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Editorial on the Research Topic
Understanding molecular mechanisms to facilitate the development of
biomarkers for therapeutic intervention in gastrointestinal diseases
and sepsis

Gastrointestinal (GI) disorders include a range of pathological conditions with varying
severities and outcomes that impact the integrity and function of the GI tract. These
conditions include indigestion, the inflammatory bowel diseases (IBDs) ulcerative colitis
(UC) and Crohn’s disease (CD), and malignant tumors. The resulting dysfunction of the
intestinal barrier, leading to impaired permeability, allows for the translocation of luminal
contents, including intact microbes and microbial products. This situation can cause severe
sepsis and potentially fatal outcomes if timely intervention is not provided. Advancements
in omics technology have facilitated the identification and evaluation of molecular
biomarkers for disease diagnosis. These encompass genomic (e.g., single nucleotide
polymorphisms), transcriptomic (including non-coding RNAs), epigenetic (e.g., DNA
methylation), proteomic, metabolomic, and microbiome biomarkers (Dalal et al., 2020;
Sahoo et al., 2024a; Sahoo et al., 2022b; Figure 1). These biomarkers hold significant clinical
potential for improving diagnosis, prognosis, and treatment strategies in patients with GI
disorders and sepsis.

For diagnosing sepsis, in addition to lactate as a widely utilized biomarker, other
surrogate markers, such as C-reactive protein (CRP) and procalcitonin, which are produced
in response to infection and inflammation, may assist in identifying patients at risk of
developing severe sepsis before significant organ dysfunction occurs (Faix, 2013). As
oxidative stress (OS) plays a key role in the progression of sepsis and septic shock to
multiple organ failure (Sahoo et al., 2024b; Wong et al., 2025), OS markers associated with
sepsis, specifically, superoxide dismutase, soluble endoglin, asymmetric dimethylarginine,
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and neopterin, merit further clinical investigation (Helan et al.,
2022). Several emerging biomarkers such as microRNA-486-5p,
circular RNAs (circRNAs), HOXA distal transcript antisense
RNA (a lncRNA located on chromosome 7q15.2), protein C (a
vitamin K-dependent glycoprotein), prokineticin 2, and
triiodothyronine also hold potential for enhancing early detection
and prognostic assessment of sepsis with high sensitivity and
specificity (He et al., 2024).

Mendelian randomization (MR) examines the causal effects of
modifiable exposures, such as potential risk factors, on health by
utilizing genetic variants linked to those specific exposures
(Richmond and Smith, 2022). MR analysis by Zhang et al.
showed that CMPF (3-carboxy-4-methyl-5-propyl-2-
furanpropanoate) has an association with 28-day all-cause
mortality in clinical cases of sepsis. The metabolic pathway of
alpha-linolenic acid and linoleic acid was identified as a crucial
factor in the development and progression of sepsis. The study by Ye
et al. demonstrated that levels of soluble suppression of
tumorigenicity 2 (sST2) in the blood have significant clinical
diagnostic and prognostic implications in sepsis. Moreover,
sST2 showed a comparable predictive capability to the SOFA
(Sequential Organ Failure Assessment) and APACHE II (Acute
Physiology and Chronic Health Evaluation II) scores and had a

greater predictive capability than lactic acid levels in assessing the
prognosis of patients with sepsis. Jin et al. used single-cell RNA
sequencing (scRNA-seq) and identified several diagnostic markers
for sepsis, such as PIM1 (proviral integration site for Moloney
murine leukemia virus kinase 1), HIST1H1C (Histone Cluster
1 H1 Family Member C), and IGSF6 (Immunoglobulin
Superfamily Member 6). The involvement of PIM1 in
modulating the immune-inflammatory response during sepsis
was verified through experimental validation, indicating that
PIM1 is a promising novel therapeutic target.

The endoscopic evaluation of patients suspected of IBD with the
collection of mucosal biopsies for histopathological confirmation
continues to be the gold standard for establishing an IBD diagnosis,
assessing treatment efficacy, and identifying post-operative
recurrence; however, it is associated with high costs and
invasiveness. Biomarkers enable non-invasive disease evaluation,
with C-reactive protein and fecal calprotectin being the most
frequently utilized biomarkers in current clinical practice. The
T>C substitution SNPs that affect the functionality of the DLG5
(discs large homolog 5) protein, along with the lack of CARD15/
NOD2 (caspase recruitment domain family number 15/nucleotide-
binding oligomerization domain-containing protein 2) SNPs
associated with CD pathogenesis, could serve as genomic

FIGURE 1
A schematic representation of the different phases involved in identifying and validating molecular biomarkers for disease diagnosis and prognosis.
This figure was created in BioRender (https://BioRender.com/d22b503). DEGs: differentially expressed genes.
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biomarkers (Dudzińska et al., 2018). Several potential microbiome
biomarkers (microbial markers) have been reported. For example,
Faecalibacterium prausnitzii and its phylogroups and elevated
Escherichia coli counts serve as potential biomarkers for CD
diagnosis. Akkermansia muciniphila is identified for pediatric CD
diagnosis. Additionally, reductions in Firmicutes (Clostridiales)
levels correlate with IBD severity, while increased abundance of
Lactobacilllaceae and Enterococcaceae families, as well as the genera
Lactobacillus, Enterococcus, and Eggerthella, are noted in UC
patients (Wang et al., 2024). In dogs with CIE, there is a notable
dysbiotic profile in both luminal and mucosal intestinal bacteria,
marked by a reduction in Clostridium and Bacteroides and an
increase in Enterobacteriaceae (Sahoo et al., 2022a).

The regulation of gene expression mediated by microRNA
(miRNA) is essential for the appropriate development and
functioning of the intestine (Shanahan et al., 2021). Numerous
studies have effectively identified unique miRNA profiles that
indicate the upregulation or downregulation of one or more
miRNAs in intestinal biopsy samples from patients with IBD
(James, 2020) and dogs affected with chronic inflammatory
enteropathy (CIE) (Sahoo et al., 2024a). The colonic mucosa of
patients with active UC was shown to overexpress specific miRNAs,
including miR-21, miR-150, and miR-155, and have a reduction in
miRNAs like miR-143 and miR-145 when compared to healthy
controls (Alghoul et al., 2022). Comparing the colonic mucosa of
patients with active CD and healthy controls, there was an
upregulation of miR-196 and a downregulation of miR-7
(Alghoul et al., 2022). The differential expression of miRNAs in
saliva, blood, and colon tissue samples was analyzed in UC and CD
patients (Schaefer et al., 2015). This research highlighted multiple
miRNAs (specifically, miR-21, miR-31, miR-142-3p, miR-142-5p)
with expression levels exhibiting significant changes across all three
sample types when comparing IBD patients to non-IBD controls
(Schaefer et al., 2015). Recent studies indicate that DNAmethylation
of specific genes contributes to the pathogenesis of IBD, implying
their potential utility as clinical biomarkers (Cooke et al., 2012;
Nimmo et al., 2012). A comprehensive analysis of methylation
patterns across the genome, performed on rectal mucosal
biopsies, revealed specific differential gene signatures, including
Fanconi anemia complementation group (FANCC), thyroid
hormone receptor-associated protein 2 (THRAP2), globoside
alpha-1,3-N-acetylgalactosaminyltransferase 1 (GBGT1), tumor
necrosis factor ligand superfamily member 4 (TNFSF4), TNF
superfamily member 12 (TNFSF12), docking protein 2 (DOK2),
and fucosyltransferase 7 (FUT7). These genes exhibited notable
differences in methylation levels in specimens from patients with
CD or UC compared to healthy individuals (Cooke et al., 2012).
Response to infliximab treatment in patients with IBD resulted in
notable decreases in macrophage-derived cluster of differentiation
14 (CD14) and CD86 levels, along with the chemokine CCL2
(Magnusson et al., 2015), highlighting their potential as surrogate
biomarkers to monitor IBD patients during treatment.

The research by Song et al. employing MR suggests that
interleukin-13 (IL-13) contributes to the pathophysiology of IBD
(CD and UC). Whereas macrophage migration inhibitory factor
appears to be specifically related to CD, stem cell factor is more likely
to play a role in the progression of IBD (CD and UC). Another MR
study by Qian et al. showed that patients with gastric cancer exhibit

decreased blood levels of tryptophan, nonadecanoate (19:0), and
erythritol. Zhu et al. employed MR and demonstrated that the genes
GPBAR1 (G protein-coupled bile acid receptor 1), IL1RL1
(Interleukin 1 receptor-like 1), PRKCB (Protein Kinase C Beta),
and PNMT (Phenylethanolamine N-Methyltransferase) are linked
to an increased risk of IBD. Whereas IL1RL1 was shown to have a
protective effect against the risk of CD, GPX1 (Glutathione
peroxidase 1), GPBAR1, and PNMT are implicated in the risk of
UC. In a scRNA-seq study by Keever-Keigher et al., common
expression patterns were observed in GI disorders, including an
extensive upregulation of MTRNR2L8 (MT-RNR2 Like 8) across
various cell types. The increase of XIST (X Inactive Specific
Transcript) expression across different cell types in individuals
with UC and an elevated expression of Th2 (T helper 2)-
associated genes in eosinophilic disorders is also noteworthy.

Colorectal cancer (CRC) is a common GI neoplasia. To facilitate
the early detection of CRC, a minimally invasive and reproducible
technique known as liquid biopsy (LB) has been established. This
method isolates cancer-derived components from the patients’
peripheral blood and/or other body fluids, including circulating
tumor cells (CTC), miRNA, long non-coding RNAs (lncRNAs), and
circulating tumor DNA (ctDNA) (Zhang et al., 2023). Heat-shock
protein 27 (Hsp27) has been identified as expressed explicitly in
well-differentiated CRC and is linked to other significant CRC
biomarkers, such as epidermal growth factor receptor (EGFR),
tumor necrosis factors, protein kinase B (AKT), and human
epidermal growth factor receptor 2 (ERBB2) (Gan et al., 2014).
Glutathione S-transferase pi1 (GSTP1) and KTR8 were
overexpressed in both well-differentiated and poorly
differentiated CRCs. In contrast, triosephosphate isomerase (TPI),
tubulin beta chain (TUBB), and fatty acid-binding protein (FABP1)
were upregulated exclusively in well-differentiated CRCs. Human
leukocyte antigen A (HLA-A) was observed to be increased in poorly
differentiated CRC (Gan et al., 2014). Circular RNAs (circRNAs)
such as hsa_circ_001978, hsa_circ_103627, hsa_circ_105039, and
circ_0124554 may also serve as indicators for a diagnosis of CRC.
Levels of serum miR-21, miR-29a, and miR-125b can potentially
differentiate patients with early colorectal neoplasia from healthy
ones (Yamada et al., 2015). Serum miRNAs, such as miR-21, miR-
92a, miR-182S, and miR-223, along with other miRNAs like miR-
17–5p, miR-18a–5p, miR-18b–5p, miR-103a–3p, miR-127–3p,
miR-151a–5p, and miR-181a–5p may have clinical utility as
biomarkers in the non-invasive screening for CRC (Zhang et al.,
2023). CircRNAs have the potential to synergize with various
proteins or RNAs, demonstrated by circ_0000523 and
methyltransferase-like 3 (METTL3), to enhance the accuracy of a
CRC diagnosis (Wang et al., 2022).

Carcinoembryonic antigen (CEA) and carbohydrate antigen 19-
9 (CA19-9) currently serve as the primary serum tumor markers for
assessing the prognosis of CRC. The research conducted by Dai et al.
indicates that both the overall survival rate and the disease-free
survival rate in patients with CRC progressively decline with an
increasing number of positive tumor markers before and after
surgical intervention. Nomograms utilizing pre-and postoperative
CEA and CA19-9 demonstrate high accuracy in predicting survival
and recurrence for stage I-III CRC patients following radical surgery,
significantly outperforming the American Joint Committee on
Cancer (AJCC) 8th Tumor-Node-Metastasis (TNM) stage. The
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research by Rad et al. highlights the significant impact of machine
learning algorithms on predicting CRC recurrence, specifically by
examining the least number of serial CEA measurements necessary
for accurate prediction of recurrence. The research conducted by
Pan et al. involved a retrospective analysis of clinical data from
36,708 patients who underwent gastroscopy and colonoscopy
between 2005 and 2022. Conventional adenomas (CAs), serrated
polyps (SPs), non-adenomatous polyps (NAPs), and CRC were all
associated with an increased risk ofHelicobacter pylori infection and
older age. The presence of moderate to severe intestinal metaplasia
was associated with an increased risk of NAP and CAs. The risk of
CRC was found to be increased with low-grade intraepithelial
neoplasia, whereas gastric cancer was linked to high-grade
intraepithelial neoplasia. A correlation was also observed between
advanced gastric pathology and an increased risk of CRC.

In individual patients without clinical signs, biomarkers or
biomarker panels have the potential to serve as a significant
resource for screening to identify cancer at an early stage or
recognize precancerous conditions. For symptomatic patients, these
biomarkers can help differentiate cancerous from benign states.
Furthermore, in cancer patients undergoing treatment such as
surgical procedures, radiation therapy, and/or chemotherapy,
surrogate disease biomarkers are valuable tools for evaluating the
success of tumor elimination (complete resection and remission) and
the potential for disease recurrence. Identifying and validating optimal
biomarkers and biomarker panels is a crucial step, as it offers
considerable potential for enhancing personalized medicine and
overall clinical outcomes. However, further research into the
specificity of molecular biomarkers for sepsis, IBD, and CRC is
necessary before they can be utilized as diagnostic tools in
clinical practice.
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Background: Existing data suggests a potential link between human blood 
metabolites and sepsis, yet the precise cause-and-effect relationship remains 
elusive. By using a two-sample Mendelian randomization (MR) analysis, this study 
aims to establish a causal link between human blood metabolites and sepsis.

Methods: A two-sample MR analysis was employed to investigate the relationship 
between blood metabolites and sepsis. To assess the causal connection between 
sepsis and human blood metabolites, five different MR methods were employed, 
A variety of sensitivity analyses were conducted, including Cochrane’s Q test, 
MR-Egger intercept test, MR-PRESSO and leave-one-out (LOO) analysis. In 
order to ensure the robustness of the causal association between exposure and 
outcome, the Bonferroni adjustment was employed. Additionally, we conducted 
analyses of the metabolic pathways of the identified metabolites using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and the Small Molecule Pathway 
Database (SMPDB) database.

Results: The MR analysis revealed a total of 27 metabolites (16 known and 11 
unknown) causally linked to the development and progression of sepsis. 
After applying the Bonferroni correction, 3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) remained significant in relation to 28-day all-cause 
mortality in sepsis. By pathway enrichment analysis, we identified four significant 
metabolic pathways. Notably, the Alpha Linolenic Acid and Linoleic Acid 
metabolism pathway emerged as a pivotal contributor to the occurrence and 
progression of sepsis.

Conclusion: This study provides preliminary evidence of causal associations 
between human blood metabolites and sepsis, as ascertained by MR analysis. The 
findings offer valuable insights into the pathogenesis of sepsis and may provide 
insight into preventive and therapeutic approaches.
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1 Introduction

As a result of a dysregulated host response to infection, sepsis can 
lead to life-threatening organ dysfunction with inflammation and 
immune dysfunction. This condition exhibits a significant mortality 
rate (1, 2). Globally, there were approximately 48.9 million cases of 
sepsis reported in 2017, resulting in an estimated 11 million cases of 
sepsis-related deaths, which accounts for 19.7% of global mortality 
(3). Clinicians often encounter challenges in identifying individuals 
at risk of sepsis due to possible infections. Identifying sepsis as a 
major concern for global health and patient safety, the World Health 
Organization (WHO) stresses the importance of recognizing the 
contributing factors that either elevate or lower the risk of sepsis (4).

In recent years, the discipline of metabolomics has surfaced as 
a methodical strategy to explore small molecule metabolites in 

living beings, providing fresh prospects to improve our 
comprehension of the fundamental processes implicated in the 
initiation and advancement of illnesses (5). Inflammation can 
manifest in aseptic forms, such as those resulting from surgical 
procedures or trauma, or infectious forms, such as sepsis (6). 
Metabolomics holds promise in offering valuable insights to support 
clinical decision-making. Importantly, the profiles of metabolites 
have shown the capacity to successfully differentiate sterile 
inflammation from sepsis in both human and animal studies (7, 8). 
Simultaneously, metabolite profiles hold the potential to provide 
reasonably accurate predictions regarding the occurrence and 
progression of sepsis. In neonates, metabolite profiles can 
differentiate between healthy individuals and those with sepsis, as 
well as reveal distinct patterns between early-onset and late-onset 
sepsis (9). In addition, following traumatic injury, in adult patients 
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admitted to the intensive care unit (ICU), metabolite profiles can 
effectively distinguish between those who develop sepsis and those 
who do not (10). Metabolite profiles can also differentiate between 
the prognosis of septic patients, highlighting significant differences 
between survivors and non-survivors (11–13).

While several metabolites have been observed to be associated 
with sepsis in population-based cohorts (14), a systematic evaluation 
of the impact of blood metabolites on sepsis has not yet been 
conducted. Traditional studies face challenges in identifying and 
establishing potential causal relationships between blood metabolites 
and sepsis due to unavoidable confounding factors. MR analysis 
leverages genetic variants as instrumental variables (IVs) to mitigate 
confounding and assess the association between exposure and 
outcome, making it a widely used method for identifying reliable risk 
factors for various diseases (15). In contrast to observational studies, 
MR studies effectively minimize confounding variables and provide 
more robust causal evidence by utilizing natural random allocation 
(16, 17). As a result, the objective of this study is to utilize the strengths 
of the MR approach to investigate the correlation between blood 
metabolites and sepsis in a comprehensive way. The analysis will 
be based on extensive metabolomics data and clinical information. 
Statistical methods and genetic variant detection techniques will 
be  employed to identify metabolites associated with sepsis and 
elucidate their potential contributions to the pathophysiological 
mechanisms underlying sepsis. Additional analyses will be performed 
to acquire more profound understanding of the function of these 
metabolites in sepsis.

2 Materials and methods

2.1 Data source

Blood metabolite data were obtained from the metabolomics 
Genome-wide association study (GWAS) server.1 Summary data from 
a previously published GWAS study on human blood metabolites were 
utilized (18), a total of 7,824 European participants participated in this 
study, including 1768 participants from the KORA F4 study conducted 
in Germany, and 6,056 participants from the UK Twin Study. This 
GWAS dataset represents the most comprehensive genetic loci 
information for 2.1 million Single Nucleotide Polymorphisms (SNPs) 
associated with 486 blood metabolites. Among these metabolites, 177 
metabolites remain unidentified due to their unknown chemical 
identity, while 309 metabolites have been classified into eight broad 
metabolic groups: amino acids, carbohydrates, cofactors and vitamins, 
energy, lipids, nucleotides, peptides, and xenobiotics, relying on data 
from KEGG (19).

Sepsis data were obtained from the IEU OpenGWAS project,2 
including sepsis and sepsis-related 28-day all-cause mortality. These 
data derive from a European population consisting of 486,484 
participants drawn from the UK Biobank (20). Among them, 11,643 
individuals had sepsis, and a total of 12,243,539 SNPs were considered. 
Within this group, 1,896 individuals succumbed to all causes within 

1 https://metabolomics.helmholtz-muenchen.de/gwas/

2 https://gwas.mrcieu.ac.uk/

28 days, while survivors were used as controls, involving a total of 
12,243,487 SNPs.

2.2 Study design

MR was used to investigate the relationship between blood 
metabolites and sepsis, as well as sepsis-related mortality. The MR 
analysis conducted in this study adhered to three key assumptions 
(Figure 1): (1) Strong association between exposure factors and IVs; 
(2) Absence of confounding factors associated with the IVs; (3) IVs 
chosen did not have a direct impact on the outcome but influenced it 
solely through exposure factors (21).

2.3 Genetic instrument selection

The selection of IVs for analysis required a robust association with 
the exposure factor. To ensure precision and efficacy in establishing 
causal connections between blood metabolites and sepsis risk, SNPs 
with p-values below 5 × 10−6, representing locus-wide significance, 
were chosen. Furthermore, selected instrumental variables needed to 
pass independence tests successfully, setting the linkage disequilibrium 
parameter (R2) of SNPs to 0.001 and the genetic distance to 10,000 kb. 
Additionally, IVs with F values <10 were excluded to ensure the 
strength of the association between IVs and exposure factors (22). IVs 
having p-values below 1.0 × 10−5 concerning the outcome were also 
disregarded. The Phenoscanner software package was employed to 
identify covariates associated with potential confounding factors like 
obesity, diabetes, and total cholesterol to prevent these factors from 
confounding the impact of exposure on the outcome. Significant 
associations (p < 1.0 × 10−5) between SNPs and potential confounding 
factors led to the exclusion of those SNPs from the analysis. 
Subsequent MR analysis was conducted to validate the results’ 
strength. MR analysis was specifically carried out on metabolites with 
at least 3 SNPs (23).

2.4 Statistical analysis

The inverse variance weighted (IVW) method was employed as 
the primary analysis method in this study to assess the significant 
causal relationship between metabolites and sepsis, as well as 28-day 
all-cause mortality in sepsis (p < 0.05). Furthermore, several other MR 
analysis methods, including weighted median, MR Egger, weighted 
mode, and simple mode, were used as complementary approaches. 
Analysis was conducted only on metabolites exhibiting consistent 
associations across all five methods. To assess heterogeneity and 
pleiotropy in the IVW method, both Cochran’s Q test and MR-Egger 
intercept analysis were performed. Metabolites exhibiting pleiotropy 
in the IVW analysis (p < 0.05) were removed, and IVs were subjected 
to MR-PRESSO (version 1.0) to identify and eliminate outlier SNPs, 
addressing horizontal pleiotropy. LOO analysis was conducted to 
confirm that MR findings were not influenced by individual SNPs. The 
study focused on sepsis and 28-day mortality as outcomes, identifying 
core metabolites associated with the incidence and progression of 
sepsis. Given the numerous MR analyses during the metabolite 
screening process, Bonferroni adjustment was applied to rigorously 
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evaluate the causal relationships of identified metabolites 
(p < 0.05/309 = 0.000167). Using odds ratios and 95% confidence 
intervals, we  estimated causal effects concerning the association 
between blood metabolites and sepsis risk and mortality. The statistical 
analyses were carried out using R (version 4.3.0).

2.5 Enrichment analysis of metabolic 
pathway

To gain further insights into metabolic pathways associated with 
sepsis occurrence and progression, MetaboAnalyst 5.03 was utilized 
for metabolic pathway analysis. First, we identified the corresponding 
ID of these metabolites in the MetaboAnalyst 5.0. Then, we used 
Pathway Analysis modules in the Annotated Features mode to 
perform the pathway analysis, relying on the KEGG and SMPDB 
databases. This analysis was performed following all the specified 
conditions for MR analysis.

3 Results

A thorough IV screening was performed for each of the 486 
metabolites. Following the IV selection criteria, we  included a 
comprehensive set of 5,538 SNPs related to sepsis in the analysis, 
ensuring that each metabolite was associated with a minimum of 3 

3 https://www.metaboanalyst.ca/

SNPs. After scrutinizing Phenoscanner and excluding SNPs strongly 
correlated with confounding factors, a total of 17 SNPs were excluded 
from the analysis. Detailed information about the selected IVs in 
Tables S1, S2 in Supplementary material. Scatter plots and funnel plots 
illustrating the MR analysis results are presented in Figures S3–S6 in 
Supplementary material.

3.1 Two samples MR analysis

The IVW analysis was employed to screen metabolites, focusing 
on their associations with sepsis and 28-day all-cause mortality. Out 
of the initial pool, 34 blood metabolites were selected based on a 
significance threshold of p < 0.05. A visualization of these metabolites 
was displayed in a heatmap (Figure  2). Subsequently, these 34 
metabolites underwent four other types of MR analysis. We selected 
metabolites that consistently showed significant associations across all 
five methods. Ultimately, 27 blood metabolites were identified that 
exhibited a causal relationship with the risk of sepsis and 28-day 
all-cause mortality in sepsis.

3.1.1 Sepsis
We found 13 causal relationships between blood metabolites and 

sepsis risk in this study (Figure  3 and Table  1). Among these, 
pantothenate, paraxanthine, propionylcarnitine, X-13477 were 
associated with a higher risk, whereas heptanoate, hypoxanthine, 
X-08988, X-11204, heme, Adrenate (22:4n6), X-12188, stearidonate, 
and 1-arachidonoylglycerophosphoethanolamine were protective 
factors. The Cochrane’s Q test did not indicate any statistically 
significant heterogeneity (p > 0.05). Furthermore, both the MR-Egger 

FIGURE 1

Study design overview and assumptions of the MR design. Notes: SNP: single nucleotide polymorphism, LD: linkage disequilibrium, IVW: inverse-
variance weighted, MR-PRESSO: Mendelian randomization pleiotropy residual sum and outlier.
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interception test and MR-PRESSO test did not reveal any signs of 
pleiotropy (p > 0.05). Lastly, the LOO analysis (Figure S1 in 
Supplementary material) demonstrated that after systematically 
excluding each SNP, pantothenate, propionylcarnitine, and 
1-arachidonoylglycerophosphoethanolamine consistently yielded 
stable results.

3.1.2 28-Day mortality in sepsis
We identified 16 causal relationships between blood metabolites and 

28-day all-cause mortality in patients with sepsis identified (Figure 3 and 
Table 2). Among these, X-02973, glycocholate, taurochenodeoxycholate, 
1-palmitoylglycerophosphocholine, X-13069, stearamide, 
3-(3-hydroxyphenyl) propionate were risk factors, while methionine, 
3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), X-11550, 
Adrenate (22:4n6), X-11845, X-12094, N1-methyl-3-pyridone-4-
carboxamide, 1-arachidonoylglycerophosphoethanolamine, X-14626 
were protective factors. Similar to the sepsis analysis, the Cochrane’s Q 
test did not indicate any statistically significant heterogeneity (p > 0.05). 
Moreover, both the MR-Egger interception test and MR-PRESSO test did 
not detect any signs of pleiotropy (p > 0.05). The LOO analysis (Figure S2 
in Supplementary material) demonstrated that after systematically 
excluding each SNP, methionine, glycocholate, and CMPF consistently 
yielded stable results.

3.2 Bonferroni-corrected test and analysis 
of metabolic pathway enrichment

After applying the Bonferroni correction, we observed that CMPF 
maintained its significance in relation to 28-day all-cause mortality in 

sepsis (p < 0.000167). By incorporating data from the KEGG and 
SMPDB databases, the MR analysis identified four significant 
pathways (Table 3). Notably, the Alpha Linolenic Acid and Linoleic 
Acid Metabolism pathway played a crucial role in the occurrence and 
progression of sepsis.

4 Discussion

This study integrated two large GWAS datasets and used a 
rigorous MR design to investigate the causal associations between 
486 blood metabolites and sepsis. Our analysis revealed that 13 
blood metabolites exhibited a causal relationship with sepsis, while 
16 blood metabolites demonstrated a causal relationship with 
28-day mortality in sepsis. Specifically, we  observed that 
1-arachidonoylglycerophosphoethanolamine and Adrenate 
(22:4n6) were both significantly associated with the occurrence and 
progression of sepsis. After Bonferroni correction testing, CMPF 
showed a strong causal relationship with lower 28-day mortality in 
sepsis. These results have the potential to furnish valuable 
indications for identifying early diagnostic biomarkers and 
potential therapeutic targets for sepsis.

1-Arachidonoylglycerophosphoethanolamine is a novel 
metabolite related to the endogenous cannabinoid system, 
producing arachidonoylethanolamine (anandamide, AEA) 
through the cleavage of glycerophosphoethanolamine by 
phosphodiesterase. AEA, an endogenous cannabinoid, is 
synthesized by macrophages in response to pathological 
conditions like shock and is considered a pathogenic mediator in 
septic shock development (24). Studies on animal models have 

FIGURE 2

Heatmap of the IVW analysis results for sepsis and 28-day mortality in sepsis. Note: Heatmaps showing the p-values of the IVW analysis and the 
direction of the result.
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confirmed AEA’s role in regulating the immune system, exhibiting 
various effects in sepsis, including anti-inflammatory, antioxidant, 
pro-apoptotic, and immunomodulatory effects (25–27). 
Activation of AEA receptors on immune cells reduces 
pro-inflammatory cytokine secretion and the recruitment of 
neutrophils and macrophages (28, 29). Recent research findings 
suggest that low baseline plasma AEA levels may serve as 
prognostic indicators for septic patients requiring prolonged 
mechanical ventilation. Furthermore, a lower concentration of 
AEA has been identified as a prognostic factor for hospital stays 
exceeding 10 days (30). In another study, AEA was found to 
attenuate acute respiratory distress syndrome induced by 
Staphylococcus Enterotoxin B by suppressing inflammation 
through the down-regulation of key miRNA that regulates 
immunosuppressive pathways (31). These findings imply that the 
endocannabinoid AEA may possess a protective effect against 
severe inflammation and could potentially be  utilized in the 
management of sepsis cases with multiple complications. This 
study highlights that 1-arachidonoylglycerophosphoethanolamine 
exhibits a protective effect against sepsis, indicating its potential 
as a novel and promising therapeutic target for sepsis treatment.

Adrenate (22:4n6) has been identified as a protective factor against 
lacunar stroke in a previous MR study (32). Dihomo-isofurans 
(dihomo-IsoPs), which are peroxidation products derived from 
Adrenate (22:4n6), play a crucial role in the composition of white 
matter. These compounds hold potential as selective biomarkers for 
quantifying in vivo free radical damage to neuronal membranes 
Moreover, plasma biomarkers associated with Adrenate (22:4n6) and 
its derivatives hold promise for early and differential diagnosis of 
Alzheimer’s disease (33). While current research on Adrenate (22:4n6) 
and its derivatives primarily focuses on neurodegenerative diseases 
(34), our study has revealed its potential significance in the 
development and progression of sepsis. However, the underlying 
mechanisms of this phenomenon remain unknown as our 
investigation primarily focused on correlation analysis. Therefore, 
further research is essential to explore and elucidate these 
mechanistic explanations.

The present study conducted a comprehensive MR analysis, 
revealing a robust causal association between CMPF and reduced 
mortality from sepsis within a 28-day period. In individuals who 
consume fish and fish oil as well as polyunsaturated fatty acids through 
high-temperature cooking, CMPF, a metabolite produced from furan 

FIGURE 3

Forest plots of estimates identified with inverse variance weighted. (A) sepsis, (B) 28-day death in sepsis.
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TABLE 1 MR results and sensitivity analysis of blood metabolites on sepsis.

Level Exposure Outcome Method Nsnps Se P OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

Cofactors and 

vitamins

Pantothenate Sepsis Inverse variance 

weighted

15 0.250 0.023 1.760 

(1.079 ~ 2.871)

0.983 0.299 0.985

MR Egger 15 0.470 0.778 1.145 

(0.456 ~ 2.875)

Simple mode 15 0.556 0.364 1.685 

(0.567 ~ 5.010)

Weighted 

median

15 0.351 0.098 1.787 

(0.899 ~ 3.555)

Weighted mode 15 0.497 0.260 1.794 

(0.677 ~ 4.755)

Lipid Heptanoate (7:0) Sepsis Inverse variance 

weighted

20 0.309 0.048 0.543 

(0.296 ~ 0.994)

0.698 0.951 0.718

MR Egger 20 0.919 0.552 0.573 

(0.094 ~ 3.472)

Simple mode 20 0.708 0.488 0.606 

(0.151 ~ 2.428)

Weighted 

median

20 0.444 0.183 0.554 

(0.232 ~ 1.322)

Weighted mode 20 0.596 0.345 0.561 

(0.174 ~ 1.805)

Nucleotide Hypoxanthine Sepsis Inverse variance 

weighted

13 0.272 0.028 0.549 

(0.322 ~ 0.936)

0.412 0.752 0.460

MR Egger 13 0.780 0.650 0.695 

(0.151 ~ 3.209)

Simple mode 13 0.608 0.211 0.448 

(0.136 ~ 1.474)

Weighted 

median

13 0.380 0.068 0.500 

(0.238 ~ 1.053)

Weighted mode 13 0.506 0.152 0.461 

(0.171 ~ 1.242)

Xenobiotics Paraxanthine Sepsis Inverse variance 

weighted

7 0.127 0.047 1.286 

(1.003 ~ 1.649)

0.603 0.973 0.567

(Continued)
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TABLE 1 (Continued)

Level Exposure Outcome Method Nsnps Se P OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

MR Egger 7 0.427 0.560 1.305 

(0.565 ~ 3.011)

Simple mode 7 0.296 0.680 1.137 

(0.636 ~ 2.033)

Weighted 

median

7 0.181 0.289 1.212 

(0.850 ~ 1.728)

Weighted mode 7 0.206 0.875 1.035 

(0.690 ~ 1.550)

unknown X-08988 Sepsis Inverse variance 

weighted

21 0.279 0.041 0.567 

(0.328 ~ 0.978)

0.309 0.517 0.367

MR Egger 21 0.715 0.177 0.367 

(0.090 ~ 1.491)

Simple mode 21 0.697 0.699 0.760 

(0.194 ~ 2.982)

Weighted 

median

21 0.421 0.203 0.585 

(0.257 ~ 1.334)

Weighted mode 21 0.491 0.386 0.647 

(0.247 ~ 1.694)

Lipid Propionylcarnitine Sepsis Inverse variance 

weighted

24 0.211 0.001 1.978 

(1.308 ~ 2.991)

0.679 0.770 0.699

MR Egger 24 0.462 0.096 2.233 

(0.904 ~ 5.521)

Simple mode 24 0.479 0.134 2.102 

(0.823 ~ 5.372)

Weighted 

median

24 0.293 0.006 2.236 

(1.258 ~ 3.972)

Weighted mode 24 0.374 0.055 2.134 

(1.024 ~ 4.445)

unknown X-11204 Sepsis Inverse variance 

weighted

24 0.340 0.035 0.489 

(0.251 ~ 0.952)

0.556 0.952 0.589

(Continued)
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TABLE 1 (Continued)

Level Exposure Outcome Method Nsnps Se P OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

MR Egger 24 1.275 0.620 0.527 

(0.043 ~ 6.415)

Simple mode 24 0.948 0.252 0.328 

(0.051 ~ 2.105)

Weighted 

median

24 0.485 0.030 0.349 

(0.135 ~ 0.903)

Weighted mode 24 0.898 0.219 0.321 

(0.055 ~ 1.868)

Cofactors and 

vitamins

heme* Sepsis Inverse variance 

weighted

5 0.286 0.009 0.472 

(0.269 ~ 0.827)

0.344 0.254 0.414

MR Egger 5 0.983 0.124 0.125 

(0.018 ~ 0.857)

Simple mode 5 0.550 0.163 0.391 

(0.133 ~ 1.149)

Weighted 

median

5 0.381 0.035 0.447 

(0.212 ~ 0.943)

Weighted mode 5 0.497 0.149 0.412 

(0.156 ~ 1.092)

Lipid adrenate (22:4n6) Sepsis Inverse variance 

weighted

5 0.277 0.049 0.580 

(0.337 ~ 0.999)

0.979 0.900 0.987

MR Egger 5 1.018 0.553 0.508 

(0.069 ~ 3.734)

Simple mode 5 0.415 0.220 0.548 

(0.243 ~ 1.234)

Weighted 

median

5 0.338 0.077 0.55 

(0.284 ~ 1.067)

Weighted mode 5 0.364 0.170 0.544 

(0.266 ~ 1.111)

unknown X-12188 Sepsis Inverse variance 

weighted

11 0.035 0.041 0.930 

(0.868 ~ 0.997)

0.496 0.821 0.536

(Continued)
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TABLE 1 (Continued)

Level Exposure Outcome Method Nsnps Se P OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

MR Egger 11 0.075 0.271 0.916 

(0.791 ~ 1.060)

Simple mode 11 0.074 0.827 0.984 

(0.851 ~ 1.137)

Weighted 

median

11 0.048 0.448 0.964 

(0.877 ~ 1.060)

Weighted mode 11 0.045 0.376 0.959 

(0.878 ~ 1.048)

Lipid stearidonate (18:4n3) Sepsis Inverse variance 

weighted

5 0.340 0.041 0.498 

(0.256 ~ 0.970)

0.214 0.830 0.333

MR Egger 5 1.361 0.793 0.676 

(0.047 ~ 9.737)

Simple mode 5 0.493 0.135 0.398 

(0.151 ~ 1.045)

Weighted 

median

5 0.352 0.013 0.417 

(0.209 ~ 0.832)

Weighted mode 5 0.389 0.081 0.406 

(0.189 ~ 0.869)

Lipid 1-arachidonoylglycerophosphoethanolamine* Sepsis Inverse variance 

weighted

14 0.232 0.007 0.534 

(0.339 ~ 0.842)

0.996 0.829 1.000

MR Egger 14 0.602 0.237 0.473 

(0.145 ~ 1.538)

Simple mode 14 0.467 0.152 0.491 

(0.196 ~ 1.228)

Weighted 

median

14 0.318 0.027 0.496 

(0.266 ~ 0.925)

Weighted mode 14 0.366 0.074 0.491 

(0.240 ~ 1.007)

unknown X-13477 Sepsis Inverse variance 

weighted

4 0.427 0.039 2.410 

(1.044 ~ 5.561)

0.980 0.827 0.972

(Continued)
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fatty acids, is found in higher concentrations (35). Numerous 
investigations have established a correlation between CMPF and the 
development of type 2 diabetes, while recent research has indicated 
that serum CMPF levels are inversely associated with the risk of type 
2 diabetes (36–38). Given that diabetes mellitus is a recognized risk 
factor for the onset of sepsis, the inverse relationship between CMPF 
and diabetes mellitus could potentially serve as a significant protective 
factor. Additionally, a study on periodontitis has shown that elevated 
CMPF levels are linked to a reduced occurrence of gingival 
inflammation and a less severe form of periodontitis (39). Moreover, 
CMPF has exhibited potential anti-inflammatory properties. For 
instance, an extract derived from green-lipped mussels, known for 
their furan fatty acid content, has demonstrated promising outcomes 
in alleviating symptoms associated with rheumatoid arthritis in 
patients. This therapeutic effect is achieved through the reduction of 
interleukin (IL) 1β, prostaglandin (PGE2), and tumor necrosis factor 
α (TNF-α) levels (40). Furthermore, in experiments with mice, CMPF 
treatment resulted in improved fat removal from the liver and reduced 
fat storage, effectively preventing lipid buildup in the liver and the 
onset of hepatic insulin resistance induced by a high-fat diet (41). 
Sepsis patients, particularly those with obesity, often exhibit insulin 
resistance (42). Empirical research has confirmed that hyperglycemia 
in sepsis patients is associated with an unfavorable prognosis. 
Therefore, it is imperative to maintain sepsis patients’ blood glucose 
levels within a reasonable range. Elevated levels of CMPF have the 
potential to enhance insulin sensitivity, mitigate lipid accumulation, 
and counteract insulin resistance induced by a high-fat diet. This, in 
turn, can effectively regulate blood glucose levels in sepsis patients and 
improve their prognosis (43).

The analysis of metabolic pathways in sepsis and the 28-day 
all-cause mortality has revealed a significant elevation in the value of 
Alpha Linolenic Acid (ALA) and Linoleic Acid (LA) metabolism. 
ALA and LA are crucial constituents of Omega-3 and Omega-6 
polyunsaturated fatty acids. Additionally, they can undergo 
conversion in the body to form longer-chain Omega-3 and Omega-6 
polyunsaturated fatty acids (44). The involvement of these fatty acid-
derived metabolites holds significant importance in the development 
of sepsis. ALA, classified as an Omega-3 polyunsaturated fatty acid, 
has recently been identified as having the potential to mitigate sepsis-
induced intestinal damage through several mechanisms, including 
the downregulation of miR-1-3p, increased expression of Notch3, and 
inhibition of the Smad pathway activation (45). Additionally, ALA 
possesses anti-inflammatory properties and can impede platelet 
aggregation and thrombus formation (46). LA, on the other hand, is 
an Omega-6 polyunsaturated fatty acid, and one of its significant 
metabolic byproducts is arachidonic acid (ARA) (47). ARA can 
undergo metabolism via the cyclooxygenase (COX) pathway, 
resulting in the production of prostaglandins (PGs) and 
thromboxanes (TXs). Additionally, ARA can be  converted into 
leukotrienes (LTs) and lipoxins (LX) through the lipoxygenase (LOX) 
pathway. Consequently, ARA assumes a pro-inflammatory function 
within the inflammatory process, thereby facilitating the sequential 
progression of inflammation (47–49). In patients with sepsis, ARA 
levels are typically elevated, and this elevation is associated with 
increased inflammation (50). A recent MR study provided evidence 
supporting our hypothesis that omega-3 intake is associated with a 
lower risk of sepsis, while an elevation in the omega-6/omega-3 ratio 
is associated with a higher risk of sepsis-related mortality (51). T
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TABLE 2 MR results and sensitivity analysis of blood metabolites on 28-day death in sepsis.

Level Exposure Outcome Method Nsnps Se p OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

Amino acid methionine Sepsis (28 day 

death)

Inverse 

variance 

weighted

12 1.605 0.015 0.020 (0.001 ~ 0.461) 0.921 0.517 0.919

MR Egger 12 4.945 0.878 0.459 (0.001 ~ 7434.500)

Simple mode 12 3.251 0.562 0.143 (0.001 ~ 83.902)

Weighted 

median

12 2.244 0.317 0.106 (0.001 ~ 8.624)

Weighted mode 12 2.886 0.613 0.223 (0.001 ~ 63.648)

unknown X-02973 Sepsis (28 day 

death)

Inverse 

variance 

weighted

16 1.218 0.022 16.198 (1.489 ~ 176.208) 0.792 0.719 0.797

MR Egger 16 5.641 0.408 122.456 

(0.002 ~ 7760268.183)

Simple mode 16 2.726 0.194 40.819 (0.195 ~ 8538.371)

Weighted 

median

16 1.588 0.029 31.860 (1.417 ~ 716.415)

Weighted mode 16 2.674 0.212 32.611 (0.173 ~ 6155.931)

Lipid glycocholate Sepsis (28 day 

death)

Inverse 

variance 

weighted

6 0.243 0.005 1.964 (1.220 ~ 3.164) 0.885 0.961 0.879

MR Egger 6 0.333 0.108 1.988 (1.035 ~ 3.820)

Simple mode 6 0.506 0.154 2.341 (0.868 ~ 6.315)

Weighted 

median

6 0.336 0.048 1.942 (1.005 ~ 3.752)

Weighted mode 6 0.325 0.115 1.857 (0.981 ~ 3.515)

Lipid taurochenodeoxycholate Sepsis (28 day 

death)

Inverse 

variance 

weighted

6 0.311 0.026 1.998 (1.085 ~ 3.678) 0.489 0.863 0.662

MR Egger 6 0.563 0.240 2.174 (0.722 ~ 6.549)

Simple mode 6 0.598 0.413 1.706 (0.528 ~ 5.504)

Weighted 

median

6 0.414 0.138 1.847 (0.821 ~ 4.154)

(Continued)
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TABLE 2 (Continued)

Level Exposure Outcome Method Nsnps Se p OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

Weighted mode 6 0.393 0.162 1.906 (0.883 ~ 4.116)

Lipid 3-carboxy-4-methyl-5-propyl-2-furanpropanoate 

(CMPF)

Sepsis (28 day 

death)

Inverse 

variance 

weighted

10 0.199 0.000 0.468 (0.317 ~ 0.691) 0.471 0.780 0.602

MR Egger 10 0.505 0.115 0.410 (0.152 ~ 1.102)

Simple mode 10 0.388 0.042 0.400 (0.187 ~ 0.855)

Weighted 

median

10 0.265 0.000 0.397 (0.236 ~ 0.667)

Weighted mode 10 0.345 0.027 0.403 (0.205 ~ 0.793)

unknown X-11550 Sepsis (28 day 

death)

Inverse 

variance 

weighted

15 1.465 0.018 0.031 (0.002 ~ 0.545) 0.262 0.770 0.304

MR Egger 15 5.560 0.378 0.006 (0.001 ~ 337.742)

Simple mode 15 3.457 0.156 0.006 (0.001 ~ 4.943)

Weighted 

median

15 1.900 0.022 0.013 (0.001 ~ 0.540)

Weighted mode 15 3.208 0.114 0.004 (0.001 ~ 2.393)

Lipid adrenate (22:4n6) Sepsis (28 day 

death)

Inverse 

variance 

weighted

5 0.676 0.004 0.146 (0.039 ~ 0.549) 0.633 0.306 0.729

MR Egger 5 2.482 0.145 0.008 (0.001 ~ 1.001)

Simple mode 5 1.160 0.174 0.148 (0.015 ~ 1.433)

Weighted 

median

5 0.831 0.012 0.123 (0.024 ~ 0.629)

Weighted mode 5 0.949 0.087 0.118 (0.018 ~ 0.755)

unknown X-11845 Sepsis (28 day 

death)

Inverse 

variance 

weighted

11 0.196 0.027 0.648 (0.441 ~ 0.952) 0.374 0.389 0.421

MR Egger 11 0.471 0.922 0.954 (0.379 ~ 2.402)

Simple mode 11 0.454 0.111 0.452 (0.185 ~ 1.101)

(Continued)
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Level Exposure Outcome Method Nsnps Se p OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

Weighted 

median

11 0.274 0.148 0.672 (0.393 ~ 1.151)

Weighted mode 11 0.387 0.266 0.633 (0.297 ~ 1.353)

unknown X-12094 Sepsis (28 day 

death)

Inverse 

variance 

weighted

5 0.721 0.002 0.111 (0.027 ~ 0.455) 0.554 0.211 0.569

MR Egger 5 2.361 0.092 0.003 (0.001 ~ 0.320)

Simple mode 5 1.359 0.146 0.087 (0.006 ~ 1.244)

Weighted 

median

5 0.938 0.008 0.084 (0.013 ~ 0.530)

Weighted mode 5 1.169 0.076 0.062 (0.006 ~ 0.616)

Nucleotide X-12095--N1-methyl-3-pyridone-4-carboxamide Sepsis (28 day 

death)

Inverse 

variance 

weighted

15 0.543 0.008 0.237 (0.082 ~ 0.688) 0.620 0.671 0.604

MR Egger 15 1.158 0.406 0.370 (0.038 ~ 3.582)

Simple mode 15 1.499 0.263 0.174 (0.009 ~ 3.283)

Weighted 

median

15 0.803 0.100 0.267 (0.055 ~ 1.290)

Weighted mode 15 1.206 0.541 0.469 (0.044 ~ 4.991)

Lipid 1-palmitoylglycerophosphocholine Sepsis (28 day 

death)

Inverse 

variance 

weighted

20 0.937 0.045 6.572 (1.047 ~ 41.253) 0.764 0.617 0.780

MR Egger 20 4.305 0.363 55.687 

(0.012 ~ 257066.749)

Simple mode 20 2.523 0.133 52.689 (0.375 ~ 7401.713)

Weighted 

median

20 1.322 0.013 26.630 (1.994 ~ 355.648)

Weighted mode 20 2.473 0.133 48.505 (0.381 ~ 6172.563)

(Continued)

TABLE 2 (Continued)
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TABLE 2 (Continued)

Level Exposure Outcome Method Nsnps Se p OR (95% CI) Cochran’s Q 
p

MR-Egger 
intercept p

MR-
PRESSO 

global test 
p

unknown X-13069 Sepsis (28 day 

death)

Inverse 

variance 

weighted

11 0.482 0.020 3.060 (1.189 ~ 7.877) 0.667 0.349 0.668

MR Egger 11 1.497 0.127 12.416 (0.660 ~ 233.493)

Simple mode 11 1.095 0.584 1.857 (0.217 ~ 15.872)

Weighted 

median

11 0.645 0.222 2.200 (0.621 ~ 7.785)

Weighted mode 11 1.116 0.550 1.994 (0.224 ~ 17.772)

Lipid X-13183--stearamide Sepsis (28 day 

death)

Inverse 

variance 

weighted

9 0.303 0.025 1.968 (1.087 ~ 3.561) 0.602 0.520 0.628

MR Egger 9 0.639 0.142 2.880 (0.823 ~ 10.078)

Simple mode 9 0.688 0.409 1.820 (0.473 ~ 7.007)

Weighted 

median

9 0.434 0.230 1.684 (0.719 ~ 3.944)

Weighted mode 9 0.578 0.535 1.454 (0.469 ~ 4.513)

Lipid 1-arachidonoylglycerophosphoethanolamine* Sepsis (28 day 

death)

Inverse 

variance 

weighted

14 0.706 0.037 0.230 (0.058 ~ 0.918) 0.091 0.418 0.127

MR Egger 14 1.852 0.143 0.055 (0.001 ~ 2.070)

Simple mode 14 1.707 0.093 0.045 (0.002 ~ 1.285)

Weighted 

median

14 0.782 0.002 0.093 (0.020 ~ 0.430)

Weighted mode 14 0.902 0.019 0.090 (0.015 ~ 0.528)

Amino acid 3-(3-hydroxyphenyl)propionate Sepsis (28 day 

death)

Inverse 

variance 

weighted

7 0.203 0.003 1.848 (1.241 ~ 2.753) 0.411 0.871 0.424

MR Egger 7 0.762 0.549 1.632 (0.366 ~ 7.268)

Simple mode 7 0.495 0.114 2.499 (0.947 ~ 6.595)

Weighted 

median

7 0.289 0.004 2.317 (1.316 ~ 4.080)

(Continued)
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Therefore, considering dietary supplementation or adjustments in 
ALA and LA intake is crucial in mitigating the risk of sepsis and its 
associated mortality. Further investigation into the intricate 
mechanisms through which these fatty acids and their metabolites 
operate in sepsis is warranted to unveil innovative clinical treatment 
and prevention strategies.

Our study offers several advantages. Firstly, it is the first 
investigation to examine the causal association between blood 
metabolites and the occurrence and progression of sepsis using MR 
analysis. MR is a statistical technique grounded in whole-genome 
sequencing data, employed to reveal causal relationships. It effectively 
minimizes bias and yields more reliable outcomes compared to 
conventional observational studies, such as randomized controlled 
trials. The identified causal associations may provide potential blood 
metabolites for subsequent mechanistic investigations. Secondly, the 
SNPs linked to blood metabolites were obtained from the most 
extensive and comprehensive GWAS meta-analysis conducted to 
date. Thirdly, our selection criteria for IVs were more rigorous 
compared to other studies, ensuring the reliability of our research. 
Moreover, the large sample size enhances statistical power, and 
rigorous sensitivity analysis ensures the robustness of our findings. 
In spite of this, our study also has limitations. Firstly, all study 
participants are of European ancestry, so caution is necessary when 
extrapolating the results to other populations. Furthermore, there 
were 11 unknown blood metabolites in the preliminary analysis, 
necessitating further research to explore their specific associations 
with sepsis. Lastly, while MR analysis is effective in etiological 
research, the metabolites causally associated with sepsis identified in 
this study require further experimental validation and exploration of 
their specific mechanisms. Therefore, further refinement of our study 
in this area is needed.

5 Conclusion

In this MR study, we successfully identified 13 blood metabolites 
that exhibit a causal relationship with sepsis and 16 blood 
metabolites associated with a causal relationship to 28-day all-cause 
mortality in sepsis. The identification of these blood metabolites, 
whether beneficial or detrimental, holds significant promise for 
enhancing our understanding of sepsis etiology and informing the 
development of preventive and therapeutic approaches for 
managing sepsis.Le
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TABLE 3 Results of pathway enrichment analysis.

Metabolic 
pathway

Trait Database p

Caffeine metabolism sepsis KEGG 0.031885

alpha-Linolenic acid 

metabolism

sepsis KEGG 0.04129

Alpha linolenic acid 

and linoleic acid 

metabolism

sepsis SMPBD 0.0047302

sepsis 28 SMPBD 0.046867

Primary bile acid 

biosynthesis

sepsis 28 KEGG 0.0025375

KEGG, Kyoto Encyclopedia of Genes and Genomes; SMPDB, Small Molecule Pathway 
Database.
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Associations of inflammatory
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bowel disease: a Mendelian
randomization study
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Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University,
ZhengZhou, China
Objectives: Previous studies have confirmed a link between specific

inflammatory cytokines and inflammatory bowel disease (IBD), but the causal

relationship between them is not completely clear. This Mendelian

Randomization (MR) study aims to evaluate the causal relationship between 18

inflammatory cytokines and inflammatory bowel disease.

Method: Two-sample Mendelian randomization utilized genetic variances

associated with IBD from two extensive publicly available genome-wide

association studies (GWAS) (Crohn’s Disease (CD): 12,194 cases and 28,072

controls; Ulcerative Colitis (UC): 12,336 cases and 33,609 controls). The data

of inflammatory cytokines was acquired from a GWAS including 8,293 healthy

participants. We used inverse variance weighted method, MR-Egger, weighted

median, simple model and weighted model to evaluate the causal relationship

between inflammatory cytokines and IBD. Sensitivity analysis includes

heterogeneity and pleiotropy analysis to evaluate the robustness of the results.

Results: The findings indicated suggestive positive associations between

Interleukin-13 (IL-13) and macrophage migration inhibitory factor (MIF) with

CD (odds ratio, OR: 1.101, 95%CI: 1.021-1.188, p = 0.013; OR: 1.134, 95%CI:

1.024-1.255, p = 0.015). IL-13 also displayed a significant positive correlation with

UC (OR: 1.099, 95%CI: 1.018-1.186, p = 0.016). Stem cell factor (SCF) was

suggested to be associated with the development of both CD and UC (OR:

1.032, 95%CI: 0.973-1.058, p = 0.012; OR: 1.038, 95%CI: 1.005-1.072, p = 0.024).

Conclusion: This study proposes that IL-13 may be a factor correlated with the

etiology of IBD (CD and UC), while MIF just be specifically associated with CD.

Additionally, SCF appears more likely to be involved in the downstream

development of IBD (CD and UC).
KEYWORDS

inflammatory cytokines, biomarkers, inflammatory bowel disease, Mendelian
randomization, GWAS
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1 Introduction

Inflammatory bowel disease (IBD) is a nonspecific immune-

mediated, chronic recurrent gastrointestinal disease and can be

subcategorized into Crohn’s disease (CD), ulcerative colitis (UC),

and idiopathic colitis (1). The global incidence of UC is on the rise,

and it is projected that by 2030, the prevalence rate among Western

populations will reach 1%. This poses a significant burden on both

global health and the economy (2, 3). Until now, a comprehensive

understanding of the etiology and pathogenesis of UC has eluded

researchers. The factors implicated include genetic susceptibility,

compromised gut mucosal barriers, environmental influences such

as increased hygiene standards, urban living, dietary elements, and

the dysregulation between gut microbiota and mucosal immunity,

any of which may contribute to the onset of UC (4). The primary

focus of numerous studies has been on investigating the

involvement of immune responses in the pathogenesis of IBD (5,

6). With prolonged activation of the immune system within the

intestinal mucosa, it promotes the release of various biomarkers,

such as cytokines, including interleukin, chemokine and tumor

necrosis factor (7). In canine IBD, there is an initiation of a pro-

inflammatory pathway leading to Th cell differentiation, primarily

driven by microbial dysbiosis. This imbalance in the microbial

community stimulates the generation of mainly pro-inflammatory

factors, notably IL-1b. Furthermore, mutations in pattern

recognition receptors (PRRs), for example Toll-like receptor 5

(TLR5), heighten the response to flagellin. With dysbiosis

characterized by increased Enterobacteriaceae, flagellin expression

intensifies, enhancing the mucosa’s pro-inflammatory reactions.

Consequently, the inflammatory cytokines induce structural

changes in epithelial cells, notably increasing permeability due to

augmented leakage through tight junctions. This increased

permeability establishes a vicious cycle, allowing more bacteria to

breach the mucosal barrier, perpetuating the self-reinforcing cycle

of inflammation (8). In CD, there’s a higher expression of Th1 cell-

related cytokines, particularly IFN-g and IL-2, compared to both

UC and individuals without the condition. Conversely, mucosal

cells in UC exhibit a tendency to produce Th2-type cytokines like

IL-5 and IL-13 (9–12). Multiple studies have indicated an elevated

synthesis of Th17 cell-related cytokines, such as IL-17a and IL-17F,

by mucosal T cells in both CD and UC (13). Meanwhile, a

systematic review showed that six chemokines, including CCL2

(MCP-1), CCL11 (EOTAXIN), CCL26 (EOTAXIN-3), CXCL1

(GROa), CXCL8 (IL-8) and CXCL10 (IP-10), as biomarkers of

CD activity are controversial (14). Though some observational

studies have endeavored to clarify the connections between

inflammatory cytokines and IBD. The conclusions derived from
Abbreviations: MR, Mendelian randomization; IBD, Inflammatory bowel

disease; CD, Crohn’s disease; UC, Ulcerative colitis; GWAS, Genome-wide

association study; SNPs, Single Nucleotide Polymorphisms; IVs, Instrumental

variables; IVW, Inverse variance weighted; IL13, Interleukin-13; MIF,

Macrophage migration inhibitory factor; SCF, Stem cell factor.
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these investigations might be influenced by unforeseen confounding

factors or reverse causation, complicating the establishment of

definite causal correlations.

Mendelian randomization (MR) is recognized as the analytical

method that infers the causal impact of an exposure on an outcome

by utilizing genetic variations in non-experimental data (15). As

alleles are randomly assigned during meiosis, Mendelian

randomization (MR) has the capacity to minimize traditional

confounding variables and reverse causation, thereby offering

improved evidence for causal inference (16). Conducting a two-

sample MR analysis permits researchers to assess the associations

between the instrumental variables and both exposure and outcome

across two distinct population samples, thereby improving the test’s

applicability and effectiveness (17). In this study, we first extracted

valid genetic variants from the published genome-wide association

study (GWAS) summary data of 18 inflammatory cytokines in

order to investigate their associations with IBD, and then the

direction of causation was further explored by reversing the

exposures and outcomes.
2 Methods

2.1 Study design

The foundation of this study relies on a genetic association

database derived from GWAS summary datasets (https://

gwas.mrcieu.ac.uk/). Multiple single-nucleotide polymorphisms

(SNPs) were chosen to represent genetic variability and used as

instrumental variables in a two-sample MR analysis. Three primary

hypotheses were established as outlined below (Figure 1): 1. The

instrumental variables have a direct association with the exposure;

2. The instrumental variables are not influenced by any

confounding variables; 3. Genetic variants solely impact outcomes

through their effect on exposure (18). MR analysis was employed to

evaluate the bidirectional causal connections between inflammatory

cytokines and IBD, encompassing both UC and CD.
2.2 Data sources

Both datasets utilized in this MR analysis were sourced from

publicly available summarized GWAS data. GWAS data of IBD,

containing CD and UC, came from a meta-analysis study. 12194

CD cases (28072 healthy controls), and 12336 UC cases (33609

healthy controls) were available in this data set, with corresponding

GWAS IDs of ebi-a-GCST004132 and ebi-a-GCST004133,

respectively. For inflammatory cytokines, the data was from the

study providing genome variant associations with cytokines and

growth factors in 8,293 Finnish individuals. This study combined

the results from The Cardiovascular Risk in Young Finns Study

(YFS) and FINRISK surveys. The average participant ages are 37

years for YFS study and 60 years for FINRISK survey. There would

be no overlap in population selection between the exposure group

and the outcome group.
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2.3 Instrumental variable selection

Initially, we established the genome-wide significance threshold

as p < 5 × 10-8 to pinpoint highly associated SNPs linked with IBD

and inflammatory cytokines. However, due to the limited number

of identified SNPs for certain inflammatory cytokines when they

were considered as the exposure, a higher cutoff (p < 5 × 10-6) was

adopted. Next, for the purpose of evading linkage disequilibrium,

we conducted SNP clumping (kb = 10,000, r2 = 0.001). Palindromic

SNPs were omitted due to uncertainty regarding their alignment in

the same orientation for both exposure and outcome in the GWAS

of systemic inflammatory regulators. Finally, we assessed the

potency of each SNP utilizing the F-statistic, which integrates the

extent and accuracy of the genetic impact on the trait: F = R2(N - 2)/

(1 - R2), where R2 signifies the proportion of the trait’s variance

elucidated by the SNP, and N denotes the sample size of the GWAS

encompassing SNPs associated with the trait (19). The R2 values

were estimated using the formula R2 = 2×EAF×(1 - EAF)×b2.
The effect allele frequency (EAF) of the SNP is denoted as EAF,

and b represents the estimated effect of the SNP on the trait. SNPs

with an F-statistic less than 10 were excluded, as an F-statistic

greater than 10 indicated ample strength, ensuring the credibility of

the SNPs.
Frontiers in Immunology 0330
2.4 Statistical analysis

Main MR analysis was conducted using the inverse variance

weighted (IVW) method. In the MR analysis, multiplicative random

effects were applied when utilizing more than three SNPs or in cases

of heterogeneity. Other MR methodologies employed to verify

result consistency encompassed the weighted median, MR-Egger,

simple mode, and weighted mode. Heterogeneity among SNPs was

evaluated using the Cochran Q test analysis of IVW and MR-Egger.

The MR-Egger intercept test served to identify potential horizontal

pleiotropy (version 4.2.2).
3 Results

3.1 Influence of 18 inflammatory cytokines
on IBD

The outcome of the MR analysis indicated a significant positive

correlation between genetically predicted IL-13 (OR: 1.101; 95%CI:

1.021-1.188; p = 0.013) and macrophage migration inhibitory factor

(MIF) (OR: 1.134; 95%CI: 1.024-1.255; p = 0.015) with CD

(Figure 2A). IL13 (OR: 1.099; 95%CI: 1.018-1.186; p = 0.016)
B

A

FIGURE 1

Diagram for key assumptions of MR analyses. (A) IBD SNPs were used as the genetic instruments to investigate the causal effect of IBD on
inflammatory cytokines. (B) Genetic instruments in the form of inflammatory cytokine SNPs were utilized to explore the causal relationship between
inflammatory cytokines and IBD. The lines with arrows signify the association of genetic instruments (SNPs) with the exposure, affecting the
outcome solely through the exposure. Meanwhile, dashed lines represent the independence of the genetic instruments (SNPs) from any
confounding variables concerning the outcomes. IBD stands for inflammatory bowel disease.
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exhibited a notable positive correlation with UC (Figure 2B).

Figure 3 displays the scatter plots and funnel plots depicting the

Mendelian randomization analyses for IL13 and MIF in IBD. The

results from sensitivity analysis indicated that the MR-Egger

regression analysis indicated no presence of horizontal pleiotropy,

while the Cochran Q test demonstrated the absence of heterogeneity

among IVs (Supplementary Table S1). Details of the SNPs are also

presented in Supplementary Table S1. While the forest plots and

leave-one-out sensitivity analyses of all suggestively significant

regulators are presented in Supplementary Figure S1.
3.2 Influence of IBD on 18
inflammatory cytokines

Figure 4 presents the outcomes from the reverse MR analysis

regarding the causality between IBD and inflammatory cytokines.

The results obtained from the IVW method suggested a correlation

between an increased level of Stem cell factor (SCF) and CD (OR:

1.032; 95% CI: 1.007-1.058; p = 0.012). Meanwhile, UC was also

suggestively correlated with an elevated level of SCF (OR: 1.060;

95% CI: 1.006-1.118; p = 0.028). The scatter plots and funnel plots

of SCF are displayed in Figure 5. The results from sensitivity

analysis indicated that the MR-Egger regression analysis indicated

no presence of horizontal pleiotropy, while the Cochran Q test

demonstrated the absence of heterogeneity among IVs

(Supplementary Table S1). Supplementary Figure S2 includes

forest plots and leave-one-out sensitivity analyses for all

regulators that showed suggestive significance.
4 Discussion

A recent Mendelian randomized study delved into the causal

connections between five interleukins, six chemokines, and IBD.

The findings indicated significant positive correlations of IL-16, IL-
Frontiers in Immunology 0431
18, and CXCL10 with IBD, contrasting with IL-12p70 and CCL23,

which showed significant negative correlations. Additionally, IL-16

and IL-18 suggested an increased risk of UC, while CXCL10 hinted

at an increased risk of CD (20).

We expanded the number of inflammatory cytokines (which

includes ILs, chemokines, growth factors and others) and explored

the causal relationship between more inflammatory factors and

IBD. To understand the causal relationship between IBD and

inflammatory cytokines, we used publicly aggregated GWAS data

for two-way MR analysis. In the forward MR analysis, elevated

levels of IL-13 and MIF were associated with increased risk of CD,

whereas IL-13 was also linked to an increased risk of UC. In our

reverse MR analysis, CD and UC were suggestively associated with

elevated levels of SCF.

Differentiating between CD and UC predominantly depends on

the localization of inflammatory lesions and the specific cytokine

involvement in their pathogenesis. CD manifests as a segmental,

transmural disorder that can impact any segment of the

gastrointestinal tract, while UC is identified by superficial,

continuous mucosal ulcers restricted to the colon. Dysregulation

between pro- and anti-inflammatory cytokines is widely

acknowledged in both CD and UC (21). In CD, an association

exists with a T helper type 1 (Th1) and T helper type 17 (Th17)

immune response (22), leading to the secretion of diverse pro-

inflammatory cytokines, such as IFNg/IL12 and IL23/IL17, which

encompass IL18, IL2, IL1, IL21, and IL22. Conversely, UC

demonstrates a distinct Th17 and an altered Th2 cytokine profile,

characterized by IL13 and IL5. Moreover, both Th1 and Th2 cells,

alongside macrophages in both types of IBD, contribute to the

production of IL6 and tumor necrosis alpha (TNFa) (23). Genetic
polymorphisms in cytokine and cytokine receptor genes may

significantly impact the progression of the inflammatory cascade,

potentially elevating the susceptibility to developing IBD.

IL-13 is a typical Th2 cytokine produced from CD-1-reactive

NKT cells, and its secretion mediates epithelial barrier dysfunction.

An increase of IL-13 in lymphocytes of the lamina propria in the
BA

FIGURE 2

(A, B) The presented figures represent Mendelian randomization estimates illustrating the causal impacts of CD and UC on inflammatory cytokines.
The estimates are displayed as OR and 95% CIs derived from bidirectional Mendelian randomization analyses. OR, odds ratio. 95% CI, 95%
confidence interval.
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BA

FIGURE 4

(A, B) represent mendelian randomized estimates of the causal effect of the ILs and chemokines on CD and UC. Estimates are presented as odds
ratios (ORs) and 95% CIs from bidirectional mendelian randomization analyses.
B

C D

A

FIGURE 3

Visual aids like scatter plots and funnel plots were employed to illustrate the causal effects of CD and UC on inflammatory cytokines. (A, C) The
funnel plots depict the inverse variance weighted MR estimates of single-nucleotide polymorphisms associated with CD and UC against cytokines
versus 1/standard error (1/SEIV). (B, D) Black dots display individual inverse variance (IV) associations with the risk of CD and UC versus individual IV
associations with cytokines. The 95%CI of odd ratio for each IV is shown by vertical and horizontal lines. The slope of the lines represents the
estimated causal effect of the MR methods.
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affected area of UC represented a significant role of the Th2

immune response in UC pathogenesis. Furthermore, IL-13 was

responsible for impairment of mucosal permeability that resulted in

epithelial barrier damage, and There were alterations observed in

the tight junctions of intestinal epithelial cells. In patients with UC,

IL-13 showed a significant increase within apoptotic cells and the
Frontiers in Immunology 0633
corresponding apoptotic area (The Th2 colitis model, Oxazolone

colitis, resembling ulcerative colitis, is mediated through IL-13-

producing NK-T cells). In the lamina propria’s mononuclear cell

culture, IL-13 heightened ion flux, leading to alterations in cellular

tight junctions. IL-13 exerted an influence on mucosal repair,

artificially reducing the rate of mucosal repair by 30% upon its
B

C D

E F

A

FIGURE 5

Visual aids like scatter plots and funnel plots were employed to illustrate the causal effects of inflammatory cytokines on CD and UC. (A, C, E) The
funnel plots illustrate the inverse variance weighted MR estimates of each cytokine single-nucleotide polymorphism with CD and UC against 1/
standard error (1/SEIV). (B, D, F) Black dots display individual inverse variance (IV) associations with the risk of cytokines versus individual IV
associations with CD and UC. Vertical and horizontal lines depict the 95% confidence intervals (CI) of the odds ratio for each IV. The slope of these
lines indicates the estimated causal effect determined by the MR methods.
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addition to the mucosal lesions (24). Two papers published in 2004

and 2005 reported that ex vivo stimulated lamina propria T cells,

obtained from resected specimens of UC patients, exhibited

heightened protein levels of IL-13 compared to individuals with

CD and those who were healthy (24, 25). The inflammatory

infiltrate of TNF and IL-13 triggers epithelial-to-mesenchymal

transition and upregulation of matrix metalloproteinases,

resulting in tissue remodeling and the formation of fistulas (26–

28). In a Polish population, the presence of IL13 -1112 CT

(rs1800925) genotypes indicated an increased likelihood of both

IBD and UC occurrence (29).

Initially identified as a factor released by T cells, macrophage

migration inhibitory factor (MIF) inhibits the random migration of

macrophages (30). Later investigations disclosed that MIF acts as a

pro-inflammatory factor., which has important roles in various

chronic inflammatory diseases and immune disorders, including

UC (31). Some studies showed the capacity of MIF to induce

increased functional capacity of DC, and to produce IL-1b and

IL-8 from monocytes and DC, indicate a role of MIF in the

induction and/or perpetuation of the inflammatory environment

in UC and CD (32).

Stem cell factor, also recognized as SCF, KIT-ligand, or steel

factor, is a pleiotropic cytokine that governs regulatory impacts on

inflammation, tissue remodeling, and fibrosis by binding to its

receptor c-KIT (33, 34). SCF is extensively recognized for its role in

governing the survival, proliferation, migration, and differentiation

of hematopoietic progenitors, melanocytes, and germ cells. Recent

investigations have indicated the expression of SCF in dermal and

intestinal epithelial cells (35–37). Reports have indicated elevated

SCF expression in the inflamed mucosa of individuals with IBD,

including SCF248 (a 248 amino acid cleavable form) (38, 39).

Within the cascade of inflammatory events leading to the

development of IBD, the involvement of inflammatory cytokines

is intricate and potentially interactive. However, MR analysis can

isolate their individual impacts and assess the relationship between

IBD and these cytokines solely from a genetic standpoint.

Nevertheless, our study faces limitations. Primarily, our findings

stem from statistical analysis; further validation through extensive

basic and clinical research is imperative. Additionally, while

restricting the study to individuals of European descent

diminishes population structure bias, it could constrain the

generalizability of our findings to other populations.
5 Conclusion

The publicly available data information from the GWAS

database was sourced and analyzed in this study to evaluate the

causal relationship between IBD and ILs, and IBD and chemokines,

by bidirectional MR analysis. Our results have shown that levels of

IL-13 increase the risk of CD and UC, while MIF increase the risk of

CD. CD and UC were suggestively correlated with an elevated level

of SCF. The underlying mechanism behind these outcomes remains

unclear, necessitating further investigation to substantiate

our findings.
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Li-Ping He3, Xiao-Ling Zheng1* and Xiaowen Li1

1Gastrointestinal Endoscopy Center, Fujian Shengli Clinical Medical College, Fujian Medical University,
Fuzhou, Fujian, China, 2Department of Gynecology, Fujian Maternity and Child Health Hospital,
Fuzhou, Fujian, China, 3Gastrointestinal Endoscopy Center, Fujian Provincial Hospital South Branch,
Fuzhou, Fujian, China
Background: Colorectal cancer (CRC) is considered the most prevalent

synchronous malignancy in patients with gastric cancer. This large

retrospective study aims to clarify correlations between gastric histopathology

stages and risks of specific colorectal neoplasms, to optimize screening and

reduce preventable CRC.

Methods: Clinical data of 36,708 patients undergoing gastroscopy and

colonoscopy from 2005-2022 were retrospectively analyzed. Correlations

between gastric and colorectal histopathology were assessed by multivariate

analysis. Outcomes of interest included non-adenomatous polyps (NAP),

conventional adenomas (CAs), serrated polyps (SPs), and CRC. Statistical

analysis used R version 4.0.4.

Results: Older age (≥50 years) and Helicobacter pylori infection (HPI) were

associated with increased risks of conventional adenomas (CAs), serrated polyps

(SPs), non-adenomatous polyps (NAP), and colorectal cancer (CRC). Moderate to

severe intestinal metaplasia specifically increased risks of NAP and CAs by 1.17-fold

(95% CI 1.05-1.3) and 1.19-fold (95% CI 1.09-1.31), respectively. For CRC risk, low-

grade intraepithelial neoplasia increased risk by 1.41-fold (95% CI 1.08-1.84), while

high-grade intraepithelial neoplasia (OR 3.76, 95% CI 2.25-6.29) and gastric cancer

(OR 4.81, 95% CI 3.25-7.09) showed strong associations. More advanced gastric

pathology was correlated with progressively higher risks of CRC.

Conclusion: Precancerous gastric conditions are associated with increased

colorectal neoplasm risk. Our findings can inform screening guidelines to

target high-risk subgroups, advancing colorectal cancer prevention and

reducing disease burden.
KEYWORDS

helicobacter pylori, intestinal metaplasia, atrophic gastritis, colorectal adenoma,
serrated lesions
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Introduction

Colorectal cancer (CRC) stands as the third most diagnosed

cancer globally and the second leading cause of cancer mortality (1).

The incidence and mortality of CRC have been rising rapidly in

China, with over 400,000 new cases and 195,600 deaths reported in

2016 (2), making it the second most common cancer diagnosis and

fourth leading cause of cancer mortality nationwide. The surge in

CRC incidence and mortality in China, underscores the urgent need

for effective screening and preventive measures.

While population endoscopic screening is crucial for early

detection and removal of premalignant polyps (3), the rates of

colonoscopy screening in China lag behind those of upper

endoscopy. This discrepancy becomes especially pertinent when

clinicians, prompted by findings in gastrointestinal (GI) screening,

must make decisions about the necessity of a follow-up colonoscopy,

known for its superior detection of colorectal neoplasms.

Recent studies, primarily conducted in Western populations,

suggest that certain upper GI pathologies identified during

gastroscopy may indicate a higher concurrent or subsequent risk

for colorectal neoplasms (4–6). Notably, gastric ulcers, Helicobacter

pylori (H. pylori) infection, and chronic atrophic gastritis have been

associated with an increased prevalence of colorectal adenomas and

cancer, possibly due to downstream effects on the GI environment

(7–9).

The connection between upper gastrointestinal diseases, such as

gastric polyps (10, 11), H. pylori infection (12), and reflux

esophagitis (13), and elevated colon neoplasm risk has been

established in prior evidence. Although the exact mechanisms

under ly ing gastrointes t ina l diseases remain unclear ,

lipopolysaccharide (LPS) may play a key role. As a component of

Gram-negative bacteria, LPS promotes gastrointestinal diseases

through multiple pathways. In the stomach, it activates TGF-beta

and Wnt signaling, inducing epithelial-mesenchymal transition and

immunotherapy resistance, thereby facilitating gastric cancer

progression (14). In the intestines, LPS incites inflammation and

tumorigenesis by modulating epithelial signaling cascades (15).

Through these diverse mechanisms of stimulating cancer-

associated signals in both the gastric and intestinal epithelia, LPS

serves as an intermediary factor linking chronic inflammation to

carcinoma in gastrointestinal diseases. Besides, this association is

potentially linked to the impairment of the gastric acid barrier (16)

and the use of proton pump inhibitors (17, 18). However,

uncertainties persist regarding whether gastric histopathology,

reflecting the pathological state and acid secretion, is directly

related to colon neoplasms (19, 20).

A significant Shanghai study involving 5,986 patients shed light

on the potential correlation between certain gastric histopathologies

—such as atrophic gastritis, intestinal metaplasia, and gastric polyps

—and the predisposition to advanced colorectal polyps, as opposed

to non-advanced polyps or colorectal cancer (20). This observation

underscores the potential value of gastric histopathology in

predicting high-risk colon neoplasms specifically within the

Chinese population.

However, to validate and generalize these findings, larger

population studies across diverse regions are imperative. Such
Frontiers in Oncology 0237
studies would confirm the links between gastric pathology, acid

secretion, and susceptibility to colon neoplasms, thereby refining

screening practices. Consequently, large-scale analyses leveraging

national endoscopy data are essential to elucidate region-specific

gastric-colorectal connections in China and optimize screening

protocols. This comprehensive retrospective study aims to clarify

correlations between gastric histopathology stages and risks of

specific colorectal neoplasms, to optimize screening and reduce

preventable CRC.
Methods

Study design and data selection

This retrospective cross-sectional study was approved by the

Academic Ethics Committee of Fujian Provincial Hospital (K2022-

01-019) prior to conducting research. Data were retrieved from a

scientific research big data platform at Fujian Provincial Hospital,

comprising patient demographics, pathological reports, and

endoscopic reports (including H. pylori status and specimen

requisitions). Patients who underwent endoscopy at the Digestive

Endoscopy Center from Jan 01, 2005, to Jan 01, 2022 were included.

Given the retrospective nature of the study, informed consent was

not required.

The study enrolled patients who underwent simultaneous

gastroscopy and colonoscopy with tissue biopsy within 2 months

at Fujian Provincial Hospital campuses. Exclusion criteria were as

follows: history of gastrectomy or colorectomy, history of colorectal

polypectomy, inflammatory bowel disease, hereditary polyposis

syndromes like Peutz–Jeghers or familial adenomatous polyposis,

and incomplete cecal intubation. Data from the index visit were

used, excluding repeat cases. Inclusion and exclusion criteria are

detailed in the provided flowchart (Figure 1).
Diagnosis of gastric and colorectal lesions

All gastric histopathological diagnoses were based on the

guidelines from the updated Sydney System and Japanese Gastric

Cancer Association classification (21). Pathological samples were

collected into 10% buffered formalin, embedded in paraffin,

sectioned at 2mm, and were sent to the Pathology Department for

subsequent staining with hematoxylin and eosin (H&E) and

evaluation. Gastric precursor lesions were categorized as atrophic

gastritis (AG), intestinal metaplasia (IM - mild, moderate, severe),

and dysplasia [low-grade intraepithelial neoplasia (LGIN), high-grade

intraepithelial neoplasia (HGIN), gastric cancer (GC)] based on the

pathology reports. H. pylori infection (HPI) status was assessed via

rapid urease test of gastric antrum biopsies.

Colorectal lesions were classified into 5 subgroups per

pathology reports which based on WHO classification of tumors

of digestive system (22): (1) colorectal cancer (CRC); (2) serrated

polyps (SPs) including traditional serrated adenomas and sessile

serrated lesions; (3) conventional adenomas (CAs) with tubular/

villous components, regardless of dysplasia grade; (4) non-
frontiersin.org
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adenomatous polyps (NAP) like hyperplastic or inflammatory

polyps; (5) no polyp (NP) control group.
Statistical analysis

R language (version 4.0.4) software was used for data analysis and

visualization. The histogram distribution or Q-Q plot was utilized to

assess the normality of the variables. The mean ± standard deviation

(SD) was used to express normally distributed continuous data, while

skewed continuous variables were characterized using the median and

interquartile range (IQR). The categorical variables were displayed as

frequencies expressed as percentages. An analysis was conducted to

compare continuous variables between groups using independent

samples. The choice between Student’s t-test or Mann-Whitney U-

test was based on the normality of the distribution. Categorical data

were compared using either the chi-square test or Fisher’s exact test,

depending on the appropriateness (Supplementary Figures 1–3).

Univariate and multivariate logistic regression (adjusted for gender,

age, H. pylori, and atrophy) was used to determine the relationship

between gastric precursor lesions and colorectal conditions, including

colorectal polyps and CRC. The results were reported as an adjusted

odds ratio (OR) with a corresponding 95% confidence interval (CI).

For all analyses, a P-value < 0.05 was statistically significant.
Results

Baseline characteristics of various
colorectal conditions.

A total of 36,708 patients were included in this study and

divided into 5 groups based on colonoscopy and biopsy findings:

CRC (n=1,044); CAs (n=20,263); SPs (n=904); NAP (n=7,375); and
Frontiers in Oncology 0338
NP (n=7,122). The proportion of males was significantly higher in

the CRC (60.9%, 636/1,044), CAs (62.4%, 12,647/20,263), SPs

(58.2%, 526/904), and NAP (61.2%, 4,512/7,375) groups

compared to the NP control group (55%) (P < 0.001).

The mean age of patients with CRC (63.2 ± 11.6 years) was

significantly higher than those with CAs (56.4 ± 10.5 years), SPs

(56.1 ± 11.7 years), NAP (52.7 ± 10.9 years) and NP (53.4 ± 11.7

years) (P < 0.001).

The prevalence of gastric mucosal abnormalities was higher in the

CRC, CAs, SPs and NAP groups compared to the NP control group.

Specifically, the prevalence of gastric intestinal metaplasia (IM) was

41.3% in CRC (20.3% mild, 21% moderate/severe), 41.8% in CAs

(21.6%mild, 20.2%moderate/severe), 38.5% in SPs (21.1%mild, 17.4%

moderate/severe), 39.3% in NAP (21.2%mild, 18.1%moderate/severe),

and 36.5% in NP (19.8% mild, 16.7% moderate/severe) (P<0.001). The

prevalence of gastric dysplasia and cancer was 14.5% in CRC, 7.9% in

CAs, 9% in SPs, 6.3% in NAP, and 6.1% in NP (P<0.001), with higher

rates of low- and high-grade dysplasia and gastric cancer in the CRC

group compared to the other groups (Table 1).
Association between gastric conditions
with NAP

Multivariate analysis revealed that older age (≥50 years)

(OR= 1.29, 95% CI = 1.21–1.38) and HPI (OR = 1.09, 95%

CI = 1.02–1.17) were independent risk factors for NAP. IM was

also an independent risk factor for NAP, with moderate to severe

IM having a higher odds ratio (OR = 1.17, 95% CI = 1.05–1.3)

compared to mild IM (OR = 1.16, 95% CI = 1.05–1.29). In contrast,

male sex (P = 0.334) and atrophic gastritis (AG) (P = 0.227) were

not significantly associated with NAP. Additionally, there was no

significant association between LGIN (P = 0.476) or HGIN

(P = 0.419) and NAP (Figure 2).
FIGURE 1

Flow chart of the study design. PJS, Peutz–Jeghers syndrome; FAP, familial adenomatous polyposis; NAP, non-adenomatous polyps; CAs,
conventional adenomas; SPs, serrated polyps; CRC, colorectal cancer; NP, no polyps.
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Association between gastric conditions
with CAs

Multivariate analysis revealed that male sex (OR= 1.7,

95% CI = 1.6–1.8), older age (≥50 years) (OR= 1.4, 95%

CI =1.33–1.48), and HPI (OR = 1.11, 95% CI = 1.05–1.17) were

independent risk factors for CAs. IM was also a risk factor, with

moderate to severe IM associated with higher risk (OR = 1.19, 95%

CI = 1.09–1.31) compared to mild IM (OR = 1.14, 95% CI = 1.05–

1.24). There was no significant association between AG and CAs

(P = 0.473). For gastric neoplasms, HGIN (P = 0.33) and GC

(P = 0.258) were not significantly associated with CAs (Figure 3).
Association between gastric conditions
with SPs

Multivariate analysis revealed that male sex (OR= 1.46,

95% CI = 1.25–1.71), HPI (OR = 1.41, 95% CI = 1.22–1.63), and

older age (≥50 years) (OR = 1.16, 95% CI = 1–1.33) were

independent risk factors for SPs. There was no significant

association between AG and SPs (P = 0.477). Additionally, IM

severity was not significantly associated with SPs, including mild IM

(P = 0.537) and moderate-severe IM (P = 0.731). For gastric
TABLE 1 Baseline characteristics of various colorectal conditions.

Variables Total
(n = 36708)

no polyps
(NP)
(n = 7122)

non adenoma-
tous polyp (NAP)
(n = 7375)

conventional
adenomas
(CAs)
(n = 20263)

serrated
polyps (SPs)
(n = 904)

colorectal
cancer (CRC)
(n = 1044)

p

Gender,
n (%)

< 0.001

Male 22236 (60.6) 3915 (55) 4512 (61.2) 12647 (62.4) 526 (58.2) 636 (60.9)

Female 14472 (39.4) 3207 (45) 2863 (38.8) 7616 (37.6) 378 (41.8) 408 (39.1)

Age, (Mean
± SD)

55.3 ± 11.1 53.4 ± 11.7 52.7 ± 10.9 56.4 ± 10.5 56.1 ± 11.7 63.2 ± 11.6 < 0.001

H. pylori (+),
n (%)

21142 (57.6) 3923 (55.1) 4232 (57.4) 11766 (58.1) 573 (63.4) 648 (62.1) < 0.001

Atrophic
gastritis, n (%)

22040 (60.0) 4081 (57.3) 4348 (59) 12446 (61.4) 533 (59) 632 (60.5) < 0.001

IM, n (%) < 0.001

Mild 7755 (21.1) 1411 (19.8) 1564 (21.2) 4377 (21.6) 191 (21.1) 212 (20.3)

Mod-Severe 7000 (19.1) 1186 (16.7) 1338 (18.1) 4100 (20.2) 157 (17.4) 219 (21)

Neoplasm,
n (%)

< 0.001

LGIN 2153 (5.9) 337 (4.7) 399 (5.4) 1274 (6.3) 66 (7.3) 77 (7.4)

HGIN 254 (0.7) 36 (0.5) 33 (0.4) 154 (0.8) 5 (0.6) 26 (2.5)

GC 320 (0.9) 63 (0.9) 37 (0.5) 162 (0.8) 10 (1.1) 48 (4.6)
fro
Data are presented as number (%) or mean ± SD. A chi-square test was used for categorical variables, and a t-test was used for continuous variables. IM, intestinal metaplasia; Mod-Severe,
Moderate-severe; LGIN, low-grade intraepithelial neoplasia; HGIN, high-grade intraepithelial neoplasia; GC, gastric cancer.
FIGURE 2

The result of multivariate logistic regression for the NAP group. IM,
intestinal metaplasia; LGIN, low-grade intraepithelial neoplasia;
HGIN, high-grade intraepithelial neoplasia; GC, gastric cancer.
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neoplasms, only LGIN showed an increased risk for SPs (OR = 1.52,

95% CI = 1.14–2.02), while HGIN (P = 0.959) and GC (P = 0.543)

were not significantly associated with SPs (Figure 4).
Association between gastric conditions
with CRC

Multivariate analysis revealed that male sex (OR= 4.03,

95% CI = 3.31–4.9), older age (≥50 years) (OR= 1.32, 95%

CI = 1.15–1.51), and HPI (OR = 1.34, 95% CI = 1.17–1.53) were

independent risk factors for CRC. Gastric neoplasms were also

independent risk factors for CRC, including LGIN (OR = 1.41, 95%

CI = 1.08–1.84), HGIN (OR = 3.76, 95% CI = 2.25–6.29), and GC

(OR = 4.81, 95% CI = 3.25–7.09), with higher risks associated with

more advanced neoplasms. There was no significant association

between AG and CRC (P = 0.548) or IM severity and CRC,

including mild IM (P = 0.73) and moderate-severe IM

(P = 0.408) (Figure 5).
Discussion

This comprehensive retrospective study, involving 36,708

patients who underwent gastroscopy and colonoscopy between

2005 and 2022, presents compelling evidence that precancerous

gastric conditions may increase the risk of colorectal neoplasms.

Multivariate analysis was employed to assess correlations between

various gastric histopathological findings and different subtypes of

colorectal neoplasms, including non-adenomatous polyps,

conventional adenomas, serrated polyps, and colorectal cancer.
Frontiers in Oncology 0540
Our study’s results demonstrate that advanced age (≥50 years)

and Helicobacter pylori infection (HPI) significantly elevate the risk

across all assessed colorectal neoplasm subtypes, including

conventional adenomas, serrated polyps, non-adenomatous

polyps, and colorectal cancer (CRC). These findings align with

prior evidence suggesting that chronic inflammation induced by H.
FIGURE 3

The result of multivariate logistic regression for the CAs group. IM,
intestinal metaplasia; LGIN, low-grade intraepithelial neoplasia;
HGIN, high-grade intraepithelial neoplasia; GC, gastric cancer.
FIGURE 4

The result of multivariate logistic regression for the SPs group. IM,
intestinal metaplasia; LGIN, low-grade intraepithelial neoplasia;
HGIN, high-grade intraepithelial neoplasia; GC, gastric cancer.
FIGURE 5

The result of multivariate logistic regression for the CRC group. IM,
intestinal metaplasia; LGIN, low-grade intraepithelial neoplasia;
HGIN, high-grade intraepithelial neoplasia; GC, gastric cancer.
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pylori predisposes individuals to colorectal tumorigenesis. It is

noteworthy that these risk factors share significant potential

connections and similarities (23–25). HPI triggers chronic

gastritis, which can progress to mucosal atrophy, intestinal

metaplasia, and reduced gastric acid production (16), further

heightening the risk of intestinal diseases.

Additionally, our study revealed an independent association

between moderate to severe intestinal metaplasia (IM) and non-

adenomatous polyps (NAP), implying that IM may serve as a risk

factor for NAP. Unlike previous research that considered atrophy

and IM together (20), our investigation differentiated between

them. We found that atrophy alone was not linked to an

increased risk of NAP, but moderate to severe IM was

significantly associated with a higher risk of NAP development.

This suggests that the severity of IM, rather than the mere presence

of both atrophy and IM, may be a crucial factor affecting the

association with NAP.

Similar results were observed for conventional adenomas (CAs).

Gastric atrophy did not elevate the risk of CAs, whereas the

presence of IM emerged as an independent risk factor for CAs

development. Specifically, we found no significant association

between gastric atrophy and the occurrence of CAs. In contrast,

the presence of IM was linked to an increased risk of CAs.

However, our study did not establish a clear association between

low-grade or high-grade gastric epithelial dysplasia (LGIN and

HGIN) and NAP or CAs. In our study, only LGIN was identified

as a significant risk factor for serrated polyps (SPs) (OR = 1.52, 95%

CI = 1.14-2.02). No clear associations were observed between HGIN

(P = 0.959) or gastric cancer (GC) (P = 0.543) and SPs. The

heightened risk of SPs associated with LGIN but not advanced

neoplasia suggests that early gastric lesions may play a particularly

influential role in promoting serrated pathway colon

carcinogenesis. These differential effects of gastric precancerous

stages imply that specific interactions, rather than overall atrophic

changes , may exert an influence on this subtype of

colorectal neoplasms.

It is noteworthy that LGIN increases the risk of CRC, with an

odds ratio (OR) of 1.41 (95% CI 1.08-1.84). HGIN exhibits an even

stronger association with the risk of CRC, with an OR of 3.76 (95%

CI 2.25-6.29). Gastric cancer itself demonstrates the highest

correlation with CRC, with an OR of 4.81 (95% CI 3.25-7.09).

This risk stratification based on the degree of gastric pathology

aligns with the Correa cascade model of gastric carcinogenesis,

supporting an underlying field effect that influences the risk of both

gastric and colorectal neoplasia.

Previous research has documented bidirectional synchronous

or metachronous occurrences of colorectal and gastric cancers, with

0.7-1.3% of gastric cancer patients subsequently developing

colorectal cancer (26, 27), and approximately 5% of colorectal

cancer patients experiencing gastric cancer development (28, 29).

Prevalence studies have also highlighted an increased incidence of

colorectal neoplasms among gastric cancer patients when compared

to control groups. For instance, Lee et al. (7) reported a prevalence

of colorectal neoplasms in 35.8% of gastric cancer patients,

contrasting with 17.9% in the control group. Similarly, Park et al.

(30) found a higher prevalence of colorectal adenoma (39.6% vs.
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28.6%) and cancer (3.5% vs. 1.3%) in gastric cancer patients versus

the control group. Collectively, these findings consistently

demonstrate an epidemiological link between gastric and

colorectal neoplasms, underscoring the potential for shared

carcinogenic processes.

Several studies have identified specific pathways contributing to the

development and metastasis of both gastric and colorectal cancers,

providing deeper insights into the connections between gastrointestinal

tumors (31, 32). The association between premalignant gastric lesions

and colorectal neoplasms also suggests the necessity of updating

screening recommendations for high-risk patient subgroups.

Additionally, while the significant Shanghai study involving

5,986 patients offered valuable insights into potential correlations

between specific gastric histopathologies—such as atrophic gastritis,

intestinal metaplasia, and gastric polyps—and the predisposition to

advanced colorectal polyps (20), it did not differentiate between

non-advanced polyps and colorectal cancer. Our research in Fujian,

boasting a larger sample size, not only corroborates and expands

upon the findings from the Shanghai study but also delves deeper

into nuanced associations between gastric pathology and different

stages of colorectal neoplasms.

The divergence in our findings may be attributed to diverse

population characteristics in Fujian, shedding light on region-

specific variations in the gastric-colorectal connection. These

disparities underscore the importance of conducting large-scale

studies in specific regions to tailor screening guidelines effectively.

Our study provides nuanced insights that can significantly influence

screening strategies, enabling the targeted identification and

prevention of colorectal neoplasms in high-risk subgroups within

the Fujian population.

It is important to acknowledge some limitations in our study. The

cross-sectional design of our research prevented us from assessing

temporality and establishing causation. Prospective cohort studies

that track outcomes over time are needed to confirm predictive

relationships between gastric abnormalities and subsequent colorectal

neoplasm development. Furthermore, our analysis only adjusted for a

limited set of confounding factors including gender, age, H. pylori,

and atrophy, which may have introduced residual biases. Expanding

adjustments for socioeconomic status, lifestyle factors, and

comorbidities could improve isolation of the association with

gastric lesions. Additionally, expanding the diversity of our study

sample could enhance the generalizability of our results across

different populations. However, despite these limitations, our

findings strongly support the existence of associations between

premalignant stomach lesions and the development of colorectal

tumors, suggesting potential utility of this association in guiding

screening approaches. Our results open new directions for future

research with the potential to significantly impact the prevention and

burden of CRC.

In conclusion, this study shows that certain precancerous

gastric conditions are associated with a higher risk of colorectal

neoplasms. Our results can be used to optimize secondary

prevention initiatives targeting high-risk subgroups for enhanced

screening. Further research that focuses on the connections between

gastric and colorectal diseases may significantly contribute to

curbing the global burden of preventable CRC.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1320020
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pan et al. 10.3389/fonc.2024.1320020
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

HP: Writing – original draft, Writing – review & editing. YZ:

Writing – original draft, Writing – review & editing. CF: Data

curation, Writing – original draft. YC: Data curation, Writing –

original draft. LH: Writing – original draft. XZ: Project

administration, Writing – review & editing. XL: Visualization,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research study was supported by grants from Startup Fund for

Scientific Research, Fujian Medical University, China

(2019QH1181), and Science and Technology of Fujian Provincial

Health Commission (2020QN01010151).
Acknowledgments

The authors are grateful for the support provided by Chao

Wang and Lanzai Liu.
Frontiers in Oncology 0742
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1320020/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

The age distribution histogram in the database.

SUPPLEMENTARY FIGURE 2

The distribution of age (box plot) across different tumor types. Median value

(white text) was present in the plot. no polyps (NP) (n = 7122), non
adenomatous polyp (NAP) (n = 7375), conventional adenomas (CAs) (n =

20263), serrated polyps (SPs) (n = 904, colorectal cancer (CRC) (n = 1044).
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Bar chart of categorical variables in the database.
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Exploring inflammatory bowel
disease therapy targets through
druggability genes: a Mendelian
randomization study
Shuangjing Zhu, Yunzhi Lin and Zhen Ding*

Department of Hepatobiliary Surgery, Chaohu Hospital of Anhui Medical University, Hefei, China
Background: Inflammatory bowel disease is an incurable group of recurrent

inflammatory diseases of the intestine. Mendelian randomization has been

utilized in the development of drugs for disease treatment, including the

therapeutic targets for IBD that are identified through drug-targeted MR.

Methods: Two-sample MR was employed to explore the cause-and-effect

relationship between multiple genes and IBD and its subtypes ulcerative colitis

and Crohn’s disease, and replication MR was utilized to validate this causality.

Summary data-based Mendelian randomization analysis was performed to

enhance the robustness of the outcomes, while Bayesian co-localization

provided strong evidential support. Finally, the value of potential therapeutic

target applications was determined by using the estimation of druggability.

Result:With our investigation, we identified target genes associated with the risk of

IBD and its subtypes UC and CD. These include the genes GPBAR1, IL1RL1, PRKCB,

and PNMT, which are associated with IBD risk, IL1RL1, with a protective effect

against CD risk, and GPX1, GPBAR1, and PNMT, which are involved in UC risk.

Conclusion: In a word, this study identified several potential therapeutic targets

associated with the risk of IBD and its subtypes, offering new insights into the

development of therapeutic agents for IBD.
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1 Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the intestine

represented by Crohn’s disease (CD) and ulcerative colitis (UC), which seriously affect the

quality of life and health of millions of people worldwide (1). As newly industrialized

countries experience economic growth and lifestyle changes, factors such as diet,
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environmental exposures, and genetic inheritance may be closely

linked to the risk of developing IBD (2). By 2025, it is predicted that

newly industrialized countries may have a higher number of people

with IBD compared to the Western world. This trend has elevated

IBD to an important global public health issue (3).

IBD symptoms encompass intestinal manifestations such as

diarrhea, blood in the stool, and abdominal pain, greatly impacting

patients’ daily life and overall quality of life (4). Furthermore, IBD

can lead to complications including malnutrition, cardiovascular

diseases, liver and biliary tract disorders, and other intestinal

manifestations, posing significant risks to human health (5).

Currently, IBD is mostly treated through drug regimens, with

commonly used therapeutic agents including anti-inflammatory

drugs, immunosuppressants, and biologics (6). Yet, these drugs

have possible side effects and are not consistently effective in a

subset of patients (7). Firstly, for instance, the anti-inflammatory

drug 5-aminosalicylic acid is a preferred treatment for mild-to-

moderate UC disease, but an adverse gastrointestinal reaction such

as nausea and vomiting can occur with them (7). Second, the

biologic agent infliximab (IFLX) treats IBD by hastening the

death of pro-inflammatory cells, while prolonged use of IFLX

may lead to the possibility of infection, allergy, and even

malignancy (8). Third, the immunomodulator azathioprine

increases the potential for hepatotoxicity and pancreatitis (9).

Hence, the quest for new therapeutic strategies and targets is

becoming an ongoing important direction in IBD research.

Genome-wide association studies (GWAS) uncover disease-

associated single nucleotide polymorphisms (SNPs) that enable

scientists to pinpoint associations between genetic variants and

specific diseases, which can be used to aid in the identification and

validation of drug targets (10). Nevertheless, disease-causing genes

cannot be fully characterized by GWAS analysis alone. Mendelian
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randomization (MR) is a genetic statistical method for assessing the

causality among exposures and outcomes, which minimizes the

interference of confounders and reverse cause and effect since

genetic variants follow the principle of Mendelian random

assignment at the time of conception and are independent of

social background and lifestyle (11). Gene expression levels are

influenced by genetic variation (eQTL), and cis-expression

quantitative trait loci (cis-eQTL) serve as proxies for the gene

expansion levels (12). Using drug target MR methods to analyze

independent disease abstract GWAS summary datasets and gene

cis-eQTL to identify relevant genes causing complex traits (13).

This research aims to contribute to the development of

therapeutic targets for IBD by exploring causative genes

associated with both the UC and CD subtypes of the disease.
2 Materials and methods

2.1 Research methods

The study methods were compliant with the STROBE-MR checklist

(14), further details can be found in Additional File 1. The study design is

depicted in Figure 1. In this study, our first step involved utilizing MR

methods to evaluate the causal relationship between druggable genes in

blood and IBD, encompassing both UC and CD subtypes (15, 16).

Additionally, we employed replicated MR, Summary data-based MR

analysis (SMR) approaches, along with the heterogeneity in dependent

instruments (HEIDI) test, to enhance the robustness of our MR results

(12). Subsequently, we conducted a Bayesian co-localization analysis to

identify common causal SNPs shared between the genes and the risk of

IBD (17). Lastly, we estimated the druggability of the identified genes to

investigate their potential as effective therapeutic targets for IBD.
FIGURE 1

Research design.
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2.2 Data sources

Exposure data were extracted from the eQTLGen consortium

(https://eqtlgen.org/) and eQTL meta-analysis of peripheral blood

samples from 31,684 individuals, with information about 16,987

genes (16). The druggable genes are from a previous study

containing a total of 4,479 druggable genes. After removing the

null values and genes not located on the autosomes, the number of

actionable genes is 4302, We utilized the cis-eQTL for these 4302

genes as exposure (15). IBD GWAS abstract data from the

International Inflammatory Bowel Disease Genetics Consortium

(IIBDGC, https://www.ibdgenetics.org/), including 12,882 cases of

IBD, 6,968 cases of UC, and 5,956 patients of European ancestry

with CD (Table 1) (18). We also get GWAS summarized data for

IBD, UC, and CD from FinnGen’s version R9 database for

replication MR analysis (https://r9.finngen.fi/), including 7625

IBD,5034 UC, and 1665 CD patients (Table 1). FinnGen

Database is a project containing a large number of bio-samples

and relevant diagnostic techniques to gather data from national

health registries of the Finnish population since 1969. The program

aims to delve deeper into the relationship between the genome and

health as well as to provide valuable information to the general

public health system to promote medical research into the etiology

of diseases in the population (19).
2.3 Selection of cis-eQTLs associated with
druggable genes

To obtain cis-eQTL data for drug target genes and allele frequency

information, only statistically significant cis-eQTLs with an FDR <0.05

were included (13). To generate the genetic instrumental variables used

to proxy the 4302 druggable targets, we performed a series of

manipulations. First, we chose cis-eQTL within ±100kb from the

genomic transcriptional start site, based on the 1000G Genome

Europe reference panel setting r2 < 0. 1 to avoid the effect of chain

imbalance (20). Second, we carried out a scan in the PhenoScanner

database (https://www.phenoscanner.medschl.cam.ac.uk) to delete

SNPs that were linked to confounders and IBD, to prevent the

interference of confounders (21). Third, to guard against the biasing

effects of weak instrumental variables, the F-value statistic was

calculated by the formula b²/SE², and when the F-value was less than

10 it would be excluded (22). Finally, the palindromic SNPs might not
Frontiers in Immunology 0346
affect gene expression and protein functions, we will remove those

palindromic SNPs with allelic frequencies.
2.4 MR analysis

For our MR study, we conducted two-sample MR analyses

using cis-eQTL and outcomes. When screened exposures have only

one SNP, Wald ratios were applied as the principal analysis method.

In cases where there were more than two SNPs, inverse variance

weighted (IVW) models were estimated to estimate the effect of

each exposure on the outcome, with MR-Egger, MR-RAPS,

Maximum likelihood, and Weighted median methods as

additional methods (23–25). The genes were only incorporated

into the next step of the analysis when four of the five methods were

in alignment with each other in the same direction. We deployed

Cochran’s Q and MR-Egger intercept tests to examine possible

heterogeneity and horizontal pleiotropy of the filtered instrumental

variables (26, 27). MR-Steiger was enlisted to assess the potential

reverse causality of exposure on outcome (28). When the gene was

significant in both the primary MR and replication MR analyses,

we proceeded to SMR analysis to further validate the MR results.

SMR is the process of using GWAS-level summary data and eQTL

to be used for investigating whether there is any causal relationship

between one or more genes and specific phenotypes, using HEIDI to

test the results (12). SMR software (https://yanglab.westlake.edu.cn/

software/smr/) by using the SMR analysis and HEIDI assay.

MR analysis using R software TwoSampleMR package (0.5.7) for

analysis. We utilize the Bonferroni correction for multiple checks.
2.5 Co-localization analysis

We concluded with a Bayesian co-localization analysis of genes

that were multiply corrected by MR and SMR. Co-localization analysis

combines information from multiple SNPs or other genetic variants to

determine whether genes and diseases exist at similar locations in the

genome or interact with each other. We use default a priori

probabilities p1 = 1E-4, p2 = 1E-4, and p12 = 1E-5, representing the

likelihood that an SNP in a selected region is associated with significant

gene expression, IBD risk, and both. The posterior probabilities were

verified against five hypotheses: pp.H0, SNPs were not associated with

any of the traits; PP.H1, SNPs were correlated with gene expression but
TABLE 1 IBD and its subtypes UC and CD data source details.

Disease Cases Controls Population No SNPs

IBD(IIBDGC) 12882 21770 European 12716084

UC(IIBDGC) 6968 20464 European 12255197

CD(IIBDGC) 5956 14927 European 12276506

IBD(FinnGen) 7625 369652 European 20170236

UC(FinnGen) 5034 371530 European 20170227

CD(FinnGen) 1665 375445 European 20170234
IBD, Inflammatory bowel disease; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium; UC, Ulcerative colitis; CD, Crohn’s disease.
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not with IBD risk; PP.H2 were associated with the risk of developing

IBD but not with gene expression; PP.H3 were related to both gene

expression and IBD risk, but with different causal variants; and PP.H4,

were related to IBD risk and gene expression, specifically the same

genetic causal variant (17). We set the significance threshold for PP.H4

at 0.95 owing to the limited efficacy of the colocalization assessment.

Bayesian co localization was analyzed using the software package coloc

(version 5.0.1).
2.6 Druggability evaluation

DrugBank (https://go.drugbank.com/) brings together

numerous data on the interactions between drugs and genes (29),

integrating information from multiple public databases, including

drug target prediction, mechanisms of action, and clinical

applications to offer vital data and functionality. The potential of

identified druggable target genes as therapeutic agents for IBD and

its subtypes was further determined by using DrugBank to locate

associations between characterized proteins and drugs.
3 Results

3.1 MR analysis reveals 27 genes associated
with IBD, 21 genes associated with UC, and
17 genes associated with CD

In the current study cohort, we identified 49 genes with

expressions associated with IBD (P<0.05/2641, Bonferroni

corrected). Subsequently, in the replication MR analysis, 31 out of

these 49 genes exhibited significance in the MR test (P<0.05,

Figure 2). Sensitivity analysis revealed that the genes SLC22A5,

RPS6KA2, and SENP7 did not pass the pleiotropy test (P<0.05), and

the gene IMPDH2 did not pass the MR-Sterger test (P>0.05).

Furthermore, the genes GPR25, JAK2, STAT3, SLC22A4, and

NDFIP1 showed potential heterogeneity.

The expression of 36 genes was associated with UC (P<0.05/

2641, Bonferroni corrected), and subsequent replication MR
Frontiers in Immunology 0447
analysis demonstrated that 23 genes remained significant (P<0.05,

Figure 3). Sensitivity analysis indicated that the gene SLC22A5 did

not pass the pleiotropy test (P<0.05), and the gene IMPDH2 did not

pass the MR-Sterger test (P>0.05). Additionally, the genes

TNFRSF14 and GPBAR1 exhibited heterogeneity.

Thirty-six genes were causally connected to disease CD by

expression (P<0.05/2641, Bonferroni correction). Replication MR

showed that 19 of these genes passed the MR test again (P<0.05,

Figure 4). There was reverse causality for genes DAG1 and SSR2 in

the sensitivity analysis (P>0.05) and no pleiotropy (P<0.05).

Genes NDFIP1, SLC22A4, THBS3, JAK2, and STAT3 had the

presence of heterogeneity. Detailed information on significant

gene MR results for IBD and its subtypes UC and CD are shown

in Supplementary Tables 1-3.
3.2 SMR analysis validated 7 genes linked
to IBD, 4 genes with UC, and 8 genes
for CD

In the discovery cohort and replication cohort MR analyses, an

SMR analysis was conducted for the examined genes. A total of 27

genes for IBD, 21 genes for UC, and 17 genes for CD were included

in this analysis. Genes that did not pass the HEIDI test and were not

consistently oriented (P<0.05, Figure 5) were removed from the

analysis. As a result, 7 genes showed significant associations with

IBD in the SMR analysis (P<0.05/27). For UC, 4 genes passed the

SMR analysis (P<0.05/21, Figure 6A), and for CD, 8 genes

demonstrated significant causal associations (p<0.05/17,

Figure 6B). Supplementary Tables 4-6 provide detailed

information on the SMR analysis.
3.3 Identification of genetic overlaps in
IBD, UC, and CD using co-
localization analysis

In our study, we performed the co-localization analysis of the

screened genes associated with IBD, UC, and CD (Table 2,
FIGURE 2

Two-sample Mendelian randomization results for druggable genes and inflammatory bowel disease Manhattan plot.
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Figures 7, 8). Our findings revealed that for IBD, genes GPBAR1

(PP.H4 = 0.99), IL1RL1 (PP.H4 = 0.95), PRKCB (PP.H4 = 0.99),

and PNMT (PP.H4 = 0.95) exhibited robust evidence of high co-

localization support (Figure 7). Furthermore, genes GPX1

(PP.H4 = 0.98), GPBAR1 (PP.H4 = 0.99), and PNMT

(PP.H4 = 0.99) demonstrated significant co-localization support

with UC (Figure 8). Additionally, the gene IL1RL1 (PP.H4 = 0.98)

showed strong co-localization support with CD (Figure 8). In our

categorization, genes that passed all tests were considered primary

targets (PP.H4 > 0.95), while genes that passed MR and SMR tests

but had a PP.H4 less than 0.75 were categorized as tertiary targets.

Genes that passed the MR and SMR tests and had a PP.H4 greater

than 0.75 but less than 0.95 were classified as secondary targets.
3.4 Estimation of druggability

We conducted a comprehensive search of the drug database for

several genes identified in this study as potential drug targets

(Supplementary Table 7). Our investigation revealed that

targeting GPBAR1 is approved for the treatment of primary

biliary cirrhosis, bile acid synthesis disorders, and various other

diseases. Various drugs targeting PRKCB are associated with
Frontiers in Immunology 0548
antioxidant effects, therapeutic benefits for relapsed glioblastoma

multiforme, and preventive measures for vitamin E deficiency.

Drugs targeting GPX1 exhibit multiple effects, including

antioxidant activity and pain relief. However, no relevant

information was found for IL1RL1 and PNMT as potential drug

targets. Additionally, we explored secondary and tertiary targets

identified in this study and found that drugs targeting FDPS have

been approved for the treatment of osteoporosis. Similarly, drugs

targeting ITGA4 are utilized for the treatment of multiple sclerosis,

UC, and CD.
4 Discussion

In this study, we conducted a comprehensive investigation of

4302 genes to determine their association with the risk of IBD, UC,

and CD. Using various MR methods (including Wald ratio/IVW,

MR-Egger, Weighted median, Maximum likelihood, and MR-RAPS)

and multiple sensitivity analyses (such as Cochran’s Q heterogeneity

test, MR-Egger intercept pleiotropy test, and MR-Steiger

directionality test), we explored target genes associated with the

risk of IBD and its subtypes. To validate our results, we employed

replicated MR, SMR, HEIDI tests, and multiple co-localization tests.
FIGURE 4

Two-sample Mendelian randomization results for druggable genes and Crohn’s disease Manhattan plot.
FIGURE 3

Two-sample Mendelian randomization results for druggable genes and ulcerative colitis Manhattan plot.
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Our comprehensive analyses revealed several significant findings.

We found that the expression of the gene GPBAR1 was associated

with an increased risk of IBD and UC. Conversely, the expression of

PNMT was negatively associated with the risk of IBD and UC.

Furthermore, higher levels of the genetically predicted gene IL1RL1

were linked to a reduced risk of IBD and CD. These findings provide

valuable insights into the genetic factors influencing the risk of IBD

and its subtypes, highlighting potential targets for further research

and therapeutic interventions.

RNASET2 is the gene that encodes nuclease T2. It plays a key

role in the intracellular context and its function involves processes

such as RNA degradation and apoptosis. Prior work has identified
Frontiers in Immunology 0649
RNASET2 as a susceptibility gene for IBD (30) and decreased

RNASET2 expression has activating effects on pro-inflammatory

cells, with an association with aggressive CD inflammation (31).

The results of this study provide relatively strong evidence that

RNASET2 levels may serve as an inflammatory biomarker for the

prediction of progression in a novel disease.

The GPX1 gene is located at position 3p21.3 on the human

genome and consists offive exons and four introns. The transcription

product of this gene is a peptide containing 197 amino acid remnants

that are translated into glutathione peroxidase 1 (GPX1) protein (32).

GPX1 is mainly found in the cytoplasm of cells, where catalyzing the

reaction between glutathione and substrates like hydrogen peroxide,
A

B

FIGURE 6

Druggable genes and SMR results for ulcerative colitis and Crohn’s disease. (A) Druggable genes and ulcerative colitis SMR results. (B) Druggable genes and
Crohn’s disease SMR results.
FIGURE 5

Druggable genes and inflammatory bowel disease SMR results.
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decreases cellular damage by oxidative stress. Specifically, GPX1 uses

reduced glutathione (GSH) to convert hydrogen peroxide to water

and oxidizes GSH to oxidized glutathione (GSSG), which in turn

generates GSH again via other reducing enzymes, maintaining the

relative balance of GSSH and GSSG (33). Zhou et al. demonstrated

the connection between endoplasmic reticulum stress-related genes

and UC, and CD through a multi-omics approach and discovered

that GPX1 expression lowered the risk of UC and CD (34). Oxidative

stress leads to the inflammatory response exacerbated by oxidative

damage to intracellular DNA, lipids, and proteins, which then

triggers an inflammatory response in UC. GPX1 is known to be a

toxicant through deleterious agents maintains redox balance, and can

directly reverse the complex lipid peroxides in cells and tissues. It can

also directly reduce complex lipid peroxides and minimize the

damage of oxidative stress on cells and tissues. This may be the

mechanism by which GPX1 reduces the risk of UC. Additionally, our

study revealed that the gene GPX1 was relevant to UC, but did not

find an association between GPX1 and CD. A study of 436 CD, 367

UC, and 434 controls showed that allele A in the gene GPX1

(rs1050450) was significantly observed to be associated with UC in

a recessive model, and is a good candidate for a biological marker for

the management of treatment of UC in the disease (35).

An additional study using polymorphism-polymerase chain

reaction in peripheral blood leukocytes from 1500 UC cases and
Frontiers in Immunology 0750
1500 healthy controls demonstrated that a genetic polymorphism in

the GPX1 gene of 594TT is a danger factor for UC (36). They are

consistent with the study we conducted, and future studies could

explore the relationship of this gene with IBD as well as subtypes of

CD to search for the more likely therapeutic targets.

STAT3 is an activator of signal transduction and transcription,

playing a vital role within cells. Upon activation, STAT3 can enter the

nucleus and regulate the transcription of several genes, thereby

participating in the regulation of cell proliferation, apoptosis,

inflammatory response, and other biological processes (37).

According to a meta-analysis, the presence of the STAT3 rs744166

gene polymorphism may elevate the risk of developing CD, especially

among Caucasians (38). A prior case-control study involving 232 CD

patients and 272 controls indicated that the rs744166 and rs4796793

polymorphisms in the STAT3 gene may be linked to the onset of CD

and are anticipated to serve as predictors of CD in the Chinese Han

population (39). On one hand, STAT3 can regulate the activity of

immune cells, such as macrophages and T cells, among others. It

promotes the activation of immune cells and the release of

inflammatory mediators while inhibiting the regulatory function of

immune cells. This imbalance in the immune system leads to

increased intestinal inflammatory response (40). On the other

hand, IL-23 activates the STAT3 pathway, enhances the Th17 cell

program, and contributes to the initiation and progression of
TABLE 2 Gene and outcome co-localization results.

Disease Gene PP.H0 PP.H1 PP.H2 PP.H3 PP.H4 Grade

IBD GPBAR1 0 0 0 0.01 0.99 Tier 1 target

IL1RL1 0 0 0 0.05 0.95 Tier 1 target

PRKCB 0 0 0 0.01 0.99 Tier 1 target

PNMT 0 0 0 0.05 0.95 Tier 1 target

FDPS 0 0.01 0 0.14 0.85 Tier 2 target

RNASET2 0 0 0 0.22 0.78 Tier 2 target

THBS3 0 0.14 0 0.47 0.52 Tier 3 target

UC GPX1 0 0 0 0.02 0.98 Tier 1 target

GPBAR1 0 0 0 0.01 0.99 Tier 1 target

PNMT 0 0 0 0.01 0.99 Tier 1 target

IGLC3 0 0.23 0 0 0.77 Tier 2 target

CD IL1RL1 0 0 0 0.02 0.98 Tier 1 target

GPR25 0 0 0.01 0.05 0.94 Tier 2 target

FDPS 0 0 0 0.08 0.92 Tier 2 target

STAT3 0 0 0 0.17 0.83 Tier 2 target

END3 0 0.22 0 0 0.78 Tier 2 target

ITGA4 0 0.45 0 0.03 0.52 Tier 3 target

NDFIP1 0 0 0 0.86 0.14 Tier 3 target

JAK2 0 0 0 0.99 0 Tier 3 target
IBD, Inflammatory bowel disease; UC, Ulcerative colitis; CD, Crohn’s disease.
PP.H0–PP.H4 represents the posterior probabilities of different hypotheses.
PP.H4 > 0.95 represents a strong colocalization between gene expression and risk of IBD, UC, and CD.
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pathological reactions (41). These findings align with the outcomes of

the current study, suggesting that the STAT3 gene could serve as a

potential therapeutic target for CD, warranting further clinical trials.

JAK2 is a tyrosine kinase that is involved in a variety of cytosolic

signaling pathways, including apoptosis, differentiation, survival,

and immune response (42). Drugs targeting JAK2 are considered

for the treatment of immunological diseases such as UC,

rheumatoid arthritis, and myelofibrosis. The present study found

that JAK2 is a potential target for CD therapy. JAK2 signaling

pathway can regulate the proliferation, differentiation, and

activation of immune cells (like T-cells, B-cells, macrophages,

etc.), and thus affects the normal function of the Immune system

(43). Besides, alteration of intestinal barrier function would

probably be one of the mechanisms by which JAK2 is involved in

the pathogenesis of CD. One report of 464 CD patients, 292 UC

patients, and 508 healthy controls in Germany revealed that

patients carrying the C risk allele of the JAK2 rs10758669 gene

polymorphism were at a higher frequency of increased risk of

intestinal permeability (43). Targeted inhibitors of JAK2 have

been studied and developed, and these drugs can interfere with
Frontiers in Immunology 0851
the JAK2 modeling pathway and inhibit its aberrant activation,

resulting in a reduction in the production of inflammatory

mediators, alleviation of the inflammatory response, and

amelioration of symptoms and disease progression in CD.

IBD is a complex group of diseases that includes multiple

subtypes such as UC and CD. Despite sharing certain

pathophysiological features, they differ dramatically in their

clinical manifestations, histologic and immunologic features, and

gene expression levels (44). Such differences point to the possibility

that they may have different genetic mechanisms. Additional risk

genes associated with IBD were identified in our survey, however,

they are not currently validated by larger numbers of experimental

studies. More studies may be needed to probe these genes in the

future to prioritize IBD drug development. The strength of this

study lies in its comprehensive screening of genes associated with

IBD risk using the two-sample MR method, which effectively

mitigates confounding bias. Moreover, the utilization of replicated

MR, SMR, and co-localization to corroborate the experimental

findings significantly bolsters the study’s conclusions, enhancing

the robustness of the results and minimizing the potential for false
A B

DC

FIGURE 7

Co-localization results for inflammatory bowel disease. (A) Co-localization results of eQTL of the GPBAR1 gene and inflammatory bowel disease.
(B) Co-localization results of eQTL of the IL1RL1 gene and inflammatory bowel disease. (C) Co-localization results of eQTL of the PNMT gene and
inflammatory bowel disease. (D) Co-localization results of eQTL of the PRKCB gene and inflammatory bowel disease.
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positives. The evaluation of druggability offers promise for IBD

treatment. However, there are several limitations to consider.

Firstly, the genetic data were derived from a European population

and necessitate further validation for extrapolation to other ethnic

groups. Secondly, genetic regulatory mechanisms may exhibit

tissue-specific variability, and focusing solely on blood eQTL may

not afford a comprehensive understanding of the disease and its

therapeutic avenues. Therefore, it is imperative to account for

genetic regulatory diversity across multiple tissues and organs to

gain a more nuanced comprehension of disease pathogenesis and

identify effective treatments. Thirdly, while some genes associated

with IBD risk have been experimentally validated, exploration of

certain genes and their correlation with IBD risk remains deficient.
5 Conclusion

To summarize, our study employed sophisticated methods such

as MR, SMR, and co293 localization to identify key genes intricately
Frontiers in Immunology 0952
associated with the risk of IBD and its subtypes, UC and CD.

Specifically, our analysis revealed the crucial roles of GPBAR1,

IL1RL1, PRKCB, and PNMT genes in IBD pathogenesis while

implicating GPX1, GPBAR1, and PNMT genes in UC

susceptibility. Additionally, we found that IL1RL1 exhibits a

protective effect against CD risk. These groundbreaking findings

not only offer promising targets for the development of more

effective biomarkers and therapeutic interventions but also deepen

our understanding of the underlying molecular mechanisms driving

IBD etiology. Nevertheless, further rigorous experimental and clinical

investigations are required to validate and substantiate these findings

before their translation into clinical practice.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
A B

DC

FIGURE 8

Co-localization results for ulcerative colitis and Crohn’s disease. (A) Co-localization results of eQTL of the GPBAR1 gene and ulcerative colitis.
(B) Co-localization results of eQTL of the GPX1 gene and ulcerative colitis. (C) Co-localization results of eQTL of the PNMT gene and ulcerative
colitis. (D) Co-localization results of eQTL of the IL1RL1 gene and Crohn’s disease.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1352712
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1352712
Author contributions

SZ: Data curation, Formal analysis, Investigation, Methodology,

Resources, Software, Validation, Visualization, Writing – original

draft. YL: Conceptualization, Data curation, Formal analysis,

Validation, Writing – review & editing. ZD: Conceptualization,

Data curation, Investigation, Methodology, Visualization, Writing –

review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

Thanks to the researchers who have contributed to GWAS data.
Frontiers in Immunology 1053
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1352712/

full#supplementary-material
References
1. Collaborators GBDIBD. The global, regional, and national burden of
inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic
analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol.
(2020) 5:17–30. doi: 10.1016/S2468-1253(19)30333-4

2. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol
Hepatol. (2015) 12:720–7. doi: 10.1038/nrgastro.2015.150

3. Buie MJ, Quan J, Windsor JW, Coward S, Hansen TM, King JA, et al. Global
hospitalization trends for crohn's disease and ulcerative colitis in the 21st century: A
systematic review with temporal analyses. Clin Gastroenterol Hepatol. (2023) 21:2211–
21. doi: 10.1016/j.cgh.2022.06.030

4. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative
colitis. Lancet. (2017) 389:1756–70. doi: 10.1016/S0140-6736(16)32126-2

5. Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of
inflammatory bowel disease: current concepts, treatment, and implications for disease
management. Gastroenterology. (2021) 161:1118–32. doi: 10.1053/j.gastro.2021.07.042

6. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention,
and treatment methods of inflammatory bowel disease. J Med Life. (2019) 12:113–22.
doi: 10.25122/jml-2018-0075

7. Murray A, Nguyen TM, Parker CE, Feagan BG, MacDonald JK. Oral 5-
aminosalicylic acid for maintenance of remission in ulcerative colitis. Cochrane
Database Syst Rev. (2020) 8:CD000544. doi: 10.1002/14651858.CD000544.pub5

8. Ferretti F, Cannatelli R, Monico MC, Maconi G, Ardizzone S. An update on
current pharmacotherapeutic options for the treatment of ulcerative colitis. J Clin Med.
(2022) 11(9):2302. doi: 10.3390/jcm11092302

9. Chaparro M, Ordas I, Cabre E, Garcia-Sanchez V, Bastida G, Penalva M, et al.
Safety of thiopurine therapy in inflammatory bowel disease: long-term follow-up study
of 3931 patients. Inflammation Bowel Dis. (2013) 19:1404–10. doi: 10.1097/
MIB.0b013e318281f28f

10. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations
of genome-wide association studies. Nat Rev Genet. (2019) 20:467–84. doi: 10.1038/
s41576-019-0127-1

11. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators
for Mendelian randomization. Stat Methods Med Res. (2017) 26:2333–55. doi: 10.1177/
0962280215597579

12. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of
summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat
Genet. (2016) 48:481–7. doi: 10.1038/ng.3538

13. Chen Y, Xu X, Wang L, Li K, Sun Y, Xiao L, et al. Genetic insights into
therapeutic targets for aortic aneurysms: A Mendelian randomization study.
EBioMedicine. (2022) 83:104199. doi: 10.1016/j.ebiom.2022.104199

14. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM,
Swanson SA, et al. Strengthening the reporting of observational studies in
epidemiology using mendelian randomization: The strobe-Mr statement. JAMA
(2021) 326(16):1614–21. doi: 10.1001/jama.2021.18236

15. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, et al. The
druggable genome and support for target identification and validation in drug
development. Sci Transl Med. (2017) 9(383):eaag1166. doi: 10.1126/scitranslmed.
aag1166

16. Vosa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-
scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic
scores that regulate blood gene expression. Nat Genet. (2021) 53:1300–10. doi: 10.1038/
s41588-021-00913-z

17. Giambartolomei C, Vukcevic D, SChadt EE, Franke L, Hingorani AD, Wallace
C, et al. Bayesian test for colocalisation between pairs of genetic association studies
using summary statistics. PloS Genet. (2014) 10:e1004383. doi: 10.1371/
journal.pgen.1004383

18. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al.
Association analyses identify 38 susceptibility loci for inflammatory bowel disease and
highlight shared genetic risk across populations. Nat Genet. (2015) 47:979–86.
doi: 10.1038/ng.3359

19. Peltonen L, Jalanko A, Varilo T. Molecular genetics of the Finnish disease
heritage. Hum Mol Genet. (1999) 8:1913–23. doi: 10.1093/hmg/8.10.1913

20. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM,
et al. A global reference for human genetic variation. Nature. (2015) 526:68–74.
doi: 10.1038/nature15393

21. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J,
et al. PhenoScanner V2: an expanded tool for searching human genotype-
phenotype associations. Bioinformatics . (2019) 35:4851–3. doi: 10.1093/
bioinformatics/btz469

22. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak
instruments in Mendelian randomization studies. Int J Epidemiol. (2011) 40:755–64.
doi: 10.1093/ije/dyr036

23. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in
mendelian randomization with some invalid instruments using a weighted median
estimator. Genet Epidemiol. (2016) 40:304–14. doi: 10.1002/gepi.21965

24. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM,
et al. Guidelines for performing Mendelian randomization investigations:
update for summer 2023. Wellcome Open Res. (2019) 4:186. doi: 10.12688/
wellcomeopenres

25. Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference in two-
sample summary-data Mendelian randomization using robust adjusted profile score.
Ann Stat. (2020) 48:1742–69. doi: 10.1214/19-AOS1866

26. Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in
Mendelian randomisation studies with summary data and a continuous outcome. Stat
Med. (2015) 34:2926–40. doi: 10.1002/sim.6522
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1352712/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1352712/full#supplementary-material
https://doi.org/10.1016/S2468-1253(19)30333-4
https://doi.org/10.1038/nrgastro.2015.150
https://doi.org/10.1016/j.cgh.2022.06.030
https://doi.org/10.1016/S0140-6736(16)32126-2
https://doi.org/10.1053/j.gastro.2021.07.042
https://doi.org/10.25122/jml-2018-0075
https://doi.org/10.1002/14651858.CD000544.pub5
https://doi.org/10.3390/jcm11092302
https://doi.org/10.1097/MIB.0b013e318281f28f
https://doi.org/10.1097/MIB.0b013e318281f28f
https://doi.org/10.1038/s41576-019-0127-1
https://doi.org/10.1038/s41576-019-0127-1
https://doi.org/10.1177/0962280215597579
https://doi.org/10.1177/0962280215597579
https://doi.org/10.1038/ng.3538
https://doi.org/10.1016/j.ebiom.2022.104199
https://doi.org/10.1001/jama.2021.18236
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1371/journal.pgen.1004383
https://doi.org/10.1371/journal.pgen.1004383
https://doi.org/10.1038/ng.3359
https://doi.org/10.1093/hmg/8.10.1913
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.1093/ije/dyr036
https://doi.org/10.1002/gepi.21965
https://doi.org/10.12688/wellcomeopenres
https://doi.org/10.12688/wellcomeopenres
https://doi.org/10.1214/19-AOS1866
https://doi.org/10.1002/sim.6522
https://doi.org/10.3389/fimmu.2024.1352712
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1352712
27. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
instruments: effect estimation and bias detection through Egger regression. Int J
Epidemiol. (2015) 44:512–25. doi: 10.1093/ije/dyv080

28. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between
imprecisely measured traits using GWAS summary data. PloS Genet. (2017) 13:
e1007081. doi: 10.1371/journal.pgen.1007081

29. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank
5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. (2018) 46:
D1074–82. doi: 10.1093/nar/gkx1037

30. Brant SR, Okou DT, Simpson CL, Cutler DJ, Haritunians T, Bradfield JP, et al.
Genome-Wide association study identifies african-Specific susceptibility loci in african
americans with inflammatory bowel disease. Gastroenterology. (2017) 152:206–217
e202. doi: 10.1053/j.gastro.2017.02.041

31. Gonsky R, Fleshner P, Deem RL, Biener-Ramanujan E, Li D, Potdar AA, et al.
Association of ribonuclease T2 gene polymorphisms with decreased expression and
clinical characteristics of severity in crohn's disease. Gastroenterology. (2017) 153:219–
32. doi: 10.1053/j.gastro.2017.04.002

32. Li S, Yan T, Yang JQ, Oberley TD, Oberley LW. The role of cellular glutathione
peroxidase redox regulation in the suppression of tumor cell growth by manganese
superoxide dismutase. Cancer Res. (2000) 60:3927–39.

33. Trenz TS, Delaix CL, Turchetto-Zolet AC, Zamocky M, Lazzarotto F, Margis-
Pinheiro M. Going forward and back: the complex evolutionary history of the GPx. Biol
(Basel). (2021) 10:1165. doi: 10.3390/biology10111165

34. Zou M, Liang Q, Zhang W, Zhu Y, Xu Y. Endoplasmic reticulum stress related
genome-wide Mendelian randomization identifies therapeutic genes for ulcerative colitis
and Crohn's disease. Front Genet. (2023) 14:1270085. doi: 10.3389/fgene.2023.1270085

35. Costa Pereira C, Duraes C, Coelho R, Gracio D, Silva M, Peixoto A, et al.
Association between polymorphisms in antioxidant genes and inflammatory bowel
disease. PloS One. (2017) 12:e0169102. doi: 10.1371/journal.pone.0169102
Frontiers in Immunology 1154
36. Zhang C, Guo L, Qin Y. [Interaction of MIF gene -173G/C polymorphism and
GPX1 gene 594C/T polymorphism with high-fat diet in ulcerative colitis]. Zhonghua Yi
Xue Yi Chuan Xue Za Zhi. (2016) 33:85–90. doi: 10.3760/cma.j.issn.1003-
9406.2016.01.021

37. Darnell JE Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional
activation in response to IFNs and other extracellular signaling proteins. Science.
(1994) 264:1415–21. doi: 10.1126/science.8197455

38. Zhang J, Wu J, Peng X, Song J, Wang J, Dong W. Associations between STAT3
rs744166 polymorphisms and susceptibility to ulcerative colitis and Crohn's disease: a
meta-analysis. PloS One. (2014) 9:e109625. doi: 10.1371/journal.pone.0109625

39. Wang Z, Xu B, Zhang H, Fan R, Zhou J, Zhong J. Association between
STAT3 gene polymorphisms and Crohn's disease susceptibility: a case-control
study in a Chinese Han population. Diagn Pathol. (2014) 9:104. doi: 10.1186/1746-
1596-9-104

40. Robinson P, Magness E, Montoya K, Engineer N, Eckols TK, Rodriguez E, et al.
Genetic and small-molecule modulation of stat3 in a mouse model of crohn's disease. J
Clin Med. (2022) 11:7020. doi: 10.3390/jcm11237020

41. Bai A, Moss A, Kokkotou E, Usheva A, Sun X, Cheifetz A, et al. CD39 and
CD161 modulate Th17 responses in Crohn's disease. J Immunol. (2014) 193:3366–77.
doi: 10.4049/jimmunol.1400346

42. Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-
STAT signaling in the immune system. Nat Immunol. (2017) 18:374–84.
doi: 10.1038/ni.3691

43. Prager M, Buttner J, Haas V, Baumgart DC, Sturm A, Zeitz M, et al. The
JAK2 variant rs10758669 in Crohn's disease: altering the intestinal barrier as one
mechanism of action. Int J Colorectal Dis. (2012) 27:565–73. doi: 10.1007/s00384-011-
1345-y

44. Hodson R. Inflammatory bowel disease. Nature. (2016) 540:S97. doi: 10.1038/
540S97a
frontiersin.org

https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1371/journal.pgen.1007081
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1053/j.gastro.2017.02.041
https://doi.org/10.1053/j.gastro.2017.04.002
https://doi.org/10.3390/biology10111165
https://doi.org/10.3389/fgene.2023.1270085
https://doi.org/10.1371/journal.pone.0169102
https://doi.org/10.3760/cma.j.issn.1003-9406.2016.01.021
https://doi.org/10.3760/cma.j.issn.1003-9406.2016.01.021
https://doi.org/10.1126/science.8197455
https://doi.org/10.1371/journal.pone.0109625
https://doi.org/10.1186/1746-1596-9-104
https://doi.org/10.1186/1746-1596-9-104
https://doi.org/10.3390/jcm11237020
https://doi.org/10.4049/jimmunol.1400346
https://doi.org/10.1038/ni.3691
https://doi.org/10.1007/s00384-011-1345-y
https://doi.org/10.1007/s00384-011-1345-y
https://doi.org/10.1038/540S97a
https://doi.org/10.1038/540S97a
https://doi.org/10.3389/fimmu.2024.1352712
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Dipak Kumar Sahoo,
Iowa State University, United States

REVIEWED BY

Songyun Deng,
Central South University, China
Paul Willemsen,
Hospital Network Antwerp (ZNA), Belgium
Jung Kyong Shin,
Sungkyunkwan University, Republic of Korea

*CORRESPONDENCE

Nastaran Mohammadian Rad

nastaran.mrad@maastrichtuniversity.nl

†These authors have contributed
equally to this work and share
last authorship

RECEIVED 16 January 2024

ACCEPTED 06 May 2024
PUBLISHED 30 May 2024

CITATION

Mohammadian Rad N, Sosef O, Seegers J,
Koolen LJER, Hoofwijk JJWA, Woodruff HC,
Hoofwijk TAGM, Sosef M and Lambin P
(2024) Prognostic models for colorectal
cancer recurrence using carcinoembryonic
antigen measurements.
Front. Oncol. 14:1368120.
doi: 10.3389/fonc.2024.1368120

COPYRIGHT

© 2024 Mohammadian Rad, Sosef, Seegers,
Koolen, Hoofwijk, Woodruff, Hoofwijk, Sosef
and Lambin. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 30 May 2024

DOI 10.3389/fonc.2024.1368120
Prognostic models for colorectal
cancer recurrence using
carcinoembryonic
antigen measurements
Nastaran Mohammadian Rad1*, Odin Sosef2, Jord Seegers2,
Laura J. E. R. Koolen3, Julie J. W. A. Hoofwijk2,
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Objective: Colorectal cancer (CRC) is one of the most prevalent cancers

worldwide. A considerable percentage of patients who undergo surgery with

curative intent will experience cancer recurrence. Early identification of

individuals with a higher risk of recurrence is crucial for healthcare

professionals to intervene promptly and devise appropriate treatment

strategies. In this study, we developed prognostic models for CRC recurrence

using machine learning models on a limited number of CEA measurements.

Method: A dataset of 1927 patients diagnosedwith Stage I-III CRC and referred to

Zuyderland Hospital for surgery between 2008 and 2016 was utilized. Machine

learning models were trained using this comprehensive dataset, which included

demographic details, clinicopathological factors, and serial measurements of

Carcinoembryonic Antigen (CEA). In this study, the predictive performance of

thesemodels was assessed, and the key prognostic factors influencing colorectal

cancer (CRC) recurrence were pinpointed

Result: Among the evaluated models, the gradient boosting classifier demonstrated

superior performance, achieving an Area Under the Curve (AUC) score of 0.81 and a

balanced accuracy rate of 0.73. Recurrence predictionwas shown to be feasiblewith

an AUC of 0.71 when using only five post-operative CEA measurements.

Furthermore, key factors influencing recurrence were identified and elucidated.

Conclusion: This study shows the transformative role of machine learning in

recurrence prediction for CRC, particularly by investigating the minimum

number of CEA measurements required for effective recurrence prediction.

This approach not only contributes to the optimization of clinical workflows

but also facilitates the development of more effective, individualized treatment

plans, thereby laying the groundwork for future advancements in this area. Future

directions involve validating these models in larger and more diverse cohorts.

Building on these efforts, our ultimate goal is to develop a risk-based follow-up

strategy that can improve patient outcomes and enhance healthcare efficiency.

KEYWORDS

colorectalcancer,machine learning,carcinoembryonicantigen,cancerrecurrence,prognosis
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1 Introduction

Colorectal cancer (CRC) ranks as the third most prevalent

cancer worldwide (1). Advances in chemotherapy and increased

use of hepatic resection surgery have contributed to significant

improvements in the survival rate for patients with this type of

cancer (2). Despite these improvements, cancer recurrence remains

a prolonged challenge, and delays in detection can compromise the

effectiveness of surgical intervention (3). Studies have revealed that

approximately 85% of recurrences occur within 30 months after

surgery, with nearly all cases appearing within 5 years (4). Thus, it is

essential to maintain continuous monitoring of patients even after

successful therapeutic intervention to detect potential cancer

recurrence at the earliest possible stage.

The current guidelines for identifying recurrence involve

regular testing of CEA levels in post-operative patients (5, 6).

CEA level is a widely used clinical marker, demonstrating

associations with the occurrence and severity of CRC (7, 8).

However, studies have revealed the fact that single CEA

measurements lack strong prognostic potential for monitoring

CRC, exhibiting a balanced accuracy of 0.65 (9, 10).

In recent years, machine learning (ML) techniques have gained

significant traction in oncology (11, 12). These techniques are

applied for both diagnosis and prognosis, aiming to enhance

patient outcomes and optimize treatment strategies (13, 14).

While ML models have been employed for recurrence prediction

in CRC (see Section 2), there is a need for CRC prognostication

models that simultaneously achieve high accuracy and offer clear

explainability. This study aims to bridge this gap by employing ML

techniques to accurately prognosticate CRC recurrence and also to

identify the underlying factors contributing to it. Our contributions

are three-fold:
Fron
• In this study, we apply and evaluate four various machine

learning models, integrating demographic information,

clinicopathological factors, and CEA measurements.

Through the progressive integration of CEAs, we also

investigate the minimal number of CEA measurements

necessary to effectively predict recurrence.

• We use permutation importance method to identify the key

clinical factors influencing our model’s predictions,

providing valuable information about the variables most

impactful in CRC recurrence.

• We investigate the impact of data imputation on the

predictive performance of CRC recurrence models.
2 Related work

In recent years, CRC prognosis and diagnosis have gained

attention in clinical and research areas. Commercial tools such as

Oncotype DX Colon (15) and ColoPrint assay (16), which

incorporate gene expression profiling, have emerged as resources

for assessing the risk of recurrence. However, these tools showed a

relatively modest performance (area under the receiver operating
tiers in Oncology 0256
characteristic curve (AUC) of 0.63 for ColoPrint and 0.55 for

OncoDefender-CRC) (14).

Previous studies on CRC prognosis applied ML through

retrospective analyses on diverse data types, mainly as a single

modality, including clinical, epidemiological, and genetic data (11,

12). Through the analysis of genetic data, Grudner et al. (17)

predicted diverse clinical outcomes, including cancer recurrence.

Their model demonstrated a stratification between recurrence and

non-recurrence patients, surpassing the effectiveness of sub-

categorization based on prior literature, reporting an accuracy of

0.71 for their predictions. In (11), the authors explored the

feasibility of using ML models, mainly decision-tree-based

learning algorithms, to predict recurrence in Stage IV CRC

patients. The reported AUC score for their top-performing model

was 0.76. Elsewhere, Castellanos et al. (12), employed an ensemble

model to predict recurrence in Stage II-III CRC patients. Their

dataset included gene expression data, protein-protein interaction

details, and tumor suppressor and driver mutation information.

Their experimental results showed superior predictive capabilities

on molecular data compared to clinical data alone. Their most

effective model achieved an AUC of 0.79. In (13), the authors

applied a range of ML models on a relatively small dataset with 904

CRC patients to predict recurrence. Their best-performing model, a

support vector machine (SVM), applied to the structured data

yielded an AUC of 0.83.
3 Methods

3.1 Data collection

This study used a dataset of patients diagnosed with Stage I-III

CRC who were referred to Zuyderland Hospital for surgery with

curative intent and follow-up of the primary tumor between 2008 to

2016. This study was approved by the Medical Ethics Committee,

and informed consent was not obligatory. The dataset is composed

of static and time-series (dynamic) features. The static features

consist of 24 predictor variables that are associated with recurrence,

such as demographic information, comorbidities, tumor

characteristics, and treatment parameters. As shown in Figure 1,

the dynamic features contain 40 CEA measurements. Patients were

followed up post-operatively according to the Dutch National

Guidelines, every 3 to 6 months on average (for a detailed

description of all included predictor variables, see Table 1).
3.2 Data preprocessing

Comprehensive data preprocessing steps were performed to

ensure the integrity of the dataset. Initially, 13 patients who

presented inconsistencies in their data with the time of data

collection appearing in descending order contrary to the expected

chronological progression post-surgery were excluded. CEA

measurements obtained before surgery were disregarded for the

remaining patients. Missing data were then imputed using data

imputation techniques based on each feature type. In line with
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previous studies (13), missing entries within each binary and

categorical feature (e.g., smoking status) were imputed using the

most frequent value present in that particular feature (See

Supplementary Table S1 in Supplementary Material for the

number of missing values in each static feature). For continuous
Frontiers in Oncology 0357
values (e.g., CEA measurements), median value-based imputation

was employed, effectively maintaining the overall distribution

characteristics. Then, categorical features were encoded using the

one-hot encoding scheme, resulting in 67 features for subsequent

modeling. Quantile transform was applied to features to mitigate
TABLE 1 An overview of the different variables used for the colorectal cancer recurrence prediction model.

Category Variable (Type) Description

Demographics

Age (con)
Smoking status (cat)

Age at time of surgery
Divided into three classes: never, past, or current smokers

Sex (bin) Male or female

Comorbidity

Irritable Bowel Syndrome (bin)
Inflammatory Bowel
Disease (bin)

Gastrointestinal tract functional disorder characterized by chronic abdominal pain and altered bowel habits
Chronic auto-inflammatory condition of the gastrointestinal tract

Diabetes (bin) Absolute or relative insulin deficiency

Familial Adenomatous
Polyposis (bin)

Presence of familial adenomatous polyposis; rare inherited disease causing extensive polyp formation

Lynch (bin) Presence of hereditary nonpolyposis colorectal cancer (HNPCC, or Lynch syndrome)

Cardiac disease (bin) Cardiac disease present (e.g., congestive heart failure, ischemic heart disease)

Tumor Characteristics

Organ (bin)
Synchronic metastasis (bin)
Location (bin) cTNM stage
(cat) ycTNM (cat)

Location of tumor (colon/rectum)
Presence of metastasis detected at or before diagnosis of the primary tumor
Location of metastasis (liver/other location)
Clinical TNM (5th edition)
Clinical TNM after neoadjuvant therapy

p(y)TNM (cat) Pathological TNM (5th edition)

Tumor type (cat) Tumor type (adenocarcinoma, mucinous carcinoma, or other)

Cancer staging (cat) Cancer stage according to pTNM

lymph invasion (bin) Presence of lymph invasion

Angioinvasion (bin) Presence of angio invasion

Treatment parameters

Neoadjuvant therapy (cat) Radiotherapy (5x5 Gray), chemotherapy, or radiochemotherapy

Adjuvant chemotherapy (bin) Use of any form of adjuvant chemotherapy

Adjuvant radiotherapy (bin) Use of any form of adjuvant radiotherapy

Treatment outcome Resection marge free (bin) Surgical outcome in achieving complete tumor removal

Tumor marker CEA measurements (con) Tumor marker used for detection recurrence
The variables are ordered based on their category. The variable types and descriptions are provided. Con, continuous; Cat, categorical; Bin, binary; TNM, TNM-classification; CEA,
Carcinoembryonic antigen; HNPCC, Hereditary Non-Polyposis Colorectal Cancer; 5x5 Gray, 5x5 rectal cancer radiation protocol.
FIGURE 1

The percentage of CEA measurements (non-missing values) in each time point over all patients.
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the impact of outliers and non-normality in the original data. The

final preprocessed dataset consisted of 1927 patients (See

Supplementary Table S2 in Supplementary Material for the

distribution of patients by cancer stage). The dataset was

imbalanced, with the positive class (recurrence) constituting

approximately 15% of the total dataset which equates to

285 patients.
3.3 Experimental setup

3.3.1 Experiment 1 (prognostic models using
static features)

This experiment aims to investigate the influence of static

clinical data on the accuracy of recurrence prediction in patients

with CRC. We evaluated four diverse classifiers: 1) logistic

regression (LR), a linear classifier; 2) support vector machine

(SVM) with a radial basis function kernel, a non-linear classifier;

3) random forest (RF), a decision-tree-based classifier; and

4) gradient boosting (GB), an ensemble model of decision-tree

based classifiers. Furthermore, to identify the key clinical factors

contributing to the recurrence prediction, we applied the

permutation importance technique (18), a model-agnostic

method for assessing feature importance, on the static features

using our top-performing classifier.

3.3.2 Experiment 2 (prognostic models using
static features and step-wise incorporation of
CEA measurements)

This experiment aims to assess the impact of incorporating

CEA measurements alongside static features for recurrence

prediction. We evaluated the performance of the classifiers

introduced in Experiment 3.3.1 using a limited number of CEA

measurements after surgery. In this context, we progressively

incorporated CEA measurements with static features. This

iterative process involved gradually adding individual CEA

measurements at a time to the existing set of static features,

incrementally building a comprehensive set of combined features.

Subsequent to each inclusion of a new CEA measurement, we

trained ML models, outlined in Experiment 3.3, with the updated

input for the prediction. As depicted in Figure 1, by moving beyond

the first 10 CEA measurements, the percentage of measurements

(non-missing values) in each time point over all the patients

significantly decreases. Consequently, we have restricted our

analysis to these initial 10 CEA measurements. This selection

ensures a more reliable and complete dataset, with less than 50%

missing values.

3.3.3 Experiment 3 (the impact of
data imputation)

Considering the presence of missing values in our dataset and

the use of imputation as a preprocessing step, this experiment

examines the impact of data imputation on recurrence prediction.

This is achieved by comparing the performance of the best-

performing classifier, which was applied to the imputed data, with

that of the Histogram-based Gradient Boosting (HGB) classifier.
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Unlike all classifiers used in this study, the HGB classifier can

handle missing values without data imputation. By using the HGB

classifier, we aim to evaluate the impact of its missing value-

handling capabilities on the predictive accuracy of our recurrence

prediction task. Through a comparative analysis, we can assess the

benefits of incorporating the HGB classifier’s missing value-

handling mechanism in our prediction model.

All classifiers were implemented using the Sklearn library (19).

To tackle the challenge of data imbalance, a weighted training

approach was adopted, wherein class weights were set to be

inversely proportional to their frequencies in the dataset.

Hyperparameters for these classifiers were optimized using a grid

search algorithm, which was applied to a validation set to ensure

optimal model performance and generalizability.
3.4 Evaluation

In this study, the samples were randomly divided into training

and testing sets at a ratio of 8:2. All the experiments were repeated

10 times to evaluate the variability in performances and ensure

reliable estimates of the model’s performance. For each repetition,

the following evaluation metrics were calculated to measure the

classification performance:
• Area Under the Curve (AUC): This metric measures the

model’s discriminative power, reflecting its ability to

differentiate between the posit ive and negative

classes accurately.

• Balanced Accuracy (BAC): This metric assesses the

overall accuracy of a classification model, considering

both sensitivity and specificity (20). Unlike traditional

accuracy, which may be misleading in the presence of

imbalanced datasets, BAC is useful when the dataset is

imbalanced. BAC inherently encompasses both specificity

and sensitivity, crucial metrics often employed in evaluating

clinical assay performance. Therefore, in line with prevalent

ML practices (13), while we prioritize models with superior

AUC scores, we also value models with high BAC scores.
4 Results

Table 2 shows that the LR classifier achieved the best

performance of all the ML models trained on the static data, with

an AUC of 0.65 and a BAC of 0.60. Furthermore, the results

indicated a boost in classifiers’ performance upon adding CEA

measurements. Up until the inclusion of the first 7 CEA

measurements, performance enhancements were observed for GB,

RF, and SVM models (AUC and BAC increased by approximately

12–17% and 7–11%, respectively). Conversely, the performance

improvement of the LR model was comparatively more gradual

within the same range of measurements (both AUC and BAC

increased 5%). The improvement rate diminished after the

inclusion of the first 7 CEA measurements.
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As illustrated in Figure 2, for the first 3 post-operative post-

operative CEA measurements, the LR model showed the highest

performance in terms of AUC. Among the employed models, GB

and RF classifiers outperformed other ML classifiers when applied
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to the combination of static and CEA measurements. GB trained on

the combined static data and 10 CEA measurements performed the

best, achieving the highest performance with an AUC score of 0.81

and BAC of 0.73. Furthermore, our results showed that using only

the first 5 post-operative CEA measurements in combination with

static data, the GB model was able to predict recurrence with an

AUC of 0.71. Although this marked a reduction of around 10%

from the final model’s performance, which used the entire dynamic

data, the performance demonstrated an incremental enhancement

with the inclusion of more time points.

Furthermore, the results of permutation importance method

depicted in Figure 3 identified tumor characteristics and

demographic information as key determinants. As expected, p(y)

TNM was the most important feature, demonstrating a substantial

effect on the prediction of recurrence. While p(y)TNM and cancer

stadium are measurements for advanced tumor stages, p(y)TNM

provides a more detailed account of tumor size and metastasis. In

contrast, cancer stadium is a more compressed or simplified version

of the p(y)TNM classification. This simplification is primarily

evident in stage III cancer, where we did not differentiate between

sub-stages A, B, and C but rather considered it as a single stage.

Thus, our analyses suggested that p(y)TNM remains the most

detailed and informative variable for inclusion in the model,

mainly because of its comprehensive detail ing of the

extensiveness of tumor growth and spread. Among other features,

age also showed a significant influence on recurrence prediction,

reinforcing its importance as a prognostic factor (21–24).

As an alternative solution to data imputation, one can use

HGB, which offers a mechanism to handle missing values directly

without the need for data imputation. By comparing the results of

HGB with the best-performing model, GB, which requires data

imputation, we observed that HGB achieved comparable

performance without the additional step of data imputation (see

Figure 4). Using HGB can streamline the modeling pipeline and

simplify the data preprocessing, ultimately leading to more efficient

and reliable predictions.
TABLE 2 AUC and BAC measures of four ML models when trained on
static data, and combination of static data and 10 CEA measurements.

Models Experiment BAC AUC

LR
Static
Static+10 CEA

0.60 ± 0.00
0.64 ± 0.00

0.65 ± 0.00
0.70 ± 0.00

SVM
Static
Static+10 CEA

0.54 ± 0.02
0.68 ± 0.01

0.58 ± 0.02
0.74 ± 0.01

RF
Static
Static+10 CEA

0.58 ± 0.01
0.71 ± 0.02

0.62 ± 0.00
0.77 ± 0.01

GB
Static
Static+10 CEA

0.59 ± 0.02
0.73 ± 0.01

0.60 ± 0.01
0.81 ± 0.02
The values indicating higher performance are highlighted in bold.
FIGURE 2

The mean AUC scores of four ML models on combination of static
features and CEA measurements taken after the date of surgery.
FIGURE 3

GB feature importance via permutation importance method.
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5 Discussion

In this study, we proposed the application of ML for recurrence

prediction in patients with CRC using a combination of

longitudinal CEA measurements with clinical information,

including demographic data, tumor staging, and treatment

parameters. Our best-performing classifier, GB, achieved

remarkable AUC and BAC scores. In summary, the model’s

predictive ability for recurrence, based on limited and early post-

surgical CEA measurements, suggests the potential for devising

personalized monitoring schedules. In addition, our analysis

underscored the significance of demographic information,

including age and sex, as well as tumor attributes such as p(y)

TNM in predicting the risk of recurrence. These findings are

consistent with earlier studies, highlighting a high risk of

recurrence in older patients (21–24) and align with evidence of

an association between advanced tumor stages and an increased risk

of recurrence (21, 25). Furthermore, the analysis suggested that the

impact of comorbidities on recurrence prediction was less

pronounced when compared to these other factors. Furthermore,

we showed that using the HGB model can remove the need for data

imputation while preserving the model’s performance.

One of the major strengths of this study is the large sample size

and the availability of data on a wide range of variables. Our dataset

comprises 1927 patients representing a significant increase in size

compared to datasets used in prior studies (13, 14). The ample

sample size in our dataset supports the application of deep learning.

Considering the presence of temporal information in the

longitudinal CEA measurements, recurrent neural networks are

considered suitable candidates for recurrence prediction in

future studies.

Despite the promising results, this study has several limitations.

We evaluated our models using data collected from a single hospital

while the heterogeneity of patient demographics, disease

presentations, and treatment protocols across different hospitals

and geographic locations can significantly influence model

performance. To address this critical aspect of our research and

ensure the robustness and generalizability of our models, we need to

further validate the developed models on a broader range of patient
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data, reflecting diverse demographic and clinical characteristics.

While the outcomes highlighted in this study are promising, it is

worth noting that these achievements have been obtained by

directly applying ML models to the raw data without involving

any feature extraction processes. This shows the potential inherent

in the original data to contribute to the predictive capabilities of the

models. In future work, we will investigate the advantages of

incorporating feature extraction methods from clinical data. This

could encompass manually curating features that align with domain

knowledge or deploying advanced techniques that enable the

models to learn informative features automatically. Furthermore,

all the analyses were conducted retrospectively. Consequently, the

performance of the model in predicting cancer recurrence on new,

yet-to-be-observed data could not be directly assessed or validated

in real-time. The ability of the model to accurately predict cancer

recurrence in future patients remains to be tested through

prospective studies. By developing an application (26) to

frequently capture patient symptoms in short intervals after

surgery, we can bridge the gap between real-time patient

experiences and medical interventions. Such a system facilitates

timely prediction and management of recurrence and promotes

a patient-centric approach by allowing individuals to participate

in their care actively. The adoption of such platforms has the

potential to revolutionize recurrence prediction and overall

patient management.

Additionally, in future work, we aim to explore integrating

multi-modal healthcare data, recognizing its potential to enhance

the prediction of CRC recurrence. This approach will involve

diverse data types, such as molecular prognostic factors (27) and

incorporation of radiomic analysis (28), each contributing unique

information about the disease’s progression and the prognosis of

the patient. The inclusion of molecular prognostic markers, offers a

deeper understanding of the tumor’s biological behavior. These

markers can provide information about the aggressiveness of the

cancer, its likelihood of recurrence, and potential response to

therapy. Incorporating radiomic analysis into our model can

enhance our understanding of the tumor’s characteristics and its

interaction with surrounding tissues, further refining our

predictions of recurrence risk.
6 Conclusion

CRC remains a significant global health challenge, with a notable

percentage of patients experiencing recurrence after curative surgery.

This study showed the value of CEA as a non-invasive and

efficient marker for recurrence prediction. Through the

application of ML, specifically GB classifier, we demonstrated an

accurate recurrence prediction using comprehensive clinical data

combined with CEA measurements, even when limited to early

CEA measurements. We further showed that age and tumor

characteristics are the most important factors influencing the

risk of recurrence. Finally, we showed that HGB yields

performance comparable to GB for this particular dataset while

eliminating the need for data imputation. As healthcare moves

towards more patient-centric models, the integration of web-based
FIGURE 4

Performance comparison between GB with data imputation and
HGB without data imputation.
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platforms and real-time symptom monitoring will be crucial. The

findings of this study highlight the need for further prospective

studies and show the transformative potential of ML in

revolutionizing patient centered care in CRC management.
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Deciphering the immune-
metabolic nexus in sepsis: a
single-cell sequencing analysis
of neutrophil heterogeneity and
risk stratification
Shaoxiong Jin1†, Huazhi Zhang2†, Qingjiang Lin1, Jinfeng Yang1,
Rongyao Zeng1, Zebo Xu1 and Wendong Sun1*

1Department of Emergency Surgery, The Second Affiliated Hospital of Fujian Medical University,
Quanzhou, Fujian, China, 2Department of Radiology, The Second Affiliated Hospital of Fujian Medical
University, Quanzhou, Fujian, China
Background: Metabolic dysregulation following sepsis can significantly

compromise patient prognosis by altering immune-inflammatory responses.

Despite its clinical relevance, the exact mechanisms of this perturbation are

not yet fully understood.

Methods: Single-cell RNA sequencing (scRNA-seq) was utilized to map the

immune cell landscape and its association with metabolic pathways during

sepsis. This study employed cell-cell interaction and phenotype profiling from

scRNA-seq data, along with pseudotime trajectory analysis, to investigate

neutrophil differentiation and heterogeneity. By integrating scRNA-seq with

Weighted Gene Co-expression Network Analysis (WGCNA) and machine

learning techniques, key genes were identified. These genes were used to

develop and validate a risk score model and nomogram, with their efficacy

confirmed through Receiver Operating Characteristic (ROC) curve analysis. The

model’s practicality was further reinforced through enrichment and immune

characteristic studies based on the risk score and in vivo validation of a critical

gene associated with sepsis.

Results: The complex immune landscape and neutrophil roles in metabolic

disturbances during sepsis were elucidated by our in-depth scRNA-seq

analysis. Pronounced neutrophil interactions with diverse cell types were

revealed in the analysis of intercellular communication, highlighting pathways

that differentiate between proximal and core regions within atherosclerotic

plaques. Insight into the evolution of neutrophil subpopulations and their

differentiation within the plaque milieu was provided by pseudotime trajectory

mappings. Diagnostic markers were identified with the assistance of machine

learning, resulting in the discovery of PIM1, HIST1H1C, and IGSF6. The

identification of these markers culminated in the development of the risk score

model, which demonstrated remarkable precision in sepsis prognosis. The

model ’s capability to categorize patient profiles based on immune

characteristics was confirmed, particularly in identifying individuals at high risk

with suppressed immune cell activity and inflammatory responses. The role of

PIM1 in modulating the immune-inflammatory response during sepsis was
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further confirmed through experimental validation, suggesting its potential as a

therapeutic target.

Conclusion: The understanding of sepsis immunopathology is improved by this

research, and new avenues are opened for novel prognostic and

therapeutic approaches.
KEYWORDS

sepsis, single-cell sequencing, neutrophils, metabolic dysregulation, risk score model
Introduction

Sepsis is a life-threatening condition characterized by a

dysregulated host response to infection, which can lead to organ

dysfunction. Globally, sepsis is estimated to affect over 30 million

people annually, potentially resulting in 6 million deaths (1).

Currently, the management of sepsis relies on prompt antibiotic

therapy, removal of the infection source, and supportive measures

to maintain hemodynamic stability and preserve organ function (2).

However, patient-specific response variability complicates

management, reflecting the limited understanding of sepsis

pathogenesis and signaling the need for more effective,

individualized treatment approaches. Tailored therapies, founded

on patient-specific biomarkers and stratification based on

immunological or genetic profiles, can enhance effectiveness and

reduce the likelihood of adverse effects.

Sepsis initiates a dynamic immune response that evolves over

time, marked by concurrent pro-inflammatory and anti-

inflammatory processes. Consequently, most sepsis patients

rapidly exhibit signs of profound immune suppression, resulting

in detrimental outcomes (3). Recent research has emphasized the

significance of metabolic dysfunction, epigenetic changes, myeloid-

derived suppressor cells, immature neutrophils with suppressive

properties, and immune variations in main lymphoid organs during

sepsis (4–6).

Metabolic dysfunction plays a crucial role in the initiation and

progression of sepsis. During sepsis, the body undergoes an

advanced level of metabolic emergency which can potentially lead

to organ dysfunction (7). Metabolic shifts are prominently observed

in various cell types during sepsis, particularly as immune cells

undergo transformation. Cellular metabolism, which exhibits

variable metabolic profiles across different cell types and stages of

the disease, plays a key role in the immune dysregulation and organ

failure associated with sepsis (3, 8). Metabolic reprogramming,

wherein glycolysis supersedes oxidative phosphorylation

(OXPHOS) as the primary source of energy production, is crucial

for immune cell activation while simultaneously contributing to

immunosuppression (9). Additionally, metabolites from OXPHOS

and glycolysis may serve as signaling molecules, modulating the

immune response throughout sepsis. The “energy crisis” induced by
0264
sepsis leads to impaired cellular functions and potentially severe

organ dysfunction (10). Although metabolic reprogramming can

partially mitigate this energy deficit, fostering host tolerance and

enhancing cell survival, reversion to OXPHOS is imperative for

cellular function restoration (11). In the intricate landscape of

molecular and cellular biology, significant rewiring of metabolic

pathways and epigenetic modifications has been identified as a

pivotal factor in triggering and perpetuating immune system

changes linked to sepsis. These alterations precipitate profound

changes in gene expression patterns which lie at the heart of sepsis-

induced immunological transformations (12). From a broader

perspective, immune cells require metabolic profile alterations to

achieve effective functionality. These metabolic changes are

tentatively linked to the progression of immune responses during

sepsis (13). This metabolic deceleration is akin to the cellular

hibernation noted in organ dysfunction related to sepsis (14).

Therefore, exploring the interplay between metabolism and

immunity in the context of sepsis is a critical area of research,

pivotal for identifying novel therapeutic targets to restore immune

homeostasis following sepsis.

In this study, scRNA-seq was employed to investigate the

immune cell composition of sepsis patients, revealing a specific

enrichment of immune cell types. The application of the MuSiC

algorithm and intercellular communication assessments uncovered

notable interactions among immune cells, highlighting the crucial

role of neutrophils in sepsis and their connection to metabolic

activity. The analysis of neutrophil heterogeneity has led to the

identification of four distinct subtypes, each characterized by unique

functional attributes. Furthermore, the developmental trajectories

of neutrophils were traced, leading to the identification of essential

genes and the characterization of subpopulation lineage

differentiation. By utilizing WGCNA, gene co-expression

networks were constructed to identify significant genes for further

investigation. Gene enrichment assays were then performed to

elucidate the biological functions of these genes. Machine learning

algorithms were employed to identify potential biomarkers for

atherosclerosis, leading to the development of a diagnostic model

with enhanced predictive capabilities. Using a customized riskScore

model, we stratified patients based on their risk profiles and

investigated the molecular and immune characteristics associated
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with different risk levels. The validation of characteristic genes in

vivo sepsis models underscored the significance of these targeted

genes in the disease’s pathology.
Methods

Acquisition of raw data

scRNA-seq data of peripheral blood from a cohort of five

healthy individuals and four patients with advanced-stage sepsis

were retrieved from the Gene Expression Omnibus (GEO)

repository, specifically under accession number GSE175453.

Concurrently, aggregated transcriptomic datasets associated with

sepsis were acquired from GEO (accession numbers: GSE65682,

GSE95233, GSE63042) and the ArrayExpress database (accession

number: E-MTAB-5273). After the acquisition, these datasets

underwent a logarithmic transformation to base 2 and

normalization utilizing the Robust Multi-array Average (RMA)

algorithm available within the “affy” package in the R

statistical environment.
scRNA-seq data processing and
cell annotation

Utilizing the R package “Seurat,” single-cell RNA sequencing

(scRNA-seq) data was analyzed with meticulous attention to

precision. Initially, the dataset underwent a rigorous gene filtering

process where only genes present in no fewer than three individual

cells were considered for further examination. This initial step

ensures that the focus remains on genes with sufficient

representation across the cell population, thus enhancing the

robustness of downstream analyses. Concomitantly, cells were

filtered based on their gene expression profiles, retaining cells that

exhibited an expression range of 200 to 3000 genes. This specific

criterion was set to exclude cells with abnormally low or high gene

counts, which could otherwise introduce noise into the dataset.

Additionally, cells were subjected to further filtering based on

two additional parameters: the total RNA count (nCount_RNA)

and mitochondrial gene expression. Specifically, a threshold was

established to retain cells with an nCount_RNA below 20,000 to

exclude potential doublets or multiplets that could distort the

results. Mitochondrial gene expression was also monitored and

kept under 10%, as an elevated mitochondrial gene percentage is

often indicative of low-quality or dying cells. These stringent

filtering criteria ensured that only high-quality cells were retained,

culminating in a dataset comprising 40,584 cells deemed suitable for

advanced analyses.

To prepare the selected cell population for subsequent steps, the

data was normalized and scaled using Seurat’s “NormalizeData”

and “ScaleData” functions. Normalization adjusted the gene

expression measurements for each cell to account for differences

in sequencing depth, resulting in the expression levels on a

comparable scale across all cells. Scaling further refined these

measurements by centering the data and scaling each gene to unit
Frontiers in Immunology 0365
variance, thereby mitigating the effects of any highly variable or

abundant genes.

Following this preliminary processing, the most variable genes

were identified to capture the underlying biological heterogeneity

within the cell population. Using the “FindVariableFeatures”

function in Seurat, the top 3,000 genes exhibiting the highest

variability across the dataset were pinpointed. Given the dataset’s

multi-sample origin, it was crucial to address potential batch effects

that could confound the analyses. This was achieved using the

“RunHarmony” function, which harmonizes the data across

different samples, thereby reducing batch-induced biases.

Subsequent dimensionality reduction was performed using

principal component analysis (PCA), a technique that enables the

condensation of the data’s complexity by projecting it into a set of

orthogonal components. We focused on the top 20 principal

components, which encapsulated the most significant variance in

the dataset. To further elucidate cell population structures, these

components were subjected to t-distributed stochastic neighbor

embedding (t-SNE) analysis, which projected the high-

dimensional data into a two-dimensional space. This visualization

technique facilitated the discernment of significant cellular

conglomerates and patterns.

In the clustering phase, Seurat’s “FindNeighbors” and

“FindClusters” functions were executed, with the latter set to a

resolution parameter of 0.3. This clustering approach partitioned

the cells into 13 distinct clusters. The resolution parameter was

tuned to balance the granularity of the clusters, ensuring a

meaningful yet interpretable clustering outcome. The resulting

clusters were visually represented in a t-SNE plot, providing an

intuitive overview of the cellular landscape.

Subsequent cluster annotation involved a thorough manual

examination, wherein each cluster was classified into major cell

types based on established marker gene profiles. Marker genes serve

as distinctive identifiers for various cell types, allowing for accurate

classification. To characterize the markers within each cellular

contingent, the “COSG” package in R was employed. The

parameters were specifically configured with a mean expression

threshold of 10 and a user-defined gene count of 100, facilitating a

comprehensive and precise marker characterization essential for

downstream biological interpretations.
Evaluation of metabolic activity at single-
cell resolution

In each cell population, the metabolic processes of singular cells

were mapped and measured utilizing the ‘scMetabolism’ package in

R, a cutting-edge tool designed for single-cell metabolic activity

quantification (15). This tool processes a matrix of single-cell data,

employing the VISION algorithm to assess individual cell metabolic

pathway scores. Embedded within the ‘scMetabolism’ tool are the

comprehensive KEGG and Reactome pathway databases. Before the

metabolic examination, the dataset underwent a uniform

transformation. The VISION algorithm played a pivotal role in

computing the metabolic scores. Comparative analysis of metabolic

activities across different cellular groupings pinpointed pathways
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with notable variances. For this investigation, the analysis harnessed

KEGG metabolic gene sets coupled with the “VISION” technique.

Subsequently, for graphical representation, we utilized the

“DotPlot.metabolism” and “BoxPlot.metabolism” functions.
Annotating cell types in bulk RNA
−seq dataset

Single Cell Multi-Subject (SCMS) serves as an effective

approach to determining the prevalence of distinct cell

populations. This methodology applies gene expression profiles

particular to each cell type obtained from scRNA-seq to ascertain

the comparative frequency of a range of cell subsets within a

composite RNA-seq dataset. To appraise the respective

contributions of cell types within aggregate peripheral blood

samples, a uniform procedure was employed. Subsequently, the

variations across diverse cell categories among different cohorts

were graphically represented.
Trajectory analysis

The differentiation pathways within the identified cell clusters

were examined using the Monocle2 algorithm (16). To isolate the

cell clusters of interest, we employed the “subset” function from the

Seurat package, followed by the construction of a CellDataSet object

with the “newCellDataSet” method in Monocle2, setting the

“lowerDetectionLimit” to 0.5. To enhance the quality of the

dataset, low-quality cells and genes were filtered out by

employing the “detectGenes” and “subset” methods with the

“min_expr” threshold set at 0.1. This step occurred after size

factor computation and dispersion estimation. Differential gene

expression along the determined trajectories was identified using

the “differentialGeneTest”. Dimensionality reduction was

accomplished through the “reduceDimension” function,

leveraging the “DDRTree” approach. For visualization, functions

such as “plot cell trajectory”, “plot genes in pseudotime”, and “plot

genes branched heatmap” were implemented following cell

ordering. Additionally, a CytoTRACE analysis, which is a method

for the unsupervised prediction of cells’ relative differentiation

states from their single-cell transcriptomes, was conducted (17).

This analysis was carried out using the default parameters specified

in recommended protocols to augment our understanding of cell

trajectory. Visualization of the results was achieved through the

“plotCytoGenes” and “plotCytoTRACE” functions.
Cell communication analysis

The “Cel lChat” R package (ava i l ab le a t h t tps : / /

www.github.com/sqjin/CellChat) (4) facilitated the construction

of CellChat objects, with the UMI count matrices pertinent to

each subset (Normal and AD) serving as the foundation. The

“CellChatDB.human” database was prioritized for ligand-receptor

pairings during the analysis. The examination of cellular
Frontiers in Immunology 0466
communication was executed with the preconfigured default

settings. Subsequently, to discern the cumulative interaction count

and the comparative intensity of these interactions, CellChat objects

respectively to each subset were amalgamated via the

“mergeCellChat” command. To display the variances in

interaction numbers or strengths across different cellular types

between Normal and AD groups, both “compareInteractions” and

“netVisual_circle” functions were employed. Lastly, the

“netVisual_bubble” function allowed for the illustration of the

signaling gene expression distribution across the groups.
WGCNA analysis

WGCNA, a method used for the construction of gene co-

expression networks in GSE65682, was facilitated by the WGCNA

package in R. The steps for processing were as outlined: initially,

genes with missing values were fi ltered out using the

‘goodSamplesGenes’ function. An optimal soft-thresholding

power was then visually selected to ensure a robust network

construction. Subsequently, the gene expression data were

transformed into an adjacency matrix, and this was further

converted into a topological overlap matrix (TOM) to map out

genetic interconnections. By examining TOM dissimilarities, genes

were clustered using average linkage hierarchical clustering. The

clustering dendrogram was dynamically cut to delineate highly

correlated modules. The module eigengenes (MEs) served as the

representative core of each gene cluster, capturing the module’s

overall gene expression profile. The association between MEs and

clinical traits was assessed using Pearson correlation to establish

their relevance. In conclusion, the focus was on genes within

modules that exhibited the strongest correlation to the

sphingolipid score for downstream investigation.
Construction and validation of the
risk scoring

To conduct a univariate examination of the intersecting genes

to uncover those statistically linked to the patient’s overall survival

rate, a significance threshold of P<0.05 was adopted. This analysis

was implemented using R, initiating with data preparation which

involved importing the gene expression and survival data into R.

After ensuring proper data structuring with the ‘survival’ package,

univariate Cox proportional hazards regression was employed. This

facilitated the identification of genes with significant prognostic

value based on their P-values being less than 0.05 through the

coxph function.

Subsequent refinement involved leveraging the LASSO (Least

Absolute Shrinkage and Selection Operator) Cox regression

analysis, carried out using the ‘glmnet’ package. Here, a matrix

was constructed from the expression data of the significant genes

identified from the univariate analysis, and a corresponding

response vector containing survival times and event status was

prepared. With the LASSO method being sensitive to the values’

scales, standardization was ensured before model fitting. The model
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fitting was performed using the cv.glmnet function to identify the

optimal parameters via cross-validation, focusing on the lambda

value that minimized the cross-validated error (17, 18). Through

coef, the best set of genes and their associated risk coefficients,

having significant associations with patient outcomes, were selected.

For survival analyses, the log-rank (Mantel-Cox) methodology

was operationalized to find the gene group with the most significant

prognostic value. This process was facilitated through the survdiff

function, which compared survival curves across different gene

expression groups, and the gene group achieving the lowest P-

value was noted.

Risk scores for each sepsis patient were subsequently calculated

from the coefficients derived from the log-rank test. These scores

allowed for stratification of patients into high-risk and low-risk

groups based on the median value of the risk scores, ensuring clear

demarcation between the two cohorts.

Kaplan-Meier plots, generated using the survfit function from the

‘survival’ package, visually represented the survival probabilities over

time for both risk groups, providing a clear prognosis evaluation

through survival curves. To further scrutinize the predictive model’s

performance, ROC (Receiver Operating Characteristic) curves were

constructed using the ‘pROC’ package, focusing on the measurement

of sensitivity and specificity across varying thresholds.

Finally, the robustness and generalizability of the derived

prognostic signature were assessed across four independent

datasets. The model’s Area Under the Curve (AUC) values were

calculated using roc function from the ‘pROC’ package, serving as a

critical validation measure to confirm the model’s consistent

performance across different patient cohorts.
Assessment of the prognostic model

To estimate the 28-day overall survival probabilities, a

predictive nomogram was constructed, which includes age,

gender, and a composite risk score as separate prognostic

determinants. To assess the predictive precision of the

nomogram, calibration plots were generated. Additionally, the

clinical utility and added value of the nomogram were evaluated

through decision curve analysis (DCA), comparing its net benefit to

the use of clinical characteristics in isolation.
Enrichment analysis

Utilizing the “clusterProfiler” R package, as previously specified

in the literature (8), we executed enrichment analyses for the KEGG

and GO. The scope of the GO biological function covered three

domains: BP, MF, and CC. To determine statistical relevance, p-

values less than 0.05 were identified as significant.

Furthermore, the Gene Set Variation Analysis (GSVA) was

conducted using the ‘GSVA’ R package to elucidate the heterogeneity

of biological processes and the activity of various pathways (19). For

GSVA, hallmark gene sets from the MSigDB database were selected as

the targeted gene sets. The “limma” R package was instrumental in

identifying significant differences between biological functions and
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signaling pathways, with the threshold for statistical significance set

to GSVA scores exceeding an absolute t-value of 2.

Additionally, gene set enrichment analysis (GSEA) was

conducted to probe the differences in pathway activities, using

“clusterProfiler” (20). Pathway activities were ranked according to

the Normalized Enrichment Score (NES), with a p-value below 0.05

maintained as the criterion for statistical significance.

Lastly, the activity scores of key disease-related signaling pathways

across different cohorts were assessed using the progeny R package,

with p-values under 0.05 considered to ascertain statistical significance.
Assessing the scores of
different phenotypes

To discern the distinct phenotypic signatures—namely, those

relevant to cholesterol efflux, lysosomal activity, endoplasmic

reticulum (ER) stress, angiogenesis, phagocytic function, hypoxic

response, acute inflammation, autophagy, and ferroptosis—

pertinent gene markers were retrieved from the Molecular

Signatures Database (MSigDB). Subsequently, we employed the

AUCell algorithm, applying its standard parameters, to calculate

phenotype-associated scores across various groups. This process

was facilitated by utilizing the irGSEA package.
Sepsis immunity

The levels of immune cell infiltration were analyzed utilizing the

ssGSEA method incorporated within the GSVA softwere (9). In

essence, the relative proportions of diverse immune cells were

quantified across all samples by leveraging universally recognized

gene markers. Subsequently, these algorithms were implemented to

ascertain the degree of enrichment or relative quantities for each

category of the immune cell. Assessment of the variations in

immune cell infiltration across different groups was performed

using the Wilcoxon rank-sum test. To depict the extent of

immune cell penetration within each AD specimen, divided by

algorithm, heatmaps served as a visual aid. Furthermore, the

“ESTIMATE” R script played a role in deducing the levels of

immune infiltration in patients afflicted with sepsis. Moreover,

immune checkpoints consist of an array of molecules such as

those involved in antigen presentation, cellular adhesion, co-

inhibition, co-stimulation, ligand engagement, and receptor

activity—found on immune cells—which modulate the intensity

of the immune response. As critical regulators in averting overactive

immune responses, we scrutinized and contrasted the expression

rates of renowned immune checkpoint genes between the cohorts.
Establishment and verification of a sepsis
rat model with altered PIM1 expression

To investigate the role of PIM1 in sepsis, two cohorts of

Sprague-Dawley male rats weighing 250-300g were developed.

These animals were raised in a controlled environment with
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regulated temperature, humidity, and a 12-hour light/dark cycle,

and were given unrestricted access to food and water. The animal

procedures were approved by the animal ethics committee of Fujian

Medical University. The sepsis condition was induced via the well-

established cecal ligation and puncture (CLP) technique, which was

performed under aseptic conditions and after administering

anesthesia (50 mg/kg sodium pentobarbital intraperitoneally). The

cecum was ligated, punctured while preserving intestinal continuity,

and then returned to the abdomen. Sham-operated rats received all

surgical interventions except the CLP procedure. Postoperative care

included rehydration through subcutaneous administration of

saline. After 24 hours post-operatively, whether CLP or sham, the

rats were sedated, and peripheral blood was drawn from the heart

into EDTA tubes, subsequently centrifuged, and the samples were

preserved for future examination.

For a detailed study on the role of PIM1 in sepsis, a model with

diminished PIM1 expression was additionally created via in vivo

silencing. Adenoviral vectors containing shRNA sequences that

specifically target the PIM1 gene in rats (shPIM1) were employed,

in comparison with a non-targeting control shRNA sequence

(shNC), both of which were procured from RiboBio, located in

Guangzhou, China. The experimental group rats were injected via

the tail vein with about 30 billion PFU of shPIM1 in 200 mL saline,

whereas the control group received an equivalent dosage of shNC.

The potency of gene suppression was evaluated on the 14th day

following injection through qRT-PCR. Blood RNA isolated with

Trizol reagent was subjected to qRT-PCR with PIM1-specific

primers for quantitative expression analysis. On the day of

analysis, sepsis was induced in the genetically altered subjects,

and blood samples were taken using the same collection and

preservation method as before for further analysis.
RT-qPCR

Peripheral blood samples were used to isolate total RNA

employing Trizol reagent (Life Technologies, USA). The isolated

RNA was subsequently reverse-transcribed to cDNA using the

RevertAid First Strand cDNA Synthesis Kit, following the

manufacturer’s protocol. Quantitative RT-PCR analyses were

performed with the ABI PRISM 7500 system (Applied

Biosystems, USA) using the SYBR Premix EX Taq (Takara,

Japan) kit. The relative quantification of mRNA expression levels

was achieved by normalizing the CT values of the target gene

against those of b-actin, with results presented as relative fold

changes calculated by the comparative 2-DDCT method.
Enzyme-linked immunosorbent assay

Peripheral rat blood was collected and the concentrations of

cytokines IL-17A, IL-6, TNF-a, and IL-10 were measured using

ELISA following protocols supplied by R&D Systems, USA. The

blood samples were centrifuged at 2000g for 10 minutes and the

supernatants were subsequently harvested for analysis. A reagent

diluent was dispensed into each microplate well before the addition
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of either a blood sample or a standard control. The microplates were

sealed and incubated for 2 hours at ambient temperature. After

incubation, the contents of the wells were discarded, and the wells

were washed thrice. A conjugate reagent (100 µL) was then added to

each well, followed by a secondary incubation at room temperature

for 2 hours. A subsequent aspiration and washing step was

performed before the addition of 100 µL of substrate solution to

each well. After a 20-minute incubation, the enzymatic reaction was

halted with 50 µL of stop solution. Optical densities at 450 nm were

immediately recorded using a spectrophotometer. Cytokine

concentrations were quantified against established standard curves.
Statistical analysis

The R platform was utilized for the management and

calculation of our dataset and statistical figures. The survival

comparison across the two cohorts was conducted by analyzing

Kaplan-Meier plots in conjunction with a log-rank assessment. The

‘ggsurvplot’ package in R facilitated the construction of all survival

plots. Prognostic determinants were assessed through univariate

Cox regression. The Lasso technique within Cox regression was

applied to pinpoint factors with a more substantial impact on the

outcomes. Visualization of data points was conducted using ggplot2

in R, while overall survival computations were performed with the

survival package. To deduce the association between a pair of

continuous variables, Spearman’s rank correlation was executed.

The disparities in continuous data between the cohorts were probed

via either the Wilcoxon rank-sum test or the two-tailed t-test. Chi-

square assessments were put to use for the analysis of categorical

variable differences between groups. All statistical evaluations were

conducted within the R environment. A P-value below 0.05 was

regarded as a threshold for statistical significance.
Result

scRNA-seq analysis of GSE175453

The methodology of this study was delineated in a flowchart

(Figure 1). scRNA-seq analysis was employed to extensively

characterize the immune cell landscape within the dataset

GSE175453. After quality control, a total of 40,584 high-quality

cells were obtained, with 22,196 cells derived from healthy controls

and 18,388 from sepsis samples, all deemed appropriate for further

analysis. Figure 2A illustrates the distribution of cell clusters in

GSE175453, revealing 15 clusters and 11 immune cell types,

categorized as follows: Neutrophils (CD3FR-marked), CD4^+ T

cells (CD4-marked), CD8^+ T cells (CD8B-marked), Natural Killer

(NK) cells (GNLY-marked), megakaryocytes (TUBB1-marked),

macrophages (C1QA-marked), B cells (MS4A1-marked),

dendritic cells (DCs; FCER1A-marked), mast cells (CPA3-

marked), plasma cells (DERL3-marked), and monocytes (VCAN-

marked) with respective cell counts shown in Supplementary Figure

S1. The distribution of these cell clusters within each sample,

control group, and sepsis group is depicted in Figures 2B-D,
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FIGURE 1

The study flow chart.
B

C D

E

F

A

FIGURE 2

scRNA-seq cell annotation. (A) The UMAP plot display distribution of the cell clusters of GSE175453. (B)The UMAP plot display distribution of the cell
clusters of 5 Healthy control and 4 late septic patients. (C) The UMAP plot display distribution of the cell types of Healthy control. (D) The UMAP plot
display distribution of the cell types of late sepsis patients. (E) A heatmap displayed the distribution of the top 6 differentially expressed genes specific
to different cell subtypes. (F) Cell type fractions of 5 Healthy control and 4 late septic patients.
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respectively. Furthermore, Figure 2E illustrates the six most

characteristic genes for each cell type, and Figure 2F depicts the

proportional representation of each cell type across all samples in

dataset GSE175453.
Evaluation of metabolic activity at single-
cell resolution

In this section, the metabolic activities of individual cells in

transcriptomic dataset GSE175453 are analyzed. Diverse cell types

exhibited enrichment in distinct metabolic pathways, reflecting

their unique metabolic roles in the context of sepsis. To

summarize, B cells are associated with the one-carbon pool by

folate metabolism, CD4+ T cells with drug metabolism involving

other enzymes and the pentose phosphate pathway, and CD8+ T

cells with propanoate metabolism, as well as cysteine and

methionine metabolism. Dendritic cells (DC) were linked to

oxidative phosphorylation, glycolysis/gluconeogenesis, drug

metabolism involving other enzymes, and cysteine and
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methionine metabolism. Macrophages were noted for oxidative

phosphorylation, while mast cells were involved in riboflavin

metabolism, porphyrin, and chlorophyll metabolism, phosphonate

and phosphinate metabolism, nitrogen metabolism, and fatty acid

biosynthesis. Megakaryocytes were related to glutathione

metabolism and arachidonic acid metabolism, monocytes to

pantothenate and CoA biosynthesis, neutrophils to the pentose

phosphate pathway, natural killer (NK) cells to fatty acid

elongation, and plasma cells to propanoate metabolism,

phenylalanine metabolism, oxidative phosphorylation, N-Glycan

biosynthesis, and cysteine and methionine metabolism (Figure 3A).

The metabolic pathway activity for each cell type is presented in

Figure 3B. Neutrophils, CD8+ T cells, B cells, and monocytes

demonstrated relatively low metabolic activity, whereas NK cells,

plasma cells, and mast cells exhibited higher activity. Notably,

compared to the control group, the metabolic activity in the

immune cells from the sepsis group was significantly reduced

(Figure 3C). Moreover, the differentially enriched pathways

among the global cell subtypes are depicted in Figure 3D.

Additionally, variations in classical phenotypes between the
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FIGURE 3

Evaluation of metabolic activity at single-cell resolution (A) Dot plots showing differentially metabolic pathways among the global cell subtypes.
(B) Boxplot showing the metabolic pathway activity among the global cell subtypes. (C) Boxplot showing the metabolic pathway activity between
control and sepsis group. (D) Heatmap showing the differentially enriched pathways among the global cell subtypes. (E) Boxplots showing
phenotypic scores (cholesterol efflux, lysosome, endoplasmic reticulum stress, angiogenesis, phagocytosis, hypoxia, acute inflammatory response,
autophagy, and ferroptosis) between control and sepsis groups. **p < 0.01; ****, P < 0.0001.
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control and sepsis groups were analyzed, revealing that phenotypes

such as cholesterol efflux, angiogenesis, phagocytosis, autophagy,

and lysosome activity were more pronounced in the control group,

whereas hypoxia, acute inflammatory response, and endoplasmic

reticulum stress were predominantly observed in the sepsis group

(Figure 3E). In conclusion, the findings indicated that metabolic

activity is suppressed during sepsis. Among the cell types studied,

neutrophils exhibit the lowest metabolic activity, suggesting that

neutrophil function may critically regulate metabolic processes in

the context of sepsis.
Intercellular communication analysis of
neutrophils in sepsis

The distribution of cell subgroups in the bulk transcriptome

dataset GSE65682 was estimated within the single-cell set using the

MuSiC algorithm. Notably, it was observed that neutrophils were

most prominently enriched in the sepsis group, correlating

significantly with metabolic activity (Figure 4A). Therefore, in

subsequent analyses, Neutrophil was separately extracted for

further analysis. In the subsequent analysis, cellular interactions

between neutrophils and other cell types were investigated in both

control and sepsis groups. As illustrated in Figure 4B, a greater

number of inferred interactions between neutrophils and other cells
Frontiers in Immunology 0971
were observed in the control group, whereas the interaction

strength, depicted in Figure 4C, was found to be weaker. In the

control group, Neutrophils showed intensive interaction strength

and large interaction number with CD4+ T cell, CD8+ T cell, B cell,

plasma, macrophage, and Neutrophil (Figure 4D). In the sepsis

group, Neutrophil displayed strong interaction strength and large

interaction number with CD4+ T cell, CD8+ T cell, NK cell, B cell,

macrophage, megakaryocyte, DC, mast cell, monocyte, plasma, and

Neutrophil (Figure 4E). The significant ligand-receptor pairs

between neutrophils and other cell types were subsequently

further explored. Functions as a ligand, Neutrophil strongly

increased the activity of RETN-CAP1 to interact with the

majority of receptor cells (CD4+ T cell, CD8+ T cell, NK cell,

macrophage, megakaryocyte, B cell, DC, and plasma cell) in the

sepsis group and lightly decreased the activity of ANXA1-FPR1

interact with CD4+ T cell (strong), GRN-SORT1 interact with

macrophage (light), TNFSF13B-TNFRSF17 interact with plasma

cell (light). While Neutrophil only up-regulated TNFSF13B-

TNFRSF17 as ligands to interact with plasma cell in control

group and decreased the activity of ANXA1-FPR1 interact with

CD4+ T cell (strong), MIF-(CD74+CXCR4) interact with CD8+ T

cell and plasma cell (light), GRN-SORT1 interact with macrophage

(light), MIF-(CD74+CD44) interact with B cell (strong) (Figure 4F).

Nevertheless, while acting as a receptor, Neutrophils connected

with plasma cells by up-regulating MIF-(CD74+CD44) (strong) in
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FIGURE 4

Intercellular communication analysis of Neutrophil in sepsis. (A) The distribution of cellular subpopulations within the single-cell cluster in the bulk
transcriptome dataset GSE65682. The bar graph illustrates the numbers of inferred interactions (B) and interaction strength (C) between neutrophils
and other cells in the control and sepsis groups in GSE175453. (D) The strength of interaction between Neutrophil and other cells in the control
group in GSE175453. (E) The strength of interaction between Neutrophil and other cells in the sepsis group in GSE175453. (F) The neutrophil
functions as a ligand that mediates intercellular communication in sepsis. (G) Neutrophils functions as a receptor in the pathogenic intercellular
communication in sepsis.
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both sepsis and control group, but connected with CD8+ T cell, NK

cell, B cell, and DC by down-regulating MIF-(CD74+CD44) in both

sepsis and control group (Figure 4G). In this section, intensive

communication between neutrophils and other cell types,

particularly within the sepsis group, was observed.
The development trajectory of neutrophils
from control and sepsis samples

To further elucidate the dynamics of the immune response, a

pseudoprime developmental trajectory analysis was conducted on

neutrophils, with the objective of fitting the most optimal trajectory

curve of cellular development or differentiation in sepsis. This

analysis inferred the lineage structure of neutrophils within the

atherosclerotic plaque milieu based on the developmental

trajectory. As time advanced, the pseudotime analysis delineated

the principal evolutionary trajectory of neutrophils, which

bifurcated into two unique cellular fates (Figure 5A).

Subsequently, the developmental trajectories of neutrophils were

segregated into control and sepsis groups. Predominantly,

neutrophils from the control group were clustered within cellular

fate 1, whereas those from the sepsis group were sparsely distributed

between both cellular fate 1 and 2 (Figure 5B). Neutrophils from the
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sepsis group were classified into three distinct differentiation states

(Figure 5C). Furthermore, the differential expression of specific

genes (S100A9, VCAN, and IFITM2) was validated within the

sepsis trajectory. Of these, S100A9 showed high expression in

state 3, with VCAN being chiefly expressed in states 1 and 3, and

IFITM2 uniformly present in all three states (Figure 5D). The

trajectories of lineage-dependent gene expression patterns,

accompanying cellular transformations, were further visualized in

Figure 5E. CytoTRACE predictions suggested neutrophils in states

2 and 3 possess a higher potential for differentiation in sepsis,

contrasting with those in state 1 who showed minimal potential

(Figure 5F). Finally, the phenotypes present within the three cellular

states were illustrated, with state 3 incorporating the widest

spectrum of phenotypes and state 2 encompassing the

narrowest (Figure 5F).
Identification of characteristic genes

The WGCNA algorithm was employed to construct a gene co-

expression network for GSE65682. By using an optimal soft-

thresholding power (b) of 9, a hierarchical clustering algorithm

was implemented on the sample data, leading to the identification of

nine unique gene co-expression modules, each differentiated by
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FIGURE 5

Development trajectory of neutrophils from control and sepsis samples. (A-C) The developmental trajectory of neutrophils, colored-coded by the
pseudotime (A), group (B), and states (C). (D) Representative gene expression in neutrophils during sepsis initiation and progression. Intensity of
color indicates normalized gene expression. (E)Heatmap showing different blocks of DEGs in each cell fate along the pseudotime of sepsis initiation
and progression, colored by cell fates. (F) Development trajectory of neutrophils colored by the CytoTRACE scores and Phenotype.
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color, in the clustering dendrogram (Figures 6A, B). Interestingly,

the black module showed the most significant correlation (R=-0.77)

with neutrophils, yielding a total of 1,089 genes for further scrutiny

(Figure 6C). The development trajectory analysis of neutrophils

provided 444 neutrophil Differentiation-Related Genes (NDRGs).

Following this, an intersection of data from WGCNA and the

trajectory analysis resulted in the recognition of 29 characteristic

genes, as portrayed in Figure 6D.

In the next step, enrichment analyses were carried out to

illuminate the potential biological functions of these 29 genes. GO

analysis revealed that these genes have a wide-ranging involvement

in BP, such as the metabolic process of porphyrin-containing

compounds and heme. In terms of CC, the genes could be found

in ubiquitin ligase complex, cullin-RING ubiquitin ligase complex,

and basal plasma membrane, among others. With regards to MF,

these genes were involved in activities such as ubiquitin-protein

transferase and ubiquitin-like protein transferase (Supplementary

Figure S2A). Additionally, the KEGG analysis uncovered

substantial enrichment in areas such as bacterial and viral

infections, and metabolisms of substances inside and outside cells

(Supplementary Figure S2B).
Construction of neutrophils related
riskScore system in sepsis

The univariate Cox proportional hazards analysis was

performed on 29 NDRGs, revealing 12 genes that demonstrated a

statistically significant association with the overall survival of
Frontiers in Immunology 1173
patients in the bulk sepsis transcriptome data GSE65682

(represented as a univariate analysis hazard ratio [HR])

(Figure 7A). This was followed by the least absolute shrinkage

and selection operator (LASSO) Cox regression analysis and the

log-rank (Mantel-Cox) tests to refine the identification of survival-

associated genes (Figures 7B–E). The analysis culminated in the

identification of three hallmark genes (IGSF6, HIST1H1C, and

PIM1), based on which the neutrophil-related riskScore model

was created. The riskScore calculation is (-0.3196490 × IGSF6) +

(0.1483832 × HIST1H1C) + (0.3325431 × PIM1). Patients from the

bulk sepsis transcriptome data were divided into high- and low-risk

categories using the median riskScore.
The evaluation of the riskScore system

The effectiveness of the riskScore-based prognosis predictive

model was evaluated using survival analysis, exhibiting consistency

across all assessments. The prediction accuracy of riskScore

reflected robustly in the four datasets: GSE65682, GSE63042,

GSE95233, and E-MTAB-5273) with AUC values for 28-day

mortality exceeding 0.65 (Figures 8A–D). This high accuracy

continued to prevail in combined dataset evaluations for 7, 14, 21,

and 28-day mortality, wherein AUC values all surpassed 0.65

(Figure 8E). Further division of sepsis samples into two risk

categories, high-risk and low-risk, revealed trends of reduced

mean survival periods in high-risk patients, often succumbing in

the early illness phase. Low-risk patients revealed a consistent

increase of IGSF6 expression as opposed to their high-risk
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FIGURE 6

Identification of characteristic genes. (A) Ideal soft threshold for adjacency computation of WGCNA. (B) Dendrogram of co-expression module
clustering. (C) The WGCNA analysis investigated the modules of with the most remarkable correlation to neutrophils. (D) Interaction of characteristic
genes screened from WGCNA and development trajectory analysis of neutrophils.
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counterparts who showed increased expressions of PIM1 and

HIST1H1C (Figure 8F). Interestingly, survival analysis reiterated

the enhanced survival probabilities for low-risk patients compared

to high-risk patients (Figure 8G).

In addition, a prognostic nomogram for sepsis was developed,

integrating demographic variables such as age and sex, based on the

neutrophils-related risk score. Each predictor in the nomogram

warranted a particular score, with the total score across all

predictors designating a cumulative score reflecting the likelihood

of a negative outcome in sepsis. This cumulative score was visibly

represented in Figure 9A. The calibration plot verifies the predictive

accuracy of the nomogram as shown in Figure 9B. The clinical

applicability of our nomogram, standing on the calculated risk

score, was further substantiated by DCA (Figure 9C). Moreover, a

schematic representation of the demographic distribution by age,

sex, and survival statuses, categorized into two risk groups, has been

provided. No significant variation in the age and gender distribution

across cohorts was brought to light by this analysis (Figure 9D).

To further elucidate the neutrophil-associated mechanisms in

sepsis, characteristic genes of both high- and low-risk groups in

GSE65682 were examined. Upon identification, these said genes were

put through enrichment analysis using both GSVA and GSEA
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methods. Divergent pathway enrichment patterns were observed

between the two groups. In the high-risk group, notable enrichment

was seen in pathways relating to Metabolic Processes, Cellular Stress

Responses, and Cell Cycle. This encompassed pathways such as Heme

Metabolism, Hypoxia, Oxidative Phosphorylation, Estrogen Response

Early, Pi3k Akt Mtor Signaling, Mtorc1 Signaling, E2f Targets,

Unfolded Protein Response, Xenobiotic Metabolism, Notch

Signaling, Reactive Oxygen Species Pathway, Mitotic Spindle, and

P53 Pathway. Conversely, the low-risk group demonstrated

significant involvement in several biological functions critical to

immuno-inflammatory responses, namely the Interferon Alpha

Response, Androgen Response, Apoptosis, Complement, Protein

Secretion, Interferon Gamma Response, Allograft Rejection, Jak-Stat3

Signaling, Bile Acid Metabolism, Tnf-a Signaling Via Nf-kb, and Wnt

Beta Catenin Signaling pathways (Figure 10A). Proceeding with the

investigation, the top 5 up-regulated (Porphyrin And Chlorophyll

Metabolism, Nitrogen Metabolism, Nitrogen Metabolism, Purine

Metabolism, Ubiquitin Mediated Proteolysis) and top 5 down-

regulated pathways (Natural Killer Cell-Mediated Cytotoxicity, B Cell

Receptor Signaling Pathway, Nod Like Receptor Signaling Pathway,

Cytokine Cytokine Receptor Interaction, Toll-Like Receptor Signaling

Pathway) within the high-risk group were further discerned through
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FIGURE 7

Construction of neutrophils related riskScore system in sepsis. (A) Univariate cox analysis on the intersection genes. (B) Tuning feature selection in
the LASSO model. (C) LASSO coefficient profiles of the DDR-related characteristic genes. (D) The specific coefficient value of the 3 Genes associated
with GM identified by the optimal lambda value. (E) Kaplan-Meier analysis of gene combinations, the top 7 signatures were ranked and the signature
comprising four genes was selected due to its relatively large negative logarithm (-log10) of the p-value combined with a minimal gene count.
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FIGURE 8

The evaluation of the RiskScore system. The ROC curve was used to evaluate the performance of the riskScore model in the GSE65682 (A),
GSE63602 (B), GSE95233 (C), E-MTAB-5273 (D), and the combination dateset (E). (F) The distribution of the riskscore, patients’ survival status as well
as gene expression signature in the combination dateset. (G) Overall survival situation between the low- and high-risk group.
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FIGURE 9

Construction and validation of a prognostic prediction model based on the riskScore. (A) Construction of a nomogram based on riskScore and
clinical characteristics in the combination dateset. (B) Correction of the characteristic curve based on riskscore and pathological characteristic.
(C) DCA indicating the clinical benefit of the nomogram. (D) The distribution of clinical features and survival status in the low- and high-risk groups.
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GSEA (Figures 10B, C). Pathogenetic pathway variability was also

evident among different-risk sepsis patients. Particularly, high-risk

patients demonstrated significant activity in the EGFR, Estrogen, and

Trail pathways. On the other hand, low-risk patients showed

hyperactivity in the WNT, TNF-a, NF-KB, PI3K, and VEGF

pathways compared to their high-risk counterparts (Figure 10D).
Immunological features of sepsis patients
at low and high risk

To elucidate the infiltration of immune cells in patients with

sepsis categorized into high- and low-risk groups, each further

classified by stable or unstable clinical statuses, a comparative

analysis of 26 immune cell subtypes was initially performed. This

was executed through the calculation of the 26 immune cell scores

using the ssGSEA algorithm (Figure 11A). Generally, the low-risk

group displayed higher levels of immune cell infiltration compared

to the high-risk group, aligning with previous results that exhibited

higher immune cell scores in the majority of immune cell types

within the low-risk group (Figure 11B). Moreover, the variations in
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immune modulators between the high- and low-risk groups were

evaluated, based on different statuses, genders, and ages, as an

attempt to further clarify the immune characteristics of sepsis

patients (Figure 11C). In summary, immune genes associated

with antigen presentation (HLA-DQA), cell adhesion (SELP), co-

inhibitor (CD276 and PDCD1LG2), co-stimulator (ICOSLG),

ligand (CCL5, CD40LG, CD70, CX3CL1, and VEGFB), receptor

(CD27, EDNRB, IL2RA, LAG3, and PDCD1), among others

(PRF1), were visibly elevated in the high-risk group. However,

low-risk samples illustrated substantial expression of antigen

presentation (HLA-A, HLA-B, HLA-C, MICA, and MICB), cell

adhesion (ICAM1 and ITGB2), co-inhibitor (CD274 and SLAMF7),

ligand IL1B, TGFB, and TNF), receptor (CD40, HAVCR2, TIGIT,

TLR4, and TNFRSF14), among others (ENTPD1) (Supplementary

Figures S3A–G). Furthermore, a comparative analysis of immune

scores from each risk group was carried out, yielding a

comprehensive review of immunological attributes. Patients in the

low-risk group achieved higher immune scores compared to those

in the high-risk group (Figure 11D). Additionally, a correlation

analysis indicated that elevated risk scores negatively affected the

entirety of immune cell types and demonstrated higher immune
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FIGURE 10

Molecular characteristic and functional annotation of the neutrophils-related riskScore model in sepsis. (A) The GSVA identified significant
differences in biological functions between the high- and low-risk groups. Positive values indicate that the biological function is enriched in the
high-risk group, while negative values indicate that the biological function is enriched in the low-risk group. (B)Top five up-regulated pathways in
the high-risk group. (C)Top five pathways down-regulated in the high-risk group. (D) Heatmap displaying the difference of pathogenic pathways in
sepsis patients at low and high risk. Age, gender, and survival status are displayed as patient annotations. ***p < 0.001, ****p < 0.0001.
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infiltration levels (Figure 11E). Based on the findings of our study, a

relative decrease in the activity of immune cells, immune responses,

and immune-related pathways was observed in high-risk sepsis

patients, indicating a symptomatic immune suppression

during sepsis.
Validation of hallmark genes in a rat model
of sepsis

To substantiate the involvement of signature genes in the

development of a neutrophil-related risk score model for sepsis,

in vivo validation experiments were conducted. Initially, a sepsis

model was established in rats, followed by an analysis of gene

expression in their peripheral blood via reverse transcription-

quantitative polymerase chain reaction (RT-qPCR). Among the

genes studied, PIM1, HIST1H1C, and IGSF6 demonstrated a

marked upregulation in the septic rats (see Figure 12A). PIM1

was selected for in-depth validation due to its significant

contribution to the risk score model. Subsequent RT-qPCR

evaluations revealed that PIM1 expression in the Sepsis+shPIMI
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group was reduced to nearly one-third compared with the Sepsis

+shNC group, confirming effective gene silencing within our

framework (refer to Figure 12B). Survival analyses further showed

that rats subjected to PIM1 knockdown presented enhanced

survival rates relative to the Sepsis+shNC cohorts (as indicated in

Figure 12C). Additionally, the levels of pro-inflammatory cytokines,

such as IL-17A, IL-6, and TNF-a, were notably elevated in the

Sepsis+shPIMI group, whereas the anti-inflammatory cytokine IL-

10 was reduced (depicted in Figure 12D). These findings identify

PIM1 as a potential pivotal modulator of immune and

inflammatory responses during sepsis. The section that follows

will provide additional evidence of the critical role played by

PIM1 in sepsis, suggesting its potential involvement in the

immunosuppressive mechanisms of the disease.
Discussion

During sepsis, metabolic changes in the patient’s body not only

contribute to early inflammation and organ damage but also play

significant roles in immune tolerance and immune exhaustion (11).
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FIGURE 11

Immunological features of sepsis patients at low and high risk. (A) The heatmap showing the degree of infiltration of 26 immune cell subtypes in
high- and low-risk groups. (B) Differences in immune cell scores between high- and low-risk groups. (C) Heatmap depicting the differences in
immune-modulators and patients’ survival status between high- and low-risk groups. (D) A comparison of the immuneScore between high- and
low-risk groups. (E) The interaction between riskScore and 26 immune cell subtypes.
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Sepsis is marked by significant metabolic dysregulation across

various pathways, including carbohydrate, amino acid, and fat

metabolism (21). Leukocytes from patients with severe sepsis

exhibited profound defects in cellular energy metabolism, which

were correlated with a diminished capacity to respond to secondary

stimulation (11). In the pathogenesis and progression of sepsis,

further research is needed to elucidate the intricate mechanisms and
Frontiers in Immunology 1678
heterogeneity of various immune cells influencing metabolism.

Such research is crucial for establishing a robust theoretical

foundation to advance personalized clinical interventions for sepsis.

In this study, scRNA-seq was utilized to delineate the immune

landscape in both healthy controls and patients with late-stage

sepsis. We identified distinct distributions of immune cells and

metabolic activity profiles between the groups. Remarkably,
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FIGURE 12

Validation of hallmark genes in a rat model of sepsis (A) Relative expression levels of hallmark genes in Control and Sepsis groups (n=5 in each
group). (B)Relative expression levels of PIMI in Control, Sepsis+shNC, and sepsis+shPIMI group (n=8 in each group). (C) Survival status of rats in each
group (n=10 in each group). (D)The level of pro-inflammatory cytokines (IL-17A, TNF-a, and IL-6) and anti-inflammatory cytokines (IL-10) in the
peripheral blood of rats in each group (n=8 in each group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001.
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immune cells from septic patients exhibited a broadly reduced

metabolic activity compared to those from healthy controls, likely

due to metabolic exhaustion related to the severe inflammatory

response during sepsis. The observed hypometabolic state in sepsis

may serve as a protective mechanism against excessive

inflammation or energy depletion, or it may indicate a

dysfunctional immune response. Among all immune cell types,

neutrophils played a pivotal role in the immune response and

metabolic activity during sepsis. Neutrophils were the most

abundantly expressed and demonstrated the lowest metabolic

pathway activity in the septic group, while also interacting

significantly with other immune cells. During sepsis, neutrophils

exhibited enhanced longevity and reduced migratory capabilities,

leading to their retention within the vascular system. Consequently,

this promotes excessive vascular inflammation through the

secretion of cytokines, reactive oxygen species, and neutrophil

extracellular traps (22). As the first responders of the innate

immune defense against infection, neutrophils utilize traditional

mechanisms such as phagocytosis alongside the release of

inflammatory cytokines and ROS. In addition to these

mechanisms, activated neutrophils release web-like structures

comprising decondensed DNA, histones, myeloperoxidase, and

other granular contents, known as neutrophil extracellular traps

(NETs), which effectively ensnare bacteria within the bloodstream

(23). Although the prevailing response of immune cells in sepsis is

to undergo apoptosis, thus promoting an immunosuppressive

environment, neutrophils uniquely exhibit delayed apoptosis,

further perpetuating the inflammatory response (24).

Polymorphonuclear neutrophils possess limited mitochondria and

predominantly rely on the comparatively inefficient process of

glycolysis for their energy metabolism, which is responsible for

generating the bulk of ATP needed for neutrophil functionality (25,

26). During phagocytosis, there is an elevated consumption rate of

ATP, and in the context of sepsis, systemic ATP levels can impede

neutrophil activation and chemotaxis by disrupting intrinsic

purinergic signaling pathways (27). Nevertheless, the specific

metabolic traits and immunomodulatory routes of neutrophils

during sepsis remain inadequately explored.

This research revealed that intercellular communication

demonstrates a complex interaction network between neutrophils

and other cell types, potentially underlying the septic process.

Ligand-receptor analyses indicated active crosstalk between

neutrophils and other cell types during sepsis, highlighting

elevated levels of specific proinflammatory mediators in the septic

milieu. Moreover, the exploration of developmental trajectories

suggested neutrophil plasticity in sepsis, with distinct phenotypes

correlating to varying sepsis severity. This plasticity likely

represented an adaptive response to the multifaceted stimuli

encountered during sepsis . Moreover , 29 neutrophi l

differentiation-related genes during sepsis were obtained by

intersecting feature genes from WGCNA and trajectory analysis.

Then we acquired 3 hallmark genes (IGSF6, HIST1H1C, and PIM1)

by machine learning approaches, and the neutrophils-related

riskScore model consisting of 3 genes was constructed. The

immunoglobulin superfamily member IGSF6 was involved in
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immune regulation and has been linked to the immunological

landscape of tumors (28). IGSF6 expression was associated with

the infiltration of CD8+ T cells and CD4+ T cells in tumors,

indicating an active immune response within the tumor

microenvironment (29). Some studies reported the involvement

of IGSF6 in the immunoregulation of atherosclerosis and

inflammatory bowel disease (30, 31). A recent study identified

that IGSF6 regulates ER stress and the inflammatory response in

intestinal macrophages. IGSF6 expression is sustained by

microbiota and significantly upregulated upon bacterial infection

(32). HIST1H1 proteins bind to nucleosomes and facilitate

chromatin compaction 1, although their biological functions are

poorly understood. According to a recent authoritative study,

HIST1H1 was identified as a bona fide tumor suppressor and

show that mutations in H1 drive malignant transformation

primarily through three-dimensional genome reorganization,

which leads to epigenetic reprogramming and derepression of

developmentally silenced genes (33). Moloney murine leukemia

virus-1 (PIM1) functions as a kinase influenced by cytokine

signaling, and its role is particularly pivotal in the context of IFN-

g signaling pathways during infections (34). It appears to act as a

sensor detecting a wide array of pathogens that disrupt IFN-g
signaling. PIM1 has a short lifespan within infected cells. PIM1

appears to play a regulatory role in the immune response by

controlling the parasiticidal function of GBP1. The regulation of

GBP1’s antimicrobial function by PIM1 suggests that this

interaction is a part of an IFNg-induced pathway which provides

post-translational control of innate immune defense (35).

Addi t iona l ly , PIM1 also promotes the surv iva l and

immunosuppressive function of neutrophils during chronic viral

infection, influencing CD8 T cell function and viral control (36).

The neutrophil-related riskScore system reflects vital prognostic

information and predicts patient outcomes informatively in sepsis.

This aligns with studies advocating for personalized medicine

approaches based on immune profiling. Based on the risk scoring,

patients were stratified into high-risk and low-risk groups. GSVA

and GSEA highlighted marked functional disparities between high-

and low-risk sepsis patients. The high-risk group was associated

with enrichment of metabolic pathways and stress responses,

potentially indicative of the metabolic demands of a sustained

inflammatory response. In contrast, the low-risk group

demonstrated enrichment in immune functions, suggesting less

compromised immune responses. Assessment of immune cell

infiltration and immune-modulators unveiled a robust immune

phenotype in low-risk patients, likely contributing to the effective

response against infection. In contrast, high-risk patients exhibited

a subdued immunological profile, which may predispose them to

adverse outcomes. In all, in this study, we identify the high-risk

group as “immune suppression phenotype”, while the low-risk

group is “Immunoactive type”.

Research has established that sepsis-induced immunosuppression

stems from dysfunctions in both innate and adaptive immunity. This

condition is marked by elevated levels of anti-inflammatory

cytokines, the apoptosis of immune cells, T-cell dysfunction, and a

heightened presence of immuno-regulatory cells such as regulatory T
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cells and myeloid-derived suppressor cells (37, 38). Immunological

suppression associated with inflammation is a critical determinant in

the onset of secondary infections and multiple organ dysfunction

syndrome (MODS), which are chief contributors to the adverse

prognoses observed in septic patients (39). The results are

consistent with the conclusions drawn in this study. It was

demonstrated that within the neutrophil-based risk model, patients

classified in the high-risk group exhibited significant

immunosuppression and metabolic dysregulation. This finding

indicates the potential utility of using neutrophil-based metrics as

immunological prognostic markers to aid in risk assessment and to

identify potential therapeutic targets.

The three genes constituting the risk score were further validated,

revealing that their expression levels were significantly higher in the

peripheral blood of sepsis-induced rats compared to the control group.

Additional experimental validation was subsequently performed on

PIM1, the gene with the highest risk coefficient. The inhibition of PIM1

resulted in a significant increase in the inflammatory levels in the

peripheral blood of the septic rats. Moreover, the survival rate of

the septic rats in the PIM1 knockdown group was higher than that

of the septic rats in the control group. These experimental findings

were consistent with the conclusions of our previous bioinformatics

analysis, confirming that PIM1 may be one of the critical genes

involved in the immune suppression observed following the onset of

sepsis. These findings highlight the heterogeneity in immune responses

among sepsis patients and suggest that a personalized medicine

approach, informed by detailed immunophenotyping, could lead to

more tailored and effective treatment strategies. Understanding the role

of specific immune cells and their metabolic pathways in sepsis may

open avenues for the development of immunomodulatory therapies

aimed at restoring immune balance rather than just controlling

the infection.

Throughout the duration of the research, a series of challenges

were encountered, and unexpected discoveries were made: (1)

Inter-individual Variability: considerable variability in immune

responses and metabolic profiles among sepsis patients was

observed. This variability underscores the complexity of sepsis as

a syndrome and indicates the potential necessity for personalized

therapeutic approaches. (2) Unanticipated dynamic changes in

neutrophil subpopulations were revealed by pseudotime analysis.

Certain neutrophil states demonstrated unexpected gene expression

patterns, suggesting novel roles in the immune response to sepsis.

(3) Unexpected interactions between different metabolic pathways,

typically studied in isolation, were identified. This cross-talk implies

more intricate metabolic reprogramming in immune cells during

sepsis than previously recognized.

Several limitations need to be acknowledged in the present

study. First, the sample size of sepsis patients included in the

scRNA-seq was relatively small, potentially impacting the

generalizability of our findings. Future research with larger

cohorts is essential to validate the robustness of the identified

biomarkers and the risk score model across diverse populations.

Second, the current analysis primarily focuses on neutrophils,

which, although critical, represent only a fraction of the complex
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immune response in sepsis. Expanding the scope to include a

broader range of immune cells and their interactions will provide

a more comprehensive understanding of sepsis immunopathology.
Conclusion

A comprehensive analysis has provided insights into the

complex immune cell interactions and functional pathways

associated with metabolic dysregulation in sepsis, with a

particular emphasis on neutrophils. Distinct neutrophil

subpopulations and their dynamic differentiation patterns have

been discovered, contributing to the understanding of immune

response variability in sepsis. Key diagnostic biomarkers, including

PIM1, HIST1H1C, and IGSF6, have been identified and

incorporated into an accurate riskScore model for the prognosis

of sepsis. This model stratifies patients into risk categories and

provides insights into immune dysfunction associated with poor

outcomes. Furthermore, PIM1 has been experimentally validated as

a negative regulator of immune-inflammatory response, indicating

its therapeutic potential. These findings collectively enhance the

understanding of sepsis immunopathology and offer promising

directions for prognosis and treatment interventions.
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Genomic insights into pediatric
intestinal inflammatory and
eosinophilic disorders using
single-cell RNA-sequencing
Marissa R. Keever-Keigher1, Lisa Harvey1, Veronica Williams2,
Carrie A. Vyhlidal3, Atif A. Ahmed4, Jeffery J. Johnston1,
Daniel A. Louiselle1, Elin Grundberg1,5, Tomi Pastinen1,5,
Craig A. Friesen1,5, Rachel Chevalier1,5, Craig Smail1,5*†

and Valentina Shakhnovich1,5,6†

1Children’s Mercy Kansas City, Kansas, MO, United States, 2Nemours Children’s Health, Jacksonville,
FL, United States, 3KCAS Bioanalytical & Biomarker Services, Shawnee, KS, United States, 4Seattle Children’s
Hospitals, University of Washington, Seattle, WA, United States, 5School of Medicine, University of Missouri-
Kansas City, Kansas, MO, United States, 6Ironwood Pharmaceuticals, Boston, MA, United States
Introduction: Chronic inflammation of the gastrointestinal tissues underlies

gastrointestinal inflammatory disorders, leading to tissue damage and a constellation

of painful and debilitating symptoms. These disorders include inflammatory bowel

diseases (Crohn’s disease and ulcerative colitis), and eosinophilic disorders

(eosinophilic esophagitis and eosinophilic duodenitis). Gastrointestinal inflammatory

disorders can often present with overlapping symptoms necessitating the use of

invasive procedures to give an accurate diagnosis.

Methods: This study used peripheral blood mononuclear cells from individuals

with Crohn’s disease, ulcerative colitis, eosinophilic esophagitis, and eosinophilic

duodenitis to better understand the alterations to the transcriptome of individuals

with these diseases and identify potential markers of active inflammationwithin the

peripheral blood of patients that may be useful in diagnosis. Single-cell RNA-

sequencing was performed on peripheral blood mononuclear cells isolated from

the blood samples of pediatric patients diagnosed with gastrointestinal disorders,

including Crohn’s disease, ulcerative colitis, eosinophilic esophagitis, eosinophilic

duodenitis, and controls with histologically healthy gastrointestinal tracts.

Results: We identified 730 (FDR < 0.05) differentially expressed genes between

individuals with gastrointestinal disorders and controls across eight immune cell types.

Discussion: There were common patterns among GI disorders, such as the

widespread upregulation of MTRNR2L8 across cell types, and many differentially

expressed genes showed distinct patterns of dysregulation among the different

gastrointestinal diseases compared to controls, including upregulation of XIST

across cell types among individuals with ulcerative colitis and upregulation of

Th2-associated genes in eosinophilic disorders. These findings indicate both

overlapping and distinct alterations to the transcriptome of individuals with

gastrointestinal disorders compared to controls, which provide insight as to which

genes may be useful as markers for disease in the peripheral blood of patients.
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1 Introduction

In genetically predisposed individuals, chronic overactivation of

the inflammatory response damages tissues along the

gastrointestinal (GI) tract frequently resulting in painful and

debilitating symptoms (1, 2). GI inflammatory disorders include

inflammatory bowel disease (IBD) and eosinophilic gastrointestinal

diseases such as eosinophilic esophagitis (EoE) and eosinophilic

duodenitis (EoD). IBD is characterized by chronic relapsing

neutrophilic inflammation of the intestine and can be divided

into two main subtypes based on the site and characteristics of

inflammation, with Crohn’s disease (CD) occurring within any

portion of the gut and ulcerative colitis (UC) being confined to the

colon. IBD affects patients of all ages, with approximately a quarter

of patients diagnosed before adulthood and incidence of pediatric

IBD increasing (3, 4). EoE and EoD are Th-2 mediated

inflammatory disorders which can cause dysphagia, vomiting,

abdominal pain, and structuring. Histologically, EoE and EoD are

characterized by mucosal eosinophilia (5) and may exist

independently or as a comorbid condition with either form of

IBD. However, eosinophilic infiltration of the mucosa may also

precede histologic evidence of IBD (crypt distortion, cryptitis with

crypt abscesses, mucus depletion from goblet cells, granulomas),

sometimes by years (6, 7), further complicating the ability to

differentiate concomitant eosinophilic disease from early

harbingers of IBD.

Differentiating between UC and CD or between early IBD and

EoE/EoD can help direct therapy. For example, CD patients benefit

from early biologic therapy (8), and colectomy is only curative in

UC (9). Patients with two concomitant diseases (i.e. EoE and CD)

may have symptoms affecting the same area but exhibit different

histology and symptoms and require different treatments (10).

Additionally, early knowledge of whether mucosal eosinophilia is

burgeoning IBD can allow early and appropriate intervention. The

pediatric population with IBD and EoE/EoD are particularly

vulnerable to growth failure (11, 12) and interruptions in social-

emotional development (13) and will require decades of healthcare

for their condition. Since disease diagnosis and follow up evaluation

currently require invasive endoscopic testing, non-invasive

diagnostics and targeted therapies are particularly valuable to this

subset of patients.

Characterizing the role of specific immune cell populations in

GI diseases has aided in recognizing aberrant processes that

underlie these conditions, initiating an important shift in the

treatment paradigm away from systemic, non-targeted

immunosuppression (fraught with many unwanted side effects) to

targeted modulation at the site of disease activity (14). Continued

identification of novel therapeutic targets and molecular signatures

of disease is pivotal for advancing and optimizing treatment options

for chronic immune-mediated inflammatory disorders. In the IBD-

affected GI tract, dendritic cells (DCs)—antigen presenting cells

belonging to the innate immune system—exhibit up-regulation of

microbial recognition receptors and increased cytokine production

(15) that appears to induce inflammation through activation of T

cells (16). T cells play a crucial role in immune homeostasis (17, 18),

and dysregulation of cytokine signaling in CD4+ T cells of the GI
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tract has been shown to lead to pathogenic inflammation (18, 19). T

cells also play a key role in eosinophilic disorders of the GI tract, as

overexpression of interleukin 5 (IL-5) in CD2+ T cells is sufficient to

produce eosinophilia in the esophagus and small intestine of

transgenic mice (20).

In addition to contributing to inflammation and tissue damage

at lesion sites in the GI tract, evidence of altered gene expression

and signaling among immune cells in peripheral blood may be

reflective of luminal inflammation (21–23). Information gathered

from peripheral blood has the potential to identify minimally-

invasive, diagnosis-specific and/or disease location-specific genetic

markers for GI diseases. Discovery of such biomarkers could

potentially decrease the need for repeat endoscopy, which is

invasive, associated with risks, and costly. Furthermore,

identification of altered gene expression within these disorders at

the cellular level could yield a more complete understanding of

impacted pathways within specific cell types, and aid in

characterizing genetic signatures for future use in disease sub-

typing and drug response applications. However, due to the

complex and multifactorial nature of GI diseases and differences

in immune cell response across GI disease sub-types, reliable

indicators of active inflammation have been difficult to

characterize within the peripheral blood of patients to date.

In this study, we identified cell-type specific differential gene

expression and enrichment of functional gene ontology terms and

pathways in individuals diagnosed with CD, UC, EoE, and EoD

using single-cell RNA-sequencing of peripheral blood mononuclear

cells (PBMCs) in a pediatric patient cohort. Results from this study

assist in uncovering the genomic landscape of these phenotypes,

which often present with overlapping symptoms in patients, and aid

in identifying robust markers of disease types within the peripheral

blood mononuclear cells of patients.
2 Materials and methods

2.1 Patient information

Potential study participants were identified via review of the

clinical endoscopy schedule and the electronic medical record

(EMR) at Children’s Mercy Hospital (CMH), a tertiary regional

pediatric hospital in the Midwestern United States. To be

considered for study inclusion, patients had to be between 1

month and 21 years of age (inclusive), undergoing both upper

and lower endoscopy with biopsies for clinical purposes, having a

reasonable clinical suspicion for a new diagnosis of immune-

mediated inflammatory disease or another clinical indication for

undergoing endoscopy (e.g., abdominal pain), and not receiving

systemic immunomodulating, immunosuppressive, or biological

drugs. Subjects were recruited on the day of procedure, prior to

endoscopy. All subjects were fasting at least 8 hours for procedural

purposes as part of routine medical care. Only those subjects who

provided informed consent (if 18 years of age), or informed assent

with parental/legal guardian consent (if under 18 years of age) were

included. All research activities were approved by the CMH

Institutional Review Board. A total of 35 patients seen in the
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CMH operating room for routine endoscopy (Kansas City, MO,

USA) were included in the study. Diagnosis of CD was determined

by a pediatric gastroenterologist after evaluation of clinical

symptoms (e.g. abdominal pain, weight loss, etc.), laboratory data

(e.g. anemia, hypoalbuminemia, elevated fecal calprotectin, etc.),

and histopathology (e.g. findings of cryptitis, granulomas, etc.).

Diagnosis of EoD was determined by a pediatric gastroenterologist

after evaluation of clinical symptoms (e.g. abdominal pain, diarrhea,

etc.) and histopathology (e.g. duodenal eosinophils >20 eos/hpf)

(24). Diagnosis of EoE was determined by a pediatric

gastroenterologist after evaluation of clinical symptoms (e.g.

dysphagia, vomiting, abdominal pain, etc.) and histopathology

(e.g. eosinophils >15/hpf in the esophagus) (24). This cohort

consists of 16 males and 19 females ranging in age from 6.17 to

19.25 years with a mean age of 13.3 years. Seven patients were

subsequently diagnosed with CD, nine with EoD, ten with EoE, and

three with UC. Six patients were identified as controls who had no

relevant GI pathology on visual or histologic examination of tissue.

Review of individuals’ medical charts indicated no bias toward a

single drug therapy in any sub-cohort.
2.2 PBMC isolation

Up to 4 mL of whole blood was collected from patients in a

sodium heparin tube and stored on ice until PBMCs were isolated.

Automated PBMC isolation was performed using a STEMCELL

Technologies RoboSep-S using the EasySep Direct Human PBMC

Isolation Kit (STEMCELL Technologies Cat No. 19654RF) and

following the manufacturer’s protocol. After PBMC isolation, the

resulting cell suspension was centrifuged at 300 x g for 8 min, and

the supernatant was carefully aspirated. The cell pellet was

resuspended in 1 mL of ACK Lysing Buffer (Thermo Fisher Cat

No. A1049201) and incubated at room temperature for 5 min to

remove any remaining RBCs. The cell suspension was centrifuged at

300 x g for 8 min, and the supernatant was carefully aspirated. Cells

were washed twice with PBS (Thermo Fisher Cat No. 14190144)

supplemented with 2% heat-inactivated FBS (GE Healthcare Cat

No. SH30088.03HI), and cell count and viability were assessed

using a Countess II automated cell counter. An aliquot of 300,000

cells was diluted in a total volume of 200 µL of PBS + 2% FBS and

frozen at -80°C for downstream DNA isolation and genotyping. The

remaining cells were cryopreserved in aliquots of at least one

million cells by centrifuging at 300 x g for 8 min, aspirating the

supernatant, and resuspending the cell pellets in Recovery Cell

Culture Freezing Medium (Thermo Fisher Cat No. 12648010). The

cell suspensions were transferred to cryogenic storage vials and were

slow-frozen overnight to a temperature of -80°C in a Corning

CoolCell FTS30.
2.3 DNA isolation and genotyping

Aliquots of 300,000 PBMCs frozen in PBS + 2% FBS were

thawed at room temperature, and DNA was isolated using the

Qiagen DNeasy Blood & Tissue Kit (Qiagen Cat No. 69506)

according to the manufacturer ’s protocol. Eluate was
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concentrated to approximately 50 µL using an Eppendorf

Vacufuge Plus, and DNA was quantified using a Qubit dsDNA

BR Assay Kit following the manufacturer’s protocol. All DNA

samples were selected for high-density genotyping using the

Illumina Global Screening Array (GSAMD-24v1-0) according to

protocols recommended by Illumina.
2.4 Cell pooling

Two pools of PBMCs were made. Thawing Medium for PBMC

samples consisted of IMDM (ATCC Cat No. 30-2005)

supplemented with 10% heat-inactivated FBS, 100 units/mL of

penicillin, and 100 µg/mL of streptomycin. For each sample to be

thawed, 10 mL of Thawing Medium was prewarmed in a 37°C

bead bath. Cells were thawed in groups of up to five samples at a

time. The cryovials were placed in a 37°C bead bath. When

thawed, the cryovials and 15-mL conical tubes containing

Thawing Medium were aseptically transferred to the biosafety

cabinet. For each sample, 1 mL of Thawing Medium was added,

dropwise, to the cell suspension. The cell suspension was pipette-

mixed and then diluted in the remaining 9 mL of Thawing

Medium. The thawed and diluted cells were left at room

temperature while the remaining cells to be pooled were

similarly thawed. When all samples were thawed, the samples

were centrifuged at 300 x g for 8 min. The supernatant was

carefully aspirated, and the cell pellets were resuspended in 0.5

mL of room-temperature Thawing Medium. All samples were

placed on ice and then pooled together. The pool was passed

through a 40-µm nylon mesh cell strainer to remove cell

aggregates. The pool was centrifuged at 300 x g for 8 min at 4°

C, and the supernatant was carefully aspirated. The cell pellet was

resuspended in 1 mL of cold Thawing Medium, and cell count and

viability were assessed using a Countess II automated cell counter.

No fewer than three aliquots per pool were cryopreserved by

centrifuging at 300 x g for 8 min at 4°C and resuspending the cell

pellets in Recovery Cell Culture Freezing Medium. The cell

suspensions were transferred to cryogenic storage vials and were

slow-frozen overnight to a temperature of -80°C in a Corning

CoolCell FTS30.
2.5 Single-cell sequencing

Aliquots from each pool were thawed for scRNA-seq. The 10x

Genomics Chromium Single Cell 3′ Reagent Kit v3 was used

according to the manufacturer’s protocol to target approximately

15,000 cells per scRNA-seq capture. Libraries were sequenced on an

Illumina NovaSeq 6000 platform using 2x94 cycle paired-

end sequencing.
2.6 scRNA-seq alignment and
quality control

CellRanger v 4.0.0 (10x Genomics) was used for read alignment

to the GRCh38 (2020) reference genome, gene counting, and cell
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calling. Demuxlet (25) was used to demultiplex single-cell data,

assigning reads back to the patient of origin using VCF files

associated with each patient. Additionally, deumuxlet was used to

remove data in instances where barcodes were assigned to more

than a single cell.

Quality control of cells was performed with the Seurat v 4.4.0

(26) package in R v 4.2.3. Cells with greater than 20% MT-RNA,

fewer than 500 UMIs, and fewer than 0.8 log10 genes per UMI were

removed. Annotation of the cell types of remaining cells was

performed with the Azimuth v 0.4.6 package in R using a

previously published PBMC reference (27) to annotate cells to

eight broad level one cell types and 30 more specific level two cell

types (Supplementary File 1 Table A).
2.7 Pseudobulk differential expression
analysis and functional analysis

Gene expression data was aggregated by genotype within cell

type using AggregateExpression() in the Seurat R package v 4.4.0.

Pseudobulk differential expression analysis of the single-cell data

was performed on the aggregated count data for each defined cell

type with edgeR v 3.40.2 (28) in R v 4.2.3. Patient sex and

sequencing pool were added to the statistical model to account

for biological variation and batch effects, and a generalized linear

model was used to identify differentially expressed genes (DEGs)

between each GI disorder group (CD, UC, EoE, and EoD) and

controls across eight level one cell types and 29 level two cell types.

P-values were adjusted for multiple testing using the Benjamini-

Hochberg false discovery rate (FDR), and genes with an FDR < 0.05

were considered significantly differentially expressed.

Functional and pathway analysis for DEGs was carried out

using the ToppFun (Transcriptome, ontology, phenotype,

proteome, and pharmacome annotations based gene list

functional enrichment analysis) tool with default settings from

the web-based software ToppGene Suite (http://toppgene.cchmc.

org) to identify enriched gene ontology (GO) terms and pathways

from databases including KEGG, Reactome, and BioCarta (29).

Terms and pathways with a Benjamini-Hochberg FDR < 0.05 and a

minimum number of three hits in query list were considered to be

significantly enriched.
2.8 Protein-protein interaction networks

Networks of interactions of DEGs were generated in STRING v

12.0 (30) to visualize gene relationships and trends within and

between cell types and GI disorders. Networks generated with

STRING were imported into Cyotscape v 3.10.0 (31) where node

color was used to designate the direction of fold change observed in

GI disorders compared to controls, with red corresponding to

upregulation and blue corresponding to downregulation.

Furthermore, functional terms of interest identified to be enriched

in STRING were added to networks.
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3 Results

3.1 Cell clustering

A total of 39,622 cells from the 35 individuals in this study

passed quality control measures and were mapped to eight level one

cell types and 29 level two cell types (Figure 1; Supplementary File 1

Tables A-C).
3.2 Characterizing immune cell
transcriptomes across
gastrointestinal disorders

Comparison of gene expression between individuals diagnosed

with GI disorders (CD, UC, EoD, and EoE) and controls yielded 730

(FDR < 0.05) DEGs (Figure 2) across eight level one cell types and

807 (FDR < 0.05) across 25 level two cell types. A list of significant

DEGs found across GI disorders within each cell type can be found

in Supplementary File 1 Tables D, E, and volcano plots depicting the

results of differential expression analysis for between GI disorders

and controls within all level one cell types can be found in

Supplementary File 2 Figures A-H.

Relatively few genes showed common patterns of dysregulation

across all GI disorders within cell types: four genes in B cells and

DCs, three genes in CD4+ and CD8+ T cells, and one gene in both

NK cells and other T cells (Supplementary File 1 Table D). Among

these genes with shared patterns of dysregulation was upregulated

MTRNR2L8 in six of the eight level one cell types (B, CD4+ T, CD8+

T, DC, NK, and other T) (Table 1; Supplementary File 1 Table D).

Additionally, relatively few genes showed similar patterns of

differential expression specific to eosinophilic disorders (EoD and

EoE) or IBD (CD and UC) compared to controls. Notable among

genes that shared expression patterns among eosinophilic disorders

compared to controls was the upregulation of MTRNR2L1 in four

level one cell types (B, CD4+ T, CD8+ T, and DC) and upregulation

of several cell cycle associated genes in CD4+ T cells (Table 1;

Figure 3; Supplementary File 1 Table D). In IBD subtypes, OR11G2

was upregulated in CD4+ T and CD8+ T cells relative to controls

(Table 1; Supplementary File 1 Table D).

The majority of DEGs did not present with dysregulation in

common between GI disorder subtypes; thus, many genes had

patterns of dysregulation specific to each GI disorder. Notably, in

CD, we observed upregulation of CC8T in CD4+ T cells,

downregulation of BTN3A2 in CD4+ TCM cells, and upregulation

of ETS2 in DCs. In EoD, we observed upregulation of FOXM1 and

CCR9 in CD4+ T cells and downregulation of GADD45B and

GADD45G in CD4+ T cells. In EoE, we observed upregulation of

IFNG in CD4+ T cells; upregulation of IER2 in B and CD8+ naïve T

cells; upregulation of EGR1 in three level one cell types (B, CD4+ T,

and CD8+ T cells) and several level two cell types, including naïve

CD8+ T cells and CD4+ TCM cells, and upregulation of both EGR3

and EGR4 in B cells. Within UC, we observed downregulation of

several genes in CD8+ T cells associated with cytotoxicity and
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upregulation XIST in five level one cell types (B, CD4+ T, DC,

monocytes, and NK) (Table 1; Supplementary File 1 Tables D, E).

A subset of DEGs along with citations of literature supporting

their role in GI disorders or in the pathogenesis of inflammation can

be found in Supplementary File 1 Table F.
3.3 Functional annotation of DEGs
associated with gastrointestinal disorders

To better understand the context of gene dysregulation

observed within cell types, and uncover which cellular processes

may be affected, functional enrichment analysis of gene ontology

terms and pathways was performed. Functional analysis of DEGs to

identify enriched gene ontology terms and pathways yielded 1037
Frontiers in Immunology 0587
terms in B cells, 892 terms in CD4+ T cells, 760 terms in CD8+ T

cells, 421 terms in DCs, and 62 terms in NK. An abbreviated list of

enriched terms for each set of DEGs among GI disorders (CD, UC,

EoD, and EoE) within each cell type is shown in Figure 3. A full list

of significantly enriched GO terms and pathways can be found in

Supplementary File 1 Tables G-K.

GO terms and pathways associated with cell cycle activity in

CD4+ T cells were enriched among genes differentially expressed

in EoD and EoE compared to controls, including Reactome cell

cycle mitotic (M5336), Reactome cell cycle (M543) and mitotic

cell cycle process (GO:1903047). Other commonly enriched terms

among DEGs found in EoD and EoE included transition metal ion

binding (GO:0046914) within NK cells and PID AP1 pathway

(M167) within CD4+ T cells (Figure 3; Supplementary File 1

Tables H, K).
FIGURE 1

(A) UMAP of 39,622 cells passing quality control measures sorted into eight level one cell types and into (B) 29 level two cell types after annotation
using Azimuth.
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TABLE 1 Abbreviated list of differentially expressed genes detected in individuals with Crohn’s disease (CD), eosinophilic duodenitis (EoD),
eosinophilic esophagitis (EoE), and ulcerative colitis (UC) compared to controls in level one immune cell types: B cells (B), CD4+T cells (CD4 T), CD8+T
cells (CD8 T), dendritic cells (DC), monocytes (Mono), natural killer cells (NK), other T cells (other T), and all other cells (other).

Cell
Type Gene

aCD
log2FC

bCD
FDR

EoD
log2FC

EoD
FDR

EoE
log2FC

EoE
FDR

UC
log2FC

UC
FDR

B MTRNR2L8 2.76 6.18E-28 2.52 7.58E-26 2.28 4.16E-16 2.98 4.44E-26

MTRNR2L1 – – 2.02 3.31E-02 2.63 3.35E-08 – –

EGR1 – – – – 1.46 5.42E-09 – –

IER2 – – – – 0.76 8.29E-03 – –

XIST – – – – – – 2.16 2.47E-03

CD4 T MTRNR2L8 2.69 1.47E-05 2.39 1.36E-05 2.18 1.73E-03 3.16 6.79E-07

CST3 -1.27 1.47E-05 -1.38 2.15E-10 -1.12 6.57E-06 -1.33 5.11E-04

CPA5 -2.14 8.39E-05 -1.78 8.82E-05 -1.85 1.22E-05 -2.99 3.77E-04

OR11G2 4.07 1.71E-04 – – – – 4.15 1.63E-03

RRM2 – – 2.40 1.27E-06 2.21 1.09E-05 – –

MTRNR2L1 – – 3.02 4.03E-06 3.44 6.63E-09 – –

MKI67 – – 1.69 1.80E-04 1.65 1.58E-04 – –

TOP2A – – 1.36 4.01E-02 1.43 1.67E-02 – –

CCT8 0.67 3.24E-03 – – – – – –

CCR9 – – 2.88 1.44E-03 – – – –

GADD45B – – -0.59 2.17E-03 – – – –

GADD45G – – -0.90 8.41E-03 – – – –

EGR1 – – – – 1.32 5.81E-06 – –

(Continued)
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FIGURE 2

Number of differentially expressed genes (DEGs) across level one cell types and GI disorder subtypes.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1420208
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Keever-Keigher et al. 10.3389/fimmu.2024.1420208
Among DEGs in CD, there was an enrichment of GO terms and

pathways associated with endoplasmic reticulum function and

protein folding in B cells, such as endoplasmic reticulum protein-

containing complex (GO:0140534), endoplasmic reticulum

chaperone complex (GO:0034663), and Reactome pathways ATF6

alpha activates chaperone genes (M801). Notably, among DEGs in

EoD, there was enrichment of terms associated with the p38 MAPK

pathway in CD4+ T cells, including p38MAPK cascade

(GO:0038066) and regulat ion of p38 MAPK cascade

(GO:1900744). Analysis of DEGs within EoE yielded enrichment

of zinc ion binding (GO:0008270) within B cells (Figure 3;

Supplementary File 1 Tables G, H).
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3.4 Protein-protein interaction networks
of DEGs

We generated networks for protein interaction among

significant DEGs to identify relationships from curated

databases and mined from high-throughput studies and

primary literature. A selection of the major components of PPI

networks generated in STRING and enhanced with Cytocscape

illustrating the relationships of DEGs detected within cell types

are shown in Figure 4. Additionally, genes associated with

enriched gene ontology terms and pathways of interest have

been highlighted.
TABLE 1 Continued

Cell
Type Gene

aCD
log2FC

bCD
FDR

EoD
log2FC

EoD
FDR

EoE
log2FC

EoE
FDR

UC
log2FC

UC
FDR

IFNG – – – – 1.55 6.06E-05 – –

XIST – – – – – – 2.57 1.67E-21

CD8 T MTRNR2L8 2.96 1.52E-38 2.85 6.60E-42 2.47 4.32E-25 3.35 4.23E-39

CPA5 -1.43 1.87E-03 -2.53 4.40E-15 -1.60 8.98E-07 -3.42 1.42E-06

OR11G2 4.63 2.67E-05 – – – – 4.21 3.88E-03

MTRNR2L1 – – 2.93 6.71E-06 3.42 1.95E-09 – –

EGR1 – – – – 1.05 2.54E-04 – –

IFNG – – – – – – -2.86 5.26E-11

NKG7 – – – – – – -1.35 6.70E-06

FGFBP2 – – – – – – -1.33 1.03E-04

GZMA – – – – – – -1.22 2.59E-04

GZMB – – – – – – -1.34 2.59E-04

GZMH – – – – – – -1.21 3.43E-04

NOG – – – – – – 1.71 2.66E-03

CCL5 – – – – – – -1.01 3.26E-03

REG4 – – – – – – 1.66 1.79E-02

AIF1 – – – – – – 0.84 2.12E-02

PRF1 – – – – – – -1.15 2.67E-02

DC MTRNR2L8 3.56 2.76E-47 3.30 1.44E-46 3.08 3.98E-38 3.61 4.45E-39

MTRNR2L1 – – 5.26 1.11E-08 4.80 4.96E-07 – –

ETS2 1.11 4.58E-02 – – – – – –

XIST – – – – – – 2.36 2.92E-04

Mono XIST – – – – – – 3.65 2.10E-05

NK MTRNR2L8 3.50 5.25E-35 3.02 2.18E-30 2.71 9.14E-23 3.93 4.30E-39

XIST – – – – – – 2.38 8.48E-13

other T MTRNR2L8 3.97 2.55E-31 3.53 7.12E-29 3.06 1.13E-19 4.19 8.08E-28

other MTRNR2L8 5.45 2.18E-11 – – – – 3.87 7.50E-04
aLog2(Fold Change) between Crohn’s disease (CD), eosinophilic duodenitis (EoD), eosinophilic esophagitis (EoE), and ulcerative colitis (UC) versus controls.
bFalse Discovery Rate adjusted P-values for genes differentially expressed between Crohn’s disease (CD), eosinophilic duodenitis (EoD), eosinophilic esophagitis (EoE), and ulcerative colitis (UC)
versus controls.
The symbol “–” indicates that no significant difference in expression was found for this gene in the provided comparison.
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In B cells of individuals with CD, most of the genes associated

with endoplasmic reticulum terms are downregulated.

Additionally, many of those genes are associated with chaperone

functions of the endoplasmic reticulum (Figure 4A). We also

observed widespread downregulation of DEGs within CD8+ T

cells among individuals with UC, including markers of

cytotoxicity (CCL5, FGFBP2, GZMA, GZMB, GZMH, IFNG,

NKG7, and PRF1) along with the upregulation NOG, REG4, and

AIF1 (Figure 4B). We further illustrate through PPIs, the

similarity of gene dysregulation and dominance of DEGs

associated with the cell cycle for both EoE and EoD within

CD4+ T cells (Figures 4C, D), highlighting the similarity of

these disorders. However, within these networks we can also see

distinct profiles of genes dysregulated between EoE and EoD,

including the downregulation of genes associated with p38 MAPK

(GADD45B, GADD45G, and DUSP1) in EoD (Figure 4C).
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4 Discussion

Aberrant immune signaling due to genetic and environmental

factors contributes to the development of GI disorders (32). In this

study we focused on the characterization of transcriptomic patterns

in PBMCs of pediatric patients with active CD, UC, EoE, and EoD

to identify genes and pathways associated with active inflammation

and the pathogenesis of each disease. Insights into these

transcriptomic phenotypes provide potential indicators of active

inflammation and identify genetic markers for improved diagnosis,

as well as possible therapeutic targets for treatment.

Genes showing similar patterns of differential expression

among all GI disorders (CD, UC, EoE, and EoD) include the

upregulation of MTRNR2L8 within six level one cell types (B,

CD4+ T, CD8+ T, DC, NK, and other T), may be helpful in

identifying active inflammation in GI disorders. MTRNR2L8 is
FIGURE 3

Abbreviated list of significantly enriched Gene Ontology terms and pathways among differentially expressed genes across level one cell types and GI
disorder subtypes identified through ToppGene.
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believed to be a marker of cellular stress (33), and upregulation of

MTRNR2L8 has been observed among PBMCs of patients with

primary mitochondrial disease (34) and among immune cell

types in individuals with aspirin-exacerbated respiratory

disease (35).

The common upregulation ofMTRNR2L1 for EoD and EoE was

identified in four level one cell types (B, CD4+ T, CD8+ T, and DC).

Similar to MTRNR2L8, MTRNR2L1 also appears to be upregulated

in response to cellular stress (33) and has been found to be

upregulated in myeloid cells of patients with autoimmune

disorders (36). There was also enrichment of functional terms

associated with cell cycle activity in CD4+ T cells among DEGs in

EoE and EoD compared to controls, prominent among which were

Reactome cell cycle mitotic (M5336), Reactome cell cycle (M543)

and mitotic cell cycle process (GO:1903047), which may be

indicative of dysregulation associated with Th2-mediated

inflammation; genes associated with cell cycle progression and

proliferation, specifically MKI76, RRM2, and TOP2A, which were

found among upregulated cell cycle genes in EoD and EoE, have

also been observed to be upregulated in the epithelium of asthmatics

with high levels of Th2 (37).
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Functional analysis of DEGs in CD detected in B cells yielded

enrichment of terms associated with endoplasmic reticulum

function and protein folding. Endoplasmic reticulum stress and

the dysregulation of the unfolded protein response have been

implicated in the development of IBD, which are essential for the

maintenance of homeostasis in both the intestine and immune cells

(38, 39). Furthermore, the specific enrichment of Reactome

pathway ATF6 alpha activates chaperone genes in CD is

supported by evidence that diminished ATF6 activity can

contribute to intestinal barrier dysfunction in mouse models of

IBD (40).

In individuals with EoD, upregulation of CCR9 and

downregulation of GADD45B and GADD45G was found in CD4+

T cells of patients compared to controls. CCR9 has been

demonstrated to play a key role in Th2-mediated inflammation,

with Ccr9-/- mice treated with ovalbumin to induce allergic

inflammation exhibiting an impaired immune response and

diminished recruitment of eosinophils to inflamed tissue (41).

Deficiency in GADD45 expression has been associated with

autoimmune disease (42), and the increased expression of

GADD45G through administration of IL-27, has been shown to
FIGURE 4

Major component of protein-protein interaction (PPI) network generated with (A) differentially expressed genes (DEGs) detected in B cells of
individuals with CD, (B) DEGs detected in CD8+ T cells from individuals with UC, (C) DEGs detected in CD4+ T cells from individuals with EoD, and
(D) DEGs detected in CD4+ T cells from individuals with EoE. Node color indicates the direction of fold change of expression of each gene, with red
indicating upregulation of gene expression in patients with GI disorders compared to control and blue indicating downregulation of gene expression
in patients with GI disorders compared to control. Node outline color indicates enriched functional annotations detected in STRING.
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attenuate Th2-mediated allergic response possibly through the

activation of the p38 MAPK pathway (43), a pathway that was

found to be enriched among DEGs in CD4+ T cells in EoD.

Among identified DEGs in EoE relative to controls was EGR1 in

three level one cell types (B, CD4+ T, and CD8+ T cells) and several

level two cell types, including naïve CD8+ T cells and CD4+ TCM

cells. Among CD4+ T cells, EGR1 is preferentially expressed by Th2

and plays a role in the production of IL-4 cytokines (44), which

mediate the allergic inflammatory response (45). Additionally,

increased intracellular zinc levels have been shown to upregulate

EGR1 (46). Relevantly, the term zinc ion binding was enriched

among DEGs in B cells in EoE. Zinc exposure has been

demonstrated to elicit cellular damage (47), induce eosinophilia in

mice, and evoke Th2 cytokine production (48). Furthermore,

dysregulation of zinc signaling resulting from depletion of zinc

within mucosal tissues and the release of zinc from airway discharge

has been associated with eosinophilia (49). Together, these data

support evidence that zinc homeostasis is critical in regulating

inflammatory responses (50) and suggests that zinc homeostasis

may be involved the development of eosinophilic disorders.

Several DEGs were found to be dysregulated between UC and

controls within CD8+ T cells, such as the downregulation of several

genes involved in T cell cytotoxicity (CCL5, FGFBP2, GZMA,

GZMB, GZMH, IFNG, NKG7, and PRF1). Previously, it has been

shown that while elevated levels of GZMB were present in mucosal

biopsies of treatment-naïve individuals with CD, there was not

upregulation of GZMB in treatment-naïve individuals with UC

compared to controls, suggesting enhanced CD8+ T cytotoxicity in

CD but not UC (51). Reduced T-cell cytotoxicity has also been

detected in sub-populations of individuals with UC, including those

who develop persistent low-grade dysplasia (52). Additionally,

widespread upregulation of XIST was detected within five level

one cell types (B, CD4+ T, DC, monocytes, and NK) in UC

compared to controls. In mouse models of IBD, Xist expression

has been demonstrated to be upregulated after inducing colitis, and

silencing of Xist in these models has shown to reduce colitis-

associated symptoms (53). Moreover, previous transcriptome

analysis of intestinal mucosa biopsies from individuals with UC

have identified XIST as a key mediator of inflammation within this

disease, as well as a possible therapeutic target (54).

The results of this studymay indicate future directions of study for

researchers and clinicians. DEGs from peripheral blood show promise

of indicating degree of inflammation allowing clinicians to stratify

severity of active disease and adjust treatment plans accordingly. Zinc

homeostasis dysregulation in eosinophilic disorders provides a

potential treatment target in a condition where presently there are

few pharmacologic treatment options (55). Patients with EoE are

known to have zinc deficiencies associated with elimination diets (56),

but further investigation using these DEGs as targets may help

elucidate pathways that affect overall zinc regulation.

While this study is limited by a small sample size, the ability to

confirm trends of dysregulation in relevant affected GI tissues, and

contrast these findings with pathological controls, overall, it

demonstrates preliminary evidence for the utility of single-cell

RNA-sequencing of patient blood cells to characterize the genomic
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landscape of pediatric IBD subtypes and eosinophilic disorders. These

data indicate both overlapping and distinct DEGs, enriched Gene

Ontology terms, and enriched pathways associated the pathogenesis

of inflammation among individuals with CD, UC, EoD, and EoE,

offering further insight into which genes and pathways may serve as

useful markers of disease in the peripheral blood mononuclear cells of

patients. Future studies should focus on expanded cell type profiling

from disease-specific and peripheral tissues in larger patient cohorts

and include pathological controls, such as patients with reflux.

Additionally, future studies evaluating changes in DEG expression

within an individual based on disease activity could determine

utilization for monitoring remission without the need for more

invasive endoscopy.
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Background: Carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9

(CA19-9) are the predominant serum tumour markers (STMs) for predicting the

prognosis of colorectal cancer (CRC). The objective of this research is to develop

clinical prediction models based on preoperative and postoperative CEA and

CA19-9 levels.

Methods: 1,452 consecutive participants with stage I-III colorectal cancer were

included. Kaplan-Meier method, log-rank test, and multivariate COX regression

were used to evaluate the significance of preoperative and postoperative STMs.

Patients were grouped into a discovery cohort (70%) and a validation cohort

(30%). Variables for the nomograms were selected according to the Akaike

information criterion (AIC). Subsequently, two clinical predictive models were

constructed, evaluated, validated, and then compared with the AJCC 8th

TNM stage.

Results: The overall survival (OS) rate and disease-free survival(DFS) rate declined

progressively as the number of positive tumour markers(NPTMs) before and after

surgery increased. For both OS and DFS, age, sex, pN stage, and NPTMs before

and after surgery were independent prognostic factors, and then clinical

prediction models were developed. The Concordance index (C-index),

Receiver operating characteristic (ROC) curve, calibration curve, Decision

curve analysis (DCA), and risk score stratification all indicated that the models

possessed robust predictive efficacy and clinical applicability. The Net

reclassification index (NRI) and Integrated discrimination improvement (IDI)

indicated that the performance of models was significantly superior to the

TNM stage.
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Conclusion: Nomograms based on pre-and postoperative CEA and CA19-9 can

accurately predict survival and recurrence for stage I-III CRC patients after radical

surgery, and were significantly better than the AJCC 8th TNM stage.
KEYWORDS

CEA, CA19-9, nomogram, colorectal cancer, overall survival, disease-free survival
1 Introduction

Colorectal cancer (CRC) ranks as the world’s second most

deadly malignancy (1). Despite advancements in surgical

techniques and integrated therapies, the clinical outcomes for

CRC patients remain unsatisfactory. Approximately fifteen

percent of stage II patients and thirty percent of stage III

patients experience recurrence even after radical resection (2, 3).

The high recurrence and mortality rates have increasingly drawn

attention to the need for individualized treatment and prognosis

of this disease. Clinicians currently rely on the TNM staging

system to predict and assess the prognosis of patients with

colorectal cancer (4). While the current staging system provided

essential insights into tumour behavioral characteristics, it doesn’t

fully encompass vital determinants of patient prognosis, such as

age, serum tumour markers(STMs) and so on. Consequently,

there’s an imperative demand to unearth novel markers for

individualized prognostic assessment, empowering clinicians to

offer more precise counsel on survival forecasts and therapeutic

approaches for CRC patients.

Owning to its simplicity and cost-effectiveness, tumour marker

detection is extensively performed in medical institutions.

Carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9

(CA19-9) represent the primary STMs for preoperative evaluation

and postoperative follow-up examination of CRC patients. CEA is

an acidic glycoprotein associated with oncogenic advancement (5).

Some clinical guidelines recommend CEA as a prognostic

biomarker for CRC and endorse its routine measurement after

radical resection in CRC patients (6, 7). CA19-9 is closely linked to

recurrence and survival in colorectal cancer (8). Significantly,

combined tumour marker testing has significantly improved

predictive accuracy compared with single marker testing (9).

Concurrently, the number of positive tumour markers(NPTMs) is

gaining attention (10, 11). Previous research has demonstrated its

feasibility as a prognostic factor for stage II-III CRC (12). However,

while this study has underscored the impact of NPTMs before

surgery on prognosis, the significance of postoperative STMs

remains underexplored. Recently, some researches have paid

attention to the role of postoperative STMs and found that they

are also promising indicators (9, 13, 14). It has also been shown that

the number of positive tumour markers before and after treatment

is important for the prognosis of rectal cancer (15, 16). Therefore,
0296
we believe that combining both preoperative and postoperative

CEA and CA19-9 measures might enhance predictive accuracy.

While clinical predictive models are endorsed for estimating the

recurrence and survival of diverse malignancies due to their utility

and comprehensiveness (17, 18), no research has incorporated

NPTMs before and after surgery into these models for stage I-III

CRC. Recognizing the vital prognostic implications of NPTMs, we

evaluated the association of preoperative and postoperative CEA

and CA199 with OS and DFS in patients with stage I-III CRC who

underwent radical resection. Age, sex, pN stage, NPTMs before and

after surgery were chosen to construct the clinical prediction

models of overall survival(OS) and disease-free survival(DFS).

Additionally, we further compared the clinical value of these

models with that of the AJCC 8th TNM stage.
2 Patients and methods

2.1 Study population

This study included consecutive CRC patients who underwent

radical resection at the Department of Colorectal and Anal Surgery,

Xinhua Hospital Affiliated to Shanghai Jiao Tong University School

of Medicine from January 2010 to August 2017. Exclusion criteria

were as follows (Figure 1): (1) patients with distant metastasis;

(2) patients without radical resection; (3) patients with pathological

non-adenocarcinoma or undetailed pathological data; (4) patients

with preoperative neoadjuvant therapy; (5) patients with incomplete

data of preoperative or postoperative CEA or CA19-9. Finally, 1,452

patients were involved in the study. The entire population was

randomly grouped into a discovery cohort of 70% (n = 966) and a

validation cohort of 30% (n = 486). All patients were staged according

to the latest NCCN guidelines. All patients included in the study

underwent radical (R0) resection of the primary tumour.

Chemotherapy was administered according to NCCN guidelines to

patients who met the criteria for postoperative chemotherapy.
2.2 Detection of CEA and CA19-9

Preoperative STMs (CEA, CA19-9) were tested within 7 days

before radical surgery for colorectal cancer. Postoperative STMs
frontiersin.org
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(CEA, CA19-9) were tested in serum samples obtained at the

patient’s first visit during the postoperative 2.5 − 3.5 months. A

cutoff of 10 ng/ml was utilized to determine CEA positivity, while

CA19-9 positivity was ascertained using a threshold of 39 U/ml

(19–21). Patients were stratified based on the NPTMs before and

after surgery as follows: (1) NPTMs was zero (both CEA and CA19-

9 negative); (2) NPTMs was one (either CEA or CA19-9 positive);

and (3) NPTMs was two (both CEA and CA19-9 positive). Patients

were categorized based on NPTMs, followed by an analysis of their

clinical characteristics and survival outcomes.
2.3 Follow-up study

Follow-up evaluations were conducted quarterly for the first two

years after surgery. Subsequent assessments occurred biannually from

the third to the fifth year, and then annually thereafter. In both

cohorts, the follow-up protocol included physical examination, chest

CT scan, measurement of CEA and CA19-9, abdominal and pelvic

MRI or CT, etc. Colonoscopy was carried out once a year. OS is the

time from radical resection to either death from any cause or the last

follow-up, while DFS spans from radical resection to the first

recurrence, any cause of death, or the last follow-up. The follow-up

evaluation of this study concluded on August 2022.
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2.4 Data analysis

The c2 test or Fisher’s exact test was utilized to compare

categorical variables. The Kaplan-Meier method and the log-rank

test were employed, so as to assess the survival curves across groups.

In the discovery cohort, traditional clinicopathological variables

underwent the univariate analysis. Factors with P < 0.2 were

incorporated as independent variables into the COX regression

for a multivariate assessment. Variables were selected for inclusion

in the nomograms based on the Akaike information criterion (AIC).

Until the optimal model was obtained, AIC (Akaike information

criterion, a standard for measuring statistical model fitting) was

gradually reduced. The model with the lowest AIC value is usually

chosen as the best model. The nomograms were used to predict the

probability of survival and recurrence. The discrimination ability

was evaluated by the concordance index (C-index) and receiver

operating characteristic curve (ROC). The calibration curve was

used to evaluate the calibration power. The net reclassification index

(NRI) and integrated discrimination improvement (IDI) are

designed to evaluate enhancements in risk forecasting and gauge

the efficacy of the novel nomogram. They were used to compare the

clinical value between nomograms and TNM stage. Decision curve

analysis (DCA) is a method to evaluate the clinical applicability,

quantifying its net benefit across various threshold probabilities.
FIGURE 1

Study flow chart.
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Curves representing all patients treated (indicating the highest

clinical cost) and no treatment (indicating no clinical benefit)

were used as references. All tests were conducted on both sides,

with a significance level established at P<0.05. All data were

analyzed using SPSS(26) and R software (4.2.1).
3 Result

3.1 Clinicopathological features

The study had 1,452 participants. The 5-year OS and DFS rates

were 80.7% and 76.7%, respectively, with a median age of 63 years

(IQR: 57 – 72 years). The discovery cohort included 966 cases, while

the validation cohort had 486 cases (Table 1). The 5-year OS rates for

the discovery and validation cohorts were 81.7% and 78.8%,

respectively, while the 5-year DFS rates were 78.0% and 74.0%. In

the discovery cohort, there were 531 men and 435 women. According

to the TNM staging system, stages I, II, and III included 169 (17.5%),

395 (40.9%), and 402 (41.6%) cases, respectively. The age of

participants in the validation cohort was obviously younger than

that in the discovery cohort. (P < 0.05). Except for age, other variables

showed no significant difference. (P > 0.05).
3.2 Clinicopathological features based on
preoperative and postoperative
tumour markers

Table 2 summarizes the association between NPTMs and the

characteristics of patients. Preoperatively, 1,062 patients (73.1%)

were negative for both markers, 300 patients (20.7%) were positive

for one marker, and 90 patients (6.2%) were positive for both

markers. Postoperatively,1,346 patients (92.7%) were negative for

both markers, 86 (5.9%) patients were positive for one marker, and

20 (1.4%) patients were positive for both markers. There was a

significant correlation between NPTMs before surgery and tumour

location, histological type, pT stage, pN stage, pTNM stage, and

nerve/vascular invasion (all P < 0.05; Table 2). The NPTMs after

surgery was also significantly associated with age, histological type,

pN stage, pTNM stage, and nerve/vascular invasion (all P <

0.05; Table 2).
3.3 OS and DFS based on preoperative and
postoperative tumour markers

Kaplan-Meier survival curve results displayed obvious decreases in

5-year survival with increasing NPTMs before surgery (5-year OS rate:

n = 0: 85.1%; n = 1: 69.9%; n = 2: 64.4%, P < 0.0001, Figure 2A; 5-year

DFS rate: n = 0: 81.3%; n = 1: 65.6%; n = 2: 59.0%, P < 0.001, Figure 2B);

similarly, there was also a obvious correlation between the NPTMs

after surgery and patients’OS and DFS (5-year OS rate: n = 0: 83.3%; n

= 1: 54.9%; n = 2: 16.9%, P < 0.0001, Figure 2C; 5-year DFS rate: n = 0:

79.2%; n = 1: 50.3%; n = 2: 116.4%, P < 0.001, Figure 2D).
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3.4 Nomogram variable screening

Tables 3 and 4 showed the consequences of the variables

analyses concerning survival in CRC patients. Multivariate COX

regression analysis showed that sex, age, pN stage, NPTMs before

and after surgery were independent prognostic factors for OS

(Table 3); sex, age, pN stage, NPTMs before and after surgery

were also independent prognostic factors for DFS (Table 4).
3.5 Construction and validation of
nomograms for CRC

Age, sex, pN stage, NPTMs before and after surgery were selected

to construct nomograms for OS and DFS, respectively (Figure 3). For

OS, the C-index was 0.760 for the discovery cohort and 0.772 for the

validation cohort. For the discovery cohort, the model’s AUC values

stood at 0.793 for 3 years and 0.773 for 5 years(Figure 4A).

Concurrently, for the validation cohort, they were 0.785 and 0.769

(Figure 4C). For DFS, the C-index was 0.724 for the discovery cohort

and 0.748 for the validation cohort. For the discovery cohort, the

model’s AUC values stood at 0.755 for 3 years and 0.743 for 5 years

(Figure 4B). Concurrently, for the validation cohort, they were 0.745

and 0.760 (Figure 4D). In addition, the calibration curves exhibited

strong concordance between the models’ predictions and actual

observations in both cohorts (Supplementary Figure 1).
3.6 Clinical value of nomograms compared
with TNM stage

The DCA showed that the nomograms offered superior net

clinical benefits for both OS and DFS compared with TNM stage

(Supplementary Figure 2). To further compare the accuracy of the

models with the conventional TNM stage, we also analyzed the C-

index change, NRI, and IDI (Table 5). Within the discovery cohort,

the C-index change for OS was 0.105, The NRI for OS at 3 and 5

years registered at 0.519 and 0.515, respectively. IDI was 0.131 and

0.117; The C-index change for DFS was 0.090, and the NRI for DFS

at 3 and 5 years registered at 0.481 and 0.444, respectively. IDI was

0.101 and 0.098, respectively. This result was further verified in the

validation cohort. In addition, Participants were grouped into two

different risk groups based on the median of the risk group scores in

the discovery cohort. Results from the Kaplan-Meier survival curves

revealed notable distinctions between two different risk cohorts (P <

0.01, Figure 5). Overall, our nomograms demonstrated superior

predictive performance and clinical applicability compared with the

traditional TNM stage, offering a more precise prognosis and

survival prediction for patients.
4 Discussion

Researches on biomarkers of gastrointestinal cancer have been

widely concerned. A study on dogs has explored the important role
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TABLE 1 Comparison of baseline clinicopathologic characteristics between the discovery cohort and the validation cohort.

Clinicopathological
Features

Overall Discovery cohort Validation cohort
P value

(n =1452) (n = 966) (n = 486)

Sex 0.859

Male 795 (54.7) 531 (55.0) 264 (54.3)

Female 657 (45.3) 435 (45.0) 222 (45.7)

Age (years) 0.019

<65 790 (54.4) 504 (52.2) 286 (58.8)

≥65 662 (45.6) 462 (47.8) 200 (41.2)

Tumour Location 0.615

Right Colon 328 (22.6) 222 (23.0) 106 (21.8)

Left Colon 445 (30.6) 288 (29.8) 157 (32.3)

Rectum 679 (46.8) 456 (47.2) 223 (45.9)

Histologic type 0.955

Grade I Adenocarcinoma 45 (3.1) 14 (2.9) 31 (3.2)

Grade II Adenocarcinoma 1056 (72.7) 356 (73.3) 700 (72.5)

Grade III Adenocarcinoma 131 (9.0) 45 (9.3) 86 (8.9)

Mucinous Adenocarcinoma 220 (15.2) 71 (14.6) 149 (15.4)

pT stage 0.353

T1 87 (6.0) 52 (5.4) 35 (7.2)

T2 246 (16.9) 158 (16.4) 88 (18.1)

T3 810 (55.8) 543 (56.2) 267 (54.9)

T4 309 (21.3) 213 (22.0) 96 (19.8)

pN stage 0.533

N0 849 (58.5) 564 (58.4) 285 (58.6)

N1 364 (25.1) 249 (25.8) 115 (23.7)

N2 239 (16.5) 153 (15.8) 86 (17.7)

pTNM stage 0.48

I 266 (18.3) 169 (17.5) 97 (20.0)

II 583 (40.2) 395 (40.9) 188 (38.7)

III 603 (41.5) 402 (41.6) 201 (41.4)

Perineural/Vascular invasion 0.59

No 1332 (91.7) 883 (91.4) 449 (92.4)

Yes 120 (8.3) 83 (8.6) 37 (7.6)

NPTMs before surgery 0.167

0 1062 (73.1) 696 (72.0) 366 (75.3)

1 300 (20.7) 213 (22.0) 87 (17.9)

2 90 (6.2) 57 (5.9) 33 (6.8)

NPTMs after surgery 0.83

0 1346 (92.7) 897 (92.9) 449 (92.4)

1 86 (5.9) 55 (5.7) 31 (6.4)

2 20 (1.4) 14 (1.4) 6 (1.2)
F
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NPTMs, the number of positive tumour markers.
Statistically significant values are in bold.
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of lipopolysaccharide in intestinal carcinogenesis (22), and Li et al.’

s study on mice suggested that the secretory protein cathepsin K can

be used as a new predictive biomarker for CRC (23). In addition,

previous studies have confirmed the potential prognostic value of

absolute quantification of free circulating DNA (24)and long non-

coding RNA plasmacytoma variant translocation 1 (25) in CRC

patients as biomarkers. Serum CEA and CA19-9 are common and

cost-effective biomarkers in clinical practice and they are
Frontiers in Oncology 06100
instrumental in predicting the prognosis of CRC, holding

significant value in both pre- and post-operation (26, 27).

However, previous researches have primarily paid attention to the

prognostic significance of preoperative STMs (28–30), with little

attention given to postoperative CEA and CA19-9. Study has

demonstrated that in terms of predicting survival duration,

combined tumour markers assessments hold an advantage over

single marker tests (31). In recent years, NPTMs, introduced as a
TABLE 2 Associations of NPTMs with clinicopathological characteristics in stage I-III CRC patients after radical resection.

Clinicopathological
Features

NPTMs before surgery P
value

NPTMs after surgery P
value0 (n = 1062) 1 (n = 300) 2 (n = 90) 0 (n = 1346) 1 (n = 86) 2 (n = 20)

Sex 0.263 0.44

Male 590 (55.6) 163 (54.3) 42 (46.7) 739 (54.9) 43 (50) 13 (65)

Female 472 (44.4) 137 (45.7) 48 (53.3) 607 (45.1) 43 (50) 7 (35)

Age (years) 0.649 0.011

<65 570 (53.7) 169 (56.3) 51 (56.7) 747 (55.5) 34 (39.5) 9 (45)

≥65 492 (46.3) 131 (43.7) 39 (43.3) 599 (44.5) 52 (60.5) 11 (55)

Tumour Location 0.003 0.642

Right Colon 231 (21.8) 67 (22.3) 30 (33.3) 302 (22.4) 19 (22.1) 7 (35)

Left Colon 308 (29) 112 (37.3) 25 (27.8) 417 (31) 24 (27.9) 4 (20)

Rectum 523 (49.2) 121 (40.3) 35 (38.9) 627 (46.6) 43 (50) 9 (45)

Histologic type < 0.001 0.025

Grade I Adenocarcinoma 43 (4) 2 (0.7) 0 (0) 43 (3.2) 2 (2.3) 0 (0)

Grade II Adenocarcinoma 791 (74.5) 200 (66.7) 65 (72.2) 987 (73.3) 59 (68.6) 10 (50)

Grade III Adenocarcinoma 80 (7.5) 38 (12.7) 13 (14.4) 112 (8.3) 13 (15.1) 6 (30)

Mucinous Adenocarcinoma 148 (13.9) 60 (20) 12 (13.3) 204 (15.2) 12 (14) 4 (20)

pT stage < 0.001 0.079

T1 82 (7.7) 3 (1) 2 (2.2) 80 (5.9) 7 (8.1) 0 (0)

T2 214 (20.2) 26 (8.7) 6 (6.7) 237 (17.6) 8 (9.3) 1 (5)

T3 580 (54.6) 183 (61) 47 (52.2) 751 (55.8) 48 (55.8) 11 (55)

T4 186 (17.5) 88 (29.3) 35 (38.9) 278 (20.7) 23 (26.7) 8 (40)

pN stage < 0.001 < 0.001

N0 678 (63.8) 136 (45.3) 35 (38.9) 798 (59.3) 47 (54.7) 4 (20)

N1 244 (23) 87 (29) 33 (36.7) 344 (25.6) 16 (18.6) 4 (20)

N2 140 (13.2) 77 (25.7) 22 (24.4) 204 (15.2) 23 (26.7) 12 (60)

pTNM stage < 0.001 0.009

I 237 (22.3) 23 (7.7) 6 (6.7) 252 (18.7) 14 (16.3) 0 (0)

II 441 (41.5) 113 (37.7) 29 (32.2) 546 (40.6) 33 (38.4) 4 (20)

III 384 (36.2) 164 (54.7) 55 (61.1) 548 (40.7) 39 (45.3) 16 (80)

Perineural/Vascular invasion 0.041 0.01

No 986 (92.8) 266 (88.7) 80 (88.9) 1242 (92.3) 75 (87.2) 15 (75)

Yes 76 (7.2) 34 (11.3) 10 (11.1) 104 (7.7) 11 (12.8) 5 (25)
front
NPTMs, the number of positive tumour markers.
Statistically significant values are in bold.
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FIGURE 2

Kaplan–Meier curves of the patients with stage I-III colorectal cancer. (A) Association between the NPTMs before surgery and OS. (B) Association
between the NPTMs before surgery and DFS. (C) Association between the NPTMs after surgery and OS. (D) Association between NPTMs after
surgery and DFS. OS, overall survival; DFS, disease-free survival; NPTMs, the number of positive tumour markers; pre, the number of positive tumour
markers before surgery; post, the number of positive tumour markers after surgery.
TABLE 3 Univariate and multivariate COX analysis of clinicopathological characteristics concerning overall survival of CRC patients in the
discovery cohort.

Clinicopathological Features
Univariable analysis Multivariable analysis

HR 95%CI P value HR 95%CI P value

Sex

Male Reference

Female 0.646 0.471 - 0.887 0.007 0.583 0.421 - 0.807 0.001

Age (years)

<65 Reference

≥65 2.045 1.490 - 2.807 0.000 2.424 1.741 - 3.374 0.000

Tumour Location

Right Colon Reference

Left Colon 0.553 0.358 - 0.854 0.008 0.218

Rectum 0.863 0.603 - 1.234 0.420 0.449

Histologic type

Grade I Adenocarcinoma Reference

(Continued)
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TABLE 3 Continued

Clinicopathological Features
Univariable analysis Multivariable analysis

HR 95%CI P value HR 95%CI P value

Histologic type

Grade II Adenocarcinoma 4.530 0.632 - 32.463 0.133 0.372

Grade III Adenocarcinoma 12.624 1.717 - 92.783 0.013 0.091

Mucinous Adenocarcinoma 6.979 0.955 - 51.026 0.056 0.199

pN stage

N0 Reference

N1 2.301 1.572 - 3.368 0.000 2.262 1.538 - 3.326 0.000

N2 5.195 3.600 - 7.496 0.000 4.627 3.148 - 6.801 0.000

NPTMs before surgery

0 Reference

1 2.114 1.508 - 2.965 0.000 1.573 1.105 - 2.239 0.012

2 3.611 2.247 - 5.803 0.000 2.550 1.495 - 4.348 0.001

NPTMs after surgery

0 Reference

1 2.901 1.814 - 4.640 0.000 1.789 1.078 - 2.967 0.024

2 12.447 6.521 - 23.761 0.000 4.187 2.038 - 8.602 0.000
F
rontiers in Oncology
 08102
NPTMs, the number of positive tumour markers.
Statistically significant values are in bold.
TABLE 4 Univariate and multivariate COX analyses of clinicopathological characteristics concerning disease-free survival of CRC patients.

Clinicopathological
Features

Univariable analysis Multivariable analysis

HR 95%CI P value HR 95%CI P value

Sex

Male Reference

Female 0.820 0.620 - 1.084 0.163 0.739 0.556 - 0.984 0.038

Age (years)

<65 Reference

≥65 1.937 1.457 - 2.573 0.000 2.235 1.661 - 3.007 0.000

Tumour Location

Right Colon Reference

Left Colon 0.589 0.397 - 0.873 0.008 0.287

Rectum 0.908 0.655 - 1.260 0.564 0.268

Histologic type

Grade I Adenocarcinoma Reference

Grade II Adenocarcinoma 1.423 0.526 - 3.848 0.487 0.867

Grade III Adenocarcinoma 3.289 1.159 - 9.335 0.025 0.305

Mucinous Adenocarcinoma 2.072 0.740 - 5.799 0.165 0.620

(Continued)
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novel reference index, has exhibited profound prognostic potential

(11, 15). Given their significant clinical value, this study categorized

patients according to NPTMs, assessed the prognostic significance

of combined STMs detection before and after surgery, and

subsequently developed clinical prediction models.

In this study, we found that the increased NPTMs before and

after surgery were associated with a poor prognosis of CRC.

Furthermore, NPTMs before surgery was closely related to the

TNM stage and tumour location, consistent with prior findings

(11). Studies reported that patients with normal STMs after surgery

possessed a notably better prognosis compared with patients with

abnormal STMs (13, 15). This research also supported this result.

Compared with patients with normal postoperative CEA and

CA19-9, patients with both tumour markers positive

postoperatively had approximately a 4.2-fold increased risk of

death and a 3.0-fold increased risk of recurrence. We also

discovered that both preoperative and postoperative positive CEA

and CA19-9 were more likely to occur in population with higher

pTNM stage, higher pN stage, and those with neural/vascular

invasion. For these patients, a more intensive follow-up strategy

should be implemented.

The role of circulating tumour DNA (ct-DNA) in predicting the

prognosis of colorectal cancer has garnered widespread attention

(32, 33). Study has reported a correlation between CT-DNA in

tumour cells and residual microcancer cells, but its clinical

application remains limited due to its high costs (34). Conversely,

tumour marker detection is affordable and easy to operate. Konishi

et al. reported that patients with elevated postoperative CEA faced a

higher hazard of early recurrence, especially within the first year

after radical surgery (13). Sonoda et al. found that elevation of CEA

post-surgery is independently correlated with an unfavorable

prognosis in stage II-III CRC (14). In this study, we found that

NPTMs before and after surgery were independent prognostic
Frontiers in Oncology 09103
factors for OS and DFS in patients with stage I-III colorectal

cancer. The elevation of tumour marker levels postoperatively

may suggest the presence of unrecognized residual minute cancer

cells at the time of surgery or in postoperative radiological

examinations, which raises the possibility of relapse (35, 36).

Therefore, in clinical practice, it is essential not only to perform

combined tumour markers testing before surgery for colorectal

cancer patients but also to pay attention to postoperative combined

tumour markers testing. Patients with positive tumour markers

might benefit from comprehensive treatment and require followed-

up regularly.

TNM stage is commonly used for prognosis prediction and

assessment, but its ability to predict patient outcomes may be

limited (37). Nomogram is a powerful graphical prediction tool

that illustrates the likelihood of a specific event occurring based on

multiple variables (17). Compared with the TNM stage, the

nomogram is more intuitive and easier to understand. Moreover,

it can incorporate more risk factors, significantly enhancing the

accuracy of prediction. Previous studies have developed CRC-

related survival prediction models based on STMs (38, 39), but

they were limited in sample size and did not focus on the prognostic

significance of post-surgical STMs. This might have restricted their

predictive accuracy to some extent. Therefore, this study

constructed two more comprehensive clinical prediction models

based on NPTMs to help clinicians predict and evaluate the

prognosis. Both nomograms included five variables: sex, age at

surgery, pN stage, NPTMs before and after surgery. The pN stage

and NPTMs after surgery had significant effects on total scores of

two models.

The C-index results indicated that the discriminative ability of

the two models is significantly superior to the TNM stage. Risk

stratification analysis revealed that the predictive models for OS and

DFS exhibited commendable discrimination proficiency. Further,
TABLE 4 Continued

Clinicopathological
Features

Univariable analysis Multivariable analysis

HR 95%CI P value HR 95%CI P value

pN stage

N0 Reference

N1 1.833 1.302 - 2.582 0.001 1.856 1.312 - 2.627 0.000

N2 4.281 3.090 - 5.930 0.000 4.012 2.843 - 5.663 0.000

NPTMs before surgery

0

1 1.826 1.339 - 2.490 0.000 1.431 1.036 - 1.978 0.030

2 2.962 1.896 - 4.629 0.000 2.232 1.365 - 3.650 0.001

NPTMs after surgery

0 Reference

1 2.713 1.755 - 4.195 0.000 1.676 1.050 - 2.673 0.030

2 8.743 4.607 -16.594 0.000 2.986 1.478 - 6.031 0.002
NPTMs, the number of positive tumour markers.
Statistically significant values are in bold.
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the results of DCA underscored that our models exhibited superior

performance in clinical decision-making compared with TNM

stage. The calibration curves for both groups also confirmed the

strong concordance between the predictive model and the actual

outcomes. NRI and IDI are two statistical indicators used to assess

the enhanced performance of predictive models. Through their

comparative analysis, we can discern the differential performance of

various models and select the optimal one (40, 41). Within our

investigation, both NRI and IDI metrics indicated that the novel

models had superior accuracy and discriminatory ability in

forecasting 3-year and 5-year OS and DFS for CRC patients. To

summarize, both prognostic models exhibited strong predictive

efficacy and clinical applicability, and can be utilized in clinical

settings to forecast the prognosis of stage I-III CRC patients.

This study had several limitations. First of all, both the

discovery cohort and validation cohort were established through

random grouping, which could lead to imbalances at baseline. For

instance, distinct variations in clinicopathological characteristics
Frontiers in Oncology 10104
were observed in both cohorts (age, P < 0.05). Secondly, for the

constructed model, the validation cohort performed better than the

discovery cohort in some aspect. Thirdly, since stage IV patients

receive different treatment methods from stage I–III patients, we

did not include stage IV patients in our study, so the nomograms

cannot be applied to stage IV CRC patients. Finally, Some factors

that might be associated with prognosis, such as BRAF and KRAS

mutation status and nutritional condition, were not considered in

our study. Future studies should incorporate more valuable

prognostic factors and conduct external validation.
5 Conclusion

NPTMs, both preoperatively and postoperatively, were closely

related to the prognosis of stage I-III colorectal cancer patients.

Compared with the AJCC 8th TNM stage, the nomograms based on

preoperative and postoperative CEA and CA19-9 demonstrated
FIGURE 3

Nomograms for predicting OS (A) and DFS (B). OS, overall survival; DFS, disease-free survival.
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FIGURE 4

The ROC curves of the OS and DFS in both the discovery (A, B) and validation (C, D) cohorts. ROC, Receiver Operating Characteristic; OS, overall
survival; DFS, disease-free survival.
TABLE 5 Comparison between nomograms and pTNM stage in C-index, NRI, and IDI.

Index
Discovery cohort Validation cohort

Estimate 95% CI P value Estimate 95% CI P value

NRI (vs.pTNM stage)

For 3-year OS 0.519 0.389 - 0.653 0.464 0.298 - 0.627

For 5-year OS 0.515 0.378 - 0.646 0.472 0.308 - 0.635

IDI (vs.pTNM stage)

For 3-year OS 0.131 0.087 - 0.197 0.000 0.172 0.095 - 0.273 0.000

For 5-year OS 0.117 0.083 - 0.172 0.000 0.140 0.088 - 0.217 0.000

C-index (OS)

The nomogram 0.760 0.724 - 0.796 0.772 0.723 - 0.821

The pTNM stage 0.655 0.618 - 0.691 0.665 0.619 - 0.711

Change 0.105 0.064 - 0.142 0.000 0.107 0.056 - 0.165 0.000

(Continued)
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superior predictive capability and clinical applicability, offering

more precise prognosis for colorectal cancer patients. The results

of this study suggest that preoperative and postoperative CEA and

CA199, are crucial in predicting patients’ prognosis, and both
Frontiers in Oncology 12106
clinicians and patients should be aware of the importance of the

preoperative and postoperative testing of these two tumour

markers. Therefore, it is not recommended to ignore the testing

of these markers for various reasons. Further validation of the
FIGURE 5

Kaplan-Meier survival curves stratified by the median of the total score of the discovery cohort. (A, C) OS curves for the discovery and validation
cohorts. (B, D) DFS curves for the discovery and validation cohorts. OS, Overall survival; DFS, Disease-free survival.
TABLE 5 Continued

Index
Discovery cohort Validation cohort

Estimate 95% CI P value Estimate 95% CI P value

NRI (vs.pTNM stage)

For 3-year DFS 0.481 0.344 - 0.587 0.423 0.243 - 0.648

For 5-year DFS 0.444 0.307 - 0.555 0.406 0.240 - 0.580

IDI (vs.pTNM stage)

For 3-year DFS 0.101 0.071 - 0.149 0.000 0.126 0.080 - 0.206 0.000

For 5-year DFS 0.098 0.066 - 0.145 0.000 0.109 0.061 - 0.186 0.000

C-index (DFS)

The nomogram 0.724 0.689 - 0.759 0.748 0.701 - 0.795

The pTNM stage 0.633 0.600 - 0.667 0.676 0.635 - 0.716

Change 0.090 0.051 - 0.132 0.000 0.072 0.034 - 0.112 0.000
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nomograms in different cohorts is needed to enhance

their generalizability.
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SUPPLEMENTARY FIGURE 1

The calibration curves for forecasting the survival of the discovery cohort and

validation cohort. (A, C)Calibration curves for theOSof the discovery and validation
cohorts. (B, D) Calibration curves for the DFS of the discovery and validation

cohorts. OS, overall survival; DFS, disease-free survival. A model's predicted
probability or score is represented on the x-axis. This is the model's estimate of

how likely an event is to occur. In addition, the y-axis shows the rate of event

occurrence, also in the range 0 to 1. This is the proportion of events that occur in
real data. Using the calibration curve, we can plot the relationship between the

predicted probabilities of the model and the actual observations. A dotted line
represents the ideal calibration line of the theory, which is 45 degrees diagonally.

When the calibration curve coincides with this line, the model makes perfect
predictions. Error lines (yellow and blue) on the calibration curve indicate its

uncertainty. Usually, error lines represent confidence intervals.

SUPPLEMENTARY FIGURE 2

DCA of the nomogram and the AJCC 8th TNM stage for the survival prediction.
(A, C)DCA for 3-year OS in the discovery and validation cohorts. (B, D) DCA for

5-year OS in the discovery and validation cohorts. (E, G) DCA for 3-year DFS in
the discovery and validation cohorts. (F, H)DCA for 5-year DFS in the discovery

and validation cohorts. DCA, Decision Curve Analysis; OS, overall survival; DFS,

disease-free survival. By quantifying the net benefit at different threshold
probabilities, DCA helps evaluate the clinical utility of a model. As

benchmarks, we used curves representing full treatment, denoting maximum
clinical benefits, and no treatment, denoting no clinical benefits.
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The diagnostic and prognostic 
value of soluble ST2 in Sepsis
Xinghua Ye , Jia Wang , Le Hu , Ying Zhang , Yixuan Li , 
Jingchao Xuan , Silu Han , Yifan Qu , Long Yang , Jun Yang , 
Junyu Wang  and Bing Wei *

Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral 
Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China

Objective: To determine the diagnostic and prognostic value of soluble 
suppression of tumorigenicity 2 (sST2) in patients with sepsis.

Methods: A total of 113 critically ill patients were enrolled at the emergency 
department of Beijing Chaoyang Hospital Jing Xi Branch. Venous blood levels of 
sST2 were measured using the AFIAS-6 dry fluorescence immunoassay analyzer. 
Based on Sepsis 3.0 criteria, patients were categorized into a sepsis group (76 
cases) and a non-sepsis group (37 cases). The sepsis group was further divided 
into non-survivors (38 cases) and survivors (38 cases) based on 28-day survival 
outcomes. The vital signs, blood gas analysis, routine blood tests, liver and 
kidney function tests, procalcitonin (PCT), C-reactive protein (CRP), sST2, left 
ventricular ejection fraction (LVEF), and other basic characteristics of the patients 
were recorded. Further, the SOFA, qSOFA and APACHE II scores of each patient 
were calculated. Statistical analysis was performed using SPSS 25.0, including 
logistic regression and ROC curve analysis to assess prognostic factors.

Results: The serum sST2 levels in the sepsis group (125.00  ±  60.32  ng/mL) 
were significantly higher than in the non-sepsis group (58.55  ±  39.03  ng/mL) 
(p  <  0.05). The SOFA score (8.08  ±  2.88), APACHE II score (18.00  ±  4.72), blood 
sST2 levels (168.06  ±  36.75  ng/mL) and lactic acid levels (2.89  ±  3.28) in the 
non-survivor group were significantly higher than the survivor group (p  <  0.05). 
Multiple logistic regression analysis showed that sST2, SOFA score, APACHE II 
score and lactic acid levels were independent risk factors for poor prognosis 
in patients with sepsis. The ROC curve analysis of the above indexes showed 
no significant differences between the AUC of sST2 (0.912) and the SOFA 
score (0.929) (z  =  0.389, p  =  0.697), or the APACHE II score (0.933) (z  =  0.484, 
p  =  0.627). However, there was a significant difference between the AUC of sST2 
(0.912) and lactic acid levels (0.768) (z  =  2.153, p  =  0.030).

Conclusion: Blood levels of sST2 show a clinically diagnostic and prognostic 
value in sepsis. Further, sST2 shows a similar predictive ability as the SOFA and 
APACHE II scores in determining the prognosis of sepsis patients. However, sST2 
has a higher predictive ability than lactic acid levels in determining prognosis in 
sepsis.
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Introduction

Sepsis, a life-threatening condition characterized by a dysregulated 
host response to infection, remains a significant contributor to 
mortality rates in intensive care units worldwide, affecting 
approximately 20–30% of individuals hospitalized in these critical care 
settings (1). Despite advances in critical care, the early diagnosis and 
accurate prognosis of sepsis continue to pose significant challenges 
(2). Accurate biomarkers that can facilitate early detection and provide 
reliable prognostic information are urgently needed to improve 
patient outcomes.

Interleukin 1 receptor-like 1, also known as Suppression of 
tumorigenicity 2 (ST2), is a member of the interleukin-1 (IL-1) 
receptor family. In recent years, ST2 has attracted attention as a new 
marker in heart failure and inflammation (3). ST2, a specific receptor 
for IL-33 within the IL-1 receptor family, plays a crucial role in 
immune regulation and systemic inflammatory responses (4–6). It 
exists in four isoforms: transmembrane ST2L, soluble sST2, truncated 
ST2v, and long variant ST2LV. sST2 (soluble ST2) competitively binds 
to IL-33, preventing its interaction with membrane-bound ST2 and 
inhibiting subsequent signaling. In cases of severe infections, sST2 
functions as a negative regulator by binding to IL-33, thereby 
contributing to immunosuppression (7, 8). Several studies have 
reported that the IL-33 / ST2 signaling pathway is crucial in various 
inflammatory diseases, cancer, and heart diseases (9–11). However, 
only a few studies have investigated the role of ST2 in sepsis. Given the 
pivotal role of inflammation in the pathophysiology of sepsis, the 
potential utility of soluble ST2 (sST2) as a diagnostic and prognostic 
biomarker warrants thorough investigation. This study analyzed the 
blood levels of sST2 in acute and critically ill patients. Further, the 
study also explored the diagnostic and prognostic role of sST2  in 
sepsis patients. By shedding light on the diagnostic and prognostic 
value of sST2 in sepsis, this study contributes to the broader effort to 
improve outcomes in this challenging and often fatal condition.

Materials and methods

Study population

A total of 120 sepsis patients were screened from December 2020 
to April 2021. Of these, 7 patients were excluded: 5 due to missing or 
incomplete data and 2 who refused treatment in the emergency room. 
Consequently, 113 acute and critically ill patients were prospectively 
enrolled in the emergency department at the Beijing Chaoyang 
Hospital Jing Xi Branch during this period. Inclusion criteria were: (a) 
patients aged ≥18 years and (b) patients with a diagnosis of infectious 

diseases during the admission period from December 2020 to April 
2021. Exclusion criteria included: (a) age < 18 years, (b) missing or 
incomplete patient data, and (c) refusal to be managed in the emergency 
department. The flowchart of the patient screening process is presented 
in Figure  1. The patients included 53 males and 60 females, aged 
between 33 and 94 years. Sepsis and septic shock (hereinafter referred 
to as “sepsis 3.0”) were diagnosed based on the international consensus 
on the definition of sepsis published by the European Society of Critical 
Care Medicine in 2016 (12). The patients were then classified into the 
sepsis group (n = 76) and the non-sepsis group (n = 37). Patients in the 
sepsis group were further subdivided based on the outcome after 
28 days into the non-survivor group (38 cases) and the survivor group 
(38 cases). Routine diagnostic tests were conducted, and treatment was 
optimized based on the outcomes of the tests. Data on the vital signs, 
routine blood tests, liver and kidney function tests, blood gas analysis, 
C-reactive protein (CRP), procalcitonin (PCT), and cardiopulmonary 
function were recorded. Collected vital signs included body 
temperature, heart rate, respiratory rate, and mean arterial pressure 
(MAP). Routine blood tests comprised white blood cell count (WBC), 
hemoglobin level (HB), hematocrit (HCT), platelet count (PLT), and 
liver function tests such as aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), total bilirubin (TBIL), and albumin (ALB). 
Kidney function tests included blood urea nitrogen (BUN) and 
creatinine (CR) measured from blood serum samples. Blood gas 
analysis included pH, partial pressure of oxygen (PaO2), partial 
pressure of carbon dioxide (PaCO2), and lactate level, all determined 
from arterial blood samples. Cardiopulmonary function parameters 
included ejection fraction (EF) (%) and oxygenation index, which were 
measured using echocardiography and blood gas analysis, respectively. 
These parameters were measured and assessed immediately upon the 
patient’s arrival in the emergency room. The SOFA and APACHE II 
scores were subsequently calculated based on the collected data. sST2 
was measured within 72 h of admission. Further, patient’s survival was 
followed up for 28 days. This study obtained the informed consent of 
all patients and their families, signed the informed consent form, and 
was approved by the ethics committee of Beijing Chao Yang Hospital, 
Capital Medical University (number: 2020-6-17-2).

ST2 detection by immunofluorescence

Venous blood was collected within 2 h of the patient appearing in 
the emergency department. The samples were collected into purple 
capped tubes lined with K2-EDTA anticoagulant. ST2 was analyzed 
using an automated immunofluorescence immunoassay system 
(AFIAS) immune analyzer (Model: AFIAS-6, Origin: Korea) and 
AFIAS ST2 Kit (REF: SMFP-70, Origin: Korea). All methods were 
performed in accordance with the relevant guidelines and regulations 
in the methods section to this effect.

Statistical analysis

Statistical analysis was conducted using the statistical software 
SPSS 25.0. The normal distribution of data was assessed using the 
nonparametric Kolmogorov–Smirnov test. Data were expressed as 
mean  ± standard deviation (x±s) for normally distributed data or 
median and interquartile range for not normally distributed data. 

Abbreviations: ALB, Albumin; ALT, Alanine Aminotransferase; APACHE II, Acute 

Physiology and Chronic Health Evaluation II Score; AST, Aspartate Aminotransferase; 

BNP, B-type Natriuretic Peptide; BUN, Blood Urea Nitrogen; CR, Creatinine; CRP, 

C-Reactive Protein; EF, Ejection Fraction; HGB, Hemoglobin; HCT, Hematocrit; 

LAC, Lactic Acid; LVEF, Left Ventricular Ejection Fraction; PaCO2, Partial Pressure 

of Carbon Dioxide; PaO2, Partial Pressure of Oxygen; PLT, Platelet Count; PCT, 

Procalcitonin; sST2, Soluble suppression of tumorigenicity 2; SOFA, Sequential 

Organ Failure Assessment; TBIL, Total Bilirubin; TnI, Troponin I; WBC, White Blood 

Cell Count.
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Differences in qualitative parameters between groups were assessed 
using two independent sample t-test (for normally distributed data). 
In contrast, the Mann Whitney U test was used for comparisons 
between groups (for not normally distributed data). On the other 
hand, one-way ANOVA was used for comparison between multiple 
groups. Categorical variables were expressed as numbers, and the data 
were analyzed using the chi-square test. Correlation between variables 
was conducted using Spearman correlation coefficients. The logistic 
regression model was used to analyze the prognostic factors. The 
receiver operating characteristic curve (ROC curve) was plotted to 
evaluate factors affecting patient prognosis. Statistically significant 
differences were considered at a p-value < 0.05.

Results

Comparison of the general information

There were 76 patients in the sepsis group, with an average age of 
80.75 years, including 33 males and 43 females. However, there were 
37 patients in the non-sepsis group, with an average age of 74.38 years, 
including 20 males and 17 females. There was no statistically 
significant difference in gender and age between the sepsis group and 
the non-sepsis group (all p > 0.05) (Table 1). Vital signs showed no 
significant difference in heart rate, mean arterial pressure, and body 
temperature between the sepsis and non-sepsis groups (all p > 0.05). 
The respiratory rate was significantly higher in the sepsis group 
(p = 0.021). Laboratory findings revealed no significant differences in 

white blood cell counts and platelet counts between the two groups 
(all p > 0.05). In contrast, hemoglobin levels were significantly reduced 
in the sepsis group (p = 0.014). Additionally, liver enzyme levels (AST 
and ALT) were comparable across both groups, with all p-values 
greater than 0.05. The baseline characteristics of the sepsis group and 
the non-sepsis group are summarized in Table 1.

Comparison of sST2 values between the 
sepsis group and the non-sepsis group

The sST2  in venous blood of patients in the sepsis group was 
higher than in the non-sepsis group, with a statistically significant 
difference (Table 1). The Spearman correlation analysis showed that 
sST2 was positively correlated with the SOFA score (r = 0.539, 
p ≤ 0.001) and APACHE II score (r = 0.482, p ≤ 0.001).

Prognosis prediction in sepsis patients 
using sST2 and other laboratory 
parameters

There were no statistically significant differences in age, gender, 
brain natriuretic peptide (BNP), troponin I (TnI), LVEF, and length of 
hospital stay between the non-survivor group and the survivor group 
(all p > 0.05) (Table 2). However, the non-survivor group’s SOFA score, 
APACHE II score, lactic acid, PCT, CRP, and sST2 levels were 
significantly higher than the survivor group (all p < 0.05).

FIGURE 1

The flowchart of the patient screening process.
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Multivariate logistic regression analysis of the statistically 
significant prognostic factors in the univariate analysis showed that 
sST2, SOFA score, APACHE II score, and lactic acid levels were 
independent prognostic factors for sepsis (Table 3). Analysis of the 
ROC curve showed that the area under the curve (AUC) of the sST2 

and SOFA score (0.912 vs. 0.929) (z = 0.389, p = 0.697), and the area 
under the curve of the sST2 and Apache II score were not statistically 
significant (0.912 vs. 0.933) (z  = 0.484, p = 0.627) (Figure  2 and 
Table  4). However, the AUC of sST2 and lactic acid levels was 
statistically significant (0.912 vs. 0.768) (z = 2.153, p = 0.030). sST2 
showed a sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), positive likelihood ratio (+LR), and 
a negative likelihood ratio (−LR) of 97.4%, 76.3%, 80.4%, 96.7%, 4.11, 
and 0.03, respectively, in predicting the prognosis of sepsis. The SOFA 
score had a sensitivity, specificity, PPV, NPV, +LR, and –LR of 86.8%, 
81.6%, 82.5%, 86.1%, 4.71, and 0.16, respectively, in predicting the 
prognosis of sepsis. The APACHE II score had a sensitivity, specificity, 
PPV, NPV, +LR, and –LR of 89.5%, 89.5%, 89.5%, 89.5%, 8.5, and 0.12, 
respectively, in predicting the prognosis of sepsis. The lactic acid levels 
had a sensitivity, specificity, PPV, NPV, +LR, and –LR of 71.1%, 73.7%, 
73.0%, 71.8%, 2.7 and 0.39, respectively, in predicting the prognosis of 
sepsis. In summary, sST2 demonstrated prognostic and predictive 
ability comparable to the SOFA and APACHE II scores in sepsis, and 
it showed higher predictive ability than lactic acid levels. Moreover, 
ROC curve analysis revealed that the combination of SOFA with sST2 
achieved the highest AUC of 0.973, indicating superior distinguishing 
ability for predicting outcomes in sepsis (Figure 3). This was closely 
followed by the combination of APACHE-II with sST2, with an AUC 
of 0.964. However, the results indicated that the combinations of 
SOFA with sST2 and APACHE-II with sST2 had similar distinguishing 
abilities, as there was no statistically significant difference between 
their AUCs (z = 0.496, p = 0.620) (Figure 3).

Discussion

Sepsis is a life-threatening organ dysfunction caused by an 
imbalance in the body’s response to infection, leading to septic shock 
or multiple organ dysfunction (13). Sepsis is a medical emergency that 

TABLE 1 Comparison of baseline characteristics between the sepsis 
group and non-sepsis group.

Detection 
indexes

Sepsis 
group 

(n  =  76)

Non-sepsis 
group 
(n  =  37)

p-value

Age (years) 80.75 ± 8.90 74.38 ± 8.95 0.782

Male/Female 33/43 20/17 0.65

SOFA score 5.71 ± 3.35 2.22 ± 2.32 0.005

APACHE II score 14.34 ± 5.46 9.68 ± 4.53 0.282

Temperature (°C) 36.53 ± 0.44 36.47 ± 0.37 0.441

Heart rate (Bpm) 90.34 ± 21.07 88.43 ± 20.50 0.649

Respiratory rate 

(breaths/min)
26.70 ± 8.90 22.65 ± 8.40 0.021

Mean arterial pressure 

(mmHg) 92.16 ± 14.56 92.06 ± 14.37 0.973

pH 7.43 ± 0.09 7.44 ± 0.07 0.35

PaCo2 (mmHg) 42.97 ± 11.88 40.05 ± 7.18 0.108

PaO2 (mmHg) 92.28 ± 47.19 95.00 ± 37.95 0.742

Lactic acid (mmol/l) 2.03 ± 2.49 1.43 ± 1.14 0.079

White blood cells (109/L) 9.51 ± 4.75 9.34 ± 4.26 0.845

Platelets (109/L) 208.78 ± 69.01 213.01 ± 98.04 0.792

Hematocrit (%) 40.52 ± 27.87 32.27 ± 6.80 0.084

Hemoglobin (g/L) 104.83 ± 21.83 120.14 ± 33.28 0.014

Aspartate 

aminotransferase (U/L)
37.54 ± 49.30 40.75 ± 43.13 0.724

Alanine 

aminotransferase (U/L)
30.12 ± 37.39 28.53 ± 32.80 0.818

Total bilirubin (μmol/L) 16.56 ± 11.02 16.46 ± 8.21 0.958

Albumin (g/L) 27.38 ± 6.15 28.53 ± 32.80 0.014

Blood urea nitrogen 

(mg/dL)
16.27 ± 13.69 10.78 ± 11.12 0.025

Creatinine (μmol/L) 115.88 ± 110.40 100.16 ± 170.76 0.612

Sodium (mEq/L) 140.61 ± 9.00 138.07 ± 6.50 0.09

Potassium (mEq/L) 4.03 ± 0.71 4.02 ± 0.62 0.899

PCT (ng/ml) 2.01 ± 4.59 0.90 ± 2.75 0.095

CRP (mg/l) 49.22 ± 44.76 37.22 ± 44.55 0.555

BNP (pg/ml) 584.52 ± 772.13 474.27 ± 741.99 0.52

TnI (ng/ml) 0.15 ± 0.64 1.36 ± 4.87 ≤0.001

LVEF (%) 60.50 ± 11.33 60.24 ± 12.54 0.239

Hospital stay (days) 14.64 ± 9.58 11.97 ± 8.30 0.135

sST2 (ng/ml) 125.00 ± 60.32 58.55 ± 39.03 ≤0.001

Values are expressed as the mean ± standard deviation. APACHE II, acute physiology and 
chronic health evaluation II; BNP, B-type natriuretic peptide; CRP, C-reactive protein; LVEF, 
left ventricular ejection fraction; PCT, procalcitonin; SOFA, sequential organ failure 
assessment; sST2, soluble suppression of tumorigenicity 2; TnI, troponin I.

TABLE 2 Comparison of the detection indexes between the non-survivor 
group and the survivor group of sepsis patients.

Detection 
indexes

Non-survivor 
group 

(n  =  38)

Survivor 
group 

(n  =  38)

p-value

Male/Female 13/25 20/18 0.108

Age (years) 81.61 ± 7.93 79.89 ± 9.81 0.406

SOFA score 8.08 ± 2.88 3.34 ± 1.71 ≤0.001

APACHE II score 18.00 ± 4.72 10.68 ± 3.26 ≤0.001

Lactic acid (mmol/l) 2.89 ± 3.28 1.16 ± 0.52 0.010

PCT (ng/ml) 3.65 ± 6.07 0.36 ± 0.64 0.001

CRP (mg/l) 66.85 ± 45.38 31.59 ± 36.93 ≤0.001

BNP (pg/ml) 666.78 ± 697.17 502.26 ± 841.74 0.356

TnI (ng/ml) 0.23 ± 0.90 0.08 ± 0.08 0.305

LVEF (%) 60.13 ± 8.74 60.87 ± 13.55 0.779

Hospital stay (days) 16.45 ± 10.85 12.84 ± 7.87 0.101

sST2 (ng/ml) 168.06 ± 36.75 81.93 ± 47.08 ≤0.001

Values are expressed as the mean ± standard deviation. APACHE II, acute physiology and 
chronic health evaluation II; BNP, B-type natriuretic peptide; CRP, C-reactive protein; LVEF, 
left ventricular ejection fraction; PCT, procalcitonin; SOFA, sequential organ failure 
assessment; sST2, soluble suppression of tumorigenicity 2; TnI, Troponin I.
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presents as an acute and severe disease. It is associated with high 
mortality, which can be as high as 40% (14). The occurrence and 
development of sepsis involve complex immune mechanisms (15, 16). 
Sepsis is characterized by an inflammatory storm in the early stages 
and persistent immunosuppression in later stages. Further, it is 
characterized by reduced innate and acquired immune response and 
reduced ability for pathogen clearance, resulting in secondary 
opportunistic infections by pathogenic bacteria or viruses and severe 
complications (17).

ST2 is a specific receptor of IL-33 in the IL-1 family. IL-33 / ST2 
signaling pathway plays an important role in the systemic 
inflammatory response and immune regulation (4–6, 18). ST2 
includes four isoforms, ST2L, sST2, ST2v, and ST2LV. sST2 is a soluble 
ST2 that can competitively bind to IL-33, inhibiting its biological 
activity and signal transduction. In severe infection, sST2 acts as a 
negative regulator and combines with IL-33, thus participating in 
immunosuppression (7, 8). In the present study, the sST2 levels in the 

venous blood were higher in the sepsis group than in the non-sepsis 
group. This finding indicates that sST2 can be used as a diagnostic 
index in sepsis.

Moreover, in the sepsis group, the blood levels of sST2 were 
significantly higher in the non-survivor group than in the survivor 
group, suggesting that the blood levels of sST2 have a high 
predictivity ability in determining the prognosis of sepsis patients. 
Higher blood levels of sST2 were positively correlated with a poor 
prognosis. Furthermore, patients with high SOFA and APACHE II 
scores also had high blood levels of sST2, with a poorer prognosis, 
consistent with other studies (19, 20). Therefore, blood levels of 
sST2 in patients with sepsis can be used as clinical indicators to 
predict prognosis.

APACHE II scoring system has been widely used in ICUs since its 
inception in 1985 (21–24). It is of clinical significance as it can 
objectively evaluate the severity of the patient’s condition, guide the 
monitoring and treatment plans, and evaluate treatment outcomes 

TABLE 3 Multivariate logistic regression analysis of the factors affecting prognosis in sepsis patients.

Detection indexes Standard error Wald Sig. EXP (B) 95% CI of EXP(B)

Lower limit Upper limit

SOFA score 0.529 6.334 0.046 0.349 0.124 0.984

APACHE II score 0.237 3.888 0.049 0.626 0.394 0.997

Lactic acid 1.850 3.954 0.047 0.025 0.001 0.949

PCT 1.094 0.003 0.959 0.945 0.111 8.061

CRP 0.017 0.085 0.771 1.005 0.973 1.038

sST2 0.029 4.337 0.037 0.941 0.889 0.996

APACHE II, acute physiology and chronic health evaluation II; CRP, C-reactive protein; Lactic acid, lactic acid; PCT, procalcitonin; sST2, soluble suppression of tumorigenicity 2; SOFA, 
sequential organ failure assessment.

FIGURE 2

ROC curve of the SOFA score, sST2, APACHE II score and lactic acid levels on the prediction of mortality. ROC curve, receiver operating characteristic 
curve; SOFA score, sequential organ failure assessment score. sST2, soluble suppression of tumorigenicity 2; APACHE II, acute physiology and chronic 
health evaluation II.
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(25). Furthermore, it can be used to predict and accurately assess the 
quality of care in ICU settings.

The SOFA score was described by the European Society of Intensive 
Care Medicine in 1944. The score aims to describe the occurrence and 
development of multiple organ dysfunction syndromes (MODS) and to 
evaluate the incidence rate (23, 24). The SOFA score is based on objective, 
simple, easy-to-obtain, reliable, and specific continuous variables in 
evaluating multiple organ dysfunction (26). Patient source, disease type, 
demographic characteristics, and the treatment administered do not 
influence these variables. The SOFA score can distinguish the degree of 
multiple organ dysfunction or failure of a single organ (26).

Lactic acid is a metabolite of anaerobic glycolysis in the human 
body. Under normal circumstances, levels of lactic acid exceeding 
2 mmol/L overwhelm the capacity for liver clearance (27, 28). The 
dynamic monitoring of blood lactate levels is clinically significant in 
diagnosing lactic acidosis (29). Increased blood lactate levels can 
be used to evaluate disease severity and prognosis (27, 28).

The ROC curve analysis showed that sST2, SOFA, and 
APACHE II scores and the lactic acid levels had a prognostic, 
predictive ability in sepsis, consistent with previous studies. The 
sST2 showed similar prognostic and predictive ability with the 
SOFA and APACHE II scores. However, sST2 had a higher 

prognostic predictive ability than lactic acid levels. In conclusion, 
blood levels of sST2 can be used as clinical indices for the diagnosis 
and prognosis of sepsis.

Our study has several limitations. First, while sST2 demonstrates 
significant diagnostic and prognostic utility in sepsis, its performance 
must be validated through more extensive prospective cohort studies 
with a more diverse patient population. Second, the single-center 
design may limit the generalizability of our results to other clinical 
settings. Therefore, multi-center studies are warranted to corroborate 
the findings across various clinical environments. Third, although the 
28-day follow-up period helps assess short-term outcomes, it may not 
capture the long-term prognostic significance of sST2. Further 
research is needed to explore this aspect. Fourth, we treated sepsis and 
septic shock as a homogeneous entity. While our primary focus was 
to assess the prognostic value of soluble ST2 across the full spectrum 
of sepsis, this approach may mask differences in outcomes associated 
with these distinct clinical phenotypes. Future studies should consider 
applying the Sepsis-3 criteria to provide deeper insights into the 
differential roles of soluble ST2 in sepsis and septic shock. Finally, 
while the study compared sST2 with SOFA, APACHE II, and lactic 
acid levels, additional comparisons with other biomarkers, such as 
procalcitonin and C-reactive protein, could provide further insights.

FIGURE 3

ROC curve showing the predictive value of combining SOFA with sST2 and APACHE II with sST2 for mortality prediction. ROC curve, receiver operating 
characteristic curve; SOFA score, sequential organ failure assessment score. sST2, soluble suppression of tumorigenicity 2; APACHE II, acute physiology 
and chronic health evaluation II.

TABLE 4 Diagnostic parameters of the SOFA score, sST2, APACHE II score and lactic acid levels.

Detection 
indexes

AUC Cut-off Sensitivity (%) Specificity (%) PPV (%) NPV (%) +LR -LR

sST2 0.912 103.055 97.4 76.3 80.4 96.7 4.11 0.03

SOFA score 0.929 4.5 86.8 81.6 82.5 86.1 4.71 0.16

APACHE II score 0.933 13.5 89.5 89.5 89.5 89.5 8.5 0.12

Lactic acid 0.768 1.5 71.1 73.7 73.0 71.8 2.7 0.39

APACHE II, acute physiology and chronic health evaluation II; Lactic acid, lactic acid; SOFA, sequential organ failure assessment; sST2, soluble suppression of tumorigenicity 2.
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Conclusion

In conclusion, this study demonstrates that sST2 has significant 
diagnostic and prognostic value in sepsis. The predictive ability of 
sST2 is comparable to established scoring systems like SOFA and 
APACHE II, which are widely used for determining sepsis 
prognosis. Notably, sST2 demonstrates superior predictive 
capability compared to lactic acid levels for sepsis outcomes, 
suggesting that sST2 could be  a more reliable indicator for 
identifying patients at higher risk of poor prognosis. These findings 
support the potential incorporation of sST2 into routine clinical 
practice for more accurate diagnosis and prognosis of sepsis. 
Further research is needed to validate these results and explore the 
practical applications of sST2 in sepsis management.
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relationship between 486
genetically predicted blood
metabolites and the risk
of gastric cancer: a
comprehensive Mendelian
randomization analysis
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Zhaobang Tan5, Shisen Li5, Jun Zhu6* and Jipeng Li1,5*

1Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China,
2School of Clinical Medicine, Xi’an Medical University, Xi’an, China, 3Department of Pharmacy, Shaanxi
Provincial Hospital of Chinese Medicine, Xi’an, China, 4Department of Digestive Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, China, 5Department of Gastrointestinal Surgery, Xijing
Hospital, Fourth Military Medical University, Xi’an, China, 6Department of Digestive Diseases, Xijing
Hospital, Fourth Military Medical University, Xi’an, China
Background: Previous epidemiological studies have yielded inconclusive results

regarding the causality between blood metabolites and the risk of gastric cancer

(GC). To address this shortcoming, we conducted a two-sample Mendelian

randomization (MR) study, combined with metabolomics techniques, to

elucidate the causality between 486 genetically predicted blood metabolites

and GC.

Methods: MR analysis and metabolomics techniques such as ultra-high

performance liquid chromatography/tandem mass spectrometry (UPLC-MS/

MS) and gas chromatography/tandem mass spectrometry (GC-MS/MS)

technologies were employed to assess the causality of 486 genetically

predicted blood metabolites on the risk of GC. The genome-wide association

study (GWAS) summary data for 486 blood metabolites from 7,824 individuals.

The GWAS summary data for GC (ebi-a-GCST90018849) were obtained from the

IEU Open GWAS project, including 1,029 GC cases and 474,841 controls. Primary

causality estimates were obtained using inverse variance weighting (IVW),

supplemented with the weighted median, MR-Egger, weighted mode, and

simple mode. In addition, we conducted sensitivity analyses (including

Cochran’s Q, MR-Egger intercept, MR-PRESSO, and leave-one-out tests),

Steiger’s test, linked disequilibrium score regression, and multivariate MR

(MVMR) to improve the assessment of causality between GC and blood

metabolite. Finally, we recruited a total of 11 patients diagnosed with gastric

cancer from the First Affiliated Hospital of Air Force Military Medical University

between September and October 2024. The control group comprised 11 healthy

individuals. Serum samples were collected from both groups for the evaluation of

blood-related metabolite expression levels using advanced techniques such as
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ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-

MS/MS) and gas chromatography-mass spectrometry (GC-MS/MS).

Results: The MVMR analysis revealed a significant association between

genetically predicted elevated levels of tryptophan (odds ratio [OR] = 0.523,

95% confidence interval [CI] = 0.313–0.872, p = 0.013), nonadecanoate (19:0)

(odds ratio [OR] = 0.460, 95% confidence interval [CI] = 0.225–0.943, p = 0.034),

and erythritol (odds ratio [OR] = 0.672, 95% confidence interval [CI] = 0.468–

0.930, p = 0.016) with a decreased risk of gastric cancer. Based on metabolomic

techniques such as UPLC-MS/MS and GC-MS/MS analyses, it has been

demonstrated that the expression levels of tryptophan, nonadecanoate (19:0),

and erythritol are reduced in patients with gastric cancer. This finding aligns with

the results obtained from our MR analysis and provides further confirmation

regarding the protective role of tryptophan, nonadecanoate (19:0), and erythritol

against gastric cancer.

Conclusions: These findings indicate that three blood metabolites are causally

related to GC and provide new perspectives for combining genomics and

metabolomics to study the mechanisms of metabolite-mediated

GC development.
KEYWORDS

blood metabolites, gastric cancer, Mendelian randomization, causality, genomewide
association study
1 Introduction

Gastric cancer (GC), primarily characterized as an

adenocarcinoma, ranks as fifth most prevalent malignancy and

the third leading cause of cancer-related mortality globally in

2020 (1). For early-stage GC, endoscopic mucosal dissection is

the main therapeutic approach, boasting an impressive 5-year

postoperative survival rate of 92.6% (2). For patients with stage I/

II GC who undergo laparoscopic or open distal gastrectomy, the

survival rate is also commendable but slightly lower, ranging from

73% to 76% (3). However, it’s crucial to note that the overall 5-year

survival rate for GC patients, particularly those diagnosed at

advanced stages, remains suboptimal, with a median survival of

less than one year (4). This disparity underscores the critical need

for early detection and intervention to not only enhance survival

rates but also significantly reduce healthcare costs. By focusing on

prevention and early treatment, we can potentially alleviate the

economic burden of GC on both patients and healthcare systems.

Currently, the diagnosis of GC relies primarily on endoscopic

and biopsy-based procedures. Although reliable, these methods

have drawbacks, such as high financial cost, invasiveness,

potential complications, and limited testing resources, which may

discourage patient compliance and make them unsuitable for

widespread screening initiatives. An ideal alternative would be

noninvasive blood tests. Currently used gastrointestinal tumor
02118
markers include glycan antigen 199 (CA199) (5) and

carcinoembryonic antigen (CEA) (6). Unfortunately, although

highly specific, they have low sensitivity and significant rates of

false-negative and false-positive results. This calls for further

research, possibly in areas such as blood metabolomics, to

identify novel biomarkers indicative of GC and facilitate early

detection and treatment.

Metabolomics can identify cancer biomarkers and determinants

of tumorigenesis by detecting changes in relevant metabolites over

the course of disease progression (7). Ikeda et al. found pronounced

differences in the serum metabolic profiles of individuals with

gastrointestinal malignancies, including esophageal, gastric, and

colorectal cancers, compared with those of healthy volunteers (8).

Specifically, changes in 3-hydroxypropionic and pyruvic acid levels

were found to be sufficiently discriminative to differentiate gastric,

esophageal, and colorectal cancers, exceeding the sensitivity and

specificity of conventional biomarkers such as CA199 and CEA (8).

However, the scientific landscape is currently characterized by a

paucity of comprehensive investigations to establish a causal

relationship between blood metabolites and GC. Translating these

metabolic discoveries into pathophysiological mechanisms and

innovative therapeutic strategies remains challenging. Therefore,

there is a need for a comprehensive analysis of the interplay between

genetic elements and circulating blood metabolites in the etiology

of GC.
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Mendelian randomization (MR) has emerged as a key

methodology in epidemiological research. It derives putative

causal relationships between environmental exposure and health

outcomes by using distinctive single nucleotide polymorphisms

(SNPs) as instrumental variables (9). MR exploits genetic

variability to simulate the construct of randomized controlled

trials (RCTs). The use of independent genome-wide association

study (GWAS) datasets provides the flexibility to independently

assess SNPs associated with both exposure and outcome, thereby

facilitating two-sample analysis. This technique provides

compelling evidence for a causal relationship between disparate

phenotypes. By carefully exploring the potential causal relationships

between genetic predisposition to disease and various biological

traits (e.g., blood metabolomics), MR paves the way for the

identification of relevant disease-related biomarkers (10).

Numerous studies have investigated the association between

various exposures and GC using magnetic resonance imaging.

These investigations have predominantly focused on single

exposures or prevalent exposure factors, including body mass

index (11), interleukin-6 (12), vitamin D (13), lifestyle patterns

such as smoking and alcohol consumption (14), sleep habits (15),

and immunoproteins (16). However, investigations of blood

metabolites related to GC are scarce. Given the vague nature of

the causal link between blood metabolites and GC, we used a two-

sample MRmethodology, combined with metabolomics techniques,

to investigate the causal dynamics between 486 human blood

metabolites and GC.
2 Materials and methods

2.1 Study design

InMR research, the integrity of conclusions depends on three key

assumptions (Figure 1). (1)Correlation assumption:a robust and

statistically significant association between the SNP and exposure

of interest. (2)Independence assumption: the SNP is free of any

correlation with potential confounding variables. (3)Exclusivity

assumption: the influence of an SNP on outcomes is exclusively

mediated by exposure, ruling out any unaccounted pathways. Based

on these principles, our methodology included the selection of high-

quality comprehensive datasets from accessible GWASs. This allowed

us to obtain appropriate instrumental variables (IVs) for the MR

analyses, which were critical for identifying the relationships between

an array of 486 blood metabolites and susceptibility to GC.
2.2 GWAS data sources

A blood metabolite profiling dataset was obtained from the

Comprehensive Metabolomics GWAS repository (https://

metabolomics.helmholtz-muenchen.de/gwas/). This dataset

comprises a diverse European cohort of 7,824 individuals,

including 1,768 participants from the KORA F4 study in
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Germany and 6,056 from the UK Twin Study (17). Genome-wide

association and high-throughput metabolomic studies have

revealed approximately 2.1 million SNPs and 486 different

metabolites. Of these, 309 metabolites were identified and

characterized. The identified metabolites were systematically

classified into the following eight categories based on their

chemical properties: amino acids, carbohydrates, cofactors,

vitamins, energy substrates, lipids, nucleotides, peptides, and

xenobiot ics . These 486 metabol i tes are compi led in

Supplementary Table S1, with the designation “X-” indicating

those with yet-to-be-determined chemical properties.

The GWAS data for GC (ebi-a-GCST90018849) were obtained

from the IEU Open GWAS Project (https://gwas.mrcieu.ac.uk/).

The detailed attributes of the consolidated GC data are described in

Supplementary Table S2.
2.3 Selection of IVs

In accordance with the fundamental tenets of MR analysis, we

meticulously delineated a set of criteria for distinguishing the IVs

associated with the 486 metabolites. In keeping with the axiom of

relevance, our selection protocol strictly adhered to the established

genome-wide significance boundary, setting the threshold to a

robust p-value (P < 5 × 10-8). Recognizing the subtleties inherent

in the genetic underpinnings of certain metabolites, for which only

a few SNPs were uncovered, a more permissive threshold was

adopted (P < 1 × 10-5) (18, 19).

In a concerted effort to mitigate the confounding intricacies of

linkage disequilibrium, a judicious clustering strategy was used,

encompassing a swath of 500 kilobase pairs augmented by a

correlation coefficient ceiling of 0.01, to isolate SNPs of sovereign

genetic locations. In addition, we removed SNPs carrying

mismatched alleles or palindromic sequences, which are

indicative of genotyping inaccuracies. Simultaneously, we

excluded SNPs that had a statistical synergy with the outcome

variable or were absent from the outcome cohort, thus preserving

the integrity of the assay.

The veracity of each SNP as an IV was judged through the prism

of the F statistic (18), given by the following formula, where “ N”

represents the cohort size and “ R2 ” is the proportional variance

attributed to the SNPs within the exposome profile.

F =
R2 � (N − 2)

1 − R2

The calculation of “ R2 ” involved the following formula, where

“ EAF ” represents the frequency of the effect allele, “ b ” is the

regression coefficient explaining the magnitude of the SNP-

exposure association, and “ SD ” is the standard deviation.

R2 =
2� EAF � (1 − EAF)� b2

SD2

To mitigate bias associated with weak instrumental variables,

we excluded SNPs with F < 10. Subsequently, we identified and
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extracted the SNPs for our exposure of interest from the outcome

data while excluding those that were significantly related to the

outcome (p < 1 × 10−5). The SNPs that survived the rigorous

selection process are shown in Supplementary Table S2 (20).
2.4 Univariate MR analysis

In this study, a quintet of MR assays was used, with the

predominant analysis using the inverse variance-weighted (IVW)

paradigm for its statistical power. This approach synthesizes Wald

ratio calculations for each SNP-outcome conjugation, providing a

composite causal estimate (21). In addition, causal associations

between a compendium of 486 metabolites and GC susceptibility

were assessed using odds ratios (ORs) embedded within 95%

confidence intervals (CI).

To strengthen the robustness and credibility of our MR

conclusions, additional checks were performed using MR-Egger

and weighted median (WM) evaluations. An MR-Egger inspection

was implemented to detect and correct the putative pleiotropic

effects, thereby providing more reliable estimates. The use of the

weighted median method yields robust causal inferences, mitigates

Type I errors, and enhances the detection of authentic effects even

when a preponderance of the input comes from potentially

compromised IVs. Harmonization of the WM and MR-Egger

results (P < 0.05) with those of the IVW method, both in terms

of the trajectory and magnitude of effect, was essential for

confirming the validity of these findings.

MR scatter plots were generated to visualize the hypothesized

causal relationship between the identified metabolites and GC risk.
2.5 Sensitivity analysis

To unravel the intricacies of SNP heterogeneity, we used

Cochran’s Q test within the IVW and MR-Egger frameworks. A

P-value < 0.05 served as the arbiter of significant heterogeneity. It is

worth noting that this statistical test highlights differences in IV

effect sizes. In addition, the MR-Egger intercept coupled with the

MR-PRESSO analysis tools was used to expose the spectrum of

horizontal pleiotropy, with statistical significance determined using

a P-value < 0.05 (22). The robustness of our inferential scaffold was

tested using careful leave-one-out (LOO) analysis (23). This

rigorous technique ensures that the influence of any single SNP

does not unduly bias the overarching determination of causality.
2.6 Metabolic pathway analysis

To elucidate the underlying biological mechanisms through

which prominent blood metabolites influence GC susceptibility, we

expanded our analysis to include metabolic pathway exploration.

We performed Kyoto Encyclopedia of Genes and Genomes

pathway enrichment analysis using MetaboAnalyst (version 5.0;

https://www.metaboanalyst.ca/).
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2.7 Genetic correlation and
direction validation

In the context of dissecting genetic correlations between

determinants and clinical outcomes, MR estimation could

potentially bias the interpretation of causality (24). To circumvent

the confounding complications introduced by the coinheritance of

significant metabolites and GC risk, we adopted the Linkage

Disequilibrium Score Regression (LDSC) methodology.

Additionally, we used the Steiger test to assess the potential for

reverse causation, which is a critical step in determining whether

genetic variants have a stronger association with the determinant

than with the consequence (25). Within the confines of the Steiger

framework, a P-value of less than 0.05 is statistically significant,

supporting the primacy of genetic instruments in modulating the

determinant, thus strengthening our primary hypothesis.
2.8 Multivariate Mendelian
randomization analysis

Given the interrelationships among the salient metabolites that

emerged as statistically significant, we conducted a series of

multivariate MR (MVMR) analyses to elucidate the distinct causal

contributions of multiple metabolite exposure to GC risk. Our

baseline MVMR analysis used an IVW strategy, and we refined

our investigation using the MR-PRESSO method to identify and

correct for potential genetic-level heterogeneity and the

confounding effects of outliers. This meticulous approach refines

precision and strengthens the integrity of causal inferences.
2.9 Statistical analysis

Each MR study used the “TwoSampleMR” (version 0.4.22)

software package for R (version 4.1.2) as the computational

framework. LDSC was performed using LDSC software (version

1.0.1). The criterion for statistical significance was set at P < 0.05.

The magnitude and direction of the causal associations between

variables were quantified using ORs and their respective 95% CIs.
2.10 Metabolomic analysis

From September to October 2024, 11 preoperative blood

samples from GC patients admitted to the First Affiliated

Hospital of Air Force Military Medical University and 11 blood

samples from healthy controls were selected for analysis. All

samples were stored at -80°C. This study was approved by the

Ethics Committee of the First Affiliated Hospital of Air Force

Military Medical University (approval number KY20222083-F-1).

Subsequently, an untargeted metabolomic analysis was conducted

utilizing ultra-high performance liquid chromatography/tandem

mass spectrometry (UPLC-MS/MS) and gas chromatography/

tandem mass spectrometry (GC-MS/MS) technologies based on the
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HD4 high-resolution accurate mass analysis platform. The analysis

focused on baseline serum metabolites, including tryptophan,

nonadecanoate (19:0), and erythritol. All metabolite data were

transformed using a logarithm and normalized on a batch basis.

For further details regarding the specific metabolomic analysis

methodology, please refer to reference (1, 26).

A comprehensive quality control and management system was

implemented throughout the experiment to ensure accurate and

consistent identification of the true chemical components and to

eliminate any potential interference due to misattribution,

background noise or system artifacts. The stability of the

instrument’s performance was evaluated by calculating the relative

standard deviation (RSD) of the internal standards introduced to

each sample prior to injection into the mass spectrometer.
3 Results

3.1 IVs for exposures

After an exhaustive and methodological selection process, 486

serum metabolites were selected for evaluation using MR analysis.

The number of SNPs associated with thesemetabolites ranged from 3 to

503. Metabolites with the identifiers #00577, #32322, #33188, #34453,

and #37459 were distinguished using the sparsest array of genetic tools,

each of which was underpinned by only three correlated SNPs.

Conversely, metabolite #33178 was located at the apex, with a

substantial endowment of 496 SNPs, conferring genetic

instrumentation. The F-statistics for all SNPs involved in the

correlation analyses uniformly exceeded the threshold of 10, heralding

the robust statistical power of the selected IVS andmitigating the risk of

bias that could come from weak instruments. For a more detailed view

of the IV data, please see Supplementary Table S2.
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3.2 Primary analysis

Using IVW analysis, we identified 17 metabolites with potential

relevance to GC etiology. Of these, 10 were characterized, whereas the

remaining seven were not. These 17 metabolites had compelling

associations with susceptibility to GC (Figure 2), and spanned a

diverse spectrum of chemical classifications, such as amino acids,

peptides, lipids, nucleotides, and xenobiotics, including tryptophan

(OR = 0.523, 95% CI = 0.313−0.872, P = 0.013), tyrosine (OR = 2.489,

95% CI = 1.173−5.283, P = 0.018), C-glycosyltryptophan (OR = 0.

500, 95% CI = 0.263−0.951, P = 0.035), serine (OR = 1.622, 95% CI =

1.014−2.724, P = 0.044), gamma-glutamylmethionine (OR = 1.709,

95% CI = 1.093−2.671, P = 0. 019), X-13431-nonanoylcarnitine (OR

= 0.784, 95% CI = 0.635−0.967, P = 0.023), nonadecanoate (19:0) (OR

= 0.460, 95% CI = 0.225−0.943, P = 0.034), guanosine (OR = 0. 779,

95% CI = 0.607−0.999, P = 0.049), paraxanthine (OR = 0.778, 95% CI

= 0.691−0.979, P = 0.032), and erythritol (OR = 0.672, 95% CI = 0.486

−0.930, P = 0.016) (Figure 3).

Within the framework of the IVW method, the concordance of

the results derived from the MR-Egger method and weighted

median estimations underscored the robustness of the

associations between these metabolites and GC risk (Table 1).
3.3 Sensitivity analysis

To substantiate the robustness of our findings, we conducted a

comprehensive series of sensitivity analyses, including Cochran’s Q

test, MR-Egger intercept test, MR-PRESSO, and LOO analysis.

Cochran’s Q test showed no significant heterogeneity, confirming

the uniformity of the dataset. In addition, the MR-Egger intercept test

showed no statistical evidence of horizontal pleiotropy (Table 1).
FIGURE 1

Overview of the research workflow.
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In the LOO analysis, the systematic exclusion and subsequent

recalculation of MR estimates for each SNP in isolation confirmed

the stability of our findings, indicating that no SNP introduced a

consequential bias (Figure 4). The MR-PRESSO test, a sentinel test

for outlier SNPs that potentially induce heterogeneity, did not

reveal any significant differences (Supplementary Table S3).
3.4 Metabolic pathway analysis

Using insights from the 10 established metabolites, we

uncovered a quintet of metabolic pathways potentially integral to

GC (Table 2): aminoacyl-tRNA biosynthesis; phenylalanine,

tyrosine, and tryptophan biosynthesis; ubiquinone and other

terpenoid quinone biosynthesis; phenylalanine metabolism; and

caffeine metabolism. These pathways may provide the foundation

for the biological edifice within which GC emerges.

Notably, L-tyrosine was a recurrent participant in the first four

enumerated pathways, L-tryptophan was critical to the aminoacyl-

tRNA biosynthesis pathway, and 1,7-dimethylxanthine was exclusive

to the caffeine metabolism pathway. These results suggest a potential

direct involvement in malignant transformation processes that

characterize gastric carcinogenesis and invite more exhaustive

investigative efforts.
3.5 Evaluation of genetic correlation
and directionality

Our results indicated a lack of statistically significant genetic

correlation, underscoring the elusive nature of the genetic

underpinnings that may link these metabolites to GC. Specifically,

the regression coefficients (Rg) for tryptophan, tyrosine, guanosine,

serine, nonadecanoate (19:0), and X-13431-nonanoylcarnitine were

−0.0728, −0.0399, −0.3576, 0. 0674, −0.0276, and −0.1312,

respectively, paired with the standard errors (Se) that underscore
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the imprecision of these estimates (0.0814, 0.1810, 0.2496, 0.2646,

0.1689, and 0.2297, respectively). None reached statistical significance,

with p-values exceeding 0.05 (0.3709, 0.8255, 0.1518, 0.7988, 0.8701,

and 0.5680, respectively). This finding suggests that the current cohort

size was insufficient to detect a clear genetic association. The SNP

heritability estimates for these metabolites ranged from 0.0725

(serine) to 0.9757 (tryptophan) (Supplementary Table S4).

We also applied the Steiger test to the cohort of 10 recognized

metabolites to identify potential reverse causal vectors. Substantial

results from the Steiger test rejected the hypothesis of an inverse

effect, whereby GC perturbed the levels of these circulating

metabolites. The available evidence (Supplementary Table S5)

does not lend credence to such inverse dynamics.
3.6 MVMR analysis

To delineate the potential causal relationship between the

selected metabolites and GC incidence, we performed MVMR

analysis using the IVW method. Simultaneously, we screened the

indicators of genetic instrument heterogeneity using the MR-

PRESSO approach. Converging evidence from both the IVW and

MR-PRESSO analyses suggested that the genetic proxies for

tryptophan, nonadecanoate (19:0), and erythritol harbored direct

and independent causal links to GC susceptibility, devoid of the

confounding effects of other metabolites considered in our

investigation (Figure 5, Supplementary Table S6).
3.7 The relative content of tryptophan,
nonadecanoate (19:0) and erythritol in
human blood samples

The relative content of tryptophan, nonadecanoate (19:0) and

erythritol was determined by untargeted metabolomics analysis of

blood samples collected from hospitals (Figure 6). The results
FIGURE 2

A forest plot of the causal effect of blood metabolites on gastric cancer (GC) risk from univariate Mendelian randomization with inverse variance
weighting (IVW).
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demonstrated that the levels of these three substances in the blood

of GC patients were markedly diminished in comparison to those

observed in healthy control groups (p < 0.05). This finding is

consistent with the results of our MR analysis, which provides

further confirmation of the role of tryptophan, nonadecanoate

(19:0) and erythritol as protective factors against GC.
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4 Discussion

Based on primary analyses utilizing Inverse Variance Weighting

(IVW), weighted median approaches, and MR-Egger regression,

along with sensitivity analysis, we identified 17 metabolites that are

causally associated with gastric cancer (GC). Among these, 10 are
FIGURE 3

A scatterplot of the significant causal relationship (P < 0.05) between blood metabolites and gastric cancer (GC).
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TABLE 1 Detection of causal relationships between 17 blood metabolites and GC risk using two MR models and tests for heterogeneity and
horizontal pleiotropy.

Metabolites Number of SNPs MR analysis Heterogeneity Pleiotropy

Method OR (95% CI) P-value Q P Intercept p

Amino acid

Tryptophan 197 ME 0.798 (0.211– 3.020) 0.740 211.685 0.196 −0.00234672261246323 0.501

WM 0.781 (0.320– 1.907) 0.587

Tyrosine 35 ME 4.419 (0.214–91.054) 0.343 36.552 0.307 −0.00562161200575098 0.703

WM 2.872 (0.934– 8.837) 0.066

C-glycosyltryptophan* 23 ME 0.553 (0.165–1.851) 0.347 15.287 0.808 −0.00158207855094606 0.850

WM 0.616 (0.252–1.508) 0.289

Serine 39 ME 6.728 (1.889–23.967) 0.006 0.850 0.857 −0.0187715047558943 0.025

WM 1.241 (0.560– 2.747) 0.595

Peptide

Gamma-
glutamylmethionine*

9 ME 1.426 (0.550–3.699) 0.489 4.973 0.663 0.007 0.687

WM 2.037 (1.137–3.651) 0.017

Lipid

X-13431–nonanoylcarnitine* 22 ME 0.689 (0.447–1.062) 0.107 16.186 0.705 0.006 0.513

WM 0.762 (0.569–1.021) 0.068

nonadecanoate (19:0) 16 ME 0.412 (0.060–2.847) 0.384 10.669 0.712 0.002 0.905

WM 0.397 (0.142–1.108) 0.078

Nucleotide

Guanosine 12 ME 0.989 (0.498–1.964) 0.975 1.527 0.999 −0.0132003086022429 0.481

WM 0.770 (0.562–1.057) 0.106

Xenobiotics

Paraxanthine 13 ME 0.883 (0.440–1.768) 0.731 4.723 0.944 −0.007517064025338 0.714

WM 0.839 (0.610–1.154) 0.281

Erythritol 28 ME 0.832 (0.491–1.409) 0.500 11.851 0.992 −0.00721226588820352 0.323

WM 0.786 (0.496–1.246) 0.306

Unknown

X-05907 13 ME 4.891 (1.487–16.090) 0.024 12.980 0.295 −0.0176623721801645 0.194

WM 1.662 (0.699– 3.951) 0.250

X-06351 6 ME 0.583 (0.334–1.017) 0.130 0.943 0.918 −0.00823932365242328 0.539

WM 0.537 (0.303–0.951) 0.033

X-11315 28 ME 1.886 (1.059–3.359) 0.041 22.996 0.633 −0.00754445825407327 0.325

WM 1.782 (1.119–2.839) 0.015

X-11858 17 ME 0.839 (0.607–1.160) 0.305 13.384 0.573 −0.00150060089220439 0.932

WM 0.826 (0.687–0.992) 0.041

X-12428 9 ME 1.388 (0.744–2.590) 0.337 6.630 0.468 −0.00338631534292095 0.850

WM 1.190 (0.824–1.719) 0.353

(Continued)
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well-documented, including tryptophan, tyrosine, C-

glycosyltryptophan, serine, gamma-glutamylmethionine, X-13431-

nonanoylcarnitine, nonadecanoate (19:0), guanosine, paraxanthine,

and erythritol. Notably, After adjusting for relevant covariates using

multivariate MR analysis, the associations of tryptophan,

nonadecanoate (19:0), and erythritol with GC risk remained

significant. Furthermore, the results of UPLC-MS/MS andvGC-

MS/MS showed that compared with the healthy control group, the

blood content of these three substances in GC patients was

significantly reduced (p < 0.05). This finding is consistent with

our MR Analysis and further confirms the role of tryptophan,

palmitate (19:0) and erythritol as protective factors for GC. To

our knowledge, this is the inaugural MR study to systematically

investigate the prospective causal interactions between circulating

metabolites and GC risk, highlighting the potential of

these metabolites as biomarkers for both screening and

therapeutic intervention.

The conclusions drawn from our rigorous MVMR analysis

suggested that increased tryptophan, nonadecanoate (19:0), and

erythritol levels were associated with a decreased risk of GC

progression. This suggestion is supported by literature that

implicates tryptophan metabolism as a potential antagonist in

oncogenesis. Some tryptophan derivatives are implicated in

orchestrating immune responses and limiting neoplastic

proliferation. One example is the reduction of glutathione

peroxidase 2, which triggers an increase in kynurenine, a

tryptophan byproduct. This increase leads to the accumulation of

reactive oxygen species via the tryptophan metabolic pathway,

impeding the progression and metastatic potential of gastric

malignancies (27). Nevertheless, the influence of tryptophan

metabolism on carcinogenesis is not unambiguous, with

bifurcated pathways toward either oncogenic or tumor-

suppressive roles that depend on many elements, including

distinct metabolic trajectories, neoplastic typology, tumor

microenvironment, and host immune constitution (28).

Nonadecanoate (19:0), a long-chain fatty acid ester, was

recently identified as the predominant constituent of essential oil

derived from the fruits of Pistacia terebinthus, which exhibits

promising antineoplastic properties against lung carcinoma cell

lines (29). Unfortunately, the literature on the mechanistic

insights related to this monomeric component is scarce.

Erythritol , a tetrahydric alcohol sugar synthesized

endogenously from glucose via the pentose phosphate pathway in
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human cells, is available through dietary channels as a synthetic

sweetener. Research has shown that erythritol may exert a critical

influence on cerebral oncogenesis and the modulation of hydrogen

peroxide, with its action depending on its concentration in

biological systems (30).

We also identified a cadre of established metabolites that

provide protection against gastric carcinoma. In particular, C-

glycosyltryptophan, a metabolite within tryptophan metabolism,

has historically been used as an index of renal function (31, 32),

with empirical associations suggesting an increase in the infectious

and inflammatory burden (33). Its role against GC is supported by

correlations with cardiovascular and thyroid pathologies (34, 35).

X-13431-nonanoylcarnitine represents a research gap, and its

functional parity with recognized acylcarnitines is based on its

structural cognate. The physiological and pathophysiological

implications of acylcarnitines are manifold, such as influencing

the sequelae of myocardial ischemia, glucose homeostasis, and

inflammatory processes (36).

In this study, we found an association between elevated levels of

tyrosine, serine, and gamma-glutamylmethionine in blood

metabolites and an increased risk of GC progression. Tyrosine is

involved in gluconeogenesis and ketogenesis, linking energy, lipid,

and glucose metabolism. Disorders of tyrosine metabolism have

been identified as biomarkers for hepatocellular carcinoma and

gastroesophageal malignancies, and alterations in metabolism and

related pathways play a key role in cancer development and

progression (37, 38). Serine, which is essential for the rapid

growth of tumor cells, contributes to the proliferation of colon

cancer by providing single-carbon units. In addition, there is

evidence that glycine supplementation may alter serine

metabolism in tumor cells and that serine deprivation may inhibit

tumor growth by affecting lipid metabolism pathways, particularly

those involving palmitoyltransferases (39–41). Moreover, a negative

correlation between plasma gamma-glutamylmethionine levels and

the risk of lethal prostate cancer progression has been observed (42).

Our study has several strengths. First, it adopted an innovative

approach by integrating metabolomics and genomics, which differs

from previous MR analyses that focused only on single or

conventional exposure factors. Moreover, by employing rigorous

MR analysis and Steiger’s analysis, we effectively addressed inherent

limitations of traditional observational studies, such as reverse

causality and confounding biases. Finally, we validated specific

metabolite levels in the blood of patients with gastric cancer using
TABLE 1 Continued

Metabolites Number of SNPs MR analysis Heterogeneity Pleiotropy

Method OR (95% CI) P-value Q P Intercept p

Unknown

X-12855 20 ME 0.803 (0.606–1.063) 0.143 13.474 0.763 −0.00233762913162488 0.768

WM 0.816 (0.624–1.067) 0.137

X-14541 16 ME 0.889 (0.405–1.952) 0.774 19.105 0.161 0.021 0.287

WM 1.108 (0.802–1.531) 0.535
frontier
GC, gastric cancer; ME, MR-Egger.
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metabolomics techniques, further supporting the reliability of the

results obtained by Mendelian analysis.

Nevertheless, our study has certain limitations. First, there were

a limited number of available SNPs for the exposures at the

genome-wide level. To counteract this, we made a deliberate

decision to moderately adjust the p-value thresholds in our MR
Frontiers in Oncology 10126
analysis. Nonetheless, it is crucial to emphasize that the F-statistic

value for all SNPs we selected surpassed 10, which is a reassuring

indicator of the strength and reliability of our instrumental

variables. Second, our study did not account for potential

confounding factors known to influence gastric cancer incidence,

such as smoking and alcohol consumption. Nevertheless, the
FIGURE 4

Leave-one-out plots for the causal association between blood metabolites and gastric cancer (GC).
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intercept test from the MR-Egger method yielded P-values above

0.05, indicating that the SNPs associated with the metabolites we

selected are not pleiotropic. In other words, these SNPs are unlikely

to influence outcomes through pathways unrelated to the
Frontiers in Oncology 11127
metabolites of interest. Despite this, we recognize the importance

of considering these confounding factors in future research to gain a

more comprehensive understanding of the causal links between

blood metabolites and gastric cancer development. Finally,our

analysis identified several metabolites as potential risk predictors

for GC; however, these metabolites remained uncharacterized.

Detailed studies on their molecular structures and functions may

reveal novel biomarkers or therapeutic targets, thereby advancing

the field of GC research.

In conclusion, our investigation sheds light on the potential

causal associations between 10 known metabolites and GC

through primary analysis. In addition, MVMR analysis

andvmetabolomics techniques suggested that 3 metabolites

affect the progression of GC. Our findings highlight the

importance of GC in mediating the interplay between

metabolites and GC, thereby opening new avenues for research

on the etiology of GC, particularly its intersection with

environmental factors.
FIGURE 6

The beanplots of the relative amounts of tryptophan (A), nonadecanoate (19:0) (B), and erythritol (C) in blood samples from patients with gastric
cancer (GC) compared to those from healthy controls ‘*’ means p < 0.05; ‘**’ means p < 0.01; ‘***’ means p < 0.001.
TABLE 2 Significant metabolic pathways involved in the pathogenesis of
gastric cancer (GC).

Metabolic pathways Involved
metabolites

P-value

Aminoacyl-tRNA biosynthesis L-Tryptophan/
L-Tyrosine

0.005417

Phenylalanine, tyrosine and
tryptophan biosynthesis

L-Tyrosine 0.010293

Ubiquinone and other terpenoid-
quinone biosynthesis

L-Tyrosine 0.023046

Phenylalanine metabolism L-Tyrosine 0.025582

Caffeine metabolism 1,7-Dimethylxanthine 0.025582
FIGURE 5

A forest plot of the causal effects of blood metabolites on gastric cancer (GC) risk from multivariate Mendelian randomization with inverse variance
weighting (IVW).
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