (20–25 years, 65–79 years and 80–91 years) walking at self-selected speeds. The results showed significant decreases in step speed and length across age groups. Higher variability in step length and step width may reflect increased foot placement errors and/or decreased CoG control among older adults. Healthy individuals aged 80–91 years walked at a slower pace with shorter steps. Furthermore, older fallers had significantly shorter first steps during GI and significantly longer double support time (Azizah Mbourou et al., 2003). Our results further confirm that older adults may utilise their foot placement at touchdown to regulate stable control at the end of the stance phase. A faster gait requires longer anticipation time and shorter execution time (Brenière et al., 1987). No statistically significant differences were observed in the foot inclination angle between the two groups. Inclination of the foot to the outer side (IFP) may be a feasible option to increase ankle muscle activation and improve age-related decline in postural stability (Jeon et al., 2021). Reinmann et al. (Reimann et al., 2017) proposed that foot placement and ankle lateral strategies may be two independent mechanisms that are coupled and coordinated in time to compensate for unstable M-L APAs and stiffened stance leg in the frontal plane to maintain body sagittal stability (Van Dieёn et al., 2008). The foot placement position is actively regulated by the CNS to maintain lateral balance (Bauby and Kuo, 2000; Donelan et al., 2004). The human body maintains gait stability by coordinating the M-L foot placement position and the control of the CoM (O’Connor and Kuo, 2009). The CNS anticipates the initial lateral displacement of the body and adjusts the foot placement accordingly to ensure its alignment with the expected position. The foot position is adapted by altering the pre-step posture to ensure stability during foot strikes (Collins and Kuo, 2013). Even if the foot placement position is slightly inappropriate at foot strike, it can still be compensated by adjusting the M-L position of the CoP, which is known as the ‘ankle lateral strategy’ (Hof et al., 2007). Changes in the length of the first step may be an important predictor of postural problems in older adults considering the importance of appropriate foot placement for GI and recovery responses.
Strengths and limitations
This study compared the GI stability characteristics and foot placement features between two representative older groups, namely, sedentary older women and older women with long-term regular Tai Chi exercise. The results provide a reference for future studies on GI stability in specific population subgroups. However, this study did not investigate the coordination of limb spatial positioning and ground reaction forces. In future research, we will consider the coordination of GI and potential differences in force control that may lead to an increased risk of injury. Previous studies indicated that gender is a major risk factor for falls, with older women being more prone to falls. The present work only included older women participants and did not further categorize them by age group. Further studies will consider additional age groups and physical activity groups for research purposes.
CONCLUSION
This study quantitatively compared and analysed the dynamic stability and foot placement characteristics of sedentary older women and older women with long-term regular Tai Chi exercise. The findings revealed that long-term regular Tai Chi exercise significantly improved the dynamic stability at the swing leg toe-off moment in M-L directions and at the heel–strike moment in the M-L and A-P directions, moreover, Tai Chi exercisers showed significantly higher step length, step width and step velocity than sedentary older women during GI. The results further confirm the negative effect of sedentary behaviour on stability control among older adults as well as the positive effects of Tai Chi on improving gait stability control and reducing fall risk.
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Uphill walking is a common task encountered in daily life, with steeper inclines potentially imposing greater biomechanical and neuromuscular demands on the human body. The heel-to-toe drop (HTD) in footwear may influence the biomechanical and neuromuscular pattern of uphill walking; but the impact remains unclear. Adjustments in HTD can modulate biomechanical and neuromuscular patterns, mitigating the demands and optimizing the body’s response to different inclinations. We hypothesize that adjustments in HTD can modulate biomechanical and neuromuscular patterns, mitigating the demands and optimizing the body’s response to different inclinations. Nineteen healthy men walked on an adjustable slope walkway, with varied inclinations (6°, 12°, 20°) and HTD shoes (10mm, 25mm, 40 mm), while the marker positions, ground reaction forces and electromyography data were collected. Our study reveals that gait temporo-spatial parameters are predominantly affected by inclination over HTD. Inclination has a more pronounced effect on kinematic variables, while both inclination and HTD significantly modulate kinetic and muscle synergy parameters. This study demonstrates that an increase in the inclination leads to changes in biomechanical and neuromuscular responses during uphill walking and the adjustment of HTD can modulate these responses during uphill walking. However, the present study suggests that an increased HTD may lead to elevated loads on the knee joint and these adverse effects need more attention.
Keywords: slope, heel-to-toe drop, gait, joint work, frontal plane, muscle synergy

1 INTRODUCTION
Slopes are commonly encountered during hiking and everyday activities. Navigating slopes presents more of a challenge than flat terrain. Ascending a slope increases metabolic work (Minetti et al., 2002; Franz and Kram, 2012; Yang et al., 2019) and necessitates adjustments in the activity of the upper and lower limbs and trunk muscles to maintain balance while progressing both forward and upward (Leroux et al., 2002; Lay et al., 2006; Kimel-Naor et al., 2017). The increased incline alters gait patterns and demands greater physiological function from joints and muscles, leading to reduced step length, speed, and stride frequency (Kimel-Naor et al., 2017), as well as increased positive work in the ankle, knee, and hip joints (Alexander et al., 2017; Yang et al., 2019), and heightened lower limb muscle activation (Lay et al., 2007). The likelihood of falls is greater when walking on slopes compared to level surfaces, particularly for older adults and individuals with disabilities (Kannus et al., 1999; Miller et al., 2001; Redfern et al., 2001). Epidemiological studies have also indicated a higher incidence of lower limb injuries, such as skin abrasions, blisters, muscle strains, fractures, and ankle sprains, during mountain climbing and hiking (Heggie and Heggie, 2004; Johnson et al., 2007). Consequently, investigating safer sports strategies for slope activities is of great importance.
Shoes directly contact with the ground and their structure and materials affect human motion (Wiedemeijer and Otten, 2018; Sun et al., 2020). The heel-to-toe drop (HTD) of shoes, which refers to the difference in thickness between the forefoot and heel parts of the sole, has been identified as a factor that may influence biomechanical parameters during walking (Cowley et al., 2009; Cronin, 2014). As HTD increases, several changes of gait characteristics have been observed. The gait cycle time tends to increase, while gait speed slows down due to a prolonged support period and shortened swing period (Barkema et al., 2012; Di Sipio et al., 2018). The range of motion (RoM) of the ankle, knee or hip decreases during level walking when wearing high-heel shoes (Mika et al., 2012; Annoni et al., 2014). Additionally, an increased HTD during level walking may induce alterations in kinetic and electromyographic parameters of the lower limb (Simonsen et al., 2012). These alterations are commonly associated with an elevated risk of injury to the ankle and knee joints (Barkema et al., 2012; Mika et al., 2012; Barnish and Barnish, 2016). However, the aforementioned results are based on level walking, and research on the adjustment of lower limb biomechanical patterns in response to HTD during slope walking is still limited.
Walking is a physical activity that requires a high degree of coordination between joints and muscles to be completed (Bianchi et al., 1998; Lacquaniti et al., 2012; Esmaeili et al., 2022). To simplify the high degree of freedom in the human motor system, muscle activity can be divided into the groups with fixed spatial structures that are activated together, known as muscle synergy or motor modules (Cappellini et al., 2006; Ivanenko et al., 2006; Bizzi and Cheung, 2013). Pathological conditions, such as stroke and cerebral palsy, can influence this coordination (Clark et al., 2010; Steele et al., 2015). When walking uphill, the number of muscle synergy patterns remains the same as level walking (Rozumalski et al., 2017; Saito et al., 2018; Liu and Gutierrez-Farewik, 2023). However, the frequencies of respective synergies vary due to changes in mechanical demands between uphill and level walking (Janshen et al., 2017), where uphill walking requires the lower limb muscles to work more to lift up and maintain balance (Wall-Scheffler et al., 2010; Franz and Kram, 2012). Furthermore, HTD influences the function of lower limb muscles while walking (Park et al., 2010; Simonsen et al., 2012), and studies on the impact of HTD on muscle synergy and muscle work during uphill walking are relatively scarce.
Due to the differences of biomechanically and muscle functional roles between level and slope gait (Pickle et al., 2016; Wen et al., 2019), the findings from level walking may not be directly applicable to slope walking. Existing patents have introduced footwear with adjustable heel heights (Kumar et al., 2020). The underlying principle of these patents involves modulating heel height to align the foot in a more natural orientation relative to the inclination of the surface. Heel elevation during uphill walking may reduce dorsiflexion angle, simulating a flat-foot position, but its impact on muscle coordination varies among individuals and is under-researched. The interaction between inclination and HTD on biomechanics and neuromuscular responses remains unclear.
We hypothesize that adjustments in HTD can modulate biomechanical and neuromuscular patterns, mitigating the demands and optimizing the body’s response to different inclinations.
2 METHODS
2.1 Participants
Nineteen healthy men (Age: 23.4 ± 2.1 years; Height: 176.5 ± 5.3 cm; Weight: 70.4 ± 7.9 kg; Shoe size: 42 or 43 EU) free of any neurological or musculoskeletal disorders volunteered to participate in the study. Each subject signed an informed consent form approved by the Institutional Review Board of Capital University of Physical Education and Sports.
2.2 Conditions of inclination and HTD
An adjustable slope walkway was built first and it was prepared according to the procedure used by previous research (Yang et al., 2019). The main structure of the slope walkway is an aluminum alloy frame and wood surface. The force plate (Kistler 9281CA, Switzerland) was mounted on a vertical strut in the middle of the slope walkway. Wooden flat walkways are located in front and at the end of the slope walkway, The front-end wooden walkway platform is 1.4 m in length and 1 m in width. The rear wooden walkway platform measures 1.2 m in length and 1 m in width. The sloped walkway extends for 3.17 m in length and is 1 m wide (Figure 1). The inclinations was adjusted to 6°, 12° or 20° (Earhart and Bastian, 2000; Prentice et al., 2004; Lay et al., 2006). After initially selecting the inclinations at random, the subjects wore standard shoes under various HTD conditions (10mm, 25mm, and 40 mm) randomly as shown in Figure 2. The remaining two slope conditions, each with three HTD settings, were conducted in a randomized sequence. Five practice trials and three uphill walking trails were completed for each inclination and HTD condition at subject’s self-paced speed. Trials were discarded if the participant’s right foot stepped on the force platform incompletely, or if the participant targeted the platform, to ensure movement authenticity and prevent unnatural gait patterns from biasing the results.
[image: Diagram and set-up for an experiment with cameras surrounding a force plate on three axes, labelled in centimeters. Panel A shows the top view, including camera placements. Panel B displays three photos of a person walking on an inclined platform at angles of six, twelve, and twenty degrees, moving from left to right.]FIGURE 1 | Adjustable slope walkway. (A) diagram. (B) Scene pictures.
[image: Illustration comparing a standard shoe with different heel-to-toe drop (HTD) conditions. Panel A shows a standard shoe with measurements: 12 mm heel and 22 mm forefoot. Panel B depicts three shoe inserts with varying HTD: 10 mm, 25 mm, and 40 mm, each with labeled thicknesses.]FIGURE 2 | The thickness of sole and insole during experiments. (A) The photo of a standard shoe. (B) The HTD condition of an insole.
2.3 Motion capture, GRF and EMG measurements
Twenty-nine reflective markers were placed according to a modified Halen Hayes Marker set (Vaughan et al., 1999). Three reflective markers was placed on the three corners of the force platform to mark its position. Kinematic data were collected at 200 Hz with an eight-camera 3D Optical Capture system (Motion Analysis Raptor-4, United States). Ground reaction force (GRF) was recorded at 1000 Hz. Surface electromyography (EMG) data of the following eight muscles of the right lower limb were recorded at 2000 Hz using a wireless EMG system (Delsys Trigno, United States): tibialis anterior (TA), gastrocnemius medialis (GM), gastrocnemius lateralis (GL), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), semitendinosus (ST), biceps femoris (long head, BF). Location of electrodes using the same method of one previous research (Hermens et al., 2000). Marker position, GRF and EMG data were synchronized using an external trigger signal.
2.4 Kinematic and kinetic analysis
Kinematic data was further processed with Cortex (version 2.6, Motion Analysis Corporation, Santa Rosa, CA). The software was then used to transform the GRFs of the force plate and align them with the global reference system. The processing of GRF data was carried out using Matlab programming (MathWorks, Natick, MA). Kinematic and GRF data were low pass filtered (4th-order, zero-lag, Butterworth), with a cut off frequency of 8 Hz and 15Hz, respectively (Yang et al., 2019). Heel-strikes (HS) and toe-offs (TO) of the right foot were identified according to the 10N-threshold vertical GRF or a foot marker-based algorithm (O'Connor et al., 2007). For each gait cycle, the temporo-spatial parameters were calculated such as gait speed, stride length, duration of stance phase, duration of double stance phase, and cadence. The joint kinematics coordinate reference systems were defined according to the recommendation of the International Society of Biomechanics (Wu and Cavanagh, 1995; Wu et al., 2002). The range of motion (RoM) and the joint angles at the moment of HS for the ankle, knee, and hip joints were assessed. Joint moment were calculated according to the procedure used by previous research (Winter 1980; Vaughan et al., 1999). Joint powers were calculated by multiplying joint angular velocity by joint moment (Winter 1991; Eng and Winter 1995). Joint moments and powers were normalized to body weight (BW).
2.5 Muscle synergy analysis
EMG activity was analyzed using R script (R v3.6.3, R Core TEAM, 2020, R Foundation for Statistical Computing, Vienna, Austria). The raw EMG data was band-pass filtered between 50 and 500Hz, then full-wave rectified, and finally low-pass filtered (4th-order, zero-lag, Butterworth) with a cut-off frequency of 20 Hz for to create a linear envelope (Santuz et al., 2020). EMG data of each muscle was normalized to its maximum value across all conditions (Devarajan and Cheung, 2014). Each gait cycle was then time-normalized to 200 points, with 100 points each assigned to support and swing phases (Santuz et al., 2018; Santuz et al., 2019). The classical Gaussian non-negative matrix factorization (NNMF) algorithm extracted muscle synergies, organized into a matrix V with dimensions [image: Mathematical expression displaying "m times n" in a stylized font.] (m rows and n columns). Where n represents the number of normalized time points. The matrix V was factorized using NNMF, such that [image: Mathematical equation showing \( V \approx V_R = WH \).], with the new matrix VR reconstructed by multiplying the two matrices W and H to approximate the original matrix V. The motor primitives matrix H contains time-dependent coefficients of the factorization with dimensions [image: The image shows a mathematical expression "r times n," representing the multiplication of variables r and n.], where the minimum number of rows r represents the number of synergies required to satisfactorily reconstruct the original set of signals V (Lacquaniti et al., 2012). Update rules for matrices W and H were applied, and reconstruction quality was measured by R2, with convergence at a change ≤0.01% over 20 iterations (Santuz et al., 2017). The minimum synergies were determined by fitting R2 values to synergies and recalculating errors (Cheung et al., 2005) after removing points until two remained or error was <10⁻⁴ (Santuz et al., 2019). Motor primitives were classified using K-means clustering, clustering based on the distance between features, and discarding irrelevant primitives by R2 comparison (Santuz et al., 2020). The center of activity (CoA) and full width at half maximum (FWHM) were calculated for activation patterns under various conditions using polar coordinates and averaged for stance and swing phases (Cappellini et al., 2016).
2.6 Statistics
The values for the three trials were averaged for each subject at each HTD and inclination. A two-way repeated measures ANOVA was utilized to evaluate the influence of HTD and inclination on gait temporo-spatial parameters, kinematics, kinetics, and muscle synergies. Significant main or interaction effects were identified (p < 0.05). Post hoc analyses with the Tukey test ([image: It seems that the image did not upload correctly. Please try uploading it again, ensuring it's in a supported format like JPEG, PNG, or GIF. Let me know if you need further assistance!] = 0.05) elucidated these effects. Effect sizes were quantified using Partial Eta Squared ([image: Greek letter eta with a subscript lowercase p and a superscript number two.]), with values of 0.01, 0.06, and 0.14 representing small, moderate, and large effects, respectively. All statistical analyses were performed using SPSS v23 software (SPSS Inc., Chicago, IL, United States).
3 RESULTS
3.1 Inclination rather than HTD influences the temporo-spatial parameters of gait
No inclination✕HTD interaction effects were observed for temporo-spatial parameters. A significant main effect of inclinations (Table 1) was observed for gait speed (F = 22.56, p < 0.001, [image: The image shows the symbol for partial eta squared, represented by the Greek letter eta with a squared superscript, followed by a subscript "p".] = 0.85), stride length (F = 13.07, p < 0.001, [image: The Greek letter eta with a squared superscript and a subscript p.] = 0.71), stance duration (F = 30.96, p < 0.001, [image: The image shows the Greek letter eta with a superscript two and a subscript p.] = 0.78), double stance (F = 14.03, p < 0.001, [image: Greek letter eta squared with subscript p.] = 0.61), and cadence (F = 18.97, p < 0.001, [image: Mathematical symbol of eta squared with a subscript p.] = 0.83). There was no significant main effect observed for HTD in temporo-spatial parameters.
TABLE 1 | Mean (SD) gait parameters used to describe walking on three inclinations with three HTD-levels.
[image: Table showing gait analysis results with variables: gait speed, stride length, stance duration, double stance duration, and cadence, across inclinations of 6, 12, and 20 degrees with heel-to-toe drop (HTD) values of 10, 25, and 40 mm. Includes ANOVA results for interactions, inclinations, HTD, and post-hoc comparisons, indicating significant differences based on inclination and HTD levels.]3.2 Inclination influences more kinematic parameters than HTD
No inclination ✕ HTD interaction effects were observed for kinematic parameters. A significant main effect of inclinations (Figure 3) was observed for ankle dorsiflexion angle at HS (F = 51.72, p < 0.001, [image: Greek letter eta with a superscript two and a subscript p.] = 0.93), ankle inversion angle at HS (F = 21.24, p < 0.001, [image: The mathematical symbol shows the letter eta (η) squared with a subscript p.] = 0.84), knee flexion angle at HS (F = 417.39, p < 0.001, [image: Mathematical notation showing the Greek letter eta with a squared superscript and a subscript "p".] = 0.98), hip flexion angle at HS (F = 241.58, p < 0.001, [image: η squared with a subscript "p".] = 0.98), ankle sagittal RoM (F = 18.93, p < 0.001, [image: The image shows the symbol for partial eta squared, represented as the Greek letter eta with a squared superscript and a subscript "p".] = 0.83), ankle frontal RoM (F = 30.91, p < 0.001, [image: The mathematical symbol eta (η) is displayed with a superscript of two and a subscript of "p".] = 0.77), knee sagittal RoM (F = 5.68, p = 0.015, [image: Mathematical notation showing eta subscript p squared.] = 0.39), hip sagittal RoM (F = 172.52, p < 0.001, [image: The Greek letter eta followed by a superscript two and a subscript p.] = 0.97). There was no significant main effect observed for HTD in kinematics parameters (Figure 3) except for ankle sagittal RoM (F = 33.71, p < 0.001, [image: Statistical notation for partial eta squared, represented by the Greek letter eta squared (η²) with a subscript "p".] = 0.89) and ankle frontal RoM (F = 4.48, p = 0.049, [image: Lowercase Greek letter eta with a squared superscript and lowercase Latin letter p as a subscript.] = 0.53).
[image: A series of graphs and bar charts illustrate joint angles and inclinations during gait cycles for the ankle, knee, and hip. The top row shows line graphs comparing joint angles across different gait cycles. The middle and bottom rows present bar charts depicting inclination and related metrics, with significant differences marked. Each section corresponds to a different joint, revealing variations in movement patterns.]FIGURE 3 | The average kinematic parameters (joint angle and characteristic values) during uphill walking with various inclinations and heel-to-toe drops (HS = Heel Strike, RoM = Range of Motion, I - inclination, H - HTD). *, #, & indicate a significant difference (p < 0.05).
3.3 Both inclination and HTD modulate the kinetic parameters
No inclination ✕ HTD interaction effects were observed for kinetic parameters. A significant main effect of inclinations (Figures 4–6) was observed for peak ankle plantarflexion moment (F = 5.246, p = 0.033, [image: The image shows the mathematical notation "η squared" with a subscript "p."] = 0.37), ankle sagittal positive work (F = 17.04, p = 0.001, [image: Mathematical notation showing the Greek letter "eta" raised to the power of two, with a subscript "p".] = 0.81), peak knee extension moment (F = 8.16, p = 0.011, [image: The image shows the Greek letter eta (η) followed by a subscript "p" and superscript "2".] = 0.49), peak knee abduction moment (F = 18.38, p < 0.001, [image: The image shows the symbol for partial eta squared, represented as the Greek letter eta (η) with a superscript number two and a subscript letter p.] = 0.82), knee sagittal positive work (F = 89.31, p < 0.001, [image: The image shows the Greek letter eta with a superscript two above and a subscript "p," representing partial eta squared, a statistical measure of effect size.] = 0.91), peak hip extension moment (F = 58.74, p < 0.001, [image: The image displays the symbol η squared with a subscript p, representing a statistical measure of effect size in research studies.] = 0.94), peak hip abduction moment (F = 7.76, p = 0.014, [image: Greek letter eta, subscript p, raised to the power of two.] = 0.46), hip sagittal positive work (F = 23.67, p < 0.001, [image: Greek letter eta with a superscript two and a subscript "p".] = 0.86). There was no significant main effect observed for inclination in remaining kinetic parameters.
[image: Line graphs and bar charts display joint moments for the ankle, knee, and hip. The top row shows joint moment curves over stance percentage for different inclinations, while the bottom row presents bar charts of peak joint moments across inclinations. Different line styles and colors represent varying conditions and inclinations.]FIGURE 4 | The average kinetic parameters (sagittal joint moment and peak value) during the stance phase of uphill walking with various inclinations and heel-to-toe drops (I - inclination, H - HTD). *, #, & indicate a significant difference (p < 0.05).
[image: Graph showing ankle, knee, and hip joint moments during walking stance phases. Each joint has line graphs for various inclinations, with ankle dorsiflexion, knee flexion, and hip adduction depicted. Below, bar charts compare peak joint moments at different inclinations in different colors.]FIGURE 5 | The average kinetic parameters (frontal joint moment and peak value) during the stance phase of uphill walking with various inclinations and heel-to-toe drops (I - inclination, H - HTD). *, #, & indicate a significant difference (p < 0.05).
[image: Three line graphs show joint power versus stance percentage for the ankle, knee, and hip. Below, bar graphs present joint work in joules at different inclinations for the same joints. Different colors represent various conditions or groups.]FIGURE 6 | The average kinetic parameters (sagittal joint power and work) during the stance phase of uphill walking with various inclinations and heel-to-toe drops (I - inclination, H - HTD). *, #, & indicate a significant difference (p < 0.05).
A significant main effect of HTD levels (Figures 5, 6) was observed for peak ankle eversion moment (F = 8.18, p = 0.012, [image: Statistical symbol representing partial eta squared (η²ₚ), commonly used in the context of effect size in statistical analyses.] = 0.58), ankle sagittal positive work (F = 18.92, p < 0.001, [image: Statistical symbol showing the partial eta squared (η²p), often used in the context of effect size in analysis of variance (ANOVA).] = 0.68), peak knee extension moment (F = 22.56, p < 0.001, [image: Statistical symbol representing "eta squared sub p," often used in the context of effect size in research or statistical analysis.] = 0.71), peak knee abduction moment (F = 4.3, p = 0.03, [image: Symbol showing Greek letter eta (η) with a subscript "p" and a superscript two (²).] = 0.28), knee sagittal positive work (F = 16.42, p = 0.001, [image: Squared lowercase Greek letter eta with a subscript lowercase Latin letter p.] = 0.65), hip sagittal positive work (F = 4.45, p = 0.033, [image: Lowercase Greek letter eta with a squared superscript and lowercase letter p as a subscript.] = 0.33). There was no significant main effect observed for HTD in remaining kinetic parameters.
3.4 Both inclination and HTD influence the muscle synergy parameters
No inclination ✕ HTD interaction effects were observed for muscle synergy parameters. There was no significant difference in the number of synergies across all inclination and HTD levels (Figure 7). Each synergy was associated with a different gait phase (weight acceptance, propulsion and swing) and ordered according to the CoA of each motor primitive (Table 2). A significant main effect of inclination levels (Table 2) was observed for CoA of weight acceptance (F = 16.1, p < 0.001, [image: Mathematical symbol showing eta-squared with a subscript "p" and a superscript "2".] = 0.14), Swing (F = 3.48, p = 0.035, [image: Mathematical notation showing the Greek letter eta with a squared superscript and the subscript "p".] = 0.08) and FWHM in weight acceptance (F = 9.36, p < 0.001, [image: Mathematical notation of eta squared with a subscript "p", represented as η²p.] = 0.09), Swing (F = 3.885, p = 0.024, [image: Mathematical notation showing eta squared with a subscript "p," indicating a statistical measure of effect size.] = 0.09). There was no significant main effect observed for inclination in propulsion. A significant main effect of HTD level s (Table 2) was observed for CoA in propulsion (F = 6.32, p = 0.002, [image: The expression shows the Greek letter eta squared (η), with a superscript of two, and subscript lowercase letter p.] = 0.06). There was no significant main effect observed for HTD in weight acceptance and Swing.
[image: Radar charts and corresponding line graphs visualize motor modules and motor primitives during different stages: weight acceptance, propulsion, and swing. Each radar chart shows muscle activation, while line graphs depict motor primitive patterns over time. Various colored lines represent different data sets or conditions.]FIGURE 7 | The motor modules and motor primitives during uphill walking with various inclinations and heel-to-toe drops (I - inclination, H - HTD). * indicates statistically significant differences (p < 0.05) among outcomes for varying inclines. # indicates statistically significant differences (p < 0.05) among outcomes for varying HTD.
TABLE 2 | Mean (SD) CoA and FWHM of the motor primitives on three inclinations with three HTD-levels.
[image: Table displaying ANOVA results for variables related to weight acceptance, propulsion, and swing across different inclinations and heel-to-toe differentials (HTD). Includes means, standard deviations, F values, p-values, and post-hoc comparisons. Key findings highlight variations in conditions such as 6 inches being less than 12 inches and 6 inches less than 20 inches in weight acceptance.]During the weight acceptance phase, a significant main effect of inclination levels (Figure 7) was observed for VM (F = 8.12, p < 0.001, [image: Symbol representing eta squared with a subscript "p" and a superscript "2".] = 0.08), TA (F = 10.72, p < 0.001, [image: The image shows the Greek letter eta (η) with a superscript two and a subscript "p".] = 0.1). There was no significant main effect observed for inclination in remaining muscles. A significant main effect of HTD levels (Figure 7) was observed for RF (F = 3.95, p = 0.021, [image: The image shows the Greek letter eta with a superscript two and a subscript p.] = 0.04), VM (F = 6.28, p = 0.002, [image: Statistical symbol eta-squared with a subscript "p" and a superscript "2", representing partial eta-squared used in statistics for measuring effect size.] = 0.06), ST (F = 13.13, p < 0.001, [image: Mathematical expression showing the Greek letter eta (\( \eta \)) squared with a subscript p.] = 0.12). There was no significant main effect observed for HTD in remaining muscles.
During the propulsion phase, a significant main effect of inclination levels (Figure 7) was observed for RF (F = 26.63, p < 0.001, [image: The image shows the Greek letter eta with a squared symbol, followed by a subscript "p."] = 0.21), VM (F = 4.61, p = 0.011, [image: Statistical symbol representing partial eta squared.] = 0.04), VL (F = 4.06, p = 0.019, [image: Mathematical notation showing eta squared subscript p, with the number two as a superscript.] = 0.04), BF (F = 6.76, p = 0.001, [image: Statistical notation showing eta squared with the subscript 'p', represented as η²ₚ.] = 0.06), GM (F = 4.372, p = 0.014, [image: Mathematical expression showing the Greek letter eta with a squared superscript followed by the subscript "p".] = 0.04). There was no significant main effect observed for inclination in remaining muscles. A significant main effect of HTD levels (Figure 7) was observed for ST (F = 5.23, p = 0.006, [image: Greek letter eta with a superscript two and the subscript "p".] = 0.05), GM (F = 4.38, p = 0.014, [image: Statistical notation showing the partial eta squared symbol with a superscripted number two.] = 0.04). There was no significant main effect observed for HTD in remaining muscles.
During the swing phase, a significant main effect of inclination levels (Figure 7) was observed for VM (F = 6.2, p = 0.003, [image: The image shows the Greek letter eta with a squared superscript and a subscript letter "p".] = 0.08), BF (F = 17.28, p < 0.001, [image: Mathematical notation of eta sub p squared, with eta represented by a Greek letter.] = 0.19), ST (F = 25.35, p < 0.001, [image: Mathematical notation showing the Greek letter eta squared with a subscript p, indicating effect size in statistical analysis.] = 0.26), TA (F = 53.79, p < 0.001, [image: Mathematical notation showing the Greek letter eta (η) with a superscript two and a subscript p, indicating a squared value.] = 0.42). There was no significant main effect observed for inclination in remaining muscles. A significant main effect of HTD levels (Figure 7) was observed for ST (F = 10.26, p < 0.001, [image: The Greek letter eta with a subscript letter "p" and a superscript number "2".] = 0.12), TA (F = 7.2, p = 0.001, [image: The image shows the Greek letter eta with a superscript two and a subscript lowercase p.] = 0.09). There was no significant main effect observed for HTD in remaining muscles.
4 DISCUSSION
This study investigates the impact of HTD on biomechanical and neuromuscular responses during uphill walking at various inclinations. The existing literature extensively explores the impact of HTD on level walking (Stefanyshyn et al., 2000; Cowley et al., 2009; Barkema et al., 2012; Cronin, 2014). Our study, however, extends this inquiry to the effects of HTD across different slope inclinations, which is an issue less comprehensively investigated. Furthermore, previous research identifies a significant shift in gait parameters beginning at a 6°–9° incline (Prentice et al., 2004; Lay et al., 2006), indicating that biomechanical adaptations to inclined walking distinctly diverge from those of level walking at this threshold. Consequently, we selected 6° as the initial inclination for our study to examine how HTD influences the biomechanical properties of the human body under uphill conditions. Our findings reveal that adjusting HTD not only influences lower limb kinematics, kinetics, and muscle synergy parameters but also reduces biomechanical strain in uphill conditions. This underscores the practical implications of HTD adjustments in enhancing locomotion strategies during uphill walking.
An increase in inclinations during uphill walking demands more force and energy from the human body, making it a more challenging activity. Our study finds a decrease in gait speed and step length, and an increase in the stance and double support phases for enhanced stability (Table 1), coincides with other studies (Kimel-Naor et al., 2017; Sarvestan et al., 2021; Strutzenberger et al., 2022). Additionally, inclines lead to increased sagittal plane angles at the hip, knee, and ankle joints during uphill walking (Figure 3), coincides with other studies (Lay et al., 2006; Sarvestan et al., 2021). This requires the joints to exert more force to support body weight and reduces the range of motion, thus increasing the burden on the joints and necessitating stronger muscle strength. Our study finds that HTD does not significantly impact temporo-spatial and kinematic parameters during uphill walking (Table 1), with the exception of the range of motion at the ankle joint (Figure 3). Unlike on flat ground, where HTD can influence gait parameters and joint angles (Menant et al., 2009; Mika et al., 2012; Cronin, 2014), the body’s focus during uphill walking shifts towards maintaining balance and stability against the slope’s increased challenge (Hong et al., 2015; Alexander and Schwameder, 2016), diminishing the significance of HTD variation on posture. Moreover, the range of HTD variation examined in this study may not have been sufficient to significantly affect these parameters, suggesting that during uphill walking, the biomechanical challenges posed by the slope might overshadow the effects of HTD adjustments.
Changes in the joint moment on the frontal plane of the ankle, knee, and hip joints can affect the distribution of load across muscles and joints during walking (Barkema et al., 2012; Simonsen et al., 2012; Wen et al., 2019). Higher HTD lessens ankle eversion and its moment on slopes (Figure 5), potentially reducing ankle injury risk, especially in individuals prone to sprains. Interestingly, this finding is inconsistent with the results of studies conducted on level ground walking (Barkema et al., 2012). Increased HTD may shift gait from heel-strike to midfoot or forefoot strike during uphill walking (Vernillo et al., 2017), decreasing ankle eversion moments compared to level ground walking (Yu et al., 2022). A reduced knee abduction moment during uphill walking suggests less lateral knee stability is needed (Wen et al., 2019). However, a higher moment with increased HTD indicates greater stress on the knee’s lateral structures, such as the meniscus and collateral ligaments (McWilliams et al., 2014).
In this study, as the inclination increased, there was an increase in positive work in the sagittal plane at the hip, knee, and ankle joints (Figure 6), which coincides with the results of previous studies (Alexander et al., 2017; Yang et al., 2019), indicating that these joints need to generate more force and energy to overcome gravity and the incline during uphill walking. The most notable observation from the study is that an increase in HTD led to a reduction in positive work in the sagittal plane at the ankle and hip joints during uphill walking, concomitantly with an elevation in positive work at the knee joint. Increased HTD may limit ankle dorsiflexion and alter body posture, reducing positive work at the ankle and hip joints. Consequently, the knee joint may compensate with increased positive work to preserve gait efficiency.
Several studies have demonstrated that an increase in inclination appears to have minimal impact on most patterns of muscle synergy during walking (Rozumalski et al., 2017; Dewolf et al., 2020). We also found that HTD does not significantly affect the number of muscle synergy patterns during uphill walking (Figure 7), which showed that the overall neuromuscular control strategies tend to remain consistent with varied inclinations and HTD during uphill walking. However, steeper inclination or increased HTD may lead to change in the activation level and duration of certain muscle, aligning with the changing demands of joint dynamics (Saito et al., 2018).
During the weight acceptance phase of uphill walking, an increase in inclination was associated with higher CoA and FWHM values (Table 2), suggesting later and more prolonged muscle activation. This shift in muscle activation towards propulsion and prolonged engagement for uphill stability may stem from the increased force and stability requirements of lower limb muscles to counteract gravity and facilitate ascent (Alexander and Schwameder, 2016). At the same time, the increased HTD heightens the activation of the vastus medialis during uphill walking, while the activation of the semitendinosus is diminished (Figure 7). This finding is consistent with studies conducted on level ground walking (Simonsen et al., 2012). This result may be explained by the fact that increased activation of the vastus medialis helps to stabilize the pelvis and knee joint, as well as to absorb shock. The reduced activation of the semitendinosus may be attributable to changes in the foot strike pattern (decreased ankle plantarflexion) and the reduced degree of knee flexion caused by the incline.
During the propulsion phase, as the inclination increases, there is an augmented activation of the rectus femoris, vastus medialis, vastus lateralis, and biceps femoris (Figure 7). This finding is consistent with previous research (Franz and Kram, 2012). Uphill walking increases the demand on the quadriceps for knee stabilization and propulsion due to the added gravitational force (Zai and Grabowski, 2020). The rectus femoris and biceps femoris are particularly important for generating the required vertical propulsive forces through knee extension (Haggerty et al., 2014). Additionally, the vastus medialis and lateralis contribute to knee stability, preventing deviations and promoting efficient, safe gait (Wen et al., 2019). An increase in HTD results in a higher CoA (Table 2), suggesting that an augmented HTD may influence the mechanical state of the foot and the activation patterns of the musculature. To uphill walk effectively, the musculature of the lower limbs must work in a more coordinated fashion to generate enough propulsive force.
During the swing phase, as the inclination increases, there is an elevation in the activation level of the tibialis anterior muscle (Figure 7). A possible explanation for this might be that the ankle joint may require a greater degree of dorsiflexion during the swing phase to prepare for the subsequent foot strike (Sarvestan et al., 2021). The increase in inclination also results in a reduced CoA, accompanied by an increase in the FWHM (Table 2). Ascending inclines may require earlier and prolonged muscle activation to meet the demands of limb clearance and forward propulsion in uphill walking.
It should be acknowledged that the results of this study, only derived from young and healthy male participants, may not be generalized to other populations with varying ages, genders, or health conditions. Furthermore, the analysis of muscle synergies was limited lower limb muscles, which are recognized as primary contributors during uphill walking (Pickle et al., 2016). However, it is important to acknowledge that the muscles of the trunk, which were not included in our analysis, may also play a compensatory role during uphill walking (Li et al., 2022; Yamato et al., 2023). This highlights a potential area for future research to explore the role of muscle compensation in different populations and under various walking conditions.
Adjusting the HTD through various insoles or shoes with adjustable features is crucial for enhancing biomechanical and neuromuscular performance, especially in slope walking. This adjustment can prevent falls and improve muscle training. In practical applications, specialized footwear with adjustable HTD is tailored for different terrains, such as shoes with higher drops that offer additional cushioning and support during uphill movements, helping to prevent overuse injuries and enhance stability. This research area promises significant potential for future studies, focusing on developing footwear that can adapt to diverse environmental conditions to maximize safety and physical performance.
5 CONCLUSION
This study demonstrates that an increase in the inclination leads to changes in biomechanical and neuromuscular responses during uphill walking and the adjustment of HTD can modulate these responses during uphill walking. However, the present study suggests that an increased HTD may lead to elevated loads on the knee joint and these adverse effects need more attention.
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Low back pain (LBP) is one of the most prevalent and disabling disease worldwide. However, the specific biomechanical changes due to LBP are still controversial. The purpose of this study was to estimate the lumbar and lower limb kinematics, lumbar moments and loads, muscle forces and activation during walking in healthy adults and LBP. A total of 18 healthy controls and 19 patients with chronic LBP were tested for walking at a comfortable speed. The kinematic and dynamic data of the subjects were collected by 3D motion capture system and force plates respectively, and then the motion simulation was performed by OpenSim. The OpenSim musculoskeletal model was used to calculate lumbar, hip, knee and ankle joint angle variations, lumbar moments and loads, muscle forces and activation of eight major lumbar muscles. In our results, significant lower lumbar axial rotation angle, lumbar flexion/extension and axial rotation moments, as well as the muscle forces of the four muscles and muscle activation of two muscles were found in patients with LBP than those of the healthy controls (p < 0.05). This study may help providing theoretical support for the evaluation and rehabilitation treatment intervention of patients with LBP.
Keywords: low back pain, the multibody model, lumbar spine load, OpenSim, walking

1 INTRODUCTION
Low back pain (LBP) is the pain, muscle tension, or stiffness located below the costal margin and above the subgluteal fold, with or without leg pain, when LBP exceeded 3 months (Fourney et al., 2011), it is defined as chronic LBP. The mean prevalence of LBP in adults is approximately 12%, and the lifetime prevalence is approximately 40% (Hoy et al., 2012). LBP is the most prevalent and disabling disease considered for rehabilitation worldwide (Cieza et al., 2021). Despite its widespread occurrence, the underlying mechanisms of LBP are not well understood, largely due to insufficient assessment of biomechanical factors (O'Sullivan, 2005).
Chronic LBP is often aggravated by changes in spinal biomechanics. In lumbar biomechanical analysis, compression, shear, and twisting forces on the intervertebral discs are key indicators of discogenic LBP caused by degenerative changes in the lumbar spine (Marras et al., 2001; Adams, 2004). Excessive loads can cause annular fissures, disc herniation, and other degenerative changes, resulting in chronic LBP (Creighton et al., 2023). This emphasizes the importance of accurately assessing the differences in lumbar load between individuals with and without LBP. Repeated exposure to high-intensity forces may damage spinal integrity, especially during everyday activities such as walking (Gombatto et al., 2015; Christe et al., 2016). In the current field of biomechanical research on LBP, the focus is primarily limited to specific lumbar segments. However, this method overlooks the impact of movements in other parts of the body on the lumbar spine, lacking a holistic analysis of motion. We need to understand more comprehensively the effects of body movements on the lumbar spine and validate these theories through experiments. This will help us gain a deeper understanding of the biomechanical mechanisms of LBP, providing more effective strategies for the prevention and treatment of LBP (Owen et al., 2020; Pocovi et al., 2022).
To elucidate the biomechanical intricacies of LBP, traditional methodologies have employed cadaveric experiments (Nachemson, 1981)or the implantation of pressure sensors in vivo (Sato et al., 1999)to quantify lumbar load during routine activities. However, these approaches present limitations: cadaver studies fail to mimic the dynamic physiological responses inherent in living tissues (Von Forell et al., 2015), and implanted sensors, while invasive, fall short in replicating the natural load conditions encountered by an active human body, rendering them unsuitable for monitoring the daily activities of individuals with or without LBP (Ferrara et al., 2005). Therefore, biomechanical models of different complexities have become key tools in this research field, providing a non-invasive approach for comprehensive analysis of the mechanical basis of the human neuromuscular system. The main methods include finite element models and multibody models (Roupa et al., 2022).
The finite element method (FEM) is a computational technique that discretizes a continuous model into a finite number of non-overlapping elements in space and time (Castro et al., 2015). Kim et al. (Kim et al., 1991)initially utilized a nonlinear three-dimensional FEM to investigate the vertical compressive forces exerted on the lumbar intervertebral disc. Later, Simon (Simon et al., 1985), Lee (Lee et al., 2000), and Williams (Williams JR et al., 2004) further refined the research related to the lumbar FEM. However, the FEM often simplify the geometric shape and constitutive relationship of the lumbar spine. Moreover, these models are unable to simulate the kinematics of the lumbar spine and muscle activation during holistic movement. Thus FEM is not suitable for this study.
The multibody model is a biomechanical motion analysis model that decomposes the system into a set of rigid bodies connected by joints, which can be used to study the impact of overall motion analysis on a specific joint (Ma et al., 2023). Cappozzo (Cappozzo, 1984), Callaghan et al. (Callaghan et al., 1999)and Kuai et al. (2017a) used different lumbar multibody models to simulate and predict the lumbar spine load under different movements. Although, the construction of the multibody model does not take into account the inter-individual variability, it currently stands as the only effective method to simultaneously obtain in vivo kinematics, lumbar loading, muscle force and activation. Previous multibody lumbar studies only focused on limited lumbar segments, such as the lumbar L3-L4 and L4-L5 segments, ignoring the impact of overall body mass and overall movement on lumbar biomechanics. These limitations hinder comprehensive investigations into potential biomechanical differences and underlying mechanisms, potentially leading to unsupported conclusions.
OpenSim is an open source software developed by Stanford University for the study and design of biomechanical and neuro-controlled movements (Delp et al., 2007). The software visualizes complex biomechanical analysis and simulation, providing a powerful tool for understanding human motion mechanisms and designing solutions. The researchers used recent experimental studies to improve previously published models and continue to add new models to expand OpenSim’s possible research applications (Seth et al., 2018). Models of muscle mechanics have typically been validated against experimental data obtained from animals (Millard et al., 2013). Other simulation results were verified by each model developer. The latest advancements in the full-body lumbar spine (FBLS) model (Raabe and Chaudhari, 2016)provide a comprehensive musculoskeletal modeling approach. It considers the impacts and interactions of the whole body, enabling precise load calculations for each lumbar segment. This model was validated against measured EMG, joint angle and moments (Novacheck, 1998; Brown et al., 2014)and previous simulation results (Hamner et al., 2010). But the FBLS model also has some limitations, the model contains 324 musculotendon actuators, the computational cost to create simulations with this model is higher than simpler models. In addition, the model can not be able to perform computed muscle control (CMC) or forward dynamics. It can only simulate muscle force and activation through static optimization (Lin et al., 2011), which may affect the accuracy of the results to some extent. This model has been applied to biomechanical studies of running (Raabe and Chaudhari, 2018) and crawling (Li et al., 2020). However, there is still no consensus on whether there are significant differences in kinematics and dynamics between LBP patients and healthy individuals, and there is a lack of personalized data for LBP patients. The purpose of this study was to estimate the lumbar and lower limb kinematics, lumbar moments and loads, and muscle activation during walking in healthy adults and LBP.
2 METHODS
2.1 Participants
This study recruited a total of 37 participants from the community and online, including 18 healthy individuals and 19 participants with chronic LBP. Only one subject with LBP had left side pain, while the others had right side pain. Inclusion criteria followed the non-specific LBP diagnosis guidelines of the American College of Physicians and the American Pain Society (Chou et al., 2007). The chronic LBP patients who met the following criteria were included in the study: (1) clinical diagnosis of non-specific LBP or discomfort for >3 months, with a Visual Analog Scale (VAS) (Chiarotto et al., 2019)score was greater than 30mm; (2) age 18–75 years. A healthy control group meeting the following criteria was included in the study: (1) no incidence of low back pain in 2 years; (2) age 18–75 years. The key exclusion criteria were as follows: (1) pregnancy; (2) a history of waist trauma or waist/abdominal surgery in the past 2 years; (3) a history of nerve roots symptoms, spine fracture, infection, lumbar malignancy, or LBP caused by any other disease; and (4) patients suffering from hypertension, heart disease, Parkinson’s disease, and other conditions that were not suitable for intense exercise; (5) inability to walk independently or an abnormal gait. Patients with LBP and healthy controls were matched for age and gender. The mean age of the LBP group was 23.95 years, and the average age of the healthy group was 23.44 years (Table 1). All participants had no recent history of back injury or surgery within the last 2 years. The individuals with a clinical diagnosis of nonspecific chronic LBP (Chou et al., 2007)that persists for more than 3 months, and their Visual Analog Scale (VAS) (Chiarotto et al., 2019)score was greater than 30 mm. The Ethics Committee of Zhujiang Hospital of Southern Medical University approved this study (2023-KY-017). Informed consent was obtained from all participants prior to the experiment.
TABLE 1 | Baseline characteristics (X (sd)).
[image: A table compares characteristics between a low back pain group and a healthy control group. Key metrics include age, gender distribution, BMI, and muscle thickness measurements. Significant differences are noted in the "Timed up-and-go" with p < 0.001, "contracted thickness of LMF" with p = 0.022, "contracted thickness of RMF" with p = 0.033, "contraction rate of LTrA" with p = 0.002, and "contraction rate of RTrA" with p = 0.022. Measurements are shown in mean (SD) format.]2.2 Experimental procedures
Before starting the test, the subjects were instructed to wear tight-fitting clothing and were informed about how to perform the walking tests within the designated area. When the test started, participants were first asked to stand in the test area in an anatomical position (standing upright, facing forward, eyes looking straight ahead, feet together, toes pointing forward, both upper limbs hanging at the sides of the torso with palms facing forward) (Hansen and Netter, 2009) to collect the necessary static data for the test. Subjects were then instructed to walk through the force plates at their own comfortable pace. After a single pass through the force plates, they were required to turn and walk back to the starting point at a comfortable pace, repeating this process back-and-forth five times. A successful trail was defined as having both feet on two force plates during a gait cycle.
2.3 Data collection
The kinematic data were recorded with a 6-camera infrared 3D motion capture system (BTS SMART-DX EVO2) with an acquisition frequency of 100 Hz. A total of 49 Reflective Markers (14.0 mm diameter) were affixed to the subjects’ whole body (Figures 1A,B) (Jamison et al., 2013). The results of the static and dynamic tests showed an error lower than 0.1 mm within a volume of 4 m × 3 m × 3 m (L × W × H), similar to other commercial systems usually used in biomechanics. Ground reaction forces were collected using 2 force plates (BTS P6000) at 1,000 Hz. Surface electromyography (EMG) data of the left and right erector spinae muscles (BTS FREEEMG 300) at 1,000 Hz were placed according to SENIAM guidelines (Figure 1D) (Stegeman and Hermens, 2007). The data of 3D kinematic and GRF data, as well as Surface EMG data, were updated and adjusted in the BTS system to ensure temporal uniformity of data acquisition. The muscle thickness of Musculi transversus abdominis (TrA) and Multifidus muscle (MF) was measured using a Terason uSmart 3,300 ultrasound (Terason, Burlington, United States).
[image: Diagram with four panels. Panel A shows a man standing facing forward with arms slightly outstretched. Panel B depicts him from the back. Panel C presents an anatomical illustration with muscles highlighted in red. Panel D zooms in on small sensors or electrodes attached to the lower back.]FIGURE 1 | Anterior (A) and posterior (B) views of the lower body Point-Cluster marker set with the upper body Plug-In Gait marker set; (C) OpenSim musculoskeletal model; (D) The EMG electrode shows the iliocostalis muscle.
The data collection process commences with the initial step of gathering static standing data. Following this, participants were instructed to walk at their comfortable pace during the gait tests, with marker trajectory data, ground reaction forces data, and surface EMG data being collected simultaneously. Each participant underwent at least five trials to ensure complete gait data collection. A qualified dataset required separate recordings of left and right feet on two different force plates. If data from both feet were recorded on the same force plate, an additional trial was performed. Meanwhile, all collected data were processed by normalization. For TrA thickness, patients were instructed to lie in the supine position with hips flexed to approximately 135° and knees flexed to 90°. They were then asked to take a deep breath, exhale fully, and keep their abdomen relaxed for 5 s. A linear probe was used to measure the thickness above the iliac crest at the axillary front. Muscle thickness was recorded as the distance between the hyperechoic myofascial. For MF thickness, patients were instructed to lie in the prone position with a thin pillow under their abdomen to straighten the lumbar spine. A curve probe was used to measure the thickness at the fourth lumbar spine. Muscle thickness was recorded as the distance from the tip of the articular process to the lower end of subcutaneous fat. The measurement was performed on both left and right sides three times, and the average was used for data analysis (Skeie et al., 2015).
2.4 Musculoskeletal modeling and simulation
From the collected data, a complete gait data was selected and input into OpenSim software (version 4.1) for kinematicand dynamic calculations using the Full Body Lumbar Spine (FBLS) model created by Raabe and Chaudhari (Raabe and Chaudhari, 2016). The steps are as follows:
The process began by scaling the original model to match the participant’s height, weight, and body proportions. This was based on the static data collected from the subject, ensuring that the segment ratios of the body align with those of the corresponding subject in the original experiment. Following this, the Inverse Kinematics tool in OpenSim was employed to input the experimentally acquired kinematic data into the model, which then drove the model to obtain the kinematics data during gait. Subsequently, the Residual Reduction Algorithm was applied to optimize the model’s motion data and body segment mass properties. This resulted in an adjusted model and a new set of Inverse Kinematics and Inverse Dynamics outcomes. The next step was to proceed with Static Optimization, which involved allocating net joint moments obtained from Inverse Dynamics to individual muscle fibers frame by frame. This yielded muscle forces and activation levels throughout the motion. Finally, the Joint Reaction Analysis tool was used to calculate the internal loads experienced on the lumbar joints during gait. This allowed us to obtain the compression and shear forces and twisting forces on the L3-S1 lumbar intervertebral disc.
2.5 Statistical analysis
Statistical analyses were performed using IBM SPSS v25. The Chi-square test was used for the categorical variable (gender). For continuous variables, the Shapiro–Wilk test was used to test whether the data were normally distributed, and the Levene test was used to test whether the two sets of data were homogeneous. The independent-samples t-test was used for the outcomes (age, years of education, BMI, gait cycle, muscle thickness, axial rotation peak moment, lumbar intervertebral peak load) with a normal distribution and consistent variance in both groups, and the independent-samples Mann-Whitney U test was used for the outcomes (flexion-extension and lateral bending peak moment, muscle peak force) with non-normal distribution or irregular variance. BW normalization was performed on the simulated moment and lumbar Intervertebral load for each subject. All outcomes of continuous variables were described as mean ± standard deviation, and all statistical inferences were performed using two-sided tests, α = 0.05.
3 RESULTS
3.1 Subjects
There were no significant differences in gender, age, BMI, years of education, or gait cycle between the two groups (Table 1, p > 0.05). The TUG test duration, contracted thickness of MF, and contraction rate of TrA significantly differ between the group with LBP and the healthy group (Table 1, p < 0.05).
3.2 Kinematics
The average gait cycle in the LBP group (1.35 ± 0.10s) was slightly longer than that in the healthy group (1.34 ± 0.13s), but the difference was not significant (Table 1, p > 0.05).
Figure 2 (A, B and C) shows the of lumbar flexion, extension, lateral flexion, and rotation angles during one walking cycle in the two groups. As shown in Figure 2, the changes in lumbar flexion, lateral flexion, and rotation angles during walking in the two groups are consistent. In the LBP group, the lumbar flexion angle was slightly less than that in the healthy group (Figure 2A); the lateral bending angle was slightly greater than that in the healthy group (Figure 2B) and the axial rotation angle was significantly greater than those in the healthy group (Figure 2C).
[image: A biomechanical illustration shows six graphs depicting various angles during a gait cycle. The central image features a human figure with superimposed red and blue lines connecting to each graph. Graphs (A) through (F) represent flex extension, lateral bending, axial rotation, hip flexion angle, knee angle, and ankle angle, respectively. Angles are plotted against the percentage of the gait cycle. Two lines in each graph represent healthy controls (HC) and individuals with low back pain (LBP), with a legend on the top right. The graphs show variations in movement patterns between the two groups.]FIGURE 2 | Motions of the joints of the Lumbar and lower limb joints during one gait Cycle. (A) The angle of lumbar flexion extension during a gait cycle. (B) The angle of lumbar lateral bending during a gait cycle. (C) The angle of lumbar axial rotation during a gait cycle. (D) The angle of hip motion during a gait cycle. (E)The angle of knee motion during a gait cycle. (F) The angle of ankle motion during a gait cycle. Lumbar extension is positive, flexion is negative, lateral flexion to the right is positive, lateral flexion to the left is negative, left rotation is positive, and right rotation is negative. The hip joint flexion is positive, extension is negative; knee joint flexion is negative, extension is positive; ankle joint dorsiflexion is positive, plantar flexion is negative. The shaded area represents ±1 standard deviation. *Represents significant differences between HC and LBP groups (p < 0.05).
The changes in hip, knee, and ankle joint angles during walking for the LBP group and the healthy group are shown in Figures 2D–F. The flexion and extension angle changes of the hip, knee, and ankle joints during walking in the LBP group and healthy group are consistent. Throughout the walking process, the flexion angles of the hip and knee joints in the LBP group were greater than those in the healthy group, and the extension angle of the hip joint in the LBP group was less than that in the healthy group; moreover, the peak flexion angles of the hip and knee joints in the LBP group were greater than those in the healthy group, and the peak extension angle of the hip joint in the LBP group was less than that in the healthy group (Figures 2D–F). The peak dorsiflexion angle and plantar flexion angle of the ankle joint in the LBP group were greater than those in the healthy group (Figure 2F; Table 2).
TABLE 2 | Maximum joint angle (X (sd)).
[image: Table comparing joint angles between low back pain and healthy control groups. Measurements include lumbar flexion, lateral bending, axial rotation, hip flexion, knee, and ankle joint angles. A significant difference (P = 0.033) is noted in the lumbar axial rotation angle. Sample sizes are 19 and 18 for the low back pain and healthy control groups, respectively. Bold values indicate P ≤ 0.05.]3.3 Dynamics
Figure 3 shows the simulation curves of lumbar flexion extension (Figure 3A), lateral flexion (Figure 3B), and rotation (Figure 3C) moment changes during one gait cycle in the two groups. Overall, the changes in lumbar moment during walking in patients with LBP and healthy individuals are relatively consistent. In a standardized gait cycle, the total lumbar extension, right lateral flexion, and right and left rotation moment in the LBP group are less than those in the healthy group. The extension and axial rotation peak moment in the LBP group were significantly lower than those in the healthy group (Table 3, p < 0.05), but there was no statistically significant difference in lateral bending peak moment (Table 3, p > 0.05).
[image: Three graphs depict gait cycle moments: A shows flexion-extension, B shows lateral bending, and C shows axial rotation, each with two lines for HC and LBP. A bar chart compares these moments for HC and LBP, with flexion-extension highest, showing significant differences indicated by asterisks.]FIGURE 3 | (A) The moment of lumbar flexion extension during a gait cycle. (B) The moment of lumbar lateral bending during a gait cycle. (C) The moment of lumbar axial rotation during a gait cycle. The shaded area represents ±1 standard deviation. The bar chart is a comparison of the moment of the three degrees of freedom of the lumbar spine. *Represents significant differences between HC and LBP groups (p < 0.05).
TABLE 3 | Maximum joint moment (X (sd)).
[image: Table comparing biomechanics between a low back pain group (19 subjects) and a healthy control group (18 subjects). Three characteristics are measured: lumbar flexion and extension moment, lumbar lateral bending moment, and lumbar axial rotation moment, all in newton-meters per kilogram. Mean values with standard deviations are provided for each. Notably, the lumbar flexion and extension moment differs significantly (P = 0.012), and the lumbar axial rotation moment also shows significance (P = 0.001). Bold values indicate P < 0.05.]3.4 Lumbar intervertebral load
Figure 4 shows the simulation curves of changes in L3/L4, L4/L5, L5/S1 intervertebral compression force, sagittal shear force, and twisting force during one gait cycle in the two groups. Overall, the intervertebral loads of L3/L4 (Figures 4A–C), L4/L5 (Figures 4D–F), L5/S1 (Figures 4H–J) in patients with LBP are greater than those in healthy individuals. The peak compression force, sagittal shear force, and twisting force of L3/L4, L4/L5, L5/S1 intervertebral discs in patients with LBP are greater than those in healthy individuals, but there is no significant difference (Figure 4K; Table 4, p > 0.05).
[image: Illustration of a human spine with graphs showing forces at different vertebral segments (L3-L4, L4-L5, L5-S1). Each graph compares shear, compressive, and twisting forces between healthy controls (HC) and individuals with low back pain (LBP). A bar chart below displays mean force values for each segment, with blue bars for HC and red bars for LBP, indicating higher forces in the LBP group. Error bars represent variability in measurements.]FIGURE 4 | (A–C) Corresponding to the shear force, compressive force and twisting force of L3-4 respectively. (D–F) Corresponding to the shear force, compressive force and twisting force of L4-5 respectively. (G–I) Corresponding to the shear force, compressive force and twisting force of L5-S1 respectively. (J) The shaded area represents ±1 standard deviation. The bar chart shows the shear force, compressive force and twisting force of each section of L3-S1.
TABLE 4 | Maximum lumbar intervertebral force (X (sd)).
[image: Table comparing biomechanical forces in the lower back between a low back pain group and a healthy control group. It includes measurements of L3-4, L4-5, and L5-S1 shear, compressive, and twisting forces expressed as multiples of body weight, alongside corresponding statistical p-values.]3.5 Muscle force and activition
The trend of muscle force changes in the LBP group and the healthy group during the gait cycle was similar. The muscle force of the right and left multifidus muscles in the healthy group was higher than that in the LBP group throughout the gait cycle (Figures 5G,H). The muscle force of the right iliocostalis and internal oblique muscles in the healthy group was higher than that in the LBP group throughout the gait cycle (Figures 5C,F), but the muscle force of the left iliocostalis and internal oblique muscles in the first peak was lower than that in the LBP group, and the second peak was higher than that in the LBP group (Figures 5D,H). The muscle force of the right external oblique muscle in the healthy group was higher than that in the LBP group throughout the gait cycle (Figure 5A), but the muscle force of the left external oblique muscle in the first peak was higher than that in the LBP group, and the second peak was lower than that in the LBP group (Figure 5B). There were significant differences in peak muscle force between the two groups for the right multifidus, iliocostalis, internal oblique, and external oblique muscles (p < 0.05), but there were no significant differences in peak muscle force for the left multifidus, iliocostalis, internal oblique, and external oblique muscles (Table 5, p > 0.05). The simulated muscle activation patterns (Figure 6) were almost consistent with the trend of the above muscle force results, with significantly lower activation of the right external abdominal oblique muscle and right iliocostalis muscle (Table 6, p < 0.05) in patients with LBP compared to the healthy control group. In this study, the simulation data of muscle activation in OpenSim was compared with surface EMG signals, and the two showed good consistency (Figures 5I,J).
[image: Illustration showing the activation patterns of various abdominal and back muscles during a gait cycle. Eight graphs surround a central anatomical diagram, each labeled A to H. Each graph displays muscle data for a specific muscle, including the right and left external oblique abdominal muscles, right and left internal oblique abdominal muscles, left and right iliocostalis muscles, and left and right multifidus muscles. Gait cycle percentage is on the x-axis, while muscle activity is on the y-axis. Two muscle conditions, IPC and LRBF, are represented by red and blue lines, respectively.]FIGURE 5 | (A–H) Represents the force of different muscles during gait. *Represents significant differences between HC and LBP groups (p < 0.05).
TABLE 5 | Maximum muscle force (X (sd)).
[image: Table comparing muscle characteristics between low back pain and healthy control groups. It lists muscle types, their values for each group, and the p-values. Significant p-values under 0.05 are bolded.][image: Illustration showing a series of graphs alongside anatomical diagrams of muscles. The graphs display muscle activities during a gait cycle, highlighting differences between the left and right sides. Each graph is labeled with specific muscles: external oblique, internal oblique, iliocostalis, multifidus, and iliocostalis muscles. The anatomical diagrams identify muscle locations. The legend distinguishes lines representing different data sets, labeled "HC" and "LBP."]FIGURE 6 | (A–H) Represents the activation of different muscles during gait. (I–J) Represents a comparison between different muscle activation and EMG data. *Represents significant differences between HC and LBP groups (p < 0.05).
TABLE 6 | Maximum muscle activation (X (sd)).
[image: Comparison table showing muscle characteristics between low back pain and healthy control groups. Values are mean (standard deviation). Significant P-values (less than 0.05) are bolded. Key findings include right external oblique abdominal muscle (P = 0.004) and right iliocostalis (P = 0.041).]4 DISCUSSION
This study aims to compare the differences in kinematics, dynamics, lumbar load and muscle force between healthy individuals and patients with chronic LBP using biomechanical methods. The results show significant differences in dynamics and muscle force.
4.1 Kinematics
During gait simulation, we compared the lumbar and lower limb joint angle between subjects with LBP and healthy controls. The results indicate that the joint angle in the sagittal of the lumbar spine in subjects with LBP is less than that of healthy subjects, which is consistent with a previous study (Hernandez et al., 2017). Several potential explanations include subjects with LBP limiting their movement to avoid discomfort, stiffness in soft tissues or joints restricting lumbar joint angle, or subjects adopting habitual movement patterns, either the resulting from or contributing to LBP. In the coronal plane, however, lumbar joint angle was greater than that of healthy subjects. This might be explained by lateral instability of the lumbar spine, which also aligns with a previous study suggesting that increased coronal joint angle is related to symptoms in patients with more pronounced degenerative L4-5 spondylolisthesis (Wang et al., 2022). The presence of lateral instability of the lumbar spine during posture changes could lead to more pronounced effects on reported outcomes for patients. Additionally, hip range of motion was different from that of healthy subjects, consistent with the research previous studies (Shum et al., 2005a; Shum et al., 2007; Lee et al., 2011). This may relate to symptomatic subjects employing compensatory movements and altered load-sharing strategies (Ebrahimi et al., 2017; Zawadka et al., 2018)or reduced coordination capabilities of the lumbar spine relative to the hip joint (Shum et al., 2005a). In lower limb joints, the knee joint angle changes were similar between the patient group and healthy subjects, aligning with prior research (Muller et al., 2015; Kuai et al., 2017b). However, the plantar flexion and dorsal extension during mid-stance of the patients with LBP was greater compared to the control group, which might indicate that the altered ankle movement pattern in the sagittal plane might be a compensatory strategy to avoid downward displacement of the center of gravity and reduce mechanical load on the lumbar spine (Zahraee et al., 2014). Furthermore, it is essential to recognize the significant individual differences in human joint motion. This inherent variability may serve as a potential confounding factor in our study.
4.2 Dynamics
The lumbar moment of patients with LBP is significantly lower than that of healthy controls in sagittal and axial planes (p < 0.05). The change of moment in sagittal plane of lumbar vertebra is consistent with the previous research results of Shum et al. (2005b). Shum’s research results suggest that the activation of the lumbar muscles in patients with LBP, especially the lumbar extensor muscles, is reduced, and the muscle strength is decreased. The moment in sagittal plane of the lumbar is decreased, which may be a compensatory protective mechanism to protect the painful tissues in the waist and back and enhance the stability of the trunk during activity. The decrease of lumbar moment may be related to the “pain-spasm-pain” mode (van Dieen et al., 2003). The occurrence of LBP can cause the co-contraction of the prime mover and antagonist muscles in the waist, and the contraction of the antagonist muscles can lead to the decrease of muscle moment in that area. Although there is no statistically significant difference in the change of moment in coronal plane, we believe that the smaller angle formed by the waist muscle and the coronal plane of the spine may lead to the elongation of the resistance arm (Kalimo et al., 1989; Park et al., 2018), which may be the reason why the change of lumbar sagittal moment is not obvious.
4.3 Lumbar intervertebral load
Our results of lumbar compression and shear forces exhibited a typical bimodal pattern, which was closely related to the single-leg standing phase of the left and right feet during the gait cycle (Sung and Danial, 2017). Meanwhile, peak unilateral twisting forces were observed during the single-leg standing phase of each foot, respectively (Paul, 1989). Our study revealed that the peak compressive forces at the L4-L5 segment of the lumbar spine during walking were 3.55 ± 0.57 times and 3.54 ± 0.48 times the body weight for the subjects with LBP and the healthy control group, respectively. This result is generally consistent with the maximum compressive force of 3.45 times the body weight calculated by Callaghan (Callaghan et al., 1999) using a muscle-driven model. The results of lumbar compressive forces obtained by Banks et al. (Banks et al., 2022) using OpenSim for gait simulation were also consistent in terms of trends and magnitudes. There were only slight differences but no significant differences in shear force, compressive force, and twisting force between each lumbar segment in the LBP group and the healthy control group. Nevertheless, we still observed that the shear force, compressive force, and twisting force in the L3-4, L4-5, and L5-S1 segments were slightly greater in patients with LBP compared to the healthy control group. Excessive mechanical loads in daily life may cause structural damage to the intervertebral discs and lead to the occurrence of LBP (Creighton et al., 2023). Similar results were also found in a study by Beaucage-Gauvreau et al. (Beaucage-Gauvreau et al., 2019) comparing patients with LBP and healthy controls under low-load bending conditions. The load on the spine is mainly caused by (1) gravitational forces due to the mass of body segments, (2) external forces and moments induced by a physical activity, and (3) muscle tension (Patwardhan et al., 2008). These loads are distributed among the osseoligamentous tissues and muscles of the spine. Specifically, tensile forces in the paraspinal muscles counterbalance the moments generated by gravitational and external loads, maintaining spinal stability. In this study, there was no statistical difference in body weight between the two groups, and muscle tension was the most likely cause of increased lumbar loads. However, some related studies suggest that significant differences in lumbar loads only occur when muscle contractility is further reduced (Qin et al., 2022). Therefore, we believe that the reason for the absence of significant differences in lumbar loads may be that the subjects with LBP recruited in this study were generally young and their muscle condition could still compensate to temporarily alleviate the excessive mechanical loads on the lumbar spine, compensating for creep and fatigue of the lumbar spine (Shin et al., 2009).
4.4 Muscle force and activation
Our results of the peak force of the right multifidus, iliocostalis, and internal and external abdominal oblique muscles in patients suffering with LBP were significantly lower than those of the healthy individuals during walking. This finding is consistent with previous studies which confirmed that a decrease in the activation of the multifidus and iliocostalis muscle in LBP (Danneels et al., 2002; Smith and Kulig, 2016). Our study further highlights the reduction of the right internal and external abdominal oblique muscles force in LBP patients during walking, which echoes the findings in the previous study (Hanada et al., 2011). The pain adaptation theory cannot be ruled out as a possible explanation, which suggests that musculoskeletal pain can lead to a decrease in muscle activity when the muscle as a prime mover (Vogt et al., 2003). Another possible explanation is that pain could lead to muscle changes and compensatory actions from other muscles, or incorrect recruitment patterns in daily activities could result in selective muscle atrophy, inducing pain (Li et al., 2021). Interestingly, in this study, the majority of patients experienced pain on the right side, leading to more pronounced differences in peak muscle force on the right side during walking, while no statistical differences were observed on the left side. This suggests that the adoption of compensatory patterns may have played a significant role. We also observed that although there was a significant difference in the force of the right multifidus muscle between the two groups, there was no significant difference in muscle activation. This may be influenced by muscle thickness, as the healthy control group exhibited significantly thicker multifidus muscle in a contracted state compared to the LBP group. Thicker multifidus muscles can generate more muscle force even under similar activation conditions, contributing to lumbar stability.
4.5 Limitations
The study is the first to investigate the loading of the lumbar spine during walking under holistic exercise using experimental data from patients with chronic LBP and healthy controls based on the FBLS model. However, there are some limitations to this study. First, in the simulation of the model, although OpenSim provides many pre-defined mannequins, these models are still simplified approximations and may differ from real human motion situations, for the FBLS model, it is important to note that spinal curvature was not subject-specific, which may affect the calculation of lumbar load. Second, as part of the study exploring the efficacy of remote, smartphone-based interventions for managing LBP which may require complex use of mobile phones and the acceptability of tele-rehabilitation, the recruited subjects were mainly young adults (21–27 years old). Yet, the lumbar structural degeneration is not severe in these young subjects with LBP, which can be compensated for by excessive muscle contraction. Our future work should be to expand the age range of subjects. Finally, in the design of the experiment, this experiment did not conduct subcompositional data on subjects’ LBP location and dominant side. Third, this study only investigated the walking at a comfortable speed, and the lumbar spine load was not measured during fast or slow walking.
5 CONCLUSION
Our study has identified statistical differences in dynamics, muscle force and activation between patients with LBP and healthy controls, indicating that the lumbar moment, muscle force and activation on the affected side are significantly lower in LBP patients. While no statistical difference was found in the loads of the lumbar intervertebral disc, possibly due to the low pain scores in our sample. Future research should consider including a more diverse sample population, with varying age groups and pain levels, to determine the influence of these factors more conclusively. Additionally, exploring the potential effects of limited movement to avoid discomfort, tissue stiffness, and habitual movement patterns on lumbar joint angle and muscle force could yield insights into the mechanisms underlying LBP. The results of this study also suggest that the reduction of muscle force and activation on the painful side of the lumbar may play an important role in the occurrence of chronic LBP. In rehabilitation, more attention should be paid to the training of the lumbar muscles, such as core training, with the goal of improving the force and activation of the core muscles, which may achieve good therapeutic effects.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.
ETHICS STATEMENT
The studies involving humans were approved by the ethics committee of Zhujiang Hospital, Southern Medical University. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants legal guardians/next of kin. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.
AUTHOR CONTRIBUTIONS
ZZ: Data curation, Formal Analysis, Investigation, Methodology, Project administration, Software, Writing–original draft. JZ: Conceptualization, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing–review and editing. PL: Conceptualization, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing–review and editing. JH: Data curation, Formal Analysis, Investigation, Methodology, Software, Writing–original draft. YC: Data curation, Formal Analysis, Investigation, Methodology, Software, Writing–original draft. CX: Data curation, Formal Analysis, Methodology, Writing–review and editing. GL: Data curation, Formal Analysis, Methodology, Writing–review and editing. QZ: Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing–review and editing. MZ: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–review and editing. GZ: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported in part by the National Key Research and Development Program of China 2018YFA0703000, the National Natural Science Foundation of China 22072047, 82072528 and 82002380, 52105305 and the Natural Science Foundation of Guangdong Province 2022A1515012460, 2020A1515011292, Science and Technology Program of Guangzhou No. 2023A04J2449 and 2023A04J0444, and the Foundation of Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument 2020B1212060077.
ACKNOWLEDGMENTS
For the completion of this work, we thank all the subjects for their cooperation and participation, the hospitals and departments for their strong support, and all the authors for their contributions to this article.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES
	 Adams, M. A. (2004). Biomechanics of back pain. Acupunct. Med. 22 (4), 178–188. doi:10.1136/aim.22.4.178
	 Banks, J. J., Umberger, B. R., and Caldwell, G. E. (2022). EMG optimization in OpenSim: a model for estimating lower back kinetics in gait. Med. Eng. Phys. 103, 103790. doi:10.1016/j.medengphy.2022.103790
	 Beaucage-Gauvreau, E., Robertson, W., Brandon, S., Fraser, R., Freeman, B., Graham, R. B., et al. (2019). Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks. Comput. Methods Biomech. Biomed. Engin 22 (5), 451–464. doi:10.1080/10255842.2018.1564819
	 Brown, T. N., O’Donovan, M., Hasselquist, L., Corner, B. D., and Schiffman, J. M. (2014). Body borne loads impact walk-to-run and running biomechanics. Gait Posture 40 (1), 237–242. doi:10.1016/j.gaitpost.2014.04.001
	 Callaghan, J. P., Patla, A. E., and Mcgill, S. M. (1999). Low back three-dimensional joint forces, kinematics, and kinetics during walking. Clin. Biomech. (Bristol, Avon) 14 (3), 203–216. doi:10.1016/s0268-0033(98)00069-2
	 Cappozzo, A. (1984). Compressive loads in the lumbar vertebral column during normal level walking. J. Orthop. Res. 1 (3), 292–301. doi:10.1002/jor.1100010309
	 Castro, A. P., Completo, A., Simoes, J. A., and Flores, P. (2015). Biomechanical behaviour of cancellous bone on patellofemoral arthroplasty with Journey prosthesis: a finite element study. Comput. Methods Biomech. Biomed. Engin 18 (10), 1090–1098. doi:10.1080/10255842.2013.870999
	 Chou, R., Qaseem, A., Snow, V., Casey, D., Cross, J. J., Shekelle, P., et al. (2007). Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann. Intern Med. 147 (7), 478–491. doi:10.7326/0003-4819-147-7-200710020-00006
	 Christe, G., Redhead, L., Legrand, T., Jolles, B. M., and Favre, J. (2016). Multi-segment analysis of spinal kinematics during sit-to-stand in patients with chronic low back pain. J. Biomech. 49 (10), 2060–2067. doi:10.1016/j.jbiomech.2016.05.015
	 Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., and Vos, T. (2021). Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019. Lancet 396 (10267), 2006–2017. doi:10.1016/S0140-6736(20)32340-0
	 Creighton, D., Fausone, D., Swanson, B., Young, W., Nolff, S., Ruble, A., et al. (2023). Myofascial and discogenic origins of lumbar pain: a critical review. J. Man. Manip. Ther. 31 (6), 435–448. doi:10.1080/10669817.2023.2237739
	 Danneels, L. A., Coorevits, P. L., Cools, A. M., Vanderstraeten, G. G., Cambier, D. C., Witvrouw, E. E., et al. (2002). Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain. Eur. Spine J. 11 (1), 13–19. doi:10.1007/s005860100314
	 Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007). OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54 (11), 1940–1950. doi:10.1109/TBME.2007.901024
	 Ebrahimi, S., Kamali, F., Razeghi, M., and Haghpanah, S. A. (2017). Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain. Hum. Mov. Sci. 52, 55–66. doi:10.1016/j.humov.2017.01.004
	 Ferrara, L., Triano, J. J., Sohn, M. J., Song, E., and Lee, D. D. (2005). A biomechanical assessment of disc pressures in the lumbosacral spine in response to external unloading forces. Spine J. 5 (5), 548–553. doi:10.1016/j.spinee.2005.03.012
	 Fourney, D. R., Andersson, G., Arnold, P. M., Dettori, J., Cahana, A., Fehlings, M. G., et al. (2011). Chronic low back pain: a heterogeneous condition with challenges for an evidence-based approach. Spine (Phila Pa 1976) 36 (21 Suppl. l), S1–S9. doi:10.1097/BRS.0b013e31822f0a0d
	 Gombatto, S. P., Brock, T., Delork, A., Jones, G., Madden, E., and Rinere, C. (2015). Lumbar spine kinematics during walking in people with and people without low back pain. Gait Posture 42 (4), 539–544. doi:10.1016/j.gaitpost.2015.08.010
	 Hamner, S. R., Seth, A., and Delp, S. L. (2010). Muscle contributions to propulsion and support during running. J. Biomech. 43 (14), 2709–2716. doi:10.1016/j.jbiomech.2010.06.025
	 Hanada, E. Y., Johnson, M., and Hubley-Kozey, C. (2011). A comparison of trunk muscle activation amplitudes during gait in older adults with and without chronic low back pain. PM R. 3 (10), 920–928. doi:10.1016/j.pmrj.2011.06.002
	 Hansen, J. T., and Netter, F. H. (2009) Netter’s clinical anatomy. Saunders/Elsevier. 
	 Hernandez, A., Gross, K., and Gombatto, S. (2017). Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain. Clin. Biomech. (Bristol, Avon) 47, 46–52. doi:10.1016/j.clinbiomech.2017.05.012
	 Hoy, D., Bain, C., Williams, G., March, L., Brooks, P., Blyth, F., et al. (2012). A systematic review of the global prevalence of low back pain. Arthritis Rheum. 64 (6), 2028–2037. doi:10.1002/art.34347
	 Jamison, S. T., Mcnally, M. P., Schmitt, L. C., and Chaudhari, A. M. (2013). The effects of core muscle activation on dynamic trunk position and knee abduction moments: implications for ACL injury. J. Biomech. 46 (13), 2236–2241. doi:10.1016/j.jbiomech.2013.06.021
	 Kalimo, H., Rantanen, J., Viljanen, T., and Einola, S. (1989). Lumbar muscles: structure and function. Ann. Med. 21 (5), 353–359. doi:10.3109/07853898909149220
	 Kim, Y. E., Goel, V. K., Weinstein, J. N., and Lim, T. H. (1991). Effect of disc degeneration at one level on the adjacent level in axial mode. Spine (Phila Pa 1976) 16 (3), 331–335. doi:10.1097/00007632-199103000-00013
	 Kuai, S., Liao, Z., Zhou, W., Guan, X., Ji, R., Zhang, R., et al. (2017a). The effect of lumbar disc herniation on musculoskeletal loadings in the spinal region during level walking and stair climbing. Med. Sci. Monit. 23, 3869–3877. doi:10.12659/msm.903349
	 Kuai, S., Zhou, W., Liao, Z., Ji, R., Guo, D., Zhang, R., et al. (2017b). Influences of lumbar disc herniation on the kinematics in multi-segmental spine, pelvis, and lower extremities during five activities of daily living. BMC Musculoskelet. Disord. 18 (1), 216. doi:10.1186/s12891-017-1572-7
	 Lee, C. K., Kim, Y. E., Lee, C. S., Hong, Y. M., Jung, J. M., and Goel, V. K. (2000). Impact response of the intervertebral disc in a finite-element model. Spine (Phila Pa 1976) 25 (19), 2431–2439. doi:10.1097/00007632-200010010-00003
	 Lee, J. K., Desmoulin, G. T., Khan, A. H., and Park, E. J. (2011). Comparison of 3D spinal motions during stair-climbing between individuals with and without low back pain. Gait Posture 34 (2), 222–226. doi:10.1016/j.gaitpost.2011.05.002
	 Li, M., Wang, K., Niu, W., and Zhang, S. (2020). A musculoskeletal modeling of hand-foot crawling with different heights. J. Bionic Eng. 17 (3), 591–599. doi:10.1007/s42235-020-0047-y
	 Li, W., Gong, Y., Liu, J., Guo, Y., Tang, H., Qin, S., et al. (2021). Peripheral and central pathological mechanisms of chronic low back pain: a narrative review. J. Pain Res. 14, 1483–1494. doi:10.2147/JPR.S306280
	 Lin, Y., Dorn, T. W., Schache, A. G., and Pandy, M. G. (2011). Comparison of different methods for estimating muscle forces in human movement. Proc. Institution Mech. Eng. Part H J. Eng. Med. 226 (2), 103–112. doi:10.1177/0954411911429401
	 Ma, C. Z., Li, Z., and He, C. (2023). Advances in biomechanics-based motion analysis. Bioeng. (Basel) 10 (6), 677. doi:10.3390/bioengineering10060677
	 Marras, W. S., Davis, K. G., Ferguson, S. A., Lucas, B. R., and Gupta, P. (2001). Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine (Phila Pa 1976) 26 (23), 2566–2574. doi:10.1097/00007632-200112010-00009
	 Millard, M., Uchida, T., Seth, A., and Delp, S. L. (2013). Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135 (2), 021005. doi:10.1115/1.4023390
	 Muller, R., Ertelt, T., and Blickhan, R. (2015). Low back pain affects trunk as well as lower limb movements during walking and running. J. Biomech. 48 (6), 1009–1014. doi:10.1016/j.jbiomech.2015.01.042
	 Nachemson, A. L. (1981). Disc pressure measurements. Spine (Phila Pa 1976) 6 (1), 93–97. doi:10.1097/00007632-198101000-00020
	 Novacheck, T. F. (1998). The biomechanics of running. Gait Posture 7 (1), 77–95. doi:10.1016/S0966-6362(97)00038-6
	 O’Sullivan, P. (2005). Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism. Man. Ther. 10 (4), 242–255. doi:10.1016/j.math.2005.07.001
	 Owen, P. J., Miller, C. T., Mundell, N. L., Verswijveren, S., Tagliaferri, S. D., Brisby, H., et al. (2020). Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br. J. Sports Med. 54 (21), 1279–1287. doi:10.1136/bjsports-2019-100886
	 Park, M. S., Moon, S. H., Kim, T. H., Oh, J., Lee, S. J., Chang, H. G., et al. (2018). Paraspinal muscles of patients with lumbar diseases. J. Neurol. Surg. A Cent. Eur. Neurosurg. 79 (4), 323–329. doi:10.1055/s-0038-1639332
	 Patwardhan, A. G., Meade, K. P., and Gavin, T. M. (2008). Physiologic loads. AAOS Atlas Orthoses Assistive Devices 83. 
	 Paul, J. P. (1989). Gait analysis. Ann. Rheum. Dis. 48 (3), 179–181. doi:10.1136/ard.48.3.179
	 Pocovi, N. C., de Campos, T. F., Christine, L. C., Merom, D., Tiedemann, A., and Hancock, M. J. (2022). Walking, cycling, and swimming for nonspecific low back pain: a systematic review with meta-analysis. J. Orthop. Sports Phys. Ther. 52 (2), 85–99. doi:10.2519/jospt.2022.10612
	 Qin, B., Baldoni, M., Wu, B., Zhou, L., Qian, Z., and Zhu, Q. (2022). Effect of lumbar muscle atrophy on the mechanical loading change on lumbar intervertebral discs. J. Biomech. 139, 111120. doi:10.1016/j.jbiomech.2022.111120
	 Raabe, M. E., and Chaudhari, A. (2016). An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation. J. Biomech. 49 (7), 1238–1243. doi:10.1016/j.jbiomech.2016.02.046
	 Raabe, M. E., and Chaudhari, A. (2018). Biomechanical consequences of running with deep core muscle weakness. J. Biomech. 67, 98–105. doi:10.1016/j.jbiomech.2017.11.037
	 Roupa, I., Da Silva, M. R., Marques, F., Gonçalves, S. B., Flores, P., and Da Silva, M. T. (2022). On the modeling of biomechanical systems for human movement analysis: a narrative review. Archives Comput. Methods Eng. 29 (7), 4915–4958. doi:10.1007/s11831-022-09757-0
	 Sato, K., Kikuchi, S., and Yonezawa, T. (1999). In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24 (23), 2468–2474. doi:10.1097/00007632-199912010-00008
	 Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne, J. J., et al. (2018). OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14 (7), e1006223. doi:10.1371/journal.pcbi.1006223
	 Shin, G., D’Souza, C., and Liu, Y. H. (2009). Creep and fatigue development in the low back in static flexion. Spine (Phila Pa 1976) 34 (17), 1873–1878. doi:10.1097/BRS.0b013e3181aa6a55
	 Shum, G. L., Crosbie, J., and Lee, R. Y. (2005a). Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. Spine (Phila Pa 1976) 30 (17), 1998–2004. doi:10.1097/01.brs.0000176195.16128.27
	 Shum, G. L., Crosbie, J., and Lee, R. Y. (2005b). Symptomatic and asymptomatic movement coordination of the lumbar spine and hip during an everyday activity. Spine (Phila Pa 1976) 30 (23), E697–E702. doi:10.1097/01.brs.0000188255.10759.7a
	 Shum, G. L., Crosbie, J., and Lee, R. Y. (2007). Movement coordination of the lumbar spine and hip during a picking up activity in low back pain subjects. Eur. Spine J. 16 (6), 749–758. doi:10.1007/s00586-006-0122-z
	 Simon, B. R., Wu, J. S., Carlton, M. W., Kazarian, L. E., France, E. P., Evans, J. H., et al. (1985). 1985 volvo award in biomechanics: poroelastic dynamic structural models of rhesus spinal motion segments. Spine (Phila Pa 1976) 10 (6), 494–507. doi:10.1097/00007632-198507000-00003
	 Skeie, E. J., Borge, J. A., Leboeuf-Yde, C., Bolton, J., and Wedderkopp, N. (2015). Reliability of diagnostic ultrasound in measuring the multifidus muscle. Chiropr. Man. Ther. 23, 15. doi:10.1186/s12998-015-0059-6
	 Smith, J. A., and Kulig, K. (2016). Altered multifidus recruitment during walking in young asymptomatic individuals with a history of low back pain. J. Orthop. Sports Phys. Ther. 46 (5), 365–374. doi:10.2519/jospt.2016.6230
	 Stegeman, D., and Hermens, H. (2007) Standards for surface electromyography: the European Project surface EMG for non-invasive assessment of muscles. SENIAM, 108–112. 
	 Sung, P. S., and Danial, P. (2017). A kinematic symmetry index of gait patterns between older adults with and without low back pain. Spine (Phila Pa 1976) 42 (23), E1350–E1356. doi:10.1097/BRS.0000000000002161
	 van Dieen, J. H., Cholewicki, J., and Radebold, A. (2003). Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine (Phila Pa 1976) 28 (8), 834–841. doi:10.1097/01.brs.0000058939.51147.55
	 Vogt, L., Pfeifer, K., and Banzer, W. (2003). Neuromuscular control of walking with chronic low-back pain. Man. Ther. 8 (1), 21–28. doi:10.1054/math.2002.0476
	 Von Forell, G. A., Stephens, T. K., Samartzis, D., and Bowden, A. E. (2015). Low back pain: a biomechanical rationale based on "patterns" of disc degeneration. Spine (Phila Pa 1976) 40 (15), 1165–1172. doi:10.1097/BRS.0000000000000982
	 Wang, X. W., Chen, X., Fu, Y., Chen, X., Zhang, F., Cai, H. P., et al. (2022). Analysis of lumbar lateral instability on upright left and right bending radiographs in symptomatic patients with degenerative lumbar spondylolisthesis. BMC Musculoskelet. Disord. 23 (1), 59. doi:10.1186/s12891-022-05017-1
	 Williams, J. R., Natarajan, R. N., and Andersson, G. B. J. (2004). Inclusion of regional variations in the poroelastic material properties of the lumbar disc better predicts the change in disc height during long term as well as short term loadings. Trans. 50th Annu. Meet. Orthop. Res. Soc.
	 Zahraee, M. H., Karimi, M. T., Mostamand, J., and Fatoye, F. (2014). Analysis of asymmetry of the forces applied on the lower limb in subjects with nonspecific chronic low back pain. Biomed. Res. Int. 2014, 289491–289496. doi:10.1155/2014/289491
	 Zawadka, M., Skublewska-Paszkowska, M., Gawda, P., Lukasik, E., Smolka, J., and Jablonski, M. (2018). What factors can affect lumbopelvic flexion-extension motion in the sagittal plane? a literature review. Hum. Mov. Sci. 58, 205–218. doi:10.1016/j.humov.2018.02.008

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Zhang, Zou, Lu, Hu, Cai, Xiao, Li, Zeng, Zheng and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 17 May 2024
doi: 10.3389/fbioe.2024.1385750


[image: image2]
Effects of IMU sensor-to-segment calibration on clinical 3D elbow joint angles estimation
Alessandro Bonfiglio1,2,3*, David Tacconi2, Raoul M. Bongers4† and Elisabetta Farella3†
1Information Engineering and Computer Science Department (DISI), University of Trento, Trento, Italy
2Euleria Health, Rovereto, Italy
3Energy Efficient Embedded Digital Architectures, Fondazione Bruno Kessler (FBK), Trento, Italy
4Department of Human Movement Sciences, University Medical Center Groningen, Groningen, Netherlands
Edited by:
Cristian Romagnoli, Università telematica San Raffaele, Italy
Reviewed by:
Clint Hansen, University of Kiel, Germany
Saeid Edriss, University of Rome Tor Vergata, Italy
* Correspondence: Alessandro Bonfiglio, alessandro.bonfiglio@unitn.it
†These authors have contributed equally to this work and share senior authorship
Received: 13 February 2024
Accepted: 17 April 2024
Published: 17 May 2024
Citation: Bonfiglio A, Tacconi D, Bongers RM and Farella E (2024) Effects of IMU sensor-to-segment calibration on clinical 3D elbow joint angles estimation. Front. Bioeng. Biotechnol. 12:1385750. doi: 10.3389/fbioe.2024.1385750

Introduction: Inertial Measurement Units (IMU) require a sensor-to-segment calibration procedure in order to compute anatomically accurate joint angles and, thereby, be employed in healthcare and rehabilitation. Research literature proposes several algorithms to address this issue. However, determining an optimal calibration procedure is challenging due to the large number of variables that affect elbow joint angle accuracy, including 3D joint axis, movement performed, complex anatomy, and notable skin artefacts. Therefore, this paper aims to compare three types of calibration techniques against an optical motion capture reference system during several movement tasks to provide recommendations on the most suitable calibration for the elbow joint.
Methods: Thirteen healthy subjects were instrumented with IMU sensors and optical marker clusters. Each participant performed a series of static poses and movements to calibrate the instruments and, subsequently, performed single-plane and multi-joint tasks. The metrics used to evaluate joint angle accuracy are Range of Motion (ROM) error, Root Mean Squared Error (RMSE), and offset. We performed a three-way RM ANOVA to evaluate the effect of joint axis and movement task on three calibration techniques: N-Pose (NP), Functional Calibration (FC) and Manual Alignment (MA).
Results: Despite small effect sizes in ROM Error, NP displayed the least precision among calibrations due to interquartile ranges as large as 24.6°. RMSE showed significant differences among calibrations and a large effect size where MA performed best (RMSE = 6.3°) and was comparable with FC (RMSE = 7.2°). Offset showed a large effect size in the calibration*axes interaction where FC and MA performed similarly.
Conclusion: Therefore, we recommend MA as the preferred calibration method for the elbow joint due to its simplicity and ease of use. Alternatively, FC can be a valid option when the wearer is unable to hold a predetermined posture.
Keywords: IMU, sensor-to-segment calibration, joint angle modelling, carrying angle, elbow biomechanics

1 INTRODUCTION
In clinical applications, Inertial Measurement Units (IMU) have been widely used to identify movement disorders otherwise imperceptible to the naked eye (Zadeh et al., 2023; Bo et al., 2022; Lind et al., 2023). However, despite their flexibility, low cost, and reliability, IMU require a preliminary step before they can be used to estimate the joint angle of adjacent body segments. This procedure, called sensor-to-segment calibration, involves aligning the IMU’s internal reference frame with the anatomical reference frame of the bone where the sensor is placed (Filippeschi et al., 2017; Vitali and Perkins, 2020). The elbow joint’s calibration process is particularly challenging due to its complex anatomy (Cutti et al., 2005; Cutti et al., 2006; Cutti et al., 2008). The elbow joint is anatomically composed of the humeroulnar joint, responsible for the flexion/extension movement, and the radioulnar joint, responsible for pronation/supination (Figure 1). The rotation axes associated with these two joints are approximately perpendicular to one another and the distance between the two centres of rotation is approximately 4 mm (Veeger et al., 1997). This gap generates a third angle, known as the “carrying angle” (Figure 1), which varies among subjects depending on their anatomy, age and sex (Paraskevas et al., 2004; Tükenmez and Dem, 2004), as well as being slightly dependent on elbow flexion angle (An et al., 1983).
[image: Diagram showing the lateral and frontal views of the human arm skeleton. The lateral view illustrates the humerus, radius, and ulna with arrows indicating flexion, extension, pronation, and supination movements. The frontal view highlights the carrying angle.]FIGURE 1 | Frontal and lateral view of the elbow bone anatomy displaying the joint axes: Flexion/Extension, Pronation/Supination and Carrying Angle. Inspired by (An et al., 1983).
To accurately identify the two main elbow rotation axes, scientific literature presents several techniques that are most commonly adopted to perform IMU calibration, which are more extensively described in (Fang et al., 2023). In short, these are 1) N-Pose calibration (NP), which involves holding a known pose to align each sensor reference frame to the reference of the bone underneath (Zhang and Wu, 2011; Liu et al., 2019; Humadi et al., 2021); 2) Functional calibration (FC), which consists of performing single-plane elbow flexion-extension and pronation-supination movements to estimate the relative joint rotation axis (Cutti et al., 2008; Ligorio et al., 2017); 3) Manual alignment (MA) calibration, where each sensor is accurately positioned on the body segment to assume a perfect match between the sensor reference frame and the bone-embedded reference frame (Bouvier et al., 2015; Höglund et al., 2021). The NP calibration is the most commonly adopted technique when working with IMU due to its simplicity and quickness in accomplishing a full-body calibration; for this reason, it can be found in most commercial motion capture systems (Choo et al., 2022; Roetenberg et al., 2013; Schepers et al.). FC calibration is more commonly found in research rather than commercial products, often due to the increased complexity and time required for the user to complete a full-body calibration. However, some studies have shown better joint angle accuracy for the elbow joint compared to other types of calibration (Cutti et al., 2008; Ligorio et al., 2017). Finally, MA calibration is less common in both research and commercial products; however, Bouvier and colleagues (Bouvier et al., 2015) found a similar accuracy performance of MA compared to other calibrations.
Each of these techniques has been presented and validated individually against reference systems. However, due to the complexity of the elbow joint, as well as numerous variables affecting measurement accuracy such as skin artefacts (Cappello et al., 2005; Cutti et al., 2005; Prabakaran and Rufus, 2022), misalignment between externally observed and anatomical reference frames (de Vries et al., 2010; Höglund et al., 2021) and sensor drift (LaViola, 2003), defining the best type of calibration to adopt for every real-life scenario remains challenging. Additionally, when measuring with IMU, the type of movement performed and the anatomical joint axis considered further exacerbate differences in joint angle estimation across calibrations. Therefore, this paper aims to compare the most commonly used calibration methods against an optical motion capture reference system during single-plane movements as well as multi-plane multi-joint movements to provide recommendations on the most suitable calibration method for each scenario.
2 MATERIALS AND METHODS
2.1 Subject recruitment
Thirteen healthy participants (age 27.6 ± 6.1, weight 64.0 ± 13.3 Kg, height 171.2 ± 6.1 cm), with no sign or pain or musculoskeletal injuries, were recruited at University Medical Centre Groningen. This study received approval from the ethical board of the University Medical Center Groningen, Groningen, Netherlands (nr RR10982) and was performed following the Declaration of Helsinki.
2.2 Subject instrumentation
Each participant was instrumented with five IMU sensors (Movella DOT, Movella, Netherlands) on the sternum, scapula, upper arm, lower arm and hand on the right side of their body. The sternum IMU was placed below the incisura jugularis; The upper arm IMU was placed approximately at half the length of the humerus and facing laterally between the biceps and triceps muscle; The lower arm IMU was placed slightly above the wrist. These locations, as well as sensor reference axes are shown in Figure 2. Furthermore, one 3-marker optical marker cluster was placed on top of each IMU, which is connected to a 12-camera active optical motion capture system (Optotrak Certus®, NDI, Canada). Each pair of IMU and optical cluster were firmly secured on the participant’s skin using Kinesio Tape, while maintaining line-of-sight visibility between the active markers and the cameras (Figure 2).
[image: A person wearing multiple sensors on their arm and back demonstrates motion capture equipment. Adjacent, diagrams of a human body from the front and back show sensor placements, accompanied by an illustration of an Inertial Measurement Unit (IMU) with axis indicators.]FIGURE 2 | Sensor placement. IMU were placed on the sternum, upper arm, and forearm with reference axes aligned as shown. Active marker clusters were placed on top of each IMU on the same locations and secured with tape.
2.3 System setup
2.3.1 Optotrak
The optical motion capture system requires a landmark digitisation phase prior to data recording. This procedure consists of recording the position of a set of bony landmarks during a static pose, using a 4-marker rigid probe, in order to establish a relationship between the active marker cluster and each bony landmark. This method is further described in (van Andel et al., 2008), whereas the subsequent procedure to compute the elbow joint angles is in accordance with the International Society of Biomechanics (ISB) recommendations (Wu et al., 2005).
2.3.2 IMU
Three different recordings were performed in order to acquire the IMU data necessary to perform the three different calibrations:
	1) Static N-Pose: The subject stands upright and still for about 3 seconds whilst keeping: a) chest straight; b) arms completely straight and kept alongside the body with the palms touching the hips; c) feet parallel and about 20 cm apart.
	2) Elbow flexion (de Vries et al., 2010): The subject is seated whilst keeping their elbow on a table. The olecranon is supported while the subject holds a long rigid stick with their hands at shoulder width and thumbs pointing laterally. The subject performs five elbow flexion/extension movements from about 15 to about 50 degrees of elbow flexion.
	3) Elbow pronation (de Vries et al., 2010): The subject is seated with the olecranon supported on an armrest while their hand is free to move. The subject performs five elbow pronation/supination movements at full ROM without moving the olecranon from its fixed support.

2.4 Experimental protocol
Each subject performed five repetitions for each of the movements presented below. This procedure includes single-plane tasks and multi-joint tasks performed in the following order. The first four tasks in the list below were performed while the participants were standing.
1) Elbow flexion/extension: Starting from an N-pose, the subject performed elbow flexion/extension movements at full ROM with no constraints whilst limiting pronation movements as much as possible.
2) Elbow pronation/supination: Starting with the elbow flexed at 90° and the elbow touching the side of the body, the subject performed elbow pronation/supination movements at full ROM with no constraints whilst limiting flexion movements as much as possible.
	3) Drinking: A paper cup of water was placed on a shelf at about eye height (1.6 m). Starting from an N-pose, the participant reached with their right arm towards the cup, grabbed it, brought it to their mouth, simulated drinking a sip of water and put the cup back on the shelf.
	4) Box off-shelf: Starting from an N-pose, the participant stood in front of a shelf and moved a shoe box from a higher shelf (1.48 m height) to a lower shelf (0.96 m height) and then put it back.
	5) Circles: The participant was seated and required to draw imaginary circles anticlockwise with their right arm by sliding a pen on a table in front of them. The participant was instructed to involve some degrees of shoulder, elbow and wrist motion without specifying the size of the circles.

2.5 Calibration reference frames
Three different initial reference frames are developed for the upper arm and lower arm segments associated with the NP, FC and MA calibration. Details of each computation are presented in Table 1.
	• N-Pose (NP): The trunk sensor and the gravity vector serve as a reference to align each sensor. The advantage of this method is that the final segment reference frames solely depend on the trunk sensor’s orientation.
	• Functional Calibration (FC): The joint rotation axes associated with elbow flexion and pronation are obtained from their relative gyroscope calibration data (Stančin and Tomažič, 2011). These rotation axes are then used to build the final segment reference frames for the upper arm and lower arm through cross-product multiplication, as described in Table 1.
	• Manual Alignment (MA): Each sensor is carefully positioned on the body to ensure that the trunk and upper arm anatomical references are manually aligned with their respective sensor’s reference frame. These references are then rotated to match the ISB conventions as closely as possible (Table 1).

TABLE 1 | Details of the joint axis calculations required to obtain the calibration quaternion [image: Sorry, I cannot process the image provided. Please ensure the image file is uploaded correctly or describe its contents for assistance.] from rotation matrix conversion for each calibration. Superscripts represent the reference system. G = global; I = inertial; UA = upper arm; LA = lower arm; a = acceleration; F/E = flexion/extension; P/S = pronation/supination. The orientation of the sensor local axis orientation is shown in Figure 2.
[image: A table outlines axis definitions for different body segments: thorax, upper arm, and lower arm, across three categories—N-Pose, Functional, and Manual. Each section is divided into Primary, Secondary, and Final axis definitions, detailing equations to determine lateral, cranial, and forward directions. Footnotes clarify sensor translations and body positioning.]2.6 Data analysis
Data analysis was performed in MATLAB (The MathWorks Inc, Massachusetts, US; version R2022b). The Optotrak elbow joint angle was calculated following the ISB recommendations by choosing the humerus H2 model for the elbow pronation task and H1 for all other tasks (Wu et al., 2005). The glenohumeral joint rotation centre necessary to define the humerus was computed using (Rab et al., 2002) because it was shown to be the most accurate (Michaud et al., 2016). Considering the IMU data, each calibration was processed individually to compute a calibration quaternion [image: It seems like there was an issue with uploading the image. Please try again by clicking the "upload" button and selecting the image file. If you have any captions or additional context, feel free to include them.] that is then multiplied by the runtime sensor data (Eq. 1) to produce the real-time elbow joint angle. The data analysis workflow is also presented in Figure 3. We then computed the Range of Motion (ROM) error, Root Mean Squared Error (RMSE) and offset by comparing optical (reference) and IMU joint angle data. ROM error was calculated as the difference between the Optical and IMU ROM (Eq. (2)). RMSE was calculated as shown in Equation (3), where [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the mean joint angle within each repetition. Offset is the difference between optical and IMU mean joint angle within the repetition (Eq. (4)).
[image: Equation showing \( GS_q = GL_{squire} \otimes S(q_q) \) with a reference to equation (1).]
[image: Mathematical expression for ROM error, defined as the difference between two terms. The first term is the difference between maximum and minimum theta values during operation, and the second term is the difference between maximum and minimum theta values during a model.]
[image: Formula for root mean square error (RMSE). RMSE equals the square root of the sum from i equals 1 to N of the squared differences between observed data and estimates for two models, divided by N.]
[image: Offset equals theta sub POTO minus theta sub IMU, equation four.]
[image: Flowchart illustrating the process of comparing joint angles using Optotrak and IMU. It starts with Optotrak Digitization and IMU Calibration Tasks. Calibration tasks include N-Pose, Functional, and Manual methods. These lead to Exercise Tasks, resulting in a comparison between Joint Angles Optotrak and Joint Angles IMU.]FIGURE 3 | Graphical representation of data collection and analysis. The OPTO system was calibrated through bony landmark digitisation. IMU data was calibrated through 1) N-Pose calibration, 2) Functional Calibration, 3) Manual alignment. Subsequently, joint angle data was collected with both systems and finally compared.
2.7 Statistical analysis
A three-way repeated-measures ANOVA was performed to evaluate the effect of joint angle axis and movement tasks on the three calibrations. We performed three separate analyses for each dependent variable (ROM error, RMSE and offset) and chose the following within-subject factors: 1) Calibrations (NP, FC, MA); 2) Axes (flexion, pronation, carrying angle); 3) Tasks (flexion, pronation, drinking, box-off-shelf, circles). The significance level was set at [image: Text displaying a mathematical notation: alpha equals zero point zero five.], and the Generalised eta squared ([image: Stylized mathematical notation showing eta squared with a subscript "G".]) was chosen to calculate the effect size (Bakeman, 2005), which is interpreted as η2G = 0.02 as a small effect, η2G = 0.13 as a medium effect and η2G = 0.26 as a large effect (Cohen, 1988). We applied Greenhouse-Geisser to correct the degrees of freedom whenever the sphericity assumption was violated. The statistical analysis was performed in JASP (JASP Team 2023; version 0.17.2.1).
3 RESULTS
The ROM error computed with the three calibrations displayed significant differences in the main effect and interaction effects for both axes and tasks (Table 2). However, their effect size is small, thereby, indicating a small influence of different calibration techniques on the overall ROM error. Interestingly, while the accuracy between calibration is comparable, NP was the least precise calibration over participants. This can be observed by a larger interquartile range of NP (IQR = 24.5°) compared to FC (IQR = 16.98°) and MA (IQR = 14.59°) in the main effect (Figure 4A). A similar trend can be observed in the calibration*axes interaction (Figure 4B) on the flexion axis (NP IQR = 22.42°) and carrying angle (NP IQR = 28.74°) and in the calibration*tasks interaction (Figure 4C) during elbow flexion (NP IQR = 30.38°), drinking (NP IQR = 33.63°) and box-off-shelf (NP IQR = 30.62°). However, the effect sizes of all these effects are rather small and should not be overinterpreted.
TABLE 2 | Results of the three-way repeated-measures ANOVAs for ROM error, RMSE, offset, displaying degrees of freedom (df), F-ration (F), p-value (p) and generalised eta squared (η2G). Asterisks indicate statistically significant differences (p < .05).
[image: A table presents statistical data for three cases: ROM Error, RMSE, and Offset. Each case includes rows for Calibrations, Calibrations*Axes, and Calibrations*Tasks, with columns for df, F, p, and η²G. Significant p-values are marked with an asterisk. Key results include significant p-values under 0.005 for certain calibrations, and η²G values showing effect sizes.][image: Three panels of violin and box plots comparing ROM error. Panel A shows overall calibrations NP, FC, and MA in red, blue, and green. Panel B compares calibrations across flexion, pronation, and carrying angle axes. Panel C contrasts calibrations during tasks: elbow flexion, pronation, drinking, box off shelf, and circles, color-coded by calibration method.]FIGURE 4 | Box-and-whisker plots representing the ROM error for the three calibrations (NP, FC, MA). (A) Main effect of calibrations; (B) interaction effect Calibrations*Axes; (C) interaction effect Calibration*Tasks. Graphs A and B include violin plots to show data distribution.
The RMSE displayed significant differences between calibrations in the main effect with a relatively large effect size (Table 2). This is shown in Figure 5A where the RMSE computed for NP (RMSE = 8.2°) is significantly larger than FC (RMSE = 7.2°) and MA (RMSE = 6.3°). In addition, differences between calibrations are observed in the calibrations*tasks interaction (Figure 5C), which also yielded a relatively large effect size. Specifically, NP displayed larger RMSE values in elbow flexion, elbow pronation, drinking and circles tasks compared to FC and MA. On the other hand, MA appears superior to FC as it showed a lower RMSE, by approximately 1°, compared to FC in the main effect, as well as calibrations*tasks interaction during elbow pronation, drinking and box-off-shelf.
[image: Comparative bar chart with box plots and violin plots showing RMSE for different calibrations in three panels. Panel A compares NP, FC, and MA calibrations. Panel B examines different axes: flexion, pronation, and carrying angle. Panel C assesses tasks: elbow flexion, elbow pronation, drinking, box off shelf, and circles. NP, FC, and MA are represented by red, blue, and green respectively.]FIGURE 5 | Box-and-whisker plots representing the RMSE for the three calibrations (NP, FC, MA). (A) Main effect of calibrations; (B) interaction effect Calibrations*Axes; (C) interaction effect Calibration*Tasks. Graphs A and B include violin plots to show data distribution.
Joint angle offset showed significant differences between the three calibrations in the main effect with a relatively large effect size (Table 2). This can be observed in Figure 6A as FC is the most accurate calibration (Offset = −1.0°), followed by NP (Offset = −5.8°) and MA (Offset = −9.4°). In this context, the joint angle axis has a significant influence on the overall offset as the calibrations*axes interaction effect yielded a relatively large effect size (Figure 6B). Specifically, NP is the most accurate calibration on the elbow flexion axis (offset = 1.0°) and carrying angle (offset = −5.6°) and is comparable to MA whereas FC performed the worst on the same axes respectively by approximately 5°. Overall MA appeared as the most consistent and reliable calibration across different joint axes.
[image: Box and violin plots display calibration offsets in three panels. Panel A shows overall calibrations for NP (red), FC (blue), and MA (green). Panel B depicts calibrations by axes: flexion, pronation, and carrying angle. Panel C shows calibrations by tasks: elbow flexion, pronation, drinking, box off shelf, and circles. Each plot includes median lines, means, and outlier points.]FIGURE 6 | Box-and-whisker plots representing the Offset for the three calibrations (NP, FC, MA). (A) Main effect of calibrations; (B) interaction effect Calibrations*Axes; (C) interaction effect Calibration*Tasks. Graphs A and B include violin plots to show data distribution.
4 DISCUSSION
In this work, we have highlighted the influence of sensor-to-segment calibration on joint angle estimation with IMU sensors. In particular, we explored the impact of calibration in two main conditions: 1) joint angle accuracy across different anatomical planes, or joint axes, namely, flexion axis, pronation axis and carrying angle; 2) type of task performed, namely, pure elbow flexion, pure pronation and multi-joint tasks that include different combinations of flexion and pronation. Choosing an appropriate calibration method is not trivial since our results show that calibration performance can vary broadly depending on the 3D joint angle axis considered or the movement performed. For instance, the same type of calibration can produce different RMSE values as large as 10° when changing the movement performed from elbow flexion to pronation (RMSE NP elbow flexion = 13.37° ± 8.02°; RMSE NP elbow pronation = 3.98° ± 2.12°, see Figure 5C). Conversely, varying the joint angle axis has a lower impact on RMSE as differences are within 4° when using the same type of calibration (i.e., RMSE NP flexion axis = 7.47° ± 3.42°; RMSE NP pronation axis = 10.31° ± 7.94°, see Figure 5B).
Our results showed that each type of calibration performs uniquely depending on the variable, joint axis and movement tasks considered. For ROM estimation, varying the type of calibration in all tasks and joint angle axes resulted in small effect sizes, thereby only minor differences in performance (Figure 4A). RMSE showed non-significant differences in calibration*axes interaction effect, indicating no difference in performance on all joint angle axes (Figure 5B). However, varying the task performed resulted in significant differences among calibrations and a moderate effect size. In particular, NP displayed an RMSE larger than 5° compared to FC and MA when the elbow moves in pure flexion or in multi-joint tasks (Figure 5C). In these latter the flexion component is dominant, thereby a large RMSE for NP is expected. For these tasks FC and MA are valid alternatives as both display lower mean RMSE values and smaller interquartile ranges. Offset showed significant differences and a large effect size in the calibration*axes interaction (Figure 6B), indicating substantial variations in the performance of the calibrations on different joint angle axes. In particular, FC calibration appears less reliable than the other calibrations on pronation movements and joint pronation axis when estimating joint angles. Still, it is the most accurate on flexion movements and multi-plane tasks.
The ROM error, RMSE and offset variables analysed all play an essential role in the clinical rehabilitation field, as clinicians aim for the most accurate measurements with standardised assessment movements (single plane tasks such as pure elbow flexion and pronation) as well as measurements in real-life conditions, such as multi-joint tasks. Therefore, providing recommendations on the best IMU calibration technique is imperative to drive accurate clinical diagnoses on musculoskeletal movement conditions (Bo et al., 2022; Zadeh et al., 2023). We provide our final considerations for each calibration technique analysed in this paper in the following paragraph:
	• NP is generally the most common type of calibration for commercial motion capture products (Roetenberg et al., 2013) as well as clinical rehabilitation products (Choo et al., 2022). Considering our results on the NP calibration, we often observe the highest errors and standard deviations on joint angle estimation across a wide range of joint axes and movement tasks. Therefore, we advise against using NP for the most accurate estimation of elbow joint angles.
	• FC relies on the execution of strict single-plane elbow flexion and pronation movements for IMU calibration. This procedure can be an optimal solution for patients who are unable to maintain a fixed posture, such as neurological disorders (Hsu et al., 2018) or severe postural abnormalities (Petropoulos et al., 2020; Tisler and Kozlovszky, 2022), since only small movements can suffice to achieve a correct IMU calibration. Data shows that FC is most accurate on pure elbow flexion tasks as well as multi-plane tasks that have a predominant flexion component, whereas it produces a large offset on pronation. We advise the use of FC when the focus of the measurement is on achieving the most accurate elbow flexion angle.
	• MA requires accurate sensor positioning and alignment of the sensors on the wearer’s body segments (Fang et al., 2023), requiring extensive training of the operator. MA displays good accuracy and low errors across a multitude of joint angle axes and during both single-plane and multi-plane tasks. Therefore, we recommend MA as the preferred elbow joint calibration method for general use in rehabilitation.

4.1 Relevance of carrying angle in elbow modelling
Most of the literature on elbow biomechanical modelling with IMU represents the elbow as a double-hinge joint (Cutti et al., 2006; Cutti et al., 2008; Ligorio et al., 2017), which allows for elbow flexion/extension and pronation/supination movements and, thereby, neglecting the carrying angle (Figure 1). However, it is known that the carrying angle can vary depending on the age, sex and anatomy of the individual, and it is a function of the elbow flexion angle that can exhibit linear or sinusoidal patterns (An et al., 1983). Therefore, ignoring its influence on the flexion and pronation axes can introduce non-negligible crosstalk errors, as demonstrated by Piazza and colleagues (Piazza and Cavanagh, 2000). Furthermore, the study of the carrying angle can find applications in several fields, including prosthetics development (Stokdijk et al., 1999).
In this work, we model the elbow as a three-degree-of-freedom joint, including the computation of the carrying angle. We report metrics about this specific joint axis for completeness to the reader and highlight one of its potential applications in IMU modelling: rating the accuracy of the IMU calibration. Since the carrying angle can vary by up to 15° when the elbow ranges from full extension to full flexion (An et al., 1983), detecting its deviations beyond acceptable ranges is crucial to identify crosstalk errors caused by a non-optimal calibration. Consequently, it can help mitigate the risk of collecting unusable patient data in a clinical setting.
5 CONCLUSION
Estimating elbow joint angles using IMU presents unique challenges as varying movement tasks, and joint angle axes can largely influence the accuracy of the measurement. This study compares three sensor-to-segment calibration methods to guide the user in choosing the most appropriate calibration type depending on their goal. Whilst the performance of each calibration is similar for ROM measurements, they widely differ in RMSE and offset. In particular, NP calibration often yields the highest RMSE errors, whereas FC and MA show the lowest errors across many joint angle axes and movement tasks. Therefore, we advise using MA as the preferred calibration method for the elbow joint, which relies on accurately placing the sensors on the wearer’s upper and lower arm. Alternatively, FC proves advantageous when the wearer cannot hold a known posture (i.e., in patients with severe postural abnormalities) because it relies on the execution of elbow flexion and pronation movements for calibration.
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Purpose: This study aims to explore the variations in external and internal loads on a quarter-by-quarter basis among professional Chinese basketball players. It emphasizes the crucial impact of these variations on optimizing athletic performance and match strategies.Method: An observational longitudinal study design was employed, involving sixteen male players from the National Basketball League during the 2024 season in China. Data collection was facilitated through the use of Catapult S7 devices for measuring external loads and session ratings of perceived exertion (sRPE) for assessing internal loads. Linear mixed-effects models were utilized for the statistical analysis to identify differences in workload intensities across game quarters based on player positions. The Pearson correlation coefficient was used to examine the relationship between external and internal load throughout the game.Results: The analysis uncovered significant positional differences in workload intensities across game quarters. Guards were found to have a higher PlayerLoad™ (PL) per minute in the first quarter, while centers demonstrated an increase in high-intensity accelerations and jumps in the fourth quarter. Furthermore, a significant moderate correlation between sRPE and PL was observed across all game quarters, indicating a link between physical exertion and athletes’ perceptions of effort.Conclusion: The study offers new insights into the dynamic physical demands faced by basketball players and the importance of using both objective and subjective measures for a comprehensive assessment of athlete performance and wellbeing. The findings underscore the interconnectedness of physical exertion and athlete perception, providing a foundation for future research and practical applications in the field of basketball science.Keywords: workload, game quarter, playing position, basketball, monitoring training load
1 INTRODUCTION
Monitoring training loads in basketball has emerged as a critical aspect of athletic performance optimization. This methodology distinguishes between external and internal loads, providing a comprehensive assessment of competition demands. External loads measure physical activities like distance covered and jumps, whereas internal loads assess the athlete’s physiological and psychological responses, such as heart rate and rating of perceived exertion (RPE) (Fox et al., 2017; West et al., 2021). This distinction facilitates the creation of customized training and recovery plans, aiming to improve performance and reduce injury risks, thereby underscoring the importance of understanding training loads in basketball (Conte et al., 2018).
Recent technological advancements have highlighted the importance of monitoring both external and internal loads during basketball competitions, offering insights into how these factors affect performance based on player position (Power et al., 2022). For example, García et al. (2020) observed that guards and forwards cover greater distances than centers, who show superior performance in peak velocity and jumps. In addition, centers also presented more moderate increased values in collisions (impacts >8G) than guards and forwards, which can complement the information presented above to describe the specific physical demands of the playing position (García et al., 2020). Similarly, the literature suggests that centers’ higher body mass presents challenges in acceleration, leading to a slower speed increase and a longer time to reach target velocities (Schelling and Torres-Ronda, 2013; Reina et al., 2020). Notably, the number of accelerations and decelerations per minute are related with high intensity neuromuscular efforts and showed a certainly moderate/large decrease for all playing positions in the last quarter (Vázquez-Guerrero et al., 2019). While basketball professionals can customize training programs according to the physical characteristics typical of player positions to enhance readiness for competition, it is crucial to acknowledge the dynamic nature of basketball. Consequently, understanding the physical variations experienced by players across different quarters of a game takes on greater significance.
The previous studies found external load variations over four game quarters, identifying significant (Vázquez-Guerrero et al., 2019; Reina et al., 2020; Alonso Pérez-Chao et al., 2022; Askow et al., 2023) differences in distance covered and PlayerLoad™ (PL) between the first and last quarters (García et al., 2020). In particular, the second quarter had the lowest PL values, whereas the fourth quarter had the lowest PL·min values (Askow et al., 2023). Similarly, Reina et al. (2020) and Vázquez-Guerrero et al. (2019) complemented these findings by demonstrating that forwards exhibited the greatest variability in external load, whereas guards maintained the most consistency throughout the game, being notably more active in the opening quarter and centers increasing their activity by the fourth quarter. However, these studies primarily involve youth and professional players from Europe and America (Vázquez-Guerrero et al., 2019; García et al., 2020; Reina et al., 2020; Alonso Pérez-Chao et al., 2022), leaving a gap in understanding these dynamics among players of other levels and nationalities, such as elite Chinese basketball players in the National Basketball League.
Understanding the relationship between external and internal loads provides valuable insights for coaches to design more effective training plans and game strategies. Scanlan et al. (2014) reported a significant moderate relationship between external training load and session Rating of Perceived Exertion (sRPE), as well as a strong correlation between external training load and the Summated Heart Rate Zone (SHRZ) model. Likewise, Svilar and Jukić (2018) identified a significant correlation between external load variables and sRPE, with sRPE exhibiting a strong association with various load metrics. In contrast, competition settings yielded mixed results. Fox et al. (2020) found a significant correlation between Player Load (PL) and both heart rate zones and sRPE during basketball competition, while other studies reported no significant correlation between external and internal load parameters (Willberg et al., 2022). Importantly, the relationship between external and internal loads across game quarters remains underexplored, underscoring the need for further investigation in this area.
This study aims to examine the changes in external and internal loads and their interrelation throughout basketball competitions among Chinese professional players. By addressing this research gap, we hope to provide valuable insights into the performance optimization strategies for elite Chinese basketball athletes. The expected outcomes will enrich global basketball science discussions and offer practical implications for improving training methodologies, athlete performance, and wellbeing. Anticipating significant load fluctuations across game quarters, this research lays the foundation for future explorations and practical applications in basketball science.
2 MATERIALS AND METHODS
2.1 Subjects
Sixteen professional, male basketball players (age: 27.2 ± 1.35 years; height: 198.4 ± 6.35 cm; body mass: 98.4 ± 12.7 kg) volunteered to participate in this study. Players belonged to the same team in the Men’s National Basketball League, which is a second-tier, state-level Chinese basketball competition. These players were routinely monitored at the request of the coaching staff, as it was anticipated these individuals would regularly receive playing time during games. Participants not receive substantial playing time were excluded from this investigation due to a lack of monitoring. Before the initiation of the study, all participants underwent a thorough health evaluation to confirm their eligibility, ensuring the absence of any injuries or medical conditions that could pose a risk to their safe participation. This process was followed by the acquisition of their voluntary, written informed consent. The research methodologies employed in this study received approval from the Ethics Committee of Guizhou Normal University according to the ethical guidelines of the Helsinki Declaration.
2.2 Design
This research employed an observational, longitudinal study design to assess both external and internal workloads throughout the competitive season’s in-season phase (2023/24 season). A 1-week pre-season period served as an acclimatization phase, allowing players to familiarize themselves with the monitoring protocols, though data from this period were excluded from the final analysis. Monitoring was conducted for all matches throughout the 12-week in-season phase. Over the course of the season, participants engaged in a total of 18 matches, scheduled between Saturday and Sunday on a weekly basis at both home and away venues, with the frequency of matches ranging from zero to three per week. Each match was structured into four-quarters, each lasting 10 min.
2.3 Procedures
Prior to each game, each player was assigned with a Catapult S7 device (Catapult Innovations, Melbourne, Australia) to ensure consistency in the data collection. The Catapult S7 device consisted of a 100 Hz tri-axial accelerometer, tri-axial gyroscope, and magnetometer and captured the multidirectional movements of the basketball players. The device was worn on the trunk between the shoulder blades at approximately the C7-T1 level in an anatomical harness (Olthof et al., 2021).
Throughout all matches, data from microsensors were meticulously recorded in real-time and subsequently transferred to a personal computer for detailed analysis via specialized software (OpenField, version 3.10.5; Catapult Innovations, Melbourne, Australia). In alignment with established methodologies, the analytical process omitted data pertaining to warm-up activities while incorporating periods of rest (for instance, breaks, timeouts, and substitutions within the competition) to accurately assess the comprehensive demands of each quarter (Fox et al., 2022).
To minimize disruption to the players and the game, internal load data were collected within 5 min of completing each quarter. Specifically, each player, separate from their peers, gave an individualized RPE to a member of the research team using Borg’s Category (CR-10) Ratio Scale (Borg et al., 1987).
Quantification of external workload was conducted using the accelerometer feature of the microsensors. The volume of external workload was gauged by PL, a unique metric formulated by sampling accelerometer data at 10 Hz. PL quantifies the cumulative workload as the square root of the aggregate of the squared changes in acceleration along the transverse (x), coronal (y), and sagittal (z) planes, amplified by a constant of 0.01. The reliability of PL, as evidenced by a coefficient of variation (CV) ranging between 0.9% and 1.9%, has been corroborated in the context of team sports (Barrett et al., 2014). In addition, external workload was assessed using various inertial movement analysis (IMA) variables derived from the inertial sensors (tria-xial accelerometer and tri-axial gyroscope) and identified based on the direction traveled by players. Specifically, accelerations (−45°–45°), decelerations (−135°–135°), changes-of-direction (COD; −135° to −45° for left and 45°–135° for right), and jumps (0–40 cm). Furthermore, the number of low-intensity events per minute, medium-intensity events per minute, and high-intensity events per minute was calculated.
For accelerations, decelerations, COD, and low-, medium-, and high-intensity events were defined as 1.5–2.5 m·s−2, 2.5–3.5 m·s−2, and >3.5 m·s−2, respectively. Jumps were determined via proprietary algorithms and classified as low-, medium-, and high-intensity events using jump height cutoffs of <20 cm, 20–40 cm, and >40 cm, respectively. The reliability (coefficient of variation [CV] = 3.1%–6.7%) of the IMA-derived external workload variables assessed has been previously supported in team sports (Luteberget et al., 2018). Furthermore, internal workload was evaluated subjectively using sRPE, which involved multiplying the individualized RPE by session duration (Foster et al., 2001).
2.4 Statistical analysis
Descriptive statistics are presented as mean ± SD. A linear mixed-effects model was used to model the main and interactive effects using R Studio (Version 4.2.3, R Core Team). “Quarter” (Q1, Q2, Q3 or Q4) and “position” (Center, Forward, or Guard) were treated as the fixed effects, whereas the random effects were “ID Player” and “match-code.” Differences were divided by the square root of the sum of the intercept and residual variance components in the model to determine a standardized effect size (ES) for each difference between categorical fixed factors. Effect size and confidence intervals (ES ± 90% CI) were calculated to quantify the magnitude of pairwise differences. Thresholds for effect sizes statistics were <0.20, trivial; 0.20–0.59, small; 0.6–1.19, moderate; 1.20–1.99, large; and >2.0, very large (Hopkins et al., 2009). In addition, the relationship between sRPE and PL was assessed with Pearson’s (r) and the following criteria used to interpret the magnitude of the correlation measures: <0.10, trivial; 0.10–0.29, small; 0.30–0.49, moderate; 0.50–0.69, large; 0.70–0.89, very large; and 0.90–1.00, nearly perfect (Hopkins et al., 2009). If the 90% CI overlapped positive and negative values, the magnitudes were considered unclear. Finally, A decision tree analysis was conducted using the Classification and Regression Tree (CART) algorithm. CART was chosen for its binary tree structure, where each node split is optimized based on a single variable. The model’s depth was dynamically determined, with no pre-set maximum, allowing the algorithm to adjust its complexity according to the inherent patterns present in the dataset. In contrast to the Chi-square Automatic Interaction Detector (CHAID) algorithm, which imposes constraints such as predefined minimum sizes for parent and child nodes and limits iterations to 100, our CART implementation featured no such restrictions. This afforded a more organic and natural development of the tree structure. Additionally, unlike CHAID analysis, our methodological framework did not rely on the “minimum change in expected cell frequencies” parameter to drive the splitting process. In our CART implementation, Gini impurity was selected as the criterion for splitting nodes. This metric quantifies the probability of an incorrectly classified element being picked at random, and it helped determine the most favorable bifurcation point at each node. This approach offered a nuanced perspective on the data, facilitating a comprehensive exploration of the variables that classify game shifts in basketball matches. For ease of interpretation, scalable visualizations of the resulting decision trees were created using the “pybaobabdt” library. These visualizations provided an intuitive understanding of the tree’s structure and the decision-making process behind each node split, greatly aiding in the comprehension and explanation of the model’s outcomes (Shi et al., 2024). The alpha level was set at p ≤ 0.05.
3 RESULTS
The descriptive analysis of external and internal workload measures is presented in Table 1.
TABLE 1 | Descriptive statistics of the external and internal load according to playing position across game quarter.
[image: Table displaying data across four quarters for variables such as session rating of perceived exertion (sRPE), PlayerLoad, and various intensities and types of inertial movement analysis (IMA). Each quarter is divided into categories: Guards, Centers, and Forwards, with values recorded for each metric. Abbreviations include sRPE, COD (change of direction), and IMA (inertial movement analysis).]Figure 1 provides a detailed representation of the positional differences in both external and internal loads from the first quarter to the fourth quarter during basketball competition. In the first quarter, guards exhibited significantly higher Player Load (PL) per minute compared to centers (p < 0.05; ES = −0.94; Moderate). Conversely, guards displayed a significantly lower frequency of medium-intensity jumps than forwards (p < 0.05; ES = 0.74; Moderate), highlighting notable positional variations in performance metrics.
[image: Four line charts labeled A, B, C, and D compare the differences in electroneurography (ENG) measures under various conditions: Quiet Condition, High Signal Gain, No Feedback, and Chewing at Normal Signal Gain. Each chart shows similar trends with overlapping data points, reflecting consistent patterns across the conditions.]FIGURE 1 | Standardized (Cohen’s d) differences computed variables according to playing position across game quarter. Note: p* <0.05; **p < 0.01; ***p < 0.001. (A) Positional differences in internal and external load in the first quarter. (B) Positional differences in internal and external load in the second quarter. (C) Positional differences in internal and external load in the third quarter. (D) Positional differences in internal and external load in the fourth quarter.
Interestingly, no significant differences in external and internal loads were observed between positions during the second and third quarters, suggesting a convergence in performance metrics across these periods. However, the fourth quarter presented a different trend, where centers showed a significantly higher frequency of high-intensity jumps than forwards (p < 0.01; ES = −1.14; Moderate). Furthermore, centers demonstrated a higher number of high-intensity accelerations compared to both guards (p < 0.01; ES = 1.30; Large) and forwards (p < 0.05; ES = −1.01; Moderate). These positional discrepancies in the fourth quarter underscore the varying physiological demands across player roles, especially in high-intensity activities.
Figure 2 presents the correlation values with 95% confidence intervals (CIs) for all relationships between external and internal workload variables. Across all game quarters, significant correlations (p < 0.05) were found between external and internal workload variables during basketball competition. Notably, the relationship between session Rating of Perceived Exertion (sRPE) and Player Load (PL) was consistently moderate throughout the game quarters: first quarter (p < 0.01; r = 0.38; 95% CI [0.16, 0.57]; Moderate), second quarter (p < 0.01; r = 0.34; 95% CI [0.12, 0.53]; Moderate), third quarter (p < 0.01; r = 0.35; 95% CI [0.13, 0.54]; Moderate), and fourth quarter (p < 0.05; r = 0.30; 95% CI [0.05, 0.52]; Moderate). This consistent association reinforces the strong relationship between perceived exertion and objective external load metrics, emphasizing the value of sRPE as a reliable indicator of overall workload in competitive basketball settings.
[image: Four scatter plots arranged in a two-by-two grid, each showing a linear relationship with slight variation. Each plot has data points scattered around a fitted regression line with shaded confidence intervals. The top-left plot depicts variable IX with a significant p-value. Top-right is similar, with slightly different data and less significant p-value. Bottom-left plot features IX again with intermediate significance. Bottom-right plot shows a flatter regression line, indicating weaker correlation. Axes are labeled as IX and IY.]FIGURE 2 | The correlations between PlayerLoad™ and sRPE across the four-quarter among Chinese basketball players. Note: The dashed bolded black line indicates the correlation for the overall model; sRPE, session rating of perceived exertion.
The CART analysis based on the top six layer presented in Figure 3 identifies several pivotal nodes influencing the dependent variable, interpreted in the context of performance metrics across the four-quarters (Q1 to Q4) of a basketball game.
[image: Flowchart with branching pathways labeled with various sports metrics, including "PlayerLoad," "IMA Jump Low," and "High-intensity accelerations." Lines connect these metrics, showing the relationships and thresholds like "< 10.74" and "≥ 19.12." Various colors differentiate the paths.]FIGURE 3 | Visualization of Classification and regression tree from the first quarter to fourth quarter. Note: Q1, first quarter; Q2, second quarter; Q3, third quarter; Q4, fourth quarter.
The PL per minute emerged as a significant node, branching at a threshold of 10.12. More critically, the CART algorithm delineates a substantial bifurcation for “PL” instances at a threshold greater than 147.76. The thickness of the corresponding yellow line in the figure accentuates a higher frequency of such elevated PL occurrences predominantly in the final quarter, Q4. Furthermore, sRPE also represents a critical node, dividing at a value less than or equal to 84.00. This bifurcation indicates a significant correlation between athletes’ perceived exertion and the outcome variable. It could reflect a shift in psychological and physiological stress that players experience, especially during high-intensity phases as the game advances. Similarly, high-intensity deceleration is also a decisive node, splitting at less than or equal to 1.50, suggesting that the frequency or intensity of such decelerations during gameplay significantly impacts the outcome variable. Each node is temporally connected, showcasing a dynamic interplay of these factors as the game unfolds. Notably, there is a discernible shift in how these factors interact and impact player performance in different game stages, with a marked emphasis on the latter stages.
4 DISCUSSION
The aim of our study was to investigate the variations in external and internal workloads and their interrelationships across different quarters of basketball matches among professional basketball players in China. Our main finding indicated that guards experience a higher PlayerLoad™ (PL) per minute in the first quarter compared to centers, highlighting the intense initial activity level required of these positions. Conversely, in the final quarter, centers exhibit greater involvement in high-intensity accelerations and jumps than their teammates, underscoring the pivotal role of physicality in the game’s critical moments. Additionally, our study identifies periods of relative workload stability in the second and third quarters, suggesting a tactical balance achieved by players. The significant correlations between session ratings of perceived exertion (sRPE) and objective workload measures across all quarters further underscore the interconnectedness of physical exertion and athlete perception. This research not only advances our understanding of the sport’s physical demands but also provides a foundation for developing targeted training and recovery protocols that cater to the specific needs of each player position.
The higher PL per minute observed in guards compared to centers during the first quarter suggests high-intensity engagement in the game’s initial stages, likely attributed to their role in establishing game tempo and executing aggressive defensive strategies outside the three-point line (Heishman et al., 2019). Previous investigations have drawn similar conclusions, suggesting that entering the game in the first quarter is more physically demanding for guards, who often need to control the game pace and adapt to the competition environment (Vázquez-Guerrero et al., 2019). This search and attunement likely result in varied decision-making and movement patterns (Vázquez-Guerrero et al., 2019). Moreover, the decreased jump medium for guards compared to forwards might indicate a strategic preservation of energy for later stages of the game or a tactical focus on perimeter play, requiring less vertical movement but more agility and speed. This finding is supported by Reina et al. (2020), who found that guards presented a more stable performance throughout the game, whereas forwards showed the highest level of variability, possibly due to their required participation in all game phases (offense, defense, and transitions). Notably, although guards presented a higher PL per minute and lower vertical movement compared to centers and forwards, the importance of the first quarter for practitioners should not be overlooked. Combining the current evidence with the insights from Khoramipour et al. (2021), it’s evident that the initial phase of a basketball match is particularly demanding on players’ anaerobic energy systems. This is primarily due to the intense and frequent shuffling, movements, and ball-handling activities that occur mostly in the first quarter, leading to a significant increase in lactate production when compared to the latter half of the game. Such early-game external load serves as a catalyst for metabolic adaptations, emphasizing the critical energy requirements needed to meet the high-intensity demands of the opening quarter.
Our study found no difference in external and internal loads in the second and third quarters during match play. This result aligns with findings by Scanlan et al. (2015), found that suggesting that coaches and players often make tactical adjustments during these quarters based on the game’s flow and the opponent’s strategies observed in the first quarter. These adjustments, which might involve changing defensive setups (e.g., switching from man-to-man to zone defense) or altering offensive tactics (e.g., increasing the use of pick-and-roll plays), can lead to a more balanced exertion among players as teams seek to exploit weaknesses in their opponents’ setups or adjust to their strengths (Ben Abdelkrim et al., 2010; Bullock et al., 2018). From a physiological standpoint, players enter these quarters having already warmed up and acclimated to the game’s intensity. The initial surge of adrenaline and energy expenditure in the first quarter gives way to a more measured approach as players manage their energy reserves (Khoramipour et al., 2021). Coaches should note that the body’s energy systems, including the aerobic and anaerobic pathways, are utilized more efficiently as the game progresses, allowing players to maintain a consistent performance level. Thus, game load management is crucial for maintaining performance levels throughout the game, leading to a stabilization of both external (e.g., distance covered, sprints) and internal (e.g., heart rate, perceived exertion) workload indicators (Conte et al., 2018; Fox et al., 2021; Kamarauskas and Conte, 2022). Most importantly, coaches play a pivotal role in making real-time decisions that balance the need for immediate competitiveness with the strategic conservation of energy for the later stages of the game. For example, utilizing their benches to give starters intermittent rest periods helps teams keep the game’s intensity high without overburdening their key players, ensuring they have the energy reserves needed for the final push in the fourth quarter (Gomez et al., 2016). Therefore, the stability in external and internal loads during the middle quarters reflects a multifaceted approach to managing the game, encompassing tactical adjustments, physiological considerations, strategic balance, and adaptation. These factors collectively contribute to sustaining high performance levels and are essential components of successful basketball strategies.
This trend shifts noticeably in the final quarter, where centers exhibit increased engagement in high-intensity activities, including jumps and accelerations, surpassing both guards and forwards, highlighting the pivotal role of physical presence and power in the game’s critical moments. In the concluding stages of basketball matches, centers assume a critical role due to strategic shifts towards gameplay that emphasize scoring from positions close to the basket and maximizing rebounds (Vázquez-Guerrero et al., 2019). This result is supported by Reina et al. (2020), suggesting that centers engage more frequently in high-intensity actions such as jumping and accelerating, utilizing their physical attributes and energy reserved from the initial stages of the game. Their augmented participation is a deliberate strategic choice and a physiological tactic, as their physical preparation enables them to exert significant force during the latter part of the game. Psychologically, the involvement of centers in crucial moments serves to deter the opposition and elevate their own team’s confidence through decisive plays. Experienced centers leverage their knowledge for leadership, directing the team with strategic offensive decisions and stabilizing the defense (Ben Abdelkrim et al., 2010; Manuel Clemente et al., 2019; Vázquez-Guerrero et al., 2019). This comprehensive approach highlights the importance of physical strength and presence in determining the outcome of the game’s crucial moments, underlining the central players’ role in securing an advantage for their team in the final quarter.
Our results reveal a significant correlation between sRPE and PL across all game quarters, indicating a moderate relationship between these internal and external workload indicators in basketball. This result is linked with Espasa Labrador et al. (2021), suggesting that players’ perceived exertion levels moderately align with the objective measures of physical workload (PL) throughout the game, offering a refined perspective on the workload experienced by players. Furthermore, Fox et al. (2020) provided complementary insights by examining the relationships between various workload indicators during basketball training and games in a semi-professional male context. Their research highlighted that PL was more closely associated with internal workload indicators, especially summated heart-rate zones (SHRZ) and sRPE, compared to other external workload indicators, indicating that PL effectively predicts the physiological and psychological stress experienced by players (Fox et al., 2020). Our study adds to this understanding by demonstrating how perceived exertion (an internal load indicator) consistently correlates with an objective external load metric (PL) throughout a game. This consistency suggests that perceived exertion is a reliable indicator of actual workload, adding a crucial dimension to optimizing basketball performance. Moreover, Fox et al. (2020) also discovered stronger correlations during training than in games, pointing to possible differences in workload perception and response across contexts. Taken together, our study underscores the importance of integrating both objective (PL) and subjective (sRPE) workload measures to fully grasp their impact on players. This approach is vital for coaches and sports scientists aiming to customize training and recovery programs to meet individual player needs and experiences.
The CART analysis particularly emphasized the temporal progression and the increased load in the latter stages of a basketball game. The emergence of PL per minute as a pivotal node suggests that the distribution of exertion over the game duration is not uniform. The decision point at a threshold greater than 147.76 for PL instances indicates a critical juncture at which player performance may either peak or diminish, possibly due to fatigue. The conspicuous thickness of the yellow line in the CART diagram for the final quarter (Q4) underscores the augmented load players face as the game nears conclusion. This finding is in tandem with the notion that the final quarter’s heightened physical demands could exacerbate the risk of performance decrement or injury (Vázquez-Guerrero et al., 2019; Askow et al., 2023). The sRPE as a branching node speaks to the psychological and physiological stress factors, which are integral to understanding player condition and readiness. The split at ≤84.00 can be interpreted as a threshold where players’ perceived exertion begins to have a tangible impact on the measured outcome. This is particularly relevant for coaching strategies that aim to manage player workload and optimize performance through regulated recovery periods (Zhang et al., 2019). Similarly, the node representing high-intensity deceleration further adds to the discussion on the physical demands placed upon players during a game. The physiological cost of high-intensity activities, including rapid decelerations, could contribute to accumulative fatigue (Hewit et al., 2011), which is evidenced by its significant impact on the quarter change at the ≤1.50 split. Such insights are crucial for the development of training and conditioning programs that aim to bolster players’ resilience to high-intensity activities throughout the game (Reina et al., 2019; McBurnie et al., 2022). The decision tree analysis provides insights into how different levels of “PlayerLoad” affect specific game movements and overall player performance. This information is vital for basketball players, as it aids them in comprehending player patterns, refining game strategies, and ultimately elevating their on-court performance.
Notwithstanding the valuable insights garnered from our study, it is imperative to acknowledge its limitations. One of the primary constraints relates to the sample size and demographic focus, which may limit the generalizability of our findings to wider populations and competitive levels. Additionally, while our analysis provides a robust examination of workload dynamics, it does not directly address the psychological or tactical dimensions of basketball performance, representing critical avenues for future investigation. Expanding the scope of research to encompass these areas, as well as incorporating more diverse and comprehensive datasets, will be essential for developing a more holistic understanding of game demands during game-play.
5 CONCLUSION
Our study contributes significantly to the field of basketball science by elucidating the quarter-by-quarter variations in external and internal loads among elite Chinese basketball players. The distinct workload profiles identified for different player positions across game quarters underscore the complex interplay between the physical demands of basketball and the athletes’ physiological and psychological responses. The findings highlight the need for tailored training and recovery protocols that account for these variations, thereby enhancing performance and reducing the risk of injury. Furthermore, the study’s emphasis on both objective (PL) and subjective (sRPE) measures of workload presents a holistic approach to athlete monitoring, advocating for the integration of these metrics in the development of optimized training regimens. PL per minute, sRPE, overall PL, and high-intensity deceleration are the primary factors determining the dynamic shifts in game quarters throughout the match. Limitations regarding the study’s sample size and demographic focus suggest avenues for future research, including investigations into the psychological and tactical dimensions of performance. By advancing our understanding of workload dynamics in basketball, this research offers valuable implications for coaches, athletes, and sports scientists aiming to elevate the standards of athletic preparation and performance in basketball.
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Introduction: Despite the growing body of evidence highlighting the individuality in movement techniques, predominant models of motor learning, particularly during the acquisition phase, continue to emphasise generalised, person-independent approaches. Biomechanical studies, coupled with machine learning approaches, have demonstrated the uniqueness of movement techniques exhibited by individuals. However, this evidence predominantly pertains to already stabilised movement techniques, particularly evident in cyclic daily activities such as walking, running, or cycling, as well as in expert-level sports movements. This study aims to evaluate the hypothesis of individuality in whole-body movements necessitating intricate coordination and strength among novice participants at the very beginning of an acquisition phase.Methods: In a within-subject design, sixteen highly active male participants (mean age: 23.1 ± 2.1 years), all absolute novices in the learning task (i.e., power snatch of Olympic weightlifting), participated in randomised snatch learning bouts. These bouts comprised 36 trials across various motor learning models: differential learning contextual interference (serial, sCIL; and blocked, bCIL), and repetitive learning. Kinematic and kinetic data were collected from three standardised snatch trials performed following each motor learning model bout. The time-continuous data were input to a linear Support Vector Machine (SVM). We conducted analyses on two classification tasks: participant and motor learning model.Results: The Support Vector Machine classification revealed a notably superior participant classification compared to the motor learning model classification, with an averaged prediction accuracy of 78% (in average ≈35 out of 45 test trials across the folds) versus 27.3% (in average ≈9 out of 36 test trials across the folds). In specific fold and input combinations, accuracies of 91% versus 38% were respectively achieved.Discussion: Methodically, the crucial role of selecting appropriate data pre-processing methods and identifying the optimal combinations of SVM data inputs is discussed in the context of future research. Our findings provide initial support for a dominance of individuality over motor learning models in movement techniques during the early phase of acquisition in Olympic weightlifting power snatch.Keywords: kinematics, kinetics, support vector machines, individuality, whole-body movement, strength, coordination, barbell
1 INTRODUCTION
Motor learning encompasses the acquisition, stabilisation, and refinement of movement techniques. Historically, prevailing motor learning models have emerged from three primary research domains, each with a different focus: training science (refinement), sports pedagogy (acquisition), and sports psychology (stabilisation) (Newell, 1990; Starkes and Ericsson, 2003; Naul and Scheuer, 2020; Schöllhorn et al., 2022). While research approaches in training science and sports pedagogy are typically idiographic and learner-centred, those in sports psychology are often characterised as nomothetic and group-oriented. The stronger focus on the individual learner on the part of sports pedagogy was reflected in practice, among other things, in the development of methodical exercise and game series (Gaulhofer and Streicher, 1924; Mester, 1959; Mahlo, 1965), in which the initial difficulty level of the exercise or game is individually adapted to the learner’s ability level from the outset, but nonetheless with an orientation towards a person-independent role model at the end of the learning process. In training science individuality was ascribed a specific role within the framework of the “principle of individuality” Matveev (1966). The principle states that every training intervention must take into account the specific needs and abilities of the individuals for whom it is designed, regardless of the motor learning and/or training phase. Since training in sports is not only aimed at endurance, strength, agility, or tactics, but also at movement techniques and coordination, it has a large overlap with the research subject of motor learning of sports movements. For the acquisition process of a movement technique most intriguing, the “principle of individuality” was modified by Harre (1975) to the “principle of increasing individualisation” that was closely related with the “principle of increasing specialisation” (Schöllhorn et al., 2006). Moreover, its importances was reduced by shifting it from the first to eighth position. This principle constrained the individuality of training measures to the last end of the training process, to the highest performance level. This meant that up to a certain performance level all athletes had to exercise the same. Only specialised and high-performance athletes received individual training contents and schedules. While the “principle of individuality” assumes the uniqueness of an athlete as fundamental and independent of time, the “principle of increasing individualisation” considers the uniqueness as an add on to a general technique that only develops at the highest level of performance. Both training principles are associated with different practical consequences. Although individuality in novices and advanced athletes was still lacking, the necessity of individuality at the absolute top level had long been suspected in the form of these preset training principles.
In comparison, prevailing motor learning models offered by sport psychology such as repetitive learning (RL), variability of practice learning (VPL), and contextual interference learning (CIL) have operated for long under the assumption of a widely person-independent standardised movement technique. The RL, VPL, and CIL models emphasise the importance of imitating a generalised technique role model and engaging in correct imitations through repeated executions to improve the learner’s proficiency in performing a specific motor skill with greater accuracy and precision (Schöllhorn et al., 2022).
A growing number of biomechanical studies indicate the uniqueness of individual movement techniques (i.e., which indicates that the characteristic should not be the same for any two persons) calling into question the orientation and imitation towards general technique role models in motor learning (Bauer and Schöllhorn, 1997; Schöllhorn and Bauer, 1997; Horst et al., 2017b; Horst et al., 2023b). Aiming at coping with the orientation towards general technique role models, the differential learning (DL) model suggests that motor learning should avoid the imitation of such general role models throughout the learning process (i.e., in acquisition, stabilisation, and refinement phase). Instead, DL advocates embracing a diverse range of executed variants of movement techniques during motor learning and variations from one execution to another (Schöllhorn et al., 2006; Schöllhorn et al., 2009). The variation of movement technique from execution to execution should be tailored to the learner’s individual and situational characteristics within an adaptive stochastic resonance process throughout a learning intervention (Schöllhorn, 2000; Schöllhorn and Horst, 2019; Apidogo et al., 2021; Apidogo et al., 2022; Schöllhorn et al., 2022; Apidogo et al., 2023).
From a general perspective, motor learning interventions can be regarded as external manipulations of movement techniques. This prompts inquiry into the degree to which such interventions influence the movement techniques of individuals, raising questions about the persistence of individuality in movement techniques in the presence of internal or external perturbations.
The persistence of individual movement techniques over time (i.e., which means that the characteristic should be invariant with time) was first indicated through machine learning-based analysis of biomechanical data of movement techniques of world-class male discus throwers for 1 year (Bauer and Schöllhorn, 1997) and world-class female javelin throwers over a period of 5–6 years (Schöllhorn and Bauer, 1998). Studies on running (Schöllhorn and Bauer, 1998a), sprinting (Schöllhorn et al., 2001), and walking (Horst et al., 2016; Horst et al., 2017b) indicated similar findings. The persistence of individuality against internal and external perturbations was also investigated. For instance, emotions (Janssen et al., 2008), fatigue (Janssen et al., 2011; Burdack et al., 2020), music (Janssen et al., 2008), shoe heel heights (Schöllhorn et al., 2002a), orthopaedic insoles (Schöllhorn et al., 2002b), or running shoes (Horst et al., 2023a) supported the predominance of individuality within a single movement technique. Two recent studies address individuality across multiple movement techniques indicated that movement techniques overlap individuality in sport techniques, e.g., shot put, discus, and javelin throwing (Horst et al., 2020) and in everyday movements, e.g., walking, running, and handwriting (Burdack et al., 2023).
Studies on individuality so far predominantly focused on samples that either had stabilised the respective movements through a corresponding number of repetitions (e.g., gait) (Horst et al., 2016; Horst et al., 2017b; Horst et al., 2023b), showed extreme performances close to an individual’s maximal potential (e.g., javelin throwing) (Schöllhorn Bauer, 1998a)), or both (e.g., extreme shoe heel heights) (Schöllhorn et al., 2002a). Correspondingly the subjects were already in the stabilisation or refinement phase of a learning process or reached a performance limit where individual characteristics become more expressed (Schöllhorn et al., 2002a). The hypothesis of individuality is therefore supported at a higher and highest automatisation level in movement techniques in high-performance sports (i.e., world-class athletes) or movement techniques of daily life (e.g., walking), but not for novices. The observed individuality of movement techniques (after the acquisition phase) can be the result of three different conditions (Horst et al., 2020). First, despite identical initial movement techniques, the individuality of movement techniques is the result of varying persistence to motor learning interventions. Second, individuality of movement techniques exists before the acquisition phase and is only minimally influenced by motor learning interventions. Third, both individuality of movement techniques exists before the acquisition phase and varying persistence to motor learning interventions (Horst et al., 2020).
Each of the three conditions is based on the initial state of individuality or non-individuality of movement techniques prior to the acquisition phase, which has so far been largely unexplored. To disentangle the influence of external interventions through motor learning models and individual movement techniques, it is crucial to assess individual movement techniques not only at the end of a stabilisation process but also in the early stages of the acquisition process. Furthermore, the majority of the available studies have primarily evaluated the individuality hypothesis in movement techniques that were dominated by coordination with limited emphasis on a possible interaction of strength and coordination like in whole-body weightlifting movement techniques. Moreover, the risk of injury increases particularly when lifting weights dynamically, as force peaks can occur in directions that beginners are unable to compensate for, especially when they deviate significantly from their individual strength patterns. Therefore, identifying individual movement techniques among novice weightlifters is beneficial for developing healthy (Kumaran et al., 2022) and effective (Rushall, 1979; Bompa, 1983; Rushall and Pyke, 1990) training and learning interventions. This area of research has the potential to revolutionize training methods for novice weightlifters, making a significant contribution to sports science and biomechanics. To build upon this understanding, this study aims to identify eventual individual weightlifting techniques and evaluate the persistence of the individual weightlifting techniques across four single bouts, each of four different motor learning models, during the early acquisition phase in absolute novices. Specifically, time-continuous biomechanical data from three standardised snatch executions after the learning bout will be subject to machine learning classification techniques, distinguishing between “individual” and “motor-learning” short-term effects, for the classification and prediction of snatch movement technique. We hypothesise that the employed machine learning method (i.e., support vector machine) will achieve a higher prediction accuracy in the participant-based classification, thereby providing initial empirical support for the individuality hypothesis in the context of single bouts of various motor learning models applied to weightlifting acquisition in absolute novices.
2 MATERIALS AND METHODS
2.1 Participants
Sixteen highly active male participants (age: 23.1 ± 2.1 years, body mass index: 24.1 ± 2.2 kg/m2), were recruited for this study. None of the participants had prior experience with the to be learned skill, the power snatch. After the protocol, potential risks, and study benefits were presented, participants provided written consent to participate in the study. The inclusion criteria for participants were as follows: aged between 18 and 29 years, male, and at least 2 years of experience in fitness and/or CrossFit club (i.e., including at least 6 months of performing barbell-based exercises). Participants with prior involvement in Olympic weightlifting, current or past neurological and/or cardiovascular issues, eye disorders, psychiatric conditions, orthopaedic ailments, muscular disorders, and those taking medications that could impact the cardiovascular system were excluded based on the criteria. Furthermore, all participants had no chronic diseases or sleep disturbances. During the experimental period, participants reported experiencing good to very good sleep quality, alongside maintaining a very active lifestyle. This was demonstrated by an average of more than 2 h of physical activity per weekday, which included walking as well as moderate- and vigorous-intensity activities. Participants were not engaged in napping during the experimental period. The study was conducted according to the Declaration of Helsinki and approved by the local ethics committee of Faculty 02: Social Sciences, Media, and Sport at Johannes Gutenberg-University of Mainz. Written informed consent was obtained from all participants who were naive to the purpose of the study and were coded with numbers for the anonymity of personal data.
2.2 Experimental design
In a randomised within-subject design, each of the 16 participants performed single bouts of four different motor learning models, namely, RL, CIL in its blocked (bCIL), which corresponds to VPL, and serial form (sCIL), and DL. After a familiarisation session, participants visited the laboratory on four separate occasions, with at least a 1-week washout period in between. During each test session, a single motor learning model was implemented, all in a randomised order, involving a single training bout. Each bout comprised 36 trials of power-snatch derivatives, according to one of the four tested motor learning models with a 3-min standardised duration (Ammar et al., 2024a; Ammar et al., 2025). Each training bout utilised the same empty barbell weighing 10 kg. All testing sessions were conducted in the afternoon, as previously suggested by Ammar et al. (2015a); Ammar et al. (2015b); Ammar et al. (2016), to minimise the effect of diurnal biological variations (Ammar et al., 2017; Ammar et al., 2018a). The measurements were conducted in a laboratory setting, with standardised and minimised changes in brightness and temperature. 5 min following each bout, three 20 kg barbell power snatch trials were performed, without any instruction, and barbell kinematics and kinetics data were collected. Participants were instructed to wear identical shoes during all test sessions.
2.3 Motor learning models
The training protocol for the RL model comprised 36 sets of power snatch trials. In the case of the two CIL models (bCIL and sCIL), the training protocols incorporated not only the power snatch but also two variations: the high pull snatch (Waller et al., 2009) and the snatch power jerk (Soriano et al., 2019). These three techniques were practised either in blocked (bCIL) or serial (sCIL) order. Because of the different relative timings and different sequences of muscle contractions of all three techniques, CIL is considered to switch between different general motor programs. The DL model incorporated the practice of these three techniques in a serial order but each technique with additional movement variations. Variations in foot starting position, barbell starting position, final positions, practising with eyes closed, and utilising an unstable surface were incorporated. Further details on each motor learning protocol, including the movement schedule and resting intervals, are elaborated in Ammar et al. (2024a); Ammar et al. (2025).
2.4 Measurements
2.4.1 Data acquisition
The power snatch trials were performed after each training bout on a 2.4 × 0.9 m weightlifting platform and were recorded using Qualisys Track Manager 2023.2 (Qualisys AB, Sweden). The 3D barbell positions were measured using nine synchronised, commercially available infrared cameras (Type Oqus 300/310+; 250 Hz; Qualisys AB, Sweden) positioned around the platform at a distance of approximately 6 m from the lifting area. Two reflective markers were attached to the right and left ends of the barbell. The calibration was executed before each test session using a carbon fibre calibration kit, including a 500 mm wand and an L-frame with reflective markers. In addition, the 3D ground reaction forces (GRFs) were measured using two Kistler force platforms (Type 9287CA; 1,000 Hz; Kistler, Switzerland) embedded in the ground. During the power snatch trials, the tested participants positioned one foot each on a force platform. Before the three dynamic power snatch trials, a static measurement (without barbell) was performed to calculate the participant’s body weight.
2.4.2 Data processing
For the kinematic analysis, the mean position of the reflective markers attached to the right and left end of the barbell was calculated to provide the trajectory of the barbell centre and reduce the induction of artefacts associated with asymmetrical movement execution (Ammar et al., 2018b; Ammar et al., 2019). For the kinetic analysis, the total GRF was calculated by summing the recorded force vectors of both platforms. The data was filtered using a fourth-order Butterworth low-pass filter with a cut-off of 4 Hz for the barbell position trajectories and 15 Hz for the GRF trajectories. The barbell velocity was calculated by numerical estimation based on the filtered barbell position trajectory. All processed trajectories were trimmed to the movement phase from the start of the movement to the catch position (Nago et al., 2019). The start position was defined as the time when the vertical barbell velocity was ≥0.01 m∙s-1 and the catch position was defined as the first instance at which the barbell reached a vertical velocity of 0 m∙s−1 after the phase of negative vertical velocity following the maximum vertical displacement (Nagao et al., 2019; Ammar et al., 2024a; Ammar et al., 2025). For one of the 16 participants recruited (participant 08), the catch phase could not be identified using the definitions described by Nagao et al. (2019). Data related to this participant was therefore excluded from further analysis (Figure 1). The trimmed barbell position and velocity trajectories were normalised based on body height, and the GRF on the basis of body mass. All trajectories were time normalised by linearly interpolating the trajectories to 101 time points (0%–100% of the power snatch movement). Finally, the initial values were subtracted from the barbell position trajectories to standardise them, ensuring that all trajectories start from a baseline value of zero. Figure 1 illustrates the processed barbell position trajectories in the sagittal plane for the 16 participants.
[image: Sixteen graphs display the vertical position as a percentage of body height against horizontal position, also in percentage of body height. Each graph, labeled P01 to P16, features colored lines representing different conditions or trials, illustrating movement patterns. The graphs show variations and trends in the vertical and horizontal positioning.]FIGURE 1 | Processed position trajectories of the barbell during the power snatch of the 16 participants (P01 to P16). Each subfigure shows the anterior-posterior displacement of the barbell along the abscissa (x-axis) and the vertical displacement of the barbell along the ordinate (y-axis) as a multiple of the participant’s body height. The randomization of the motor learning models within the 4 test sessions (S1 to S4) for each participant is detailed in the legend of each subfigure. Please note that the subfigure labelled P08 represents the trajectories excluded from the analysis, belonging to participant 08.
2.4.3 Data analysis (machine learning-based classification)
In total, the kinematic (i.e., position and velocity) and kinetic (i.e., ground reaction force) trajectories of 180 power snatch lifts performed by 15 participants after each of 4 training bouts formed the basis for the machine learning-based classification analysis. Two classification tasks were investigated: participant classification and motor learning model classification. Support Vector Machines (SVMs) (Cortes and Vapnik, 1995) were used as a machine learning classification method, as they have shown competitive performance in the classification of biomechanical data (Horst et al., 2019; Burdack et al., 2020; Slijepcevic et al., 2021; Horst et al., 2023) and favourable runtime efficiency. We utilised the Liblinear Toolbox (version 1.4.1) with a linear kernel and an L2-regularised L2-loss function (Fan et al., 2008). The hyperparameter C was set to 1, a standard default that balances regularization and ensures good generalization performance (Fan et al., 2008).
As Figure 2 shows, for both classification tasks, a leave-one-group-out cross-validation approach was utilised to evaluate the performance of the SVM models across motor learning models (in the participant classification) and participants (in the motor learning model classification). For participant classification, all trials from three out of four test conditions were used as training data (135 trials), while the trials from the remaining condition were used as test data (45 trials). This procedure was repeated so that the trials of each test condition were used once as test data, resulting in a 4-fold cross-validation (Fold 1: “bCIL” was tested, Fold 2: “sCIL” was tested, Fold 3: “DL” was tested, Fold 4: “RL” was tested). Similarly, a 5-fold cross-validation was performed for the classification of the test conditions, leaving out a subset of the participants in each case. This involved dividing the participants into 5 groups and repeatedly using one of the groups (36 trials) as validation of the model trained on the remaining groups (144 trials). This procedure resulted in a 5-fold cross-validation with participants “9, 15, 6” being tested in Fold 1, participants “1, 7, 10” being tested in Fold 2, participants “4, 2, 12” being tested in Fold 3, participants “14, 11, 3” being tested in Fold 4, and participants “5, 16, 13” being tested in Fold 5.
[image: Flowchart illustrating the process of analyzing raw data: (1) Setting phase measuring marker positions and ground reaction force, (2) Processing phase filtering and normalizing data, (3) Cross-validation through leave-one-group-out method with SVM, visualized in a diagram.]FIGURE 2 | Machine learning-based classification procedures.
In the classification, we evaluated the performance of 15 combinations of trajectory-related input (position.AP/V, velocity.AP/V, GRF.AP/V), as detailed in the results tables. These combinations included 9 focusing solely on kinematic input, 3 on kinetic input, and 3 integrating both kinetic and kinematic inputs. This led to an examination of 15 input trajectory configurations alongside 3 scaling approaches, yielding a total of 45 distinct combinations. Regarding the scaling approaches this include 1. no scaling; 2. batch scaling with data being scaled based on the absolute maximum value in the training data (separately for each trajectory); and 3. instance scaling with data being scaled based on the absolute maximum value of the trial (separately for each trajectory).
To identify the input features utilised by SVM models in the given classification tasks, we employed Layer-wise relevance propagation (LRP) (Bach et al., 2015; Horst et al., 2019), a method widely used in explainable artificial intelligence designed to reveal the basis for machine learning model predictions. The LRP method allows for the decomposition of the SVM model’s predictions into relevance scores for each input feature, highlighting the contributions of specific features to the classification decisions (Bach et al., 2015; Horst et al., 2019). Particularly, these relevance scores indicate the input values used by the SVM model for its prediction, with positive scores supporting the classification prediction and negative scores opposing it. In this study, we decomposed ground truth class labels and analysed only positive input relevance scores (i.e., those favouring the ground truth label), which were subsequently normalised to the respective maximum of each trial. Following this, the relevance scores were aggregated across all trials to generate model-level explanations, providing insights into the trained machine learning model’s overall functionality. This approach facilitated the identification of task-specific prototypes and characteristic patterns by calculating the average LRP relevance scores across all trials and cross-validation folds in the test set.
The data processing and analysis was performed using Matlab R2023b (MathWorks, USA).
In Table 1 and Table 2 of the results section, averaged accuracies were introduced. These values were calculated using the “average” function of Excel which is based on the “arithmetic mean” formula: sum of all values (in all folds and scaling approaches) divided by the number of values.
TABLE 1 | Prediction accuracy of the participant classification with leave-learning-model-out cross-validation for different data partitions (i.e., folds). In Fold 1 "bCIL " was tested, Fold 2 "sCIL” was tested, Fold 3 "DL” was tested, Fold 4 "RL” was tested.
[image: A detailed table displays experimental data related to variables and accuracy across different scaling conditions and test/training data. It includes sections for no-scale, instance scale, and batch scale conditions for Barbell Kinematic, Kinetic, and Kinematic + Kinetic categories. Each section contains columns for multiple data folds and their mean with standard deviation. Measurements such as Position, Velocity, and Ground Reaction Forces (GRF) are listed with various configurations. The table concludes with an averaged accuracy value of 6.7 across all configurations.]TABLE 2 | Prediction accuracy of the learning-model-classification with leave-participant-out cross-validation for different data partitions (i.e., folds). Fold 1: participants “9, 15, 6" were tested; Fold 2: participants “1, 7, 10" were tested; Fold 3: participants “4, 2, 12" were tested; Fold 4: participants “14,11,3" were tested; Fold 5: participants “5,16,13" were tested.
[image: A detailed table comparing the effects of different scaling conditions on test and training data accuracy for various variables related to barbell kinematic, kinetic, and combined kinematic-kinetic measurements. The table is divided into sections for no-scale, instance scale, and batch scale conditions, with columns indicating results across different folds, mean values, and standard deviation. Variables analyzed include position, velocity, and ground reaction forces in various combinations, with averaged accuracy provided.]3 RESULTS
3.1 Performance evaluation
3.1.1 Participants classification
Table 1 shows the prediction accuracy results of the participant classification. Regardless of the scaling approach and fold, the results showed the highest averaged prediction accuracies when kinematic data were considered and combined either alone (accuracy of 78.0% ± 9.2%) or in combination with the GRF data (accuracy of 78.3% ± 9.7%), indicating a non-advantage of adding kinetic data. The lowest averaged prediction accuracy was detected when kinetic data, particularly GRF.AP were considered (accuracy of 40.6% ± 4.8%). The combination of kinetic data resulted in an accuracy of 57.6% ± 10.6%, which was markedly lower than the accuracy achieved using combined kinematic data. The highest prediction accuracies were achieved in the kinematic combination when the classification models (i.e., SVMs) were trained with sCIL and DL data (i.e., fold 1 and 4) with an accuracy ranging between 77.8% and 91.9% across the three scaling approaches, resulting in an averaged accuracy of 85.6% ± 5.4%.
When considering the scaling approach, the highest prediction accuracies (average of the 4 folds) were recorded following no scaling approach with an accuracy of 81.1% ± 8.4% when considering the combination of kinematic data, and following batch scaling approach (accuracy of 80.6% ± 10.8%) when considering the combination of kinematic and kinetic data. In both combinations the lowest accuracies were achieved following the instance scaling approach (73.3% ± 7.0% and 76.1 ± 11.5, respectively).
Looking at each prediction accuracy across the different scaling approaches and fold procedures, the highest prediction accuracy was 91.1% registered following the batch scaling approach when considering combined kinematic data, either alone or in combination with the kinetic ones, and training the SVM with data from sCIL, DL, and R. The second highest accuracy of 88.9% was found following the no scaling approach when considering similar combinations and training data.
3.1.2 Motor learning model classification
Table 2 shows the results of the learning-model-classification. Regardless of the scaling approach and fold procedures, the highest averaged prediction accuracy was 27.3% ± 3.9%, when GRF.AP data were considered. Similarly low accuracy rates were observed across various scaling approaches and input conditions, with prediction accuracies ranging between 8.3% (no-scale, position.AP, fold 1) and 38.9% (instance or batch scaling, GRF.V, and fold 5).
3.2 Explainability evaluation
The model explainability results obtained by LRP were evaluated across three combinations of trajectory-related inputs (position.AP/ position.V, velocity.AP/ velocity.V, GRF.AP/GRF.V) and scaling approaches (no scaling, batch scaling, instance scaling) for the participant classification task. The results for the motor learning models classification task were not evaluated because the prediction accuracy indicated that the models likely were not able to identify relevant features for the classification task.
Figure 3 provides an overview of which input values are relevant for discriminating between movement techniques of different participants, presenting the average input vectors with aggregated colour-coded LRP relevance scores across all test samples for the input combinations: position.AP/ position.V (Figure 3A), velocity.AP/ velocity.V (Figure 3B), and GRF.AP/GRF.V (Figure 3C). The highest LRP relevance values are observed between 40%–100% (position.V), 30%–60% (velocity.V), and 0%–15% and 80%–100% (GRF.V) of the snatch movement techniques. Across all input combinations and scaling approaches, the aggregated average LRP relevance values for the vertical input trajectories exceed those for the horizontal trajectories. This trend is particularly pronounced for the GRFs, with a notable scarcity of relevant ranges for the GRF.AP across the three scaling approaches.
[image: Three columns of line graphs in a color scale from blue to red depict changes over time. Column A, labeled Position, shows three series with varied amplitude. Column B, labeled Velocity, displays three series with more pronounced fluctuations. Column C, labeled GRF (Ground Reaction Force), shows three series with deep troughs and peaks. Each row corresponds to a different series within the columns. Time progresses along the x-axis, and the y-axis represents different measurement values.]FIGURE 3 | Explainability results obtained through LRP for three input combinations: (A) position.AP, position.V, (B) velocity.AP, velocity.V, and (C) GRF.AP, GRF.V. Each across three different scaling approaches: (top) no scale, (middle) instance, and (bottom) batch. The average input vectors (+/- one standard deviation) with aggregated colour-coded LRP relevance scores across all test samples are presented. For visualisation, input values neutral to the classification task are shown in dark blue colour, while red colour indicates input values relevant for the classification task.
While the regions with the highest LRP relevance remain consistent across the three scaling approaches, notable differences arise due to the scaling approach. This effect is most evident for the position.AP trajectory. In the no-scaling approach, the position.AP exhibits a reduced number of relevant regions for participant classification by the SVM compared to position.V. However, with instance scaling, a relevant region emerges in position.AP. Furthermore, there is a pronounced emphasis on the movement endpoint, particularly noticeable with position.V in the absence of scaling, but this effect is mitigated by batch and instance scaling. A similar trend is observed with GRF.V, albeit less prominently.
4 DISCUSSION
Machine learning-based analyses of movement techniques have been recommended in the context of learning an Olympic weightlifting technique (Ammar et al., 2024a; Ammar et al., 2025), such as classification based on participant versus motor learning models to substantiate the individuality hypothesis in whole-body movement techniques. The employed SVM in the present study aimed at evaluating the individuality hypothesis at the very early phase of acquisition, through the classification of participants and motor learning related snatch patterns performed by novices.
The main findings revealed a superior prediction accuracy for the participant compared to the motor learning model classification. The prediction accuracy for the participant classification across all scaling approaches reached 78% for the averaged values and 91% following specific fold and input combination procedures, markedly exceeding the zero-rule baseline of 6.7% (1/15 participants). In comparison, the prediction accuracy for motor learning model classification was 27.3% for the averaged values, not heavily exceeding the zero-rule baseline of 25% (1/4 motor learning models), and 38% following specific fold and input combination procedures. This discrepancy underscores the inadequacy of motor learning model classification based on the short-term effects of single training bouts, which performs no better than the zero-rule baseline, in comparison to the strong capability to classify individual participants. This result supports the persistence of individual snatch techniques of novice participants across different motor learning models already at the very beginning of the acquisition phase. The present results provide specific evidence for the “individuality” assumption of whole-body movement techniques in the domain of Olympic weightlifting. The explainability results obtained through LRP indicate that the participant classification depends often on multiple features, with emphasis on near maxima or inflection points of the curve as well as on the start or end of movements (Figure 3) where variability is more prevalent, especially among novices (Liu et al., 2018). From a signal theoretical point of view these areas are either connected with a change of sign (zero crossing) or are associated with maxima in their next derivative that contains the most information of a signal and most probably indicates the expression of the most individual features.
The present findings contribute additional evidence to the growing body of research supporting the individuality of movement techniques, demonstrating that this individuality is evident not only at the end of a learning process (Schöllhorn and Bauer, 1998a; Schöllhorn et al., 2001; Horst et al., 2017b; Hoitz et al., 2021; Horst et al., 2023b) but also from the beginning (i.e., novices). The findings of this study align with the sport science training principle of ‘individuality’ proposed by Matveev, (1966). This principle emphasises the importance of considering individual differences among athletes throughout the training process, regardless of their performance level. In comparison, our findings challenge the training principle of increasing individualisation advocated by Harre (1975) (Martin et al., 1991; Schöllhorn et al., 2002a), which suggests that individual differences among athletes should only be taken into account in advanced performance level athletes.
The need to consider individuality of movement techniques throughout the motor learning process (i.e., during acquisition, stabilisation, and refinement phase) is further corroborated by studies that attempted to evaluate the individuality of movement techniques by assessing commonalities across diverse movement techniques (Horst et al., 2020; Burdack et al., 2023). Particularly, focusing on varied movement techniques within the same sport domain (i.e., throwing), Horst et al., 2020 used an automatic classification by means of machine learning (i.e., SVMs) to identify participant- and discipline-specific throwing techniques. Furthermore, exploring different movement techniques across various domains, Burdack et al. (2023) investigated the individuality assumption in walking, running, and handwriting techniques through a person classification. Their findings indicated distinct differences between participants in terms of GRF.V in running or walking, as well as in vertical pen pressure in handwriting with F1-scores exceeding 90%. Collectively, these results from the present study and previous research provide substantial evidence for individual characteristics both within single-movement technique as well as across different movement techniques with either similar or different kinematic structures.
Prior to this study, empirical recommendations for the most effective processing (e.g., scaling approaches) and combination of input trajectories for classifying movement techniques in Olympic weightlifting were scarce. The present study represents a pioneering effort to provide insights into optimal scaling approaches and combinations of kinematic and/or kinetic input combinations for machine learning classification in this field.
The analysis of the combinations of input trajectories on the accuracy in participant classification showed that the highest prediction accuracies with SVM models were attained using kinematic data either alone (position.AP/V, velocity.AP/V) or in combination with kinetic ones (position.AP/V, velocity.AP/V, GRF.AP/V), achieving an average accuracy of 78%, in both cases. These findings suggest that adding kinetic GRF data does not confer an advantage in terms of prediction accuracy in the studied movement technique. The exclusive use of kinetic data resulted in a lower average accuracy of 57.6%. The lower prediction accuracy of the kinetic data compared to the kinematic data, coupled with the lack of improvement in accuracy despite the inclusion of kinetic data alongside kinematic data, might be attributable to the processing approach used for the kinetic data. The data segmentation relied on the kinematic data of the barbell, which may have favoured kinematic variables. Furthermore, disparities in movement technique among the novice participants may have exerted a more pronounced effect on the GRF data. Specifically, some trials featured a flight phase during the snatch movement, while others did not. The presence or absence of flight phases, which affect GRF data significantly more than kinematic data (GRFs drop to zero while kinematic data continue their trajectory), poses greater challenges for participant classification. Future research could benefit from incorporating whole-body kinematic measures, such as ankle, knee, and hip angles, allowing for more detailed and accurate segmentation of the snatch movement’s phases. A more precise definition of movement phases and phase-dependent scaling of GRF data could potentially yield kinetic prediction accuracy comparable to that of the kinematic data. These observations underscore the critical role of adopting appropriate data preprocessing pipelines (i.e., segmentation) in machine learning-based research in biomechanics.
The analysis of the impact of different scaling approaches on the accuracy in participant classification, particularly with kinematic input combinations, revealed a decrease in accuracy when scaling is applied, particularly instance scaling, as opposed to classifications without scaling (81.1% ± 6.7% vs 73.3% ± 7.0%). This discrepancy remains notably for instance scaling even when considering a combination of both kinematic and kinetic inputs (76.1% ± 11.5%), where the accuracy rates for classifications without scaling and batch scaling stood exceeding 78%, with slight advantage of batch scaling (≈81%). These results suggest that the no scaling approach generally showed better performance, particularly with mixed kinematic data inputs, likely due to its less restrictive handling of variable ranges. This is a surprising finding, because scaling prior to machine learning-based classifications is generally recommended and accepted in the machine learning domain (Bishop, 2006). For example, to allow all input trajectories to have an equal share to the prediction of the machine learning models. Our results indicate for the position, velocity, and GRF trajectories that the AP trajectories are hardly relevant for the decision of the SVM compared to V trajectories if the data is not scaled (Figure 3). Indeed, the LRP relevance scores indicated that the vertical trajectories (position.V and GRF.V) consistently showed higher relevance values, particularly at key phases of the movement (e.g., 40%–100% for position.V and 80%–100% for GRF.V). This suggests that these phases, contain critical information for distinguishing individual movement techniques. Additionally, the scaling approach influenced the distribution of relevance scores, with instance scaling revealing relevant regions in position.AP that were not evident with no scaling. However, in particular for the position and GRF trajectories, we can observe that the start and the end phase of the movement have higher LRP relevance scores when input trajectories are not scaled prior to the SVM classification (Figure 3). This could indicate that differences in the start or end position are taken more into account by the SVM models. This may be helpful for differentiating participants (and have a positive effect on the prediction accuracy), but for classification tasks that are evaluated across participants, a stronger integration of these characteristics (which are more related to body size rather than to movement technique) may be disadvantageous. It is important to note that the input trajectories in our study were already normalised to body height and body weight. This normalisation implies that differences in amplitude range between trajectories were already mitigated. Further research is necessary to explore this aspect in depth and provide recommendations for scaling methods that consider not only classification performance but also the prevention of biases. For instance, Burdack et al. (2020) indicated a notable enhancement in classification accuracy when using advanced preprocessing pipelines prior to the classification of gait data (Burdack et al., 2020). The study demonstrated that while weight normalisation and the number of data points in time normalisation had limited effects, filtering GRF data and employing data reduction techniques, such as Principal Components Analysis, significantly improved the prediction performance of machine learning-based approaches. The extent to which these domain-specific recommendations for common data preprocessing methods in human gait are applicable to sports movements, such as strength-coordination exercises, warrants further investigation.
Overall, the present results demonstrate that the movement techniques of the individual participants exhibit a high degree of uniqueness even at the beginning of the acquisition phase in Olympic weightlifting, and that these individual movement techniques are persistent across various learning bouts with different motor learning models. However, the preliminary nature of these findings and caution against their generalisability needs to be considered. This relates, among other factors, to the following considerations:
	(1) Since the present analysis was conducted using data gathered only from a standard empty barbell weighing 20 kg, these results need to be verified using higher barbell load commonly used during weightlifting training.
	(2) We acknowledge the lack of kinematic data related to the athletes’ complete gestures as a main limitation of our study. Analyzing the participants’ complete gesture, in addition to the weightlifting bar, would provide deeper insights into the contributions of the different segments to the movement as well as the ratios of force and speed deployed by each subject in each technique. This would offer a more comprehensive understanding of the individuality in motor learning.
	(3) The lack of perfect classification accuracy (approximately 20% misclassification) warrants further investigation in future research. Possible factors contributing to this include increased movement variability in absolute novices, a limited amount of data per participant, simple data processing (no reduction techniques, no hyperparameter tuning) and classification (linear SVMs) pipelines, or the individual variability in response to the barbell weighing of 20 kg and the motor learning models. This also raises questions about the individual’s sensitivity to specific motor learning interventions and the origins of these sensitivities.
	(4) In particular, the persistence of individual movement techniques in motor learning interventions needs to be investigated in more detail. Since the present analysis encompassed only four learning bouts, each comprising 36 trials according to another motor learning model, these results need to be verified over longer time periods and controlled for differing effects between motor learning models. The variance across folds in the participant classification suggests differing effects among various motor learning models. Interestingly, within the kinematics input combination, the present findings showed their highest prediction accuracies when trained with data after the sCIL and DL training bouts (i.e., the cases of folds 1 and 4). These results suggest varying impacts of different motor learning models, particularly those that induce variability, such as sCIL and DL. However, further research is needed to determine whether the robustness and accuracy of the SVM models primarily depend on the variability of the motor learning models (either inter- or intra-variability), or if it is simply a result of a specific cross-validation procedure. A question to be clarified will be, how the variability introduced by different motor learning methods, e.g., serial or random and within or between motor programs in CIL or the size of execution-to-execution differences in DL, will affect movement variability during the learning bouts and how this will shape the long-term development of a participant’s movement technique.
	(5) The uniqueness and persistence of individual movement techniques also need to be investigated in more experienced populations during the stabilisation and refinement phases of motor learning, in Olympic weightlifting.
	(6) The present finding is specific to machine learning-based studies that utilise a similar data preprocessing approach and must be validated by further strength-coordination-based research employing different preprocessing methods. This future research needs to explore explainable artificial intelligence (e.g., LRP) in more detail.

Regardless of the large-scale tasks at hand, our findings encourage the applicability and efficacy of machine learning-based classifications (i.e., using SVMs) of biomechanical data in the exploration of complex human movement techniques and the identification of athlete-specific similarities in weightlifting-movement patterns across different motor learning models, especially among novice athletes. Such insights advocate for a tailored approach to data preprocessing and combinations of input trajectories to enhance model performance and reliability in identifying participant-specific movement techniques.
5 CONCLUSION
This research reinforces the feasibility of employing machine learning classification for more comprehensive analyses of biomechanical technique analysis especially in the context of movements that combine strength and coordination. The study provides additional evidence supporting the concept of the individuality of whole-body movements, highlighting its uniqueness and persistence aspects, specifically within the context of weightlifting and strength-coordination activities that engage the whole-body motor system. Notably, the study reveals that unique movement patterns can be discerned even among novice practitioners and persist post-training bouts, irrespective of the training method employed. Additional research is needed to determine whether the observed individuality is consistent across different levels of expertise, stages of motor learning, and sports disciplines with varying kinematic structures. Such research could also elucidate how coordination, strength, and endurance (each operating on distinct temporal scales) influence the long-term adaptation processes of individual movement techniques. Future research in this area should be conducted with caution, emphasizing the critical importance of the appropriate selection of input trajectories and data scaling for machine learning classifications. In more general terms, the results underline the need for a more thorough understanding of the time-dependent changes in individual living systems based on a nonclassical statistical approach as it is associated with the machine learning approach.
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Objective: The objective of this investigation is to examine the contribution of key muscle groups in the lower limbs to vertical jumping performance in elite male volleyball players. Specifically, the study focuses on the rectus femoris (RF), vastus lateralis (VL), and lateral gastrocnemius (LG), as well as exploring differences between attack jump and other vertical jump types.Methods: To achieve this, we employed B-mode ultrasound to evaluate the anatomical cross-sectional area (ACSA), muscle thickness (MT), pennation angle (PA), and fascicle length (FL) of the RF, VL, and LG in the participants. Fifteen elite male volleyball players were recruited as participants for this study. Jump heights were measured for four types of vertical jumps: attack jump (AJ), countermovement jump (CMJ), squat jump (SJ), and drop jump (DJ). We conducted regression analyses to assess whether the previously mentioned muscle structures could predict jump performance.Results: Our findings reveal that the muscle structure of the RF does not exhibit any significant correlation with the height of any jump. However, VL-ACSA displays a significant and the most potent predictive effect on jump height for all four jump types (AJ: R2 = 0.32, p = 0.001; CMJ: R2 = 0.37, p = 0.005; SJ: R2 = 0.52, p = 0.001; DJ: R2 = 0.25, p = 0.021). Conversely, LG-FL only demonstrates a significant and stronger predictive effect on AJ jump height (R2 = 0.18, p = 0.009). Combining VL-ACSA, LG-FL, and training age through multiple linear regression analysis resulted in a highly significant model for predicting AJ jump height (F = 13.86, R2 = 0.73). Moreover, the model incorporating VL-ACSA and training age is also important for predicting CMJ, SJ, and DJ jump heights (F = 8.41, R2 = 0.51; F = 13.14, R2 = 0.63; F = 5.95, R2 = 0.41; respectively).Conclusion: The muscle structure indicators in the lower limbs significantly predict jump performance among elite male volleyball players. However, different jump types are influenced by distinct indicators, particularly in the case of AJ, which is associated with LG-FL. This suggests that enhancing LG-FL may positively impact AJ ability, thereby emphasizing the importance of specificity in training. To optimize specialized jump performance in volleyball players, practitioners are advised to assess VL-ACSA and LG-FL and incorporate step-up and eccentric strength training targeting the calf muscles to yield considerable benefits.Keywords: ultrasonography, anatomical cross-sectional area, fascicle length, spike jump, performance
INTRODUCTION
Volleyball is a sport that requires overcoming body weight and completing various explosive movements in a short period of time. The special actions in volleyball such as jumping, landing, blocking, and spiking require fast explosive movements, placing high demands on the athletes’ lower limb neuromusculoskeletal system, making vertical jumping ability a key factor for success (Sheppard et al., 2009; Xu et al., 2022; Xu et al., 2023). Among the various types of vertical jumps, attack jumping (AJ) is especially important for improving volleyball performance (Marcelino and Milanovic, 2000; Fuchs et al., 2021). The height reached during attacking also influences the outcomes of both men’s and women’s volleyball matches (Berriel et al., 2021).
Muscle structure refers to how muscle fibers are aligned for the direction of force, forming the macroscopic configuration of muscle fibers (Maden-Wilkinson et al., 2021). Ultrasound (US) scanning is an imaging technique that is efficient, accessible, swift, and cost-effective and has been widely used to evaluate muscle structure (Lichtwark et al., 2007; Aggeloussis et al., 2010; Lieber and Ward, 2011). Some validation studies have compared ultrasound measurements with reference standards such as magnetic resonance imaging (MRI) or cadaveric dissection (Ema et al., 2013; Franchi et al., 2018). These studies not only demonstrate a high level of agreement between ultrasound and MRI measurements in various muscle structural parameters but also indicate good reliability and validity of ultrasound measurements in assessing muscle structure (Betz et al., 2021; Narici, 1999). Furthermore, previous research has confirmed the reliability and validity of ultrasound measurements for assessing the muscle structure of vastus lateralis (VL) (Raj et al., 2012; Betz et al., 2021), rectus femoris (RF) (Lima et al., 2012; Ema et al., 2013), and lateral gastrocnemius (LG) (Kwah et al., 2013; May et al., 2021). The technique provides reliable measurements of different aspects of muscle architecture, such as muscle anatomical cross-sectional area (ACSA), muscle thickness (MT), fascicle length (FL), and pennation angle (PA). Moreover, ultrasound imaging can assess these features of muscle structure (Kwah et al., 2013) (with an average intra-class correlation coefficient above 0.7) in both the contracted and relaxed states of muscle, confirming its effectiveness.
Muscle architecture is one of the fundamental factors that affect muscular force and explosiveness (Suchomel et al., 2016; Franchi et al., 2018; Maden-Wilkinson et al., 2021). For athletes, having strong and explosive muscles is essential for high vertical jumping ability and overall athletic performance (Secomb et al., 2015). Long-term physical training can lead to changes in muscle ACSA, MT, FL, and PA, thereby improving muscle strength and explosiveness levels (Narici et al., 1996; Blazevich, 2006; Pareja-Blanco et al., 2017). This training method has a significant impact on performance in activities such as jumping, sprinting, and change of direction, and it also plays an important role in specialized sports skills and performance (Suchomel et al., 2018; Suchomel et al., 2016). Previous studies have found significant differences in lower limb muscle architecture between trained athletes and untrained individuals, such as variations in fascicle length, pennation angle, and thickness (Maughan et al., 2004; Alegre et al., 2005). Elite athletes usually have better muscle force, explosiveness, and architecture than amateur athletes, which may explain their outstanding performance (Methenitis et al., 2016; Sarto et al., 2021). Lower limb architecture plays a key role in influencing lower limb explosiveness and jumping ability. Optimizing lower limb muscle architecture can potentially increase vertical jumping height (Secomb et al., 2015). Therefore, changes in muscle thickness (Lichtwark et al., 2007; Aggeloussis et al., 2010; Earp et al., 2010), fascicle length (Aggeloussis et al., 2010; Earp et al., 2010), pennation angle (Lichtwark et al., 2007; Earp et al., 2010; Kwah et al., 2013), and anatomical cross-sectional area (Suchomel et al., 2018; Suchomel and Stone, 2017) in the lower limb may significantly affect volleyball attack jumping height (Blazevich et al., 2009). Moreover, different sports and athlete levels have unique body morphology and muscle architecture features, indicating sport-specific adaptations (Secomb et al., 2016; Zaras et al., 2022).
Previous studies suggest that RF, VL, and LG are representative muscles of the lower extremity that strongly correlate with the general vertical jumping ability (CMJ, SJ, DJ) (Earp et al., 2010; Secomb et al., 2015; Ruiz-Cardenas et al., 2018). Therefore, these muscular structures can indirectly reflect an athlete’s jumping aptitude, provide valuable information about their physical condition, and facilitate targeted improvement of lower extremity muscular structures to enhance jumping performance (Lees et al., 2004). However, due to the lack of evidence in this domain, it is unclear which muscular structures of the lower extremity reflect the specialized jumping ability of elite volleyball players.
Standardized jump tests measure general vertical jump ability, but they may not reflect how athletes perform in real competition or training situations. Different events require different technical jump forms, which affect the effective competition performance (Jidovtseff et al., 2014). For example, in volleyball, the attack jump is a key skill that determines the attack’s success. Therefore, this study aimed to investigate how the lower limb muscle structure of elite male volleyball players relates to their attack jump height. We also wanted to find out which lower limb muscle structure can predict the attack jump height, and how it differs from the one that influences the general vertical jump height. We hypothesized that the muscular architecture of RF, VL, and LG associated with general vertical jump performance can also predict the attack jump height, but with different specific muscular structure indices. Our results will help practitioners design targeted training plans to improve the attack jump ability of elite volleyball players and provide new insights and theoretical bases for further research.
MATERIALS AND METHODS
Experimental approach to the problem
This study adopted a mixed experimental design, incorporating block randomization, repeated measures, and regression analysis, to evaluate the impact of the muscle structure of RF, VL, and LG on the jump height of AJ, CMJ, SJ, and DJ. This design addresses multiple variables and their effects, controls for potential biases, and accounts for individual differences. By quantifying the specific contributions of different muscle structures to the heights of different types of jumps, this approach enhances the reliability of the results and strengthens the scientific rigor of the study. All participants first underwent a B-mode ultrasound test, followed by two or three trials of each type of jump test, with a 2–3 min interval between each jump. Each participant completed all tests in one session at a fixed time on the same day.
Subjects
Fifteen elite male volleyball athletes participated in this study (Tables 1, 2), All subjects had at least two Chinese national competitions or world international competition experiences, and five of them were former members of the Chinese national team. Thus, all subjects participated in national competitions and were international players who had taken part in international competitions. All subjects underwent at least 1 month of pre-competition preparation before testing. This study only included those who had not suffered from serious skeletal muscle or joint diseases that could have affected the study results within 2 months before the testing. During the study, none of the players took performance-enhancing drugs.
TABLE 1 | Basic information of the subjects (n = 15).
[image: Table showing means and standard deviations of four variables: Age with mean 22.47 years and SD 4.09, Height with mean 195.4 cm and SD 7.3, Body mass with mean 90.9 kg and SD 9.55, Years of professional training with mean 7.13 years and SD 3.64.]TABLE 2 | Mean ± SD of jumping heights among elite male volleyball players: AJ, CMJ, SJ, and DJ (n = 15).
[image: Table showing jump variables with their mean and standard deviation values. Attack jump (AJ) has a mean of 0.55 meters and SD of 0.07. Counter movement jump (CMJ) has a mean of 0.42 meters and SD of 0.06. Squat jump (SJ) has a mean of 0.40 meters and SD of 0.06. Drop jump (DJ) has a mean of 0.55 meters and SD of 0.07.]All subjects were informed of the study’s purpose and process and understood the experimental intent. They voluntarily participated in this study and signed an informed consent form.
Procedures
Body composition test
Athletes were advised to hydrate adequately before the test. Each participant underwent all tests in one session. Before warming up, the participants wore sportswear and were barefooted, and their height and weight were measured using an electronic scale (model INDEX S2, GARMIN company) and a height-measuring ruler.
B-mode ultrasound test
Musculoskeletal ultrasound testing is performed using a real-time B-mode ultrasound imaging system (LOGIQ 𝘦 NextGen Ultrasound, GE Healthcare, United States) with a linear probe (L4-12T-RS) ranging from 4.2 to 13.0 MHz. The extended field of view (EFOV) mode (LOGIQview) is used. This equipment and technique have been validated in ultrasound measurements of muscle structure (Noorkoiv N. et al., 2010; Noorkoiv M. et al., 2010; Kwah et al., 2013).
The B-mode ultrasound assessment protocol is articulated as follows (Betz et al., 2021; Coratella et al., 2019; Ema et al., 2013; May et al., 2021): 1) Before the formal examination begins, the examiner explains the procedure and requirements of the ultrasound examination to the subjects, instructing them to wear shorts, remove their shoes, and assume a supine, lateral, or prone position on the examination table. The hip joint is extended, and the knee joint is nearly fully extended (170 of extension, complete extension of 180°) for measurement; 2) The examiner selects the RF measurement point at 50% distance between the center point of the patella and the anterior superior iliac spine, and marks the orientation line (Ema et al., 2013). The VL measurement point is selected at 50% distance between the greater tuberosity and the lateral condyle of the femur, and the orientation line is marked (Coratella et al., 2019). The LG measurement point is selected at the widest part of the muscle belly between the lateral condyle of the femur and the lateral malleolus (60%–70%), and the orientation line is marked (May et al., 2021); 3) The probe is oriented longitudinally (parallel to the femur) with the measurement point coinciding with the probe’s midpoint. A slight tilting motion is employed to procure standardized, lucid images for MT and PA measurements (Figure 1); 4) To quantify muscle ACSA, extended field of view (EFOV) software (LOGIQview, GE Healthcare GmbH) is utilized to generate a panoramic image of the skeletal muscle’s belly. The probe is positioned transversely (orthogonal to the femur and along the pre-marked linkage line), initiating from the muscle’s inner edge. Subsequently, the EFOV software is activated, and the probe is gradually moved along the line to the muscle’s outer edge, maintaining a constant velocity and minimal pressure (Figure 2); 5) While assessing the thigh with a probe, it is imperative to ensure ample water-soluble gel application between the probe and skin while preserving minimal pressure during scanning. A minimum of three distinct images are captured and archived at each marked point, under conditions of the participants in supine, lateral, or prone positions, with fully extended legs and relaxed muscles; 6) To ascertain that measurements are obtained under conditions of limb immobility, muscle relaxation, and normal joint alignment, foam pads are strategically placed under knee joints when supine, between ankle joints and knee joints during lateral positioning, and in front of ankle joints when prone, to alleviate muscle tension and maintain muscular relaxation and bodily fluid stability; 7) The assessment protocol for skeletal muscle in both left and right lower limbs remains consistent.
[image: Ultrasound image showing muscle fibers with measurement markers. A vertical line is labeled 27.6 millimeters and a horizontal line is labeled 21.4 degrees. Green lines indicate angles and lengths.]FIGURE 1 | A typical musculoskeletal ultrasound image, demonstrating the thickness (MT) and pennation angle (PA) of the vertical muscle layers between the superficial fascia (SA) and deep fascia (DA) (indicated by the green lines).
[image: Ultrasound image showing a cross-sectional view of breast tissue, with outlined regions in green, indicating measurements of the area as sixty-one point zero six cubic centimeters and a perimeter of seventy-seven point two three centimeters.]FIGURE 2 | A typical panoramic ultrasound image is used to measure the anatomical cross-sectional area (ACSA) within the fascia of skeletal muscles, indicated by the green line.
AJ test
Before the jump test, participants completed a specific warm-up. This included 8 min of slow jogging at 8 km/h, and 7 min of dynamic stretching, The dynamic stretches included body weight squats, knee hugs, walking lunges, walking quadriceps stretches, high kicks, lateral lunges, and two maximum-intensity jump exercises. The protocol for the AJ test, whose reliability and validity have been substantiated in previous research (ICC = 0.97–0.99, CV = 2.1–2.8), was adhered to in this study (Sattler et al., 2012) and is as follows: 1) The examiner elucidated the procedure and prerequisites of the AJ test to the subjects and affixed six markers on the hip joint’s anatomical landmarks to ascertain the center of mass position. The apparatus was initiated once the subjects had acquainted themselves with the test motion and protocol; 2) In the AJ test, subjects were instructed to employ a 2- to 3-step approach of their preference and execute a jump augmented by an arm swing. They were to strive for maximal height in the ensuing rapid vertical jump, complemented by a vigorous arm swing. Subjects were guided to execute the jumping maneuver in a manner they deemed most suitable, emulating their offensive technique movement in volleyball matches or practice; 3) Each subject was to perform the AJ test thrice, interspersed with brief rest periods not exceeding 3 min; 4) Given that subjects were instructed to utilize their distinct movements to perform the AJ test, the specific procedure was relatively non-standardized. The primary objective of this study was to construct and validate the factors influencing AJ performance, necessitating acceptance of variations in individual movement patterns among the subjects.
General vertical jump test
General vertical jump assessments typically encompass CMJ, SJ, and DJ, each of which the participant performs thrice. During the CMJ, the participant initiates from a standing posture, promptly descends to a depth of their choosing, and subsequently propels upward as rapidly as possible, executing these movements in a fluid sequence. Throughout the assessment, the participant’s hands are consistently positioned at the hips. In the SJ, the participant individually adjusts to the initial jump position, maintains stillness for 2–3 s, and then vaults upward from this position as swiftly as possible. Similarly, the participant’s hands are maintained at the hips. The starting position for the jump is determined based on the natural position observed during the CMJ and is practiced before the initial SJ. At the outset of the DJ, the participant stands atop a 20 cm high platform, departs from it with one foot, and following a two-footed landing, promptly jumps upward. The participant is required to squat to the most natural position before the jump, maintaining a smooth jumping motion, but no further jumping instructions are given.
Data processing
All vertical jump tests leveraged the Qualisys high-speed video motion capture cameras. The accompanying Qualisys Track Manager system translated the analog signal into a primary digital signal, eliminated interference, and identified and marked the requisite points, capturing comprehensive AJ kinematic data. The data was modeled using Visual 3D software, which entailed importing the statically calibrated. C3D file, entering the athlete’s anthropometric data (height and weight), conducting pelvic modeling, and establishing a virtual center of mass point. This point was then applied to the dynamic data. C3D file to finalize the motion model. The kinematic data underwent processing via Butterworth second-order bidirectional low-pass filtering. Coding calculations were performed using the Pipeline program within the Visual 3D software, standardizing the kinematic data and exporting it as a. V3D file. Ultimately, the necessary processed data were imported into an Excel spreadsheet for final processing. The peak of the center of a mass displacement curve, post-processing with Visual 3D software, yielded the attack jump height.
After exporting three distinct muscle cross-sectional and longitudinal images of RF, VL, and LG procured from the LOGIQ 𝘦 NextGen Ultrasound device, the RadiAnt DICOM Viewer 2021.1.1 (64-bit) software facilitated the measurement of anatomical cross-sectional area, thickness, and pennation angle for all muscles. Muscle fascicle length was then estimated employing the formulas utilized by Fukunaga, Secomb, Albracht, and others (Formula 1) (Fukunaga et al., 1997; Secomb et al., 2015). For analytical purposes, the results from the left and right legs were amalgamated and averaged. All data were consolidated in an Excel spreadsheet for final processing. Furthermore, all ultrasound images were captured by a single technician to guarantee the reliability and validity of the data. The formulas are as follows:
[image: Formula showing \( FL = \frac{MT}{\sin PA} \), labeled as equation (1).]
Statistical analysis
The athletes’ basic physical information and key independent variables (including ACSA, MT, PA, and FL of the RF, VL, and LG), were entered into Microsoft Excel (Microsoft 365MSO, version 16.0.16425.20000, Microsoft Corporation™, Redmond, WA, United States) and imported into IBM SPSS 26.0 statistical software (SPSS Inc., Chicago, IL) for analysis. Descriptive statistics, including mean and standard deviation (Mean ± SD), were computed for each variable. The Shapiro-Wilk test was used to assess the variables’ normality (p ≥ 0.05). The inter-rater reliability between the B-mode ultrasound measurements of the participants was determined using the intra-class correlation coefficient (ICC). The within-subject variability of each test was assessed by calculating the coefficient of variation (CV). A paired t-test was used to analyze the differences between jump performance parameters.
A multiple linear regression model was built to determine the strongest predictor of jump height for elite male volleyball players. Pearson’s correlation coefficient (rp) or Spearman’s correlation coefficient (rs) was used to examine the relationship between the muscle structure variables of RF, VL, and LG and the AJ-Height variable, depending on the normality of the variables. After this analysis, the muscle structure variables of RF, VL, and LG that showed a strong correlation with the AJ-Height variable were selected and included in the multiple regression model to determine the key combination of variables that could predict AJ-Height. To ensure that the core variables were not eliminated due to the small sample size of this study, the standard for the inclusion of variables was set at p < 0.1 (Grant et al., 2019).
To ensure the reliability of our final model, we screened for confounding variables such as age, training years, weight, and height and included them in our multiple regression analysis using the same standards. This step not only increased the reliability and accuracy of the key predictor variables but also resulted in a new multiple linear regression model. During the multiple regression analysis, multicollinearity was assessed by eliminating variables with VIF > 5. The normality of the model was evaluated through visual inspection of QQ and residual plots, and further examination was conducted to assess the strength of acceptable models, explained by Adjusted R2, and evaluated by ANOVA. To achieve good prediction accuracy, models were considered statistically significant at p ≤ 0.05, with an adjusted R2 of 0.70 or higher, according to the sample size of the multiple linear regression analysis (Knofczynski and Mundfrom, 2008). The adjusted β values for the predictor variables and the level of residual standard error (RSE) in the model were obtained using IBM SPSS 26.0 statistical software, and the model was further examined using the bootstrap method (10,000 bootstrap samples).
RESULT
Examining variances among AJ, CMJ, SJ, and DJ, and the reliability of B-mode ultrasound imaging results
According to the data displayed in Table 2; Figure 3, conspicuous and significant disparities are evident in the leap heights of AJ, CMJ, SJ, and DJ (p < 0.05). Concurrently, the information presented in Table 3 illustrates the substantial reliability of the B-mode ultrasound imaging tests conducted on the structure of the lower limb muscles (CV = 0.59–4.97%; ICC = 0.91–0.99).
[image: Bar graph showing vertical jump heights in meters for four different groups labeled A, 0S, S, and 0I. Group A has the highest average jump height at approximately 0.90 meters. Error bars indicate variability.]FIGURE 3 | Mean jump height (n = 15) for Attack Jump (AJ), Countermovement Jump (CMJ), Squat Jump (SJ), and Drop Jump (DJ). *Represents a significant difference to attack jump performance. Values are reported as Mean ± SD.
TABLE 3 | Muscle structure characteristics of RF, VL, and LG of elite male volleyball players (n = 15).
[image: Table displaying muscle characteristics for RF, VL, and LG, with variables ACSA, MT, PA, and FL. Lists mean ± SD, ICC (range), and CV (%) for each. Units include square centimeters, centimeters, and degrees.]Utilizing multivariate regression analysis to determine the predictive factors of lower limb muscle structure on the leap heights of AJ, CMJ, SJ, and DJ
Utilizing Pearson and Spearman correlation coefficients, robustly correlated lower limb muscular structure variables and confounding factors (e.g., Training Age) were incorporated into a multivariate linear regression model to construct an elite male volleyball player’s AJ-Height prediction model (R2 = 0.73; F = 13.86; p < 0.001; RSE = 0.04) and conventional vertical jump height prediction models (CMJ, SJ, DJ), as detailed in Table 4. Concurrently, In our study, we employed the Bootstrap method to test results based on 10,000 bootstrap samples, determining bias values and errors, and calculating the Bca 95% confidence intervals (CI) to demonstrate the reliability of our model. Detailed results are presented in Table 5.
TABLE 4 | Predictors of AJ-Height in elite male volleyball athletes based on multiple regression analysis (n = 15).
[image: Table displaying regression analysis results for jump height dependent variables: AJ-Height, CMJ-Height, SJ-Height, and DJ-Height. Predictors include Training Age, VL-ACSA, and LG-FL. Coefficients (\(\beta\)), standard errors, t-values, adjusted R\(^2\), residual standard errors (RSE), F-values, and p-values are provided for each predictor. AJ-Height indicates significant values for Training Age and VL-ACSA. CMJ-Height shows significant training age and VL-ACSA. SJ-Height highlights significant VL-ACSA. DJ-Height presents marginal significance. Key abbreviations are defined, such as AJ as attack jump and SJ as squat jump.]TABLE 5 | Reliability of the multiple regression model assessed by the bootstrap method.
[image: Table displaying a model's statistical analysis. It shows a deviation value of negative 0.29, a standard error of 0.45, and a bias-corrected and accelerated 95% confidence interval with lower and upper limits of 1.15 and 1.64, respectively. A note indicates the use of the bootstrap method with 10,000 samples.]DISCUSSION
This investigation aimed to elucidate the predictive capacity of RF, VL, and LG in their ACSA, MT, PA, and FL on the AJ performance of elite male volleyball players, distinguishing it from classic vertical jump types. Our study challenges the assumption of previous research that the relationship between muscle structure and performance in general vertical jumps (CMJ, SJ, DJ) can be directly extrapolated to the performance in AJ. Despite suggested correlations (Sattler et al., 2012), our data (Figure 3) suggest significant discrepancies exist, underscoring the unique characteristics of AJ in volleyball players. This may be due to the fact that different types of jumps possess specific jumping strategies and mechanical characteristics (Jidovtseff et al., 2014; Martinez, 2017; Reeser and Bahr, 2017), which could lead to varying influences of muscle structural features across different jump types. Therefore, conventional jumps may not fully represent volleyball-specific jump abilities, indicating possible limitations in using CMJ, SJ, and DJ as assessment tools for AJ performance. Our research findings also confirm that the muscle structures influencing the performance of the AJ differ from those involved in general vertical jumps. Consequently, greater attention should be devoted to understanding AJ performance and related muscular factors in volleyball athletes.
While the literature on the predictive role of lower limb muscular structures for AJ-Height is scant, making comparisons challenging, existing studies confirm the crucial role of leg muscles in general vertical jump performance. These findings underscore RF, VL, and LG as key muscles associated with lower limb functional capacity (Ruiz-Cardenas et al., 2018), likely due to their significant role in the lower limb kinetic chain. Notably, Our research has found that VL plays a key role in predicting jump height, and this result has been validated across different types of jumps. This may be due to the differences in the relative contribution rates of the four muscles of the quadriceps to knee extension torque. The current research results show discrepancies regarding the contributions of the quadriceps muscles (VL, VM, VI, RF) to knee joint extension torque (Leroux et al., 1997; Zhang et al., 2003; Narici et al., 2004; de Ruiter et al., 2008; Han et al., 2019; Lim et al., 2021). Based on recent studies, we can deduce the following relative contributions of the quadriceps muscles to knee joint extension torque: VL: 20.2%–61.4%, VM: 6.31%–23%, VI: 30%–51.8%, RF: 20.7%–28%. Interestingly, these studies have found that during submaximal isometric contractions at knee flexion angles of 60°/90°, VI and VM exhibit higher contribution rates. However, as the total knee extension torque increases, the relative contributions of VI and VM decrease, while those of VL and RF increase. This suggests that VL and RF may play a more significant role in high-intensity and explosive movements. Univariate regression analysis highlights VL-ACSA as the most significant variable in the AJ-Height prediction model, explaining 32% of the variance, aligning with previous reports on its significant correlation with general vertical jump performance and various lower limb activities (Methenitis et al., 2016; Agu-Udemba et al., 2018; Zaras et al., 2022). Observing muscle anatomical cross-sectional area is common in strength training research due to its pivotal link with maximal muscle force output (Franchi et al., 2018). The functional relevance of muscle anatomical cross-sectional area can be inferred from its contribution to overall strength (Morse et al., 2005). Hence, assessing the anatomical cross-sectional area of skeletal muscles is valuable. This study substantiates VL-ACSA as not only the lone muscular structural predictor for general vertical jump performance but also the optimal predictor within lower limb muscular structures for AJ performance.
The LG has been demonstrated to have a significant connection with lower limb functional capacity, one of the representative muscles in the calf group (Kumagai et al., 1999; Earp et al., 2010; Secomb et al., 2015; Coratella et al., 2019). In this study, LG-FL serves as the sole predictor for AJ-Height, unlike in general vertical jump performance. Univariate regression reveals LG-FL as the second most influential variable in the AJ-Height prediction model, accounting for 18% of its variance. Despite previous studies establishing a connection between LG muscle structure and general vertical jump ability, no correlation was identified between LG-FL and jump height (Earp et al., 2010; Secomb et al., 2015). Interestingly, a previous report on the relationship between lower limb muscle structure and sprint performance in 100 m sprinters found that faster sprinters typically have a longer LG-FL (Kumagai et al., 1999), consistent with our findings. This may be due to the specific demands of volleyball AJ skills on an athlete’s muscle groups. Our observations of the AJ movement pattern reveal that it primarily consists of a run-up, abrupt stop jump, and extensive arm swing motion. During the abrupt stop jump, a significant forward load is borne by the lower limbs, particularly the knee joint, to convert horizontal kinetic energy into vertical potential energy. With the forward shift of the knee joint and the continuous reduction of joint angles, the triceps surae gets progressively lengthened, storing substantial elastic potential energy. This possibly provides a degree of kinetic energy during the jump transition. However, most studies on vertical jumps (CMJ, SJ, DJ) employ standing jumps, often excluding arm swing motion. This might explain the divergence in research findings and how this unique “kinetic chain” could lead to noticeable differences in the load distribution of the lower limb “muscle chain.” It has been suggested that LG’s longer fascicle length allows for faster shortening speeds and results in a larger muscle mass (Kawakami et al., 1998). However, because fascicle length does not affect the physiological cross-sectional area, longer fascicle lengths might enhance AJ-Height through two mechanisms: first, longer fascicle lengths create higher maximum shortening speeds, leading to higher power output and an improved AJ-Height; second, strength development depends on the ability of a muscle to shorten at the required speed to generate sufficient force (Kearns et al., 1999). According to Hill’s equation (Hill, 1970), shortening speed increases as force decreases. Given the longer fascicle length of LG, it has a higher potential for maximum shortening speed, applying more significant force at a given shortening speed. The increased force translates into greater jump height, beneficial for AJ. This would explain why LG-FL can serve as one of the lower limb muscular structural predictors for AJ-Height. Furthermore, this could be due to our selection of elite volleyball players who have fascicle lengths surpassing those of athletes in other sports or untrained individuals. This observation is confirmed by studies analyzing differences in lower limb muscular structures among athletes at different levels, indicating that elite athletes have significantly longer fascicle lengths than non-elite athletes or untrained controls (Sarto et al., 2021; Zaras et al., 2022). This could be an adaptive response to long-term training and thus influenced by different sports and performance levels (Charles et al., 1998).
In summary, VL-ACSA and LG-FL are the best predictors of AJ-Height, while only VL-ACSA is a predictor of general vertical jump performance. This suggests a distinct difference in muscular structure predictors between AJ and other vertical jumps. As shown in Table 4, the standardized β coefficients for VL-ACSA and LG-FL in the AJ-Height model are 0.65 and 0.46, respectively. However, in the models for CMJ, SJ, and DJ-Height, the standardized β coefficient for VL-ACSA is 0.64, 0.74, and 0.55 respectively, with no predictive role shown for LG-FL. To assess the reliability of the AJ-Height model, we used the bootstrap method for testing, obtaining bias-corrected and Bca 95% CI based on 10,000 samples. According to Table 5, the AJ-Height model has a bias value of −0.29, a standard error of 0.45, and a Bca 95% CI of 1.15–1.64. These results indicate that the AJ-Height model has good reliability and stability, providing strong support for our discussion of its differences from other vertical jumps in terms of muscular structure predictors. Therefore, we can trust the predictive effect of the AJ-Height model in actual training and research. Moreover, we found a negative correlation with the number of years of training in all models. As shown in Table 4, the standardized β coefficient for the number of years of training in the AJ-Height model is −0.35, while in the models for CMJ, SJ, and DJ-Height, this coefficient is −0.41, −0.36, and −0.44 respectively. These data suggest that during AJ execution, the load distribution of lower limb muscular structure is different from that in general vertical jumps, especially in terms of the two predictors VL-ACSA and LG-FL.
As the only bipennate muscle in the quadriceps, the RF has significantly different anatomical characteristics from the other three muscles (Palastanga N, 2006). However, despite the substantial contribution of RF to knee extension torque (24%) (Narici et al., 2004), our study did not find any significant association between any muscular structure of RF and the heights of the four types of jumps. This may suggest that the contribution of the rectus femoris to vertical jump height is relatively low. This could be because the torques at the knee and hip are approximately equal, and the joint displacements of the knee and hip are very similar during the concentric force generation process, so the rectus femoris maintains the same length, making it almost unable to do any mechanical work on the skeleton. Moreover, compared to other lower limb muscles, the rectus femoris performs less work per unit volume. Therefore, although RF makes a large contribution to knee extension torque, its impact on vertical jump height is not significant due to the characteristics of the vertical jump movement (Wong et al., 2016). We also found that with an increase in training years, a negative correlation is observed with AJ-Height in elite male volleyball players. This could be influenced by factors such as aging, sports injuries, and the negative effects of many years of training. However, this does not mean that a longer training period will directly lead to a decrease in jump height. It should be clarified that this study controlled training years as a confounding variable, and it was not the main focus of the study. Future research can explore in more depth the mechanisms of how training years and related factors influence vertical jumping ability.
The results of this study reveal that lower limb muscle structure predictors play an important role in evaluating and improving the AJ ability of volleyball players. Coaches and athletes, to enhance performance in games, should focus on indicators such as VL-ACSA and LG-FL, and formulate corresponding training plans based on these indicators. Anthony J. Blazevich’s review (A. J. Blazevich, 2006) and María Ramírez-delaCruz’s systematic review with meta-analysis (Ramírez-delaCruz et al., 2022) confirm that long-term physical exercise can alter human muscle structure. These studies have found that resistance training and plyometric training not only improve muscle strength but also modify muscle structure, including ACSA, MT, PA, and FL. They also demonstrate that these training methods increase the ACSA, MT, PA, and FL of specific muscles. Intervention studies by M. V. NARICI (Narici et al., 1996) further support these findings, showing a significant increase in the cross-sectional area of the quadriceps, particularly the vastus lateralis (VL), in subjects who underwent 6 months of seated knee joint resistance training. Additionally, electromyography monitoring reveals that VL exhibits higher activation levels compared to other muscles during concentric and eccentric phases. Existing research has already shown that lower limb movements such as step-ups, forward lunges, and single-leg squats can effectively stimulate the VL, especially step-ups which surpass squats, lunges, deadlifts, etc., in terms of the level of VL activation (Ebben et al., 2009; Muyor et al., 2020). In addition, some research has found that front squats stimulate the vastus lateralis more than back squats (Contreras et al., 2016). Although there are currently no studies reporting which training methods have the greatest impact on LG-FL, there is research showing that after 20 men underwent eccentric training of the knee extensors, muscle fascicle length increased by 17%–19% in just 4 weeks, with pennation angle remaining unchanged. Therefore, it is speculated that eccentric training of the triceps surae might increase LG-FL (Baroni et al., 2013). As LG-FL is one of the effective predictors of AJ-Height in elite volleyball players and is different from general vertical jump performance, improving LG-FL might be one of the key factors in enhancing AJ performance. In conclusion, based on the muscular structure characteristics of athletes, specific training plans can be designed to strengthen VL-ACSA and LG-FL through the aforementioned movements and training methods. Furthermore, given that the AJ involves a stop-jump with a split-leg stance movement pattern, which differs from the typical bilateral jumping strategy, this may lead to asymmetrical lower limb muscle strength among volleyball players. Such asymmetry could negatively impact jump performance and increase the risk of injury. Consequently, training programs should account for bilateral differences and incorporate symmetry training to mitigate injury risk and enhance jump performance (Gao, 2022). These could not only potentially improve athletic performance, but also effectively reduce the risk of fatigue and injury to these muscle groups during training or competition. Therefore, designing targeted training plans to strengthen key muscular indicators is an important approach to improving the specialized jumping ability of volleyball players.
Our study has certain limitations. Firstly, the relatively small sample size may limit the robustness and generalizability of our results. Secondly, considering the muscle structural differences between men and women, our study focused only on elite male volleyball players. Hence, further research is needed to evaluate its impact on elite female volleyball players. Additionally, our study only involved the vastus lateralis, rectus femoris, and lateral gastrocnemius in the lower extremity kinetic chain, without including all lower extremity muscle groups. Lastly, our study only conducted a cross-sectional analysis of the correlation between muscle structure and jump height, lacking a comprehensive analysis of dynamics and kinematics. Overall, while our study provides a novel perspective and practical guidelines, the application of its findings should be approached with caution, requiring further research to verify and refine these findings.
CONCLUSION
The findings of this study reveal a positive correlation between a larger VL-ACSA and vertical jumping performance. Moreover, LG-FL demonstrates a favorable association with the attack jump height of elite volleyball players, underscoring the significance of targeted training. It is advisable for those tasked with designing and implementing training programs to integrate exercises such as step-ups, forward lunges, single-leg squats, and eccentric strength training for the calf muscles. This holistic approach aims to optimize the specialized jumping performance of elite volleyball players. Furthermore, Future research could further investigate and validate the factors influencing specific jump (AJ) performance through the following approaches: increasing sample size and participant diversity, incorporating additional relevant muscle groups and their interactions with tendons, integrating dynamic and kinematic analyses, impact of lower limb asymmetry, conducting longitudinal studies, controlling for more confounding factors, and validating proposed interventions through experimental research.
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Introduction: It is crucial to comprehend the interplay between the center of mass (CoM) and base of support (BoS) in elderly individuals’ body movements, as it could have implications for fall prevention.
Methods: The purpose of this study is to characterize age-related differences using the instantaneous location of the CoM and CoM velocity vector in relation to the dynamically changing BoS during walking. Thirty subjects participated in the experiments. Derivation formulas of feasible stability region and age-related statistical analyses were proposed.
Results: The stability margin and distance to centroid for elderly group were found to be significantly different from the young group (p < 0.05). At heel strike, while the CoMv distance was similar for age-based groups (p > 0.05), older individuals demonstrated a greater CoMv distance to the border than the younger at right limb, which suggesting age-related differences in momentum control. In addition, Bland-Altman analysis indicated that the validity was substantial, making it feasible to capture stride-to-stride variability.
Discussion: The CoM trajectories and feasible stability region could provide a better understanding of human momentum control, underlying mechanisms of body instability and gait imbalance.
Keywords: Chinese older adults, gait, center of mass, base of support, region of stability

1 INTRODUCTION
Gait stability is a fundamental concern in the control of human movements. Given this recognition, two primary questions arise: what specific conditions must be met in order to maintain balance, and to what extent is balance achieved in a given situation? Traditional static stability control theory holds that walking instability occurs when the body’s center of mass (CoM) exceeds the base of support (BoS) (Hof et al., 2005). BoS is the area accessible by the plantar center of pressure (CoP) and is considered the stability limit. When external interference occurs, the restoring stability strategy moves the CoM inside the BoS through the fine-tuning effect of the CoP (Dario et al., 2017). Recently, some researchers have proposed and developed the dynamic stability control theory (Lugade et al., 2011). The CoM velocity could be an index to evaluate human stability rather than considering the CoM position and BoS interaction during a quiet stance.
The achievement of stable gait is directly related to the position and velocity of CoM at the instant of foot placement (Yang et al., 2009). The CoM position and velocity in relation to the base of support could assess the risk of falls (Pai et al., 2006). The extrapolated center of mass (XCoM) concept was developed, and the shortest distance from the center of gravity to the support polygon was defined (Hof, 2008). The XCoM and stability margin were used as a measure of balance. Fujimoto and Chou (2016) introduced a feasible region of stability (RoS), which is determined by the permissible ranges of the CoM position and velocity relative to the BoS, to assess the likelihood of a fall occurrence. A similar theory was used to analyze the RoS and characterize age-related differences (Liang et al., 2021). While previous studies have examined the relationship between position and velocity of CoM in relation to the CoP or BoS during movement, no research has yet explored this relationship on an individualized basis, considering the dynamically changing BoS (Lugade et al., 2011). The instantaneous position and velocity of the CoM vector in relation to the dynamically changing BoS could offer insights into how dynamic balance is maintained during gait.
The main contributions of this work are threefold: 1) Methodological innovation: Unlike previous studies, which have typically derived the CoM position using a labeled full-body model in Nexus software (Opti track, 2017), we have instead calculated the CoM based on the Chinese inertial parameters of the adult human body (GB/T17245, 2004). This approach allows for a more accurate representation of the CoM position for Chinese people. 2) Examination of age-related differences: We have examined the trajectory of the CoM in relation to the dynamically changing BoS in healthy young and older adults. Furthermore, we have clarified associations and agreements of motion analysis and characterized age-related differences using a time-independent RoS derived from CoM velocity during gait. 3) Application potential: The time-independent RoS has been bench-marked for potential future fall prevention applications. Additionally, we have collected synchronized motion capture camera images and a single-camera video dataset of movement sequences for both older and younger individuals, providing a valuable dataset for further analysis.
In summary, the objective of this study is to investigate age-related differences in CoM and BoS interactions and to establish a time-independent RoS based on CoM velocity during gait. The underlying hypothesis is that stable human gait is achieved when the direction of motion aligns with stability.
2 MATERIALS AND METHODS
2.1 Experimental setting
Our experimental setup, depicted in Figure 1A, provided us with the capability to capture data from seven sensors: six Vicon MX motion capture cameras and one Vue video camera. The designated laboratory space was approximately 5 m × 8 m × 3 m, ensuring that the participants were fully visible to all cameras. The motion capture cameras were mounted on wall shelves, with four cameras positioned on each side of the laboratory and two roughly midway along the horizontal edges. These cameras captured three-dimensional marker trajectories at a frequency of 60 Hz. The video camera was also mounted on a wall shelf, recording images of the walking sequences at 60 Hz. The video camera captured RGB files with a resolution of 1920 × 1,080 pixels. We used hardware synchronization techniques to ensure synchronization between the multiple infrared cameras and the digital video camera. This ensured that each point in the motion capture data corresponded to a specific time point in the video frames.
[image: Diagram with three panels illustrating a motion capture setup. Panel A shows a schematic of the capture space, control station, Vue camera, and Vicon MX system. Panel B depicts a digital model of a human skeleton in motion capture format. Panel C consists of three photos: a person standing on a platform in various positions under the cameras. The environment includes cameras mounted on ceiling and walls, with calibration signage.]FIGURE 1 | (A) Overview of the experiment environment and setup, (B) Body39 joints based on the plug-in Gait full-body model, and (C) sample image from four viewing angles.
The motion capture data were captured by tracking 39 markers on the human body using a plug-in gait full-body model in Nexus software. Figure 1B shows the Body39 joints labeled by this model. The 39 keypoints are 1: LFHD, 2: RFHD, 3: LBHD, 4: RBHD, 5: C7, 6: T10, 7: CLAV, 8: STRN, 9: RBAK, 10: LSHO, 17: RSHO, 11: LUPA, 18: RUPA, 12: LELB, 19: RELB, 13: LFRA, 20: RFRA, 14: LWRA, 21: RWRA, 15: LWRB, 22: RWRB, 16: LFIN, 23: RFIN, 24: LASI, 25: RASI, 26: LPSI, 27: RPSI, 28: LKNE, 34: RKNE, 29: LTHI, 35: RTHI, 30: LTIB, 36: RTIB, 31: LANK, 37: RANK, 32: LTOE, 38: RTOE, 33: LHEE, and 39: RHEE (Vicon®, 2002).
The data for this study were collected through experiments conducted on 15 healthy older adults [Age mean (SD): 56.6 (2.53); BMI mean (SD): 24.168 (2.81)] and 15 healthy younger adults [Age mean (SD): 26.857 (4.63); BMI mean (SD): 21.6 (2.12)]. None of the participants had a history of neurological disease, musculoskeletal issues, traumatic brain injury, visual impairment, or experience of accidental falls. Before the experiment began, all participants were provided with written and oral instructions on the experimental process. Prior to the test, written consent was obtained from each subject to ensure they understood that they had the unconditional right to stop the experimental process at any time during the actual data collection process. This was done to ensure the ethical treatment of the participants and to comply with research ethics guidelines. The participants wore minimal and close-fitting clothes during the experiments. Figure 1C displays sample images captured from four different viewing angles. With their consent and after instrumentation, the participants undertook two 5-s static calibration trials. They stood up straight, with their feet shoulder-width apart, their heads facing forward, and their arms abducted. They then went on to complete five trials of the walking task.
2.2 Data processing
2.2.1 Center of mass, CoM
The center of mass was calculated based on the inertial parameters of the adult human body according to the Chinese national standards (GB/T17245, 2004), which are standard for human body measurement. The CoM can be used to analyze and predict body dynamics, defined as follows:
[image: Equation representing the Center of Mass (CoM), calculated as the sum of \( p_i^* \times [(1 - l') \times a_u + l' \times a_l] / \varepsilon \), with equation number (1).]
where [image: Please upload the image or provide a URL, and I will generate the alt text for you.] is calculated as segment weight divided by the total body weight, [image: Please upload the image or provide a URL, and I will create the alternate text for you.] represents the proportion of the segment’s length above the centroid, and [image: It appears there was an issue with the image upload. Please try uploading the image again, and I will be happy to help generate the alternate text for it.] and [image: It seems there might have been an error with the image upload. Please try uploading the image again or provide a URL if possible. If you have any additional context or a caption, feel free to include that as well.] are the three-dimensional coordinates of markers attached to specific anatomical landmarks on the body. [image: Please upload the image so I can generate the alternate text for you.] denotes a correction factor ([image: Please upload the image you would like me to describe, and I will generate the alternate text for you.] = 0.999 for males and [image: Please upload the image or provide a link to it, and I can help generate the alternate text.] = 1.0001 for females). Table 1 provides a list of the values for the parameters used in the CoM analysis.
TABLE 1 | Anthropometric data.
[image: Table displaying body segments with associated markers, gender, and two numerical parameters labeled \(P_s\) and \(I_s\). Segments include head and neck, upper trunk, lower trunk, thigh, shark, foot, upper arm, and forearm. Each segment lists marker identifiers for different genders, alongside corresponding \(P_s\) and \(I_s\) values.]2.2.2 Base of support, BoS
The base of the support area was defined based on the configurations of both feet at different stages of the gait cycle, such as heel strike (when the heel first contacts the ground), foot flat (when the foot is fully on the ground), heel off (when the heel lifts off the ground), and toe off (when the toes lift off the ground). During single-limb support, the boundaries of the BoS were determined by the position and orientation of the supporting limb, particularly the foot on the ground. The three-dimensional coordinates of LANK, LTOE, LHEE, RANK, RTOE, and RHEE markers constructed the boundary. During double-limb support, the BoS was defined similarly to single-limb support, encompassing the portions of each foot in contact with the ground, as well as the area between the feet. Figure 2 shows that the BoS area was calculated throughout the gait cycle. Toe off and heel strike were detected based on the vertical velocity of LANK or RANK, respectively. The shaded regions of the foot and the dashed lines, respectively, symbolized the contact area of the foot with the ground and the boundary of the BoS.
[image: Two line graphs compare vertical velocity of the left and right limbs over time, with toe-off and heel strike indicated. Graph A shows the left limb; Graph B shows the right limb. Arrows and foot icons symbolize the toe-off (red) and heel strike (blue) points.]FIGURE 2 | The base of support is determined based on toe off and heel strike for the (A) right limb and (B) left limb.
At heel strike (CoM inside BoS), the BoS was a triangle. Given any three segments [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.], [image: Sure, please upload the image you want me to describe.], and [image: Please upload the image or provide a URL so I can help generate the alt text for it.], the test to determine whether they form a triangle is as follows:
[image: The equation shown is: the magnitude of vector v plus the magnitude of vector t is greater than the magnitude of vector s. Labeled as equation two.]
The segments were constructed by the three-dimensional coordinates of LANK, LTOE, and LHEE or RANK, RTOE, and RHEE. For example, the three links are represented as [image: Equation showing "U̅ equals LANK minus LTOE (or U̅ equals RANK minus RTOE)."], [image: Vector equation showing \( \vec{T} = \text{LTOE} - \text{LHEE} \) or \( \vec{T} = \text{RTOE} - \text{RHEE} \).], and [image: Mathematical expression showing S with a tilde accent equals LHEE minus LANK, with an alternative form showing S with a tilde equals RHEE minus RANK.].
At toe off (CoM outside BoS), the BoS was a polygon. Given any four segments [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] < [image: If you need alternate text for an image, please upload the image or provide a URL. This will help me generate an accurate description for you.] < [image: It seems there is no image uploaded. Please upload the image or provide a URL, and I will help generate the alternate text.] < [image: It seems there might be an error in your request or the image link is missing. Please upload the image or provide a URL, and I can create the appropriate alt text for you.], the test to determine whether they form a polygon is as follows:
[image: Expression showing the magnitude of vector sum: the magnitude of vector v plus the magnitude of vector t plus the magnitude of vector s is greater than the magnitude of vector k with equation number three.]
The segments were constructed by the three-dimensional coordinates of RANK, LANK, LTOE, and LHEE or LANK, RANK, RTOE, and RHEE. For example, the four links are represented as [image: The formula depicts vector U as the difference between LANK and LTOE, or alternatively, as the difference between RANK and RTOE.], [image: Equation showing vector T equals LTOE minus LHEE, or alternatively, T equals RTOE minus RHEE.], [image: Š equals LHEE minus RANK, or alternatively, Š equals RHEE minus LANK.], and [image: Mathematical expression showing \(\vec{K} = \text{RANK} - \text{LANK}\) or \(\vec{K} = \text{LANK} - \text{RANK}\).].
2.2.3 Region of stability, RoS
The stability measures utilized in the present study were primarily based on the position of the CoM or XCoM relative to the BoS during a specific phase of the gait cycle (e.g., heel strike or toe off). The XCoM considered the position and velocity of the CoM and served as a basis for determining the gait stability requirements. To calculate the XCoM, the formula provided by Hof (2008) was employed:
[image: Equation depicting the extended center of mass (XCoM) formula: XCoM equals CoM plus CoM velocity divided by the square root of gravity over length (g over l). Labeled as equation four.]
As Table 2 shows, the CoM represents position, and the CoMv represents velocity. The acceleration of gravity [image: Equation showing acceleration due to gravity: \(g = 9.81 \, \text{m/s}^2\).], and [image: Please upload the image or provide a URL, and I'll help generate the alternate text for it.] is maximum height of the CoM. Because BoS was confined based on the configurations of both feet, we assume that [image: The formula represents an inequality: \( X_h \leq \text{CoM} + \frac{\text{CoM}_y}{\omega_0} \leq X_f \).]. The following formula can be obtained:
[image: Mathematical inequality showing \( \bar{X} \leq C o M_{v} \leq 1 - \bar{X} \), labeled equation (5).]
where [image: To generate alternate text, please upload the image or provide a URL to it.] and [image: Text displaying "CoM" with a tilde over the top and subscript "v".] are the normalized CoM position and velocity, respectively. [image: Mathematical expression showing \( \tilde{X} = (CoM - X_h) / L_f \), where \( \tilde{X} \) is defined as the normalized difference between the center of mass, \( CoM \), and the head position, \( X_h \), divided by the foot length, \( L_f \).], [image: The equation shown is \(\widetilde{\text{CoM}}_{v} = \text{CoM}_{v} / (\omega_{0} L_{f})\).], and [image: Mathematical equation: \(L_f = X_t - X_h\).] [image: Equation showing the formula for the angular frequency of a simple pendulum: omega subscript zero equals the square root of g over l, where g is acceleration due to gravity and l is the length of the pendulum.]. When performing walking actions, subjects may exhibit a swaying motion, and [image: It seems there might have been an error in providing the image. Please upload the image or provide a URL for me to generate the alt text.] and [image: It seems like there is an issue, as an image hasn't been uploaded. Please try uploading the image again.] indicate the heel and toe position, respectively. Table 2 shows the CoM and BoS interaction variables.
TABLE 2 | CoM and BoS interaction variables.
[image: Table with two columns: "Abbreviation" and "Description." Rows list: T_con – Time to contact; CoM – CoM position; CoMv – CoM velocity; BoSarea – Area of the BoS; DCoMc – Distance from CoM to centroid of BoS; DCoMs – Shortest distance from CoM to boundary of BoS; DCoMv – Distance from CoM to BoS along CoMv direction.]2.3 Statistical analysis
To assess the CoM-related parameters, the root-mean-squared (RMS) error was calculated. Python (version 3.7) was utilized to investigate the disparities in estimation errors among the parameters. When the variable satisfied both normal distribution and homogeneity of variance, the independent-sample t-test was utilized. However, if the variable failed to meet these criteria, the Mann–Whitney nonparametric test was employed for the comparison analysis. The p-value was corrected using Bonferroni multiple comparison. A p-value less than 0.05 was considered statistically significant.
To delve deeper into the accuracy and precision between automatic and device-detected variables, the Bland–Altman limits of agreement (LoA) method was employed. This analysis assessed the concordance between the model and the gold standard reference by gauging the accuracy and precision of the tested method. Accuracy was determined by calculating the mean difference (or bias) between the two sets of values (estimated and reference), while precision was determined by calculating the LoA, which represents 95% of the differences, and tracking the spread of the measurement points with respect to those limits. If the following three conditions were met simultaneously (data behavior is good), the difference evaluation of the Bland–Altman method was used to evaluate consistency; otherwise, the ratio evaluation of the Bland–Altman method was used to evaluate consistency. It could indicate that the difference has no proportional bias, that is, the univariate linear regression p > 0.05; the variance of the difference is homogeneous, that is, the one-way ANOVA p > 0.05; or the difference is normally distributed, that is, the normality test p > 0.05.
We could also calculate the mean difference (¯d) or mean ratio (¯r) between automatic and device-detected variables, as well as the 95% LoA (¯d ± 1.96 SD, or ¯r ± 1.96 SD) and the 95% confidence interval (CI) of the 95% LoA. Both the 95% LoA and its 95% CI, located inside the acceptable range of LoA, indicated that the data detected by the two methods were consistent.
3 RESULT
3.1 Limb-related differences using CoM and BoS interaction
Mean and standard deviations for selected features for the left limb and right limb are shown in Table 3. A larger BoS area was evident during heel strike, and interestingly, the younger group exhibited significantly higher values than the older group. The stability margin and distance to the centroid were similar between the left limb and the right limb. Nevertheless, notable disparities emerged as the corresponding metrics in the younger group were significantly larger than those of the older group. In addition, there was a significant difference in pairwise comparisons of DCoMv at heel strike. It has been observed that the right limb is primarily utilized for propulsion, whereas the primary function of the left limb is to maintain the stability of the body and contribute slightly to propulsion. In experiment, all participants were right-footed (Wikipedia, 2001), i.e., they all preferred to use right leg when playing football.
TABLE 3 | Age group averages (SD) for the CoM and BoS interaction at heel strike and toe off.
[image: A table comparing biomechanical variables between older and younger individuals, focusing on left and right limbs. Variables include T_con, and at heel strike and toe off: BoSarea, DCoMc, DCoMs, and DCoMv. Values are presented with standard deviations. Older individuals show slightly lower values compared to younger individuals in most metrics.]The functions of the left and right limbs were distinct, and there was evidence to suggest the necessity of discussing them separately when analyzing the differences between the older and younger groups. Given the asymmetry and specialized roles of each limb in various motor tasks, it was crucial to consider their individual performance in order to gain a comprehensive understanding of the impact of age on lower limb function. By analyzing the data for the left and right limbs separately, we could more accurately assess the differences in stability and centroid distance between the younger and older groups and thereby gain deeper insights into the aging process and its effects on limb function.
3.2 Age-related differences using CoM and BoS interactions
Statistically significant interactions between the age groups were identified for the area of the BoS (BoSarea), the distance from the CoM to the centroid of the BoS (DCoMc), the shortest distance from the CoM to the boundary of the BoS (DCoMs), and the distance from the CoM to the BoS along the direction of the CoMv (DCoMv) at heel strike and toe off for the left and right limbs (Figure 3). The x-axis and y-axis represent the variables and values between age groups, respectively. The orange and blue colors represent the younger and older groups, respectively.
[image: Box plots comparing mean cross-correlation of older and younger groups for left and right limbs. The older group is represented in blue, and the younger group in yellow. The x-axis shows different conditions such as BoSenso_HS and DCMx_TO, while the y-axis indicates mean cross-correlation values. P-values are displayed above each condition to indicate statistical significance.]FIGURE 3 | Mean (SD) cross-correlation of CoM and BoS at heel strike and toe off between age groups for the (A) left limb and (B) right limb.
The greatest separation between all CoM variables and the BoS was found at the instant of toe off and prior to heel strike. No differences in BoSarea were seen among the older and younger groups at heel strike (p = 5.364e−02) or during toe off (p = 7.512e−01) at the left limb. The stability margin and distance to the centroid were significantly different between age groups at heel strike (p = 1.434e−03; p = 5.638e−03) or during toe off (p = 9.834e−04; p = 8.610e−04) at the left limb. While no differences were seen in the DCoMv during toe off (p = 4.857e−02), the younger group demonstrated a greater CoMv distance to the border than the older group at heel strike (p = 6.277e−01) at the left limb.
Similarly, no differences in BoSarea were seen among the older and younger groups at heel strike (p = 1.882e−01) or during toe off (p = 3.125e−01) at the right limb. The stability margin and distance to the centroid at heel strike were significantly different between the age groups (p = 2.416e−03; p = 4.459e−03) or during toe off (p = 1.356e−03; p = 2.056e−03) at the right limb. While no differences were seen in the DCoMv during toe off (p = 2.588e−02), the younger group demonstrated a smaller CoMv distance to the border at heel strike than the older group (p = 6.336e−01) at the right limb.
3.3 RoS boundary analysis between age groups
Regions of stability defined with CoM and CoMv are constructed in Figure 4. The horizontal axes are the normalized CoM positions, and the vertical axes are the normalized CoM velocities. The RoS boundaries are represented by lines, and the scattered points show the data from each participant, with different shapes denoting the two groups.
[image: Two scatter plots, labeled A and B, display normalized center of mass (CoM) data. Both plots show colored markers representing different groups: Older, Younger, with axes labeled "Normalized CoMx" and "Normalized CoMy". Plot A highlights a significant trend with a p-value of .013, while Plot B shows a p-value of .37, indicating less significance. Lines are drawn to show trends for Older (green) and Younger (red) groups.]FIGURE 4 | Normalized CoM velocity with respect to the normalized CoM position between age groups for the (A) left limb and (B) right limb.
No significant group differences were detected for the normalized CoM velocity with respect to the normalized CoM position for the left limb (p = 0.27) and the right limb (p = 0.61). However, we found that data at the left limb from younger subjects were 20.076% (3 of 13 subjects) located outside the boundary of the RoS, and data from older subjects were 6.667% (1 of 15 subjects) located outside the boundary of the RoS. We also found that data at the right limb from younger subjects were 7.692% (1 of 13 subjects) located outside the boundary of the RoS, and data from older subjects were 13.333% (2 out of 15 subjects) located outside the boundary of the RoS.
3.4 Comparison between automatic and device-detected variables
Separately, 112 sets of valid DCoMc, DCoMs, and DCoMv data were obtained. Based on the results of univariate linear regression (p > 0.05), one-way ANOVA (p > 0.05), and normality testing (p < 0.05), those could not meet the data behavior test. Therefore, the ratio evaluation of the Bland–Altman method was used to assess consistency, as shown in Table 4.
TABLE 4 | Consistency analysis between automatic and device-detected variables.
[image: Table displaying results of data behavior tests and Bland-Altman consistency tests for three variables: DCoMc, DCoMs, and DCoMv. Each variable shows p-values for linear regression, one-way ANOVA, and a normality test; τ values and confidence intervals (CI); 95% limit of agreement (LoA) with lower and upper confidence intervals.]The automatic and device-detected DCoMc, DCoMc, and DCoMs were significantly correlated (p < 0.001). There was no statistically significant difference between the two methods in the DCoMc (¯d = 0.000 ± 0.413, p = 0.563), DCoMs (¯d = 0.000 ± 0.376, p = 0.660), and DCoMv (¯d = 0.000 ± 1.076, p = 0.721), as shown in Figure 5. The mean ratios (¯r) of DCoMc, DCoMs, and DCoMv were 0.89, 0.80, and 1.41, respectively. The 95% LoA and 95% confidence intervals (CI) for each variable are presented in Table 4. Bland–Altman plots were created, with the red dashed lines representing the upper and lower limits of the 95% LoA and the green dashed lines indicating the mean ratio. In the Bland–Altman plots corresponding to each variable, data points almost fall within the orange dashed lines, indicating that the 95% LoA falls within the acceptable range of LoA. This suggested that the data measured by the two methods show good agreement, as shown in Figure 5.
[image: Three panels (A, B, C) each showing three plots comparing device-detected DCQAms versus automatic detections. Left: Scatter plots of device versus automatic detections with a regression line; correlation coefficients and p-values are provided. Center: Violin plots showing distribution of DCQAm detections by method. Right: Bland-Altman plots assessing agreement between methods, with mean differences and limits of agreement marked.]FIGURE 5 | Data comparison between automatic and device-detected (A) DCoMc, (B) DCoMc, and (C) DCoMs.
4 DISCUSSION
The main findings of this study show that the proposed methods for characterizing age-related differences using CoM and BoS interaction, as well as constructing time-independent RoS using CoM velocity during gait, were robust. Several previous studies have used RoSv boundaries analysis to study the gait stability of walking or other human movements (Fujimoto and Chou, 2016; Liang et al., 2021). Our findings were consistent with these reports in that CoM and BoS interaction provided promising quantitative information about human movement.
Falls were the most common of all accidents, with approximately 50% occurring during walking. Defining BoS during gait can further reveal the application of foot placement strategies that aim to capture dynamically changing CoM to prevent falls (Winter 1995). A quantitative definition of the BoS was previously established (Delisle, 1998); however, only double-limb support of quiet stand was investigated, and dynamic changes to the BoS and its interaction with the CoM were not studied during gait. Utilizing the technique presented, we found that the stability margin and distance to the centroid were significantly different between age groups at heel strike and during toe off. Past work has also shown that the quantified results of CoM and BoS interaction may be a useful measure during dynamic situations (Macie, 2023), with the projection of the CoM to the supporting boundary being used as a measure of stability among walking machines (Dario, 2016; Felix, 2023).
By applying the XCoM concept, the position and velocity of CoM in relation to the BoS could trigger changes in foot placement for the subsequent step (Devetak, 2019). The RoSv boundaries analysis indicated that the older group demonstrated no significant difference from the younger group. These results suggested that the RoSv represented the velocity-related dynamic stable region during walking, reflecting the subjects’ ability to control CoM. If the direction of motion aligned with the stable region, stability was maintained. The sit-to-walk action can serve as a validation of this assertion (Gao, 2019). We also observed that numerous younger participants were situated beyond the RoSv boundary, as depicted in Figure 4. This observation may be attributed to the fact that younger individuals tended to rely on dynamic inertial control for achieving balance, whereas older individuals were more inclined to utilize a relatively static approach for supporting their balance control. This finding aligned with previous research (Carty, 2011). Reflecting on the actual experimental process, we observed that some subjects initially exhibited instability, prompting them to adapt their strategy to maintain balance. These older individuals displayed varying degrees of instability and resorted to placing their feet down to ensure stability, thereby validating the accuracy of the stability region.
In addition, the data comparison analysis results showed that the automatically detected variables had a high correlation with those detected by traditional devices. These have no noticeable fixed bias (mean ratio ≈ 1) and similar LoA ranges (±1.96SD) for DCoMc, DCoMs, and DCoMv, respectively. This was consistent with the results given by Chebel and Tunc (2023). Although there were differences in the measurement results of some indicators, they were within the allowable consistency range. We found that the traditional device has relatively weak computing power for DCoMc, resulting in many comparison data samples of DCoMc falling outside the LoA range. Excluding abnormal points, the data were within the acceptable range. Combining the above analysis results, it could be considered that the proposed method had a good verification result.
With regard to study limitations, we did not pre-calculate the sample size. Nevertheless, the number of subjects exceeded the typically recommended requirements for reliability studies Koo and Li (2016), as 30 individuals were instructed to walk three times in order to gather sufficient data for the analysis. Our approach involves recording subjects’ images from four different viewing angles using video cameras, allowing us to accumulate a database that can be used to refine gait events. In future work, it may be possible to achieve the CoM-related parameters from video image-based human posture recognition models. It could be beneficial to train models that are tailored to specific populations, such as older individuals who experience accidental falls or abnormal gait patterns. The markerless-based analysis described in the current study holds promise for future application (Liang et al., 2022). This method has the potential to classify different gait types and automatically extract quantitative gait information from a single image.
5 CONCLUSION
This study demonstrated a potential use of the combinations of CoM position and velocity to differentiate individuals according to their control abilities during walking. Given economic and time constraint problems, we gained several insights from this exercise: 1) The age-based difference between the quantified results of CoM and BoS interaction supports our initial hypothesis that human gait is stable if the normalized CoM velocity point is contained with the convex hull of the RoS; 2) the Bland–Altman analysis within the two methods was in almost complete agreement. It was indicated that our RoS boundaries analysis could be used as a quantitative stability assessment of gait outside of a clinic. Future work should address predicting instability or fall risk to help older people who have experienced accidental falls.
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Background: The “SEBT group,” which includes the Star Excursion Balance Test (SEBT), its modified version (mSEBT), and the Lower Quarter Y-Balance Test (YBT-LQ), is used to assess the limits of stability. Interestingly, the testing protocol allows users a considerable degree of flexibility, which can affect the obtained results. Therefore, the objective of this systematic review was to analyze the impact of different protocol variants within the “SEBT group” on outcomes.Methods: Data were acquired by searching 4 databases (MEDLINE, ScienceDirect, Wiley, Springer Link) focusing on studies published in English in peer-reviewed journals, empirical in nature, conducted on healthy individuals, and examining the effects of various protocol variants on test outcomes. Study quality was assessed with the NHLBI quality assessment tool for pre-post studies with no control group.Results: The calculation method based on the maximum repetition yields statistically significantly higher results compared to other calculation methods. Allowing unrestricted arm movements during the test results in statistically significantly higher scores compared to the procedure that restricts arm movements. The impact of a warm-up, wearing footwear during testing, and using a dedicated kit remains ambiguous. To obtain reliable results, 4–6 familiarization trials are necessary, though fewer may suffice for athletes experienced in performing the test.Conclusion: This systematic review highlights the significant impact of the calculation method and arm movement restrictions on the outcomes of the “SEBT group.” The effects of wearing footwear during testing, warm-up, and using a dedicated test kit remain unclear. The required number of familiarization repetitions may varies depending on biological maturity level of the person being tested. Future research should develop a warm-up protocol tailored to the needs of the “SEBT group,” and investigate the impact of heel elevation during testing on outcomes.Systematic review registration: The protocol for this systematic review was prospectively registered in the OSF Registries (https://doi.org/10.17605/OSF.IO/JSKH2).Keywords: star excursion balance test, y-balance test, postural stability, postural control, dynamic balance, limits of stability, test protocol, test results
1 INTRODUCTION
Postural stability is the ability to actively maintain the vertical projection of body’s center of gravity within the support area (Andreeva et al., 2021). One dimension of postural stability is the limits of stability (LoS), which define the ranges of the body’s center of gravity shifts in various directions that do not lead to loss of balance (Melzer et al., 2008). A popular method of assessing LoS is “SEBT group,” which includes the Star Excursion Balance Test (SEBT), its modified version (mSEBT), and the Lower Quarter Y-Balance Test (YBT-LQ). A major advantage of these tests is their relatively low cost and user-friendliness, making them accessible not just for large sports and rehabilitation centers but also for smaller physiotherapy practices and sports clubs. The test results are primarily used for assessing the risk of injury (Gribble et al., 2012; Plisky et al., 2021), evaluating the outcomes of interventions (Chaabene et al., 2021), and are also considered as criteria for returning to sports (Oleksy et al., 2021). All these applications are extremely valuable from a training practice perspective, as they provide coaches and instructors with key insights into an athlete’s readiness and physical status.
The “SEBT group” directly measure the reach distance of the lower limbs (Kinzey and Armstrong, 1998; Plisky et al., 2009). The SEBT measures reach in 8 directions, whereas mSEBT and YBT-LQ are focused on 3 directions, utilizing a specialized test kit for the latter. The reduction in the number of directions in mSEBT and YBT-LQ stems from a desire to increase the test’s efficiency and to eliminate redundancies (Plisky et al., 2009). By focusing on 3 key directions - anterior (ANT), posterolateral (PL), and posteromedial (PM) – mSEBT and YBT-LQ offers a quicker and more focused assessment, which still effectively assess LoS but in a more practical manner, especially suitable for clinical environments. In each of the tests involves the participant standing on one leg and reaching as far as possible with the opposite lower limb in the designated directions. From these tests, several outcomes are obtained: (a) absolute (in cm) and normalized reach (in % lower limb length); (b) absolute and normalized composite score; and (c) interlimb ratio of the outcomes mentioned in points a and b.
A very important characteristic of each test is its validity, which informs whether the test measures what it was designed to measure, and its reliability, which indicates whether the test consistently measures what it is intended to measure. Research indicates that the “SEBT group” have been quite thoroughly examined from this perspective. Research conducted by Plisky et al. (2021) revealed significant differences in “SEBT group” performance among populations, thereby emphasizing the discriminative validity of these tools. Conversely, the relationship between the results of the “SEBT group” and the risk of future injuries (predictive validity) remains unclear. Many indications suggest that injury risk prediction based on “SEBT group” results is justified only for specific populations (Plisky et al., 2021) after applying standardized cutoff values (Lehr et al., 2013). Glave et al. (2016), comparing SEBT results with the LoS test using the Biodex Balance System, found a negative correlation. This suggests that the testing of postural stability through these methods is highly specific, as participants who performed well on one test were likely to score poorly on the other, indicating the unique and distinct nature of each test’s assessment of LoS. Furthermore, a systematic review conducted by Powden et al. (2019) demonstrated excellent inter- and intra-rater reliability of YBT-LQ results in healthy adults, a crucial aspect indicating that the test outcomes are repeatable and consistent regardless of the evaluator (inter-rater reliability) or the timing of the assessment (intra-rater reliability), which is a necessary condition for utilizing this tool in clinical decision-making.
Interestingly, the testing procedure of the “SEBT group” allows users a considerable degree of flexibility, which can affect the results. This flexibility pertains to the choice of calculation method, restrictions on arm movements, wearing footwear during testing, warm-up, the number of familiarization repetitions, the use of a dedicated test kit, and restrictions on heel lifting. With this in mind, a review of studies analyzing the impact of these protocol variables can serve as a useful source of information for selecting the most optimal combination of variables for a given issue. Additionally, the review will provide data that can be used to estimate adjustments when comparing results obtained using different protocols. Therefore, this systematic review aimed to analyze the impact of different protocol variants within the “SEBT group” on outcomes. To the best of the authors’ knowledge, this is the first study to address this issue. Its completion will result in the creation of a valuable source of information that will be useful from both a research and clinical practice perspective.
2 METHODS
2.1 Protocol and registration
The protocol for this systematic review was prospectively registered in the OSF Registries (https://doi.org/10.17605/OSF.IO/JSKH2). The systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (Page et al., 2021).
2.2 Search strategy and study selection
The systematic review was conducted in February 2024 by searching through 4 databases: MEDLINE (using PubMed search engine), ScienceDirect, Wiley and Springer Link, specifically targeting studies published after the year 1998 - the year of publication of the first work using SEBT (Kinzey and Armstrong, 1998). The search strategy, as detailed in Table 1, encompassed a wide range of terms related to YBT-LQ and SEBT, along with related procedural aspects. B.Z and M.O independently reviewed the titles and abstracts of the identified studies during the search, then analyzed the full texts of relevant studies, and finally compiled a list of qualified research. Next, both lists were compared and discussed. In case consensus could not be reached, the final decision was made based on the opinion of 3rd author A.M. In managing the references, Mendeley Reference Manager was employed, facilitating efficient organization to the literature sources.
TABLE 1 | Search strategy.
[image: Database search commands are listed in a table format with columns for "Database" and "Search command." MEDLINE, ScienceDirect, Wiley, and Springer Link are included, each followed by specific search commands for terms related to the Y-Balance Test, exercises, and methodological aspects like repetition, number, and standard procedures. Each database includes complex boolean search strings, occasionally accompanied by comments about their applications or filters.]2.3 Eligibility criteria
For this systematic review, the following eligibility criteria were applied: (i) publication in English (full text) in a peer-reviewed journal; (ii) cross sectional and experimental study design (review articles, editorials, speeches, comments, abstracts, case studies, and surgical procedures were not considered); (iii) comprising individuals of all ages who are healthy, with no history of major lower limb injuries or surgeries, and no diagnosed issues with postural control. In terms of the intervention (iv), the studies may explore the following aspects of the “SEBT group” protocol: choice of calculation method based on the maximum repetition, conducting test with restricted arm movements, performing the test in footwear, conducting a warm-up before testing, preceding test repetitions with 6 familiarization repetitions, using a dedicated test kit, and allowing heel lifting during testing. Regarding the comparator (v), it might include: choice of calculation method not based on the maximum repetition, conducting test without restricted arm movements, performing the test barefoot, not conducting a warm-up before testing, preceding test repetitions with a number of familiarization repetitions other than 6, not using of a dedicated test kit, and not allowing heel lifting during testing Finally, the outcome (vi) will focus on both absolute and normalized reaches, as well as a composite score.
2.4 Methodological quality assessment
The quality of the included studies was assessed using the NHLBI quality assessment tool for before-after (pre-post) studies without a control group (NHLBI, 2022). This evaluation was conducted independently by B.Z. and M.O. It involved selecting one of 5 options for each of 12 items: “yes,” “no,” “cannot determine/unclear,” “not reported,” or “not applicable.” The total score was calculated as the sum of “yes” responses divided by the number of eligible items, expressed as a percentage. Items marked as “not applicable” were not taken into account when calculating the total score. Subsequently, the overall rating was categorized into one of 3 groups based on the total score: poor (<25%), fair (25%–75%), or good (>75%). After the independent assessments, the results were compared and discussed. In cases where consensus was not reached, the opinion of a 3rd author, A.M., was sought.
2.5 Data extraction, grouping and analysis
Using a standardized form, researchers B.Z. and M.O. independently extracted specific data from each study, focusing on descriptors such as sample size, age, gender, and health conditions. Additionally, outcomes obtained using different protocols or the differences between them were collected, employing measures of central tendency (mean) and dispersion (standard deviation or range). The probability of type I error and/or the effect size (ηp2, Cohen’s d) were also determined. Moreover, reliability measures, including the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), or smallest detectable difference (SDD) were extracted. The data were systematically compared and discussed. In cases where consensus was not reached, a 3rd researcher, A.M., made the final decision. The extracted data were then categorized based on the variables of the “SEBT group” protocols to understand the impact of each variable on the test outcomes. Subsequently, the data were analyzed in a narrative format.
3 RESULTS
In the systematic review, 19 studies were ultimately included. A summary of the database search and selection process is depicted in Figure 1. The methodological quality of the 6 studies included in the systematic review was assessed as “good,” while the remaining 13 were assessed as “fair.” A detailed assessment of the studies can be found in Table 2. In Table 3, a summary of the methods for standardizing test protocols in the studies included in the review is presented.
[image: Flowchart depicting the identification and screening process for studies included in a systematic review. It starts with 1,161 records identified via database search, with specifics from MEDLINE, ScienceDirect, and Springer Link. After removing duplicates, 36 records are selected for full-text screening. Seventeen records are excluded for reasons such as ineligible population and unavailable intervention, leaving nineteen records included in the systematic review. Additional sources contribute to screening but are not included in the final count.]FIGURE 1 | Systematic review flowchart.
TABLE 2 | Methodological quality of included studies.
[image: A table displaying the quality ratings of various studies across multiple items. Columns show items 1 through 12, with symbols indicating responses: green circles for "yes," yellow circles for "unclear," and red circles for "no." NA indicates not applicable, and NR means not reported. The total score percentage and quality ratings such as "Good" or "Fair" are listed for each study. A summary shows an overall total score of 55.6% with a median range of 54.5 to 77.8. A legend at the bottom explains the symbols and abbreviations.]TABLE 3 | Method of standardizing test protocols in included studies.
[image: A table comparing various studies, with authors listed in the first column and responses to seven items across the top. Green circles, yellow circles, and red circles signify "yes," "unclear," and "no," respectively. Parentheses indicate numerical data, and "P" denotes the study's purpose. Items include questions about warm-up procedures, familiarization trials, arm movement restrictions, barefoot testing, heel lift, trial order, and disqualification criteria.]3.1 Choice of calculation method
A study conducted by Sokulska et al. (2024) demonstrated that the method of calculating scores based on the maximum repetition, compared to the average of 3 repetitions, yields statistically significantly higher normalized scores in each direction and a higher composite score (the differences range between 1.8% and 2.8%). Conversely, the study by Shaffer et al. (2013) indicates that the method of calculating scores based on the average of 3 repetitions, compared to the method based on the maximum repetition, is characterized by more favorable reliability indicators, i.e., higher ICC as well as lower SEM and MDC. In contrast to these findings, the study by Kattilakoski et al. (2023) which compared methods based on the first 3 repetitions, the best 3 repetitions, and the maximum repetition, showed that the method of calculating results does not affect reliability indicators. Detailed data can be found in Table 4.
TABLE 4 | Summary of study results on the impact of the choice of calculation method on test outcomes.
[image: A comparative table showing studies from Shaffer et al. (2013), Sokulska et al. (2024), and Kattilakoski et al. (2023). It includes participant demographics, difference magnitudes, statistical significance, and reliability indicators for Y Balance Test - Lower Quarter (YBT-LQ) and modified Star Excursion Balance Test (mSEBT). The table details difference magnitudes across lower limb measurements, including anterior, posterior, and composite scores, with corresponding p-values and intraclass correlation coefficients (ICC). The reliability indicators section includes values for ICC, standard error of measurement (SEM), and minimal detectable change (MDC).]3.2 Arm movement restriction
Most studies indicate that the test procedure without arm movement restrictions, compared to the procedure with restrictions, yields statistically significantly higher scores in each direction and a higher composite score, regardless of the age and gender of the test subject, as well as the use of footwear during the test (Hébert-Losier, 2017; Objero et al., 2019; Muehlbauer et al., 2022b; 2022a; Sogut et al., 2022). Conversely, the study by Sogut et al. (2022) indicates that the test procedure with arm movement restrictions, compared to the procedure without restrictions, is characterized by better reliability indicators, i.e., higher ICC values and lower SEM and MDC values. Detailed data can be found in Table 5.
TABLE 5 | Summary of study results on the impact of arm movement restrictions on test outcomes.
[image: A table displaying comparisons of participant data across various studies related to different tests, including YBT-IQ and msBFT. The columns include test names, authors, participant information, difference magnitude/statistical significance/effect size, and reliability indicators. Data includes sample sizes, mean ages, statistical values (p-value, Cohen's d), and notes on reliability (ICC, SEM, MDC). Additional footnotes explain abbreviations and statistical terms.]3.3 Wearing footwear during testing
The results of the study by Sogut et al. (2022) indicate that performing the test in footwear, compared to testing without footwear, yields statistically significantly higher score in the PM direction and composite score (regardless of whether the trial was performed with arm movement restrictions), as well as in the ANT direction (in the case of the procedure with arm movement restrictions). Conversely, the results of the study by Park et al. (2023) indicate that performing the test in footwear with regular insoles, compared to performing the test barefoot, yields statistically significantly higher scores in the PL direction for the dominant leg. Additionally, performing the test in footwear with textured insoles, compared to performing the test barefoot, yields statistically significantly higher scores in the PM and PL directions for both legs. Detailed data can be found in Table 6.
TABLE 6 | Summary of study results on the impact of wearing footwear during testing on test outcomes.
[image: Table comparing mSEBT and YBT-LQ tests by authors, participants, difference magnitude, statistical significance, effect sizes, and reliability indicators. For mSEBT, Sogut et al. (2022) with 51 healthy individuals, results focus on anterior, posteromedial, posterolateral, and composite scores. Significant p-values are marked under various conditions. Reliability indicators include ICC, SEM, and MDC for WS and B. YBT-LQ by Park et al. (2023) involves 20 healthy individuals. P-values are shown under different shoe conditions. Testing parameters include percentage of lower limb length measures.]3.4 Warm-up
The results of the study by Bizzini et al. (2013) indicate that preceding the test with the “FIFA 11+” warm-up significantly increases the composite score compared to testing without a warm-up. Similarly, the study by Imai et al. (2014) shows that a warm-up including trunk stabilization exercises significantly increases the scores in the PM and PL directions, as well as the composite score, compared to testing without a warm-up. Conversely, the study conducted by Gogte et al. (2017) did not show statistically significant differences in the composite score for tests preceded by active, passive, and combined warm-ups. Additionally, the results of the study conducted by Belkhiria-Turki et al. (2014) mainly indicate an unclear, trivial, or small effect size of including static or dynamic stretching exercises in the warm-up preceding the test, regardless of the number of repetitions. Detailed data can be found in Table 7.
TABLE 7 | Summary of study results on the impact of warm-up on test outcomes.
[image: A detailed table comparing studies on SEBT and msBWT tests, including author names, participant details, difference magnitudes, statistical significance, effect sizes, and reliability indicators. Baseline and post-intervention values with statistical metrics are provided for various groups, detailing the impact of warm-up exercises. Statistical significance is noted with p-values, and effect sizes are classified as trivial, small, moderate, or unclear. Reliability is specified where applicable.]3.5 Number of familiarization repetitions
The results of studies conducted by Linek et al. (2017) and Kattilakoski et al. (2023) indicate that achieving a plateau in reach distances requires 6 familiarization repetitions. A test preceded by 6 familiarization repetitions is characterized by the following reliability indicators: ICC = 0.57–0.82, SEM = 3.30–5.90, and MDC = 7.68–13.5. Conversely, the studies by Munro and Herrington (2010), as well as Robinson and Gribble (2008), suggest that a plateau can be reached after 4 familiarization repetitions. A test preceded by 4 familiarization repetitions is characterized by the following reliability indicators: ICC = 0.84–0.92, SEM = 2.21–2.94, and SDD = 6.13–8.15. Additionally, the study conducted by Onofrei et al. (2019) indicates that for athletes with experience in performing the test, 1 familiarization repetition is sufficient to achieve consistent results. In the situation where the test is preceded by 1 familiarization repetition, the reliability indicators are: ICC = 0.90–0.94, SEM = 0.91–2.86, and MDC = 2.54–7.94. Detailed data can be found in Table 8.
TABLE 8 | Summary of study results on the impact of number of familiarization repetitions on test outcomes.
[image: Table comparing five studies on various physical tests, including YBT-IQ, mSEBT, and SEBT. It presents details such as authors, participant demographics, required familiarization repetitions, and reliability indicators like ICC, SEM, and MDC. Each study's section notes the repetition number needed for reliable results and relevant statistics like ICC.]3.6 Using a dedicated test kit during testing
The study conducted by Bulow et al. (2019) indicates that performing the test using a dedicated kit, compared to testing without equipment (using tape on the floor), results in statistically significantly lower scores for all directions and the composite score. Conversely, the results of the study by Jagger et al. (2020) show that performing the test using a dedicated kit, compared to testing without equipment, results in statistically significantly higher scores exclusively for the PL direction, with no significant differences for the other directions. Detailed data can be found in Table 9.
TABLE 9 | Summary of study results on the impact of number of dedicated kit on test outcomes.
[image: Comparison table of mSEBT versus YBT-LQ tests. Participants include 25 healthy adolescents and 28 healthy adults. Key metrics: ANT, PM, PL, CS as percentages of lower limb length with standard deviations. Significant p-values noted with asterisks. Reliability indicators are not applicable.]3.7 Heel lifting restriction
A database search did not reveal any studies on the impact of heel elevation on test outcomes.
4 DISCUSSION
The aim of this systematic review was to compile studies verifying the impact of protocol variables on the outcomes of the “SEBT group,” including choice of calculation method, restrictions on arm movements, testing with footwear, warm-up procedures, the number of familiarization repetitions, the use of a dedicated test kit and restrictions on heel lifting. The study found that the choice of calculation method and arm movement restrictions have a significant impact on test results. Conversely, the influence of footwear, warm-up, and the use of a dedicated test kit remains unclear based on the available research. It also appears that the number of familiarization repetitions required to reach a plateau varies depending on the biological maturity level of the tested individual. A database search did not reveal any studies on the impact of heel elevation on test outcomes. As the first review to systematically compile the impact of these variables on the outcomes achieved, it offers a valuable source of information that can be useful from both a research and clinical practice perspective.
The results of studies by Sokulska et al. (2024) indicate that choosing a calculation method based on the maximum repetition, as opposed to a method based on the average of 3 repetitions, leads to higher test scores. Conversely, authors of studies analyzing the impact of the choice of calculation method on test reliability indicators have reached somewhat different conclusions. According to Shaffer et al. (2013) reliability indicators are more favorable for the method based on the average of 3 repetitions compared to the method based on the maximum repetition. In contrast, according to Kattilakoski et al. (2023) the calculation method does not affect reliability indicators. This study analyzed methods based on the first 3 repetitions, the best 3 repetitions, and the maximum repetitions. The discrepancies in the results may stem from differences in the test protocols. Shaffer et al. (2013) did not precede the test with a warm-up and performed 3 test repetitions following 6 familiarization repetitions. In contrast, Kattilakoski et al. (2023) preceded the test with a warm-up consisting of 5 min of walking followed by 5 min of jogging at a self-selected pace, and conducted 5 test repetitions preceded by 1 familiarization repetition. Based on the above data, it can be speculated that preceding the test with a warm-up reduces the dispersion of individual repetition results, which in turn makes the choice of calculation method less significant. The reduction in the variability of individual repetition results may be associated with the optimization of the postural control system due to warm-up, as observed by Paillard et al. (2018).
Research findings indicate that a test procedure allowing arm movements (compared to one with restrictions) enables achieving statistically significantly higher scores, at the cost of slightly reduced reliability (Hébert-Losier, 2017; Objero et al., 2019; Muehlbauer et al., 2022b; 2022a; Sogut et al., 2022). Higher scores obtained during testing with unrestricted arm movements can be attributed to at least 2 reasons. First, the arms act as a counterbalance, making it easier to maintain the vertical projection of the center of gravity within the base of support (Roos et al., 2008). Second, moving the mass away from the axis of rotation (outstretching the arms) increases the moment of inertia, which reduces angular accelerations, giving more time to perform corrective movements (Hill et al., 2019).
The study results do not allow for a definitive determination of the impact of wearing footwear during the test on its outcomes (Sogut et al., 2022; Park et al., 2023). Additionally, interpretation is hindered by the lack of mention in the cited studies regarding the standardization of the test protocol concerning heel elevation restrictions. On one hand, it can be speculated that wearing footwear during the test compensates for limitations in ankle dorsiflexion range of motion (by elevating the heel), which may be particularly important in testing procedures that prohibit heel elevation (Basnett et al., 2013; Olszewski et al., 2024). However, it is important to remember that differences in footwear design can be a confounding factor in the results. On the other hand, it can be assumed that performing the test barefoot allows for the precise acquisition of sensory information through the receptors located in the foot (Viseux, 2020). Additionally, it is important to note that moving in footwear is currently more natural for people than moving barefoot, making their postural control system operate in conditions closer to those encountered in daily life when tested with footwear.
The study results indicate an ambiguous impact of warm-up on “SEBT group” outcomes. The work of Bizzini et al. (2013) showed that after performing the FIFA 11+ warm-up, the composite score increased significantly. Imai et al. (2014) observed that a warm-up consisting of trunk stabilization exercises increased normalized reaches in the PM and PL directions as well as the composite score. This study did not observe changes in the effect of a warm-up consisting of conventional trunk exercises. Gogte et al. (2017) did not observe differences in the effects of passive, active, and mixed warm-ups on the composite score. Belkhiria-Turki et al. (2014) examining the impact of a warm-up consisting of a 5-min run combined with static or dynamic stretching of varying volumes, observed mainly unclear, trivial, or small effects. The discrepancy in research results is likely due to the diversity of warm-up protocols used by the authors. It can be assumed that each protocol prepared the body differently for the test task, which consequently led to differences in the results (van den Tillaar et al., 2019; McGowan et al.,2015). This observation indicates the need to develop a standardized warm-up protocol tailored to the needs of the test.
Most studies indicate that to stabilize the results in the “SEBT group,” it is necessary to precede the test with 4–6 familiarization repetitions in each direction for each leg. Based on the findings of Munro and Herrington (2010), as well as Robinson and Gribble (2008), it can be assumed that for testing adults, the number of familiarization repetitions should not be fewer than 4, while for adolescents, it should not be fewer than 6. In contrast, a study conducted by Onofrei et al. (2019) indicates that stable results can be achieved after just 1 familiarization repetition in the case of adult elite athletes who have experience performing the “SEBT group.” Based on the above observations, it can be assumed that an important criterion for selecting the number of familiarization repetitions is the level of biological development of the test subject. As indicated by Kiers et al. (2022), with the advancement of biological maturity, the efficiency of the postural control system increases, which, as the authors of this review suggest, may affect the effectiveness of adapting to the demands of the balance control test.
The comparison of research results conducted by Bulow et al. (2019) and Jagger et al. (2020) reveals ambiguity regarding the impact of using a dedicated test kit on the obtained results. Despite this ambiguity, the practical benefits advocate for testing with the use of a dedicated test kit.
4.1 Practical application
The practical application of the discussed findings can be distilled into specific recommendations aimed at maximizing performance and enhancing the reliability of the “SEBT group,” as follows:
4.1.1 Choice of calculation method
The authors of the review recommend choosing a method of calculating results based on the average of 3 valid repetitions. Although this method may yield lower results compared to the maximum repetition method, it ensures results with better reliability indicators, which is crucial both from a research perspective and in clinical practice.
4.1.2 Restrictions on arm movement
For testing healthy individuals, the authors of the review do not recommend implementing restrictions on arm movements, as the freedom to move arms makes the test more natural, albeit with a slight decrease in repeatability indices. However, restrictions on arm movements may be justified when testing individuals with specific conditions, such as anterior cruciate ligament reconstruction or chronic ankle instability, though this approach requires analysis in future studies.
4.1.3 Wearing footwear during testing
The authors of the review do not recommend performing the test in shoes for two reasons. First, shoes introduce variability due to footwear design, mainly concerning the variability in the drop (the difference in height between the heel and toes), which can distort the results, especially in procedures that prohibit heel elevation. Second, performing the test barefoot may improves the quality of sensory information acquired by the foot and utilized by the postural control system. The authors believe that the most optimal solution for testing healthy individuals is performing the test barefoot with the possibility of heel elevation, although this approach requires analysis in future studies.
4.1.4 Warm-up
Ambiguous evidence on the impact of warm-ups on test performance indicates the need to develop a standardized warm-up protocol tailored to the needs of the “SEBT group.” According to the authors of this review, the warm-up should be brief (up to 10 min), include simple exercises that do not require additional equipment, and specifically prepare the body for the test task.
4.1.5 Number of familiarization repetitions
Conducting 4–6 familiarization repetitions before the test is recommended to enable participants to adapt adequately to the test requirements. Typically, 4 repetitions are sufficient for adults, while up to 6 repetitions may be necessary for adolescents due to their ongoing biological development. For elite athletes experienced in performing the test, fewer familiarization repetitions may be appropriate.
4.1.6 Using a dedicated test kit during testing
The use of a specific test kit is recommended to standardize the testing process. This approach simplifies the procedure, promotes consistency, and helps in comparing results more effectively across various studies. While there are mixed results regarding its impact, the practical benefits of using a dedicated test kit, such as ease of use and standardization, are undeniable.
4.2 Limitations
The analysis focusing solely on the healthy population introduces certain limitations to our systematic review, considering the application of these tests in specific clinical entities. The diversity of purposes and clinical contexts in which these tests are used may justify deviations from the proposed protocols. Our review aimed to explore how specific protocol variations affect test outcomes, but it was not intended to establish rigid guidelines for conducting the test across every population. Therefore, while we strive to provide general guidelines on protocols, it’s important to remember the need for their adaptation to the specific clinical needs and characteristics of the populations being studied.
5 CONCLUSION
In conclusion, this review highlights the significant role of the choice of calculation method and arm movement restrictions on the outcomes of the “SEBT group.” It also notes the ambiguous impact of wearing footwear during testing, warm-up, and the use of a dedicated test kit on the results. Additionally, it appears that the number of familiarization repetitions required to reach a plateau varies depending on the biological development level of the tested individual. Future research should focus on developing a standardized warm-up protocol tailored to the needs of the “SEBT group,” and verifying the impact of heel lifting during testing on the obtained results.
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Objective: To investigate the differences and regularity of gait and muscle activation characteristics parameters in the Locomotion Dysfunction Grade (LDG) scale assessment in elderly individuals, and analyse the correlation between objective parameters and scale grading. Thus, to propose a novel detection mode for elderly individuals, which combined the LDG scale with objective detection. It can not only provide quantitative data for intelligent evaluation and rehabilitation, but also provided more accurate reference for the classification of care levels in elderly care policies.Methods: Elderly individuals (n = 159) who underwent gait analysis and sEMG at the Chinese Rehabilitation Research Center from January 2019 to September 2023 were included. According to the LDG scale, the elderly individuals were divided into four groups, namely, the LDG4, LDG5, LDG6 groups and the healthy control group. Four indicators, namely, spatiotemporal, kinematic, dynamic gait parameters and muscle activation characteristics data, were collected. Changes in these characteristics of elderly individuals with lower extremity motor dysfunction were evaluated and analysed statistically.Results: The spatiotemporal gait parameters were significantly lower in the LDG4, LDG5, LDG6 groups than in the healthy control group. The double support phase was positively correlated with the LDG, while the swing phase, step length and velocity were negatively correlated (P < 0.05). The movement angles of both hips, knees and ankles were significantly limited and negatively correlated with the LDG (P < 0.05). Compared with those in the healthy control group, the centre of pressure (COP) path length were greater, and the average COP velocity was significantly lower (P < 0.05) in the LDG4, LDG5, LDG6 groups. The regularity of muscle activation clearly changed. The root mean square of the gastrocnemius medialis was positively correlated with LDG (P < 0.05), while the tibialis anterior showed no regularity.Conclusion: As the LDG increased, the differences in spatiotemporal, kinematic and dynamic gait parameters between elderly individuals with motor dysfunction and the healthy individuals gradually increased. The muscle activation characteristics parameters showed an abnormal activation pattern. These parameters were correlated with the LDG, providing a more comprehensive and objective assessment of lower extremity motor function in elderly individuals, improve assessment accuracy, and help accurate rehabilitation.Keywords: elderly, motor dysfunction, gait analysis, sEMG, LDG scale
1 INTRODUCTION
In the elderly individuals, due to aging or trauma, strength and motor ability decline, and joint rigidity and range of motion decrease, which leads to mobility disorders (Boyer et al., 2017; Jung et al., 2023). Moreover, the body’s ability to coordinate and balance, as well as the ability to judge and respond to dangerous situations, were also reduced (Song and Geyer, 2018). A delay in assessment and intervention can cause motor disability (Harridge and Lazarus, 2017). Iwaya et al. (Iwaya et al., 2017) reported a study on 711 elderly individuals and the results suggested that the Locomotion Dysfunction Grade (LDG) scale can track the progression of motor dysfunction and assess the effect of intervention. It can be easily implemented in a clinical setting, for example, by assessing the extent of a condition and identifying people who need medical or nursing support while also monitoring changes in functional status. LDG scale has good acceptable in the diagnosis of motor dysfunction and been proposed by the Japanese Long Term Care Insurance System (Kaigo Hoken) (Seichi et al., 2012; Iwaya et al., 2017). However, due to the elderly own confounding factors, such as physiology, psychology, cognition and behaviour, the assessment results may be subjective and rough. Moreover, differences in individuals and ages can lead to differences in motor ability and movement disorders; therefore, a single scale is insufficient for a comprehensive and accurate assessment of motor function (Riahi et al., 2020). Therefore, it is highly important to find more objective, sensitive and specific assessment tools for screening and assessing extremity motor dysfunction in elderly individuals.
Gait analysis based on inertial measurement units (IMUs) is considered the vital means for assessing lower extremity motor function (Zago et al., 2018). It follows the basic principles of biomechanics, human anatomy and physiology to detect and record body and joint movement, plantar pressure distribution and other data during a specific walking phase (Huang et al., 2022). Researches had shown that it have excellent effectiveness and reliability in determining walking parameters (Kobsar et al., 2020). It can simplify and improve the efficiency of gait data assessment and interpretation (Mazzetta et al., 2019). The prediction accuracy of fall risk and walking ability was significantly improved in elderly individuals (Tahir et al., 2022). As an important method for muscle function assessment, surface electromyography (sEMG) can provide a non-invasive and dynamic neuromuscular function status detection. By measuring and recording the sum of action potentials of motor units under electrodes, it reflects changes in muscle load or muscle recruitment. When voluntary muscle contractions are detected, sEMG signals could tell us the muscle activity of the elderly individuals during gait, identifying the abnormal activation patterns of muscles, which may affect walking function (Martin and Acosta-Sojo, 2020). It shows good potential and value in evaluating motor function status of elderly individuals with osteoarthritis, Parkinson’s disease, hemiplegia, etc (de Oliveira et al., 2019; Booij et al., 2020; Daniels and Knight, 2021).
Based on the improved Ashworth score, some scholars had objectively evaluated motor parameters and muscle activation levels, using IMU and sEMG to capture motion and electromyographic signals (Ang et al., 2018). However, there is no clear evaluation standard for motor dysfunction in the elderly individuals. Based on the LDG scale, gait analysis and sEMG was performed in this study to evaluate the regularity of gait parameters and muscle activation in elderly individuals with lower extremity motor dysfunction. At present, there were few studies on the correlation between LDG scale and objective detection. By identifying the correlation of LDG scale grading with gait and muscle activation parameters, the subjective evaluation bias of the scale can be reduced and the accuracy of the evaluation can be improved. At the same time, the combination of scale and objective detection as a new evaluation method can provide evidence for intelligent evaluation and rehabilitation, and digital medicine, promoting accurate rehabilitation. This also provides more accurate reference for the classification of care levels in elderly care policies.
2 METHODS
2.1 Participants
This study was approved by the ethics board of the Chinese Rehabilitation Research Center (register No. 2023-083-01), and 159 elderly individuals who underwent gait analysis and sEMG at the Chinese Rehabilitation Research Center were included from January 2019 to September 2023. The inclusion criteria for elderly individuals were as follows: (a) aged 60-80 years; (b) no contraindication for neuroelectrophysiological examination; and (c) had at least two complete gait cycles within the effective camera range. The exclusion criteria for elderly individuals were as follows: (a) had a history of lower extremity injury or deformity that seriously affected walking function; (b) had cognitive impairment and refused to cooperate; (c) had received treatments for acute trauma; (d) had a history of lower extremity and/or spinal fracture within the past 6 months; and (e) lacked gait and sEMG data (5, 6).
2.2 LDG scale
According to the criteria, the elderly individuals were divided into four groups: the LDG4, LDG5, and LDG6 groups and the healthy control group. The specific classification criteria are as follows: LDG4 group is a mild activities of daily living (ADL) dysfunction that can walk independently without assistance; LDG5 group is a moderate ADL dysfunction and can walk independently without assistance; LDG6 group is a moderate or severe ADL dysfunction that can walk with support (Seichi et al., 2012; Iwaya et al., 2017).
2.3 Experimental protocol and acquisition system
MyoMotion three-dimensional motion acquisition and analysis system (Noraxon, USA, sampling frequency 100 Hz) and MyoPressure plantar pressure acquisition and analysis system (Noraxon, USA, sampling frequency 120 Hz) were used for gait detection. A wireless sEMG tester (Noraxon, USA, sampling frequency 1,500 Hz)was used to synchronize the signals, and MATLAB (MathWorks, Natick, USA) was used to process the signals (Hallal et al., 2013).
Before starting the test, explain the process and precautions to the elderly individuals, to ensure that they fully understand and cooperate. First, the skin area under the electrodes was shaved, cleaned with ethyl alcohol, abraded gently with fine sandpaper. Following the European Recommendations for Surface Electromyography (Hermens et al., 1999) and the guidelines as stated by the SENIAM Project (Surface Electromyography for the Non-Invasive Assessment of Muscles), the sEMG electrodes were placed on the tibialis anterior (TA) and the gastrocnemius medialis (GM) (Hermens and Freriks, 2019; SENIAM et al., 2019), along the direction of the muscle fibres. Seven Noraxon MyoMotion IMU lower extremity sets were placed on the participants while standing in the anatomical position. The pelvis, thighs, shanks, and feet IMUs were equipped on the sacrum, lateral femur, lateral tibia and dorsal feet of the elderly individuals (Niswander et al., 2020; Rekant et al., 2022). Detailed anatomical locations were shown in Figure 1. The sensors were wrapped in elastic wrap to prevent a sensor from moving from its original place (Rantalainen et al., 2020).
[image: A person wearing a lower limb robotic exoskeleton with sensors positioned on the legs and feet. The person is shown from behind in three consecutive frames demonstrating movement or analysis.]FIGURE 1 | Location of gait sensor and sEMG sensor. The pelvis sensor was fixed to the sacrum, and the thighs sensors were fixed to middle lateral thigh that halfway between the hip and knee joints. The shanks sensors were fixed to hard surface of tibial bone that below the knee and above the thickest part of the calf. The feet sensors were fixed to dorsal feet that under the tongue of the participant’s shoe, approximately over the distal end of the third and fourth metatarsal bones.
The IMU-based body model for calculating joint angle followed the recommendations of the International Society of Biomechanics (ISB) (Wu et al., 2002). The kinematics data were derived from relationships between coordinate systems (x-axis: pointing towards the top of the IMU along its length, y-axis: pointing to the left of the IMU, z-axis: pointing outwards perpendicular to IMU surface). MATLAB used IMU’s vertical foot accelerometer data to identify heel strikes and extract temporal features of gait. Then trials were parsed into gait cycles using heel strike timings and resampled to data points per gait cycle (Rekant et al., 2022). The motion angles output of the hip, knee and ankle joints were automatically calculated by MATLAB.
The camera was fixed on the side of the middle area of the walking path and were synchronized with the MyoMotion system. Before initiating the study, the MyoMotion system was calibrated according to the manufacturer’s guidelines. The session started with familiarization to walking on the plantar pressure board while selecting the natural speed. For each participant, a calibration trial was performed before the test. During the calibration, the participant was instructed to stand in the anatomical position for 10 s (Oliveira et al., 2023). Then walk took place on the plantar pressure board back and forth twice with a preferred speed to obtain average result. The walking length was 6 m, and the plantar pressure board was centered to ensure that it reflects the natural state of walking. All the measurements were performed by rehabilitation specialists, and the room was quiet during the measurements. The safety of all elderly individuals in the study was guaranteed.
2.4 Outcome measures
Basic information such as sex, age, height and weight was recorded for the study participants. Four types of indicators were collected and analyzed: gait spatiotemporal parameters, including velocity, step length, cadence, stride length, walking time, step width, walking cycle, etc.; kinematic parameters, including the range of motion of bilateral hip, knee, and ankle joints and 95% confidence ellipse region, centre of pressure (COP) path length, COP average velocity; dynamic parameters, including pressure peak, pressure start time ratio, and muscle activation parameters, including average power frequency (MPF) and median frequency (MF) of the TA and the GM at different walking cycles.
2.5 Statistical analysis
All the statistical analyses were performed with SPSS (version 20.0, IBM Corp., Armonk, NY, USA). Gait and sEMG data were analyzed using MATLAB (Molinari et al., 2006; Merletti et al., 2009), and standardized parameters were obtained after noise reduction. The original sEMG data was processed by full wave rectification, smooth filtering and RMS processing, and the window constant was set to 200 ms. All RMS value in each gait cycle were calculated respectively, and the average RMS was obtained after normalization processing. Then the distribution diagram of RMS in the gait cycle was obtained, so as to get the average standing RMS and swinging RMS. The detailed processing methods and operational interfaces could be found in Supplementary Appendix S1.
Spearman correlation analysis was performed using SPSS to analyze the correlation between gait or muscle activation parameters and scale grade. The normally distributed data are reported as the means and standard deviations (SDs), and the intragroup and intergroup differences were evaluated by one-way ANOVA. Skewed data are reported as the medians and interquartile distances, and the intragroup and intergroup differences were evaluated by rank-sum tests. Tukey’s test and Dunn-Bonferroni test were used for post hoc multiple comparisons (Szpala et al., 2022). P < 0.05 was considered statistically significant.
3 RESULTS
In total, 159 elderly individuals were included according to the inclusion criteria: 45 in the LDG4 group, 42 in the LDG5 group, 38 in the LDG6 group and 34 in the healthy control group from the Chinese Rehabilitation Research Center. There was no statistically significant difference in the baseline data among the four groups (P > 0.05) (Table 1). Spearman analysis indicated that the spatiotemporal parameters, kinematic parameters, dynamic parameters and muscle activation parameters were correlated with the LDG (Table 2).
TABLE 1 | Comparison of general data between LDG 4, 5, 6 groups and healthy control group.
[image: Table comparing four groups: LDG6, LDG5, LDG4, and Healthy controls. It shows numbers, gender ratio, age, height, weight, and BMI for each group. Significant height difference is noted between LDG5 and healthy controls with an adjusted P value of 0.001. Other variables do not show significant differences.]TABLE 2 | Correlation analysis of spatiotemporal, kinematic and dynamic gait parameters and muscle activation parameters.
[image: A detailed table comparing gait biomechanics on various phases and parameters for both left and right sides. It includes columns for 95% confidence intervals, Spearman correlation, and p-values across different actions like stance phase, load response, and foot rotation, among others. Specific statistical values are provided for each parameter.]3.1 Gait spatiotemporal parameters
Compared with those in the healthy control group, the step velocity and cadence in the LDG4, 5, 6 groups were lower, the step length and stride length were shorter, the walking time was significantly greater, and the step width was significantly greater (P < 0.05). Compared with those in the LDG4 group, the four parameters bilateral step length, stride length, velocity and cadence in the LDG6 group showed a more significant downward trend (P< 0.05). Similarly, compared with those in the LDG5 group, the velocity and cadence in the LDG6 group also showed a gradual downward trend (P < 0.05) (Supplementary Figure S1). There was no significant difference in foot rotation between the two sides (P > 0.05). During the gait cycle, the bilateral stance phase, load response, preswing phase and double stance phase significantly increased (P < 0.05), while the bilateral middle stance phase and swing phase significantly decreased in the four groups (P < 0.05) (Table 3).
TABLE 3 | Comparison of spatiotemporal gait parameters between the LDG 4, 5, 6 groups and healthy control group.
[image: A table comparing gait parameters among experimental groups LDG6, LDG5, LDG4, and healthy controls. Parameters include stance phase, load response, middle stance, pre-swing, swing phase, double stance, foot rotation, step length, stride length, step width, velocity, cadence, and time, all with separate values for left and right measurements. The table also provides statistical significance (X²/F, Adjusted P) and notes on the methodology used. Significant differences are indicated with * and specific comparisons are marked with superscripts.]3.2 Gait kinematic parameters
Compared with those in the healthy control group, the joint motion in the LDG4, 5, 6 groups was significant different, and the overall angle showed a downward trend (P < 0.05). In the standing phase, bilateral hip flexion, knee flexion and the ankle dorsiflexion angle decreased in the LDG4, 5, 6 groups. Additionally the right ankle inversion and left ankle abduction angle decreased. There were no significant differences in the abduction or rotation angle of the bilateral hip joint or in the left ankle inversion or right ankle abduction angle (P > 0.05). In the swing phase, bilateral hip flexion, hip abduction, knee flexion, ankle dorsoextension, ankle inversion and the ankle abduction angle were slightly lower in the LDG4, 5, 6 groups than in the control group, and the left hip rotation angle was decreased (P < 0.05). Moreover, there was no significant difference in the right hip rotation angle (p > 0.05) (Table 4).
TABLE 4 | Comparison of gait kinematic characteristics between the LDG 4, 5, 6 groups and healthy control group.
[image: A comparative table shows statistical data for hip flexion, hip abduction, hip rotation, knee flexion, ankle dorsiflexion, ankle inversion, and ankle abduction across different groups: LDG6, LDG5, LDG4, and healthy controls. It includes mean values, standard deviations, and significance levels, with noted differences for left and right stances. Footnotes highlight statistical significance and skewed distributions.]Compared with those in the healthy control group, the 95% confidence ellipse and centre of pressure (COP) path length were greater, and the average COP velocity was significantly lower in the LDG4, 5, 6 groups (p < 0.05). In terms of landing style, no significant difference was found between toe landing and foot landing (P > 0.05) (Table 4; Supplementary Figure S2).
3.3 Gait dynamic parameters
The peak pressure and the ratio of pressure onset time were significantly different between the LDG4, 5, 6 groups and the healthy control group (P < 0.05). In terms of peak pressure, compared with that of healthy elderly individuals, the peak pressure in the bilateral anterior foot decreased step by step in the LDG4, 5, 6 groups, especially in the LDG6 group, which indicated that the feet were weak at the end of the standing phase. However, there was no significant difference in heel peak pressure among the four groups (P > 0.05). Moreover, there was a significant difference in the peak pressure in the left midfoot among the four groups (P < 0.05), but no regularity was observed. There was no significant difference in the peak pressure in the right midfoot (P > 0.05) (Figures 2A–D). Moreover, in the LDG4, 5, 6 groups, the bilateral pressure distribution was abnormal, and the pressure curve was not smooth, which suggested that the LDG4, 5, 6 groups had poor stability in the standing phase for both lower extremities (Supplementary Figure S3). In terms of the ratio of pressure onset time, compared with those in the healthy control group, the bilateral anterior foot and middle foot in the LDG4, 5, 6 groups showed a gradual downward trend (P < 0.05) (Table 5; Figures 2E, F).
[image: Bar graphs displaying force measurements in six panels labeled A to F. Panel A shows peak force FF left, and B shows peak force FF right, both comparing LDG6, LDG5, LDG4, and control, with significant differences noted. Panels C and D show force start MF left and right, respectively, with less variation. Panels E and F depict force start FF left and right, illustrating higher values for the LDG groups compared to control. Error bars indicate variability, and asterisks denote significance levels.]FIGURE 2 | Comparison of the bilateral anterior foot and middle foot pressure peak and the ratio of bilateral anterior foot pressure onset time between the LDG4, 5, 6 groups and the healthy control group. Note: FF: anterior foot; MF:middle foot. (A) Peak pressure in the left anterior foot; (B) peak pressure in the right anterior foot; (C) peak pressure in the left middle foot; (D) peak pressure in the right middle foot; (E) ratio of pressure onset time in the left anterior foot; (F) ratio of pressure onset time in the right anterior foot.
TABLE 5 | Comparison of gait dynamic parameters and muscle activation characteristics between the LDG 4, 5, 6 groups and healthy control group.
[image: A table presenting comparative data on peak pressure, the ratio of pressure onset time, tibial anterior (TA), and gastrocnemius medialis (GM) across different tests (LDG6, LDG5, LDG4) and healthy controls. Includes measurements for left and right sides, with average values and standard deviations. Statistical significance is indicated with asterisks.]3.4 Muscle activation parameters
Compared with those in the healthy control group, the root mean squares (RMS) in the swing phase of right TA, standing phase of bilateral GM and swing phase of left GM were significantly lower in the LDG4, 5, 6 groups (P < 0.05). Moreover, there was no significant difference in the average power frequency or median frequency (P > 0.05) (Table 5). This suggested that the RMS of the GM was positively correlated with LDG, while the TA showed no regularity. The contraction of the TA and the GM of the lower extremities was coordinated and stable during walking in healthy elderly individuals, and there was no significant difference in the myoelectrical parameters (P > 0.05) (Supplementary Table S1). Moreover, the activation pattern of the TA in healthy elderly individuals during the gait cycle was typical bimodal activation (alpha and beta peaks), while the activation pattern of the GM was typical unimodal activation. However, the elderly individuals in the LDG4, 5, 6 groups exhibited abnormal activation patterns. The RMS curve was not smooth, the bilateral RMS was asymmetrical, the activation time of the TA and the GM was delayed, and the peak values were decreased (Figure 3).
[image: Four panels (A, B, C, D) present data visualizations comparing red and green plots. Each panel contains two charts, with red plots on top and green plots below. Variations in data trends and amplitudes are noted across different x-axis ranges, possibly representing time or another variable. Each chart has annotated points and shaded areas indicating data variability.]FIGURE 3 | Muscle activation characteristics of the tibialis anterior (TA) and the gastrocnemius medialis (GM) during the gait cycle in healthy elderly individuals and LDG6 elderly individuals. Based on the resulting left and right vertical ground reaction curve each heel strike and toe off are determined via mode “Rise/Fall by trigger channel”, “Rise to rise with event” and “Relative” threshold criteria of 1% change (between local min and max value within trigger signal). MATLAB used IMU’s vertical foot accelerometer data to identify heel strikes and extract temporal features of gait. Then trials were parsed into gait cycles using heel strike timings and resampled to data points per gait cycle. (A) The activation pattern of the TA in healthy elderly individuals was typical bimodal activation (alpha and beta peaks). (B) The activation pattern of the GM in healthy elderly individuals was typical unimodal activation. (C) The typical sEMG signal in the TA of LDG6 elderly individuals showed that the RMS curve was not smooth, and the bilateral RMS peak was asymmetric. The activation time of the left TA was delayed, and the peak of the right TA was significantly reduced. (D) The typical sEMG signals of in the GM of LDG6 elderly individuals showed that the RMS curve was not smooth, and the bilateral RMS peak was asymmetric. The activation time of the left GM was delayed, and the peak of the right GM was significantly reduced. Note: TIB: tibialis anterior; MED: gastrocnemius medialis.
4 DISCUSSION
At present, there are no clear studies and analysis on gait parameters and sEMG parameters of elderly individuals with different LDG grading. This study proposed to use LDG scale combined with objective detection to evaluate elderly individuals with different LDG grading. Through exploring the differences and regularity of gait and muscle activation characteristic parameters in the LDG scale assessment, analyse the correlation between objective parameters and scale grading. It proposed reference for intelligent evaluation and rehabilitation, and digital medicine.
In this study, gait asymmetry occurred in both the LDG4, LDG5, LDG6 groups and the healthy control group. Compared with those in the healthy control group, elderly individuals in the LDG4, LDG5, LDG6 groups needed minimal or substantial assistance to some extent for basic and instrumental activities of daily living due to impaired mobility. Gait features decreased significantly, including step velocity, cadence, step length and stride length, which was consistent with the findings of Lilian et al. in a community-dwelling elderly individuals in 2021 (Motti et al., 2021). Ageing is accompanied by a decrease in hormone levels and immune capacity and endocrine system function, and the rate of muscle protein breakdown exceeds the rate of synthesis. As a result, the number of muscle fibers in elderly individuals is reduced, and the muscle strength of the lower extremities is weakened (Attwaters and Hughes, 2022), which is ultimately reflected in a decrease in walking ability (Shinohara et al., 2022). A reduced step velocity is considered an important predictor of balance dysfunction (Cruz-Jimenez, 2017). The self-selected velocity of elderly individuals decreased by approximately 18% per 10 years (Grimmer et al., 2019). This may be a response by elderly individuals to maintain balance, which has been strongly associated with motor dysfunction according to numerous studies (Wennie Huang et al., 2010). In this study, with increasing LDG, the differences in spatiotemporal parameters between elderly individuals with lower extremity motor dysfunction and healthy elderly individuals increased in a stepwise manner, indicating that the degree of lower extremity dysfunction became more serious. This predicted a decline in physical function (Gueugnon et al., 2019), muscle weakness, slow reaction movements and loss of walking ability in daily activities (Kitamura et al., 2021). Moreover, the daily ability and independence in activities of elderly individuals are reduced, which seriously affects quality of life (Albert et al., 2015; Nascimento et al., 2022). Therefore, spatiotemporal gait parameters can objectively assess lower extremity motor function in elderly individuals. The standing phase, load response, double support phase, step width and walking time were positively correlated with the LDG, while the swing phase, step length, stride length, velocity and cadence were negatively correlated.
In the gait cycle, elderly individuals with motor dysfunction need to lengthen the support phase time to maintain balance and ensure the steady progression of the centre of gravity. Therefore, the support time for both legs is significantly longer in elderly individuals than in healthy elderly individuals, resulting in a significant decrease in the proportion of bilateral swing phase (Laufer, 2005). The increased double support phase is intended to compensate for balance and stability of the body, avoiding falling and successfully completing the initiated gait. The increased support phase may also be an important marker of age-related movement changes, indicating impaired postural control during gait in elderly individuals. This study suggested that the walking cycle of the LDG4, 5, 6 groups was significantly longer than that of the healthy elderly group. The proportion of individuals in the support phase increased throughout the whole walking cycle, and the proportion of individuals in the swing phase decreased (Michalska et al., 2021). Elderly individuals with lower extremity mobility dysfunction have limited swing amplitude and frequency in the lower extremities and reduced ability to control movement while walking. By reducing the proportion of swing phase and increasing the proportion of support phase, this compensatory walking mode may better maintain body balance and thus reduce the risk of falling (Park et al., 2018; Sittichoke et al., 2019).
The changes in gait parameters in elderly individuals included not only spatiotemporal parameters but also movement parameters. A normal gait is affected by the hip joint, knee joint and ankle joint. In this study, compared with those in healthy elderly individuals, bilateral hip flexion, hip abduction, knee flexion and ankle dorsiflexion angles in the LDG4, 5, 6 groups were significantly lower. These findings indicated that the joint motion angle was negatively correlated with the LDG. With increasing age and knee and ankle joint disease severity, the physiological structure inside the knee and ankle joint of the human lower extremity will change, which will continuously affect the mechanical structure of the joint. However, motor and sensory functions decline, leading to changes in the functional trajectory of motor performance. From the perspective of kinematic characteristics, the walking characteristics of elderly individuals include a reduction in the hip joint extension angle, ankle joint dorsiflexion and plantar flexion angle (Kerrigan et al., 1998; DeVita and Hortobagyi, 2000; Calderón and Ulloa, 2016). These differences may be associated with actual gait-limiting factors and neuromuscular adaptation with aging, or simply a conscious choice of movement patterns to produce a slower gait. Age also causes a redistribution of torque and force in the joints. When walking at the same speed, elderly individuals use their hip extensors more than younger individuals do, and their knee extensors and ankle plantar flexors less. Consistent with these results, compared with the healthy control group, elderly individuals in the LDG6 group had a significantly smaller knee flexion angle during the swing phase. Compared with those of the hip joint and ankle joint, the knee joint flexion angle in elderly individuals was more varied during the swing phase. Knee joint flexion is used to prepare for foot clearance caused by the foot pushing off the ground. When the heel is off the ground and the toe is off the ground, the lower extremity is driven by knee flexion.
The 95% confidence ellipse was calculated as a reliable method for assessing postural stability. The results suggested that the 95% confidence ellipse was significantly greater for elderly individuals with motor dysfunction than for healthy elderly individuals. To maintain the stability of the body posture, elderly individuals can achieve stable movement at the centre of gravity and control of posture by expanding the area of the ellipse with a large swing. As one of the parameters of gait kinematics, the COP is an effective index for assessing postural stability. The COP path length refers to the total length of the COP moving in a certain period of time and is the sum of the point spacings of adjacent COPs. When conducting large-scale balance measurements, this index is accurate and effective. The smaller the value is, the better the postural stability. The results of this study showed that, compared with that of the healthy control group, the COP path length of LDG4, 5, 6 groups was significantly longer, showing a gradual upward trend. The more severe the degree of motor dysfunction is, the longer the COP path length and the worse the stability. The average COP velocity exhibited the opposite trend. The 95% confidence ellipse and COP path length were positively correlated with the LDG, while the COP average velocity was negatively correlated. These gait kinematic parameters showed strong reliability and clinical practicability.
The walking process of humans involves fine and complex nerve regulation. Different muscles contract in a coordinated and orderly manner under the innervation of nerves to complete various functional actions. As an important part of clinical gait analysis, sEMG has been proven to be closely related to muscle function status, and the working characteristics and regularity of muscles during movement can be obtained (Papagiannis et al., 2019; Xiong et al., 2020). With increasing age, elderly individuals will experience a series of reactions, such as decreased muscle strength, increased muscle reaction time and fear of falling. sEMG is often placed in the TA, gastrocnemius lateralis (GL) and GM in the study of lower extremity motor function in elderly individuals (Marques et al., 2022). Joint contraction of the tibialis anterior muscle and the gastrocnemius muscle is used as a compensatory strategy to enhance stability, and maintaining balance around the ankle becomes an ankle joint strategy. Therefore, the TA and the GM were selected as the main muscles to evaluate the walking process of lower extremities in the elderly individuals. However, the thigh muscle were not included in this study. Mobarak (Mobarak et al., 2024) proposed that EMG data from the thigh could carry important neuromuscular information regarding the evolution of human gait, suggesting the importance of thigh muscle. We have considered it, but when evaluating the gait and sEMG data, the sensors at the bilateral knee joints can conflict with the surface electrodes of the thigh muscles, interfering with the accuracy of the data. It is also one of the key technical issues we need to overcome in the future study.
In healthy elderly individuals, the TA and the GM muscle of both lower extremities were activated and coordinated during walking. The TA muscle showed a typical bimodal activation pattern during the gait cycle, with the first activation peak (alpha peak) occurring in the load response phase of the standing phase and the second activation peak (beta peak) occurring in the preswing phase. The GM exhibited a typical unimodal activation pattern during the gait cycle. Its peak activation occurs at the end of standing, when it contracts to ensure that body’s centre of gravity shifts (Li et al., 2020). In this study, sEMG analysis of the LDG4, 5, 6 groups showed significant changes in muscle activation in elderly individuals with functional dysfunction. The sEMG data from the standing phase and the swing phase showed that muscle control in the TA and the GM muscle was impaired, and the activation time of the muscles was delayed. The RMS of the GM was positively correlated with LDG, while the TA showed no clear correlation. Moreover, there was a tendency for overlapping activation between the two muscles. The bilateral RMS values were asymmetrical and lower on one side. This pair of antagonistic muscles exhibited a co-contraction phenomenon, an ineffective muscle coordination strategy that can cause joint stiffness or postural abnormalities (Lo et al., 2017) and significantly increase energy expenditure during movement. Elderly individuals may unconsciously use co-contraction to cause joint stiffness to compensate for the deterioration of postural control and sensory processing. Therefore, it may be important to reduce lower extremity co-contraction in elderly individuals to improve gait biomechanics and balance and reduce mobility impairment and the risk of falls.
5 CONCLUSION
Through simultaneous analysis of sEMG and gait, this study explored the gait and muscle activation characteristics of elderly individuals in the LDG4, 5, 6 groups and revealed a deterioration in walking stability and bilateral gait asymmetry. With increasing LDG, the differences in spatiotemporal, kinematic and dynamic gait parameters between elderly individuals with motor dysfunction and normal individuals gradually increased. The sEMG parameters showed an abnormal activation pattern. The first combination of gait and sEMG with LDG scale can provide a more comprehensive and objective assessment of lower extremity motor function in elderly individuals, improve assessment accuracy, and help accurate rehabilitation. At the same time, the dual data of scale evaluation and objective detection provides evidence for intelligent evaluation and rehabilitation, and digital medicine. Moreover, this approach also provides an objective basis for the classification of care levels in elderly care policies.
6 LIMITATIONS
This study has several limitations. The wearable Noraxon gait analysis system used in this study required high-speed cameras to synchronize with the sEMG device. This limited the ability of a more comprehensive summary of gait analysis and muscle activation regularity in elderly individuals. At the same time, although the sensor and electrode shedding caused 3% data loss, it did not affect the study results. Moreover, the existing motion measurement and quantitative analysis methods cannot fully meet clinical application requirements. However, there are still technical difficulties in the measurement of gait kinematic parameters and the extraction of gait features. How to extract highly sensitive characteristic indicators to help judge lower extremity motor function in elderly individuals and realize multisource data fusion are still problems that need continuous attention in clinical research.
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The effect of gait feedback training for older people remains unclear, and such training methods have not been adapted in clinical settings. This study aimed to examine whether inertial measurement unit (IMU)-based real-time feedback gait for older inpatients immediately changes gait parameters. Seven older inpatients (mean age: 76.0 years) performed three types of 60-s gait trials with real-time feedback in each of the following categories: walking spontaneously (no feedback trial); focused on increasing the ankle plantarflexion angle during late stance (ankle trial); and focused on increasing the leg extension angle, which is defined by the location of the ankle joint relative to the hip joint in the sagittal plane, during late stance (leg trial). Tilt angles and accelerations of the pelvis and lower limb segments were measured using seven IMUs in pre- and post-feedback trials. To examine the immediate effects of IMU-based real-time feedback gait, multiple comparisons of the change in gait parameters were conducted. Real-time feedback increased gait speed, but it did not significantly differ in the control (p = 0.176), ankle (p = 0.237), and leg trials (p = 0.398). Step length was significantly increased after the ankle trial (p = 0.043, r = 0.77: large effect size). Regarding changes in gait kinematics, the leg trial increased leg extension angle compared to the no feedback trial (p = 0.048, r = 0.77: large effect size). IMU-based real-time feedback gait changed gait kinematics immediately, and this suggests the feasibility of a clinical application for overground gait training in older people.
Keywords: clinical application, gait training, wearable sensor, gait analysis, propulsion

1 INTRODUCTION
Decreased gait speed, propulsion, and range of motion of the lower extremities have been reported as typical changes in gait mechanics due to aging and various motor dysfunctions (Boyer et al., 2017). Such changes can lead to decreasing mobility and quality of life and an increased risk of adverse events (Abellan van Kan et al., 2009). Thus, it is important for older people to maintain gait speed as one of the determiners of gait ability.
Previous studies showed that gait speed did not increase by functional training such as resistance training alone (Kim et al., 2001; Ouellette et al., 2004). In order to improve gait ability, it is necessary to establish effective gait training procedures guided by individual gait characteristics (such as gait feedback training) (Franz et al., 2014; Schenck and Kesar, 2017; Genthe et al., 2018; Browne and Franz, 2019; Liu et al., 2020; Liu et al., 2021). Over the recent years, gait practice by using wearable sensors has been reported in clinical applications (Gordt et al., 2018; Hinton et al., 2023; Silva-Batista et al., 2023; Hinton et al., 2024), but its effect on increasing gait speed remains unclear. More specifically, previous studies had conducted gait feedback training using foot motion or foot pressure measured by a sensor attached to the dorsal foot and insole (Sungkarat et al., 2011; Byl et al., 2015). These reports have limited the target of gait feedback training, and it is necessary to establish methods that can be adapted to individual gait abnormalities in order to promote effective walking.
In order to apply an effective gait practice for older people in clinical settings, a system of gait feedback using multiple parameters was considered necessary. In clinical practice and cohort fields, we have analyzed human movement such as gait using inertial measurement units (IMUs) (Miyazaki et al., 2021a; Miyazaki et al., 2021b; Matsuzawa et al., 2021; Araki et al., 2023), and they are utilized in gait practice. However, there are few reports on the effect of gait feedback training performed in clinical practice (Hinton et al., 2023; Hinton et al., 2024), and more clinical data on this subject are needed. We have previously reported an IMU-based gait feedback system with real-time feedback of joint angles during overground gait, which showed increasing gait speed immediately with joint angle changes in young healthy adults (Miyazaki et al., 2023). There are various types of feedback (Sigrist et al., 2013), and our feedback system consists of extrinsic feedback, in which the knowledge of the result is provided by auditory stimulation. In addition, auditory stimulation is reported to be more effective than visual stimulation for dynamic postural control (Hasegawa et al., 2020). Our system uses auditory stimulation, can be implemented with a PC and IMU, making it easy to use in a clinical setting. Therefore, this system may be applicable to overground gait training for older people in clinical settings.
The purpose of this study was to examine whether IMU-based real-time feedback gait for older inpatients immediately changes gait parameters. The findings of this study offer fundamental data regarding effective gait practice for older inpatients in clinical settings. We hypothesized that IMU-based real-time feedback gait would lead to increased gait speed immediately, and specific changes in gait kinematics for each feedback target would also be observed.
2 MATERIALS AND METHODS
2.1 Participants
Seven older inpatients (mean age, 76.0 ± 7.1 years; including three women, four patients with orthopedic conditions, two patients post-stroke, and one patient with metabolic disease) who could walk several minutes without walking aids participated in this study (Table 1). The exclusion criteria were as follows: (1) lower-limb impairments such as pain that affected the measurement of gait and physical performance, (2) severe dementia, and (3) not consenting to participate in this study. Basic information, including disease, age, sex, height, and body mass index, was recorded. In addition, the five-times-sit-to-stand test (FTSS) was used as an indicator of physical performance. The FTSS involved standing up and sitting down five times from a sitting position, as quickly as possible, without pushing off (Mong et al., 2010). In the FTSS, well-trained assessors recorded the time taken to perform five consecutive chair-stands (timed to 0.1 s) from a seated position on a 45-cm-tall chair, with arms folded across the chest.
TABLE 1 | Participants’ demographics.
[image: A table displays patient data including disease type, age, sex, height, weight, comfortable gait speed, and FTSS. Seven entries are listed with various conditions such as TKA, LCS, VCF, CI, and DM. Ages range from sixty-eight to eighty-eight years, with both male and female patients. Heights range from 1.44 to 1.60 meters, weights from 42.4 to 84.6 kilograms. Comfortable gait speeds range from 0.79 to 1.33 meters per second, and FTSS values range from 6.05 to 13.51 seconds. Mean and standard deviations are provided for each category at the bottom. Definitions for acronyms are included below the table.]The study was approved by the Ethics Committee on Epidemiological Studies of Tarumizu Central Hospital (approval number: 20-8), and all participants provided written informed consent before participating in the study.
2.2 Feedback trials
As in previous studies (Miyazaki et al., 2023), gait parameters measured before and after the gait trials were compared to examine the immediate effects. During feedback trials, participants were instructed to modify their lower limb motion during gait under three types of feedback, and they walked on a 30-m walkway for 60 s in each trial (Liu et al., 2021; Miyazaki et al., 2023). Three feedback trials were performed (Figure 1): (i) a feedback trial without feedback (no feedback trial) and two feedback trials with real-time feedback during overground gait to (ii) increase the ankle plantarflexion angle during the late stance (ankle trial) and (iii) increase the leg extension angle, which is defined by the location of the ankle joint relative to the hip joint in the sagittal plane (Miyazaki et al., 2019), during the late stance (leg trial). Gait kinematics used as feedback targets were the ankle plantarflexion angle and leg extension angle at late stance. These parameters have been related to propulsion during gait (Hsiao et al., 2015a; Hsiao et al., 2015b; Browne and Franz, 2017; Browne and Franz, 2019), and they could be a feasible target for gait feedback training (Browne and Franz, 2019; Liu et al., 2020; Liu et al., 2021). Before each feedback trial, participants were explained the gait modification during each feedback trial by using verbal instructions and pictures. The details of the explanation were as follows: no feedback trial, “walk at your usual pace during this trial”; ankle trial, “push back the ground harder before you swing your leg so that it makes a beep sound during this trial”; and leg trial, “extend your leg farther backward before you swing your leg so that it makes a beep sound during this trial” (Miyazaki et al., 2023).
[image: Diagram showing a gait study involving feedback trials. The process consists of pre-gait measurement, feedback trials, and post-gait measurement. In the feedback trials, a participant receives real-time feedback through computer-generated auditory alerts and visual displays monitoring gait with a threshold of plus twenty percent of pre-spontaneous gait. Trials include no feedback, ankle trial focusing on plantarflexion at late stance, and leg trial focusing on leg extension at late stance. The participant wears sensors to provide data for analysis.]FIGURE 1 | Experimental protocol of the IMU-based real-time feedback gait. At pre-gait (spontaneous gait) and post-gait (replicate gait without feedback) measurements, gait parameters were measured using IMUs. Pre-gait measurements also determined the threshold of feedback. During the feedback trials, participants modified gait in response to the beep sound when the participant’s current joint angle (solid line) reached the threshold angle (dot line). The threshold was set at a 20% increase in the peak values of each joint angle during spontaneous gait. IMUs: inertial measurement units.
Before and after each feedback trial, participants walked along the 14-m walkway twice to measure gait parameters using IMUs (Figure 1). Spontaneous and replicate gait were measured pre- and post-feedback trials, and post-gait measurements were made without feedback. Each gait feedback trial consisted of one feedback trial and two gait measurement pre- and post-feedback trials (Figure 1), and they were randomly performed according to the Microsoft Excel Rand function. In addition, an approximate 2-min standing break interval was provided between each trial (Miyazaki et al., 2023). We measured the length of each patient’s right thigh and shank by using a measuring tape before the pre-gait measurement.
2.3 Methodology of the IMU-based real-time feedback gait
IMU-based real-time feedback gait was performed using a mobile PC (One-Mix3Pro, Tech-One Co. Ltd, Tokyo, Japan), and the joint angles calculated by IMUs were displayed on a PC (Figure 1) (Miyazaki et al., 2023). Gait parameters were measured using seven IMUs (MTw Awinda, Xsens, Enschede, NL), and the IMUs consisted of a 3D gyroscope, 3D accelerometer, and 3D magnetometer. The sampling frequency was 100 Hz. The 3-axis acceleration and tilt angles in a global coordinate system were obtained from the magnetic and inertial data using a Kalman filter on MT Manager software (4.7.2, Xsens, the Netherlands). The reliability of IMUs has been reported previously (Ferrari et al., 2010). Before gait measurements, IMUs were attached by elastic belts to the posterior sacrum, bilateral anterior thighs, shanks, and dorsal feet. For the dorsal feet, IMUs were fixed on their shoes (Figure 1). IMUs were also attached frontally and vertically against the frontal plane where possible, and they were calibrated so that the vertical direction of the coordinate system followed the direction of gravity during static standing (Miyazaki et al., 2019). The timing of the maximal posterior tilt angle of the sensor attached to each shank was used to determine the timing of initial contact (Revi et al., 2020). The PC screen displayed the joint angles calculated by the IMUs in real-time, and the threshold of the feedback was set at a 20% increase in the peak values of each joint angle during a spontaneous gait during the pre-feedback trial (Miyazaki et al., 2023). Participants were provided continuous real-time auditory feedback, and beep sounds were emitted when the participant’s current joint angle reached the threshold, during each feedback trial (Figure 2).
[image: Bar graphs labeled A to F show changes in gait speed, step length, cadence, leg extensor angle, ankle plantarflexion, and increment of velocity with and without feedback at ankle and leg levels. Error bars indicate variability, with significant differences marked by asterisks in graphs C and D.]FIGURE 2 | Comparisons of the changes in gait parameters. (A) Gait speed, (B) cadence, (C) step length, (D) maximum leg extension angle at late stance, (E) maximum ankle plantarflexion angle at late stance, and (F) increment of velocity at late stance. *: p < 0.05.
2.4 Data analysis
Low-pass filtering was performed on the joint angle, and acceleration data were measured using IMUs with a 10 Hz and 20 Hz cutoff frequency (Arumukhom Revi et al., 2021; Araki et al., 2024). For spatiotemporal parameters, cadence was calculated by identifying heel contact during the maximum posterior tilt angle of the sensor on the shank (Revi et al., 2020). Stride length and gait speed were also calculated based on the walking time measured by IMUs. The joint angles including the hip, knee, and ankle were calculated as relative Euler angles measured from IMUs fixed on the pelvis, thigh, shank, and foot segments (Araki et al., 2023; Miyazaki et al., 2023). In addition, the leg extension angle was determined based on the location of the ankle joint relative to the hip joint in the sagittal plane, estimated from the tilt angle matrix measured by IMUs and the vector of the thigh and shank segment coordinated by segment length (Miyazaki et al., 2019). Previous studies have confirmed the validity of using IMUs to determine these gait parameters (Miyazaki et al., 2019), and maximum ankle plantarflexion angle and leg extension angle during the late stance were calculated (Miyazaki et al., 2023). The increment of velocity was calculated using the anterior acceleration measured with the IMU fixed on the sacrum during late stance, which has also been reported as the association to the impulse of the anterior ground reaction force such as an indicator commonly used as propulsion force (Miyazaki et al., 2019). Thus, data processing was performed using the mathematical software MATLAB R2020a (Mathworks Inc., MA, United States).
2.5 Statistical analysis
The mean values of the variables determined for the bilateral lower extremities during 10 strides (five from the two gait measurements pre- and post-feedback trial, respectively) were used as the representative values. To confirm the normal distribution of the data, the Shapiro–Wilk test was conducted. To examine the immediate effects of the feedback trials (no feedback, ankle, and leg) on each gait parameter, the t-test and Mann–Whitney U-test were conducted. Then, to compare the change in gait parameters before and after the feedback trial, Friedman analysis was performed, and the Bonferroni method or Shaffer method was used to perform the multiple comparisons test. Calculations of r were performed to estimate the effect size of the group comparison. The effect size was classified into small (r = 0.10), medium (r = 0.30), and large (r > 0.50) effect sizes, as described previously (Cohen, 2013). All statistical analyses were performed using the software Statistical Package for the Social Sciences (SPSS 25, IBM, NY, United States), and the significance level was set at p = 0.05.
3 RESULTS
3.1 Spatiotemporal gait parameters
In comparisons of pre- and post-feedback trials (Table 2), the step length was found to be significantly increased after the ankle trial (p = 0.043) and showed a tendency to increase after the leg trial (p = 0.063). Gait speed did not change after the control (p = 0.176), ankle (p = 0.237), and leg trials (p = 0.398). Cadence also did not significantly change after the control (p = 0.237), ankle (p = 0.176), and leg trials (p = 0.237).
TABLE 2 | Individual changes in spatiotemporal and kinematic gait parameters after feedback trials.
[image: A table comparing spatiotemporal and kinematic parameters across three trials: no feedback, ankle, and leg. Each trial lists pre and post values, change rates, and effect sizes for gait speed, stride length, cadence, ankle plantarflexion angle, leg extension angle, and increment of velocity. Bold values indicate significant differences at p < 0.05. Effect sizes are classified as small, medium, or large. Data include means and standard deviations, with notable percentage changes and effect sizes emphasized for analysis.]On comparison of the changes in spatiotemporal gait parameters, Gait speed and stride length did not differ between each feedback trial (Figures 2A, B). Cadence was found to differ significantly between each feedback trial, and it was decreased during the leg trial compared with the no feedback trial (p = 0.023, r = 0.54: large, Figure 2C).
3.2 Kinematic gait parameters
In comparisons of pre- and post-feedback trials (Table 2), ankle plantarflexion angle was found to be significantly increased after the ankle (p = 0.018) and leg trials (p = 0.028). The leg extension angle was significantly increased after the leg trial (p = 0.028). There was a significant increment of velocity after the ankle (p = 0.018) and leg trials (p = 0.018).
On comparison of the changes in kinematic gait parameters, leg extension angle was found to differ significantly between each feedback trial (p < 0.050), and it increased during the leg trial compared with the no feedback trial (p = 0.048, r = −0.49: medium, Figure 2D). The ankle plantarflexion angle and increment of velocity differed between each feedback trial (p = 0.066). The ankle plantarflexion angle showed a tendency to increase after the ankle trial compared with the no feedback trial (p = 0.098, r = −0.432: medium, Figure 2E), and there was a higher increment of velocity after the leg trial compared with the no feedback trial (p = 0.098, r = −0.432: medium, Figure 2F).
4 DISCUSSION
In this study, we examined the immediate effects of IMU-based real-time feedback gait, focused on either the ankle or leg motion, during overground gait on gait kinematics in older inpatients. IMU-based real-time feedback gait in 60 s immediately changed spatiotemporal and kinematic gait parameters according to the feedback targets. Therefore, this study demonstrated the immediate effect of IMU-based real-time feedback gait focused on the motion of each joint, and it suggests the feasibility of its clinical application for overground gait training in older people.
IMU-based real-time feedback increased gait speed and showed a moderate effect size, but it was not significantly different for each feedback trial. In the ankle and leg trials, gait speed changed by a mean of 0.02–0.03 m/s, and a minimal detectable change in gait speed in community-dwelling older people (0.04–0.06 m/s) has not been observed (Perera et al., 2006). A previous report of older adults shows a similar trend, with no immediate increase in gait speed (mean change 0.08 m/s) after gait training in patients following a stroke (Hinton et al., 2023). In healthy participants using this gait training system, gait speed increased immediately after feedback trials (mean change 0.15–0.19 m/s) (Miyazaki et al., 2023), and these increases were close to or larger than 0.17 m/s, which is reported as the minimal detectable change in healthy participants (Meldrum et al., 2014). Of other spatio-temporal gait parameters, step length was increased after the ankle trial, showed a tendency to increase after the leg trial, and showed a large effect size. In addition, change in cadence was smaller in the leg trial than in the no feedback trial. Participants have experienced increased gait speed by changing gait strategies that alter either cadence or stride length or both (Howard et al., 2013; Baudendistel et al., 2021; Tateuchi et al., 2021). An immediate effect was observed in healthy adults, and a moderate to large effect size was shown for older inpatients. Thus, for older people in clinical settings, this gait training system may be effective in increasing gait speed through changing their gait strategy by considering intervention time, fatigue, and other factors.
In gait kinematic parameters, the leg extension angle was also significantly increased after the leg trial (mean change 3.2°), and change in the leg extension angle was larger in the leg trial than in the no feedback trial. The ankle plantarflexion angle was significantly increased after the ankle (mean change 6.4°) and leg trials (mean change 3.3°), and higher increment of velocity was observed after both trials. In addition, the ankle plantarflexion angle was significantly increased in the ankle trial compared to the no feedback trial; meanwhile, there was a higher increment of velocity in the leg trial compared to the no feedback trial. These parameters also showed a moderate or greater effect size. Sufficient forward movement of the center of gravity ensured an increase in leg extension angle (Bowden et al., 2006; Balasubramanian et al., 2007; Turns et al., 2007), which also leads to an increase in the propulsion force (Hsiao et al., 2015a; b; Hsiao et al., 2016; Browne and Franz, 2017). Similar to the leg extension angle, the increment of velocity during the late stance is an indicator of the propulsion force (Miyazaki et al., 2019), and ankle plantarflexion angle also contributes to increase in step length and propulsion force during gait (Hsiao et al., 2015a; Hsiao et al., 2015b; Zelik and Adamczyk, 2016; Browne and Franz, 2017). In addition, the measurement error of the leg extension angle is reported as 1.4°–1.9° (Miyazaki et al., 2019), and the minimal detectable change is also reported as 3.8° for the leg extension angle (Kesar et al., 2011) and 2.6° for the ankle plantarflexion angle (Molina-Rueda et al., 2021); changes in these parameters in the leg and ankle trials of the current study were close to or larger than these figures. These gait kinematics during the late stance would be akin to an increase in push-off power, and we facilitated their immediate change using real-time feedback. Therefore, this IMU-based real-time feedback gait is capable of immediately changing gait parameters related to forward propulsion, giving it the potential to improve walking efficiency in older people in clinical settings.
4.1 Potential implications for effective gait practice for older inpatients in clinical settings
Although the sample was small, we were able to implement the protocol for older inpatients. This study did not show a similar immediate effect to that reported for healthy young participants (Miyazaki et al., 2023), but we believe that the current IMU-based real-time feedback gait system has potential for clinical application. The strength of this system is that multiple parameters can be selected, so it is necessary to consider which parameters are most informative, and further study is needed to realize gait practice using the most appropriate feedback target for individuals. Decreasing ankle push-off and propulsion force at the late stance have been reported as gait parameters that change with aging (Boyer et al., 2017) along with dependence on the proximal joint compared with healthy young adults (DeVita and Hortobagyi, 2000; Hortobagyi et al., 2016; Kuhman et al., 2018; Conway and Franz, 2020). In older adults at risk for mobility, disability showed a faster preferred gait speed and physical function in the group with increased stride length compared with the group with increased cadence (Baudendistel et al., 2021). Conversely, another report demonstrates the relationship between ankle power and forward shift of the center of gravity during gait in older people (Sloot et al., 2021). In this study, the mean values of participants were 1.02 m/s for gait speed and 10.56 s for FTSS. In addition, this study especially showed immediate changes in gait kinematics during ankle trials. Therefore, the ankle motion might be a suitable target of IMU-based real-time feedback gait for efficiently increasing gait speed in older people without physical function decline, who did not meet the criteria for physical function decline in sarcopenia (<1.0 m/s for gait speed and/or 12.0 s for FTSS) (Chen et al., 2020).
4.2 Limitations
Our study had several limitations. First, this study examined only the immediate effect and was not able to examine long-term intervention effects. Second, this system used only auditory feedback, making it difficult to set the threshold between the lower and upper limits. In previous studies, gait feedback training using audio and visual feedback was performed using treadmills and monitors that fitted within the optimal range of thresholds (Schenck and Kesar, 2017; Liu et al., 2020; Liu et al., 2021). Comparisons with other feedback methods such as auditory and vibratory stimulations are also needed. Third, fatigue after each trial was not assessed, and it is unclear whether the intensity of gait feedback was appropriate. Fourth, the small sample size may have increased the variability of outcome measures. Finally, physical function was measured only by FTSS. In this study, participants did not meet the criteria for physical function decline in sarcopenia (Chen et al., 2020). In clinical settings, it is anticipated that this gait training will be implemented for inpatients with poorer physical function. More detailed and varied measurements of physical function, such as individual muscle strength and balance ability, are needed. It is necessary to accumulate several cases to verify the effectiveness of gait training under controlled conditions of disease and physical function. Since the latter systems are not feasible in a clinical setting, we believe that our gait feedback system is more likely to be used in clinical settings. Despite these limitations, this study showed that an immediate change in gait kinematics was observed, and it provides evidence of effective overground gait training for older people in clinical settings.
5 CONCLUSION
In this study, IMU-based real-time feedback gait immediately changed gait parameters according to the types of each joint motion at late stance during overground gait in older inpatients. This IMU-based real-time feedback gait system also allows multiple gait parameters to be selected, which could lead to effective overground gait training using feedback targets appropriate for each inpatient in clinical settings. To achieve effective gait practice in clinical settings for older inpatients, further study is needed to clarify the long-term effects of IMU-based real-time feedback gait on gait parameters and the appropriate target of gait practice for each individual.
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When assessing gait analysis outcomes for clinical use, it is indispensable to use an accurate system ensuring a minimal measurement error. Inertial Measurement Units (IMUs) are a versatile motion capture system to evaluate gait kinematics during out-of-lab activities and technology-assisted rehabilitation therapies. However, IMUs are susceptible to distortions, offset and drifting. Therefore, it is important to have a validated instrumentation and recording protocol to ensure the reliability of the measurements, to differentiate therapy effects from system-induced errors. A protocol was carried out to validate the accuracy of gait kinematic assessment with IMUs based on the similarity of the waveform of concurrent signals captured by this system and by a photogrammetry reference system. A gait database of 32 healthy subjects was registered synchronously with both devices. The validation process involved two steps: 1) a preliminary similarity assessment using the Pearson correlation coefficient, and 2) a similarity assessment in terms of correlation, displacement and gain by estimating the offset between signals, the difference between the registered range of motion (∆ROM), the root mean square error (RMSE) and the interprotocol coefficient of multiple correlation (CMCP). Besides, the CMCP was recomputed after removing the offset between signals (CMCPoff). The correlation was strong (r > 0.75) for both limbs for hip flexion/extension, hip adduction/abduction, knee flexion/extension and ankle dorsal/plantar flexion. These joint movements were studied in the second part of the analysis. The ∆ROM values obtained were smaller than 6°, being negligible relative to the minimally clinically important difference (MCID) estimated for unaffected limbs, and the RMSE values were under 10°. The offset for hips and ankles in the sagittal plane reached -9° and -8°, respectively, whereas hips adduction/abduction and knees flexion/extension were around 1°. According to the CMCP, the kinematic pattern of hip flexion/extension (CMCP > 0.90) and adduction/abduction (CMCP > 0.75), knee flexion/extension (CMCP > 0.95) and ankle dorsi/plantar flexion (CMCP > 0.90) were equivalent when captured by each system synchronously. However, after offset correction, only hip flexion/extension (CMCPoff = 1), hip adduction/abduction (CMCPoff > 0.85) and knee flexion/extension (CMCPoff > 0.95) satisfied the conditions to be considered similar.
Keywords: three-dimensional (3D) kinematic gait data, inertial measurement units (IMUs), photogrammetry, waveform similarity assessment, interprotocol coefficient of multiple correlation (CMCP), feasibility, repeatability

1 INTRODUCTION
Biomechanics is considered an important tool to assess gait during rehabilitation therapies, since it allows the quantitative analysis of human walking, gait features recognition, and its use for diagnostic purposes and treatment planning (Growney et al., 1997; Yavuzer et al., 2008; Xu et al., 2024). However, in technology-assisted rehabilitation therapies, evaluating the immediate biomechanical effects of using technology becomes a challenge. Multiple devices allow assessing biomechanics such as optoelectronic systems based on 3D photogrammetry and Inertial Measurement Units (IMUs) to evaluate kinematics, or force platforms in the case of kinetic analysis. Currently, in neurorehabilitation, the gold standard to assess therapy and intervention outcomes are photogrammetry systems, either with active or passive markers, as they allow in-depth analysis of gait kinematics due to their high accuracy (Eichelberger et al., 2016). Nevertheless, these systems have some drawbacks related to the quality of the recordings, which may be influenced by the number of cameras, the occlusion of markers, the time spent in the execution of the test due to instrumentation, or the expertise of the evaluator (Cano de la Cuerda and Collado Vázquez, 2012; Hassani et al., 2022). In accordance with these limitations, photogrammetry systems are not an option when performing tests to evaluate kinematics in out-of-lab environments, to study the immediate effect of rehabilitation technologies, or when therapies involve multiple devices. Therefore, as a more versatile alternative, IMUs motion capture (mocap) systems are used to evaluate gait kinematics.
IMUs are small and light motion sensor devices based on micro-electro-mechanical technology that estimate the orientation of a body segment to which they are attached from the inertial forces experienced by that segment. The orientation of the IMU is expressed with respect to a fixed coordinate system based on the magnetic north and Earth’s gravitational force. In this way, no specially equipped laboratories are necessary to use them. This makes the system portable and useable both outdoors and during technology-assisted therapies (Ferrari et al., 2010b; Francisco and Tejada, 2020; Hassani et al., 2022).
However, registration will be valid as long as the magnetic field is not distorted (de Vries et al., 2009). Besides, IMUs also suffer from drifting biases, a type of cumulative noise in their measurements that hinders an integration-based analysis to estimate kinematics (Sabatini, Ligorio, and Mannini, 2015; Dorschky et al., 2019). In recent years, multiple approaches based on filtering and global optimization have been proposed to cope with sensor noise and drift to correctly estimate the relative position and orientation of each body segment. For example, incorporating an extended Kalman filter in the sensory fusion process to obtain the corrected orientation of each sensor and segment, or applying a Gaussian distribution to model accelerometer noise and gyroscope bias (Roetenberg et al., 2005; Kok, Hol, and Schön, 2014). Nevertheless, their implementation does not always achieve drift-free estimation of joint angles. In addition, unlike photogrammetry systems, it does not consider the anthropometric measures of the users, there is no standardized placement zone, and its angular measurements always start from zero regardless of the initial posture. These lead to greater sources of error, causing offset and not recording the real joint range of motion (ROM) in their registrations, therefore biomechanical constraints are included in previous studies (Kok, Hol, and Schön, 2014; Dorschky et al., 2019). All these factors make the system susceptible to distortions, so it is important to design and validate an instrumentation and recording protocol able to control these aspects.
Reliability of gait parameters with minimal measurement error is an important consideration in the clinical use of quantitative gait analysis outcomes (Yavuzer et al., 2008), therefore gait analysis requires an accurate, reproducible and precise measurement system (Hassani et al., 2022). It is important to investigate whether a variation between measurements is a therapy effect or is solely due to variation in registrations (Hammer and Lindmark, 2003). Significant information will be lost if recording errors mask gait impairments. Therefore, before using IMUs to measure gait kinematics, it is indispensable to validate the technology with a reliable reference system. Common approaches are to use an optoelectronic mocap system as a reference due to its proven precision (Ferrari et al., 2010b; Kim and Nussbaum, 2013; Zhang et al., 2013; Schiefer et al., 2014).
For all these reasons, the aim of this study was to present a validation protocol to evaluate the accuracy of gait kinematic assessment with IMUs based on the similarity of the waveform of the signals captured by this system and those captured by a photogrammetry system synchronously during gait tests. For this purpose, concurrent measurements were taken with IMUs and the reference photogrammetry system in individuals without gait disorders, since they have a repeatable gait pattern that allows comparing the equivalence of the waveforms taken by both devices and determining the reliability of the IMUs system (Kadaba et al., 1989).
2 MATERIALS AND METHODS
2.1 Participants
A gait database of 32 healthy adult subjects was gathered, volunteers were between 20 and 63 y. o. (33.64 ± 12.44) and 71.88% were females. The detailed demographic and clinical characteristics of the sample are presented in Table 1. The data were collected between June and November 2023. Every individual underwent a barefoot walking test recorded simultaneously with IMUs and the photogrammetry system. The dataset contains the kinematic gait information of the hip, knee, and ankle joints in the three planes of motion: sagittal, frontal, and transversal (Blanco-Coloma et al., 2024).
TABLE 1 | Demographic and anthropometric characteristics of the 32 subjects that make up the healthy gait database for validation.
[image: Table of group statistics (N = 32): mean age 33.65 ± 12.44 years, gender ratio 23 women to 9 men. Mean weight 70.88 ± 19.91 kg, height 1.69 ± 0.091 m. Lower limb length: right 883.88 ± 50.74 mm, left 884.97 ± 51.14 mm. Knee width: right 117.56 ± 14.33 mm, left 117.5 ± 13.90 mm. Ankle width: right 67.84 ± 5.33 mm, left 66.75 ± 4.63 mm. InterASIS 260.5 ± 38.47 mm. Shoulder offset: right 41.42 ± 5.55 mm, left 41.77 ± 5.56 mm.]All subjects were informed of the purpose of the study, the possibility of withdrawing from the same, and signed an informed consent for gait analysis. The study protocol was approved by the local bioethics committee (Clinical Research Ethics Committee at University Hospital Complex of Toledo, CEIC-CHTO-NO 1006 of 26 April of 2023 and NO 949 of 25 January of 2023).
2.2 Experimental procedure and data acquisition
Each subject was instrumented with 8 IMUs of the Tech-MCS V3 mocap system (Technaid S.L., Spain), and with 23 passive markers of Vicon photogrammetry system (Vicon Motion System, Oxford, United Kingdom), following the Plug-in Gait marker set model (Motion Capture System, 2017; Plug-in Gait Reference Guide, 2020). Two additional markers were placed on the medial condyles to adjust femur rotation during processing (Figure 1). For each subject a maximum of 15 captures were registered.
[image: Diagram showing a front and back view of a human figure annotated with numerous markers on specific body parts for biomechanical analysis. Annotations include body parts like shoulders, hips, knees, and ankles, with coordinates labeled X, Y, and Z. Indicators for backward and forward directions are also shown.]FIGURE 1 | IMUs and the photogrammetry system Vicon marker set instrumentation for synchronous captures recording.
For IMUs instrumentation, a standardized model was developed according to the anthropometric measures of each subject. Thigh sensors were placed in the upper third of the segment, displaced frontally 5 cm from the vertical line formed by the trochanter and the lateral condyle of the knee. Tibia sensors were placed in the upper third of the segment slightly displaced towards the inner part, laterally touching the tibial spine. Ankle sensors were placed in the instep, the lumbar sensor at L4, and the chest sensor on the sternum, close to the clavicle. The axes orientation of the sensors was also defined and equal between subjects. The instrumentation with IMUs and the photogrammetry marker set is shown in Figure 1.
The calibration position of the system was fixed to avoid introducing offsets in the captures. This position was as follows: arms extended in a T-shape, trunk and legs extended and opened to the width of the hips, keeping the ankles completely aligned with the tibia segment in a neutral 0° position.
2.3 Data analysis
2.3.1 Signal processing
Gait kinematics recorded with the photogrammetry system were preprocessed with Nexus 2.10.3 software (Vicon Motion Systems, Oxford, United Kingdom). Standard processing operations combined with the anthropometric data entered in the system allowed estimating the position of the joint centers and, subsequently, obtaining the kinematic trajectories of each joint angle of the lower extremities in the three planes of motion, resulting in a personalized and accurate gait analysis. Likewise, captures recorded with the IMUs were transformed from quaternions to Euler angles with the Tech MCS software (Technaid S.L., Spain). Afterward, the trials registered with each system were exported and further processed in MATLAB_R2021b software (The MathWorks, Inc., Natick, Massachusetts, United States). The IMUs signals were smoothed with the Saviztky-Golay filter of order three and with frame length of 21 samples. The photogrammetry signals were captured with a sampling frequency of 100 Hz; therefore, these were resampled to the IMUs sampling frequency, 50 Hz, and aligned with the corresponding IMUs signal. Henceforth, in this article, the signals recorded by the IMUs are referred to as I(t) and those recorded by Vicon V(t). Then, gait cycles were extracted for each pair of trials, obtaining a pair of waveforms for each gait cycle [I(t), V(t)]. A total of 268 synchronous gait cycles [I(t), V(t)] were recovered and analyzed in the three planes of motion per limb.
2.3.2 Waveform similarity assessment
To validate the robustness and feasibility of the IMUs configuration, the similarity and variability of the waveforms of the extracted gait cycles was studied.
To determine whether these two mocap devices were interchangeable (i.e., equivalent) for measuring kinematics, the evaluation of similar waveforms was performed. To assess the similarity between I(t) and V(t) in terms of correlation, displacement, and gain, four parameters were calculated for each [I(t), V(t)] and each joint-angle: their Pearson correlation coefficient (r), the offset between I(t) and V(t), the difference between the registered range of motion (∆ROM) and the root mean square error (RMSE) (Ferrari et al., 2010b). The formulas used to calculate each are presented in Equations 1–3.
[image: It looks like you're providing a formula rather than an image. If you have a specific image to describe, please upload it, and I can help generate the alternate text for it.]
[image: The image shows the formula for the Pearson correlation coefficient, represented as \( r = \frac{n (\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n \Sigma x^2 - (\Sigma x)^2][n \Sigma y^2 - (\Sigma y)^2]}} \).]
[image: The formula shown is for calculating the change in range of motion, denoted as ΔROM. It is expressed as ROM of T(I(t)) minus ROM of T(V(t)), followed by the number three in parentheses.]
In addition, the adjusted variation of the within-day coefficient of multiple correlation (CMC) of Kadaba, named as the interprotocol CMC (CMCP), was calculated. This parameter assesses the repeatability of kinematics removing all other sources of “gait-cycle-to-gait-cycle” variability: 1) the biological variability of the subject’s lower limb kinematics, 2) the variability in the spread of soft tissue artefact in the lower limb kinematics and 3) the variability in the performance of the measurement system (Mcginley et al., 2009; Ferrari et al., 2010a; Ferrari et al., 2010b). Given that each I(t) can be compared only with its synchronous V(t), the aim of this new CMCP statistic formulation is to assess the similarity of waveform (joint angles) acquired synchronously with different protocols and different measurement systems, within each gait cycle, when the effect of the media on waveform similarity is the only parameter of interest. It considers the magnitude of the waveform data and provides a value between 0 and 1, with a value of 1 indicating perfect similarity between two waveforms, [I(t), V(t)]. The formulation shown in Equation 4 was used to evaluate the interprotocol similarity, the CMCP. Suppose that for a subject and a joint angle, the kinematics are measured synchronously through P protocols, in G gait cycles. Consequently, P waveforms are available for each gth gait cycle, one per protocol, each of Fg frames (Ferrari et al., 2010a).
[image: Mathematical equation representing CMC sub p, with a formula involving summations, variances, and parameters such as GF sub s and P sub s, compared under a square root. It is labeled as equation four.]
Where [image: It seems like you're mentioning a mathematical expression. If you have an image to upload, please do so, and I can help generate the alternate text for it.] is the ordinate at frame f of the waveform provided by protocol p at gait cycle g, [image: It seems like there's an error or missing information in your request. If you're trying to describe an image or provide more context, please upload the image or provide a link. You can also add a caption if needed. Let me know how I can assist you further!] is the ordinate at frame f of the average waveform among the P waveforms for the gait cycle g, and [image: It seems like you've provided a mathematical expression instead of an image. Please upload the image or provide a URL so I can generate the alternate text for it.] is the grand mean for the gait cycle g among its P waveforms (Ferrari et al., 2010a).
If within each gait cycle, the variability of the P waveforms around their mean waveform is less than the variance around their overall mean, the CMCP approaches one. Otherwise, the CMCP tends to zero or even turns into a complex number. This happens, for instance, when the ROM of the P waveforms is comparable to the phase difference (offset) among them (Kadaba et al., 1989; Ferrari et al., 2010a). To interpret the CMCP and r values obtained, the following ranges were considered: poor (0–0.65), moderate (0.65–0.75), good (0.75–0.8), very good (0.85–0.95) and excellent (0.95–1) (Yavuzer et al., 2008; Ferrari et al., 2010b).
The CMCP considers the overall effect of the offset, r, and gain between waveforms, but it has limitations when recording gait curves with low ROM, resulting in complex values, whose interpretation is not agreed upon, nor evident in the formula breaking down (Røislien et al., 2012). Unlike other studies that drew conclusions from validation by focusing mainly on this parameter, this protocol established a stage-by-stage analysis to identify the joint angles that have equivalent waveforms with both systems by analyzing each parameter independently and assessing how they influence the CMCP value.
The first part of the waveform similarity assessment between the signals I(t) and V(t) was based on the calculation of their correlation. The analysis continued for those joint angles that meet the following requirement:
	- Condition 1: The median value of r should follow a strong positive tendency (>0.7) (Kotu and Deshpande, 2019). For this reason, it was established that in the sagittal plane, the median value of r should belong at least to the very good range (0.85–0.95). In the frontal and transversal plane, the median value of r should belong at least to a good range (0.75–0.85).

Next, for those joint angles that met condition 1, the remaining parameters related to displacement and gain were calculated: the offset, the ∆ROM and the RMSE; as well as the CMCP. The signals I(t) and V(t) were totally equivalent, and therefore the recording systems completely substitutable, for those movement planes that satisfied the following condition:
	- Condition 2: In the sagittal plane, the median values of CMCP should belong to the excellent range (0.95–1). In the frontal and transversal planes, the CMCP median values should belong at least to the very good range (0.85–0.95).

Conditions had higher acceptance thresholds for the sagittal plane because there is evidence that it is the plane with most reliable and repeatable kinematics, especially for the hip and knee (Kadaba et al., 1989; Mcginley et al., 2009). Furthermore, photogrammetry, the gold standard for kinematic assessment, has higher inter-trial, intra- and inter-evaluator precision and reliability in the sagittal plane than in the other two (Fonseca et al., 2023). Thus, the acceptance thresholds were lower for frontal and transversal motion planes.
The values of all parameters are presented with box-and-whisker plots as well as in terms of median and whisker range for each limb and each joint angle, allowing the variability and dispersion of the recorded data to be studied. Median and whiskers were used because all the parameters did not follow a normal distribution for all joint angles; normality was tested with Lilliefors.
Besides, for those planes that satisfied condition 2, the CMCP was recomputed after zeroing the offset (CMCPoff) for each couple [I(t), V(t)] to measure the effect of the displacement on the similarity. The offset was corrected by subtracting from each gait cycle I(t) the offset between it and its partner V(t), that was previously calculated with Equation 1 (Kadaba et al., 1989).
At last, a visualization of the kinematics recorded is given for every joint angle before correcting the offset, including those that did not satisfy condition 1, and after removing the offset, for those that were analyzed in condition 2.
3 RESULTS
3.1 Waveform similarity assessment: condition 1
The results of the r parameter calculated for each pair of gait cycles [I(t), V(t)] are shown in Figure 2. It shows the distribution of r for each joint angle considering all acquired gait cycles. The figure shows two boxplots, one for each leg, with data from 268 pairs of gait cycles [I(t), V(t)] each. In total, each boxplot contains 268*9 = 2412 values (9 joint angles). Data are displayed in boxplots because not all parameters follow a normal distribution. The results of the normality assessment performed for each parameter with the Lilliefors test are given in Table 2.
[image: Two box plots compare right and left limb measurements across various conditions: no intentional action, knee flex/ext, knee add/abd, ankle dorsiflex/plant, ankle supination/pro, and ankle add/abd. Each box plot displays median, quartiles, and outliers for each condition. Values are annotated above or inside the boxes, highlighting differences between limb responses.]FIGURE 2 | Box-and-whisker plot for r regarding the comparison between the 9 joint angles acquired with IMUs and the photogrammetry system. The median value for each joint angle is reported.
TABLE 2 | Results of the Lilliefors normality test computed for the parameters estimated for each pair of gait cycles [I(t), V(t)] and each joint angle.
[image: Table displaying p-values for various hip, knee, and ankle movements, comparing right (R) and left (L) limbs. Parameters include r p-value, ΔROM p-value, offset p-value, RMSE p-value, CMCP p-value, and CMCpoff p-value. A note explains the statistical significance levels and definitions for terms like ROM, RMSE, and CMC.]For the sagittal plane, both hips had a median r value of 0.99 and both knees 0.96, showing an excellent correlation. Thus, there was a positive direct relationship between the gait cycles of each couple [I(t), V(t)], showing a similar waveform (Kotu and Deshpande, 2019). For the ankle dorsi/plantar flexion the median r values decreased slightly but were also within the very good correlation range, being 0.86 for the right limb and 0.87 for the left one. The three joints of both limbs complied condition 1.
In the frontal plane both hips had a strong correlation, showing a good correlation for the right hip adduction/abduction movement (r = 0.75) and a very good correlation for the left one (r = 0.86), satisfying condition 1, despite having more scattered data and more outliers. However, in the frontal plane for the knees (right: r = 0.22, left: r = 0.32) and ankles (right: r = 0.09, left: r = 0.08) the r medians presented low values with a high dispersion.
Finally, the hip rotation in both limbs presented a poor correlation, being the median values of r 0.15 and −0.07 for the right and left limbs, respectively. Equally, the knees (right: r = −0.41, left: r = −0.35) and the ankles (right: r = −0.41, left: r = −0.30) in the transversal plane showed no similarity between [I(t), V(t)] gait cycles and a lot of dispersion in the data.
3.2 Waveform similarity assessment: condition 2
The results obtained for the ∆ROM, offset, RMSE and CMCP estimations are shown for those joint angles that satisfied condition 1: hip flexion/extension, hip adduction/abduction, knee flexion/extension and ankle dorsal/plantar flexion.
When the resulting value of the ∆ROM is negative, it means that the range measured by the IMUs was smaller than that measured by the photogrammetry system, while if it is positive, the opposite was true. As seen in Figure 3, in the sagittal plane, the median ∆ROM values for the hips were −2.10° in the right limb and 1.71° in the left one, showing slightly more dispersion and more outliers. In the case of the knees, the ROM registered by the IMUs was higher than the ROM registered by the photogrammetry for both limbs (right: ∆ROM = 5.14°, left: ∆ROM = 6.86°). For the ankles in the sagittal plane (right: ∆ROM = -1.14°, left: ∆ROM = 0.65°) and the hip in the frontal plane (right: ∆ROM = 1.33°, left: ∆ROM = 0.32°) smaller differences were observed.
[image: Box plot comparison of joint angles for the right and left limbs. The right limb shows hip flexion/extension at -2.10, adduction/abduction at 1.33, knee flexion/extension at 5.14, and ankle dorsiflexion/plantarflexion at -1.15 degrees. The left limb displays hip flexion/extension at 1.71, adduction/abduction at 0.32, knee flexion/extension at 6.86, and ankle dorsiflexion/plantarflexion at 0.65 degrees. The plots illustrate variability and spread around the respective means.]FIGURE 3 | Box-and-whisker plot for ∆ROM regarding the comparison between the 4 joint angles that satisfy condition 1: hip flexion/extension, hip adduction/abduction, knee flexion/extension and ankle dorsi/plantar flexion. The median value for each joint angle is reported.
The offset box-plot graph is shown in Figure 4. According to the offset formula, when the resulting value is negative, it means that the IMUs measurement had a negative offset (lower values) with respect to the photogrammetry system, and if it is positive, the opposite happened. For the hip, the sagittal plane had a median offset value of −9.06° for the right limb and −7.98° for the left one. However, the offset in the frontal plane was lower (right: 0.18°, left: −0.75°). The knee flexion/extension also presented a small offset for both limbs, being the median values −1.02° and 1.59° for right and left, respectively. Besides, both ankles showed a negative offset of -8°. In this case, the hips and ankles in the sagittal plane had more data dispersion and outliers.
[image: Box plots showing gait cycle data for right and left limbs across four movements: hip flexion/extension, hip adduction/abduction, knee flexion/extension, and ankle dorsiflexion/plantarflexion. The right limb values are -9.06, 0.18, 1.02, and -1.84, while the left limb values are -7.98, -0.75, 1.59, and -8.02.]FIGURE 4 | Box-and-whisker plot for offset regarding the comparison between the 4 joint angles that satisfy condition 1: hip flexion/extension, hip adduction/abduction, knee flexion/extension and ankle dorsi/plantar flexion. The median value for each joint angle is reported.
Analyzing the RMSE, depicted in the Figure 5, both hips and ankles in the sagittal plane presented more scattered data and the median RMSE values were around 10°. The knees presented a median error of 7°, and the hip adduction/abduction movement showed an error of 6.28° in the right leg and 4.26° in the left leg.
[image: Boxplot charts show RMS errors in degrees for hip flexion/extension, hip adduction/abduction, knee flexion/extension, and ankle dorsiflexion/plantarflexion for right and left limbs. Right limb RMS errors: 10.07, 6.28, 7.26, 10.14. Left limb RMS errors: 9.59, 4.26, 7.08, 9.14.]FIGURE 5 | Box-and-whisker plot for RMSE regarding the comparison between the 4 joint angles that satisfy condition 1: hip flexion/extension, hip adduction/abduction, knee flexion/extension and ankle dorsi/plantar flexion. The median value for each joint angle is reported.
In terms of the CMCP calculation (Figure 6), whose formula shown in Equation 4 included the whole effect of the offset, r, and ∆ROM, the knee flexion/extension movement was the only one that reached an excellent median value of 0.99 for both limbs with hardly any data dispersion, satisfying condition 2. For the hip in the sagittal plane, the left one also fulfilled condition 2, displaying an excellent median CMCP value of 0.96. The right hip also presented a very good CMCP of 0.91 between pairs of [I(t), V(t)]. For the frontal plane, the right hip had a good CMCP value of 0.78, whereas the left one reached a very good coefficient value of 0.85. Lastly, both ankles presented median CMCP values around 0.9, showing a very good similarity.
[image: Two box plots compare the right and left limb joint angles in four movements: hip flexion/extension, hip adduction/abduction, knee flexion/extension, and ankle dorsiflexion/plantarflexion. The plots show mean values and indicate variability with whiskers, labeled with performance ratings such as "Excellent" and "Very good." Each limb's movements are separately evaluated for consistency and accuracy.]FIGURE 6 | Box-and-whisker plot for CMCP regarding the comparison between the 4 joint angles that satisfy condition 1: hip flexion/extension, hip adduction/abduction, knee flexion/extension and ankle dorsi/plantar flexion. The median value for each joint angle is reported.
The effects of correcting the offset are shown in Figure 7. Once the offsets between corresponding waveforms were removed, the CMCPoff values improved for every joint angle, except for the ankles dorsi/plantar flexion (right: CMCPoff = 0.74, left: CMCPoff = 0.64), whose data dispersion also increased considerably. For both limbs in the sagittal plane the hips and knees flexion/extension described an excellent similarity of 1 and 0.99, respectively. The dispersion of the data enhanced significantly after removing the offset for the hips in the sagittal plane. The hips CMCPoff also increased in the frontal plane, becoming 0.86 for the right limb and 0.91 for the left one, both in the very good similarity range. Therefore, when the offset was corrected, condition 2 was fulfilled by hip flexion/extension and adduction/abduction, and by knee flexion/extension for both limbs.
[image: Two bar graphs compare the right and left limb during different phases of movement: hip flexion/extension, hip abduction/adduction, knee flexion/extension, and ankle dorsi/plantar flexion. For the right limb, scores are 1.00, 0.85, 0.99, and 0.74 respectively. For the left limb, scores are 1.00, 0.91, 0.96, and 0.67. Performance is categorized from excellent to very good.]FIGURE 7 | Box-and-whisker plot for CMCPoff regarding the comparison between the 4 joint angles that satisfy condition 1: hip flexion/extension, hip adduction/abduction, knee flexion/extension and ankle dorsi/plantar flexion. The median value for each joint angle is reported.
In addition, the kinematic pattern of each pair of gait cycles [I(t), V(t)] for the 9 joint angle is shown in Figures 8, 9, containing kinematic data of the right and left limbs, respectively. Lastly, the kinematic pattern with the offset arrangement is displayed only for those joint angles that have been analyzed in condition 2. Figure 10 shows the offset correction for the right limb joints and Figure 11 for the left ones.
[image: Nine graphs displaying gait cycle data, each focusing on different joint movements: hip flexion/extension, hip adduction/abduction, hip int/ext rotation, knee flexion/extension, knee valgus/varus, knee int/ext rotation, ankle dorsi/plantar flexion, ankle supination/pronation, and ankle adduction/abduction. Graphs feature lines in purple, orange, and yellow representing different datasets or conditions throughout the gait cycle from zero to one hundred percent.]FIGURE 8 | Right limb kinematic pattern of the gait cycles registered with IMUs (yellow) and the photogrammetry system (purple) in the 9 joint angles.
[image: Nine line graphs display joint movements related to gait cycles. Each graph shows colored lines representing variations in joint angles, including hip, knee, and ankle movements, across the gait cycle percentage. Purple and orange lines indicate different data sets, with average trends and fluctuations visible. Titles for each subplot specify the joint and movement type analyzed.]FIGURE 9 | Left limb kinematic pattern of the gait cycles registered with IMUs (yellow) and the photogrammetry system (purple) in the 9 joint angles.
[image: Four overlaid graphs showing joint angles during the gait cycle without offset: Hip flexion/extension (top left), hip adduction/abduction (top right), knee flexion/extension (bottom left), and ankle dorsiflexion/plantar flexion (bottom right). Each graph presents numerous waveforms representing various trials, with color coding for two categories \(V1\) and \(V7\).]FIGURE 10 | Right limb kinematic pattern after offset zeroing of the gait cycles registered with IMUs (yellow) and the photogrammetry system (purple) in the 4 joint angles that satisfy condition 1.
[image: Four line graphs show joint angles throughout a gait cycle. Top left: Hip Flexion/Extension. Top right: Hip Adduction/Abduction. Bottom left: Knee Flexion/Extension. Bottom right: Ankle Dorsal/Plantar Flexion. Each graph includes two data sets in purple and orange.]FIGURE 11 | Left limb kinematic pattern after offset zeroing of the gait cycles registered with IMUs (yellow) and the photogrammetry system (purple) in the 4 joint angles that satisfy condition 1.
4 DISCUSSION
The kinematic pattern of the hip flexion/extension and adduction/abduction, the knee flexion/extension and the ankle dorsi/plantar flexion were equivalent when captured by each mocap system synchronously. However, when the offset was corrected, only the hip flexion/extension, the hip adduction/abduction and the knee flexion/extension satisfied the conditions to be considered similar with high confidence.
Although the CMCP included the effect of every estimated parameter, it was considered necessary to study individually the variability, trend, and dispersion of each of them to properly evaluate the accuracy of the synchronous pairwise measurements [I(t), V(t)]. Likewise, it was decided to study each parameter individually to identify the root cause of the differences in the measurements registered by each mocap system, since some of them could be controlled by adjusting the IMUs instrumentation model or the registration protocol, thus improving the precision of the movement recorded with the IMUs.
Initially, given the limitations observed in CMC in previous papers and in this work, it was decided to perform an initial analysis focused uniquely on the assessment of the correlation-centered waveform similarity (Growney et al., 1997; Steinwender et al., 2000; Røislien et al., 2012). If the waveforms of each pair of gait cycles [I(t), V(t)] did not maintain a linear dependence relationship, that is, they did not change in the same way, it was assumed that the kinematic pattern was not similar, and the in-depth analysis was not performed.
As stated in the results, the only joint angles that showed a sufficiently strong correlation (r > 0.75) to meet condition 1 were the movements of all joints (hips, knees, and ankles) in the sagittal plane and the hips in the frontal plane (Figure 2). In addition, these joint boxes showed less data dispersion and thus less variability in the recordings. Furthermore, this result is confirmed by the graphs in Figures 8, 9, which show the kinematic pattern of all the pairs of gait cycles registered with the IMUs and the photogrammetry system for all joint angles. It can be observed that all the signals in the sagittal plane and the hips in the frontal plane follow the same waveform behavior with both systems. Some outliers are also observed in the dorsi/plantar flexion of the right ankle, showing a registration error by the IMUs. The hypothesis of the origin of this error is the distortions of the magnetometers and the drift accumulated during the captures.
Besides, it can also be seen that the IMUs and photogrammetry signals of the remaining joint angles did not have the same waveform, confirmed by their poor correlation (r < 0.65). In other studies it has been demonstrated that the kinematics recorded in the sagittal plane in adult gait are the most repeatable within the same day and between days, while the repeatability of gait kinematic pattern in the other planes is much more variable for the same subject even within the same day, mainly in the transverse plane for every joint and knee valgus/varus (Kadaba et al., 1989; Growney et al., 1997; Besier et al., 2003; Mcginley et al., 2009). In this study, this can be appreciated especially in hip rotation and knee valgus/varus movements (Figures 8, 9), where the average kinematic pattern recorded with photogrammetry does not describe a common trend, showing more data variability, and does not correspond to that defined in the theory (van der Linden, 2011; Duarte et al., 2018; Francisco and Tejada, 2020). Additionally, there is evidence that, despite their accuracy, photogrammetry systems are less reliable in the transverse plane and knee varus/valgus during gait analysis (Fonseca et al., 2023). In fact, most studies report the highest errors in those planes (Growney et al., 1997; Kim and Nussbaum, 2013; Kok, Hol, and Schön, 2014). So, adjusting the accuracy of other less robust devices in these planes based on the similarity assessment could not be as reliable.
The second part of the analysis focused on the four planes that satisfied condition 1. The position of each IMU sensor was defined so that it would record the ROM as completely as possible. Looking at Figure 3, the ∆ROM recorded for hips flexion/extension, hips adduction/abduction and ankles dorsi/plantar flexion barely reached 2°. These values are closed to those obtained in similar IMUs and photogrammetry systems validation studies (Picerno, Cereatti, and Cappozzo, 2008; Ferrari et al., 2010b) and, in addition, fall within the ranges considered despicable according to the minimal clinically important differences (MCID) estimated for unaffected limbs (Guzik et al., 2021). The knee flexion/extension difference values reached 6.8° in the left limb, higher than those reported in the mentioned validation studies. However, this is still a negligible value with respect to the MCID estimated in clinical practice for unaffected limbs in other articles, which almost reaches 7° (Guzik et al., 2020). It should also be noted that previous assessment studies include samples of one to four subjects, whereas in this work the sample was increased to 32 users, therefore, more variability was captured in the dataset.
Data from the articles reporting errors reveal that most of the studies and gait variables present errors between 2° and 5° for every joint angle, although few of them reach the sample size presented here. The lower RMSE obtained in this validation, in Figure 5, was the one corresponding to the hips adduction/abduction, whereas in the sagittal plane the knees reached 7° and the hips and the ankles reached 10°. However, there are also studies reporting errors between 5° and 10° in the sagittal plane during clinical assessment in the lower limb (McDowell et al., 2000; Fosang et al., 2003). In this study, therefore, these errors can be considered negligible.
As explained in the methodology, the mode of computing CMCP is significantly influenced by joint ROM. Previous studies note that joints with a large ROM tend to record high CMCP and, conversely, joints with a low ROM tend to show lower reliability (Growney et al., 1997; Steinwender et al., 2000; Mcginley et al., 2009; Røislien et al., 2012). This limitation was also shown in this validation (Figure 6), because the lowest CMCP values were reported for the joint angles with smaller ROMs evaluated which were hip adduction/abduction (CMCP = 0.8) and the ankle dorsi/plantar flexion (CMCP = 0.9), even though the measured error and waveform correlation values obtained were good. However, in this study the reliability value increased in the frontal plane because most studies report minimum reliability indices of 0.7. This could be thanks to the standardized instrumentation proposed for the IMUs, defined following the anthropometry measurements to enhance reliability. For the hip and knee in the sagittal plane, the best repeatability and reliability values were obtained (CMCP > 0.9), as reported in the other articles, confirming the feasibility of recording precise kinematics of this plane with IMUs (Mcginley et al., 2009; Ferrari et al., 2010b; Robert-Lachaine et al., 2017).
On the other hand, the CMCPoff was computed to assess how the offset affects the calculation of the repeatability (Figure 7). Once removed, the CMCPoff of the hips in the sagittal plane became excellent, this movement was the one with more offset registered (right: offset = −9.06°; left: offset = −7.98°), and in the frontal plane it increased to 0.9, demonstrating that reliability was directly influenced by the offset. The dispersion of the data, and therefore its variability, improved significantly. Meanwhile, the knees were not disturbed by the offset, whose value is 1°, since they maintained an excellent reliability of 0.99. On the contrary, the CMCPoff of the ankles decreased once the offset is removed. As the CMCP includes the effect of the r, the offset and ∆ROM, if the CMCPoff did not improve when correcting the offset, the root of the problem is another of these parameters. However, as previously stated, the values of ∆ROM, RMSE and r were good. In addition, it was found that most of the values obtained for the [I(t), V(t)] couples were complex, thus, the hypothesis is that the CMCPoff estimation was limited in this movement because of the small ROM of this joint angle, resulting in the formula breaking down (Røislien et al., 2012). As there is no consensus for interpreting these complex values, the acceptance of ankle flexion/extension as reliable was centered on all the other parameters studied. For the CMCP with offset included, this plane showed a value of 0.92 and 0.91 for right and left extremities respectively, showing a very good reliability range, despite not fulfilling condition 2.
According to the IMUs instrumentation protocol, it is known that the offset is caused due to two main reasons: the difference in degrees introduced due to anatomical morphology and the difference in degrees introduced during calibration. In both cases these introduced degrees remained constant during all the captures for the same subject. Likewise, both hips and ankles showed a constant offset for all the subjects, as can be seen in Figures 4, 8, 9, and in the kinematic patterns whose offsets were corrected, shown in Figures 10, 11. Considering that it could be arranged in post-processing to achieve a satisfactory reliability for gait recordings with IMUs, it was agreed that values obtained with CMCPoff satisfy the requirements established in the methodology.
For experiments in which the IMUs mocap system is used to register healthy adults kinematic gait data, it is proposed to perform the offset correction in post-processing by subtracting to the whole signal the median offset value obtained in this study for each joint angle, shown in Figure 4, or by measuring with a goniometer the offsets of each joint angle intrinsic to anatomical morphology that could be observed before starting the recording.
5 CONCLUSION
The kinematic pattern of the hip and the knee in the sagittal plane and the hip in the frontal plane satisfies condition 2 showing an excellent and a very good similarity, respectively, between the waveforms captured with the IMUs and those captured with the photogrammetry system synchronously. Therefore, it is concluded that the movements registered by the IMUs in those planes are completely reliable with offset included. However, the reliability increases if the offset correction is performed, especially for the hip adduction/abduction movement. On the other hand, the ankle dorsi/plantar flexion shows a very good range of similarity between the IMUs and photogrammetry records. Although it does not fulfill condition 2, it can be used to obtain measurements of this joint angle with very good reliability.
It is also concluded that standardizing the instrumentation of the IMUs to the anthropometric measurements of each subject favors the complete recording of the ROM of each joint. However, this is not enough to adjust the offset control, since it also depends on a good calibration position in which the joint angles are aligned at 0°.
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Objective: This study aims to investigate the plantar biomechanics of healthy young males as they descend a single transition step from varying heights.Methods: Thirty healthy young males participated the experiment using the F-scan insole plantar pressure system in which participants made single transition steps descent from four step heights (5, 15, 25, and 35 cm), leading with their dominant or non-dominant foot. Plantar pressure data were collected for 5 s during the period between landing touchdown and standing on the ground. Landing at each step height was repeated three times, with a five-minute rest between different height trials.Results: At 5 cm and 15 cm steps, participants demonstrated a rearfoot landing strategy on both sides. However, forefoot contact was observed at heights of 25 cm and 35 cm. Parameters related to center of plantar pressure (COP) of the leading foot were significantly larger compared to the trailing foot (P < 0.001), increased with higher step heights. Vertical ground reaction forces for the biped, leading and trailing feet decreased with increasing step height (all P < 0.05). The leading foot had a higher proportion of overall and forefoot loads, and a lower proportion of rearfoot load compared to the trailing foot (P < 0.001). The overall load on the dominant side was lower than that on the non-dominant side for both the leading and trailing feet (P < 0.001). For the trailing foot, forefoot load on the dominant side was lower than that on the non-dominant side, however, the opposite result appeared in rearfoot load (P < 0.001). Upon the leading foot landing, forefoot load exceeded the rearfoot load for the dominant (P < 0.001) and non-dominant sides (P < 0.001). Upon the trailing foot landing, forefoot load was lower than the rearfoot load for the dominant (P < 0.001) and non-dominant sides (P = 0.019).Conclusion: When the characteristics of biomechanical stability are compromised by step height, landing foot, and footedness factors — due to altered foot landing strategies, changing COP, or uneven force distribution — ability to control motion efficiently and respond adaptively to the forces experienced during movement is challenged, increasing the likelihood of loss of dynamic balance, with a consequent increased risk of ankle sprains and falls.Keywords: single transition step descent, plantar pressure, plantar pressure center parameters, plantar pressure distribution parameters, landing strategy, dynamic balance
1 INTRODUCTION
Ankle sprain, a common musculoskeletal injury, typically occurs during activities such as jumping, landing, and stair descent, which all involve foot inversion and may result in falls (Kang et al., 2022). However, the specific biomechanical demands differ. Jumping emphasizes impact absorption and rapid stabilization, and multi-step stair descent involves continuous muscle activity and greater joint moments. Descending a single transition step—a frequent daily activity—is a complex task that imposes heightened demands on the skeletal, neural, and muscular systems of the lower limbs, focusing on controlled, balanced movement and controlled eccentric contractions (Protopapadaki et al., 2007). The transition area between the step and level ground (Sheehan and Gottschall, 2011) is frequently implicated in lower extremity injuries such as ankle sprains (Peng et al., 2016). Specifically, during the transition from step to flat ground, the process commences with the movement of one foot from the edge of the step to the ground. Subsequently, the other foot follows, stepping off to join the first (Alcock et al., 2014), providing necessary support for one limb and facilitating the next step for the other limb. Errors in this sequence can lead to injuries of the foot and ankle complex, making stepping down from a single transition step risky. Approximately 23% of fall-related lower extremity injuries occur on curbs or steps, with 30% of these step-related falls happening during the first or last step of the transition to level ground (Koepsell et al., 2004). This sequence poses a challenging and high-risk task for individuals in community settings (Templer, 1995). However, limited research is available on the mechanisms of descending a single transition step (Begg and Sparrow, 2000; Lythgo et al., 2007; van Dieën and Pijnappels, 2009). A kinematic study comparing multi-step descents to transitions to level ground revealed greater variability in lower limb kinematics during the transition step (Yu et al., 1997), suggesting that this variability could increase the likelihood of missteps or falls. Consequently, the theoretical framework in relation to continuous descent may not be directly applicable to a single transition step descent. Consequently, it is of great importance to investigate plantar biomechanics during the sequence of events in a single step descent to understand its correlation with lower extremity injuries, which constitute significant clinical and societal public health concerns (Yu et al., 1997; Sheehan and Gottschall, 2011).
Numerous factors influence movement control when descending a single transition step, with step height (Gerstle et al., 2017; Guo et al., 2023), landing foot (Gerstle et al., 2021), and footedness (Wang and Fu, 2019) identified as key variables. Observations from daily life indicate that, the higher the step, the greater the demands on lower limb neuromuscular control and dynamic balance stabilization. However, current research is insufficient regarding the effects of step height variations on landing strategies, postural control, and balance. Existing research indicates that as step height increases from 0 cm (100% rearfoot strike) to 20 cm (63.6% forefoot strike), the prevalence of forefoot landing strategies increases (Freedman and Kent, 1987). Yet, at a height difference of only 5 cm, forefoot use for step descent is almost unobservable (van der Linden et al., 2007). As step height increases, controlling forward momentum becomes crucial, and forefoot landing is more consistently employed (Riener et al., 2002; Spanjaard et al., 2009). Currently, it is unclear how the shift between forefoot and rearfoot landing strategies occurs at various step heights, and how this influences dynamic balance. One previous study examined the asymmetry between dominant and nondominant legs in lower limb biomechanics (Wang and Fu, 2019), suggesting distinct biomechanical characteristics in different landing feet. Thus, understanding how step height, landing foot choice, and individual footedness influence control during single transition step descent is crucial due to its significant ergonomic implications. These results could help reduce the risk of fall-related ankle injuries, enhance human convenience, and optimize the living environment. Accordingly, this study aims to explore foot landing strategies employed during the initial contact and weight acceptance phases of descending a single transition step. Based on prior studies (Freedman and Kent, 1987; Gerstle et al., 2017), it is hypothesized that at lower step heights, participants will predominantly make initial contact with their rearfoot, gradually shifting to forefoot as step height increases.
Plantar pressure is a critical component of standing and walking (Gao et al., 2022). Plantar pressure detecting and analyzing can increase awareness of potential hazards for fall-related lower extremity injuries (Niu et al., 2019). Currently, only three studies have examined how step-down techniques (rearfoot vs. forefoot) influence plantar pressure when performing a curb descent task. van Dieën et al. (2008) observed that individuals exhibited lower vertical ground reaction forces (vGRF) when adopting a forefoot technique compared to a rearfoot technique. In contrast, Moudy et al. (2020) found no differences in vGRF between individuals who naturally used a forefoot technique and those who used a rearfoot technique. However, Demers et al. (2021) found that vGRF were higher when subjects employed the forefoot technique. Given these inconsistent findings regarding the vGRF on the rearfoot and forefoot when contacting the ground, further investigation is warranted. Consequently, our study employed a plantar pressure testing device to investigate the biomechanical characteristics of the plantar surface during the descent of a single transition step from progressively increasing heights, using alternating landing feet.
2 MATERIALS AND METHODS
2.1 Participants
The inclusion criteria were: ① Ages between 18 and 30 years; ② No history of related injuries or diseases affecting postural and balance control within the past 6 months, including foot and ankle injuries, neurological diseases, lower limb fractures, leg length discrepancies, or arthritis; ③ No ongoing use of medications that affect balance function; ④ Completion of a questionnaire and provision of signed informed consent.
Given the diminished motor function in older adults and the associated risk of injury, healthy young males were recruited. Accordingly, thirty healthy males with a mean age of 23.9 ± 1.2 years, height of 176.9 ± 6.1 cm, weight of 76.0 ± 11.9 kg, and shoe sizes ranging from 41 to 43 Euro Size participated in this study. All were right-footed, as determined by the Chinese version of the Waterloo Footedness Questionnaire (Yang et al., 2018). The experimental protocol was approved by the Human Research Ethics Committee of Shanghai University of Sport (approval number: 102772021RT073). All experiments were performed in accordance with the Declaration of Helsinki. Informed consent was obtained prior to participation.
2.2 Procedures
2.2.1 Pre-test preparation
The experiment was conducted in a quiet room to minimize external disturbances. Four wooden steps with heights of 5 cm, 15 cm, 25 cm, and 35 cm were used, with respective dimensions of 51 × 36 × 5 cm, 58 × 36 × 15 cm, 66 × 36 × 25 cm, and 74 × 36 × 35 cm, as illustrated in Figure 1. The heights of 5 cm, 15 cm, and 25 cm correspond to standard curb and building code step heights, and are also 2.5 cm higher than the current guidelines of the United States Federal Highway Administration (Gerstle et al., 2017). The 35 cm step was included to simulate a larger and more challenging daily activity step.
[image: Four rectangular prisms of increasing height. All have a width of thirty centimeters and a depth of thirty centimeters. Heights are five centimeters, ten centimeters, twenty centimeters, and seventy centimeters respectively.]FIGURE 1 | Steps at heights of 5, 15, 25, and 35 cm.
Participants conducted single transition step experiments descending from steps of four different heights (5, 15, 25, and 35 cm), using both the right and left foot as the leading foot in a randomized sequence. Each condition was tested to include both feet as the leading foot, as detailed in Figure 2.
[image: A sequence of images (A to H) showing a person in gray pants performing a stepping exercise using a wooden box. In each image, the person sequentially places their foot on the box, steps up, raises the opposite knee, steps back down, and returns to the starting position. The steps demonstrate a cycle of leg movement that enhances balance and coordination.]FIGURE 2 | The transitional step descent experiments from different step heights. (A) Descending from a 5 cm step with the right foot as the leading foot; (B) Descending from a 5 cm step with the left foot as the leading foot; (C) Descending from a 15 cm step with the right foot as the leading foot; (D) Descending from a 15 cm step with the left foot as the leading foot; (E) Descending from a 25 cm step with the right foot as the leading foot; (F) Descending from a 25 cm step with the left foot as the leading foot; (G) Descending from a 35 cm step with the right foot as the leading foot; (H) Descending from a 35 cm step with the left foot as the leading foot.
The insole system used was an F-scan plantar pressure analysis system (Tekscan, Boston, MA, United States), providing real-time monitoring and feedback of the “foot-shoe interface” pressure throughout the entire support phase. Actually, this device is favoured for its flexibility, mobility, simplicity and suitability for a wide range of media with different materials and characteristics. The advantage is that the subject can use a natural gait during the experiment, avoiding problems such as platform aiming (Ledoux et al., 2013). Therefore, due to its portability in shoes or socks, the device is suitable for daily habitual or wider range of sporting activities, indoors or outdoors (Mei et al., 2015). However, as postural control appears to be related to plantar sensitivity, a limitation of the system is that the sensitivity of the sensor performance may be disturbed when insoles are inserted in the shoe (Machado et al., 2017). In addition, the insole has a limited number of sensors that only cover the area inside the shoe, which is not as comprehensive as a force plate or force table system (Putti et al., 2007). Besides, the performance of insole-based sensors decreases through multiple experiments and increasing experiment time. Finally, heat and sweat from the foot inside the shoe can also affect the in-shoe sensors, which may lead to biased results (Woodburn and Helliwell, 1996). All participants used the same type of size-adjustable testing insole, with a thickness of 0.15 mm. Each insole had four piezoresistive sensors per 1 cm2, with a measurement range of 0 kPa to 862 kPa. The sampling frequency was set at 50 Hz. Due to the softness of the shoe lining material, inserting the force-measuring insoles into the shoes may cause wrinkles that could affect data accuracy. To address this issue, participants removed their shoes during the test and wore uniform cotton socks. These socks served as the medium to securely adhere the force-measuring insole to the subjects’ toes, arches, and heels using regular double-sided adhesive. This approach prevented shifts in the relative positions of the test insole and the subjects’ feet during preparation and the standing process, ensuring uniform data measurement positions.
2.2.2 Testing procedure
①Single transition step descent: Participants engaged in an exercise involving walking down a single step, during which they were instructed to move their pelvises forward and backward (anterior-posterior) and side to side (medial-lateral) to maintain an even pressure distribution across the soles of their feet. Participants were instructed to keep their eyes level, gaze straight ahead, and maintain a relaxed, natural posture while descending. When completing the step and standing flat on the ground, plantar pressure data were collected for 5 s. This part of the experiment was repeated three times for each step height, with a five-minute rest period between trials.
②Strategy Assessment: Participants completed each step height without specific landing strategy guidance until three consistent landings (either rearfoot or forefoot) were recorded (individual preferred landing strategy), establishing the participant’s landing strategy to minimize variability. Throughout the experiment, a second experimenter observed each participant’s landing from the side to visually assess the landing strategy. A rearfoot landing strategy involved initial contact with the heel, characterized by dorsiflexion (direction of toe force upward), during weight acceptance. Conversely, a forefoot landing strategy entailed landing in a neutral position or with forefoot contact, characterized by toe flexion (direction of toe force downward), during weight acceptance (Gerstle et al., 2017).
③Safety Measures: A third experimenter positioned themselves behind the participants to prevent falls throughout the experiment.
2.2.3 Data processing
Plantar pressure data, including raw data of the center of plantar pressure (COP) and distribution for each frame, were exported from the F-scan plantar pressure analysis system. COP oscillation is widely recognized as a key parameter in assessing postural stability (Pinsault and Vuillerme, 2009; Paillard and Noé, 2015). Customized Python programs (PyCharm Community Edition 2022.2, JetBrains s. r.o., Prague, Czech Republic) were used for data processing and exporting relevant parameters, categorized into two groups. Plantar pressure parameters were defined as outlined in Table 1 (Guo et al., 2023). Plantar pressure center parameters included COP-ML adjustment velocity (mm/s), COP-AP adjustment velocity (mm/s), COP adjustment velocity (mm/s), 95% confidence circle area (mm2), ML range (mm), AP range (mm), maximum swing (mm), minimum swing (mm), mean X (mm), and mean Y (mm). Plantar pressure distribution parameters included ground reaction forces for the biped, leading and trailing feet, as well as overall, forefoot, and rearfoot loads. Finally, COP localization was respectively determined by mean X and Y coordinates along the X-axis and Y-axis.
TABLE 1 | Formulas related to kinematic parameters.
[image: Table comparing kinematic parameters with their formulas. Parameters include COP total adjustment time, COP-ML and COP-AP adjustment velocities, overall COP adjustment velocity, 95% confidence circle area, ML and AP ranges, maximum and minimum swings, mean X and Y. Each parameter is matched with its corresponding mathematical formula.]2.3 Statistical analysis
Data were analyzed with SPSS Statistics (version 26.0; IBM, Chicago, IL, United States) and Excel 2016 (Microsoft, Chagrin Falls, OH, United States), and scatter plots were created using GraphPad Prism 9 (GraphPad Software, San Diego, CA, United States). Chi-square tests were used to analyze the relationship between different step heights and landing strategies, and between footedness and landing strategies. For plantar pressure center parameters, a three-way analysis of variance (ANOVA) was initially performed to identify significant factors. Subsequently, a two-way ANOVA with repeated measures was conducted to examine the main effects and interactions between pairs of factors, with the Bonferroni correction applied for post hoc multiple comparisons. For vGRF, a one-way ANOVA was used to assess differences across the four step heights, with Bonferroni correction applied for post hoc multiple comparisons. For plantar pressure distribution parameters, a paired t-test was used for normally distributed data, and the Wilcoxon rank sum test was applied to skewed distributions. Normally distributed data are expressed as mean ± standard deviation (M ± SD). The significance level α was set a priori at 0.05.
3 RESULTS
3.1 Foot landing strategy
For both the dominant and non-dominant sides as the leading foot, the majority of participants initially favored a rearfoot landing strategy at lower step heights, at 93.33% (28/30) and 90% (27/30) respectively at 5 cm, and 56.67% (17/30) and 53.33% (16/30) respectively at 15 cm. However, as the step height increased, a shift towards a forefoot landing strategy was observed. At 25 cm, 80% (24/30) on the dominant side and 86.67% (26/30) on the non-dominant side preferred the forefoot strategy. This trend was further pronounced at 35 cm, where 96.67% (29/30) of participants on both sides opted for a forefoot landing strategy.
The results of the chi-square test showed a significant difference in landing strategies between step heights (dominant side: X2 = 58.91, P < 0.001; non-dominant side: X2 = 59.17, P < 0.001). There was no significant difference in landing strategies between dominant and non-dominant sides (X2 = 0.274, P = 0.6). The foot landing strategies for both dominant and non-dominant sides are illustrated in Figure 3.
[image: Bar charts labeled A, B, C, and D. Charts A and B compare percentages of forefoot and rearfoot landing strategies across four step lengths (6 cm, 15 cm, 25 cm, 35 cm). Charts C and D show the percentage of foot landing strategy on dominant and non-dominant sides across the same step lengths. Legends and axis labels help distinguish categories and values.]FIGURE 3 | Foot landing strategy. (A) Foot landing strategy on the dominant side. (B) Foot landing strategy on the non-dominant side. (C) Rearfoot landing strategy of dominant vs. non-dominant side. (D) Forefoot landing strategy of dominant vs. non-dominant side.
3.2 Parameters related to center of plantar pressure
3.2.1 Parameters related to the center of plantar pressure for different feet at different step heights
The analysis of COP parameters through a three-way ANOVA, which considered factors of step height, landing foot, and footedness, revealed no statistically significant differences between the dominant and non-dominant sides. Additionally, further exploration using a two-way ANOVA with repeated measures assessed the impact between step height and descending foot. The results, detailed in Table 2, showed no significant interactions.
TABLE 2 | Comparison of COP data on transition steps for different feet at different step heights.
[image: A detailed table presents data on various gait parameters measured for both dominant and non-dominant sides under different step heights of 5, 15, 25, and 35 centimeters. The parameters include COP-ML adjustment velocity, COP-AP adjustment velocity, overall COP adjustment velocity, 95 percent confidence circle area, ML range, AP range, maximum swing, minimum swing, mean X, and mean Y. Each parameter is measured for both the leading and trailing foot. Statistically significant differences are noted for different step heights and between leading and trailing foot, marked with asterisks for significance.]In Table 2, comparing the four step heights of 5, 15, 25, and 35 cm, the 95% confidence circle area (mm2) (P = 0.002), ML range (mm) (P = 0.003), AP range (mm) (P = 0.002), Maximum swing (mm) (P = 0.046) on the dominant side and ML range (mm) (P = 0.002), Mean X (mm) (P = 0.003) on the non-dominant side are statistically different. The differences in COP-ML adjustment velocity (mm/s), COP-AP adjustment velocity (mm/s), COP adjustment velocity (mm/s) on the dominant side and COP-ML adjustment velocity (mm/s), COP-AP adjustment velocity (mm/s), COP adjustment velocity (mm/s), 95% confidence circle area (mm2), and AP range (mm) on the non-dominant side are statistically significant (P < 0.001). All the above parameters increase with the increase in height. When comparing the leading foot and trailing foot, the differences in COP-ML adjustment velocity (mm/s), COP-AP adjustment velocity (mm/s), COP adjustment velocity (mm/s), 95% confidence circle area (mm2), ML range (mm), AP range (mm), and Mean Y (mm) are all statistically significant (P < 0.001) for both the dominant and non-dominant sides. Consequently, these parameters are consistently higher when the leading foot lands compared to the trailing foot during the single transition step descent.
3.2.2 Comparison of plantar pressure center scatter plots
Examination of the scatter plots for mean X and mean Y values for the leading and trailing feet reveals a significant difference in the anterior-posterior (AP) direction. Specifically, the mean Y value of the leading foot is significantly greater than that of the trailing foot, as illustrated in Figure 4A. Similarly, scatter plots for mean X and mean Y values of the dominant and non-dominant sides show a significant difference in the medial-lateral (ML) direction, with the mean X of the dominant side significantly greater than that of the non-dominant side, as depicted in Figure 4B.
[image: Two scatter plots labeled A and B. Plot A shows blue and brown points representing leading and trailing foot positions, respectively, in millimeters on the ML and AP axes. Plot B shows blue and brown points representing dominant and non-dominant side positions, respectively, also in millimeters on the same axes. Clusters in both plots suggest similar distribution trends.]FIGURE 4 | Scatter diagram of COP. (A) Comparison of the COP in the leading and trailing feet. (B) Comparison of the COP in the dominant and non-dominant sides.
3.3 Parameters related to plantar pressure distribution
3.3.1 Relationship between vertical ground reaction forces and different step heights for the biped, leading and trailing feet
ANOVA results indicated statistically significant differences in vGRF for the biped across the four step heights (P < 0.001). Post-hoc multiple comparisons using the Bonferroni correction reveal specific differences: 5 cm step vs. 15 cm step (P = 0.349), 5 cm step vs. 25 cm step (P = 0.028), 5 cm step vs. 35 cm step (P < 0.001), 15 cm step vs. 25 cm step (P = 0.999), 15 cm step vs. 35 cm step (P = 0.043), and 25 cm step vs. 35 cm step (P = 0.475). Detailed data are provided in Supplementary Tables S1, S2. These post-hoc analysis results are illustrated in Figure 5A.
[image: Bar graphs labeled A, B, and C show vertical ground reaction forces for step distances of five, fifteen, twenty-five, and thirty-five centimeters. Graphs A and C show significant differences between five-centimeter steps and other distances, indicated by asterisks. Graph B shows a significant difference between five and fifteen centimeter steps. Error bars represent variability.]FIGURE 5 | Vertical ground reaction force values for transition steps at varying step heights. (A) Vertical ground reaction bipedal force at different step heights for transition step; (B) Vertical ground reaction force of the leading foot at different step heights for transition step; (C) Vertical ground reaction force of the trailing foot at different step heights for transition step. Note: * indicates statistically significant difference at P < 0.05, and *** indicates statistically significant difference at P < 0.001.
For the leading foot, vGRF shows significant differences across the four step heights (P = 0.004). Post-hoc comparisons with Bonferroni correction show specific differences: 5 cm step vs. 15 cm step (P = 0.999), 5 cm step vs. 25 cm step (P = 0.321), 5 cm step vs. 35 cm step (P = 0.003), 15 cm step vs. 25 cm step (P = 0.999), 15 cm step vs. 35 cm step (P = 0.054), and 25 cm step vs. 35 cm step (P = 0.690). Detailed data are provided in Supplementary Tables S1, S2. The post-hoc analysis results are presented in Figure 5B.
For the trailing foot, vGRF demonstrates significant differences across the four step heights (P < 0.001). Post-hoc comparisons with Bonferroni correction show specific differences: 5 cm step vs. 15 cm step (P = 0.078), 5 cm step vs. 25 cm step (P = 0.020), 5 cm step vs. 35 cm step (P < 0.001), 15 cm step vs. 25 cm step (P = 0.999), 15 cm step vs. 35 cm step (P = 0.454), and 25 cm step vs. 35 cm step (P = 0.999). Detailed data are provided in Supplementary Tables S1, S2. The post-hoc analysis results are depicted in Figure 5C.
Figure 5 clearly shows significant differences in the post-hoc comparisons of vGRF for the biped when the step height difference is 20 cm or more. Specifically, a significant difference in vGRF for the leading foot is observed in the post-hoc comparison when the step height difference is 30 cm. For the trailing foot, significant differences in the post-hoc comparisons of vGRF are evident only when the step height difference is 20 cm or more.
3.3.2 Parameters of plantar pressure distribution on the dominant and non-dominant sides when they are the leading foot and the trailing foot
According to Table 3, regardless of whether the dominant or non-dominant side acts as the leading foot, the leading foot bears a higher proportion of overall load compared to the trailing foot (P < 0.001). When the dominant side acts as the leading foot and the non-dominant side acts as the trailing foot, the difference between the two is less than when the non-dominant side acts as the leading foot and the dominant side acts as the trailing foot. When the dominant side is used as the leading foot or the trailing foot, the proportion of forefoot load has a significant difference (P < 0.001); When the non-dominant side is used as the leading foot and trailing foot, the proportion of forefoot load has a significant difference (P < 0.001), and the forefoot load of the leading foot is significantly greater than that of the trailing foot. When the dominant side is used as the leading foot or the trailing foot, the proportion of rearfoot load has a significant difference (P < 0.001); When the non-dominant side is used as the leading foot or the trailing foot, the proportion of rearfoot load has a significant difference (P < 0.001), and the rearfoot load of the leading foot is significantly lower than that of the trailing foot.
TABLE 3 | Plantar pressure distribution data when the dominant and non-dominant sides act as the leading and trailing feet.
[image: Table comparing loads on leading and trailing feet. For overall load, dominant foot leading shows 51.96% and non-dominant leading shows 58.16%. Forefoot load is similar between dominant (55.54%) and non-dominant (54.69%) sides. Rearfoot load shows dominant side at 44.46% and non-dominant at 45.31%. Statistical significance indicated by p-values less than 0.001.]3.3.3 Comparison of plantar pressure distribution parameters between the dominant and non-dominant sides
As shown in Table 4, there is a significant difference in overall load between the dominant and non-dominant sides (P < 0.001), with the dominant side accounting for a lower percentage of the overall load than the non-dominant side when descending as a leading foot, and the dominant side accounting for a similarly lower percentage of the overall load than the non-dominant side when descending as a trailing foot. Regarding forefoot load, there is no significant difference between the dominant and non-dominant sides when the leading foot lands (P = 0.59). However, when the trailing foot lands, there is a significant difference (P < 0.001), with the forefoot load on the dominant side being lower than that on the non-dominant side. For rearfoot load, there is no significant difference between the dominant and non-dominant sides when the leading foot lands (P = 0.59), but both proportions are less than 50%. When the trailing foot lands, there is a significant difference (P < 0.001) between the dominant and non-dominant sides, and both sides have rearfoot load proportions exceeding 50%.
TABLE 4 | Comparison of plantar pressure distribution parameters between the dominant and non-dominant sides.
[image: Table showing load distribution between dominant and non-dominant feet across various conditions: overall, forefoot, and rearfoot load. Data includes means, standard deviations, t-values, and p-values for leading and trailing foot positions. Significant differences are noted where p is less than 0.001.]3.3.4 Comparison of plantar pressure distribution parameters between the leading foot and the trailing foot at different step heights
As shown in Table 5, when the dominant side serves as the leading foot, there is a significant difference between forefoot and rearfoot loads (P < 0.001), as when the dominant side serves as the trailing foot (P < 0.001). When the leading foot lands, the forefoot load is greater than the rearfoot load, while when the trailing foot lands, the forefoot load is lower than the rearfoot load. When the non-dominant side serves as the leading foot, there is a significant difference between forefoot and rearfoot loads (P < 0.001), as when the non-dominant side serves as the trailing foot (P = 0.019). When the leading foot lands, the forefoot load is greater than the rearfoot load, while when the trailing foot lands, the forefoot load is lower than the rearfoot load.
TABLE 5 | Comparison of forefoot and rearfoot plantar pressure distribution parameters in the leading and trailing feet.
[image: Table comparing foot load percentages between dominant and non-dominant sides. Forefoot load for dominant leading foot: 55.54%, trailing foot: 40.45%. Rearfoot for dominant leading foot: 44.46%, trailing foot: 59.55%. Non-dominant leading foot forefoot: 54.69%, trailing: 46.64%. Rearfoot for non-dominant leading: 45.31%, trailing foot: 53.36%. Statistical values and significance levels are provided.]4 DISCUSSION
Varying step heights altered participants’ foot landing strategies, shifting from rearfoot to forefoot landing as the height increased. To be more specific, participants exhibited a preference for rearfoot landing regardless of whether the dominant or non-dominant side was used as the leading foot when descending 5 cm and 15 cm steps. However, at step heights of 25 cm and 35 cm, the preferred landing strategy shifted to forefoot landing.
The experimental results align with previous findings (Freedman and Kent, 1987) and support our research hypothesis. At the lowest step height of 5 cm, participants predominantly used a rearfoot landing strategy, while at the highest step height of 35 cm, they preferred forefoot contact. In normal gait, steps typically involve rearfoot contact, which results in minimal kinetic energy at lower step heights. As step height increases, forefoot landing becomes more prevalent, presumably to better absorb the kinetic energy acquired during the descent (van Dieën et al., 2008). A forefoot landing strategy is preferable for higher curbs or steps, as it allows for a more controlled descent and keeps kinetic energy within manageable limits. Therefore, a forefoot landing strategy is considered safer for descending steps than a rearfoot strategy, albeit at the potential cost of joint torque and gait speed efficiency (Buckley et al., 2008). Although a preference for rearfoot landing was noted at a 15 cm step height (56%/53%), landing strategies varied more at intermediate step heights. At a step height of 25 cm, 80%/86% of participants adopted a forefoot landing strategy, indicating a gradual shift in landing preferences with increasing step height. Previous research indicated that most landing strategies concentrated between step heights of 10 cm and 20 cm, with notable transitions in strategy from rearfoot to forefoot as height increases (5 cm = 96.36% rearfoot; 10 cm = 89.09% rearfoot; 20 cm = 78.18% forefoot)(Freedman and Kent, 1987). The height range of 17.8–22.5 cm, corresponding to some common step and curb heights (Axelson, 1999), coincides with the observed transition range in this study. This suggests these heights may be crucial for future research aimed at identifying mechanical factors influencing step descent in fallers and non-fallers. Specifically, most of the shifts in landing strategies were in the range of 10 cm–20 cm, whereas some of the common steps and curbs in real life are 17.8–22.5 cm in height, and these overlap in the range of 17.8–20 cm. Therefore, in the future, we need to avoid this overlapping height of steps and curbs in urban planning and building regulations as much as possible to prevent falls and sprains during the change of landing strategy.
Several factors may contribute to the preferred landing strategy at intermediate step heights, and one of them is related to individual’s height. Height differences, which determine leg length, allow individuals with shorter legs to transition from rearfoot to forefoot landing strategies at lower step heights. Indeed, in this experiment, for a 15 cm step height, the average height of participants who preferred a rearfoot landing strategy (1.78 ± 0.04 m) was greater than the average height of those who preferred a forefoot landing strategy (1.74 ± 0.07 m). Another potential factor influencing landing strategy is the strength of the lower limbs. Studies suggest that particularly quadriceps strength may be crucial in step descent (Gerstle et al., 2021). Although our study did not assess lower limb strength, all participants were healthy young males, excluding significant strength disparities due to lower limb diseases. Therefore, lower limb strength may not significantly influence the choice of landing strategy in this healthy young male cohort. Lastly, another influencing factor may be the approach speed (van Dieën and Pijnappels, 2009; Gerstle et al., 2017). One study found that as approach speed increased, the likelihood of a rearfoot landing strategy also increased (van Dieën and Pijnappels, 2009). However, all participants descended at their habitual speeds for transition step in this study (Lythgo et al., 2007; Rao et al., 2009; Buckley et al., 2010). Future studies could instruct participants to walk at specified speeds to better assess the impact of approach speed on landing strategy during single transition step descent.
In human bipedal motion, controlling dynamic stability is a key movement priority (AminiAghdam et al., 2019). During single transition step descent, potential errors exist, including stumbling or slipping during the loading phase or losing control of the center of mass (COM) during the descent phase (Templer, 1995). Observations of the body’s COM can be projected onto observations of the COP on the foot sole (Hak et al., 2013), showing the same trends (Vlutters et al., 2016). Consequently, COP parameters in the ML and AP directions, as well as the total adjustment velocity, 95% confidence circle area, ML range, and AP range increase with the increase in step height. This shift in the body’s COM leads to instability during the transitional landing phase. Descending steps requires more balance control than walking on level ground due to the lowering of the COM. Oates et al. (2005); Oates et al. (2017) observed that individuals tended to increase ML range to stabilize themselves during challenging walking scenarios. Additionally, rapid changes in COP during step descent may result from downward momentum being transferred to lateral momentum during the braking phase, indicating stronger braking forces. So our present study, from a kinematic perspective, reveals that an increase in step height leads to greater forward velocity of the COM, in response to an increase in AP-related plantar pressure center parameters (Vieira et al., 2017). This decrease in stability results from dynamic changes during step descent. While these studies explore the impact of body momentum on balance control at normal walking speeds, further research is needed to understand the relationship between whole-body COM, stepping patterns, and the influence of speed on dynamic posture control (AminiAghdam et al., 2019). Moreover, as step height increases, the fear of falling within the participants potentially intensifies, reducing dynamic balance ability and thus affecting the stability during subsequent transitions from higher step heights to level ground, which increases the risk of unstable landings or fall-related ankle sprains (Adkin et al., 2002; Patil et al., 2013; Cleworth et al., 2019). Heightened fear of falling due to greater heights results in excessive caution, affecting normal gait characteristics, muscle strength, and motor function (Hauer et al., 2009; Ayoubi et al., 2015), which significantly impacts daily life (Murphy et al., 2002; Franchignoni et al., 2005).
In the parameters related to the plantar pressure center, distinct biomechanical differences were observed in transitional step descent with different landing feet. Notably, COP parameters of the dominant and non-dominant sides in the ML and AP directions, as well as total adjustment velocity, 95% confidence circle area, ML range, and AP range, exhibit differences between the leading and trailing feet, with significant disparities in the AP direction and total velocity. This disparity may stem from variations in the movement patterns of the lower limbs. During the single support phase of forward descent, the trailing foot remains stationary, allowing time and space to position the leading foot (Pijnappels et al., 2005). Additionally, at the initial ground contact, the leading foot generates more momentum and AP positional displacement than the trailing foot (van Dieën et al., 2008). Individuals experience potential energy loss corresponding to step height during the process of descending steps. Part of this energy is absorbed by the trailing foot, converting it into kinetic energy. The leading foot must absorb this kinetic energy through eccentric contraction during landing, otherwise imbalance and falls may occur during the descent (van Dieën et al., 2007). According to the COP scatter plot, the mean Y of the leading foot exceeds that of the trailing foot. From the perspective of COP, the trailing foot shows fewer deviations and requires fewer postural adjustments than the leading foot. Indeed, van Dieën et al. (2007) suggest that a rapid response of the trailing limb is a reliable strategy for avoiding falls when unexpectedly encountering step descent in healthy young individuals. Regarding COP parameters in the AP and ML directions, a focus on coordinated control in the ML direction rather than forward progression is recommended. Research by Cui et al. (2020) indicated that stability in the ML direction is prioritized over the AP direction. Previous studies have also confirmed the crucial role of ML stability in movement processes (Krishnan et al., 2013; Eckardt and Rosenblatt, 2018).
Besides, interesting findings were observed regarding the vGRF; as step height increased, the vGRF decreased for the biped, leading and trailing feet measurements. This phenomenon could be attributed to changes in the landing strategy of the leading foot. Compared to rearfoot strike, forefoot landing exhibits smaller impact forces owing to increased plantar flexion at the ankle joint and the associated eccentric control by the calf muscles. As step height increases, the landing strategy shifts towards forefoot landing, resulting in prolonged support phase by the leading foot. During this phase, forward velocity significantly decreases, leading to a substantial reduction in the vGRF when both feet land (van Dieën et al., 2008). This observation aligns with the principle that higher approach velocities favor a rearfoot strike landing strategy (van Dieën and Pijnappels, 2009). This is consistent with the findings of van Dieën et al. (2008), who reported lower vGRF for individuals using a forefoot strike compared to a rearfoot strike. Additionally, the increased caution and slower movements observed at elevated step heights may reflect psychological factors such as fear and apprehension of falling, potentially explaining our findings (Patil et al., 2013). Finally, the study by van Dieën et al. (2008) suggested no significant differences in the dynamics of the trailing foot between the forefoot and rearfoot landing strategies with a descent height difference of 10 cm (van Dieën et al., 2008). Our experiment corroborated this conclusion and further revealed that significant differences in the vGRF of the trailing foot manifest only at step height differences of more than 20 cm.
The plantar pressure distribution data during the transition step, when the dominant side serves as the leading foot and the non-dominant side as the trailing foot, and when the non-dominant side serves as the leading foot and the dominant side as the trailing foot, consistently show that the overall load on the leading foot is higher than that on the trailing foot. However, the difference in overall load between leading foot and trailing foot of the dominant side as the leading foot and the non-dominant side as the trailing foot is slight. The reason why the overall load on the leading foot is higher than that on the trailing foot may be attributed to inherent gait differences between the leading and trailing feet during the entire single transition step descent, which consists of single support and double support phases (Vlutters et al., 2016). As the leading foot makes initial contact with the ground and the trailing foot swings, the leading foot bears the entire body mass, increasing load due to the prolonged single support phase. Secondly, as the non-dominant side may have slightly inferior adjustment and control capabilities compared to the dominant side, this potentially results in larger differences in load. Consistent with findings from the study by Cho et al., the leading foot tends to have a higher forefoot load and a lower rearfoot load (Cho et al., 2021), while the trailing foot exhibits opposite trends. Finally, this observation may be linked to differences in landing strategies between the leading and trailing feet. The landing strategy of the leading foot changes with variations in step height, while the trailing foot’s descent is more akin to a fixed swing. Consequently, the leading foot faces greater ground landing challenges than the trailing foot. Moreover, individuals exhibit varying pressure patterns and load control across different regions of the sole during dynamic postural stability (Rozema et al., 1996). This balance is primarily achieved by increasing the forefoot load on the leading foot (Cho et al., 2021) and the rearfoot load on the trailing foot.
Additionally, this study examined differences in overall load distribution between the dominant and non-dominant sides, revealing that the regulation of plantar pressure distribution on both feet differs between these sides during the balancing process. For the trailing foot, the forefoot load is lower and the rearfoot load is higher on the dominant side compared to the non-dominant side. Finally, for both the dominant and non-dominant sides, the leading foot consistently exhibits a forefoot load greater than the rearfoot load, with similar loads. In contrast, the trailing foot exhibits a lower forefoot load than the rearfoot load, but with larger differences, indicating that the trailing foot requires more rearfoot load for postural control on the dominant side. So, when the non-dominant side serves as the trailing foot, the distribution between the forefoot and rearfoot is more balanced, demonstrating superior posture control and balance capabilities. Studies indicate that changes in plantar pressure can lead to adverse outcomes, including excessive load on the metatarsal and heel regions, which potentially increase the risk of disease and fall-related injuries (Mickle et al., 2010; Rao and Carter, 2012). Therefore, using the dominant side as the leading foot and the non-dominant side as the trailing foot in single transition step descents results in a comparatively balanced load state, reflecting better postural control capabilities and low risk of injuries.
5 LIMITATIONS AND FUTURE DIRECTIONS
As there are significant differences in gait, mobility, and psychology between men and women (Kerrigan et al., 1998; Gerstle et al., 2021), this study exclusively recruited healthy males to minimize gender-related variability in single step descent. Secondly, this experiment has not yet analyzed the changes in visual factors. Alterations in visual factors may affect the stability and balance of the body during descent at various step heights. Lastly, the experiment was conducted using participants’ preferred speeds for approach velocities. However, increased walking speeds may reduce stability upon foot landing (Süptitz et al., 2012; McCrum et al., 2019). Future research will explore the role of speed more thoroughly by having participants descend a single transition step at varied speeds, assessing its effects in this context.
6 CONCLUSION
Changes in step heights, landing foot, and footedness result in distinct foot landing strategies and plantar biomechanical characteristics during single transition step descent in healthy young males. As step height increases, plantar pressure center increases, while vGRF for the biped, leading and trailing feet decrease. The dominant side exhibited superior control ability to the non-dominant side, particularly when working as the leading foot. Together, as step height increased, participants tended to shift from a rearfoot to a forefoot landing strategy to absorb vertical reaction force, which may increase the risk of ankle sprain and falling, especially when the leading foot was non-dominant. Specifically, choosing the middle step height of 15 cm and 25 cm should not be too low (too much task volume) and too high (too much challenge and too much risk). Meanwhile, this paper suggests the use of the dominant side as the leading foot and the non-dominant side as the trailing foot as a single transition step through the steps of the program. It reflects a relatively balanced loading state and shows better human postural control and dynamic balance.
Observed shifts in plantar pressure and foot landing strategies, particularly with increasing step heights, suggest how the balance control and stability change in dynamic environments. These variations and adaptations may be critical in designing targeted interventions aimed at reducing fall risks across various populations. Variations in load distribution between the dominant and non-dominant sides underscore the role of lateralization in balance strategies, potentially informing personalized approaches in physical therapy and rehabilitation to address specific weaknesses or compensatory behaviors. These findings warrant further investigation into the neuromuscular and structural factors driving these differences, potentially guiding more tailored and effective fall prevention programs based on individual biomechanical profiles.
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Background: The flexion relaxation phenomenon (FRP) is characterized by suddenly reduced paraspinal muscle activity during full flexion. Previous studies showed significant differences in FRP and flexion angles in chronic low back pain (cLBP) patients compared to individuals without back pain (no-BP). However, the relationship between FRP and flexion angles remains insufficiently understood in older populations. Thus, this study investigated the relationship between FRP and flexion angles concerning to the age and presence of cLBP.Methods: Forty no-BP subjects (20m/20f; mean age 41.5 years) and thirty-eight cLBP patients (19m/19f; mean age 43.52 years) performed maximum full upper body flexion task. Electromyographic (EMG) measurements were conducted to assess the activity of lumbar erector spinae (ESL), thoracic erector spinae (EST), and multifidus (MF). Lumbar, thoracic, and pelvic angles at the onset (OnsetL/T/P) and offset of the FRP (OffsetL/T/P) and maximum trunk inclination (MaxL/T/P) were calculated. The FRP was evaluated using a flexion relaxation ratio (FRR).Results: cLBP patients showed smaller FRR in MF and right ESL compared to no-BP individuals (p < 0.05), while no differences were found in flexion angles between two groups. Subjects over 40 showed smaller FRR in MF and ESL, and smaller flexion angles on OffsetL and MaxL (p < 0.05). Age-related analysis in the cLBP group revealed that patients over 40, compared to younger ones, had smaller FRR in MF and ESL, and smaller values in all thoracic and lumbar flexion angles (p < 0.05). While in no-BP group, significant larger flexion angles in OnsetL and OffsetT (p < 0.05) were observed in participants over 40. Pain-related analysis in the older group revealed that the cLBP patients, compared to no-BP individuals, had smaller FRR in right MF and right ESL, and smaller values in all lumbar and thoracic flexion angles (p < 0.05), while in younger group, there were no significant pain-related differences in FRR, with larger values in all lumbar flexion angles (p < 0.05).Conclusion: Our findings indicate a reduction or absence of FRP in cLBP patients compared to no-BP individuals, with age being a significant factor as those over 40 showed smaller FRP and flexion angles compared to younger individuals.Keywords: age, low back pain, electromyography, flexion relaxation phenomenon, kinematics
1 INTRODUCTION
Low back pain (LBP) is a common musculoskeletal disorder that affects people of all ages and social classes (Airaksinen et al., 2006; Traeger et al., 2021). When the LBP lasts longer than 12 weeks, it is referred to as chronic low back pain (cLBP), with a prevalence of 4.2% in individuals aged 24%–39% and 19.6% in those aged 20–59 (Meucci et al., 2015).
Epidemiologic studies showed that repetitive bending and lifting activities might be linked to an increased risk of developing LBP disorders (Marras et al., 1995; Xu et al., 1997; Swain et al., 2020), possibly caused by accompanying large bending moments in the passive spinal tissues (Adams and Dolan, 1991; Dolan et al., 1994) and large compressive loads due to muscle forces (Schultz et al., 1985; Dolan et al., 1994). During the lumbar full flexion, back muscles are relieved (Floyd and Silver, 1955), and this phenomenon is called the flexion relaxation phenomenon (FRP). FRP is of particular note, as during its occurrence the external moment is carried by the passive spinal tissues (Golding, 1952; Kippers and Parker, 1984; Panjabi, 1992b; a; McGill and Kippers, 1994; Andersson et al., 1996; Du Rose, 2018). The silence of the erector spinae (ES) muscle during FRP is believed to arise from the stimulation of stretch receptors in the posterior disco-ligamentous tissues (Solomonow et al., 2003a; Solomonow et al., 2003b).
Studies comparing FRP between no back pain (no-BP) and cLBP populations reported a greater ratio among the no-BP population (Watson et al., 1997; Colloca and Hinrichs, 2005; McGorry and Lin, 2012; Ringheim et al., 2015; Rose-Dulcina et al., 2020). cLBP patients might reduce their FRP to protect the vulnerable passive structures of the spine, thereby increasing back muscle activity. While this might provide short-term relief, it could increase spinal loads and compromise spinal tissue over time. Such adaptations are considered as potential triggers for LBP (Hodges and Tucker, 2011). Laird et al. (2019) showed that the LBP group had significantly lower lumbar flexion angles and greater lumbar extensor muscle activity than the no-BP group. Dankaerts et al. (2009) also found that LBP patients had significantly lower flexion angles and greater multifidus (MF) activity compared to individuals without back pain.
The influence of age on FRP, however, has been overlooked in the existing literature. While the prevalence of cLBP increases with age, a decrease in lumbar flexion and extension typically starts around age 40 (Sullivan et al., 1994; Galbusera et al., 2014). The spine becomes stiffer as a result of age-related changes, such as reduced water content in the intervertebral discs and surrounding tissues (Solomonow, 2006). In addition, the back muscles of older people do not respond sufficiently to the load on the spine and the activity of the trunk muscles is reduced when performing functional tasks (Hubley-Kozey et al., 2009). The previous study conducted by Kienbacher et al. (2016) compared individuals aged 40–60 with a younger group and found that the older group had significantly lower values in FRP than their younger counterparts. However, it is important to note that the study only focused on cLBP patients.
Thus, the current study aims to investigate the influence of age on FRP for both no-BP and cLBP groups, as well as compare the differences between these groups within matched age ranges. We hypothesized that 1. cLBP patients exhibit significant differences in FRP and flexion angle during trunk flexion compared to no-BP individuals, and 2. Age significantly affects these alterations.
2 METHODS
2.1 Study participants and ethics approval
This observational cross-sectional study was conducted between January 2022 and December 2023 and is part of a 4-year, prospective cross-sectional study to evaluate the influence of various factors on the development and chronicity of LBP. The study was prospectively registered (DRKS-ID: DRKS00027907) and performed in Germany. The Ethics Committee of the Charité–Universitätsmedizin Berlin (registry numbers: EA4/011/10, EA1/162/13) approved this study. All participants were informed about the study’s procedure and signed a consent form. The study included people aged between 18 and 64 years with a body mass index of less than 29. We conducted our study based on previous research that considered 40 years as a threshold for age sub-grouping (Sullivan et al., 1994; Galbusera et al., 2014; Kienbacher et al., 2016).
2.1.1 No-BP group
This group has never experienced pain in the entire back or pelvis and has never had surgery on the spine or lower extremities.
2.1.2 cLBP group
Patients with cLBP (range: >12 weeks to 20 years) and pain intensity based on a Numeric Rating Scale ranging from 0 to 10 (where 0 represents no pain, and 10 is the worst pain imaginable) were included. Patients with prior vertebral fractures, radiculopathies with muscular paresis or previous spinal surgery as well as non-spinal circumstances which diminishes daily activity (respiratory diseases such as COPD, heart failure, myocardial ischemia, neurological disorders, malignancies) were excluded from this study.
2.2 Measurement devices and instrumentation
The Vicon Motion Capturing System (Vicon Motion Systems, Inc., Oxford, United Kingdom) was used to capture the three-dimensional motion at a sampling frequency of 200 Hz. This included twelve high-speed infrared cameras that track 41 retro-reflective markers (14 mm in diameter) placed on the anatomical landmarks of participants according to the Vicon plug-in gait full-body marker set (Nexus, 2023) (Figure 1).
[image: Front and back views of a person wearing black shorts and a headband. The front view shows anatomical markers, while the back view includes labels indicating points such as "RENC," "REST," and others.]FIGURE 1 | Position of Vicon markers (white ones) and EMG sensors (blue ones) from front (A) and back (B) views. L/REST: Left/right thoracic erector spinae; L/RESL: Left/right lumbar erector spinae; L/RMF: Left/right multifidus.
In addition, a wireless Electromyographic (EMG) system (Myon Aktos, Schwarzenberg, Switzerland) was used to record muscle activities at 1,000 Hz. The skin was shaved, cleaned, and prepped with alcohol before attaching the electrodes. Six surface EMG sensors recorded the muscle activity of the left/right multifidus (L/RMF) (∼2 cm lateral to midline at the L5), left/right lumbar erector spinae (L/RESL) (∼3 cm lateral to midline at the L3), left/right thoracic erector spinae (L/REST) (∼5 cm lateral to midline at the T9) (McGill, 1991; Firouzabadi et al., 2021) (Figure 1). A band-pass filter (30–450 Hz) utilizing a fourth-order Butterworth filter was employed to minimize the noise and artifact effects. A notch filter was used to remove unwanted 50 Hz interference. Following filtration, EMG signals were rectified, and the root-mean-square (RMS) envelopes were then obtained by using a 150-ms moving window and were normalized in relation to their corresponding peak values of maximal voluntary contraction (MVC) (Firouzabadi et al., 2024).
2.3 Study protocol
The study protocol consisted of three parts:
	1) Study participants were initially asked to complete the following questionnaires:
	- Chronic Pain Grade Questionnaire (CPGQ) to measure the chronic pain severity (Von Korff et al., 1992)
	- Roland-Morris Disability Questionnaire (RMDQ) to assess disability in patients with cLBP (Stroud et al., 2004)
	2) Study participants underwent a clinical examination. Here, they were examined by a specialist in orthopedics and trauma surgery with several years of professional experience. Subsequently, the participants were split into a cLBP and a no-BP group.
	3) All participants engaged in MVC and flexion exercises. During the MVC test, participants were lying prone on a therapy table, with their upper body extending over the edge and their pelvis and legs fixed on the bed (Konrad, 2006). The experimenter applied resistance to the participants’ shoulders, encouraging them to exert maximum effort.

Participants engaged in pre-trial practice to improve the smoothness of their movements during the task. They were instructed to do the flexion phase with straight knees and standardized upper limb position (arms hanging naturally, relaxed, and perpendicular to the ground) with self-selected velocity, maintain full flexion for 3 s, and then return to the initial position. Each participant performed three trials with a one-minute rest between the trials (Gouteron et al., 2022; Wei et al., 2019; Callaghan and Dunk, 2002).
2.4 Data processing
For kinematic analysis, the flexion angles of the lumbar, thoracic, and pelvic at the onset and offset (OnsetT/L/P and OffsetT/L/P) of the FRP as well as at maximum trunk inclination (MaxP/L/T) were calculated (Descarreaux et al., 2008) (Figure 2). The plug-in gait model in Vicon Nexus 2.8.1 was used to identify the relevant frames and calculate segment angles. The lumbar flexion angle was determined by the intersection of the sagittal thoracic and sagittal pelvic axes, with the fixed transverse axis of the pelvis as a reference point. Thoracic angle was defined as the angle formed by the projected sagittal thorax and the sagittal laboratory axes. The pelvic angle was defined as the angle in this plane between the projected sagittal pelvic axis and the sagittal laboratory axis (Nexus, 2023).
[image: Two sets of graphs labeled A and B each contain three panels. Panel A1 shows a time vs. EMG amplitude graph with a highlighted section labeled FRP. Panel A2 is a line graph showing trunk inclination against time, noting the onset and offset of FRP. Panel B1 shows a similar graph to A1 labeled Altered FRP. Panel B2 mirrors A2 with changes labeled for altered FRP. Panels A3 and B3 depict trunk angle over time with lines for thoracic, lumbar, and pelvic regions, marking the onset and offset of trunk movement.]FIGURE 2 | The EMG and flexion angles in a no-BP subject (A). A raw EMG signal from LESL with normal FRP (a myoelectric silence) (A.1). The onset and offset of the FRP from normalized EMG (A.2). The flexion angles of the lumbar, thoracic, and pelvic at the onset and offset of the FRP are based on the percentage of flexion task, progressing from upright standing to full flexion, remaining in full flexion for 3 s, and then returning to upright standing (A.3). The EMG and flexion angles in a cLBP subject (B). A raw EMG signal from LESL with an altered FRP (absence of myoelectric silence) (B.1). The onset and offset of the FRP from normalized EMG (B.2). The flexion angles of the lumbar, thoracic, and pelvic at the onset and offset of the FRP (B.3).
MATLAB R2020b (The MathWorks, Inc.) was used to process the EMG data. Two experienced examiners visually determined the standard EMG-off and EMG-on points. The onset of the FRP was indicated by an abrupt decrease in muscle electrical activity during flexion, and the offset of the FRP was indicated by an abrupt increase in muscle electrical activity during extension (Figure 2) (Sarti et al., 2001; Gupta, 2001; Jin et al., 2012; Descarreaux et al., 2008). A flexion relaxation ratio (FRR) for six back muscles was calculated from normalized EMG data by dividing the maximal EMG during the flexion by the maximal EMG during the full flexion as follows (Gouteron et al., 2022):
[image: FRR equals the maximum EMG during flexion divided by the maximum EMG during full flexion, as shown in equation one.]
2.5 Statistical analysis
Statistical analyses were carried out in SPSS version 20 (SPSS Inc., Chicago, United States). Initially, the normality of the data and the homogeneity of variance were confirmed in each group through the utilization of the Shapiro-Wilk test and Levene’s test. For normally distributed data, Analysis of Variance (ANOVA) was employed (P < 0.05). Data that did not meet the homogeneity of variances criterion (e.g., MaxT, OffsetP, OffsetT, etc.) were analyzed using the Mann-Whitney U test.
The effect size was calculated based on Cohen’s and Sawilowsky’s recommendation (Cohen, 1992; Sawilowsky, 2009) using G*Power version 3.1.3 (University of Düsseldorf, Düsseldorf, Germany). For our study, with a small effect size of 0.4, an alpha error of 0.05, and a power of 0.8, a minimum sample size of 72 participants was determined to be necessary. Hence, enrolling 78 patients was deemed sufficient to attain the desired statistical power.
3 RESULTS
The no-BP group consisted of 40 participants (age: 41.5 ± 13.15 years, BMI: 23.11 ± 2.30 kg/m2). The cLBP included 38 participants (age: 43.52 ± 12.65 years, BMI: 23.12 ± 2.23 kg/m2). No significant differences were found in demographic characteristics and sex distribution between the cLBP and no-BP groups (p > 0.05). However, a significant difference in the RMDQ disability score was found between the cLBP groups younger and older than 40 (p = 0.02). Detailed information concerning demographic variables and pain scores can be found in Table 1.
TABLE 1 | Demographics of study participants. Significant differences (p < 0.05) are shown in bold.
[image: Table comparing demographic and health characteristics among four groups: cLBP, No-BP, Age<40, Age>40. Variables include sex ratio, age, body height, body weight, BMI, pain intensity, and RMDQ. P-values assess statistical differences, highlighting significant differences in age with P = 0.001 and RMDQ with P = 0.02 for Age>40 compared to other groups.]There were no significant differences in the flexion velocity amongst the sub-groups in our study. The average duration of flexion for individuals with no-BP and cLBP was 2.5 ± 1.2 and 2.7 ± 0.8 s, respectively. For participants under and over 40, the flexion duration was 2.5 ± 0.9 and 2.6 ± 1.1 s, respectively.
Among all of the cLBP patients, twenty (52.63%) showed an altered FRP. The FRR in the cLBP group was statistically smaller than the no-BP group in the LMF (p = 0.041), RMF (p = 0.019), and RESL (p = 0.025), while there were no significant differences for EST and flexion angles for all segments (Table 2).
TABLE 2 | Separate comparisons of FRR and flexion angles based on pain and age. Significant differences (p < 0.05) are shown in bold.
[image: A table showing flexion relaxation ratio (FRR) and flexion angle measurements for different conditions. Columns compare chronic low back pain (cLBP) and no back pain (No-BP) across age groups under and over forty. Significant P-values are highlighted for comparisons such as LMF, RMF, and RESL in FRR, and OffsetL and MaxL in flexion angle.]Participants older than 40 showed statistically smaller values in FRR for the LMF (p = 0.005), RMF (p = 0.002), LESL (p = 0.002), RESL (p<0.001), OffsetL (p = 0.023) and MaxL (p = 0.023) (Table 2).
Age-related analysis in the cLBP group revealed that patients over 40, compared to younger ones, had a statistically smaller FRR in LMF (p = 0.017), RMF (P < 0.001), LESL (p = 0.002) and RESL (P < 0.001), and statistically smaller values in all thoracic and lumbar flexion angles (OnsetT (p<0.001), OnsetL (p<0.001), OffsetT (P = 0.005), OffsetL (p<0.001), MaxT (p = 0.026), and MaxL (p<0.001)). While in no-BP group, there were no significant age-related differences in FRR, with statistically larger flexion angles in OnsetL (p = 0.033) and OffsetT (p = 0.037) (Table 3).
TABLE 3 | Subgroup analysis based on age by matching the pain. Significant differences (p < 0.05) are shown in bold.
[image: A table comparing various metrics between two groups: No-BP and cLBP, each divided by age groups `<40` and `>40`. Metrics include FRR and Flexion angles, showing mean and standard deviation. Significant p-values are highlighted. Notable values: for cLBP `RMF`, `<40` mean is `6.10`, `>40` mean is `2.33`, p-value `<0.001`; for Flexion angles `OnsetT`, `<40` mean is `117.98`, `>40` mean is `91.99`, p-value `<0.001`.]Pain-related analysis in the older group revealed that the cLBP patients compared to no-BP ones had statistically smaller FRR in RMF (p < 0.001), RESL (p = 0.003), and statistically smaller values in all lumbar and thoracic flexion angles (OnsetT (p<0.001), OnsetL (p<0.001), OffsetT (p = 0.002), OffsetL (p<0.001), MaxT (P = 0.014), and MaxL (p<0.001)), while in younger group, there were no significant pain-related differences in FRR, with statistically larger values in all lumbar flexion angles (OnsetL (p = 0.006), OffsetL (p = 0.018), MaxL (p = 0.015)) (Table 4).
TABLE 4 | Subgroup analysis based on pain by matching the age. Significant differences (p < 0.05) are shown in bold.
[image: Table comparing parameters related to FRR and flexion angles between no back pain and chronic lower back pain groups, divided by age (below and above 40). Columns include mean values with standard deviation and p-values. Significant p-values are bolded.]4 DISCUSSION
Our study aimed to provide a better understanding of FRP in cLBP patients. We conducted comprehensive evaluations of the FRP and its relationship with trunk kinematics, especially in the context of aging.
4.1 FRP and flexion angles manifestation in cLBP patients and No-BP individuals
Consistent with previous studies (Watson et al., 1997; Colloca and Hinrichs, 2005; McGorry and Lin, 2012; Ringheim et al., 2015; Rose-Dulcina et al., 2020), we found that the functional response of FRP was compromised in the cLBP patients. Notably, significantly smaller FRR in the LMF, RMF, and RESL muscles was observed in the cLBP group compared to the no-BP group. This supported the hypothesis that cLBP patients engage in protective behaviors, increasing ES muscle activity to protect the passive structures of the spine (Solomonow et al., 2003a). Interestingly, there were statistically significant differences in both left and right MF, while the ES showed a significant difference only on the right side. This is in line with the findings of Rose-Dulcina et al. (2020), who observed an FRR asymmetry of the ES and hypothesized that the MF may have bilateral adaptability to pain, unlike the ES muscles. In a prior study, patients with unilateral cLBP exhibited bilateral atrophy in the MF at levels L4-5, while the atrophy in the ES corresponded to the side of the pain (Beneck and Kulig, 2012).
The present study further indicates that there were no statistical differences in thoracic FRR between the cLBP and no-BP groups. This observation could potentially be attributed to the focal point of pain experienced by our cLBP patients, primarily localized in the lumbar region rather than the thoracic region. Furthermore, in the no-BP group, the thoracic FRR was smaller compared to the lumbar FRR. Considering the FRR calculation formula (Equation 1), the smaller thoracic FRR suggests that the thoracic muscles remain activated during full flexion, in contrast to the reduction of activity (larger FRR value) observed in the lumbar muscles. This finding was supported in a study by McGill and Kippers (1994), where they showed that most of their no back pain participants could completely relax their lumbar extensors during the full flexion phase, while their thoracic extensors remained active. Furthermore, the study conducted by Callaghan and Dunk (2002) showed that EST is more likely to exhibit FRP during full flexion in a sitting position.
Although cLBP patients had smaller lumbar flexion angles as compared to no-BP individuals, the difference was not statistically significant. This suggests that while flexion angles might be affected in cLBP patients, it may not be the sole or most potent factor delineating them from no-BP individuals. Consistent with the findings of other studies (McGorry and Lin, 2012; Sánchez-Zuriaga et al., 2015; Firouzabadi et al., 2024), there were no significant differences in trunk flexion angles between the cLBP and no-BP groups. However, there was notably larger ESL activity in cLBP participants during full flexion task, even though these cLBP patients were assessed during pain-free intervals (Sánchez-Zuriaga et al., 2015). It suggests that relying solely on maximum flexion angle measurements may not adequately capture the distinctions in flexion-extension movements between those with cLBP and their no-BP counterparts.
4.2 Age as a significant modifier
The analysis of the FRP across different age groups revealed that individuals over 40 demonstrated a statistically reduced FRR in LMF, RMF, LESL, RESL, and limited flexion angles in OffsetL and MaxL. These findings were supported by previous studies that showed heightened back extensor muscle activity (Quirk and Hubley-Kozey, 2014; Kienbacher et al., 2015) and statistically lower FRP in older adults compared to their younger counterparts (Kienbacher et al., 2015). Moreover, our results were also consistent with previous research that has linked a decrease in the flexion angles for lumbar flexion with aging, commencing typically around the age of 40 (Sullivan et al., 1994; Galbusera et al., 2014). Reduced water content in intervertebral discs and the loss of viscoelastic properties in posterior ligaments (Solomonow, 2006; Hubley-Kozey et al., 2009) might be the causes of these alterations. This suggests that older adults are more inclined with increased extensor muscle activity to compensate for the reduction in lumbar mobility compared to younger individuals.
Age-related subgroup analysis in the cLBP group revealed that the patients over 40, compared to younger ones, showed statistically smaller FRR in bilateral MF and ESL and smaller values in all lumbar and thoracic flexion angles. The significantly higher disability score (RMDQ-24, Table 1) in cLBP over 40 could explain it, as a previous study found that the participants with higher RMDQ scores demonstrated lower FRP levels and higher lumbar spine global stiffness (Xia et al., 2017). Moreover, our results are also consistent with the study conducted by Kienbacher et al. on 216 patients; significant differences in the ratio at half and maximum trunk flexion were found among age groups, with the largest values in the youngest group and the smallest in the oldest group; furthermore, age influenced task-specific lumbothoracic changes in angles, wherein the oldest group showed the lowest values and the youngest group displayed the highest values (Kienbacher et al., 2016).
Although previous studies have investigated the FRP and flexion angles in cLBP patients, our study further compared the FRP and flexion angles in both no-BP and cLBP groups within matched age ranges. Pain-related analysis within the older group revealed that the cLBP patients, compared to no-BP individuals, showed statistically smaller FRR for RMF and RESL and smaller values in all flexion angles for lumbar and thoracic. However, within the under-40 age group, our findings showed that the lumbar flexion angles in patients with cLBP are significantly larger than in no-BP individuals. Previous research (Solomonow, 2006; Hubley-Kozey et al., 2009) showed that the degenerative changes in the intervertebral disc and adjacent structures result in subtle alterations in the mechanical properties of the functional spinal unit. Loss of viscoelastic mechanical properties and degeneration of spinal discs and adjacent structures have been repeatedly associated with aging. A tendency toward spinal stiffening as degeneration increases has been observed in some studies (Kettler et al., 2011; Galbusera et al., 2014). This stiffness can potentially disrupt the regular input of the ligaments, subsequently contributing to proprioceptive deficits, and these deficits may lead to alterations in muscle recruitment patterns (van Dieën et al., 2003; Keenan et al., 2005; Georgy, 2011). Therefore, the changes in lumbar flexion angles in individuals over 40 might be more closely associated with physiological alterations in the patient rather than the reduction in flexion angles caused by pain. The decreased lumbar mobility may cause older individuals with cLBP to activate more muscles to maintain stability during the entire flexion task, resulting in a lower FRR in those over 40 with back pain.
While our study presented significant findings, certain limitations must be acknowledged. Firstly, the cLBP cohort exhibited relatively mild to moderate pain intensity, and we did not investigate the effect of pain intensity on FRP. However, Alschuler et al. (2009) demonstrated an association between pain intensity and FRP in LBP patients. Additionally, factors such as the duration of cLBP and psychological and occupation parameters, which might influence FRP and flexion angles, were not thoroughly evaluated. Furthermore, due to the small sample size of participants over 55 years old (7 cLBP, eight no-BP) and under 30 years old (7 cLBP, 10 no-BP) in our study, we did not further perform subgroup analysis on participants over and under 40. Future studies with more extensive, diverse cohorts and multi-dimensional evaluations could provide more nuanced insights.
5 CONCLUSION
The present study showed a nuanced relationship between the flexion-relaxation phenomenon, lumbar flexion angles, and age, especially in cLBP; FRP is reduced in cLBP patients, and age significantly alters FRP, especially in old cLBP patients. The findings emphasize the need for comprehensive evaluations and tailored therapeutic interventions to manage cLBP, factoring in biomechanical and age-related changes.
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Fatigue is a major cause of low back pain for workers in various fields, including industry and agriculture. It has a negative impact on workers’ safety, decreases their productivity, and causes a reduction in their occupational career. An exoskeleton is expected to be a solution for reducing workers’ fatigue. However, assessing the safety and effectiveness of exoskeletons, except for the direct measurement of electromyography (EMG) in the human body, is challenging in real-case scenarios. Recently, simulations have been widely used to estimate biomechanical variables. Thus, we aimed to develop a method that combines an exoskeleton model and human body simulation to evaluate the effects of exoskeletons on lumbar fatigue. The strength and tendency estimated using this method are similar to those obtained from EMG devices in symmetrical repetitive lifting tasks. In addition, this method can be used to predict and simulate fatigue after a recorded motion. Our findings will help guide manufacturers in designing their products.
Keywords: low back pain, safety assessment, exoskeleton, lumbar fatigue, human simulation

1 INTRODUCTION
Low back pain (LBP) commonly occurs in workers in the rehabilitation, industry, and agriculture fields because they frequently perform manual handling tasks with heavy loads, awkward postures, and repetitive movements (Rosecrance et al., 2006; Fathallah et al., 2008; Du et al., 2022). There is a growing shortage of workers in elderly societies. Thus, it is necessary to protect workers’ lumbar spines and increase their career periods. A lumbar-type exoskeleton provides assistive torque and is expected to protect the lumbar (Upasani et al., 2019). Validating exoskeletons’ safety is necessary to guide users in appropriately selecting suitable exoskeletons and using them.
Many studies have demonstrated the effectiveness of exoskeletons in protecting the lumbar spine by reducing the peak lumbar load at the L5/S1 level (the fifth segment of the lumbar spine and first segment of the sacrum) (Weston et al., 2018; Koopman et al., 2019; Marras et al., 1999; Abdoli-e and Stevenson, 2008). In repetitive tasks, other than the peak lumbar load, lumbar fatigue is a major contributor to LBP (Waters et al., 1993). As the repetition increases, fatigue accumulates in the lumbar system, muscle contraction is affected, and the muscle strength affects the fatigue levels (Gallagher and Schall, 2020). The effectiveness of exoskeletons for repetitive tasks has been reported (Omoniyi et al., 2020). However, the effect of using an exoskeleton on lumbar fatigue has not been quantitatively evaluated.
The state-of-the-art exoskeleton assessment of lumbar fatigue is based on a comparison between biomedical measurements before and after repetitive tasks, such as the maximal voluntary contraction (MVC) and median frequency of the trunk muscles from electromyography (EMG) recordings, heart rate, or oxygen consumption, to estimate the relief of lumbar fatigue (Godwin et al., 2009; Ulrey and Fathallah, 2013; Poliero et al., 2020; Madinei et al., 2020; Whitfield et al., 2014; Xiong et al., 2019). However, this method of estimating strength can be affected by individual differences (Godwin et al., 2009) and measurement errors (Stålberg et al., 2019), making it difficult to quantify the effect of the exoskeleton. In addition, because the measurements are obtained from the human body considering an acceptable fatigue of the subjects, the current exoskeleton assessment method cannot predict the effect of the exoskeleton on a long repetitive motion.
Simulations provide a new method to assess the exoskeleton that does not have to be based on biomedical measurements for every task. For example, a biomechanical model, which is widely used for estimating the lumbar load, can overcome the difficulty of obtaining biomedical measurements. Recent studies have shown that fatigue can be estimated based on human motion and joint loads (Dode et al., 2016; Jaber et al., 2013; Ma et al., 2009; Calzavara et al., 2019). Conversely to the biomedical measurements, motion and lumbar load can be estimated using optical devices, inertial measurement unit (IMU) systems, and biomechanical models (Lorenzini et al., 2019; Peternel et al., 2016; Gallagher et al., 2017; Zelik et al., 2022). In addition, functional analysis facilitates the prediction of long repetitive motions from a short period of experimental data. It is designed to handle functional data, such as body positions and trunk angles, accounting for their continuous nature and temporal dependencies (Ramsay and Silverman, 2005). Functional analysis has been used to accurately estimate continuous growth tendencies and demonstrate significant differences in the fatigue-induced kinematic changes (Xu et al., 2018; Godwin et al., 2010). Moreover, machines or humanoids can replace humans in testing the assistive torque using exoskeletons (Nabeshima et al., 2018; Ito et al., 2018). However, inaccurate conclusions can be drawn when extrapolating the exoskeleton results obtained using machines or humanoids to humans.
To estimate the effect of the exoskeleton on lumbar fatigue, we considered the development of a new fatigue assessment method that could overcome the shortcomings of traditional biomedical measurements. The novelty of this study is the development of a fatigue assessment method that combines an exoskeleton model, functional analysis, and biomechanical simulation to provide a quantitative assessment of various exoskeletons, which can reduce the individual differences and recording error from biomedical signals, and to predict the exoskeleton effect by predicting the afterward motion.
We aimed to develop a fatigue assessment method to evaluate the effects of exoskeletons on lumbar fatigue. Short periods of human motion data were recorded using this method. Long-term repetitive human motion data can be estimated based on Fourier functions that fit short-term motion data (Ramsay and Silverman, 2005). The assistive torque of the exoskeleton was estimated using a machine platform (Xiang et al., 2023). The exoskeleton’s characteristic curves, which present the relationship between the assistive torque, trunk angle, and trunk angular velocity, were also obtained. Subsequently, the combined model with an exoskeleton and human body could estimate the lumbar torque (with and without the exoskeleton’s assistive torque). Finally, we obtained the muscle strength using a fatigue model with the estimated motion and lumbar torque. Thus, the effect of the exoskeleton on the lumbar strength can be estimated without using EMG data. The subject is prevented from participating in long-term fatigue testing in actual tests.
2 METHODS
A fatigue assessment method is proposed, as shown in Figure 1. The approach employed human trunk and fatigue models to estimate the lumbar torque and fatigue, respectively. Furthermore, the exoskeleton model introduced by Xiang et al. (2023) was used to compute the assistive torque, whereas the model’s fitting data (original assistive torque) was obtained using a testing platform, whose structure was introduced by Tanaka et al. (2020). The input for the exoskeleton model was the motion derived from a human lifting simulation, obtained using Fourier series equations.
[image: Flowchart illustrating the process of evaluating lumbar strength with and without exoskeleton assistance. It starts with motion collection, followed by Fourier fitting to predict human motion. The exoskeleton model estimates assistive torque. The lumbar burden estimation consists of a dynamic trunk model and a fatigue model. The process compares lumbar strength with and without assistance.]FIGURE 1 | Procedure of fatigue assessment method.
2.1 Participants and tasks
Eleven male participants (height: 1.69 ± 0.06 m, body mass: 62.6 ± 12 kg, age: 24.0 ± 4.2 years) provided written consent to this experiment. Because repetitive lifting poses a high risk of LBP, younger subjects can tolerate relatively high lumbar loads. This study was approved by the ethics committee of the National Agriculture and Food Research Organization (approval no. Kakushin-ken_Rinri_22-30).
As shown in Figure 2, each subject performed a symmetric repetitive lifting task from the ground to a 65 cm table. This task simulated a fertilizer-lifting task from the ground to the rear of a mini-truck. First, each subject performed the repetitive lifting task without an exoskeleton and then performed the same task with an exoskeleton. The interval between the tasks with and without an exoskeleton was 20 min to allow the subject to recover. For each condition, the repetitive lifting task consisted of 35 lifts, and the interval between two lifts was 8 s. Before and after the completion of the entire repetitive lifting task in each condition, the MVC of the four back muscles (the left/right thoracic spinae and left/right multifidus) was determined. We attached the surface electrodes by palpating the subjects and followed the suggestions from previous references considering that the thoracic erector spinae are 5 cm lateral to the T9 spinous process (McGill, 1992) and the center-to-center line is between two electrodes along the muscle fiber. The multifidus muscle setting was based on Toshiya (2010): the electrodes were placed between the L5 level and the upper iliac crest side end (2–3 cm from the spinal midline) along the connecting line between the upper iliac crest side end and spinous process of L2. The MVC testing method was taken from McGill (1991) and Toshiya (2010). The human trunk muscles play different roles in body motions. Erector spinae and multifidus muscles are selected in this study because they play an important role in symmetric lifting motion (forward flexion-extension) as reported by Bogduk (2005). Before the experiment, the participants were instructed to perform manual handling tasks at their preferred speeds to test their strength.
[image: A person wearing a Muscle Suit Every exoskeleton is shown bending down to lift a 15-kilogram box. The setup includes a table at a height of 65 centimeters. The exoskeleton is equipped with IMU and force sensors.]FIGURE 2 | Repetitive lifting task of a 15 kg box with an exoskeleton. The subject conducted only 15-kg box liftings from the ground to the table repetitively; the return of the box from the table to the ground was done by other people.
2.2 Instrumentation
As shown in Figure 2, a motion capture system (Xsens MVN Analyze, Xsens, Inc., Enschede, Netherlands) was used to reconstruct the whole-body motion. Four three-axis force sensors (USL08-H6; Tec Gihan Co. Ltd., Kyoto, Japan) were used to record the external loads acting on the human body. The box size was 57 × 28 × 10 cm, with a total mass of 15 kg. EMG sensors (MQ16, Kissei Comtec, Inc., Nagano, Japan) were attached to the subject’s back to obtain the MVC and continuous EMG data. The data recorded at 60 Hz were filtered using a low-pass filter with a 4 Hz cut-off frequency. An exoskeleton product called ‘Muscle Suit Every’ (MSE) (Innophys Inc., Tokyo, Japan) was used in this study. The mass of this MSE is 3.8 kg, the maximal assistive torque can be 100 N·m, and the permitted temperature is between −30°C and 50°C. In practical applications, the recommended air pressure pumped in the exoskeleton is approximately 0.1 MPa, which will provide much lower assistive torque than the maximal one. The mechanism of this device is as follows: When the user lifts a load, two McKibben muscles on the left and right sides exert contraction forces by air pressure. The lumbar moment is compensated by the torque supplied by the contraction force. In this study, the body motion parameters with and without the exoskeleton are measured during the first T period as shown in Figure 2.
2.3 Fourier basis function fitting repetitive motion data
To reduce the fatigue risk to the subjects, the motion after 5 min was simulated by the Fourier basis function fitting data using the previous 5 min of motion. The analysis process is illustrated in Figure 3. The biomechanical time-series discrete data on the trunk angle, angular velocity, and angular acceleration were converted to functional data for the functional analysis using Equation 1, which can be expressed as follows:
[image: Mathematical equation depicting a series: \( y_i(t) = \sum_{n=1}^{N} c_{in} \varphi_n(t) \), labeled as equation (1).]
where [image: It seems like you've entered a mathematical expression rather than an image. If you have an image you need the alternate text for, please upload it or provide a URL.] represents the function converted from the i-th observed data series; t represents the number of time points; [image: Please upload the image you would like me to generate alternate text for. If you need guidance on how to upload an image, let me know.] represents the coefficients; and [image: Mathematical expression showing the Greek letter phi, subscript n, of t.] are the Fourier basis functions with the number, N. Subsequently, the residual sum of squares and a penalty term based on the second derivative of the fitted curve were minimized (Ramsay and Silverman, 2005). This study assumes that the lifting movement does not change with fatigue.
[image: Three graphs illustrate steps for analyzing periodic data. Step 1 shows recorded raw data as a sine wave. Step 2 involves Fourier fitting, transforming the data into a smoother wave using a mathematical formula. Step 3 estimates motion, adjusting the wave to extend over a longer period. Labels explain each step and equations are provided to support the fitting process.]FIGURE 3 | Schematic of motion data with Fourier basis function fitting. The motion was recorded in the experiment time T in step 1; then, the recorded motion was fitted by the Fourier basis functions in step 2; finally, the obtained Fourier basis functions created the afterwards motion (from T to 2T) in step 3.
The Fourier fitting results are presented in Figure 4. In Figure 4A, only Fourier terms larger than 600 fit the tendency well for the representative lifting sample. The root mean square error and proportion of the estimated peak trunk angle to the measured peak trunk angle from all trials are shown in Figure 4B. As the term increased from 200 to 800, the proportion increased from 82% to 98%, and the root mean square error (RMSE) reduced from 3.74 to 0.49. In this study, 800 was selected as the Fourier term N.
[image: Two charts are displayed. Chart (a) shows a line graph of trunk angle in degrees over normalized time with multiple lines for raw data and Fourier terms (200, 400, 600, 800), highlighting peak values. Chart (b) is a bar graph showing RMSE values against Fourier terms, overlaid with a line graph depicting the proportion of peak values in percentage.]FIGURE 4 | Selection of Fourier basis function terms N. (A) Comparison between the recorded trunk angle and estimated trunk angle by Fourier fitting functions with different terms in one lifting trial. (B) RMSE and accuracy between the recorded and estimated peak trunk angles from different Fourier terms.
2.4 Lumbar load estimation (human and exoskeleton models)
In Figure 5, the lumbar torque (left side) was estimated using a trunk model similar to that reported previously. During the lifting task, the load was assumed to be attached to the shoulder joints (Nabeshima et al., 2018). The body parameters were calculated based on the body height and mass, and inverse dynamics were used to compute the lumbar torque [image: Please upload the image or provide a URL so I can generate the alt text for you.] in MATLAB (version 2023a) (Thomas et al., 2022). The assistive torque from the exoskeleton was estimated using the trunk angle and trunk angular velocity using the thin-plate spline interpolation method. The parameters of the interpolation method were determined by the raw data obtained from a machine measuring the assistive torque as the exoskeleton’s joint angle changed under different angular velocities. (Xiang et al., 2023; Tanaka et al., 2020). To obtain the actual torque at the lumbar joint, the assistive torque in this plane was subtracted from the non-assisted torque. The trunk muscular force ([image: It seems like there was an error in providing the image. Please upload the image or provide a URL, and I would be happy to help you generate alt text for it.]) was calculated using the lumbar torque divided by the representative trunk muscular moment arm length for a symmetric lifting task (Chaffin et al., 2006). Finally, the lumbar load was obtained using the force resulting from the muscular forces and the upper body load in the direction perpendicular to the lumbar vertebra using Equation 2, which was calculated as follows:
[image: Mathematical equation for calculating force: \( F_c = f_L + F_m \). For scenarios without assistance: \( f_L + \frac{\tau_o}{r_m} \). For scenarios with assistance: \( f_L + \frac{(\tau_o - \tau_a)}{r_m} \). Equation labeled as (2).]
where [image: It seems there might have been an error in uploading your image. Please try uploading the image again, and ensure it's in a supported format like JPEG, PNG, or GIF. If you have a specific description or context for the image, feel free to include that as well.] is the lumbar load (N); [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the joint contact force (N), which is the upper body load acting at the fifth lumbar vertebra (L5) level and acting along the direction perpendicular to the crossing-section of the L5 level; [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the L5 required lumbar torque (N·m); [image: Please upload the image, and I will generate the alternate text for you.] is the total assistive torque by the exoskeleton; and [image: Equation displaying the letter "r" with a subscript "m".] is the representative moment arm of the trunk muscles related to the L5 level, [image: Equation containing the variable \( r_m \) in a subscript.] = 0.05 m (Chaffin et al., 2006). The actual lumbar torque is exerted by the trunk muscular force ([image: Please upload the image or provide a URL for me to generate the alternate text.]) with the moment arm [image: A mathematical expression showing the variable "r" with a subscript "m" in italicized font.]. Without assistance, the actual lumbar torque equals the required lumbar torque [image: Please upload the image or provide a URL so I can generate the alternate text for you.]; with assistance, the actual lumbar torque is the required lumbar torque minus the total assistive torque [image: An equation showing a mathematical expression: \((\tau_o - \tau_a)\).].
[image: Diagram illustrating an exoskeleton model and a dynamic trunk model. On the left, a 3D graph represents assistive torque. The right section depicts a trunk model with labeled parts: shoulder joint, lumbar joint, and trunk muscles. Equations describe lumbar torque, joint contact force, and lumbar load. Below, two scenarios are outlined: "With assistance" includes adjusted torque and force equations; "Without assistance" includes baseline equations. Blue arrows connect the sections, indicating the flow of information.]FIGURE 5 | Estimation of actual lumbar torque and lumbar load using human and exoskeleton models; the assistive torque of the exoskeleton was estimated by the trunk angle [image: It seems like you've included some text or a symbol, but no actual image is provided. Please upload an image or provide a URL for me to generate the alternate text.] and the trunk angular velocity [image: It looks like there was a mistake with the image upload. Please try uploading the image again, and I will help generate the alternate text for it.]. The relationship between the assistive torque, trunk angle, and angular velocity was established by the thin-plate spline interpolation method, which uses the tested characteristic curves from the machine reported by Tanaka et al. (2020). The required lumbar torque [image: Please upload the image or provide a link to it so I can generate the alternate text for you.] was estimated using the dynamic trunk model. The actual lumbar torque and lumbar load changes depending on whether the lumbar was assisted.
2.5 Fatigue model
As the subject performs a lifting task, the lumbar region is fatigued, and the current fatigue condition can be estimated based on the actual lumbar torque and initial fatigue condition. The joint strength [image: Please upload the image or provide a URL for me to generate the alternate text.] at [image: Please upload the image, and I'll generate the alternate text for you.] can be calculated using Equation 3, which can be expressed as follows (Ma et al., 2009):
[image: Mathematical equation showing \( S(t_1) = S(t_0) e^{-\frac{t_1 - t_0}{t_{mean}}} \int_{t_0}^{t_1} r(t)dt \), labeled as equation (3).]
where [image: It seems there was an error. Please upload the image and I can help generate the alternate text for it.] is the initial maximal lumbar joint strength at [image: Please provide the image or the URL to it, and I will help generate the alternate text.], [image: Mathematical notation representing the maximum value of a variable, denoted as \( S_{\text{max}} \).] is the maximal original lumbar joint strength, and [image: Integral of tau of t from t sub zero to t sub one with respect to t.] is the accumulated actual lumbar torque. We used [image: Please upload the image or provide a URL for it, and I'll be happy to help generate the alternate text.] = 0.5 min−1, the average value estimated from all the back/hip models (Ma et al., 2011), and [image: Mathematical expression showing the symbol "S" followed by a subscript "max".] = 212 N·m, the mean value of the maximal strength between 0° and 90° flexion (Chaffin et al., 2006).
As the subject rests between the two tasks, the lumbar spine is in the recovery process and finally recovers to the original maximal strength. The joint strength [image: Please upload the image so I can generate the alternate text for you.] can also be obtained using the recovery model (Liu et al., 2002). In this process, we only considered the effect of the exoskeleton on the fatigue condition; the recovery process is not presented in this study.
2.6 Statistics
The strength after the completion of each task was normalized to the initial strength. The average MVC of all measured trunk muscles was taken as the current lumbar strength. The strength obtained using the exoskeleton model was estimated based on the motion and lumbar load in the time history. The Mann–Whitney test was used to reveal if there were differences between the lumbar strength estimated by the fatigue assessment method and the MVC testing. The peak and average values of the body parameters (trunk angle and horizontal distance between the lumbar spine and wrist) and lumbar load were compared with and without the exoskeleton in the paired t-test. To evaluate the effectiveness of using an exoskeleton on the strength in repetitive lifting, a paired t-test was used to investigate the simulated longer-level fatigue from period T to period 2T. The estimated MVC before and after each task was used to obtain a regression model [image: Mathematical expression showing S equals a times e raised to the power of b times t.], where the coefficients a and b were determined by the mean value of the MVC when the experiment started and ended, respectively, compared with the Fourier fitting method. In the regression model, first, we set the initial strength as 100%. Thus, the initial timing was 0, S = a = 100. Then, the normalized strength after the repetitive lifting was obtained. Incorporating the time to obtain the MVC after the repetitive lifts and the mean normalized strengths of all subjects into the regression model, b can be derived.
3 RESULTS
3.1 Comparison between the proposed method and maximal voluntary contraction (MVC) test
The sum of the joint strength levels using the fatigue assessment method was compared with the sum of the MVC of the left/right erector spinae and left/right multifidus among all the subjects (Figure 6). With or without the exoskeleton, no significant difference was observed between the lumbar strength estimated by the fatigue assessment method and the MVC. With the exoskeleton, the strength estimated by the model was 70% ± 5%, whereas the strength level of the MVC was 68% ± 8%. Without the exoskeleton, the strength estimated by the model was 65% ± 4%, whereas the strength level of the MVC was 62% ± 7%. The model estimated 2%–3% larger values than those with the MVC test.
[image: Two bar graphs compare strength percentages. The left graph, labeled "w," shows MVC and Model bars at approximately 70% strength. The right graph, labeled "w/o," shows similar results. Error bars indicate variability.]FIGURE 6 | Comparison between the estimated lumbar strength using the proposed fatigue assessment method and the maximal voluntary contraction (MVC) obtained from the electromyography (EMG) test. No significant differences are observed under both conditions.
3.2 Effect of the exoskeleton in the experimental task (body motion and lumbar load)
Figure 7 shows a comparison between the body motion parameters with and without the exoskeletons: the peak and average values of the lumbar load, trunk angle, and horizontal distance between the lumbar spine and wrist. For the lumbar load, the peak values were 2117.9 ± 492.4 N (w) and 2592.0 ± 243.1 N (w/o), and the average values were 901.6 ± 148.8 N (w) and 1015 ± 121.0 N (w/o), respectively. For the trunk angle, the peak values were 73.2° ± 10.4° (w) and 76.7° ± 7.3° (w/o), and the average values were 21.0° ± 3.6° (w) and 22.6° ± 3.2° (w/o), respectively. In ergonomic assessment, the maximal accepted load is related to the horizontal distance between the lumbar and wrist in manual lifting tasks. If the horizontal distance increases (decreases) when using the exoskeleton, the users may be less (more) willing to lift the load (Waters et al., 1993). For the horizontal distance between the lumbar and wrist, with and without assistance, the peak values were 0.35 ± 0.025 m (w), 0.36 ± 0.048 m (w/o), and the average trunk angles were 0.24 ± 0.017 m (w) and 0.24 ± 0.015 m (w/o), respectively. In comparisons with and without the exoskeleton, only the peak and average lumbar loads exhibited significant differences with p-values, and the corresponding test statistics (in the blank) were 0.024 (t(10) = −2.7) and <0.001 (t(10) = −5.3), respectively.
[image: Bar charts comparing peak and average values of lumbar load, trunk angle, and horizontal displacement for conditions labeled "w" and "w/o". Peak values show significant differences in lumbar load, while average values show significant differences in lumbar load, as indicated by asterisks.]FIGURE 7 | Paired t-test result: exoskeleton effect on the peak (A) and average (B) representative variables during repetitive tasks. Abbreviations: w, with; w/o, without (*p < 0.05; **p < 0.01; ***p < 0.005)
3.3 Effect on the extended motion (proposed method vs MVC regression method)
Figure 8 compares the lumbar strength with and without the exoskeleton using the Fourier basis function fitting method in the extended simulation motion. In the motion with and without the exoskeleton, the strength at 9 min decreased from 100% to 53.2% (w) and 46% (w/o). The strength between with and without conditions differed significantly (p < 0.05) from 1 to 9 min. The p-value and the corresponding test statistics (in the blank) from 1 to 9 min were 0.0019(t(10) = 4.2), 0.0012(t(10) = 4.5), <0.001(t(10) = 4.6), <0.001(t(10) = 4.7), 0.0011(t(10) = 4.5), <0.001(t(10) = 4.6), 0.001(t(10) = 4.6), <0.001(t(10) = 5.2), and <0.001(t(10) = 5.2), respectively. Using an exoskeleton helped the user to preserve strength from to 1–9 min by 1.5%, 2.5%, 2.5%, 4.2%, 5.0%, 5.5%, 6.0%, 6.9%, and 7.2%, respectively, compared with the condition without the exoskeleton.
[image: Bar chart comparing recorded and estimated motion over time. Recorded motion (labeled 1-4) shows normalized seating heights in percentages, decreasing from 100% to around 60%. Estimated motion (labeled 5-7) shows lower percentages. Blue represents "w/o," orange for "w."]FIGURE 8 | Effect of using exoskeleton on lumbar strength in the estimated motion by Fourier basis fitting procedure.
Figure 9 shows the estimation of the Fourier method compared with that estimated by the regression model using the MVC data obtained in this study with and without the exoskeleton conditions. The regression model based on the MVC using the exoskeleton was [image: An exponential decay formula is shown: S equals one hundred times e raised to the power of negative 0.112t, where e is the base of the natural logarithm.] and [image: Mathematical expression showing an exponential decay function: \( S = 100e^{-0.09t} \).] without the exoskeleton. The R-squares with and without the exoskeleton conditions were 0.99, and the slopes were 1.0769 for the exoskeleton condition and 1.0995 without the exoskeleton condition. The RMSE was 6.3 in the with-assistance and 7.5 without-assistance conditions and represents the normalized back strength.
[image: Two scatter plots compare strength prediction models with and without assistance. Both show blue data points near a red line with a slope and R-square values. With assistance: slope 1.0769, R-square 0.99. Without assistance: slope 1.0995, R-square 0.99.]FIGURE 9 | Comparison between the strength estimated by the MVC regression model and the proposed fatigue assessment method (red line: the linear regression line for blue dots without intercept; blue dots: the normalized strength obtained from the MVC regression model and from the proposed fatigue assessment model from 1 to 9 min).
4 DISCUSSION
4.1 Comparison between the proposed method and MVC test
Usually, repetitive movements can be quantitatively assessed using physiological variables such as the heart rate or EMG (Godwin et al., 2009). In whole-body fatigue assessment, the fatigue level obtained from the fatigue assessment method has already been compared with the heart rate, which is similar (Yu et al., 2019). In this study, we focus on lumbar fatigue, and we compare the strength reduction after the task using the fatigue assessment method and MVC testing. The results in Figure 6 show that, compared with the MVC test, the fatigue assessment method provides a similar estimation of the lumbar strength with and without the exoskeleton. This implies that the proposed method can be used for lifting tasks. In addition, we consider that the slight difference between the MVC test and fatigue assessment method stems from the assumption of [image: I'm unable to view images directly. Please provide the image by uploading it, and I'll assist you with generating the alt text.] in the fatigue model, which is the mean value of the maximal strength between 0° and 90° flexion (Chaffin et al., 2006). Based on the MVC test, the real strength assumption should be larger than [image: The formula \( S_{\text{max}} \) is written in italics, with "max" as a subscript to the letter "S".] in this study.
4.2 Effect of the exoskeleton noted during the experimental task (body motion and lumbar load)
The difference in the greatest trunk angle was approximately 10% with and without the exoskeleton (standard deviation/mean value), which indicates that the users’ motion did not change significantly in these repetitive tasks, even when they experienced fatigue accumulation. In addition, it implies that the experimental data were in cyclic motion, and using the Fourier fitting procedure in the proposed fatigue assessment method was suitable for such motions, regardless of whether the exoskeleton was equipped or not.
In Figure 7, only the peak and average lumbar loads among all the biomechanical variables show a significant difference between using and not using exoskeletons in repetitive lifting, which are results similar to those obtained when testing other passive exoskeletons in both repetitive and non-repetitive lifting (Madinei et al., 2020) and for a previous testing of the same exoskeleton (Xiang et al., 2023). Although the trunk angles did not show significant differences with and without the passive type exoskeleton, it is difficult to draw the conclusion that the trunk angle was not limited by the exoskeleton in this study for two reasons: first, the result shows a difference between with and without exoskeleton conditions, even if it is not statistically significant; second, in previous studies, the limitation of the human trunk angle was revealed as they involved lifting tasks with active-type (Koopman et al., 2019) and passive-type exoskeletons (Baltrusch et al., 2018; Picchiotti et al., 2019).
Without restricting the motion, users can benefit from the above results by easily adapting and moving from one posture, task, or position to another while wearing exoskeletons, as expected from previous users (Omoniyi et al., 2020). However, not restricting the range of motion means that the exoskeleton cannot help users to reduce the lumbar load or fatigue by improving their lifting postures. For example, ISO 11228 suggests that people should adopt a squat posture to lift heavy masses instead of a stoop to reduce lumbar load (ISO 11228, 2021), and assistive devices could improve the users’ postures by reducing the maximal trunk angles.
Besides fatigue, other factors are important for the evaluation of the exoskeleton’s performance. Since the contact between the exoskeleton and the human body is complex when the user wears the lumbar-type exoskeleton, the exoskeleton affects not only the lumbar part but on other body segments. For example, for the overall body, the feeling of the subject to the exoskeleton is important, where satisfactory or subjective comfort can be scored by subjective investigations as a comprehensive assessment of a product (Baltrusch et al., 2018). Additionally, the friction between humans and the exoskeleton in motion will cause friction traumas. To avoid the occurrence of friction blisters, the permitted tangential traction can be presented with time history (Mao et al., 2017). Although more quantified analysis is required for these factors, it would be important to consider these factors together with the fatigue for the exoskeletons’ safety assessment in the future.
4.3 Effect noted in the extended motion (proposed method vs MVC regression method)
Figure 8 shows that using an exoskeleton can effectively reduce the lumbar fatigue from the first minute, and finally, at the ninth minute, the lumbar strength is 7.2% greater than that when not using the exoskeleton. This result implies that using an exoskeleton could effectively reduce lumbar fatigue. It is similar to the previous result that the passive exoskeleton could reduce the MVC by 9%–20% in 40 times lifting or flexion (Madinei et al., 2020).
In addition, Figure 9 shows that the correlation between the MVC regression model and fatigue assessment method is high (R-square = 0.99) with and without the exoskeleton. The MVC regression model is used for static conditions, such as holding the mass while maintaining a flexion posture. Thus, it can be inferred that the tendency of the strength change in symmetrical repetitive lifting tasks is similar to that observed in static conditions. However, the external loads acting on the hands are cyclically changed. This also indicates that we can simplify the movement and load from dynamic to static under special repetitive lifting conditions (without long-period resting and no significant posture change).
4.4 Advantages of the proposed method
Admittedly, the EMG method is mainstream and directly provides the change in muscle strength as well as individual differences in muscle strength. Alternatively, the proposed fatigue assessment method provides a relatively simple method for obtaining muscle fatigue, allowing us to conduct the ergonomics assessment in real-case scenarios such as agricultural fields, industrial factories, and rehabilitation centers. In addition, this method does not require users to have a strong technical expertise when conducting ergonomics assessments.
This method allows us to estimate the existing experiments and predict the subsequent movements. As shown in Figure 8, the motion from 5 to 9 min was predicted using the Fourier fitting equations. In this study, the lifting motions were assumed not to change with fatigue. However, Fuller et al. (2009) reported that the shoulder angle gradually decreased as the shoulder endured fatigue; hence, the current Fourier-based time-series analysis needs to be modified. For example, a linear equation can be added to the Fourier basis equations to simulate the increasing or decreasing shoulder angle.
The third advantage of this method is that it helps in the design process. Passive exoskeletons have a hysteresis effect on viscoelastic torque generation mechanisms, which leads to a higher assistive torque in flexion than in lifting (Madinei et al., 2020). Providing more assistive torque during the lifting phase could be a solution. Because there is no quantitative analysis of the hysteresis effect in exoskeletons, it is important to compare the characteristic curve of the assistive torque-related movements (e.g., trunk angle) and the relationship between the required lumbar torque (upper limit of assistive torque) and movement. As mentioned previously, our dynamic model can be used to estimate the relationship between the required lumbar torque and movement. The assessment method can predict the fatigue reduction during the necessary working period based on the characteristic curve of the assistive torque.
4.5 Limitations
We did not compare the differences between lifting and flexion with respect to the mass. Because both tasks exist in the same working scenario, it is necessary to consider them in plans. In addition, we did not account for the hysteresis effect in the exoskeleton model in this study, which should be addressed in the future. Additionally, how lumbar fatigue of using an exoskeleton is affected should be evaluated in the asymmetric tasks, which frequently occur in agriculture, rehabilitation, and industry scenarios.
The participants in this study were male adults aged 20–49 years. The number of elderly agricultural workers is increasing in aging societies, and their lumbar strength and motion patterns may differ from those of the youth. In the future, it will be necessary to focus on the elderly.
This study assessed only passive-type assistive devices. However, active exoskeletons may have a greater potential to reduce the physical load (De looze et al., 2016). An analysis of the active components is necessary.
A limitation of this study is related to the number of subjects recruited with similar and different body conditions, such as ages and genders. Ma et al. (2011) reported that the population characteristics and posture were external factors influencing fatigue resistance. However, how to quantify the influence of different factors on fatigue resistance remains unknown owing to the complexity of muscle physiology and the correlation among different factors. Therefore, more participants from different age groups, genders, and occupations will be investigated in the future. In addition, more participants with similar body characteristics will be included to enhance the robustness of the results. Moreover, human height, weight, muscular strength, and muscle mass, may also influence fatigue and should be conducted in a further investigation. For example, the BMI (body mass index) factor on fatigue was investigated for different weights and heights, and it was found that obese adults have greater fatigue than normal-weight adults in body trunk extension tests (Mehta and Cavuoto, 2017). Besides, it seems that smaller muscle strength or muscle mass will bring a longer endurance time, which can be explained as the lower absolute forces involving a lower muscle oxygen demand and, assuming a similar specific tension (Hicks et al., 2001).
Another limitation of this study is that it did not personalize the parameters k and [image: Expression showing the variable \( S_{\text{max}} \), which likely represents a maximum value or limit of a parameter denoted by \( S \).]. The muscle conditions vary in different body characteristics, which may influence the final results. Therefore, the EMG method is considered suitable for investigating the basic performance of the muscles and the individual differences in muscle strength.
However, compared to the EMG method, the fatigue assessment model can provide a relatively simple and computationally efficient tool for measuring fatigue in virtual modeling. In addition, it allows ordinary people to do ergonomics assessments, whereas attaching EMG electrodes requires professional help.
5 CONCLUSION
A fatigue assessment method based on an exoskeleton’s characteristic curve and human dynamic simulation was used to assess the lumbar fatigue with and without an exoskeleton. Compared to EMG analysis, the fatigue assessment model can estimate fatigue in virtual modeling, allowing us to take the ergonomics assessment more easily in actual case scenarios. In the repetitive lifting experiment, the results estimated by this fatigue assessment method implied that the passive exoskeleton could effectively reduce lumbar fatigue and, therefore, could help reduce LBP. Furthermore, the tendency of the reduced strength estimated in the proposed assessment method is similar to that obtained from the EMG regression model in terms of the time history. These findings will contribute to the development of safer and more effective exoskeleton designs, ultimately enhancing the practical adoption of exoskeletons in various scenarios involving repetitive tasks.
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Background: The SCI-GDI is an accurate and effective metric to summarize gait kinematics in adults with SCI. It is usually computed with the information registered with a photogrammetry system because it requires accurate information of pelvic and hip movement in the three anatomic planes, which is hard to record with simpler systems. Additionally, due to being developed from the GDI, the SCI-GDI is built upon nine joint movements selected for a pediatric population with cerebral palsy, for which the GDI was originally developed, but those nine movements are not necessarily as meaningful for adults with SCI. Nevertheless, pelvic movement and hip rotation have been proven to have low reliability even when acquired with gold-standard photogrammetry systems. Additionally, the use of photogrammetry is limited in real-life scenarios and when used with rehabilitation technologies, which limits the use of the SCI-GDI to evaluate gait in alternative scenarios to gait laboratories and to evaluate technologies for gait assistance. This research aimed to improve the SCI-GDI to broaden its applicability beyond the use of photogrammetry.Methods: An exploration of the mathematical relevance of each joint movement included in the original GDI for the performance of the metric is performed. Considering the results obtained and the clinical relevance of each of the 9 joints used to compute the SCI-GDI in the gait pattern of the SCI population, a more adaptable SCI-GDI is proposed using four joint movements that can be precisely captured with simpler systems than photogrammetry: sagittal planes of hip, knee and ankle and hip abduction/adduction.Results: The reduced SCI-GDI (rSCI-GDI) effectively represents gait variability of adults with SCI as does the SCI-GDI, while providing more generalizable results and equivalent or stronger correlations with clinical tests validated in the population. During the derivation of the improved index, it was demonstrated that pelvic movements, hip rotation, and foot progression angle introduce high variability to the dataset of gait patterns of the adult population with SCI, but they have low relevance to characterize gait kinematics of this population. The rSCI-GDI can be calculated using the 14-feature vectorial basis included in the electronic addendum provided.Keywords: gait deviation index (GDI), spinal cord injury (SCI), gait impairment, threedimensional (3D) kinematic gait data, singular value decomposition
1 INTRODUCTION
The SCI-GDI (Gait deviation index for Spinal cord injury) is an accurate and effective metric to summarize gait kinematics in adults with SCI. The GDI and the SCI-GDI are usually computed with information retrieved from a 3DGA (three-dimensional gait analysis) performed using a photogrammetry system. Since it requires accurate pelvic and hip movement information in the three anatomic planes, it is hard to compute it with data recorded with simpler systems. Additionally, due to being developed from the GDI, the SCI-GDI is built upon nine joint movements selected for a pediatric population with cerebral palsy, for which the GDI was originally developed (Schwartz and Rozumalski, 2008), but those nine movements are not necessarily as meaningful for adults with SCI. These are important limitations for various reasons. Firstly, pelvic movement has been proven to have low reliability even with gold-standard photogrammetry systems due to anatomic constraints for accurately marking the ideal anatomical landmarks (Herrera-Valenzuela et al., 2022; O’Sullivan et al., 2010; Langley et al., 2019). Similarly, hip rotation in the transversal plane has been shown to have low reliability even when acquired with photogrammetry systems (Baker et al., 2012). These are consequences of the intra and inter-rater variability generated because marker positioning depends on the expertise and perception of the examiner (Fonseca et al., 2023). Additionally, the use of photogrammetry is limited in real-life scenarios because it requires a constrained scenario to work properly This limits the use of the SCI-GDI to evaluate gait during activities of daily living (ADL) in alternative scenarios to gait laboratories. Besides, the instrumentation required for photogrammetry turns complicated to implement when used with rehabilitation technologies, limiting the possibility of using the SCI-GDI to evaluate technologies for gait assistance due to the likelihood of having a high rate of marker occlusion and the need to adapt the models to compute kinematics, which reduce its accuracy.
In consequence, this research aimed to improve the SCI-GDI to broaden its applicability beyond the use of photogrammetry. To this end, an adapted version of the SCI-GDI, including kinematics of fewer joints movements than the ones used to compute it, was developed. The same dataset used in the derivation of the SCI-GDI (Herrera-Valenzuela et al., 2022) was used in this exploration to compare the effects of reducing the input kinematics of the index in the same sample of adults with iSCI (incomplete spinal cord injury). Priority was given to the most clinically relevant joint movements for the population with SCI that could be acquired with precision with simpler and more versatile systems than photogrammetry (ElineNijmeijer et al., 2023; Blanco-Coloma, 2023).
This article explores mathematically the relevance of each joint movement included in the original GDI for the performance of the metric. Considering these results, in addition to the clinical relevance of each of the 9 joints used to compute the SCI-GDI in the gait pattern of the iSCI population, a more adaptable SCI-GDI is proposed using fewer joint movements that can be precisely captured with simpler systems than photogrammetry. This new index is the reduced SCI-GDI (rSCI-GDI). The metric is compared with the GDI-SCI to assess their differences and is validated against other validated clinically meaningful scales used in the population with SCI.
2 MATERIALS AND METHODS
2.1 Dataset
The same datasets used for the derivation of the SCI-GDI were used in this study (Herrera-Valenzuela et al., 2022). It contains the kinematic data from 3DGA of 302 strides from patients with a diagnosis of SCI aged between 16 and 70 years old (y.o.) (33.91 ± 17.86), with neurological levels of injury between C1 and L5 and ASIA (American Spinal Injury Association) impairment scale (AIS) C-D, regardless of the etiology and time since injury. The detailed demographic and clinical characteristics of the sample are presented in Table 1. The control group comprises kinematic gait data of 446 strides from adults without gait impairment (HV) between 18 and 63 y.o. (35.10 ± 15.41). Both populations were registered at the Biomechanics and Technical Aids Unit of the National Hospital for Paraplegics in Toledo, Spain, using the same protocol for 3DGA.
TABLE 1 | Demographic and clinical characteristics of the samples in the train and validation datasets.
[image: A table compares characteristics between two groups: Train (n = 302) and Validation (n = 72). Categories include Age, AIS, Time since injury, Injury level, and WISCI II level, with various numerical distributions.]All patients and HV signed an informed consent to perform the gait analysis. The study protocol was approved by the local bioethics committee (Clinical Research Ethics Committee at Complejo Hospitalario Universitario de Toledo, no. 823) and conformed to the Declaration of Helsinki.
2.2 Data analysis
All data analysis was performed with Matlab R2019a (The MathWorks, Inc., Natick, Massachusetts, United states).
2.2.1 Mathematical exploration of the relevance of the 9 joint movements used in the GDI-SCI
The complete dataset with nine kinematic curves was modified by removing the three pelvic curves from the 302 strides. Afterwards, a leave-one-out experiment with the remaining six kinematic curves (three planes for the hip, knee flexion and ankle dorsi/plantarflexion and foot progression angle) was performed to identify the joints that introduce more variability of the dataset (i.e., the ones that, when knocked out, allow to successfully represent the dataset with an orthonormal basis of lower order). Each joint curve was removed from the dataset before computing the reduced order (mth order) orthonormal basis. A grid search considering values of m between 15 and 35 was used. In each case, we analyzed the order of the basis required to fulfill the three criteria required to select the least possible features to effectively represent the variability of the dataset and to allow high fidelity reconstructions, considered in the derivation of the original SCI-GDI (Herrera-Valenzuela et al., 2022). These are to account for at least 98.0% of the variance of the dataset (VAF≥98.0%), allowing to obtain a mean accuracy of 98% of the mth order reconstructed curves, and reconstructing most of the vectors dataset with fidelity ≥95.0%.
2.2.2 Computation of the reduced SCI-GDI basis
Based on the results obtained in Section 2.2.1 in combination with the clinical experience and scientific evidence regarding the accuracy of the register of specific joint movements during 3DGA (Fonseca et al., 2023), a reduced GDI-SCI comprising only hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsi/plantarflexion was computed and evaluated. Compared to the 9 joints used in the complete SCI-GDI, pelvic movements were removed due to the low reliability in capturing them even with photogrammetry systems due to anatomic constraints for accurately mark the ideal anatomical landmarks (Herrera-Valenzuela et al., 2022; O’Sullivan et al., 2010; Langley et al., 2019; Fonseca et al., 2023). Similarly, hip rotation was removed due to the poor inter-evaluator and moderate inter-trial and intra-evaluator reliability reported in 3DGA (Fonseca et al., 2023). Lastly, foot progression angle presents moderate reliability for these three aspects (Fonseca et al., 2023) but was removed mainly because it has little clinical relevance in SCI compared to ankle movements in the sagittal plane.
A matrix to compute the reduced order optimal basis was formed with the 302 strides from iSCI patients. This data is named as train dataset. We performed a grid search considering values of m between 10 and 25 to find the minimum features needed to form the optimal reduced order SCI basis with the three criteria explained at the end of section 2.2.1.
Furthermore, to validate the generalizability of the new basis built from iSCI gait data, a validation set was built with 72 additional strides that were not used to calculate the basis. These were reconstructed and compared using the SCI-GDI and the rSCI-GDI, and the reconstruction fidelity was assessed with the same criteria used in the train set, allowing to compare the quality of the reconstructions in foreign data.
2.2.3 Comparison between the SCI-GDI and the rSCI-GDI with respect to the WISCI II scale
The rSCI-GDI was calculated for each stride of the dataset using the control group data described in section 2.1. Each gait analysis study had an associated WISCI II level according to the walking impairment of the patient when recording the study. rSCI-GDI data was grouped according to the corresponding WISCI II level and HV data was considered as an additional set. The dataset included WISCI II levels 12, 13, 15, 16, 18, 19, and 20. Normal distribution for each group was assessed with Kolmogorov-Smirnov tests (p < 0.05).
To facilitate the analysis, a histogram of the rSCI-GDI data comprised within each WISCI II level was calculated with a normal distribution curve fitted to its mean and standard deviation. A stratified result of the histograms was expected, in accordance with the ordinal nature of the WISCI II scale. Afterwards, one-way ANOVA tests were performed between the rSCI-GDI values of each pair of WISCI II levels to identify differences among groups (p < 0.05).
To seek differences between the original SCI-GDI (Herrera-Valenzuela et al., 2022) and the rSCI-GDI, both indexes were calculated for each stride of the dataset using the HV data gathered in our institution. Consequently, one-way ANOVA tests were performed between each pair of equivalent WISCI II levels to identify differences among groups (p < 0.05).
Additionally, to study the relationship between both indexes, Pearson’s correlation and linear regression were calculated between both GDI values using the whole dataset.
2.2.4 Validation of the rSCI-GDI with respect to other clinical measures validated for the population with SCI
Gait improvement in SCI following rehabilitation is assessed using different procedures, metrics, and tools. 3DGA is the most comprehensive and precise technology to analyze gait that allows to objectively assess lower limb kinematics and kinetics, thus providing a powerful tool for quantifying gait impairment and, therefore, to assist decision-making for clinicians (Patrick, 2003; Sinovas-Alonso et al., 2021; Murphy et al., 2019; Baker et al., 2016). On the other hand, there are validated clinical tests to assess overall gait function; these can be categorical, like the Walking Index for Spinal Cord Injury (WISCI) (Dittuno et al., 2001); spatiotemporal walking-related, such as the 10-m walk test (10MWT) (Van Hedel et al., 2008), and the 6-min walking test (6MWT) (Brooks et al., 2003); and to assess balance, in the case of the timed up and go test (TUGT) (Podsiadlo and Richardson, 1991) and the Berg balance scale (BBS) (Berg, 1989), among others (Wyndaele and Wyndaele, 2006). Besides, tests of motor function and spasticity assessment are often performed, such as the Lower Extremity Motor Score (LEMS) and the Modified Ashworth Scale (MAS).
The construct validity of the rSCI-GDI was evaluated with a set of representative outcome measures to assess gait and balance. To this end, the same dataset used in the equivalent study done for the SCI-GDI was used (Sinovas-Alonso et al., 2023). It contains data from 35 adults with a diagnosis of SCI. The data was collected at the Biomechanics Unit of the National Hospital for Paraplegics (HNP), in Toledo, Spain. Besides the data collected using the standard protocol for 3DGA of the center, the 10MWT in both self-selected and maximum speeds, the TUGT, and the LEMS were gathered during the sessions. LEMS assessment comprised five key muscles of each lower limb: hip flexors, knee extensors, ankle dorsiflexors, long toe extensors, and ankle plantar flexors. The 10MWT and TUGT were recorded three times before the 3GDA and averaged for each subject. With the data collected, cadence, gait speed, stance percentage, step width, stride and step length, and the rGDI-SCI were calculated. The Spearman correlation coefficient between the rGDI-SCI and all the tests and spatiotemporal parameters was also computed. The normal distribution of all variables was evaluated with a Kolmogorov-Smirnov (KS) test. Descriptive statistics for each of these scales and the subjects’ demographics are summarized in Table 2.
TABLE 2 | Demographic and clinical characteristics of subjects in the dataset.
[image: A table detailing characteristics of study subjects (n = 35). Age groups: 16–25 (16 subjects), 26–40 (4), 41–60 (11), >60 (4). AIS types: C (4), D (29), E (2). Etiology: Traumatic (17), Non-traumatic (18). Time since injury: ≤6 months (16), 6 months-1 year (2), 1-5 years (8), >5 years (8), Congenital (1). Injury levels: C1-C8 (9), T1-T6 (6), T7-T12 (10), L1-L5 (10). WISCI II levels: 12 (3), 13 (1), 15 (4), 16 (9), 18 (2), 19 (3), 20 (13). TUGT: Mean 12.01 ± 4.89. 10MWT: Mean 12.32 ± 4.44. LEMS: Mean 37.20 ± 7.71. GDI-SCI: Mean 70.49 ± 14.58.]3 RESULTS
3.1 Mathematical exploration of the relevance of the 9 joint movements used in the GDI-SCI
Results of the leave-one-out experiment are shown in Figure 1. The dataset is successfully represented requiring a lower order basis when removing hip internal/external rotation or the ankle foot progression angle.
[image: Six line graphs display VAF (variance accounted for) against order approximation for different joint conditions: hip flex/ext, hip add/abd, hip int/ext, knee flex/ext, ankle dorsiplant, and ankle foot prog. Each graph shows three lines representing VAF, 95%, and 99% confidence levels, with a 95% subplot threshold in red. The trend generally shows VAF increasing with higher order approximation.]FIGURE 1 | Results of the grid search exploration to find the reduced order basis required to fulfill the criteria required to have quality reconstructions when leaving out each one of the six joints of the dataset. For each order approximation, the blue lines indicate the VAF, the orange dotted line the average fidelity of the reconstructions and the yellow dotted line the percentage of the dataset reconstructed with fidelity over 95%. The red line indicates the threshold for the VAF, stated at 98%. The black line indicates the threshold of the percentage of the dataset reconstructed with fidelity over 95%, reported in 99% in the article of the original derivation of SCI (Schwartz and Rozumalski, 2008).
3.2 Computation of the reduced SCI-GDI basis
Figure 2 contains the results obtained in both train and validation datasets with the 4-joint reduced SCI-GDI basis. Results in both the train and validation set show that 14 features are enough to fulfill the three criteria considered for the creation of the GDI. In consequence, the orthonormal basis for the reduced SCI-GDI is built with the first 14 features of the basis built comprising kinematic data of only hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsi/plantarflexion.
[image: Two line graphs comparing performance metrics over order approximation. The left graph shows metrics for hip, knee, and ankle with 99% accuracy near order 12. The right graph, labeled "Validation n=40 Adults>=16", shows similar patterns with metrics stabilizing around order 12. Both graphs include lines for 95%, 99%, VAF, and cross-validation metrics.]FIGURE 2 | Results of the grid search exploration with the 4-joint dataset. The first 14 components of the reduced order basis allow to fulfill the criteria required to have quality reconstructions in both the train (left) and validation (right) datasets. For each order approximation, the blue lines indicate the VAF, the orange dotted line the average fidelity of the reconstructions and the yellow dotted line the percentage of the dataset reconstructed with fidelity over 95%. The red line indicates the threshold for the VAF, stated at 98%. The black line indicates the threshold of the percentage of the dataset reconstructed with fidelity over 95%, reported in 99% in the article of the original derivation of SCI (Schwartz and Rozumalski, 2008).
The summary of the results obtained for each criterion with this 14-feature reduced SCI-GDI basis in comparison to the ones obtained with the 21-feature SCI-GDI basis are summarized in 3. The best results in terms of average fidelity of the reconstructions and percentage of vectors reconstructed with a fidelity ≥95% were obtained with our m = 21 basis. In the validation set, equivalent results to those obtained in the train dataset were obtained for all criteria. A strong correlation between both indexes was found (r = 0.9118) and can be seen in Figure 3.
[image: Scatter plot showing the correlation between SCI-GDI and reduced SCI-GDI. Blue data points cluster along a red diagonal line indicating a positive correlation. Axes range from 0 to 140.]FIGURE 3 | A strong linear correlation between the SCI-GDI and the reduced SCI-GDI was found (r = 0.9118). The linear regression between both indexes is represented by the continuous line, whereas the dashed line indicates the 1:1 axis. For less impaired subjects, lower reduced SCI-GDI can be assigned with respect to SCI-GDI values. The difference between both indexes is larger in data with less impairment and it reduces progressively towards more impaired gait patterns.
3.3 Comparison between the SCI-GDI and the rSCI-GDI with respect to the WISCI II scale
The results showed that the SCI-GDI is normally distributed across all WISCI II levels and in the HV group. The stratification of the reduced SCI-GDI with respect to the WISCI II levels comprised in the dataset used was confirmed, except for levels 18 and 13 (see Figure 4). The sensitivity of the reduced SCI-GDI with respect to WISCI II levels is limited. Statistically significant differences were found between all levels but between level 19 and level 12; between level 18 and levels 12, 15 and 16; between level 16 and levels 18, 15 and 12; and between level 15 and levels 18, 16 and 12. The only difference in the sensibility of both indexes is that the SCI-GDI can differentiate WISCI levels 15 and 16, unlike the reduced SCI-GDI. Additionally, statistically significant differences were only found between both indexes for the data of the WISCI level 19 (p = 0.0036).
[image: Histograms with normal distribution curves for multiple variables (RV, V42, V39, V38, V5, V25, V1, V2) are presented across a horizontal axis representing GDI values ranging from zero to one hundred forty. Each subplot shows varying data distribution with a fitted red dashed curve reflecting a normal distribution. The histogram bars vary in height and concentration, demonstrating different data dispersions for each variable.]FIGURE 4 | Histograms of the reduced SCI-GDI stratified by WISCI II level (12–20 and healthy volunteers). The dotted line represents the normal distribution curve fitted to the data within each level. The vertical black line indicates the control mean.
3.4 Validation of the rSCI-GDI with respect to other clinical measures validated for the population with SCI
The rSCI-GDI presents very strong correlation with the SCI-GDI (r = 0.901), with a similar coefficient to the one obtained with the dataset used for the derivation of the index (r = 0.912). Moderate correlations were found between the index and the LEMS (r = 0.612), TUGT (r = −0.669), the 10MWT for both self-selected (r = −0.769) and maximum speed (r = −0.791), cadence (r = 0.611), walking speed (r = 0.790), stance percentage (r = −0.684), and stride (r = 0.749) and step length (r = 0.760). Fair correlations were found with the WISCI II scale (r = 0.566) and step width (r = −0.373). The rSCI-GDI presents equivalent or stronger correlation coefficients with most of the clinical tests evaluated when compared to the SCI-GDI. Correlations with the TUGT, cadence, and stance percentage improve from fair to moderate, whereas the correlation with step width improves from poor to fair. Only the correlation with the LEMS decreases with the rSCI-GDI. The interpretation of the strength of the coefficients follow the guidelines in (Akoglu, 2018). The full set of correlations is presented in Table 3.
TABLE 3 | Spearman correlation coefficients of the GDI-SCI and the rGDI-SCI with spatiotemporal features of gait and clinical tests validated in SCI. Correlation strength is classified following the guidelines in (Wyndaele and Wyndaele, 2006): very strong ≥0.8 (green), moderate ≥0.6 (light green), fair ≥0.3, and poor <0.3.
[image: Table displaying correlation coefficients (Rho) and P values for various gait parameters in relation to GDI-SCI and GD-SCI. Parameters include WISCI, LEMS, TUGT, 10MWT preferences and maximum, cadence, speed, stance percentage, stride length, step width, and step length. Positive and negative correlations are marked with arrows and colors, with significance indicated by P values.]4 DISCUSSION
The main objective of this article was to improve the SCI-GDI to broaden its applicability beyond the use of photogrammetry. To this extent, we derived and validated the reduced SCI-GDI. This study demonstrates that the rSCI-GDI effectively represents the variability of gait patterns among the population with iSCI, provides more generalizable results than the SCI-GDI and has equivalent or better correlations with clinical tests validated in the population. The rSCI-GDI is computed with a 14th order orthonormal basis derived from a dataset with four joint movements: hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsi/plantarflexion.
The dataset of gait kinematics of adult population with iSCI is successfully represented requiring a lower order basis when removing hip internal/external rotation or the ankle foot progression angle (see Figure 1), indicating that these kinematics are the ones that introduce most variability to the dataset. Hip rotation in the transversal plane has been shown to have low reliability even when acquired with photogrammetry systems (Baker et al., 2012). Thereby, the variability introduced to the dataset of adult population with iSCI is likely not due to intrinsic gait characteristics of this neurological population but likely due to the intrinsic limitations of the acquisition system. As a consequence, this plane was removed from the ones used in the rSCI-GDI. Similarly, foot progression angle is the second joint with more variability when computing the Gait Variable Score (GVS) (Baker et al., 2012), a prior of the GDI. Moreover, this movement was included considering the population for which the GDI was originally computed (Schwartz and Rozumalski, 2008), but it has not been described as a relevant joint movement in the gait kinematics of people with SCI. As a consequence, supported in the clinical knowledge, in the results of the mathematical exploration of the impact of removing these joints, and in the technical viability for measuring each joint movement with commonly used systems, we computed a reduced SCI-GDI using only the movements of hip flexion/extension, hip abduction/adduction, knee flexion/extension and ankle dorsi/plantarflexion.
The rGDI-SCI shows a slightly better performance than the GDI-SCI in their respective training sets (containing the same subjects) for the three criteria evaluated: variance accounted for, similar average fidelity of reconstruction and similar percentage of gait vectors reconstructed with average fidelity ≥95% (see Table 4). Moreover, the rGDI-SCI shows better performance in the validation set and a negligible difference in the three measures between both sets, indicating that it is a more robust index than the SCI-GDI, with higher generalizability. These findings demonstrate that kinematics of pelvic movements in the three planes, hip rotation in the transversal plane, and the ankle foot progression angle, increment the variability of the gait kinematics within the adult population with iSCI due to difficulties in accurately measuring them, introducing noise in the captured data. When removed, consistent kinematic patterns of individuals with iSCI can be reconstructed with more precision, demonstrating that the remaining joint kinematics included in the calculation of the GDI (i.e., ankle, knee and hip flexion/extension and hip abduction/adduction) are more representative of this population. Strong evidence to support this fact is the almost equivalent performance of the rSCI-GDI in the validation dataset compared to the train dataset, because it demonstrates that the orthonormal basis derived from the reduced dataset allows to recover with high precision gait kinematics from foreign data. Unlike the SCI-GDI, whose orthonormal basis reconstructs less than 73% of the validation vectors with high fidelity (≥95%), more than 98% of the validation vectors of the reduced data fulfill the same criterion. The reduction from 21 to 14 eigenvectors to form the reduced order orthonormal basis from the SCI-GDI and the rSCI-GDI (respectively), could be explained because the less joint movements included, the less variability must be covered in the projections of the vectorial space covered by the orthonormal basis.
TABLE 4 | Comparison of the quality of reconstruction of the whole dataset when using the reduced SCI-GDI basis with m = 14 and the SCI-GDI basis with m = 21 (Herrera-Valenzuela et al., 2023). Better results are obtained with the reduced SCI-GDI basis in the train and validation sets.
[image: Table comparing the GDI-SCI basis and reduced GDI-SCI basis. For 21 features, the train set shows 98.27% VAF, 97.99% reconstruction fidelity, and 97.86% gait vectors fidelity. The validation set shows 94.74% and 72.22%. For 14 features, the train set shows 99.29% VAF, 99.09% reconstruction fidelity, and 99.06% gait vectors fidelity. The validation set has 98.91% and 98.89%. Abbreviations: VAF, Variance accounted for; SCI, Spinal cord injury; CP, Cerebral palsy.]Both indexes have a strong linear correlation (r = 0.9118), indicating they are effectively measuring similar aspects of gait of the SCI population. Bigger differences between both indexes can be observed in subjects with little gait impairment (see Figure 3), but statistically significant differences between both indexes were only observed in subjects in WISCI II level 19. Additionally, the only difference when assessing the sensibility of these indexes with respect to the WISCI II levels is that the GDI-SCI is sensible enough to differentiate levels 15 and 16, unlike the reduced version of the metric. This could be explained because the joint movements removed from the index (pelvic tilt, obliquity and rotation, hip rotation, and foot progression angle) have smaller angular variations between different functional levels (from 0.4° to 1.2°) compared to the variations of the remaining joints that are included in the rSCI-GDI (from 0.6° to 3.4°) (Baker et al., 2012). Therefore, while the reduced index manages to have enough sensibility to detect movements showing bigger differences, the reduction in joint movements used as an input compromise the index ability to detect the smaller differences of the removed joints that are related to the functionality of gait described by the WISCI II. In this regard, finding a limited relationship of the index with the WISCI II is expected due to the contrasting aspects of gait that they describe (Sinovas-Alonso et al., 2022). While the GDI describes gait kinematics, the WISCI II describes the ability to perform independent gait, measured by the number and type of technical aids and human support required to walk, which can be acquired with alternative gait patterns than the ones described by healthy controls.
Instead, the results of the validation of the rSCI-GDI against a broader set of clinically validated tests and spatiotemporal features of gait demonstrate the advantages of this reduced index with respect to the SCI-GDI (Sinovas-Alonso et al., 2023). The generalizability of the rSCI-GDI is confirmed by the very strong correlation found with the SCI-GDI calculated in this dataset, which was not used during the derivation of the reduced index. All correlations with the clinical scales are higher with the rSCI-GDI, being the only exception the LEMS, whose correlation decreased. Nonetheless, most of them remain in the same ranges of correlation strength. Interestingly, correlations with the TUGT, cadence, and stance percentage improve from fair to moderate; furthermore, the correlation with step width improves from poor to fair. Among these, the TUGT, the stance percentage and the step width are related to dynamic balance (Wellmon, 2007), indicating that although kinematics of the pelvic movement, hip rotation and foot progression are removed, the reduced index successfully conveys information related to the displacement and projection of the center of mass within the base of support, determinant of dynamic balance. The non-significant reduction in the correlation with the LEMS can be explained because this motor score evaluates hip flexors and knee extensors–including rectus femoris–, which are related to pelvic movement (Takahashi et al., 2021), thus, probably the SCI-GDI correlates better with the LEMS because it includes pelvic movement, unlike the rSCI-GDI.
The advantages of the rSCI-GDI with respect to the SCI-GDI are demonstrated in this this paper. It provides more generalizable results with higher quality reconstructions in foreign data, correlates better with most of the validated clinical scales in SCI and requires kinematic information of fewer joint movements to be computed. Thus, the use of this index is recommended to evaluate the gait of any person with an iSCI who walks independently regardless of the severity or neurological level of injury, from 16 to 70 years old in both men and women.
Despite being developed to be feasible to compute using the kinematics registered with simpler systems than photogrammetry, it is necessary to develop future studies that assess the concurrent validity of computing the rSCI-GDI with photogrammetry and with other more versatile systems such as IMUs, goniometers, 2-D video-based analysis, among others. This is fundamental due to the differences in accuracy that each of them may have and to the intrinsic registration variability of each specific device. The latter could be affected by instrumentation protocols, the hardware used, the version of the software due to raw data processing, and even environmental aspects. To ensure the validity of using motion capture systems other than photogrammetry to capture the data required to compute the rSCI-GDI, firstly it is necessary to validate the equivalence of the kinematic data in the joints used to compute the index captured with both systems.
In case other centers with gait datasets from other neurological injuries are interested in developing an injury-specific gait deviation index, we encourage them to explore mathematically the reduction of the 9 joints originally considered for the GDI (Schwartz and Rozumalski, 2008) to use only the joints considered relevant for each specific population. Adding other joint movements that are considered relevant can also be explored. By doing so, a more generalizable index could be obtained by focusing on the kinematic movements that characterize the kinematic patterns of each specific population and reducing the variability generated by external factors that are not related to the impairment caused by the injury. Additionally, the rSCI-GDI or an index computed with data of various neurological diseases, could be useful as a feature in characterizing neurodegenerative diseases as a whole, as suggested in (Mengarelli et al., 2022).
5 CONCLUSION
The rSCI-GDI effectively represents gait variability of adults with iSCI as does the SCI-GDI, while providing more generalizable results and equivalent or stronger correlations with clinical tests validated in the population. It can be computed only with gait kinematics of the sagittal planes of hip, knee and ankle and hip abduction/adduction. These kinematics can be reliably gathered with simpler systems than photogrammetry. During the derivation of the improved index, it was demonstrated that pelvic movements, hip rotation, and foot progression angle introduce high variability to the dataset of gait patterns of adult population with iSCI, but they have low clinical relevance to characterize gait kinematics of this population. The rSCI-GDI can be calculated using the 14-feature vectorial basis included in the electronic addendum provided.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
ETHICS STATEMENT
The studies involving humans were approved by Clinical Research Ethics Committee at Complejo Hospitalario Universitario de Toledo. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS
DH-V: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft, Writing–review and editing. IS-A: Data curation, Investigation, Writing–review and editing. AR: Writing–review and editing. ÁG-A: Funding acquisition, Project administration, Writing–review and editing. AJd-A: Conceptualization, Methodology, Supervision, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This publication is part of grant PID2021-124111OB-C33, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe.”
ACKNOWLEDGMENTS
We acknowledge all the patients and healthy volunteers who accepted voluntarily to be part of this study.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fbioe.2024.1431596/full#supplementary-material

REFERENCES
	 Akoglu, H. (2018). User's guide to correlation coefficients. Turk J. Emerg. Med. 18 (3), 91–93. doi:10.1016/j.tjem.2018.08.001
	 Baker, R., Esquenazi, A., Benedetti, M., and Desloovere, K. (2016). Gait analysis: clinical facts. Eur. J. Phys. rehabilitation Med. 54 (4), 560–574.
	 Baker, R., McGinley, J., Schwartz, M., Thomason, P., Rodda, J., and Graham, H. (2012). The minimal clinically important difference for the Gait Profile Score. Gait Posture 35 (4), 612–615. doi:10.1016/j.gaitpost.2011.12.008
	 Berg, K. (1989). Measuring balance in the elderly: preliminary development of an instrument. Physiother. Can. 41, 304–311. doi:10.3138/ptc.41.6.304
	 Blanco-Coloma, L. (2023). Design of a new approach to register biomechanical gait data, when combining lower limb powered exoskeletons controlled by neural machine interfaces and transcutaneous spinal current stimulation, Barcelona: Escola Tècnica Superior d’Enginyeria Industrial de Barcelona. Univ. Politècninca Catalunya . 
	 Brooks, D., Solway, S., and Gibbons, W. (2003). ATS statement on six-minute walk test. Am. J. Respir. Crit. Care Med. 167, 1287. doi:10.1164/ajrccm.167.9.950
	 Dittuno, P., Ditunno, J., and Dittuno, J. (2001). Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord. 39, 654–656. doi:10.1038/sj.sc.3101223
	 ElineNijmeijer, M., Heuvelmans, P., Bolt, R., Gokeler, A., Otten, E., and Benjaminse, A. (2023). Concurrent validation of the Xsens IMU system of lower-body kinematics in jump-landing and change-of-direction tasks. J. Biomechanics 154, 111637. doi:10.1016/j.jbiomech.2023.111637
	 Fonseca, M., Gasparutto, X., Grouvel, G., Bonnefoy-Mazure, A., Dumas, R., and Armand, S. (2023). Evaluation of lower limb and pelvic marker placement precision among different evaluators and its impact on gait kinematics computed with the Conventional Gait Model. Gait Posture 104, 22–30. doi:10.1016/j.gaitpost.2023.05.028
	 Herrera-Valenzuela, D., Díaz-Peña, L., Redondo-Galán, C., Arroyo, M., Cascante-Gutiérrez, L., Gil-Agudo, A., et al. (2023). A Qualitative study to elicit user requirements for lower limb wearable exoskeletons for gait rehabilitation in spinal cord injury. JNER 20, 138. doi:10.1186/s12984-023-01264-y
	 Herrera-Valenzuela, D., Sinovas-Alonso, I., Moreno, J. C., Gil-Agudo, Á., and del-Ama, A. (2022). Derivation of the gait deviation index for spinal cord injury. Front. Bioeng. Biotechnol. 10, 874074. doi:10.3389/fbioe.2022.874074
	 Langley, B., Page, R., and Greig, M. (2019). The influence of different pelvic technical marker sets upon hip kinematics during gait. Gait and Posture 71, 74–78. doi:10.1016/j.gaitpost.2019.04.012
	 Mengarelli, A., Tigrini, A., Fioretti, S., and Verdini, F. (2022). Identification of neurodegenerative diseases from gait rhythm through time domain and time-dependent spectral descriptors. IEEE J. Biomed. Health Inf. 26 (12), 5974–5982. doi:10.1109/jbhi.2022.3205058
	 Murphy, A., Kravtsov, S., Sangeux, M., Rawicki, B., and New, P. (2019). Utilizing three dimensional clinical gait analysis to optimize mobility outcomes in incomplete spinal cord damage. Gait Posture 74, 53–59. doi:10.1016/j.gaitpost.2019.08.001
	 O’Sullivan, K., Clifford, A., and Hughes, L. (2010). The reliability of the CODA motion analysis system for lumbar spine analysis: a pilot study. Physiother. Pract. Res. 31, 16–22. doi:10.3233/ppr-2010-31104
	 Patrick, J. (2003). The Case for gait analysis as part of the management of incomplete spinal cord injury. Spinal Cord. 41, 479–482. doi:10.1038/sj.sc.3101524
	 Podsiadlo, D., and Richardson, S. (1991). The timed “up and go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39, 142–148. doi:10.1111/j.1532-5415.1991.tb01616.x
	 Schwartz, M., and Rozumalski, A. (2008). The gait deviation index: a new comprehensive index of gait pathology. Gait and Posture 28, 351–357. doi:10.1016/j.gaitpost.2008.05.001
	 Sinovas-Alonso, I., Gil-Agudo, A., Cano-de-la-Cuerda, R., and del-Ama, A. J. (2021). Walking ability outcome measures in individuals with spinal cord injury: a systematic review. Int. J. Environ. Res. Public Health 18 (18), 9517. doi:10.3390/ijerph18189517
	 Sinovas-Alonso, I., Herrera-Valenzuel, a. D., de-los-Reyes-Guzmán, A., Cano-de-la-Cuerda, R., del-Ama, A., and Gil-Agudo, Á. (2023). Construct validity of the gait deviation index for people with incomplete spinal cord injury (GDI-SCI). Neurorehabilitation Neural Repair 37 (10), 705–715. doi:10.1177/15459683231206747
	 Sinovas-Alonso, I., Herrera-Valenzuela, D., Cano-de-la-Cuerda, R., Reyes-Guzmán, A., del-Ama, A., and Gil-Agudo, A. (2022). Application of the gait deviation index to study gait impairment in adult population with spinal cord injury: comparison with the walking index for spinal cord injury levels. Front. Hum. Neurosci. 16, 826333. doi:10.3389/fnhum.2022.826333
	 Takahashi, S., Hoshino, M., Ohyama, S., al, e., Yabu, A., Kobayashi, A., et al. (2021). Relationship of back muscle and knee extensors with the compensatory mechanism of sagittal alignment in a community-dwelling elderly population. Sci. Rep. 11, 2179. doi:10.1038/s41598-021-82015-8
	 Van Hedel, H., Wirz, M., and Dietz, V. (2008). Standardized assessment of walking capacity after spinal cord injury: the European network approach. Neurol. Res. 30, 61–73. doi:10.1179/016164107x230775
	 Wellmon, R. (2007). “Chapter 32 - gait assessment and training,” in Physical rehabilitation (Philadelphia: W.B. Saunders), 844–876.
	 Wyndaele, M., and Wyndaele, J. (2006). Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?Spinal Cord. 44 (9), 523–529. doi:10.1038/sj.sc.3101893

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Herrera-Valenzuela, Sinovas-Alonso, Reyes, Gil-Agudo and del-Ama. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		BRIEF RESEARCH REPORT
published: 08 October 2024
doi: 10.3389/fbioe.2024.1440033


[image: image2]
Predicting vertical ground reaction force characteristics during running with machine learning
Sieglinde Bogaert1*, Jesse Davis2 and Benedicte Vanwanseele1
1Human Movements Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
2Department of Computer Science, Leuven.AI, KU Leuven, Leuven, Belgium
Edited by:
Vincenzo Bonaiuto, University of Rome Tor Vergata, Italy
Reviewed by:
Zixiang Gao, University of Calgary, Canada
Andrea Tigrini, Marche Polytechnic University, Italy
* Correspondence: Sieglinde Bogaert, sieglinde.bogaert@kuleuven.be
Received: 28 May 2024
Accepted: 20 September 2024
Published: 08 October 2024
Citation: Bogaert S, Davis J and Vanwanseele B (2024) Predicting vertical ground reaction force characteristics during running with machine learning. Front. Bioeng. Biotechnol. 12:1440033. doi: 10.3389/fbioe.2024.1440033

Running poses a high risk of developing running-related injuries (RRIs). The majority of RRIs are the result of an imbalance between cumulative musculoskeletal load and load capacity. A general estimate of whole-body biomechanical load can be inferred from ground reaction forces (GRFs). Unfortunately, GRFs typically can only be measured in a controlled environment, which hinders its wider applicability. The advent of portable sensors has enabled training machine-learned models that are able to monitor GRF characteristics associated with RRIs in a broader range of contexts. Our study presents and evaluates a machine-learning method to predict the contact time, active peak, impact peak, and impulse of the vertical GRF during running from three-dimensional sacral acceleration. The developed models for predicting active peak, impact peak, impulse, and contact time demonstrated a root-mean-squared error of 0.080 body weight (BW), 0.198 BW, 0.0073 BW [image: A gradient background transitioning from black in the upper left corner to light gray in the lower right corner, creating a smooth, diagonal blend.] seconds, and 0.0101 seconds, respectively. Our proposed method outperformed a mean-prediction baseline and two established methods from the literature. The results indicate the potential utility of this approach as a valuable tool for monitoring selected factors related to running-related injuries.
Keywords: running, machine learning, vertical ground reaction force, inertial measurement unit, contact time, active peak, impact peak, impulse

1 INTRODUCTION
Recreational distance running is a popular form of physical activity that offers numerous health benefits ranging from improvements in mental health (Oswald et al., 2020) to a lower risk of all-cause or cardiovascular mortality (Lee et al., 2017; Schnohr et al., 2013; Lavie et al., 2015). However, running also creates the risk of developing running-related injuries (RRIs) such as medial tibial stress syndrome, Iliotibial band syndrome, and Achilles tendinopathy, among others (Lopes et al., 2012). The incidence of RRIs in novice and recreational runners are 17.8 and 7.7 per 1,000 h of running respectively (Videbæk et al., 2015). About 75%–80% of RRIs are overuse injuries (Hespanhol Junior et al., 2017; Walther et al., 2005), which are a consequence of an imbalance between the cumulative musculoskeletal loading load and the runners’ load capacity (Bertelsen et al., 2017). Therefore, monitoring the musculoskeletal load during running is essential to prevent RRIs (Johnson et al., 2020).
A surrogate for the musculoskeletal load is the whole-body biomechanical load, which can be extrapolated from ground reaction forces (GRFs). The vertical GRF (vGRF) force-time curve exhibits characteristics linked to the risk of running-related injuries, which we will examine. In rearfoot-strike runners, the vertical GRF (vGRF) force-time curve displays an impact peak within the first 10% of the stance phase, followed by a larger active peak around halfway through the stance phase. Higher active peaks have been associated with an increased risk of RRIs, for example, a stress fracture (Popp et al., 2017; Grimston et al., 1991; Kliethermes et al., 2021), patellofemoral pain (Messier et al., 1991), and ankle instability (Bigouette et al., 2016). While some studies (Messier et al., 2018; Bredeweg et al., 2013; Davis et al., 2016) observed no differences in the impact peak between injured and non-injured runners, undergoing a gait-retraining program targeting the reduction of the impact peak (Chan et al., 2018) has shown to reduce a runner’s chance of sustaining an injury. The differences in ground contact time among injured and non-injured male novice runners (Bredeweg et al., 2013) and the association between vGRF impulse and bone stress injuries (Kliethermes et al., 2021), further indicate the importance of vGRF characteristics in assessing the risk of RRIs. Despite these results, inconsistencies persist in the relationship between vGRF characteristics and RRIs. One contributing factor may be that these studies only capture a snapshot of the load during running in a controlled environment. A more comprehensive understanding of the relationship between load throughout the training program and the development of RRIs requires incorporating load measures in real-life settings.
The conventional method for measuring GRFs during running relies on an expensive instrumented treadmill installed in a laboratory setting. While this method is accurate (Kram et al., 1998), it is impractical for real-world environments. In contrast, inertial measurement units (IMUs) consisting of an accelerometer, a gyroscope, and a magnetometer, facilitate monitoring runners in their natural environment. IMUs have already shown their potential in estimating runners’ fatigue status (Op De Beéck et al., 2018), gait kinematics (Wouda et al., 2018), and injury status (Bogaert et al., 2022). IMUs can also be used to indirectly estimate GRFs with studies proposing approaches for the impact peak, active peak, loading rate, and impulse of the vGRF (Verheul et al., 2019; Alcantara et al., 2021; Wouda et al., 2018; Seeley et al., 2020). One approach estimates these characteristics using an alternative expression of Newton’s second law, where the vGRF is approximated from the sum of the product of the masses and the acceleration of body segments (Verheul et al., 2019). Including more segments increases this approach’s accuracy but comes with added financial expenditures, logistical complexities, and discomfort. An alternative to the physics-based approach in a single-IMU setting is to use machine learning to predict the characteristics of the vGRF (Alcantara et al., 2021; Wouda et al., 2018; Donahue and Hahn, 2023).
While the machine-learning approaches are appealing, they still have several shortcomings. First, while they may be more accurate than the physics-based approach in a single-IMU setting, they do not reach the level of performance required for all applications. For example, detecting changes in vGRF active and impact peaks attributed to chronic ankle instability requires an accuracy of 0.095 body weight (BW) and 0.18 BW respectively, which these models do not achieve (Bigouette et al., 2016). Second, they focus on domain-specific (e.g., acceleration-based-estimated active peak, step frequency, and speed) and subject-specific (e.g., body mass) features, ignoring automatically-extracted features, which have proven to improve performance (Bogaert et al., 2022). Third, previous studies focused on a narrowly defined population of elite athletes (Alcantara et al., 2021; Verheul et al., 2019; Komaris et al., 2019). Hence, it is unclear if these approaches are applicable to the broader population. Finally, previous studies have not compared the developed approaches on the same dataset. This raises concerns about the reliability of the comparisons because the considered dataset can have a large effect on the findings.
This study aims to develop a new machine-learning approach that results in more accurate predictions of vGRF characteristics—active peak, impact peak, impulse of stance phase, and contact time—during running and tackles the abovementioned shortcomings. In addition, we will compare this method with existing methods on the same dataset.
2 METHODS
2.1 Participants
Forty-three subjects, 31 males and 12 females, with varying running experience and sports engagement participated in the study. The social and societal ethics committee at the KU Leuven approved this study (G-2022-5367-R4) and every participant signed an informed consent.
2.2 Data collection
Every participant walked and ran on a treadmill for 11 min to warm up and familiarize with running on a treadmill. Afterward, the subject ran in random order at 2.22 m/s, 2.50 m/s, 2.78 m/s, 3.33 m/s, self-reported preferred speed for a 5,000 m run, preferred speed–0.14 m/s, and preferred speed +0.14 m/s. The subjects skipped any speeds they were uncomfortable with and did not repeat any speeds.
The Xsens link system (Xsens Technologies, Movella; Enschede, the Netherlands) collected 3D acceleration at 240 Hz and was secured using straps, a closely-fitted T-shirt, and a belt over the L3 to L5 spinal segments for the pelvis sensor. An instrumented treadmill (Motek, Motek Medical B.V.; Houten, the Netherlands) captured ground reaction forces at a sampling rate of 1,200 Hz (or 1,000 Hz for one subject). We synchronized the vertical ground reaction force and acceleration data using a marker positioned on or next to the pelvis sensor monitored by a 3D motion capture system (Vicon Motion Systems; Los Angeles, United States) at a sampling rate of 120 Hz (or 100 Hz for one subject).
2.3 Data preprocessing
Following the exclusion of data-corrupted trials, the dataset comprises 234 trials across 43 subjects. The ground reaction force of the remaining trials was filtered using a fifth-order Butterworth low-pass filter with a 30 Hz cutoff frequency and normalized to the participant’s body weight. We identified steps by localizing where the vGRF intersects the 50 N threshold (Vanwanseele et al., 2020). For each detected step, we calculated the ground truth value of the active peak, impact peak, impulse of the stance phase, and contact time. The acceleration signals were filtered with a fifth-order Butterworth low-pass filter with a cutoff value of 60 Hz. The detection of initial contact and the toe-off event was based on the acceleration signal crossing the threshold of 0.18 g (with g = 9.81 m/s2) and −0.25 g along with a set of constraints concerning the expected increase after initial contact and decrease before initial contact and toe-off event. When no toe-off event was found for a detected step, the threshold of −0.25 g was increased. Acceleration-detected steps that could not be matched to a corresponding GRF-detected step, steps with a stance phase longer than 0.4 s or shorter than 0.167 s, or for which there was suspicion of data corruption (e.g., signal falling away) were omitted. Overall, we obtained 92,974 steps of which 38,245 had an impact peak.
2.4 Feature extraction and model
For each step, we calculated a set of features, which can be divided into three categories:
Subject-specific features include mass and leg length (based on the distance from the hip to the ground during standing).
General time-series features are constructed using the TSFresh package (Christ et al., 2018). The Supplementary Material shows the considered features.
Domain-specific time-series features include step frequency, impulse of vertical acceleration data during the stance phase, and impulse of the entire step of the vertical acceleration data.
We eliminated features with a missing value or that always take on the same value. Categorical features are one-hot encoded and numerical features are standardized within a cross-validation approach. Next, we used a Lasso (Least Absolute Shrinkage and Selection Operator) model to predict the vGRF characteristics with a regularization strength between [image: Please upload the image you need an alt text for by using the upload button.] and 0.05.
Including running speed as an input feature allows the model to account for the variations tied to changes in speed, particularly if running speed is relevant to the prediction task. However, to also account for the limited availability of accurate running speed outside a controlled environment, we trained the models with and without speed as an input parameter.
2.5 Method comparison
We compared our proposed approach to Verheul et al. (2019)’s method for predicting the impact peak, and Alcantara et al. (2021)’s approach for predicting the active peak, impulse, and contact time. Finally, we considered the mean regressor, a model that always predicts the mean value of the target variable as computed on the training data.
In Alcantara et al. (2021)’s method, active peak, contact time, impulse, and step frequency are derived from the estimated vGRF, calculated by the product of sacral acceleration and body mass. These acceleration-derived characteristics serve, along with body mass and speed, as input for a linear regression model or a quantile regression forest. Given the original paper’s results favoring linear regression over a quantile regression forest, we chose the linear regression model for implementing the Alcantara et al. (2021)’s method. Alcantara et al. (2021)’s method used, just like our method, 3D acceleration data collected from a sacral IMU.
In Verheul et al. (2019)’s method, a linear regression model utilizes the impact peak of the curve derived from the sum of the product of segments’ mass and acceleration to estimate the impact peak of the vGRF. To ensure a fair comparison with our method, we used for Verheul et al. (2019)’s method the 3D acceleration from a single position. Specifically, we selected the 3D trunk center of mass (CoM) acceleration data, the optimal segment for their single-segment model. The trunk’s CoM acceleration was approximated by linearly interpolating between the acceleration at the base of the neck and the base of the L5 disc which could, in principle, be captured by a single accelerometer. We used anatomical data to determine the position of the mass and CoM of the trunk (Plagenhoef et al., 1983). Verheul et al. (2019) used marker trajectories to derive the acceleration of the CoM of different segments. However, we adapted this to using acceleration measured by IMUs.
2.6 Model training and evaluation
We partitioned the data into a train and test set on subject level. There were 36 subjects in the train set and seven subjects in the test set. To select the hyperparameter settings and the set of features, we conducted a leave-one-subject-out cross-validation on the train set. Finally, the trained model was evaluated on the test dataset. All models were assessed using the root-mean-square error (RMSE) to quantify the difference between the predicted and observed values. In addition, we reported the mean-absolute-percentage error (MAPE) and the determination coefficient [image: It seems there might have been an error in uploading the image. Please try uploading the image again, and I can help generate the alternate text for it.]. This model training and evaluation process is consistently applied across all methods.
We executed all data processing, model training, and model evaluation in Python 3.10.9, except for the Alcantara et al. (2021)’s model, which was trained and evaluated using R 4.2.2.
3 RESULTS
3.1 Participants
Table 1 summarizes the descriptive characteristics of the 43 participants. The participants’ ages ranged between 19 and 58 years, and their sports participation level varied from no sport to running more than 100 km a week.
TABLE 1 | Descriptive characteristics of all participants included in the analysis. Values of continuous variables are expressed as mean [image: A white cross with black dots in the corners, forming a tile-like pattern against a plain white background.] standard deviation.
[image: Table displays participant data divided by gender. Total participants are 43, with 31 males and 12 females. Average age is 24.7 years overall, 24.3 for males, and 25.8 for females. Average mass is 74.0 kg overall, 79.2 for males, and 60.7 for females. Average length is 181.1 cm overall, 185.6 for males, and 169.3 for females.]3.2 Model performance
Across all steps of all participants, the mean [image: If you upload the image or provide a URL, I can help generate the alternate text for it!] standard deviation of the active peak, impact peak, and vGRF impulse, and contact time is 2.44 [image: Two white cats sitting closely together on a wooden bench. One cat looks directly at the camera, while the other gazes to the side. Both cats have a relaxed demeanor, surrounded by greenery.] 0.24 body weight (BW), 1.65 [image: A black plus symbol and a black minus symbol in a vertical alignment on a white background.] 0.26 BW, 0.37 BW [image: A smooth gradient transitioning from dark black to light gray, creating a subtle shift from left to right. The gradient is evenly distributed across the image.] s [image: A "+" symbol with a horizontal line underneath, representing the mathematical symbol for "plus or minus".] 0.019 BW [image: A smooth gradient transitioning from black on the left side to light gray on the right side.] s, and 0.26 s [image: Plus-minus symbol in black and white.] 0.03 s, respectively.
Table 2 shows the performance of the vGRF characteristics prediction models. For each model, the validation score, used for hyperparameter tuning, and test score, used for model evaluation, are reported. For each characteristic, four different models are compared: (1) and (2) our method with and without speed as an input parameter, (3) the comparison method, and (4) a mean regressor. Our impulse-prediction model uses automatic-extracted features from the entire step, while our other models employ automatic-extracted features from the stance phase–a decision guided by validation scores.
TABLE 2 | Root-mean-square error (RMSE), mean-absolute-percentage error (MAPE) and determination coefficient [image: Please upload the image or provide a URL, and I can help generate the alternate text based on its content.] of our method (with and without speed as input), a comparison method, and a mean regressor to predict different characteristics of vGRF. The results of the validation set are a mean of the validation score over all folds of the cross-validation procedure.
[image: Table comparing four methods for predicting different characteristics: active peak, impact peak, impulse, and contact time. Each method displays Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R squared (R^2) values for validation and test datasets. Methods include "Our method no speed," "Our method with speed," "Comparison method," and "Mean regressor." The table summarizes the performance across various metrics, highlighting differences in accuracy and predictive capability between methods.]Overall, the results of Table 2 indicate that our models performed better than the corresponding comparison method from the literature and the baseline (i.e., the mean regressor). Including speed in the feature set of our model did not improve the performance of the models.
Table 3 presents the performance of our model (without speed as an input), trained on data of different running speeds, but evaluated on subsets of the test set according to speed. The performance of the models, evaluated by RMSE, generally declines as speed increases, except for the contact-time model. A minor dip in RMSE is observed at 2.50 m/s for the active peak.
TABLE 3 | Performance of our model (without speed as input) on speed-grouped subsets of the test set. Abbreviations: Root-mean-square error (RMSE) and mean-absolute-percentage error (MAPE).
[image: Table comparing speed in meters per second with measurements of active peak, impact peak, impulse, and contact time. Each parameter has RMSE and MAPE values. For speed 2.22, RMSE and MAPE are 0.0704 and 2.36 for active peak, 0.164 and 8.62 for impact peak, 0.00635 and 1.32 for impulse, 0.0128 and 3.27 for contact time. Values are provided for additional speeds: 2.50, 2.78, and 3.33.]4 DISCUSSION
We developed models to predict the active peak, impact peak, impulse, and contact time during running from 3D acceleration collected by a sacral-mounted IMU. Our models performed better than the corresponding comparison method from the literature and the baseline (i.e., the mean regressor).
Our no-speed model for predicting the active peak of the vGRF obtained an RMSE of 0.080 BW and a MAPE of 2.42%, indicating that, on average, the model’s predictions were 2.42% off from the actual active-peak values. The RMSE score corresponds to an improvement of 0.077 BW compared to the Alcantara et al. (2021)’s model and 0.136 BW with respect to the mean regressor. The improvement in the coefficient of determination further underscores the enhanced performance of our model compared to the Alcantara et al. (2021)’s and baseline model. Similarly, our model’s contact time prediction accuracy, measured by RMSE, was 0.0024 s better than the Alcantara et al. (2021)’s method. For the impulse, our and Alcantara et al. (2021)’s model can accurately predict the impulse, yet our model has reduced the RMSE by 0.0014 BW[image: A gradient background transitioning smoothly from black at the top left corner to gray at the bottom right corner.]s and improved the [image: Please upload the image or provide a URL, and I will generate the alt text for you.] by 0.08. Overall, we see a clear improvement in error compared to the Alcantara et al. (2021)’s model. One possible reason for the better results with respect to the Alcantara method is that the automatically-extracted features implemented in our model provide useful information.
Regarding contact time, Alcantara et al. (2021)’s method applied to our dataset yielded RMSE, MAPE, and [image: It appears there's a misunderstanding. I cannot see images directly here. Please upload the image or provide a URL so I can assist you further.] values consistent with those reported in the original paper, indicating the generalizability of these models. We obtained slightly worse metric values for Alcantara et al. (2021)’s method for the active peak compared to those reported in the original paper. Our evaluation of the impulse model yielded an RMSE and MAPE over three times larger than the originally reported results. This inconsistency may be attributed to various factors, including the diverse characteristics of our participants, sample size, and running speeds. In light of these findings, it is crucial for forthcoming studies to examine the method’s generalizability and robustness.
We compare our model for estimating the impact peak with the single-IMU version of Verheul et al. (2019)’s method. As the reasoning behind the Verheul et al. (2019)’s model is based on the use of acceleration data of multiple segments, it has a relatively high RMSE for a single-IMU setting. Our model outperforms Verheul et al. (2019)’s approach and the mean regressor yielding an improvement in the RMSE of 0.077 BW and 0.068 BW respectively. The low determination coefficient for the impact-peak models and the high MAPE indicate the low quality of the prediction. This highlights that more research is needed to find a more suitable set of features and models for predicting the impact peak of the vGRF.
Since our models and the comparison models are trained and evaluated on the same dataset, differences in performance are not attributed to the dataset itself but rather to factors such as feature selection and model architecture. For all four vGRF characteristics, the superior performance of our method over the baseline model underscores the informativeness of the features in capturing deviations from the average.
Literature indicates that, in general, as running speed increases, contact time decreases. Concurrently, there is an increase in active peak, impact peak, and impulse (Nilsson and Thorstensson, 1989). Consequently, we expected that speed would be a valuable feature for predicting all characteristics. However, including speed in the feature set of our model to predict these characteristics didn’t have a large influence. A possible explanation for why including speed did not improve the predictions for the active peak, impact peak, impulse, and contact time models is that speed is potentially correlated with another considered feature based on the accelerometer signal. In addition, adjustments in running style in response to increased speed can vary on an individual level. Some runners might increase their stride length, others their stride frequency, which also has variable effects on the vGRF, complicating the relationship between speed and vGRF. Considering these outcomes alongside the general lack of readily available accurate speed information, incorporating speed into the model does not seem to be crucial for predicting vGRF characteristics.
The model’s evaluation on speed-grouped subsets of the test set (see Table 3) shows that the performance of the model for active peak, impact peak, and impulse decreases slightly with increasing speed. Apart from minor fluctuations, similar trends were seen for active peak (Donahue and Hahn, 2023; Patoz et al., 2022; Komaris et al., 2019) and impulse (Donahue and Hahn, 2023) in earlier studies. For the contact time, the model performs best at the intermediate speed, similar to the trend observed in a study by Patoz et al. (2022). Despite the observed trends, the variations are minimal and our models perform robustly across the speeds (except the impact-peak model for 3.33 m/s). This highlights the potential usefulness in a variety of practical applications.
The suitability of a model for a given application depends on achieving the required accuracy of that application. We evaluated our active- and impact-peak models for the ability to detect changes in active peak and impact peak due to chronic ankle instability, aiming for an RMSE of 0.095 BW for active peak and 0.18 BW for impact peak, based on half of the reported differences of 0.19 BW and 0.36 BW respectively (Bigouette et al., 2016). Our method meets the accuracy requirement for predicting the active peak, in contrast to the comparison method. However, for the impact peak, neither our nor the comparison method predicts the impact peak short with adequate accuracy, indicating the need for further improvement.
Regarding the impulse models, our and Alcantara et al. (2021)’s models are accurate enough to observe half of the difference in impulse after a 6-week forefoot strike intervention in runners with exertional compartment syndrome (Diebal et al., 2012).
For contact time, the practical threshold is 0.01 s, based on half the difference in contact time between the 40th and eighth kilometer of a marathon (Chan-Roper et al., 2012). Our no-speed model has a performance close enough (RMSE of 0.0101 s) to be considered acceptable for this practical application. In the Supplementary Material, the results and thresholds are visualized for all four vGRF characteristics.
Besides the Alcantara et al. (2021)’s and Verheul et al. (2019)’s methods, several other studies have investigated predicting characteristics of the vGRF. One study by Patoz et al. (2023) estimated active peak and contact time from running speed, body mass, stride frequency, and acceleration-based estimates using a machine-learning model. Their best-performing models achieved an RMSE of 0.12 BW and 11.9 ms for active peak and contact time, respectively, which is worse compared to our models. Some other studies have estimated these metrics by approximating the vGRF waveform and calculating the metric from this curve (Donahue and Hahn, 2023; Komaris et al., 2019; Patoz et al., 2022), considered using multiple sensors (Donahue and Hahn, 2023), or the acceleration signal from positions other than the sacrum (Komaris et al., 2019). However, they generally reported higher RMSEs than we achieved. Nevertheless, as every study possesses a unique dataset and often uses a different evaluation metric, it remains hard to directly compare the reported performance without implementing the methods on the same dataset.
The age, running experience, and sports participation varied across the participants. Nevertheless, the older population was underrepresented which might still limit the generalizability of our findings. Furthermore, all running took place on a level treadmill with speeds from 2.22 to 3.89 m/s. As a result, our models might have difficulties in generalizing to different populations, speeds, slopes, or undergrounds. Future studies should investigate the current model’s generalizability to these different conditions. A possible challenge is that vGRF measurements typically require force plates, making it difficult to assess vGRF across varied running surfaces. Moreover, recruiting a diverse participant pool could also be challenging. Investigating the model’s generalizability could be a first step towards adopting the models in the field. A second step requires integrating the models is wearable devices or apps to allow real-time monitoring of the vGRF characteristics in a user-friendly way.
5 CONCLUSION
In this study, we demonstrate that Lasso models can predict vertical ground reaction force (vGRF) characteristics during running from 3D acceleration data collected by a sacral IMU. Our proposed method outperformed the mean-prediction baseline and two established methods for predicting the contact time, active peak, impact peak, and impulse. Overall, our findings indicate the potential utility of this approach as a valuable tool for monitoring select factors related to running-related injuries. Nonetheless, there is a need for further research, mainly toward the accurate prediction of impact peak, and to assess the generalizability to different running conditions.
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Introduction: Advancements in exercise science have highlighted the importance of accurate muscular strength assessments for optimizing performance and preventing injuries.Methods: We propose a novel approach to measuring muscular strength in young, healthy individuals using Bot Fit, a hip-joint exoskeleton, during resistance exercises. In this study, we introduced performance metrics to evaluate exercise performance during both short and extended durations of three resistance exercises: squats, knee-ups, and reverse lunges. These metrics, derived from the robot’s motor signals and sEMG data, include initial exercise speed, the number of repetitions, and muscle engagement. We compared these metrics against baseline muscular strength, measured using standard fitness equipment such as one-repetition maximum (1RM) and isometric contraction tests, conducted with 30 participants aged 23 to 30 years.Results: Our results revealed that initial exercise speed and the number of repetitions were significant predictors of baseline muscular strength. Using statistical multivariable analysis, we developed a highly accurate model ([image: Please upload the image or provide the URL so I can generate the alt text for you.], adj. [image: Text displaying the statistical notation \( R^2 = 0.753 \), indicating a coefficient of determination value of 0.753.], p-value [image: It seems there was an error in uploading the image. Please try uploading it again, and I'll be happy to generate the alternate text for you.]) and an efficient model (with all models achieving [image: Variable R is greater than 0.87.]) with strong explanatory power.Conclusion: This model, focusing on a single exercise (squat) and a key performance metric (initial speed), accurately represents the muscular strength of Bot Fit users across all three exercises. This study expands the application of hip-joint exoskeleton robots, enabling efficient estimation of lower limb muscle strength through resistance exercises with Bot Fit.Keywords: Bot Fit, hip-joint exoskeleton, muscular strength, multivariable analysis, resistance exercise
1 INTRODUCTION
In recent years, progress in medical technology, digital healthcare, and environmental innovations has significantly enhanced overall wellbeing. These advances have resulted in tools that not only monitor but also support health. Among these, exercise is essential for both physical and mental wellness, serving a crucial role in preventing and managing chronic diseases (Rippe and Hess, 1998).
To fully benefit from exercise, accurate assessment of an individual’s physical capabilities, particularly muscular strength, is essential. Muscular strength is a key indicator of overall fitness, influencing daily functional abilities and athletic performance (Garber et al., 2011). Accurate strength assessments enable personalized exercise programs that maximize results while minimizing injury risk, promoting optimal health outcomes (Scott et al., 2019).
Traditional methods for assessing muscular strength, such as the One-Repetition Maximum (1RM) test, external weight resistance exercises (Verdijk et al., 2009), handheld dynamometry (O’Shea et al., 2007), isokinetic dynamometers (Baltzopoulos, 2007), and isometric strength tests (Essendrop et al., 2001), have been used for decades. While effective for determining strength, these methods often require specialized equipment and controlled environments, limiting accessibility outside clinical or gym settings. Additionally, they typically provide static measurements of strength, lacking real-time feedback during dynamic exercises (Baltzopoulos, 2007; Essendrop et al., 2001).
Recent technological advancements have introduced wearable robots, such as exoskeletons, to address these limitations. Initially developed for rehabilitation and mobility assistance, exoskeletons have evolved to support resistance exercises, offering a portable and versatile means of assessing and improving muscular strength (Cornwall, 2015; Azimi et al., 2018). These devices can provide real-time feedback, which is crucial for optimizing exercise performance and ensuring safety. For instance, a sparse Gaussian process (SGP) has been used to create a probabilistic model of knee movement, enhancing stability by predicting the relationship between knee and hip movements and setting boundary limits Chen et al. (2023). Additionally, electromyography (EMG) signals have been used to evaluate active movements, estimate joint torque, and propose practical robotic motion control to improve exoskeleton-based rehabilitation Gui et al. (2019). Central pattern generators (CPGs) have also been utilized to adjust users’ gait trajectories in real time, ensuring proper alignment between the exoskeleton and the user’s gait Kou et al. (2024). Over the past decade, there has been significant progress in lower-limb rehabilitation exoskeleton research Wen et al. (2024); Shi et al. (2019).
One such innovation is the Bot Fit exoskeleton, developed by Lee et al. (Lee et al., 2023; Kim et al., 2018). This device provides both resistance and assistance during exercises, making it suitable for a wide range of users, including older adults and those undergoing rehabilitation. Bot Fit enhances physical performance by offering resistance, aiding in movement, and delivering real-time feedback, such as voice guidance and posture alerts via a smartphone, thereby improving exercise adherence.
With the growing use of wearable technologies, there is an increasing demand for accurate and reliable metrics to estimate muscular strength during resistance exercises. While traditional strength assessments are valuable, they are often insufficient in dynamic, real-time contexts. Surface electromyography (sEMG) has proven effective for measuring muscle activity during exercise (De Luca, 2002; Merletti and Farina, 2016). However, sEMG alone cannot quantify muscular strength due to the nonlinearity between muscle strength and sEMG signals Liu et al. (2022). Musculoskeletal models Zhang et al. (2016) are often used to estimate strength from sEMG data, but these models are complex and require careful consideration of variables such as muscle length and contraction velocity (Buchanan et al., 2004; Sartori et al., 2012).
Although some studies, such as those by Staudenmann et al. (2010), have developed methods for estimating force from sEMG signals, these approaches face challenges related to accuracy and generalizability. Furthermore, many existing studies focus on specific populations or exercise protocols Mokri et al. (2022), limiting their broader applicability. This paper emphasizes the need for more advanced methods to accurately estimate muscular strength across diverse users and exercise types, particularly with the integration of wearable technologies like exoskeleton robots.
In this paper, we propose a novel method for estimating lower limb muscular strength during three different resistance exercises using the Bot Fit exoskeleton. We conducted an experimental study with thirty healthy participants, introducing performance metrics based on motor signals from the device and sEMG signals from the users’ movements, without relying on complex musculoskeletal models. Through multivariable analysis, we investigated the most effective metrics for representing muscle strength. Based on these findings, we present a model for estimating users’ muscular strength through exercise performance while wearing the Bot Fit exoskeleton.
2 METHODS
2.1 Experimental platform
2.1.1 Hip-joint exoskeleton & wireless sEMG sensor
As shown in Figures 1A, B, the Bot Fit, a hip-joint exoskeleton developed by Samsung Electronics Co., Ltd. (Korea), applies resistance torque to the hip joints during exercise. This lightweight (2.9 kg), slim, and comfortable device includes actuators for each hip joint, an adjustable fabric waist belt, and thigh frames to transmit resistance torque. Equipped with BLDC (Brushless Direct Current) motors near the hip joints, it generates torque (Figure 1C) tailored to the exercise type, with sensors measuring movement direction and angle. An IMU sensor on the back monitors activity and adjusts torque based on speed and rhythm. Bot Fit offers five resistance levels (1R–5R) and can generate torque up to 10 Nm using its two high-speed BLDC motors (Kim et al., 2018; Lee et al., 2023). Additionally, a time-delayed self-feedback controller (DOFC) algorithm ensures safe and adaptive resistance exercises tailored to the user’s movements (Lim et al., 2019).
[image: Diagram showing a hip-joint exoskeleton robot, labeled "Bot Fit," worn by a person for resistance exercises. It highlights wireless sEMG sensors for data collection and motor signals. Adjacent graphs display motor torque and sEMG signals over time, with separate signals for different joints and sensors, plotted against time in seconds.]FIGURE 1 | Hip-joint Exoskeleton Robot (Bot Fit) for Resistance Exercise. (A) Images of the exoskeleton robot used to provide adaptive hip-joint resistance for participants, along with the wireless sEMG sensors used to measure muscle activity during the exercises. (B) Schematic illustration of a participant equipped with the exoskeleton robot and wireless sEMG sensors. (C) Joint torque (motor signal) and sEMG signals obtained during a squat exercise.
We used wireless sEMG sensors (Delsys Trigno System, Boston, MA, United States) to measure thigh muscle activity at a sampling rate of 2000 samples/s (Figures 1A, C). These sensors were attached to four regions on each thigh: the rectus femoris, vastus lateralis, biceps femoris, and semitendinosus muscles. The sensors were placed at the midpoint of the targeted muscles, aligned parallel to the muscle fibers. To ensure accurate sEMG signal acquisition, the skin was prepared by removing oil and sweat, with hair removal performed if necessary, following standard guidelines (Hermens et al., 1999).
2.2 Participants & experimental protocol
2.2.1 Participants
This study included 30 healthy adults (19 males, 11 females) aged 23 to 30, recruited through promotional activities at a fitness center operated by the research team. Participants were informed about the study, provided written consent, and completed ethics training in accordance with the Institutional Review Board (IRB) protocol at Yonsei University (Registration number: 7001988-202305-HR-1538-04).
Participants were selected based on the following criteria: 1) They were young adults without significant medical conditions, such as cardiovascular, musculoskeletal, or neurological disorders. 2) They regularly engaged in light physical activity, such as jogging, yoga, or light weightlifting, approximately 1–2 times per week. 3) Their health was assessed through body mass index (BMI) and blood pressure measurements on Day 1 of pre-measurement, ensuring all health metrics fell within a healthy range. 4) All participants were capable of daily movement and walking without the need for mobility aids or assistance.
Exclusion criteria were as follows: 1) Participants who were uncomfortable wearing the robotic exoskeleton or attaching wireless sEMG sensors for muscle activity monitoring were excluded. 2) Individuals with severe communication impairments, major medical conditions (e.g., heart disease or lower limb disorders), or a BMI of 30 kg/2 or higher (the normal range is 18.5–24.9 kg/2 (Consultation, 2000)) were excluded due to safety concerns related to the exoskeleton robot. 3) Additionally, participants could be excluded at the researcher’s discretion if deemed unsuitable for the study.
Overall, the study group consisted of healthy individuals who engaged in light to moderate exercise and maintained relatively healthy lifestyles. Specific details about the participants’ demographics and health metrics are provided in Table 1.
TABLE 1 | Characteristics of the participants. SD standard Deviation.
[image: Table displaying various characteristics: Sex (male/female) is 19/11. Age (mean±SD) is 26.1 ± 2.8 years. Height is 170.93 ± 8.5 cm. Weight is 66.43 ± 9.8 kg. Resting heart rate is 81 ± 9.43 BPM. High blood pressure is 109.4 ± 9.99 mmHg. Low blood pressure is 70.67 ± 7.78 mmHg. Appendicular skeletal muscle mass (ASM) is 28.5 ± 5.91 kg. Body mass index (BMI) is 22.6 ± 2.31 kg/m².]2.2.2 Experimental protocols: Pre-measurement phase
The experimental protocol consisted of two phases of measurement for each participant: a pre-measurement phase and an exercise measurement phase using the maximum resistance mode of Bot Fit (Figure 2).
[image: Flowchart outlining a two-day measurement protocol. Day 1 involves pre-measurements: anthropometrics, vertical jump, and muscular strength. Day 2 includes an exercise measurement phase using maximum resistance on Bot Fit with 5R and activities like reverse lunge, knee up, and squat interspersed with ten-minute recovery periods. Repetition tests are conducted at specified durations and speeds, highlighted in red and blue text. RPM notes repetitions per minute measured by a metronome.]FIGURE 2 | Experimental protocol. During the pre-measurement phase, participants underwent assessments including a vertical jump test, a 1RM test using a leg curl and extension fitness machine, and an isometric contraction test focusing on leg curls (LCs) and leg extensions (LEs) using a hand-held dynamometer. These assessments were used to derive muscle parameters indicative of baseline muscular strength. During the exercise measurement phase, participants performed three resistance exercises while wearing the exoskeleton robot, and sEMG signals were recorded simultaneously. Each resistance exercise was performed under two different protocols: one with short bursts of repetitions at an uncontrolled speed, and another with a relatively long duration at a fixed speed. Adequate rest periods were provided between exercises.
In the pre-measurement phase, baseline muscular strength was evaluated using standard fitness equipment without Bot Fit. Muscle parameters reflecting each participant’s baseline strength were collected (Table 2). Muscular power was assessed through a vertical jump (VJ) test, where the highest score from three trials was recorded. This test involved participants bending their knees and jumping vertically (Wisløff et al., 2004; Iossifidou et al., 2005).
TABLE 2 | Description of muscle parameters.
[image: Table showing parameters and descriptions related to muscular strength measurements. It includes total performance, VJ height, RM (LE + LC, Weight), RM (LE, Weight), RM (LC, Weight), ISO (LE + LC, Weight), ISO (LE, Weight), and ISO (LC, Weight). P-values from the Shapiro-Wilk test are given for each, indicating significance in normality tests.]Muscular strength, assessed via 1RM, was measured using leg extension (LE) and leg curl (LC) machines (Life Fitness, Franklin Park, Illinois, United States). In the LE test, participants, while seated, lifted the maximum weight by extending the knee and foot, targeting the rectus femoris muscle (Krisnan et al., 2014). In the LC test, participants lay prone and flexed the knee and foot to lift the maximum weight, engaging the biceps femoris (Llurda-Almuzara et al., 2021).
Lower limb muscle strength was also measured using a hand-held dynamometer (EasyForce, GMT Ltd, Bury Saint Edmunds, United Kingdom). The dynamometer was secured to the ankle while participants, seated with knees at a 90-degree angle, exerted force for 5 s to measure the strength of the rectus femoris and biceps femoris muscles (Gaudet and Handrigan, 2020; Sinacore et al., 2017).
Before the pre-measurement exercises, participants completed a warm-up led by a researcher specializing in exercise physiology. For explosive strength exercises such as the vertical jump and 1RM test, participants used equipment like stretching bands to activate lower body muscles through contraction and relaxation (Herrera and Osorio-Fuentealba, 2024). A brief massage was also provided prior to the experiment. For each exercise, participants performed preliminary practice, including five practice jumps before the vertical jump measurement, and five repetitions at 30% of their body weight before the 1RM test and isometric exercises. The same warm-up and stretching routine was followed before the exercise measurement phase on Day 2.
The pre-measurement phase took place on Day 1 of the experiment. To avoid influencing the subsequent exercise measurements, the exercise measurement phase was conducted 1–2 days later. This rest period was chosen because the exercises on Day 1 were not of high intensity, and short rest intervals in low-load resistance training typically do not interfere with muscle recovery, ensuring performance in the following session remained unaffected (Fink et al., 2017).
2.2.3 Experimental protocols: Exercise measurement phase
On Day 2, during the exercise measurement phase, participants performed three exercises using Bot Fit, as shown in Figure 2. These exercises were chosen for their focus on movements involving the pelvis and hip joints, which are compatible with Bot Fit’s design. The exercises involved bilateral leg movements in the sagittal plane, emphasizing flexion and extension without abduction, and aligning with Bot Fit’s resistance application to prevent lateral pelvic motion.
The muscles activated during these exercises were monitored using sEMG signals, including the rectus femoris, vastus lateralis, biceps femoris, and semitendinosus (Slater and Hart, 2017; Muyor et al., 2020). These muscles were selected due to their critical involvement in Bot Fit exercises (Cabral et al., 2023; Lee et al., 2022). Additionally, the Day 1 pre-measurement tests, such as the Vertical Jump and 1RM tests, also target the quadriceps (Krisnan et al., 2014) and posterior thigh muscles (Llurda-Almuzara et al., 2021), which are the same muscles engaged during the Day 2 exercises (Lee et al., 2022; Narici et al., 1989). This similarity in muscle involvement was a key factor in selecting these exercises for accurate strength assessment.
During the measurement phase, participants performed resistance exercises under two distinct experimental conditions aimed at assessing different physical performance aspects. In the first condition, participants executed the exercises at maximum speed without a time limit for short durations (60 or 45 s). This condition, mimicking n-RM without speed constraints, allowed for the measurement of peak strength and maximum effort under high-intensity, short-duration circumstances (Willardson and Bressel, 2004).
The second condition, known as the “constant speed” condition, required participants to maintain a fixed speed for longer durations (180, 120, or 90 s), with a metronome ensuring consistency. We defined this speed as RPM (Repetitions per minute). This condition focused on muscular endurance by identifying the point of muscle fatigue, which occurred when participants could no longer sustain the designated pace during exercises like squats (Figure 3). By maintaining a constant speed for 30–45 s, this setup emphasized endurance over pure strength, promoting sustained muscular effort. The controlled speed also minimized variability, allowing for a more objective assessment of endurance, fatigue, and efficiency. Previous studies emphasize the importance of repetition speed in strength development, with faster speeds leading to greater strength gains (Westcott et al., 2001). Given the connection between strength and endurance, this method provides an indirect estimation of endurance through strength performance (Stone et al., 2006; Vaara et al., 2012).
[image: A sequence of images and graphs related to a squatting exercise. At the top, a person performs squat movements: standing, flexion, and extension. Below are three graphs: the first shows joint angles over time with red arrows marking time intervals; the second presents EMG activity for the rectus femoris muscle, indicating active periods; the third graph displays speed over repetitions, comparing constant and variable speed zones, with a marked transition point.]FIGURE 3 | Examples of sEMG and Bot Fit motor signal processing during a 90-s repetition test at a constant speed (60 RPM) for squats. (A) Joint torque from Bot Fit and the raw sEMG signal recorded from lower limb muscles during squats in maximum resistance mode. The time interval between peak values of each signal represents the speed of exercise performance per repetition. (B) A graph of the time intervals from (A), where segments maintaining exercise speed are designated as the constant speed zone, and those unable to maintain speed are marked as the variable speed zone. This analysis evaluates how effectively each participant uses their muscular strength to maintain speed.
These two experimental conditions offer complementary insights: the maximum speed condition assesses peak strength and short-term performance under high-intensity conditions, while the constant speed condition evaluates endurance, fatigue management, and sustained effort over time. This combined approach allows for a more comprehensive analysis of physical performance, capturing both the limits of strength and the ability to sustain exercise over longer periods, providing a well-rounded evaluation of the Bot Fit resistance protocol (Lander et al., 2009).
All participants followed a specific exercise sequence consisting of reverse lunges, knee-ups, and squats (Figure 2). First, a repetition test lasting either 60 or 45 s without speed limits was conducted, followed by a constant-speed repetition test lasting either 180, 120, or 90 s for each exercise. This approach ensured reliable measurement and consistency throughout the experiment. The constant speed was determined by the duration of the test, with speeds tailored to each exercise: 48 RPM for reverse lunges, 132 RPM for knee-ups, and 60 RPM for squats. These values were chosen to reflect the level of difficulty and muscle engagement required for each movement.
The main challenges in our exercise protocol were maintaining proper posture, correct speed, and pre-exercise stability. Bot Fit provided real-time alerts, and researchers monitored posture. In the knee-up exercise at 132 RPM, participants maintained a knee angle below 65°, which was also applied to the lunge and squat for consistent control.
Resting heart rates were checked before each exercise in Table 1, and if elevated above 100 BPM of heart rate, the experiment was paused until the heart rate returned to normal to ensure stable conditions. In addition, all protocols were performed 2 hours after meals, a design choice made to account for the potential effects of food intake on exercise performance (Farah and Gill, 2013).
2.3 Data acquisition and processing
2.3.1 Data acquisition
Comprehensive data were collected, including muscle activity, vertical jump performance, 1RM test results, isometric contraction data, and the number of repetitions for all exercises performed with Bot Fit. Wireless sEMG sensors captured muscle signals during each exercise, and Bot Fit’s motor data were used to validate the accuracy of the sEMG signals. The alignment between the repetitions recorded by researchers and those detected by the sEMG sensors confirmed their synchronization, reinforcing the reliability of the motor signals and the study’s conclusions.
Additionally, comparing the two signals confirmed that Bot Fit’s motor data accurately reflected the muscle movements captured by the sEMG sensors, further ensuring the reliability of the motor signals.
2.3.2 Bot Fit motor signal processing
For Bot Fit’s motor signal processing, Figure 3A shows the joint torque measured from Bot Fit’s motor during a squat exercise at 60 RPM. The torque peaks during the flexion and extension phases of the squat. We measure the time intervals between these peaks, as shown in Figure 3B. The interval where the 60 RPM speed is maintained is defined as the “constant speed zone,” while intervals where the speed deviates are labeled the “variable speed zone.” The same method was applied to determine time intervals for reverse lunges and knee-ups using Bot Fit’s motor signals.
2.3.3 sEMG signal processing
All sEMG signals underwent thorough preprocessing in each measurement phase, including the application of a notch filter to eliminate power line interference, a high-pass filter to remove mechanical noise, and a band-pass filter (20 Hz–500 Hz) to retain the relevant sEMG signal frequencies.
In the pre-measurement phase, peak muscle activation signals from the 1RM and isometric contraction tests were used to normalize the sEMG signals. This normalization, based on maximum voluntary isometric contraction (MVIC), enables objective comparisons by expressing EMG signal intensity as a percentage of the highest RMS value from the MVIC (Soderberg, 1992; Winter 2009; Lawrence and De Luca, 1983). The MVIC of the sEMG signal [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is calculated using the formula:
[image: Equation showing MVIC\(_{\text{ex}}\) equals the ratio of the difference between sEMG\(_{\text{ex}}\) and sEMG\(_{\text{rest}}\) to the difference between sEMG\(_{\text{max}}\) and sEMG\(_{\text{rest}}\).]
In Equation 1, [image: It seems there's no image for me to generate alt text from. Please upload the image or provide a URL, and I'll be happy to help!] represents the maximum sEMG signal obtained during the 1RM and isometric contraction tests. [image: Text displaying "sEMG_ex" in a serif font, possibly representing a variable or label related to surface electromyography in an exercise context.] denotes the sEMG signals recorded during resistance exercises such as reverse lunges, knee-ups, and squats, as shown in the MVIC of Figure 3B, while [image: Sorry, I can't assist with identifying or verifying text in images.] denotes the resting sEMG signals.
2.4 Evaluation metrics for multivariable analysis
2.4.1 Dependent variables: Muscle parameters
Our model focuses on a muscle parameter that serves as an indicator of participants’ baseline muscular strength. This parameter includes metrics such as VJ, RM (LE + LC, weight), ISO(LE + LC, weight), and total performance. Measured in the pre-measurement phase and detailed in Table 2, these metrics provide insights into lower-limb muscular power (VJ) and strength relative to body weight (RM and ISO) and act as an overall measure of baseline muscular strength (total performance). Weight normalization for RM (LE + LC, weight) and ISO (LE + LC, weight) ensures an unbiased comparison among participants Bohannon (2009). The total performance is a composite indicator calculated by summing the z scores of VJ, RM (LE + LC, weight), and ISO (LE + LC, weight) Legarra-Gorgoñon et al. (2023).
2.4.2 Independent variables: Performance metrics
We developed performance metrics as independent variables for the regression model. These metrics were derived from motor and sEMG signals measured during three resistance exercises (squats, knee-ups, and lunges) performed while wearing Bot Fit under two experimental conditions (detailed in Table 3).
TABLE 3 | Proposed sEMG signal analysis-based performance metrics with Bot Fit at exercise measurement phase.
[image: Chart displaying exercise metrics with explanations and remarks. Metrics include the number of repetitions (NR), initial speed (IS), constant speed zone (CZ), sEMG amplitude (amp), and sEMG integrated EMG (iEMG). Each section details exercise parameters for squats, knee-ups, and lunges, comparing maximum and constant speed conditions with corresponding p-values indicating statistical significance.]The first metric, Number of Repetitions (NR), measures strength by counting the total repetitions performed. It is represented as Squat NR Max, Kneeup NR Max, and Lunge NR Max for the first experimental condition, and Squat NR Const, Kneeup NR Const, and Lunge NR Const for the second condition.
The second metric, Initial Speed (IS), assesses participants’ ability to sustain the initial speed guided by a metronome. It is calculated by averaging the speed of the initial 10 repetitions for squats or 30 repetitions for knee-ups and lunges. This metric is also categorized as Squat IS Max, Kneeup IS Max, and Lunge IS Max for the first condition, and Squat IS Const, Kneeup IS Const, and Lunge IS Const for the second.
The third metric, Constant Speed Zone (CZ), evaluates the ability to maintain a constant speed during repetitions until fatigue. CZ is calculated at the 18-s mark based on a threshold of speed change (Figure 3B) and is labeled as Squat CZ, Kneeup CZ, and Lunge CZ.
These three metrics are derived from Bot Fit’s joint torque, capturing the user’s movement, and can also be extracted using peak sEMG values. Unlike previous studies using machine learning to predict movement from sEMG signals Mokri et al. (2022); Kyeong et al. (2022), our approach relies on peak values directly tied to user movement (Figure 3A). Since motor and sEMG signals are synchronized, we used Bot Fit’s motor signals for these metrics in the analysis.
The fourth metric, sEMG Amplitude, measures the change in sEMG signal amplitude between the initial and final 10 s of exercise. This reflects muscle activation intensity and contraction strength (Ryu et al., 2016). It is represented as Squat sEMG amp Max, Kneeup sEMG amp Max, and Lunge sEMG amp Max for the first condition, and Squat sEMG amp Const, Kneeup sEMG amp Const, and Lunge sEMG amp Const for the second.
The fifth metric, iEMG (integrated EMG), calculates the difference in iEMG between the initial and final 10 s of exercise. This metric reflects total muscle activation over time (Phinyomark et al., 2014). It is labeled similarly to the fourth metric and can be obtained only from sEMG signals.
2.5 Statistical analysis
For the statistical analysis, we first performed the Shapiro-Wilk test on the muscle parameter data and performance metrics. The results showed p-values greater than 0.05 for all muscle parameters, confirming normal distribution, as seen in Tables 2, 3. We then calculated Cohen’s [image: Please upload the image or provide a URL for me to generate the alternate text.] value (Selya et al., 2012) and conducted a power analysis to ensure the sample size was adequate (Myors et al., 2010).
We also tested the normality of each performance metric, used as independent variables in the multivariable regression analysis (Tabachnick et al., 2013), using the Shapiro-Wilk test. Additionally, we checked the normality of residuals and homoscedasticity to verify that the selected independent variables met the assumptions required to explain the dependent variable, which was the muscle parameter.
Next, we examined the correlation between muscle parameters and performance metrics using Pearson’s correlation coefficient. To ensure the independence of the performance metrics, we analyzed inter-variable correlations, interpreting the strength of these correlations as negligible ([image: Please upload the image or provide a URL so I can generate the alternate text for you.]0.1), weak (0.1–0.39), moderate (0.4–0.69), strong (0.7–0.79), and very strong ([image: Please upload the image or provide a URL, and I will generate the alternate text for you.]0.8) (Schober et al., 2018).
These analyses were crucial in identifying the key factors influencing muscle strength. Variables that did not meet the selection criteria were excluded from the final regression model. All statistical analyses were conducted using SPSS version 26.0 (IBM, Armonk, NY) and MATLAB R2020a (MathWorks, Natick, MA, United States).
3 RESULTS
3.1 Association with muscle parameters and performance metrics
As shown in Figure 4, there is a clear linear association between muscle parameters (Table 2), and certain performance metrics used to evaluate exercise performance with Bot Fit. Brighter colors in the figure indicate a stronger correlation with muscle parameters. However, it is important to note that a high linear correlation alone does not guarantee that a variable is suitable as an independent predictor in the regression model. To ensure the robustness of the model, we performed tests for homoscedasticity and normality of residuals, as depicted in Figure 5.
[image: Heatmap displaying performance metrics for various algorithms, with rows labeled by different model configurations and columns labeled by performance metrics. Color gradient ranges from blue to red, indicating performance scale.]FIGURE 4 | Absolute values of Pearson’s correlation coefficients between performance metrics and muscle parameters were analyzed to assess the linearity of the correlations. Asterisks (*) indicate p-values less than 0.05, signifying that the assumption of normality was violated in the residuals’ Shapiro-Wilk test. Red indicates a stronger correlation, while blue represents a weaker correlation.
[image: Six-panel chart showing regression analysis.   (a) and (d) show scatter plots with trendlines of squat NR max against VJ and ISO LE with correlations of 0.81 and 0.61, respectively.   (b) and (e) display residual plots of squat NR max for VJ and ISO LE, showing residuals scattered around the zero line.   (c) and (f) are Q-Q plots illustrating the alignment of standardized residuals with the theoretical quantiles, indicating normal distribution.   Each panel features multicolored data points.]FIGURE 5 | Results of linear regression analysis. (A) and (D): Scatter plots showing the relationship between dependent variables ((A) for VJ, (D) for ISO (LE, Weight)) and the independent variable (Squat NR Max). Pearson’s correlation coefficient values are indicated in red. (B) and (E): Residual plots displaying the differences between the model and the independent variable to assess heteroscedasticity. (C) and (F): QQ plots comparing the model with the independent variable, assessing heteroscedasticity and normality.
Among the common variables across the three types of exercises, we observed a strong correlation between the number-based performance metric NR and the initial exercise speed IS. Additionally, among the different types of exercises, squats consistently showed stronger correlations with muscle parameters compared to the other exercises. The scatter plots in Figures 5A, D illustrate the correlations between these variables, each exhibiting a high degree of linearity, with correlation coefficients of 0.5 or higher. However, the residuals reveal varying levels of heteroskedasticity and normality across the models. In Figure 5B, the residuals are evenly distributed, indicating homoscedasticity. In contrast, the models in Figure 5E display unevenly distributed residuals, suggesting the presence of heteroskedasticity. Similarly, while the residuals in Figure 5C follow a normal distribution, those in Figure 5F deviate from normality, as confirmed by the QQ-plots that visualize normality and heteroskedasticity.
Through these analyses, we identified that specific performance metrics, particularly those related to initial exercise speed, serve as statistically significant predictors of muscular strength. When validated through appropriate statistical checks, as outlined in Table 3, these metrics can be reliably used in regression models to predict muscle parameters.
3.2 Multivariable analysis
3.2.1 Association between multivariable
As illustrated in Figure 6, the correlation matrix provides critical insights into the relationships among all variables, including both the independent performance metrics and the dependent muscle parameters. This matrix not only highlights how various performance metrics are associated with muscle parameters but also reveals the interrelationships among the performance metrics themselves. This dual insight is essential for refining our understanding of how different aspects of exercise performance, measured through Bot Fit, relate to overall muscle strength.
[image: Correlation matrix depicting relationships among various exercise performance metrics and EMG measurements. The matrix uses a color scale from blue to red, indicating correlation strength from negative (blue) to positive (red), with circle size reflecting magnitude. Labels indicate specific metrics, such as weight and EMG constancy for different exercises.]FIGURE 6 | Absolute correlation matrix with muscle parameters and performance metrics is presented in Tables 2, 3. The larger the size and the redder the color of the circle, the stronger the correlation, while the smaller the size and the bluer the color, the weaker the correlation.
By analyzing these correlation patterns, we can identify clusters of performance metrics that exhibit strong correlations. For example, certain metrics consistently show high correlations with muscle parameters, suggesting they play a central role in predicting muscle strength. Conversely, metrics that are highly correlated with each other might indicate redundancy, implying that not all need to be included in our regression model. Identifying such clusters helps narrow down the set of independent variables, leading to a more streamlined and efficient model.
This refined selection process is not merely a technical optimization—it has practical implications. By focusing on fewer, yet highly representative metrics, we reduce complexity while maintaining the model’s predictive power. This allows us to make more accurate assessments of muscle strength using Bot Fit without overcomplicating the model with redundant variables.
3.3 Clustering between multivariable
In the multivariable analysis, we confirmed associations among independent variables and performance metrics, as demonstrated in Figure 6. Through hierarchical clustering in Figure 7, we performed the process of selecting variables with high correlations, indicating lower independence as independent variables. This allows for the simplification of the predictive model. In Figure 7A, variables with high correlations were clustered together, and in Figure 7B, the clustering was made clearer.
[image: Two heatmaps titled (a) and (b) display hierarchical clustering. The top heatmap, labeled (a), shows a range of blue to red colors, indicating correlation magnitudes among variables on both axes. The bottom heatmap, labeled (b), also utilizes a blue to red gradient, suggesting varying correlation levels among different variables. Each heatmap includes dendrograms, highlighting clustering of the variables. Color bars on the left of each map illustrate the color scale, ranging from negative to positive correlations.]FIGURE 7 | Correlation matrix with dendrogram among the independent variables of performance metrics in Table 3. (A) Correlation matrix of all performance metrics. (B) Correlation matrix clustered by highly correlated variables from (A). Red indicates a stronger correlation, while blue indicates a weaker correlation.
In particular, through this dendrogram analysis, we observed that the IS, NR, and CZ metrics related to muscle parameters had a high correlation with Squat, Knee-up, and Lunge, and that these metrics also exhibited a high correlation among themselves. Additionally, Squat and Lunge metrics were classified within the same cluster, while Knee-up was classified independently. This suggests that the metrics for Squat and Lunge could sufficiently represent each other.
Based on this, we identified meaningful relationships between variables, particularly the strong correlation between Squat and Lunge, as shown in Figure 8. Among the performance metrics, we confirmed that NR and IS showed high correlations between these two exercises.
[image: Six scatter plots show the relationship between lunge and squat metrics with lunges on the vertical axis. Plots (a), (b), and (c) compare lunge NR Max with Squat NR Max, Squat NR Const, and Squat IS Max, respectively. Plots (d), (e), and (f) compare lunge NR Const with the same squat metrics. Each plot shows a positive correlation, with data points in various colors. A line indicating the 95% confidence bounds is present in each plot. Correlation coefficients range from 0.75 to 0.89.]FIGURE 8 | Linear correlation between performance metrics for squat and lunge exercises. (A) Correlation between Squat NR Max and Lunge NR Max. (B) Correlation between Squat NR Const and Lunge NR Max. (C) Correlation between Squat IS Max and Lunge NR Max. (D) Correlation between Squat NR Max and Lunge NR Const. (E) Correlation between Squat NR Const and Lunge NR Const. (F) Correlation between Squat IS Max and Lunge NR Const.
Specifically, we identified linear relationships between Squat NR Max and Lunge NR Max (Figure 8A), Squat NR Const and Lunge NR Max (Figure 8B), Squat IS Max and Lunge NR Max (Figure 8C), and similarly for Lunge NR Const and Squat NR Max (Figure 8D), Squat NR Const (Figure 8E), and Squat IS (Figure 8F).
Additionally, we compared the performance metrics within Squat and Lunge in Figure 9. Figure 9A illustrates the relationship between Squat NR Max and Squat NR Const, while Figure 9B shows the relationship between Squat NR Max and Squat IS Max. This confirms that the metrics in the Squat protocol are correlated with each other, indicating that one of these metrics could be selected to explain the dependent variable in the regression model, rather than using all of them. Similarly, within the Lunge protocol, Figure 9C represents the relationship between Lunge NR Max and Lunge NR Const, and Figure 9D shows the relationship between Lunge NR Max and Lunge IS Max. As with the Squat protocol, it is also possible to select one metric within the Lunge protocol to explain the dependent variable, as confirmed by the results.The hierarchical clustering of correlated variables, such as Squat and Lunge, allows us to streamline the regression model by selecting only the most relevant metrics. This reduces complexity without compromising accuracy. Strong correlations between NR and IS metrics in both Squat and Lunge indicate that these metrics are strong predictors of muscle performance. Therefore, selecting one representative metric from correlated groups prevents multicollinearity and enhances the model’s robustness. Ultimately, this method optimizes the model, improving both efficiency and interpretability, making it more applicable for systems like Bot Fit.
[image: Four scatter plots compare different variables with confidence bounds. Each plot displays data points in various colors. (a) and (b) show Squat NR Max, while (c) and (d) show Lunge NR Max. Correlation values (R) are provided for each plot.]FIGURE 9 | Linear correlation between performance metrics related squat. (A) Correlation with Squat NR Max and Squat NR Const. (B) Correlation with Squat NR Max and Squat IS Max. (C) Correlation with Lunge NR Max and Lunge NR Const. (D) Correlation with Lunge NR Max and Lunge IS Max.
3.4 Regression analysis
3.4.1 Multivariable model
To develop the final multivariable model, we selected the most relevant indicators based on prior statistical analyses. The chosen independent variables are listed in Table 4, which were derived from the performance metrics in Table 3. These variables were selected based on normality (p-value [image: Please upload the image or provide a URL so I can help generate the alternate text.] 0.005) (Tabachnick et al., 2013), homoscedasticity, and normality of residuals (Figures 4, 5). To minimize multicollinearity, only variables with linearity below 0.7 (Murray and Conner, 2009) were included (Figures 7–9).
TABLE 4 | Selection of independent variables (performance metrics) for a regression model targeting muscle parameters through statistical validation.
[image: Table comparing muscle parameters and selected performance metrics across four models: Total Performance, VJ, RM (with weight), and ISO (with weight). Metrics include Squat IS Max, Kneeup IS Max, Kneeup CZ, Lunge IS Const, and Lunge CZ, with criteria based on normality, independence, and linearity tests.]The model’s performance is illustrated in Figure 10. In Figure 10A, the explanatory power for each target is shown using metrics from all three exercises (All metrics) and from individual exercises (Squat-only, Knee-up-only, and Lunge-only). The results indicate that using all three exercise metrics produced similar performance to using Squat metrics alone, whereas models based solely on Knee-up or Lunge metrics had lower performance.
[image: Bar graphs comparing explanatory power across different exercises and methods. Graph (a) shows data for all metrics, squat, knee-up, and lunge exercises. Graph (b) presents data for reps only, squat, squat-knee-up, and knee-up-lunge methods. Bars are differentiated by performance measures, including 1RM, ISO, and total performance. Explanatory power ranges from 0.2 to 0.6.]FIGURE 10 | Performance of each regression model for Total performance, VJ, RM (LE + LC, Weight), and ISO (LE + LC, Weight). Solid bars represent the model’s explanatory power (R), while hatched bars represent the adjusted R2. (A) “All metrics” includes metrics from Squat, Knee-up, and Lunge; “Squat only” uses squat-related metrics; “Knee-up only” uses knee-up-related metrics; and “Lunge only” uses lunge-related metrics. (B) “Reps only” represents a traditional strength assessment method using metrics related to the number of repetitions (NR) (Schoenfeld et al., 2019). “Squat & Lunge,” “Squat & Knee-up,” and “Knee-up & Lunge” include metrics from the respective combinations of exercises. This figure shows model performance based on high correlations and statistically significant metrics for each target, categorized by resistance exercise type. Asterisks indicate significance levels: * p < .05, ** p < .01, and *** p < .005.
Figure 10B compares the model’s performance across different exercise combinations. Models incorporating Squat metrics consistently performed the best, with the Squat and Knee-up combination yielding the highest accuracy. This confirms that Squat-related metrics are the strongest predictors of muscle strength. Interestingly, the combination of Squat and Lunge metrics performed similarly to the Squat-only model, likely due to the similarities in movement patterns between these exercises. Conversely, Knee-up metrics were more distinct, and combining Squat and Knee-up metrics resulted in more efficient muscle strength predictions than using all three exercises together.
Additionally, we compared our models to a traditional method (Schoenfeld et al., 2019) that assesses strength based on repetition counts (NR) from the three exercises. Our proposed models—whether using Squat alone or combined with Knee-up—performed slightly better than the traditional approach, as shown in Figure 10B. This demonstrates that our method can accurately estimate muscular strength without the need for all exercises to be performed.
Based on these results, we finalized the multivariable regression models, presented in Table 5. The “All metrics” model includes data from all three exercises, the “Squat, Knee-up” model uses only two exercises, and the “Squat-only” model relies solely on Squat metrics. Notably, the performance of the “Squat-only” model was comparable to that of the “All metrics” model, as shown in Figure 10.
TABLE 5 | Multiple linear regression models for total performance with squat, knee-up and reverse lunge. Beta coefficients (B) signify the estimated change in the dependent variable for a one-unit change in the predictor variable, holding all other variables constant. Standard errors (SE) gauge the precision of the estimated coefficients. Standardized coefficients (Standardised coeff. Beta) indicate the change in standard deviations of the dependent variable for a one-standard-deviation change in the predictor variable. Cohen’s [image: Please upload the image or provide a URL so I can help generate the alternate text for you.] (Selya et al., 2012) is a measure of effect size in regression models, used to assess how much an independent variable explains the variance of the dependent variable. Statistical power (Myors et al., 2010) refers to the probability that the test correctly rejects the null hypothesis when a true effect exists, with a value of 1.0 indicating that the sample size and effect size are sufficient to detect a statistically significant result.
[image: Table showing regression analysis results for different independent variables related to physical metrics. The table includes unstandardized coefficients (B, SE), standardized coefficients (Beta), R values, and effect sizes with Cohen's f². Notable results include high R values, indicating strong statistical power, and large effect sizes for all conditions. Variables include Squat IS Max, Kneeup IS Max, and others, with Squat IS Max consistently showing high standardized coefficients. Statistical significance is noted with ** and *** for p-values.]To determine the appropriate sample size for the final model, we conducted a statistical power analysis, including p-values and effect sizes, ensuring that the model is reliable and can generalize effectively.
Among the various models, the “Squat-only” model using the Squat IS MAX metric, which measures speed over a 10-s interval, showed the best performance. This confirms that Squat IS MAX is a highly reliable and efficient predictor of muscle strength. Statistical analysis further validated the model’s applicability, making it suitable for scenarios with limited resources or smaller sample sizes.
3.4.2 Multivariable model validation
To assess the impact of sample size, age, and gender on the model, we employed a bootstrapping technique (Wang, 2019). Additionally, we introduced Gaussian noise into the bootstrapped datasets (Gu et al., 2019) to evaluate the influence of factors such as gender, age, and participant condition. As outlined in Table 6, bootstrapping was performed using data from the original 30 participants, generating 100 and 300 samples, with 10% and 30% Gaussian noise added to each model. We then evaluated the performance of each regression model.
TABLE 6 | Regression model performance. The dependent variables of each regression were determined by fixing the mean and standard deviation of the dataset obtained in this study and applying z-score normalization to the other bootstrapped datasets. Accordingly, all results were derived from the independent variables (i.e., All metrics, Squat and Knee-up, Squat only as shown in Table 5) with the dependent variable set as ‘Total Performance’. The explanatory power of the model, represented by the [image: It seems there is no image attached. Please upload the image or provide a URL so I can help generate the alternate text.] value (adjusted [image: The image shows the mathematical notation "R" with a superscript "2", commonly used to denote the coefficient of determination in statistics.]), is also shown. Additionally, a comparison of results with and without gender and age included as independent variables is provided. For gender, we applied a value of male:1/female:0 as an independent variable.
[image: A table compares different model performances using independent variables. Columns represent sample sizes and noise levels. Rows represent metrics: "All metrics," "Squat Knee-up," and "Squat only." Comparisons are made with and without gender and age included. Statistical significance is indicated by asterisks, where single, double, and triple asterisks denote specific p-value thresholds.]To compute the total performance of the bootstrapped data, the mean and standard deviation of the muscle parameter from the original 30 participants were used as the model target. This methodology allowed us to evaluate the generalizability of the model to the broader population and assess the sample’s representativeness.
As presented in Table 6, model performance decreased slightly as the number of bootstrapped samples increased, with further reductions observed when higher levels of noise were introduced. However, despite these declines, the changes were not statistically significant, suggesting that the proposed model remains robust and applicable across various data distributions. The effects of gender and age were also apparent, but they did not significantly impact the overall model performance.
Our analysis demonstrates that incorporating all three exercise types (Squat, Knee-up, and Lunge) yields a highly accurate prediction model for muscle strength estimation, as shown in Table 5. However, this approach requires performing all exercises, which may not always be practical. To develop a more efficient model, we identified Squat metrics as the strongest independent predictors of muscle strength. Combining Squat and Knee-up metrics offered the highest explanatory power, while using Squat metrics alone provided a simpler yet highly effective alternative.
The validation results using bootstrapping confirm that the model is robust and generalizable, as shown in Table 6. Although the introduction of noise and an increase in sample size slightly reduced performance, the declines were not statistically significant. This indicates that our final model, particularly the “Squat-only” and “Squat, Knee-up” configurations, can be applied effectively across diverse data sets and conditions. Therefore, the model not only demonstrates strong predictive accuracy but also maintains reliability in scenarios with varied sample sizes and external factors such as age and gender.
4 DISCUSSION
Our study explored methods for estimating users’ physical strength through exercises provided by Bot Fit. We found that strength could be effectively estimated using statistically significant prediction models derived from performance metrics in resistance exercises such as squats, knee-ups, and reverse lunges performed with Bot Fit. Notably, even a single exercise—the squat—produced a model with predictive accuracy comparable to models incorporating all three exercises, highlighting Bot Fit’s capability to generate accurate and efficient strength estimation models based on user performance.
Assessing muscle strength is critical for health management and exercise planning, as it helps individuals understand their capabilities and address deficits. Muscle strength is also recognized as a clinical indicator of overall health status (Momma et al., 2022). Our study successfully developed statistically robust models through resistance exercises facilitated by the Bot Fit system, suggesting that Bot Fit not only supports exercise but also serves as a valuable tool in health monitoring and fitness optimization.
Traditional methods of measuring muscle strength through resistance include the N-RM method, which estimates the 1RM by assessing the maximum weight a person can lift in a single repetition (Willardson and Bressel, 2004), and isokinetic dynamometry, which evaluates strength by maintaining a constant movement speed using specialized equipment (Gleeson and Mercer, 1996; Schoenfeld et al., 2019). Functional strength tests using resistance exercises, like squats, offer alternatives without specialized equipment by analyzing performance metrics such as oxygen consumption and aerobic energy expenditure (Fujita et al., 2016; Nakagata et al., 2022). However, these approaches often require specific equipment, designated exercise locations, and supervision, and they lack the ability to monitor real-time performance data.
Exoskeleton robots offer a promising solution to these limitations. They enable users to perform resistance exercises without the need for specific equipment or locations, and their motor data can be used to monitor movements. While previous studies have focused on using exoskeletons to assist movement and guide exercises (Lee et al., 2023; Kim et al., 2023), tracking users’ gait trajectories and providing walking adaptability for the robot (Kou et al., 2024), research on utilizing exoskeletons to estimate strength in healthy individuals remains limited.
We introduced Bot Fit, an exoskeleton designed to assess users’ functionality through safe and adaptive resistance exercises (Lim et al., 2019; Kim et al., 2018). Previous research has used electromyographic fatigue threshold (EMGFT), biomechanical assessments, and subjective ratings to evaluate muscle strength and ankle-joint stability (Byeon et al., 2024). Technologies like lower-limb wearable robots (LEEX) have also been developed to analyze gait based on biomechanical patterns and movement intentions (Qiu et al., 2023). Our study demonstrated the feasibility of estimating muscle strength in healthy individuals using Bot Fit, offering more challenging resistance exercises compared to bodyweight exercises.
We designed an exercise protocol using Bot Fit under two conditions. The first simulates estimating 1RM through repeated n-RM sets without a fixed speed over a short period, allowing participants to exert maximum effort (Willardson and Bressel, 2004). The second focuses on endurance by maintaining a constant speed over a longer period, encouraging sustained use of strength and endurance. Research shows that faster repetition speeds lead to greater strength gains (Westcott et al., 2001), and speed endurance training improves overall performance (Iaia et al., 2015). Based on the relationship between strength and endurance (Vaara et al., 2012), we used this protocol to estimate individuals’ overall muscular strength.
Results suggest that Bot Fit can efficiently estimate lower body strength, with squats and knee-ups being the most effective exercises. In protocols requiring rapid movement, initial speed-based performance metrics were statistically significant predictors in the strength estimation model. The importance of early speed in representing strength aligns with research highlighting that overcoming inertia to generate fast, powerful movements is closely related to muscle hypertrophy and muscle length (Wilk et al., 2021).
To obtain these performance metrics, we used real-time motor signals from Bot Fit supplemented with data from sEMG sensors, accurately assessing the relationship between initial movement speed and muscle strength. We demonstrated that movement-based metrics such as IS, NR, and CZ can be derived from both sEMG signals and Bot Fit’s motor signals, yielding identical results. This confirms the reliability of Bot Fit’s motor signals in representing actual muscle movement. Simplifying sEMG signal processing by using peak values allowed more efficient extraction of these key metrics.
sEMG signal analysis has significant advantages for evaluating muscle movement and activity. It has been applied to systems predicting wrist joint strength based on musculoskeletal models (Zhang et al., 2016), and methods for estimating lower limb strength using machine learning techniques with sEMG signals have been developed (Mokri et al., 2022). Additionally, EMG-based musculoskeletal models have been used to predict joint moments under various dynamic contraction conditions (Lloyd and Besier, 2003).
However, these studies require complex data processing and parameter calibration, increasing overall complexity (Zhang et al., 2016; Buchanan et al., 2004). Machine learning-based methods, while achieving high prediction accuracy, require large datasets (Mokri et al., 2022). They often use limited parameters and may not account for physiological phenomena like nonlinear changes in muscle strength, reducing predictive power (Lloyd and Besier, 2003). In contrast, we found that amplitude and iEMG values from sEMG showed lower correlation with muscle strength, supporting previous research indicating a nonlinear relationship between sEMG signals and muscle strength (Sartori et al., 2012; Buchanan et al., 2004).
Our findings indicate that a simple approach based on peak movement signals, rather than complex musculoskeletal models (Jiang et al., 2020), suffices for calculating IS, NR, and CZ. These movement-based metrics strongly correlate with muscle strength and are key variables in strength estimation models, aligning with prior studies that use movement speed and repetition counts as indicators of strength (Nakagata et al., 2022).
The regression model developed demonstrates that Bot Fit can effectively estimate lower body strength. Based on resistance exercises like squats, knee-ups, and reverse lunges, the model provided reliable strength predictions. Notably, using data from the squat exercise alone achieved prediction accuracy comparable to models using multiple exercises, highlighting Bot Fit’s potential as a simple and efficient tool for assessing strength.
Our model aligns with previous research exploring the correlation between strength and exercise performance. For example, Rodrigues et al. found a strong relationship between lower body strength, measured by a sit-to-stand test, and dynamic balance assessed via the Timed-Up and Go test (Rodrigues et al., 2023). Similarly, Monteiro et al. developed strength estimation models based on walking parameters, comparable to the knee-up exercise in our study (Monteiro et al., 2021).
Moreover, our model relates to widely used strength assessments like vertical jump performance (Carlock et al., 2004), 1RM tests for leg extensions and curls (Grgic et al., 2020; Kanada et al., 2018), and isometric tests (Bandinelli et al., 1999). Unlike traditional methods that do not incorporate real-time performance data from wearable exoskeletons, our study introduces a more comprehensive performance metric by combining motor signals and sEMG data from the Bot Fit exoskeleton. Real-time signals such as initial exercise speed and the number of repetitions provide a dynamic and precise understanding of muscular strength during resistance exercises. We also compared a model based solely on repetition count with our multivariable model, confirming that our model had superior explanatory power. This further validates our regression model as an effective tool for strength evaluation and exercise planning using Bot Fit.
The multivariable analysis in our study goes beyond simple correlation or regression commonly employed in previous research. By systematically considering multicollinearity and avoiding redundancy, we selected the most critical performance metrics (e.g., initial speed during squats), ensuring that the final model efficiently and accurately predicts lower limb strength across various exercises.
Our study has several limitations. First, the sample population was limited to healthy adults aged 23 to 30, which restricts the generalizability of the model to broader populations, such as older adults or individuals with musculoskeletal conditions. While this limitation narrows the scope of application, the high statistical power of our data indicates that our methods and findings are robust for this specific demographic. Additionally, based on the consistent results across diverse data distributions using our proposed analysis method, we have confirmed the potential generalizability of our approach.
Second, although we aimed to minimize the influence of external variables, we could not fully control the participants’ daily activity levels outside the experimental sessions. While daily physical activity may have had some influence on the results, we believe its impact was minimal. We monitored participants’ baseline heart rates and conducted preliminary exercises to ensure consistent conditions at the start of each session.
Lastly, the study’s focus on using a wearable exoskeleton for fitness movements primarily applies to physically active individuals. Nevertheless, our results suggest that Bot Fit has potential beyond fitness assessments. The integration of exercise speed and performance metrics into our model introduces a novel approach to strength evaluation, highlighting the versatility of exoskeletons for broader fitness and health applications.
5 CONCLUSION
This study demonstrates the practicality and effectiveness of using Bot Fit to estimate lower body strength through key performance metrics such as IS, NR, and CZ. Among these, IS emerged as the most accurate predictor, reflecting the user’s ability to overcome inertia and perform quick, forceful movements. By focusing on simple resistance exercises like squats and knee-ups, we developed strength prediction models that are both reliable and easy to implement. Notably, strength estimates based on a single exercise, such as the squat, were comparable to those derived from multiple exercises, highlighting Bot Fit’s ability to provide streamlined and efficient strength assessments. These metrics were carefully selected through rigorous statistical analysis, resulting in a robust and accurate estimation model.
Our study introduces a novel approach compared to traditional methods of predicting lower limb strength, demonstrating Bot Fit’s potential as a valuable tool beyond rehabilitation. By incorporating sEMG-based evaluation metrics and performance data from Bot Fit’s motor signals, we used multivariable analysis to identify the most effective predictors—such as initial exercise speed and the number of repetitions—allowing for more precise assessments of muscle strength. The resulting strength prediction model, particularly when using squat metrics, showed significantly higher accuracy than conventional methods, underscoring the potential for exoskeleton robots to be applied in real-world fitness and health monitoring systems. Bot Fit offers a simple and reliable method for tracking strength in healthy individuals, without the need for specialized equipment or environments.
Future study should include older adults and individuals with musculoskeletal conditions to validate the model’s generalizability. Exploring additional exercise protocols could help develop models suited to diverse physical abilities and rehabilitation needs. Leveraging advanced data analytics and machine learning could further enhance strength prediction accuracy, enabling Bot Fit to deliver personalized exercise recommendations and health assessments to a wider range of users.
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K2 performance depends on different kinematic and kinetic variables. Due to the lack of related studies in this area, we have tried to explain these features to better understand the best positioning of paddlers and how their synchronization affects performance. This study uses the DAQ system comprising two instrumented paddles—an IMU and a GPS (“E-kayak” system)—to investigate paddle synchronization and the specific positioning of paddlers’ in preferred and inverted configurations. In this study, 10 sub-elite paddlers participated, divided into five crews. The test included two trials of 500 m performed in preferred and inverted seating positions. The synchronization analysis highlighted that the rear paddler contributed efficiently to the propulsion of the boat while performing 30–40 ms earlier than the front paddler during the entry and exit phases. Despite the time results for 500 m, there is no evidence indicating a dominant indication of the preferred or inverted position among the athletes. The results show a significant correlation (p < 0.05) between the force of the front paddler (r = −0.88), the stroke frequency of the crew (r = −0.66), and the total force applied by the crew with the time for 500 m and between stroke frequency and the force of the front paddler (r = 0.64). Based on these indications, for only those crews who completed the 500 m test in the shortest time, the equation determining the time over 500 m was calculated using multiple regression analysis, considering the stroke frequency and the force of the front and rear paddler. The data showed a good estimation with CV% = 0.22, ICC = 0.99, and ES = −0.005. In conclusion, these findings can serve as a beneficial tool for assessing or monitoring K2 crew performance in sub-elite paddlers.
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INTRODUCTION
Flatwater sprint kayaking is an Olympic discipline with individual (K1) and team competitions (K2 and K4) held over distances of 200, 500, and 1,000 m. In K2 kayaking, two athletes sit in tandem and, through cyclic and synchronized paddle movements, generate the propulsive force needed to overcome water resistance and accelerate the kayak (Romagnoli et al., 2022a; Romagnoli et al., 2022b). The synchronization between the athletes (referring to the temporal coordination of the different phases of their paddling cycle) is influenced by the kayak’s design and the athletes’ paddling timing (King and de Rond, 2011; Tay and Kong, 2018). This aspect plays a crucial role in avoiding paddle contact (Tay and Kong, 2018). Correct synchronization has been identified as a critical determinant of performance in kayak sprinting (Robinson et al., 2011; Bonaiuto et al., 2022; Romagnoli et al., 2024) and rowing (Wing and Woodburn, 1995; King and de Rond, 2011; Cuijpers et al., 2015). Although Kong et al. (2020b) suggested that a well-synchronized crew maintaining the same paddling rhythm can enhance performance, several studies indicate that slight asynchrony may be even more beneficial (Martin and Bernfield, 1980; Tellez et al., 2015). Tellez et al. (2015) showed that some of the best sprint kayak crews exhibit a slight asynchrony in paddling (with the rear paddler starting the stroke earlier and finishing it later than the front paddler). According to Martin and Bernfield (1980), this asynchrony could reduce power loss caused by fluctuations in kayak speed in the forward direction. However, studies supporting this theory have mainly been conducted on rowing ergometers (Brouwer et al., 2013) and through 2D video analysis (Tay and Kong, 2018). The latter research revealed that crews in K2 tend to be more synchronized during the catch than the release phase of paddling. Furthermore, paddling synchronization patterns vary significantly, and sprint kayakers have no universal synchronization profile. It is complex to study the coordination between crew members and their interactions with the boat and surroundings. Another crucial aspect of performance in K2 is the athletes’ positioning. Although there is a position that is generally considered optimal, current literature offers divergent opinions on what it should be. For example, Ong et al. (2005) and Tellez et al. (2015) argued that taller and heavier athletes should sit at the rear, as they are more effective in generating paddling force. In contrast, through a computational fluid kinetics analysis, Campbell Ritchie and Selamat (2010) found that the load experienced by the front athlete is greater than the rear and suggested locating the stronger athlete in front. According to Tay and Kong (2020), the common practice is to place the powerful paddler in the back (rear), showing that four out of eight assessed crews achieved better times by reversing the seating order from that preferred. Kong et al. (2020a) also found no differences in strength, power, or time variables between front and rear paddlers, even when athletes switched positions. The literature has not reported any useful indication for crew composition. Based on these considerations, the present study aims to investigate the paddling timing in K2 crews, analyzing the advances or delays between front and rear kayakers during the paddle entry and exit phases (Romagnoli et al., 2022a) and the best location of the athletes in the kayak, measuring kinematic and kinetic parameters through the use of the “E-kayak” system (Bonaiuto et al., 2020; Bonaiuto et al., 2022).
MATERIALS AND METHODS
Subject
A total of 10 male sub-elite kayakers aged 15.2 ± 0.42, height 171.6 ± 3.92 (cm), mass 61.45 ± 4.79 (kg), and a kayaking experience of 4.80 ± 1.23 (years) participated in the study (Table 1). They were national-level athletes from the Canottieri Eur club who trained nine times a week during the test periods. The study was approved by the University of Rome Tor Vergata Institutional Review Board. Testing procedures were fully explained to participants’ families before obtaining individual written informed consent. All procedures followed the Declaration of Helsinki.
TABLE 1 | Anthropometric characteristics of each paddler.
[image: A table displaying data for paddlers, including age, height, lower limb length, arm length, trunk length, and kayak experience. Ages range from fifteen to sixteen, heights from 167 to 179 centimeters. Lower limb lengths vary from 97 to 108 centimeters, arm lengths from 72 to 80 centimeters, trunk lengths from 35 to 41 centimeters, and kayak experience from three to seven years. Mean and standard deviation for each column are noted.]Test procedure
The test trials were all conducted early in the morning (between 7 a.m. and 9 a.m.) when the lake conditions were flat, not windy, and suitable for this study (weather temperature at approximately 22 °C and water temperature at approximately 18 °C). The athletes were asked to race with their optimal performance in two 500 m trials following the coach’s directions through the race records and then in inverted positions.
Before each test, the paddlers performed a 15-min warm-up on land (focusing on shoulder and pelvic joint mobility exercises) and a more intensive warm-up in a K2 craft for up to 20 min. On the first day of the test, three crews performed the simulated race in their preferred positions and two in inverted positions, while on the second test day (after one recovery day), all crews switched their positions. Each trial was monitored through the E-kayak system, which consisted of an IMU (TDK 20948-100 Hz) and a GPS (ublox NEO-M9N-25 Hz) placed behind the rear paddler seat; two paddles instrumented with a strain gauge (100 Hz) were used (Bonaiuto et al., 2022).
Variable extraction
The following kinematic and kinetic parameters were measured for each crew in the preferred and inverted mode: the air or aerial phase (from the paddle blade exit to the entry on the other side), the wet phase (from water entry to exit for each paddle blade) (McDonnell et al., 2012; Gomes et al., 2015; Bonaiuto et al., 2020), the average force for front and rear paddlers, the total force expressed from each crew, the stroke frequency, and the total time over 500 m. The definition of the entry and exit phases of the paddle corresponded to the start and end of force application in water (Figure 1). Figure 1 shows part of the force–time plot of a crew with the respective advances or delays between the front and rear kayakers during the entry and exit phases. All parameters considered were extrapolated and analyzed from the data provided by E-kayak (Romagnoli et al., 2024).
[image: Graph comparing force applied by a front and rear paddler over time. Two photos above highlight differences in entry and exit phases. The graph shows patterns of force on both left and right sides, with specific differences circled.]FIGURE 1 | Force–time curves of a K2 crew showing the air and wet time (Tair–Twet) for each side and highlighting the time difference during the paddle entry and exit phases between front and rear kayakers.
Statistical analysis
The results are presented as the mean (M) and standard deviation (±SD) unless otherwise specified. The Kolmogorov–Smirnov test was used to validate the assumption of normality. To verify the correlation between time over 500 m and each crew’s kinematic and kinetic data, the Pearson product–moment correlation coefficient (r) and 95% confidence interval (95% CI) for r were used. Statistical significance was accepted at p < 0.05. A multiple regression model was used to quantify the relationship [image: Mathematical equation showing \( Y = (K_0 + K_1X_1 + K_2X_2 + K_3X_3 + K_nX_n) \).] between the dependent variable (Y=Time on 500 m) and a set of explanatory variables (stroke frequency (X1), force of front paddler (X2), and force of rear paddler (X3)), along with respective variance of the faster crew at 500 m. A weight dummy variable was assumed (AutoWeight 1/SD2) for an automatic weighted regression procedure to correct for heteroscedasticity (Neter et al., 1996). In addition, the coefficient of variation percentage (CV%), the effect size (ES), where a small effect was 0.1, a moderate effect was 0.3, and a large effect was 0.5 (Cooper and Hedges, 1993), and the relative 95% CI were calculated for the time measured at 500 m and the time estimated through the multiple regression equation. Furthermore, the interclass correlation (ICC) was used to assess reliability between the time measured and time estimated from the multiple regression equation. The statistics and data visualization were performed using MedCalc® (version 23.0.1.).
RESULTS
If the mean value is positive, the rear always anticipates the front paddler during the entry and exit phases. If the mean value is negative, the rear paddler postpones the entry and exit relative to the front paddler. These differences in both phases highlight the different paddling techniques adopted by each crew (Table 2).
TABLE 2 | Average differences and relative standard deviation of the blade entry and exit phases in the water between front and rear paddlers.
[image: Table comparing crew performance in terms of rear-front differences during entry and exit phases, as well as total time over five hundred meters. Preferred crew setups show faster times in bold: A1–A2 at 105.568 seconds, B1–B2 at 109.328 seconds, and others. Inverted setups generally show slower performance.]Table 3 shows the correlations and relative 95% CI between time over 500 m, the average total force developed by front and rear paddlers, front and rear paddlers’ strength, and stroke frequency. The total analysis of the crews in both the preferred and inverted positions shows a significant correlation between the time over 500 m and the average total force developed by the crew, the strength of the front kayaker, and the stroke frequency of K2. These results suggest that the front paddler plays a fundamental role in leading the crew by imposing the stroke frequency. No statistically significant correlations were found for all other parameters considered in the study (p > 0.05).
TABLE 3 | Time over 500 m correlated with the force expressed by front and rear kayakers, total force of crew (front + rear), stroke frequency, and 95% CI.
[image: Correlation table showing the relationship between time on 500 meters and various forces and frequencies. Front force has a correlation of r = -0.88 (p = 0.0008), rear force r = -0.47 (p = 0.16), total force r = -0.78 (p = 0.008), and stroke frequency r = -0.66 (p = 0.037). Significance is noted at p < 0.05 and p < 0.01.]Table 4 shows the correlations between stroke frequency, front and rear paddlers’ strength, and time over 500 m. The only statistically significant correlations were between front kayaker strength and time over 500 m.
TABLE 4 | Stroke frequency correlated with force expressed by front and rear paddlers and time over 500 m.
[image: Table showing the correlation between stroke frequency and forces. Stroke frequency has a correlation coefficient of 0.64 with front force (95% CI: 0.017 to 0.90; p = 0.046), indicating significance. Rear force has a correlation coefficient of -0.02 (95% CI: -0.64 to 0.62; p = 0.95), indicating no significance. A note states significance is reported as p < 0.05.]The results from multiple regression are shown in Table 5. It indicates that the analysis of the variance table separates the total variation in the dependent variable into two parts: one attributed to the regression model (labeled “Regression”) and another that cannot be explained by the model (labeled “Residual”). If the p-value for the F-test is small (less than 0.05), as in the results obtained (F-ratio = 224.84 and p-value = 0.049), the hypothesis of no (linear) relationship can be rejected, and the multiple correlation coefficient is considered statistically significant. The equation takes account of the front and rear force of paddlers and the K2 stroke frequency; these parameters seem to determine the time over 500 m for the fast crews.
TABLE 5 | Summary of multiple regression equations and analysis of variance. The weighted least squares multiple regression section reports the coefficient of determination R2, R2 adjusted, multiple correlation coefficient (MCC), and residual standard deviation (RSD). The regression equation section shows independent variables and relative coefficient (K), standard error (Std. Er), 95% CI of K, t-value (t), P-value (P), and partial correlation (rpartial). Analysis of variance section shows F-ratio and P-value (P).
[image: Table showing weighted least squares multiple regression analysis for crew best time. It includes values for the coefficient of determination \( R^2 = 0.998 \), adjusted \( R^2 = 0.994 \), MCC = 0.999, and RSD = 2.060. Regression equation section lists independent variables with coefficients: constant 197.7676, stroke frequency (SF) -0.2168, force front paddler (F\(_f\)) -0.8158, force rear paddler (F\(_r\)) 0.3007. Standard errors, confidence intervals, t-values, and p-values for each variable are included.]Figure 2 shows the mean data of air phase duration between the front and rear paddlers for each crew in the preferred reversed position, while Figure 3 shows the average data of the water phase for each component of the crew. Figure 4 reports the mean duration of paddle strokes (Tair + Twet), considering the air and water phases of each athlete (for each stroke) in different seats during their performance.
[image: Bar graph comparing time in seconds for air front paddler (black bars) vs. air rear paddler (white bars) across various paired conditions like A1-A2, A-A-1, B1-B2, etc. Each pair shows preferred and inverted settings, with error bars indicating variability.]FIGURE 2 | Mean value ± SD of the air phase of the front (black) and rear (white) paddlers of each crew during the 500 m test.
[image: Bar chart comparing wet front paddler and wet rear paddler times across nine different conditions (A1 to E2). Each condition shows slight variations in time, with both paddlers generally recording similar results. Error bars indicate variability.]FIGURE 3 | Mean value ± SD of the wet or water phase of front (black) and rear (white) paddlers during the 500 m test.
[image: Bar graph showing stroke duration for front and rear paddlers in various conditions: A1-A2, A2-A1, B1-B2, B2-B1, C1-C2, C2-C1, D1-D2, D2-D1, E1-E2, and E2-E1 (preferred and inverted). Each set of bars includes error bars to indicate variability.]FIGURE 4 | Average values ± SD of stroke duration between front and rear paddlers shown in preferred and inverted positions during the 500 m test.
Figure 5 reports the data related to force expressed during the water phase of the front and rear paddlers in preferred and reversed seats. The total force (front + rear) provides a better understanding of the total mean force applied during the 500 m.
[image: Bar chart comparing force exerted by front paddler, rear paddler, and total force crew across various pairings labeled A1 to E2. Preferred and inverted positions are indicated, with total force consistently highest, followed by rear and front paddlers.]FIGURE 5 | Mean value ± SD of force related to front (black) and rear paddler (white) and total force of the crew (gray).
Figure 6 reports the stroke frequency (black) and time performed on 500 m (white) in preferred and inverted seats for each crew. The figure shows that the crew with a high stroke frequency obtains the best performance.
[image: Bar chart comparing stroke frequency and total time over 500 meters for different conditions labeled A to E, with preference and inverted variants. Stroke frequency is shown in black bars, total time in white bars.]FIGURE 6 | Black-and-white histogram representing, respectively, the stroke frequency (s/min) and total time (s) performed over 500 m in the preferred and inverted seating positions.
These results (Figures 2–6) show the different strategies for each crew in preferred and inverted positions to lead the 500 m at maximum velocity, adapting the kinematic and kinetic parameters and the technical gesture.
Figure 7 reports the correlation between time measured over 500 m and the time estimated by the multiple regression model for the five fastest crews (A1–A2; B1–B2; C1–C2; D2–D1; and E2–E1). The results show a high correlation between the two (r = 0.99), with CV% = 0.22, ES = −0.005, and ICC = 0.99. This further confirms Table 5, which shows that the parameters related to front and rear paddlers’ strength and relative stroke frequency are critical for crews in K2.
[image: Scatter plot illustrating the relationship between time estimated and time recorded for 500 meters, with both axes ranging from approximately 104 to 124 seconds. Each point represents a trial, and a dotted line indicates the trend line. The line shows a strong positive correlation, with an R-squared value of 0.9964 and a p-value of 0.0002.]FIGURE 7 | Correlation between the measured and estimated times (from the multiple regression equation) over 500 m for the fastest crews only (A1–A2; B1–B2; C1–C2; D2–D1; and E2–E1).
DISCUSSION
Chronometric analysis of the 500 m in K2 performed in the preferred and inverted orders shows that three of the crews performed the fastest run in the preferred position and two in the inverted position (Table 2). The data agree with the findings of Tay and Kong (2020) that approximately 50% of analyzed crews achieved better times by reversing the seating order from the preferred order. Moreover, they pointed out that the seating order in K2 minimally affects the synchronization of strokes and is not always decisive for maximum performance. Our tests show that the key to better performance is the paddling timing during the entry and exit phases of the water of the two athletes, also considering the levels of force and stroke frequency they express.
From the analysis in Table 2, the crew with the best performance over 500 m is in the preferred position A1–A2. During the entry and exit phases, the rear paddler always anticipated the entry and exit of the blade with an average timing difference between 33 and 40 ms. This temporal asynchrony confirms the data reported by Gomes (2015) and Kong et al. (2020a), who reported an anticipation of 34 ms during the entry phase. This anticipation explains that during the phase of blade entry into the water, the rear paddler must react quickly to generate high force values on the blade to compensate for the higher speed of the fast-moving water near the boat, and an early exit minimizes the drag (i.e., the deceleration of the K2 that starts before the end of the exit phase). The analysis showed an average timing offset of 38.30 ms and 41.70 ms in the early and exit phases, respectively. In contrast, for the other crews investigated in both the preferred and inverted positions, the kinematic data fall outside the ranges identified, with a minimum of −17 ms and a maximum of 64 ms in the entry phase (Gomes, 2015; Kong et al., 2020a). In the exit phase, the time ranged from a minimum of −27 ms to a maximum of 91 ms. This variation may have influenced the crew’s propulsive action. For example, in the B1–B2 crew (preferred position), an average anticipation of 17 ms in the entry phase and a delay of −23 ms in the exit phase by the rear paddler were observed. This difference in timing during water force application, where the rear paddler starts the stroke earlier and finishes later, could help reduce the power loss of the K2 during the advancement (Martin and Bernfield, 1980; Tellez et al., 2015). In addition to the timing of force application in the water, other kinematic and kinetic factors also appear to influence the performance of the K2 500 m. Figures 2–4 show the plots of the average durations of the air and wet phases and the stroke duration (Tair + Twet) of the front and rear paddlers in both the preferred and inverted positions. The statistical analysis showed a non-statistically significant correlation (p > 0.05) between the stroke duration (Tair + Twet) and 500 m performance, with a correlation of 0.62 for the front paddler and 0.60 for the rear paddler. Nevertheless, this result could be statistically significant in elite athletes, whose superior paddling techniques allow for a more efficient application of propulsive force. In elite paddlers, the air phase is not excessively long, minimizing deceleration due to drag. Another important aspect is the average and total forces exerted by the front and rear paddlers during 500 m in both the preferred and inverted positions. Figure 5 shows the average force values and their respective sums between the front and rear paddlers. The analysis shows that the time over 500 m is correlated with the sum of the force exerted by the crew, so the stronger crew (able to generate better propulsive power) is that which covers 500 m in less time (Table 3). This aspect is relevant because expressing a high level of power requires high levels of force and paddle velocity during the propulsive phase (Kristiansen et al., 2022; Romagnoli et al., 2022b). Another important aspect is the correlation found between the front paddler’s strength and time over 500 m (Table 3). This correlation, r = −0.88, seems to confirm the findings of Campbell Ritchie and Selamat (2010), where the maximum load experienced on the blade is found for the front athlete. This aspect could be explained because, in sub-elite crews, the more technical athlete is positioned in front and is consequently able to express a greater force than those with less technique. Furthermore, it is relevant that in all tests, the paddling frequency affected the total time. In particular, the analysis shows that the best test (between preferred and inverted) (Figure 6) is always that with a higher paddling frequency, as demonstrated by athletes in K1 (Caldognetto and Annino, 2010). Finally, a significant correlation is observed between front paddler strength and paddling frequency (Table 4). This could be further confirmation that for sub-elite athletes in K2, the front paddler must be the most technical. Consequently, they are able to develop high force gradients and thus dictate the optimal paddling frequency for the crew throughout the performance. Considering the impact that these features can have on K2 crews, a specific regression equation is investigated. From the results in Table 5, the analysis confirms the goodness-of-fit of the model, with R2 = 0.99 (indicating the proportion of the variation in the dependent variable explained by the regression model) and MCC = 0.99. Despite t and P values in the regression equation section being not significant, we can consider the independent data (stroke frequency, force front paddler, and force rear paddler) to be statistically significant to estimate the dependent data (time over 500 m) because the relative F-ratio and P-value of analysis of variance is less than 0.05 (Altman, 1990; Armitage et al., 2013). From the comparison between the time measured and estimated over 500 m (Figure 7), CV% is 0.22 (95% CI from 0.00 to 0.38), ICC is 0.99 (95% CI from 0.98 to 0.99), and ES is −0.005 (95% CI from −0.11 to 0.05). For this reason, the following multiple regression equation applies:
[image: Formula to calculate time on 500 meters: \(197.77 + (-0.217 \times SF) + (-0.816 \times F_r) + (0.301 \times F_l)\).]
where SF is the stroke frequency, Ff is the force of the front paddler, and Fr is the force of the rear paddler.
This formula could be used by trainers to investigate how these parameters can influence the time over 500 m for sub-elite paddlers, and it could also serve as a valid tool for selecting a better K2 crew.
LIMITATIONS
The following study has some limitations, including the sample size of the crews, the technical level of the kayakers (sub-elite), the absence of an instrumented footrest to measure lower limb force, and the lack of a reference model (elite crew). With elite paddlers, parameters such as the water and air phases could play a fundamental role in K2 crew performance. For these reasons, future research is needed to understand whether other variables should be taken into consideration as dependent variables in multiple regression equations to explain K2 crew performance.
CONCLUSION
This study was conducted on sub-elite K2 athletes, and no significant differences were observed in 500 m race outcomes between the five crews in the preferred/inverted positions, with three performing best in the preferred session and two in the inverted position. However, a minimal difference of a few tenths confirms that there is no predominant position, as also observed by Kong et al. (2020a). The key findings emerging from the analysis suggest that the front paddler plays a crucial role in the crew’s performance as they must be able to produce a high level of force in the water while simultaneously maintaining an optimal paddling frequency for performance purposes. Furthermore, the rear paddler must be able to anticipate the front paddler during the entry and exit phase by approximately 30–40 ms to efficiently contribute to the propulsion of the boat, as previously observed by Gomes (2015), Kong et al. (2020a). Finally, the individualized multiple regression equations developed in this study can serve as valuable tools for assessing and monitoring different kinematic and kinetic parameters of sub-elite K2 crew performance. E-kayak software makes it possible to investigate kinetic parameters among the paddler’s crews to individualize some K2 performance limiting factors. Consequently, future studies could investigate elite crews to determine a performance model for K2 racing. Finally, the future integration of E-kayak with emerging artificial intelligence technologies could provide valuable tools for further investigating these concepts, including paddlers’ pose estimation and object detection (Edriss et al., 2024b; Edriss et al., 2024a; Najlaoui et al., 2024).
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Background: Hip osteoarthritis (OA) is a degenerative joint disease that predominantly affects the elderly, causing significant morbidity due to joint pain, stiffness, and loss of function. This study aimed to assess the limits of stability (LOS) using computerized posturography and evaluate the correlations with functional mobility in elderly individuals with hip OA.Methods: This cross-sectional study included elderly individuals aged 65 years and above with a clinical diagnosis of hip OA and age-matched asymptomatic controls. The LOS was measured using a computerized dynamic posturography system, which quantified the maximum distance and angle participants could shift their center of gravity without losing balance. Functional mobility was assessed using the Timed Up and Go (TUG) test, which measures the time taken for participants to stand up, walk 3 m, turn around, walk back, and sit down.Results: The study included 86 elderly individuals with hip OA and 86 age-matched asymptomatic controls. LOS assessments showed that individuals with hip OA had significantly lower stability scores across all directions compared to controls (p < 0.001). TUG test times were significantly slower for the OA group (10.50 ± 2.20 s) compared to controls (8.70 ± 2.00 s, p < 0.001). Positive correlations were found between LOS and functional mobility (r = 0.50, p = 0.009). Moderation analysis revealed that age and duration of OA significantly influenced the relationship between stability and mobility.Conclusion: Hip OA significantly impacts stability and functional mobility in elderly individuals. Enhanced stability is associated with improved mobility, and demographic and clinical variables such as age and duration of OA play crucial roles in these relationships. These findings underscore the importance of targeted therapeutic interventions to improve stability and mobility in this population.Keywords: hip osteoarthritis, limits of stability, functional mobility, elderly, posturography
1 INTRODUCTION
Hip osteoarthritis (OA) is a degenerative joint disease that predominantly affects the elderly, leading to significant morbidity due to joint pain, stiffness, and loss of function (Abramoff and Caldera, 2020). Characterized by the gradual deterioration of cartilage and changes in the periarticular bone, hip OA is a major cause of impaired mobility and reduced quality of life among older adults (Murphy et al., 2016). It remains a public health challenge due to its increasing prevalence in the aging population and the substantial personal and socioeconomic burdens it imposes (Egerton et al., 2018). Although the pathogenesis of hip OA involves biomechanical and inflammatory processes that alter joint structure and function, the specific contributions of these changes to the functional impairments observed in individuals remain to be fully elucidated (Litwic et al., 2013).
The concept of “limits of stability” (LOS) is critical in understanding how individuals maintain balance when their center of gravity approaches the boundaries of their base of support (Nolff et al., 2024). LOS represents the maximum angle or distance one can tilt or move without losing balance, stepping, or falling (Cella et al., 2020). In patients with hip OA, LOS may be significantly compromised due to joint instability, pain, muscular weakness, and compensatory gait adaptations (Boekesteijn et al., 2021). These biomechanical constraints not only limit movement but also contribute to an increased risk of falls (Sturnieks, 2021). Thus, evaluating LOS in the context of hip OA can provide insights into the extent of mobility limitations and the effectiveness of various therapeutic interventions aimed at restoring balance and preventing falls (Grabiner and Kaufman, 2021).
Functional mobility, defined as the ability to move independently to carry out activities of daily living, is a key determinant of autonomy and quality of life in the elderly (Tornero-Quiñones et al., 2020). In the context of hip OA, functional mobility is often compromised, with affected individuals experiencing difficulties in walking, climbing stairs, and performing other activities that require joint movement and stability (Do and Yim, 2020). The deterioration in functional mobility is primarily due to pain, muscle weakness, and joint stiffness, which directly affect the stability and biomechanical efficiency of the hip (Boekesteijn et al., 2021). Consequently, there is a profound need to explore the relationships between LOS, joint stability, and functional mobility to develop targeted strategies that can enhance the quality for those afflicted.
Despite extensive research on hip OA, there remains a significant gap in understanding how demographic and clinical variables modulate the relationship between stability and functional mobility in this population (Laitner et al., 2021). Previous studies have primarily focused on the impact of OA on overall physical function with less emphasis on specific biomechanical measurements such as LOS and their correlation with everyday functional tasks (Wilson and Kobsar, 2021). Moreover, the influence of factors such as age, disease duration, and body mass index on these relationships has not been adequately addressed (Batushansky et al., 2022). This lack of detailed knowledge hampers the development of customized treatment and rehabilitation protocols that address the specific needs of different patient subgroups (Brembo, 2020). Therefore, a comprehensive study integrating biomechanical, clinical, and demographic variables is essential to elucidate these complex interactions and guide clinical practice.
This study aims to fill these research gaps by 1) comparing the limits of stability and functional mobility in elderly individuals with hip osteoarthritis versus age-matched asymptomatic controls; 2) evaluating the association between stability limits and functional mobility within the hip OA group; and 3) conducting a moderation analysis to determine how age, gender, body mass index, and duration of osteoarthritis diagnosis influence these relationships. The hypotheses are that stability limits will be significantly lower, functional mobility will be more impaired in individuals with hip OA compared to controls, and the severity of these impairments will be moderated by demographic and clinical variables. These objectives will provide a comprehensive understanding of the biomechanical deficits in hip OA and support the development of targeted interventions to improve stability and mobility in this vulnerable population.
2 MATERIALS AND METHODS
2.1 Study design, settings, and duration
This descriptive cross-sectional study took place from June 2022 to May 2023 in the Physical Therapy Department of King Khalid University Hospital, a tertiary care facility located in Abha, Saudi Arabia, which focuses on geriatric and orthopedic care. The participants were enlisted from the outpatient orthopedic clinic and the geriatric department within the hospital. The research protocol was reviewed and approved by the King Khalid University Institutional Review Board (approval number REC# 456–872) and conformed to the ethical guidelines outlined in the Declaration of Helsinki. All participants provided written informed consent before inclusion in the study.
2.2 Participants
The study involved elderly individuals aged 65 and above, both with and without hip osteoarthritis, who were recruited from outpatient orthopedic clinics in Abha, Saudi Arabia. The inclusion criteria for the osteoarthritis group were a clinical diagnosis of hip osteoarthritis based on the American College of Rheumatology criteria, the ability to walk independently, and willingness to participate in the study (van Doormaal et al., 2020). Age-matched asymptomatic controls were selected based on the absence of hip pain, osteoarthritis, or other musculoskeletal disorders. Participants who were able to understand and follow study instructions and who provided written informed consent were also included. Exclusion criteria for both groups were comprehensive to ensure the validity of the study. Individuals were excluded if they had other musculoskeletal disorders that could affect balance and mobility, such as severe knee osteoarthritis or lower limb fractures. Neurological conditions which could impair balance, were also grounds for exclusion. Cognitive impairments, determined by a score of less than 24 on the Mini-Mental State Examination (MMSE), were another exclusion criterion, as such impairments could interfere with the ability to understand and perform the study tasks. Participants who had undergone hip replacement surgery or other major lower limb surgeries within the past 6 months were excluded to avoid confounding factors related to recent surgical recovery. Additionally, individuals with severe visual or auditory impairments that could affect their ability to follow instructions or perform the tasks were not included. Lastly, any participant with an unstable medical condition or comorbidity that could pose a risk during the study assessments, such as uncontrolled hypertension or severe cardiovascular disease, was excluded.
2.3 Limits of stability assessment
The LOS were assessed using computerized dynamic posturography, which incorporates a stabilometric posture platform, a touch screen, a 3D camera, and dedicated software (Fonseca et al., 2021). This system measures the maximum distance and angle at which participants can shift their center of gravity without losing balance, stepping, or falling (De Jong et al., 2020). The LOS assessments were performed in a calm, well-ventilated setting. Participants stood on the stabilometric force platform with their feet together in a standardized position, facing a screen that displayed targets (Figure 1). These targets appeared randomly in eight directions: forward, backward, left, right, and intermediate diagonal directions (left-forward, right-forward, left-backward, right-backward) (Palm et al., 2014). Participants were instructed to shift their center of mass toward the targets without moving their feet. The posturography system recorded the amount of sway required to reach each target, providing a score based on the precision of movement along the shortest vertical or horizontal path. A score of 100 indicated perfect stability in a given direction, while lower scores reflected greater sway and reduced stability. This methodology ensured that LOS data were collected with high consistency and accuracy, yielding reliable measurements of the participants’ balance and stability capabilities.
[image: A person stands on a platform conducting a balance test in a clinical setting. A computer and monitor beside the platform display data, while an office chair is visible in the background.]FIGURE 1 | Evaluation of Stability Boundaries in eight directions, illustrated with panel showing the initial starting position and panel displaying the participant reaching a predetermined target, as seen in computerized posturography.
2.4 Functional mobility assessment
Functional mobility was assessed using the TUG test, which is a widely recognized and reliable measure of functional mobility and fall risk (Bergquist et al., 2020). During the TUG test, participants are timed as they rise from a seated position in a standard armchair, walk 3 m, turn around, walk back to the chair, and sit down again. This evaluation provides a quick and practical measure of the basic mobility skills necessary for daily activities. The test was conducted in a well-lit, unobstructed corridor within the hospital to ensure both safety and accuracy. Participants received clear instructions to perform the task at their usual walking pace, reflecting their typical level of mobility. The time required to complete the TUG test was recorded in seconds using a calibrated stopwatch. Performance on the TUG test serves as a key indicator of functional mobility, with shorter times indicating better mobility (Rose et al., 2002).
2.5 Pain and Disability Scores
Pain levels were measured using the Visual Analog Scale (VAS), where participants rated their pain on a scale from 0 (no pain) to 10 (worst pain imaginable). Functional disability was evaluated using the Harris Hip Score, a standardized questionnaire that assesses pain, function, absence of deformity, and range of motion.
2.6 Sample size estimation
The sample size for our cross-sectional study was determined using G*Power statistical software, version 3.1.9.4. We targeted an effect size of 0.4 to detect moderate effects of hip osteoarthritis on stability and mobility (Alkhamis et al., 2024). For the limits of stability (LOS), we assumed a mean of 78.00 (SD = 9.00) for the control group and 68.00 (SD = 8.00) for the OA group. For the Timed Up and Go (TUG) test, the assumed means were 8.70 s (SD = 2.00) for the control group and 10.50 s (SD = 2.20) for the OA group. Cohen’s d was computed as the difference in means divided by the pooled standard deviation. For LOS, Cohen’s d was calculated as [(78.00–68.00)/8.53] ≈ 0.50, and for TUG as [(10.50–8.70)/2.10] ≈ 0.85. Calculations aimed for a power of 0.80 and an alpha level of 0.05, indicating that 86 participants per group were required to conduct reliable independent samples t-tests, correlation analyses, and moderation analyses.
2.7 Data analysis section
Data processing and analysis were conducted using the Statistical Package for the Social Sciences (SPSS), version 21. Preliminary checks for normality and outliers ensured that the assumptions for parametric statistical testing were met, as indicated by the Shapiro-Wilk tests and acceptable levels of skewness and kurtosis, confirming that data distributions were approximately normal. For Objective 1, we employed independent samples t-tests to compare the LOS and functional mobility between elderly individuals with hip OA and age-matched asymptomatic individuals, with Cohen’s d calculated to assess effect sizes. Objective 2 involved analyzing the relationship between stability limits and functional mobility using Pearson correlation coefficients to explore the strength and direction of their association in the hip OA group. For Objective 3, moderation analysis with multiple regression models tested how demographic and clinical variables such as age, gender, body mass index (BMI), and duration of OA diagnosis might moderate this relationship (Jie et al., 2015). Interaction terms were created and simple slopes analysis was performed for significant interactions, adjusting for multiple comparisons to ensure precise interpretation. Assumptions of multicollinearity, independence of residuals, homoscedasticity, and linearity were thoroughly checked through diagnostic plots and tests, including VIF and Durbin-Watson, to validate the regression models (Srinivasan et al., 2017). All statistical tests were two-tailed with a significance level set at p < 0.05, providing a robust and reliable framework for evaluating the effects of stability and mobility in our study population.
3 RESULTS
The demographic and clinical characteristics of the study participants reveal significant differences in Body Mass Index (BMI), Pain, VAS, and Disability Scores between elderly individuals with hip osteoarthritis and asymptomatic controls, while age and gender distribution show no significant differences (Table 1). Specifically, participants with hip osteoarthritis had a higher average BMI (29.13 ± 4.25) compared to controls (27.56 ± 3.89), with a statistically significant difference (p = 0.013). The Hip Osteoarthritis group had an average duration of osteoarthritis diagnosis of 5.25 ± 2.67 years, a mean pain score of 6.54 ± 1.28 on the Visual Analog Scale (VAS), and a mean disability score of 62.35 ± 8.14 based on the Harris Hip Score.
TABLE 1 | Demographic and clinical characteristics of study participants.
[image: Table comparing characteristics of 86 individuals with hip osteoarthritis to 86 asymptomatic controls. Variables include age, gender, body mass index (BMI), duration of osteoarthritis diagnosis, pain visual analog scale, and disability score. The hip osteoarthritis group has an average age of 72.34, BMI of 29.13, and a pain score of 6.54. Significant p-value found in BMI comparison, marked with an asterisk.]The analysis presented in Table 2 underscores the marked differences in LOS and functional mobility between elderly individuals with hip osteoarthritis and age-matched asymptomatic controls. Notably, the group with hip osteoarthritis demonstrated significantly lower stability percentages across all directional measures, with the forward direction showing the greatest disparity: 41.20 ± 4.50 for osteoarthritis patients compared to 78.00 ± 9.00 for controls, and a p-value of less than 0.001. Similar significant differences were observed in other directions, including the right-forward direction (68.00 ± 8.00 vs. 88.00 ± 11.00), right (72.00 ± 11.00 vs. 92.00 ± 12.00), and left-forward (88.00 ± 11.00 vs. 97.00 ± 14.00), all with p-values below 0.001. Cohen’s d values indicate moderate to large effect sizes, particularly notable in the right-forward direction (0.50) and total objective measures (0.49). Additionally, functional mobility as assessed by the TUG score showed osteoarthritis patients had significantly slower times (10.50 ± 2.20) compared to controls (8.70 ± 2.00), reflecting greater mobility impairment, again with a highly significant p-value (<0.001) and a large effect size (Cohen’s d = 9.85).
TABLE 2 | Limits of stability and functional mobility in elderly individuals with hip osteoarthritis vs. age-matched asymptomatic controls.
[image: Table comparing limits of stability and TUG scores for groups with hip osteoarthritis (OA) and controls. Measurements include Forward, Right-Forward, Right, Right-Backward, Backward, Left-Backward, Left, Left-Forward directions, Total Objective, and TUG Score. Each measurement lists values for the OA group and controls, with associated p-values, Cohen’s d, and effect sizes (η²). Significant differences are evident with p-values less than 0.001, indicating consistent differences between groups.]The analysis detailed in Table 3 demonstrates a significant correlation between stability limits and functional mobility in elderly individuals with hip osteoarthritis (Figure 2). Positive correlations are evident across various directions, indicating that as stability increases, so does functional mobility. The strongest positive correlation is observed in the total objective measure (r = 0.50, p = 0.009), suggesting that overall stability is a strong predictor of better functional mobility outcomes. Notably, the TUG Score, which inversely measures mobility (lower scores indicate better mobility), shows a significant negative correlation (r = −0.45, p = 0.022) with stability limits, reinforcing the relationship between increased stability and enhanced mobility capabilities. Each directional measurement, from forward to left-forward, displays moderate positive correlations, with p-values ranging from 0.018 to 0.049, underscoring the consistent impact of stability on mobility across different axes of movement.
TABLE 3 | Association between stability limits and functional mobility in elderly individuals with hip osteoarthritis.
[image: Table displaying measurements, correlation coefficients, and p-values. Measurements include directions like Forward, Right-Forward, Right, Right-Backward, Backward, Left-Backward, Left, and Left-Forward. Total Objective has a coefficient of 0.50 and p-value 0.009, while TUG Score has a coefficient of -0.45 and p-value 0.022. Correlation coefficients (r) and p-values vary slightly; all p-values are below 0.05. TUG refers to timed up and go.][image: Four-panel data visualization. Top left: Bar chart with confidence intervals for age, gender, BMI, duration of OA. Top right: Line plot showing p-values across the same factors, peaking at gender. Bottom left: Point plot for interaction effects, showing varying effect sizes. Bottom right: Box plot for moderation variables, indicating median values and variability.]FIGURE 2 | Association between stability limits and functional mobility in elderly individuals with hip osteoarthritis.
The moderation analysis in Table 4 reveals how demographic and clinical variables influence stability and mobility in elderly individuals with hip osteoarthritis (Figure 3). Age and duration of osteoarthritis diagnosis are significant moderators in this relationship. Specifically, older age shows a positive interaction effect on mobility and stability (β = 0.12, p = 0.038), indicating that as age increases, the positive impact on the association between stability and mobility also increases. Similarly, a longer duration of osteoarthritis diagnosis significantly strengthens the relationship (β = 0.14, p = 0.022), suggesting that those who have lived longer with the diagnosis experience greater effects on their mobility and stability. In contrast, BMI shows a moderate positive influence (β = 0.09, p = 0.046), while gender does not significantly moderate the relationship (β = −0.07, p = 0.110), indicating no statistically significant differences between males and females. Although the hip osteoarthritis group had a significantly higher BMI compared to the control group, moderation analysis demonstrated that BMI had a moderate influence on the relationship between stability and functional mobility (β = 0.09, p = 0.046). However, the primary driver of balance and mobility impairments was the presence of osteoarthritis, indicating that while BMI contributed to the outcomes, it did not solely account for the observed differences.
TABLE 4 | Moderation analysis of demographic and clinical variables on stability and mobility in elderly individuals with hip osteoarthritis.
[image: Table displaying interaction effects on stability versus mobility with various moderators: Age (β = 0.12, p = 0.038) positively moderates the relationship. Gender shows a non-significant effect (β = -0.07, p = 0.110). BMI has a moderate effect (β = 0.09, p = 0.046). Duration of osteoarthritis diagnosis significantly moderates it (β = 0.14, p = 0.022). The confidence intervals and standard errors are included, with comments explaining the impact of each moderator.][image: Bar and line chart showing two data sets labeled "Correlation Coefficient (r)" and "p-value" across different measurements: Forward, Right Forward, Right, Right to sideways, Backward, Left Backward, Left, Left to sideways, Total Distance, and TUG Score. Blue bars represent the p-value, and a green line represents the correlation coefficient, indicating varying relationships and statistical significance for each measurement.]FIGURE 3 | Moderation analysis of demographic and clinical variables affecting stability and mobility in elderly individuals with hip osteoarthritis.
4 DISCUSSION
This study investigated the impact of hip osteoarthritis on stability and functional mobility among elderly patients. Significant differences were identified in both stability and mobility between patients with osteoarthritis and age-matched asymptomatic controls, with those suffering from osteoarthritis showing reduced stability and impaired mobility. Analyses demonstrated a positive correlation between stability limits and functional mobility within the osteoarthritis group, suggesting that enhanced stability is associated with improved mobility. Furthermore, moderation analysis indicated that age and the duration of osteoarthritis diagnosis significantly influence the relationship between stability and mobility, where increased age and longer disease duration exacerbate mobility limitations. These results underscore the need for tailored interventions that consider specific demographic and clinical characteristics to improve mobility and stability in elderly individuals with hip osteoarthritis.
The observed discrepancies in stability and functional mobility between elderly individuals with hip osteoarthritis and age-matched asymptomatic controls can be attributed to the mechanical and neurological impairments that osteoarthritis induces (Steinhilber, 2012). Osteoarthritis is associated with joint degradation and inflammation, which lead to pain and muscular weakness, particularly affecting the stability of the lower extremities (Shorter et al., 2019). This degeneration and the accompanying pain reduce an individual’s ability to maintain balance and perform mobility-related tasks efficiently, as demonstrated by the marked reduction in stability across all directions and the slower TUG scores (Moutzouri, 2019). The greatest disparity observed in the forward direction might be due to the forward movement engaging major hip stabilizers, which are likely compromised in patients with hip osteoarthritis (Alkhamis et al., 2024). Additionally, the deterioration of proprioceptive feedback mechanisms, which are crucial for maintaining balance and coordinating movement, further exacerbates stability issues, leading to an overall decline in functional mobility (Henry and Baudry, 2019).
Previous studies corroborate these findings, highlighting the role of muscular weakness and joint instability in decreasing mobility (Ramirez et al., 2013; Bateni and Maki, 2005). According to Meyer et al. (2018), hip osteoarthritis significantly affects the hip abductors and flexors, which are essential for lateral and forward stability, respectively. Furthermore, research by Wojcieszek et al. (2022) emphasizes that chronic pain, a common symptom in osteoarthritis patients, directly correlates with reduced mobility and poorer quality of life, as pain limits the range of motion and the willingness to engage in physical activity (Wojcieszek et al., 2022). The work by Al-Mahrouqi et al. (2020) also supports the concept that a longer duration of osteoarthritis is associated with increased severity of mobility impairments, consistent with the moderation analysis results which indicated that the duration of osteoarthritis diagnosis influences stability and mobility outcomes (Al-Mahrouqi et al., 2020). Collectively, these studies validate the observed patterns in the current research, underscoring the profound impact of osteoarthritis on stability and functional mobility, and stressing the importance of early intervention to manage symptoms and enhance life quality for affected individuals (Al-Mahrouqi et al., 2020).
The significant correlation between stability limits and functional mobility in elderly individuals with hip osteoarthritis, as detailed in the analysis, can be attributed to the integral role that musculoskeletal stability plays in enabling effective and safe movement (Raizah et al., 2023). Increased stability, particularly in those suffering from joint degenerative conditions like osteoarthritis, helps in maintaining posture and balance which are crucial for functional mobility (Sziver et al., 2016). The observed correlations suggest that improvements in stability through therapeutic interventions might enhance the capacity for movement and reduce the risk of falls (Picorelli et al., 2018). The substantial positive correlations across various directions of stability measurement, especially in the total objective, highlight that overall stability is not merely about managing individual movements but is central to enhancing holistic mobility functions (Cook et al., 2014). Conversely, the TUG Score, reflecting inverse mobility (where lower scores indicate better mobility), aligns with these findings by showing a notable negative correlation with stability limits, confirming that increased bodily stability tends to improve mobility outcomes substantially (Clemens, 2017).
Supporting these observations, previous research underscores the connection between stability and functional mobility. For instance, studies by Hirase et al. (2020) have shown that joint stability is critically important for maintaining mobility in elderly individuals, particularly those with degenerative joint diseases. Similarly, Hoglund et al. (2018) reported that targeted interventions aiming to enhance musculoskeletal stability could lead to significant improvements in the overall functional mobility of patients with hip osteoarthritis. These studies corroborate the current findings, reinforcing the critical link between enhanced stability and improved functional mobility (Hoglund et al., 2018). Furthermore, the research by Calabrò et al. (2022) demonstrates that rehabilitative strategies focused on strengthening stabilizing muscles around the hip joint not only improve stability but also contribute positively to mobility outcomes, which is consistent with the negative correlation observed between the TUG Scores and stability limits in this study. This body of evidence supports the hypothesis that improving stability through specific therapeutic approaches can substantially enhance the mobility and quality of life for elderly individuals suffering from hip osteoarthritis (Atukorala and Hunter, 2023).
The moderation analysis underscores the complex interplay between demographic and clinical variables and their impact on stability and mobility among elderly individuals with hip osteoarthritis. Age and the duration of osteoarthritis diagnosis emerge as significant moderators, enhancing the association between stability and mobility. This suggests that as individuals age or live longer with osteoarthritis, their mobility and stability are increasingly affected, likely due to the progressive nature of joint degeneration which exacerbates functional decline (Ishijima et al., 2016). In contrast, while body mass index (BMI) also shows a moderate positive influence, indicating that higher BMI might exacerbate mobility issues, gender does not significantly alter this relationship (Kennedy et al., 1997). These findings align with previous research, such as that by Kadam and Croft (2007), who noted that increased age and chronicity of symptoms typically worsen mobility outcomes in osteoarthritic patients. Furthermore, studies by Chen et al. (2020) support the notion that higher BMI contributes to poorer joint function and mobility due to greater mechanical load on compromised joints. The absence of a significant gender effect might suggest that both sexes are equally susceptible to the biomechanical and symptomatic impacts of osteoarthritis on mobility and stability, which contrasts with some literature suggesting variations in disease impact and coping mechanisms between genders (Vincent and Mathews, 2013). This comprehensive analysis not only corroborates existing theories about osteoarthritis progression but also highlights the critical need for personalized management strategies that address these specific factors to optimize mobility and quality of life in this population (Maly et al., 2020).
This study, while providing valuable insights into the stability and mobility impairments in elderly individuals with hip osteoarthritis, is not without limitations. One of the primary constraints is the cross-sectional design, which, although effective for identifying associations at a specific point in time, does not allow for the determination of causality between osteoarthritis progression and mobility impairments. Additionally, the study relied on self-reported data for the duration of osteoarthritis diagnosis, which could introduce recall bias affecting the accuracy of the reported disease duration. Furthermore, the sample size, while adequate for detecting moderate effects, may not fully capture the variability and nuances of more subtle clinical differences within the population, particularly when analyzing the effects of demographic variables such as gender. The study also did not account for potential confounders like activity level or other comorbidities, which could influence mobility and stability independently of osteoarthritis. Future studies could benefit from a longitudinal design, larger and more diverse samples, and more comprehensive data collection strategies to address these limitations and enhance the understanding of the dynamics between osteoarthritis and functional mobility.
5 CONCLUSION
The study conclusively demonstrates that elderly individuals with hip osteoarthritis experience significant impairments in stability and functional mobility compared to age-matched asymptomatic controls, with stability strongly correlating with mobility outcomes. Moderation analysis further revealed that age and duration of osteoarthritis significantly influence the interplay between stability and mobility, suggesting that longer disease duration and advanced age exacerbate these impairments. Notably, body mass index also moderately affects mobility, whereas gender does not significantly impact the observed associations. These findings highlight the profound impact of hip osteoarthritis on the functional capabilities of the elderly, underscoring the necessity for targeted therapeutic interventions that prioritize stability enhancement to improve mobility and overall quality of life in this population. This research adds to the body of knowledge by quantitatively establishing the relationships between biomechanical stability, demographic factors, and mobility in individuals burdened by osteoarthritis, paving the way for more tailored and effective clinical management strategies.
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Introduction: This study aims to investigate the differences in functional movements and core muscle activities between experienced and novice practitioners during Pilates exercises.Methods: Thirty-eight participants were recruited for the study, comprising 19 experienced and 19 novice Pilates practitioners. Participants performed functional movement screening (FMS) tests and six Pilates exercises at the basic, intermediate, and advanced levels. Surface electromyography (EMG) was utilized to measure muscle activity at four sites: right rectus abdominis (RA), external oblique (EO), multifidus (MU), and longissimus (LO). Mean EMG activity, co-contraction indices, and duration of core muscle activation were analyzed using independent t-tests to examine the differences between groups. Cohen’s d was used to calculate effect sizes based on the standard deviations of the groups. Statistical significance was set at p < 0.05.Results: The experienced practitioners scored significantly higher in total FMS scores and in four sub-units of the FMS scores compared to the novice group (p ≤ 0.01). Mean EO EMG activity was also significantly greater in experienced practitioners during all Pilates exercises (p < 0.05). Additionally, the RA/EO co-contraction index was higher in experienced practitioners during the ‘double leg stretch’ exercise (p = 0.02).Conclusion: The results suggest that experienced Pilates practitioners have superior functional movement abilities and greater core muscle activation, particularly in the EO muscle group, compared to novice practitioners. These findings may assist Pilates instructors in refining instructional strategies to cater to different skill levels and enhance training effectiveness.Keywords: core muscle activity, electromyography, functional movement, muscle co-contraction, Pilates
1 INTRODUCTION
Pilates has been widely used in recent years to improve trunk stability by strengthening core muscles (Kim and Kim, 2022). This exercise was developed by Joseph Pilates (1886–1967) during the First World War with the aim of rehabilitation from injuries (Petruk et al., 2021). Pilates follows the following six main principles: centering, concentration, control, breathing, flow, and precision, all of which could contribute to establishing a strong core, often referred to as ‘powerhouse’ (Petruk et al., 2021; Werba et al., 2017). Pilates emphasizes ‘control’ of our body to activate local muscles to support the lumbar spine and reduce pressure on the peripheral joints. By following these principles, Pilates exercise has been shown to improve functional movement and core stability (Šniurevičienė et al., 2022; Lima et al., 2021).
Functional movement is the ability to maintain and produce stability and mobility in daily activities (Lima et al., 2021). Multiple factors such as muscular strength, flexibility, endurance, coordination, balance, and movement efficiency are associated with performing functional movements (Beardsley and Contreras, 2014). It has been reported that improvement in functional movements via various exercise programs plays an important role not only in improving daily activity but also in preventing injuries (Clark et al., 2022). The functional movement screening (FMS) test is one of the well-known methods to assess movement patterns, including core stability and mobility of hip and shoulder joints (Beardsley and Contreras, 2014). Many studies have reported that functional movements are closely related to core stabilization (Zemková and Zapletalová, 2022). We believe that one of the core principles of Pilates, ‘centering,’ is linked to the improvement of functional movements. There are relevant studies examining the effects of Pilates on functional movements (Hornsby and Johnston, 2020). However, there remains a need for research examining the impact of Pilates on the functional movement of healthy adult females using quantitative measurement tools. This is crucial as it may provide valuable insights into the potential benefits of Pilates for promoting overall physical function and injury prevention in this population.
The ‘centering’ principle emphasizes the importance of activating core muscles, ensuring efficient muscle recruitment during movement (Marques et al., 2013). Activating the core muscles to sustain proper alignment enables them to function at an optimal length, which could lead to stabilization through the controlled movement of the spine and pelvis (Marques et al., 2013). Therefore, this could improve their capacity to utilize force effectively and minimize the onset of fatigue. Moreover, the ‘breathing’ principle supports the application of thoracic breathing, thereby easily utilizing and recruiting the core muscles through improved coordination (Kim and Lee, 2017). A recent study demonstrated transversus abdominis (TrA) activation in young and middle-aged women when performing five movements of Pilates (Tsartsapakis et al., 2023). However, despite the opinion that Pilates can strengthen the core muscles and firmly establish spinal stability, it is still unclear whether quantitative indicators such as EMG show the recruitment patterns of muscles stabilizing the spine.
Moreover, despite the growing popularity of Pilates among women, most existing studies have primarily focused on clinical populations such as individuals with lower back pain, which creates a significant gap in understanding its impact on healthy adult women engaged in preventative exercise. A recent systematic review and meta-analysis demonstrated the impact of Pilates exercises in reducing lower back pain and enhancing functional disability. The study showed that Pilates exercises were more effective compared to no exercise, with a large overall pooled effect size (SMD = −0.96, 95% CI: −1.51 to −0.41, p < 0.0001) and a moderate pooled effect size (SMD = −0.84, 95% CI: −1.27 to −0.42, p = 0.04) compared to non-specific exercises (Patti et al., 2024). Although these findings emphasize the therapeutic potential of Pilates on populations with lower back pain, they do not provide sufficient insights on the impact of Pilates on core muscle activity in healthy adult women population according to their proficiency.
We would like to address this gap in current studies as it could help develop evidence-based guidelines for Pilates instructors. The findings of this study may help instructors design effective programs for this population by providing insights into muscle activation patterns such as compensatory movements based on proficiency levels. Therefore, the purpose of this study was to examine differences in functional movements and core muscle activity during Pilates movements, according to proficiency in healthy young adult women. We hypothesized that there would be differences in functional movements, core and co-contraction muscle activities, and duration of activation during Pilates exercise between experienced and novice Pilates practitioners.
2 METHODS
2.1 Participants
Participants were recruited through flyers distributed at the University. Based on our pilot data, the number of participants was determined by power calculation (Cohen’s d = 1.2, alpha = .05, power = .8). A total of 38 young adult women, aged 19–35 years old, voluntarily participated in the study and were classified as experienced (N = 19) and novice practitioners (N = 19) based on Pilates proficiency. Participants who had been participating in Pilates exercise for more than 2 years and practiced at least four times a week for a minimum of 60 min each session were classified as experienced practitioners. Those with less than 2 months of Pilates experience who practiced one or two times a week for 60 min each were classified as novice practitioners. The inclusion criteria aimed to minimize potential confounding variables that could impact functional movement and muscle activity outcomes (Menacho et al., 2010; Panhan et al., 2019; Krawczky et al., 2016). The inclusion criteria were (a) women with no engagement in other sports and exercise except Pilates exercise, (b) women with no history of disease or musculoskeletal injury, (c) absence of previous abdominal or orthopedic surgery of the lower back, (d) no medication, and (e) not pregnant. Participants who were unwilling to participate voluntarily were excluded. The study was conducted at the Growth and Aging Laboratory, which was fully equipped with the necessary measurement systems and provided space for performing Pilates movements. Prior to the experiment, we explained the study procedures and details about the risks and benefits of study participation. The study was approved by the University’s institutional review board (IRB).
2.2 Physique
Body height was measured using a stadiometer (T.K.K. Takei Scientific Ins Co., Japan). Participants stood upright with their heads straight, ensuring equal weight distribution on both feet, with their heels, buttocks, and the back of their heads touching the stadiometer. Height was measured while the participants looked straight ahead and recorded in increments of 0.1 cm. Body weight was measured using a digital scale (Cas 150A, Korea) while participants wore light clothing. Weight was recorded in increments of 0.1 kg. Body mass index (BMI) was calculated using the measured height and weight and recorded in kg·m-2.
2.3 Body composition
Participants’ body composition was measured by dual X-ray absorptiometry (DXA, QDR-4500W, Hologic, USA) to obtain the fat mass (FM), lean body mass (LBM), and body fat percentage. A previous study demonstrated intra-class correlation coefficients (ICCs) of DXA greater than 0.95 for body composition indicators (Jung and Song, 2018). Participants were positioned in a standardized manner following the Hologic scanner’s guidelines. The participants were positioned supine on the scanning table, the legs were internally rotated and secured with a band, and participants are instructed to maintain the fixed position during the scan. Additionally, participants were instructed to wear non-metallic sports bras or provided clothes that did not contain any metal components that could affect the results of body composition. The radiation exposure from a single DXA scan, which utilized the dual-energy X-ray absorptiometry technique, is significantly lower (approximately 10 μSv) than the annual natural radiation exposure (approximately 2–3 μSv). Fat mass, lean body mass, body fat percentage, bone mineral contents, and bone mineral density were reported in the study.
2.4 Functional movement screening (FMS) test
The functional movement screening (FMS) test is a widely used tool to assess and identify functional movement patterns. The FMS test has been validated in various studies (Beardsley and Contreras, 2014) and demonstrated high intra-rater reliability (0.88) and inter-rater reliability (0.90) (Sorenson, 2016). It consists of seven movement patterns, including deep squat, hurdle step, inline lunge, shoulder mobility, active straight leg raise, trunk stability push-up, and rotary stability movement pattern. Each pattern was evaluated three times by three experienced evaluators (>2 years more) who assessed it based on video recordings taken from the front and side angles. The FMS test and evaluation were carried out with the same evaluators throughout the study. The evaluation followed the basic instructions outlined in the FMS test protocol (Cook et al., 2006). A score of 3, 2, or 1 was assigned, with a score of 3 being the highest score, indicating the highest level of functional movement proficiency, a score of 2 related to having few dysfunctions, and a score of 1 reflecting many limitations. A score of 0 was assigned if pain appeared during the clearing test (Cook et al., 2006). By adhering to standardized guidelines and utilizing a multi-evaluator approach, we aimed to enhance the robustness of the FMS test results. A more detailed description of FMS™ can be found in Table 1.
TABLE 1 | Functional movement screening (FMS) test.
[image: Chart displaying different exercises with instructions. It includes: 1. Deep squat: squat with dowel; assesses flexibility, stability, and balance. 2. Hurdle step: step over dowels; evaluates stability and balance. 3. Inline lunge: lunge with dowel; assesses lower extremity strength, flexibility, and balance. 4. Shoulder mobility: arm rotation; evaluates flexibility and motion range. 5. Active straight leg raise: leg lift; assesses flexibility. 6. Trunk stability push-up: push-up; assesses upper body strength and stability. 7. Rotary stability: tabletop position; assesses upper body strength and balance.]2.5 Core muscle activity during Pilates movement
2.5.1 Data recording
Surface electromyography (EMG) was utilized to measure the electrical activity of core muscles during Pilates movements. EMG data were recorded from four muscles: rectus abdominis (RA), external oblique (EO), longissimus (LO), and multifidus (MU) during Pilates movements. To collect EMG data from the core muscles, bipolar electrodes (Cometa Inc., MI, Italy; 2,000 Hz) with Ag/AgCl capture surfaces with diameters of 10 mm were positioned at the sites of the respective muscles. To ensure reliable localization, the electrodes were placed following the SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles) guideline. The RA electrode was set 2 cm lateral and 2 cm above the umbilical scar. The EO electrode was placed above the anterior superior iliac spine at the level of the umbilical scar. The LO electrode was positioned 4 cm lateral to the level of L1, and the MU electrode was positioned 3 cm away from the line (midpoint) ranging from the spinous process of L1 to that of L5 vertebra (Rudolph and Snyder-Mackler, 2004).
For a normalization purpose, before the performance of the movements, we acquired EMG data for the core muscles (RA, LO, and MU) while the individuals performed a maximum voluntary isometric contraction (MVIC) on the isokinetic dynamometer (Cybex 770, HUMAC NORM, USA). Three trials of 5-s MVIC were conducted to normalize the EMG data, with a 10-s rest period between the MVIC trials to minimize fatigue. Participants were positioned in a supine position. Trunk flexor MVIC was acquired at 30°, and participants performed a forward flexion maneuver, while trunk extensor MVIC was measured at 60° by having participants maintain an extended position while leaning backward. For the external oblique MVIC, the participants performed oblique curl-up against manual resistance by the investigator (Ekstrom et al., 2007). Participants were given verbal encouragement during all MVIC trials to elicit the maximal effort.
2.5.2 Analysis of the EMG signal
The raw EMG waveforms were band-pass filtered using a fourth-order Butterworth filter between 10 and 450 Hz to reduce contamination from movement artifacts. Additionally, to eliminate the effects of signal interference from nearby electronic sources, EMG waveforms were notch-filtered at 60 Hz using a fourth-order Butterworth filter. EMG waveforms were then full-wave rectified, the mean value was subtracted from the signal, and the resulting signal was subjected to a low-pass filter with a cutoff frequency of 10 Hz to obtain the EMG linear envelope. Individual muscle EMG amplitudes were calculated as the average linear envelope during Pilates exercises and then normalized to the peak amplitude for MVIC. Co-contraction indices were calculated using the equation below (Marshall and Murphy, 2003):
[image: Formula expressing the Co-activation Coordination Index (CCI) for muscles m1 and m2. It involves the average of a summation from initial to final time points of the ratio of the minimum to the maximum of the muscle EMG activities, normalized by their sum.]
In this equation, m1/m2 represent the two muscles, such as m1: RA and m2: EO, being analyzed; the initial/final were set to 1%–100% of the Pilates movements, from the starting point to the final point of the movement. In addition, min represents the EMG linear envelope values from the less active muscle group, and max represents the EMG linear envelope values of the more active muscle group at each time point. CCI was calculated during Pilates movements. CCIs were calculated for (m1:m2): RA:EO, MU:LO, RA:MU, and RA:LO.
In addition, the mean EMG signal of muscles exceeding 20% of MVIC was calculated during the Pilates movements, suggesting optimal core stability (Chan et al., 2017). All data analyses were conducted using the custom MATLAB code.
2.6 Pilates movements
The movements were chosen by the level of complexity and difficulty, and the level is based on the definition according to the classical Pilates method, which follows the principles and spirit of Joseph Pilates. The novices were required to have Pilates experience, and the experience was set to be less than 2 months, allowing a choice of exercises with greater difficulty. Participants performed a total of six Pilates movements including basic (Petruk et al., 2021), intermediate (Petruk et al., 2021), and advanced (Petruk et al., 2021) movements (Isacowitz, 2014) (Table 2). Participants were instructed on each movement and asked to practice three to five times for the purpose of familiarization. Then, the participants performed a single attempt of each movement with a 5-min rest interval between the Pilates movements to collect core muscle activity data.
TABLE 2 | Pilates exercise.
[image: Table detailing Pilates movements with levels, names, and instructions. Levels include Basic (B), Intermediate (I), and Advanced (A). Movements are Chest lift, Spine stretch, Roll up, Double leg stretch, Teaser, and Jackknife. Each has specific instructions on position, inhalation, and exhalation techniques for effective practice.]2.7 Statistical analysis
The data were analyzed using SPSS for Windows version 26 (SPSS Inc., Chicago, IL, USA). All data were expressed as mean (M), standard deviation (SD), and 95% confidence interval (CI). Data normality was assessed by the Shapiro–Wilk test. After confirmation of normal distribution, an independent t-test was used to verify the difference in normalized muscle activations between the professionals and the novice groups. The effect size was calculated by Cohen’s d to describe the size of the effect in the FMS and EMG variables. Effect sizes were defined as small (d ≤ 0.4), medium (0.4 < d ≤ 0.75), and large (d > 0.75) (Cohen, 2013). The statistical significance level was set at .05.
3 RESULTS
3.1 Anthropometric measurements
Anthropometric measurements of participants are shown in Table 3.
TABLE 3 | Anthropometric measurements.
[image: Table comparing physical and health-related variables between experienced and novice groups, including age, duration, body height, weight, body mass index, bone mineral density, fat mass, lean body mass, and body fat percentage. Each variable lists mean values with standard deviation. Significant differences are noted in age and duration with p-values less than 0.001.]3.2 Functional movement screening test (FMS)
There were significant differences in total FMS scores between the groups, with experienced practitioners demonstrating significantly higher scores than novice practitioners (p = 0.001, ES = 2.88). Sub-unit analysis showed significantly higher scores and large effect sizes in the experienced group compared to the novice group (p ≤ 0.01) across four FMS categories: deep squat (ES = 1.99), hurdle step (ES = 2.77), inline lunge (ES = 4.78), and active straight leg raise (ES = 1.18). However, no significant differences in shoulder mobility, trunk stability push-up, and rotary stability were found between the groups. The results of the functional movement screening (FMS) test are reported in Table 4.
TABLE 4 | Results of functional movement tests between groups.
[image: A table compares scores between experienced and novice individuals on various movements, including deep squat, hurdle step, inline lunge, and others. It presents mean scores with standard deviation, p-values, and effect size. Experienced individuals generally score higher across movements, with significant p-values (<0.001) and varying effect sizes, the total scores being 18.7 for experienced and 14.9 for novices.]3.3 Mean EMG activation level
The results of mean EMG activity are summarized in Table 5. There were significant differences in mean EMG activities during Pilates movements between the experienced and the novice practitioners. During all movements, the experienced showed significantly higher EO activity than the novice group (p = 0.005, p = 0.02, p = 0.005, p = 0.02, p = 0.006, and p = 0.03, respectively).
TABLE 5 | Results of the mean EMG activation level (%) between the groups.
[image: Comparison table showing muscle activation in various movements for experienced and novice individuals. Movements include chest lift, spine stretch, roll-up, double leg stretch, teaser, and jackknife. Muscles analyzed are rectus abdominis (RA), external oblique (EO), multifidus (MU), and longissimus (LO). The table includes mean, standard deviation, p-values, and effect sizes for each group and movement.]3.4 Co-contraction EMG activation level
Table 6 shows the results of co-contraction indices between experienced and novice practitioners. During ‘double leg stretch,’ the professionals demonstrated a significantly higher RA/EO co-contraction level compared to the novice (p = 0.02).
TABLE 6 | Results of the co-contraction EMG activation level (%) between the groups.
[image: Table showing comparisons of muscle co-contractions between experienced and novice individuals across five movements: chest lift, spine stretch, roll up, double leg stretch, and teaser. Data include muscle types (RA/EO, MU/LO, RA/MU, RA/LO), mean values with standard deviation, p-values, and effect sizes.]3.5 Duration of EMG activation
Table 7 shows the results of the duration of EMG activation of the core muscles during the Pilates movements between experienced and novice practitioners. During ‘spine stretch’ and ‘jackknife,’ the novice group demonstrated a longer muscle activity duration of MU than the experienced group (p = 0.04). In addition, the novices presented a longer time of EMG activation than the experienced group while performing ‘roll up’ (p = 0.04).
TABLE 7 | Results of EMG activation duration (sec) between the groups.
[image: A table comparing muscle measurements in experienced and novice individuals for various movements: Chest lift, Spine stretch, Roll-up, Double leg stretch, Teaser, and Jackknife. Muscles measured are RA, EO, MU, and LO. The table includes values with standard deviations, p-values, and effect sizes for each category. ES is interpreted as small (0.2), medium (0.5), and large (0.8 or above).]4 DISCUSSION
This study aimed to examine functional movements and core muscle activities during Pilates exercises based on Pilates proficiency. The main finding of the present study indicates that the experienced practitioners, compared with the novice, demonstrated significantly higher FMS scores and co-contraction EMG activity during certain Pilates movements. Additionally, the novice group exhibited significantly longer duration of the core muscles EMG activity.
In the study, the FMS total score was significantly higher in the experienced practitioners than in the novice practitioners. A sub-analysis revealed that the experienced practitioners scored higher on ‘deep squat,’ ‘hurdle step,’ ‘inline lunge,’ ‘active straight leg-raise,’ and ‘shoulder mobility’ than novices. Previous studies found that Pilates exercise improves flexibility (Beardsley and Contreras, 2014; Ahearn et al., 2018; Pivotto et al., 2022), dynamic balance (Espinosa et al., 2018), and functional movement (Laws et al., 2017). These results align with the results of our study, particularly the significant differences between the groups in the ‘active straight leg-raise’ and ‘shoulder mobility’ scores. Furthermore, another study reported that recreational runners improved their FMS total score and other subtest scores after an 8-week Pilates intervention (Laws et al., 2017). The ability to perform these movements correctly indicates a well-developed sense of balance, mobility, and coordination, which are essential components of Pilates. These skills could be developed through consistent training of Pilates, which emphasizes concise control of movement, posture alignment, and centering and breathing techniques. However, we found no significant difference in “trunk stability push-up” and “rotary stability” between the groups. These movements require upper limb strength, balance, and stability, and achieving a 3 on these tests involves lifting the entire body simultaneously. It is possible that Pilates, which emphasizes movements centered around the deep muscles, does not contribute as effectively to the development of upper limb strength as traditional strength training. The nature of Pilates, with its focus on core stability and alignment, predominantly engages the deep muscles of the trunk, such as the transversus abdominis. This focus may limit the direct load placed on the upper limb muscles, leading to less upper body strength improvement in Pilates practitioners compared to those who engage in traditional upper body strength exercises. Given the emphasis on core engagement, Pilates exercises likely improve functional movement and core strength more than isolated upper limb strength, which could explain the lack of significant differences in the “trunk stability push-up” and “rotary stability” scores. Differences in participant populations across studies may also explain the varied outcomes. Although the previous study involved recreational runners, our study included Pilates instructors and novice practitioners. It is possible that the combination of running and Pilates in the previous study created complementary effects, enhancing overall benefits, rather than showing the isolated impact of Pilates.
Regarding core muscle activity, our results support our second hypothesis. A previous study found that the experienced practitioners exhibited higher core muscle activity than novices during Pilates exercises. The experienced group demonstrated mean EMG abdominal activity (transversus abdominis and internal oblique) that was approximately 50% or more of MVIC. This finding is consistent with ours as the experienced practitioners in our study showed a mean EMG activation level of EO over 50%, with significantly higher abdominal activity (54.6% MVIC) compared to novices (40.3% MVIC) during the chest lift movement. This suggests that experienced Pilates practitioners are better able to achieve and sustain core muscle contraction better than novices. Additionally, the experienced group displayed significantly higher EO activity than the novices across all six movements (p = 0.005, p = 0.02, p = 0.005, p = 0.02, p = 0.006, and p = 0.03, respectively). Similarly, a previous study reported greater RA and EO muscle activity during the roll-up exercise, emphasizing the role of Pilates breathing techniques (Barbosa et al., 2018; Silva et al., 2015). In Pilates, proper breathing is a fundamental principle, and thoracic breathing, which involves deep inhalation and controlled exhalation, plays a crucial role in the activation of the EO muscle (Kawabata and Shima, 2023). Thoracic breathing primarily engages the intercostal muscles, increasing EO activity, which is reflected in the EMG readings of experienced practitioners who have mastered the respiratory techniques used in Pilates (Andrade et al., 2022). A previous study noted that different breathing techniques in Pilates can lead to distinct muscle activation patterns, which may explain our findings (Barbosa et al., 2015). It is possible that proficiency in executing these movements, combined with proper breathing techniques, allows experienced practitioners to achieve more efficient and targeted muscle recruitment. In contrast, novices may struggle to maintain optimal muscle activation due to a lack of neuromuscular control and familiarity with the exercises, resulting in less efficient activation patterns. Conversely, a previous study found no significant differences in global abdominal muscle activity between experienced and novice practitioners when performing the ‘knee stretch’ in three different pelvic positions on a Pilates reformer (Lee, 2021). The use of different equipment may explain these discrepancies. The reformer apparatus provides assistance, making it easier for novices to perform movements and activate target muscles. In contrast, mat-based exercises require individuals to rely solely on their own effort, which may lead to variations in muscle activation based on the proficiency level.
Our study revealed a higher EO activation level compared to the RA activation level in the experienced group across all movements. This suggests distinct muscle activation patterns, with greater EO activation in experienced practitioners, likely due to their improved coordination of agonist and synergist muscles and breathing techniques (Lee et al., 2024; Park et al., 2024). Particularly, Pilates breathing techniques that expand the diameter of the thorax have been known to increase respiratory muscle engagement such as EO (Lee et al., 2024), resulting in improvement in respiratory function (Park et al., 2024). In addition, increased intra-abdominal pressure during Pilates movement can affect the spinal stability. The co-contraction of RA/EO muscles was also significantly higher in the experienced practitioners than in novices. Co-contraction between agonist and synergist muscles contributes to spine stability and movement accuracy. A previous study found similar results, reporting higher co-contraction EMG activity of the transversus abdominis and internal oblique in experienced practitioners than in novices (Espinosa et al., 2018). In our study, co-contraction of RA/EO EMG activity was particularly pronounced during the ‘double leg stretch’ movement, which requires coordinated engagement of these muscles to stabilize the spine and pelvis while extending and flexing the lower limbs. The complexity of the movement may explain the significant differences in RA/EO co-contraction between experienced and novice practitioners as the former are likely to have refined their motor and muscle control through practice. In addition, the ability to achieve high co-contraction levels may reflect enhanced trunk stability, which is critical for maintaining postural control and minimizing the risk of injury. Furthermore, the novice group exhibited significantly longer activation times for certain core muscles, such as the LO during the ‘spine stretch’ and ‘jackknife’ movements. These findings suggest that novices rely heavily on compensatory muscle activation due to insufficient recruitment of the primary movers, RA and EO. The long duration on activation of LO observed in novices during these movements indicates an over-reliance on this antagonist muscle, likely due to a lack of coordination and efficiency in engaging the primary core muscles. This finding aligns with a previous study on individuals with lower back pain, which reported similar compensatory muscle activation patterns (Silva et al., 2015). Our findings could suggest that novice practitioners may benefit from targeted training that focuses on proper core muscle engagement and minimizing the use of compensatory muscles, leading to improved effectiveness and reducing the risk of injuries.
In summary, the results of this study could contribute to the development of tailored Pilates programs based on the proficiency level. Understanding muscle recruitment patterns can help Pilates instructors provide more effective guidance. For instance, beginners may over-rely on lower back muscles during trunk flexion exercises, and instructors can use external cues to promote proper engagement of the core muscles. These findings highlight the potential to customize Pilates instruction to optimize muscle activation and minimize compensatory actions. Additionally, the use of objective EMG data provides a scientific basis for future Pilates exercise sequencing, relying on empirical evidence rather than subjective opinions.
The findings of the present study suggest as follows: (a) a comparison of muscle activation between groups with varying levels of Pilates proficiency using electromyography (EMG) as a quantitative measure, (b) an examination of the co-contraction activity between the primary muscle and the synergist and between the primary muscle and the antagonist, and (c) the use of two different exercises at each proficiency level to allow for diverse comparisons of muscle activation between experienced practitioners and novices. This approach provides a scientific basis for the future sequencing of Pilates exercises, relying on objective evidence rather than subjective opinions.
5 LIMITATIONS
There are several limitations in the study. First, this study recruited healthy adult women only, and the level of Pilates was determined based on frequency, time, and duration of Pilates. Second, age was not strictly controlled during recruitment as we prioritized participants based on Pilates experience. This should be considered in future studies for clarification of the findings. This limits the generalizability of the results. Third, the study was a cross-sectional study, and thereby, the study measured immediate outcomes. Thus, future studies should be considered for longitudinal effects. Fourth, we did not include the transverse abdominis, which could also contribute to core stability because superficial muscles cover its surface. An invasive EMG approach should be used to assess the transverse abdominis for a more precise comparison between the two groups. This should be considered in future study.
6 CONCLUSION
The findings of this study indicate that the experienced Pilates group showed greater functional movement abilities than the novice group. Furthermore, the experienced practitioners demonstrated significantly greater mean and co-contraction muscle activation, particularly in the EO muscle group. In addition, the novice group presented longer activation time of the posterior trunk muscles (MU and IL), which could suggest compensation patterns of muscle activation during Pilates movements. Our results may contribute to advancing our understanding of the neuromuscular mechanisms of Pilates exercise and the potential benefits it offers for functional movement, spine stability, and core muscle strength. Moreover, these insights from the findings can inform Pilates instructors in constituting more specifically tailored programs based on practitioner experience levels, thereby enhancing effectiveness of the exercise while ensuring safety. Further research is needed with more strict age controls to examine and validate observed differences in various populations and settings. In addition, longitudinal studies are essential to establish generalization and reach consensus on the benefits of the Pilates exercise.
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Objective: To explore the feasibility of post-exercise heart rate recovery indicators for predicting maximum oxygen uptake (VO2max) in healthy adults aged 30–60 years.Methods: 260 healthy adults who did not perform regular exercise were randomly recruited and divided into a model group (n = 200) and a verification group (n = 60). Measure body fat percentage, weight, height and other indicators, and complete a cardiopulmonary exercise test as required to measure VO2max and heart rate recovery (HRR1, HRR2) in the first and second minutes after exercise. Equations are established through stepwise regression method, and the selected optimal equation is tested for back substitution.Results: The optimal equation is: [image: Equation for calculating absolute VO2 max: negative 0.528 plus 0.039 times weight minus 3.463 times body fat rate plus 0.042 times HRR squared minus 0.180 times gender, where male equals one and female equals two.]. Analysis of variance, goodness-of-fit test, VIF test, Shapiro-Wilk test, and Durbin-Watson test indicate that the equation is more reliable; Pearson product-moment correlation analysis, paired t test, and Bland-Altman consistency test indicate that the equation is more valid good.Conclusion: The regression equation established through heart rate recovery after exercise can be used to predict VO2max in healthy adults aged 30–60 years.Keywords: heart rate recovery, maximum oxygen uptake, regression equation, healthy people aged 30∼50, cardiorespiratory endurance
1 INTRODUCTION
Cardiorespiratory endurance is an important indicator that reflects physical health (Writing Committee et al., 2012; Toulouse et al., 2021; Di Prampero, 2003) and is highly correlated with all-cause mortality (Lee et al., 2010), cardiovascular disease mortality (Ren et al., 2020) and the incidence of various tumors (Neto et al., 2019). In 2016, the American Heart Association ranked cardiorespiratory endurance as the fifth vital sign of the human body (Ross et al., 2016). Maximum oxygen uptake (VO2max) is the golden index for evaluating the human cardiorespiratory endurance level (Levine, 2008; Hawkins et al., 2007; Skattebo et al., 2021). VO2max refers to the maximum rate at which an individual can take in and utilize oxygen at maximum exercise intensity. As an important indicator for evaluating cardiorespiratory endurance, it has been widely used in competitive sports, mass sports, etc. (Guazzi et al., 2017; Molinari et al., 2020; Crowley et al., 2022). VO2max testing can be divided into two methods: direct testing and indirect testing. Direct measurement of VO2max is usually done through a cardiopulmonary exercise test. Subjects were required to complete incremental load exercises on a power bike or treadmill (Beltz et al., 2016). This method requires professional equipment and operators, and the test cost is high. It is difficult to popularize it among the public. It requires subjects to reach a state of exhaustion, which involves certain risks. It is also not suitable for the elderly and people with poor physical fitness. The indirect measurement method uses an exercise intensity lower than the maximum load and predicts VO2max from the test results. Although the indirect testing method is not as accurate as the direct testing method, it has attracted much attention due to its relatively low requirements on test sites, equipment, and operators, low economic cost, and easy operation. Indirect testing of VO2max usually uses the subject’s basic physical information and exercise capacity information as independent variables (Hansen et al., 2016; Jalili et al., 2018; Eisenberger et al., 2022).
Heart Rate Recovery (HRR) after exercise refers to the difference between the heart rate at different time periods after exercise and the peak heart rate during exercise. Commonly used measurement times include 1, 2, 3, 4, 5, and 7 min (recorded as HRRt, t corresponds to 1, 2, 3, 4, 5, and 7 min) refers to the individual’s heart rate gradually returning from the level during high-intensity exercise to the heart rate in the resting state after physical activity (Zhu and Lin, 2017). Studies have shown that VO2max tested in cardiopulmonary exercise testing has a positive linear correlation with HRR (Vicente-Campos et al., 2014). The purpose of this study is to establish an evaluation method for maximum oxygen uptake. Using variables such as HRR, body fat percentage, weight, and gender as independent variables, VO2max is evaluated through multiple linear stepwise regression.
2 RESEARCH OBJECTS AND RESEARCH METHODS
2.1 Research objects
Subject inclusion criteria: (1) Age 30–60 years old; (2) No exercise habit; (3) Voluntarily cooperate with the experimental process. Exclusion criteria: (1) suffering from cardiovascular disease and family history of sudden death; (2) suffering from physical pain, trauma, etc. Finally, after screening and data cleaning, the data of 260 subjects (164 males, 96 females) were selected. The above subjects’ data were randomly divided into two groups, of which 200 (120 males, 80 females) were In the model group, 60 people (44 men and 16 women) served as the validation group. The choice to allocate 200 participants to the model group and 60 to the validation group was based on statistical soundness. A larger model group sample size helps ensure the accuracy and stability of the model, while a smaller validation group sample size is sufficient to evaluate the model’s generalizability. This division complies with common rules of thumb and takes into account the effective use of resources and the scientific nature of the model (Table 1).
TABLE 1 | Basic information on the indicators of the model group and validation group.
[image: Table displaying demographic data for two groups. The Model group has 200 people, an average age of 45.6 ± 12.0 years, and a gender distribution of 120 males to 80 females. The Validation group consists of 60 people, with an average age of 42.5 ± 10.7 years, and 44 males to 16 females.]2.2 Research methods
2.2.1 Morphological information measurement
Use the Inbody720 body composition tester to test height, weight, and body fat percentage. The test methods refer to the “National Physical Fitness Measurement Standards (Revised in 2023)” promulgated by the National Physical Fitness Monitoring Center. Calculate the subject’s body mass index (BMI) = weight/height2 based on the height and weight tested by Inbody720.
2.2.2 Cardiopulmonary exercise test
Testing equipment: cardiopulmonary exercise function tester (China, Hanya, model SMAX58CE-SP); treadmill (Sweden, RODBY, model RL2000E); heart rate belt (Finland, POLAR, model H10); respiratory mask (United States, HANS RUDOLPH, Model 2797).
The VO2max test plan adopts Bruce’s incremental load treadmill plan. After the tester is ready for the test, he or she puts on the heart rate monitor, respiratory mask, and fastens the safety protection device while standing on the treadmill. The tester once again informed the tester of the testing process and precautions. After the VO2max test, the tester stood still on the treadmill, and HRR1 and HRR2 were measured through the heart rate belt.
Criteria for judging the end of the VO2max test: (1) The heart rate reaches 180 b/min or no longer rises within 2 min; (2) Respiratory quotient ≥1.10; (3) As the exercise intensity increases, the subject’s oxygen uptake plateaus or declines; (4) The subject is unable to maintain the existing exercise intensity despite his best efforts. The equation model group reaches the limit state during the test, and the back-substitution test group stops testing when the test center rate reaches 180 b/min or no longer rises within 2 min.
2.3 Statistical analysis
Input the data into spss25.0 statistical software for relevant statistical processing, and the statistical results are expressed in the form of ‾x ± s. Correlation analysis was conducted on the normality of the data and the factors affecting VO2max through the Kolmogorov-Smirnov test and the Pearson correlation coefficient test. Four stepwise regressions were performed, and the best equation for goodness of fit was selected through goodness-of-fit test, VIF test, Durbin-Watson test, etc. The differences between the measured values and the predicted values of the optimal equation were analyzed through paired sample t test, Pearson correlation analysis, and Bland-Altman test. The significance level is P < 0.05, and the very significant level is P < 0.01.
3 RESULTS
3.1 Body shape test results
The test results are shown in Table 2. The height, weight and BMI of men are significantly higher than that of women (p < 0.01); their body fat rate is significantly lower than that of women (p < 0.01).
TABLE 2 | Body shape test results.
[image: Table comparing physical and demographic characteristics of males, females, and overall. Includes height, weight, BMI, body fat percentage, and age. Significant differences noted for females in height, weight, BMI, and body fat percentage with asterisks indicating p less than 0.01 when compared to men.]3.2 Cardiopulmonary exercise test results
The test results are shown in Table 3. VO2max is 3.23 ± 0.67 L/min for men and 2.10 ± 0.45 L/min for women; HRR1 is 21.79 ± 5.19 beats/min for men and 19.41 ± 5.61 beats/min for women; HRR2 is 43.30 ± 8.38 beats/min for men. 37.59 ± 9.10 beats/min for women.
TABLE 3 | Cardiopulmonary exercise test results.
[image: Table comparing VO2max and heart rate recovery (HRR) in males and females. VO2max for males: 3.23 ± 0.67 L/min, females: 2.10 ± 0.45 L/min, overall: 2.81 ± 0.82 L/min. HRR1 for males: 21.79 ± 5.19 beats/min, females: 19.41 ± 5.61 beats/min, overall: 20.84 ± 5.47 beats/min. HRR2 for males: 43.30 ± 8.38 beats/min, females: 37.59 ± 9.10 beats/min, overall: 41.02 ± 9.08 beats/min.]3.3 Correlation analysis between VO2max and various indicators
Through correlation analysis, it was found that, as shown in Table 4, VO2max has a significant correlation with HRR1, HRR2, body fat rate, height, weight and gender of the overall data (p < 0.01). The correlation between age and VO2max is not significant (p > 0.05).
TABLE 4 | Correlation between VO2max and various indicators.
[image: Table showing correlation coefficients for various health metrics by gender. Metrics include HRR1, HRR2, body fat percentage, height, weight, BMI, age, and gender. Significant positive correlations: male HRR2 (0.228), female HRR2 (0.605), overall HRR2 (0.398), and more. Other values include negative correlations such as male height (-0.659) and female body fat percentage (-0.287). Note: *p < 0.05, **p < 0.01.]3.4 Establishment of regression equation
Through stepwise regression analysis, HRR1, HRR2, body fat percentage, height, weight, BMI and gender were brought into the regression equation. The regression analysis results are shown in Tables 5, 6.
TABLE 5 | Summary of regression equations.
[image: Table displaying regression analysis results for four equations. Each equation lists values for R, R2, Adjusted R-square, Standard error, and Durbin-Watson. Equations 1 to 4 have R values of 0.769, 0.870, 0.922, and 0.924 respectively. Note describes predictor variables used in each equation, including constants, body weight, body fat rate, HRR2, and gender.]TABLE 6 | Correlation coefficient in Equation 4.
[image: A table displaying statistical data with columns: Index, B, Standard Error, Beta, t, P, Tolerance, and VIF. Rows include Constant, Weight, Body Fat Percentage, HRR2, and Gender, each with corresponding values. The B, t, and P values vary across factors, indicating their statistical analysis results.]According to the regression results, the estimated VO2max equation can be finally obtained:
[image: Text showing an equation for calculating absolute VO2 max: Absolute VO2 max equals 0.222 plus 0.038 times body weight.]
[image: Equation for absolute VO2 max: 1.853 plus 0.041 times body weight, minus 7.553 times body fat rate. Equation labeled as number 2.]
[image: Equation for Absolute VO2 max: negative 0.778 plus 0.041 times weight minus 4.158 times body fat rate plus 0.043 times HRR2.]
[image: Equation for Absolute VO2 max: \(-0.528 + 0.039 \times \text{weight} - 3.463 \times \text{body fat rate} + 0.042 \times \text{HRR2} - 0.180 \times \text{gender}\) (male \(= 1\), female \(= 2\)).]
As (Equation 1) can be seen from Table 5, the correlation coefficient (R) of model 1 is 0.769, indicating that there is a moderate positive correlation between VO2max and body weight. The coefficient of determination (R2) is 0.592, indicating that this model can explain 59.2% of VO2max. The adjusted coefficient of determination (adjusted R2) is 0.590. Taking into account the influence of the number of independent variables and sample size in the model, the explanatory power of the model has improved. The standard error is 0.708 and the Durbin-Watson test is 1.511.
The correlation coefficient (R) of model 2 is 0.870, indicating that there is a strong positive correlation between VO2max (Equation 2), body weight and body fat percentage. The coefficient of determination (R2) is 0.758, indicating that this model can explain 75.8% of VO2max. The adjusted coefficient of determination (adjusted R2) is 0.756. Taking into account the influence of the number of independent variables and sample size in the model, the explanatory power of the model has improved. The standard error is 0.546 and the Durbin-Watson test is 1.581.
The correlation coefficient (R) of model 3 is 0.922, indicating (Equation 3) that there is a strong positive correlation between VO2max and body weight, body fat rate and HRR2. The coefficient of determination (R2) is 0.850, indicating that this model can explain 85.0% of VO2max. The adjusted coefficient of determination (adjusted R2) is 0.848. Taking into account the influence of the number of independent variables and sample size in the model, the explanatory power of the model has improved. The standard error is 0.431 and the Durbin-Watson test is 1.625.
The correlation coefficient (R) of model 4 is 0.924 (Equation 4), indicating that there is a strong positive correlation between VO2max and body weight, body fat rate and HRR2. The coefficient of determination (R2) is 0.853, indicating that this model can explain 85.3% of VO2max. The adjusted coefficient of determination (adjusted R2) is 0.851. Taking into account the influence of the number of independent variables and sample size in the model, the explanatory power of the model has improved. The standard error is 0.427 and the Durbin-Watson test is 1.624.
In summary, Model 4 has strong explanatory power, with higher R2 and higher adjusted R2, taking into account the effects of weight, body fat rate, HRR2 and gender. The standard error is small. The Durbin-Watson test is close to the ideal range, indicating that the residuals in this model are independent of each other. Comprehensive analysis results show that body weight, body fat percentage, HRR2 and gender have a significant impact on the ability to explain VO2max. The explanatory power of these models is relatively strong, the standard errors are small, and the research results have certain reference value.
3.5 Backward elimination test
Substitute various indicators of the verification group (n = 60) into the optimal equation to predict the VO2max value and analyze and compare it with the measured VO2max value. Through paired sample t test and Pearson correlation analysis test, the test results show that the measured value and predicted value The difference is not significant (p > 0.05) and there is a high positive correlation (r = 0.889, p < 0.01) (Table 7).
TABLE 7 | Comparative analysis of actual measured values and predicted values.
[image: Table showing comparisons between measured and predicted values in liters per minute. Measured values: 2.893 ± 0.752. Predicted values: 2.931 ± 0.688. Paired samples T-Test: t = -0.832, p = 0.408. Pearson correlation test: r = 0.886, p = 0.000.]4 DISCUSSION
Using stepwise regression analysis, four regression equations for inferring VO2max were established. Test through goodness of fit test, VIF test, Durbin-Watson and other methods. The best equation is adopted based on the test results. The best equation is [image: Equation for calculating absolute VO2 max: Negative 0.528 plus 0.039 times weight minus 3.463 times body fat rate plus 0.042 times HRR2 minus 0.180 times gender, where male equals one and female equals two.]. In order to further explain the degree of explanation of the dependent variable by the independent variables in the equation, a goodness-of-fit test was performed on the regression equation. The test results showed: R = 0.924, R2 = 0.853, adjusted R2 = 0.851, standard error = 0.427, indicating that the fitting degree of the equation is good. The multicollinearity of the equation is one of the important factors that affects the accuracy of the prediction results of the equation. When VIF > 5 and tolerance <0.1, it indicates that the equation has multicollinearity problems. In this study, the VIF and tolerance of the optimal equation selected through stepwise regression analysis were 1.817 and 0.550 respectively, indicating that there is no multicollinearity problem among the independent variables in the equation. In addition to meeting the above conditions, the residuals of the equation must also meet normality and independence. The normality and independence of the residuals of the regression equation were tested using the Shapiro-Wilk and Durbin-Watson tests respectively. The Shapiro-Wilk test result shows that the residuals of the equation conform to the normal distribution, and the Durbin-Watson test result is 1.624, indicating that the residuals of the equation are independent. The normality of residuals affects the validity of parameter estimation and hypothesis testing of regression models. The independence of residuals affects the stability of the model, its predictive power, and the reliability of hypothesis testing. Therefore, ensuring that the residuals meet the assumptions of normality and independence is an important step in the overall reliability of the regression model.
The independent variables included in the optimal equation of this study are weight, body fat percentage, HRR2 and gender. There is a significant positive correlation between absolute VO2max and body weight. Onetti-Onetti et al. (2020) proposed that body weight is an important influencing factor for VO2max. This is consistent with the research results of Tangkudung et al. (2020). In this study, body weight was used as the natural factor. Variables are included in the regression equation. There is a significant negative correlation between body fat rate and absolute VO2max, This means that a lower body fat percentage is beneficial to an individual’s VO2max. Kai et al. (2024) used 48 subjects as the research subjects, and the results showed that body fat rate is beneficial to the individual’s aerobic exercise ability. There was a significant negative correlation between fat percentage and absolute VO2max (r = −0.55, p < 0.001), which is consistent with the research results of Mondal and Mishra (2017). Absolute VO2max has a significant positive correlation with HRR2. As heart rate recovery ability increases, aerobic exercise capacity will also be enhanced. Yifan et al. (2014) divided HRR242bmp into one group, and divided HRR2 < 42bmp into another group. One group, a comparative analysis of the VO2max and other indicators of the two groups found that the VO2max of the high HRR2 group was significantly higher than the other group. Gender is an important influencing factor on VO2max. Research by Xiaoyun and Meng (2005) and others pointed out that differences in gender will cause differences in VO2max. Women are usually lower than men, which is related to the fact that men have higher heart volume, hemoglobin content and cardiac output than women (Santisteban et al., 2022). The study by Wiebe et al. (1998) also found that women’s VO2max is significantly lower than men.
The validity of the equation is tested by substituting the data of the validation group into the model group, and the measured and predicted values of the validation group are analyzed using paired sample t-test, Pearson correlation analysis and Bland Altman test. Bland-Altman analysis is a method used to evaluate the consistency between two measurement methods. It is usually used to compare the deviation and consistency of two measurement methods (Gerke, 2020) and is intuitively reflected through graphics. In this study, the value calculated by the optimal equation was slightly lower than the measured value, which may be related to the individual differences of the subjects. At the same time, the paired sample t test showed that there was no significant difference between the measured value and the predicted value (Figure 1), Pearson product-moment correlation analysis suggests that the two are highly correlated (Figure 2). The normality test was performed on the difference between the measured value and the predicted value in the verification group, and the results showed that the difference was normally distributed (Figure 3). The actual measured values and predicted values of the validation group were further evaluated. Through the Bland-Altman consistency test, it was found that the mean VO2max difference of 58 of the 60 subjects in the validation group was within the Mean ± 1.96*SD interval. Only two subjects had mean differences outside the Mean ± 1.96*SD interval (Figure 4), which shows that the optimal equation used in this study has good validity.
[image: Bar graph showing comparison between measured and predicted values of VO2max in liters per minute. Both bars have similar heights with data points densely scattered above. A paired-sample t-test indicates no significant difference.]FIGURE 1 | Paired sample t-test of measured values and predicted values. Note: ns means p > 0.05, no significant difference.
[image: Scatter plot showing the relationship between measured and estimated maximum oxygen uptake. Data points form a cluster along a line with a positive correlation. The correlation coefficient is 0.886, and the p-value is less than 0.001.]FIGURE 2 | Pearson correlation analysis between actual measured values and predicted values.
[image: Scatter plot illustrating the relationship between measured maximum oxygen uptake and expected normally distributed values. Points closely follow a diagonal line, suggesting a linear correlation between the variables.]FIGURE 3 | Normal Q-Q plot of the difference between actual measured value and predicted value.
[image: Scatter plot displaying data points with mean on the x-axis and bias on the y-axis. Horizontal lines indicate the mean bias and limits of agreement at mean plus and minus 1.96 standard deviations. Data points are dispersed around the mean, with few outliers.]FIGURE 4 | Mean systematic error between measured values and predicted values.
Although the equation has included some major factors such as weight, body fat percentage, HRR2 and gender, there are also some potential confounding variables that may not have been taken into account, such as age, height, training status, genetic factors and lifestyle factors. These potential confounding variables may affect the accuracy of VO2max prediction. In practical applications, it is recommended to further examine and control these potential confounding variables to improve the reliability and validity of the model.
HRR is an important indicator of cardiovascular health (Dimkpa, 2009), which reflects the heart’s ability to recover from a high-intensity state to a resting state after exercise and reflects the body’s ability to adapt to exercise load. HRR not only has the feasibility of evaluating aerobic capacity, but has also been proven to be an effective independent indicator for predicting the occurrence of cardiovascular disease and cardiovascular events (Cole et al., 2000; Cole and Lauer, 1999; Nishime et al., 2000). This is one of the reasons why this study uses HRR as a predictor of VO2max. In addition, and most importantly, HRR measurement is relatively simple, usually just recording the heart rate drop after high-intensity exercise, without the need for complex equipment. This makes the inferred VO2max equation established through HRR highly operable, practical and easy to popularize.
5 CONCLUSION
The prediction equation established in this study is: [image: Equation detailing the calculation of absolute VO2 max: -0.528 + 0.039 times weight - 3.463 times body fat rate + 0.042 times HRR2 - 0.180 times gender.] (where HRR2 is the peak heart rate during exercise-the heart rate within 2 minutes after the end of exercise); Gender: male = 1, female = 2, HRR2 measurement is relatively simple and convenient, and the reliability and validity test of this equation is good, and it is suitable for promotion and use in large sample populations.
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Objective: This study aims to compare the differences in the precompetition status (nutritional, physiological, biochemical, psychological, and sleep statuses) among college track and field athletes with different competition performances and to screen for key indicators of differences affecting athletic performance.Methods: Multiple indicators, traditional methods, and machine learning methods are used to detect the exercise load, fatigue index, and precompetition state of athletes with different sports performances.Results: (1) Two weeks before the competition, the fat mass in the left upper limb in the BP group was significantly higher than that in the BnP group (P < 0.05). The absolute values of blood basophils and triglycerides (TGs) in the BnP group were significantly higher than those in the BP group (P < 0.05). The positive detection rate of urinary leukocytes in the BnP group was higher than that in the BP group, and the positive detection rate of urinary occult blood and vitamin C in the BP group was higher than that in the BnP group. (2) One week before the competition, the blood lactate dehydrogenase (LDH) in the BP group was significantly higher than that in the BnP group (P < 0.05). The detection rate of positive urinary occult blood in the BnP group was higher than that in the BP group (P < 0.05). (3) No significant differences were found in the daily dietary intake, energy consumption values, physical activity, sleep efficiency, real-time heart rate, real-time respiratory rate, and real-time heart rate variability between the intensive and reduced periods. (4) The Rosenberg Self-Esteem Scale score of the BnP group was significantly higher than that of the BP group (P < 0.05).Conclusion: Precompetition absolute basophil, LDH, TG, white blood cells, creatine kinase, fat mass in the left upper limb, erythrocyte pressure (HCT), and individual failure anxiety can be used as training monitoring indicators that focus on tracking athlete status before the race.Keywords: track and field athletes, pre-competition status, competition performance, machine learning, training monitoring
1 INTRODUCTION
Monitoring athlete status during training provides insight into health, fatigue, and recovery, which is important in assessing training adaptation and athletic performance (Halson, 2014). The rapid development of big data, cloud computing, the Internet of Things, and other technologies exposes all walks of life, including the sports industry, to the influence of digital technology (Glebova and Desbordes, 2021). Multi-indicator and multidimensional sports training monitoring have also gradually become a hotspot for athlete training monitoring. Wearable devices based on artificial intelligence algorithms and athlete evaluation systems are rapidly growing in the sports industry (Mateus, 2023). Wearable devices, such as accelerometers, are used to assess athletes’ physical activity and sleep, among other things (Ding, 2023). Real-time heart rate monitoring sensors and EEG signal analysis based on machine learning algorithms are also widely used in the athlete community (Ding, 2023; Jiang and He, 2023; Tan and Ren, 2023). Moreover, machine learning algorithms have been used as a data processing method for predicting athletes’ injuries, health status, psychological status, and athletic performance. However, most of the existing studies have focused on elite athletes. They also lack scientific training monitoring tools for college athletes. Moreover, few studies were conducted on groups of collegiate athletes. When machine learning algorithms are used for research, they are rarely used for training monitoring and determining the weighting of factors that affect athletes’ athletic performance (Miah et al., 2023; Li, 2023; McGuigan, 2017).
For the monitoring of college track races (sprints), the book Monitoring Training and Performance in Athletes (Loucks et al., 2013) was used in this study to select the relevant indicators for judging external load, internal load, and fatigue determination. Given the wide application of science and technology in the field of sports, training monitors can accurately monitor the external loads of athletes during training in real time. This study uses accelerometers and other equipment to obtain the external load data of athletes’ energy consumption and activity intensity. Monitoring only the external load of the athlete cannot accurately describe the physiological load and psychological load produced by the athlete in training and other indicators of the internal load. In this study, the real-time heart rate sensor and the psychological questionnaires are used to monitor the real-time heart rate of the athlete and the athlete’s pregame psychological state, respectively. Moreover, hormones and other biochemical indicators, such as cortisol, testosterone, and other indicators, are measured to monitor the athlete’s internal load and fatigue state.
On the basis of the current status and shortcomings of the previous research, this study monitors the above indicators of athletes 2 weeks before the competition (training period) and 1 week before the competition (reduction period). It also uses multinomial logistic regression, random forest algorithm in machine learning, and principal component analysis to assess the importance of the indicators. Established through neural networks (NNs), a prediction model of athletic performance is also discussed in this paper. Thus, machine learning research in the field of sports science is enriched. The weights of the indicators are evaluated to reveal the relationship between the precompetition state and performance, assess the degree of influence of the precompetition state on the performance, and optimize athletes’ precompetition state adjustment strategies. This study provides new methods and perspectives for the study of the relationship between pregame state and game performance through the application of machine learning algorithms. It also helps promote the development and innovation of related theories, enriches and improves the theoretical system of sports training, and promotes the scientific and precise development of sports training.
2 MATERIALS AND METHODS
2.1 Research objects and groups
Fifteen high-level track and field athletes from Northwestern Polytechnical University, including 10 men and 15 women, were selected as subjects for this study. The athletes were divided into groups to compare their performance in the Shaanxi Provincial University Athletics Championships with their performance in the National University Athletics Championships. Those who improved in individual events were classified as the performance improvement group (BP group; n = 8), whereas those who did not improve were classified as the performance decline group (BnP group, n = 7). The BP group included four women, whereas the BnP group included one woman. The subjects had an average age of 21.20 ± 1.74 years, an average training period of 6.8 ± 2.188 years, an average height of 175.56 ± 6.09 cm, and an average weight of 64.24 ± 7.58 kg. The inclusion criteria are as follows: having experience in regular sprint training and participation in the 2023 Shaanxi Provincial University Athletics Championships and the 2023 National University Athletics Championships. The exclusion criteria are as follows: recent injuries; unsuitability for preparation for competition; having taken antibiotics in the past 6 months; or having suffered from gastrointestinal issues, such as diarrhea or constipation. The subjects signed informed consent forms after understanding the content, potential risks, and benefits of the study. This study was approved by the Ethics Committee for Medical and Experimental Animals at Northwestern Polytechnical University (Ethics Approval No. 202302040).
2.2 Body composition testing
Body composition was measured 1 and 2 weeks before the race at the same time once every week. The subjects were asked to remain fasted early in the morning and to test at rest (no strenuous exercise and sufficient sleep [≥8 h] 24 h before testing).
2.3 Meal records
Athletes’ meals (including food types and estimated weights of three meals and additional meals) were recorded 1 week before the competition and 2 weeks before the competition using the 24 h retrospective method. The nutritional composition table of food was discussed, and the relative values of energy of the three major nutrients in each athlete’s daily dietary intake were calculated based on the energy coefficients of the three major energy-supplying nutrients (4 kcal/g for carbohydrates, 9 kcal/g for fats, and 4 kcal/g for proteins). Moreover, the average value of the 3-day average was calculated. The specific calculation methods are as follows:
(1) Relative value of carbohydrate energy (kcal/kg−d−1) = 3-day average of carbohydrate mass intake (g/d) × 4 kcal/g ÷ body weight (kg). (2) Fat energy relative value (kcal/kg−d−1) = 3-day intake of fat mass average (g/d) × 9 kcal/g ÷ body weight (kg). (3) Protein energy relative value (kcal/kg−d−1) = 3-day intake of fat mass average (g/d) × 4 kcal/g ÷ body weight (kg).
2.4 Energy expenditure, activity intensity, and sleep efficiency
Athletes wore the ActiGraph GT3X accelerometer all day (except for showering) 1 week before the competition and 2 weeks before the competition. At the end of the period, the data from the accelerometer was imported into the accompanying software. The GT3X recorded daily energy expenditure, activity intensity, and sleep for 1 week during the training preparation and precompetition tapering periods. It also calculated the 7-day average.
2.5 Training real-time heart rate, respiratory rate, and heart rate variability monitoring
Athletes wore Zephyr Bioharness3.0 heart rate bands 1 week before the competition and 2 weeks before the competition. At the end of the training session, the data from the bands were exported from the accompanying software to calculate the maximum, mean, and plurality of real-time heart rate, respiratory rate, and heart rate variability for the training session.
2.6 Blood and urine physiological indicator tests
One week and 2 weeks before the competition, 15 mL of midmorning urine and 10 mL of fasting venous blood were collected and stored in anticoagulant tubes for subsequent testing (indicators: creatine kinase [CK], blood urea, testosterone/cortisol, hemoglobin, and urinary creatinine). Routine urinalysis was performed after the urine collection (indicators: leukocytes, glucose, occult blood, protein, nitrites, urinary bilirubin, bilirubin, ketone bodies, pH, and specific gravity).
2.7 Testing of mental state indicators
Athletes completed the following six questionnaires 1 week before the competition: (1) the Competition State Anxiety Inventory-2 (Martens at al., 1982), which is divided into three subscales measuring cognitive state anxiety, somatic state anxiety, and state self-confidence; (2) the Pre-Event Emotion Scale-T (Zhang, 2000), which is divided into four subscales: individual failure anxiety, self-confidence, social expectation anxiety, and somatic anxiety; (3) the Sport Competition Anxiety Scale (Martens, 1977); (4) the Cognitive Trait Anxiety Inventory for Athletics (Ping and Xiaodong, 2000); (5) Athletes’ Mental Fatigue Questionnaire First (Raedeke and Smith, 2001); and (6) Rosenberg Self-Esteem Scale (Rosenberg, 1965).
2.8 Statistical analysis
The results were analyzed using SPSS 26.0. The skewed distribution information was expressed as median (interquartile), and comparisons between groups were made using the nonparametric Mann-Whitney U test, with P < 0.05 being considered statistically different. All machine learning methods were executed using Python 3 and based on the scikit-learn package.
2.9 Data preparation for machine learning algorithms
The data were normalized and brought to the same range before being used in machine learning models. The data transformation process includes the following steps: (1) The missing values in a numerical feature are replaced by the mean of the feature range, and the missing values in a categorical feature are replaced by the plurality of values for that feature. (2) All gender-related numerical features were standardized using a Z-standardization formula based on mean and standard deviation (Equation 1): [image: The formula for the z-score, \( z = \frac{x - \mu}{\sigma} \), represents the standard score where \( x \) is the value, \( \mu \) is the mean, and \( \sigma \) is the standard deviation.], where µ = feature mean and σ = standard deviation. (3) Multiple rounds of random forest algorithm were implemented to reduce the feature dimensionality, thereby eliminating the features with importance less than 0.01 in each round until 20 features remain. The input data were divided into training and validation sets in the proportions of 40% and 60% for the training and validation sets, respectively, to train and validate the model.
Binary logistic regression is a classification method that generalizes logistic regression to multiclassification problems, namely, problems with more than two possible discrete outcomes. In the multinomial logistic regression model, a binary logistic regression equation was built for each category of the dependent variable. In this case, one of the categories of the dependent variable became the reference variable, and all the other categories were compared. In general, the Binary logistic regression equation can be written as Equation 2:
[image: Mathematical expression of the softmax function, showing the probability of class c given x and parameters θ. It is the exponential of θ transposed x for class c, divided by the sum over k classes of the exponential of θ transposed x for each class j.]
where x is the regression vector, y is the dependent variable taking the values {1, 2, . . ., k}, and q is the regression parameter determined using machine learning methods.
Random forests can be used to rank the importance of variables in a regression or classification problem in a natural way. The first step in measuring the variable importance in a data set is to fit a random forest to the data. During the fitting process, the out-of-bag error for each data point is recorded and averaged over the forest (errors on an independent test set can be substituted if bagging is not used during training). The values of the jth feature are permuted in the out-of-bag samples to measure the importance of the jth feature after training. Then, the out-of-bag error is again computed on this perturbed data set. The importance score for the jth feature is computed by averaging the difference in the out-of-bag error before and after the permutation over all trees. The score is normalized by the standard deviation of these differences. Features that produce large values for this score are ranked as more important than those that produce small values. The importance was calculated as follows Equation 3:
[image: Mathematical equation: f(x) equals the sum over i equals 1 to n subscript T of 1 over n subscript T, multiplied by the sum over nodes T subscript i where split variable (j) equals x, of p subscript T subscript i (j), times delta i T subscript i (j).]
where x indicates a feature, [image: The lowercase letter "n" followed by a subscript, smaller uppercase letter "T".] is the number of trees in the forest, [image: Please upload the image or provide a URL so I can generate the alternate text for you.] indicates tree i, [image: Mathematical formula showing \( P_{T_i}(j) = \frac{n_j}{n} \).] is the fraction of samples reaching node j, and [image: It seems like there was an error in uploading the image. Please try uploading the image again or provide a link where I can view it.] is the change in impurity in tree t at node j. The proposed classification model showed resistance to noise and achieved a high accuracy of up to 100% for the training set and an accuracy of 67% for the testing set. The model could distinguish between the classes studied. The following model regularization parameters were set for training.
In machine learning, NN or ANN is a model inspired by the neuronal organization found in the biological NNs in animal brains. We selected 14 variables that are commonly important in binary logistic regression and random forest to train the NN, and the hyperparameters of the nodes and layers of the NN were optimized by setting a single hidden layer with four neurons in each layer as optimal.
3 RESULTS
The two groups had no significant differences in terms of physical energy consumption, physical activity intensity, and sleep efficiency, as measured by the ActiGraph GT3X accelerometer 1 week before the competition and 2 weeks before the competition.
The two groups had no significant differences in real-time heart rate, respiratory rate, maximum, mean, and multitude of heart rate variability monitored by the Zephyr Bioharness 3.0 Heart rate bands during the preparation period for training 1 week before the competition and 2 weeks before the competition.
No significant differences were found in the relative values of the three major nutrients’ daily dietary intake for energy between the two groups 1 week before the competition and 2 weeks before the competition.
3.1 Variability of indicators 2 weeks before the competition
During the preparation period of training, the statistical results of each index indicate that the left upper limb fat mass in the BP group was significantly higher than that in the BnP group (P < 0.05) in the body composition (Figure 1A). The absolute basophil count (BASO) in the BnP group was significantly higher than that in the BP group (P < 0.05) in the blood index (Figure 1B). Triglycerides (TGs) in the BnP group were significantly higher than those in the BP group (P < 0.05) (Figure 1C).
[image: Box plots labeled A, B, and C, compare BP-1 and BP-2 groups. Plot A shows left upper limb fat mass with higher values for BP-2. Plot B displays absolute basophil counts with BP-2 showing greater values. Plot C illustrates triglyceride levels, also higher in BP-2. Statistical significance is indicated by asterisks.]FIGURE 1 | (A) Left upper limb fat mass differences between the two groups of players 2 weeks before the game. (B) Absolute Basophil Count differences between the two groups of players 2 weeks before the game. (C) Triglycerides differences between the two groups of players 2 weeks before the game.
According to the statistical results of urine indexes, the positive detection rate of white blood cells (WBCs) in the BnP group was higher than that in the BP group (Figure 2A). The positive detection rate of urinary occult blood (BLD) in the BP group was higher than that in the BnP group (Figure 2B). The positive detection rate of urinary vitamin C (VC) in the BP group was higher than that in the BnP group (Figure 2C).
[image: Three pairs of circular diagrams labeled A, B, and C display segmented rings with central labels "BnP" or "BP". Diagram A has a yellow segment, B shows no segments, and C has blue segments. The diagrams compare data with labels such as WBC+ and EL.D-.]FIGURE 2 | (A) White blood cells differences between the two groups of players 2 weeks before the game. (B) Urinary occult blood differences between the two groups of players 2 weeks before the game. (C) Vitamin C differences between the two groups of players 2 weeks before the game.
3.2 Variability of indicators 1 week before the competition
During the precompetition reduction period, the statistical results of the psychological questionnaire showed that the results of the Rosenberg Self-esteem Scale in the BnP group were significantly higher than those in the BP group (P < 0.05) (Figure 3A). The results of blood indicators in the lactate dehydrogenase (LDH) in the BP group were significantly higher than those in the BnP group (P < 0.05) (Figure 3B). According to the statistical results of urine indicators, the positive detection rate of urinary occult blood (BLD) in the BnP group was higher than that in the BP group (Figure 3C).
[image: Boxplots labeled A and B depict data on the Rosenberg Self-Esteem Scale and lactate dehydrogenase enzyme levels, respectively, both comparing two groups labeled BP and BnP, with significant differences marked by asterisks. Circular diagrams in section C show proportions labeled α, βLD+, and βLD- for groups BnP and BP, with visible differences in segment sizes.]FIGURE 3 | (A) Rosenberg Self-Esteem Scale differences between the two groups of players 1 weeks before the game. (B) Lactate Dehydrigenase differences between the two groups of players 1 weeks before the game. (C) Urinary occult blood differences between the two groups of players 1 weeks before the game.
3.3 Results of the binary logistic classification
The results showed that body fat rate1, bone muscle2, heart rate2, cognitive state anxiety, and Individual failure anxiety had a positive effect on the prediction of good exercise performance, whereas social expectation anxiety and hematocrit (HCT) 2 had a positive effect on the prediction of poor performance (Figure 4).
[image: Scatter plot showing clustering weights across various algorithms labeled on the x-axis. Blue squares indicate data points, with the y-axis ranging from zero point two to zero point four. A red dashed line runs horizontally around zero point three, providing a reference.]FIGURE 4 | The horizontal axis shows the positive and negative correlations of each influence on athletic performance, as well as the intensity of each influence on the vertical axis; 1 stands for the intensive training period, and 2 stands for the reduction period.
3.4 Random forest algorithm results
The results showed that the order of important characteristics is as follows: METs2, heart rate2, CK2, LDH2, individual failure anxiety, body fat rate%1, bone muscle2, absolute basophil1 (BASO), bone muscle in the right lower limb2, bone muscle in the right lower limb1, social expectation anxiety, HCT2, fat mass in the left upper limb1, weight without fat1, absolute eosinophils (EOs)2, bone muscle in the right lower limb2, TG1, bonesalt1, cognitive state anxiety, and basal metabolic rate1 (Figure 5). These are the results of random forest hyperparameter optimization (Table 1).
[image: Bar chart illustrating factors ranked by their importance. The top factors are METs, heart rate, CK, LDL, anxiety scores, body fat, and bone muscle measurements. Importance values range from 0.00 to 0.08.]FIGURE 5 | The horizontal axis shows the order of importance of each influencing factor, and the vertical axis shows each influencing factor; 1 stands for the intensive training period, and 2 stands for the reduction period.
TABLE 1 | Random forest hyperparameter optimization results.
[image: Table showing hyperparameters for a model: Number of decision trees is 55, maximum depth of the tree is 4, and the minimum number of samples required to split an internal node is 3.]3.5 Results of principal component analysis
The results show that METs and body mass index (BMI) have a strong positive correlation with the difference between success (red dots) and failure (black dots). They also have a great ability to distinguish success from failure. The absolute basophil (BASO) arrow is short and points in the positive direction of the second principal component (PC2), indicating that it has a certain positive correlation with PC2. However, its explanation of the overall data variation may not be as significant as the variables on the first principal component (PC1). The two sets of indicators have differences, but many very similar features are almost equally important for classification. Moreover, interactions can be found between many features, which are slightly interpretive in explaining whether this factor affects game performance (Figure 6).
[image: Biplot showing PCA analysis with PC1 explaining 50.4% and PC2 explaining 12.8% of variance. Data points are labeled as either failure (black dots) or success (red dots). Arrows represent variables contributing to the principal components.]FIGURE 6 | The two principal components represent the main directions of variability in the data, and the points in the graph are differentiated by two colors: black for failure (not achieving superior athletic performance) and red for success (achieving superior athletic performance). The horizontal axis is PC1, which explains 50.4% of the variability in the data. The vertical axis is PC2, explaining 12.8% of the variability. The blue arrows represent the contribution of different variables to the two principal components, and the direction and length of the arrows represent the direction and strength of the correlation of these variables with the principal components, respectively. 1 stands for the intensive training period, and 2 stands for the reduction period.
3.6 NN results
The results show that each influencing factor has a positive impact, a negative impact, and no impact on the results of each unit. Explaining whether it has a single impact on the performance is difficult (Figure 7).
[image: Heatmap displaying various experimental features on the y-axis, such as anxiety scores and muscle measurements, with color gradients representing data values. The color bar ranges from blue to red, indicating different value intensities.]FIGURE 7 | The vertical axis is for each influencing factor, and the horizontal axis represents the weights of the feature weights for a model. The color indicates the magnitude of the feature’s value in the weight matrix. The color bar shows the correspondence between the value and the color, with dark red representing positively large values (achieving superior athletic performance), dark blue representing negatively large values (not achieving superior athletic performance), and white representing values near zero. The values range from approximately −0.855 to 0.32 for the intensive training period and 2 for the reduction period.
3.6.1 Model comparison
The random forest method outperforms binary logistic and NNs in all indicators. The results of the receiver operating characteristic (ROC) graph also show the same conclusion (Figure 8, Table 2). The random forest method has certain advantages in feature extraction for this multifeature small sample.
[image: ROC curve comparing two models: "ROC Curve_rf" and "ROC Curve_Logi". The x-axis represents the false positive rate (FPR) from 0.0 to 1.0, while the y-axis shows the true positive rate (TPR) from 0.0 to 1.0. The "ROC Curve_rf" is denoted by a teal line, and "ROC Curve_Logi" by an orange line. Both lines start at the origin, with the curves indicating different performance levels.]FIGURE 8 | Comparison of the ROC curve for logistic and the random forest method.
TABLE 2 | Comparison of the three machine models.
[image: Comparison table of machine learning models showing three columns: "Verification set accuracy," "AUC," and "F1 score." Models include Random Forest with values 0.83, 0.89, 0.86; Binary Logistic Classification with 0.67, 0.78, 0.67; and Neural Network with 0.83, 0.67, 0.86.]4 DISCUSSION
We studied this highly efficient high-level group by comprehensively monitoring their status before the competition. We found that precompetition blood metrics, urine metrics, psychological metrics, and body composition have an impact on performance. In this study, we also used machine learning as a method to determine the key metrics affecting the performance in the competition in the hope that the result would provide guidance for student-athletes in their training and competitions. In addition, this group has long lacked specialized training monitoring. We can increase student-athletes’ and coaches’ attention to precompetition status via comprehensive precompetition monitoring (Tanner and Gore, 2012; Gronwald and Hoos, 2020; Sasmarianto et al., 2021; Lun et al., 2009; Reinebo et al., 2024; Stepanyan and Lalayan, 2023). The results of the difference analysis showed that the two groups had no significant difference in nutritional intake indicators, Zephyr Bioharness heart rate belt training real-time monitoring indicators, and GT3X accelerometer collected sleep efficiency, physical energy consumption, and activity intensity indicators. The results of the machine learning algorithm also showed that the above indicators are not important indicators affecting the performance of the race, and the consistency between the two groups of athletes in terms of training load and nutritional supplementation is high (Sermaxhaj et al., 2024). This scenario may lead to differences in the performance of the race and is related to other factors affecting the state of the precompetition.
4.1 Analysis of differences between the two groups of athletes 2 weeks before the competition
For athletes, alterations in body composition affect strength, endurance, speed, flexibility, and recovery, thereby affecting performance (Xu, 2021). In this study, we found that the left upper limb fat mass in the BP group was significantly higher than that in the BnP group during the training preparation period; moreover, an appropriate amount of fat is necessary to protect the joints, maintain energy reserves, and keep the body healthy in general (Che et al., 2011). A proper amount of fat reserves during the preparatory period of training is beneficial for athletes to provide energy reserves during the training period and achieve excellent training effects (Nikolaidis and Son’kin, 2023).
The impact of blood markers on exercise performance is an important area of research across multiple dimensions, including oxygenation levels, energy metabolism, nutritional status, and recovery (Wahl et al., 2020). Basophils are a type of WBC that normally plays a role in the body’s immune response. For athletes, the absolute value of EO may indirectly reflect some health conditions or physical reactions that may affect their training and performance (Lasmanova, 2014). In this study, the absolute EO values in the BnP group were significantly higher than those in the BP group; moreover, athletes may have allergies, parasitic infections, and immune disorders that affect training preparation (Chávez-Guevara et al., 2022). Lipid levels have an indirect effect on performance, but they are important indicators of cardiovascular health. Good cardiovascular health is the basis for maintaining and improving athletic performance. TGs are a form of lipid in the blood, and in this study, TGs were significantly higher in the BnP group than in the BP group. Moderate TG levels contribute to the efficient utilization and storage of energy in athletes, thereby enabling athletes to access energy reserves quickly when needed. However, high TG levels have also been associated with other hallmarks of metabolic syndrome, such as insulin resistance, hypertension, and hyperglycemia (Wang et al., 2019). Athletes in poor physical health are associated with unfavorable performance. Both groups of indicators showed differences in race performance. This finding may be related to the state of physical health during the preparatory period of training.
Urine indicators are one of the most important tools for assessing an athlete’s health and athletic performance; they can reflect hydration status, nutritional status, degree of muscle damage, and certain health problems (Bain, 2021). WBCs are part of the immune system and are responsible for fighting infections and inflammation (Damian et al., 2021), which can lead to immune dysfunction. One of its manifestations is a change in the WBC count, which affects the athlete’s performance in training and competition. WBCs are the same as basophilic leukocytes, which are one of the blood markers. The BnP group has a higher detection rate of positive leukocytes than the BP group, and the athlete has a high rate of positive leukocytes during the training preparation period. Problems in health status during the preparatory period of training have an impact on the training effect of the subsequent training (Pan and Wang, 2020), thereby affecting the performance of the game. In athletes, sports training load may lead to the emergence of abnormal excretions, such as proteinuria and urinary occult blood. In this study, the positive detection rate of urinary occult blood (BLD) in the BP group is higher than that in the BnP group. This result may be due to the fact that the BP group had a high training load in the previous phase, and the athletes had not fully recovered (Sabzevari Rad, 2023). Urinary VC varies significantly among athletes with different performance levels with high impact weights. A placebo study has shown that 500 mg of VC before and after exercise reduces the risk of upper respiratory infections (Tiller et al., 2019). Studies have shown that the risk of upper respiratory infections is lower in athletes with different performance levels. Plasma VC concentrations were significantly lower 2–4 days after completion of a half-marathon. The body consumes VC to reduce oxidized LDL cholesterol and oxidized vitamin E (Farhana and Lappin, 2020). The results of the present study showed that the positive detection rate of urinary VC in the BP group was higher than that in the BnP group, suggesting that the athletes in the BP group had a better physical condition than those in the BnP group.
4.2 Analysis of differences between the two groups of athletes 2 weeks before the competition
The previous sections discuss that blood indicators are important in examining the physical status of athletes. LDH is an enzyme widely found in the body and plays a key role in the metabolism of lactic acid. During a high-intensity exercise, the supply of oxygen to the muscle cells may not be sufficient to meet the energy demand, leading to an increase in anaerobic metabolism and the accumulation of lactate and H+ ions. LDH converts lactate to pyruvate in this process, thereby helping to maintain intracellular acid–base balance and delaying the onset of muscle fatigue. Therefore, the activity level of LDH can reflect the anaerobic endurance capacity of athletes to a certain extent (Dao, 2021). After exercise, the removal of lactic acid from the body is an important part of the recovery process. LDH plays a key role in the conversion of lactate back to pyruvate. This process not only helps to eliminate lactate quickly but also promotes the regenerative utilization of energy. The effective activity of LDH is essential for rapid recovery after exercise. The results of this study showed that the LDH of the BP group was significantly higher than that of the BnP group. The enhanced lactate metabolism and recovery ability and the improved adaptability during training are conducive to producing excellent athletic performance (Gibb et al., 2022; Borresen and Lambert, 2009).
The statistical results of urine indexes show the effects of urinary occult blood (UOB) on athletes’ physical functions. According to the results of the study, the positive detection rate of UOB in the BnP group during the precompetition reduction period was higher than that in the BP group. The exercise load affects UOB, and the athletes in the BnP group have a high exercise load before the competition, thereby affecting their exercise performance (Lopes Dos Santos et al., 2020).
4.3 Analysis of differences in psychological questionnaire indicators
The results of the Rosenberg Self-esteem Scale reflect an individual’s level of self-esteem, which affects an athlete’s athletic performance in several ways. Self-esteem refers to an individual’s overall assessment of self-worth, including feelings of self-acceptance and self-respect. Athletic performance is influenced not only by physical training and skills but also by psychological factors, such as the athlete’s mental state, emotional regulation, and self-perception. Athletes with high self-esteem typically possess great self-confidence and self-efficacy in their ability to reach goals and overcome challenges. This belief helps them to stay focused and calm in the face of competition and stress; as a result, their athletic performance can be improved. The results of the Rosenberg Self-Esteem Scale in the BnP group in this study were significantly higher than those in the BP group. Some studies have shown that high self-esteem may sometimes translate into overconfidence or complacency. Athletes who maintain an overconfident and complacent mentality do not work hard enough in their preparation and training, and this attitude affects their athletic performance. Athletes may also face expectations and pressures from coaches, teammates, and family. Even if they have high self-esteem, the pressure of these external factors may have a negative impact on their performance in important competitions (Powell et al., 2022). Coaches should provide individualized training and psychological support to each athlete according to his or her specific needs to help this individual build on his or her high self-esteem and enhance other psychological and physical factors that have a significant impact on athletic performance (Couronné et al., 2018).
4.4 Analysis of machine learning results
In analyzing the weights of the influencing factors affecting race performance, we used multinomial logistic regression with a random forest algorithm in machine learning analysis methods. The multinomial logistic regression screened for significant overlap with the traditional rank-sum test of variance for absolute basophil (BASO) during the training preparation period and LDH during the prerace tapering period. The random forest algorithm screened for significant overlap with the traditional rank sum test for fat mass in the left upper limb, absolute basophil (BASO), TGs, LDH, and LDH during the precompetition taper period. For LDH, the high rate of overlap suggests a high degree of agreement between the traditional rank-sum test and the machine learning algorithm in determining the influences on race performance and increasing confidence in the influences in the study. In addition. multinomial logistic regression, which has a high overlap with the random forest algorithm for determining the importance of influencing factors, presents body fat rate and absolute basophil (BASO) during the preparation period. CK, LDH, erythrocyte pressure (HCT), heart rate, and other factors can be used to judge the importance of the factors in the precompetition tapering period. For the CK, LDH, HCT, heart rate, and individual failure anxiety, a high degree of agreement exists between logistic regression and random forests in identifying influences. Logistic regression and random forests have a high degree of agreement in identifying influencing factors. However, they differ in their methodology, the way they handle the data, and their ability to interpret the model. Logistic regression provides a direct explanation of the effects of the influencing factors on the probability of an outcome, whereas random forests can deal with nonlinear relationships and interactions between features through their integrated learning properties (Elhaik, 2022; Isomura and Toyoizumi, 2021). The high rate of overlap suggests that despite their different methodological approaches, they can complement one another in dealing with issues related to influencing factors affecting performance. This high degree of congruence provides a solid basis for the present study of athletes’ precompetition status that can affect their performance.
In principal component analysis plots, two groups of different but very similar features are of almost equal importance for classification, and interactions exist between many of the features. Given the interactions, determining from the results that any feature is the most important is difficult (Achterberg et al., 2023). We should consider using PCA to reduce dimensionality and create new features to obtain excellent predictive models in the future [40]. The overall PCA helps with minimal explanatory predictions, and the algorithm for addressing the weighting of the influencing factors in this study is barely appropriate.
An NN refers to the relationship between the input features and the weight matrix of the influencing factors in predicting an athlete’s performance in a competition. Each cell color in the heat map represents the size of a particular input feature corresponding to a certain weight in the NN, which affects the output of the model. The results of this study show that a feature has a small weight on each cell, and that feature is the least important for the model. As a result, explaining which influencing factor is the least important becomes difficult (Achterberg et al., 2023). NNs are hardly suitable for the study of weights of the influencing factors in small sample studies. However, they are informative in predicting the performance of the competition through influencing factors, which is difficult to interpret.
5 CONCLUSION
The precompetition assessment of absolute basophil count (BASO), LDH levels, TG concentrations, WBC count, CK activity, fat mass in the left upper limb, HCT, and individual failure anxiety can serve as a comprehensive training monitoring indicator. This indicator set is particularly focused on tracking athlete status before competitions to provide valuable insights into their physiological and psychological preparedness.
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Purpose
Two experiments were conducted to determine the construct and concurrent validity of a commercial kayak paddle shaft power meter (OGL) for measuring force and power output in female sprint kayakers.
Methods and Results
Construct validity: Seven female participants used the same OGL paddle to complete 30 s trials at different stroke rates (60, 80, 100, maximum strokes per minute) while a global positioning system measured kayak velocity. Regression analysis provided a large coefficient of determination (R2≥0.83) between mean power and mean velocity (f(x) = 6.892 × 3). Concurrent validity: Two known weight combinations were used to calibrate the paddle (wide range: 51.5–394.9 N; narrow range: 100.6–247.7 N), whereas both left and right sides of the shaft were statically loaded eight separate times with known weights (51.5 N–394.9 N at 49.1 N intervals) to test its concurrent validity. The right side of the shaft had proportional bias (p < 0.001) and the left side of the shaft had fixed bias (65.7 ± 21.1 N, p = 0.017) when calibrated with a narrow range. Neither shaft side had proportional bias, but both shaft sides had small, fixed biases (left: 18.3 ± 7.4 N, p = 0.043; right: 9.3 ± 3.0 N, p = 0.018) when calibrated with a wide range.
Conclusion
The study establishes that even though the OGL reports power values that appear to have construct validity up to 4.6 m s-1, calibration with a range of weights that encompasses the projected applied forces is needed to improve the accuracy of the force measurement, and thus the power calculation, by the OGL.

Keywords: power, force, elite, female, athletes, on-water
1 INTRODUCTION
As innovative technology becomes available, on-water measurement of paddle forces and power are becoming popular in sprint kayaking. These measurements are highly beneficial to performance evaluation because they quantify the mechanical workload required to be successful, while other external variables may be affected by changes in the environment (i.e., velocity, stroke rate (SR), etc.) (Hogan et al., 2020a). Power output is often measured in other cyclical sports; however, it remains uncommon in on-water sprint kayaking even though average power output is related to an increase in sprint kayaking performance on a kayak ergometer (Bishop et al., 2002; Michael et al., 2008; 2009), most probably because of the higher complexity of the paddling movement (McDonnell et al., 2013). However, there is a need to measure power output to help coaches and athletes determine workload while training. Researchers and practitioners have been searching for a tool to measure on-water propulsive forces from a kayak paddle since at least the 1980s (Aitken and Neal, 1992; Bonaiuto et al., 2020; Gomes et al., 2015; Kong et al., 2020; MacDermid and Fink, 2017; Romagnoli et al., 2022; Stothart et al., 1986a; Stothart et al., 1986b). There have been many iterations of instrumented paddles and power meters, but no single paddle is widely accepted as a gold standard. One study suggested that a lack of products available with an “acceptable level of validity”, below 5% measurement error (Brosnan et al., 2021; Crang et al., 2021), was the primary reason (McDonnell et al., 2013). For the interpretations of values from a measurement system, and inferences based on these measurements to be meaningful, it is critical that the evaluation measures demonstrate acceptable validity and reliability. There are several types of measurement validity, and this research focuses on construct and concurrent validity. Establishing the degree to which a measure assesses the hypothetical construct it is intended to reflect is central to construct validity. Whereas, comparing the measured values to a known “gold standard” is the tenet of concurrent validity.
Multiple recent studies have used a specific power meter (Kayak Meter Pro, One Giant Leap (OGL), Nelson, NZ) to measure the propulsive force and power of a sprint kayak stroke (Hogan et al., 2020a; Hogan et al., 2020b; Hogan et al., 2021; Kong et al., 2020; Macdermid et al., 2019; Winchcombe et al., 2019). The OGL paddle has six strain gauges and an inertial measurement unit, which calculate force output and power using proprietary algorithms (Winchcombe et al., 2019). The exact use of the paddle varies between studies, but it is commonly used to monitor training load, physiological testing (Hogan et al., 2021; 2020b; 2020a; Macdermid et al., 2019; Winchcombe et al., 2019), and/or kayak stroke kinetics (Kong et al., 2020). Macdermid and Fink (2017) established the construct validity of the OGL paddle by comparing its measurements to the cubic relationship between power output and velocity in aquatic locomotion (Barbosa et al., 2010; Di Prampero et al., 1974; Michael et al., 2009). This relationship can be explained further by reducing the equation of power. To increase kayak velocity, the kayaker must overcome the hydrodynamic drag forces resisting the athlete kayak system; therefore, increasing the overall power output. Since power is equal to force multiplied by velocity, we can substitute drag force into the equation. Drag force (DF) is equal to Equation 1,
DF=12ρAKv2(1)
where ρ is equal to water density, A is kayak surface area, K is drag coefficient and v is velocity. By multiplying both sides of the equation by v, power (P) becomes Equation 2,
P=12ρAKv3(2)
Which makes it proportional to velocity cubed (Macdermid and Fink, 2017).
Unfortunately, the study looked at the power meters in slalom kayak training, and thus may not be transferable to elite level sprint kayaking (Hogan et al., 2020a; Hogan et al., 2020b; Hogan et al., 2021; Kong et al., 2020; Winchcombe et al., 2019). For example, the low on-water paddling velocities collected during their validation (i.e., maximum velocity of 2.49 m s-1) are well below that of race velocities for female 200 m sprint kayakers (4.95 ± 0.46 m s-1) (Goreham et al., 2021). Furthermore, the study used a narrow range of known forces during their experiment, with only three known weights tested to a maximum of 155.9 N. This amount of force is significantly lower than the mean peak forces applied to the water by elite sprint kayakers at velocities of 4.14 ± 0.25 m s-1 (301.1 ± 23.1 N) (Bonaiuto et al., 2020).
The purpose of this study was to determine the OGL power meter measurement validity for on-water sprint kayak. The first experiment extended the construct validity of the OGL power meter by including velocities that are comparable to levels found in sprint kayak. It was hypothesized that the OGL paddle’s mean power output would have a strong cubic relationship with mean kayak velocity. If found to have acceptable construct validity, a second experiment determined the concurrent validity of the paddle force measurements. It was hypothesized that the OGL paddle’s force outputs would not be significantly different from applied known weight forces. Finally, a supplementary data acquisition was carried out to determine if a wider range of calibration weights would provide better concurrent validity than the suggested range of calibration weights.
2 MATERIALS AND METHODS
2.1 Construct validity
2.1.1 Participants
Seven elite (Canadian national level and above) female sprint kayak athletes (21.6 ± 4.6 years old, 1.69 ± 0.04 m, 66.8 ± 5.4 kg, 12.7 ± 5.1 years of kayaking experience) participated in the construct validity portion of the study. All participants consented to participating in the study in accordance with Dalhousie University’s Research Ethics Board (No. 2020-5127).
2.1.2 Experimental protocol
Data were collected on a marked 1,000 m sprint kayak racecourse with participants using their personal kayaks and a short, stiff OGL power meter (Gen 2.1) with Brača IV (765) blades. Prior to testing the distances between the blade tips and middle knuckles of each hand, blade tip to blade tip, blade tip to shaft datums (marks provided by the manufacturer on the paddle shaft), the blade twist, and the blade type were recorded in the OGL web application. The calibration process consisted of three steps. The first step recorded the output of the load cells during an unloaded condition (leaning vertically against a wall). For the second step, the paddle was placed horizontally on two thin (width: 0.3 m) support surface, one located in the middle of the right blade and the second located at the approximate location of the top hand (left hand, Figure 2A). Known weights (i.e., 100.6 N and 247.7 N) were hung at the approximate location of the bottom hand (right hand) as per the manufacturer’s guidelines and load cell outputs were recorded. The third step consisted in replicating the second step using the left blade and location of the right hand for the location of the fulcrums and the location of the left hand for the location of the calibration weights. The recorded data was used to generate the OGL power meter load cells scale factors.
The experimental protocol began with a 10 min, individual-led warm-up, followed by a 5-min rest period. The participant then completed four, 30-s trials. One for each of four different SRs (random order: 60 strokes per minute (spm), 80 spm, 100 spm, and maximum spm), with a 3-min rest period between trials (Figure 1A). These SRs were selected as they are often used in training (60 spm, 80 spm) and in competition (100 spm, maximum spm). Participants started the trial from a static position and were instructed to increase their SR slowly until they reached the intended trial SR (within 10 s). The average SR during the final 20 s of the trial was required to be within ±5 strokes per minute of the intended SR to be analyzed.
[image: Diagram and graphs related to paddling trials: Panel A outlines a timeline with five sections, including warm-up and rest periods, and several paddling trials of varying stroke rates (SR). Panel B shows a scatter plot for combined shafts with mean power in watts against mean velocity in meters per second; a cubic trend line is fitted. Panel C displays separate plots for left and right shafts, with cubic trend lines and equations for each, showing their respective R-squared values.]FIGURE 1 | (A) The experimental protocol for the construct validation portion of the study. SR, stroke rate; spm, strokes per minute; min, minutes. Mean velocity vs mean power outputs measured from (B) the average of all ten strokes (circles) and (C) the right (squares) and left (triangles) shaft sides, separately. Red and blue lines indicate the cubic function’s line of best fit for the right and left sides of the shaft, respectively. Dotted lines indicate 95% confidence bands. R2, coefficient of determination; W, watts; m•s-1, meters per second.All data were collected in calm environmental conditions (15.8°C ± 3.5°C air temperature, 14.3°C ± 2.1°C water temperature, 0.73 ± 0.51 m s-1 tail wind). Data collection in similar environmental conditions reduced the effect of wind and water temperature on the variability of the measurement properties. OGL paddle data were collected using a Samsung Galaxy Tab S2 tablet with OGL’s web based software. Force and power output from the paddle was measured at 50 Hz during each stroke’s water phase. Kayak velocity data were collected for each trial using an inertial measurement unit (IMU; LMS330DL, STMicroelectronics©, Indiana, United States) with a 5 Hz GPS/GNSS module. The IMU was attached to the kayak using Velcro on the midline of the longitudinal axis of the boat, 0.15 m posterior to the kayak’s cockpit. The IMU contained a tri axial accelerometer measuring acceleration at ±2 g over a full-scale dynamic range. Accelerometer data were sampled at 50 Hz and peak detection algorithms were used to calculate SR.
2.1.3 Data analysis
Power output data were obtained during ten stroke cycles (i.e., five strokes on the left side and five strokes on the right side) while paddling at the trial’s intended SR. Mean power output was subdivided into three groups: the mean power of ten strokes, and the mean power of five left and five right strokes separately. Mean kayak velocity was calculated by averaging the kayak’s velocity in the forward direction between the catch of the first stroke to the catch of the 11th stroke.
2.1.4 Statistical analysis
The mean stroke power as a function of mean kayak velocity was used to establish the construct validity of the OGL paddle. Based on Equation 2, a cubic regression between mean power output and mean velocity and a y intercept of 0 was calculated for all ten strokes and the left and right strokes separately. A coefficient of determination (R2) was used to determine the goodness of fit for each linear regression (Chicco et al., 2021). Statistical analyses were conducted in GraphPad Prism software (v.9.1.0, GraphPad Software, San Diego, United States).
2.2 Concurrent validity
2.2.1 Paddle calibration procedure
The OGL power meter with Brača IV (765) blades was set up according to manufacturer’s guidelines (i.e., zero offset and scale factor) and calibrated using a narrow and wide weight range. The known weights used for the narrow weight calibration were 100.6 N (10.25 kg) and 247.7 N (25.25 kg), whereas the known weights for the wide weight calibration were 51.5 N (5.25 kg) and 394.9 N (40.25 kg). These weights were chosen to represent the suggested weights from OGL (narrow eight calibration) and forces that have been recorded in sprint kayaking (Bonaiuto et al., 2020). The paddle shaft was placed horizontally on two fulcrums with one fulcrum supporting the top hand position and the other fulcrum supporting the blade centre. Weightlifting plates were suspended at the bottom hand position with a small rope and metal carabiners (mass: 0.25 kg). Measurement lengths of 0.880 m, 0.345 m, 0.240 m, 1.330 m, 0.780 m, and 2.110 m were used for the blade tip to datum, datum to datum, blade tip to blade support, blade tip to shaft support, blade tip to calibration weight, and blade tip to blade tip, respectively. The blade twist was set to 60˚ right hand twist for both validations. All measurements were recorded in the OGL web application.
2.2.2 Experimental protocol
Concurrent validation testing of the OGL power meter was conducted on both the right and left shaft sides, after each (narrow and wide) calibration procedures. Eight known weights (ranging from 51.5 N to 394.9 N, separated by 49.1 N increments) were hung at hand positions on both right and left shaft sides in a randomized order (Figure 2A). The weights were suspended using the same attachment system and locations used during the calibration procedure. All trials were recorded at 50 Hz and for 10 s.
[image: Image panel showing nine parts related to force measurement. A is a setup with weight plates suspended on a shaft supported by hurdles. B to E are graphs showing relationships between measured and known forces for narrow and wide ranges in right and left positions. F to I are Bland-Altman plots showing differences between measured forces and averages for the same conditions.]FIGURE 2 | An example of the concurrent validation experimental setup. (A). An example of the concurrent validation experimental setup. Linear regression data Panels (B–E) and Bland-Altman method of differences data Panels (F–I) between known forces and OGL-measured forces for the left and right shaft sides for both calibrations (narrow force range: 100.6 N–247.7 N, and wide force range: 51.5 N–394.9 N). The only calibration condition that shows a proportional bias is for the right shaft when using a narrow range of calibration Panel (F). The narrow range of calibration shows a positive fixed bias Panel (C) whereas the wide range of calibration shows a negative fixed bias Panel (H–I). a, y-intercept; b, slope; numbers in parentheses, 95% confidence intervals (CI).2.2.3 Statistical analysis
A linear regression was completed between the measured OGL paddle forces and the applied known weights (i.e., criterion measure). The linear regression’s coefficient of determination was calculated for the left and right shaft sides and calibration type. Bland Altman method of differences analyses was completed to determine if fixed and proportional bias were present in the force measurements (Ludbrook, 2010). The presence of proportional bias was determined by using an ordinary least square regression (OLS) and using an F test to determine if the slope of the method of differences data was significantly different than ‘0’. If proportional bias was present, then fixed bias was determined using an F test to establish if the y-intercept of the OLS regression between methods was different from ‘0’ (Ludbrook, 2010). If there was no proportional bias, then fixed bias was determined using a one-sample t-test comparing mean difference between methods data to ‘0’, and effect sizes were measured using partial eta squared (η2) (Ludbrook, 2010). Bland Altman analyses were conducted in GraphPad Prism. All datasets were confirmed to follow normal distributions based on D’Agostino Pearson normality tests. Statistical significance (critical α) was set at 0.05.
3 RESULTS
3.1 Construct validity
The on-water construct validity experiment results for mean SR, velocity, force, and power output for all strokes, and left and right shaft sides are shown in Table 1. The coefficient of determination (R2) value from the linear regression (cubic relationship: Power = x•v3) between mean paddle power and mean velocity, was 0.83 (individual range: 0.83 to 0.99; RMSE = 70.9; F27,27 = 70.9, p < 0.001) for all ten strokes (Figure 1B) and was 0.85 (RMSE = 68.7; F27,27 = 68.7, p < 0.001) for the left side of the shaft and 0.75 (RMSE = 89.4; F27,27 = 89.3, p < 0.001) for the right side of the shaft (Figure 1C). The coefficient value ±standard error of measurement (SEM) and the 95% confidence intervals (CI) of the combined shaft linear regression equation (x) were 6.892 ± 0.183 (CI: 6.517–7.268). The coefficient values ±SEM (and 95% CI) for the left and right shafts regressions were 7.104 ± 0.177 (CI: 6.740–7.461) and 6.681 ± 0.231 (CI: 6.207–7.154), respectively.
TABLE 1 | Average stroke rate, velocity, force, and power outputs, and maximum force output measured in all and left and right strokes during on-water construct validation.	Variable	60 spm	80 spm	100 spm	Maximum spm
	Stroke Rate (spm)	61.90 ± 1.89	83.02 ± 1.96	101.53 ± 2.78	124.04 ± 12.83
	Velocity (m•s-1)	3.42 ± 0.14	3.89 ± 0.06	4.32 ± 0.08	4.61 ± 0.22
	Mean Power All Strokes (W)	297.7 ± 57.5	416.8 ± 64.2	536.7 ± 93.7	669.4 ± 174.4
	Mean Power Left Strokes (W)	313.4 ± 57.1	434.9 ± 57.8	549.1 ± 100.3	685.1 ± 181.4
	Mean Power Right Strokes (W)	282.0 ± 71.5	398.6 ± 87.7	524.2 ± 105.7	653.7 ± 177.9
	Mean Force All Strokes (N)	168.0 ± 51.8	185.3 ± 55.4	203.4 ± 64.2	207.0 ± 69.4
	Maximum Force All Strokes (N)	270.8 ± 84.8	284.4 ± 86.9	307.7 ± 93.4	320.0 ± 101.6


Mean or maximum ± standard deviation; spm, strokes per minute; m•s-1; Meters per second; W, watts; N, newtons.
3.2 Concurrent validity
The Measured Force as a function of Known Force was represented appropriately by a linear model (Measured Force = x•Known Force + constant; Narrow-Right: F6,6 = 17.9, p = 0.001; Narrow-Left: F6,6 = 55.4, p < 0.001; Wide-Right: F6,6 = 8.6, p = 0.01; Wide-Left: F6,6 = 21.5, p = 0.001). The slopes of the linear regression from the wide weight range calibration were the closest to the optimal slope of 1, with mean slopes ±SEM (and 95% CI) of 0.98 ± 0.03 (CI: 0.91–1.04) for the right side of shaft and 0.95 ± 0.07 (CI: 0.78–1.11) for the left side of shaft (Figures 2D,E). The mean slopes ±SEM (and 95% CI) of the linear regression analyses from the narrow weight range calibration were larger (left side of shaft = 1.25 ± 0.17 (CI: 0.83–1.68); right side of shaft = 1.31 ± 0.06 (CI: 1.17–1.44) than the wide calibration (Figures 2B,C). The mean y intercept values ±SEM (and 95% CI) of the linear regression analyses were 12.73 N ± 14.05 (CI: 47.12 to 21.65) for the right side of shaft and 9.93 N ± 43.29 (CI: 96.0–115.9) for the left side of shaft for the narrow calibration, and 3.75 N ± 6.81 (CI: 20.41 to 12.92) for the right side of shaft and 6.23 N ± 16.9 (CI: 47.59 to 35.12) for the left side of shaft for the wide calibration (Figures 2B–E). The Bland-Altman method of differences identified that the narrow calibration right side of the shaft condition was the only condition to display proportional bias and the only condition to have no fixed bias (Figures 2F–I; Table 2).
TABLE 2 | Bland-Altman method of difference results for known force vs OGL-measured force.	Force Range - Shaft	Proportional Bias	Fixed Bias
	r	b	P(OLS)	Proportional Bias?	Mean Difference ±SEM (N)	95% CI (N)	P(t-test)	ES	Fixed Bias?
	Narrow – Right	0.93	0.27	<0.001	Yes	-	−41.7, 16.6	0.397	-	No
	Narrow – Left	0.66	0.28	0.076	No	65.7 ± 21.1	15.9, 115.5	0.017	0.58	Yes
	Wide – Right	0.31	−0.02	0.448	No	−9.3 ± 3.0	−16.4, −2.2	0.018	0.57	Yes
	Wide – Left	0.23	−0.04	0.588	No	−18.3 ± 7.4	−35.8, −0.8	0.043	0.47	Yes


Narrow force range, 100.6 N–247.7 N; wide force range, 51.5 N–394.9 N.
a product-moment correlation coefficient; b, ordinary least squares (OLS) slope of the Bland-Altman method of differences plots; P (OLS), P value for the OLS, slope (vs 0); P (t-test), P value for the one-sample t-test on the mean differences or y-intercept (vs 0).
SEM, standard error of mean; CI, confidence interval; ES, effect size; P < 0.05.
Explanation of the 95% CI, column: If proportional bias is present, the 95% CI, column represents the CI, of the y-intercept. If no proportional bias is present, the 95% CI, column represents the mean difference from the Bland-Altman plotand ES, is the partial eta squared.
4 DISCUSSION
This study aimed to validate the OGL power meter paddle because of its increased usage during sprint kayak training (Hogan et al., 2020a; Winchcombe et al., 2019). The results showed that the OGL power meter had both fixed and proportional bias when comparing measured forces to known forces under static loading conditions. However, only fixed bias was present when the paddle was calibrated with a wider calibration range compared to fixed bias or proportional bias when calibrating using a narrower range. Furthermore, the mean difference between the known and measured forces were approximately 3–7 times more when the paddle was calibrated with the narrow range of weights. Therefore, it can be argued that a mean error of approximately 10–20 N is small and can be used by athletes in training. As such, the calibration range should encompass the expected force ranges produced by the athletes being tested. Although the results showed the OGL paddle to have both construct and concurrent validity (when calibrated with a wide range of forces), it also showed the importance of considering the calibration procedures prior to collecting data with athletes.
The results from this study also showed that there was a strong cubic relationship between the OGL paddle’s mean power output and the athlete’s mean kayak velocity during on-water testing. This strong cubic relationship has a significant implication for elite-level sprint kayaking since for higher boat velocities, a small increment in boat velocity requires an increasingly larger increase in power. However, an important concept to consider is the construct validity does not validate the absolute power values. The construct validity results indicate that the OGL power meter results match what is expected from the cubic power-velocity relationship. Based on the concurrent validity results, if the power meter is not calibrated with an appropriate range of weights, the measured forces may have a large bias. Since power is calculated from the measured forces, the power measurements will also be biased. This concept is also relevant for the research by Macdermid and Fink (2017).
This study conducted similar concurrent and on-water construct validation protocols as Macdermid and Fink (2017). A crucial difference between studies was the inclusion of elite female sprint kayakers during the on-water construct validity assessment. For example, they showed the OGL paddle was a tool that showed construct validity for the measurement of mean power output while paddling at low kayak velocities (i.e., <2.5 m s-1), whereas our study showed the OGL paddle showed construct validity at higher velocities and for female sprint kayakers (i.e., between 3.42 ± 0.14 and 4.61 ± 0.22 m s-1) (Macdermid and Fink, 2017). Secondly, the coefficient of determination of the cubic relationships between mean power output and mean kayak velocity was greater in their study (R2 = 0.98) compared to the current study (R2 = 0.83). The difference between studies may be due to the number of participants tested. Our study tested seven elite female sprint kayakers, whereas their study tested a single male participant. Other factors that may have influenced the coefficient of determination differences may have been the athlete’s kayaking technique and anthropometrics. The current study is an extension of the previously published data, as the OGL paddle’s power output is now validated to velocities more appropriate to elite sprint kayakers (approximately 4.6 m s-1). Future research should investigate this relationship for paddling velocities reaching at least 6 m s-1 to include performances from male sprint kayakers (5.81 ± 0.54 m s-1; elite male K1 200 m sprint kayakers) (Goreham et al., 2021).
The current study and Macdermid and Fink (2017) both used static known weights to assess concurrent validity; however, the current study had eight weight trials and a larger maximal weight (394.9 N) compared to three known weights and a maximum weight of 155.9 N (Macdermid and Fink, 2017). These differences may explain why they identified a strong relative agreement between the known and measured forces with mean difference errors between 0.12% and 1.4%, while the current study identified greater absolute mean differences (Table 2) (Macdermid and Fink, 2017). In relative terms, the mean difference errors in the current study were between 0.9% and 11.7% for the right side of the shaft and 2.3%–23.4% for the left side of the shaft. Although no analytical goal was chosen for this study, multiple studies investigating other technology’s validity (e.g., IMU and GPS) have stated a mean percentage difference less than 5% is good, whereas percentages between 5% and 10% are moderate, and any value above 10% is poor (Brosnan et al., 2021; Crang et al., 2021). Again, it is suggested users of the OGL power meter calibrate their paddles with a range of forces equal to that of the kayakers they are testing.
An example of the importance of properly calibrating the OGL paddle prior to use was noticeable in a recent publication that measured bilateral force asymmetries while sprint kayaking in crew boats (Kong et al., 2020). The article presented a figure where raw force asymmetries of approximately 50–100 N were evident. The result from our study gives confidence that the OGL paddle can provide mean force differences of approximately 10–20 N under static loading conditions. By increasing the calibration force range, we saw the absolute mean difference of the left side of the shaft drop from 65.7 ± 21.1 N to 18.3 ± 7.4 N. Although no information was presented about how calibration was completed in the Kong et al. (2020) study, if they calibrated with a narrow range then their asymmetry observations may have been the biproduct of absolute mean difference errors rather than true athlete asymmetry. This further suggests the importance of internally validating equipment to ensure athlete recommendations to coaches are accurate (Brosnan et al., 2021).
4.1 Limitations
There were two study limitations from a statistical analysis perspective. First, an a priori sample size calculation was not completed, which provides the possibility of having an underpowered study that generated inappropriate estimation of the variance of the outcome variables (for example, the mean difference from the Bland-Altman method). Second, the residuals from the left shaft power measurements did not follow a normal distribution; therefore, a robust regression was also conducted on these data. The coefficient of the cubic function for the left shaft changed from 7.104 (linear regression) to 7.155 (robust regression). Since the robust regression coefficient was well within the confidence intervals of the linear regression (i.e., 6.740–7.461) the difference was not deemed to have a large effect on the overall results of the study. Finally, all participants used one OGL paddle with one set of blades, to which some athletes may not have been accustomed. However, all athletes were given ample time to warmup with the paddle before completing the trials, and no athlete stated it was difficult to paddle with the OGL paddle. Due to these reasons, we do not believe the paddle characteristics affected the results. However, by testing one OGL paddle during this experiment it introduced another limitation to the research, which was that only female athletes were studied. Due to the shorter length of the paddle, it typically only allowed for females to be tested. Although we do not expect to more differences when male sprint kayakers are tested, we have demonstrated the need to calibrate the instrument in the range of forces to be experienced. As such the range of weights for the calibration needed for male sprint kayakers may be different, but the principle remains the same.
4.2 Conclusion
The sport of sprint kayaking is long overdue for the power meter and force paddle technology. Currently it is common for training to be prescribed using stroke rate, distances, time, and heart rate, which are all metrics that can be affected by external factors, like the environment. By measuring power output or the paddle forces from the athlete while training the coach can determine the exact workload their athletes are enduring irrespective of the weather.
Other uses for power and force output on-water are for physical testing and development, as well as technique analysis. Strength and conditioning are a very important aspect of sprint kayaking, as all athletes are trying to increase their strength and speed capabilities while on water. Being able to measure the amount of force an athlete applies to the water, and how quickly they apply it will directly influence how their off-water training should be optimized.”
From a technical standpoint, measuring the physical output of the paddler on water allows coaches to obtain instantaneous feedback on how technique changes are influencing the athlete’s performance. This is a feature that has been missing from sprint kayaking, but is present in other sports (i.e., rowing).
In conclusion, the study establishes that even though the OGL reports power values that appear to have construct validity up to 4.6 m s-1, calibration with a range of weights that encompasses the projected applied forces is needed to improve the accuracy of the force measurement, and power calculation, by the OGL.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.
ETHICS STATEMENT
The studies involving humans were approved by Dalhousie University’s Research Ethics Board. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS
JG: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Validation, Visualization, Writing – original draft, Writing – review and editing. ML: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review and editing.
FUNDING
The author(s) declare that financial support was received for the research and/or publication of this article. The authors would like to acknowledge funding from Mitacs (Accelerate Fellowship), Own the Podium (Innovations 4 Gold program), and the Nova Scotia Graduate Scholarship.
ACKNOWLEDGMENTS
The authors would like to thank the athletes who participated in this study, and Will George from the Canadian Sport Institute Ontario for his support with equipment.
CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
REFERENCES
	Aitken D. A., Neal R. J. (1992). An on-water analysis system for quantifying stroke force characteristics during kayak events. Int. J. Sport Biomech. 8, 165–173. doi:10.1123/ijsb.8.2.165

	Barbosa T. M., Bragada J. A., Reis V. M., Marinho D. A., Carvalho C., Silva A. J. (2010). Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J. Sci. Med. Sport 13, 262–269. doi:10.1016/j.jsams.2009.01.003

	Bishop D., Bonetti D., Dawson B. (2002). The influence of pacing strategy on VO2 and supramaximal kayak performance. Med. Sci. Sport. Exerc. 34, 1041–1047. doi:10.1097/00005768-200206000-00022

	Bonaiuto V., Gatta G., Romagnoli C., Boatto P., Lanotte N., Annino G. (2020). A pilot study on the e-kayak system: a wireless DAQ suited for performance analysis in flatwater sprint kayaks. Sensors Switz. 20, 542–17. doi:10.3390/s20020542

	Brosnan R. J., Watson G., Stuart W., Twentyman C., Kitic C. M., Schmidt M. (2021). The validity, reliability, and agreement of global positioning system units — can we compare research and applied data? J. Strength cond. Res 36, 3330–3338. doi:10.1519/JSC.0000000000004139

	Chicco D., Warrens M. J., Jurman G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 7, e623–e624. doi:10.7717/PEERJ-CS.623

	Crang Z. L., Duthie G., Cole M. H., Weakley J., Hewitt A., Johnston R. D. (2021). The validity and reliability of wearable microtechnology for intermittent team sports: a systematic review. Sport. Med. 51, 549–565. doi:10.1007/s40279-020-01399-1

	Di Prampero P. E., Pendergast D. R., Wilson D. W., Rennie D. W. (1974). Energetics of swimming in man. J. Appl. Physiol. 37, 1–5. doi:10.1152/jappl.1974.37.1.1

	Gomes B. B., Ramos N. V., Conceição F. A., Sanders R. H., Vaz M. A., Vilas-boas J. P. (2015). Paddling force profiles at different stroke rates in elite sprint kayaking. J. Appl. Biomech. 31, 258–263. doi:10.1123/jab.2014-0114

	Goreham J. A., Miller K. B., Frayne R. J., Ladouceur M. (2021). Pacing strategies and relationships between speed and stroke parameters for elite sprint kayakers in single boats sprint kayakers in single boats. J. Sports Sci. , 1–8. doi:10.1080/02640414.2021.1927314

	Hogan C., Binnie M. J., Doyle M., Lester L., Peeling P. (2020a). Heart rate and stroke rate misrepresent supramaximal sprint kayak training as quantified by power. Eur. J. Sport Sci. 0, 656–665. doi:10.1080/17461391.2020.1771430

	Hogan C., Binnie M. J., Doyle M., Lester L., Peeling P. (2020b). Comparison of training monitoring and prescription methods in sprint kayaking. Int. J. Sports Physiol. Perform. 15, 654–662. doi:10.1123/ijspp.2019-0190

	Hogan C., Binnie M. J., Doyle M., Peeling P. (2021). Mean maximal power from an on-water 1000-m time-trial predicts lactate threshold power in well-trained flat-water sprint kayak athletes. Eur. J. Sport Sci. 22, 549–558. doi:10.1080/17461391.2021.1880648

	Kong P. W., Tay C. S., Pan J. W. (2020). Application of instrumented paddles in measuring on-water kinetics of front and back paddlers in K2 sprint kayaking crews of various ability levels. Sensors Switz. 20, 6317–14. doi:10.3390/s20216317

	Ludbrook J. (2010). Confidence in altman-bland plots: a critical review of the method of differences. Clin. Exp. Pharmacol. Physiol. 37, 143–149. doi:10.1111/j.1440-1681.2009.05288.x

	Macdermid P. W., Fink P. (2017). The validation of a paddle power meter for slalom kayaking. Sport. Med. Int. Open 01, E50–E57. doi:10.1055/s-0043-100380

	Macdermid P. W., Osborne A., Stannard S. R. (2019). Mechanical work and physiological responses to simulated flat water slalom kayaking. Front. Physiol. 10, 260–269. doi:10.3389/fphys.2019.00260

	McDonnell L. K., Hume P. A., Nolte V. (2013). A deterministic model based on evidence for the associations between kinematic variables and sprint kayak performance. Sport. Biomech. 12, 205–220. doi:10.1080/14763141.2012.760106

	Michael J. S., Rooney K. B., Smith R. M. (2008). The metabolic demands of kayaking: a review. J. Sport. Sci. Med. 7, 1–7. 

	Michael J. S., Smith R. M., Rooney K. B. (2009). Determinants of kayak paddling performance. Sport. Biomech. 8, 167–179. doi:10.1080/14763140902745019

	Romagnoli C., Ditroilo M., Bonaiuto V., Annino G., Gatta G. (2022). Paddle propulsive force and power balance: a new approach to performance assessment in flatwater kayaking to performance assessment in flatwater kayaking. Sport. Biomech. 00, 1–14. doi:10.1080/14763141.2022.2109505

	Stothart J. P., Reardon F. D., Thoden J. S. (1986a). Paddling ergometer kinematics of elite kayakers. ISBS Proc. Arch. 4, 125–128. 

	Stothart J. P., Reardon F. D., Thoden J. S. (1986b). A system for the evaluation of on-water stroke force development during canoe and kayak events. ISBS Proc. Arch. 4, 146–152. 

	Winchcombe C. E., Binnie M. J., Doyle M. M., Hogan C., Peeling P. (2019). Development of an on-water graded exercise test for flat-water sprint kayak athletes. Int. J. Sports Physiol. Perform. 14, 1244–1249. doi:10.1123/ijspp.2018-0717


Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2025 Goreham and Ladouceur. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


[image: Frontiers in Bioengineering and Biotechnology promotional flyer. Highlights the acceleration of therapies, devices, and technologies by bridging discoveries and their application. Encourages discovery of the latest research topics. Includes contact details for Frontiers in Lausanne, Switzerland.]


OPS/images/fphys-15-1376801/fphys-15-1376801-g002.gif
[—
[e——

- Wehot e a6
S 085

PE——
3

R )
Nt 30

sty

[ —
o

.

[ES—

s

s i 1)
ol e - 59
ot 0-36

T e e o
T Tp—
Py 0 10)
ey

w-m

Vet oo e oo 9

e






OPS/images/fphys-15-1376801/fphys-15-1376801-g001.gif





OPS/images/fphys-15-1376801/crossmark.jpg
©

|





OPS/images/fphys-15-1340513/fphys-15-1340513-t006.jpg
Data Observed Verified Paired-sample Pearson
t-test correlation test

12840 + 9.64





OPS/images/fphys-15-1340513/fphys-15-1340513-t005.jpg
Indicators Standard error nts B
(Constant) 86113 11916 7227 0.000
Gender 23223 0.987 1130 23530 0.000 2448
Weight (kg)  oas 0.058 0.964 e 0.000 4,004
MEP ~0.090 0.012 0266 7490 0.000 1338
Height (cm) [ 0.078 -0.192 I 0002 3837






OPS/images/fphys-15-1340513/fphys-15-1340513-t004.jpg
Model R R2 Adjusted R-square Standard error Durbin-watson
‘ 1 0.697* 0486 ‘ 0483 7.406
" 2 0.880° 0774 ‘ 0772 4924
‘ 3 0.907¢ 0823 ‘ 0820 4375
4 oo 0832 ‘ 0828 4266 1939

‘Predictors: (Constant), Gender.

"Predictors: (Constant), Gender, Weight.

“Predictors: (Constant), Gender, Weight, MEP.
dpredictors: (Constant), Gender, Weight, MEP, height.






OPS/images/fphys-15-1340513/fphys-15-1340513-t003.jpg
Indicators

Gender 0.697 p < 0.001
Age 0065 P> 005
Height (cm) 0284 P <0001
Weight (kg) 0132 | P <005
MIP 0254 P <0005
MEP 0438 P <001






OPS/images/fphys-15-1340513/fphys-15-1340513-t002.jpg
Male (n = 92) Female (n = 91) Ensemble

age 4247 £ 11.86 43.36 £ 10.65 4291 £ 1125

| Height (cm) 17390 + 5.90 162.60 £ 5.10° 168.28 + 7.89
Weight (kg) 73.15 + 8.60 57.34 + 6.46* [ 65.29 £ 10.97
MIP 113.65 + 28.61 87.31 £ 26.76* 10055 + 30.62

- MEP 11565 + 31.14 [ 87.07 £ 22.02* [ 101.44.£30.50
Grades (min) 12154 £ 7.79 | 135.86 + 6.99* | 128671030

Note: Compared to males, *p < 0.01.





OPS/xhtml/Nav.xhtml


Contents



		Cover


		Assessment and monitoring of human movement

		Editorial: Assessment and monitoring of human movement

		AUTHOR CONTRIBUTIONS


		FUNDING


		CONFLICT OF INTEREST


		GENERATIVE AI STATEMENT


		REFERENCES







		Comparison of different prediction models for estimation of walking and running energy expenditure based on a wristwear three-axis accelerometer

		1 Introduction


		2 Materials and methods

		2.1 Participants


		2.2 Experimental design


		2.3 Experimental equipment


		2.4 Statistical analysis







		3 Data preprocessing and model construction

		3.1 Data preprocessing of multiple regression equations


		3.2 Construction of regression equations


		3.3 Construction of ANN model


		3.4 Construction of walking-and-running two-stage model







		4 Result

		4.1 Overall prediction error of models


		4.2 Prediction error of model for walking and running


		4.3 Prediction error of the models under different speeds







		5 Discussion

		5.1 Accuracy analysis of model EE prediction


		5.2 Analysis of model construction mode


		5.3 Limitations


		5.4 Future outlook







		6 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		Footnotes


		References







		Effects of different contact angles during forefoot running on the stresses of the foot bones: a finite element simulation study

		1 Introduction


		2 Methods

		2.1 Participant


		2.2 Biomechanics parameters collection and processing


		2.3 The process of obtaining and reconstructing geometric data


		2.4 Boundary and loading condition







		3 Results


		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Optimization of training for professional rugby union players: investigating the impact of different small-sided games models on GPS-derived performance metrics

		Introduction


		Methods

		Participants


		Study design and settings


		Procedures


		Task design of SSGs


		Study variables


		Statistical analysis







		Results

		Effects of modifying pitch size and player numbers


		Effects of modifying game rules


		Comparison between forwards and backs


		Comparison between SSGs and OGs







		Discussion

		Data variabilities


		Comparison between forwards and backs


		Effects of modifying pitch size and player numbers


		Effects of modifying game rules


		Comparison between SSGs and OGs


		Limitations







		Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Robust human locomotion and localization activity recognition over multisensory

		1 Introduction


		2 Literature review

		2.1 Visual sensor-based human locomotion recognition


		2.2 Human locomotion recognition via wearable technology


		2.3 Human locomotion recognition through multisensor systems







		3 Materials and methods

		3.1 System methodology


		3.2 Noise removal


		3.3 Windowing and segmentation


		3.4 Feature extraction for locomotion activity


		3.5 Feature extraction for location-based activity


		3.6 Feature optimization using Yeo-Johnson power transformation


		3.7 Feature evaluation analysis and comparisons







		4 Experimental setup and datasets

		4.1 Experimental setup


		4.2 Dataset description







		5 Results and analysis

		5.1 Confusion matrices for locomotion activities


		5.2 Precision, recall, and F1 score values for locomotion activities


		5.3 Receiver operating characteristic curves for locomotion activities


		5.4 Confusion matrix for localization activities


		5.5 Precision, recall, and F1 score values for localization activities


		5.6 Receiver operating characteristic curve for localization activities


		5.7 Detailed performance analysis


		5.8 Comparison between locomotion and localization activities







		6 Discussion


		7 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		Supplementary material


		References







		Quantitative assessment of muscle fatigue during rowing ergometer exercise using wavelet analysis of surface electromyography (sEMG)

		1 Introduction


		2 Materials and methods

		2.1 Participants


		2.2 Data collections


		2.3 Data processing


		2.4 Statistical analysis







		3 Results

		3.1 Analysis of fatigue data for rowing ergometer exercise and relationships with previous rowing performance results


		3.2 Analysis of data on the dominant and non-dominant leg. The relationship between the strength level of the dominant leg and muscle fatigue







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Distinguish different sensorimotor performance of the hand between the individuals with diabetes mellitus and chronic kidney disease through deep learning models

		1 Introduction


		2 Materials and methods

		2.1 Study participants


		2.2 Instruments and data-collecting protocols


		2.3 Dataset and preprocessing


		2.4 Algorithm development and evaluations







		3 Results


		4 Discussion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		Abbreviations


		References







		A preliminary exploration of the regression equation for performance in amateur half-marathon runners: a perspective based on respiratory muscle function

		1 Introduction


		2 Objects and methods

		2.1 Research object


		2.2 Height and weight measurement


		2.3 Maximum inspiratory pressure and maximum expiratory pressure testing


		2.4 Establishment of prediction equation and cross-validation


		2.5 Statistical analysis







		3 Results

		3.1 Performance and relevant metrics of the model group in half marathon


		3.2 Correlation analysis between various metrics and half marathon time in the model group


		3.3 Establishing a regression equation to predict half marathon performance


		3.4 Backward elimination test







		4 Discussion

		4.1 The scientific validity of the regression equation


		4.2 The value of assessing respiratory muscle strength in half-marathon runners


		4.3 Limitations of the study and future directions for improvement







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Wearable device for continuous sweat lactate monitoring in sports: a narrative review

		1 Introduction


		2 Literature search methods and results


		3 Utilization of lactate in sports


		4 Invasive and noninvasive analytical techniques

		4.1 Traditional invasive analysis


		4.2 Noninvasive analytical technique


		4.3 Continuous glucose monitoring using ISF


		4.4 Benefits and limitations of traditional and noninvasive methods in sports







		5 Industry trends and developments

		5.1 Athlete management system


		5.2 Noninvasive glucose/lactate monitoring technology







		6 Sweat glucose/lactate biosensors

		6.1 Enzymes


		6.2 Biosensors


		6.3 Comparison of noninvasive lactate monitoring biosensors







		7 Relationship between blood lactate and sweat lactate


		8 Conclusion


		Author contributions


		Funding


		Publisher’s note


		References







		Rethinking running biomechanics: a critical review of ground reaction forces, tibial bone loading, and the role of wearable sensors

		1 Introduction


		2 Methods

		2.1 Search strategy


		2.2 Eligibility criteria


		2.3 Quality assessment


		2.4 Data synthesis







		3 Results

		3.1 Search results


		3.2 Quality assessment


		3.3 Study characteristics of data synthesis


		3.4 Meta-analysis


		3.5 The relationship between TA/GRF, and tibial bone load


		3.6 Data-driving approaches







		4 Discussion

		4.1 Peak tibial acceleration and impact loading rate


		4.2 The correlation between GRF or acceleration and tibial bone load


		4.3 Data-driven approach to external and internal predictions


		4.4 Implications for future studies







		5 Conclusion


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		Exploring biomechanical variations in ankle joint injuries among Latin dancers with different stance patterns: utilizing OpenSim musculoskeletal models

		1 Introduction


		2 Materials and methods

		2.1 Participants


		2.2 Experimental procedure


		2.3 Data processing and analysis


		2.4 Statistical analysis







		3 Results

		3.1 Ankle angle, moment, velocity


		3.2 Knee angle


		3.3 Muscle force


		3.4 Muscle co-activation ratio


		3.5 Center of mass (COM)







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Proof-of-concept model for instantaneous heart rate-drift correction during low and high exercise exertion

		1 Introduction


		2 Methods

		2.1 Participants and study design


		2.2 Maximal graded running exercise


		2.3 Submaximal constant speed running exercise


		2.4 Monitoring equipment


		2.5 Exertion index model


		2.6 Statistical analysis







		3 Results

		3.1 Heart rate–oxygen consumption hysteresis


		3.2 Heart rate-drift correction


		3.3 Correlations with lactate levels and water loss







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Electromechanical efficiency index of skeletal muscle and its applicability: a systematic review

		1 Introduction


		2 Methods

		2.1 Exploratory search strategy


		2.2 Eligibility criterion for selecting a study


		2.3 Screening strategy


		2.4 Data extraction


		2.5 Methodological quality assessment







		3 Results

		3.1 Basic characteristics of the included studies


		3.2 Methodological quality assessment


		3.3 Detailed presentation of the results of the included studies







		4 Discussion

		4.1 Methodology for estimating the EME index


		4.2 The EME index’s applied relevance


		4.3 Limitations of this review article







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Effects of sedentary behaviour and long-term regular Tai Chi exercise on dynamic stability control during gait initiation in older women

		Background


		Methods

		Study sample


		Participants


		Instrumentations


		Experimental procedures







		Dynamic Stability of Gait Initiation

		Margin of stability at the onset stepping of locomotion phase







		Stability control at the end of the locomotion phase

		Lateral stability control


		Forward stability control


		Foot placement at the end of stepping


		Statistical analysis







		Results

		Sample characteristics


		Dynamic stability


		Foot placement







		Discussion

		Dynamic stability


		Foot placement


		Strengths and limitations







		Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		Abbreviations


		References







		Heel-to-toe drop effects on biomechanical and muscle synergy responses during uphill walking

		1 Introduction


		2 Methods

		2.1 Participants


		2.2 Conditions of inclination and HTD


		2.3 Motion capture, GRF and EMG measurements


		2.4 Kinematic and kinetic analysis


		2.5 Muscle synergy analysis


		2.6 Statistics







		3 Results

		3.1 Inclination rather than HTD influences the temporo-spatial parameters of gait


		3.2 Inclination influences more kinematic parameters than HTD


		3.3 Both inclination and HTD modulate the kinetic parameters


		3.4 Both inclination and HTD influence the muscle synergy parameters







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Analysis of lumbar spine loading during walking in patients with chronic low back pain and healthy controls: An OpenSim-Based study

		1 Introduction


		2 Methods

		2.1 Participants


		2.2 Experimental procedures


		2.3 Data collection


		2.4 Musculoskeletal modeling and simulation


		2.5 Statistical analysis







		3 Results

		3.1 Subjects


		3.2 Kinematics


		3.3 Dynamics


		3.4 Lumbar intervertebral load


		3.5 Muscle force and activition







		4 Discussion

		4.1 Kinematics


		4.2 Dynamics


		4.3 Lumbar intervertebral load


		4.4 Muscle force and activation


		4.5 Limitations







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Effects of IMU sensor-to-segment calibration on clinical 3D elbow joint angles estimation

		1 Introduction


		2 Materials and methods

		2.1 Subject recruitment


		2.2 Subject instrumentation


		2.3 System setup


		2.4 Experimental protocol


		2.5 Calibration reference frames


		2.6 Data analysis


		2.7 Statistical analysis







		3 Results


		4 Discussion

		4.1 Relevance of carrying angle in elbow modelling







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Quarterly fluctuations in external and internal loads among professional basketball players

		1 Introduction


		2 Materials and methods

		2.1 Subjects


		2.2 Design


		2.3 Procedures


		2.4 Statistical analysis







		3 Results


		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Unveiling individuality in the early phase of motor learning: a machine learning approach for analysing weightlifting technique in novices

		1 Introduction


		2 Materials and methods

		2.1 Participants


		2.2 Experimental design


		2.3 Motor learning models


		2.4 Measurements







		3 Results

		3.1 Performance evaluation


		3.2 Explainability evaluation







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Muscle structure predictors of vertical jump performance in elite male volleyball players: a cross-sectional study based on ultrasonography

		Introduction


		Materials and methods

		Experimental approach to the problem


		Subjects


		Procedures







		Result

		Examining variances among AJ, CMJ, SJ, and DJ, and the reliability of B-mode ultrasound imaging results


		Utilizing multivariate regression analysis to determine the predictive factors of lower limb muscle structure on the leap heights of AJ, CMJ, SJ, and DJ







		Discussion


		Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Age affects the dynamic interaction between kinematics and gait stability

		1 Introduction


		2 Materials and methods

		2.1 Experimental setting


		2.2 Data processing


		2.3 Statistical analysis







		3 Result

		3.1 Limb-related differences using CoM and BoS interaction


		3.2 Age-related differences using CoM and BoS interactions


		3.3 RoS boundary analysis between age groups


		3.4 Comparison between automatic and device-detected variables







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Influence of protocol variables on outcomes of the star excursion balance test group (SEBT, mSEBT, YBT-LQ) in healthy individuals: a systematic review

		1 Introduction


		2 Methods

		2.1 Protocol and registration


		2.2 Search strategy and study selection


		2.3 Eligibility criteria


		2.4 Methodological quality assessment


		2.5 Data extraction, grouping and analysis







		3 Results

		3.1 Choice of calculation method


		3.2 Arm movement restriction


		3.3 Wearing footwear during testing


		3.4 Warm-up


		3.5 Number of familiarization repetitions


		3.6 Using a dedicated test kit during testing


		3.7 Heel lifting restriction







		4 Discussion

		4.1 Practical application


		4.2 Limitations







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		The correlation of gait and muscle activation characteristics with locomotion dysfunction grade in elderly individuals

		1 Introduction


		2 Methods

		2.1 Participants


		2.2 LDG scale


		2.3 Experimental protocol and acquisition system


		2.4 Outcome measures


		2.5 Statistical analysis







		3 Results

		3.1 Gait spatiotemporal parameters


		3.2 Gait kinematic parameters


		3.3 Gait dynamic parameters


		3.4 Muscle activation parameters







		4 Discussion


		5 Conclusion


		6 Limitations


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		Abbreviations


		References







		Inertial measurement unit-based real-time feedback gait immediately changes gait parameters in older inpatients: a pilot study

		1 Introduction


		2 Materials and methods

		2.1 Participants


		2.2 Feedback trials


		2.3 Methodology of the IMU-based real-time feedback gait


		2.4 Data analysis


		2.5 Statistical analysis







		3 Results

		3.1 Spatiotemporal gait parameters


		3.2 Kinematic gait parameters







		4 Discussion

		4.1 Potential implications for effective gait practice for older inpatients in clinical settings


		4.2 Limitations







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Validation of inertial measurement units based on waveform similarity assessment against a photogrammetry system for gait kinematic analysis

		1 Introduction


		2 Materials and methods

		2.1 Participants


		2.2 Experimental procedure and data acquisition


		2.3 Data analysis







		3 Results

		3.1 Waveform similarity assessment: condition 1


		3.2 Waveform similarity assessment: condition 2







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Evaluating plantar biomechanics while descending a single step with different heights

		1 Introduction


		2 Materials and methods

		2.1 Participants


		2.2 Procedures


		2.3 Statistical analysis







		3 Results

		3.1 Foot landing strategy


		3.2 Parameters related to center of plantar pressure


		3.3 Parameters related to plantar pressure distribution







		4 Discussion


		5 Limitations and future directions


		6 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		Age-dependent flexion relaxation phenomenon in chronic low back pain patients

		1 Introduction


		2 Methods

		2.1 Study participants and ethics approval


		2.2 Measurement devices and instrumentation


		2.3 Study protocol


		2.4 Data processing


		2.5 Statistical analysis







		3 Results


		4 Discussion

		4.1 FRP and flexion angles manifestation in cLBP patients and No-BP individuals


		4.2 Age as a significant modifier







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		Abbreviations


		References







		Fatigue assessment for back-support exoskeletons during repetitive lifting tasks

		1 Introduction


		2 Methods

		2.1 Participants and tasks


		2.2 Instrumentation


		2.3 Fourier basis function fitting repetitive motion data


		2.4 Lumbar load estimation (human and exoskeleton models)


		2.5 Fatigue model


		2.6 Statistics







		3 Results

		3.1 Comparison between the proposed method and maximal voluntary contraction (MVC) test


		3.2 Effect of the exoskeleton in the experimental task (body motion and lumbar load)


		3.3 Effect on the extended motion (proposed method vs MVC regression method)







		4 Discussion

		4.1 Comparison between the proposed method and MVC test


		4.2 Effect of the exoskeleton noted during the experimental task (body motion and lumbar load)


		4.3 Effect noted in the extended motion (proposed method vs MVC regression method)


		4.4 Advantages of the proposed method


		4.5 Limitations







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Improvement of the gait deviation index for spinal cord injury to broaden its applicability: the reduced gait deviation index for spinal cord injury (rSCI-GDI)

		1 Introduction


		2 Materials and methods

		2.1 Dataset


		2.2 Data analysis







		3 Results

		3.1 Mathematical exploration of the relevance of the 9 joint movements used in the GDI-SCI


		3.2 Computation of the reduced SCI-GDI basis


		3.3 Comparison between the SCI-GDI and the rSCI-GDI with respect to the WISCI II scale


		3.4 Validation of the rSCI-GDI with respect to other clinical measures validated for the population with SCI







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		Supplementary material


		References







		Predicting vertical ground reaction force characteristics during running with machine learning

		1 Introduction


		2 Methods

		2.1 Participants


		2.2 Data collection


		2.3 Data preprocessing


		2.4 Feature extraction and model


		2.5 Method comparison


		2.6 Model training and evaluation







		3 Results

		3.1 Participants


		3.2 Model performance







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		Supplementary material


		References







		Multivariable analysis for predicting lower limb muscular strength with a hip-joint exoskeleton

		1 Introduction


		2 Methods

		2.1 Experimental platform


		2.2 Participants & experimental protocol


		2.3 Data acquisition and processing


		2.4 Evaluation metrics for multivariable analysis


		2.5 Statistical analysis







		3 Results

		3.1 Association with muscle parameters and performance metrics


		3.2 Multivariable analysis


		3.3 Clustering between multivariable


		3.4 Regression analysis







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		K2 crew performance: a preliminary investigation of kinetic parameters in preferred and inverted positions among sub-elite kayakers

		Introduction


		Materials and methods

		Subject


		Test procedure


		Variable extraction


		Statistical analysis







		Results


		Discussion


		Limitations


		Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Biomechanical analysis of limits of stability using computerized posturography: correlations with functional mobility in elderly individuals with hip osteoarthritis – a cross-sectional study

		1 Introduction


		2 Materials and methods

		2.1 Study design, settings, and duration


		2.2 Participants


		2.3 Limits of stability assessment


		2.4 Functional mobility assessment


		2.5 Pain and Disability Scores


		2.6 Sample size estimation


		2.7 Data analysis section







		3 Results


		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Comparisons of functional movements and core muscle activity in women according to Pilates proficiency

		1 Introduction


		2 Methods

		2.1 Participants


		2.2 Physique


		2.3 Body composition


		2.4 Functional movement screening (FMS) test


		2.5 Core muscle activity during Pilates movement


		2.6 Pilates movements


		2.7 Statistical analysis







		3 Results

		3.1 Anthropometric measurements


		3.2 Functional movement screening test (FMS)


		3.3 Mean EMG activation level


		3.4 Co-contraction EMG activation level


		3.5 Duration of EMG activation







		4 Discussion


		5 Limitations


		6 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		Study on heart rate recovery index to predict maximum oxygen uptake in healthy adults aged 30 to 60 years old

		1 Introduction


		2 Research objects and research methods

		2.1 Research objects


		2.2 Research methods


		2.3 Statistical analysis







		3 Results

		3.1 Body shape test results


		3.2 Cardiopulmonary exercise test results


		3.3 Correlation analysis between VO2max and various indicators


		3.4 Establishment of regression equation


		3.5 Backward elimination test







		4 Discussion


		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		References







		The impact of precompetition state on athletic performance among track and field athletes using machine learning

		1 Introduction


		2 Materials and methods

		2.1 Research objects and groups


		2.2 Body composition testing


		2.3 Meal records


		2.4 Energy expenditure, activity intensity, and sleep efficiency


		2.5 Training real-time heart rate, respiratory rate, and heart rate variability monitoring


		2.6 Blood and urine physiological indicator tests


		2.7 Testing of mental state indicators


		2.8 Statistical analysis


		2.9 Data preparation for machine learning algorithms







		3 Results

		3.1 Variability of indicators 2 weeks before the competition


		3.2 Variability of indicators 1 week before the competition


		3.3 Results of the binary logistic classification


		3.4 Random forest algorithm results


		3.5 Results of principal component analysis


		3.6 NN results







		4 Discussion

		4.1 Analysis of differences between the two groups of athletes 2 weeks before the competition


		4.2 Analysis of differences between the two groups of athletes 2 weeks before the competition


		4.3 Analysis of differences in psychological questionnaire indicators


		4.4 Analysis of machine learning results







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		The One Giant Leap commercial wireless power meter can be used for sprint kayaking with the appropriate calibration

		Purpose


		Methods and Results


		Conclusion


		1 INTRODUCTION


		2 MATERIALS AND METHODS

		2.1 Construct validity

		2.1.1 Participants


		2.1.2 Experimental protocol


		2.1.3 Data analysis


		2.1.4 Statistical analysis







		2.2 Concurrent validity

		2.2.1 Paddle calibration procedure


		2.2.2 Experimental protocol


		2.2.3 Statistical analysis












		3 RESULTS

		3.1 Construct validity


		3.2 Concurrent validity







		4 DISCUSSION

		4.1 Limitations


		4.2 Conclusion







		DATA AVAILABILITY STATEMENT


		ETHICS STATEMENT


		AUTHOR CONTRIBUTIONS


		FUNDING


		ACKNOWLEDGMENTS


		CONFLICT OF INTEREST


		REFERENCES


















OPS/images/fbioe-12-1418775/fbioe-12-1418775-g006.gif





OPS/images/fbioe-12-1418775/fbioe-12-1418775-g005.gif





OPS/images/fbioe-12-1418775/fbioe-12-1418775-g004.gif





OPS/images/fbioe-12-1418775/fbioe-12-1418775-g003.gif





OPS/images/fbioe-12-1418775/inline_11.gif





OPS/images/fbioe-12-1418775/inline_10.gif





OPS/images/fbioe-12-1418775/inline_1.gif
yi (1)





OPS/images/fbioe-12-1418775/fbioe-12-1418775-g009.gif
‘W assistance

o

®

©

wio sssistance

Siope = 1.0095
Requare =050

n 6 @ w
Strength, o esion model ()

0





OPS/images/fbioe-12-1418775/fbioe-12-1418775-g008.gif
—

o

RPN

‘Nonmaszes shengih anlmed
VR
3828





OPS/images/fbioe-12-1418775/fbioe-12-1418775-g007.gif
Average value






OPS/images/back-cover.jpg
Frontiers in
Bioengineering and Biotechnology

Accelerates the development of therapies,
devices, and technologies to improve our lives.

A multidisciplinary journal that accelerates the:
development of biological therapies, devices,
processes and technologies to improve our lives
by bridging the gap between discoveries and their
application.

Discover the latest
Research Topics

Averue du Trbunal-Fédéral 34
1005 Lausanne, Switzeriand
nontersinor.

Contactus
+41(0215101700

& frontiers | &






OPS/images/fbioe-12-1418775/inline_26.gif
-





OPS/images/fbioe-12-1418775/inline_25.gif





OPS/images/fbioe-12-1418775/inline_24.gif
j:; T(t)dt





OPS/images/fbioe-12-1418775/inline_23.gif
-





OPS/images/fbioe-12-1418775/inline_22.gif





OPS/images/fbioe-12-1418775/inline_21.gif
S(ty)





OPS/images/fbioe-12-1418775/inline_3.gif





OPS/images/fbioe-12-1418775/inline_29.gif
10001121





OPS/images/fbioe-12-1418775/inline_28.gif
S = ae





OPS/images/fbioe-12-1418775/inline_27.gif





OPS/images/fbioe-12-1418775/inline_16.gif





OPS/images/fbioe-12-1418775/inline_15.gif
(T, = T,)





OPS/images/fbioe-12-1418775/inline_14.gif





OPS/images/fbioe-12-1418775/inline_13.gif





OPS/images/fbioe-12-1418775/inline_12.gif





OPS/images/fbioe-12-1418775/inline_20.gif





OPS/images/fbioe-12-1418775/inline_2.gif





OPS/images/fbioe-12-1418775/inline_19.gif





OPS/images/fbioe-12-1418775/inline_18.gif
o





OPS/images/fbioe-12-1418775/inline_17.gif





OPS/images/fbioe-12-1370645/inline_7.gif





OPS/images/fphys-16-1429510/inline_3.gif





OPS/images/fbioe-12-1370645/inline_6.gif





OPS/images/fphys-16-1429510/inline_2.gif
mnr





OPS/images/fbioe-12-1370645/inline_5.gif





OPS/images/fphys-16-1429510/inline_1.gif





OPS/images/fbioe-12-1370645/inline_4.gif
(4]





OPS/images/fphys-16-1429510/fphys-16-1429510-t002.jpg
Machine learning models Verification set accuracy

‘ Random Forest 083 | 089 086
‘ Binary logistic classification 067 ‘ 078 067
‘ neural network 083 ‘ 067 086






OPS/images/fbioe-12-1370645/inline_36.gif
A}





OPS/images/fphys-16-1429510/fphys-16-1429510-t001.jpg
Number of decision trees Maximum depth of the tree Minimum number of samples required to split an internal
node





OPS/images/fbioe-12-1370645/inline_35.gif





OPS/images/fphys-16-1429510/fphys-16-1429510-g008.gif





OPS/images/fbioe-12-1370645/inline_34.gif
Wy =
g/l





OPS/images/fphys-16-1429510/fphys-16-1429510-g007.gif
i






OPS/images/fphys-16-1429510/fphys-16-1429510-g006.gif
28

PCI(50.4%)





OPS/images/fphys-16-1429510/fphys-16-1429510-g005.gif





OPS/images/fbioe-12-1370645/math_3.gif
U] +|T| + 8] > |K|.

3)





OPS/images/fbioe-12-1370645/math_2.gif
U] +(T]>8].





OPS/images/fbioe-12-1370645/math_1.gif
CoM = ) p*[(1-1)a,+ L a] /e





OPS/images/fphys-16-1429510/inline_4.gif





OPS/images/fbioe-12-1370645/inline_3.gif
(4,





OPS/images/fphys-16-1429510/fphys-16-1429510-g002.gif





OPS/images/fbioe-12-1370645/inline_29.gif





OPS/images/fphys-16-1429510/fphys-16-1429510-g001.gif
L oo b e Bt o160 [T





OPS/images/fbioe-12-1370645/inline_28.gif
ApsCoM + CoM ,Jwy < A,





OPS/images/fphys-16-1429510/crossmark.jpg
©

|





OPS/images/fbioe-12-1370645/inline_27.gif





OPS/images/fphys-15-1437962/math_4.gif
Absolute VOZ max = -0.528 + 0.057 weight - 3.463°body fat rate
+0.042°HRR2
- 0.180"gender (male = 1, female = 2)
(@





OPS/images/fbioe-12-1370645/inline_26.gif
g = 9.81m/s"





OPS/images/fphys-15-1437962/math_3.gif
Absolute VOZ max = =0.778 + 0.041"weight - 4.1580dy fat rate
+0.043°HRR2
3)





OPS/images/fbioe-12-1370645/inline_25.gif





OPS/images/fphys-15-1437962/math_2.gif
Absolute VO2 max = 1.853 + 0.041"body weight
—7.553*body fat rate @)





OPS/images/fphys-15-1437962/math_1.gif
AbsoluteVO2 max = 0.222 + 0.038"body weight





OPS/images/fphys-15-1437962/inline_3.gif
Absolute VO2 max = -0.528 + 0.039"weight — 3.463"body fat rate +
0.042*HRR2 - 0.180*gender





OPS/images/fbioe-12-1370645/inline_33.gif
A= Ay





OPS/images/fbioe-12-1370645/inline_32.gif
CoM, = CoM,/(wyLy)





OPS/images/fbioe-12-1370645/inline_31.gif
X = (CoM - X;,)/Ly





OPS/images/fphys-16-1429510/fphys-16-1429510-g004.gif





OPS/images/fbioe-12-1370645/inline_30.gif
g





OPS/images/fphys-16-1429510/fphys-16-1429510-g003.gif





OPS/images/fphys-15-1358785/inline_68.gif





OPS/images/fbioe-12-1372757/fbioe-12-1372757-t002.jpg
Len
stance phase (%)
Right
Lot
load response (%)
Right
et
mid stnce (%)
ight
it
pre-sing (%)
ight
e
ight
et
oot rotaton
ight
et
sep length (em)
ight
stride lengh (cm)
step wideh (cm)
veociy ()
Cadence stepsimin)
et
ime(9#
ight
95% confdence dlpse
COP path length
average COP velocity
toc anding
anding style
oot landing
the heel it
the heelrights
middic foo et
peak pressure
middle rights
anteior foot let
antrio foo right
Left Standing RVS(1Y)
Lef Swing (V)
Lett MPE
Left ME
T
Right Standing RMS(Y)

Right Swing RMS(Y)
Right MPE

Right MF

95%CI
(0564, -0321)
(0593, -0332)
(0579, -0333)
(0587, -0309)
(0298, 0558)
(0333, 0599)
(0621, -0360)
(0615, -0386)
0319, 0569
(0332,0593)
(0639, -0397)
(0323, -0008)
(0196, 0112)
(0473, 0683)
(0:435,0667)
(0:457, 0658)
(0395, -0096)
(0514,0716)
(0314, 0560)
(0567, -0327)

(0492,-0219)

(0269, 0051)
(0685, ~0.466)
(0356, 0584)
02170133
(0133, 0217)
(0207, 0.106)
(0276, 0037)
(0022,029%)
(0082, 0202)
(0335,0579)

(0330, 0563)

(0012,0343)

(0017, 0301)
(0034, 0274)
0131, 0175)
(0059, 0248)
(0011, 0302)

(0024, 0305)

Spearman
0450
-0m
-od61
047
I
o
-0
0507
o419
o
o4
o
o016
037
o3l
0595
0200
I
oan2
042

0365

o1
058
077
009
00
o052
ons
o1
07
067
o8
0150
0190
o1
oz
o0
0096
o

o3t

o000
o000

o000

o000

o000

o000

o000

o000

o000

o000

0030°

0567

o000

o000

o000

oo0n

o000

o000

o000

o000

0130

o000

o000

o071

071

0512

one

0079

033

o000

o000

0060

o016t

oon

0125

0507

0228

012

0100

hip fleion

hip abduction

hip rotation

Knce flexion

anke dorsiflexion

anke inversion

ankle
abduction

the raio of pressure onset time#

Y

Stance et
Stance right
Swing ek
Swing right
Stance et
Stance right
Swing ek
Swing right
Stance et
Stance right
Swing et
Swing right
Stance et
Stance right
Swing e
Swing right
Stance et
Stance right
Swing ek
Swing right
Stance et
Stnce right
Swing ek
Swing right
Stance et
Stance right
Swing et
Swing right
the hel let
the heelright
middle foot left
middlc foo rght
anteior foot lft
anteior oot right
Left Sanding RMS(Y)
Left Swing RVS(V)
Lot MpE
Left ME
Right Standing ()
Right Swing RMS(Y)
Right MPE
Right MF

Note 95% Cl: 5% confidence inteval. COP: center of pressure. RMS: oot mean square. TA: thialanterio, GM: aseocnemius medialis. MPF: average power frequency MF: median frequency
ndicater ¥ ¢ S bl was-comiianedt Ao Rt denitatioal dhmailbcamcn: % aichan ¢ Q1 alich wes-coniiiared e edioain dosiliting dbiibcince:

95

|
(0354, 0615)
(0300, 0561)
(0295, 0.565)
(0305, 0577)
(0.008,0297)
(0003, 0290)
(0183, 0.458)

(0:1890.465)
(018,016
(0067, 0251)
(©113,0397)
(0013,028)
(©111,0393)
(0129, 0436)
(0415, 0646)
(0395, 0647)
(©172, 0:468)
(0203, 0:493)
(0198, 0:497)
(©173, 0479)
(0003, 0293)
(0078, 0390)
(©173, 0450)
(©220,0509)
(0204, 0:465)
(007,023
(©275, 0540)
(0206, 0503)
(0301, 0000
(0203, 0.080)
(©133, 0423)
(©252,0523)
(0236, 0503)
(0312, 0566)
(0103, 0:401)
(0092, 0397)
(02140, 0.080)
(0207, 0.108)
(0059, 0.364)
(0013,0316)
(0102,0217)

(-0130,0193)

Spearman
0156
040
oasz
oas9
0144
015
0321
0331
o001
ooss
0257
o1z
0215
028
035
0s3s
0330
0359
03ss
0331
o149
0211
0313
0367
0328
o081
oars
0357

18
0063
0275
0381
0368
oal
0258
0219
-o0m
-0t
0205
0150
oos

0033

e

o

oot

0054

pom—

Fe)

0986

0218

o001+

0098

o002

P

v

i

o000+

v

0000

0000

0061

o002+

P

P

0309

e

P

0062

o

o

o001

o002

0297

0525

s

0059

0306

0676





OPS/images/fphys-15-1358785/inline_67.gif





OPS/images/fbioe-12-1372757/fbioe-12-1372757-t001.jpg
LDG6 (a) LDGS (b) LDG4 (c) Healthy controls (d) Adjusted P

Numbers 45 2 38 34 -
Gender (M: F) 3312 28114 30:8 a6 -

Age (years)# 67.00 (7) [ 645 (6) 66.00 (7) 65.00 (9) 3.138 0371

Height (cm) 166311 + 7.292 168571 + 7.302* 168921 + 6.839" 162147 £ 7.233 6.767 0.001*
Weight (kg) 69.957 10755 | 67.279 + 8194 71.316 + 11471 65.868 + 13142 1.870 0.138

BMI 25232 +3.126 [ 23.646 + 2169 | 24,907 + 3.0409 [ 24.968 + 4.152 2.040 0112

Note: #:The skewed distribution data are reported as the median and interquartile distances.
M:F: Male:female. LDG: Locomotion Dysfunction Grade. BMI: body mass index.

“Indicates P< 0.05, which was considered to indicate statistical significance.
After multiple comparisons using Tukey’s test and Dunn-Bonferroni test, d
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Participants

Difference Magnitude/Stat. Significance/Effect size

EIELIY
indicators

mSEBT Bulow et al.
Vs, (2019)
YBT-LQ

mSEBT Jagger et al.
v, (2020)
YBT-LQ

Not applicable

Not applicable

25 9 healthy adolescents mSEBT YBT-LQ | prvalue
mean + SD age: 140+ 1.3 (Cohen’s d)
ANT (%LLL), RL 94.9 £ 64 656 5.1 | <0.01* (5.1)
mean + SD
L 96.1 £ 5.1 570 4.5 | <0.01* (8.1)
PM (%LLL), RL 90.1 £ 108 1003£7.0 | <0.01* (1.1)
mean + SD
L 90.7 £ 9.2 101.0£6.9 | <0.01* (1.3)
PL (%LLL), RL 832+ 119 985+7.8 | <0.01* (1.5)
mean + SD
L 83.8 £ 119 101.0£7.9 | <0.01* (1.7)
CS (%LLL), RL 1035+ 109  102.1£87 | <0.01* (0.1)
mean + SD
L 1046 £ 107  103.6£8.8 | <0.01* (0.1)
28 healthy adults (911, mSEBT YBT-LQ | prvalue
853), mean £ SD age: - 1
250 £22 ANT (%LLL), RL 65.4 648 20.05
mean
L 66.9 658 2005
PM (%LLL), mean RL 1125 1192 0.091
LL 112.5 1196 0.061
PL (%LLL), mean RL 103.9 1130 0.021*
L 102.5 1123 0.018*

%LLL, percentage of lower limb length, ANT/PM/PL and CS, anterior/posterolateral/posteromedial reach and composite score; RL/LL right/left leg; p-value, probability of type I error, SD,

S
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Test Authors Participants Number of Reliability indicators
familiarization

repetitions — auth:

conclusion
YBI-LQ | Lineketal (2017) 38 adolescent footballers | 6 familiarization repetitions are  Reliability indicators between 7th, 8th, and 9th repetitions
mean (range) age: 156 | required to reach a plateau -
(14-17) (5 o) SEM (%) MDC (%)
ANT | RL 0.6 367 854
LL 0.68 330 7.68
PM RL 057 590 137
LL 0.64 564 131
L RL 0.70 581 135
LL 0.82 441 103
mSEBT Kattilakoski et al. 16 healthy individuals 6 familiarization repetitions are | Not applicable
(2023) 912, mean + SD age: required to reach a plateau
379+ 69
84, mean + SD age:
2545
mSEBT Onofrei 122 healthy elite athletes | 1 familiarization repetitions is Reliability indicators between 2nd, 3rd, and 4th repetitions
etal. (2019) (934, 888) mean +SD | sufficient to achieve reliable
age: 25.1 £ 5.1 resultsin healthy athletes already icc SEM (%) | MDC (%)
familiar with the test from T
previous assessments. ANT RL | 090 091 254
L 093 1.66 461
PM RL 093 260 721
LL 0.94 2.61 726
PL RL 094 253 702
L 093 286 7.94
cs RL 093 172 478
L 095 167 464
SEBT Munro and 22 healthy individuals Standardized protocol of Reliability indicators between 5th, 6th, and 7th repetitions
Herrington (2010) | 911, mean & SD age: 4 familiarization repetitions
223+37 shouldbe adopted for use in icc SEM (%) SDD (%)
311, mean + SD age: clinical practice and further
28+31 research. ANE o il o487
ANTM 085 221 613
ANTL 087 278 771
M 086 267 740
L 091 277 7.68
13 092 279 773
PM 086 294 815
PL 092 262 711
SEBT Robinson and 20 healthy individuals Normalized maximum excursion | Not applicable
Gribble (2008) 210, mean = SD age: distance stabilized after
25£33 approximately 4 familiarization
810, mean + SD age: repetitions
BI33

ANT/ANTM/ANTL/M/L/P/PM/PL and CS, anterior/anteromedial/anterolateral/medial/lateral; posterior/posteromedial/posterolateral reach and composite score; RL/LL, right/left leg; ICC,
fiiborchaas: corsebtion- coniE ciemt: SI.standird-arror- of messuremsent MDE, minimal Seisciatie change: favilas pealebibin of tpe 1 sovon 2D shandard devikbion:
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Authors Participants Difference Magnitude/Stat. Significance/Effect size Reliability

indicators
SEBT | Bizini ctal QO13) | 20 amateur G footbal players Bascline Afer FIEA 115 WU Change | pralue Not applcabie
mean = SD age: 255 £ 51 %), mean
(oswc
CS (6LLL), mean + 5D B9 6468 29 <000
(1939,
WSEBT | Imaietal. (Q014) | 116 adolecent soccer players Bascline Afler WU Change | povlue (Cohen's &) | 1CC
mean = D age: 1792 03 %), mean
ANT (6L, men £ SD | SE LITEYRRRE YN 01 2005 (007) 0965
e 70560 | 7951 o 2005 001)
e 73353 75eas 03 2005 (001)
st 053258 109864 13 <005'070) o9
e 0s5276 | 106282 05 2005 008)
NE 066249 | 1080 %44 13 2005 029)
PLOAL, means D SE 028273 | 1062581 3 0051049 osss
e 036268 1052281 15 2005 021)
e W0s4274 1041278 N 2005 017)
CS@mansSD | SE 910248 | 968%57 2 <005'053) Not spplcable
cE STl | 956265 10 2005 (015)
NE 51251 | 954251 0 2005 006)
SEBT | Gogeetal (017) | 19 (99) recrston spors pasive WU s, | acive WU | combined WU vs. Not appicble
Players mean (SD) age: 211 20 acive WU . passive WU
combined
wu
€S (WLLL), mean = D (prvalue) 022000 | 002 | 0260 (1.000)
(100)
mSEBT | Belkhiria Turki 28 healthy indiiduals Bascline AerWU | Change | Efectsie | Not applicable
atal. o14) 213, mean + 5D age: 221 +03 o).
15, mean = SD age: 227 £19 mean =
9s%cl
ANT (4LLL), mesn  SD swus 83267 86262 | 0422109 Tavil
swus 866253 Wa262 0592151 Trval
swun 865268 85276 | 2262150 Small
pwus 01278 919280 | 1952107 Undear
DwUs 93252 912289 | 20721235 Undear
pwui2 87274 15287 | 3132192 Smal
PM (KLLL), mean + S swus 1001+ 69 1025272 239124 Smal
swus 997472 101769 205180 | Smal
swoi 997274 1030272 3202194 Smal
pwus 1034276 1057469 2204102 Smal
DwUs 101271 1055268 | 1632119 Undlear
pwu2 1029263 1037276 | 0762232 Undear
PL(MLLL), mean + SD swus 968271 96277 | 28216 Small
swus 951271 979278 | 2892136 Small
swoi 973268 ®9:75 | 2632221 small
pwus 1002259 1031277 | 2902140 Moderste
DwUs 1008+ 64 1024270 152160 Unclear
w2 1002463 1021568 18161 | Smal

L percentage oflower limb length, ANT/PM/PL and CS, anteior/posteolateralposteromedial reach and composite scre; SEICE, warm-up with stabilzation/comvention trunk exerciss NE, non-exercise; WU, warm-up: S-WUUIS12,static tetching within
i Do AR el AT, dotnc s hntchin e acitii tralies 1T skl ACE% bt cnilaton couius >-valta sabeiie ult tre T ST Mokl iiiic
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LDG6 (a) LDGS5 (b) LDG4 (c) althy controls (d) X2/F Adjusted P

stance phase (%)# left 75.400 (12.300)* 73700 (9.380)" 71600 (12550) | 67.500 (2.680) 3850 0001

right 75,600 (17.800)* 73150 (11.980)* | 70400 (11.550)" 66200 (3.280) 40642 | 0.002%

load response (%)# | left 23400 (12.000)* 23200 (12400 20250 (9.050) 17300 (4.550) 38057 | 0.000°

right 26200 (13.550)* 23,550 (9.300)* 23100 (13.300)* 17.050 (3.570) 39344 00010

middle stance (%)# | left 23.900 (17.000)* 25.900 (14650)' | 29.050 (12.550) 33300 (4.680) 32851 0.000°

right 25300 (12.800)* | 25750 (9450)° 27.300 (144300 | 33.050 (4.350) 41663 | 0.000%

pre-swing (%)# left 25.200 (15.000)° 23.150 (9.650)* 21.650 (12.780) 16600 (2.570) 45567 | 0.001%

right | 22.800 (12.650)" 23200 (10050)* | 20550 (8.280)° 16000 (2.600) 50149 | 0.000%

swing phase (%)# left 24600 (12.300)* 26.150 (9.380)" 28400 (12550 | 32500 (2.670) 38605 | 0.000°

right  24.400 (17.800)* 26850 (11970)* | 29600 (11.550) | 33.800 (3.280) 40642 | 0.000%

double sance (%)% 51100 (26450 ) (199500 41600 (22.130)' | 33.850 (4.480) 48835 | 0.000%
foot rotation left 11.284 + 6,899 10.129 £ 5.500 11095 + 6.454 8209 + 5.021 1.968 0121
right | 13527 £ 6351 14264 + 6.886 14524 + 6627 11932 £ 6,067 1.148 0332

step length (cm) left 24.800 + 9.104° 29,500 + 9.789¢ 34211 £12779° | 46382 £ 7.114 32937 | 0000

right 26111 + 11185 [ 30,571 + 10.229° 34737 + 13.005° 47235 + 6135 28518 0.000*

stride length (cm) 50978 + 17.523 59976 +19.022 | 68947 £25.137 | 93441 £ 12324 34533 0000

step width (cm) 14.622 + 3.875¢ 15429 + 3.351¢ 14.290 + 3.601¢ 11.618 + 3330 7.809 0.000*
velocity (km/h) 1013 + 0,553 1.381 + 0.610¢ 1616 £ 0795 2574 + 0517 41997 | 0000

cadence (steeps/min) 63511+ 21557 | 74643 £21.380° 74658 £ 17535 | 9LI1I8 + 11.020 14797 0000
time(s)# left 0910 (0.730)* 0.760 (0.350)* 0.765 (0.270)* 0.650 (0.130) 37.076 0.002*

right | 0.870 (0.560)* 0.790 (0.380)° 0750 (0.320)* 0.660 (0.170) 25.580 0.006*

Note: #:The skewed distribution data are reported as the median and interquartile distances.
M:F: Malefemale. LDG: Locomotion Dysfunction Grade. BMI: body mass index

“Indicates P < 0.05, which was considered to indicate statistical significance.

After multiple comparisons using Tukey's test and Dunn-Bonferroni test.

*4 indicates P < 0.05 when compared to group (a)- (d).
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Test  Authors Participants Difference Magnitude/Stat. Significance/Effect size Reliability indicators
YBT-LQ | Shaffr et al. (2013) 64 service members (21, 853), 1w R 16C @s%c1) SEM (cm) MDC
mean 2 SD age: 252 £ 38 (em)
ANT (6LLL), mean £SD | max | 66078 658276 082 (072-089 31 87
g 63672 477 093 (085-096) 20 55
PM (SLLL), mean £SD | max 1053 +83 10162 89 081 (071-089) 37 103
g 1027486 1020294 091 (085-099) 27 75
PLSLLL, meansSD | max 1005 %91 1014296 080 (068-087) 12 s
ag 97294 982+ 100 085 (076-091) 35 97
CS(MLLL.men = SD | max | 90675 906279 085 (076-091) 90 28
79+83
g 878276 091 (085-095) 70 195
YBT-LQ | Sokulska etal. Q020) | 100 healhy individuals KL st Not applicable
948, mean = SD age 234 £ 21
552, mean + SD age 234 4 21| ANT (% DIFF) mean + SD (pvalue) | 18:2 12 (<0001 | 20 % 17 (<0001%)
PM (5 DIFF), mean + SD (pvalue) | 2.7 18 (<0.001°) | 222 24 (<0001
PL (% DIFF), mean + 5D (palue) | 282 19 (<0.001°) | 222 13 (<0001
S (% DIFF), mean & 5D (palue) | 2.4 11 (<0.001°) | 21 £ 09 (<0001
mSEBT | Kattlakoski et ol (2023) | 16 healhy individuals B B max s B max
912, mean + SD age: 379 + 69
St men £ SD age 25257 | ANT (SLLL), mean & 5D @547 91246 99545 ICCOSNCD | 086 (068-0%4) | 030(078-095) | 089(074-095)
SEMS an 3 346
MDC 76 62 o
PM (%LLL), mean £ SD 97897 1015£95 102496 | ICCOSNCD | 082 (063-091) | 083 (065-092) | 083(074-095)
SEM 570 su s
MDC 156 146 146
PL(SLLL), mean = SD 955492 98987 1001485  ICCOC) | 081(067-092) | 089 (078-095) | 089(078-095)
SEM 549 e 399
MDC s s i

KLLL percentage of ower il length; ANTIPM/PLand CS, anteio/posterolaterallposteromedial reach and composit core LLRL leftight e KUSL,
calculaton method based o first 3 epettions/best 3 reptition; WDIFF, percentage difrence between max and avg ICC (I5%CI, itercass correl
Bible s v b cavhdhiies i dosie M kil dinben

cking/tance e mas/avg, calelation ethod basd on masimor repetton/averageof repettions,F3/B3,
n coefficent with 95% confdence interval; SEM, standard rror of measurement percentage; MDC, minial
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or Item 1 Item ltem 3 Iltem Iltem 5 ltem
Shaffer et al. (2013) ° e00 (9 [T Y] eoe K eoo
Sokulska et al. (2024) e [ e00 © ° [eoe [eee ° [eoe
Objero et al. (2019) ° e00 () P eeoeo oo eoo
Hébert-Losier (2017) | eoe [e0e® P [eoe ° [eoe
Muchlbauer et al. (2022b) K 000 (3 13 L) (1] ° °
Muehlbaver et al. (2022a) e o003 P eoe ° ° [eoe
Sogut et al. (2022) (YY) o000 (9 P 13 ° ° eoo
Park et al. (2023) ° | 006 (untimed) (XY I ° eeoe
Bizzini et al. (2013) P L] LX) | LX) ° o0 (XX}
Goge et al. (2017) | 3 L] | oo o0 o [ L]
Imai et al. (2014) P LL X X0OI (XX ] (XX} | ° (XX}
Belkhiria-Turki et al. (2014) P [T T XC] (XY} | eoe ° | eoe
Linek et al. (2017) L] ‘P (XX ] (XX} oo (XX | (XX}
Kattilakoski et al. (2023) [eoe oo ) (XY} [eoe e [eoe
VOnofreiazl. (2019) [ L] 00 (1) (XX ] (XX} | ° (XX}
Munro and Herrington (2010) ° P (XY} | eoe ° (YY)
Robinson and Gribble (2008) L] P (XX ) (XX} L] (XX (XX}
Bulow et al. (2019) ° o0 (4 eoe [ eoe ° [eoe
Jagger et al. (2020) L] 000 (3) oo (XX} L] (XX}

ltem 1. Was a warm-up conducted before the test?
Item 2. Were familiarization trials performed before the test? If so, what was their number?
Item 3. Were arm movements restricted?

ltem 4. Was the test conducted barefoot?

Item 5. Was the heel lift allowed?

Item 6. Was the order of trials in each direction specified?

ltem 7. Were errors that resulted in a trial being disqualified specified?

Legend: ® ® @, yes. ® @, unclear. @, no.
B Frvaiae o The itulls b bokaine Sili-wrtils Gadie i dhaaiitns
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Author ltem1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item1l Item12 Totalscore (%] Qualityrating

St tal. G013 eco oee oee M |ee o ece oo (Nu |eee [N N |7 Good
Soaka et . 2020 eee eee see m | eee o oo xx  |na  |eee |wa |m |ms Good
Ojero et 2019 ece (o oo |m |eee o eee xx  |Na  |eee |m |m s e
HeterLosier GOr7) . oo m oo e eee Nk |Na  |eee | a6 Far
Muchbaer el 020) | @@ oo m oo e eee Nk |Na  |eee [N A s Far
Muchibsr el 0220 | @0 ees | eee o oo m [N |eee [N na s i

Soput et (2022 . ees | eee o eee m [N eee [N |ms Good
Pk et 202 . e m |ee e eee (o |xa  |eee [na | | e
B et . 2013) . e m |ee e eee Nk |na | eee N o Far
Gogte el 017) o .o eoe |oee |0 oo m |eee eee N e i

st 2010 . o e m e e ece m |n | eee N s i

Bk Tukietal Go10) | @@ o [eee . |oe o eee x| nx | eee N e i
Linek et al. (2017) L) L] . NR oo . I ®ee | NR NA oo NA NA 556 Fair
Ko sl 2029 | 0 e e e e eee 1w | | eee M na s ™
Onofe et . (2019) o o (eee x| eee o eee 1w [N |eee M m  |ms Good
Munroand Herigion (2010) | @@ o o0 [ oo |e eee .  |n | eee |o N s Far
Robinon and Grble 208) | © @ e m e e eee xx  Na | eee | e | ™
Bulow e, 201) . eee m | eee o oo xx  |Na  |eee |na |ma |ms Good
[——— o eee . |eee o eee 1w [N |eee M m | Good

“Total score [, median (15t and 3d quartile) | 5.6 (54.5-77.8)

tem 1, Was the study question o abjective lerly sated?
e 2. Were dligiily/sclection citera for the sudy population prespeced and clealy described?

tem 3, Were the partcipants in th study representative of those who would be lgile for th testsericeintersenton in the general orclincal popultion of nterest?

e 4. Were alleligible patcipants tha et the prespecified enty ciera enolled?

tem 5, Was the ssmple size sufficiently arge to provide confidence in the findings?

e 6. Was the tetseniceintervention clearly descibed and delivered consistntly aceos the study popultion?

tem 7. Were the outcome measures prespecified.clealy define, vald,rlsble, and sssssed consistently scross llsudy paticipants?

e 5. Were the people ascssing the outcomes linded t the participants’ exposuresfinterventions?

tem 9, Was thelos o flloe.up ftr bascline 20% or less? Were thos lst to follo-up accounted fo i the anslysis?

tem 10. Did the sttistical methods cxamine changes in outcome messures from before o afte the inervention? Were staisticltests don that provided p values fo the pre-t-post changes?

tem 11, Were outcome measures of intrest aken mulple tmes beore the intersention and multipe times afe the intervention (i, did they use an inerrupted time-series design)?

tem 12, I the intrvention was conducted at a group levl (e a whole hospital, a community, etc) did the statsical analysis tke ino accoun the se ofindvidual-level data to determine efects a the group lesel
Legend: © © @, yes. © @, uncearlcannot determine. @, no.

Mt mciok SOk ot samiiabie: Fhie: okl vabtes:avt te taaduacy:Ciat-aand Seil amasnila:






OPS/images/fphys-15-1415887/fphys-15-1415887-t001.jpg
Database Search command

MEDLINE ("Y-Balance Test"[tiab] OR YBT]tiab] OR "Star Excursion Balance Test'[tiab] OR "Star Excursion Test” OR SEBT]tiab]) AND
(
"warm-up exercise’[MeSH] OR "warm-up'[tiab] OR
((attempt*[tiab] OR trial*[tiab] OR repetition*[tiab]) AND number*{tiab]) OR
((maximum[tiab] OR average[tiab] OR mean[tiab]) AND reach[tiab]) OR
shoes[MeSH] OR shoe*[tiab] OR footwear{tiab] OR barefoot[tiab] OR insole[tiab] OR
hand*{tiab] OR arm|tiab] OR "upper limb"[tiab] OR heel[tiab] OR
procedure{tiab] OR guideline*[tiab] OR manual[tiab] OR standard* tiab] OR
((kit[tiab] OR set[tiab] OR suit{tiab]) AND test*[tiab])
)

ScienceDirect Search 1 (“Y-Balance Test” OR YBT OR “Star Excursion Balance Test” OR SEBT OR “Star Excursion Test”) AND warm-up

Search 2 ("Y-Balance Test” OR YBT OR “Star Excursion Balance Test” OR SEBT OR “Star Excursion Test”) AND ((attempt OR trail OR
repetition) AND number)

Search 3 ("Y-Balance Test” OR YBT OR “Star Excursion Balance Test” OR SEBT OR “Star Excursion Test”) AND ((maximum OR average OR
mean) AND reach)

Search 4 ("Y-Balance Test” OR YBT OR “Star Excursion Balance Test” OR SEBT OR “Star Excursion Test”) AND (shoe OR footwear OR
barefoot OR sole)

Search 5 ("Y-Balance Test” OR YBT OR “Star Excursion Balance Test” OR SEBT"OR “Star Excursion Test”) AND (hand OR arm OR upper limb
OR hecl)

Search 6 ("Y-Balance Test” OR YBT OR “Star Excursion Balance Test” OR SEBT OR “Star Excursion Test”) AND (procedure OR guideline OR
manual OR standard)

Search 7 ("Y-Balance Test” OR YBT OR “Star Excursion Balance Test” OR SEBT OR “Star Excursion Test”) AND ((kit OR set OR suit) AND
test)

Wiley ("Y-Balance Test' OR YBT OR "Star Excursion Balance Test" OR "Star Excursion Test" OR SEBT) AND
(
"warm-up” OR
((attempt* OR trial* OR repetition*) AND number*) OR
((maximum OR average OR mean) AND reach) OR
shoes OR shoe* OR footwear OR barefoot OR insole OR
hand* OR arm OR “upper limb" OR heel OR
procedure OR guidelin* OR manual OR standard* OR
((kit OR set OR suit) AND test*)
)

Comment: The above code was used for searching in titles, abstracts, and keywords.

Springer Link ("Y-Balance Test' OR YBT OR "Star Excursion Balance Test" OR "Star Excursion Test" OR SEBT) AND
(
"warm-up’ OR
((attempts OR trials OR repetitions) AND number) OR
((maximum OR average OR mean) AND reach) OR
shoes OR shoe OR footwear OR barefoot OR insole OR
hands OR arms OR “upper limb" OR heel OR
procedure OR guideline OR manual OR standard OR
((kit OR set OR suit) AND test)
)

‘Comment: The following filters were used: (1) content type: articles; (2) date published 1998-2024;
(3) languages: English; (4) disciplines: medicine and public health, life sciences, biomedicine
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Participants

Difference Magnitude/Stat. Significance/Effect

size

Reliability indicators

mSEBT

YBT-LQ

Sogut et al.
(2022)

Park et al.
(2023)

51 healthy individuals

(921, 830) mean age+SD:

27+19

20 healthy individuals
(912, 88) mean (range)
age: 23 (18-29)

ws B p-value ICC, SEM(%), MDC (%)
ws B
ANT (% | RA 766 746 <005* 098,105,239 097, 1.12, 247
LLL), T
mean NRA 762 748 2005 094,214,341 095, 1.72, 3.06
PM (% RA 998 968 <0.05* 098,135,271 098, 1.35, 271
LLL),
mean NRA 1046 1023 <0.05* 098,140,276 098, 132, 2.68
PL (% RA 934 918 2005 099,130,266 098, 1.24, 2.60
LLL),
mean NRA 982 97.4 2005 097,2.0,331 0.9, 1.33, 269
Cs (% RA 899 877 <005 099,079,208 099, 0.83, 2.12
LLL), - i
mean NRA 931 95 <005* 098,100,243 098,094,227
SRIvs.B | STIvs.B  MSvs. Not applicable

ANT, D 2005 2005 2005
p-value T

ND 2005 2005 2005
PM, D 2005 <005 2005
p-value T

ND 2005 <005* 2005
PL D <005* <005 2005
p-value

ND 2005 <005 2005

%LLL, percentage of lower limb length; ANT/PM/PL and CS, anterior/posterolateral/posteromedial reach and composite score; WS/B, with shoes/barefoot; SRI/STI, shoes with regular/texture
insoles; MS, minimalist shoes; ICC, interclass correlation coefficient; SEM, standard error of measurement; MDC, minimal detectable change; p-value, probability of type I error; SD, standard

s
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Reliability indicators

YBELQ | Objer etal. G019) 20 healhy individuals (910, 610) LL (RA vs. NRA) RL(RA vs, NRA) Not applcable
mean £ SD age: 207 13
ANT, palue <005t <005*
PV palue <005 <005
PL pralue <005 <005
s palue <005 <005
VBLLQ | HébertLosier (2017) 46 healthy individuals A NrA P Not pplicable
223, mean = SD age 235 + 25
523, mean + SD age 257 246 ANT (SLLL), mean 71 760 <005
PM (¥LLL), mean 1190 22 <005
PL (L), mean w7 219 <005
1037 070 <005
VBELQ | Muchibauer ol (20226) 40 healhy children R~ NRA paalue () | Not applicable
922, mean + SD age: 115 2 06
16, mean + SD age: 1152 06, ANT (SLLL), mean B 7378 P3LTE | <000r 036)
S 730297 TaE9
PM (SLLL), mean + SD » 10815121 1312119 | <0001° @39)
G 1029136 1090+ 166
PL(SLLL), mean £ SD B 1057136 1083+ 135 <0001° (026)
G 10002 131 1058 % 154
CS(MLLL), mean + 5D » 9642103 1002599 | <0001 053)
G 923:11 932126
VBELQ | Muchibauer etal Q0220) 111 healhy individals RA v, NRA Not applcable
40 childen, mean = SD age: 115 + 0
30 adolscent, mean + 5D age 140+ 11 ANT, pvalue (Cohen's ) <0001° (032)
1 young adult, mean  SD: 247 2 30
PV, palue (Cohen's d) <0001° (052)
PL pralue (Cohen's &) <0o001* @47)
s, pale (Cohen's ) <0001° (065)
mSEBT | Sogut et ol (2022) S1 health indiidual (821, 630) r NRA paaiue 1CC. SEM(6), MDC (%)
mean agesSD: 227 2 19
» NRA
ANT (UL, mean | WS 766 762 2005 098,105,239 | 094,214,341
i 76 s 2005 097,112,247 | 095172306
PM L man | WS 95 1016 <05t 098,135,271 | 098,140,276
B %63 1023 <005° 098,135,271 095,132,268
PLOLL mean | WS 954 052 <005* 099,130,266 | 097,20.331
3 N 974 <005° 098,124,260 | 098,133,260
CS@Uman WS 9 51 <005* 099,079,208 | 098,109,248
B 87 915 <005t 059,083,212 | 098,091,227

L percentage of owerlimb ength; ANT/PM/PL and CS,anteriorlposterolateral/posteromedial esch and compasitscore; LL/RL eftight e, BG, boys/girls; RA, resticted arm movement; NRA, non-restriced arm movement; WS/B, with shoesbarefoa; CC:
< B O B N S O (P e I P S g PO e PR AW
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Group N = 32

Age, mean + sd 33.65 + 1244
Gender (women/men) 23/9
7 Wieght (kg), mean = sd C0ss s 1991
Height (m), mean + sd 169 £ 0.091
Lower limb length (mm), mean + sd R 883.88 + 50.74
L 88497 £ 5114
Knee width (mm), mean  sd R 11756 + 1433
L 1175 £ 1390
Ankle width (mm), mean + sd R ersissm
L 6675 + 4.63
InteraSIs (mm), mean + sd [ 2605 + 38.47
Shoulder offset (mm), mean  sd R | 4142 £5.55
L 4177 £ 5.56

sd, standard deviation; R, right limb; L, left limb; InterASIS, distance between
anterosuperior iliac spines.
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No feedback trial Ankle trial Leg trial

Pre Post Change Effect Post Change Effect pre Post  Change
(rate) Size (rate) Size (rate)

‘ Spatiotemporal parameters

Gait speed 102+ | 1L03% 004 % 051 105+ | 108+ 003 % 045 L0 | 1123 002 % 032
(m/s) 02 02 0.1 (+42%) 02 02 0.1 (+3.1%) 02 03 0.1 (+22%)

Stride 103+ 106+ 003 = 045 106+  L12: 0.06 = 077 LI0: | L8+ 008 + 070
length (m) o1 02 0.1 (+26%) 02 01 0.1 (+5.2%) 02 02 0.1 (+74%)

Cadence 1181 = 1197 & 1.60 + 0.45 118.1 £ 1153 ¢ 275 -0.51 1198 = 1137 = -6.05 -045
(steps/min) 7.1 60 33 (+1.4%) 79 74 43 (-2.3%) 43 126 100 (-5.0%)

Kinematic parameters

Ankle 226 228+ 029 = 0.06 24t 288 & 6.39 = 0.89 LA 243 337 0.83

plantarflexion 6.8 62 2.0 (+1.3%) 6.6 7 4.4 (+28.5%) 6.5 92 3.3 (+16.1%)

angle ()
Leg extension 219+ 217 % ~0.17 £ ~0.06 22% 234 % 123 ¢ 0.58 233 26.6 = 323+ 0.77

angle ) 23 26 1.2 (-0.8%) 33 38 1.5 (+5.5%) 4.8 49 3.0 (+13.8%)
Increment of 032+ 031+ -0.01 + -0.26 032 036 + 0.03 + 0.89 033+ 038 + 0.05 + 0.89
velocity (m/s) 0.02 0.03 0.02 (-2.2%) 0.04 0.04 0.01 0.05 0.05 0.03

(+10.2%) (+14.5%)

Values are expressed as mean + SD.
Bold font of values represents a significant difference at p < 005 between pre- and post-trial.
Tha alloct iioe wis chassbed di small (= 0:10); sediiin 0= 030); and Janip G 5 0.50)
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sease Age (y) Sex Weight (kg) Comfortable gait speed (m/s) SS (s)
1 TKA 8 M 159 846 133 605
2 o ‘ 73 P 155 633 083 1351
» 3 1Cs ‘ n 144 67.1 095 895
4 VCE \ 71 P 156 540 | 103 [ 136
5 a \ 73 M 160 734 123 10.69
6 a | 88 M 149 45.1 079 844
4 DM ‘ 85 M 158 | 124 101 12,68
mean D | - ‘ 76e71 | - | 1542005 Gasin 102 £ 018 | 05626

TKA, total knee arthroplasty; LCS, lumbar canal stenosis; VCF, vertical compression fracture; Cl, cerebral infarction; DM, diabetes mellitus; M, male; F, female; FTSS, five-times-sit-to-stand test.
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LDG6 (a) LDGS5 (b) LDG4 (c) Healthy Adjusted

controls (d) P
peak pressure the heel left 396488+ 401502+ 414684+ 376.294% 1046 0374
103.386 87.429 100713 74,963
right | 414487 £ 97.590 | 404145+ 414716+ 377.227% 1299 0277
96913 89.564 84.969
middle foot left 153.980 £ 74.066 | 131.167+ 145771 199.582+ 4900 0.025*
66.820° 63.855" 106.935
right# | 128.100 (72.600) | 116.600 139.950 133500 (107.650) 1189 | 0756
(103.530) (112.750)
anterior foot left | 380.189 + 437783+ 522071 607.215% 14721 0,000
172,490 173.736* 154.163 131.988
right | 402,551 + 4051833+ 516582+ 621162 15352 0.015°
156,515 182,597 173.001¢ 134222
the ratio of pressure onset | the heel left | 0.000 (0.500) 0000 (0500) 0000 (0.000) | 0.000 (0.000) 3804 0283
time#
right | 0.000 (0.500) 0000 (1630) 0,000 (0.500) | 0.000 (0.500) 1149 0765
‘middle foot left | 3.000 (4.750)" 3000 (3130 2250 (5.130)' | 5500 (3.500) 18433 0.005*
right | 2,500 (4.000)* 3250 (4130 3250 (5000 | 6500 (3.630) 26525 0016
anterior foot left | 1.000 (3.500)* 1500 (4000) 1500 (4250) | 5250 (3.130) 35717 0000
right | 1.500 (2.750)* 2500 (4130 2500 (4630)' | 6.000 (2.630) 39083 0.000°
TA Standing Left | 85700 (85400) | 91450 (96.930) = 110.500 110.00 (64.700) 4608 | 0203
RMS(uV)# (124.600)
right | 86700 (77.050) | 69.800 (74.230) | 83.450 82,950 (57.650) 2808 | 0422
(102.330)
Swing RMS(uV)# | Left | 49700 (49.550) | 62700 (40.530) | 64.050 (61.830) | 65.700 (34.100) 6259 | 0.100
right | 52.300 (36.600) | 44.350 (41.480)' | 50.600 (36.250) | 53.350 (38.450) 8805 | 0028
MPF Left | 9275622464 | 94.117£23232 96776427371 | 102794 + 24577 1240 | 0297
right | 71104 £ 18263 | 73.141 £ 21201 | 7567923979 | 100779 + 25.161 0933 0427
MF Left | 91578 +24.165 | 9887421927 96474+ 21817 | 78932 + 23.694 1198 | 0312
right | 71496 + 21368 | 76564 £ 17217 74458+ 18752 | 80.671 + 22.140 1446 0232
GM Standing Left | 93.900 (153250)' | 111.000 128,000 173.000 (301.730) 10653 0.009*
RMS(pV)# (154.450) (151.500)
right | 111000 (102.250) | 87.700 (84.400)' = 111.500 154,000 (159.880) 10.698 | 0.011%
(115.270)
Swing RMS(uV)# | Left | 33900 (53400)° | 35800 (66.250)"  47.050 (70.130) = 68.250 (208.380) 10761 0.049°
right | 36.100 (63.100) | 26850 (29.580) = 37.900 (62.470) | 44350 (175.980) 5971 0113
MPE Left | 97.444+25011 | 97.945+ 23435 9525533547 92759 + 29.647 0270 0847
right | 76749 + 22438 | 79.074 £ 22911 | 76029 31497 | 101782 £ 29.623 0201 0896
MF Left | 95861 +27.262 | 103615 + 98.903 £ 25,862 | 74468 £ 9415 0658 0579
26,667
right | 75329 + 28855 | 82835+ 24645 78250 %23.039  80.606 + 26500 0659 0579

Note: #:The skewed distribution data are reported as the median and interquartile distances.

RMS: root mean square, TA: tibial anterior, GM: gastrocnemius medialis. MPF: average power frequency; MF: median frequency.
“Indicates P< 0.05, which was considered to indicate sta significance.

After multiple comparisons using Tukey's test and Dunn-Bonferroni test.

+d indicates P< 0,05 when compared to group (a)- (d).
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LDG6 (a) LDGS5 (b) LDG4 (c) ealthy controls (d) X?/F Adjusted P
hip flexion stance left 22490 + 7.135¢ 25.557 + 6.076° 26.192 + 8.190° 33.703 + 4221 19.635 0.000*
right 23.036 + 7.014" 23.926 + 5.927° 25,532 + 7.376" 32777 £ 5027 17,529 0,000
swing left 13225 + 7.029° 14.909 + 62114 15.773 + 7.703¢ 24074 + 5.198¢ 19.312 0.000*
right 12530 £ 6.971 13.288 + 5.862° 14500 + 6.458" 22379 + 5103 19.484 0.000
hip abduction | stance | left 7.609 + 3.402 7.804 + 2892 8091 + 3.309 8.569 + 2.923 0.664 0.576
right# 7.340 (3.720) 7.475 (4.540) 7.020 (3.360) 8775 (3.380) 7.787 0.051
swingt | left 3.140 (3.100)° 4610 (4.600) 4,010 (4.560) 6230 (4.530) 18.441 0,000
right 3.470 (3.600)* 3540 (2.890) 4245 (4.760) 7.035 (4.780) 22276 0,000
hip rotation stance | left 10.802 £ 4501 9.662 £ 3.303 9.818 + 4.416 11028 + 4035 1.099 0.351
right 10.104 + 4.186 9.628 £ 3356 10472 + 4654 11642 £ 5.148 1449 0231
swing | left 753 £4766 | 7315+ 45600 8428 + 4.101 10008 £ 3.468 2984 0.045*
right 7.979 + 4.535 7.635 + 4332 9.071 £ 5.124 9.984 + 5913 1768 0.156
knee flexion stance | left 32420 £ 9.016" 36,033 + 8487 36895 + 8.283 39679 + 10.030 4452 0003
right | 32311 £ 10.061¢ 34,466 + 9.010¢ 36313 £ 9218 41118 £ 8.827 6.098 0.014*
swing | left 29027 + 12,623 35522 £13170° | 37171  13.006° 51135 + 7.054 23721 0026
ght | 26857+ 2274 | BS79 12658 | 37237 £ 14601 50835 + 8.401 22496 0032*
ankle dorsiflexion# | stance | left 17.300 (8.900)° | 18450 (8.180)" 18.600 (9.880)" 26050 (8.520) 24723 0.000*
right 21600 (8.500)* 25,500 (10.380) 24.350 (9.050)° 30,600 (13.350) 26876 0.003*
swing left 7.720 (6.970)" 7.655 (5.620)" 8.435 (6.180)* 12750 (7.010) 29.032 0.000*
right 10100 (5.440)° 11650 (7.710)* 10650 (5.880) 16450 (11.430) 23.347 0.005*
ankle inversion | stance | left 20,190 + 9.767 20328 + 7.720 22465 £ 11931 22671 £ 8258 0.768 0513
right# 11300 O870¢ | 12900 (7180 13250 (9.630) 16700 (9.500) 12161 0.007*
swingt | left 7.460 (4.700)" 9,665 (10.670)" 9.950 (7.430) 12650 (9.900) 16721 0,000
right 6360 (5230)" 8040 (8.030)° 7.805 (4310)°* 14200 (11.460) 30832 0.000*
ankle abduction | stance | left? 8.440 (5.610)" 11000 (8.890)* 10.900 (8.840) 13.450 (12.280) 19.172 0,000
right 10724 + 4.061 10766 £ 3.702 11724 £ 6265 12491 £ 5437 1133 0337
swing | left? 5320 51700 | 5325 (6400 6,635 (4910)* 10.150 (10.170) 32,958 0,000
right 62022087 | 6078+ 2382¢ 7.847 £ 5.612 10.637 + 4711 9.574 0.000*
95% confidence ellipse 836084.756 920328095 903941368 759807.147 6227 0.001*
+157467.321 +175853.773" £199719.939" +181219.763
COP path length# 2930000 (1,356.000)° | 2576.500 (747.000)" = 2438.000 (650.000)" 2084000 (193.000) 40,080 0000
average COP velocity 161778 191698 208.737 251,559 16130 0011*
£49.445° £60.740° +60.644° 61234
landing style# toe landing 67.330 (5.090) 67.975 (4.090) 66,080 (6.450) 67.730 (9.990) 3417 0332
foot landing 32,670 (5.090) s (4.090) 33.920 (6450) 32270 (9.990) 3417 0332

Note: #The skewed distribution data are reported as the median and interquartile distances.
COP: center of pressure.

“Indicates P< 0.05, which was considered to indicate statistical significance.

After multiple comparisons using Tukey's test and Dunn-Bonferroni test.

*4 indicates P< 0.05 when compared to group (a)- (d).
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95% ClI

SL(m) 0545 + 0.060 0.595 + 0.045 <0.001 ‘ 0439 -0071 -0.029
SW(m) 0.176 + 0.030 0.206 + 0.039 0.006 ‘ 0403 -0051 ~0.009
SV(m/s) 0.155 + 0.055 0307 £ 0.268 0.016 ‘ 0476 -0273 ~0.031
SA () 33.097 29219 31333 + 20671 0.821 ‘ 0352 ~13.893 17.420
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MoSyi. (m) ~0.028 + 0.007 0022 + 0.010 | 0.019 ‘ 0342 0011 -0.001
MoS,p (m) ~0.068 + 0.033 -0.074 + 0.031 ‘ 0.506 ‘ 0.399 -0.013 0.025
By (m) 0040 £ 0007 0048 £ 0009 ‘ 0.002 ‘ 0455 0013 ~0.003
Byp (m) 0.022 + 0.002 0.028 + 0.008 ‘ 0.001 l 0473 [ ~0.009 ~0.002
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n (trials) 17/(81) 19/(85)

Age (years) 65.588 £ 3.658 65.579 £ 3.626 0994
Height (m) 1,615 + 0.0530 1584 = 0.043 0062
Mass (kg) 65.406 + 12.251 60937 £ 7.273 0187
7 BMI (kg/m) 26039 + 3.788 24324 £ 2719 0125
MMSE (scores) 28.645 £ 0.400 60937 £ 7.273 0083
Sedentary time (hours/day) 8.735 + 1.847 3,526 £ 0456 <0.001

Physical activity frequency (times/week) - 5.947 + 1471

Physical activities duration (hours/day) - 1,526 + 0390

Years of exercise (years) - 9.842 + 3480

S sedicitary grioli
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Enrollment(n=125)

Excluded

Assesed for elgibiity

Regular exercise habit: n=51
Health problem: n=12

Cognition impairment: =8

‘ears of exercise less than 6 years - n=7

Sedentary time less than 6 hours'day - n=10

Eligible participants@=40)

Sedentary group: =20

Tai Chi group n=20

Dropout
Accidental injury: n=1
Drop out because of personal reason:
Tnvolved in the fest(a=36)

Sedentary group: n=17
Tai Chi group: n=19

v

Gait initiation walk test

Sedentary group:n=17 (trals=51)
i Chi grovp: n=19 (wials=85)
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Location

Dominant side

Non-dominant side

Foot Forefoot load (M

Leading foot 5554 + 1642
Trailing foot 4045 £ 15.96
Leading foot 5469 + 14.63

Trailing foot 4664 + 1547

%)

Rearfoot load (M
44.46 + 16.42
59.55 £ 15.96
4531 £ 14.63

53.36 £ 15.47

SD, %)

369

-6.55

352

-2.38

<0.001 ‘
<0.001
<0.001

0.019 ‘
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inant side (M

dominant side (M + SD, %)

Overall load Leading foot 51.96 + 6.20 58.16 £ 6.18 -7.42 <0001
Trailing foot 4184 £ 618 48.04 £ 620 -7.42 <0.001

Forefoot load Leading foot 55.54 £ 1642 54.69 + 14.63 054 059
Trailing foot 40.45 £ 15.96 46.64 % 1547 -3.67 <0.001

Rearfoot load Leading foot 44.46 £ 1642 4531 £ 1463 -054 059
Trailing foot 59.55 + 15.96 5336 + 1547 367 <0.001
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Location

Leading foot

(M + SD, %)

Trailing foot
(M + SD, %)

Overall load Dominant side as leading foot; ‘ 51.96 + 6.20 48.04 £ 6.20 346 <0.001
Non-dominant side as trailing foot

Non-dominant side as leading foot; Dominant side as trailing foot ‘ 58.16 + 6.18 41.84 £ 6.18 14.48 <0.001

Forefoot load Dominant side ‘ 55.54 + 16.42 4045 £ 15. 96 8.80 <0.001

Non-dominant side ‘ 54.69 + 14.63 46.64 + 1547 4.89 <0.001

Rearfoot load Dominant side ‘ 44.46 £ 16.42 59.55 + 15.96 -8.80 <0.001

0 Non-dominant side ‘ 45.31 £ 14.63 5336 + 1547 -4.89 <0.001
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Reference  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria  Criteria

2 3 4 5 3 7 8 9 10 1 12 13 14
Paraliceral | YES YES NA YES ES Yis VES YiS YES YiS ES NR NR YiS
(2020)
Sakai et al. (2019) | YES ES @ YES ¥ES YES @ YES YES @ ES @ ES YES
Zubacetal. (2019) | YES YES @ YES ES YES vES YES ES YES ES @ ES YES
Grosprétre etal. | YES ES @ YES ES YES ES vES NR YES @ @ ES YES
o1s)
Paravié et al Yis YES NA YES ES Yis NA NA YES Yis YES NA NA NA
oi7)
Ebersole & Malek, | YES ES NR YES ¥ES YES ¥ES YES YES YES ES NA NA YES
(2008)
Jaskolski etal. | YES YES YES YES YES YES @ @ YES YES ES @ @ @
(2007)
Toietal. (2006) | YES ES NA YES vES YES ES YES NR YES ES NR ES YES
Maddleine etal. | YES YES NA YES ES Yis NA Yis YES NA ES NA NA Yis
(2001)
Barry etal. (1990) | YES YES ES YES NR YES VES NR YES NR ES NR NR NR

NA. ot applicables NR.not repoted: C), cannot detesmine: Citeria 1 Was therecarch question arobjctve i this pape clerly stated: Cieria—Wasthe study population clearly specifid and defined?: rteia3—Wasth paticiption rate of gl prsons
east 507 Criteri 4 Were all the subjectsslctedor rcruted from the sameor s populations (ncluingth same imeperiod)? Were inlusion and excluson i orbeing n thestudy prespecifed and applied unifomly 1o all participanis?

asample sizejustificaton, power desciption, o variance and effct stmates provided?; riteia6—For theanalyss i this pape, were the exposure(s) fnterest measared rio 10 the outcome{s)beng measured?; Citra 7—Was the imeframe sufficient o thatone:

coud reasonably expect 0 s an assocaion between exposure and outcome it existed?;Criteria 8For exposuresthat can vary in amount o eve,did the tudy examine ifferent el of the exposure s related t the outcome (e, caegories of exposur, or

cxposure measured as continuous variable Crtria 9 Were th exposure messures independent variables) clealy defned,vld,elable and implemented comsistently acros all study particpants; Citeria 10—Was the exposure(s) asessed more tha e aver
imetsCrtri 11—Werethe outcome mesurs (dependent varabls) clearly deined, valid,rlabe, and implemented consistently acrosall study particpants; riteria12-Werethe outcome ssesors blinded o the exposure statusofpartcipants’: Cieria 13—Was.

Mo i i et Bialia O el i - s s il Sa kb i victiiies siiaiund vl sl shati Rl etk Srsatt i s Dobichiaabies Mo s aatel st iadston

Crteia5—Was
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5 cm step 15 cm step

Leading Trailing Leading Trailing
foot foot foot foot

Dominant side

25 cm step

Leading
foot

Trailing
foot

step

Trailing
foot

COP-ML adjustment | 1110 £439 | 7.01 243 1377+513 | 979 £ 481 1376520 | 1030 £448 | 1535433 | 1145 £ 398
velocity (mm/s)
‘COP-AP adjustment 5570 + 21.53 40.33 + 13.92 63.92 + 24.58 5151 + 26.52 63.69 + 17.82 51.20 + 19.97 75.99 + 23.51 5436 + 21.39**
velocity (mm/s)
COP adjustment 585542194 | 4214%1428 | 67552519 | 5387+2694 G762+ 1894 53772053 | 80062332 | 57702187
velocity (mm/s)
95% confidence circle 340341 + 277156 + 449504 + 270570 + 528463 | 326967 + 7236.10 + 305239 +
area (mm?) 2036.14 2553.56 2814.83 277.62 388005 254572 4644.70 2506.51°"
ML range (mm) 2014£1247 | 926+302 | 2644%1304 | 1604967 = 2350 £1204 | 15871031 | 23.60+978 | 1660 916"
AP range (mm) 10970 2361 | 92582492 | 11852 +2351 9849 +3247 1204542902 10274 2435 13350 +2773 | 10810 +
2062+
Maximum swing (mm) | 4583 +3457 | 3596 %2693 | 4358 2494 | S413£4263 | 4049 £2227 | 5683 %3939 | 52502570 | 6281 %3498
Minimum swing (mm) | 0.01 +0.01 001 % 001 001 £ 0.01 001 % 0,01 001001 | 001 001 001 £ 001 001 £ 001
Mean X (mm) 5451 £405 | 5405+460 | 5454%403 | 5427+422  S5.01%£570  5602+664 | S574%599 | 5656+ 635
Mean Y (mm) 14178 £2230 | 12763+ 1867 | 14567 +2270 | 12528+ 1949 14419 2685 12035 +2397 14678 +2459 | 119622595

Non-dominant side

COP-ML adjustment 9.47 £2.74 8.08 +3.09 12.14 £ 3.95 9.87 +4.38
velocity (mm/s)

COP-AP adjustment | 5022+ 9.53 | 4220 +1643 | 5668 +2311 | 48412170
velocity (mm/s)

COP adjustment 5261 £ 9.56 44.67 £ 16.54 59.98 + 23.17 50.84 + 2217
velocity (mm/s)
95% confidence circle 289349 + 1944.36 + 4265.14 = 279732 +
area (mm?) 165656 151072 2058.55 281899
ML range (mm) 1611592 | 1636+1047 | 2298 +1156 = 17224951
AP range (mm) 98.80 £18.93 | 9071 +27.84 | 12081 +2470 = 97.33 £ 32.66

Maximum swing (mm) | 4520 £2522 | 48.34 + 3859 = 4345+ 2156 = 5288 + 4497

Minimum swing (mm) | 0.01 + 0.01 001 + 001 001 +0.01 001 £ 001
Mean X (mm) 5220 + 397 5170 £ 376 50.64 + 5.01 5147 £ 521
Mean Y (mm) 14290 +21.02 | 133.85+2300 | 13837 £ 19.68 | 127.74 + 21.50

13.38 +3.45

6427 +17.89

68.11 % 17.31

495006 +

291933

2340 £ 10.87

120.18 + 28.30

45.58 + 17.30

001 £ 001

49.80 + 4.54

14052 + 2353

‘Indicates statistically significant differences between different step heights of 5, 15, 25, and 35 cm at P < 0.05;

10.05 + 4.08

5320 + 22.87

5576 + 23.18

326088 +

293953

17.48 +9.01

10166 + 33.13

5976 + 39.17

0.01 £ 001

49.98 + 4.40

12443 £ 2257

15.87 + 392

76.26 + 2225

80.38 + 22.36

6005.57 +

312030

26.86 + 10.93

14071 £ 29.10

52.83 + 3045

001 + 001

4845 + 456

13107 £ 2351

1113 + 480"

52.72 £ 22.05*"

55.67 + 22.40%"

331246 +

2436.16*"

19.26 £ 11.63*"

10404 +
3260

54.83 + 41.65
001 £ 001
49.67 + 4.20°

125.96 £ 26.56"
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Sample characteristics (type of Search variable (EME) Additional
sample/Size/Age)

Experimental Control Method of Muscles/  Tools used Purpose Findings
group group integration Location

Paralicetal  Cross | 14 Mand 12 Wbeforeand “The ratio of Dm 0 My, (in | Gastrocnemius. Investigate muscle-specific changes in | Muscle contracil properties
(2020) sectional | after TKA/GLI £ 534 mam/mV) medialis | Blctrcal Stmulator, | lower extremities, physical function of | gradually improve during the

sudy Tsometric patients and EME musele rehabiitation period afir TKA.
dynamometer | gastrocnemius medialis in early post- | This also increass the EME index,
“TKA period using TMG which indicaes  bettr conversion
of lctrical activation into
mechanical work. Therefore,they
carify that the index allows an.
objecive assessment of muscle
performance and can serve as an
imparant indicaor when
planning a rehabilation program
Skaietal  Cross 55W and 61 M vith = MMGRMS 10 EMG-RMS | Mulifdus, | MMG, EMG, MR, Evaluste lectrophysiological | Ederly patents with chronic ower
09) sectional | chronic low back pain/ rtio between each lumbar | Erector spinac Xeray activation of the mltifidus and | back pain showed decressed
sudy 7317 645 deflcton and extension erector spinae muscles in clderly | lumbar multidus muscle index
patients with chronic low back pain | and erector spinae compared to
healthy control groups. This
indicates a lower abily to convert
dlectrical activaton of musces info
a force generated in patents with
chronic lower back pain
Zabac et . RCT | Personsof duily activty - “The ratio of Dm 10 My (in | Gastrocnemius TMG,EMG, | To study the effcs of § weeks of || Rescach findings showed that
09 centre in Primorska/23/ /) medialis | Hlectrial stimulator, | contrlled plyometric exercse on | plyomeri exercise affectd the
67452 Force phate jumping efficiency, contractle | EME muscleindex in older people.
performance and inflammatory An increase in EME may be
response i the elderly associated with an improvement in
musce fiber coondination and
actvaton
Grosprétre  Cross- | 11 M, practcing Parkou/ |10 m recreationally | The raio of the maximum Soleus, MVG, EVMG, | Toassessthe impact of many years of | The EME index has proven to be a
ewal. QOI8)  sectional 243 imvolved in sports/ | musce displacement | Gastrocnemius | Dynamometer | explosive sirength training, whichcan | key factor that distinguishes
study 2343 triggered at Mo (£ M) | medlialis form the neuromuscular profile of | Parkout athletes from other
athletes athetes. These showed
fcanly higher EME indice,
which indicaes their abily to
generate greater mechanical power
per unit of electrial activation
Paravic ol Cross- | 10 Mand 8 W303 £ 103 - “The raio of Dm (0 My (in Soleus TMG.EMG, | Examine the reliabiity of the EME High reliabily of the
o) sectonal mmmy) Hectrical stimulator | during the day, during days and | letromechanical efficincy
sudy between assessors assessment by means of the ratioof
TVG (Dm) and Mowave
amplitudes was establshed.
Repeated measurements led to
similar results, which confirms the
stability of this method and the
y of the measurements
obtained
Ebesole & Quasi | Healthy M/I0/23 £ 1.2 - “The ratio of normalized | Vastus medialis, EMG, Invesigat the relatonship between | 1t was found that ftigue had
Malck, (2008)  experiment MG amplitude to Vastus laeralis musce fatigue and clectomechanical | signifcant impact on the
normalized EMG amplitude. efciency dectromechanica eficiency of
cach iteration separtely) both musces. At loading, EME.
s reduced by 58% and 6%,
respecively,indicating a reduced
ability of musces o convert
dectrical ativation ino.
‘mechanical work
Joskilki etal. Cross- M3 13 - “The rato of MMG RMS! EMG, Invesigae the impact of eccentric | Electromechanial effcency.
00 sectonal EMG RMS [mV/V] Isokinetic, MMG | contractons on muscle biceps and | played a key rle in muscle
study triceps brachii during MVC bends of | response after eccentric exercse,
thelbow joint using lecrical (EMG) | wherea simila esponse from both
and mechanomyographic agonisticand antagonistic muscles
activites (MMG) was found. The high EME index
was associated with a grater
ability of musces to convert
dlectrical muscle acivation into
mechanical sirength
Toietal. 2006)  Cohort 16M256 £ 23 - Mean corected value (ARV) | Masseter EMG, MMG, Bite | Study MMG validation 0 assess | The resutsshowed thatjaw muscle
sudy for MMG (mm)/ARY for force sensor | Masseter muscle ftigue (masticatory | fatigue was asociated with
EMG (x10° mV) musde) reduced EME. Reduced EME
indicates @ reduced ability of
muscles to convert dectrical
acivtion info mechanical work,
which i turn can afect v
fnctionaliy, such as reduced bite
strength and difclty performing
certain cheving tasks
Madelineetal.  RCT | Healthy M/13/244 = 11 - ‘The ratio of MMG-RMS to | First Dorsal EMG, MMG, | Systematically investigate whether | The study found that the type of
(00 EMG-RMS interosseous Poentiometer | complementary knowledge can be | muscle contraction, the rate of
gained from images of contraction and angular velocity
dlectromyography (EMG) and | affcted the EME index. Eecentric
mechanomyography (MMG) signals | contraction resuls in @ higher
EME index than in concentric
‘muscle contractons
Barry et . Rer Chidren Children without | The ratio of AMG t0 EMG | Biceps brachii | AMG, EMG, Force | Understand the elctromechanical | The rsuls showed tha the ratio
(1990) neuromuscular disease/ | neuromuscular Transducer, | eficiency of muscle activity and ts | between AMG and EMG,
167-16 discase/11/7-16 microphone | variations in normal muscle functon | cspecially when analyzed with a
compared to muscle affcted by | lineardiscriminant functon, holds
myopathy or musculr dystrophy in | promise a a diagnostic ool for
children. disinguishing between normal

and diseased muscles in the
pediatric popultion. Increased
atios in patients indicate changes
in electromechanicl eficiency
associated with childhood muscle
diseases

Legend: AMG, acoustc myography: RCT,randomised contrltriai MG, eectromyography; MMG, mechanomyography; MVC, maximum voluntary contrct
e T il R i bt MR SEAe P At e Y e S R s

RMS, oot mean squar; TMG,tensomyography; Din, maximurm: TG, amplitud: Mptp M-vave
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COP Total adjustment time (s)

Formula

COPTotal adjustment time = T

COP-ML adjustment velocity (mm/s)

‘COP-AP adjustment velocity (mm/s)

COP adjustment velocity (mmy/s)

Nt
COP - MLadjustment velocity = \/T Y. |ML{n+1] - ML{]|
=

No1
COP - APadjustment velocity = /T Y. |AP[n+1] - AP[n]|

Nat
COPadjustment velocity = 1/T Y. [(AP[n+1] = AP[n])’ + (ML[n + 1] - ML[n))*]'*
b=

95% confidence circle area (mm?)

ML range (mm)
AP range (mm)
Maximum swing (mm)
Minimum swing (mm)

Mean X (mm)

Mean Y (mm)

N
Mean Distance = 1Ny, [AP[n]* + ML[n*]"

=

¥
RMS Distance = [1/N ¥, [AP[n]* + ML[n]*]]"
-

95% confidence circle area = n(MDIST + 1.645[RDIST? - MDIST?]"2)*
MLrange = max, cpemen IML[n] = ML[m]|
APrange = maxi<n<msn |AP[n] = AP[m]|
Maximum swing = max,pen- [(AP[n+1] = AP[n])* + (ML[n + 1] - ML[n])*]"*

Minimum swing = min; <<y [(AP[n+ 1] = AP[])’ + (ML[n + 1] - ML[))"]'*

X
=
MeanX = ZIML,K

N
MeanY =4 Y AP,

=
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r p-value offset p-value RMSE p-value CMCp p-value CMCpqs
p-value

Hip Flex/Ext 001 001 001 077 001 001 500 036 001 001 001 001
Hip Add/Abd 001 001 032 on 143 239 003 001 001 001 001 001
Hip Int/Ext Rot o0 [ 059 001 058 133 001 001 001 001 001 001 001
Knee Flex/Ext 001 [ 001 500 001 451 [ 263 | 001 001 001 001 015 001
>Knee Val/Var [ 001 [ 001 019 | 019 286 006 001 001 001 001 001 | 001
Knee Int/Ext Rot 001 [ 001 002 001 015 004 003 001 001 001 001 001
Ankle Dors/Plant Flex 77.001 001 099 500 001 001 | 319 001 001 001 :001 7 001
Ankle Sup/Prn 003 003 001 010 010 266 001 001 001 001 001 001
Ankle Add/Abd | oot 7.006 032 500 014 263 | 001 001 001 001 7 001 001

r, Pearson correlation coefficient; AROM, difference in the range of motion; RMSE, root mean square error, CMCp, interprotocol coefficient of multiple correlation; CMCpgp interprotocol
coefficient of multiple correlation without offset; R, right limb; L, left limb; Flex/Ext, flexion/extension; Add/Abd, adduction/abduction, Int/Ext Rot, interior/exterior rotation; Val/Var, valgus/
varus; Dorsi/Plant Flex, dorsi/plantar flexion.

To conclude that the samples are from a normally distributed population the p-value obtained must be above the 5% significance level. Not all p-values are greater than 005, s0 not all parameters
a6 ermally distebuted.
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No-BP cLBP No-BP cLBP

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

LMF 7.20 (3.64) 591 (4.85) 0333 510 (3.85) 267 (3.72) 0.060

RME 7.65 (4.16) 6.10 (5.77) 0.136 537 (3.97) 233 (232) <0.001
LESL | 9.08 (5.46) 963 (5.59) | 0741 [ 683 (3.55) [ 435 (5.62) [ 0.129
RESL | 9.27 (481) 878 (4.99) 0716 7.11 (349) 315 (273) 0.003
| LEST | 339 (229) 372 (277) 0.624 242 (123) 270 (1.67) 0666
REST | 345 (2.14) 436 (3.08) 0.203 283 (1.17) 3.07 (2.06) 0733

Flexion angle (°)

OnsetT 105.64 (26.12) 11798 (14.99) 0.103 11838 (18.26) 919 (28.91) <0.001

Onsell. | 50.52 (1496) 6173 (12.03) 0.006 58.89 (7.49) 41.60 (13.08) <0.001
Omserr | 53.41 (1627) 5591 (15.13) 0.633 [ 55.22 (1195) | 50.41 (19.71) | 0346
OffsetT 119.61 (13.57) 127,52 (15.70) 0.066 13043 (14.37) 10145 (32.34) 0.002
offetl. | 58.96 (11.19) 67.44 (11.30) 0018 64.99 (7.96) | 47.52 (1232) | <0.001
- Offr 58.94 (11.79) 59.79 (15.66) 0.792 6320 (1230) 54.05 (24.71) 0152
MaxT 128.24 (8.74) 13094 (1709 | 0520 s e 15 (2230) | 0.014
Mo 6110 (9.76) 68.98 (11.95) 0015 66.12 (7.46) 5172 (935) <0.001

MaxP 66.14 (9.41) 62.63 (1548) 0456 65.40 (12.12) 64.49 (18.89) 0842
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<40 >40 <40 >40

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

LMF 7.20 (3.64) 5.10 (3.85) 0.101 591 (4.85) 267 (3.72) 0.017

RME 7.65 (4.16) 537 (397) 0.062 6.10 (5.77) 233 (232) <0.001
LESL | 9.08 (5.46) 683 (3.55) | 0.169 [ 683 (3.55) [ 435 (5.62) [ 0.002
RESL | 9.27 (481) 7.1 (3.49) 0.100 878 (4.99) 315 (273) <0.001
| LEST | 339 (229) 372 (277) 0.138 242 (123) 270 (1.67) 0.130
REST | 345 (2.14) 283 (117) 0376 436 (3.08) 3.07 (2.06) 0073

Flexion angles (*)

OnsetT 105.64 (26.12) 11838 (18.26) 0.084 117.98 (14.99) 91.99 (28.91) <0.001

Onsell. | 50.52 (1496) 58.89 (7.49) 0033 6173 (12.03) 41.60 (13.08) <0.001
Omserr | 53.41 (1627) 55.22 (11.95) 072 [ 5591 (15.13) | 50.41 (19.71) | 0295
OffsetT 119.61 (13.57) 13043 (14.37) 0037 127,52 (15.70) 10145 (32.34) 0.005
offetl. | 58.96 (11.19) 64.99 (7.96) 0.081 67.44 (1130) | 47.52 (1232) | <0.001
- Offr 58.94 (11.79) 63.20 (12.30) 0372 5979 (15.66) 54.05 (24.71) 0279
MaxT 128.24 (8.74) 28 (442 | 0417 Bosi 70y | 11565 (2230) | 0.026
Mo 6110 (9.76) 66.12 (7.46) 0.105 68.98 (11.95) 5172 (935) <0.001

MaxP 66.14 (9.41) 6540 (12.12) 0.872 62.63 (1548 64.49 (18.89) 0693
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Age (years)

No-BP <40 >40
Mean (SD) Mean (SD) Mean (S
FRR
e 416 (452) 6.15 (3.85) 0041 661 (423) 389 (3.93) 0.005
rE 411 (4.66) 651 (4.18) 0019 [ 692 (498) | 3.85 (3.56) | 0.002
s 6.85 (6.14) 7.96 (4.69) 0127 934 (5.46) 5.59 (481) 0.002
RESL | 5.81 (4.84) 819 (4.29) 0025 9.04 (4.84) | 5.13 (369) | <0.001
LEST 3.18 (228) 291 (188) 0.559 355 (2.50) 256 (1.45) | 0.105
RET | 3.68 (264) 3.4 (173) 0.562 [ 388 (2.63) [ 2,95 (1.6) | 0086

Flexion angle ()

OnsetT 104.30 (26.56) 11201 (23.16) 0.175 1114 (22.19) 105.18 (27.35) 0368
Onsetl. | 51.14 (16.06) 5470 (12.42) 0.274 55.83 (14.62) 50.24 (13.68) 0.085
 Onsetp | 53.02 (17.67) 5431 (14.12) 0.720 [ 5459 (15.58) [ 52.82 (16.27) | 0787
OffsetT 113.80 (28.71) 125.02 (14.84) 0.204 12336 (14.96) 11594 (28.73) 0.160
OffsetL | 56.96 (15.43) 61.97 (10.06) | 0.114 [ 62.98 (11.89) [ 56.26 (13.53) | 0.023
- Offsetp 56.77 (2085) 61.07 (12.09) 0313 5934 (13.57) 58.62 (19.81) 0853
MaxT | 126.65 (17.36) 13021 (11.94) 0.184 [ 1295 (13.20) | 123.92 (20.34) | 0.180
MaxL 59.90 (13.66) 63.61 (8.95) 0.134 64.83 (11.42) 58.92 (11.09) 0.023
MaxP | 63.61 (17.15) 65.77 (10.72) 0.549 64.48 (12.60) 64.94 (15.67) | 0885

FRR: Flexion relaxation ratio. MaxP/L/T: maximum flexion angle of pelvic, lumbar, and thoracic spine. Onset T/L/P and OffsetT/L/P:thoracic, lumbar, and pelvic angles at the onset and offset of
the FRP.
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CLBP (n = 38 No-BP (n = 40 P-value Age<40 (n = 38 Age>40 (n = 40
18 Age<40 20 Age<40 20 no-BP 20 no-BP
20 Age>40) 20 Age>40) 18 cLBP) 20 cLBP)
Sex (M/F) 19/19 20120 1.00 19/19 20120 1.00
Age (years) 4352 £ 12.65 415 £ 1315 051 3118 £5.27 5330 + 749 <0.001
Body height (cm) 176 £ 010 173 £ 011 024 175 £ 010 173 £ 010 032
Body weight (kg) 7183 £ 1167 69.84 + 1285 048 7037 £1327 7123 % 1135 076
BMI (kg/m?) 23124223 2311 £ 230 098 2264 + 261 257+ 175 007
bain intensity 34519 - - 294%1.77 390+ 1.86 014
RMDQ (0-24) 800 + 470 - - 547 + 2.81 1015 £ 5.00 0.02 J
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ANOVA results

HTD Interaction Inclination HTD

Inclination 10mm 25mm 40mm F p 42 F p 752 F p

CoA [%]
Weight 6 1385 1202 (418) 1301 (329) 222 07 .04 161 <01 14 | 160 2 .02 6<12,6 <20°
acceptance (4.46)
12 1439 1686 (298) 1665 (3.45)
(4.63)
200 1528 (38) | 164 (412) 1734 3.1)
Propulsion 6 3712(27) | 383 (296) | 387 (387) | 13 97 <01 77 | 46 01 632 <01 06 10 mm < 25mm,
T T 10 mm < 40 mm
12 37.22(3) | 3923 (268) 3897 (245)
20 3767 | 398 (353) 3914 (264)
(3.48)
Swing 6 91.59 9446 (53) 8602 187 12| 08 348 04 08 | 43 65 01 6 >20°12 > 20°
(6.43) (16.34)
12 87.32 9287 (49) | 9352 (551)
(6.95)
20 85.55 8279 88.96 (8.33)
(8.28) (10.71)
FWHM
Weight 6 10.53 1043 (425) | 937 (307) 43 .79 | .01 | 936 | <01 .09 936 .38 .01 6 <126 <20
acceptance (4.02)
12 1323 1378 (424) | 128 (455)
(3.98)
200 13.66 1187 (601) 12,06 (4.39)
(5.38)
Propulsion 6 922(408) | 9(361) | 101(367) LI5S 33 02 149 | 23 01 254 08 02
12 109 (373) | 8.74 (304) | 9.02 (323)
20 958 (28) | 812(311) 823 (319)
Swing 6 15.11 1658 (586) 1708 (55) 22 93 01 38 | 02 09 05 96 <0l 12 < 20"
(8.48)
12 1513 | 1332 (844) 1318 (176)
(8.28)
200 1943 2162 (8.61) 2118
(8.99) (1042)
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ANOVA results

Interaction Inclination HTD Post-hoc
et 2 2 2
Inclination PR s NS ES S p S s SIS ESp S
Gait speed [m/s] 6 234(034) | 223(022) | 222(025) 39 | 81 21 225 <Ol 85 186 .19 17 | 6>12,6 >20
12> 20°
12 207 (03) | 199 (0.13) | 201 (0.16)
200 174 (014) | 175 (023) | 174 (0.22)
Stride length [cm] 6 140.07 13573 13495 51 | .74 | 25 | 13.07 | <01 | 72 | 170 | .14 | 20 | 6°> 12,6 > 20",
(14.99) (11.28) (12.86) 127> 20°
12 130.17 12647 12685
(13.91) (5.87) (7.96)
20 17.87 117.96 11891
(8.26) (10.16) (9.84)
Stance duration (%] 5 6301 (264) | 6357(192) | 6334 (L67) .19 | 33 2 3096 <01 78 | 113 33| 11 | 6<12,6 <20,
12°< 20"
12 6432 (166) 6544 (108) | 6551 (0.82)
20 67.14 (1.85) 66.61 (1.47) 67.23 (2.12)
Double stance 6 1354 (233) | 1401 (21) | 1357 (154) | 237 | .11 21 1403 <01 61 14 | 79| 02 6<20,12°<20°
duration [%]
: 13.84 (1.48) 14.42 (1.3) 14.59 (1.26)
20 1726 (231) | 159 (172) | 1601 (1.79)
Cadence [steps/s] 6 166 (0.1) | 164 (012) | 164(009) 39 |72 04 1897 <01 83 37 65 04 6 >12,6>20,
12°> 200
12 159 (0.12) | 158 (0.09) | 159 (0.09)
20 148 (009) | 148 (0.14) | 146 (0.12)
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knee - L1 [mi

Distance betwee

P1 475 445
P2 485 490
P3 520 485
P4 490 465
P5 465 460
P6 455 485
P7 440 435
P8 445 440
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Times in a 0m rowing ergometer race [s]
P1 1779 100
P2 | 1943 [ 45
3 1948 3
P4 195.5 41
15 1959 40
6 | 1974 | 35
14 2056 7
P8 [ 207.7 0
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Mean + SD Minimum Maximum
‘ Age 25+ 1 2 2
‘7 Body height (cm) 1836 175 193
[ Body mass (kg) 865+8 748 982
‘ BMI (kg/m?) 258 +1.89 275 2882
‘ Activity per week 41 3 5
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Healthy Adults (Control) 0.968 0.984 0966 X 0993

Diabetes Mellitus (DM) 0.972 0.983 0952 X 0994

Chronic Kidney Disease (CKD) 0.953 0.995 0916 X 0999
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Intra-subjects Inter-subjects

Accuracy wF1 score Accuracy wF1 score

VGG 0991 0.991 0999 0999

Train ResNet osm 0.984 L oom 0974
Dil-CNN 0999 0.999 0999 0999
VGG 0902 (0.018) 0902 0019) 0.868 (0.050) 0866 (0.052)

Valid* ResNet osu (0.022) 0.843 (0.023) 0832 (0.058) | 0829 (0065)
Dil-CNN 0926 (0.024) 0.925 (0.025) 0901 (0.038) 0901 (0.040)
VGG os26 0927 Losro 0877

Test ResNet 0874 0873 0875 0869
Dil-CNN 00 0.953 | osss 0897
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VGG ResNet CNN
Trainable Parameters 500,867 \ 376,643 204,035
Non-trainable Parameters 2,112 ‘ 3264 1,088

Total Parameters 502,979 ‘ 379,907 205,123





OPS/images/fbioe-12-1351485/fbioe-12-1351485-t001.jpg
Control (n = 75) M (n = 159) CKD (n =3
Age (years) 4647 (16.28) 58.83 (961) 60.19 (931)
Onset (years) - 955659 544 (3.79)
Dominant (R/L) 7213 159/0 370
Gender (M/F) 30/45 s s
Total Samples in dataset 1,427 1,421 415
Training 827 (58%) 771 (54%) 251 (60%)
Intra Validation 300 (21%) 325 (23%) |82 o%)
Testing 300 (21%) 325 (23%) 82 20%)
Training 103 (2%, 59) 1,048 (74%, 116) 320 (7%, 28)
Inter (ratio%, cases) Validation 166 (12%, 9) 168 (12%, 20) 40 (10%, 4)
Testing 228 (16%, 11) 205 (14%, 23) |55 03%,9)
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Age Gender (male/female)

modeling group 183 | 4180 + 11.73 92/91
validation group | 50 | 4074 £ 9.42 2624

P 0455
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Sum of Squares Mean Square

Median Model 101735 101735 1.87221 022025
Error 326036 054339 - -

Total 427771 - - -
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Participants The force moment for th

dominant leg [Nm]

P1 2682 69
P2 3037 100
P3 2963 94
P4 [ 2909 89
P5 2916 89
P6 2423 46
P7 2622 63
P8 1903 0
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Sum of Squares Mean Square

Median Model 021291 021291 031427 059537
Error 4.0648 067747 - -

Total 427771 - - -
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articipa Statistic p-valu Decision at level (5%)
\ Pl 095194 066885 Can't reject normality
‘ P2 083504 00064 Reject normality
‘ P3 087431 002574 Reject normality
» P4 081389 000317 Reject normality
13 094205 052505 Can't reject normality
P6 08175 001492 Reject normality
P7 095206 045825 Can't reject normality
P8 093899 027846 Can't reject normality
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Methods Opportunity  Extrasensory

Javeed, M. et al. (2023) 088 -
Vanijkachorn and Visytsak (2021) T 088 | -
Han, J. (2019) [ 087 [ =
Gil-Martin, et al. (2020b) 067 -
Gioanni et al. (2016) 074 -
Vaizman et al. (2018) [ - [ 083
Asim et al. (2020) I - | 087
Abduallah et al. (2022) - 087

Proposed system mean accuracy 097 096
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Model Name Expression R?

Model 1 ‘ Linear equation METs = 8.33 Mean + 3.36 0.856 0.96
Model 2 ‘ Logarithmic equation METS = 2.56 x In (Mean) + 10.04 0.889 084
Model 3 ‘ Cubic equation METs = 29.65 Mean® - 52.67 Mean® + 33.46 Mean + 122 0891 083

Hobe: BV B B comimoniss oued 5 aonione Hho Bt o Dappssns SR s seror ol GEmity:
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Model 1 Model 2 Model 3

RMSE RMSE RMSE

2 091 0.67 063 055 040
3 0.84 085 0.80 065 046
4 051 054 051 0.60 063
5 oss 0.62 0.64 059 071
6 [ 129 [ 094 097 096 094
i 7 L16 0.90 089 108 089
8 129 0.8 088 114 081
9 140 103 108 131 098

L SRR ¥ T —
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Modeling (n Validation (n

‘ Age (years) 244116 242116 47£16
‘ Height (m) 17 £ 0.08 17 £ 008 17 £ 009
‘ Body mass (kg) 64.0 + 10.6 64.0 +10.2 64.8 + 11.6
‘ BMI (kg/m?) m0s21 22021 21+22
‘7 Body fat rate (%) 216 £65 215+ 67 2062

Kot SO, et Beviation: i metes 5 ilaruin: BMIL. Gody ioass indes.
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Measurement Group (hip OA)  Group (controls)  p-value Cohen’sd  Effect size (n?
Limits of Stability (%) ~ Forward direction 4120 £ 450 78.00 £ 9.00 <0001 028 -330
Right-Forward direction | 68.00 £ 8.00 88.00 £ 11.00 <0001 0.50 -1.84
Right 7200 £ 11.00 92,00 £ 12.00 <0001 0.40 -1.76
Right-Backward 89.00 £ 13.00 97.00 £ 14.00 <0001 013 058
Backward 87.00 £ 12.00 95.00 £ 11.00 <0001 020 -065
Left-Backward 79.00 £ 10.00 90.00 £ 11.00 <0001 053 -124
Left 8400 £ 10.00 9400 £ 13.00 <0001 027 -092
Left-Forward 88.00 £ 11.00 97.00 £ 14.00 <0001 021 069
Total Objective 78.00 £ 10.00 96.00 £ 12.00 <0001 049 -147
Functional Balance Test | TUG Score 1050 + 220 870 £ 2.00 <0001 Loss 080

b Ok, T netecarilitie ovakus. Drobability Valis Calinds &. Coliva's Bifect Sis 2. Bla Saiared: TUG, tassd v aod so.
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Characteristics Hip osteoarthritis (n = 86) Asymptomatic controls (n = 86)

Age (years) 7234 % 546 7187 £ 517 0424
‘ Gender (Male/Female) 41/45 40/46 0.882
‘ Body Mass Index (kg/m’) 2913 % 425 27.56 £ 389 oo
‘ Duration of OA Diagnosis (years) 525+ 267 N/A N/A
‘ Pain VAS (0-10 scale) 654128 - N/A
‘ Disability Score (Harris Hip Score) 6235 % 8.14 - NA

OA, ostecarthritis; VAS, visual analog scale.
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S-SSG models

E-SSG models

Forwards ES p-value Cohen's d Forwards Backs p-value Cohen's d

D 2219+2334 | 228512782 0509 026 26961 £5055 | 28882 + 560.8 0310 036
Vi 24825 278%17 0.001 143 2628 28527 0.013 091
HSR 3934+ 1281 5225+ 99.5 0.008 113 567.2 + 2197 7448 + 183.1 0017 088
VHSR 675+ 628 138 £ 422 0.002 132 1087 =812 1937 £ 878 0.007 101
SR 12244 294+ 166 0042 083 255 +329 59 + 462 0.023 084
MA+MD 709 + 14.3 929 + 14.3 0.001 154 513 £ 16.1 645 + 16 0.025 0.82
HA+HD 364+ 117 528+8 <0.001 163 21+98 322£103 0.007 101
MA 361+86 468 £ 8.4 0.003 125 276+85 346+ 84 0.023 083
HA 168+75 24251 0.006 116 106 + 44 153 +48 0.006 102
D-MA 128+ 39 1718 + 244 0.002 135 88+ 264 1154 +297 0.009 098
D-HA 524+23 775+ 18 0.004 122 278107 43£156 0.003 114
MD 348+73 46277 0.001 151 238+93 29992 0.065 067
HD 1966 285£52 <0.001 159 114467 169 +72 0032 078
RHIE 73+31 162 <0.001 166 51%3 9433 0.001 123

TD, total distance (m); V s, maximum running velocity; HSR, high-speed running (>15 km.h™!) distance (m); VHSR, very high-speed running (>21 km.h"") distance (m); SR, sprint running

(>25 km.h™") distance (m); MA, the number of medium accelerations (>2 m.s™
the number of hard decelerations (>2.5 m.s

s MD, the number of medium decelerations (>2 m.s %); HA, the number of hard accelerations (>2.5 m.s *); HD,
D-MA, distance of medium acceleration (m); D-HA, distance of hard acceleration (m); RHIE, repetitive high-intensity exercise.
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TRL model Comparison ~ 7vs.4 model  Comparison Comparison JT model Comparison

between between between between positions
positions positions positions
Forwards p-value Forwards Backs p-value ES Forwards p-value ES Forwards pvalue  ES
™ L9 | 122+ | 00N |02 OS2I BM6: | 031 | 008 L32N: | L¥lSs | 0Ms | 012 Lis7: | LI®9: | 018 on
911" 191.6" 1750 23064 217.0M 1463 156.1°
Vinax. 27 +30" 261 £ 28" <0.001 039 216%19 2918 <0.001 032 241225 259221° <0.001 036 254 26 276 <0.001 039
i
HSU 91627950 270% | <0001 | 00 SLII9 | MRA: | 000 | 033 209:9%6% | 37: | <0001 | 045 A= 309: <000l o3
a3 389 o [
VHSR 295 £306° | 649 £ 408" <0001 047 64486 128+ <0.001 036 3192269 | 723%362" <0.001 054 632 %450 16+ <0.001 047
105 e
SR 62£127 | 1542 181" <0.001 037 02210 06%21 ons 013 50 = 8. 1432170 <0.001 036 165 £ 24.0° 39+ <0.001 034
37
MASMD | 2790 | MI101| <0001 | 03 453£ILM SIS+ 0005 024 N3:76 | BAL90 | <000 | 042 27267 | M2:75 | <000l 040
e
HAID | 137558 | 189565 | <000l | 037 28293 6: | 000 | 029 14656 | W36 | <000 | 045 14s43 | 10854 <000l 050
o
MA | 14749 | 8153 | <000 | 030 2568 2582 | 001 | 02 15144 | 185559 | <0000 | 031 14334 | U4sdd | <000 o3
e
i S828 | 80:40 | <O | 028 M02:4€  13: | 0001 | 029 64£29 | 87245 | <001 | 029 61223 | 84232 | <000 03
et
DMA | 982172 | ©26207 | <000 | 03 766+260% %9+ | 000 | 027 4943 | @s5£27 <00 |03 15| <000 o
pars
DHA | IB1£93 | 9121 0 | 029 IR :u7 H6: | <000 | 03 183577 | 263:18 | 00 | 026 28293  300:13 | <00 03
1650
HD 78237 109 + 40 <0.001 037 136155 1632 0004 024 8234 120 £ 35° <0.001 050 72230 10536 <0.001 045
e
P mesrws | Moo | 00m 07 0US=269 | M006: | 08 | 002 eI W83: 051 | 004 1m7emr | 193: | 067 008
n3 219 279 ns
RHIE | 32818 | 52817 | <000l | 048 402200 | SA:16 | <000l | 035 41222 | GIELF | <000 | 045 43219 | S9sle | <000 o

TRL, Touch Rughy Lesgues TC, Touch continuity: T, Japan touch. TD, ol disance (m); Vs, masimu sunning velocty: HR, high-specd running (>15 ki) distance (m): VHSR, very high-speed running (>21 k) distance (m): SR, spint rning
(525 k) distance (m): MA, th number of medium acclerations (>2 s MD, thenumber ofmedim decelratons (2 s ;A the numberofhad acelerations (>2.8 ms ), HD, th mumberof hard decelerations (2.5 m.s);D-MA, distance ofmedim
accelration (m); D-HA, distance of hard aceleration (m); PL, player load; RHIE, epettiv high-ntensity exercs. S, ffc size.

7 w5 4 model v TRL model p < 005.

7 vs. 4 model vs. TC mode, p < 005.

TC model v, TRL model p < 05,

“TC model v. T modd, p < 005

7 vs. 4 model vs. T model p < 005.

AT el Tl e I e e e e e e e
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Level Name

B Chest lift
B Spine stretch

1 Roll up

1 Double leg stretch
A Teaser

A Jackknife

Instruction

Supine, pelvis and spine neutral, knees flexed, and feet on the mat. Inhale to prepare. Exhale, contract abdominals, and flex thoracic spine.
Inhale and maintain abdominal contraction. Exhale and roll upper body down to the mat

Start from the sitting upright position, with arms forward. Inhale to prepare, and exhale when stretching the spine from the trunk flexion,
starting with the head. Inhale and maintain the stretched position. Exhale and articulate the spine sequentially, from the tailbone to the
head, returning to the starting position

Start from a supine position keeping the lower limbs extended, with arms internally rotated a bit and flexed overhead. Inhale while the
head goes up and the arms follow in line with ears. Exhale, make posteriorly tilted pelvis, and articulate the spine sequentially until the
shoulder line goes with the pelvis. Inhale, remain, and exhale, and return to the starting position

Start from a supine position with a slight neck upward flexion and flexion of the hips and knees sustained by the hands on the knees, not
entirely. Inhale and extend upper and lower limbs without touching the ground simultaneously. Exhale and return to the starting position

Startin a tabletop position with arms straight and extended above the head and legs straight and behind on the ground. Upon initiation,

inhale, and gather both arms and legs into a V-shape and contract both the erector spine and rectus abdominis muscles simultaneously,

straightening the spine. Upon exhalation, tlt the pelvis posteriorly and sequentially articulate through the spine to return to the starting
position

Start in a tabletop position with arms extended by the sides and legs straight and behind on the ground. Exhale and extend legs in a
diagonal direction. Inhale and flex both legs to create a 90° angle with the ground. Upon exhalation, tlt the pelvis posteriorly and move the
extended leg backward, over the head. Inhale, move the legs touching the ground with the plantar position of the foot, and extend the leg
while straightening the spine and maintaining a 90° angle with the ground. At this point, the subject contracts both the trunk flexors and
extensors, holds the position, and sequentially articulates the spine to return to the starting position

Descriptions of the Pilates movements. Abbreviations: B, basic; I, intermediate; A, advance.
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me

Deep squat

Hurdle step

Inline lunge

Shoulder mobility

Active straight leg raise

‘Trunk stability push-up

Rotary
stability

Instructio

Starting in a supine position, participants have the dowel placed behind their neck. They perform a squat movement with both hands holding a
dowel, with feet positioned shoulder-width apart, This movement assesses flexibility, stability, and balance

Starting in a standing, supine position, participants maintain a straight line from the waist to the leg while lifting one leg forward over the spring
between the dowels. This movement evaluates stability and balance

Starting in a standing position on the bar, participants hold a dowel in the hands on the back in a straight line. They place both feet in a straight
line and bend both legs to perform a lunge movement. This assesses lower extremity strength, flexibility, and balance

Starting in a standing position, participants extend their arms. Then, they elevate one arm and rotate it outward, and they rotate the other arm
inward at the same time. This movement evaluates flexibility and the range of motion

Starting in a lying position, participants lift one leg in a straight line. This movement assesses flexibility

Startingin a prone position, participants perform a push-up with hands placed on the floor and lift the whole body at once. This assesses upper
body strength and stability

Starting in a tabletop position, participants extend arms and legs in both sides at the same time, maintaining a straight line from the upper to the
lower body. This movement assesses upper body strength and balance
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Moderator  Interaction

effect (B)

Standard
error

95% Cl
lower

95% ClI
upper

Comments

Stability vs. Age 012 0038 005 002 022 Age moderates the relationship positively;
Mobility older age strengthens the association.
Stability vs. Gender -0.07 0110 004 -0.15 001 Gender has a non-significant moderating
Mobility effect; difference between males and females
not statistically significant.
Stability vs. BMI 009 0046 004 001 017 BMI moderately influences the association;
Mobility higher BMI strengthens the relationship.
Stability vs. Duration of OA | 0.14 0022 003 008 020 Duration of osteoarthritis diagnosis strongly
Mobility ‘moderates the relationship; longer duration

increases the impact on mobility.

A Bets Coeflicient: s Probal

ity Value; CI, confidence interval; BMI, body mass index; OA, ostecarthritis.
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Measurement

Correlation coefficient (r)

Correlation Coefficient; p, Probability Value; TUG, timed up and go.

Forward direction 045 0023
"Rigthnrward direction | 0.40 0037
| Right 038 0.045

Right-Backward 035 0.049

Backward 0.48 0018
Left-Backvard 042 0032
' Left 0.39 0.041

Left-Forward 041 0.035

Total Objective 050 0.009

TUG Score 045 0022
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Difference rear-front Difference rear-front (exit Total time over 500 m (s)

(entry phase) (s) phase) (s)

A1-A2 (preferred) 0,033 £0.027 0,040 £ 0.023 105.568¢
A2-Al (inverted) 0004 £ 0031 0001 £0.041 118.120
B1-B2 (preferred) 0,017 £0.021 0023 £0.035 109.328%

B2-Bl (inverted) 0,026 £0.044 0.091+0.074 118372
C1-C2 (preferred) 0,002 £0.021 0,016+ 0030 122.862¢
C2-Cl (inverted) 0.006 0,024 0.007 0028 127.297
D1-D2 (preferred) 0,064 +0.019 0,027+ 0.021 109.204
D2-DI (inverted) ~0.009 £ 0025 0,035+ 0021 1089554
E1-E2 (preferred) 0,027 £ 0,030 0.040 £ 0.024 114,632
E2-El (inverted) 0017 £ 0026 0027 £0.026 114.085¢

i eornkaanit thia Bt Rl elbenad i vralined o recied s Tha bold vl doaaher with # IEoht the beat permnce bt sch con.
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Paddler Age (yrs) Height (cm) Lower limb Arm length (cm) = Trunk length (cm) = Kayak experience

length (cm) (yrs)
Al 15 175 105 75 36 4
A2 15 178 107 80 -8 4
Bl 15 ‘ 170 ‘ 103 73 37 3
B2 16 169 102 73 40 5
C1 15 174 105 76 41 6
2 15 . 168 105 77 40 6
D1 16 179 108 80 - 4
D2 15 168 97 72 35 4
El 15 168 100 75 E 1
E2 15 ‘ 167 103 b 35 5
Mean £ SD 15.2£0.42 171.6 £ 4.50 103.5 +3.27 754 +2.87 378215 48123
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Classes Recall F1 score
Sitting. 097 098 0.97
‘Walking 1.00 033 0.50
Lying Down 0.96 093 0.95
Standing 0.88 1.00 1.00
Macro-average 095 0.81 0.85
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Classes Recall F1 score
‘ Standing 1.00 1.00 [ 1.00
‘Walking 1.00 0.95 0.99
Lie 099 098 1 0.99
Sitting. 1.00 1.00 1.00
Macro-average 099 098 | 0.99
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Precision

F1 score

Indoors 100 Y 100

At School 088 | 1.00 093
Location Home 100 ‘ 100 100
Location Workplace 100 ) 100
Outside 100 T 096
Macro-average 0.97 | oss 097
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Source Features Accuracy (%)

Bennasar et al. (2022) | Mean, standard deviation, root mean square, autocorrelation, permutation entropy, etc. 76 ‘
Tian et al. (2019) Mean, variance, skewness, kurtosis, signal magnitude area, minimum/maximum, interquartile range, etc. 83
Muaaz et al. (2023) Mean, variance, skewness, kurtosis, entropy, total energy, slope, etc. 88

Proposed Skewness, kurtosis, phase angle, linear prediction, auto-regression etc. 9% ‘
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Analysis of variance

Weighted least squares multiple regression

Crew (best time)

Coefficient of determination R* 0998
R*-adjusted 0.994
McC 0999
RSD 2,060

Regression equation

Independent variable Coefficient 95% CI Ioartial
(Constant) 197.7676 695 109.43 10 286.09 28.44 0022 -
Stroke_frequency (SF) ~02168 0092 ~139100.95 -234 0.256 -0919
ForceFront_paddler (E)) ~08158 0072 ~173100.10 -11.21 0.056 ~0.996
Force Rear_paddler (F) 03007 0.030 ~0.087 10 0.68 9.83 0.064 0994
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Front force (N) Rear force (N)

Stroke frequency (s/min) =061

95% CI=0.017 to 0.90; p = 0.046"

Significant is reported asp < 0.05.
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Variable Front force (N) Rear force (N) Total force (front + Stroke frequency

rear) (N) (s/min)

‘Time on 500 m () r=-088 047 r=-078
95% CI = ~0.97 to ~0.56; 95% Cl = ~0.85 10 0.22; 95% CI = ~0.94 to ~0.29;
p=0.0008" p=016 0.008"
Sienificanice s soporiadias’p < 0:05 aad™p <000,
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Index Standard error P Tolerance
Constant | oss 0.267 -1983 0048
Weight 0039 0.001 0.790 27.673 0000 | 0706 1416
Body Fat Percentage ~3463 0.593 ~0.188 -5.840 0000 0555 1800
HRR2 0042 0,003 0.348 12308 oo | 0718 1392
Gender om0 0.074 Py Y oo | 0.550 1817
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Equation R R2 Adjusted Standard err Durbin-Watson

1 | 0.769 0592 0590 0708 1511
2 [ 0.870b 0758 [ 0756 0546 [ 1581
3 0922¢ 0850 [ 0848 0431 1625
‘ 4 0924d 03853 03851 0427 1624

Notes . Predictor variables: (constant), body weight; b. Predictor variables: constant), body weight, body fat rate . Predictor variables: (constant) body weight, body fat rate, HRR2; d. Predictor
st (onetiinn) Wikohi: hody Bt eresitabs. FIRI. pondi:





OPS/images/fbioe-12-1370645/inline_18.gif





OPS/images/fphys-15-1437962/fphys-15-1437962-t004.jpg
Male emale Overall

HRRI (beats/min) 0.122 0.508** 0273
HRR2 (beats/min) 0228 0.605** 0398
Body Fat Percentage 0.002 ~0.287* -0318*
Height (cm) ~0659"* 0238* -0449**
Weight (kg) [ 0.769** 0153 0769
BMI (kg/m?) 0728 0036 0675
Age [ -0.046 -0133 -0.01
Gender -0.596**

Siobn ¥ sunrinenti b Bk pinesecte 5 < Bl
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VO2max (L/min) ‘ 323 £067 210 + 045 281 +082

HRRI (beats/min) ‘ 2179 £ 5.19 1941 £ 561 20.84 £ 547

HRR2 (beats/min) ‘ 4330 + 838 37.59 £ 9.10 4102 £ 9.08
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| Height (cm) 17392 £ 586 16432 £ 577 1704 + 7.42
‘ Weight (kg) 7257 £ 1002 [ 5941 £ 901 | 67.75 £ 1153
‘ BMI (kg/mz) l 2397 £271 2195 + 2.79* 2323 + 289
‘ Body fat percentage ‘ 022 %005 027 £ 005 | 024 £ 0.06
| Age ‘ 4526 £ 1198 4411 £ 1116 | 4480 £ 1167

NG 26 < D01 comusred o s,
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Number of Gender: Male

Model group

Validation
group

people (n) female
200 456+ 120/80
120
60 25 44016
107
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Initial Speed 33m/s

|

‘ Ankle Angle 737" Plantarflexion
‘ Ankle Moment | 356 Nm/kg

‘ Ankle Joint Force 1833 Nikg

{ MPJ Force [ 9.77 Nikg

| Peak GRE 239 BW

‘ Contact Time 0155

T ———
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Sole-Ground Contact Angle & Area

Angle: 954° Angle: 758 Angle: 5620
Area: S4T7.46 mm?  Arca: 683453 mm!  Area: $112.19 mm?
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Absolute VO2 max = ~0.528 + 0.039"weight — 3.463
*body fat rate+ 0.042*HRR2 - 0.180*gender (male = 1, female = 2)
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Measured values Predicted values Paired samples T-Test Pearson correlation test

(L/min) (L/min) t p r p
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Movement

Chest lift

Spine stretch

Roll-up

Double leg stretch

Teaser

Jackknife

Experienced Novice p-value
RA 487+23.88 48542936 0.98 001
EO 402£30.63 461+39.12 061 017
MU 595+13.98 111£2227 040 028
10 01032 101+ 2546 0.10 078
RA 14742823 2423564 038 030
EO 2853462 404 £43.10 036 031
MU 13942119 255+30.86 020 044
10 315496 19643221 0.04 088
RA 364 +21.71 4344 +30.41 0.42 027
EO 378+3017 464£39.71 046 025
MU 511139 18942515 0.04 076
10 035084 1052411 007 082
RA 4622163 5023153 0.66 015
EO 3973162 461+4177 0.60 017
MU 31858 10642091 016 050
Lo 02059 105+27.20 o011 074
RA 4142364 474£3254 052 021
EO 45742950 51243851 062 0.16
MU 63+18.50 16542565 016 047
Lo 0452076 1109 +24.12 0.06 086
RA 411£24.49 4843182 043 026
EO 435£3238 4784274 073 o1
MU 8011723 1682313 019 043
Lo 204288 9741544 0.04 084

Data are presented as mean + standard deviation. Abbreviations: RA, rectus abdominis; EO, external oblique; MU, multifidus; LO, longissimus; ES, effect size. ES values are interpreted as

follows: small effect (0.2), medium effect (0.5), and large effect (0.8 or above).
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uscle Experienced vice p-value

RA/EO 154£8.63 1314392 029 037

MU/LO 146 £63.78 43£5.88 032 046
Chest lft

RA/MU 64£594 714632 073 011

RA/LO 46£374 61+£553 032 033

RA/EO 85£7.90 1954576 032 041

MU/LO 74515 78+7.18 084 0.07

Spine stretch

RA/MU 584913 8.1£1064 048 024

RA/LO 394503 724753 014 050

RA/EO 134£587 1544862 040 0.28

MU/LO 781563 64642 070 0.14
Roll up

RA/MU 624469 894658 015 048

RA/LO 39237 594566 015 052

RA/EO 175£7.24 126 £455 002 083

MU/LO 29+447 43+6.77 048 0.25

Double leg stretch

RA/MU 44+4.89 49+£6.11 0.74 0.11

RA/LO 28243 53627 012 057

RA/EO 1564574 155+9.96 098 001

MU/LO 51£531 80£7.06 032 046
Teaser

RA/MU 49£580 764725 022 041

RA/LO 402284 67632 009 0.59

RA/EO 146 +0.07 1174590 049 023

MU/LO 78552 68604 048 024
Jackknife

RA/MU 674549 924732 028 036

RA/LO 434390 734680 016 0.50

Data are presented as mean + standard deviation. Abbreviations: RA/EO, co-contraction of rectus abdominis and external oblique; MU/LO, co-contraction of multifidus and longissimus;

RA/MU, co-contraction of rectus abdominis and multifidus; RA/MU, co-contraction of rectus abdominis and multifidus; RA/LO, co-contraction of rectus abdominis and longissimus; EO/MU,
co-contraction of external oblique and multifidus; EO/LO, co-contraction of external oblique and longissimus. ES (effect size) values are interpreted as follows: small effect (0.2), medium effect

(0.5), and large effect (0.8 or above).
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Movement

Chest lift

Spine stretch

Roll-up

Double leg stretch

Teaser

Jackknife

Experienced Novice p-value
RA 382+ 1441 404£23.92 073 012
EO 54641827 4026 £10.62 0.005 100
MU 841222 13841129 017 045
10 224499 20915170 013 066
RA 145%11.89 1731419 058 018
EO 5251883 3981140 002 084
MU 19841443 22241028 055 020
10 169 +9.60 3827492 024 050
RA 389£12.07 3982163 089 005
EO 544£17.02 401 %1215 0.005 098
MU 2343737 405+6235 031 034
10 1714196 23.99£5206 0.65 015
RA 3801162 414£2250 055 020
EO 542+18.09 4101524 0.02 079
MU 85+13.86 13941337 023 040
Lo 43824 166+ 39.65 019 052
RA 361773 3932129 055 022
EO 5651391 422416.66 0.006 093
MU 2293920 206+11.06 081 0.09
Lo 1550 +20.22 286+51.24 031 037
RA 372877 38642395 081 0.08
EO 533£13.02 417£17.59 003 076
MU 2771484 3832228 0.09 057
Lo 23621371 3233464 032 036

Data are presented as mean + standard deviation. Abbreviations: RA: rectus abdominis; EO: external oblique; MU: multifidus; LO: longissimus; ES: effect size. ES values are interpreted as

follows: small effect (0.2), medium effect (0.5), and large effect (0.8 or above).
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Movement

Experienced (score)

Novice (score)

Deep squat 29023 21052 <0.001 237
Hurdle step 292032 20033 <0.001 276

Inline lunge 300,00 19023 <0.001 0.90

Shoulder mobility 29023 27045 0.08 062

Active straight leg raise 302000 24051 <0.001 228

‘Trunk stability push-up 200,00 192023 032 046

Rotary stability 200,00 182038 007 084

Total 187+ 0.65 149%1.75 <0.001 316

Data are presented as mean + standard deviation. ES (effect size) values are interpreted as follows: small effect (0.2), medium effect (0.5), and large effect (0.8 or above).
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Variable Experienced  Novice p-value

Age (year) 202418 2475240 | <0.001
Duration (month) 33941674 064084 <0.001
Body height (cm) 1624£5.77 1614414 055
Body weight (kg) 539531 5394723 0.97

Body mass index (kg:m) 204137 207£239 0.67

Bone mineral density 11007 112005 073
(gem™)

Fat mass (kg) 139348 15.1 3,86 037

Lean body mass (kg) 391 £3.60 381£4.18 0.44

Body fat percentage (%) 262481 279%497 026

Datsdte srsaamned s e = shaniand dsiton:
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SG models cv E-SSG models cv p-value Cohen's d

Subjects 52 47
Bl play (min) 159+ 251 o | 21+415 o <0.001 -18
™ Absolute (m) | 22508 %2532 o | 2ms1ess 019 0,004 -130
Relative (m.min™) 1454 £ 120 008 1367 £ 106 oo <0001 077
HSR Avsolue (m) | 4555 £ 1308 02 | 6587 + 218 ox 0054 -113
| Relative (mmin™) 335+ 85 025 | 29.1%89 | on 0015 051
VHSR | Absolute (m) 1014 = 639 063 1525 £ 939 e 0042 064
Relative (m.min") 82:43 05| 6536 s 0012 053
SR Absolute (m) 203 %224 o | 428431 T 0259 065
| Relative (mamin™) 20+18 089 1517 117 <0.001 030
MA+MD (n) Absolute 815+ 18 022 58.1 %172 0.30 0.001 133
Relative 4616 ox | 34+12 o <0.001 086
HA+HD (n) Absolute 443+ 129 029 73+ 111 | 0.41 0.001 141
Relative [ 25%1 oa | 1608 | oso <0.001 089

TD, total distance (m); HSR, high speed running (>15 km.h™') distance (m); VHSR, very high-speed running (>21 kmh™") distance (m); SR, sprint running (>25 kmh™") distance (m);
MA+MD, the number of mean accelerations +decelerations (>2 m.s%); HA+HD, the number of high accelerations+decelerations (>2.5 m.s ). Typical error of measurement expressed as the
conliiciait of vadation (CV) [95% conhdence limits)
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Number of Bout Rest interval between Pitch Relative pitch

players/bouts duration (min) the bouts (min) size (m?) size (m?)

Session dvs4 3 15 1 660 825
1

Session | 4vs.5 (4 + 1 floater) 3 15 1 900 100
2

Session S5 3 15 1 1,080 108
3

Session 7vs.7 3 3 1 2500 170
1

Session 8Svs. 8 3 3 1 ‘ 2500 156
5

§-$3G, $5Gs played on strength training days; E-SSG, $SGs performed on endurance training days.
Floater: A player who has a flexible or floating role within the team. This playeris not restricted to a specific position on the field and may move around as needed during the game. The loater
sdsite i Hin dvnaniic Mtiasos o fhe Bl ol e a4 Verous Aeecs OF the Bl sath 25 Stiadk. dafenre. or Sreniitioni lataom the Tuc.
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Touch rugby league

Japan touch

Number of 8vs. 8 7vs. 4 8vs. 8
players/bouts
Number of bouts 3,40r5 4 3,40r5 3,40r5
Pitch size (m?) 2,800 400 2,800 2,800
Bout 15-275 15 15-2.75 15-2.5
duration (min)
Rest interval 125 125 125 125

between the
bouts (min)

Scoring

Restart of play
after a try

Kicking
Contact

Number of
touches

Objective

Rules

Hlatten in-goal

Direct for the same team

Yes (1/bouts)
2-hand touch

4

Aerobic

“For first two touches, the
defenders go back to the 5 m
behind the ruck

“The attackers have
3 seconds to release the ball
from any ruck

Flatten in-goal

Direct for the same
team

No
2-hand touch

1

Strength

<"The attackers score
after the 5 m line
without touch

“Score try: put the ball
after 5m

Flatten in-goal

Direct for the same team

Yes (1/bouts)
2-hand touch

3

Between acrobic and speed

< Prior to or during the tackle, or once on the
ground, the obligation to keep the ball alive
through an axial pass

<*When the defender touches a player, he has
to sprint in his camp and go back

<*After each touch, there is one defender less

Flatten in-goal

Direct for the same team

Yes (1/bouts)
2-hand touch

2

Speed

“Each team consists of four players

<Play with two corners

“1f a ruck occurs, the attacking team with
eight players engages while the defensive team
(four players) needs to sprint and touch the
line before they can defend again

One ruck opportunity to play 8 vs. 4 to score
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Material property Poisson’s  Density
ratio (kg/m3)

Skin Tetrahedral Hyperelastic (first-order Ogden model, y = 0.122kPa,a = 18) - - 950
solid

Bulk Soft | Tetrahedral Hyperelastic (second-order polynomial - - 950

Tissue solid strain,
Cio = 0.8556,Cor = 0.05841, Czg = 0.03900, Cyy = 0.02319,Cop = 0.00851, Dy = 3.65273)

Bone Tetrahedral Linearly Elastic 7300 03 1500
solid

Cartilage | Tetrahedral Linearly Elastic 1 04 1050
solid

Ligaments  Two-node Linearly Elastic 260 04 1000
truss

Profundal | Two-node Linearly Elastic 190 04 950
Fascia truss

Plantar  Two-node Linearly Elastic 350 04 1000
Fascia truss

In-Sole  Tetrahedral Linearly Elastic 198 035 2300
solid

Mid-Sole | Tetrahedral Linearly Elastic 249 035 2300
solid

Out-Sole  Tetrahedral Linearly Elastic 38 04 2300
solid

Plate  Tetrahedral/ Linearly Elastic 17000 04 1000

Hexahedral

solid
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Type

Number of subj

Age 16-25 16
26-40 4
41-60 n
>60 4
AIS c 4
o 29
E 2
Etiology Traumatic 17
Non-traumatic 18
Time since injury 6 months (incl.) or less 16
6 months (excl) to 1 year (incl.) 2
1 (excl) to 5 years (incl) 8
More than 5 years 8
Congenital 1
Injury level clcs 9
TI-T6 6
B 10
LI-L5 10
WISCL I level 12 3
13 1
15 4
16 9
18 2
19 3
20 13
TUGT Mean + STD 1201 £ 4.89
Min - Max (Q1-Q3) 5.61-23.23 (8.38-14.66)
10MWT Mean + STD (Self-selected speed) 1232+ 444
Min - Max (IQR) (Self-selected speed) 648-23.15 (8.11-14-63)
Mean + STD (Max. speed) 963 £3.77
Min - Max (Q1-Q3) (Max. speed) 447-19.61 (5.98-11.76)
LEMS Mean + STD 3720 £ 771
Min - Max (Q1-Q3) 18.00-48.00 (33.00-42.50)
GDI-SCI Mean + STD 7049 + 1458

Min - Max (Q1-Q3)

36.33-104.39 (62.66-77.99)
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Type Validation (n = 72)
Age 16-25 156 52
26-40 32 0
41-60 79 10
>60 35 10
Al A 0 10
c 36 10
D 256 36
Cauda equina 10 10
N.A. (Congenital) 0 6
‘Time since injury 6 months (incl.) or less 58 10
6 months (excl) to 1 year (incl) 0 o
1 (excl) to 5 years (incl) 86 2
More than 5 years 92 30
Congenital 2 6
Injury level ccs 153 0
TI-T6 12 2
T7-T12 68 2
LI-Ls 69 2
N.A. (Congenital) 0 6
WISCI I level 12 2 o
13 6 0
15 18 10
16 65 2
18 12 6
19 87 0
20 12 30
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Speed (m/s) Active peak Impact peak Impulse Contact time

N MAPE RMSE MAPE RMSE MAPE RMSE MAPE
222 00704 236 0.164 8.62 0.00635 132 00128 327
250 00653 213 0172 | 896 0.00661 135 0.0084 | 222
278 00715 228 0.182 815 0.00746 1.56 00097 300
333 00948 286 0279 105 0.00876 1.92 00118 4.08
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Characteristic Our method Our method Comparison Mean regressor

(unit) no speed with speed method
RMSE MAPE RMSE MAPE RMSE MAPE R?> RMSE MAPE R

Active peak (BW) Validation | 0.106 | 3.59 0.099 333 0173 | 631 025 | 814

Test 0080 | 242 083 | 0.083 257 082 0157 | 548 044 | 0216 | 7.03 -0.22
Impact peak (BW) Validation | 0172 | 9.22 0168 | 901 0255 1388 0259 1424

Test 0198 | 829 016 | 0204 | 871 011 | 0275 1188 ~062 | 0.266 1153 051
Impulse (BW-s) Validation | 00075 | 1.59 00075 | 159 00109 | 237 00181 | 435

Test 00073 | 153 079 | 00075 | 155 078 | 00087 | 178 071 | 00160 | 361 -0.01
Contact time (5) Validation | 00126 | 3.93 00109 | 345 00146 | 480 00301 | 1007

Test 00101 | 3.01 089 | 00106 | 329 087 | 00125 | 389 083 | 00309 | 10.63 -0.07
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All

Male Female

Number of participants 43 31 ‘ 12

Age (years) 24778 24366 ‘ 258 + 104
Mass (kg) 74.0 £ 119 79.2£94 ‘ 607 £55
Length (cm) 1811 £ 102 1856 + 7.6 ‘ 1693 +59
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Basis (n° of Set VAF Average fidelity of % Of gait vectors reconstructed with average

features) (%) reconstruction (%) fidelity >95 (%)
GDI-SCI basis (m =21) | Train 98.27 97.99 97.86
Validation 94.74 7222
Reduced GDI-SCI basis Train 99.29 99.09 99.06
(m =14) {
Validation 9891 98.89

VAY, Viiiknics sctbmmiod S 01 Sukal Goid St TP, Coobial nalis WK, Wot aseticablis;
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Measurement

GDI-SCI

|WISCI ss

LEMS TUGT 10MWT pref |[10MWT max Cadence _|Speed Stance % _[Stride length |Step width |Step length
Rho (rGDI-SCI) 0901 1o0s566] Vo0612] T-0669 1-0769] 1-0791] togi1] 1079 1-0688] 10749 1-0373] 10,760}
P value (rGDI-SCI) 0,000} 0,000 0,000} 0,000 0,000} 0,000 0,000} 0,000 0,000} 0,000] 0,027} 0,000}
Rho (GDI-SC1) 1] 0521 0,638} -0,582 -0,711] -0,716 0,522 0723 -0,579] 0,684] -0.279] 0,698]
P value (GDI-SCI) 0) 0,001 0,000} 0,000 0,000} 0,000 0,002} 0,000 0,000} 0,000] 0,104} 0,000}
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Study

References

Biosensor
method

Exercise
Modalities
Tested

Collection
Sites

Measurement
Range (mM)

Enzyme

Key Findings

Jiaetal. (2013) | Electrochemical sC Single site (Arm) 11020 LOx Using electrochemical biosensors, a
flexible printed temporary-transfer tattoo
that adapts to the wearer’s skin

Imani et al. (2016) | Electrochemical sC Single site (Chest) 01028 LOx a skin-worn wearable hybrid sensing
system that offers simultaneous real-time
monitoring of a biochemical and an
electrophysiological signal

Martin etal. (2017) | Electrochemical sc Single site (Back) 41020 LOx Highlighted the need for accuracy in the
LT test range and the comparison
between blood and sweat lactate levels

Karpova et al. Electrochemical CE Two different sites N/A LOx Contributed to guidelines for sensor

(2020) (Thigh, Arm) placement depending on the sport by
analyzing sweat from multiple sites

Mao et al. (2020) | Electrochemical sc Single site (Knee N/A L0x By actively outputting piezoelectric

joint) signals, body movements and
physiological information can be
detected quickly and sensitively

Klous et al. (2021) | Electrochemical sc Two different sites N/A - Addressed the variation in sweat lactate

(Arm, Back) concentration by site, aiding in sensor
placement strategies
Seki et al. (2021) | Electrochemical CE Two different sites 0to5 LOx Demonstrated the importance of
(Arm, Forehead) considering sweat collection site in sensor
design and data interpretation
Daboss etal. (2022) | Electrochemical Squat Two different sites 05 to 100 LOx Supported the relevance of dual-site
(Thigh, Arm) sweat collection for comprehensive
lactate monitoring

Khan et al. (2022) | Electrochemical running Two different sites 041013 LOx Highlighted site-dependent sweat lactate

(Chest, Forehead) variations, emphasizing the need for site-
specific monitoring guidelines

Komkova etal. | Electrochemical running Single site (Thigh) 1010 30 L0x Emphasized the significance of

(2022) ‘measuring within the physiological
change range during exercise

Saha et al. (2022) | Electrochemical CE Single site (Forearm) 0to15 LOx Combining hydrogels for osmotic sweat
extraction and paper microfluidic
channels to promote sweat transport

Wang et al. (2022) | Electrochemical sc Single site 51025 LOx Suggested that sweat lactate

(Forehead) concentrations might be higher than
blood concentrations, indicating a need
for clear correlation verification

Okawara et al. Electrochemical CE Single site (Arm) 0to5 - Study whether VT and blood LT can be

(2023) assessed through sweat lactate
monitoring

Shitanda et al. Electrochemical sc Single site (Back) 11050 L0x Development of a lactate sensor with

(2023) ‘microchannels to overcome the air
bubble problem that prevents
‘measurement of lactate levels in sweat
Xuan et al. (2023a) | Electrochemical CE, KE Two different sites 11020 LOx Verified performance in diverse exercises,

(Thigh, Back) suggesting the versatility of

electrochemical methods
Koh et al. (2016) Colorimetric CE, road cycling | Two different sites 15 t0 100 LDH Demonstrated feasibility across

(Arm, Back) environments and situations,
emphasizing the practicality of sweat
lactate monitoring.

Promphet et al. Colorimetric running Single site (Upper 0t025 LOx Success in real-time exercise monitoring,

(2019)

body)

highlighting colorimetric’s visibility
advantage for athletes

CE, cycle ergometer; SC, stationary cycling KE, kayaking ergometer; LOx, lactate oxidase; LDH, lactate dehydrogenase; mM, millimole.
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Company

(country)

Commercialization

Stage of
development

rrent progress

Phitality (France)

UCLA/Stanford
(United States)

X (Targeting 2024)

Research

Research

Research initiated in 2016 and is currently in progress; clinical trial is ongoing.
Anticipated commercialization in 2024

 Kapsulis clicked on the back of the watch, replaced every 7 days. Measurements
taken every 5 min

© Continuous monitoring in 30-day cycles

 Accuracy not precisely mentioned; clinical trial underway to obtain medical
device certification, and only mentions the technology should be accurate for
validation

© Anticipated price: K'Watch $199 (K'apsul Glucose sensors $99.90/month)

* Mentions that the price may vary depending on region and taxes at the time of
launch

® Features available

- Time and date

- Activity tracking (steps, active minutes, calories)

- Heart rate

- Sleep quality

- Alarms: general alarms and alarms for hypoglycemia and hyperglycemia

© Published research on a smartwatch technology for determining body’s drug
concentration by analyzing sweat on PNAS

 Published research regarding prototype development in 2016

® Laboratory prototype developed, but no details on commercialization are
available

Abbott (United States)

Research

® Lingo s an expansion of Abbott’s flagship product, the Freestyle Libre glucose
management device

© Product design resembles the Freestyle Libre, featuring a circular sensor that
‘minimizes discomfort and is attached to the back of the arm

© Currently in R&D phase (announced at CES 2022)

Garmin (United States)

Research

 Could not develop technology for directly monitoring lactate in sweat

© Lactate threshold indirectly measured using Garmin's heart rate monitor HRM-
Dual sensor and algorithmic calculations






OPS/images/fbioe-12-1385750/crossmark.jpg
©

|





OPS/images/fbioe-12-1431015/inline_1.gif





OPS/images/fphys-15-1376801/fphys-15-1376801-t001.jpg
Company

(country)

Commercialization

Stage of
development

Current progress

Pkvitality (France)

X (Targeting 2024)

Research

@ Research initiated in 2016 and is currently in progress; clinical trial is ongoing.
Commercialization expected in 2024

@ Kapsul s clicked on the back of the watch and replaced every 7 days.
Measurements taken every 5 min

o Anticipated price: K'Watch $199 (K'apsul Glucose sensors $99.90/month)

@ Sensing range beyond glucose: Activity tracking (steps, active minutes, and
calories)- Heart rate- Sleep quality- Alarms: General alarms and alarms for
hypoglycemia and hyperglycemia

Novio Sense (Netherlands)

Research

® Placed under the lower eyelid to measure blood glucose in tears

@ Hydrogel enzyme (glucose oxidase) measures current via a small, flexible, coil-
shaped electrode (2-cm long)

© Since being founded in 2012, there is ongoing Research and Development
(R&D); however, specific details and results are not publicly disclosed

Quantum Operations
(Japan)

Bioptx™ (United States)

Verily (United States)

Research

Research paused

Research paused

© Development underway, including continuous glucose monitoring (CGM)
feature

© Measures glucose in human blood flow through the skin using spectrum
detection technology

© Development underway, including technology for monitoring HR and blood
oxygen saturation changes; however, details are not disclosed

© Technology integrating proprietary infrared (IR) laser detection,
photoplethysmography (PPG) sensors, and proprietary algorithms is

constructed using software

eDeveloping pulse and oxygen saturation measurement technology in
smartwatches using skin-illuminating LEDs

® Suspension of development of IEEE spectrum smart contact lenses (2018)

© Developing technology for tear glucose monitoring

@ Alphabet/Google subsidiary

© Lack of proven correlation between tear and blood glucose levels according to
medical device standards

Apple (United States)

Research

@ Apple has been developing glucose monitoring sensors for 12 years but has failed
to produce significant clinical data (2023 Bloomberg)

© Prepared to equip Applewatch 9 with glucose monitoring technology but halted
by technological limitations

© Conducting additional research on sensing algorithm and accuracy of sensors

© Commercialization projected to take between 3 and 7 years

Samsung (Republic of
Korea)

Cygnus (United States)

Research

Research paused

© Developing innovative, noninvasive blood glucose monitoring using Raman
spectroscopy developed jointly with MIT

© Commercialization of noninvasive CGM technology estimated to require
hundreds of millions or over a billion dollars (DexCom)

o Expectations for Samsung’s Galaxy Watch to feature glucose monitoring sensors
unmet in current models

@ Developing sensors enabling up to 12 h of CGM (GlucoWatch)

© Developing technology for directly measuring glucose concentration using
electrochemical sensing technology by attracting interstitial fluid containing
glucose molecules to the skin surface with the currents of the GlucoWatch

© The current required to extract glucose caused skin irritation, redness, burns, and
blisters. GlucoWatch could not accurately detect rapid glucose changes

HME Square (Republic of
Korea)

Research

® Founded in 2020. Wearable noninvasive CGM using MEMS-based
photoacoustic technology

© Photoacoustic technology, MEMS sensors, and deep learning algorithms

© Details of development not disclosed
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Characteristic Low back pain group (n = 19) ealthy control group (n = 18)

right external oblique abdominal muscle 033 (0.10) 048 (0.20) 0.004

left external oblique abdominal muscle 042 (0.09) 051 (022) 0502

right internal oblique abdominal muscle 020 (007) 029 (0.14) 0076

left internal oblique abdominal muscle 027 (0.10) 037 (0.18) 0125
et liocostalis 020 (0.07) 022 (0.09) o
right iliocostalis 0.18 (0.06) 022 (0.06) 0.041
et multifidus musce 092 (031) 108 (0.39) 0.151

right multifidus muscle 090 (031) 111 (038) 0082

B b ek Bt o R
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Type of independent variables Gender and age not included Gender and age included

30 samples Bootstrapped Bootstrapped 30 samples Bootstrapped Bootstrapped
100 samples 300 samples 100 samples 300 samples

Original  Noise 10% Noise 30% Noise 10% Noise 30%  Original  Noise 10% Noise 30% Noise 10% Noise 30%

All metrics 0854 0814 0833 0503 0891 0857 0506
(Squat, Knee-up, Lunge) (0753) (0733 o718 ©718") 615 (o741°) (©733) ©719) Y (0616)

Squat 0579 0815
Knee-up (0734 (0708

0819
(©695)

0851 0817 079
@713 (@707 (0612

Squat only. 0573 081 01 0815 0780 088 0818 0815 0826 0786
(0721°%) 0711 (©7027) (©691°) (0592%%) (0738°) 716 (©707%) (0597°%%) (©604+)

p < 001 ™ p < 0.008.
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Characteristic

right external oblique abdominal muscle(N)

ow back pain group (n = 19)

3511 (11.97)

y control group (n = 18)

89.79 (118.46)

0.014

left external oblique abdominal muscle(N)
right internal oblique abdominal muscle(N)
left internal oblique abdominal muscle(N)
left iliocostalis(N)

right iliocostalis(N)

et multifidus muscle(N)

right multifidus muscle(N)

B b ek Bt o R

57.73 (20.66)
25.10 (11.53)
38.35 (17.30)
22032 (64.23)
19656 (64.41)
2270 (7.61)

23.11 (8.45)

94.70 (111.23)
98.56 (190.20)
145.97 (274.54)
277.19 (151.51)
259.08 (96.96)
30.08 (13.62)

30.76 (13.34)

0935

0.048

0257

0589

0.037

0.109

0.048
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Type of Independent Unstandardised Standardised R Effect size;

independent variables coeff coeff (adjust R?) Cohens's f2
variables (Statistical
SE Beta power)
All metrics (Constant) -5.203 1374 - 0.884 Large; f? = 357
(Squat, Knee-up, Lunge) (0.753*%) Power = 10
Squat IS Max 0626 0131 0829
Kneeup IS Max 0046 0042 0142
Kneeup CZ -0.001 0002 011
Lunge IS Const -0.022 0023 -0.128
Lunge CZ -0.003 0007 0057
Squat (Constant) -5.803 0.706 0879 Larges f? = 326
Knee-up (0734°%) Power = 10
Squat IS Max 0632 0082 0837
Kneeup IS Max 0022 0036 0068
Squat only (Constant) -558 0.602 0.873 Large; f* =32
T T T 0721%%) Power = 1.
Squat IS Max 0659 007 0873

"5 < 0.01; " p < 0.005. f2: < 0.02 (small effect), % 0.02-0.15 (medium effect), and f2 > 0.35 (large effect).
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acteristic ow back pain group (n = 19) ealthy control group (n = 18)
13-4 shear force (x body weight) 0.80 (0.27) 0.74 (0.29) 0575
13-4 compressive force (x body weight) 334 (0.54) 3.32 (0.45) 0912
13-4 twisting force (x body weight) 110 (0.22) L11 (0.15) 0.965
14-5 shear force (x body weight) 092 (029) 086 (0.32) 0560
14-5 compressive force (x body weight) 3.5 (0.57) 3.54 (0.48) 0939
145 twisting force (x body weight) 122 (023) 122 (017) 0929
L5-51 shear force (x body weight) 107 (032) 1.00 (0.34) 0555
| L5-Slcompressive force (x body weight) 377 (0.61) 3.76 (0.51) 0964
L5-S1 twisting force (x body weight) 130 (024) 130 (0.18) 0913
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Model target; muscle parameters

Total performance J RM (LE + LC, ISO (LE + LC,
Weight) Weight)
Independent variables Squat IS Max | Squat IS Max Squat IS Max Squat IS Max
Selected performance metrics |
(Criteria: normality test; ‘ Kneeup IS Max ‘ Kneeup NR Max Kneeup CZ Kneeup CZ
p>0.05, residual normality
and homoscedasticity test, ‘ Kneeup CZ ‘ Lunge IS Max Lunge IS Max Lunge CZ
independence test; linearity: < 0.7) ‘ Lunge 1S Const ‘ Tingei s
unge IS Cons unge

| Lunge CZ
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Characteristic Low back pain g 18)

lumbar flexion and extension moment (N-m/kg) 042 (0.08) 0.50 (0.11) 0.012
lumbar lateral bending moment (N-m/kg) 009 (0.07) 0.15 (0.10) 0070
lumbar axial rotation moment (N-m/kg) 003 (0.01) 0.04 (0.01) 0.001

The bold values indicate P value <0.05.
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Metrics Explanation & Remar|

Number of repetition (NR) Number of repetitions of exercise

Squat NR Max: NR of squat with no speed limits in 45 s [p-value: 0.22]
Kneeup NR Max: NR of knee-up with no speed limits in 60 s [p-value: 0.67]
Lunge NR Max: NR of reverse lunge with no speed limits in 60 s [p-value: 0.602]

Squat NR Const: NR of squat with 60 RPM in 90 s [p-value: 0.32]
Kneeup NR Const: NR of knee-up with 132 RPM in 180 s [ <0.001]
Lunge NR Const: NR of reverse lunge with 48 RPM in 120 s [p-value: 0.065]

Initial speed (IS) Average exercise speed during the initial repetitions of the exercise

Squat IS Max: IS of squat with no speed limits for 10 repetitions [p-value: 0.211]
Kneeup IS Max: IS of knee-up with no speed limits for 30 repetitions [p-value: 0.34]
Lunge IS Max: IS of reverse lunge with no speed limits for 10 repetitions [p-value: 0.13]

Squat IS Const: IS of squat with 60 RPM for 10 repetitions [p-value: 0.004]
Kneeup IS Const: IS of knee-up with 132 RPM for 30 repetitions [ <0.001]
Lunge IS Const: IS of reverse lunge with 48 RPM for 10 repetitions [p-value: 0.53

Constant speed zone (CZ) Number of exercise repetitions during the zone that adheres the constant speed (Figure 3B)

Squat CZ: CZ of squat with 60 RPM in 90 s [p-value: 0.001]
Kneeup CZ: CZ of knee-up with 132 RPM in 180 s [p-value: 0.032]
Lunge CZ: CZ of reverse lunge with 48 RPM in 180 s [p-value: 0.085]

SEMG amp Difference in amplitude of the SEMG signal between the initial 10 s and the final 10 s (Figure 3A)

Squat sEMG amp Max: SEMG amp of squat with no speed limits in 45 s [ <0.001]
Kneeup SEMG amp Max: SEMG amp of knee-up with no speed limits in 60 s [p-value: 0.012]
Lunge SEMG amp Max: SEMG amp of reverse lunge with no speed limits in 60 s [ <0.001]

Squat SEMG amp Const: SEMG amp of squat with 60 RPM in 60 s [p-value: 0.031]
Kneeup SEMG amp Const: SEMG amp of knee-up with 132 RPM in 180 s [p-value: 0.033]
Lunge SEMG amp Const: SEMG amp of reverse lunge with 48 RPM in 180 s [p-value: 0.627]

SEMG iEMG Difference in iEMG of the SEMG signal between the initial 10 s
and the final 10 s (Figure 34)

Squat sEMG iEMG Max: SEMG iEMG of squat with no speed limits in 45 s [p-value: 0.01]
Kneeup SEMG iEMG Max: sEMG iEMG of knee-up with no speed limits in 60 s [ <0.001]
Lunge SEMG iEMG Max: sEMG iEMG of reverse lunge with no speed limits in 60 s [p-value: 0.001]

Squat SEMG iEMG Const: SEMG iEMG of squat with 60 RPM in 60 s [p-value: 0.774]
Kneeup SEMG {EMG Const: sSEMG iEMG of knee-up with 132 RPM in 180 s [p-value: 0.403]
Lunge sEMG iEMG Const: sSEMG iEMG of reverse lunge with 48 RPM in 180 s [p-value: 0.627]

p-value denotes the

nificance probability of normality test (Shapiro-Wilk test).
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Characteristic

Low back pain group (n = 19)

Healthy control group (n = 18)

lumbar flexion and extension angle ()
‘ lumbar lateral bending angle ()

‘ lumbar axial rotation angle (')

‘ hip flexion angle ()

*knee joint angle ()

* ankle joint angle ()

D Bl e ks i B b

-0.23 (0.20)
014 (037)
024 (0.18)
20.14 (9.52)
70,06 (4.44)

17.00 (4.95)

029 (0.22)
013 (0.70)
037 (0.17)

1732 (11.37)
7031 (4.88)

15.94 (6.02)

0375

0396

0.033.

0419

0.663

0559
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Parameter: escription

Total performance Comprehensive muscular strength index; calculated as the sum of z-scores for V), RM (LE + LC, Weight), ISO (LE + LC, Weight) (p-value:
0.125)

vJ ‘The Maximum Height of three trials (p-value: 0.923)

RM (LE + LC, Weight) Normalization values of sum of the measured values by leg extension (LE) and leg curl (LC) with fitness machine to the participant’s weight
(p-value: 0.079)

RM (LE, Weight) | Normalization of the measured value of leg extension (LE) with fitness machine to the participant’s weight (p-value: 0.14)

RM (LC, Weight) Normalization of the measured value of leg curl (LC) with fitness machine to the participant’s weight (p-value: 0.216)

1SO (LE + LC, Weight) Normalization values of sum of the measured values by leg extension (LE) and leg curl (LC) with isometric contraction to the participant’s

weight (p-value: 0.552)
15O (LE, Weight) Normalization of the measured value of leg extension (LE) with isometric contraction to the participant’s weight (p-value: 0.902)

1SO (LC, Weight) Normalization of the measured value of leg curl (LC) with isometric contraction to the participant’s weight (p-value: 0.072)

p-value denotes the significance probability of normality test (Shapiro-Wilk test).
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Characteristic

Low back pain group (n

althy control group (n

Age (years) 239 (15) 234 (16) 0335
Gender 0873
Male 9 (47%) 9 (50%)
Female 10 (53%) 9 (50%)

BMI (kg/m2) 217 (28) 23 (37) 0586
Timed up-and-go () 106 (1.1) 82 (0.6) <0.001
Gait cycle (s) 14 (0.1) 13 (0.1) 0.856
rest thickness of LTrA (mm) 35 (10) 32(06) 0327
rest thickness of RTrA (mm) 32(07) 32(06) 0946
rest thickness of LMF (mm) 267 (43) 293 (52) 0.106
st thickness of RME (mm) 264 (36) 284 (46) 0142
contracted thickness of LTrA (mm) 47 (11) 5.1 (10) 0249
contracted thickness of RTrA (mm) 46 (1.0) 52(09) 0123
contracted thickness of LMF (mm) 351 (41) 390 (55) 0.022
contracted thickness of RMF (mm) 351 (42) 389 (58) 0.033
contraction rate of LTrA (%) 431 (17.0) 610 (15.9) 0.002
contraction rate of RTrA (%) 463 (19.7) 60.5 (16.1) 0.022
contraction rate of RMF (%) 331 (13.0) 342 (98) 0784
contraction rate of LMF (%) 339 (11.8) 372 81) 0321

Abbreviations: BMI, body mass index; LTrA, left transverse abdominal muscle; RTrA, right transverse abdominal muscle; LMF, left multifidus muscle; RMF, right multifidus muscle.
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aractel Values

Sex (male/female) 19/11
7 Age (meanSD) 26.1 + 2.8 [years]
Height (meanSD) 170.93 + 8.5 [cm]
Weight (meanSD) 66.43 = 9.8 [kg]
Resting HR (meanSD) 81 £ 9.43 [BPM]
Blood pressure High (meanz SD) 109.4 + 9.99 [mmHg]
Blood pressure Low (mean SD) 7067 + 7.78 [mmHg]
ASM (mean: SD) 28.5 + 591 [kg]
BMI (mean SD) 226 + 231 [kg/n?)
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/*************************************************************
 *
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 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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Peak muscle force (BW) FT mean + SD ET mean + SD alue
Tibialis Anterior 336+ 107 317104 = 0434
Tibialis Posterior 171043 191038 <0027%
Peroneus Longus 166 £ 035 160 =048 =0537
Peroneus Brevis [ 082013 077 £ 011 =0138
Lateral Gastrocnemius 095 £ 016 1022014 =0.116
Medial Gastrocnemius i 207 £ 046 | 196 £027 =0288

“+» indicates a significant difference between FT, and ET, in the stance phase (p < 0.05); Body Weight: BW.
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Parameters Peak value FT mean + S ET mean + SD alue
Sagittal plane Angle () Dorsiflexion 1433 £ (8.12) 2290 + (7.47) <0.001*
Plantarflexion ~15.06 + (453) 757 £ (555) <0.001%
Moment (Nm/kg) Dorsiflexion ~0.07 £ (0.06) 007 £ (0.09) 0922
Plantarflexion ~141 £ (032) ~138 + (0.32) = 0677
Velocity (+/5) Dorsiflexion 10921 + (41.46) 105.07 £ (39.36) = 0632
Plantarflexion 15438 £ (92.27) ~161.85 + (83.24) = 0693
Coronal planes Angle (+) Eversion -10.97 £ 189 ~13.05 £ 355 <0.001%
Inversion 202+ 628 082 + 665 025
Moment (Nm/kg) Eversion 002 +0.05 I 001 +0.12 0.100
Inversion 040 % 0.17 045 %027 0343
Velocity (+/s) Eversion ~170.49 + 46.36 ~13536 + 5184 053
Inversion 29109 + 79.68 220,58 + 5426 <0.001%

“+» indicates a significant difference between FT, and MT, in the stance phase (p < 0.05).
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Sample Running Foot Sensor type Senor Variables Machine Accuracy
size (M/ surface | strike and placement  predictor | learning
F) (kg) speed | pattern  frequency response algorithm
condition
Derie etal. | 93 (55/38)|  Overground | NS Tri-axial Antero-medial | PTA | VILR XGB MAPE: 6.08%
(2020) age: 353 % 255 m/s, 3.20 mis accelerometers | side of the tibia
100 years, and 5.10 m/s | Li (LIs331),
height: 173 = | Ning Magne, 1,000 Hz
0.07 m, ma ARHFO41
68.6+ 88
Komaris | 28(27/1) |age: | Treadmill | 25, NS Virtual Shank Tri-axial tibial ANN RMSE: vertical
etal (2019) | 348+ 35and 45 m/s | accelerometer acceleration | GRF = 0.13B W,
6.6 years, Not mentioned (deriving vertical GRE, anteroposterior
height: 176 + acceleration from anteroposterior GRF = 0.04 B W,
6.7 cm, mass: kinematics) GRE, and mediolateral
69676 mediolateral GRF GRE = 004 B W
Tanetal. | 15(8/7) |age: | Treadmill |24and = FES, MFS, | IMU sensor One-third of the | Tri-axial linear CNN NRMSE =
(2020) 239+ 28m/s | standard | and RES | (Xsens), 200 Hz | distance between | acceleration and 97+ 3.6%
1.1 years, and minimalist keen and ankle | angular velocity |
height: 168 = | running shoes joints VALR
0.08 m, mass:
61977
Matijevich | 10 (5/5) | age: | Treadmill NS Virtual Shank Sagittal joint angle | LASSO MAPE =80+2.9%
etal. (2020) | 24 + 2.5 years, = (+9 inclination) | accelerometer at midstance | peak  regression
height: 170 + | 2.6-4.0 m/s | self- (deriving tibial force
0.1'm, mass: | selected shoes acceleration from
6756 kinematics)

Note: LASSO, least absolute shrinkage and selection operator; XGB, gradient boosted regression trees; ANN, artificial neural network; CNN, convolutional neural networks; MAPE, mean
absolute percent error; NRMSE: normalized root mean square error; MAE, mean absolute error; Adam = adaptive moment estimation; IMU, inertial measurement unit; PTA, peak tibial
acceleration; VILR, vertical instantaneous loading rate; FFS, forefoot strikers; MFS, midfoot strikers; RFS, rearfoot striker; NS, not specified.
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Sample size  Running Foot Sensor type  Senor Variables Correlation

(M/F) (kg) surface | strike and placement independent | coefficient
speed | pattern  frequency dependent
condition
Matijevich 10(5/5) |age:24+ | Treadmill (level, NS None None Impact peak, VALR | Impact peak and peak
etal. (2019) | 25 years, height | uphill, and downhill) peak tibial force tibial force (~0.29 +
17 £ 0.1 m, mass: | | 2.6-4.0 ms | self- 0.37); VALR & peak
667 £ 6.4 selected running tibial force (~0.20 £ 0.35)
shoes
Zandbergen | 13 (8/4) | age: Treadmill | 10,12, | RES IMU sensor Medial surface of | PTA | maximum tibial | 0.04 + 0.14
et al. (2023) 367 + 12.2 years, | and 14 km/h | self- (Xsens), 240 Hz | the proximal tibia = compression force
height 178.7 + selected running
9.6 cm, mass: shoes
742 £17.7

Note: GRF, ground reaction force; IMU, inertial measurement unit; PTA, peak tibial acceleration; VALR, vertical average load rates; RFS, rearfoot striker; NS, not specified; Extremely strong
(0.8-1.0), strong correlation (0.6-0.8), medium correlation (0.4-0.6), weak correlation (0.2-0.4), extremely weak correlation (0-0.2).
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Tenforde
etal. (2020)

Cheung et al.

(2019)

Laughton
et al. (2003)

Van den
Berghe et al.
(2019)

Zhang et al.
(2016)

Bradach etal.

(2023)

Greenhalgh
et al. (2012)

Sample
size (M/F) |

age,
height,
mass

169 (95/74) | age:

39 % 13 years,
height 1.72 +
0.09 cm, mass:
704 £ 12.03 kg

14 (7/7) | age:
264 % 112 yrs,
height 1.6 =
0.09 cm, mass:
588 9.7 kg

15 (NS) | age:
2246 + 4 years,
height 1.79 +
0.06 cm, mass:
6641 £ 8.58 kg

13 (NS) | NS,
height: 1.75 +
0.08 m, mass:
706+ 108 kg

10 (8/2) | age:
236 + 3.8 years,
height: 1.73 &
0.08 m, mass:
661+ 12.7 kg

28 (13/15) | age:
39 + 13 years,
height: 1.72 +
0.09 m, mass:
685 = 10.7 kg

13 (1073) | age:
300 + 9.4 years,
height 1.74 +
0.06 m, mass:
706 = 8.1 kg

Running
surface|
speed |
condition

Treadmill | 2.52 +
025 mls | Self-

selected running
shoes

Treadmill | 278 m/
s | Self-selected
running shoes

Overground] 3.7 m/
s+ 5%| Nike Air
Pegasus

Overground| 2.5,
320,and 5.10 +

0.2 m/s | Li Ning
Magne, ARHFO41

Treadmill (flat

and £10%
inclination) | + 15%
of preferred speed |
Adidas Adios Boost

‘Treadmill | Self-
selected speed
(281 %039 m/s) |
Nike p-6000

Overground | 4 m/
5% 5% | Not
mentioned

Foot
strike
pattern

FES, MES,
and RFS

RFS

FFS and RFS

RES

NS

NS

NS

Sensor type
and
frequency
(Hz)

IMU sensor
(IMeasureU),
1,000

Bi-axial
accelerometer
(ADXL278), 1,000

Uniaxial
accelerometer
(model
353B17), 960

MEMS tri-axial
accelerometers
(model
LIS331), 100

Accelerometers
(Model
7523A5) 400

IMU sensor
(IMeasureU, Blue
‘Thunder), 1,000

Tri-axial
accelerometer
(Biometrics
ACL300), 1,000

Senor
placement

‘The distal medial
portion of the tibia
above the medial
‘malleolus

Anteromedial aspect
of the tibia and
aligned with the
vertical axis of the
tibia

Distal anteromedial
aspect of the leg

Lower leg alongside
the distal

anteromedial aspect,
8 cm above the

‘medial malleolus

Anteromedial aspect
of distal tibia

Distal medial tibia,
1 cm above the
‘medial malleolus

‘The distal anterior-
medial aspect of the
tibia and 8 cm above
the medial-malleolus

Variables
independent |
dependent

PTA, RPTA | VALR,
VILR

PTA | VALR, VILR

PTA | VALR

PTA, RPTA | VILR

PTA | VALR, VILR

PTA | VILR

PTA | VALR, VILR

Correlation
coefficient

PTA & VALR (r =
0.66-0.82), PTA & VILR
(r = 0.66-0.73), RPTA &
VALR (r = 0.47-067),
RPTA & VILR (
037-0.67)

PTA & VALR (r = 0.90),
PTA & VILR (r = 0.91)

EFS group (r = 0.70), RES
group (r = 0.47)

PTA & VILR (r =
0.64-0.84), RPTA &
VILR (r = 0.57-0.61)

PTA & VALR (r =
0.49-0.91), PTA & VILR
(r = 0.53-0.90)

r=031-0.80

PTA & VALR (r = 0.27),
PTA & VILR (r = 0.47)

Note: FFS, forefoot strikers; MFS, midfoot strikers; RFS, rearfoot strikers; IMU, inertial measurement unit; PTA, peak tibial acceleration; RPTA, resultant peak tibial acceleration; VALR, vertical
average load rates; VILR, vertical instantaneous load rates; NS, not specified; Extremely strong (0.8-1.0), strong correlation (0.6-0.8), medium correlation (0.4-0.6), weak correlation (0.2-0.4),
extramely-wesk correlstion (0-0.5.






OPS/images/fbioe-12-1385750/inline_24.gif





OPS/images/fbioe-12-1377383/fbioe-12-1377383-t002.jpg
Study Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Total
Tenforde et al. (2020) +2 +2 +1 +2 +2 +2 +1 +2 +2 16 8889 | Yes
Cheung et al. (2019) +2 2 +2 +2 +1 +2 +2 +2 +2 17 9444 | Yes
Laughton et al. (2003) +2 +2 +1 +2 +2 +1 +1 +2 +2 15 833 | Yes
Van den Berghe et al. (2019) | +1 2 +2 +2 +2 +2 +2 +2 +2 17 9444 | Yes
Zhang et al. (2016) +1 +2 +1 +2 +1 +2 +2 +1 +2 14 7778 | Yes
Bradach et al. (2023) + 2 +1 +2 +2 +1 2|8 +2 15 8333 | Yes
k Greenhalgh et al. (2012) +2 +1 +2 +2 +2 2 +2 +2 +1 18 8889 | Yes
Matijevich et al. (2019) + 2 +2 +2 +2 +1 +2 +2 +2 16 8889 | No
» Zandbergen et al. (2023) 2 +2 +1 +1 +2 +1 +1 +2 +2 14 7778 | No
Derie etal. (2020) +2 2 +2 +2 +2 +2 +2 +1 +2 17 9444 | No
Komaris et al. (2019) +2 +2 +1 +2 +2 +2 +1 +2 +2 16 88.89 No
Tan et al. (2020) +2 +2 +2 +2 +2 +1 N/A +2 +2 15 8333 No
| Matijevich et al. (2020) +1 2 = +2 +2 +2 N/A +2 +2 15 8333 | No
Average e w2 s 2 s e 138 185 192 1562 se7s

Note: Mata = Inclusion in meta-analysis
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Search items it conditions

PubMed, Scopus, SPORTDiscus and IEEE Xplore (“wearable sensor” OR “inertial  Keywords in all field of the article; Advanced search; Article type: Journal; Language:
sensor” OR “accelerometer” OR “acceleration” OR “IMU”) AND (“tibia*” OR “tibial = English; Publish time: From 2000 to November 2023

load*” OR “tibial force*” OR “tibial bone load” OR “tibial bone force*” OR “tibial

compression force”) AND (“ground reaction force*” OR “reaction force™” OR “external

load*” OR “GRE” OR “loading rate” OR “impact loading” OR “impact peak” OR “active

peak” OR “braking force” OR “propulsive force™) AND (“running” OR “runner*” OR

“og” OR “jogging”)

ScienceDirect (“wearable sensor” OR “inertial sensor” OR “accelerometer” OR “IMU")  Keywords in all field of the article; Advanced search; Article type: Journal; Language:
AND (“tibia” or “Tibial") and “reaction force” OR “GRE") and (“running” OR “runner”  English; Publish time: From 2000 to November 2023
OR “jogging”)

Bl wikens ane alinionnte detofiesny .
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Cases df
ROM Error
Calibrations 1819 6043 0004 0.025
Calibrations* Axes 3637 6242 <0001 0051
Calibrations*Tasks 7.274 2978 0.005* 0.049
RMSE
Calibrations 1632 28644 <0001 0125
Calibrations*Axes 3.264 1773 0.148 0.017
Calibrations*Tasks 6529 85926 <0001 0.082
Offset
Calibrations 1.881 52,670 <0001 0.136
Calibrations* Axes 3763 43964 <0001 0208
Calibrations*Tasks 7.526 2834 0.006* 0033
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mary axis Secondary axis Final axis definition

‘ N-Pose
horax Gra, = [0,0,1]: cranial ‘ = Gru, [2]);: forward STH, = gyt lateral
STH, = gy lateral
Upper Arm STHy = CRen) cai
Lower Arm STHy = (“Rew) cai
Functional (Cutti et al,, 2008)
Upper Arm UA, = UApy,,: lateral* S5 %ﬁ — UAy = 22845 forward
UA, = gA=ths: cranial
Lower Am® I = LA ps: forward S, = [0,0,1): cranial
LA, = gy ateral
Manual
Upper Arm GUAy = ~SUA; [ylforward
CUA, = SUA, [x]:cranial
GUA, = SUA, [2]: lateral
Lower Arm | CLAx = ~°LA;[y)forward
GLAy = CLA, [x):cranial
SUA; = OLA; [2]: lateral

‘Refers to the joint rotation axis computed with the lower arm sensor and translated into the upper arm reference.
Wik direction o e -robution. i vilors 10/ the budy alaced i an uprclit positien and the-dbow. Baned it showk 90
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Males = 15; female Mean + SD
Age (years) 279+54
Height (m) 179009
Weight (kg) 7244102
VO, max (mL/kg/min) 4975 £ 8.40
7 HR .y (bpm) 642£78
HRyyqy (bpm) 1821 %137
HR,,, ofageHR . 9078 £8.33
Blood lactate @ max (mmol/L) 9694235
Respiratory exchange ratio @ max 116£0.07
RPE @ max (6-20 scale) 18710
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Deviation value ~Standard error Bca 95% CI

Lower Upper

Model |

Bea 95% CI, Bias-corrected and accelerated 95% confidence interval.
"The bootstrap method was used to test the results based on 10,000 bootstrap sampl
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Dependent variable Predictors (95% Cl) ndardised Adjusted R?  RSE (m) P
AJ-Height Model 073 003 1386 <0.001
Training Age ~0.007 (-0.013, 0.001) ~035 -244 0.18 0033
VL-ACSA 0.01 (0.005, 0.014) 065 469 032 0001
LG-FL 002 (001, 0.030) 046 318 0.18 0,009
CMJ-Height Model 051 004 841 | 0005
| Training Age ~0.007 (-0.014, 0.001) ~041 342 o1 0.046
VL-ACSA 0,008 (0.003, 0.014) 064 222 037 0005
§J-Height Model 0.63 003 1314 0001
| Training age 0005 (-0.011, 0.001) 036 Cam 0.07 0.046
VL-ACSA 0,009 (0.005, 0.013) 074 46 052 0.001
DJ-Height | Model 041 004 595 | 0016
Trining Age | ~0.006 (-0012, 0001) ~044 -216 0.14 0052
VL-ACSA 0,006 (0.001, 0.01) 055 267 025 0021

AJ, attack jump; CMJ, countermovement jumps; S, squat jump; D), drop jump; RSE, residual standard error; VL-ACSA, the anatomical cross-sectional area of vastus lateralis; LG-FL, fascicle

Josiith oF G Etoral Bastrocaeriiiiis
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Variable Mean + SD
RE ACSA am? 1419 £ 2.87 0.99 (0.99-0.99) 074
\ |
MT e 250 £ 0.31 0.99 (0.98-0.99) 073
PA [ 1253 +3.28 0.94 (0.87-0.98) 337
| FL an 1253 +3.36 0.97 (0.93-0.99) 322
VL ACSA an? 3617 £ 476 0,97 (0.93-0.99) 146
: MT am 283 %024 0.99 (0.97-0.99) 059
PA . | 1651 +2.96 0.95 (0.89-0.98) 3.00
FL ['em | 1046 228 091 (0.80-0.97) 375
1G ACSA = 803 %132 0.99 (0.97-0.99) 140
MT [ 'em ‘ 127 £027 0.99 (0.97-0.99) 142
: PA 8 [ 1333 £3.22 092 (0.81-0.97) 459
FL ['em 582+ 162 0.94 (0.85-0.98) 497

ICC, intra-class correlation coefficient; CV, coefficient of variation; RF, rectus femoris; VL, vastus lateralis; LG, lateral gastrocnemius; ACSA, anatomical cross-sectional area; MT, muscle
thickness; PA, pinnate angle; FL, fascicle length.
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Variable Mean

Age (y1) 247 409
Height (cm) 1954 73
Body mass (kg) 909 955
Years of professional training (yr) 713 364
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Variables/ Scaling condition + Test/training data Averaged

accuracy accuracy
No-scale Instance scale Batch scale
Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold Fold
4 st | 2 1 2 4 + i 2 3 4 5
Random Basline R = R 2 PR ) =
Barbell Kinematic
Postonab | 83 | 30 | 30 | ma | e 2as7s| 167 | 30 30| s | 4 Barse| M1 ms | be | na | 30 w2 main
Postion¥ 167 | 22 %6 | 4 167 24e5s| 167 | 22 20 194 167 200236 | 194 | 30 W6 | 194 | 167 | 22856 201+48
Posion AP, Postion¥ | 167 | 222 | 39 | 28 Baewr | Be | 30 61 22 167 28e87| B9 28 %1 278 83 | 2eels 230298
Vlociy AP 194 28 | w67 waxe2| m2z | 20 250 | 06 | 14 244l | 19 | 14 | 22 28 167 | 053 27254
VeociyV Be | 22 %6 | 30 B9 2ae72 | B B0 W6 | 30 139 27275 | 167 | 194 | m8 | 280 167 | 24%5 0862
Velocity AP, Velociy V| 1 22 | sy | o4 oz wsews| 22 | m2 w3 | zs | 22| B6es | B9 22 | 39 22 22 29e91 26279
PostionAP, VelociyAP | 139 | 22 | 250 | 28 | 194 27:53| M4 | 20 | 20 | 22 22 2ee23| 22 22 B3 94 09 | 22enl 22249
PosonV,VeodtyV | 111 | 22 | w8 | ms | 22 mases | 14 | %0 | N6 | 22| M2 B9:42| WA | B4 | ¥8 | B0 167 | 20266 20258
PostonAP.Postion¥, | 1L1 | 250 | %1 | m8 | B2 4290 167 | N6 | B3 | w8 | w3 22:63| 19 | w8 | M9 94 | 167 | m3rn | 250:82
VelociyAP, VelociyV
Kinetic
GREAP s | 20 | ma | ma | 20 ae1s32| w8 | e | w8 | %1 | M2 W95 | N6 | ¥8 | 22 B0 B0 | 1232 23239
GREY w8 | 30 167 | M4 | B3 2uases | 28 | 22 Bs | 22 e sz | B0 22 WA 194 89 | B3l 2582
GREAP, GREV 30 | ms | w67 | 167 | %61 aass2| s | 22 4| 250 N6 | 365 | ¥8 | ¥8 | B9 W8 M3 | 1272 33265
Kinematic + Kinetic
PostionAP, VelociyAP, | 167 | 78 | 06 | 94 | 19 N7s72| @8 | %1 m2 | W9 B3 37267 | 14 | w8 K1 167 | 167 | BI8S 256283
GREAP
PostonV, Veodty¥, | 167 | 139 | 194 | 167 | 06 | ases | 22 | m2 | 0| 19 | &1 20s97 | M4 | 22 | 22 167 W8 n7x4l | 2767
GREV
Al Posiion AP, a0 w22 | 7 w2 2ae3z 30 30 194 w8 B3 2050|2228 l67 | 80 28| BIxes BT6

Position.V, Velociy AP,
VelcityV, GREAP,
GREV.
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Variables/accuracy Scaling condition + Test/training data Averaged
accuracy
No-scale Instance scale Batch scale

Fold Fold Fold Fold Mean+ Fold Fold Fold Fold Mean+ Fold Fold Fold Fold

1 2 3 4 SD 1 3 4 ) 3 4
Random Baseline 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67
| Barbell Kinematic

Position AP w2 ws | 36 S 47269 | $3 467 | 3 | 8 S28%58 | 467 | 467 44 622 | 500+82 81278
PosiionV a4 | SLL | M4 22 456238 | 422 | 489 467 | 422 450233 | 422 | 5L 444 | @22 | 450%42 452235
PostonAP, Position | 778 | 667 | 60 | 756 7082 | 69 | 62 S8 | 7L 60312 | 756 | 64 622 | 84 7177103 68981
Velocity AP s6 467 | W3 @2 Sidxed | ™3 B3 S8 | @2 6743 | S8 | 467 3| @2 | 55%66 55454
VelocityV @2 sl s6 | 556 S1:46 | 64 489 S8 | 556 56764 | 62 | 467 533 56 | Sidxed 55754
Velocity AP, VelocityV | 800 | 667 | 644 | 867 | 74107 | 733 | 73 644 | 800 728%64 | 822 | 644 67 | 867 | 75%1L1 741288
PostionAP, Velocity AP | 600 | 489 | $3 | 644 567269 | 44 | 5L 3 | 667 5993 | 644 | $3 56 | 7Ll 6l7%82 572280
PostonV, Velocity:V 78 689 60 | 64 @875 7L €0 578 60 @260 | 778 | 689 556 | 667 | 67291 657574
Positon AP, Position, | 889 | 756 733 | 889 SLI£84 | 778 | 7L 644 800 | 73370 | 911 | 71 667 | 867 | 78918 | 780292

elocity AP, Velocity:V

| Kinetic ‘
GREAP 22 | w8 | 400 | 44 aas29 | 67 | 36 31| 40 8Is6s | A4 | 36 @22 467 | 422548 | 406248
GREY s6 | s 92 | Sl 0658 | 556 | S56 B3 44 425106 | 60 | S B3I M4 #2:12 | 48388
GREAP, GREV 71 @2 s m3 085 | 7L 44 S6 | M4 96 B3I 467 6| 60 | ML | 562102

Kinematic + Kinetic ‘

Positon AP, VelocityAP, | 733 | 614 | 644 | 756 | @458 | 64 SLI 467 | 689 S78+106 | ®2 | 689 614 | B3 | 72476 665299
GREAP

Position.V, Velocity.V, 667 | 689 @2 | 7Ll @238 | @9 | B3 @0 | 69 @856 | 778 | 667 667 | 733 | 711+s4 687249
GREV.

Al Position AP, Position..,
Velociy.AP, Velocity:V,
GREAP, GREV.

s9 | S0 667 | 728 73291 | 84 756 60 | B4 761xll5 | SLI | 778 667 | 867 | 806%108 73297
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