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Background: Glioblastoma (GBM) is a highly malignant brain tumor, and

immune cells play a crucial role in its initiation and progression. The

immune system’s cellular components, including various types of lymphocytes,

macrophages, and dendritic cells, among others, engage in intricate interactions

with GBM. However, the precise nature of these interactions remains to be

conclusively determined.

Method: In this study, a comprehensive two-sample Mendelian Randomization

(MR) analysis was conducted to elucidate the causal relationship between

immune cell features and the incidence of GBM. Utilizing publicly available

genetic data, we investigated the causal associations between 731 immune cell

signatures and the risk of GBM. Subsequently, we conducted a reverseMendelian

randomization analysis to rule out reverse causation. Finally, it was concluded

that there is a unidirectional causal relationship between three subtypes of

immune cells and GBM. Comprehensive sensitivity analyses were employed

to validate the results robustness, heterogeneity, and presence of horizontal

pleiotropy. To enhance the accuracy of our results, we concurrently subjected

them to Bayesian analysis.

Results: After conducting MR analyses, we identified 10 immune phenotypes

that counteract glioblastoma, with the most protective being FSC-A on Natural

Killer T cells (OR = 0.688, CI = 0.515–0.918, P = 0.011). Additionally, we found

11 immune cell subtypes that promote GBM incidence, including CD62L– HLA

DR++ monocyte % monocyte (OR = 1.522, CI = 1.004–2.307, P = 0.048),

CD4+CD8+ T cell % leukocyte (OR = 1.387, CI = 1.031–1.866, P = 0.031).

Following the implementation of reverse MR analysis, where glioblastoma served

as the exposure variable and the outcomes included 21 target immune cell

subtypes, we discerned that only three cell subtypes (CD45 on CD33+ HLA DR+

CD14dim, CD33+ HLA DR+ Absolute Count, and IgD+ CD24+ B cell Absolute

Count) exhibited a unidirectional causal association with glioblastoma.

Conclusion: Our study has genetically demonstrated the close relationship

between immune cells and GBM, guiding future clinical research.

KEYWORDS

glioblastoma, immunity, causal inference, MR analysis, Bayesian analysis

Introduction

Glioma is the most prevalent form of primary malignant tumor of the central nervous

system with an incidence of 5.6/100,000 per year in adults (1). The most aggressive

subtype of glioma is glioblastoma (GBM), currently classified as grade 4 astrocytoma

with a mutation in the isocitrate dehydrogenase gene (IDH) according to The World
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Health Organization (WHO) (2). Surgical resection of the tumor

followed by radiotherapy and chemotherapy with temozolomide

is a common GBM treatment method. Despite comprehensive

treatment advances, GBM remains one of the deadliest human

cancers due to its high recurrence rate and therapy resistance.

Highly invasive nature, high heterogeneity, and immune evasion

are regarded as pivotal determinants linked to treatment failure

and disease relapse in GBM (3, 4). Overall, the prognosis of GBM

is extremely poor, with a 5-year survival rate of <5%. It causes a

heavy burden on families and society (5). Recently, immunotherapy

has provided a new method to cure this disease. This primarily

encompasses immune checkpoint inhibitors, personalized vaccines,

Chimeric Antigen Receptor T (CAR-T) cell therapy, immune

cell therapy, and other methodologies (6, 7). However, GBM

is a highly immunosuppressive tumor with several immune

escape mechanisms present (8, 9). Although immunotherapy has

provided a new approach for treating glioblastoma, the lack of

large-scale clinical randomized controlled trials to validate its

efficacy and safety is attributed to ethical considerations and

other factors. Moreover, the intricate relationship among immune

cells, immunosuppressive cells, inflammatory responses, and the

occurrence, development, and recurrence of glioblastoma is highly

complex, making it challenging to arrive at a definitive conclusion

regarding their interplay (10, 11). Microglia, as the indigenous

macrophages of the central nervous system, are collectively

known as tumor-associated macrophages (TAMs), forming the

primary barrier of innate immunity within the central nervous

system (12). TAMs adjust their phenotypes in response to the

stimuli encountered within their microenvironment. Traditionally,

two TAM phenotypes have been delineated: M1 macrophages,

characterized by pro-inflammatory and anti-tumor properties, and

M2 macrophages, which exhibit anti-inflammatory and pro-tumor

characteristics (13). TAMs are a major type of immune cells

in the tumor microenvironment. However, there is controversy

surrounding the role of TAMs in glioblastoma. Some studies

suggest that TAMs may promote the growth, invasion, and

metastasis of glioblastoma, while others indicate that TAMs may

counteract tumor growth (14–16). Furthermore, T cells constitute

the principal lymphocytic constituent of the glioblastoma tumor

microenvironment (TME), exerting both pro-tumor and anti-

tumor functions. Various subsets of T cells can be discerned,

including Cluster of Differentiation 4+ T (CD4+ T) helper cells,

CD8+ cytotoxic T cells, and regulatory T cells (17). However, the

Abbreviations: WHO, World Health Organization; IDH, isocitrate

dehydrogenase gene; GBM, glioblastoma; WM, weighted median; SD,

standard deviation; AC, absolute cell; RC, relative cell; OR, odds ratio;

CI, confidence interval; GWAS, genome-wide association study; HLA,

human leukocyte antigen; IVs, instrumental variables; IVW, inverse

variance weighting; LD, linkage disequilibrium; MFI, median fluorescence

intensities; MP, morphological parameters; CDCs, conventional dendritic

cells; MR, Mendelian Randomization; MR-PRESSO, MR pleiotropy residual

sum and outlier; SNPs, single nucleotide polymorphisms; MHC, major

histocompatibility complex; MDSCs, myeloid-derived suppressor cells;

TANs, tumor-associated neutrophils; TADCs, tumor-associated dendritic

cells; TCR, T-cell receptor; CD4+ T, cluster of di�erentiation 4+ T; CAR-T,

Chimeric antigen receptor T; TBNK, T cells, B cells, natural killer cells; TAMs,

tumor-associated macrophages; TME, tumor microenvironment.

role of T cells is also controversial. Some studies suggest that T cells

can recognize and attack tumor cells, thereby combating tumor

growth, while others have found that T cells may be suppressed

by the tumor cells’ immune evasion mechanisms in gliomas (18–

20). Natural killer cells, originating from the bone marrow, possess

effector functions mediated by cytokine production and cytotoxic

activity. Their efficacy is often modulated by immunosuppressive

factors released by tumor cells (21). Traditionally, microglial cells

have been regarded as the immune cells of the central nervous

system and may potentially counteract tumor growth. However,

recent studies have suggested that in certain circumstances,

microglial cells may promote the growth and metastasis of gliomas

rather than inhibit them. This finding has sparked further debate

regarding the functional role of microglial cells in gliomas (22,

23). While the roles of some immune cells in GBM have been

elucidated, the diverse subtypes of immune cells contribute to

ongoing research and controversies in the field. Therefore, further

research is required to elucidate the roles of different subtypes of

immune cells in glioblastoma.

Mendelian randomization (MR), a causal inference method,

has been extensively applied in genetic epidemiology (24). In

contrast to traditional observational studies, MR, utilizing genetic

variation as instrumental variables (IVs), stands as a widely

acknowledged approach to alleviate potential confounding factors

(25). This method effectively navigates around issues related

to reverse causation and confounding factors, enabling a more

precise inference of the causal relationship between exposure

and outcome. The rationality of the causal sequence in MR

is of utmost importance. Previous observational studies have

identified numerous associations between immune cell features and

glioblastoma, validating the hypothesis of their correlation (26–

28). In this study, a comprehensive two-sample MR analysis was

conducted to ascertain the causal relationship between different

immune cell subtypes and GBM.

Materials and methods

Study design

We performed a two-sample Mendelian Randomization (MR)

analysis to evaluate the causal relationship between 731 immune

cell features (categorized into seven groups) and glioblastoma. MR

employs genetic variations as proxies for risk factors, and thus, valid

instrumental variables in causal inference must meet three essential

assumptions: (1) genetic variations are directly associated with the

exposure; (2) genetic variations are not correlated with potential

confounders between the exposure and outcome, and (3) genetic

variations do not influence the outcome through pathways other

than the exposure (Figure 1). The research investigations included

in our analysis received approval from the respective institutional

review boards, and participants provided informed consent.

Data sources

The GWAS summary statistics for glioblastoma

(finngen_R10_C3_GBM_EXALLC) were sourced from FinnGen

Database R10, including 253 cases of brain glioblastoma and
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FIGURE 1

The flow diagram of Mendelian randomization analysis.

314,193 controls. The FinnGen project has amassed biological

specimens and clinical data from more than 300,000 individuals

in Finland. This dataset encompasses diverse data types, including

genomic data, clinical diagnoses, biological sample sequencing,

and medical records. Through the analysis of extensive genetic

and clinical data, the project seeks to unveil associations between

genes and various diseases, alongside the impact of environmental

and lifestyle factors on these relationships. Its overarching goal is

to elucidate the interplay between genes and health. As a publicly

accessible resource, it can be accessed via the website (https://www.

finngen.fi/en) (29).

GWAS summary statistics for each immune trait are publicly

available from the GWAS Catalog (accession numbers within the

range of GCST0001391 to GCST0002121) (30). The data contain

731 immunophenotypes, with categories such as absolute cell (AC)

counts (n = 118), median fluorescence intensities (MFI) reflecting

surface antigen levels (n = 389), morphological parameters [MP]

(n = 32), and relative cell (RC) counts (n = 192). These

features encapsulate various immune cell types, including B cells,

conventional dendritic cells (CDCs), mature stages of T cells,

monocytes, myeloid cells, TBNK (T cells, B cells, natural killer

cells), and Treg panels. The initial GWAS analyses involved a

cohort of 3,757 individuals of European descent, thereby ensuring a

comprehensive and diverse representation of the datasets. Utilizing

high-density arrays, genotyping was performed on an extensive

set of around 22 million single nucleotide polymorphisms (SNPs).

Subsequently, imputation was carried out employing the Sardinian

sequence-based reference panel. Covariate adjustments, specifically

accounting for sex, age, and age squared, were systematically

incorporated into the association analyses (31). This rigorous

methodology aimed to enhance the accuracy and reliability of the

research findings while minimizing the risk of confounding factors.

Selection of instrumental variables (IVs)

In both forward MR studies (with immune cells as exposure

and GBM as outcome) and reverse MR studies (with GBM

as exposure and immune cells as outcome), we employed

identical methodologies for experimentation. In the initial phase,

single nucleotide polymorphisms associated with exposure were

judiciously selected based on a genome-wide significance threshold

(P < 5 × 10−5) in accordance with previous researches

(30, 32). Subsequently, the independence of the chosen SNPs

was assessed through pairwise linkage disequilibrium analysis,

employing exclusion criteria for SNPs in linkage disequilibrium

(r2 > 0.001 and a clumping window <10,000 kb) (33). Thirdly,

the F-statistic was computed to ascertain the robustness of each

SNP, with the exclusion of SNPs possessing an F-statistic <10

(34). A rigorous data harmonization process was implemented to

ensure concordance between SNP effects on exposure and outcome,

aligning with the same allele. The F-statistic for each SNP was

calculated using the formula F = R2/(1–R2) × (N – 2), where R2

represents the variance of exposure explained by the instrumental

variables (IVs), and N indicates sample size. The variance of

exposure explained by the instrument variable was calculated with

the formula R2 = β2/(β2
+ se2 × N), in which β denotes the effect

size for the genetic variant of interest, se represents the standard

error for β , and N represents the sample size.
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TABLE 1 Causal e�ects of immune cells on GBM by IVW.

Traits Beta OR Low Up P-value

IgD+ CD24+ B cell absolute count 0.305 1.357 1.000 1.840 0.049

CD19 on IgD+ CD38dim B cell 0.127 1.136 1.015 1.270 0.025

CD19 on IgD+ CD24– B cell 0.116 1.122 1.003 1.256 0.043

CD20 on CD20– CD38– B cell −0.327 0.721 0.542 0.960 0.025

CD38 on plasma blast-plasma cell −0.336 0.715 0.532 0.959 0.025

CD62L– HLA DR++monocyte %monocyte 0.420 1.522 1.004 2.307 0.048

CD86 on CD62L+myeloid dendritic Cell 0.232 1.262 1.017 1.566 0.035

Myeloid dendritic cell absolute count 0.185 1.203 1.029 1.406 0.020

CD11c on monocyte −0.203 0.816 0.667 1.000 0.049

CD3 on effector memory CD4+ T cell −0.202 0.817 0.679 0.984 0.033

Effector memory CD4–CD8– T cell %CD4–CD8– T cell −0.220 0.803 0.673 0.957 0.014

CD45 on CD33+HLA DR+ CD14dim 0.268 1.307 1.072 1.595 0.008

CD33+HLA DR+ absolute Count −0.112 0.894 0.815 0.981 0.018

CD66b on CD66b++myeloid cell −0.213 0.808 0.685 0.952 0.011

CD4+CD8+ T cell %leukocyte 0.327 1.387 1.031 1.866 0.030

Lymphocyte absolute count 0.314 1.369 1.050 1.786 0.020

Granulocyte absolute count 0.310 1.363 1.044 1.780 0.023

CD8dim T cell %leukocyte −0.230 0.795 0.633 0.997 0.047

FSC-A on natural killer T −0.374 0.688 0.515 0.918 0.011

CD4 on activated & secreting CD4 regulatory T cell 0.141 1.152 1.007 1.317 0.039

CD3 on CD39+ resting CD4 regulatory T cell −0.328 0.720 0.584 0.889 0.002

All P < 0.05.

E�ect size estimate and sensitivity analysis

We employed the random-effect inverse variance-weighted

(IVW) method as the primary analysis due to its robustness,

providing a conservative estimate even in the presence of

heterogeneity (35). Additionally, supplementary analyses were

conducted employing the weighted median (WM) and MR-Egger

methods to validate the robustness of the IVW estimates. MR-

Egger regression served as a test for unbalanced pleiotropy and

substantial heterogeneity (36). In the presence of pleiotropy,

MR-Egger estimates were considered more persuasive than IVW

estimates. Furthermore, when at least half of the weighted variance

resulting from horizontal pleiotropy was valid, the WM estimates

could provide robust effect estimates. In summary, a significant

estimate consistently observed in the direction between IVW,WM,

and MR-Egger was considered statistically significant.

We conducted a comprehensive set of sensitivity analyses,

encompassing Cochran’s Q tests, funnel plots, leave-one-out

analyses, and MR-Egger intercept tests. Specifically, heterogeneity

was assessed through Cochran’s Q tests, and the intercept term

derived from MR-Egger regression was employed to evaluate

pleiotropy. Leave-one-out analyses were performed to determine

whether the causal estimate was influenced by any single SNP.

All analyses were executed using the “Two Sample MR” package

(version 0.5.8) in R software (version 4.3.1). Statistical significance

was defined at a two-sided P-value < 0.05. Effect estimates were

reported as odds ratios (OR) per standard deviation (SD) increment

of the corresponding exposure. To enhance the precision of our

findings, we employed the coloc R package (https://chr1swallace.

github.io/coloc/, version 5.1.0) for a Bayesian co-localization test on

the MR results, enabling the estimation of the posterior probability

associated with shared genetic variants (37).

Results

We conducted a comprehensive MR investigation to explore

the causal impact of genetically predicted 731 immunophenotypes

on the morbidity of glioblastoma. In summary, we selected SNPs

to genetically predict the causal influence of 731 immune cell

types on GBM. The number of SNPs utilized in each MR analysis

varied between 11 and 32. Notably, the F-statistic values for

each genetic instrument surpassed 10, indicative of their robust

instrumental strength.

The causal e�ect between the
immunophenotypes and glioblastoma

After conducting preliminary analyses on the associations

between genetically instrumental immune cell features and the

risk of glioblastoma mainly by IVW method, we identified causal
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TABLE 2 Mendelian Randomization assessments regarding the connection between genetically instrumented immune cells and GBM.

Outcome Exposure Method OR 95% CI P-value

GBM CD45 on CD33+HLA DR+ CD14dim MR Egger 1.263 (0.936–1.703) 0.150

Weighted median 1.359 (1.013–1.823) 0.041

IVW 1.307 (1.072–1.595) 0.008

Simple mode 1.216 (0.767–1.927) 0.420

Weighted mode 1.331 (0.977–1.812) 0.091

BWMR 1.344 (1.073–1.683) 0.010

GBM CD33+HLA DR+ absolute count MR Egger 0.852 (0.762–0.953) 0.009

Weighted median 0.869 (0.751–1.006) 0.060

IVW 0.894 (0.815–0.981) 0.018

Simple mode 0.981 (0.785–1.227) 0.868

Weighted mode 0.900 (0.794–1.019) 0.107

BWMR 0.880 (0.784–0.989) 0.032

GBM IgD+ CD24+ B cell absolute count MR Egger 1.377 (0.775–2.445) 0.288

Weighted median 1.495 (0.945–2.366) 0.086

IVW 1.357 (1.000–1.840) 0.050

Simple mode 2.043 (0.987–4.229) 0.067

Weighted mode 1.555 (0.922–2.634) 0.112

BWMR 1.375 (0.966–1.957) 0.077

associations for four groups of immune cells, comprising 21 distinct

immune cell types including five were in the B cell panel, four in the

CDC panel, two in the Maturation stages of T cell panel, three in

the Myeloid cell panel, two in the Treg panel and five in the TBNK

panel. We observed protective effects for 10 immunophenotypes

against glioblastoma, while 11 immunological cell subtypes were

found to promote its incidence. The most significant protective

cell types are FSC-A on Natural Killer T cells (OR = 0.688, CI =

0.515–0.918, P = 0.011), CD38 on Plasma Blast-Plasma Cells (OR

= 0.175, CI = 0.532–0.959, P = 0.025), CD3 on CD39+ resting

CD4 regulatory T cells (OR= 0.720, CI= 0.584–0.889, P = 0.002),

and CD20 on CD20-CD38- B cells (OR = 0.721, CI = 0.542–

0.960, P = 0.025), respectively. While, the primary immune cell

subtypes promoting the incidence of glioblastoma include CD62L–

HLA DR++ monocyte % monocyte (OR = 1.522, CI = 1.004–

2.307, P = 0.048), CD4+CD8+ T cell % leukocyte (OR = 1.387,

CI = 1.031–1.866, P = 0.031), Lymphocyte Absolute Count (OR

= 1.369, CI = 1.050–1.786, P = 0.020), Granulocyte Absolute

Count (OR = 1.363, CI = 1.044–1.780, P = 0.023). The main

results are presented in Table 1 and the detailed results are found

in Supplementary Table S1.

Bi-directional causal inference between
glioblastoma and 21 target immune cell
subtypes

Given the observed statistically significant positive correlation,

we deemed it essential to scrutinize the potential reverse

association. The results of reverse Mendelian Randomization

(MR) analysis indicate estimates of reverse causation effects.

The reverse MR results reveal an inverse association between

GBM and immune cells. The estimated effect of this reverse

association is statistically significant (P-value < 0.05), suggesting

a potential relationship between changes in GBM and variations

in immune cells. To ensure accurate causal interpretation

and enhance result reliability, our objective was to eliminate

significant reverse associations during the analysis. Therefore, after

conducting Mendelian Randomization analysis with glioblastoma

as the exposure and the 21 target immune cell subtypes

as outcomes, we identified only three cell subtypes with a

unidirectional causal relationship with glioblastoma (CD45 on

CD33+ HLA DR+ CD14dim, CD33+ HLA DR+ Absolute

Count and IgD+ CD24+ B cell Absolute Count), and the

OR measured by IVW method were OR = 1.307, CI =

1.072–1.595, P = 0.008 (Figures 3A, D), OR = 0.894, CI =

0.815–0.981, P = 0.018 (Figures 4A, D) and OR = 1.357,

CI = 1.000–1.840, P = 0.049 (Figures 5A, D) respectively.

The details of their effect estimates and confidence intervals,

significance statements, and sensitivity analyses can be found in

Table 2 and Figure 2. The complete dataset is available in the

Supplementary Table S2.

SNP selection

Finally, 16, 30, and 23 SNPs were identified as IVs for CD45

on CD33+ HLA DR+ CD14dim, CD33+ HLA DR+ Absolute

Count, and IgD+ CD24+ B cell Absolute Count, respectively.
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FIGURE 2

Causal e�ects of immune cells on glioblastoma. MR, Mendelian randomization; IVW, Inverse Variance Weighting; BWMR, Bayesian Mendelian

Randomization.

TABLE 3 Assessment of diversity and directional pleiotropy employing various methodologies.

Immune cell Heterogeneity Horizontal pleiotropy

Cochran’s Q P MR-Egger intercept P MR-PRESSO global test P

CD45 on CD33+HLA DR+ CD14dim 0.591 0.766 0.641

CD33+HLA DR+ absolute count 0.550 0.140 0.550

IgD+ CD24+ B cell absolute count 0.828 0.953 0.844

Moreover, the F-statistics for all IVs > 10, indicate no evidence

of weak instrumental bias. The details of these IVs are shown

in Supplementary Tables S4–S6. Similarly, in the reverse MR

analysis, 30 SNPs were identified as instrumental variables for

GBM. Importantly, all calculated F-values exceeded 10, ranging

from 16.47260513 to 27.68019885. This observation indicates

that the selected SNPs effectively represent the exposure variable,

thereby enhancing the reliability and interpretability of the results.

Consequently, these results ensure the credibility of the causal

inferences derived from the Mendelian randomization approach

(Supplementary Tables S7–S9).

Sensitivity analysis

Ultimately, sensitivity analyses were conducted for the results.

No evidence of horizontal pleiotropy of exposure factors was

detected when employing MR-Egger regression detection and

the MR-PRESSO global test (P > 0.05; Figures 3B, 4B, 5B).

Cochran’s IVWQ-test results indicated no significant heterogeneity

among IVs. For specific details refer to Table 3. Similarly,

leave-one-out sensitivity analyses suggested that no individual

SNP significantly influenced the causal association (Figures 3C,

4C, 5C).
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FIGURE 3

The Scatter plot, Funnel plot, leave-one-out sensitivity analysis, and Forest plot of CD45 on CD33+ HLA DR+ CD14dim.

Discussion

Through a two-sample MR analysis, we explored the

causal relationships between different immune cell subtypes

and the onset of GBM. The results indicated inhibitory effects

on its occurrence for 10 immune cell subtypes exemplified

by FSC-A on Natural Killer T cells (OR = 0.688, CI =

0.515–0.918, P = 0.011). Conversely, ten subtypes, including

Lymphocyte Absolute Count (OR = 1.369, CI = 1.050–1.786,

P = 0.020), exhibited a promoting effect on GBM incidence.

Subsequently, through reverse MR analysis, we identified

three distinct subtypes exhibiting singular causal relationships

with GBM.

Our study revealed a decreased risk of GBM with an elevated

mean fluorescence intensity of CD45 on CD33+ HLA DR+

CD14dim (Maturation stages of T cell panel). CD45 on CD33+

HLA DR+ CD14dim, where HLA DR is a component of the major

histocompatibility complex (MHC) class II molecules encoded by

the human leukocyte antigen complex on chromosome 6 region

6P21. CD45, a phosphatase typically expressed on the surface

of leukocytes, especially immune system cells, plays a crucial

role in regulating cell signaling and immune cell activity. CD33,
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FIGURE 4

The Scatter plot, Funnel plot, leave-one-out sensitivity analysis, and Forest plot of CD33+ HLA DR+ Absolute Count.

a cell surface molecule commonly expressed in myeloid cells,

particularly in the early stages of myeloid cell development, is

involved in cell adhesion and immune regulation. CD14 is a

surface marker typically found on monocytes and macrophages.

In summary, CD45 on CD33+ HLA DR+ CD14dim describes

a myeloid cell subtype characterized by surface markers CD45,

CD33, HLA DR, and CD14dim. Through dephosphorylation

and phosphorylation processes, CD45 plays a crucial role in

regulating cell signaling, participating in cell activation and signal

transduction. Its significance is particularly pronounced in the

modulation of T-cell receptor (TCR) signal transduction. It aids in

ensuring that T cells can undergo appropriate activation responses

when stimulated by antigens.

The incidence of GBM correlates positively with the

augmentation of CD33+ HLA DR+ Absolute Count (Myeloid

cell panel). Previous research has indicated that myeloid cells

are commonly observed within the tumor microenvironment

(TME), undergoing polarization that includes myeloid-derived

suppressor cells (MDSCs), tumor-associated macrophages, and

microglia (TAMs), tumor-associated neutrophils (TANs), and

tumor-associated dendritic cells (TADCs). This polarization serves

to enhance both tumorigenesis and immune suppression (38, 39).

CD33 is a cell surface molecule, characterized as a glycoprotein,

and is involved in the development and regulation of immune cells.

CD33 may play a role in immune modulation, with some studies

suggesting its involvement in immunosuppression, including
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FIGURE 5

The Scatter plot, Funnel plot, leave-one-out sensitivity analysis, and Forest plot of IgD+ CD24+ B cell Absolute Count.

the inhibition of excessive immune activation. In the context

of GBM, this regulatory function could impact the activity of

immune cells, thereby influencing the immune response against

the tumor. Additionally, there is evidence indicating that CD33

may contribute to anti-tumor immune responses. In certain

scenarios, inhibiting CD33 has been proposed as a strategy to

enhance the immune system’s response to tumors. However, due

to the highly heterogeneous nature of glioblastoma, characterized

by variations in immune features and treatment responses among

individuals, further in-depth experimental and clinical research is

required to ascertain the precise role of CD33 in GBM.

A similar trend was observed in IgD+ CD24+ B cell Absolute

Count (B cell panel), suggesting that an increase in the absolute

count of these cells was associated with a higher risk of GBM.

CD24 is a cell surface molecule involved in cell adhesion,

signal transduction, and immune regulation. Within B cells, the

expression of CD24 is likely associated with cellular differentiation

and function. In the interaction between the immune system and

the tumor microenvironment, these cells may play a distinct role.

In certain instances, specific B cell subpopulations may participate

in tumor immune evasion by modulating immune responses

or promoting immune tolerance. This could contribute to the
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tumor’s ability to evade immune surveillance. Simultaneously,

B cells may influence the immune characteristics of the tumor

microenvironment through the secretion of cytokines, antibodies,

or other molecules. This influence could impact the growth and

development of the tumor. Furthermore, the interaction between

B cells and T cells may play a crucial role in immune responses. In

the field of tumor immunology, B cells may influence anti-tumor

immune responses through their interactions with T cells (40,

41). Therefore, a comprehensive understanding of the role of

IgD+ CD24+ B cells in GBM requires further experimental and

clinical research.

Our study employed a MR design to investigate the causal

effects of different immune cell subtypes on GBM. Because

Mendelian Randomization utilizes natural genetic variation as

a random allocation factor, based on the natural allocation

of individual genetic variation, it reduces the influence of

confounding factors and reverse causation. It has the advantage

of simulating a randomized controlled trial, with lower costs

and usually more ethically acceptable, as it does not require

active intervention on participants and does not involve risks to

individual health. However, it is important to acknowledge several

limitations. Potential heterogeneity and horizontal pleiotropy were

not comprehensively assessed, and the majority of GBM patients

in our analysis were of European ancestry, thus limiting the

generalizability of our findings and requiring validation across

different populations. Furthermore, our GBM cases were sourced

from public databases, with a relatively small sample size of

only 253 cases, which may impact the robustness of our results.

Additionally, we initially set the threshold for selecting single

nucleotide polymorphisms associated with immune cells and GBM

as exposures at P< 5× 10−8. However, due to limited availability of

such SNPs, we widened the threshold to P < 5 × 10−5, potentially

introducing some instability into the results. Future research efforts

could expand the sample range to encompass populations of

various ethnic backgrounds and geographical regions to confirm

the universality and reliability of the findings.

Conclusion

In summary, our comprehensive bidirectional Mendelian

Randomization (MR) analysis has demonstrated the causal

associations between multiple immunophenotypes and

glioblastoma (GBM), highlighting the intricate pattern of

interactions between the immune system and GBM. Moreover,

our study significantly mitigated the impact of unavoidable

confounding factors, reverse causality, and other influences.

This may provide a novel avenue for researchers to explore

immunotherapeutic interventions for glioblastoma, prompting

discussions on early interventions and treatment strategies.

Perspectives

Based on the aforementioned discussions, our findings offer

several avenues for future research. Firstly, it is imperative to

incorporate a larger sample size to validate and replicate our

results across diverse populations, ensuring their robustness and

generalizability. Secondly, further investigations are warranted

to elucidate the specific mechanisms and signaling pathways

underlying the potential roles of different immune cell subtypes

in glioblastoma pathogenesis. Thirdly, given the current focus

on immunotherapy for glioblastoma, clinical trials assessing the

therapeutic potential of immune modulation targeting newly

identified immune cells may hold promise for improving patient

outcomes. Lastly, embracing precision medicine approaches

and integrating genetic, immunological, and clinical data into

predictive models can optimize personalized treatment strategies

for glioblastoma patients. These research directions are crucial

for advancing our understanding of the intricate interplay

between immune cell subtypes and glioblastoma, ultimately leading

to enhanced diagnostic and therapeutic interventions for this

devastating disease.
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Malignant gliomas are one of the most common and lethal brain tumors with

poor prognosis. Most patients with glioblastoma (GBM) die within 2 years of

diagnosis, even after receiving standard treatments including surgery combined

with concomitant radiotherapy and chemotherapy. Temozolomide (TMZ) is the

first-line chemotherapeutic agent for gliomas, but the frequent acquisition of

chemoresistance generally leads to its treatment failure. Thus, it’s urgent to

investigate the strategies for overcoming glioma chemoresistance. Currently,

many studies have elucidated that cancer chemoresistance is not only associated

with the high expression of drug-resistance genes in glioma cells but also can be

induced by the alterations of the tumor microenvironment (TME). Numerous

studies have explored the use of antifibrosis drugs to sensitize chemotherapy in

solid tumors, and surprisingly, these preclinical and clinical attempts have

exhibited promising efficacy in treating certain types of cancer. However, it

remains unclear how tumor-associated fibrotic alterations in the glioma

microenvironment (GME) mediate chemoresistance. Furthermore, the possible

mechanisms behind this phenomenon are yet to be determined. In this review,

we have summarized the molecular mechanisms by which tumor-associated

fibrotic reactions drive glioma transformation from a chemosensitive to a

chemoresistant state. Additionally, we have outlined antitumor drugs with

antifibrosis functions, suggesting that antifibrosis strategies may be effective in

overcoming glioma chemoresistance through TME normalization.
KEYWORDS

chemoresistance, tumor-associated fibrotic reaction, glioma, antifibrosis therapy,
tumor microenvironment (TME), cancer-associate fibroblasts
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1 Introduction

Gliomas are stratified into grades 1 through 4 according to the

World Health Organization’s tiered grading system, and grade 4 is

the most prevalent and virulent subtype, also known as

glioblastoma. GBM, an unyielding primary cerebral malignancy,

has a grim prognosis with a 5-year survival rate of less than 10% (1–

3), despite standard therapies including the maximal tumor

excision, combined with concomitant radiotherapy and

temozolomide chemotherapy. So far, TMZ is the first-line

chemotherapy drug for glioma. However, due to the frequent

occurrence of TMZ resistance after chemotherapy, glioma is

recalcitrant and refractory. To increase the prognosis of GBM

patients, it’s important to summarize the potential mechanisms of

glioma chemoresistance and find useful strategies to overcome

TMZ resistance.

Gliomas are characterized as easily chemoresistant intracranial

malignancy through demethylation of O(6)-methylguanine-DNA

methyltransferase (MGMT) promoter, overexpression of cell

membrane glycoprotein, and the augmentation of stemness-

associated molecules (4–7). Moreover, the chemoresistance could

not only be developed by the cellular alterations in cancer cells but

also, in part, be modulated by the specific TME (8). Many

researchers recently have focused on the chemoresistance

promoted by the GME and are increasingly aware of the

significance of overcoming chemoresistance by normalizing GME.

The nonneoplastic immune cells and stromal components foster an

immunosuppressive GME under the interaction of glioma-secreted

cytokines (9, 10). The prominent nonneoplastic stromal cells in

gliomas consist of endothelial cells, microglia, and tumor-associated

macrophages (TAMs), etc. (2, 11–13). In solid tumor stroma,

cancer-associated fibroblasts (CAFs) secrete a lot of collagen after

stimulation (14), and subsequently increase the stiffness of the

tumor matrix which in turn enhances the proliferation,

invasiveness, and stemness as well as chemoresistance of glioma

cells . Different from others ’ attention on the glioma

chemoresistance increased by the alterations of glioma cells

themselves, in this review, we summarize the relationship

between the chemoresistance and glioma-associated fibrotic

reactions. Several investigators have attempted to enhance TMZ

chemotherapy efficacy with reasonable combinations of some

clinically approved conventional drugs (15), and among these

drugs, the increased chemotherapy efficacy by some agents with

antifibrosis function draws our attention. However, it is so little

known why the antifibrosis medication is effective for solid tumors

and how glioma-associated fibrotic reactions in GME specifically

contribute to TMZ chemoresistance and poor prognosis for glioma

patients. In this review, we thus explore the mechanism of the

occurrence and development of tumor-associated fibrotic

phenomena in GME and sum up the antifibrosis strategies for

sensitizing chemotherapy, hoping to provide novel insights for

glioma research and treatment.
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2 The formation of tumor-associated
fibrotic reactions in the
tumor microenvironment

During the malignant progression of tumor cells, changes in the

tumor stroma also take place including alterations of extracellular

matrix (ECM) components, stroma stiffness, excessive

vascularization, hypoxia, and paracrine cytokine secretion. As a

principal non-cellular component, the ECM plays a crucial role in

driving tumor malignancy by providing cells with architectural and

mechanical supports, regulating nutrient supply, as well as engaging

in multiple cellular processes as a reservoir of diverse cytokine

regulators (16–19). The ECM components would transform into a

specific status that can stimulate the growth of cancer cells and

tumor-associated cells. As cancer occurs and develops, malignant and

stromal cells can deposit, break down, and remodel the ECM through

the production of multiple ECM proteins, including collagens,

fibronectins, laminins, and proteolytic enzymes, which can

stimulate the growth of cancer cells and tumor-associated cells

(20). In addition, alterations in the biophysical properties of the

ECM, such as stiffness, density, rigidity, tension, and protein

deposition, are recognized as hallmarks of tumor stromal fibrosis

(21, 22). In the TME, CAFs are one of the most critical stromal cell

types functioning as the architects of matrix remodeling, which

provides the “soil” for tumor survival (23). CAFs could be

identified with molecular markers such as aSMA, FAP-1, desmin,

podoplanin, NG2 (CSPG4), and PDGFR-a/b (24). These CAFs could
secrete substantial quantities of ECM components after being

activated and could mediate the malignant progression of tumors

through the promotion of stromal inflammation and fibrosis (24, 25).

Cancer cells exhibit multiple features of cancer progression, including

the recruitment of various stromal cells to form the TME (26), which

encompasses different functional subtypes of stromal cells and matrix

polymers (27). Among these cells, CAFs promote the formation of a

dense and rigid fibrotic microenvironment by large amounts of ECM

proteins and cytokines secretions (28). In TME, tumor-associated

fibrosis is the result of excessive accumulation of collagen, fibronectin,

laminin, tendon protein, etc. (29, 30). Among these ECM

components, the most abundant one is collagen protein which

constitutes the main rigid structures of tumor stroma. There are

more than 28 types of collagens which are categorized into four

subtypes: fibril-forming collagens (I, II, III, V, XI, XXVI, XXVII),

fibril-associated collagens with interrupted triple helices (FACITs: IX,

XII,XIV,XVI,XIX,XX,XXI,XXII,XXIV), network-formingcollagens

(IV, VIII, X), and membrane-anchored collagens (MACITs: XIII,

XVII, XXIII, XXV) (31). Among these collagens, types I, III, and V

collagen are predominantly secreted byCAFs, while type IVcollagen is

mainly produced by epithelial and endothelial cells. It is worth noting

that, under certain conditions, tumor cells and TAMs can also

synthesize collagen (32). Collectively, tumor-associated fibrotic

reactions are induced by the interactions between tumor cells and

stromal cells.
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In glioma, radiotherapy and cytotoxic chemotherapy can

induce epithelial-mesenchymal transition (EMT) and upregulate

the transforming growth factor-b (TGF-b) signal, which is the key

signaling pathway to fibrosis initiation (33). EMT is associated with

increased expression of TGF-b, collagen, fibronectin, a-SMA, and

S100A4, suggesting that these molecular mechanisms could be

involved in inducing stromal fibrotic reactions in glioma. Some

researchers have proposed a “repurposing” strategy for treating

GBM by using clinically approved conventional drugs to inhibit

EMT. For instance, Kast et al. summarized six clinically approved

drugs including fenofibrate, quetiapine, lithium, nifedipine,

itraconazole, and metformin (33). These drugs are being explored

as adjunctive agents to enhance chemosensitivity in tumor therapy.

Given the heterogeneity of GBM, further research is needed to

determine which molecular subtypes may benefit from these non-

antitumor drugs.
3 Fibrotic components in extracellular
matrix facilitate the malignant
progression of glioma

The ECM in the normal brain tissues predominantly consists of

hyaluronic acid, proteoglycans, and laminin, but very little collagen.

However, in GBM, there is a substantial presence of collagen proteins,

laminin, and fibronectin, primarily distributed in the vascular

basement membrane in tumor tissue (34). Recent reports

highlighted the role of collagen in enhancing GBM cell stemness

and promoting EMT and invasion (35, 36). Some researchers found

that type-I collagen, the main component of tumor-associated

fibrosis, could be used to promote the formation of an invasive,

tight GBM spheroid structure when the collagen concentrations

increase to some extent (37). Huijbers et al. conducted histological

analyses on 90 GBM cases, revealing a significant abundance of

collagen proteins within the ECM of GBM (38). They also observed

that the collagen receptors Endo180 are overexpressed on the surface

of GBM cells. It is worth noting that Endo180 expression is

particularly pronounced in stromal-rich high-grade gliomas (39),

and its regulation is linked to the TGF-b signaling pathway (40).

Additionally, the interactions between Endo180 and collagen

significantly potentiates GBM invasion (38). In GBM, collagen XVI

induces tumor invasion by modulating the activation pattern of

integrin b1, possibly impacting the interactions between glioma

cells and the stroma to further enhance the invasive phenotype

(41). Furthermore, in order to confirm the association between

tumor-associated fibrotic reactions and glioma prognosis, we

analyzed the Chinese Glioma Genome Atlas (CGGA) (http://

www.cgga.org.cn/) and Gene Expression Profiling Interactive

Analysis (GEPIA) (http://gepia.cancer-pku.cn/index.html)

databases. According to the CGGA dataset, fibrosis-related marker

genes (COL1A2, COL1A1, COL3A1, COL4A1, COL4A2, COL5A2,

COL6A2, COL6A1) are highly expressed in the mesenchymal (ME)

and classical (CL) GBM subtypes, which are associated with shorter

overall survival (Figures 1A, B). Meanwhile, analysis of the GEPIA

dataset reveals that the high expressions of collagen-related genes
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(COL1A1, COL3A1, COL4A1, COL5A2, and COL6A1.) are associated

with poor prognosis of glioma patients (Figures 1C–G). Collectively,

it suggests that heavier fibrotic reactions play a critical role in glioma

progression and predict a poor prognosis for glioma patients.

Knocking out the collagen XVI gene in GBM U87MG cells

resulted in a significant decrease in invasive capabilities compared

to the control group (42). Experimental evidence has also shown

that the GBM cell compaction promotes the expression of more

collagen proteins and vascular endothelial growth factors in GBM,

notably elevating the mRNA and protein levels of collagen types VI

and IV, as well as the collagen crosslinker named lysyl oxidase

(LOX). Notably, b-aminopropionitrile (BAPN), a collagen

inhibitor, significantly inhibits collagen crosslinking in the ECM

components of GBM by specifically targeting and suppressing LOX.

Studies concurrently demonstrated that LOX expression controls

the malignant progression of GBM. In an in situ GBM mouse

model, treatment with BAPN markedly inhibited intracranial

tumor growth by suppressing LOX activities (34). In conclusion,

these findings underscore the pivotal role of tumor-associated

fibrotic components in fostering the malignant progression of

glioma, shedding light on the potential therapeutic effect of

antifibrosis medications for controlling this devastating disease.
4 The chemoresistance can be
enhanced by glioma-associated
fibrotic reactions

There are two aspects explaining the mechanism by which

glioma-associated fibrotic reactions induce chemoresistance. Firstly,

after treated with cytotoxic drugs in solid tumors, CAFs and

mesenchymal stem cells (MSCs) are recruited and increased in

ECM, along with the accumulation of cytokines and other secreting

factors. This fortifies the tumor “stemness”, thereby leading to

chemoresistance (43). Secondly, the increased stiffness of tumor

tissues with heavily fibrotic ECM components hinders the delivery

of chemotherapeutic agents to tumor cells. This limits the

penetration of drugs into tumor cells, thereby impairing

chemotherapy efficacy (29).
4.1 Tumor-associated fibrotic reactions
promote the stemness of glioma cells

The increased resistance of glioma stem cells (GSCs) to

chemotherapeutic agents, which contribute to glioma refractoriness

and recurrence, has been extensively documented (44, 45). GSCs are

known to cause TMZ resistance through the upregulation of MGMT

protein levels (46, 47). In TME, Oleynikova et al. found that the CAFs

form the niche for tumor stem cells and these compartments

surrounding tumor cells facilitated chemotherapy resistance. In

agreement, CAFs may promote the stemness of cancer cells by

establishing a survival niche to sustain cancer stem cells (CSCs)

and protecting them from chemotherapy-induced cell death, hence,

facilitating chemotherapy resistance (25, 28, 48). While it remains
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unclear how glioma-associated fibrotic reactions develop and which

of the molecular characteristics of gliomas is more likely to form

fibrosis. It has been widely reported that fibroblast activation protein-

a (FAP-a) is involved in tumor-associated fibrosis. FAP-a, typically
undetectable in normal tissues, however, exhibits overexpression

within glioma cells and glioma stroma (49). Its selective localization

in the tissue remodeling and repairing sites enhances the invasiveness

and malignant progression of solid tumors including gliomas,

implicating FAP-a as a potential target for addressing tumor-

associated fibrosis dysregulation (12, 50). Currently, it has been

reported that PT-100 significantly reduces CAF enrichment
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by targeting FAP-a in the tumor stroma, which enhances

chemotherapeutic efficacy and reduces drug resistance when

combined with oxaliplatin for colon cancer treatment (51). Also,

the bone marrow derived MSCs have been demonstrated to enhance

tumor stemness after being recruited to the tumor stroma, either

through direct paracrine signaling or via its transformation into CAFs

(43). Jia et al. compared the gene expression profiles of glioma cells

between three-dimensional culture with collagen scaffolds and the

conventional two-dimensional culture, and they found that collagen

scaffolds could upregulate the expression of EMT-related molecules

N-cadherin and vimentin, invasion-related matrix metalloproteinases
B C D

E F G

A

FIGURE 1

Glioma-associated fibrosis predicts poor prognosis of glioma patients. (A) The expression analysis of fibrosis-related marker genes COL1A2, COL1A1,
COL3A1, COL4A1, COL4A2, COL5A2, COL6A2, COL6A1 in the Proneural (PN), Classical (CL), Mesenchymal (ME), and Neural (NE) GBM subtypes in
the CGGA dataset. (B) Kaplan-Meier survival curves indicate that ME and CL GBM subtypes predict a poor prognosis for glioma patients in the CGGA
dataset. (C–G) Kaplan-Meier survival curves indicate that the high expression of collagen-related genes (COL1A1, COL3A1, COL4A1, COL5A2, and
COL6A1) correlates with a poor prognosis for glioma patients in the GEPIA dataset. (GEPIA dataset includes TCGA LGG and GBM dataset.).
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(MMPs) such as MMP1, MMP2, MMP3, and MMP7, as well as

stemness-associated factors CD133, Nestin, Oct4, Sox2, c-Myc,

Nanog, MSI1, MSI2 and BMI-1, etc. (35). The glioma stroma

harbors a substantial population of TAMs and microglia, which

secrete high levels of TGF-b. This cytokine in turn, promotes the

invasiveness of CD133(+) GSCs. Moreover, the upregulated TGF-b1
levels are associated with the increased MMP9 production in GSCs

(36). What’s more, high serum levels of TGF-b positively correlate

with poor prognosis in GBM, hinting at its pivotal role in the

maintenance of glioma stemness and malignancy (52). Currently,

the strategies targeting the TGF-b signaling have exhibited promising

safety and efficacy profiles for gliomas. For instance, anti-TGF-b
antibodies have significantly prolonged the survival of recurrent

glioma patients (53). It has been proved that after TMZ treatment,

the activation of the TGF-b signaling in GBM leads to connective

tissue growth factor (CTGF) overexpression, which subsequently

mediates TMZ resistance by enhancing the stemness of glioma cells

(54). Therefore, these findings suggest that tumor-associated fibrotic

reactions play a role in promoting chemoresistance by enhancing the

stemness and EMT of glioma cells.
4.2 Glioma-associated fibrosis reduces
drug delivery efficiency

The ECM consists of a variety of structural proteins that

maintain tissue structure and regulate extracellular biochemical

signals, thereby modulating cellular functions (18, 55). In the

process of traveling from blood vessels to tumor cells,

chemotherapeutic drugs must navigate through the ECM to reach

their target cells. However, drug penetration can be hindered by low

pH conditions that facilitate the binding of positively charged

chemotherapy drugs to negatively charged ECM components,

ultimately reducing the efficiency of drug delivery to cancer cells

(29). What’s more, positively charged drugs have more difficulty in

crossing the hydrophobic plasma cell membranes (56, 57). As we

know, only after the chemotherapeutic drugs penetrate cell

membranes and reach the nucleus can they adequately exert their

cytotoxic effects (29).

It is known that tissue stiffness varies across different diseases and

organs; for instance, normal liver tissue exhibits a “stiffness” at 6 kPa,

while the “stiffness” of fibrotic liver tissues can reach up to 12 kPa

(58). As the tumor develops, the deposition of type I and IV collagen

increases in the cross-linking and tumor-associated fibrosis process,

leading to an increase in the “stiffness” of the ECM (59). The

increased ECM stiffness corresponds to upregulated contractile and

traction forces of the cell cytoskeleton as cells attempt to balance

extracellular tension (29). Intercellular mechanotransduction is the

process of converting external mechanical stimuli into intracellular

biochemical signals. Changes in ECM stiffness are sensed by local

junctions between cells, and these junctions are protein complexes

containing mechanosensitive protein molecules such as talin and

integrins (60). Due to the tension between intracellular contractile

forces and extracellular stiffness, talin unfolds in response to the

forces, resulting in the exposure of hidden intracellular binding sites

that allow effector proteins to bind (61). What’s more, focal adhesion
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kinase (FAK) is another element that can be activated by external

rigidity, and this kinase activity can be utilized to initiate intracellular

signaling pathways such as Yes-associated protein (YAP) nuclear

localization (62). As mentioned before, the heightened tumor stiffness

is closely associated with ECM compositions such as MMPs,

hyaluronic acid, and abundant collagens and their cross-linking

(18). During the progression of tumors, the accumulation of

mechanical pressure can compress tumor blood vessels and

lymphatic vessels, leading to reduced perfusion, hypoxia, and

elevated interstitial pressure within tumor tissues, thus reducing

chemotherapy efficacy (63, 64). Therefore, strategies aiming at

reducing mechanical stress in glioma, such as tumor

decompression therapy (65), can relieve vascular compression

within tumors, enhance tissue perfusion, and improve the transport

of chemotherapeutic drugs into tumor cells.

It is important to recognize that chemoresistance, in part, is

modulated by collagen and hyaluronic acid in the TME (66) and the

strategies specifically targeting these components may be useful

tumor decompression therapies. Surprisingly, repurposing those

conventionally approved drugs with antifibrosis function can

indeed inhibit tumor growth by normalizing TME with the

downregulated ECM synthesis. This, in turn, reduces tumor

stiffness and mechanical stress, relieves vascular and lymphatic

compression, and enhances drug permeability into tumor tissues

(67–69). Currently, antifibrosis drugs such as tranilast, losartan, and

pirfenidone, have been used to improve chemotherapy in solid

tumors (63, 70, 71), while it warrants subsequent research to

confirm their efficacy in glioma. As for stroma-rich tumors,

researchers concentrate on developing nanomedicines targeting

CAFs to reduce tumor matrix stiffness (72, 73). These nano-delivery

systems have a double effect on enhancing chemotherapy. Firstly, they

reverse tumor progression, immunosuppression, or drug-resistance

phenotypesby inhibiting signalingbetweenCAFsand tumor cells, thus

increasing chemosensitivity. Secondly, by weakening CAFs function,

nanomedicines reduce tumor solid-phase pressure, tumor tissue fluid

pressure, and ECM density, leading to increased penetration depth of

antitumor drugs and improved efficiency of chemotherapeutic

drug delivery.
5 Molecular regulatory mechanisms of
glioma-associated fibrosis

MMPs are a group of zinc-dependent endopeptidases involved

in the dynamic remodeling of ECM, exhibiting proteolytic activities

toward ECM components such as collagen (74). In normal

circumstances, the synthesis and degradation of ECM is a

homeostatic process regulated by the balanced activity of MMPs.

However, in tumor tissues, this homeostasis is disrupted due to the

overexpressed or hyperactivated of MMPs in gliomas, such as

MMP2, MMP9 MMP3, MMP13, MMP14, MMP19, MMP26, and

MMP28 (75–84). After effective treatment of U87 glioma xenografts

with TMZ, MMP expression is downregulated, with the

downregulation of MMP2 and MMP3 associated with the

inhibitory effects of TMZ on gliomas (85). In addition, MMPs

can promote tumor invasion by facilitating tumor cell degradation
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of the surrounding matrix or by activating paracrine signaling

factors through proteolytic cleavage. For instance, MMPs can lead

to the secretion of large amounts of TGF-b, which subsequently

promotes CAF activation, long-term fibrosis, and MMP expression

and secretion (86).

TME contains numerous signaling molecules and growth

factors that, upon binding to cell surface receptors, initiate

intracellular signaling in cancer cells, ultimately leading to

changes in gene expression. Signaling factors through this

mechanism are significantly increased in tumors, for instance,

growth factors such as epidermal growth factors (EGFs),

fibroblast growth factors (FGFs), platelet-derived growth factors

(PDGF), and hepatocyte growth factors (HGF) are abundant in

TME (87). During ECM remodeling, the secretion of MMPs

promotes the release of growth factors in ECM, such as TGF-b
(18, 88). TGF-b exhibits a dual regulatory role in tumor cells,

promoting both apoptosis and survival. It suggests that the switch

from proapoptotic to prosurvival signaling in tumor cells is

influenced by the TP53 gene mutation status (89) or the stiffness

of the ECM (90). After the activation of CAFs by TGF-b, they play a
crucial role in mediating the maintenance of the TME through

paracrine signaling pathways (91). Both glioma cells and infiltrating

immune cells in TME could secrete various cytokines, including

TGF-b, CTGF, IL-6, and IL-10, contributing to the formation of an

immunosuppressive GME (52), many of these cytokines promote

chemoresistance in gliomas. Research has shown that in GBM,

when treated with TMZ, the activation of the TGF-b signaling

pathway leads to the overexpression of CTGF, and subsequently,

CTGF increases the expression levels of glioma stem cell markers,

including ALDH1, CD44, Nestin, and Nanog (54). In conclusion,

the fibrotic alterations in GME are closely related to the

maintenance of glioma cell stemness and the chemoresistance

of glioma.
6 Tumor-associated fibrotic reactions
contribute to immunotherapy
resistance and TAMs-mediated
chemoresistance in glioma

Nowadays, numerous glioma immunotherapies have been

investigated in clinical and preclinical phases. These include

immune checkpoint blockade targeting IDO, CTLA-4, and PD-L1

(92), as well as inhibitors of M2 macrophages such as CSF-1R (93,

94), PI3Kg (8), and BAPN (11), and antibodies targeting cytokines

like IL-6 (95), and CCL5 (96, 97), etc. However, the efficacy of many

immunotherapy strategies for GBM remains very limited due to the

absence of T lymphocytes, B lymphocytes, and NK cells, as well as

the presence of the blood-brain barrier (BBB). Furthermore, during

the process of tumor-associated fibrotic reactions, the stiff ECM,

particularly the highly crosslinked collagen, creates hypoxic

conditions in and around the TME (98) and hinders the

infiltration of immune cells or immunotherapeutic agents into

tumor tissues (99). Therefore, tumor-associated fibrotic reactions

play a role in promoting an immunosuppressive TME, which
Frontiers in Oncology 0621
mediates the immunotherapy resistance in solid tumors. As

widely known, the mesenchymal subtype of GBM is characterized

by abundant immune features (100), especially the M2

macrophages and microglias (101), suggesting that targeting

macrophages could be a useful strategy for treating mesenchymal

subtype GBM. Interactions between CAFs and M2 macrophages

play a crucial role in the formation of tumor-associated fibrotic

reactions (102). As is known, macrophages, contributing to glioma

progression (11, 103), can also release significant amounts of TGF-b
to initiate and accelerate fibrotic reactions. Furthermore, our

investigation revealed that fibrosis-related collagens expression

and M2 macrophage marker CD163 expression may participate in

glioma malignancy, and analysis from the GEPIA database shows

that these collagens (COL1A2, COL1A1, COL3A1, COL4A1,

COL4A2, COL5A2, COL6A2, COL6A1) and CD163 expression are

higher in GBM compared to low-grade glioma (LGG) (Figure 2A).

The mesenchymal subtype of GBM exhibits severe glioma-

associated fibrotic reactions, characterized by the most prominent

collagen deposition and highest macrophage infiltration in the

CGGA and GEPIA datasets (Figures 1A, 2B). It also suggests that

the expression level of COL1A1 positively correlates with the

expression level of CD163 (the M2 macrophage marker gene)

(Figures 2C, D). TAMs-secreted IL-11 and LOX factors promote

glioma chemoresistance and progression, while PI3Kg inhibition (8)
and LOX inhibitors (11) could significantly improve TMZ efficacy

in orthotopic GBM mouse models. Furthermore, IL-11 (104) and

LOX (105), two crucial determinants of tissue fibrosis, are

therapeutic targets against organ fibrosis. This suggests that

antifibrosis strategies may enhance chemosensitivity in glioma.

Therefore, glioma progression and chemoresistance are not only

directly promoted by M2 macrophage-secreted cytokines (IL-10,

TGF-b, IL-6, etc.) but also modulated by M2 macrophage-mediated

fibrotic reactions. Collectively, it suggests that fibrotic reactions

partly contribute to macrophage-mediated chemoresistance.
7 Antifibrosis therapies explored and
tested in glioma

Researchers have explored the antifibrosis therapies in solid

tumors, showing definitive sensitization effects for chemotherapy.

However, in the presence of the BBB, further research is warranted

to determine the efficacy of antifibrosis drugs in sensitizing glioma

chemotherapy. In this context, we have summarized the

information concerning the utilization of antifibrotic therapies in

glioma. According to the existing classifications of antifibrosis

therapies by scholars (106), we conclude and discuss antifibrosis

therapies in glioma as follows.
7.1 Targeting ECM and ECM modulators

As previously discussed, ECM components could be

transformed into pro-tumor phenotypes during tumor

progression. This transformation presents numerous viable

antifibrosis targets for improving chemotherapy by reducing ECM
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stiffness through downregulated ECM deposition and collagen-

modifying enzymes.

Collagen is a prominent component of the ECM, and inhibiting

collagen cross-linking has demonstrated significant efficacy in

orthotopic GBM mouse models (34). LOX, a kind of collagen

cross-linking enzyme, is significantly upregulated during glioma

progression due to “cell compaction”. Studies indicate that BAPN, a

LOX inhibitor, can effectively inhibit the growth of intracranial

PTEN-null GBM mouse models (34, 107). This suggests that BAPN

can be a promising strategy for inhibiting glioma growth, possibly

by negatively modulating tumor-associated fibrosis. Similarly,

another enzyme involved in the process of collagen cross-linking,

procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2), has

also been tested in GBM treatment. Elevated PLOD2 expression is

significantly associated with GBM proliferation, invasion,

metastasis, and poor overall survival (108–110). PLOD2

participates in the formation of tumor-associated fibrosis through

promoting EMT transition (111), possibly via FAK (108), and

PI3K-Akt (111) signaling pathways. Both in vivo and in vitro

studies have demonstrated that PLOD2 knockdown inhibits the

proliferation, invasion, and anchorage-independent growth of GBM

(108, 110, 111). Minoxidil, a confirmed PLOD2 inhibitor (112),

could suppress tumor metastasis, in part, by reversing collagen

cross-linking in ECM (113, 114). Moreover, studies have found that

minoxidil cloud increases the antitumor drug permeability of the
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blood-brain tumor barrier, resulting in improved and selective

delivery to brain tumors, including GBM (115, 116). In

conclusion, PLOD2 could serve as a viable target against glioma,

possibly by normalizing GME with its antifibrosis function, and

PLOD2 inhibitors like Minoxidil may offer potential benefits for

glioma patients.
7.2 Targeting TGF-b signaling pathway

The TGF-b signaling pathway is recognized as the key signal

that mediates tissue fibrosis processes and contributes to cancer

progression (117, 118). It has been extensively explored whether

repurposing antifibrosis drugs can increase chemotherapy

sensitivity by targeting TGF-b signaling.

Antifibrosis drugs such as tranilast, pirfenidone, and losartan

have shown encouraging efficacy in cancer treatment. Tranilast, for

instance, has been demonstrated to reduce matrix mechanical

pressure, lower tissue fluid hydrostatic pressure, and enhance

tumor perfusion. And, it can enhance the efficacy of

chemotherapy drugs with different molecular sizes, including

doxorubicin, paclitaxel, and doxorubicin liposomes, by

suppressing TGF-b signaling and expression of ECM components

(63). Moreover, the combination of TMZ and tranilast significantly

suppresses GBM patient-derived xenografts compared to TMZ
B

C D

A

FIGURE 2

Glioma-associated fibrosis positively correlates with the expression of macrophage marker gene CD163. (A) The expression of fibrosis-related
marker genes (COL1A2, COL1A1, COL3A1, COL4A1, COL4A2, COL5A2, COL6A2, COL6A1) and M2 macrophage marker gene (CD163) in low-grade
glioma (LGG) and GBM in the GEPIA dataset. (B) Relative CD163 mRNA expression levels of four GBM subtypes in the CGGA dataset. ***p < 0.001.
(C) CD163 expression positively correlates with COL1A1 expression in all grade glioma (GEPIA). (D) CD163 expression positively correlates with
COL1A1 expression in primary and recurrent glioma (CGGA). (GEPIA dataset includes TCGA LGG and GBM dataset.).
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alone (119, 120). Collectively, repurposing tranilast can not only

enhance the efficacy of conventional chemotherapy drugs but also

improve the effectiveness of antitumor nanomedicines. Similarly,

pirfenidone, another antifibrosis drug that has been clinically

approved for the treatment of idiopathic pulmonary fibrosis, also

exhibits the function of reducing collagen and hyaluronic acid

synthesis (33). Pirfenidone is confirmed to inhibit TGF-b
expression in malignant glioma cells, indicating its further

application as an adjunctive drug to sensitize glioma TMZ

chemotherapy (121). Losartan (LOS), an angiotensin receptor

blocker, can reduce the production of collagen and hyaluronic acid

bydownregulatingprofibrotic signals such asTGF-b1,CCN2, andET-
1 (70). Therefore, LOS may enhance chemotherapy efficacy by

upregulating vascular perfusion and reducing the solid-phase

pressure in tumors, which improves the delivery of drugs and

oxygen to tumors. Additionally, LOS could antagonize the

neoangiogenetic, profibrotic, and immunosuppressive effects of

angiotensin II and significantly inhibit its stimulatory effects on local

estrogen production, suppressing glioma cell growth and alleviating

cerebral edema (122, 123). As a cost-effective angiotensin receptor

blocker with an established safety profile, LOS can be quickly

repurposed as an adjuvant pharmacological tool prospectively

for GBM.

Recent studies have indicated that histone deacetylase inhibitors

(HDACi) exhibit antifibrotic effects in various experimental models

by preventing histone deacetylation, inducing chromatin

decondensation and antifibrotic genes upregulation (124, 125).

Valproic acid (VPA), an HDACi agent, exerts its antifibrotic

effects by upregulating Smad7 and inhibiting the TGF-b/Smad

signaling pathway (126). VPA has been found to inhibit fibrosis

in experimental models of various diseases, including liver (127),

kidney (128), and heart diseases (129), by reducing macrophage

infiltration and downregulating the TGF-b signaling pathway.

Briefly, VPA exhibits a dual-purpose effect in glioma therapy, as

it not only functions as antiepileptics but also sensitizes TMZ

chemotherapy in brain tumor patients (130–132). Another HDACi,

vorinostat, approved by the U.S. FDA for the treatment of T-cell

lymphoma (133), reduces collagen formation and inhibits fibrosis

(134). Studieshave shownthat the combinationofvorinostat andTMZ

significantly enhances TMZ efficacy for glioma (135, 136). However, it

remains unclear whether the enhanced chemosensitivity induced by

VPA and vorinostat is partly or mainly modulated by the inhibition of

glioma-associated fibrosis.

Interestingly, Chinese traditional medicine with antifibrosis

properties also demonstrates its antitumor efficacy. Berberine, an

isoquinoline alkaloid present in many traditional Chinese

medicines (137), is confirmed to reduce collagen accumulation in

pulmonary fibrosis (138), diabetic nephropathy (138), and arthritis

(139), the related mechanisms of which may involve inhibiting

TGF-b signaling (140) and restraining EMT (141). Moreover,

berberine could suppress glioma growth, migration, and invasion

by inhibiting COL11A1 expression and also induce programmed

cell death through ERK1/2-mediated mitochondrial damage in

glioma cells (142). These studies suggest that berberine could

inhibit glioma growth possibly through its antifibrosis properties.

Therefore, these conventionally approved antifibrosis drugs could
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be used to sensitize chemotherapy in glioma through inhibition of

TGF-b signaling.
7.3 Targeting CAFs

Various antitumor strategies have been developed by directly

targeting CAFs (74) including the depletion (73) and normalization

of CAFs (143). As for certain cancers, the population of CAFs consists

of a collection of multiple subsets of cells with diverse and specific

phenotypes at different developmental stages. FAP, a universally

acknowledged marker of CAFs, serves as a potential target in both

antitumor and antifibrosis therapies. In glioma, FAP expression is

detected in glioma cells, mesenchymal cells, and pericytes, etc. (144).

Studies have developed an oncolytic adenovirus targeting both GBM

cells and GBM-associated stromal FAP+ cells, highlighting its

potential immunotherapy through depleting FAP+ CAFs (145).

Additionally, FAP-targeting CAR‐T cells have demonstrated

promising efficacy in a mouse xenograft model of GBM (146).

Another new CAF phenotype in breast cancer, CD10+ GPR77+

CAFs, has been found to be associated with the acquisition of a

chemoresistance phenotype. Targeting CD10+ GPR77+ CAFs has

been demonstrated to retard tumor formation and reverse

chemoresistance by destroying the survival niches for CSCs in both

breast and lung cancers (25). However, apart from FAP+ CAFs,

further research is needed to explore specific CAF phenotypes

associated with glioma chemoresistance.

Above all, we summarized the current glioma therapies with

different antifibrosis targets (Figure 3, Table 1).
8 Conclusion and future perspective

Collectively, the mechanisms associated with glioma cells

chemoresistance development can be attributed to two aspects:

chemoresistance-related genetic alterations within glioma cells, and

the GME changes contributing to drug resistance. The latter is, in part,

induced and modulated by glioma-associated fibrosis, leading to

increased tumor st i ffness and decreased efficiency of

chemotherapeutics delivery to the cancer cell nuclei. The features of

the fibrotic GME include the abnormal vascular system, heightened

ECM deposition, increased tumor stiffness, upregulated growth factors,

etc. We further emphasize the crucial role of glioma-associated fibrotic

reactions in glioma progression, prognosis, and chemoresistance.

Intense glioma-associated fibrotic reactions positively correlate with

poor outcomes in glioma patients, suggesting its clinical significance as

both a prognostic indicator and a promising therapeutic target for

overcoming glioma chemoresistance. Additionally, we propose a

theory that chemotherapy-induced activation of TGF-b signaling

could lead to tumor-associated fibrotic reactions in the GME,

characterized by increased ECM stiffness. This, in turn, may hinder

thepenetrationof chemotherapeutics intogliomacells. In this review,we

emphasize that tumor-associated fibrotic reactions play a role in

maintaining glioma stemness, leading to the acquisition of a

chemoresistant phenotype (Figure 4). A comprehensive

understanding of this mechanism promises new insights into
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effectively reversing chemoresistance. This review underscores the

urgent need to decipher the complex relationship between glioma-

associated fibrosis and chemotherapy sensitivity, providing a

promising strategy to develop more effective interventions for glioma.
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Despite our extensive summarization of numerous studies on

how tumor-associated fibrosis facilitates chemoresistance, the exact

molecularmechanisms still remain elusive in glioma. Therefore, in the

future, it’s warranted to explore which molecular characteristics of
TABLE 1 Drugs with antifibrosis function are utilized and tested in the treatment of solid tumors including glioblastoma.

Drug Name Conditions Highest Status (phase) NCT Status Sample size

Pirfenidone Non-small cell lung cancer II NCT04467723 Recruiting 25

Tranilast Nasopharyngeal carcinoma II NCT05626829 Recruiting 18

BAPN Glioblastoma Preclinical - - -

Minoxidil Ovarian cancer II NCT05272462 Recruiting 34

Losartan Glioblastoma Ⅲ NCT01805453 Completed 80

Valproic acid Glioblastoma Ⅲ NCT03243461 Recruiting 167

Vorinostat High-grade glioma Ⅲ NCT01236560 Completed 101

Berberine Non-small cell lung cancer II NCT03486496 Unknown 50
FIGURE 3

The exploration of antifibrosis-related strategies in glioma treatment (by Figdraw).
FIGURE 4

The tumor-associated fibrosis aggravates glioma chemoresistance by reducing the efficacy of drug delivery (by Figdraw). The TGF-b signaling
pathway could be upregulated in glioma after chemotherapy and epithelial-mesenchymal transition (EMT), resulting in the increased collagen
synthesis of cancer-associated fibroblasts (CAFs). In the tumor microenvironment (TME), the tumor-associated fibrosis increased the stiffness and
rigidity of glioma tissues which in turn impairs the delivery of chemotherapeutic drugs to cancer cells, thus promoting chemoresistance.
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glioma are more likely to develop fibrosis, and whether the ECM

stiffness promotes the expression of chemoresistance-related proteins

in glioma. Such insightswould contribute to a deeper understanding of

the interactions among these various chemoresistance mechanisms,

potentially unveiling novel strategies to overcome chemoresistance. In

addition to therapeutic agents directly targeting cancer cells, several

innovative drugs are under investigation for their potential to

overcome chemoresistance through modulating the TME. The

antifibrosis therapy for solid tumors is one of the TME

normalization strategies, with some showing significant tumor

inhibition effects. Numerous studies have suggested that targeting

CAFs and fibrosis with conventional clinically approved agents can

enhance the chemosensitivity of solid tumors. However, further in-

depth research is required to determine their efficacy specifically in the

context of glioma treatment.
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PTEN deletion or mutation in the
immune microenvironment
of glioblastoma
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Yuming Jia1, Kaijian Lei1, Daohong Kan3, Fang Xie1*

and Shenglan Huang1*
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and Plastic Surgery, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
Recent advances in immunotherapy represent a breakthrough in solid tumor

treatment but the existing data indicate that immunotherapy is not effective in

improving the survival time of patients with glioblastoma. The tumor

microenvironment (TME) exerts a series of inhibitory effects on immune

effector cells, which limits the clinical application of immunotherapy. Growing

evidence shows that phosphate and tension homology deleted on chromosome

ten (PTEN) plays an essential role in TME immunosuppression of glioblastoma.

Emerging evidence also indicates that targeting PTEN can improve the anti-

tumor immunity in TME and enhance the immunotherapy effect, highlighting the

potential of PTEN as a promising therapeutic target. This review summarizes the

function and specific upstream and downstream targets of PTEN-associated

immune cells in glioblastoma TME, providing potential drug targets and

therapeutic options for glioblastoma.
KEYWORDS

glioblastoma, PTEN, immunity, tumor microenvironment, immunosuppressive
1 Introduction

Glioma is the most common primary malignant tumor of the central nervous system

(1). Its pathological types and molecular characteristics are varied, and about 80% of cases

manifest as glioblastoma (GBM). Primary glioblastoma is the brain tumor with the highest

degree of intracranial malignancy, characterized by strong invasion and poor prognosis; the

average survival time of GBM patients is only 15 months (2, 3). Currently, postoperative

adjuvant chemoradiotherapy is the standard treatment for glioblastoma (GBM) but only

provides limited survival benefit. Immunotherapy, represented by immune checkpoint

inhibitors, has revolutionized the treatment paradigm for many solid tumors, but only a
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small percentage of GBM patients have shown objective efficacy (4).

Compared with other tumors, GBM demonstrates stronger

heterogeneity, lower tumor mutation load, and a highly

immunosuppressive microenvironment. Due to the strong

immunosuppressive tumor microenvironment (TME) of GBM,

the application of immunotherapy in GBM remains suboptimal

and requires further research (5). The most significant feature of the

GBM tumor immune microenvironment is the absence of tumor-

infiltrating lymphocytes (TILs) and natural killer cells (NK cells), as

well as the elevated levels of tumor-associated macrophages

(TAMs), myelogenic suppressor cells (MDSCs) and regulatory T

cells (Tregs) (6). Enhancing the immune system’s targeting effect on

GBM has emerged as a promising approach to treating tumors.

Phosphate and tension homology deleted on chromosome ten

(PTEN) is the first tumor suppressor gene with protein phosphatase

activity and lipid phosphatase activity discovered so far. It is located

on human chromosome 10q23.3 and regulates a variety of signaling

pathways through its bispecific phosphatase activity, thereby

regulating the life process of various cells (7). PTEN can be

involved in cell cycle regulation, inhibition of tumor cell

proliferation, adhesion, metastasis, angiogenesis, and promotion

of cell apoptosis, differentiation, senescence, and other physiological

and pathological activities. PTEN plays a crucial role in the

occurrence and development of a variety of tumors (breast,

melanoma, glioblastoma, prostate, liver, lung), and even a slight

decrease in PTEN enzyme activity can affect cancer susceptibility

(8). Mutations in IDH, PTEN, 1p/19g, TERT, ATRX, BRAF, and

H3F3A in gliomas are of great significance for patient prediction

and prognosis (Table 1) (9, 10). Overall, 40% of GBM cases exhibit

PTEN mutation or deficiency, which is associated with a poorer

prognosis than PTEN non-deletion GBM (11). Many recent studies

have shown that PTEN mediates multiple mechanisms of

immunosuppression in GBM immune regulation, and targeting

PTEN can enhance the immune response of GBM (12, 13). This

study summarizes the direct and indirect effects of PTEN on the

various pathways of immune response in GBM, the mechanisms of

mutual regulation between PTEN and immune cells in the
Frontiers in Oncology 0230
immunosuppressive microenvironment, and the latest

immunotherapy strategies for glioblastoma.
2 PTEN is involved in the GBM
immunosuppressive pathway

In glioblastoma, PTEN deletion or mutation may affect the

genomic stability, autophagy, and other aspects of the immune

response, leading to immunotherapy failure (Figure 1). The P13K/

Akt/mTOR signaling pathway mediates important physiological

functions by regulating the cell cycle, protein synthesis, cell energy

metabolism, and other pathways, and plays a central regulatory role

in the process of cell proliferation, growth, and differentiation.

Moreover, activation of this signal transduction pathway

promotes cell survival and proliferation and participates in

angiogenesis, thereby promoting tumor formation, tumor

invasion, and metastasis (14). Studies (15) suggest that the P13K/

Akt/mTOR signaling pathway also plays a key role in the

occurrence and development of cerebral glioblastoma. The

regulation of PTEN and mTOR plays an essential role in this

transduction pathway. The protein encoded by the PTEN gene

has phosphatase activity and can negatively regulate the P13K/Akt/

mTOR signal transduction pathway by catalyzing the

dephosphorylation of 3,4,5 phosphatidylinositol to 4,5

monophosphatidylinositol, thereby inducing cell apoptosis (16).

As the upstream site of the P13K/Akt/mTOR signaling pathway,

the PTEN gene inhibits tumor formation through negative

regulation of this signaling pathway, whereas inactivating the

PTEN gene reduces the negative regulation of this pathway and

causes malignant changes in cells. Research (17) has shown that

PTEN is involved in the tumor immune response, and PTEN

deficiency activates the phosphatidylinositol 3-kinase (PI3K-AKT)

pathway to form an immunosuppressive microenvironment. The

combination of PI3K inhibitor and PD-1 blocker was found to have

a synergistic effect in PTEN-deficient tumors and can improve

patient prognosis. Furthermore, the PI3K-AKT-mTOR pathway
TABLE 1 The mutations genes in GBM patients.

Mutation
genes

Location Function Clinical
trial
drugs

IDH 2q33;15q26
Mutated IDH has a gain of function to produce 2-hydroxyglutarate by NADPH-dependent reduction of

alpha-ketoglutarate
Ivosidenib

PTEN 10q23.3
PTEN can be involved in cell cycle regulation, inhibition of tumor cell proliferation, adhesion, metastasis, angiogenesis,

and promotion of cell apoptosis, differentiation, senescence, and other physiological and pathological activities

1p/19q 1p/19q Heterozygous deletions are important in determining the prognosis of glioma patients

TERT 5p15.33
The TERT is an important component and functional unit of telomerase, which plays a key regulatory role in

tumorigenesis and malignant proliferation, among others

ATRX Xq21.1
ATRX forms the ATRX-DAXX complex by binding to death structural domain-associated protein (DAXX), which

accelerates the process of histone deposition and is involved in the regulation of remodeling chromatin, all of which are
of considerable value for the maintenance of the stability of the human genome

BRAF 7q34
BRAF is a serine/threonine kinase that functions in the MAPKs signaling pathway and is involved as a proto-oncogene

in the development of many cancers, including gliomas
Vemurafenib;
Dabrafenib
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can directly affect the immune response in PTEN-deficient

glioblastoma TME (18). Increased PD-L1 cell surface expression

induced by PTEN loss led to decreased T-cell proliferation and

increased apoptosis. Because PTEN loss is one mechanism

regulating PD-L1 expression, agents targeting the PI3K pathway

may increase the antitumor adaptive immune responses (19).

PIK3CA-mutated PTEN-lost tumors showed a higher prevalence

of CD274-positivity than PIK3CA-wild-type PTEN-lost tumors and

PTEN-expressed tumors. These findings support the role of PI3K

signaling in the CD274/PDCD1 pathway (20). AKT-mediated b-
catenin S552 phosphorylation and nuclear b-catenin are positively

correlated with PD-L1 expression and inversely correlated with the

tumor infiltration of CD8+ T cells in human glioblastoma

specimens, highlighting the clinical significance of b-catenin
activation in tumor immune evasion (21).

In addition to cytoplasmic functions that regulate cell growth

and proliferation, PTEN also regulates genomic integrity and the

stability of DNA repair in the nucleus. Studies (22) have shown that

mice with PTEN deletion tumors exhibit increased genomic and

chromosomal instability, resulting in centromeric breaks,

chromosomal translocations, and spontaneous DNA double-

strand breaks that occur independently of the PI3K-AKT-mTOR

pathway. About 40% of GBM cases show a deficiency or mutation

of the PTEN gene, which influences neurogenesis and gliogenesis,

resulting in increased DNA damage repair and malignant
Frontiers in Oncology 0331
progression of brain tumors (23). In glioblastoma (24), after cell

exposure to ionizing radiation, DNA repair is weakened when

nuclear PTEN is phosphorylated at position 240. Phosphorylated

PTEN binds to chromatin and recruits RAD51 to facilitate DNA

repair (25). Due to PTEN inactivation promoting higher genomic

instability (26, 27), PTEN-deficient tumors are generally considered

pro-inflammatory, exhibiting a greater mutation burden and higher

immunogenicity in the TME. To counteract the effects of

neoantigens, tumors with highly unstable genomes are likely to be

able to suppress the host immune response against pro-

inflammatory activity (28).

The expression of PTEN can induce autophagy, while the loss of

PTEN function down-regulates autophagy, effectively supporting

the development of tumors (29, 30). The etiology and pathogenesis

of GBM remain incompletely understood, but growing evidence

indicates the involvement of the ubiquitin-proteasome system

(UPS) and autophagy-lysosome pathway (ALP) in the occurrence,

development, and drug resistance of GBM. These effects are carried

out by regulating the degradation of cancer-promoting/cancer-

suppressing factors and mediating endoplasmic reticulum stress

tolerance and misfolded protein reaction (31, 32). PTEN is

frequently mutated in glioblastoma, and ectopic expression of

functional PTEN in glioma cells induces autophagy flux and

lysosomal mass. Furthermore, proteasome activity and protein

ubiquitination are inhibited, restricting tumor development.
FIGURE 1

PTEN-mediated signaling pathway and molecular mechanism in GBM.
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Interestingly, these effects were independent of PTEN lipid

phosphatase activity and the PI3K/AKT/mTOR signaling pathway

(33). These findings suggest a novel mTOR-independent signaling

pathway through which PTEN can act on intracellular protein

degradation, regulating autophagy. In addition, studies reported

that the activation of the PI3K/Akt/mTOR-mediated signaling

pathway can also inhibit autophagy (34–36). Therefore, the

molecular components of the proteolytic system regulated by

PTEN could represent an innovative therapeutic target for cancer

treatment. Moreover, proteasome inhibitors were found to induce

cell death in PTEN-deficient GBM organoids and inhibit tumor

growth in mice (37). Proteasome inhibitors could be used as

targeted therapies for GBM. Mechanistically, PTEN-deficient

GBM cells secrete high levels of galectin-9 (Gal-9) via the AKT-

GSK3b-IRF1 pathway. The secreted Gal-9 drives macrophage M2

polarization by activating its receptor Tim-3 and downstream

pathways in macrophages. These macrophages, in turn, secrete

VEGFA to stimulate angiogenesis and support glioma growth

(38). Therefore, this study suggests that blockade of Gal-9/Tim-3

signaling is effective to impair glioma progression by inhibiting

macrophage M2 polarization, specifically for PTEN-null GBM.

PI3Kb inactivation in the PTEN- null setting led to reduced

STAT3 signaling and increased the expression of immune

stimulatory molecules, thereby promoting anti-tumor immune

responses (39). These findings demonstrate a molecular

mechanism linking PTEN loss and STAT3 activation in cancer

and suggest that PI3Kb controls immune escape in PTEN-mutation

tumors, providing a rationale for combining PI3Kb inhibitors with

immunotherapy. NF-kB activation was necessary and sufficient for

inhibition of PTEN expression. The promoter, RNA, and protein

levels of PTEN are down-regulated by NF-kB. The mechanism

underlying suppression of PTEN expression by NF-kB was

independent of p65 DNA binding or transcription function and

involved sequestration of limiting pools of transcriptional

coactivators CBP/p300 by p65. Restoration of PTEN expression

inhibited NF-kB transcriptional activity and augmented TNF-

induced apoptosis, indicating a negative regulatory loop involving

PTEN and NF-kB. PTEN is, thus, a novel target whose suppression

is critical for antiapoptosis by NF-kB (40).

In the context of tumor cell death, autophagy may lead to the

secretion of damage-related molecular chaperones (41, 42). In

addition, dead cancer cells may also release autophagosomes

containing multiple tumor antigens, which subsequently induce

the maturation of dendritic cells (DCS) and cross-present to T cells,

promoting tumor immunity (43, 44). PTEN inhibits autophagy,

which hinders an effective anti-tumor immune response. Research

(45, 46) has revealed that the biology of the immune system

determines the occurrence and progression of tumors through a

balance between the effects of autophagy regulation and the

tolerance response. Autophagy affects the biological functions of

various cell types of the immune system, including natural killer

cells, dendritic cells, macrophages, and T and B lymphocytes.

Autophagy also regulates the secretion of cytokines and

antibodies, which in turn impact the autophagy process itself.

Transforming growth factor-b, interferon-gamma-g, and several

interleukins (IL) promote autophagy, whereas IL-4, IL-10, and IL-
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immune receptors such as toll-like receptors (48); in adaptive

immunity, it is a determinant of antigen presentation, lymphocyte

differentiation, and cytokine secretion with tumor suppressor

activity (49). Therefore, the ideal treatment combination could

involve the combination of existing treatment strategies and

autophagy-based inducers (PTEN inducers) to trigger cancer cell

death and patient response.
3 PTEN affects the GBM
immune microenvironment

The glioblastoma microenvironment (TME) is composed of

tumor cells, extracellular matrix (ECM), blood vessels, innate

immune cells (monocytes, macrophages, mast cells, microglia,

and neutrophils), T cells and neurons, astrocytes, and

oligodendrocytes (Figure 2). Infiltrating immune cells in GBM are

mainly composed of tumor-associated macrophages (TAMs),

myelo-derived suppressor cells (MDSC), and T lymphocytes

(Table 2) (59). A growing number of studies have shown that the

tumor immune microenvironment (TIME) plays a crucial role in

regulating the growth and metastasis of GBM. Moreover, PTEN

participates in the regulation of immune cell signaling; in contrast,

PTEN deficiency can lead to an immunosuppressive tumor

microenvironment (60) and hinder the anti-tumor immune

response. For example, previous studies revealed that the loss of

PTEN is significantly associated with reduced T-cell infiltration at

the tumor site and resistance to PD-1 blocking therapy (61–64). The

loss of PTEN also promotes the accumulation of inhibitory immune

cells, such as MDSCs and Tregs, as well as the formation of an

immunosuppressive microenvironment during tumorigenation and

development (65–67).
3.1 Tumor-associated macrophages

In the glioblastoma microenvironment, tumor-associated

macrophages are the most common infiltrating immune cells,

accounting for 40% of the total tumor cells (68). Macrophages

constitute the most prevalent non-tumor cells in GBM (23).

GiomettoB also found that TAMs can be detected in 100% of

GBM cases (69). Two different sources of tumor-associated

macrophages have been reported in human glioma, namely from

embryonic yolk sac monocytes (70) and from peripheral bone

marrow-derived monocytes (50). The immunosuppressive

anticancer microenvironment is maintained through the

recruitment of monocytes, which are converted into macrophages

in the glioma environment. TAMs can be divided into two types,

M1 type and M2 type. M1-type TAMs typically express high levels

of pro-inflammatory factors, promoting Th1 response and strong

tumor-killing ability. In contrast, M2 TAMs promote tissue

remodeling and tumor progression and secrete inhibitory

inflammatory factors (51). Moreover, glioblastoma-associated

macrophages have been reported to exert immunosuppressive

effects (52). Previous studies have demonstrated that TAMs in the
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GBM microenvironment primarily adopt the M2-type polarization

(53, 68), which fills the glioma microenvironment and controls

tumor progression and immune escape mechanism. The M2

phenotype induces differential expression of receptors, cytokines,

and chemokines, which produce IL-10, IL-1, and IL-6, thereby

stimulating tumorigenesis and negatively affecting prognosis (54).

M2 macrophages stimulate the proliferation and invasion of glioma

cells and support the immune escape mechanism (71–73). Giotta’s

study confirmed (74) the prevalence of PTEN gene mutation in

GBM, which is closely associated with poor prognosis and ultra-low

survival rate. A recently published report on GBM showed (75, 76)

that PTEN deficiency is associated with high macrophage density.

Additionally, PTEN-deficient gliomas can recruit a large number of

macrophages in the glioma microenvironment. Another study by

Ni et al. (38) revealed that the ability of PTEN-deficient gliomas to

induce M2 polarization in macrophages was significantly stronger

than that of PTEN wild-type gliomas. In PTEN-deficient glioma

cells, the activated AKT pathway inactivates GSK-3b by promoting

Ser9 phosphorylation, thereby reducing GSK-3b-mediated

degradation of IRF1, leading to the up-regulation of the

transcription factor IRF1, which enters the nucleus to promote

LGALS-9 gene transcription and Gal-9 expression. The activation

of the Tim-3 receptor on macrophages by the Gal-9 ligand, in turn,

activates transcription factors associated with M2-type polarization

and induces macrophage migration, activation, and enrichment of

macrophage-associated angiogenesis pathways in PTEN-null

gliomas. Gal-9/Tim-3 is a promising target for the treatment of

PTEN-deficient gliomas. Blocking Gal-9/Tim-3 can inhibit the

malignant progression of gliomas by inhibiting the M2
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polarization of macrophages. A new study on the effect of PTEN

deletion on glioblastoma demonstrated (71) increased infiltration of

macrophages via the YES-associated protein 1-Lysyl oxidase b1

(LOX-b1) -integrin-PYK2 axis. Furthermore, LOX expression was

found to activate specific pathways in macrophages, facilitating the

recruitment of macrophages to the TME. In the GBM model of

PTEN deficiency (77), the loss of PTEN leads to the up-regulation

of the macrophage chemotactic LOX in a YAP-1-dependent

manner. In circulating monocytes, LOX-dependent up-regulation

of b1 integrin receptor signaling drives its penetration into GBM

tissues to obtain tumor-associated macrophage phenotype and

promotes GBM survival and angiogenesis by secreting SPP1.

Interfering with these interactions by inhibiting LOX signals can

reduce TAM invasion and inhibit tumor growth. Other studies have

found that PTEN regulates the activation of macrophages by

activating the PI3K signaling pathway to increase the release of

arginase I (78), resulting in a low-inflammation environment.

Therefore, arginase I is also a potential therapeutic target.
3.2 T lymphocytes

GBM with PTEN mutation shows a reduced number of T cells

(17). PTEN mutation can induce an immunosuppressive tumor

microenvironment, which is not derived from traditional Treg cells

but from tumor cells overexpressing CD44. Other studies have

discovered (79) that PTEN regulates the type I interferon pathway

in a PI3K-independent manner, inhibits the release of inflammatory

factors, and reduces the number of CD8+T cells in GBM. Studies
FIGURE 2

PTEN deficiency immunosuppressive mechanisms in GBM.
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have shown (80) that PTEN lacks the upregulation of mTORC2-

Akt activity, and loss of this activity can restore the function of Treg

lacking in PTEN. From a mechanism perspective, PTEN can

maintain the stability of Treg. Meanwhile, the phosphatase PTEN

links Treg stability with inhibition of TH1 and follicular T-helper

cell (TFH) responses. Further studies on glioblastoma (18) have

revealed that anti-inflammatory cytokine release and T cell activity

are significantly reduced in the absence of PTEN and dysregulation

of PI3K signaling. Moreover, PTEN inducers or PI3K inhibitors

may improve T cell function. Giotta’s study (74) suggested that

PTEN mutations were prevalent in GBM, regulating Foxp3

expression and promoting the production of Tregs. Tregs down-

regulate T cell activity and regulate innate and adaptive responses to

autoantigens, allergens, and infectious agents (81–84). PTEN-

deficient tumors usually exhibit a high density of Treg cells in the

TME, and Tregs inhibit the function of CD4+, CD8+, and NK cells,

and exert immunosuppressive effects in the TME (55, 85, 86).

In addition, T lymphocytes are down-regulated and also exhibit

impaired killing function, which is related to TAMs (56).
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Prostaglandin E2 was found to be produced in the GBM

microenvironment, further inhibiting T-cell activity by TAMs and

inducing apoptosis. In addition, glioma cells can down-regulate the

expression of MHC Class II molecules in microglia and induce

ineffective cloning of T cells (87). However, YangI et al. reported

that GBM had higher CD8+T cell infiltration compared with

pilocytic astrocytoma (57). This differential expression suggests

that glioblastoma has a more obvious effect on the local immune

microenvironment, but the number does not necessarily represent

the potency of the killer cell function. Previous studies have shown

that in addition to functional downregulation, CD8+T cells in the

GBM microenvironment are involved in the immune

escape mechanism.
3.3 Medullary inhibitory cells MDSC

Vidotto’s study (81) reported that PTEN deficiency induces an

increase in the density of tumor-infiltrating MDSC in TME. MDSCs
TABLE 2 The role of PTEN in regulating signaling proteins in immune cells.

Immune
cells

Proteins Relationship with PTEN References Clinical trials

TAMs IRF1 PTEN deficiency can activate the PI3K-AKT pathway, and IRF1 is
up-regulated to promote the secretion of Gal-9, which in turn
activates Tim-3 receptor on macrophages, resulting in
macrophage enrichment.

(50) Peng, Guang et al. Oncoimmunology vol. 12,1
2173422. 6 Feb. 2023

LOX The loss of PTEN causes the macrophage chemoattractant LOX to
be upregulated in a YAP-1 dependent manner.

(51) Gondek, Tomasz et al. BioMed research
international vol. 2014 (2014): 102478.

Arginase I PTEN deficiency regulates macrophage activation by activating the
PI3K signaling pathway to increase the release of arginase I

(52) Lorentzen, Cathrine Lund et al. Frontiers in
immunology vol. 13 1023023. 17 Oct. 2022,

T
lymphocyte

CD44 PTEN mutation induces CD44 overexpression and decreases the
number of T cells

(12) Pazhohan, Azar et al. The Journal of steroid
biochemistry and molecular biology vol. 178
(2018): 150-158.

CD8+T IFN PTEN regulated the type I interferon pathway via PI3K-
independent way

(13, 53) Boucher, Yves et al. Clinical cancer research:
an official journal of the American Association
for Cancer Research vol. 29,8 (2023):
1605-1619.

Tregs Foxp3 PTEN directly regulated the expression of Foxp3, and promoted the
Tregs generation and immunosuppressive abilities

(23) Revenko, Alexey et al. Journal for
immunotherapy of cancer vol. 10,4
(2022): e003892.

mTORC2 PTEN deficiency modulates mTORC2-Akt activity and maintains
Treg stability

(54) Banerjee, Susana et al. JAMA oncology vol. 9,5
(2023): 675-682.

MDSCs arginase PTEN deficiency up-regulates arginase activity by activating PI3K
signaling pathway, promotes the release of MDSCs, and inhibits T
cell function.

(55) Okła, Karolina et al. Frontiers in immunology
vol. 10 691. 3 Apr. 2019

GM-CSF PTEN activates the STAT3 signaling pathway, which promotes GM-
CSF to up-regulate IL-4Ra on MDSCs, and then mediates IL-13-
induced arginase production, thereby inhibiting T cell function.

(56, 57) Mody, Rajen et al. Journal of clinical oncology:
vol. 38,19 (2020): 2160-2169.

TGF-b1 PTEN activates the Akt pathway to regulate the expression of miR-
494 in MDSCs induced by TGF-b1, which promotes the formation
of bone marrow mesenchymal stem cells

(58) Chen, Gang et al. Journal of experimental &
clinical cancer research: CR vol. 40,1 218. 30
Jun. 2021,

IL-6,
VEGF,
PGE-2

PTEN activates PI3K/AKT/mTOR or STAT3 signaling pathway, and
increases the release of factors related to MDSCs proliferation (IL-6,
VEGF, PGE-2)

(56, 57) Bennouna, Jaafar et al. The Lancet. Oncology
vol. 14,1 (2013): 29-37.
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are a heterogeneous population composed of a large number of

immature bone marrow precursor cells, which are activated under

pathological conditions and show strong immunosuppressive

activity (88). MDSCs protect tumor cells from host immune

attack by negatively regulating immune response, including the

depletion of amino acids required by T cells such as arginine and

cysteine, the generation of reactive oxygen species nitric oxide and

peroxynitrite, direct inhibition of macrophages and natural killer

cells, and promotion of tumor angiogenesis (58).

In GBM, MDSCs account for a large proportion of tumor

immune cells and play an essential role in promoting tumor

growth, tumor cell survival, migration, and immune suppression

(89). The glioma microenvironment contributes to the

immunosuppressive function of MDSCs (90, 91). MDSCs

promote glioma growth, invasion, and angiogenesis as well as the

proliferation of Tregs cells (92). GIELEN et al. (93) confirmed that

the increase of MDSCs in GBM is related to the increase of arginase

activity and that the immunosuppressive function was mediated by

inhibiting T cells. Studies have found that glioma cells express many

factors related to the proliferation of MDSCs (IL-6, IL-10, VEGF,

PGE-2, GM-CSF, and TGF-b2); however, blocking the chemokine

CCL2 signaling pathway in glioma cells effectively reduces the

recruitment of MDSCs (94). Relevant research data revealed a

high proportion of microglial cells/macrophages (GAMs) and

MDSCs in malignant GBM, with both GAMs and MDSCs having

the ability to recruit Tregs to the tumor, further inhibiting the

tumor immune response (59, 95). Studies have found that multiple

miRNAs in the tumor microenvironment promote the expansion

and immunosuppression of MDSCs by targeting inhibiting PTEN

and activating the PI3K/AKT/mTOR or STAT3 signaling pathways

(96, 97). In addition, GM-CSF up-regulates IL-4Ra on MDSCs via

signal transduction and the transcriptional activator STAT3,

thereby mediating IL-13-induced arginase production and

inhibiting T cell function.
4 Glioma immunotherapy
targeting PTEN

(1) Evidence suggests that PTEN deficiency plays a crucial role

in the development of immunosuppressive cancer phenotypes in

glioblastoma and is involved in tumor immune responses.

Furthermore, PTEN deficiency activates the phosphatidylinositol

3-kinase (PI3K-Akt) pathway to form an immunosuppressive

microenvironment. Since restoring PTEN’s function is currently

not feasible, suppressing PI3K signaling represents a potential

approach to mitigate PTEN loss (98). Another study showed (17)

that the combination of PI3K inhibitor and PD-1 blocker exerts a

synergistic effect in PTEN-deficient tumors and can improve the

prognosis of patients. In primary cultures of PTEN-deficient

gliomas, inhibition of components of the PI3K-AKT-mTOR

network resulted in reduced T cell death (99) and enhanced

immune response.

(2) PTEN can regulate autophagy and affect GBM immune

response through the PI3K/Akt/mTOR mediated signaling pathway
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and new mTOR independent signaling pathway. Therefore, the

inducers of autophagy (PTEN inducers) and the molecular

components of the proteolytic system associated with autophagy

could be new therapeutic directions for GBM. In addition, some

studies have found (37) that proteasome inhibitors specifically

induce cell death in GBM organoids with PTEN defects and

inhibit tumor growth in mice. Proteasome inhibitors can be used

as targeted therapies for GBM.

(3) PTEN mediates immune responses independently of PI3K,

so future therapies could also target other downstream pathways

and signaling molecules that directly control the immune response

in the microenvironment of glioblastoma. For example, PTEN-

deficient glioblastomas overexpress CD44 cell-surface adhesion

receptors and have a tighter tumor cell phenotype than wild-type

glioblastomas (100), which can exclude angioforming and immune

cells in TME, making them less responsive to immune checkpoint

inhibitors (ICI) (17).

(4) From the above presentation of tumor-associated

macrophages in glioblastoma with PTEN deletion or mutation,

PTEN deletion or mutation was shown to lead to enhanced

aggregation of macrophages into the tumor microenvironment

(TME). These findings suggest that targeting M2-type TAMs may

be particularly effective against gliomas with PTEN deletion.

Inhibition of macrophage M2 polarization by targeting Gal-9/

Tim-3 represents a potential target for precise immunotherapy

for PTEN-deficient gliomas (38).

Immunotherapy is a therapeutic approach to achieve anti-

tumor effects through the action of antibodies on the

corresponding receptors. Currently, immunotherapy for gliomas

includes vaccine therapy, immune checkpoint therapy, chimeric

antigen receptor T-cell immunotherapy (CAR-T), natural killer

(NK) cell therapy, and lysosomal viral therapy. However, some

problems need to be solved. The main problem with

immunotherapy is that normal tissues often have antigenic

epitopes identical to those of tumor cells, and activation of the

immune response can lead to cross-reactivity between the tumor

and the body, resulting in toxicity and autoimmune disease (101).

another key challenge is whether immunotherapeutic strategies can

overcome the multiple mechanisms of immune evasion in gliomas

and generate tumor-specific immune responses (102).In addition,

the production of immunotherapeutic vaccines is often complex,

with multiple methods of constructing the same vaccine, but the

effects of the vaccine will vary (103), and the future of

immunotherapy will not be limited to single-pharmacological

treatments, but will require a combination of therapies to achieve

a broad and long-lasting clinical benefit (101).
5 Conclusions and future prospects

A large number of studies have supported the role of PTEN in

immune cells and illustrated the immunomodulatory effects of

PTEN on glioblastoma TME. PTEN inhibits CD4+/CD8+T cells

and dendritic cells while favoring M2 macrophages, Tregs, and

MDSCs, participating in glioblastoma progression, metastasis, and
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immunity. This study outlines the function of PTEN in

glioblastoma TME immune cells, as well as their cascade gene

activation and clinical outcomes. Increasing evidence demonstrates

that targeting PTEN can not only improve the anti-tumor immune

function of TME but also enhance the immunotherapy effect,

highlighting PTEN as a promising therapeutic target.

Nevertheless, whether the recovery of functional PTEN can

regulate TME in tumors and improve the sensitivity of tumors to

ICB therapy requires further research. Investigating the

effectiveness of recovering functional PTEN as a means of cancer

treatment holds important clinical significance.
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TTFields is a novel FDA-approved technology utilized for treating glioblastoma

multiforme (GBM) within the brain. Presently, the effectiveness of therapy is

evaluated through MRI imaging at random two-month intervals. Electrical

impedance is an important and effective parameter for reflecting changes in

tissue properties. In TTFields treatment for brain tumors, electrodes attached to

the scalp deliver electric field energy to the tumor region. We hypothesize that

these electrodes can also serve as sensors to detect impedance changes caused

by tumor alterations in real time, thus continuously assessing the effectiveness of

the treatment. In this work, we propose and scrutinize this hypothesis by

conducting an in silico study to confirm the potential feasibility of the

proposed concept. Our results indicate that the impedance amplitude change

measured between opposing TTFields electrode arrays utilizing voltage and

frequency of 50 V and 200 kHz (typical TTFields treatment parameters), has

enough resolution (> 1mm) and Signal-to-Noise Ratio (> 40 dB) to evaluate

tumor size change in the head. The impedance detection technique may be a

significant augmentation to TTFields cancer treatment, enabling the continuous

evaluation of safety and efficacy throughout the procedure.
KEYWORDS
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1 Introduction

Tumor Treating Fields (TTFields) constitute a safe and non-invasive technology for

ablating malignant tissues. It relies on intermediate-frequency electric fields (100 kHz-500

kHz) of low intensity (< 3 V/cm) to impede the proliferation of cancer cells. This innovative

technology was pioneered by Yoram Palti’s team in the early 2000s (1). Clinical evidence

demonstrating the effectiveness of TTFields in prolonging the survival of GBM patients,
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importantly, without notable side effects. Consequently, the Food

and Drug Administration (FDA) approved its use in GBM

treatment (2, 3).

TTFields are delivered to the tumor by insulated electrode

arrays that are directly applied to the patient’s shaved scalp (4).

In the GBM treatment, TTFields are activated by the patient

through controlling the portable power generator in the

backpack. To achieve maximum therapeutic effect, a primary

magnetic resonance image (MRI) should be done to confirm the

exact position of tumor in the brain, and then treatment electrodes

will be personalized attached on each patient. For this purpose, the

NovoTal System (NovoTal, USA) offers commercial software

designed to optimize electrode placements. A comprehensive

description of the methodology for optimizing electrode

placements and selecting treatment parameters can be found in (4).

The TTFields treatment differs significantly from other clinical

tissue ablation techniques based on biophysical phenomena. Most

traditional ablation techniques, for instance, microwave ablation

occurs during a brief, acute surgical procedure. Surgeons or

radiologists administer the ablative energy, guided by real-time

medical imaging, and the procedure’s result can be evaluated

shortly after its conclusion, typically through medical imaging

assessments. In contrast, TTFields tissue ablation is an extended

process that exclusively impacts replicating cells and involves the

continuous delivery of electric fields over many months, and

sometimes even years (5). As previously mentioned, the precise

positioning of the electric field delivery electrodes is determined

independently from the treatment itself. The electric fields are

applied to the tumor typically for up to 18 hours each day (6).

Due to the protracted nature of the TTFields ablation procedure,

spanning months, it becomes challenging to continually assess its

effectiveness throughout the treatment. Currently, the treatment’s

efficacy is assessed through follow-up MRI scans, typically

conducted at intervals of every two months (4, 7). This lack of

continuous monitoring, compounded by the extended treatment

duration, represents a limitation in the GBM treatment by TTFields.

TTFields electrodes are strategical ly positioned at

predetermined locations, carefully calculated to optimize the

delivery of electric fields to the specific location and size of the

tumor. As presented in Figure 1, the treatment system can be
Frontiers in Oncology 0240
conceptualized as a complex electric circuit network, where the

head within tumor is equivalent to a black box, and electrode arrays

on the scalp serve as the accessible nodes.

This study introduces and delves into the concept that, owing to

the contrasting electrical properties of normal and malignant brain

tissue (8), any alterations in tumor size and composition result in

modifications to the head’s intricate black box circuit network. Real-

time monitoring on the electrical impedance changes through

TTFields electrodes can function as a method for detecting

changes in the tumor undergoing TTFields treatment. According

to the measurements, we can evaluate the effectiveness of the

treatment. This approach replaces arbitrary timings for medical

imaging follow-ups with follow-ups that hold clinical significance. If

the impedance change abnormally, it could indicate that the

treatment is ineffective, prompting a need for modification in the

treatment parameters. The precise and rigid placement of

electrodes, optimized for the targeted delivery of electric fields to

the tumor, is likely to enhance the sensitivity of this monitoring

technique to any changes in tumor dimensions, as the electrodes

deliver the strongest electric fields to the tumor.

This monitoring technique has the potential to advance our

fundamental understanding of the TTFields tissue ablation process

and may evolve into a method for continuous assessment of

treatment success throughout the procedure. It is worth noting

that evaluate tissue composition change by measuring electrical

impedance is not a novel concept. In fact, it forms the foundation

for electrical impedance tomography (EIT) (9, 10) and magnetic

induction tomography (11). Additionally, it is closely related to

clinical applications, such as monitoring internal bleeding in the

brain (12, 13).

In this paper, to investigate this concept, we have created an in

silico finite element simulation model that simulates a TTFields

treatment protocol within the brain. Through this model, we have

calculated the alterations in impedance across the TTFields

electrodes, considering variables such as tumor size, location, and

frequency. We have then established a correlation between

impedance changes and variations in the tumor’s dimensions,

assuming a known tumor location relative to the electrodes.

These correlations serve as a means to evaluate how sensitive

these measurements are to changes in the tumor’s size. While we
FIGURE 1

TTFields treatment on GBM: (A) configuration of electrode array, (B) equivalent lump model circuit.
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should emphasize that this study represents an initial theoretical

exploration, the results suggest that this approach may hold clinical

significance and value.
2 Materials and methods

An in silico experimental configuration of a human head, with

the brain, a tumor and the TTFields electrodes was developed in

Multiphysics simulation COMSOL (version: 5.3), presented in

Figure 2A (the front view) and Figure 2B (the top view). The

brain was modeled by a half ellipsoid, with dimensions of 83 mm x

73 mm x 68 mm, relative to the ellipsoid centroid, in the x, y and z

axis, respectively. The structure comprises five layers arranged from

outer to inner layers, specifically the scalp, skull, cerebrospinal fluid

(CSF), gray matter (GM), and white matter (WM). The first four

layers, from the exterior to the interior are modeled as shells with a

thickness of 8 mm, 6 mm, 0.75 mm, and 2 mm, in the respective

order. The interior white matter fills the remainder of the half

ellipsoid. These typical life-size dimensions of the head of an adult

were drawn from existing publications and anatomical data (14–

18). The TTFields treatment electrodes were simulated by four

electrode arrays, attached to the scalp on the posterior, anterior,

right and left sides of the head. Each electrode has a radius of 10 mm

(19). An array six electrodes is constructed with a spacing of 5 mm

between each electrode, as shown in Figure 2A. These TTFields

treatment electrodes will serve as the sensors to detect the changes
Frontiers in Oncology 0341
in impedance of the head, caused by changes in the tumor

dimensions. The GBM tumor is shaped as a sphere and its size

and location will be changed to simulate different tumor conditions.

The mesh of the head model is composed of 590675 elements and

100038 nodes, as shown in Figure 2C.

We used the frequency domain AC/DC module in COMSOL to

analyze the model. When the frequency is sub-MHz, the wavelength

significantly exceeds the head’s size, hence the quasi steady

approximation of electromagnetic field is applicable. However,

when the frequency is above about 200 MHz, the quasi steady

approximation fails and the displacement current is considered in

the mathematical model. The electrical characteristics of various head

components are sourced from the ITIS tissue properties database

(20). Previous studies show that the tumor has an electrical

conductivity and relative permittivity significantly surpassing those

of the surrounding healthy tissue, ranging from several times to ten

times higher (21–23). As a conservative estimate, we set the electrical

properties of the tumor to be double those of surrounding white

matter. Through estimation, we set a contact impedance of 1kW to

simulate the insulation impedance of the ceramic between the

electrodes and shaved scalp skin. In the simulation, the voltage

applied between two opposite arrays of six electrodes is taken to be

50 V. This is a typical amplitude used to generate the desired

TTFields intensity (1-2 V/cm) in the brain, as recommended in

(24). The theoretical study will employ various frequencies, ranging

from 5 kHz to 500 MHz, to investigate the frequency characteristic

and find an optimal detection frequency.
FIGURE 2

The head model built in COMSOL: (A) front view, (B) top view, (C) meshing result.
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3 Results and discussions

The section initially investigates the variations in impedance

affected by tumor size, considering different factors: A) Frequencies,

B) Locations of electrode array pairs, C) Tumor locations.

Subsequently, it presents the signal-to-noise effect of the voltage

source in part D).
3.1 Effect of frequency

Due to the frequency-dependent character of tissues’ electrical

properties (20). In this part of the study, we have placed the tumor

at a specific location and calculated the impedance between the

TTFields electrodes for various size tumors over a frequency

spectrum spanning from 5 kHz to 500 MHz. The electric

properties of the tissues were set as functions of the scanning

frequency according to the data in (20). Figure 3 was obtained for

a spherical tumor located at, x = 20 mm, y = 0 mm, z = 0 mm

relative to the centroid of the ellipsoid. The COMSOL simulation

was performed for three radii of the tumor, r = 10 mm, 15 mm and

20 mm. The change in impedance between the left and right

TTFields electrode arrays was calculated in comparison to a brain

without a tumor. The change in amplitude and phase depended on

the frequency, are illustrated in Figure 3. The curves exhibit a

dispersion pattern, which is characteristic of the frequency-

dependent properties inherent to biological matter (25). This is to

be expected as the electrical properties of the tissues used in this

model where taken from the literature. The change in amplitude

due to the presence of a tumor increases with a decrease in

frequency to 103 kHz, after which the disparity diminishes with

an elevation in frequency. In contrast, the change in impedance

phase shift is minimal at lower frequencies and only becomes

noticeable at higher frequencies above 100 MHz, although it still

remains relatively small.

Typical TTFields frequencies are ranging from 100 kHz to 300

kHz (26), as this range has been found to yield the most significant

therapeutic benefits. Interestingly, changes in tumor size

coincidentally result in substantial alterations in impedance

amplitude within the identical frequency range employed for

treatment administration. Recording these changes in amplitude
Frontiers in Oncology 0442
at the specific frequency of 200 kHz presents a technologically

straightforward approach to monitor variations in tumor size.

Importantly, such a modification can be easily incorporated into

existing clinical TTFields devices. Consequently, our subsequent

numerical investigations will focus on assessing the impact of

various parameters on the impedance amplitude change by

setting the frequency as 200 kHz. This approach aligns directly

with what we consider the preferred method for evaluating the

therapeutic efficacy of TTFields in brain tumor treatment.
3.2 Effects of electrode array pairs location

TTFields electrode arrays are typically arranged in two

opposing configurations, forming orthogonal pairs. Different

impedance values can be measured by selecting opposite or

adjacent electrode array pairs. For ease of reference, we assigned

labels to the electrode arrays as depicted in the upper row of

Figure 4. We defined the pairs of electrode arrays 1-3 and 2-4 as

opposite detection pattern, and 3-4 as the adjacent detection

pattern. In this section, our objective is to investigate the

correlation between measurement sensitivity and the chosen

detection pattern. In these investigations, the excitation voltage is

50 V, 200 kHz. We evaluate the impedance amplitude change

between different TTFields electrode arrays pairs, as a function of

tumor size at three typical locations of tumors. The tumors were

placed at three different, x, y, z locations with values in mm, (20, 0,

0); (0, 0, 0) and (0, 20, 0). Figure 4 provides insights into the

alteration in impedance amplitude concerning tumor size relative to

the healthy brain without a tumor, considering various array pairs.

Figure 4 indeed illustrates that the opposite detection pattern

exhibits the highest sensitivity to changes in tumor size. Given this

observation, we will adopt the opposite detection pattern in the

subsequent simulations. This choice aligns tentatively with the

recommended detection pattern for clinical applications.
3.3 Effects of tumor location

In the preceding sections, we have established that the highest

sensitivity for monitoring changes in tumor size during TTFields
FIGURE 3

Frequency characteristic of impedance change: (A) amplitude-frequency (B) phase-frequency.
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treatment is achieved by measuring the amplitude change of

impedance between opposite TTFields electrode arrays pairs at a

standard treatment frequency. In this section, we will explore the

sensitivity of these measurements concerning the tumor’s position

form the opposite detection electrode arrays.

To investigate the effect of tumor location along the x and y

axes, we conducted the following simulations: For deviations along

the x-axis, we positioned tumors at three different locations: x = 10

mm, 20 mm, 30 mm, with y = 0 mm and z = 0 mm. Similarly, for

deviations along the y-axis, we placed tumors at four distinct

locations: y = 10mm, 20 mm, 30 mm, 40 mm, with x = 0 mm

and z = 0 mm. The detection electrode arrays are 1-3 for the tumor

on the x-axis and 2-4 for the tumor on the y-axis. The results of the

simulation are presented in Figure 5.

Interestingly, the findings indicate that the closer the tumor is to

one of the orthogonal electrode arrays, the more substantial the

change in amplitude, regardless of the tumor’s radius. This is in

agreement with findings made using conventional EIT (27). The

results suggest that for optimal placement, the monitoring electrode
Frontiers in Oncology 0543
arrays should be chosen in such a way that one of the orthogonal

pairs is as close as possible to the location of the tumor.
3.4 Signal-to-noise ratio analysis

Based on the analysis in subsection C, it is evident that when the

tumor is closer to the electrodes, the impedance change is more

substantial, resulting in higher monitoring sensitivity or resolution.

In this subsection, as a conservative approach, we will examine the

extreme condition where the tumor is located at y = 10 mm, which

corresponds to the lowest monitoring sensitivity. It is important to

note that the same level of noise will have a smaller impact on cases

with higher monitoring resolution.

To assess the monitoring resolution, we consider the first-order

derivative of the impedance change concerning the tumor size. To

calculate the resolution, we employed a cubic function to fit the

curve for y = 10 in Figure 5B. The fitting function curve is depicted

in Figure 6A, with a fitting error RMSE = 0.01452 and an Adjusted
FIGURE 5

The impedance change of different tumor positions, tumor on: (A) x axis, (B) y axis.
FIGURE 4

Sketches of different tumor locations and the impedance change results of different detection patterns, locations of tumor are: (A) (20, 0, 0), (B) (0,
0, 0), (C) (0, 20, 0).
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R-square = 0.9999, indicating a good fit. Figure 6B illustrates the

monitoring resolution derived from calculating the first derivative

of the fitting function. The result indicates indicate that the larger

the initial tumor size, the higher the monitoring resolution.

To assess the impact of voltage source noise on the results, we

introduced varying levels of noise to the source and simulated the

impedance change in relation to tumor size. According to the

definition of Signal-to-Noise Ratio (SNR) (28):

SNR = 20 lg
Vs

Vn
(1)

In accordance with the formula provided, where Vs represents

the accurate excitation voltage, and Vn stands for the voltage noise.

For simulating the voltage source noise, a Gaussian white noise

generator was utilized in MATLAB, characterized as follows:

V = Vs + awgn(Vs,
SNR
2

) (2)

In the Equation 2, V represents the actual voltage, and the term

awgn(Vs, SNR/2) introduces Gaussian noise with a specific SNR to

the accurate voltage Vs. It is important to note that the SNR

definition used in the awgn function is based on power; hence,
Frontiers in Oncology 0644
the division by 2 is necessary to convert from voltage SNR to

power SNR.

After introducing noise to the voltage source, the impedance

change curves for different SNR levels, along with the assessment of

errors induced by the noise, are presented in Figure 7A.

Figure 7B illustrates that the presence of noise introduces errors in

the measured impedance results, with smaller errors observed at higher

SNR levels. Specifically, when the initial tumor size is smaller than 5

mm, noise can lead to significant errors in tumor size evaluations.

However, for initial tumors larger than 10 mm, the high monitoring

resolution within this range (r > 10 mm) allows for acceptable error

levels, even with an SNR as low as 40 dB, resulting in a maximum

tumor size evaluation error of approximately 1.0 mm. This level of

error is generally considered acceptable and can be disregarded.

In practical applications, achieving an SNR of 40 dB is feasible

and not particularly challenging in hardware systems. Therefore,

the anti-noise capability is sufficiently robust for monitoring tumor

size by measuring impedance changes across the treatment

electrodes. It is important to emphasize that for tumors smaller

than 5 mm, the monitoring resolution and anti-noise capacity are

reduced, making it advisable to employ more precise monitoring

techniques such as MRI or CT to evaluate changes in tumor size.
FIGURE 6

The fitting curve and monitoring resolution of impedance change curve y = 10: (A) fitting curve, (B) monitoring resolution.
FIGURE 7

The effect of different source noise on the evaluation results: (A) effect on the impedance change curves (B) evaluation error of tumor size.
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4 Conclusions

TTFields represent a relatively new cancer therapy technology

designed to combat cancer by disrupting the mitosis of cancer cells.

This treatment period typically lasts several months and even years,

posing a challenge for monitoring its effectiveness over time. In this

study, we explored the hypothesis that real-time monitoring of

tumor condition change can be achieved by measuring the

impedance change through TTFields treatment electrodes. An in

silico study has provided initial evidence supporting the potential

value of this proposed method. Preliminary findings suggest that it

is feasible to detect tumor size change by measuring amplitude

change of impedance across opposite TTFields electrode pairs,

utilizing typical TTFields treatment excitation (50V, 200 kHz).

Implementing this technique can be straightforward, involving

enhancements to the impedance measurement functionality

within the existing TTFields treatment hardware system. The

scalp electrode arrays will serve dual functions, delivering

TTFields and serving as impedance sensors. It is crucial to

acknowledge that this study represents a preliminary feasibility

investigation, and further validation through clinical studies is

essential. If proven successful, this monitoring system could

emerge as a valuable augmentation to TTFields cancer treatment

technology, offering a means to monitor treatment effectiveness in

real-time, potentially enhancing patient outcomes and care.
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Originally devised for cancer control, mRNA vaccines have risen to the forefront

of medicine as effective instruments for control of infectious disease, notably

their pivotal role in combating the COVID-19 pandemic. This review focuses on

fundamental aspects of the development of mRNA vaccines, e.g., tumor

antigens, vector design, and precise delivery methodologies, – highlighting key

technological advances. The recent, promising success of personalized mRNA

vaccines against pancreatic cancer and melanoma illustrates the potential value

for other intractable, immunologically resistant, solid tumors, such as

glioblastoma, as well as the potential for synergies with a combinatorial,

immunotherapeutic approach. The impact and progress in human cancer,

including pancreatic cancer, head and neck cancer, bladder cancer are

reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and

dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is

provided for the transformative potential of mRNA vaccines to advance cancer

immunotherapy, with a particular focus on the opportunities and challenges of

glioblastoma. The current landscape of glioblastoma immunotherapy and gene

therapy is reviewed with an eye to combinatorial approaches harnessing RNA

science. Preliminary preclinical and clinical data supports the concept that mRNA

vaccines could be a viable, novel approach to prolong survival in patients

with glioblastoma.
KEYWORDS

brain tumor, clinical trial, glioma, glioblastoma, immunotherapy, immuno-oncology,
mRNA, vaccine
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1 Introduction

In the realm of medical breakthroughs, few innovations have

sparked as much excitement and promise as the advent of

messenger ribonucleic acid (mRNA) vaccines (1–4), reflected in

the award of the 2023 Nobel Prize in Physiology or Medicine to

Katalin Karikó and Drew Weissman for their foundational

discoveries of the mRNA vaccine platform (5). Importantly, the

mRNA vaccine platform was originally adapted as a tool in the fight

against cancer (6, 7). Sahin et al. noted a synergistic effect of mRNA

vaccine with immune checkpoint blockade in patients with

melanoma; antitumor responses were noted, paradoxically, in

patients whose tumors had a low mutational burden, suggesting

that mRNA vaccines could be effective in tumors (such as

glioblastomas) with a low mutational burden (7).

The mRNA vaccine platform, however, emerged as a

transformative force in the battle against infectious diseases,

particularly its pivotal role to thwart COVID-19 (2–4, 8, 9). Recent

research has shown that mRNA vaccines have therapeutic potential

against solid cancers such as melanoma (10, 11), prostate (12),

colorectal (13), pancreatic, head and neck cancers as well as non-

small-cell lung cancer (14), and more recently, glioblastoma (15). In

this review, we explore the basic components of mRNA vaccines (16),

advances in mRNA vaccine design, and the potential of mRNA

vaccines to treat glioblastomas, highlighting the progress made in

personalized, precision mRNA medicine.

RNA technology is still in its infancy (17). Only a few years ago,

almost all attention in immunotherapy was centered on the

remarkable scientific and clinical advances in oncology resulting

from the introduction of immune checkpoint blockade (18, 19).

Although there is a distinct group of long-term survivors, including

patients with metastatic cancer, most patients with cancer have

recurrences and are resistant to immune checkpoint inhibitors

(ICIs) when given as a single immunotherapy. Across the

spectrum of human cancer, immune resistance results from an

immunosuppressive, tumor microenvironment (TME) as well as

insufficiency of numbers or functional, activated T cells (18).

Therefore, ICIs are now being proposed to synergize within new

“platforms” of cellular immunotherapy such as CAR T cells (20, 21)

or dendritic cell (DC) vaccines (22).

Based on different preparation methods, platforms for cancer

vaccines are divided into four categories (23): i) cell-based vaccines

(CAR T cells, DC vaccines); ii) viruses-based, oncolytic vaccines

(21, 24–26); iii) peptide-based vaccines; and iv) nucleic acids-based

vaccines, which include DNA and RNA vaccines, composed of the

encoding gene and carrier group of pathogen antigens (23). mRNA

vaccines are synthesized in vitro, and then in vivo encode antigens

and express proteins after internalization to stimulate an immune

response (23), (Figure 1). In recent years, combining cancer

vaccines with various immunotherapies or standard treatments

has become a promising new avenue to overcome immune

resistance and improve clinical outcomes (20–22).

A guide to the current concepts in the development of mRNA

vaccines is featured in Table 1, including the comparative

advantages and disadvantages of the four platforms for cancer
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vaccines, and their use as part of a combination regimen, as well

as safety concerns (27–40). These topics will be discussed in greater

detail, with an emphasis on applications to neuro-oncology (Section

4) based on the authors’ translational studies and early-stage trials

for glioblastoma and in a variety of human cancers (Table 2).

An important, but nuanced, biological advantage of mRNA

vaccines is the recent discovery that in order for immunotherapy to

eliminate solid tumors, there needs to be a functioning intratumoral

“triad” of synergistic activity between i) antigen-presenting cells

(APCs)/dendritic cells; ii) activated CD4+ T cells and iii) activated

CD8+ T cells which licenses CD8+ T cell cytotoxicity and elimination

of cancer cells (41). mRNA vaccines are in a unique position to

activate each of these three, critically important cell subpopulations

by the method of uptake in the APC and the activation of both CD8+

cells CD4+ T cells through binding on the cell surface, respectively, to

MHC (major histocompatibility class) I and II molecules (Figure 1).

and then activation of the T cell receptor (28).
2 Mechanism of mRNA vaccine-
mediated activation of anti-
tumor immunity

Broadly speaking, mRNA cancer vaccines consist of mRNA

molecules encoding specific tumor antigens. Upon administration,

these mRNAmolecules are subsequently internalized by APCs where

they undergo translation, resulting in the production of protein

antigens. These antigens are further processed into antigen

peptides, which subsequently bind to MHC 1 molecules within the

endoplasmic reticulum and are then presented or cross-presented on

the surface of APCs (42, 43). This process activates CD4 + and CD8+

T cells, orchestrating a potent cell-mediated immune response

(Figure 1). In parallel, protein antigens encoding mutated peptides

are routed through the endosomal pathway. This alternative route

enables the activation of CD4+ and CD8+ T cells through MHC Class

I/II presentation (44). This dual activation of both CD8+ and CD4+ T

cells amplify the breadth and potency of the immune response. Dual

activation of both CD8+ and CD4+ T cells as well as APCs are

required to successfully eliminate solid tumors, otherwise refractory

to immunotherapy (41).

What are the specific steps by which targeted mRNA is

internalized by the APC to trigger an immune response by

releasing the translated antigen or presenting the epitopes onto the

surface of cells? One model (28) describes a sequence of nine steps: i)

the targeted mRNA-LNP binds to the cell surface receptor of the APC

mediated by specific ligands; receptor activation can lead to

interferons or other cytokine/chemokine production; ii) after

endocytosis, mRNA in the endosome interacts with membrane-

bound Toll-like receptors (TLRs); iii) triggering of TLR activates

signal transduction pathways that selectively lead to production of

Type 1 interferons (45) that upregulate the effector function of

immune cells (e.g., DCs, T cells, and B cells) and/or pro-

inflammatory cytokines; iv) entrapped mRNA then is released from

the endosome into the cytosol where v) the mRNA is translated by

ribosomes; vi) upon translation, the proteins are either a) secreted out
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of the host APC, or b) processed within the APC by the proteasome

into smaller antigen peptides; vii) secreted extracellular mRNA is

then taken up by another APC, degraded into peptides; these epitopes

are subsequently presented on the cell surface by MHC class II

molecules; viii);alternatively the intracellular peptides are processed

within the endoplasmic reticulum and loaded onto MHC class I and/

or class II molecules ix) the epitopes bound to MHC class I/II

molecules migrate to the cell surface where they bind to the T cell

receptor (TCR) of CD8+ and/or CD4+ T lymphocytes (28).

Furthermore, the secreted protein antigen, encoded by the

mRNA vaccine, plays a critical role in stimulating B cells. This

activation prompts the production of neutralizing antibodies,

thereby bolstering the humoral arm of the immune response. In

summation, mRNA vaccines exhibit remarkable potential in

eliciting a comprehensive immune response against tumors by

instigating both robust humoral and cell-mediated immunity

(Figure 1). Four pivotal aspects come into play in the creation of

an effective mRNA cancer vaccine: i) identification of tumor

antigens; ii) vector design; iii) delivery; and iv) manufacturing.
2.1 Identification of tumor antigens

The accumulation of genetic mutations in cancer leads to the

creation of unique tumor-specific antigens or neoantigens (46).
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These unique antigens can be displayed by the major

histocompatibility molecules found on the surface of tumor cells.

T-cells primed to identify these neoantigens launch targeted

assaults on cancerous cells expressing these mutations (47). In the

pursuit of neoantigens, most studies have concentrated on indels

and non-synonymous single nucleotide variants (SNVs). Yet,

numerous SNVs are unique to individual patients, and tumors

with low mutational burden exhibit a small number of SNVs that is

inadequate for vaccine design (48, 49). As a result, exploring

supplementary reservoirs of cancer neoantigens, like gene fusions,

alternative splicing variants, and post-translational modifications,

holds promise in unearthing fresh targets for immunotherapeutic

interventions (50).
2.2 mRNA vector design

In terms of mRNA vector design, several strategies are

employed. The conventional mRNA encodes the vaccine

immunogen, flanked by 5′ and 3′ UTRs, along with a 5’ cap and

polyA tail optimized for maximum stability and translational

potential. In addition, many of the licensed SARS-CoV-2 vaccines

conta in nuc leos ide-modified mRNAs , us ing an N1-

methylpseudouridine, which counters immune-related inhibition

of translation and degradation (1, 51). This configuration allows for
FIGURE 1

mRNA vaccines activate both humoral and cell-mediated immunity. The mRNA vaccine encoding several tumor neoantigens is injected and enters
antigen-presenting cells (APCs). Here, the mRNA is endocytosed, and then translated, with the different antigens being processed by the proteasome
and subsequently binds to MHC Class I molecules in the endoplasmic reticulum and are exported to the cell surface to activate CD8+ T cells. In parallel,
the processing of antigens through the endosomal pathway enables the activation of CD4+ T-cells and B-cells. Created with BioRender.com.
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TABLE 1 Current concepts in the development of mRNA vaccines for glioblastoma and other solid cancers: pearls and caveats in the selection,
application, and combination of mRNA vaccines related to the landscape of cancer immunotherapy.

Current Concepts in the Development of mRNA Vaccines
for Glioblastoma and Other Solid Cancers

1. Unmet Need. Despite > 40 monoclonal antibodies and six CAR T cell therapies approved for a broad spectrum of malignancies, only a minority of cancer patients have
a durable response to current immunotherapeutics (27). The only approved cancer vaccine, Sipuleucel-T (NCT00065442), an autologous dendritic cell therapy for prostate
cancer, was approved in 2010, but never gained widespread use due to its high cost and underwhelming clinical efficacy (27). Currently the standard of care for
glioblastoma includes surgery (maximal safe resection), chemotherapy (temozolomide) and radiation therapy with judicious use of tumor-treating fields, bevacizumab, and
chemowafers. There is currently no FDA-approved immunotherapeutic regimen FDA-approved for glioblastoma. In the reignition of the Cancer Moonshot initiative by
President Biden, two of the ten central research recommendations include translational immunotherapy and overcoming resistance (27).

2. Advantages of mRNA vaccines. The inherent modularity of mRNA-LNP vaccines enable the encapsulated mRNA to encode for many proteins, enables their formulation
and clinical translation to be more rapid and economical than prior cell-based technologies (10, 27, 28). Specifically, manufacturing costs are low compared to other classes
of vaccines (10), cost-effective and scalable – mainly due to high yields of in vitro transcription reactions (28). Also, there can be a “payload” targeting multiple proteins.
Six of the first ten clinical trials using mRNA vaccines were individualized to a specific patient’s specific neoantigens, thus offering a more personalized approach than other
forms of immunotherapy (27). The ability to develop patient-specific vaccines has the potential to elicit therapeutic responses in those recalcitrant to existing treatments
(27). mRNA vaccines can induce both humoral and cellular immune responses (10). Initially, for cancer immunotherapy, mRNA was used only as a template encoding
tumor-associated antigens, but due to its versatility and design variability, the therapeutic potential of mRNA is now considered limitless (10). Because patient-derived
mRNA can be amplified in vitro, a relatively small number of cells is needed to develop a mRNA vaccine, important for patients who only have a small, surgical
biopsy (29).

3. mRNA Vaccines and Combination Therapies. Beyond personalizing vaccine antigens, mRNA provides a unique opportunity to develop combination therapies. Immune
stimulating mRNA into vaccine formulations can combat the immunosuppressive TME, including boosting antigen presentation and DC activation. Although not
validated through testing, the current concept is that immune stimulation with mRNA could be synergistic with other vaccine types (27). A vaccine format such as a
mRNA vaccine (in combination with synthetic peptides, DNA vaccine, or viral vectors) allows for targeting of dozens of mutations per patients (30). This concept of
“multiple warheads,” can be used to combine complementary categories of neoepitopes such as MCH-1 and MHC-II, clonal and subclonal, undetected antigens, an
approach that mitigates the risk of ‘betting on a biological hypothesis that later is proved to be wrong’ (30). Larger tumor loads, especially, might require combination
immunotherapies (30). Neoepitope vaccines are safe and well-tolerated; combining them with drugs or ICIs could keep the repertoire of vaccine-induced T cell specificities
functional (30). mRNA vaccines are capable of both priming and boosting immunological responses and can thus serve as an important backbone for any
immunotherapeutic regimen (31)..

4. Safety of mRNA Vaccines. Vaccines that are centered on mRNA are generally considered safer than DNA and viral vectors as mRNA is the minimal genetic vector,
containing only the elements directly required for the expression of the encoded protein (10). The risk of infection or insertional mutagenesis is minimal or negligible
compared to viral or DNA vectors due to mRNA’s non-infectious nature and non-integration with the genome (6, 16, 23, 28, 29, 32, 33).

5. Comparison of advantages of the four major cancer vaccine platforms. The pros and cons of the four major platforms/categories of cancer vaccines (23) are
summarized by Fan et al. (34):
• 1) Nucleic Acid-based Vaccines: a) DNA Vaccines: Advantages include stability (29), low cost (35); cell-independent production; durable immune response; and
potential for targeting multiple neoantigens. Once plasmid DNA enters the nucleus, a single plasmid DNA can produce multiple mRNA copies, producing more antigens
than a single mRNA molecule (23). Efforts to improve immunogenicity and clinical application of DNA vaccines include electroporation, codon optimization of plasmid
constructs, or co-administration of adjuvants (35). An ideal technology for cancer vaccines should allow the codelivery of multiple CD8+ and CD4+ T cell epitopes from
several cancer antigens (35). The concerns include low transfection efficiency; risk of autoimmune reactions; risk of integration into host genome. b) mRNA Vaccines:
mRNA vaccines have rapidly emerged as agents that can induce robust antitumor activity against both shared (“off-the-shelf”, mass produced, analogous to COVID-19
mRNA vaccine) and personalized antigens, with both approaches shown to be or likely to become commercially feasible in the near future (31).These are synthesized in
vitro, encode antigens and express proteins after internalization to stimulate an immune response (23). mRNA is an ideal platform for personalized neoantigen vaccine
preparation (23).Encoding full-field tumor antigens simultaneously and cross-presenting multiple epitopes of human leukocyte antigen (HLA) by APCs can induce a
broader T cell response (23) Advantages, as noted, include: rapid development and easy modification; high immunogenicity; cell-independent production; able to enter
non-dividing cells; intrinsic adjuvant effect; high efficiency into DCs (36). DNA molecules need to enter the cell nucleus to initiate transcription, while mRNA enters the
cytoplasm to translate and express antigens directly. Therefore, mRNA antigen production is instantaneous and efficient. DNA vaccines need an extra step to go into the
cell nucleus, leading to a lower immune response than mRNA vaccines (23). The concerns include fast degradation speed, especially linear mRNA (29), susceptibility to
RNase degradation (37), potential for inflammatory reaction, and inefficiency of in vivo delivery (23)
• 2) Peptide-based Vaccines: Advantages include high specificity and safety; cell-independent production; low risk of autoimmunity; direct presentation on MHC in short
peptides; proven clinical activity with synthetic long peptides. Disadvantages include high cost; complex manufacturing process; potential for HLA-restriction (32).
• 3) Cell-based Vaccines: The advantages are strong immune stimulation; multi-form antigen loading. Disadvantages include high cost; potential for undesirable
immunogenicity of the cells (on target, off-tumor); and need for patient-specific customization (for autologous vaccines).
• 4) Viral and Bacterial Vector Vaccines: The benefits include high immunogenicity; long-term immune response; and self-adjuvanticity. The risks include potential for
vector immunogenicity; and need for specialized storage conditions.

6. Comparison of mRNA vaccines with peptide vaccines. The early successes of mRNA vaccines could position this novel therapeutic class of vaccines as a superior
“platform” compared to decades of testing with peptide vaccines that have been largely unsuccessful. mRNA vaccines provide greater flexibility, enabling the use of
multiple permutations of targets, backbones, and combinations, with adaptability and encouraging progress to commercialize mRNA vaccines, making mRNA vaccines
uniquely positioned to suppress malignant evolution (31), advancing the goal of “immuno-interception” (38). Cancer is capable of progressing only when the normal
function of the immune system is disrupted (10).

7. Combination Therapies – Combining mRNA Vaccines with Other Vaccines and Immunomodulatory Approaches. In recent years, combining cancer vaccines with
various immunotherapies or standardized treatments has become an effective strategy for overcoming tumor resistance and improving clinical outcomes (23). Current
protocols employ a multi-pronged approach that focus on three obstacles: a) T cell exhaustion with strategies to activate and refresh CD4+ and CD8+ T cells; b) the
immunosuppressive TME, e.g., cytokine reprogramming using stereotactic radiation therapy, an inhibitor of IL-6 (tocilizumab) and an ICI (atezolizumab) (39); and iii)
inhibition of immune checkpoint (PD-1/PD-L1) pathways using ICIs. A combination approach is also being applied to vaccine development (20, 21); For example, an
mRNA vaccine, encoding a chimeric receptor directed towards CLDN6, was found to enhance the efficacy of claudin-CAR-T cells against solid tumors (40), use of a
nanoparticulate RNA vaccine stimulated adoptively transferred CAR-T cells. Presentation of the CLDN6 antigen on resident APCs promoted cognate and selective

(Continued)
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the translation of the antigen from the nonreplicating transcript

(52). One drawback of conventional mRNA vaccines is the limited

antigen expression, which is proportional to the number of mRNA

transcripts that are delivered, thus necessitating larger doses of

vaccine or repeat administrations. One way to overcome this

limitation is the use of self-amplifying mRNAs. This alternative

strategy employing self-amplifying mRNA has additional elements

such as 5′ and 3′ conserved sequence elements (CSE), the nsP1-4

genes, and a subgenomic promoter of an alphavirus, and the vaccine

immunogen (52, 53). Post-in situ translation, both the antigen and

RNA-dependent RNA polymerase are generated (Figure 2). The

latter identifies the CSEs, subsequently amplifying the vaccine-

encoding transcripts, resulting in an augmented accumulation of

tumor antigens within the cell (Figure 2). Trans-amplifying mRNAs

introduce two distinct transcripts into the equation. One encodes

for the RNA-dependent RNA polymerase (nsp1-4), while the other

encodes the CSE and the viral antigen. This dual-transcript

configuration achieves an even stronger self-amplifying effect

(52) (Figure 2).
3 Delivery systems for mRNA vaccines

Various delivery systems facilitate the deployment of mRNA

vaccines. These encompass lipid-based, polymer-based, and

emulsion-based delivery systems, all utilizing cationic molecules to

transport the anionic mRNA across the cell membrane (53). Critical

elements of the mRNA delivery system include achieving optimal

intracellular and targeted delivery, ensuring stability to facilitate antigen

translation, and triggering appropriate immune activation (54).

To this end, the lipid nanoparticle (LNP) system has been

recognized as a powerful and versatile delivery platform (55). These

LNPs have an ionizable lipid, a helper lipid, cholesterol, and a PEG-

conjugated lipid (54). A crucial aspect of the LNP system lies in its

utilization of pH-sensitive cationic lipids, which facilitate cellular

internalization via receptor-mediated endocytosis. The low pH

within the endosome causes the ionization of cationic lipids,

which interact with anionic lipids on the endosomal membrane,
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leading to the disruption of the endosomal membrane and release of

the mRNA into the cytoplasm (53). The helper lipid, usually a

phospholipid, helps stabilize the LNP structure, the cholesterol

promotes membrane fusion and prolongs the half-life, while the

PEG-conjugated lipid increases particle stability (56). Advances in

high throughput screens and rational design approaches have

yielded specific ionizable lipids tailored for diverse applications,

such as systemic delivery for the SARS-CoV-2 vaccine (57) and

targeted delivery to the lung epithelium (58) or placenta (59) for

CRISPR-editing purposes. To identify mRNA delivery vehicles that

facilitate mRNA delivery in vivo and provide potent, specific

immune activation, a heterocyclic lipid formulation was found to

demonstrate robust immune responses and tumor growth

inhibition in melanoma and human papillomavirus E7 tumor

models via the STING pathway, with minimized systemic

cytokine expression (60).

Additional novel mRNA-LNP delivery approaches include

devising targeting approaches to specifically deliver the mRNA

payload into cell types once deemed inaccessible (61). Passive

targeting approaches require intratumoral administration,

however, the injected particles are heterogeneously distributed

throughout the tumor and often accumulate in the liver and

lymphatic organs (62). Additional active strategies require

modifying the surface of mRNA-LNPs to allow for delivery to

specific cells, for example by functionalizing antibodies on LNPs or

including tRNAs with cell-type expression patterns in the cargo

(61). Recently, a novel platform of activated LNPs with surface-

conjugated human CD3 and CD28 antibody fragments has been

introduced as a rapid, one-step method to enhance mRNA CAR T

cell therapy to decrease tumor burden, and the potential to reduce

the complexity, cost and time of mRNA CAR T cell production as

well as to support other immunotherapy applications (63).

Targeting brain cancers represents a particular challenge because

of the blood-brain barrier; recently, a specific class of LNPs with

structurally diverse ionizable lipids shows promise to traverse the

blood-brain barrier (64).

Advances continue to be made to all individual elements of

mRNA vaccine from novel types of tumor antigens and self-
TABLE 1 Continued

Current Concepts in the Development of mRNA Vaccines
for Glioblastoma and Other Solid Cancers

expansion of CAR-T cells; improved engraftment of CAR-T cells; regression of large tumors in difficult-to- treat mouse models was achieved at subtherapeutic CAR-T cell
doses (40). In the field of cancer immunotherapy, we have entered into an era of combined treatments (18, 35), and the development of potent therapeutic anticancer
vaccines may be the missing element for being able to efficiently treat more patients and a wider range of tumors. There is a strong rationale for combining cancer
vaccines with other immunotherapy drugs, such as immune checkpoint inhibitors or oncolytic viruses. Combining cancer vaccine and tumor resection allowed the
infiltration of activated T cells to the resection site with a strong impact on mouse survival in an aggressive GBM preclinical model (35). The positive experience of
combinatorial strategies for CAR T cell therapy could be extended to the future use of mRNA vaccines. For example, the use of oncolytic viruses leads to M1 polarization,
oncolysis, damage-associated molecular patterns (DAMP)s and release of tumor antigens, resulting in enhanced T cell activation (21). Combining mRNA vaccines with
CAR T cells could activate APCs, attack tumor-associated antigens leading to T cell expansion, and ultimately, cancer cell death (21). Cytokines could be added to mRNA
vaccine therapy, as suggested for CAR T cell therapy (21) to reverse the immunosuppressive TME.

8. Combination with Immune Checkpoint Inhibitors. The combination of mRNA vaccines with ICIs can enhance cell-mediated immunity (10). Combined with CAR T
cell therapies, ICIs enhance the function of tumor infiltrating lymphocytes (TILs), restoring their ability to attack cancer cells (21).

9. Results of Early Clinical Trials using mRNA Vaccines. Although there are no FDA-approved mRNA vaccines, the results of early clinical trials are promising
(Table 2), including encouraging phase II studies across various platforms, an ongoing phase III trial and auspicious data from patients with poorly immunogenic
tumors (15, 31).
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TABLE 2 Active clinical trials for mRNA cancer vaccines registered on clinicaltrials.gov.

NCT
Number

Study Status Phase Target Malignancy Treatment- Specifics Sponsor

NCT05192460 Recruiting NA Gastric Cancer, Esophageal
Cancer, Liver Cancer

Neoantigen tumor vaccine +/-PD-1/L1 NeoCura

NCT05359354 Recruiting NA Solid Tumor Personalized neoantigen tumor vaccine NeoCura

NCT05981066 Recruiting NA Advanced
Hepatocellular Carcinoma

ABOR2014/IPM511 vaccine Peking Union Medical
College Hospital

NCT03908671 Recruiting NA Esophageal Cancer, Non-
Small Cell Lung Cancer

Personalized mRNA tumor vaccine Stemirna Therapeutics, The First
Affiliated Hospital of
Zhengzhou University

NCT05940181 Recruiting NA Solid Tumor Sintilimab NeoCura

NCT05949775 Not yet recruiting NA Advanced Malignant
Solid Tumors

Neoantigen personalized vaccine Stemirna Therapeutics

NCT06353646 Not yet recruiting NA Pancreatic cancer XH001 mRNA vaccine + Ipilimumab
+ Chemotherapy

NeoCura

NCT05761717 Not yet recruiting NA Postoperative
Hepatocellular Carcinoma

Neoantigen mRNA Personalized Cancer
vaccine + Sintilimab

Shanghai Zhongshan Hospital

NCT06141369 Recruiting NA Adrenal Cortical,
Carcinoma Medullary,
Thyroid Cancer, Thymic
Neuroendocrine
Carcinoma, Pancreatic
Neuroendocrine Tumor

Individualized mRNA neoantigen vaccine
(mRNA-0523-L001)

Shanghai Jiao Tong University
School of Medicine

NCT06326736 Recruiting Early phase I Resectable
Pancreatic Cancer

Personalized vaccine SJ-Neo006 +
Gemcitabine + Abraxane + Camrelizumab

Jinling Hospital, China

NCT02872025 Recruiting Early phase I Carcinoma,
Intraductal, Noninfiltrating

Intralesional mRNA 2752
+ Pembrolizumab

Merck Sharp & Dohme LLC,
ModernaTX, Inc.

NCT06156267 Not yet recruiting Early phase I Pancreatic Cancer mRNA tumor vaccine + Adebrelimab Fudan University, Shanghai
Regenelead Therapies Co., Ltd.

NCT05579275 Recruiting I Advanced Malignant
Solid Tumors

Self-replicating JCXH-212 mRNA vaccine Peking University Cancer Hospital
& Institute

NCT05738447 Recruiting I Liver Cancer,
Hepatocellular Carcinoma

HBV mRNA vaccine West China Hospital

NCT06019702 Recruiting I Digestive
System Neoplasms

Ineo-Vac-R01 Sir Run Run Shaw Hospital,
Hangzhou Neoantigen Therapeutics
Co., Ltd.

NCT05198752 Recruiting I Solid Tumor Personalized neoantigen mRNA
cancer vaccine

Stemirna Therapeutics

NCT06026800 Recruiting I Digestive
System Neoplasms

Ineo-Vac-R01 + standard first
line treatment

Sir Run Run Shaw Hospital,
Hangzhou Neoantigen Therapeutics
Co., Ltd.

NCT04745403 Recruiting I Hepatocellular Carcinoma MRNA HBV/TCR T-cells Lion TCR Pte. Ltd.

NCT05938387 Active
Not Recruiting

I Glioblastoma CV09050101 mRNA vaccine CureVac

NCT05714748 Recruiting I Malignant Tumors EBV mRNA vaccine West China Hospital

NCT06026774 Recruiting I Digestive
System Neoplasms

Ineo-Vac-R01 + standard
adjuvant therapy

Sir Run Run Shaw Hospital,
Hangzhou Neoantigen Therapeutics
Co., Ltd.

NCT05264974 Recruiting I Melanoma Autologous total tumor mRNA loaded
DOTAP liposome vaccine

University of Florida

(Continued)
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TABLE 2 Continued

NCT
Number

Study Status Phase Target Malignancy Treatment- Specifics Sponsor

NCT04573140 Recruiting I Adult Glioblastoma Autologous total tumor mRNA and pp65
LAMP mRNA loaded DOTAP liposome
vaccine, RNA-LPs

University of Florida, Pacific
Pediatric Neuro-Oncology
Consortium, University of California,
San Francisco, CureSearch, Team
Jack Foundation, Florida Department
of Health

NCT05942378 Not yet recruiting I Advanced Solid Tumor HRXG-K-1939 mRNA vaccine
+ Adebrelimab

Fudan University

NCT06195384 Not yet recruiting I Solid Tumor, Adult Neoantigen mRNA Vaccine Second Affiliated Hospital of
Guangzhou Medical University

NCT05978102 Recruiting I|II Advanced Solid Tumor STI-7349 mRNA + Pembrolizumab The Fourth Affiliated Hospital of
Zhejiang University School
of Medicine

NCT06273553 Not yet recruiting I|II HPV- Associated
Intraepithelial Neoplasia

RG002 mRNA vaccine RinuaGene Biotechnology Co., Ltd.

NCT06249048 Not yet recruiting I|II Advanced Solid Tumor STX-001 mRNA vaccine+ pembrolizumab Strand Therapeutics Inc.

NCT04534205 Recruiting II Unresectable, Metastatic or
Recurrent Head and Neck
Squamous Cell Carcinoma

Bnt113+ pembrolizumab BioNTech SE

NCT03688178 Active
Not Recruiting

II Glioblastoma Human CMV pp65-LAMP mRNA-pulsed
autologous DCs + Temozolomide;
Varlilumab, Unpulsed DCs

Celldex Therapeutics

NCT03897881 Recruiting II Melanoma MRNA-4157+Pembrolizumab ModernaTX, Inc.

NCT03815058 Active
Not Recruiting

II Untreated Melanoma Autogene cevumeran+ Pembrolizumab Genentech, Inc.
F
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NA, not applicable.
FIGURE 2

Conventional and self-amplifying mRNAs. (top) Conventional mRNAs contain the nucleoside-modified coding elements targeting tumor antigens, 5’
and 3’ untranslated regions, a polyA tail as well and a 5’ cap analog, which have all been designed to improve stability and translational potential.
(middle) Self-amplifying mRNAs also encode an RNA polymerase, usually derived from alphaviruses as well as a 5’ and a 3’ conserved sequence
element (CSE). The viral RNA replicase recognizes the structural CSE elements and directs the synthesis of negative-sense RNA intermediates, which
are transcribed into many copies of the coding mRNA template and amplified antigen expression. (bottom) Another strategy of self-applying mRNA
vaccine involves using two distinct mRNAs, one encoding for the replicase and one for the tumor antigens. Both types of self-amplifying strategies
result in enhanced expression and prolonged expression of the encoded tumor antigen. Created with BioRender.com.
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amplifying mRNA vectors to targetable LNPs. Focusing on several

difficult-to-treat cancers, this review describes recent advances in

mRNA vaccines for solid tumors outside of the CNS, such as

pancreatic cancer, head and neck cancers, melanoma, and then

focuses on the challenge of glioblastoma.
4 mRNA vaccines in human cancer

4.1 Pancreatic cancer

The transformative potential of mRNA vaccines is best

demonstrated by recent breakthroughs in one of the most

formidable cancers, pancreatic carcinoma (65, 66). Pancreatic cancer

has one of the highest death rates of any solid organ malignancy, with

an overall 5-year survival of less than 10%; it is currently the third

most common and on a projected course to become the second most

common cause of cancer-related deaths in the United States by 2030

(67–69). Surgery currently is the onlymodality that offers a chance of a

cure (67), but 5-year survival rates after surgical resection alone are

low, approximately 10% (67, 70), and up to 30% with resection and

adjuvant chemotherapy (68, 70). Unfortunately, only 10-20% of

patients are diagnosed with localized, surgically resectable disease

(68), and over 90% relapse 7-9 months after resection (70). Pancreatic

cancers have historically shown resistance to immunotherapy, partly

attributed to a complex immunosuppressive microenvironment, poor

T cell infiltration, and reduced mutational burden leading to reduced

activation of antitumor T cells (71, 72). In addition, pancreatic cancer

is thought to harbor very few neoantigens (an average of 35 compared

to hundreds in melanoma), thus having weak antigenicity (71, 73, 74).

Multiple pancreatic cancer immune subtypes have been identified. For

example, pancreatic tumors categorized as immunologically “cold”

typically exhibit low immunogenicity and/or a high presence of

reactive stroma (75). Pancreatic adenocarcinoma, akin to

glioblastoma, has proven almost entirely insensitive to immune

checkpoint inhibition with a response rate < 5% (70); this

insensitivity can be partially ascribed to the low mutation rate, and

the consequent scarcity of neoantigens (70) as well as intratumoral

and inter-tumoral heterogeneity (76). Thus, a combination of a

personalized mRNA vaccine with immunogenic chemotherapy,

stromal modulation, and ICI may be needed for an effective

therapy (76).

Despite these challenges, Rojas and colleagues conducted a phase

I clinical trial that implemented a personalized mRNA vaccine

strategy, wherein at least five, and up to 20 neoantigens specific to

each patient’s tumor, were identified and integrated into the vaccine

(65). The vaccine was delivered using lipoplex nanoparticles via

intravenous injection after surgical resection and in combination

with the standard mFOLFIRINOX chemotherapy. Notably, all

participants also received a single dose of an ICI before receiving

their personalized mRNA vaccine. Encouragingly, T cells recognizing

specific neoantigens were detected in half of the trial participants,

categorized as immune responders. Strikingly, immune responders

showed no signs of cancer recurrence at a median follow-up of 18

months, compared to a median time to recurrence of 13.4 months in

non-responders (65). Nevertheless, treating pancreatic cancer
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remains challenging as half of the participants did not respond to

the vaccine and most patients were not eligible for surgery and thus

ineligible for the vaccine. Strategies to boost the response to the

vaccine and predict responsiveness will be an advance to enrich the

percentage of responders. One possibility, going forward, would be to

treat patients harboring unresectable cancers with FOLFIRINOX

neoadjuvant chemotherapy who then might qualify for the surgery

and enable them to get the personalized mRNA vaccine (77, 78).
4.2 Head and neck cancers

Head and neck squamous cell carcinomas (HNSCCs), arising

from the mucosal epithelium, represent the most prevalent

histological type of head and neck malignancy (79). These cancers

are characterized by their multifactorial etiology, stemming from

infections with high-risk human papillomaviruses (HPVs) (80–82) or

Epstein–Barr virus (83, 84) and lifestyle-related risk factors including

alcohol consumption and smoking (85, 86). Despite significant

advancements in treatment modalities for HNSCCs, encompassing

surgical interventions, radiotherapy, and chemotherapy, the 5-year

overall survival rate remains in the range of 40–50%; however, the use

of ICIs (e.g., pembrolizumab or nivolumab) has led to superior

outcomes, leading to the integration of immunotherapy for this

challenging disease (87). However, based on clinical trials (88–90),

less than a third of patients respond to immunotherapy (91);

therefore, additional therapies such as mRNA vaccines are needed.

Given the diverse etiologies of HNSCC, the HNSCC-associated

neoantigens can broadly be divided into either virus-derived tumor

antigens or non-virus-derived. HNSCC arising due to persistent

infection with high-risk human papillomavirus 16 (HPV-16) is

associated with improved survival (92, 93), likely due to the

enhanced immunogenicity of HPV-derived neoantigens.

The potential of mRNA vaccines for HPV-specific-HNSCC has

also been recently shown in murine models. The most common HPV

subtype found in HPV-positive HNSCC is HPV-16, which accounts

for over 90% of HPV-positive HNSCC (94). While the majority of

HPV infections are cleared, infections in the epithelium of palatine

and lingual tonsil can persist (95), leading to constitutive expression

of E6 and E7 oncoproteins (96). Mouse model experiments with

mRNA vaccines against E7 promoted tumor regression, prevented

relapse, and re-sensitized mice to PD-L1 immunotherapy, rendering

anti-PD-L1 refractory tumors responsive (96). Similarly, mouse

model experiments using three different mRNA platforms, an

unaltered non-replicating mRNA vaccine, a modified non-

replicating mRNA vaccine with modified nucleosides, and a self-

amplifying mRNA vaccine, showed that a single injection led to

significant control of tumor growth in two murine models of HPV-16

tumors (97). From the foundation provided by these studies, current

clinical trials are underway. For example, a phase II clinical trial

(AHEAD-MERIT) using the BNT113 mRNA, encoding HPV16-

derived neoantigens E6/7 is administered with and without

pembrolizumab to treat HPV16-positive HNSCC expressing the

PD-L1 protein (NCT04534205) (Table 2).

Several studies are also emerging to assess the potential of

mRNA vaccines against non-viral HNSCC neoantigens. Chen et al.
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used The Cancer Genome Atlas (TCGA) and the Gene Expression

Omnibus databases to analyze alternative splicing and mutations of

genes with HNSCC (98). Seven potential tumor antigens, [SREBF1,

LUC7L3, LAMA5, PCGF3, HNRNPH1, KLC4, and OFD1], which

were associated with nonsense-mediated mRNA decay factor

expression, overall survival, and infiltration of APCs and would

thus induce a potent anti-tumor T-cell response. Furthermore, the

authors used clustering analysis to select suitable patients whose

immune subtypes made them likely to respond to vaccination.

Potential biomarkers included several genes that were identified to

serve as potential prognostic biomarkers for mRNA vaccines:

IGKC, IGHV3-15, IGLV1-40, IGLV1-51, IGLC3, IGLC2, and

CD79A (98). To further distinguish the immune subtypes of

HNSCCC to select suitable patients for vaccination, another

group identified three genes as targets for developing mRNA

vaccines: CCR4, TMCO1, and SPACA4 that were upregulated,

and correlated with survival and tumor infiltration by both B and

T cells, inducing a potent immune response (99). Paradoxically,

patients with immune subtype C3, or the immune “cold” subtype –

tumors with a lower IFN-g and TGF-b response, fewer

macrophages, T cells, and CD4 memory responses–were most

likely to respond to mRNA vaccines against HNSCC (99). The

authors speculate that mRNA vaccines would be most effective in

transforming tumors that have a “cold” (immunoresistant) TME

(100). Recognizing that histologically distinct tumors have unique

immune landscapes, if these results apply to glioblastomas, it would

further support the use of mRNA vaccines for human glioblastoma,

a tumor known to be characterized by a “cold” TME.
4.3 mRNA vaccines in other non-CNS
human cancers

Two clinical trials with personalized mRNA vaccine encoding

neoantigens are underway in China, for patients with advanced

esophageal cancer and non-small cell lung cancer (NCT03908671),

and advanced gastrointestinal cancer (esophageal, liver, and

advanced gastric cancer (NCT05192460). Additional trials

are underway and include mRNA vaccines designed for patients

with liver cancer (NCT05761717), and endocrine cancer

(NCT06141369). Trials are also underway for bladder cancer

(100), melanoma, prostate cancer, breast cancer, and other solid

tumors as detailed in Table 1. In patients with stage IIB to stage IV

resected melanoma, ICIs are standard therapy, but many patients

recur; when a mRNA-vaccine, individualized therapy (mRNA-

4157) is added to ICI (pembrolizumab),18-month recurrence-free

survival was increased in the combination group (79%) compared

to ICI alone (62%) with a hazard ratio for recurrence or death of

0.53, p=0.05 (NCT03897881, KEYNOTE-942) (11). Importantly,

there was a lower recurrence or death rate (22%) in the combination

group compared to 40% in the group treated with ICI alone (11). A

phase I trial of intratumoral STX-001, a novel LNP, self-replicating

mRNA expressing the cytokine IL-12 for an extended duration, is

being evaluated in advanced, treatment-refractory solid tumors

(NCT06249048) (101).
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5 Brain tumors: pediatric and
adult gliomas

Novel approaches to glioblastoma are urgently needed because

standard therapy is associated with a median survival of eight

months, and a five-year survival of 6.9% (102). Numerous

biological barriers to immunotherapy include cellular heterogeneity,

plasticity, and an immunosuppressive TME (103, 104). Immune cells

constitute an important component of the gliomamicroenvironment,

constituting asmuch as 50% of the tumormass (103). Glioblastoma is

immunologically “cold” with a TME resistant to T-cell and DC

infiltration (105). Furthermore, there is i) a scarcity of circulating T

cells with sequestration of T cells in the bone marrow; ii) a localized

immunosuppression due to secretion of immunosuppressive

cytokines, such as TGF-b, IL-6, PGE2 and iii) an upregulation of

PD-1 and PD-L1 (106, 107). Compared to tumors such as melanoma

with a high mutation burden, glioblastoma has a reduced array of

immunogenic neoantigens (107). Despite these challenges, several

recent studies have sought to broaden the pool of targetable

neoantigens in glioblastoma, offering potential avenues for mRNA

vaccines (108–110). Given the substantial challenges, there is recent,

encouraging data showing biological and clinical evidence of

converting the glioblastoma TME into an immune responsive

environment (15, 24, 111–117). It appears that a multimodal

approach using an mRNA vaccine in combination with other

strategies to boost the immune system could ultimately extend

survival and change the outlook for patients. Recent advances in

six pillars of immunotherapy are summarized:

a) mRNA vaccine. In a first-in-human clinical trial

(NCT04573140, Table 2), Mendez-Gomez et al. recently reported

a striking expansion of the immune response to tumor-associated

antigens in patients with glioblastoma, using a novel RNA lipid

particle aggregate (LPA), associated with a clinical increase in

overall survival (15). The LPA differs from the commonly used

LNPs (Figure 1) that are size-limited to permit endocytosis; by

contrast, the LPA-based mRNA vaccine does not rely on TLR for

engagement, enabling the delivery of multiple mRNA payloads to

the same cancer cell, as shown in a canine model of glioma using the

LPAs to elicit a potent RIG-I (retinoic acid-inducible gene I

protein)-mediated stimulation of the immune system (15).

Additional candidate genes are being identified by mining

databases, including the TCGA and the Chinese Glioma Gene

Atlas to identify multiple genes suitable for mRNA vaccine

development (108, 110, 118).

b) DNA vaccine. Advantages of DNA vaccines include stability,

relatively low-cost, cell-independent production, a durable immune

response, and potential for targeting multiple neoantigens (Table 1).

hTERT (human telomerase reverse transcriptase), regarded as the

first truly universal tumor antigen (119), a surprisingly

immunogenic target that is fundamental to oncogenesis (20).

Vaccination with hTERT DNA is being used for “immuno-

interception” in individuals with BRCA1 or BRCA2 mutations

and therefore at high risk of breast, ovarian, pancreas, prostate,

and other cancers (NCT04367675) (120). Using a similar DNA

vaccine (NCT03491683), given by electroporation, targeting hTERT
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(INO-5401) combined with an IL-12 DNA plasmid (INO-9012)

and a PD-1 inhibitor (cemiplimab), Reardon et al. reported

promising survival results for patients with glioblastoma with

activated CD4+ and CD8+ T cells (121). The tumor tissue, post-

treatment, showed genomic alterations linked to activation of the

immune system, and evidence of T cell infiltration and cytolysis

(121). A new generation of DNA vaccines with plasmids encoding T

cell tumor epitopes (pTOP) significantly increased survival in

preclinical models (GL261) of glioblastoma (35). Interestingly,

vaccine monotherapy by itself was ineffective, but surgical

resection of glioblastoma, followed by the vaccine, resulted in a

dramatic increase in survival and delayed recurrence, associated

with infiltration of activated T cells to the resection site (35).

c) Dendritic cell vaccine. Because APCs, such as dendritic cells,

are key to initiating antigen-specific immune responses (41), early

work to develop immunotherapy for cancer involved DC-mRNA

vaccines (16, 122). A review of 33 early clinical trials revealed the

potential of DC vaccines for glioblastoma, “we can expect immune

modulation to make its way into standard therapeutic protocols in

neuro-oncology … in the near future, surgery, cytotoxic therapies

(i.e., radio-chemotherapy), and immunotherapy will form a three-

pronged therapeutic approach that will enhance clinical outcomes

(123). Indeed, a significant survival benefit was reported for patients

with newly diagnosed (112) and recurrent glioblastoma (112, 124),

with meaningful “tails” in the Kaplan-Meier survival curves,

reflecting long-term survivorship. Furthermore, adding additional

agents such as pembrolizumab (125) or poly-ICLC (111) can

further activate the immune system, detected by a polarized

interferon response in circulating monocytes and CD8+ T cells,

translating to prolonged survival and delayed disease progression in

the responders (111). RNA-pulsed DCs, using nanoparticles, are

safe and under evaluation (NCT04573140) (32).

d) CAR T cell therapy. mRNA vaccines show potential in

combination with CAR T cell approaches to treat intractable

pediatric brain tumors (126). The mRNA vector is expressed only

transiently, which minimizes off-target toxicity, especially in the

brain (127). The use of mRNA-CAR constructs prolonged survivals

in precl inical models of di ffuse midl ine gl ioma and

medulloblastoma targeting GPC2 (127). Clinical trials are

underway to target GPC2 in patients with neuroblastoma

(NCT05650749). CAR T cell therapy is also being evaluated in

pediatric high-grade gliomas targeting B7-H3 HER-2

(NCT03500991), and GD2.C7R (NCT04099797) (128). For adult

human glioblastoma, clinical studies have shown that CAR-T cells

can feasibly traffic to active regions of glioblastoma with on-target,

biological activity (129, 130). Recent advances in patients with

recurrent glioblastoma show that intrathecal delivery of CAR T

cells targeting IL13a2 (NCT002208362) (116), or bivalent CAR T

cells targeting two antigens, EGFR and IL13a2, (NCT05168423)
(113), and EGFR/EGFRvIII with a T-cell engaging antibody,

TEAM, (NCT05660369) (115), leads to compelling results (117)

assessed by CAR T cell proliferation, rapid reduction in tumor size,

bioactivity and safety signals. The next challenge is to transform the

transient responses into long-term outcomes, converting an

otherwise fatal glioblastoma into a chronic, treatable disease

(117). The use of mRNA-targeted CAR T cells (131, 132) or the
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use of CAR natural killer cells instead of T cells (128), could be

additional steps to provide durable responses. The fourth

generation of CAR T cells redirected for universal cytokine-

mediated killing (TRUCKs) results in simultaneous CAR T-Cell

mediated killing and immune modulation of the TME via secretion

of cytokines that has the dual effect of enhancing the survival of

CAR T cells and modulating the TME by repolarizing tumor-

associated macrophages or activating natural killer cells (133).

Multiple phase 1 trials (NCT03542799, NCT03932565) use

TRUCKS for systemic cancer (133), opening the potential

combination of TRUCKs with a personalized mRNA vaccine.

e) Viral oncolytic therapy. One of the main immunotherapeutic

platforms consists of viral oncolytic therapy (23–26), which has the

dual effect of i) direct killing of tumor (glioblastoma) cells and ii) the

dying cells release neoantigens that can attract APCs and, in turn,

activate CD4+ and CD8+ T cells. Many viruses have been re-

engineered as vectors for gene therapy of glioblastoma, e.g.,

retroviruses, adenoviruses, or herpes-simplex type 1 viruses (134).

Other viruses have been engineered to replicate within brain tumors

in a limited manner without causing encephalitis. To increase the

effectiveness of oncolytic herpes virus, Todo et al. injected active virus

into the surgical resection cavity, or unresectable tumor, up to six

times (135). An alternative, novel, minimally invasive approach to

treat glioblastoma is to develop viral vectors using variants of the

capsid of adenovirus, AAV9, that bind to the transferrin receptor BI-

hTFR1, allowing efficient transfer of genes across the blood-brain

barrier, and delivered via the systemic circulation rather than direct

injection (136).

The use of mRNA vaccines that leverage the genome of

oncolytic viruses holds great promise to treat glioblastoma (137).

Studies aimed at identifying potential antigens in glioblastoma

(GBM) for the development of advanced mRNA-based therapies

identified numerous distinct antigen sets, thereby meeting the

challenge of comprehensive, multimodal treatment (137, 138).

Initial results of ABTC 1603 (NCT00589875), using an

adenovirus-tk (CAN-2409) in combination with an ICI

(nivolumab), are promising, suggesting a survival advantage

(139). A first-in-human trial of CAN-31100, an engineered herpes

simplex 1 virus, shows safety signals and may extend survival by

immune stimulation-especially in patients with antibodies to HSV1

(26). As proof of concept that oncolytic viruses can overcome the

immunosuppressive TME, a combination of reovirus and CAR T-

cells caused the expansion of T cells and cured > 80% of mice with

intracranial EGFRvIII tumors (140). In a phase I-II trial, the use of

intratumoral, oncolytic DNX-2401 virotherapy, followed by

pembrolizumab, was well-tolerated in patients with recurrent

glioblastoma, with notable survival benefit in select patients (141).

Specifically, objective responses led to longer survival; 56.2% of

patients had a clinical benefit, defined as stable disease or objective

response (141). In a separate study, patients with recurrent

glioblastoma, injected with an oncolytic herpes virus showed

improved survival in individuals seropositive for HSV1,

associated with immunoactivation – changes in the tumor/PBMC

T cell counts, peripheral expansion of specific T cell clonotypes, and

tumor transcriptomic signatures of immune activation (26). These

results provide validation in patients that intralesional oncolytic
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HSV treatment enhances anticancer immune responses, even in the

immunosuppressive TME, especially in individuals with cognate

serology to the injected virus (26).

f) Cytokine reprogramming of the glioblastoma

microenvironment. In preclinical models, targeting IL-6 leads to a

remarkable change in the TME, with a “switch” from the M2

immunosuppressive, (pro-tumorigenic) macrophage phenotype to

an immunostimulatory (M1) phenotype, resulting in a significant

increase in survival (142). Adding CD40 agonist enhanced the

activity of infiltrated T cells, and an almost complete cure in

glioblastoma models (143). Adding immune checkpoint inhibitors

further improves survival (143, 144). Taken together, these findings

led to an ongoing multicenter trial, NRG-BN-010 (NCT047299959),

combining inhibition of IL-6R (tocilizumab), PD-L1 (atezolizumab)

and stereotactic radiosurgery to treat recurrent glioblastoma (39).

Recently, IL-6 blockade was found to promote tumor immunity

through activation of the immunostimulatory IL-12 pathway, while

abrogating the toxicity of checkpoint blockade, thus decoupling

tumor immunity from autoimmune toxicity (145). Taken together,

combining anti-IL6 blockade with a mRNA vaccine would be an

attractive approach. One caveat, however, is the LNPs that coat the

mRNA are by themselves immunostimulatory, acting as an adjuvant

component, fostering T-follicular helper cells (Tfh cells) and humoral

responses that are abrogated if Il-6 induction by the LNP is blocked

using an antibody or using Il-6 deficient mice (55); the implications

for cancer therapy in humans are unknown. Another approach to

cytokine reprogramming is the use of convection-enhanced delivery

and targeting of the IL-4 signaling pathway (NCT02858895),

producing a dose-dependent, survival benefit with a high-dose

immunotoxin (bizaxofusp) that targets the interleukin-4 receptor,

IL4R (146). Single treatment with bizaxofusp increased median

overall survival by up to 50% and 12-month progression-free

survival by almost 100% when compared to FDA-approved

therapies (146). A novel method to convert the immunosuppressive

TME of glioblastoma is to arm CAR T cells with a dominant-negative

TGF-b receptor II which in a rodent model of glioblastoma lowers the

levels of the immunosuppressive cytokine TGF-b in the TME,

enhances T cell proliferation, eradicates intracranial tumors, and

significantly improves survival (114).

g) Immune checkpoint inhibitors in combination with

mRNA vaccine. A synergistic effect of mRNA vaccines with ICIs

is reported in glioma models, with a favorable shift in the TME from

an immunologically “cold” resistant environment to one that is

“hot,” associated with improved survival (110, 147). Multimodal

immunotherapy with ICIs for glioblastoma is under active

investigation (39, 148, 149) and has been effective in preclinical

models (143). Ultimately, there is a large body of evidence that a

mRNA vaccine for human glioblastoma would benefit from the use

of concomitant ICIs.
6 Challenges and caveats

In addition to the identification of the optimal tumor antigens to

target in glioblastoma, key issues include delivery systems that can
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traverse the blood-brain barrier as well as boosting antigen

production. An entirely novel method to meet this challenge is to

harness the power of machine learning to reprogram glioblastoma

cells into APCs that function like dendritic cells in terms of

phagocytosis, direct presentation of endogenous antigens, cross

presentation of exogenous antigens, and priming of naïve CD8+

cytotoxic lymphocytes (CTLs). The result is reduction of

glioblastoma growth, associated with extensive infiltration of CD4+

cells and activated CD8+ CTLs in the TME (150). These induced cells

act synergistically with PD-decoy immunotherapy and a CD-based

glioblastoma vaccine with robust killing of highly resistant

glioblastoma cells by tumor-specific CD8+ CTLs with significant

improval in survival in immunocompetent animals (150). This novel

approach could be used synergistically with mRNA vaccines.

Furthermore, the brain is one of the organs with the highest

expression of RNA-binding proteins (RBPs); targeting the RBP

complex, LOC-DHX15, with blood-brain barrier-penetrant small

molecules improves treatment efficacy, impedes stem-like

properties of glioblastoma cells, increases survival and offers a

novel therapeutic approach to harness RNA science (151), and

potentially enhance the efficacy of mRNA vaccines.

The challenges of RNA vaccines include optimization of delivery

and the innate instability and immunogenicity of mRNA (152). These

challenges have been largely overcome by i) designing modifications

of the mRNA structure to avoid degradation by RNases;

ii) optimizing purification methods to protect mRNA from

contamination by double-stranded RNA to reduce nonspecific

activation of the innate immune system; and iii) mRNA can be

formulated into various nano delivery systems to deliver mRNA

stably and efficiently, such as LNPs, polymers, or peptides (152).

Identifying highly immunogenic, tumor-associated antigens is an

inherent challenge because of individual variability; many aspects of

neoepitope prediction remain to be standardized (152, 153). The

large-scale production, transportation, and storage are also challenges

for future applications of mRNA cancer vaccines. The speed of

screening and identification of neoantigens directly affects the

clinical efficacy of mRNA vaccines (153). Exploring more

combinations of mRNA cancer vaccine with other therapeutic

modalities is also a promising strategy (152). In view of the

heterogeneity of the TME, the development of immune-based

combination therapies has been a key trend in the development of

cancer vaccines and in clinical trials (20–22, 153). Combinations have

included the use of checkpoint inhibitors, co-stimulatory molecules

(e.g., CD40), or vaccine combinations such as adoptive T cell transfer

using CAR T cells (22). As a single approach, a monotherapy, is

unlikely to be totally effective to eradicate a heterogeneous

malignancy, especially aggressive gliomas (104), so that mRNA

vaccination can be increasingly used as a “platform”, similar to the

proposed use of DC vaccines (22). Additional hurdles to develop

effective immunotherapies for glioblastoma center on the

immunosuppressive TME, systemic immunosuppression, and

immune escape mechanisms (107). These same factors pose

significant challenges for the use of cellular immunotherapy for

glioblastoma (129, 154) and recent advances in combination

therapy for CAR T cell therapy (21) could accelerate the
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development of mRNA vaccines for glioblastoma and other

human cancers.

Cancer cells, for example, can evolve to lose targeted antigens,

thus evading the engineered CAR T cells, a phenomenon known as

antigen-loss relapse (21). Efficacy can be increased by combining

CAR T cell therapy with other vaccines, ICIs, oncolytic viruses, or

small molecules such as ibrutinib or lenalidomide (21) that are brain

penetrant (155, 156). Furthermore, ibrutinib increases survival in

rodent glioma models (156); lenalidomide may help prevent T cell

exhaustion (21). Within the targeted tumor, diverse cell populations

add to the complexity of immunotherapeutic approaches, but recent

data indicates that immune triads- a close interaction between DCs,

CD4+ T cells, and CD8+ T cells, working synergistically, can

dramatically eliminate solid tumors by reprogramming the CD8+ T

cell to become functional and tumor cytolytic for a range of cancers

(41). Importantly, activated T cells are uniquely able to attack

dormant, disseminated cancer cells, which escape the normal

immune system, standard therapy, and lead to cancer persistence,

recurrence, and progression (157). If mRNA vaccines could indeed

eradicate the disseminated, microscopic, minimally residual disease

in glioblastoma, associated with genetic and epigenetic instability,

neoplastic infiltration, oncoplasticity (104), located beyond the

surgical or radiation field, it could transform the clinical outcome

for patients. It appears that we have entered a new era of combined

treatments (20, 21, 35). The sequencing, dosing, and timing of these

multiple combinations will require well-designed clinical trials. In

experimental models, combining cancer vaccines and tumor

resection enables the effective infiltration of activated T cell to the

resection site, with a strong impact on mouse survival (35) in an

otherwise aggressive glioblastoma.

What about safety? Preliminary experience suggests that a

mRNA vaccine will be relatively nontoxic (152, 153, Table 1). In

preclinical models, a mRNA vaccine was well-tolerated: detailed

toxicology in forty organs at three time points revealed no gross or

microscopic findings (15). In patients with glioblastoma, a mRNA

vaccine produces rapid and transient increases in pro-inflammatory

cytokines, a lymphocyte nadir and neutrophilia six hours after

infusion, with immune-related adverse events (e.g., low-grade fever,

nausea, chills, rigors), which defervesced within 24 to 48 hours (15).

These findings indicated an immunological reset with expansion and

polarization of adaptive T cell responses (15). Given the early and

limited experience with mRNA vaccines for human cancer, it is too

early whether patients will develop cytokine release syndrome (CRS),

immune effector cell-associated neurotoxicity (ICANS) or

macrophage activation syndrome (MAS) which are caused by high

levels of proinflammatory cytokines secreted by activated T cell

and myeloid cells (21); clinical trials are exploring therapeutic

interventions using antibodies such as tocilizumab for CRS

and anakinra for ICANS (21). These agents, in addition to

corticosteroids, would be applicable to mRNA vaccines in the event

that immune-related toxicities become severe.

It is assumed that mRNA vaccines will be relatively safe because

there is no integration into the DNA so the vaccine itself should not

cause genomic alterations (152), as could potentially occur with

plasmid-based DNA vaccines (158, 159). Furthermore, the

widespread use of nucleoside-modified synthetic mRNA (nms-
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mRNA) to immunize against COVID-19 resulted in more than 782

million doses distributed to an estimated 462 million individuals by

September 2022, per WHO data, and so an ongoing search for

delayed safety signals remains a priority (159). There is a widespread

consensus that as exogenous “mRNA is a non-integrating platform,

there is no potential risk of … insertional mutagenesis.” (16, 159).

However, a study showed that vaccine nms-mRNA can activate the

expression of endogenous transposable elements (TEs), undergo

reverse transcription and enter the cell nucleus (160), while another

study showed that reverse-transcribed SARS-CoV-2 viral RNA can

integrate into the genome of cultured human cell and be expressed in

patient-derived tissues (161). Taken together, Acevedo-Whitehouse

and Bruno hypothesized an intricate mechanism whereby the vaccine

nms-mRNA, release from the LPNs into the cytosol could unsilence

TE expression, enhance the expression of proinflammatory cytokines,

lead to DNA damage via insertional mutagenesis and genomic

instability, resulting in expression of proinflammatory cytokines

(159). With the introduction of any new class of agents targeting

cancer, great enthusiasm must be matched with due caution since

novel interventions are frequently double-edged swords (159, 162,

163). To date, the safety signals for mRNA vaccines in clinical trials

are reassuring.
7 Future directions

The route of delivery of mRNA, whether through an

intravenous route or direct injection into tumor stands to make a

difference, with some data suggesting that direct intratumor

injection, “taking the fight to the tumor” (24, 26, 137, 164), could

be advantageous. Local delivery of cytokine-based mRNAs can lead

to a robust antitumor immune response and tumor regression in

multiple tumor models (164). The cytokine-mRNA combination

resulted in a ~ 50% cure rate in preclinical models of melanoma,

increasing to a ~80% cure rate with the addition of ICIs, blocking

metastases (164). The antitumor activity extended beyond the

treated lesions and inhibited the growth of distant and

disseminated tumors (164) ; combining mRNAs with

immunomodulatory antibodies enhanced tumor regression and

improved survival, leading to clinical trials of the cytokine-

encoding mRNA combination (164).

As an alternative to the intratumoral release of mRNA, non-

transformed cells in the liver can be exogenously transduced with

mRNA in lipid formulations, thereby activating systemic

biodistribution of the encoded immunostimulating factors (165).

Because MHC-1 antigen presentation deficiency is a common

cancer immune escape mechanism, combining tumor-targeting

antibodies with IL-2 mRNA restored CD8+ T cell neoantigen

immunity in MHC class I-deficient tumors that were otherwise

resistant to immune-, chemo-, and radiotherapy (166). Another

approach to potentiate the efficacy of mRNA vaccines would be to

encode the costimulator Oxford 40 ligand, OX40L, which

significantly reduces tumor growth and increases survival in

preclinical models (167).

The use of small extracellular vesicles (sEVs) is a novel

approach to target glioblastoma cells and generate potent
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antitumor activity in vivo (168). Using a microfluidic

electroporation, which combines nano- and milli-second pulses,

producing large amounts of IFN-g mRNA-loaded sEVs with CD64

overexpressed on the surface of cells; the CD64 molecule serves as

an adaptor to dock targeting ligands, such as anti-CD71 and anti-

PD-L1 antibodies (168). Encapsulation of IL-12 mRNA in

extracellular vesicles enables targeted delivery to treat lung cancer

while promoting a systemic immune response, measured by

immune memory, tumor-specific T cell priming, and expansion

of tumor cytotoxic immune effector cells; IL-12 exosome-based

systems could potentially be applied to other tumor types (169).

RNA-loaded hydrogels have been shown to be effective in vitro

against triple-negative breast cancer (170) and are in development

for glioblastoma (32).

The use of CRISPR-Cas9 gene editing has the potential to

permanently disrupt tumor survival genes, which could overcome

the repeated dosing limitations of cancer therapy and improve

efficacy. As proof of concept, CRISPR-Cas9 technology was applied

to lipid nanoparticles containing Cas9mRNA and single-guided (sg)

RNA into orthotopic glioblastoma, resulting in ~70% gene editing

in vivo, tumor cell apoptosis, and reduction of tumor growth by

50% with improved survival by 30% (171). An elegant model of

spatial manipulation of CRISPR-Cas13a activity was developed with

customized RNA nanococoons featuring tumor-specific recognition

and spatial-controlled activation of Cas13a and applied to suppress

EGFRvIII mRNA for synergistic therapy of glioblastoma in vitro

and in vivo (29).

Progress in neural networks and deep learning could be of great

value to predict design of optimal antigens; high - quality, cancer

neoantigen datasets could meaningfully harness the data generated

by these informatic tools (172). Vaccine manufacturing will benefit

from emerging solutions for the mass production of individualized

vaccines, including digitization of production processes and

autonomous cloud-controlled production plants fostered by

advances in computational power, connectivity, human–machine

interactions, robotics and innovative 3D technology enabling the

building at scale of parallel, miniaturized production lines (172).

The next wave of cellular immunotherapy, including CAR T

cells and dendritic cells, can take advantage of mRNA-LNP as a

platform to target DCs or CD8+ T cells using personalized

formulations incorporating neoantigens arising from genomic

alterations using next-generation sequencing, immune

peptidomics, and bioinformatics (173). Immune-monitoring at

the single-cell or population level can be performed using

peptide/MHC multimers, RNA sequencing (RNA-seq), and T cell

receptor sequencing (TCR-seq) (173).

Initially, nine biotechnology startups began developing next-

generation RNA drugs (174). The next wave of RNA-based drugs is

using more sophisticated approaches, including tRNA to correct for

errors in the genetic code that would otherwise impair protein

production (174). Self-replicating RNAs, as noted (52, 53, 97) are

also attractive because of their self-perpetuating, durable nature

(174). Furthermore, circular RNA is more stable than its mRNA

counterpart (174, 175), and there are multiple methods to produce

circular RNA designed to treat glioblastoma (29). A dozen or more
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biotechnology firms are now pursuing therapeutics based on

engineered circular RNA (circRNA), raising over US$1billion in

venture capital during the past three years, betting that circRNA will

emerge as the preferred RNA platform, leading to next-generation

vaccines (175).

Significant challenges, however, include immunosuppressive

TME, optimal candidate identification, immune response

evaluation, and the need for biomarkers, as well as vaccine

manufacturing acceleration (29). Undesired immunostimulation

and potential impurities of the LNPs also pose a significant

challenge (176). Nevertheless, the field is poised to overcome

hurdles and improve patient outcomes in the future by

acknowledging these clinical complexities and persistently striving

to surmount inherent constraints (29). Not surprisingly, the first

ARPA-H grant is centered on a mRNA platform targeting

melanoma (177), hailed by President Joe Biden, urging Americans

to come together for a new ‘national purpose’ (178).
8 Conclusion

Given the feasibility of production, the personalized approach,

the minimal toxicity, and the explosion in RNA science following

the success of the COVID vaccines, it is easy to predict that mRNA

vaccines will be an important therapeutic option as a strategy to

harness the immune system to prolong survival in patients with

glioblastoma and other solid tumors. Initial results in humans using

mRNA vaccines for glioblastoma are promising and support further

development of mRNA vaccines as a novel approach to brain

tumor therapy.
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Glossary

APC Antigen presenting cell
Frontiers in Oncology
circRNA circular RNA
CNS central nervous system
CRS cytokine release syndrome
CSE conserved sequence element
CTL cytotoxic T lymphocyte
DAMP damage-associated molecular patterns
DC dendritic cell
GBM glioblastoma
HNSCC head and neck squamous cell carcinoma
HLA human leukocyte antigen
HPV human papilloma virus
HSV1 herpes simplex virus 1
hTERT human telomerase reverse transcriptase
ICANS immune effector cell-associated neurotoxicity
ICI immune checkpoint inhibition/inhibitor
LNP lipid nanoparticle
LPA lipid particle aggregate
MAS macrophage activation syndrome
MHC major histocompatibility class
mRNA messenger ribonucleic acid
nms-mRNA nucleoside-modified synthetic mRNA
RBP RNA-binding protein
RIG-I retinoic acid-inducible gene I protein
SNV single nucleotide variant
TCGA The Cancer Genome Atlas
sEV small Extracellular vesicle
TCR T cell receptor
TE transposable elements
TIL tumor infiltrating lymphocyte
TLR Toll-like receptor
TME tumor microenvironment
TRUCK T cells redirected for universal cytokine-mediating killing
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Tumor treating induced fields: a 
new treatment option for patients 
with glioblastoma
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Hanwen Zhao 4, Xue Yang 1, Can Wang 1, Tengteng Meng 3, 
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1 Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, 
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Purpose: Currently, a range of electromagnetic therapies, including magnetic 
field therapy, micro-currents therapy, and tumor treating fields, are under 
investigation for their potential in central nervous system tumor research. Each 
of these electromagnetic therapies possesses distinct effects and limitations. 
Our focus is on overcoming these limitations by developing a novel electric field 
generator. This generator operates by producing alternating induced currents 
within the tumor area through electromagnetic induction.

Methods: Finite element analysis was employed to calculate the distribution of 
electric fields. Cell viability was assessed using the CCK-8 assay. Tumor volumes 
and weights served as indicators to evaluate the effectiveness of TTIF. The in-
vivo imaging system was utilized to confirm tumor growth in the brains of mice.

Results: TTIF significantly inhibited the proliferation of U87 cells both in vitro 
and in vivo.

Conclusion: TTIF significantly inhibited the proliferation of U87 cells both in 
vitro and in vivo. Consequently, TTIF emerges as a potential treatment option for 
patients with progressive or metastatic GBM.

KEYWORDS

electromagnetic therapy, glioblastoma, central nervous system, electromagnetic 
induction, transformer

Introduction

The dysregulation of biological characteristics in tumors arises from changes occurring 
at both the cellular and tissue levels. One mechanism of dysregulation is through 
bioelectrical changes (1). Tumor cells exhibit a resting membrane potential of 
approximately −25 mV, significantly lower than that of normal cells (2). Moreover, multiple 
ion channels are found to be  overexpressed in various types of tumor cells (3–6). 
Consequently, tumor cells disrupt local ionic environments, resulting in the generation of 
distinct local electric fields (EFs) (7). These EFs are present within the tumor interior and 
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on its surface, leading to outward electric currents at tumor sites 
(8). The differences in metabolism, structure, and electrical 
properties between tumors and normal tissues provide the 
mechanistic basis for electromagnetic therapy to selectively kill 
tumor cells through non-thermal effects, while minimally 
impacting normal cells.

Low-frequency (<100 Hz) alternating magnetic fields (MFs) and 
pulsed magnetic fields generated by the coil exhibit anti-tumor effects 
by inducing cell apoptosis, oxidative stress, increasing intracellular 
calcium levels, and reducing angiogenesis (9–15). One direct effect of 
magnetic field therapy is the disruption of ion movement by the 
Lorentz force. Another hypothesis suggests that alternating magnetic 
fields induce currents within tumors. Research on central nervous 
system (CNS) tumors has indicated that MFs enhance the apoptotic 
effects of temozolomide (TMZ) through redox regulation in U87 cells 
(16, 17). However, there is a lack of relevant clinical-level studies.

Common current therapies include direct current therapy (DCT) 
and alternating current therapy. DCT involves inserting electrodes 
into tumors and delivering stable direct current (40–80 mA) at low 
voltage (6–8 V). Direct current exerts its anti-tumor effects through 
electrochemical reactions, anti-angiogenesis, and altering the pH of 
the surrounding environment (18–20). One study demonstrated that 
sustained exposure to low-frequency (50 Hz), low-intensity (7.5 μA) 
alternating current can impact the proliferation of rat glioma C6 cells, 
and increasing the frequency and intensity can enhance its cytotoxic 
effect (21). Additionally, alternating current with a frequency of 
100–200 kHz, intensity of 10–50 mA, and intermittent exposure 
(30 min/day) significantly inhibits the proliferation of breast cancer 
cells and glioma cells (22). However, due to the requirement of surgical 
implantation, there is currently a lack of clinical research on 
CNS tumors.

Tumor treating fields (TTFields) delivered by a pair of insulated 
electrodes are an intermediate-frequency (100–300 kHz), 
low-intensity(1–3 V/cm), alternating electric fields (23, 24). The early 
proposed TTFields’ anti-tumor mechanism of action involved 
polymerization-depolymerization process of microtubules and mitotic 
disruption interfered by electrical forces on cell structure proteins 
(25). Recent research showed that TTFields can exert anti-tumor 
effects through multiple mechanisms, including disrupting cell 
membrane potential, increasing cell membrane permeability, affecting 
calcium ion channels, damaging DNA and inhibiting DNA repair 
(26–29). Currently, multiple clinical trial results demonstrated that 
TTFields have excellent anti-tumor effects in various types of cancers, 
including glioblastoma (GBM), malignant pleural mesothelioma 
(MPM), non-small cell lung cancer (NSCLC), and pancreatic 
carcinoma (PAC) (30–38). The median overall survival (OS) time of 
patients with newly diagnosed glioblastoma received temozolomide-
only is 16.0 months. When TTFields are administrated, the median 
OS time is 20.9 months. Due to the unique treatment form of 
TTFields, it can not only treat tumors alone but is also particularly 
suitable for combination with other treatment methods, such as 
radiotherapy (RT), chemotherapy, targeted therapy, and 
immunotherapy (39). TTFields therapy has demonstrated promising 
results in the treatment of GBM when combined with targeted 
therapies such as bevacizumab. And one case report described a 
patient with thalamic glioblastoma who achieved a complete 
radiological response following treatment with proton therapy, 
temozolomide (TMZ), and TTFields (40). Multiple combination 

therapies incorporating TTFields are currently in Phase 2 
clinical trials.

Over the past 20 years, numerous preclinical studies on 
electromagnetic therapy for CNS tumors have shown promising 
results, but clinical studies have been very limited. The unique tissue 
structure and biological functions of the CNS have posed barriers to 
the translation of devices into clinical practice. The application of 
invasive electromagnetic devices has been approached with caution. 
Even the TTFields device, which is a capacitor-like device delivering 
electric fields, has limitations. Insulated electrodes are placed on the 
shaved scalp when patients receive TTFields therapy. While the 
existing TTFields device has demonstrated efficacy against 
supratentorial GBM, its efficacy against infratentorial and spinal cord 
GBM has not been confirmed (41). It is challenging to arrange two 
opposite arrays on the face and the skin adjacent to the spinal cord to 
ensure that the threshold of electric field intensity is sufficient to arrest 
cellular proliferation (42).

We are committed to addressing these limitations by developing a 
new electric field generator. We have found that a transformer-like 
electric fields device offers several advantages, including the feasibility 
of vertical electric fields covering the infratentorial and spinal cord 
areas, wearability, and non-disposable packaging. The device generates 
alternating induced currents in the tumor area based on electromagnetic 
induction. In the present study, we propose and validate, for the first 
time to our knowledge, the feasibility of Tumor-treating Induced Fields 
(TTIF) therapy delivered by a transformer-like electric fields device.

Methods

TTIF device

The TTIF device mainly consists of one motor, wires, one 
capacitor, and one magnetic ring (Figure 1A). The electric coil wound 
around the magnetic core, together with the capacitor, forms an LC 
resonance circuit. The switch on the LC resonance circuit is turned 
off after the motor is powered once, and energy is continuously 
transferred in the inductor and capacitor. Based on electromagnetic 
induction, alternating current in the inductor coil generates an 
alternating magnetic field within the magnetic ring. Then, the 
alternating magnetic field within the magnetic ring generates an 
alternating electric field radiating outward. Consequently, the tumor 
microenvironment exhibits micro-alternating induced currents. The 
function of the switch and the LC resonance circuit is to convert the 
low voltage direct current in the wire into high voltage, medium-
frequency alternating current in the inductor coil. In cellular 
experiments, the current density in the tumor cell region reached 
1,000 mA/m2. This result was obtained through finite element analysis.

Finite element analysis

The electric field distribution around the device was calculated 
using the finite element method to solve the quasi-static 
approximation of the Maxwell’s equations, which is valid for this 
model. For the model we utilized the Comsol Multiphysics, version 
6.2. The following boundary conditions were imposed: continuity 
of the normal component of the current density at all interior 
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boundaries and electric insulation at the external boundaries. The 
frequency was set to 200 kHz.

Cell viability

In this study, TTIF was applied to glioblastoma cells at 200 kHz, 
based on previous research. The cell dish was positioned at the 
center of the magnetic ring, perpendicular to its plane. Cell viability 
was assessed using the Cell Counting Kit-8 (CCK-8). A total of 
1 × 10^5 cells were seeded into a 35 mm culture dish and incubated 
overnight. At each time point, the medium was replaced with 1 mL 
of media containing 10% CCK-8 reagent and incubated for 1–2 h at 
37°C with 5% CO2. Subsequently, the media from each 35 mm 
culture dish were transferred into 96-well plates (100 μL/well). The 

absorbance of each well was measured at 450 nm using a 
microplate reader.

Animal models

Both subcutaneous and intracranial xenograft tumor models were 
utilized to evaluate the effect of TTIF on GBM in vivo.

The subcutaneous tumor models

Female BALB/c-nu mice aged 6 weeks were obtained from Beijing Si 
Bei Fu Experimental Animal Technology Co., Ltd. Subcutaneous 
injections of U87 GBM tissue (8mm3) with 200 μL phosphate-buffered 

FIGURE 1

Structure diagram of the TTIF device (A). Distribution of electric field lines generated by TTIF (B). Vertical electric field lines at the center of the 
magnetic ring (C). Detection of electric field intensity (D). Relationship between electric field intensity and distance (E).
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saline (PBS) were administered in the right groin of the mice. Successful 
inductions of 75 mm3 subcutaneous tumors were observed within 10 days. 
The mice were randomly divided into different groups: Control or Tumor-
Treating Induced Fields (TTIF) groups. The maximum allowable tumor 
size in the mice before euthanasia was 2,000 mm3. Tumors were isolated 
and measured at the end of the experiment. Tumor volumes were 
calculated using the following formula: width^2 × length × 0.52.

The brain tumor models

A total of 0.32 μL of the G261-luc cell suspension was injected into 
the brains of C57BL/6 mice, approximately 1.8 mm lateral and 1 mm 
posterior to the bregma in the right brain hemisphere, over 4 min 
using a stereotactic rodent brain injection system. In total, either 
1 × 10^4 or 1 × 10^5 G261-luc glioma cells were injected. Mice 
underwent bioluminescence imaging with an in-vivo imaging system 
(IVIS) before and after treatment to confirm tumor growth. Total flux 
(p/s) was calculated from the Region of Interest (ROI) in Living Image 
Software to quantitatively assess treatment efficacy.

Statistical analysis

Statistical analyses were conducted using GraphPad Prism 8.0.1. 
One-way ANOVA tests were utilized to compare tumor volumes and 
total flux between treatment groups. The normality of data was 
assessed using the Shapiro–Wilk test. Unpaired t-tests were employed 
to compare tumor weight and cell viability. Log-rank tests were 
conducted to compare overall survival (OS) between two groups. A 
p-value of <0.05 was considered statistically significant. Numerical 
values were reported as mean ± standard error of mean (SEM). When 
P is greater than or equal to 0.05, the figure is labeled with “ns.” When 
P is less than 0.05 but greater than or equal to 0.01, the figure is labeled 
with “*.” When P is less than 0.01, the figure is labeled with “**.”

Results

The TTIF device generated a vertical electric 
field at the center of the magnetic ring

Initially, a quadrilateral magnetic ring was utilized as the electric 
field generator, and FEA was conducted to analyze the electric field 
distribution. The results indicated that the TTIF device produced 
circular, closed electric fields surrounding the magnetic ring (Figure 1B). 
As proximity to the center of the magnetic ring increased, the curvature 
of the electric field lines decreased, tending towards perpendicularity to 
the plane of the magnetic ring (Figure 1C). Electric field intensity in the 
air surrounding the magnetic ring was measured (Figure 1D), showing 
values exceeding 50 V/m within a 10 cm range (Figure 1E).

TTIF inhibited the proliferation of U87 cells 
in vitro

Following 72 h of TTIF treatment with a current density exceeding 
1,000 mA/m2, U87 cell density markedly decreased, accompanied by 

noticeable alterations in cell morphology (Figures 2A,B). Circular cell 
proportion increased, while cytoplasmic vacuoles emerged 
(Figures  2C,D). The inhibitory effect of TTIF was found to 
be  dependent on exposure time, with efficacy increasing with 
prolonged treatment durations (Figure 2E).

TTIF inhibited the growth of GBMs in the 
subcutaneous murine model

To investigate the anti-tumor effects of TTIF in vivo, we initially 
transplanted U87 tissue subcutaneously into BALB/c-nu mice (n = 4 
for each group). The tumor-bearing mice in the TTIF group were 
housed at the center of the magnetic ring and received continuous 
TTIF treatment for 21 days. Tumor volume was assessed every 7 days 
using a caliper (Figure 3A). The time-tumor volume curve indicated 
that TTIF significantly suppressed the growth of subcutaneous glioma 
volumes in mice (p = 0.007, Figure 3B). Following 21 days of TTIF 
treatment, the tumor volume of the experimental group mice was 
notably smaller than that of the control group mice (Figure  3C). 
Supporting this observation, the data on tumor weight also 
demonstrated a significant difference (p = 0.010, Figure  3D). 
Additionally, we assessed the weight of various organs in mice, with 
results showing no statistically significant difference between the two 
groups (Figure 3E).

TTIF prolonged the OS of intracranial 
tumor-bearing mice

1 × 104 G261 glioma cells were injected into the brains of C57 mice 
(n = 10), and IVIS was used on days 7, 14, 21, and 28 (Figure 4A). On 
day 7, after confirming successful induction of brain tumors using 
IVIS, mice were randomly divided into control and TTIF groups. 
Although the difference was not statistically significant, we observed 
a trend of decreasing luciferase intensity in mice receiving TTIF 
treatment compared to the control group (p = 0.0826, Figures 4B,C).

To further investigate TTIF’s ability to inhibit tumor growth in the 
in situ brain tumor murine model, the number of cells injected was 
increased to 1 × 105. On day 3, mice were randomly divided into 
control and TTIF groups. Subsequently, we recorded the OS of each 
mouse. TTIF-treated mice showed prolonged survival, with a median 
survival of 47 days compared to 37 days in the control group 
(p = 0.0274, Figure 4D).

The characteristics of the small magnetic 
ring

In previous research, we thoroughly examined the characteristics 
and verified the therapeutic efficacy of a large magnetic ring. 
Subsequently, we pursued the development of a smaller magnetic ring, 
measuring 4 cm in external diameter and 1.6 cm in internal diameter 
(Figure  5A). However, we  encountered challenges stemming from 
inadequate miniaturization and insufficient reduction in weight of the 
smaller ring, impeding its applicability in animal experiments involving 
tumor-bearing mice. To overcome this hurdle, we devised a simplified 
cubic model of human head tissue for finite element analysis, aimed at 
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investigating the behavior of small magnetic coils. This model 
comprehensively incorporates the scalp, skull, cerebrospinal fluid, gray 
matter, and white matter, each with distinct thicknesses of 5 mm, 6 mm, 
3 mm, and 4 mm, respectively. Upon situating the small magnetic ring 
on the surface of the head tissue, a radial fountain-like distribution of 
electric field lines manifests within the head (Figure 5B). Upon reaching 
voltage levels comparable to those of clinical TTFields equipment, 
we observed the emergence of a specific intensity of electric field and 
longitudinal induced conduction current in the vicinity of the brain, 
adjacent to the ring (Figures 5C,D).

Discussion

GBM stands as the most aggressive primary tumor affecting the 
central nervous system (43). The standard treatment protocol for 

newly diagnosed GBM involves surgery followed by radiotherapy 
(RT) concurrently with TMZ, along with adjuvant TMZ, optionally 
supplemented with TTFields (44). Advanced stages of glioblastoma 
exhibit notably aggressive characteristics (45). Approximately 4.5% 
of patients diagnosed with supratentorial glioblastoma experience 
infratentorial metastases, while 3–5% present with metastatic spinal 
dissemination (MSD) (46, 47). Autopsy findings have revealed 
frequent incidental spread from supratentorial regions to the brain 
stem and spine, in contrast to relatively infrequent clinical incidences 
(48, 49). Complications such as infratentorial recurrence (ITR) and 
MSD may occur more frequently. Presently, there exists no 
standardized treatment approach for managing ITR and 
MSD. Although these patients may undergo additional radiotherapy 
and chemotherapy, their median OS, which are 5.5 months for ITR 
and 4 months for MSD, significantly lag behind those of the general 
GBM patient population (9.1 months).

FIGURE 2

The 30  V TTIF device can inhibit the proliferation of U87 cells, achieving a current density of up to 1,000  mA/m2 in the cell area. Comparison of cell 
images between the control group (A) and the electric field group (B) under a 4x phase-contrast microscope. Cell images of the control group (C) and 
the electric field group (D) under a 10x phase-contrast microscope. Relationship between cell viability and TTIF exposure time (E).
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The grim prognosis observed in GBM patients is partly attributed 
to the challenges associated with successful drug delivery across the 
blood–brain barrier (BBB) (50). The presence of the BBB limits the 
availability of traditional chemotherapy and targeted drugs for 
GBM. Since 2005, only a few new drugs—namely, Temozolomide, 
bevacizumab, and regorafenib—have been included in the NCCN 
guidelines as first- and second-line treatments for glioblastoma GBM 
(51, 52). However, research into new treatments for GBM is advancing 
rapidly (53). One promising option is vemurafenib, a highly selective 
BRAF V600 inhibitor that has demonstrated long-term antitumor 
effects in some patients with BRAF V600 mutant gliomas (54). 
Additionally, combination therapy targeting both BRAF and MEK has 
shown advantages over monotherapy with BRAF inhibitors. In a study 
involving the combination of dabrafenib and trametinib for recurrent 
or refractory high-grade gliomas (HGG) with the BRAF V600E 
mutation, an objective response was observed in 32% of GBM 
patients, with a complete response in 6.5% of cases (55). Furthermore, 
paxalisib, a small molecule capable of penetrating the blood–brain 
barrier and inhibiting the PI3K/AKT/mTOR pathway, has 
demonstrated clinical activity in newly diagnosed GBM patients with 
unmethylated MGMT promoters (56).

During radiation therapy, particularly reirradiation, the 
tolerance of normal brain tissue to radiation doses emerges as a 
significant limiting factor (54). Another important factor in 

qualifying patients for re-radiation is the increased risk of 
radionecrosis. The two primary directions in the development of 
radiotherapy for central nervous system tumors are: (1) modifying 
the radiotherapy regimen, including approaches such as 
preoperative radiotherapy and phased radiotherapy; and (2) 
enhancing the capabilities of radiotherapy equipment, exemplified 
by advancements in gamma knife and proton therapy 
technologies (57).

Electromagnetic therapy presents itself as a potentially viable 
option for treating CNS tumors. However, when utilizing TTFields, 
the range of EFs remains highly restricted. While TTFields delivered 
through capacitor-like devices demonstrate effectiveness primarily for 
supratentorial GBM, their application may not extend to infratentorial 
and spinal cord GBM. Consequently, patients with GBM face a dearth 
of sufficient treatment options when tumors progress or metastasize.

TTIF emerges as a potential treatment option for these patients. 
The TTIF device generates an alternating electric field at the center 
and on both sides of the magnetic ring through a circular alternating 
magnetic field. When tissues or tumors are in proximity to the TTIF 
device, alternating currents are induced. The device is non-invasive 
and easy to wear. The small magnetic ring is positioned on the skin 
surface corresponding to the tumor’s location. Compared to TTFields 
electrodes, the advantage of TTIF’s small magnetic ring is that it can 
be used individually, allowing placement on the skin atop the head or 

FIGURE 3

BALB/c-nu mice were chosen for the experiment involving subcutaneous tumor formation, and the voltage of the TTIF device was set to 30  V. 
Schedule of TTIF treatment for subcutaneous tumor-bearing mice (A). Relationship between tumor volume and TTIF treatment duration (B). 
Comparison of tumor sizes between the control group mice and the TTIF group mice (C). Comparison of tumor weights between the control group 
mice and the TTIF group mice (D). Comparison of organ weights between the control group mice and the TTIF group mice (E).
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over the cerebellum. With a larger magnetic ring, tumors experience 
vertical induced currents at the center of the magnetic ring.

TTIF can be utilized clinically in various forms. When used alone 
as an alternative to TTFields, TTIF effectively treats tumors located 
within a large magnetic ring placed over the body, such as the head, 
as well as those within a specific range above and below the plane of 
the ring. Additionally, a small magnetic ring can be worn similarly to 
a transcranial magnetic stimulation (TNS) therapy device, generating 

a radial TTIF to treat tumors throughout the body. TTIF offers 
comparable and enhanced benefits when combined with other 
treatments. There is ongoing debate regarding the potential impact of 
wearing a TTFields device on the efficacy of radiation therapy. The 
necessity to remove TTFields can also lead to increased treatment 
costs due to the disposable nature of the electrodes. In contrast, TTIF 
equipment is designed for easy wear and removal, providing added 
convenience. Furthermore, TTIF can complement the effects of 

FIGURE 4

BALB/c-nu mice were chosen for the experiment involving intracranial tumor formation, and the voltage of the TTIF device was set to 45  V. Schedule 
of TTIF treatment for intracranial tumor mice (A). Bioluminescence imaging’s of tumors at various time points (B). Relationship between tumor 
fluorescence intensity and time (C). Comparison of OS between the TTIF group mice and the control group mice (D).
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TTFields therapy. When TTFields are employed to treat supratentorial 
tumors, TTIF can be  utilized as an adjunct therapy to prevent 
supratentorial metastases or to address spinal-disseminated tumors. 
Further FEA is required to determine specific treatment options for 
both scenarios.

Our study is subject to several limitations. The frequency and 
induced current density utilized in cellular experiments with the TTIF 
device were derived from various prior studies. In our initial study, 
we focused exclusively on 200 kHz, which is recognized as the most 
sensitive frequency for TTFields treatment of GBM cells. However, it 
is important to note that the electric field characteristics of TTIF may 

differ from those of TTFields. These differences could include 
variations such as non-conserved electric fields and conservative 
electric fields, potentially resulting in distinct efficacy and frequency 
sensitivity between the two treatments. However, due to the design of 
the LC resonance circuit, which causes these two physical parameters 
to vary together, the relationship between frequency and current 
density and their effective threshold was not established in this study. 
Furthermore, the efficacy of the small magnetic ring has not been 
validated in animal experiments, primarily because the ring has not 
been adequately miniaturized to reduce weight. Additionally, further 
research is warranted to elucidate additional mechanisms of action.

FIGURE 5

The appearance of the small magnetic ring (A). The small magnetic ring generates a radial, geyser-like distribution of electric field lines in the head (B). 
The distribution of the electric field in human head tissue under a voltage of 120 V is expressed in volts per meter (V/m) (C). Additionally, the 
distribution of induced longitudinal conduction current in the human head is presented, with current density expressed in amperes per square meter 
(A/m2) (D).
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Conclusion

We introduced the transformer-like induced fields/currents device 
for the first time in the field of electromagnetic therapy, outlining its 
feasible device structure and testing its functionality. Our findings 
indicate that TTIF significantly inhibited the proliferation of U87 cells 
both in vitro and in vivo. Consequently, TTIF emerges as a potential 
treatment option for patients with progressive or metastatic GBM.
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Distributed parameter model of
dynamic contrast-enhanced MRI
in the identification of IDH
mutation, 1p19q codeletion,
and tumor cell proliferation
in glioma patients
Kai Zhao1†, Huiyu Huang1†, Eryuan Gao1, Jinbo Qi1, Ting Chen1,
Gaoyang Zhao1, Guohua Zhao1, Yu Zhang1, Peipei Wang1,
Jie Bai1, Yong Zhang1, Zujun Hou2*, Jingliang Cheng1*

and Xiaoyue Ma1*

1Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 2Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
Objectives: To investigate the clinical value of hemodynamic parameters derived

from dynamic contrast-enhanced MRI (DCE-MRI) in predicting glioma

genotypes including isocitrate dehydrogenase (IDH) mutation, 1p/19q

codeletion status and the tumor proliferation index (Ki-67) noninvasively. And

to compare the diagnostic performance of parameters of distributed parameter

(DP)model and extended Tofts (Ex-Tofts) model.

Materials and methods: Dynamic contrast-enhanced MRI (DCE-MRI) data of

patients with glioma were prospectively enrolled from April 2021 to May 2023.

The imaging data were analyzed using DP and Ex-Tofts model for evaluating the

perfusion and permeability characteristics of glioma. Comparisons were

performed according to IDH genotype in all glioma patients and 1p/19q

codeletion in IDH mutation glioma patients. Receiver operating characteristic

(ROC) curves were generated for DCE-MRI parameters. The Spearman rank

correlation coefficients were calculated between DCE MRI parameters and Ki-

67 index.

Results: In IDH-mutation gliomas, a higher blood flow (F) was found in 1p/19q

codeletion gliomas than in 1p/19q intact gliomas. No parameter derived from Ex-

Tofts model showed significant differences in predicting 1p/19q status. Fractional

volume of interstitial space (Ve) derived from both the DP and Ex-Tofts models

exhibited optimal performance in predicting IDH genotype (AUC = 0.818, 0.828,

respectively). Ve also showed the highest correlations with Ki-67 LI within their
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respective models in all gliomas (r = 0.62, 0.61), indicating comparable moderate

positive associations. Ki-67

Conclusion: DP model showed a clear advantage in predicting 1p/19q status

compared to Ex-Tofts model. The DP and Ex-Tofts models performed similarly in

predicting IDH mutation and Ki-67 index.
KEYWORDS

glioma, dynamic contrast-enhanced MRI, distributed parameter model, IDH mutation,
1p/19q codeletion, Ki-67
1 Introduction

Gliomas, being the most commonly occurring primary malignant

brain tumors in adults (1), are classified by the 2021 version of the

World Health Organization (WHO) into three groups based on two

critical molecular markers: the isocitrate dehydrogenase (IDH)

genotype and 1p/19q codeletion status. The groups include IDH

wild-type, IDH mutation with 1p/19q intact, and IDH mutation with

1p/19q codeletion (2). This new classification system applies to the

glioma subtype, thus establishing a link between the grade of glioma

and not just its natural disease progression but also the impact of

clinical treatment on the course and prognosis of the disease. Ki-67, a

nuclear antigen involved in cellular proliferation, represents a valuable

biomarker for the evaluation of cell proliferation. An elevation in Ki-67

labeling index (LI) indicates augmented tumor proliferation, which in

turn correlates with inferior prognosis among glioma patients (3).

Studies have demonstrated that certain genetic factors, including IDH

mutation, 1p/19q codeletion, and o6-methylguanine-DNA-

methyltransferase (MGMT) promoter methylation, can predict

treatment response, particularly in the context of chemotherapy (4,

5). Moreover, in recent years, additional treatment modalities, such as

targeted therapy and radioimmunotherapy, have emerged and are

currently under investigation in clinical trials (6, 7). These innovative

approaches rely on the identification of specific molecular targets

within glioma cells, highlighting the significance of genetic molecular

diagnosis in guiding treatment decisions and identifying suitable

targets for these therapies.

Therefore, the histological diagnosis and gene molecular diagnosis

of glioma play a pivotal role in developing personalized preoperative

treatment strategies, and have substantial implications in improving

patients’ quality of life and prognosis. Currently, histopathological

analysis based on resection or biopsy is considered the most reliable

means for molecular diagnosis of glioma genes (8). However, it is

characterized by its high cost, demanding expertise, and the risk of

sampling errors (9). Particularly in patients unsuitable for surgery,

obtaining necessary pathological information without increasing

patient burden and risk can maximize their benefits. Against this
0276
backdrop, many radiologists are actively exploring the relationship

between imaging techniques and molecular biomarkers, aiming to

predict molecular information non-invasively (10).

Dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) is a technique employed to assess blood-brain barrier (BBB)

disruption and neovascularization in gliomas. These characteristics

offer essential insights into the tumor microenvironment and

metabolic properties of various glioma subtypes (11). Several recent

reviews (12–14) have collectively concluded that while DCE imaging

exhibits promising clinical application prospects in predicting IDH

status, it lacks satisfactory performance in identifying 1p/19q

codeletion, and further research is still needed to investigate the use

of DCE imaging in predicting 1p/19q status. In DCE-MRI,

mathematical models are employed to estimate pharmacokinetic

parameters that provide insights into the perfusion and permeability

of lesions. The accurate characterization of these parameters relies on

an appropriate mathematical model. Presently, the extended Tofts

(Ex-Tofts) model is widely used in DCE-MRI due to its relatively

relaxed requirements for equipment and scan duration (15). However,

the main parameter, transfer constant (Ktrans), in Ex-Tofts model does

not accurately reflect vascular permeability since it does not

differentiate between the intravascular transport of tracer molecules

and the exchange process of tracer molecules between the

intravascular and interstitial spaces (16). As technology and

equipment continue to advance, the distributed parameter (DP)

model was proposed to addresses such limitation by separately

considering the intravascular transport and the exchange between

the intravascular and interstitial compartments (17). DP model

incorporates two key parameters: blood flow (F), which

characterizes intravascular transport, and the permeability-surface

area product (PS), which describes the exchange process.

In this study, our objective was to evaluate the potential of DCE-

MRI using the DP model in predicting the IDH genotype,

chromosome 1p/19q codeletion status, and Ki-67 LI in adult

diffuse gliomas, and to assess whether the DP model offers

advantages in the molecular diagnosis of glioma, which may

enhance their clinical management.
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2 Materials and methods

This retrospective study was approved by our hospital’s

institutional review board, and informed consent was waived.
2.1 Study participants

Patients with glioma who underwent DCE examination

between April 2021 and May 2023 were retrospectively collected.

The inclusion criteria were as follows: DCE-MRI performed within

two weeks prior to surgery and before the initiation of antitumor

therapy, and a diagnosis of gliomas of grade 2-4 based on the 2021

WHO guideline on brain tumor classification following tumor

resection and pathology examination. The exclusion criteria were:

a diagnosis of WHO grade 1 glioma; inadequate MRI quality. The

IDH1/2 mutations in the hotspot codons R132 and R172 on the

excised surgical specimens were determined by Sanger sequencing

or immunohistochemical staining. A mutation in any one of them

was diagnosed as an IDH mutation. The 1p/19q deletions were

detected through fluorescence in situ hybridization analysis. The Ki-

67 labeling index was determined by using immunohistochemistry.
2.2 MR imaging acquisition

All scans were conducted using a 3.0 T MRI scanner from

Siemens Healthcare (Magnetom Prisma). The DCE scan employed

an axial fast-spoiled gradient (SPGR) echo sequence. This sequence

included a pre-contrast and a post-contrast phase with the following

parameters: TR/TE (3.03 ms/1.06 ms), FOV (230 × 230mm2), matrix

(192×134.4), slice thickness (5 mm), flip angles for the pre-contrast

scan (3°, 6°, and 9°), and for the post-contrast scan (9°). For each flip

angle, ten dynamic pre-contrast scans were acquired, while the post-

contrast sequence consisted of 180 dynamic scans, with a temporal

resolution of 2 seconds. The contrast agent used was Gadovist

(Magnevist; Bayer Schering Pharma AG), administered at an

injection rate of 3.5 mL/sec (followed by a 20 mL normal saline

flush), with a dose of 0.1 mmol/kg body weight.
2.3 Image processing

DCE images were processed using a commercially software

(MItalytics, FITPU Healthcare, Singapore). Two experienced

neuroradiologists (K.Z. and X.M., with 3 and 11 years of

experience, respectively) manually delineated the tumor region of

interest (ROI) in reference to the late-phase dynamic T1-enhanced

image (with obvious enhanced lesions) or the T2-FLAIR sequence

images (without obvious enhanced lesions). The delineation

includes the solid components of the tumor and avoids areas of

necrosis, hemorrhage, calcification, large vessels, and cystic regions.

Voxels in ROI were aggregated, and the median values of following

kinetic parameters were calculated for each patient: Ex-Tofts model

derived transfer constant Ktrans (min−1), fractional volume of

extravascular extracellular space Ve (mL/100 mL), plasma
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fractional volume Vp (mL/100 mL), efflux rate constant Kep

(min−1). DP model derived blood flow F (mL/min/100 mL),

permeability-surface area product PS (mL/min/100 mL),

extraction ratio of first pass E (%), Ve and Vp (same as in the Ex-

Tofts model). To ensure completeness, the operational equations of

these models, which specify the relationship between tissue tracer

concentration Ctiss(t) (as a function of time t) and AIF as well as

relevant physiological parameters, are presented below:

Ex-Tofts model:

Ctiss(t) = AIF vp + AIF⊗  Ktrans exp −
Ktrans

Ve
t

� �
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2.4 Statistical analysis

Statistical analysis was performed using R software (version 4.3.1;

https://www.R-project.org/). Normality of data and homogeneity of

variance were assessed using Shapiro-Wilk and Levene’s tests,

respectively. Differences in parameters and mean age were

evaluated between IDH-mutation and IDH-wild-type gliomas, as

well as IDH mutation&1p/19q intact and IDH mutation&1p/19q

codeletion gliomas using independent t-test or Mann–Whitney U

test according to the results of test for normality and

homoscedasticity. Benjamini-Hochberg correction was applied to

adjust the P values of DCE parameters for multiple comparisons.

The receiver operating characteristic (ROC) curves were utilized for

assessing the performance of kinetic parameters in predicting IDH

mutation and 1p/19q status. The diagnostic performance was

quantified using the area under the ROC curve (AUC). The

DeLong test was conducted to compare the diagnostic performance

of the Ex-Tofts model and the DP model by comparing their

respective parameters with the largest AUC values in each model.

The method of Youden index was utilized to determine the optimal

threshold for classification and compute the corresponding

sensitivity, specificity, and accuracy. Relationship between Ex-Tofts

parameters, DP parameters and Ki-67 LI was assessed using the

Spearman correlation test. Statistical significance was set at P< 0.05.
3 Results

3.1 Patient characteristics

48 glioma patients were finally included in the study. Table 1

summarizes the clinical, demographic, and pathological characteristics

of the patients. Based on the 2021 WHO classification of CNS tumors,

the tumors were classified into IDH-mutation and 1p/19q intact glioma

(WHO grade 2 astrocytoma, n=3; WHO grade 3 astrocytoma, n=3;
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WHO grade 4 astrocytoma, n=3), IDH-mutation and 1p/19q codeletion

glioma (WHO grade 2 oligodendroglioma, n=7; WHO grade 3

oligodendroglioma, n=8), and IDH-wild-type glioma (WHO grade 4

glioblastoma, n=24). Patients with IDH wild-type glioma were found to

be older than those with IDH-mutation glioma. There was no significant

difference between glioma subtypes in terms of sex distribution.
3.2 Kinetic parameters in identification of
molecular subtypes

As the distribution of all data did not meet the criteria for

normality according to the Shapiro-Wilk test at a significance level
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of 5%, the Mann-Whitney U test was used to assess the differences

between parameters. Kep derived from Ex-Tofts model was found

significantly higher in IDHmutation gliomas than in IDH wild-type

gliomas. Ve, Vp derived from Ex-Tofts model and Ve, Vp, PS, E

derived from DP model were found significantly lower in IDH

mutation gliomas compared to IDH wild-type gliomas (Table 2).

Only the F derived from DP model exhibited a significant difference

between 1p/19q codeleted glioma and 1p/19q intact glioma, and the

1p/19q codeleted glioma had a higher F value compared to the 1p/

19q intact glioma. No parameters in Ex-Tofts showed significant

differences in predicting 1p/19q status (Table 3). Representative

cases of three different subtypes glioma are shown in Figure 1.

Figure 2 shows the boxplots of Ex-Tofts and DP parameters,
TABLE 1 Clinical and demographic data of the study cohort.

Male Female Age (years) P Value of Sex P Value of Age

IDH mutation 17 7 44 ± 9 0.079 0.004

IDH wild-type 11 13 53 ± 12

IDH mutation&1p/19q intact 7 2 42 ± 10 0.144 0.346

IDH mutation&1p/19q codeleted 10 5 46 ± 9
TABLE 2 Results of kinetic parameters in predicting IDH genotype.

IDH Mutation IDH Wild-type U P

Ex-Tofts_ Ktrans 0.014 (0.008,0.024) 0.022 (0.017,0.032) 201 0.149

Ex-Tofts_ Ve 0.633 (0.214,5.370) 6.825 (4.712,12.221) 99 < 0.001*

Ex-Tofts_ Vp 0.078 (0.026,0.473) 0.544 (0.444,0.831) 149 0.011*

Ex-Tofts_ Kep 0.926 (0.466,5.069) 0.31 (0.254,0.446) 452 0.003*

DP_F 8.532 (6.569,10.002) 7.454 (6.308,13.777) 272 0.866

DP_ Vp 0.345 (0.206,0.590) 0.897 (0.600,1.508) 158 0.017*

DP_ Ve 0.415 (0.235,4.625) 6.739 (3.558,11.505) 105 < 0.001*

DP_PS 0.896 (0.356,2.241) 2.445 (1.769,3.527) 143 0.009*

DP_E 9.400 (3.092,20.535) 22.696 (12.670,30.283) 144 0.009*
*P< 0.05.
TABLE 3 Results of kinetic parameters in predicting 1p/19q status.

1p/19q intact 1p/19q codeleted U P

Ex-Tofts_ Ktrans 0.014 (0.008,0.026) 0.014 (0.010,0.021) 68 > 0.99

Ex-Tofts_ Ve 0.217 (0.076,5.887) 0.643 (0.249,4.365) 83 0.669

Ex-Tofts_ Vp 0.053 (0.012,0.435) 0.093 (0.036,0.600) 81 0.669

Ex-Tofts_ Kep 1.427 (0.503,5.400) 0.798 (0.397,4.298) 54 0.669

DP_F 6.607 (5.196,6.997) 8.963 (8.32,12.418) 107 0.040*

DP_ Vp 0.380 (0.149,0.542) 0.283 (0.215,0.679) 73 0.866

DP_ Ve 0.276 (0.182,4.969) 0.415 (0.247,3.201) 76 0.823

DP_PS 1.437 (0.281,2.257) 0.872 (0.457,1.245) 67 > 0.99

DP_E 20.057 (2.636,26.107) 8.728 (3.394,15.575) 59 0.823
*P< 0.05.
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illustrating the intergroup differences in the distribution of

kinetic parameters.
3.3 ROC curve analysis

Tables 4 and 5 respectively summarizes the results of ROC

curve analysis in differentiating IDH mutation (mutation vs. wild-

type) and 1p/19q codeletion status in IDH mutation glioma (intact

vs. codeleted). Ve attained the best performance in discriminating

IDH-mutation from IDH-wild-type gliomas in both Ex-Tofts and

DP model (AUC = 0.828 and 0.818, respectively). Delong test
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showed no significant difference between the AUCs of above two

parameters (z = 0.509, P = 0.611). Among DP-derived parameters,

F showed a good performance in predicting 1p/19q status with

AUC = 0.793. The plots of ROC curves are shown in Figure 3.
3.4 Correlation of kinetic parameters with
the Ki−67 LI

The correlation results between the DCE parameters and Ki-67

LI are shown in Figure 4. The corresponding P values are shown in

the supplementary materials. Ve derived from DP model and the
FIGURE 1

Three representative patients with glioma were correctly classified into their respective subtypes based on the threshold values of DCE
parameters in this study, using pathological examination results as the gold standard. (A) a 59-year-old female with histologically proven
glioblastoma IDH wild-type (Ex-Tofts_Ve = 16.08; DP_F = 9.21). (B) a 46-year-old male with histologically proven astrocytoma IDH
mutation&1p/19q intact (Ex-Tofts_Ve = 0.08; DP_F = 7.00). (C) a 47-year-old female with histologically proven oligodendroglioma IDH
mutation&1p/19q codeleted (Ex-Tofts_Ve = 1.34; DP_F = 8.82).
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Ex-Tofts model was correlated best with Ki-67 LI within their

respective models in all gliomas with similar moderate positive

correlations (r = 0.62, 0.61).
4 Discussion

This study aimed to investigate the potential of pharmacokinetic

parameters derived from the Ex-Tofts model and the DP model as

biomarkers for identifying IDH mutation, 1p/19q codeletion status,

and tumor cell proliferation (Ki-67 LI) in gliomas. The results of this

study revealed that there was no significant difference in the

diagnostic efficacy between the two models for predicting IDH

mutation status and Ki-67 expression. In predicting the 1p/19q

status, the DP model demonstrated a substantial increase in the

parameter F and exhibited favorable diagnostic performance (AUC =

0.793), while the Ex-Tofts model did not effectively predict the 1p/19q

status. This suggests that the DP model holds greater potential than

the Ex-Tofts model in predicting the 1p/19q status with the exclusive

perfusion parameter F.

The measurement of F in predicting the 1p/19q status was made

possible by the DP model, which separately describe intravascular
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perfusion and exchange between the intravascular and extravascular

spaces. These processes are characterized by two distinct

parameters, namely F and PS. Conversely, the Ex-Tofts model

combines these two processes into a single parameter, Ktrans (15).

The use of appropriate pharmacokinetic models is crucial for the

analysis of DCE-MRI data. Developing advanced pharmacokinetic

models may be an important avenue to address the limitations of

DCE in predicting 1p/19q status. Higher F values observed in 2021

WHO oligodendrogliomas compared to astrocytomas may be

related to their higher perfusion characteristics (18). An arterial

spin labeling (ASL) study (19) has revealed that the cerebral blood

flow (CBF) is significantly higher in oligodendrogliomas than

astrocytomas, attributed to higher vascular density and gray

matter involvement in oligodendrogliomas. Although CBF in ASL

and F in DCE are not completely comparable, changes in this

hemodynamic parameter indicate that the high perfusion

characteristics of oligodendrogliomas can be used to predict the

1p/19q status, which corroborates our results. Another study (20) as

also highlighted the higher perfusion characteristics of

oligodendrogliomas compared to astrocytomas, utilizing dynamic

susceptibility contrast-enhanced (DSC) MRI. This study indicated

that oligodendrogliomas revealed significantly higher cerebral
FIGURE 2

Boxplots of kinetic parameters in differentiating three types of gliomas, n.s. stands for not significant, *P< 0.05, **P< 0.01, ***P< 0.001.
TABLE 4 ROC Analysis of kinetic parameters with significant difference in predicting IDH genotype.

AUC (95%CI) P SEN SPC ACC Cut-off

Ex-Tofts_ Ktrans 0.651 (0.488, 0.814) 0.035 0.583 0.792 0.688 0.016

Ex-Tofts_ Ve 0.828 (0.706, 0.950) < 0.001 0.667 1 0.833 1.670

Ex-Tofts_ Vp 0.741 (0.591, 0.891) < 0.001 0.583 0.917 0.750 0.200

Ex-Tofts_ Kep 0.785 (0.646, 0.923) < 0.001 0.583 0.958 0.771 0.640

DP_F 0.472(0.302,0.642) 0.626 0.417 0.417 0.417 7.863

DP_ Vp 0.726 (0.574, 0.877) 0.002 0.750 0.750 0.750 0.600

DP_ Ve 0.818 (0.691, 0.945) < 0.001 0.708 0.958 0.833 1.925

DP_PS 0.752 (0.608, 0.895) < 0.001 0.708 0.792 0.750 1.535

DP_E 0.750 (0.609, 0.891) < 0.001 0.500 0.958 0.729 8.805
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blood volume (CBV) when compared to astrocytomas. In DCE, the

parameter Vp exhibits physiological similarity to CBV. Vp is a

perfusion parameter that measures the fractional volume of the

intravascular space and may be correlated with tissue microvascular

density. Correlation analysis demonstrated that there was

a relatively weak positive correlation between Vp and F

(r = 0.56). This indicates that while both parameters

represent tissue perfusion, they also possess a certain degree of
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independence from each other, suggesting that they characterize

different aspects of tumor perfusion. Our results failed to found

any significant difference in Vp between astrocytomas and

oligodendrogliomas, which is consistent with Gupta’s (21)

conclusion. However, Lee et al. (22) have found a significant

increase in Vp in oligodendrogliomas. Currently, there is limited

literature on the use of perfusion imaging for identifying 1p/19q

codeletion status in gliomas, and most studies focus on DSC-MRI
FIGURE 3

Receiver operating characteristic (ROC) plots and areas under ROC curve (AUCs) of Ex-Tofts and DP model parameters in differentiating of IDH
mutation status (A) and 1p/19q codeletion status (B).
FIGURE 4

Heat map of correlations between the DCE parameters and Ki-67 index.
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(12). The role of DCE in predicting 1p/19q codeletion status

remains controversial, and selecting appropriate pharmacokinetic

models may be crucial for improving its clinical utility. Our study

suggested one of the limitations of the Ex-Tofts model in

characterizing perfusion is its inability to describe tissue blood

flow velocity, thus necessitating the development of advanced

pharmacokinetic models that factor in the transport of contrast

agent molecules within the vasculature.

In predicting the IDH genotype, both Ex-Tofts and DP models

have existing research (23, 24), and our findings regarding the

comparison of parameter magnitudes align with previous studies.

We identified Ve as the most distinguishing feature in

discriminating between IDH-mutation and IDH-wild-type

gliomas. Ve refers to the fractional volume of the extravascular

extracellular space. As tumor cells proliferate excessively, the

interstitial space decreases, resulting in a smaller Ve. Compared to

IDH wild-type, IDH mutation could inhibit proliferation in glioma

(25). However, unlike other solid tumors (16), a decrease in Ve

suggests elevated vessel permeability rather than higher cell

proliferation. The blood-brain barrier restricts the leakage of

contrast agent molecules from the vasculature, leading to smaller

measured Ve values. In IDH wild-type gliomas, we observed a

significant increase in Ve, indicating a greater tendency for

contrast agent molecules to leak out. This can be attributed to the

presence of newly formed immature blood vessels in IDH wild-type

gliomas, along with the irregular arrangement of endothelial cells

and detachment of pericytes and astrocytes from microvascular

walls (26), which increase the permeability of the blood-brain

barrier and promote microvascular leakage. Conversely, IDH-

mutation gliomas have been shown to exhibit decreased

activation of hypoxia-inducible factor 1a (HIF-1a), leading to a

reduction in hypoxia-induced angiogenesis (27). DCE-MRI can

indirectly predict these genetic alterations by describing changes in

tissue permeability.

Ki-67 LI showed the highest correlation coefficient with Ve of

DP model among the DCE parameters with a moderate positive

correlation observed (r = 0.62). The positive correlation between Ve

and Ki-67 may be related to the compromised integrity of the
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blood-brain barrier. The elevated proliferative activity of tumor cells

requires a substantial amount of energy to sustain their rapid

growth and division. In response to this increased energy

demand, tumors activate various adaptive mechanisms, including

the upregulation of HIF-1a, leading to an increase in tumor

angiogenesis and a more abundant tumor microcirculation (28).

The presence of newly formed and immature blood vessels increases

tumor vascular permeability, facilitating the extravasation of

contrast agents and subsequently resulting in elevated Ve values.

This finding is consistent with Jiang et al. (29). However, we were

unable to confirm a significant correlation between Ktrans and Ki-67,

as they did. This discrepancy may be due to the fact that Jiang et al.

measured the maximum values of tumor hemodynamic parameters,

while we focused on the median values within the ROI. In future

studies, we may consider employing histogram analysis of DCE data

to further explore this correlation.

Several limitations should be acknowledged in our study.

Firstly, the sample size was relatively small, potentially

introducing chance correlations when predicting 1p/19q status,

and the single-center design mean that the thresholds we

identified may not be generalizable to other centers, limiting their

applicability. Therefore, a prospective study with a larger sample

size and multi-center is warranted to validate these findings.

Secondly, the ROI delineation in our study was manually

performed, and the adoption of machine learning algorithms for

automated delineation holds promise in improving the objectivity

of our research. Lastly, due to the update of the 2021 WHO CNS

glioma classification, glioma grading is now categorized within

pathological subtypes. The sample size in our study cohort was

insufficient to conduct predictive research on glioma grading. We

plan to further expand the sample size to explore the role of various

DCE models in predicting glioma grading in future research.
5 Conclusion

DP model provided additional information on blood flow rate

compared to the Ex-Tofts model, and it demonstrated a clear
TABLE 5 ROC Analysis of kinetic parameters with significant difference in predicting 1p/19q status.

AUC (95%CI) P SEN SPC ACC Cut-off

Ex-Tofts_ Ktrans 0.504(0.245,0.762) 0.489 0.733 0.333 0.583 0.010

Ex-Tofts_ Ve 0.615(0.344,0.885) 0.203 0.867 0.556 0.75 0.222

Ex-Tofts_ Vp 0.600(0.342,0.858) 0.223 0.867 0.444 0.708 0.022

Ex-Tofts_ Kep 0.600(0.350,0.850) 0.216 0.667 0.556 0.625 1.342

DP_F 0.793 (0.595, 0.99) 0.002 0.867 0.778 0.833 7.154

DP_ Vp 0.459(0.194,0.724) 0.618 0.467 0.333 0.417 0.296

DP_ Ve 0.563(0.303,0.823) 0.318 0.933 0.333 0.708 0.197

DP_PS 0.504(0.226,0.782) 0.490 0.200 0.444 0.292 1.363

DP_E 0.563(0.274,0.851) 0.334 0.800 0.556 0.708 19.717
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advantage in predicting 1p/19q status. However, it did not show a

significant difference in predicting IDH and Ki-67 compared to the

Ex-Tofts model.
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Clinical response to dabrafenib
plus trametinib in BRAF V600E
mutated papillary
craniopharyngiomas: a case
report and literature review
Paul Hanona*, Daniel Ezekwudo and Joseph Anderson

Beaumont Hospital, Beaumont Health, Royal Oak, MI, United States
Papillary craniopharyngiomas are rare tumors prevalent to the precision

oncology world due to their high rate of BRAF V600E mutations. Symptoms

include vision loss, neuroendocrine dysfunction, and cognitive dysfunction.

Treatment involves an interdisciplinary approach with surgery, radiation, and

systemic treatment. Recent attention has been directed toward targeted therapy

in this space, especially with targets to the BRAF V600E mutated pathway.

Focusing on this pathway could solidify future standards of care treatment. A

61-year-old male came in with bilateral homonymous hemianopsia. This

prompted a brain MRI that showed a bilobed centrally cystic peripherally

enhancing sellar and suprasellar mass with mass effect on the left greater than

right optic chiasm and nerves. He underwent a primary resection of the

suprasellar cystic tumor, and it was revealed that he had papillary

craniopharyngioma. Three months later, he represented with visual defects,

and repeat MRI showed cystic recurrence with compression of the optic

chiasm. He underwent an endonasal resection of the middle fossa tumor;

pathology, th is t ime, showed a BRAF V600E mutated papi l lary

craniopharyngioma. Nine months later, another recurrence happened, and the

patient was started on BRAF and MEK inhibitors: dabrafenib (75 mg BID) and

trametinib (2 mg daily). The patient has had clinical improvement of visual

symptoms and is currently continuing this treatment. He was last seen in

October of 2024, and he is clinically stable. The use of targeted therapies is an

evolving space for BRAF V600E mutated papillary craniopharyngiomas. This is a

case showing improvement of a craniopharyngioma after treatment with BRAF

and MEK inhibitor combinations. The role of BRAF and MEK inhibitor

combinations continues to evolve in this space.
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Introduction

Craniopharyngiomas are slow-growing brain tumors that originate

from Rathke’s pouch remnants. They are incredibly rare with only 350

cases a year in the United States (1). They have a bimodal age

distribution and occur equally in both men and women (2). They

can arise near the pituitary stalk, within the sella, the third ventricle,

and optic chiasm (3). Tumor topography, especially in regards to its

relationship with the hypothalamus, can indicate tumor recurrence

rates (4). They break down into two types, either adamantinomatous or

papillary. Adamantinomatous types havemutations in CTNNB1, while

papillary types have mutations in BRAF. Both types are

overwhelmingly mutated with 96% of adamantinomatous types

having CTNNB1 mutations and 94% of papillary types having BRAF

V600E mutations. They have similar overall survival. The 10-year

overall survival ranges between 80% and 96% (5).

Symptoms are challenging to identify due to the slow-growing

nature of craniopharyngiomas. The most common symptoms

include headaches, visual field deficits, endocrine alternations, and

mental distrubances (6). Diagnosis involves MRI of the brain and or

CT of the brain. A mass is usually seen that compresses

nearby structures.

Calcifications are often seen (7). Endocrine testing for

abnormalities in pituitary hormones is also crucial (6).

Treatment has traditionally involved surgery and radiation,

with a more recent addition of targeted therapy. Neuroimaging

alone can suggest BRAF mutant papillary types with a

representative feature like lack of calcification. In these cases,

biopsy, instead of aggressive surgery, is preferred, and the patient

can be put on first-line targeted therapy with BRAF/MEK

inhibitors. If neuroimaging suggests an adamantinomatous types,

aggressive resection is preferred due to mass effect causing

symptoms commonly being the presenting sign (8). Monitoring

of endocrine function, edema, and hydrocephalus is also crucial

during this period.

Targeted therapy is a fundamental tenet in the treatment of

papillary craniopharyngiomas. All papillary craniopharyngiomas

should be tested for BRAF V600E. Surgical resection of the tumor

is the gold standard. First-line treatment of newly diagnosed

craniopharyngiomas after resection is BRAF/MEK inhibition. This

involves four to six cycles of targeted therapy and then reassessment

for the need for RT, surgery, or continued therapy with BRAF/MEK

inhibition. These agents usually include dabrafenib plus trametinib or

vemurafenib plus cobimetinib (9). This is an ongoing area of

research. This case report seeks to add to the literature that shows

clinical improvement of craniopharyngiomas with BRAF/

MEK inhibition.
Case description

This is a case of a 61-year-old male who first presented with

changes in his vision in May 2022. A summary timeline of the

patient's case can be found in Table 1. He has a history of

hypertension, sarcoidosis, prediabetes, and sinus bradycardia. He
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had no surgeries up until this point. He is a never smoker and a

never drinker. He had no relevant family history. Physical exam

signs were largely remarkable for bilateral homonymous

hemianopsia. Examination revealed visual acuity of 20/25 + 2 in

the right eye and 20/200 + 1 with pinhole to 20/80−2 in the left eye.

Brain MRI showed a bilobed centrally cystic peripherally enhancing

sellar and suprasellar mass with mass effect on the left greater than

right optic chiasm and nerves. He underwent an endonasal

resection of the middle fossa tumor. Pathological results were

indeterminant. His vision improved following his surgery.

In August 2022, the patient presented again with visual deficits.

Repeat MRI showed a 10.3 mm × 14.6 mm × 17 mm cystic mass in

the suprasellar area with enhancing mural nodules, most likely

related to craniopharyngioma that is causing mass effect on the

optic chiasma (Figures 1, 2). He underwent an endoscopic

endonasal transplanum transtuberculum approach to the middle

fossa skull base with a resection of the middle cranial fossa skull

base tumor. Pathology revealed papillary craniopharyngioma, CNS

WHO grade 1. BRAF V600E mutation was identified. Subsequently,

a CSF leak was present, and he underwent a CSF leak repair. He

followed up with the surgical team who monitored for symptoms of

clinical relapse. Importantly, the patient never went for radiation.

Eight months after this second surgery, he had his first visit with

an oncologist in June 2023. He again was having visual deficits, and

he had an MRI that showed recurrence of the craniopharyngioma.

At the time, it felt too risky to go back for a third neurosurgical

resection; thus, a joint decision was made to have the patient

undergo trial on targeted therapy with dabrafenib and trametinib.

He started on dabrafenib 150 mg twice daily and trametinib 2 mg

once daily. The plan was to keep him on this targeted therapy until

progression. One month later, his vision improved, but his

symptoms had not completely resolved. He did develop myalgia
FIGURE 1

Sagittal brain MRI showing a 10.3 mm × 14.6 mm × 17 mm cystic
mass in the suprasellar area with enhancing mural nodules, most
likely related to craniopharyngioma, causing mass effect on the
optic chiasma.
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and fatigue while on targeted therapy, but otherwise, he was

tolerating the therapy well. A follow up visit in August 2023

showed that his visual symptoms had gotten worse in the right

eye. A brain MRI at that time was repeated and showed growth in

the suprasellar region with a cystic mass (Figure 3). Thus, he

underwent a third neurosurgical revision with an endonasal

resection of the tumor. His vision again improved almost back to

normal after this third surgery. After recovery from his surgery, the

patient resumed targeted therapy with dabrafenib and trametinib.

Since his third surgery, he has been back on dabrafenib and

trametinib. He complains of fatigue but, otherwise, is tolerating
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the combination well. He continues to take these medications and

follows with an oncologist regularly. Recently, as of June 2024, he

was working with a physical therapist for an unrelated lumbar

radiculopathy. Otherwise, the patient is faring well.
Discussion

Craniopharyngiomas are tumors that arise along the

craniopharyngeal duct. Two key mutations in the CTNNB1 and

BRAF V600E mutations lead to two different histological types being

the adamantinomatous and papillary types, respectively. Symptoms

include visual impairment, endocrine deficiencies, and other

neurological abnormalities. MRI is proven to be one of the gold

diagnostic standards for craniopharyngiomas. Treatment involves

neurosurgery, radiotherapy, and now an evolving role for targeted

treatment. Long-term survival is common; however, quality of life

continues to be a challenge with common side effects of treatment

including fatigue and psychosocial deficits (10). Patients commonly

complain about reduction in social and emotional functioning citing

that their psychosocial status is worse than their physical health. This

includes patients going through anxiety, depression, and withdrawal.

Patients also complained of reduced mobility (11).

The first step of the BRAF/MEK pathway involves a growth

factor binding to a cell receptor. This activates the RAS protein, which

activates the BRAF protein. This active BRAF protein phosphorylates

and activates the MEK protein, and activated MEK protein

phosphorylates and activates the ERK protein. ERK then moves

into the nucleus and activates genes that help cells proliferate. When

the BRAF gene is mutated, a mutated BRAF protein results. This

mutated BRAF protein is constitutively activated leading to

uncontrolled cell growth per the mechanism just described (12).

Drugs, like dabrafenib and vemurafenib, target this mutated BRAF

protein. To avoid resistance, a drug targeting the downstream MEK

protein like trametinib is also given. Currently, dabrafenib is

approved for mutated BRAF V600E melanomas, non-small cell

lung cancers, solid tumors that are unresectable or metastatic, and

thyroid cancers (13). Trametinib has the same approvals as

dabrafenib, except with the addition of ovarian carcinoma (14).

Treatments utilizing surgery and radiation both have

substantial morbidity. Keeping in mind that the overwhelming

majority of papillary craniopharyngioma carry a BRAF V600E

mutation, efforts are made to target this pathway. New

approaches with targeted therapy are being investigated. The

CTNNB1 mutation pathway has no current targeted treatment.

However, the BRAF V600E mutation can be either targeted with

dabrafenib and trametinib or vemurafenib and cobimetinib. Our

patient was treated with dabrafenib and trametinib. Several case

reports suggest efficacy with dabrafenib and trametinib. One case

report of a 39-year old showed that the tumor volume was reduced

by 85% after only 35 days (15). Another case report also showed

marked tumor reduction and even improvement in the patient’s

panhypopituitarism (16). A publication shows that a 35-year-old

man also had his tumor reduced in size by 95% over 21 months

without any side effects (17). One patient had a complete response

over 2 years (18). Patients can also be kept on this treatment for
FIGURE 3

Brain MRI in August 2023 showing a suprasellar cystic brain mass
consistent with a craniopharyngioma.
FIGURE 2

MRI coronal-transinfundibular showing a cystic mass (white arrow)
in the suprasellar area with enhancing mural nodules, most likely
related to craniopharyngioma, causing mass effect on the
optic chiasma.
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more than 2 years especially since one case report showed that the

patient continued to have clinical improvement 2 years after

starting the dabrafenib and trametinib (19).

Since the tumors are benign in nature, targeting them with

surgery and radiation can often lead to more morbidity than

necessary. A summary of various studies pertaining to treatment

of BRAF mutated craniopharyngiomas can be found in Table 2. If

there was a way to introduce targeted treatment with BRAF and

MEK inhibitors early on as neoadjuvant treatment, that could

potentially reduce the morbidity from ensuing surgery and

radiation (20). One case report showed that a 39-year old with a

BRAF V600E mutated craniopharyngioma first received

neoadjuvant dabrafenib and trametinib, then received definitive

radiosurgery. The authors theorize that neoadjuvant targeted

treatment could take patients who are poor surgical candidates

and turn them into a better surgical candidate if the original tumor

size shrinks (21).
Frontiers in Oncology 0488
Data are stronger regarding the vemurafenib and cobimetinib

combination. A recent phase 2 study was done with 16 patients who

had BRAF V600E mutations. BRAF/MEK inhibitor combination with

vemurafenib and cobimetinib was administered in 28-day cycles. Fifteen

out of those 16 patients had a durable objective partial response or

better. The median reduction of tumor was 91%. Progression-free

survival at 12 months was 87% and at 24 months 58%. The median

number of cycles was eight cycles. Notable adverse events were rashes,

hyperglycemia, and dehydration (9). Some patients have more pyrexia

on dabrafenib and trametinib, and thus, switching over to vemurafenib

and cobimetinib may be a better option (22). Our patient had pyrexia

early with dabrafenib and trametinib, and thus, wemay switch him over

to vemurafenib and cobimetinib if it persists as a problem.

Regarding this patient’s case specifically, he was treated with surgery

multiple times before he started on targeted treatment with dabrafenib

and trametinib. The patient himself remarked on the challenges of

recovering from surgery multiple times. This also had a considerable
TABLE 1 Timeline of patient’s clinical history.

Date Clinical Radiological Treatment

May 2022 Bilateral hemianopsia Brain MRI showing a suprasellar mass Endoscopic resection of craniopharyngioma with
pathology being indeterminant

September 2022 Bilateral hemianopsia Brain MRI showing a mass resembling
a craniopharyngioma

Endoscopic resection of craniopharyngioma with
pathology showing papillary craniopharyngioma, CNS
WHO grade 1 with a BRAF V600E mutation

June 2023 Bilateral hemianopsia Brain MRI showing recurrence of
the craniopharyngioma

Patient is started on dabrafenib and trametinib

August 2023 Bilateral hemianopsia worsening Brain MRI showing slight increase in
the size of the craniopharyngioma

Third revision endonasal resection with residual
mass remaining

September 2023 Stable bilateral hemianopsia Not available Resumed dabrafenib and trametinib

October 2024 Stable bilateral hemianopsia Not available Continuing dabrafenib and trametinib
TABLE 2 Literature review with primary results of cases analyzed for this manuscript.

Studies Demographics Context Dosage Primary result

Brastianos et al. 39-Year-old male Stage IV Dabrafenib 150 mg BID,
trametinib 2 mg BID

Combination BRAF and MEK inhibition reduced the tumor by 85%
after 35 days

Roque et al. 47-Year-old female Unresectable
tumor proved
refractory
to radiation

Dabrafenib 150 mg BID,
trametinib 2 mg BID

Combination BRAF and MEK inhibition reduced the tumor by more
than 75% by 5 months; however, the patient had
permanent panhypopituitarism

Nussbaum et al. 35-Year-old male Post
subtotal resection

Dabrafenib 75 mg BID,
trametinib 2 mg BID

Combination BRAF and MEK inhibition reduced tumor by 95% over
21 months

Wu et al. 60-Year-old female
and 60-year-
old male

Post subtotal
resection for
both cases

Dabrafenib 150 mg BID,
trametinib 2 mg BID

Combination BRAF and MEK inhibition in the 60-year-old female leads
to a complete response for 2 years; in the male, the same combination
showed a 20% reduction in tumor size over 1 month

Rao et al. 35-Year-old male Post
subtotal resection

Dabrafenib 150 mg BID Single-agent BRAF inhibition led to a continued response over 2 years;
however, patient had a remnant of panhypopituitarism

Khaddour et al. 39-Year-old male Post
subtotal resection

Dabrafenib 150 mg BID,
trametinib 2 mg BID

Combination BRAF and MEK inhibition showed a 70% tumor
reduction at 9 months; patient has been in remission for 2 years

Brastianos et al. 16 Total patients NA Vemurafenib 960 mg BID
for 28 days, cobimetinib 60
mg daily for 21 days

Median reduction in volume of tumor was 91% over 22 months. PFS
was 87% at 12 months and 58% at 24 months
NA, Not available.
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effect on his quality of life. An argument could be made that the patient

could have started on targeted treatment with dabrafenib and trametinib

in the neoadjuvant setting before surgery, to perhapsmake surgery a one-

time event as opposed tomultiple surgeries being necessary. Neoadjuvant

dabrafenib and trametinib as a neoadjuvant could have reduced tumor

volume leading to a less morbid surgery. When the patient was finally

started on the dabrafenib and trametinib, one of the limitations was the

ability to only assess the patient clinically and not with more frequent

imaging. For example, the patient started on targeted treatment and

clinically improved for 2 months before he felt that his vision was getting

worse. It could have been beneficial to see what a brain MRI would have

shown after 2 months of treatment, but a brain MRI would not have

been approved by his insurance. Likewise, the patient had surgery after

only 2 months of being treated with targeted therapy and resumed on

targeted therapy after this surgery. The question could be asked if the

patient is in remission because of the targeted treatment or the surgery.

Limited publications are available discussing dabrafenib and trametinib

in the neoadjuvant setting. Ultimately, more research is required to

address this paradigm of using targeted treatment as a neoadjuvant

treatment and then deciding whether or not the patient even needs

surgery or radiation.
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Background: Adult pineoblastoma is an extremely rare central nervous system

malignancy. Limitations of tumour databases, single institution retrospective

analyses and a few case reports are not sufficient to clarify treatment options.

Therefore, a systematic review of comprehensive research data provides

referenceable treatment options.

Methods: A systematic review was performed using MEDLINE and Embase using

the terms “pineoblastoma” and “adult”. Relevant articles in the references were

considered to supplement this systematic review. In addition, data were analysed

using Kaplan-Meier survival curves, COX analysis, chi-square tests and log-

rank tests.

Results: A total of 108 adult cases from 32 articles were included in this study and

the median age at diagnosis was 30 years. The 5-year survival rate was 49.5%

(95% confidence interval: 0.378-0.602) and the 10-year survival rate was 33.9%

(95% confidence interval: 0.207-0.476). During the 10-year follow-up period,

Kaplan-Meier survival curves highlighted that the gross total resection was more

beneficial than subtotal resection and no surgery (P=0.018). The treatment

modality of radiotherapy and chemotherapy was beneficial for survival

(P<0.001; P=0.020). In addition, multivariate COX analysis showed that

radiotherapy was an independent factor in the beneficial prognosis (P<0.001)

and gross total resection tends to improve survival within five years (P=0.079).

Conclusion: For adult pineoblastoma, gross total excision and radiotherapy can

be beneficial for survival.Systematic Review Registration: [website], identifier

[registration number].
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pineoblastoma, adult, surgery, radiotherapy, chemotherapy, survival
frontiersin.org0191

https://www.frontiersin.org/articles/10.3389/fonc.2024.1442612/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1442612/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1442612&domain=pdf&date_stamp=2024-12-16
mailto:xujixuan1995@outlook.com
https://doi.org/10.3389/fonc.2024.1442612
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1442612
https://www.frontiersin.org/journals/oncology


Chu et al. 10.3389/fonc.2024.1442612
1 Introduction

Primary tumours of the pineal gland are rare and account for

0.1%-0.3% of intracranial malignancies (1). A variety of tumour

subtypes can arise in the pineal gland. The recent World Health

Organisation (WHO) Classification of Tumours of the Central

Nervous System 2021 categorises primary pineal parenchymal

tumours as: pineocytomas, pineal parenchymal tumours of

intermediate differentiation (PPTID), pineoblastoma, papillary

tumour of the pineal region and desmoplastic myxoid tumour of

the pineal region, SMARCB1-mutant (2). Pineoblastoma (PB),

accounts for approximately 45% of all pineal parenchymal

tumour subtypes (3–5). It typically affects infants and young

children with a slight female preponderance, although has been

rarely reported in adults (3, 6). PB is classified as a WHO grade IV

tumour and has a high rate of recurrence and propensity for spread

via the cerebrospinal fluid (CSF) (7). Despite aggressive

multimodality treatment, including surgery, radiotherapy and

chemotherapy, the outcome of PB is poor with a 5-year survival

of only 15% for patients < 5years of age (6).

Recent molecular characterisation has segregated PB into 5

molecular subgroups: PB-Group 1, PB-Group 2, PB-Group 3, RB

and MYC; each with distinct clinico-pathologic and survival

features (8, 9). Groups 1 to 3 PB arise in older children and

adolescents and are associated with improved outcomes in

contrast with patients with groups RB and MYC (9).

At present, management of adult PB is based on data

extrapolated from paediatric practice. With small numbers of

adult patients reported in multiple case reports and series;

prognosis, as well as contribution of surgical resection and

adjuvant chemo/radiotherapy on outcomes remain unclear.
1.1 Objectives

The objective of this study was to systematically review all adult

cases of PB to determine patient characteristics as well as impact of

surgical resection and adjuvant oncological therapy on prognosis

from 1946 to 2021 in English journals.
2 Methods

This systematic review was reported as per the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines. All articles reporting cases of pathologically

confirmed adult PB were included. Using the terms

“pineoblastoma” and “adult”, MEDLINE and Embase databases

were searched; with results limited to those written in English and

published prior to June 2021. References from searched results were

used in addition, and duplicate articles removed.

Data were collected on patient and tumour baseline

characteristics, overall survival and treatment received. Kaplan-

Meier survival curves were used to observe unadjusted survival,

and log-rank test was used to compare survival outcomes in patients

who received differing surgical procedures as well as adjuvant
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oncological therapies. A multivariate Cox model was used to

determine which clinical variables were independently related to

improved survival.

The Chi-square test was used to process categorical variables.

Data were analysed using SPSS version 27.0 (IBM, Armonk, New

York, USA). Kaplan-Meier curves were described by STATA 16.0

(STATA corporation, College Station, TX, USA) software.
3 Results

3.1 Study selection

As shown in Figure 1, a total of 169 articles were identified from

the MEDLINE and Embase search. Besides, during the reading-

through of the content and citations of these articles, additional 22

articles were found to contain retrievable original data of adult

pineoblastoma cases. Among the above 191 articles, 61 were

removed because of duplication, 94 were removed for lack of

original data, and 4 were removed due to lack of patient survival.

In summary, a total of 32 articles (3, 10–40) were included in this

systematic review, which included case reports or series with an

inherent risk of bias.

For eligible cases, we extract and analyse age, gender, surgery

approach (GTR/STR), radiotherapy (RT) type, RT dose, CT, CT

drugs, follow-up time and status. The detail regimen of

chemotherapy was not analysed because of a lack of information

from most patients. From a clinical perspective, total dose of

radiotherapy to the pineal region (RTP) was analysed from RT

dose data. The last follow-up time was defined as survival time.
3.2 Findings

From the selected 32 publications, 108 adult patients (age≥18

years) with pathologically confirmed PB were identified with

demographic and treatment characteristics summarised in

Table 1. Median age at diagnosis was 30 years (range 18-81). Of

the 108 cases; 48 were male (44.4%) and 60 were female (55.6%).

Forty-two patients (38.9%) had their presenting symptoms

reported. The most common presenting symptoms included the

following; alone or in combination: headache (n=31, 73.8%), visual

disturbance including Parinaud’s Syndrome (n=20, 47.6%), nausea

and vomiting (n=10, 23.8%), dizziness (n=7, 16.7%), limb weakness

(n=6, 14.3%) and deterioration in mobility (n=5, 11.9%).

Information was available for 104 patients regarding extent of the

disease at the time of diagnosis. Thirty-four patients (31.5%) were

reported to have disseminated disease, and 70 (64.8%) had pineal

disease only. Staging information was not available for 4 patients.

Of the 108 cases, 14 (13%) had gross total resection (GTR), 39

(36.1%) underwent subtotal resection (STR) and 54 (50%) had a

biopsy. Extent of resection was not reported in one case (0.9%). The

majority of patients [94 (87%)] received adjuvant radiotherapy

following surgical resection or biopsy. Of the 94 patients who

received adjuvant radiotherapy, 51 (54.3%) were treated with

craniospinal irradiation (CSI). Seventeen (18%) patients received
frontiersin.org
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focal radiotherapy, and for 26 (27.7%) no information was found

regarding radiation technique.

Only 39 patients (36.1%) received adjuvant chemotherapy (CT).

The chemotherapy regimen varied significantly, and prescription

information was available for only 23 patients. Although the CT

drug varied for almost every patient, a cisplatin-based schedule was

used in the majority (60.8%). All of the 39 patients who received

adjuvant CT had also received radiotherapy. No information was

available regarding toxicity of therapy.

Of the 108 patients, 53 (49%) patients had died. Median overall

survival (OS) was 59 months, with a 5- and 10- year OS of 49.5%

and 33.9% respectively (Figure 2). Median length of follow up was

25.5 months (range 0.5-288 months).

A COX univariate analysis was used to observe and test which

factors were associated with prognosis. Univariate variables that

were statistically significant were included in the COX multivariate

analysis model. Similar to the Kaplan–Meier curve, the COX

analysis model evaluated prognostic factors in five-year and ten-

year periods. Regarding the COX univariate analysis, factors

including age, gender, surgery, RT, RT types, and CT were
Frontiers in Oncology 0393
calculated (Figure 3). As shown in both figures, extent of

resection, RT and CT are significantly associated with patient

prognosis at both five and ten years.

As demonstrated in Figure 4, Cox multivariate analysis was

used to determine which factors were associated with OS. There was

a statistically significant benefit in OS at both 5 and 10 years for

patients who received radiotherapy. (HR 0.16; p < 0.001). A trend

towards improved OS at 5 years was seen for patients who had

undergone a GTR (HR 0.16; p = 0.079). There was no statistically

significant relationship demonstrated between the use of

chemotherapy and OS.

According to the results of COX analysis, Kaplan-Meier

univariate analysis focussed on these variables: choice of surgery,

RT and CT. The Kaplan-Meier survival curve demonstrated that

patients who underwent surgery (whether GTR or STR) had

superior overall survival at 5 and 10 years (p = 0.009, p =

0.018) (Figure 5).

The Kaplan-Meier survival curve demonstrated that patients

who received CT achieved better survival compared with patients

who had no CT in both five-year and ten-year period time

(Figure 6). Log-rank test P value presented that there was a

statistical difference between the CT and no CT groups in two

time periods (P value=0.007, P value=0.020).
TABLE 1 Study population (n=108).

Patient characteristics

Median age (range) 30 years (18-81)

Male 48 (44.4%)

Surgery

GTR 14 (13%)

STR 39 (36.1%)

Biopsy 54 (50%)

Not reported 1 (0.9%)

Adjuvant RT

Yes 94 (87%)

No 14 (13%)

RT type

CSI 51 (54.3%)

Focal 17 (18%)

Unknown 26 (27.7%)

CT

Yes 39 (36.1%)

No 63 (58.3%)

Unknown 6 (5.6%)

Median OS (range) 59 months (25.7-176)

Median FLUT 25.5 months
n, number of patients; GTR, gross-total resection; STR, subtotal resection; RT, radiotherapy;
CSI, craniospinal irradiation; CT, chemotherapy; FLUT, follow-up time; OS, overall survival.
FIGURE 1

PRISMA flow diagram. (A) Search Terms for MEDLINE and Embase.
(B) Eligibility assessment of papers for inclusion. (C) Eligibility
assessment of cases for inclusion.
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The Kaplan-Meier survival curve demonstrated that patients

who received RT got the better survival compared with those

patients who had no RT in both five-year and ten-year period

time (Figure 7).
4 Discussion

4.1 Survival

In our study, the median survival time for this series is 59

months (range: 25.7 months – 176 months). The lowest median

survival from Lee et al. was 25.7 months and the highest median

survival was 176 months from Selvanathan et al. (1, 41). The large

difference between the two series regarding median survival could

not be analysed as neither Lee et al. nor Selvanathan et al. presented

complete case data (1, 41). As the series containing the largest

number of cases, Jing et al. did not provide clear survival data (42).

The rest of the reference median survival range is 35-105 months (3,

10–12, 43).

However, this study is not confined to one institutional or local

database and the median survival of 59 months reflects the general

level of overall survival of adults with PB over the last 50 years. The

5-year survival rate for patients in this study is 49.5%, which is

similar to the 5-year survival rate of 51% reported by Lutterbach

et al. (12). However, Selvanathan et al. reported a 5-year survival

rate of 62.8% (1). This is most likely due to the inclusion of 16- to

17- years old patients in his cases, and therefore has a greater impact

on the 5-year survival rate. On every account, the prognosis for

adult patients themselves is better compared to the 5-year survival

rate of 15% for children aged ≤5 years (6). For this reason, younger

patients with PB are more likely to develop metastases (3). Although

there is currently no clear clarification of the worse prognosis in

paediatric PB patients, we believe that factors such as the lack of
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ability to self-assess and self-care, poor medical compliance, and a

weaker immune system may greatly contribute to the worse

prognosis in paediatric patients compared to adults.
4.2 Age

Adults are defined in this study as 18 years of age or older.

Furthermore, age is not a factor in the prognosis of adult PB

patients. Prior to 2014, retrospective analyses of adult PB had

different definitions of adult age, with some articles defining 16-

year-old as adults (1, 41). Two retrospective analyses after 2015 set

the age at 18 years or older and noted the difficulty of comparing

clinical factors in some of the retrospective analyses because the

data for patients aged 16-17 years were unclear (10, 43). In contrast,

Jing et al. only included patients over 20 years of age and did not

explain the specific reasons.

On the other hand, stratifying this cohort of 108 patients based

on a median age of 30 years, the Kaplan-Meier curve did not find an

effect of age differences on survival. Lee et al. noted that age was not

a statistically significant predictor of survival (41). However,

Selvanathan et al. reported that the prognosis of patients

deteriorated with increasing age (1). A review of Huo et al. study

found that in an overall analysis of age in 64 patients including

paediatric and adult patients, the risk of survival increased with each

additional year of patient age. However, when Huo et al. validated

the paediatric and adult groups (age≥18 years) of the cohort

separately, COX regression analysis showed that age was no

longer a risk factor for both groups of patients (43). In addition, a

small series of retrospective analysis of Gener et al. pointed out that

age was not a risk factor for prognosis (10). Thus, Selvanathan et al.

found that age was associated with prognosis, most likely because

the cohort included patients under 18 years of age (1).
4.3 Gender

Males and females comprised 44.4% and 55.6% of the total cohort

in this study, respectively. Although there were slightly more female

patients than male, no gender differences were found to have an

impact on improving survival rates. Most of the adult PB series

display a higher proportion of female patients and no statistically

significant effect of gender on prognosis (1, 10, 42, 43). Only Lee et al.

stated that there was a statistical trend for gender to improve survival

(41). The interpretation of this finding needs to be considered in two

ways. One is that in the Lee et al. cohort, the sample size was small

and predominantly male, which is not consistent with the findings of

most studies. The second is that a statistical trend cannot be equated

with statistical significance, and it is likely that the trend would

disappear after adjusting for other factors.
4.4 Surgery

The prevailing surgical approach is gross total resection (GTR)

and subtotal resection (STR), with GTR being the recommended
FIGURE 2

Kaplan-Meier survival curve for all patients regardless of
treatment received.
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approach on adult PB (44). According to the Kaplan-Meier

curve, there is a significant difference in the effect of GTR, STR

and no surgery on the survival rate in this study. Moreover, the

effect of GTR is the best, and the effect of STR is the second.

Although both GTR and STR were statistically significant in the

univariate COX analysis, both lost statistical significance after

the multivariate COX analysis. However, it is worth noting that

the results of the multivariate COX analysis, which limited the five-

year follow-up time, showed a statistical trend in GTR (P=0.079).

Perhaps with an expanded sample size, GTR could be an

independent variable in improving the prognosis of adult

PB patients over the five years that they undergo GTR surgery.

Multivariate COX analysis showed a disappearance of the

tendency for GTR to improve prognosis within ten years

(P=0.106), which may be related to the short survival period of

the malignancy.
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From a theoretical point of view, the relatively conservative

approach to early surgery, such as STR, is due to the need to avoid

surgical complications. With the development of clinical

technology, microsurgery and neuronavigation technology can

better support clinicians to choose a wider range of resection

operations (6, 45). Moreover, studies have demonstrated that

GTR is associated with better local control and a reduced rate of

local recurrence (46, 47). Although Selvanathan et al. did not find a

benefit from surgery, Tate et al. claimed that the role of GTR in the

treatment of PB could not be ignored (1, 6).
4.5 Radiotherapy

In this study, RT not only demonstrated statistical significance

in the Kaplan-Meier curve and univariate COX analysis (P<0.001),
FIGURE 3

Univariate Cox regression analysis was used to estimate the prognostic factors in 5 years follow-up (A) or 10 years follow-up (B). Black squares
indicate the hazard ratio (HR). *Statistically significant. HR, hazard ratio; CI, Confidence Interval. STR, subtotal resection; GTR, gross-total resection;
RT, radiotherapy; CSI, craniospinal irradiation; CT, chemotherapy.
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but also emerged as the only independent prognostic factor in the

multivariate COX analysis. In Selvanathan et al. cohort, there was

no statistical difference in survival between patients who received

RT and those who did not. However, he also found that patients

who received RT may have prolonged survival, acknowledging that

the lack of statistical significance was due to the limitations of the

sample size (1). Similarly, this issue arose in the study by Huo et al.
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The risk factor for RT in 14 adults with PB was protective, but not

statistically significant. After he had combined the adult and

paediatric samples, the prognostic impact of RT was statistically

significant (43).

For the impact of the type of RT, this study attempted to explore

the effect of CSI, Focal and CSI + boost on survival. Although RT

type was not found a statistical difference, CSI+boost demonstrated
FIGURE 4

Results of multivariate analysis on overall survival at 5 years (A) or 10 years (B). HR, hazard ratio; CI, Confidence Interval. *Statistically significant. STR,
subtotal resection; GTR, gross-total resection; RT, radiotherapy; CT, chemotherapy.
FIGURE 5

Kaplan–Meier curve analysis (Log-rank test) illustrating the survival rates of patients (n=107) between GTR, STR and no surgery for 5 years (A) or 10
years (B). STR, subtotal resection; GTR, gross-total resection.
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a trend towards improved survival. In fact, there is no retrospective

analysis of adult PB that explores this factor. Therefore, it is difficult

to compare and validate this result. In conclusion, the prognostic

impact of radiotherapy may become clearer as the sample size of

future studies is expanded and more prospective trials are explored.
4.6 Chemotherapy

In this study, the Kaplan-Meier curve and univariate COX

analysis showed that CT was beneficial and statistically significant

for survival. However, a multivariate COX analysis revealed that CT

could not be used as an independent prognostic variable. This may

indicate that CT in combination with surgery and RT can improve

survival rates. In the Tate et al. cohort, the combination of RT and
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CT after surgery was more beneficial to survival than the CT after

surgery. However, he did not analyse the effects of CT separately

nor did he distinguish between adults and children in the cohort (6).

Huo et al. distinguished between adults and children and studied

the prognostic impact of CT, but he did not find it to be statistically

significant (43). Jing et al. found that the combination of

postoperative RT and CT significantly improved survival rates

(42). In clinic, one case report supported that CT was effective in

clinical practice (14).
5 Limitations

This systematic review summarises published cases with specific

data, including institutional studies and case reports. This study
FIGURE 6

Kaplan–Meier curve analysis (Log-rank test) illustrating the survival rates of patients (n=102) between CT and no CT for 5 years (A) or 10 years (B).
CT, chemotherapy.
FIGURE 7

Kaplan–Meier curve analysis (Log-rank test) illustrating the survival rates of patients (n=108) between RT and no RT for 5 years (A) or 10 years (B).
RT, radiotherapy.
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contains the most comprehensive number of adult PB cases

available and is also the first systematic review of adult PB to

provide evidence for the determination of treatment options.

However, access to the database to retrieve the data was not

achieved. It was also not possible to contact authors who did not

provide specific data. In the study of the relationship between

treatment and prognosis, the data of chemotherapeutic drugs are

insufficient and cannot be statistically analysed. Sample size

limitations did not allow for analysis of combination treatments.

In addition, heterogeneity in tests, diagnosis and treatment

modalities is objective due to differences in the year in which

each patient is diagnosed. The operation of the treatment and the

choice of medication are uncontrollable. However, the use of

regression analysis to correct for covariates of confounding

factors helped to reduce the effect of heterogeneity.
6 Conclusion

PB is a rare tumour of the pineal region. In adults, age and

gender do not influence the overall survival of PB patients.

Gross-total resection and radiotherapy are favourable factors for

prognosis. Surgery combined with radiotherapy and chemotherapy

is likely to be even more effective. In the future, further studies are

needed to explore the contributions of radiotherapy methods,

radiation doses, and chemotherapy regimens. Additionally, we

advocate for the standardisation of follow-up intervals, the

extension of the total duration of follow-up as well as the

recording of professional activities and quality of life in original

studies. Prospective studies with more restrictive selection criteria

are more likely to identify the key factors that affect the survival of

adult PB patients.
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Enhancing glioblastoma
therapy: unveiling synergistic
anticancer effects of
Onalespib - radiotherapy
combination therapy
Julia Uffenorde1†, Mehran Hariri2†, Eleftherios Papalanis2,
Annika Staffas2, Josefine Berg2, Bo Stenerlöw2,
Hanna Berglund2, Christer Malmberg3 and Diana Spiegelberg1,2*

1Department of Surgical Sciences, Uppsala University, Uppsala, Sweden, 2Department of Immunology,
Genetics and Pathology, Uppsala University, Uppsala, Sweden, 3Department of Medical Sciences,
Uppsala University, Uppsala, Sweden
Background: Glioblastoma (GBM) is the deadliest form of brain cancer,

impacting both adults and children, marked by exceptionally high morbidity

and mortality rates, even with current standard treatments such as surgery,

radiation therapy, and chemotherapy. Therefore, there is a pressing need for

new therapeutic strategies to improve survival and reduce treatment side effects.

In this study, we investigated the effect of HSP90 inhibition in combination with

radiotherapy in established and patient-derived glioblastoma cell lines.

Methods: Potential radiosensitizing effects of the HSP90 inhibitor Onalespib

were studied in XTT and clonogenic survival assays as well as in tumor-mimicking

multicellular spheroid models. Further, migration capacity and effects on protein

expression were studied after exposure to Onalespib and radiation using

Proximity Extension Assay analysis.

Results: HSP90 inhibition with Onalespib synergistically enhanced the

radiosensitivity of glioblastoma cells grown in 2D and 3D models, resulting in

increased cell death, reduced migration capacity and activation of the apoptotic

signaling pathway. The proteomic analysis of glioblastoma cells treated with

Onalespib, radiation, and their combination revealed significant alterations in

protein expression profiles, involved in growth signaling, immune modulation

pathways and angiogenesis. Moreover, the combination treatment indicated

potential for enhancing cell cycle arrest and apoptosis, suggesting promising anti-

tumor effects.

Conclusion: These findings demonstrate that HSP90 inhibition may be a promising

strategy to enhance the efficacy of radiotherapy in the treatment of GBM, potentially

leading to improved outcomes for patients battling this challenging disease.
KEYWORDS

CNS tumors, synergy, heat shock protein, radiotherapy, combination therapy,
proteomics, proximity extension assay
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1 Introduction

Glioblastoma (GBM) is the most frequent primary brain tumor

in adults, with a median survival of less than 15 months despite

aggressive treatment (1). Its occurrence in children remains

relatively rare, constituting 3–15% of primary central nervous

system (CNS) tumors. Despite the relative rarity, pediatric GBM

exacts a significant toll with high morbidity and mortality rates, and

with a 5-year survival of less than 20% (2, 3). The therapeutic

strategies of GBM include open surgery and a combination of

radiotherapy (60 Gy), typically given over 6 weeks (in 30 fractions

of 2 Gy) with concurrent administration of the oral alkylating agent

temozolomide (TMZ) (4, 5). There are indications that patients

with epigenetic silencing of the DNA-repair protein MGMT in the

tumor tissue benefit the most from TMZ, however, pediatric GBMs

seldom display methylated MGMT promoters (5, 6). Unfortunately,

TMZ treatment often leads to emergent tumor resistance (7), with

multiple studies indicating that inactivation of the mismatch repair

function (MMR) may be an important mechanism underlying

acquired resistance. TMZ produces O6-methylguanine (O6-MG)

lesions, which leads to base mispairing with thymine instead of

cytosine during DNA replication, triggering DNA repair, cell cycle

arrest, and ultimately cell death. In the case of MMR inactivation in

post-treatment GBM patients, O6-MG is not recognized by MMR

proteins and bypasses apoptosis, resulting in the survival of cancer

cells and the proliferation of “cytidine to thymidine” hypermutator

phenotypes (8, 9). Despite these insights, many aspects involved in

GBM resistance to treatment are still poorly understood. The

inadequate killing of cancer stem cells and the upregulation of

DNA damage response (DDR) have been described as important

contributors to low cancer survival (10).

New treatment approaches are needed to increase therapy

success rates and improve clinical outcomes for patients with

GBM. Based on the current understanding of the mechanisms

underlying radiotherapy resistance, this may involve specific

targeting of the resistant cancer cell subpopulations, as well as

DDR mechanisms.

Recent research has identified the molecular chaperone heat

shock protein 90 (HSP90) as a promising target for improving

radiation treatment, including GBM (11–16). HSP90 is a member of

the heat-shock protein family with a molecular mass of 90 kD.

HSP90 is often overexpressed in human tumors, having a central

role in buffering cellular stress and protein folding in an ATP-

dependent manner. For this, HSP90 stabilizes multiple DDR

proteins and oncoproteins which helps ensuring tumor cell

survival and proliferation (17). HSP90 inhibitors exhibit higher

affinity for the intertumoral HSP90 compared to the HSP90 in

normal cells. This is due to the increased ATPase activity of HSP90

in tumor cells, which results from mutations or deregulation that

are commonly present in cancerous cells (18). Therefore, HSP90

inhibitors have received interest as potentially attractive and potent

cancer treatment agents. In our study, we used Onalespib, a second-

generation HSP90 inhibitor with favorable toxicity profile (19) and

the benefit of penetrating the blood-brain barrier (20). Onalespib

already has undergone phase I studies with solid tumors with

acceptable toxicity profiles and has shown antitumor activity in
Frontiers in Oncology 02101
combination treatment (19, 21). Furthermore, long-acting effects of

Onalespib against gliomas with a decrease in proliferation,

migration, and angiogenesis of the tumor cells and an effective

blood-brain barrier cross as a single agent or as a combination

treatment with TMZ have been demonstrated in vitro and in vivo

(20). Previous studies have demonstrated that Onalespib

significantly impairs DNA repair by depleting homologous

recombination (HR) proteins such as CHK1 and RAD51,

reducing HR repair and increasing glioma stem cell sensitivity to

radiation and TMZ (15). It also modulates DDR proteins, including

ATM and DNA-PKcs, further compromising repair mechanisms

(13). While its impact on MMR proteins is limited, with minor

effects on MSH2 and downregulation of MSH4, MSH6, and EXO1,

Onalespib’s ability to target multiple DNA repair pathways

underscores its potential to overcome treatment resistance (15).

Our study aims to investigate the efficacy and underlying

molecular mechanisms of the combining the HSP90 inhibitor

Onalespib with external beam radiotherapy in four glioblastoma

cell lines in vitro, providing a comprehensive model for studying

GBM’s genetic diversity. U343 MG and U87 MG, widely used,

feature wild-type p53, aiding radiation resistance studies and

modeling invasiveness. However, the long-term culturing of these

well-established cell lines may have reduced their molecular

complexity. In contrast, the patient-derived lines U3013MG and

U3024MG retain genetic heterogeneity (22), with sensitivity to

certain therapies and exhibiting unique DNA repair defects. This

combination supports the development of personalized GBM

therapies while ensuring comparability with prior research.

By exploring the combination treatment of Onalespib and

radiotherapy, we aim to contribute to the development of more

effective therapeutic strategies for GBM and ultimately improve

patient outcomes in this challenging disease.
2 Materials and methods

2.1 Cell lines

The glioblastoma cell lines were purchased from the American

Type Culture Collection ATCC (Manassas, VA, United States). U87

MG (HTB-14) cells were grown in Dulbecco’s Modified Eagle’s

Medium (DMEM (Biowest, MO, USA)) and was supplemented

with 10% Fetal Bovine Serum (FBS, Sigma-Aldrich, Darmstadt,

Germany) and 1% antibiotics (100 IU penicillin and 100 mg/ml

streptomycin, Biochrom GmbH). The U343 were grown in MEM

containing Earle’s salts (Biochrom, Berlin, Germany or Sigma-

Aldrich, Darmstadt, Germany) supplemented with 10% FBS

(Sigma Aldrich, Darmstadt, Germany), 1% antibiotics (100 IU

penicillin and 100 mg/ml streptomycin, (Biochrom GmbH, Berlin,

Germany) and 1% sodium pyruvate (Thermo Fisher, Waltham,

MA, USA). Both cell lines were grown in an incubator at 37° C and

5% CO2. The human patient-derived GBM cell lines U3013MG and

U3024MG, were obtained from the HGCC collection (22), and

maintained in culture according to HGCC guidelines. Cells were

maintained on laminin-coated tissue culture dishes (Primaria, Cat.

No. 353802, Corning; laminin Cat. No. L2020, Sigma Aldrich) in a
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serum-free medium composed of a 1:1 mixture of Neurobasal

Medium (Cat. No. 21103-049, Thermo Fisher) and DMEM/F-12,

GlutaMAX™ (Cat. No. 10565-018, Thermo Fisher). The medium

was supplemented with 10 ng/ml FGF-2 (Cat. No. 100-18B,

Peprotech), 10 ng/ml rhEGF (Cat. No. AF-100-15, Peprotech), N-

2 (Cat. No. 17502048, Thermo Fisher), and B-27 solution (Cat. No.

17504044, Thermo Fisher).
2.2 Drug preparation

Onalespib (AT13387, Selleck Chemicals, Germany) was

dissolved in DMSO and stored in aliquots at -20°C. Onalespib

was further diluted in complete media for the desired

assay concentrations.
2.3 Irradiation

For cell viability studies (XTT), migration and multicellular

spheroid assays, Proximity Extension analysis and flow cytometry,

cells were irradiated 24 h after drug incubation with 225 kV X-rays

(X-RAD iR225, Precision X-Ray Inc., North Branford, CT, USA) at a

dose-rate of 1.5 Gy/min using an inherent Ba filter (0.8 mm) and an

external Cu filter (0.3 mm). For clonogenic survival (24 h after drug

incubation), the irradiation was either performed as described above

or with an Elekta Versa HD linear accelerator at the Uppsala

University Hospital. The X-ray beam was set to 6 MV and the cells

were placed at a water-equivalent depth of 10 cm using water-

equivalent plastic attenuators. Cells were irradiated using a vertical

beam (irradiation from above). The dose rate was approximately 4-5

Gy per minute. All irradiations were performed at room temperature.
2.4 XTT assays

The XTT assay was performed to assess the cell viability. U343

MG, U87MG, U3013MG andU3024MG cells were seeded per well in

96-well plates (VWR, Pennsylvania, USA, laminin-coated for patient-

derived cultures) and incubated at 37°C and 5% CO2 for 48 h. Cell

media was then removed and replaced by fresh media containing 0,

10, 25, 50 and 100 nM of Onalespib, followed by irradiation with 1, 2,

4, or 6 Gy. 72 hours after treatment, an XTT assay (ATCC, Manassa,

VA) was performed according to the manufacturer’s protocol. Briefly,

XTT activation reagent, XTT reagent and cell media were mixed and

150 ml were added to the 60 inner wells (excluding the outer wells) of

the plate, and then the plate was incubated at 37°C and 5% CO2 in the

dark. The absorbance was measured at 490 and 650 nm in a

spectrophotometer 4 hours after incubation (Biorad, iMarkTM

Microplate Absorbance Reader). The software used for the

measurements was Microplate Manager Software 6 (Biorad). Each

measurement was replicated at least six times.
2.5 Clonogenic assays

Clonogenic survival assays were performed as described

previously (23) to assess the cell’s ability to grow into a colony. In
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short, 100-4600 U343 cells were seeded in 6-well plates (VWR,

Pennsylvania, USA) and incubated at 37°C and 5% CO2 for 24

hours. 24 hours later, cells were treated with 2 ml of media-

containing Onalespib (5-50 nM). After 24 hours, the cells were

irradiated with 2-6 Gy of X-rays and incubated until colonies of

more than 50 cells/colony were formed. Then, the medium was

removed, followed by washing with cold PBS and the cells were

fixated by adding 96% cold ethanol for 20 minutes. and stained with

crystal violet (1% solution, Sigma-Aldrich, Darmstad, Germany).

Colonies containing more than 50 cells were counted manually and

the plating efficiency (PE) and the survival fraction (SF) were

calculated. A linear quadratic curve fit (S = exp (−aD − bD 2),

where D = radiation dose in Gray, and a and b are fitting

parameters) was calculated by using GraphPad Prism 9 software

(San Diego, CA, USA).

One-way ANOVA followed by Tukey’s multiple comparison’s

test determined significance. Data were expressed as mean SD and

p < 0.05 considered to be statistically significant. The number of

replicates within each experimental group was 3. Each experiment

was repeated at least three times.
2.6 Multicellular tumor spheroids

96-well flat bottom plates (VWR, PA, USA) were coated with 50

ml of 1.5% agarose (Sigma Aldrich, Darmstad, Germany) dissolved

in PBS (Biowest, MO, USA) according to (24).4500 U343 MG cells

and 1500 U87 MG cells were seeded in 200 ml cell media/well and

incubated at 37°C and 5% CO2 for 72 hours until 3D spheroids

formed. Twelve spheroids/group were treated with increasing

Onalespib concentrations (50 nM-250 nM). The spheroids were

incubated for 24 hours and then irradiated with 2-6 Gy of X-rays.

Day 0 was considered to be the treatment day. Media was renewed

(100 ml out, 100 ml in) every fourth day. After the treatment,

spheroids were followed by photography every 3-4 days for 2

weeks. The images of the cell spheroids were obtained using a 4x

magnification with a Canon EOS 700D digital camera (Canon,

Tochigi, Japan) mounted on an inverted Nikon Diaphot-TMD

microscope (Nikon, Tokyo, Japan). Assuming a spherical

spheroid shape, the area of the spheroids was determined using a

custom-made macro-command on ImageJ and the volume of the

spheroids was calculated. Comparison between groups was

performed using one-way ANOVA followed by Tukey’s post hoc

test. Data were expressed as mean SD and p < 0.05 considered to be

statistically significant. The number of replicates within each

experimental group was 12. Each experiment was repeated at least

three times.

For live/dead cell count, U87 MG, U3013MG, and U3024MG

spheroids were treated with 25, 50, and 100 nM Onalespib, as well

as 2 or 4 Gy radiation. Three days post-treatment, live/dead cell

counts were performed using trypan blue (BioRad) staining

according to the manufacturer’s instructions. For the limiting

dilution assays, U87 MG cells were trypsinized (accutase was used

for patient derived cell lines), and 50, 100, 250, 500, and 1,000 cells

were seeded into 96-well round-bottom, ultra-low attachment

plates (VWR, PA, USA). Spheroid-forming efficiency was assessed
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three days later, and the data were analyzed using ELDA software,

according to (25).
2.7 Migration/proliferation assay

The cell migration and proliferation ability of U343 MG and

U87 MG cells was studied using a wound healing assay (also called

scratch assay), as previously reported (35). In short, cells were

grown at confluence in 6 well plates and a narrow area on the

monolayer was scratched off with a p10 pipette tip. Afterwards,

wells were washed and incubated with normal cell medium, 5-50

nM Onalespib and radiation of 2-6 Gy. Images from the same

scratch location were obtained directly after scratching, 6, 12 and

24 h of incubation using an inverted microscope Nikon Diaphot

(Nikon, Japan) mounted with Canon EOS 700D camera (Canon,

Tochigi, Japan). Migration distance was measured and analyzed

using ImageJ 2.0.0 software (NIH, Bethesda, MD, United States).

The experiments were repeated 3 times.
2.8 Immunofluorescent biomarker for
chromosomal double-strand breaks

The process of preparing slides and quantifying DNA double-

strand break (DSB) repair foci was conducted following procedures

previously described in (26). Briefly, U343 MG, and U87 MG cells

were seeded in 4-well cell culture chamber slides (Nunc A/S, Roskilde,

Denmark) to achieve approximately 70% confluency after incubation

at 37°C for 24 h. Subsequently, cells were treated with DMSO, and

100 nMOnalespib for 24 h before irradiation with and without 2 and

6 Gy X-rays. Subsequently, samples were washed and replaced with

fresh pre-warmed medium. The slides were then incubated at 37°C

for 24 h. Afterward, cells underwent a washing step and were fixed

with 1X PBS and 99% methanol (-20°C), respectively. Cell

membranes were permeabilized with ice-cold acetone (Millipore,

Merck, United States) for 10 seconds. Blocking of non-specific

proteins was achieved by incubating the cells in 10% FBS PBS for

1 h at room temperature. Following this, the slides were exposed to

Rabbit anti53BP1 (1:1000, ab36823, Abcam, Cambridge, United

Kingdom) and mouse anti-gH2AX (1:100, JBW301, EMD Millipore

Merck Darmstadt, Germany) antibodies overnight at 4°C. The next

morning, the slides were incubated with Alexa fluor 555 (1:400,

ab150086, Abcam, Cambridge, United Kingdom) and Alexa fluor 488

(1:400, ab150117, Abcam, Cambridge, United Kingdom) for 1 hour

in the dark. Nuclei were stained with DAPI (ThermoFisher Scientific,

Sweden) in the dark for approximately 2 minutes, followed by

washing with 1X PBS and MQ water. The slides were air-dried

before mounting with VECTASHIELD® antifade media (part of

Maravai LifeSciences, USA). High-resolution images with a 20X NA

0.8 objective were captured using a Zeiss LSM 700 point scanning

confocal microscope (Zeiss, Oberkochen, Germany). Foci

quantification was performed on maximum intensity projection

images using ImageJ software (Fiji Is Just ImageJ). The number of

53BP1 and gH2AX foci were counted for approximately 200 nuclei in

each condition.
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2.9 Flow cytometry

To assess the cell cycle distribution after treatment, flow cytometry

was performed. Cells were seeded in T-25 flasks (purchased from

VWR) and incubated at 37°C and 5% CO2 until confluency was

reached. Once confluent, cells were treated with 5 ml of media-

containing 500 nMof Onalespib and irradiated with 2 and 4 Gy after 1

hour of drug incubation. After 48 hours, cells were trypsinized

followed by washing with PBS and centrifuging (performed twice).

Single cell suspensions were prepared by resuspension in PBS. Cold

Ethanol was added to fixate the cells. Samples were kept at –20°C for a

minimum of one week to ensure cell permeabilization. For flow

cytometry analysis, the cells were centrifuged at 1200 rpm for

10 min and washed twice with ice-cold PBS, followed by adding 0.5

mL RNase (100 mg/mL) and 100 mL of PI (50 mg/mL). After 30 min of

incubation time (at RT, in darkness) analysis was performed using a

CytoFLEX (Beckman Coulter, Krefeld, Germany) flow cytometer. The

data analysis and peaks recognition were done by FlowJoTM Software

for Windows (Version 10.9 Becton, Dickinson and Company,

Oregon, United States).
2.10 Western blot analysis

Whole-cell extracts were prepared according to the procedure

described in (27). Briefly, the samples were separated using SDS-

PAGE and then transferred onto a nitrocellulose membrane

(Immobilon-P Transfer membrane, Millipore, Merck) through

wet blotting. The membrane was blocked for 1 hour in PBS

containing 5% BSA and incubated overnight at 4°C with a

monoclonal p21 antibody (1:1000, ab109520, Abcam,

Cambridge), an anti-gH2AX antibody (1:2000, ab11174, Abcam,

Cambridge), and an anti-GAPDH antibody (1:500,000, ab8245,

Abcam, Cambridge) as a protein loading control.

After three washes with PBS-Tween (1%), a secondary antibody

conjugated with Horseradish Peroxidase specific to the primary

antibody species was added for 1 hour at room temperature. This

was followed by another three washing steps with PBS-Tween (1%).

The immunoreactive bands were then visualized using an Amersham

ImageQuant 800FL imaging system (Cytiva Life Science, Uppsala,

Sweden) after applying an electrochemiluminescent reagent

(Immobilon, Millipore). Uncropped Western blot membranes are

shown in Supplementary Figure 5.
2.11 Proteomic analysis: proximity
extension assay

U343 MG cell culture lysates were analyzed with Olinks

Proximity Extension Assay using the Oncology II panel (v.7004,

Olink Biosciences, Uppsala, Sweden), measuring expression of 96

proteins. Lysates taken at 24 h post-treatment of 500nM Onalespib

or X-ray irradiation of 4 Gy or the combination of the two. Protein

levels were expressed as normalized protein expression (NPX) on a

log2-scale. Values below limit of detection (LOD) were truncated at

the LOD. No values were above the upper limit of quantification.
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All data analysis was performed with R (v4.3.1). In order to

analyze expression signatures between treatments, hierarchical

clustering was performed using the hclust function.

To identify important proteins, the standard deviation of each

assay was used. A large standard deviation (big differences between

treatments) corresponded to a high rank. This was performed on

NPX values, normalized (by subtraction) to the control sample of

the corresponding treatment, with the std function. Functional

ontology analysis of the highly ranked proteins was performed

using the clusterProfiler (v 4.0) package (28, 29), and the Reactome

pathway knowledgebase (v87) as reference (30).
2.12 Statistical analysis, synergy analysis
and tumor spheroid doubling time

The experimental data were analyzed using Microsoft Office

Excel for Mac Version 16.8, and graphs were generated using

GraphPad Prism 10 for Mac OS X. Statistical analysis of the

viability, proliferation and migration assays was conducted using

one-way ANOVA with Tukey’s post-test in GraphPad Prism 9.

Statistical analysis of cell cycle distribution was conducted using

two-way ANOVA with Tukey’s post-test in R (v4.3.1), using an

interaction term between the cell cycle and treatment factors,

independent of cell line effects (fraction ~ cycle * treatment + cell

line), and the within treatment groups contrasts were compared in

the post-hoc analysis. A p-value of ≤ 0.05 was considered statistically

significant. The results are presented as means ± standard

deviation (SD).

Synergy calculations for proliferation, clonogenic survival and

migration assay data were performed using the SynergyFinder

website (https://synergyfinder.org, accessed in February 2024).

This analysis generated dose-response curves and provided Loewe

synergy scores.

To evaluate the combined effects of Onalespib and external

beam radiotherapy on multicellular tumor spheroid growth, the

Loewe method was employed on day 14 of the experiment. A Loewe

score ≥10 was considered synergistic, <10>-10 additive, and ≤

-10 antagonistic.

The tumor doubling time was determined using a modified

Schwartz formula, expressed as follows: tumor doubling time = [ln2

× DT]/[ln (X2/X1)], where X1 represents the tumor size at the initial

treatment day, X2 represents the spheroid size at day 14 and DT
denotes the time (in days) between the two measurements.
3 Results

3.1 Synergistic anticancer effects of
combining Onalespib with radiotherapy on
metabolic activity and cell viability

To determine cell viability of glioblastoma cells after exposure

to various doses of the HSP90 inhibitor Onalespib and external

radiation, metabolic activity was measured using XTT assay. The

established glioblastoma cell lines U343 MG, U87 MG as well as the
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patient-derived glioblastoma lines U3013MG and U3024MG were

exposed to Onalespib treatment at multiple doses followed by the

application of radiation therapy 24 h after drug incubation, and

absorbance measurement 72 h after drug treatment.

Results from both U343 MG and U87 MG revealed a significant

dose-dependent decrease in cell viability and proliferation in

following drug and radiation monotherapy (Figures 1A, B, D, E).

Both glioblastoma cell models demonstrated a similar response to

Onalespib treatment, e.g., inhibiting viability/proliferation by 47

and 44.5%, respectively, at a dose of 100 nM. U87 MG presented

more sensitive to radiation, 46.4% survived a radiation dose of 4 Gy,

while 68% of U343 MG cells were viable after the same dose.

Furthermore, additional exposure of 25 nM resulted in a 13% and

24% reduction in the viability of U343 MG and U87 MG cells,

respectively. In contrast, the patient-derived cell lines U3013MG

and U3024MG showed no significant reduction in viability at low

Onalespib concentrations, with only 100 nM causing a notable

decrease (Figures 1G, J, left). However, both cell lines were highly

sensitive to radiation, with 2 Gy reducing viability by 70.1% in

U3013MG and 82% in U3024MG (Figures 1G, J, right).

The combined treatment was more effective for all established

and patient-derived cell lines with the highest inhibition at the

higher doses (Figures 1B, C, E, F, H, K). Synergistic combination

effects, as evidenced by Loewe synergy values > 10, were observed at

all drug doses >10 nM and 6 Gy of radiation. At lower radiation

doses additive effects were observed except for drug concentrations

≥ 50 nM for U343 MG (Figure 1C). U87 MG demonstrated a

similar pattern, with the highest synergistic values recorded at

higher concentrations. However, synergistic effects were also

observed at lower drug and radiation doses (Figure 1F). In

patient-derived cell lines, U3013MG showed synergy at 10nM, 25

nM and 50 nM combined with 6 Gy (Figure 1I), while U3024MG

exhibited synergy at 100 nM and 4Gy as well as 6 Gy (Figure 1L).
3.2 Synergistic anticancer effects of
combining Onalespib with radiotherapy on
clonogenicity (2D) and multicellular tumor
spheroid growth (3D)

To further evaluate the effectiveness of combining radiation with

Onalespib in glioblastoma clonogenic assay were performed

(Figures 2A–D). Both radiation treatment and Onalespib treatment

decreased cell survival in a concentration-dependent manner.

Significant clonogenicity reduction was noted at 1, 2, 4, and 6 Gy.

In line with the viability assays (see above), U87 MG showed an

increased radiosensitivity compared to U343 MG. Further,

monotreatment with 10 and 25 nM Onalespib significantly

decreased to colony formation ability or U343 MG and 5,10 and 25

nM for U87 MG compared to DMSO-treated control samples

(Figures 2A, B). A complete loss of colony formation was observed

for 50 nM of Onalespib regardless of the delivered radiation dose

(data not shown). Combination treatment of Onalespib and radiation

decreased the clonogenicity even more, most pronounced at the

highest drug and radiation doses (Figures 2C, D). However, even at

low radiation doses, the combination treatment with 25nM
frontiersin.org

https://synergyfinder.org
https://doi.org/10.3389/fonc.2025.1451156
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Uffenorde et al. 10.3389/fonc.2025.1451156
Onalespib was extremely potent. A clinically relevant radiation dose

of 2 Gy in combination with 25nM Onalespib reduced the colony

formation by 78.2% and 83.5% for U343 MG and U87

MG, respectively.

To mimic in vivo conditions, the efficacy of the drug and

radiation treatment was tested in multicellular 3D tumor spheroid

model (Figures 2E, F). Interestingly, the U343 MG and U87 MG

glioblastoma spheroids exhibited less sensitivity compared to the

previously evaluated 2D models. In line with the 2D models

however, combined treatment with Onalespib and radiation
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resulted in concentration dependent additional inhibition of

growth compared to individual treatments. The in vitro tumor

spheroid doubling times for the different Onalespib treatments and

radiation doses are summarized in Table 1. Untreated U343 MG

and U87 MG tumor spheroids exhibited doubling times of 3.34 and

2.47 days, resulting in a volumetric increase of 1386% and 3720%

after 14 days, respectively. Treatment with 250 nM Onalespib and 6

Gy radiation was able to significantly reduce proliferation and

increase the doubling time to 67.31 and 26.23 days, respectively,

corresponding to a volume increase of 14% and 41%.
FIGURE 1

Viability of U343 MG (A-C), U87 MG (D-F) U3013MG (G-I) and U3014MG (J-L) determined by XTT assay. (A) Viability (absorbance) after 0, 10, 25, 50
and 100 nM Onalespib treatment (left) and after radiotherapy with 0, 2, 4, 6 Gy (right) (B) combination effect of Onalespib and radiotherapy (C)
LOEWE synergy scores (D) Viability (absorbance) after 0, 10, 25, 50 and 100 nM Onalespib treatment (left) and after radiotherapy with 0, 1, 2, 4 Gy
(right) Right) (E) combination effect of Onalespib and radiotherapy (F) LOEWE synergy scores. (G) Viability (absorbance) after 0, 10, 25, 50 and 100
nM Onalespib treatment (left) and after radiotherapy with 0, 2, 4, 6 Gy (right) (H) combination effect of Onalespib and radiotherapy (I) LOEWE
synergy scores (J) Viability (absorbance) after 0, 10, 25, 50 and 100 nM Onalespib treatment (left) and after radiotherapy with 0, 2, 4, 6 Gy (right) (K)
combination effect of Onalespib and radiotherapy (L) LOEWE synergy scores. Data plotted as means ± standard deviation. One-way ANOVA with
Tukey’s post-test ns (not significant), *(p < 0.05), **(p < 0.01), ***(p < 0.001) and ****(p < 0.0001).
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Synergy calculations performed 14 days post treatment

exposure, where a LOEWE synergy score of >10 indicated

synergy, showed potentiating synergistic effects for several

combinations of Onalespib (10 and 25 nM) and 4 and 6 Gy. This
Frontiers in Oncology 07106
observation is also reflected in the glioblastoma spheroid images in

Figures 2H, J.

To further characterize the multicellular tumor spheroids, we

quantified live cells by labeling dead cells with trypan blue staining
FIGURE 2

Colony formation and multicellular spheroid growth of U343 MG and U87 MG glioblastoma cells. Survival fraction of Onalespib and radiation treated
U343 MG (A) and U87 MG (B) Survival fraction of Onalespib and radiation combination treatment of U343 MG (C) and U87 MG (D). Representative
images of the colonies of the monotreatments and the combined treatments of Onalespib and radiation. Onalespib monotherapy and combination
therapy with radiation in 3D spheroid model of U434 MG (E) and U87 MG (F). Graphs display the normalized spheroid volume (mm3) over time,
(means ± standard deviation, n ≥ 3). LOEWE synergy scores for U34mg (G) and U87 MG (I). Representative images of the U343 MG and U87 MG
multicellular tumor spheroids at the endpoint of the assay are shown in (H, J), respectively. Data plotted as means ± standard deviation, n ≥ 3. One-
way ANOVA with Tukey’s post-test ns (not significant), *(p < 0.05), **(p < 0.01), ***(p < 0.001) and ****(p < 0.0001).
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three days after treatment with monotherapies of 25, 50, and 100

nM Onalespib and 2 or 4 Gy radiation on U87 MG, as well as

patient-derived U3013MG and U3024MG tumor cell spheroids. No

significant differences in spheroid size were observed across

treatments at that timepoint. Interestingly, although the spheroid

sizes remained comparable, the live cell/dead cell count within the

spheroids varied. A strong correlation was observed between higher

treatment doses and an increase in the dead cell population,

Supplementary Figure 2A.

Additionally, we assessed spheroid-forming efficiency through

limiting dilution assays using U87 MG, U3013MG, and U3024MG

cells. These cell lines were treated with 25, 50, and 100 nM

Onalespib, 2 or 4 Gy radiation, and combination therapies. All

untreated controls of the three cell lines efficiently formed

spheroids. However, increasing doses of both the drug and

radiation led to a dose-dependent reduction in spheroid-forming

capacity, Supplementary Figure 2B.
3.3 Interrupted migration potential of
glioblastoma cells treated with Onalespib
and radiotherapy

Wound healing assays (scratch assays) were performed to

explore the impact of Onalespib and radiation treatment as well

as their combination on the migratory capacity of U343 MG and

U87 MG cells (Figure 3).

In both glioblastoma cell lines, monotreatment with Onalespib as

well as radiation resulted in a concentration dependent reduction in

cell migration compared to untreated control cells (Figures 3A, E).

Generally, U343 MG cells (Figures 3A, B) migrated slightly slower as

U87 MG (Figures 3E, F). Representative images of the U343 MG and

U87 MG after the mono- and combination therapies are shown in

Figures 3D, H, respectively. At the 12 h post treatment time point

U343MGhadmigrated and closed the wound by 72%while U87MG

had covered 86% of the induced wound. A radiation dose of 2 Gy

reduced the migration potential significantly in U343 MG cells and
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augmented with increasing drug concentrations. Synergy scores for

all drug and radiotherapy combinations are summarized in Figures

3C, G and Supplementary Figure 1. Surprisingly, 2 Gy had no

significant effect on U87 MG cells measured at 12 and 24 h. The

Onalespib and radiation combination effect was most clear in the

higher combination treatment groups. While untreated control cells

had closed the gap at 24 h, U343 MG cells treated with 50 nM

Onalespib and 6 Gy radiation, had only migrated 44% and U87 MG

77% of that distance.
3.4 Accumulation of DNA double-strand
breaks glioblastoma cells subjected to
Onalespib and radiation
combination treatments

We assessed DDR by measuring DNA double-strand breaks

(DSBs) in U343 MG and U87 MG glioblastoma cells treated with

Onalespib, radiation, or their combination using confocal

microscopy (Figures 4A–C). The number of 53BP1 and gH2AX

foci, both markers for DSBs, were counted in the cell nuclei. In both

glioblastoma cell lines, untreated cells exhibited a low number of

53BP1 and gH2AX foci per nucleus, 2.5 53BP1 foci/cell and 0.4

gH2AX foci/cell for U343 MG and 2 53BP1foci/cell and 0.3 gH2AX

foci/cell for U87 MG (Figure 4, Supplementary Figures 3A–F).

In U343 MG cells, both Onalespib and 2 Gy radiation

monotherapies significantly increased the number of 53BP1 and

gH2AX foci, with Onalespib alone inducing more foci than 2 Gy of

radiation alone. The combination of 2 Gy radiation and Onalespib

further increased the number of DNA damage foci. Increasing the

radiation dose to 6 Gy in combination with Onalespib dramatically

elevated 53BP1 and gH2AX foci expression, indicating extensive

DSB accumulation and reduced repair efficiency. Notably, cells

treated with 6 Gy radiation, both alone and in combination with

Onalespib, exhibited a high number of foci with about 14 53BP1

foci/cell, reflecting unrepaired DSBs and an impaired repair

capacity (Figures 4A, B). The minor difference observed between
TABLE 1 U343 MG and U87 MG tumor spheroid doubling time (TDT, days) and tumor spheroid volume (V) increase (%) after treatment with Onalespib
(nM) and radiotherapy (Gy) on day 14.

0 nM 50 nM 100 nM 175 nM 250 nM

U343 MG TDT (days) V (%) TDT (days) V (%) TDT (days) V (%) TDT (days) V (%) TDT (days) V (%)

0 Gy 3.34 1386 3.74 1013 4.05 823 5.47 420 7.26 246

2 Gy 4.17 770 5.15 474 6.35 313 8.13 203 24.18 45

4 Gy 5.09 487 8.18 201 11.01 127 17.01 70 33.76 31

6 Gy 6.58 294 9.76 152 14.88 83 32.51 32 67.31 14

U87 MG TDT (days) V (%) TDT (days) V (%) TDT (days) V (%) TDT (days) V (%) TDT (days) V (%)

0 Gy 2.47 3720 2.68 2770 4.14 780 5.47 420 9.43 160

2 Gy 2.78 2460 2.83 2320 5.18 470 11.36 121 18.92 61

4 Gy 3.03 1850 3.48 1232 7.61 227 13.39 96 19.98 57

6 Gy 3.21 1560 4.35 693 7.77 219 15.33 80 26.23 41
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the group treated with 6 Gy alone and the group treated with a

combination of 6 Gy and Onalespib may be attributed to the U343

MG cells reaching their maximum threshold for DNA repair

capacity, as reflected in both 53BP1 and gH2AX foci. When cells

are exposed to high levels of radiation, their ability to repair

damaged DNA can become overwhelmed.

In U87 MG cells, Onalespib monotherapy led to a minor

increase in both gH2AX and 53BP1 foci. However, 2 Gy radiation

significantly elevated the number of the foci compared to Onalespib

treatment alone. The combination of 2 Gy radiation and Onalespib

further enhanced the DSB repair response. Increasing the radiation

dose to 6 Gy combined with Onalespib resulted in a dramatic

increase in remaining 53BP1 foci (8 foci/cell), indicating a failure of

U87 MG cells to effectively repair the extensive DNA damage

caused by the combination therapy (Figures 4C, D). While

generally lower gH2AX foci counts were observed across all

treatment groups, the differences closely mirrored the variations

in 53BP1 foci between groups in both cell lines. Representative

images of the co-expression of 53BP1 and gH2AX are shown in

Supplementary Figure 3 for both U343 MG and U87 MG cells. Both

proteins were simultaneously activated by radiation and Onalespib,

with foci appearing in close proximity within the nucleus,

suggesting potential co-localization. However, some foci, mainly

53BP1, were also found in distinct nuclear regions.
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To further substantiate the findings from confocal microscopy, we

performedWestern blot analysis of U343MG cells to evaluate gH2AX
levels in the control, radiotherapy, Onalespib, and combination

treatment groups. The results, displayed in Supplementary Figure 3F

(right), revealed that, as expected, gH2AX expression was significantly

increased in the radiotherapy-treated group, indicating pronounced

DNA damage. Treatment with Onalespib alone led to a rise in gH2AX
levels compared to the control. The combination therapy also resulted

in elevated gH2AX levels, albeit to a slightly lesser extent than the

radiotherapy group alone.

Comparing U343MG and U87MG cells’DSB repair capacity in

response to Onalespib and X-rays mono and combination therapy

showed that, in both cell lines, Onalespib effectively decreased the

cell DSB repair capacity in combinational treatment groups via

inducing complex DSBs.
3.5 Alterations in cell cycle distribution of
glioblastoma cells subjected to Onalespib
and radiation combination treatments

We employed flow cytometric analysis to investigate alterations

in cell cycle distribution of the cell lines U343 MG and U87 MG

after exposure (48 h) to 100 nM Onalespib, 2 and 4 Gy radiation
FIGURE 3

Wound healing/migration potential of U343 MG and U87 MG glioblastoma cells. (A) Effect of 0, 5,10, 25 or 50 nM of Onalespib combined with 0, 2,
4 or 6 Gy on U343 MG after 12 and 24 hours. (B) Heat map of mono- and combination treated U343 MG cells after 12 and 24 h. (C) 24 h U343 MG
LOEWE synergy scores. (D) Representative images of scratched area. (E) Effect of 0, 5,10, 25 or 50 nM of Onalespib combined with 0, 2, 4 or 6 Gy
on U87 MG after 12 and 24 hours. (F) Heat map of mono- and combination treated U343 MG cells after 12 and 24 h. (G) 12 h U87 MG LOEWE
synergy scores. (H) Representative images of scratched area. Data plotted as means ± standard deviation, n ≥ 3. One-way ANOVA with Tukey’s post-
test ns (not significant), *(p < 0.05), **(p < 0.01), ***(p < 0.001) and ****(p < 0.0001).
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and their combinations (Figures 4E–H). Our findings show distinct

changes in cell cycle phases compared to untreated controls.

Specifically, a 4 Gy radiation dose reduced the percentage of cells

in the G0/G1 phase from initially 83.5% to 70% in U343 MG cells

and from 68% to 60% in U87 MG cells. At the same time, there was

an increase in the number of cells in the G2/M phase for both
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investigated glioma cell lines. Combination treatment with

Onalespib enhanced this effect, resulting in 21% of U343 MG

cells and 31% of U87 MG cells being arrested in the G2/M phase.

Additionally, we observed that combination of Onalespib and

radiotherapy treatment reduced the percentage of cells in the S-

phase compared to the untreated control samples, with the most
FIGURE 4

Distribution of 53BP1 foci analysis of U343 MG and U87 MG cells. (A) Confocal microscopy images of U343 MG cells treated with 100 nM Onalespib
and 2 and 6 Gy radiation. Arrows indicate representative instances of counted 53PP1 foci. (B) Violin plots of U343 MG, number of 53BP1 foci per cell.
(C) Confocal microscopy images of U87 MG cells treated with 100 nM Onalespib and 2 and 6 Gy radiation. Arrows indicate representative instances
of counted 53BP1 foci. (D) Violin plots of U87 MG, number of 53BP1 foci per cells. Cell cycle analysis by flow cytometry of (E) U343 MG and (F) U87
MG cells 48 h after exposure of a single dose of 2 Gy, 4 Gy radiation and/or Onalespib, representative histograms. Average cell cycle distribution of
(G) U343 MG and (H) U87 MG. Data plotted as means ± standard deviation, n = 2. ns (not significant), *(p < 0.05), **(p < 0.01) and ****(p < 0.0001).
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pronounced effect seen in U87 MG cells (Figure 4H), but not in

U343 MG cells. These changes were statistically significant in a two-

way ANOVA model (Supplementary Table 1).

We also studied p21 expression by Western blotting

(Supplementary Figure 3F left), which confirmed the findings

from the cell cycle flow analysis and aligned with the PEA

analysis presented in the next paragraph. HSP90 inhibition by

Onalespib suppressed the expression of CDKN1A (p21), a crucial

regulator of cell cycle progression at G1 and S phase. However, both

radiotherapy alone and in combination with Onalespib resulted in

increased p21 expression, suggesting the initiation of cell cycle

arrest following DNA damage and activation of cell death pathways.
3.6 Proteomic analysis of glioblastoma
cells subjected to Onalespib and radiation
combination treatments

The proteomic analysis conducted on U343 MG cells treated

with Onalespib, radiation, and their combination revealed

significant alterations in protein expression profiles. Hierarchical

cluster analysis, shown in Figure 5 and Supplementary Figure 4,

depicted distinct differences in protein expression among the

treatment groups compared to control cells. Notably, Onalespib

treatment primarily led to the downregulation of most tested

proteins, while radiotherapy exhibited an overall inducing effect

on protein expression. Combination therapy functionally resembled

radiation therapy, except for proteins involved in necrosis, c-Flip,

caspase and procaspase activity which were upregulated in

comparison to radiation therapy alone.

Of particular interest were the changes in protein expression

associated with cancer development, including pathways related to

growth signaling, replicative potential, angiogenesis, metastasis,

invasion, and resistance to cell death. In agreement with the Western

blot analysis, Onalespib-mediated HSP90 inhibition decreased

CDKN1A (p21) expression. However, when radiotherapy was

administered, either on its own or together with Onalespib, there

was an increase in p21 levels, indicating the induction of cell cycle arrest

due to DNA damage and the activation of cell death mechanisms.

Additionally, FR-gamma (Folate receptor 3, FOLR3), a folate

receptor essential for DNA synthesis, was suppressed by Onalespib.

On the other hand, radiotherapy strongly induced its expression,

potentially indicating an increased demand for folate during DNA

damage response processes. However, the expression level within

the combination treatment group was lower than with radiotherapy

alone, suggesting that HSP90 downregulation by Onalespib reduces

folate uptake. Folic acid can mitigate radiation-induced DNA

damage by enhancing DNA synthesis and repair, as well as

functioning as a radical scavenger. Similarly, FR_alpha (Folate

receptor 1, FOLR1) was upregulated after exposure to radiation

but decreased under HSP90 inhibition. This decrease may be

beneficial, as elevated FOLR1 levels correlate with aggressive

tumor characteristics, diminished response to chemoradiotherapy,

and poorer overall survival rates.

VEGFA, a key regulator of angiogenesis, was strongly

downregulated by HSP90 inhibition and further suppressed by
Frontiers in Oncology 11110
radiotherapy. In line with these results, the combination

treatment markedly decreased its expression, indicating a

potential inhibition of tumor vascularization and growth.

Furthermore, TRAIL, a cytokine inducing apoptosis, was

reduced by both HSP90 inhibition and radiotherapy individually.

Apart from apoptotic cell death, TRAIL can mediate a programmed

form of caspase-independent cell death known as necroptosis.

Combination treatment significantly upregulated TRAIL

expression, suggesting enhanced activation of tumor cell

death mechanisms.

The functional analysis of the differentially expressed proteins

(Figure 5B) identifies ontological pathways relevant to cancer

development and treatment response which the proteins are

involved in. Downregulation of proteins involved in growth

factor-mediated signaling might indicate inhibition of cell

proliferation and survival pathways, potentially impeding tumor

progression. Conversely, upregulation of proteins involved in IL-4

and IL-13 signaling might indicate immune response modulation,

possibly enhancing anti-tumor immunity or altering the tumor

microenvironment. Induction of proteins involved in p53-induced

cell cycle arrest pathways can imply activation of DNA damage

response mechanisms, likely contributing to cell cycle arrest and

inhibition of tumor cell proliferation. Additionally, upregulation of

proteins involved in caspase activation suggests increased apoptotic

cell death, potentially enhancing the anti-tumor effects of

the treatments.
4 Discussion

GBM is characterized by HSP90 overexpression, aggressive

growth, and poor prognosis (31). In cancer cells, the mechanisms

of the HSP90 chaperone system differ significantly from those in

normal cells. The rapid proliferation rate and reduced quality

control in protein synthesis lead to increased and constant

cellular stress. HSP90 stabilization has been developed as a coping

mechanism, and HSP90 expression is 2- to 10-fold higher in cancer

cells compared to normal cells, aiding in cell survival and function

during tumorigenesis (20, 32). There is a connection between

proliferation rate and expression level, and therefore high

expression of HSP90 is associated with a poor prognosis in

clinical treatment.

Due to the high innate resistance of GBM to standard

treatments, it is crucial to find new agents that re-sensitize cancer

cells to improve treatment efficacy. Combination therapy can

enhance efficacy, reduce toxicity, and lower the incidences of drug

resistance by exploiting the synergy of action (33). To date, the

combination of HSP90 inhibitors with chemotherapy (27), targeted

agents (34, 35), or immunotherapy (36) has demonstrated

enhanced antitumor effects, summarized in (37).

In this study, we investigate the efficacy of Onalespib in

combination with radiotherapy in two patient-derived

glioblastoma cell lines U3013MG and U3024MG as well as the

established cell lines U343 MG and U87 MG. Onalespib targets

HSP90, overexpressed in cancer cells, suggesting selective targeting

of tumor cells while sparing healthy brain tissue. Its ability to cross
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the blood-brain barrier and achieve higher concentrations in brain

tissue further supports its potential in brain cancer treatment.

While early clinical trials showed a favorable toxicity profile,

with mild adverse events such as diarrhea, fatigue, and nausea, they

did not focus on neurotoxicity or radiation therapy interactions (19,

21, 38, 39).

Our findings indicate that the combination of Onalespib with

radiotherapy improves anti-tumor effects by decreasing cell

viability, proliferation, and clonogenicity in the assessed cell lines

grown in monolayer cell culture in a concentration-dependent

manner (Figures 1, 2).

Further, multicellular tumor spheroid models, which mimic the

in vivo microenvironment, such as hypoxic areas within avascular

tumors, offer a valuable platform for pre-clinical drug and

radiotherapy testing. This is a highly relevant model system in

these investigations since lack of oxygen is associated with

resistance to radiotherapy. HSP90 is upregulated in GBM

spheroid models facilitating stem-like characteristics such as self-

renewal, differentiation, tumorigenicity, and drug resistance. Our

study shows that GBM tumor spheroids were more resistant to

treatment, requiring higher concentrations compared to 2D

experiments. However, the proliferation and doubling time of

both U87 MG and U343 MG tumor spheroids were significantly

reduced by Onalespib monotreatment, with combination treatment

showing the most potent effects. Additionally, limiting dilution

analysis and live/dead staining indicated a concentration-

dependent decrease in spheroid formation capacity and an

increased percentage of dead cells within the spheroids

(Supplementary Figure 2). These findings are in line with other

reports, where e.g., the HSP90 inhibitor (NVP) AUY922 shows

radiosensitizing effects on GBM spheroid models (40). Also, the
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HSP90 inhibitor NXD30001, when combined with radiotherapy,

significantly inhibited tumor growth and prolonged the median

survival in an EGFR-driven genetically engineered mouse model of

GBM (41).

In addition, our data demonstrate that combination therapy

affects the rate of wound healing in a dose-dependent manner.

Interestingly, HSP90 has previously been identified to efficiently

decrease migration and invasion of human GBM cell lines by

interaction with Ephrin type-A receptor 2 (EPHA2) (42, 43), a

protein that was not affected in the performed PEA analysis.

One suggested mechanism for Onalespib’s potentiation on the

radiotherapy’s effect could be the disruption of DNA repair.

Radiation induces DNA double breaks (DSBs), followed by

increased activation of DNA damage repair mechanisms.

Counting gH2AX and 53BP1 foci in single cells serves as a

sensitive biomarker for DSB presence and the cell’s capacity for

DSB repair after exposure to genotoxic agents. H2AX activation and

53BP1 recruitment to DSB sites, facilitated by its Tudor domain,

plays a critical role in the DSB repair process by forming repair foci

and activating cell cycle checkpoints to provide more time for

repair. Quantifying these foci through nucleus immunofluorescence

staining and microscopy reveals the extent of DNA damage and

repair activity within individual cells.

Our finding demonstrates that Onalespib can increase the

amount of DSBs as measured by gH2AX and 53BP1 foci in

monotherapy, an effect that could be attributed to the inhibition

of proteins involved in various DNA damage response pathways.

These pathways include upstream checkpoint signaling, double-

strand break repair by homologous recombination (HR), non-

homologous end joining, as well as processes such as cross-link

repair and DNA replication. Overall, the combination therapy led
FIGURE 5

(A) The 12 most differentially expressed proteins between treatments (SD>0.5). Hierarchical clustering analysis illustrates the most prominent
alterations in protein expression levels observed in U343 MG cells treated with radiation, Onalespib, and their combination, relative to untreated
control cells. The difference in log(expression) to control (dNDX) is indicated, with positive values highlighted in red, indicating higher expression
compared to control, and negative values shown in blue, indicating lower expression. Middle) Absolute dNDX values for each treatment group
relative to the control are depicted using the same color scale as in panel (A). The black square designates the combination treatment group.
(B) Functional analysis indicating the main ontological pathways where the differentially expressed proteins are involved, and the overall direction of
protein regulation. Note that up and down-regulation of specific proteins do not necessarily imply induction or suppression of the functional
pathway which the protein is involved in.
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to lower expression of proteins than in radiotherapy alone, among

which several are involved in radiation damage response such as

CDKN1A (p21).

The combination treatment of 6 Gy and 100 nM Onalespib

resulted in a significant increase in 53BP1 foci in U343 MG but not

in U87 MG cells, possibly due to differences in the DNA repair

capacity. U87 MG has previously been described as resistant to

TMZ treatment due to increased cell cycle arrest and DNA repair

response. Notably, Onalespib has been found to effectively deplete

key HR proteins, like CHK1 and RAD51, impairing HR repair and

making patient-derived glioma stem cell lines more susceptible to

radiation and TMZ (15). Studies in zebrafish bearing glioma

xenografts have also shown the synergistic effects of Onalespib in

combination with the GBM standard treatment, TMZ. Earlier in

vitro and in vivo studies also showed that Onalespib can enhance

the TMZ treatment (20). A significant limitation of radiation

therapy is its reduced efficacy in hypoxic regions; however, HSP90

inhibition by NXD30001 and NVP-AUY922 has been shown to

increase radiosensitivity in hypoxic CD133-positive subpopulations

glioblastoma spheroids (10, 40), likely due to HIF-1a inhibition.

Proteomic analysis of U343 MG demonstrated Onalespib’s

association with downregulation of proteins involved in several

functional pathways, whereas radiation therapy affected both up

and down-regulation of these proteins.

Notably, CDKN1A (p21), which was found upregulated due to

the combination treatment in our study, suggests interference with

pathways critical for tumor suppression and may explain the

synergetic effect of Onalespib to radiation. In literature, p21

remains still contradictory with the function either as an

oncogene or as a tumor suppressor (44, 45). p21 acts as a

regulatory checkpoint in cell division, leading to cell cycle arrest,

increased levels of p53, and the activation of DNA repair

mechanisms (46). It facilitates this arrest by binding to and

inhibiting the activity of CDK1 and CDK2, thereby preventing

progression from G1 to S phase and from G2 to mitosis.

Downregulation of CDK1 contributes to G2 phase arrest and

reduced cell proliferation, consistent with our findings of G2/M

phase accumulation in the combination treatment groups.

Interestingly, high LET radiation can induce CDKN1A foci at the

DSB site that persist for several hours suggesting that CDKN1A can

directly mediated interact with proteins involved in DDR (47).

Aggressive tumors are known to produce growth factors that

promote the growth of blood vessels (angiogenesis), making

endothelial cells proliferate and become more resistant to

radiation. VEGFA, a critical factor in promoting angiogenesis,

was significantly reduced by both HSP90 inhibition and

radiotherapy alone. However, when used together, the

combination treatment resulted in an even greater decrease in

VEGFA expression, indicating a stronger inhibition of tumor

blood vessel formation.

Additionally, TRAIL was slightly lowered by both HSP90

inhibition with Onalespib and radiotherapy independently. Yet,

the combination treatment notably increased TRAIL expression.

TRAIL plays a crucial role in regulating various biological responses

in both cancer and normal cells, including the induction of

programmed cell death mechanisms as apoptosis and necroptosis
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(48). The observed elevated levels of TRAIL in the combination

group suggest a heightened activation of cell death pathways and

might explain the observed synergistic effects. Previously, HSP90

inhibition by SNX-2112 was reported to enhance TRAIL-induced

cytotoxicity on cervical cancer cells (49). This suggests that

combining HSP90 inhibition with TRAIL could, besides of

combination with radiotherapy, represent a novel treatment

strategy, which would involve overcoming apoptosis resistance

(49). Current research is directed towards developing anticancer

agents that activate TRAIL, as it selectively targets cancer cells with

minimal damage to normal cells (50).

The full list of altered protein expression in the Onalespib and

combination treated groups (Supplementary Figure 4) may also

reveal potential therapeutic targets for future investigation. For

example, radiotherapy increased the expression of the immune

checkpoint molecule CEACAM1. A recent study combining

radiotherapy with CEACAM1 inhibitors resulted in strong and

enduring immune responses against murine glioma, leading to

extended survival in some mice (51). Consequently, targeting

CEACAM1 could offer an effective immunotherapy strategy for

the treatment of glioma.

The here presented in vitro analysis of Onalespib and

radiotherapy demonstrated significant reductions in tumor cell

growth, migration potential, and disruption of DNA double-

strand break (DSB) damage response. These findings highlight

the potential efficacy of this combination in treating GBM.

Despite the promising results, this study has several limitations.

One significant limitation is the use of the U87 MG cell line

obtained from ATCC, which has been shown to differ genetically

from the original U87 MG line established at Uppsala University in

the 1960s (52). Although the ATCC U87 MG line is likely to be a

bona fide human glioblastoma cell line of unknown origin, it is

widely used in glioma research due to its well-known characteristics

and tumorigenic properties. However, the differences between

ATCC U87 MG and the original glioma model suggest caution

when comparing findings with studies that do not specify the origin

of their U87 MG cells. Future studies should include additional,

well-characterized glioma organoid models to strengthen the

generalizability and applicability of the results. Additionally, while

our OLINK proteomic analysis yielded valuable insights, it remains

exploratory. Confirmation of key proteins, particularly those with

potential as biomarkers or therapeutic targets, through more

traditional methods like Western blotting, is essential for

validation. Also, the proteomic investigation represents only a

snapshot of the underlying processes and further studies are

needed to elucidate the functional implications of these proteomic

changes and their potential therapeutic implications for the

treatment of GBM. In previous in vivo studies conducted by our

group, the combination of Onalespib and radiation in models of

colorectal, squamous cell carcinoma (12), and neuroendocrine (14)

tumors did not result in adverse effects such as behavioral changes,

loss of appetite, or weight loss. However, further investigation into

Onalespib’s impact on tumor growth and normal brain tissue is

essential. Preclinical studies using neural stem or progenitor cells

should assess survival, differentiation, and neurogenesis to evaluate

potential neurotoxic effects. These studies are crucial to ensure
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Onalespib’s translational potential for brain cancer treatment,

supported by a robust safety profile.

We are encouraged by our promising results, which suggest that

the combination of radiation treatment and HSP90 inhibition could

be an effective therapeutic option for patients with GBM,

particularly those resistant to standard treatments. The synergistic

effects of this combination hold promise for improving treatment

efficacy and achieving better clinical outcomes. However, further

investigations are required to determine optimal dosing and to

identify the toxicity profile of Onalespib in a more clinically

relevant setting.
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SUPPLEMENTARY FIGURE 1

Wound healing/migration potential of U343 MG and U87 MG glioblastoma
cells. (A) 12 h U343 MG LOEWE synergy scores. (B) 24 h U343 MG LOEWE

synergy scores. (C) 12 h U87 MG LOEWE synergy scores. (D) 24 h U87 MG
LOEWE synergy scores.

SUPPLEMENTARY FIGURE 2

Live/dead cell percentage and limiting dilution assay. (A) U87 MG, U3013MG

and U3024MG multicellular spheroids were exposed to Onalespib and
radiation and their combination. Data plotted as means ± standard

deviation. One-way ANOVA with Tukey’s post-test *(p < 0.05), **(p <
0.01), ***(p < 0.001) and ****(p < 0.0001). (B) Limited dilution assay of

U87 MG, U3013MG and U3024MG treated with a combination of 25nM,
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50nM and 100nM Onalespib and 4 Gy radiation. Spheroid formation
efficiency was elevated 3 days after plating. The natural log fraction of

non-responding wells was plotted on a linear scale versus the cell density

per well.

SUPPLEMENTARY FIGURE 3

Distribution of gH2AX foci analysis of U343 MG and U87 MG cells. (A)
Confocal microscopy images of U343 MG cells treated with 100 nM
Onalespib and 2 and 6 Gy radiation. Arrows indicate representative

instances of counted gH2AX foci. (B) Violin plots of U343 MG, number of

gH2AX foci per cell. (C) Representative images of co-expression 53BP1
and gH2AX foci of U343 MG cells treated with 100 nM Onalespib and 6

Gy radiation. (D) Confocal microscopy images of U87 MG cells treated
with 100 nM Onalespib and 2 and 6 Gy radiation. Arrows indicate

representative instances of counted gH2AX foci. (D) Violin plots of
U87 MG, number of gH2AX foci per cells. (F) Representative images of

co-expression 53BP1 and gH2AX foci of U87 MG cells treated with

100 nM Onalespib and 6 Gy radiation. (G) Western blot analysis of
CDKN1A (p21) and gH2AX after exposure of Onalespib, radiation and

their combination.
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SUPPLEMENTARY FIGURE 4

Left: Hierarchical clustering analysis illustrates the most prominent alterations in
protein expression levels observed in U343 MG cells treated with radiation,

Onalespib, and their combination, relative to untreated control cells. The

difference in log(expression) to control (dNDX) is indicated, with positive values
highlighted in red, indicating higher expression compared to control, and negative

values shown in blue, indicating lower expression. Middle: The standard deviation
between treatments, where a large standard deviation indicates differentially

expressed proteins of interest. The boxes delineate divergent clusters of interest
of proteins with similar expression patterns. Right: Absolute dNDX for each

treatment compared to control, using the same scale as left. Black square

indicates the combination treatment group, with Onalespib positioned to the
left and radiation with 2 Gy on the right-hand side.

SUPPLEMENTARY FIGURE 5

Uncropped Western blot membranes. Upper row: CDKN1A (p21) and
corresponding loading control GAPDH. Lower row: gH2AX and

corresponding loading control GAPDH. The dashed line shows the cropped

image used in Supplementary Figure 3. The box with the solid line indicates a
cut of the membrane (for separate incubation with the secondary antibody).
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Case Report: Rare
intraventricular H3 K27-altered
diffuse midline glioma in an adult
Merari Jasso1*, Jay-Jiguang Zhu1, Meenakshi B. Bhattacharjee2

and Georgene W. Hergenroeder 1

1The Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of
Texas Health Science Center at Houston, Houston, TX, United States, 2Department of Pathology &
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H3 K27-Altered Diffuse Midline Gliomas are commonly found in children and

adolescents in midline locations such as the thalamus, brain stem, and spinal

cord. It is rare for these tumors to affect adults and to occur in locations like the

lateral ventricles. Despite aggressive treatment methodologies, there is no cure

for this disease. The median survival is between 8-12 months. A 24-year-old

white male presented to the emergency department due to severe headache

refractory to pain medications with a 2-month history of progressive headaches

and eventual memory problems. Computed tomography (CT) and magnetic

resonance imaging (MRI) showed an intraventricular enhancing mass and

hydrocephalus. The final diagnosis was an intraventricular H3 K27-Altered

Diffuse Midline Glioma. The patient underwent two craniotomies, one laser

interstitial thermal ablation (LITT), chemoradiotherapy, and bevacizumab and

ONC206, through compassionate use. Despite a reduction in the tumor size, it

continued to spread to other brain areas, leading to further complications and,

eventually, his death, 10 months after initial diagnosis. From review of the

literature, 21 cases were identified, and the median age was 24. Their median

survival is 10.5 months (ranges 1 - 24 months). This case report presents the

clinical, radiological, pathological, and molecular characteristics of a 24-year-old

white man diagnosed with a ventricular H3 K27-Altered diffuse midline glioma,

highlighting the rare presentation, management, and outcomes.
KEYWORDS

diffuse midline glioma (DMG), diffuse midline glioma H3 K27-altered, adult DMG, H3
K27, H3K27M mutation
Introduction

Diffuse midline gliomas (DMGs) characterized by the histone H3 K27M mutation are rare

and aggressive high-grade tumors predominantly affecting children ages 5-10 years (1). The

midline location defines this tumor type, diffuse growth pattern/infiltrating, and lysine-to-

methionine substitution at position 27 on the H3 histone genes (2). This tumor type was first

recognized in the 2016 World Health Organization (WHO) classification of central nervous

system (CNS) tumors as DMG H3 K27M mutant. In 2021, WHO CNS tumor terminology
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changed to DMG H3 K27-altered to include subtypes of DMG with

alternative mechanisms for the loss of H3K27 methylation, such as

EGFR mutant DMG or EZH inhibitory protein overexpression DMG.

This classification is categorized as “pediatric-type diffuse midline

glioma” and is subdivided into 4 subtypes (DMG H3 K27-altered;

diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type

high-grade glioma H3-wildtype and IDH-wildtype; and infant-type

hemispheric glioma), each of which possess characteristic molecular

profiles (3). DMGs commonly arise in the thalamus, brainstem, and

spinal cord—regions critical for vital functions—making these tumors

particularly challenging to treat. These tumors are typically diagnosed

in children and are associated with a very poor prognosis. The 5-year

survival rate for patients with DMGs is less than 1%, and the median

overall survival ranges from eight to twelve months (4).

Ventricular tumors are also rare and represent 0.8-1.6% of

intracranial tumors, but tend to be benign, such as central

neurocytomas, choroid plexus papillomas or carcinomas,

astrocytomas, meningiomas, ependymomas, colloid cysts, or

craniopharyngiomas. This case report describes the clinical,

radiological, pathological, and molecular characteristics of a 24-

year-old white male diagnosed with a ventricular H3 K27-altered

diffuse midline glioma, highlighting the challenges and complexities

of management.
Case description

A 24-year-old white male firefighter with a history of asthma

and attention deficit hyperactivity disorder (ADHD) presented with

a 2-month history of nonspecific memory problems. He was

described by family members as exhibiting forgetfulness of events

and tasks. Developed progressive headaches that were alleviated by

lying down and taking NASID medications with limited benefit.

These headaches were subsequently accompanied by photophobia,

phonophobia, nausea, and vomiting.

He presented to the emergency department due to a severe

prolonged headache refractory to usual treatment, which led to a

CT scan showing an intraventricular mass. A magnetic resonance

image (MRI) of the brain with and without contrast revealed an

irregular 6.4x7x4.5 cm (AP x Lat x CC) heterogeneous mass in the

lateral ventricles appearing to be coming from the pineal region.

This image did not identify involvement of midline structures like

the thalamus. It occupied both lateral ventricles causing an 8 mm

right midline shift (Figures 1A–D). The mass exhibited aggressive

features, including restricted diffusion, necrosis, and heterogeneous

contrast enhancement (Figures 1B, C) (5).

The following day, the patient underwent a left parietal

craniotomy with a transparietal approach for mass resection and

ventriculoperitoneal shunt (VPS) placement. The tumor location,

firm and rubbery consistency, and similarity to adjacent brain tissue

necessitated an initial partial resection. A postoperative MRI four

days later showed expected surgical changes with a mass reduction

to approximately 4.4x7x3.7 cm (AP x Lat x CC). Five days after the

initial surgery, he underwent a second craniotomy with an

interhemispheric approach focusing on the right lateral ventricle

for further mass resection. MRI performed one day after the second
Frontiers in Oncology 02117
surgery showed expected surgical changes and residual left

intraventricular tumor of approximately 1.8x1.8x0.7cm with post-

surgical periventricular enhancement of the thalamus.

The pathology report diagnosed a DMG H3 K27-Altered CNS

WHO grade 4 with positive immunohistochemistry for H3K27M

mutant nuclear expression, loss of H3K27me3 nuclear expression,

(Figures 2A–C), weak to moderate nuclear expression of p53, strong

expression of EGFR, and a Ki67 labeling index of 30-40%. The

tumor was negative for IDH1 mutant protein expression and loss of

ATRX expression. The Next Generation Sequencing (NGS) showed

gene H3F3A K28M mutation, PTEN G132V – subclonal, RAD51B

loss on exon 8, TSC2 E1344del, ATRX splice site 6849 + 2T>C.

Following discharge, the patient continued to experience

memory difficulties and newly developed right side homonymous

hemianopsia. On day 30, he began chemoradiotherapy, receiving

fractionated external beam radiotherapy (54-60 Gy in 30 fractions)

with concurrent temozolomide at 75 mg/m2 x 42 days. Throughout

therapy, he experienced ongoing attention and memory difficulties,

further visual field reduction at his right side, and seizures due to

missed doses of anti-seizure medication. He completed

chemoradiotherapy on Day 69.

On day 105, MRI evaluation revealed new enhancement within the

splenium, left thalamus, and 3rd ventricle with dimensions of

2.6x3.2x2.2 cm, raising questions about regrowth versus radiation

changes (Figures 1E–H). The treatment approach included

laser interstitial thermal ablation (LITT) through the parietal

lobes with intraoperative fluoroscopy for precise targeting and

ventriculoperitoneal shunt (VPS) placement. The patient was

subsequently treated under a compassionate use regimen with

ONC206, a more potent analogue of ONC201, a selective dopamine

receptor D2 (DRD2) antagonist and mitochondrial protease ClpP

agonist, at 120mg once per week, oral, for approximately 3 months.

On Day 189, his VPS malfunctioned due to blockage causing

gait instability and right hemiparesis, requiring the placement of

new bilateral ventriculoperitoneal shunts. He began bevacizumab

therapy at a dose of 10 mg/kg IV, (without 600mg) IV, every 14 days

as a salvage therapy, experiencing side effects, such as nausea,

vomiting, and asthenia. The last MRI, Day 199 showed a

progression in FLAIR signal in basal ganglia and parietal lobes,

most likely due to tumor infiltration, radiation changes with edema

or likely a mixture all three components (Figures 1I–L).

On Day 314, the patient’s condition deteriorated, leading to

hospitalization. Despite intensive treatment efforts, he ultimately

succumbed to his illness on the same day (Figure 3).
Discussion

Diffuse Midline Gliomas (DMGs) with the H3K27M mutation

predominantly affect midline structures, such as the thalamus,

brainstem, and spinal cord in children and adolescents. In adults,

these tumors more commonly involve the diencephalic region,

particularly the thalamus, with a mean age of onset around 42 years

(1). This case report highlights the aggressive nature and complex

management of an H3 K27-altered DMG in an adult with an unusual

ventricular location, presenting significant clinical challenges.
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FIGURE 1

MRI images demonstrating serial progression of H3 K27-altered diffuse midline glioma. Preoperative (A–D) tumor located in lateral ventricles
predominantly solid with patchy areas showing high intensity and central necrosis on the right side on T2/FLAIR and T1W post contrast. Day 104
post operation and chemoradiotherapy (E–H) reduced intraventricular tumor with periventricular FLAIR signal abnormality and contrast
enhancement extending to the surrounding structures in T1W post-contrast images. Day 199 post-final treatment, (I–L) Progression of FLAIR signal
(which is most likely a mixture of tumor infiltration with edema and radiation change) extending to basal ganglia and parietal lobes, with
enhancement and necrosis of the intraventricular tumor and adjacent structures.
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Intraventricular tumors are rare and represent 0.8-1.6% of

intracranial tumors. Intraventricular tumors are benign and are

more common in childhood than adulthood. Some examples of

these tumors are neoplasm of choroid plexus, ventricular wall and

septum pellucid, and secondary malignant intraventricular tumors

like glioblastoma multiforme. The most common clinical

presentation is secondary to high ventricular pressure.

Table 1 presents a comparative analysis of 22 reported DMG

cases with ventricular involvement. Most of these cases involve
Frontiers in Oncology 04119
patients of Asian descent, suggesting a possible racial predisposition

for ventricular involvement. The median age was 24, with a median

survival of 10.5 months (1-24 months).

Clinical presentation varies depending on the anatomical area

affected. In this case, the intraventricular mass caused headaches,

attention, and memory problems for at least two months. These

nonspecific symptoms, likely indicative of increased intracranial

pressure, may have delayed diagnosis. However, given the

aggressive nature of these tumors and the lack of highly effective
FIGURE 2

H&E and immunohistochemistry results. (A) Hematoxylin and Eosin (H&E) staining showed monomorphic to pleomorphic glial cells with high mitotic
activity. (B) H3 K27M showed positive nuclear staining. (C) H3K27me3 showed loss of nuclear stain. The final diagnosis was DMG, H3 K27-altered,
CNS WHO grade-4. Images were captured with the Leica Thunder imaging system (Danaher, Washington, DC).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1477978
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jasso et al. 10.3389/fonc.2025.1477978
treatments, it is unclear if an earlier diagnosis would have

significantly altered the outcome.

The patient underwent two intraventricular surgeries, one-time

LITT, fractionated external beam radiation (30 fractions) in

combination with daily temozolomide, 3 sessions of monoclonal

antibody therapy with bevacizumab at 10mg/kg every 14 days, and

ONC206 drug through compassionate use. These therapies were

based on the ASCO-SNO guidelines for diffuse astrocytic and

oligodendroglial tumors in adults, encouraging radiotherapy and

enrollment in clinical trials with this alteration (10).

The H3K27M mutation in DMG tumors is currently the

primary negative prognostic factor in both adults and children.
Frontiers in Oncology 05120
However, differentiation based on other genetic alterations could

provide valuable targets for therapy, prognostication, and risk

assessment. DMG tumors with H3K27M mutations in the

midline region can also exhibit alterations, such as IDH

negativity, ATRX loss, CDK2A deletion, TP53 overexpression,

EGFR expression, and MGMT promoter methylation (11, 12).

In this case, the tumor exhibited the classic H3K27M protein

expression alongside ATRX loss, moderate TP53 expression, EGFR

overexpression by IHC, and H3F3A K28Mmutation along with PTEN

G132V – subclonal, RAD51B loss on exon 8, TSC2 E1344del, ATRX

splice site 6849 + 2T>C by next generation sequencing (Foundation

Medicine, Cambridge, MA). Immunohistochemical markers
frontiersin.or
FIGURE 3

Timeline of development of symptoms and tumor treatments. ADHD, Attention Deficit Hyperactivity Disorder; ER, Emergency Room; CT, Computed
tomography; LITT, Laser Interstitial Thermal ablation; PMH, Past Medical History.
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commonly observed in intraventricular DMG tumor case reports, were

GFAP, Olig2, Ki67, and S100, were also expressed (Table 1).

Despite aggressive treatment, the primary ventricular tumor

reduced in size by nearly 70%, yet continued to proliferate into

adjacent areas like the thalamus and splenium. This progression

might be linked to the tumor’s immunophenotype, characterized by

EGFR overexpression, loss of H3 K27 trimethylation, a high Ki67

proliferation index (30-40%), and weak P53 expression (13).

EGFR overexpression and loss of H3 K27 trimethylation are

associated with increased migratory potential and greater

propensity for thalamic invasion. Furthermore, TP53 loss, a

common alteration in DMGs, is known to promote tumor self-

renewal, induce epigenetic dysregulation, and confer resistance to

radiotherapy (12, 13).

The molecular profile of this tumor likely played a critical role in

its development, migration, and response or lack of response to

treatment. Interestingly, the immunophenotype in this case differed

from previously reported intraventricular DMG cases, aligning more

closely with diffuse midline gliomas originating in the thalamus. This

unique molecular profile may have facilitated the tumor’s expansion

from the ventricles into adjacent structures, including the thalamus,

splenium, and third ventricle, contributing to its aggressive

progression and resistance to conventional therapies.
Conclusion

The classification of DMG H3 K27-altered tumors was first

designated in 2016 and was updated in 2021 to incorporate

alternative mechanisms of H3K27 methylation loss. As such,

documenting and analyzing atypical cases is vital to improving

our understanding of this complex disease. These tumors are

more frequently seen in children and primarily affect deep

midline structures. Intracranial intraventricular tumors are rare,
Frontiers in Oncology 06121
comprising less than 1.6% of all tumors, and typically have

favorable outcomes when treated. However, this case presents a

difficult-to-treat tumor with an unusual growth pattern from the

ventricle to diencephalic structures.

Cases like the one presented here offer an opportunity to

explore whether delayed diagnoses in adults are due to different

growth rates, whether the tumor phenotype varies across age

groups, or if molecular markers can predict tumor progression or

indicate epigenetic alterations. Current treatment protocols are not

specifically designed to target this mutation, leading to highly

variable prognoses. Unfortunately, no single factor has yet been

definitively identified as having a significant impact on outcomes,

highlighting the ongoing need for research and the development of

more effective, mutation based targeted therapies.
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TABLE 1 Comparison between Intraventricular DMG H3 K27-Altered cases.

Summary of Published Cases with Intraventricular DMG, H3 K27-Altered

Reference Age (years) Sex Race Immunophenotype
No. of
DMG H3
K27-Altered

Ventricle
Median
survival
(months)

Wang et al.,
2018 (6).

Mean ± SD:
40.63 ± 21.82

Not
Described

Asian Not Described 3 Lateral
12.8

Luo et al.,
2020 (7).

38 Male Asian GFAP, Olig2, Ki67 (+2%) 1 Lateral
24

Zhao et al.,
2022 (8).

14 Female Asian GFAP, Olig2, S100 1 Lateral
1

Zheng et al.,
2022 (9)

Median 24,
Range 3 - 71

ND Asian Not Described 16 Not Described
10.5

Presenting case 24 Male White
EGFR, P53, Ki67 (+30-40%),
BRAF (V600E) negative

1 Lateral
10.5
EGFR, Epidermal growth factor receptor; GFAP, Glial fibrillary acidic protein; Ki67, Ki67 protein; Olig2, Oligodendrocyte transcription factor; S100, S100 protein; SD, Standard Deviation.
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