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Robust sensor selection based
on maximum correntropy
criterion for ocean
data reconstruction
Qiannan Zhang1, Huafeng Wu1*, Li’nian Liang1, Xiaojun Mei1

and Jiangfeng Xian2*

1Merchant Marine College, Shanghai Maritime University, Shanghai, China, 2Institute of Logistics
Science and Engineering, Shanghai Maritime University, Shanghai, China
Selecting an optimal subset of sensors that can accurately reconstruct the full state

of the ocean can reduce the cost of themonitoring system and improve monitoring

efficiency. Typically, in data-driven sensor selection processes, the use of Euclidean

distance to evaluate reconstruction error is susceptible to non-Gaussian noise and

outliers present in ocean data. This paper proposes a Robust Sensor Selection (RSS)

evaluation model based on the Maximum Correntropy Criterion (MCC) through

subspace learning, enabling the selection of robust sensor measurement subsets

and comprehensive data reconstruction. To more accurately quantify the impact of

varying noise magnitudes, noise weights were incorporated into the model’s

objective function. Additionally, the local geometric structure of data samples is

utilized to further enhance reconstruction accuracy through the selected sensors.

Subsequently, the MCC_RSS algorithm is proposed, which employs the Block

Coordinate Update (BCU) method to achieve the optimal solution for the

proposed model. Experiments conducted using ocean temperature and salinity

datasets validate the proposed MCC_RSS algorithm. The results demonstrate that

the sensor selection method proposed in this paper exhibits strong robustness,

outperforming comparativemethods under varying proportions of outliers and non-

Gaussian noise.
KEYWORDS

sensor selection1, Maximum Correntropy Criterion (MCC)2, robust3, data
reconstruction4, ocean5, subspace learning6
1 Introduction

In the field of oceanography, optimizing sensor selection is a critical area of research.

Effective sensor selection can directly impact sensor deployment and enhance our

understanding of the oceanic physical parameters. By tailoring sensor selection to meet

specific requirements, various objectives can be achieved, including cost reduction (Emily
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et al., 2020; Saito et al., 2023), energy efficiency (Ghosh et al., 2021),

conservation of communication resource (Yang et al., 2015),

assistance in localization (Mei et al., 2024), improved field

reconstructions (Santini and Colesanti, 2009; Zhang et al., 2018;

Nguyen et al., 2021; Santos et al., 2023) and enhanced state

predictions (Saucan and Win, 2020; Patan et al., 2022),

among others.

The sensor selection problem involves selecting the optimal p

positions from n candidate positions to achieve the desired

outcomes, a task recognized as NP-hard (Chamon et al., 2021).

This implies that an exhaustive search would need to traverse up to

n ! =½p ! (n − p) !� combinations, which is nearly impossible when the

number of candidate positions is large in ocean monitoring. General

solutions to the sensor selection problem include the following:

convex optimization (Joshi and Boyd, 2009), statistical methods

(Chepuri and Leus, 2015; Lin et al., 2019; Yamada et al., 2021),

heuristic methods (Khokhlov et al., 2019; Zhao et al., 2021; Meray

et al., 2023), information theory (Krause et al., 2008; Prakash and

Bhushan, 2023), dimensionality reduction (Yildirim et al., 2009;

Manohar et al., 2018; Jayaraman et al., 2019), machine learning-

based clustering (Kalinić et al., 2022), among others.

Data-driven sensor selection provides an excellent optimization

solution for selecting sensors from a large pool of candidate

locations in ocean monitoring. By analyzing the intrinsic

characteristics of known data, it identifies the most critical

geographical locations for reconstructing the entire physical field,

without requiring precise modeling or complex statistical analysis of

the monitoring object or requirements. However, these methods

typically evaluate the reconstruction effect based on the Euclidean

distance between the original and reconstructed data, which is

highly sensitive to non-Gaussian noise and outliers. This

sensitivity is particularly problematic in ocean monitoring, where

specific sudden events (such as tsunamis causing sensor failure,

communication interruptions, or data loss) can significantly impact

data quality. Consequently, noise in the data can severely affect the

effectiveness of sensor deployment. Moreover, greedy algorithms

such as Proper Orthogonal Decomposition (POD) and QR

decomposition cannot guarantee globally optimal results.

Building on the work of Zhou et al. (2019) on Maximum

Correntropy Criterion-based sparse subspace learning for feature

selection, we propose a novel sparse sensor selection method. This

method quantifies the similarity between the original data and the

reconstructed data using correntropy, thereby effectively mitigating

the impact of outliers on the feature selection process. Additionally,

the subspace learning approach allows for the simultaneous

updating of the feature selection matrix and the reconstruction

matrix, enhancing the accuracy of the reconstruction.

This work employs subspace learning based on the Maximum

Correntropy Criterion (MCC) for sensor selection. The main

contributions of this study are as follows:
Fron
• The application of the MCC for evaluating reconstruction

error supersedes the traditional Euclidean distance, thereby

enhancing the stability of results in the presence of non-

Gaussian noise and outliers. Additionally, noise weight is

employed to measure the MCC, and the higher entropy of
tiers in Marine Science 025
noise weight is utilized to achieve a noise distribution that

more accurately represents the distribution of real

system variables.

• In order to further improve reconstruction accuracy, a term

that preserves the local geometric structure between

samples was incorporated into the objective function to

minimize the similarity between the selected measurements.

• The adoption of subspace learning allows for the

simultaneous determination of both the sensor selection

matrix and the mapping for data reconstruction from low-

dimensional measurements to high-dimensional

measurements corresponding to this selection matrix.

• Experiments conducted on ocean temperature and salinity

datasets demonstrate that the proposed sparse sensor

selection method exhibits robust performance.
Subsequently, we review the related work in Section 2. Section 3

introduces the sparse sensor deployment model based on MCC,

with the solution algorithm detailed in Section 4. The proposed

algorithm is validated using ocean temperature and salinity datasets

in Section 5. Finally, Section 6 provides a summary and discussion.
2 Related works

The Euclidean distance is frequently utilized as a criterion for

measuring the reconstruction error in sensor selection problems.

Specifically, this involves using the Frobenius norm of the difference

between the original data and the reconstructed data, as follows:

C = argmin
C

‖X − X̂ ‖F (1)

where X ∈ Rn�m represents the original data, X̂ ∈ Rn�m

represents the reconstructed data, C ∈ Rp�n represents sensor

selection matrix, n represents the number of all candidate

locations for sensor selection, m represents the number of

samples and p represents the number of sensors to be selected.

Typically, once the sensor selection matrix C is established, the

sensor’s measurement data can be acquired, which can be expressed

as: Y = CX. By designing an appropriate mapping based on the

measurement data Y, the reconstruction data X̂ can be obtained.

There is extensive research on data reconstruction aimed at

determining the mapping from measurement data to original data.

Examples include fluid reconstruction based on sparse

representation (Callaham et al., 2019; Xue et al., 2019) and

autoencoder networks (Erichson et al., 2020; Sahba et al., 2022).

In these studies, the subset of locations is typically selected in a

random manner. Some research focuses on mapping the original

fluid data to low-dimensional features using deep neural networks

(Özbay and Laizet, 2022; Zhang et al., 2023). These features reside

in a subspace of the high-dimensional space and are not directly

related to the sensor positions. Other research employs sensor

selection by designing sensor positions according to specific

partition rules, such as Voronoi tessellation (Fukami et al., 2021)

or predetermined positions in a divided grid (Model and

Zibulevsky, 2006), among others.
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Algorithms for sensor selection and dimension reduction, such

as the POD (Jayaraman et al., 2019) and QR decomposition

(Manohar et al., 2018; Zhang et al., 2023), primarily map high-

dimensional matrices to low-dimensional subspaces to obtain low-

dimensional location indices. However, POD relies on a base matrix

derived from Singular Value Decomposition (SVD) for data

reconstruction, with sensors typically selected at random. In

contrast, QR decomposition generally employs a greedy approach

to identify low-dimensional location indices with the highest energy

(e.g., spectral norm) to determine the measurement subset that can

best reconstruct the original data. While a greedy approach focuses

on the benefit of each individual step in the solution process, it often

neglects the impact on the overall solution.

There are also sensor selection methods for reconstruction that

integrate both dimension reduction and data reconstruction, such

as data-driven sparse sensing (Jayaraman and Mamun, 2020),

clustering for sensor select and regressive reconstruction in

(Dubois et al., 2022) and compress sensing (Carmi and Gurfil,

2013; Joneidi et al., 2020). According to the research by Peherstorfer

et al (Peherstorfer et al., 2020), the presence of noise in the data

exacerbates the impact of the noise on the results as the number of

selected locations increases. Furthermore, since these methods

utilize Euclidean distance for similarity measurement, they are

particularly susceptible to non-Gaussian noise or outliers in real-

world marine monitoring scenarios.

To minimize the impact of noise, (Zhou et al. (2019) proposed a

sparse subspace learning method based on MCC, which

simultaneously searches for the feature selection matrix and the

mapping. However, this method is primarily used for feature

selection in image and sound data. Generally, MCC, grounded in the

concept of correntropy from information theory, is adept at capturing

nonlinear relationships and complex structures within data. This

endows MCC with a significant advantage in handling complex

datasets, enabling it to more accurately reflect the true characteristics

of the data. By maximizing correntropy, MCC can effectively mitigate

the influence of outliers on the model. Additionally, MCC does not

depend on the specific distribution form of noise, thereby exhibiting

excellent performance when dealing with non-Gaussian noise.

Conversely, Guo et al. (Guo and Lin (2018) minimize the impact of

noise by identifying the noise indicator of the maximum entropy

distribution during low-rank matrix decomposition. These studies

suggest that MCC and entropy-based noise indicators can provide a

feasible solution for the problem of robust sparse sensor selection.
3 Model of robust sensor selection
based on MCC

This section introduces a model for robust sensor selection.

Initially, an error measure based on the Maximum Correntropy

Criterion (MCC) is proposed to enhance the robustness of sensor

selection. Subsequently, an objective function for the robust sensor

selection model is formulated utilizing this error measure. To

further augment the robustness of the model, noise indicators are

established, which impose additional constraints on the objective

function through the noise matrix.
Frontiers in Marine Science 036
3.1 Reconstruction error based on MCC

In Information Theoretic Learning (ITL), correntropy has proven

effective in mitigating the impact of non-Gaussian noise and outliers

(Liu et al., 2007). The MCC has demonstrated its efficacy in robust

compressive sensing reconstruction (He et al., 2019). Consequently,

within this context, MCC is utilized as a standard to evaluate the

similarity between the original data and the reconstructed data for

robust sensor selection, as follows:

For any two random variables A and B, the correntropy is

defined as:

V(A,B) = E½k (A,B)� (2)

where E½�� represents the expectation operator, k (�, �) represents
kernel function which map the original variables to the Hilbert

functional space.

Generally, k (�, �) is adopted as a Gaussian kernel function. For

two given discrete variables ai and bi, then:

k (ai, bi) = ks (ai − bi) = exp ( −
(ai − bi)

2

2s 2 ) (3)

where s represents kernel bandwidth.

The similarity between variables ai and bi can be measured

using the correntropy estimator as follows:

~Vs (A,B) =
1
m

∑
m

i=1
ks (ai − bi)           (4)

where m represents sample number.

MCC aims to find the maximum correntropy of the difference

between two variables, which is utilized to estimate probability

distributions with maximum correntropy under given constraints.

According to the principles of linear subspace learning, once the data

representation in a low-dimensional subspace is obtained via the feature

selection matrix, the data can be reconstructed using a transformation

matrix thatmaps the low-dimensional data back to the high-dimensional

space. Consequently, the reconstruction of data from the low-

dimensional measurements Y to high-dimensional estimated data X̂ is

defined through the transformation matrix T ∈ Rn�p, as follows:

X̂ = TY = TCX (5)

According to Equations 1, 4, 5, the error measure of data

reconstruction based on MCC is defined as follows:

JMCC =o
m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �
(6)

where, si represents the i-th sample of original data X, TCsTi
represents the i-th sample of reconstructed data X̂ . (·)T denotes the

transpose of the matrix.
3.2 Model of robust sparse
sensor selection

Building on the aforementioned content, the robust sensor

selection model employing MCC is formulated to determine an
frontiersin.org
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optimal selection matrix C, such that the correntropy error specified

in Equation 6 is maximized, as follows:

Ĉ = argmax
C

1
2o

m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �

  s : t : C ∈ 0, 1f gp�n,C1n�1 = 1p�1,

     ‖C1p�1 ‖0 = p :

(7)

For ease of solution, as suggested in reference (Zhou et al.,

2016), the binary variables of C in the constraint conditions are

relaxed to a continuous form. Additionally, to further enhance

reconstruction accuracy, the local geometric structure preservation

term, as utilized in feature selection (Liu et al., 2014), is

incorporated. Based on the representation form of the

reconstructed data in Equation 5, this local geometric structure

preservation term is transformed into: Tr(CXLXTCT ). Then:

Ĉ = argmax
C

1
2o

m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �
−
m
2
Tr(CXLXTCT )

  s : t :  C ∈ Rp�n
+

(8)

where m represents a predefined coefficient, L ∈ Rm�m refers to

the graph Laplacian matrix that captures the local geometric

structure of all data samples. To better measure the relationship

between samples, the Linear Preserve Projection (LPP) method is

employed to obtain the L matrix, as described in (Liu et al., 2014).

Additionally, C is a non-negative matrix.

Simultaneously, to constrain the sparsity of the solution, a

sparse regularization term for the selection matrix C is

incorporated:

Ĉ = argmax
C

1
2o

m

i=1
exp

− ‖ sTi − TCsTi ‖2
2s 2

� �
−
m
2
Tr(CXLXTCT) − a ‖C ‖2, 1

  s : t :  C ∈ Rp�n
+

(9)

Here, the ‘2,1-norm of the selection matrix C is introduced to

control its column sparsity and prevent the selection of too many

redundant sensor positions. a represents the sparse coefficient of

selection matrix C.
3.3 Model enhancement based on
noise weight

Moreover, the noise weight matrix has been demonstrated to

effectively enhance the robustness of outlier estimation during the

process of low-rank matrix decomposition (Guo and Lin, 2018).

The sensor selection problem can be conceptualized as a full state

reconstruction leveraging the sparse characteristics of the low-rank

matrix. Consequently, we estimate noise using both severe noise

and smaller noise weight matrices, respectively, to further mitigate

the impact of non-Gaussian noise and outliers on the sensor

selection process, as well as the model and measurement noises.

Under this condition, the smaller noise weight matrix is
Frontiers in Marine Science 047
incorporated into the error evaluation based on MCC as follows:

JMCC =o
m

i=1
exp

− ‖Wi ⨀ (sTi − TCsTi ) ‖2
2s 2

� �
(10)

whereWi represents the i-th columns of the smaller noise weight

matrix W ∈ Rn�m, ⨀ represents Hadamard product operator.

Simultaneously, to mitigate the impact of severe noise (such as

outliers) on the results, we have incorporated a regularization term

‖ �W ‖1 for the severe noise matrix �W ∈ Rn�m, ensuring its

sparsity. Furthermore, according to the maximum entropy theory,

a higher entropy of the noise distribution better represents the

actual distribution of system variables. Consequently, we have

included an entropy term for both severe and minor noise to

align the results more closely with the true distribution.

Therefore, Equation 9 is modified as follows:

C← argmax
C

1
2o

m

i=1
exp

− ‖
ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖2
2s 2

� �
−
m
2
Tr(CXLXTCT

− a ‖C ‖2,1
   − b ‖ �W ‖1 −go

i,j
(wij logwij + �wij log �wij)

 s:t: W + �W = 1, W and  �W ∈ ½0, 1�n�m

  C ∈ Rp�n
+

(11)

where wij ∈ W and �wij ∈ �W, b represents coefficient of

regularization term ‖ �W ‖1 and g represents coefficient of entropy
of noise. Equation 11 presents the final model for our robust

sensor selection.

4 Algorithm for robust
sensor selection

To address the Gaussian kernel function in the model, the half-

quadratic optimization technique was employed to simplify the

objective function in Equation 11. Subsequently, due to the

presence of non-convex components that render direct solution

challenging, the Block Coordinate Update (BCU) iterative method

(Xu and Yin, 2013), is utilized to resolve the problem in Equation 11.
4.1 Reformulation via half-
quadratic optimization

For the correntropy utilizing the Gaussian kernel function, the

maximum value calculation through sample accumulation can be

interpreted as Welch’s M-estimation. Consequently, it can be

approximated using half-quadratic optimization techniques. Let:

x =
‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖2

2s 2 (12)

According to the half-quadratic optimization (He et al., 2014),

we obtain:

f(x) = sup
qi

qix − j(qi)f g (13)
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where qi represents a scalar variable, f(x) = exp ( − x) is

denoted as the kernel function satisfies the condition of finding

minimum correntropy. Consequently, we obtain:

j(qi) = qi − qi ln ( − qi), and:

exp
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖2
2s2

� �

= sup
qi

qi
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2 − j(qi)

� �
(14)

where i = 1, 2,⋯,m. In order to streamline the description

process, let:

FMCC
1 (C,T ,W , q)

=
1
2o

m

i=1
qi
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2 − j(qi)

� �
(15)

Then, let:

F(C,T ,W, q) = FMCC
1 (C,T ,W, q) +

m
2
Tr(CXLXTCT ) (16A)

E(W) = b ‖ �W ‖1 +go
i,j
(wij logwij + �wij log �wij) (16B)

Consequently, the objective function of Equation 11 can be

reformulated as:

C← argmax
C

F(C,T ,W , q) − a ‖C ‖2,1 −E(W)

 s:t: W + �W = 1, W  and  �W ∈ ½0, 1�n�m

  C ∈ Rp�n
+

(17)
4.2 Iterative method by BCU

According to the BCU method described in (Xu and Yin, 2013),

the objective function of Equation 17 can be optimized by

sequentially updating and iterating the variables C, T, W and q.
During the update of one variable, the remaining three variables are

held constant. The iterative process continues until the termination

condition is satisfied, which occurs when the objective function

reaches its maximum value and no further significant updates can

be made.

Let Ĝ k = ∇CF(Ĉ
k,Tk,Wk, qk) denote the block-partial gradient

of function F( � ) at Ĉ k during the k-th iteration. Throughout the

iteration process, the variables are updated as follows:

Ck+1 = argmax
C∈RP�N

+

〈 Ĝ k,C − Ĉ k 〉−
LkC
2
‖C − Ĉ k ‖2F −a ‖C ‖2,1 (18A)

Tk+1 = argmax
T

 FMCC
1 (Ck+1,Tk,Wk, qk) (18B)

Wk+1 = argmax
W

 FMCC
1 (Ck+1,Tk+1,Wk, qk) + E(Wk) (18C)
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qk+1 = argmax
q

 FMCC
1 (Ck+1,Tk+1,Wk+1, qk) (18D)

In our algorithm, LkC is defined as follows:

LkC = ‖Tk ‖22 ‖Xk ‖22 ‖Wk ‖2 +m ‖XLXT ‖2 (19)

And LkC > 0 denotes the Lipschitz constant of Ĝ k, which can be

determined according to Equation 41 in the Appendix.

In Equation 18A, Ĉ k represents an extrapolated point for the

update of C:

Ĉ k = Ck + wk
C(C

k − Ck−1) (20)

where wk
C ≥ 0 represents the extrapolation weight as defined in

the BCU method (Xu, 2015), and it is typically set as follows:

wk
C = min (ŵ k

C , dw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lk−1C =LkC

q
) (21)

where dw < 1 and ŵ k
C = (tk−1 − 1)=tk, with:

tk = 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4(tk−1)2

q� �
=2 (22)

and t0 = 1.

In the aforementioned iterative update process, the treatment of

C differs from that of the other three variables. Specifically, C is

updated using a block proximal gradient method, whereas the

remaining variables are updated directly through block

maximization. The primary reason for this distinction is that C is

a matrix composed of binary elements (0 and 1), making it

challenging to solve directly. The detail solution process for each

variable is as follows:

4.2.1 Solution for sensor selection matrix
In order to facilitate the determination of sensor selection

matrix C, we first derive the equivalent form of Equation 18A as

follows:

max
C∈Rp�n

+

1
2
‖C − Ĉ k −

Ĝ k

LkC

� �
‖2F +

a ‖C ‖2,1
LkC

(23)

Let Z = Ĉ k − Ĝ k=LkC and l = a=LkC . For any given column c ∈
C, z ∈ Z, by decomposing the problem in Equation 23 into n

independent subproblems, each subproblem can be solved

corresponding to a column of matrices C and Z, respectively, as

referenced in (Zhou et al., 2016; Zhou et al., 2019) as follows:

argmin
c≥0

1
2
‖ c − z ‖22 +l ‖ c ‖2 (24)

Equation 24 can be resolved by applying Theorem 1 as

presented in reference (Zhou et al., 2016), as follows:

Theorem 1 (Zhou et al., 2016). Given z, let W represents the

index set of the positive elements of z. Then the solution c of

Equation 24 is given as:

(A). For any i ∉ W, c∗i = 0;

(B). If ‖ zW ‖2 ≤ l, then c∗W = 0; otherwise, c∗W = ( ‖ zW ‖2 −l)
zW=‖ zW ‖2.
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Based on the aforementioned Theorem 1, after updating each

column’s variable c and subsequently combining all columns, the

updated matrix C can be obtained.

4.2.2 Solution for transformation matrix
The solution for transformation matrix T can be obtained by

directly maximizing Equation 18B in a block-wise manner, as

follows:

Tk+1 = argmax
A

1
2o

m

i=1
qi
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2 − j(qi)

� �
(25)

Equation 25 is equivalent to:

Tk+1 = argmax
A

1
2
‖

ffiffiffiffiffiffiffi
Wk

p
⨀ (Xk − TCk+1Xk) ‖2F (26)

By taking the first-order partial derivative of the right-hand of

Equation 26 with respect to T, and setting the result to zero, we

obtain the following expression:

Wk ⨀ (Xk − TCk+1Xk)(Ck+1Xk)T = 0 (27)

The solution to Equation 27 can be derived as follows:

Tk+1 = Xk(Ck+1Xk)T(Ck+1Xk(Ck+1Xk)T)† (28)

where ( � )† represents the pseudoinverse, Xk represents updated

data matrix under impact of intermediate variable q which will be

introduced later.

4.2.3 Solution for noise weight matrix
With respect to the noise weight matrixW subproblem, solving

Equation 18C is equivalent to solving the following equation:

Wk+1 ← argmax
W

 FMCC
1 (Ck+1,Tk+1,Wk, qk) + E(Wk)

  s:t: W + �W = 1, W  and  �W ∈ ½0, 1�n�m
(29)

In order to facilitate the solution, the Lagrange multiplier

method is employed to relax the aforementioned equation,

yielding the following result:

L(wij, �wij, ri) = 1
2 wij½Xk − Tk+1Ck+1Xk�2ij + b �wij + g (wij logwij + �wij log �wij)

+ri(wij + �wij − 1) 

(30)

where ri denotes the Lagrange multiplier.

∂L
∂wij

= 1
2 ½Xk − Tk+1Ck+1Xk�2ij + g logwij + g + ri = 0,

∂L
∂�wij

= b + g log �wij + g + ri = 0,

∂L
∂ri

= wij + �wij − 1 = 0

(31)

Further derivation of the solution to Equation 31 yields:

wk+1
ij ←

1

exp ((½X − Tk+1Ck+1Xk�2ij=2 − b)=g ) + 1
(32)

At the same time, �wij can be updated as: �wk+1
ij = 1 − wk+1

ij .
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4.2.4 Solution for q

By computing the partial derivative of Equation 13 with respect

to qi, we obtain:

qi = − exp ( − x) (33)

Substituting Equation 12 into Equation 33, we have:

qk+1 = − exp
− ‖

ffiffiffiffiffiffi
Wi

p
⨀ (sTi − TCsTi ) ‖22
2s 2

� �
(34)

Simultaneously, update Xk to:

Xk+1 = Diag

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−
qk+1

2s 2

s0
@

1
AXk (35)

The entire iterative method proposed by BCU for solving

Equations 18A–D is referred to as the Maximum Correntropy

Criterion-based Robust Sensor Selection (MCC_RSS) algorithm.

To elucidate the iterative process of the MCC_RSS algorithm more

clearly, we present it in the form of a flowchart, as depicted in

Figure 1. Herein, the output J represents the locations of selected

sensors. For the sake of clarity, the total objective function in

Equations 18A-D is expressed as follows:

O(C,T ,W , q) = F(C,T ,W, q) − a ‖C ‖2,1 −E(W) (36)
4.3 Theoretical analysis

4.3.1 Convergence analysis
To facilitate the convergence analysis, we present Theorem 2

and Lemma 1 as follows:

Lemma 1: At k-th iteration with fixed C and T, the solutions of

W in Equation 32 are global optimal.

Proof: The W obtained by Equation 32 is the global optimal

because it is solved by Lagrange multiplier method and the

Equation 29 is convex with the fixed C and T.

Theorem 2: The sequence of O(Ck,Tk,Wk, qk)
� �

, which is

generated by the whole objective function in Equation 36

converges monotonically.

Proof: According to the BCU principle and Lemma 1, in the

process of iterative optimization, we have:

O(Ck,Tk,Wk, qk)
� �

≤ O(Ck+1,Tk,Wk, qk)
� �

≤ O(Ck+1,Tk+1,Wk, qk)
� �

≤ O(Ck+1,Tk+1,Wk+1, qk)
� �

≤ O(Ck+1,Tk+1,Wk+1, qk+1)
� �

(37)

During each iteration, the energy of the objective function

progressively increases through four sequential updates. Additionally,

the objective function has an upper bound. Consequently, the

MCC_RSS algorithm exhibits monotonic convergence.
4.3.2 Computational complexity
For the MCC_RSS algorithm, its computational complexity is

determined by the number of samples m, the number of location

features n in the original data matrix X, and the number of sensors
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to be selected p. The complexity of each variable update process is

as follows:

Update sensor selective matrix C: np2 + nm2 +m2 + nm + n2 + n3

Update transformation matrix T: pm + p2 + p3 + 2np

Update noise weight matrix W: n2 + 2nm

Update variable q and X: 2nm + nm2Disregarding the sparsity of

the original data matrix X, and by omitting the lower-order terms, the

resultant time complexity is given by: O(n3 + nm2 + np2 + p3).
5 Experimental evaluation and results

The MCC_RSS algorithm we proposed is compared with the

QR-based sensor selection outlined in (Manohar et al., 2018), POD,

and two random selection method. In these methods, data

reconstruction is carried out by SVD basis (RS) and sparse

representation [SR (Callaham et al., 2019)] respectively. To better

demonstrate the robustness of the MCC_RSS method, we also

compared the proposed algorithm with the MSE_RSS method
Frontiers in Marine Science 0710
[where MSE refers to the use of the Frobenius norm to evaluate

the difference between the original data and the reconstructed data

as in (Zhang et al., 2024)].
5.1 Dataset and experimental description

5.1.1 Datasets description
5.1.1.1 Ocean temperature

The ocean temperature data utilized in this study is derived

from the IAP Global Ocean Temperature Dataset of version IAPv4

(Cheng et al., 2024a) provided by Institute of Atmospheric Physics

(IAP), Chinese Academy of Sciences. This dataset includes bias-

corrected data from various observational systems within the World

Ocean Database as well as data obtained through model simulations

by research group of IAP (Cheng and Jiang, 2016; Cheng et al.,

2017). Together, these ensemble data constitute the full-state global

ocean temperature data. Due to the extensive matrix operations

involved in the algorithm and the limitations of our computer
FIGURE 1

Flowchart of MCC_RSS algorithm.
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memory, a subset of the dataset was selected. Specifically, ocean

temperature data from the North Pacific region was used here, with

a geographical range of 65°N latitude to 10° S latitude, and 78°W

longitude to 99°E longitude. The spatial resolution accuracy is

1°×1°, encompassing a total of 10,188 geographical coordinates as

the sensor selection locations. In this study, sea surface temperature

at vertical levels of 0m is used to conduct the experiments. In

addition, the temporal resolution is monthly, with a total of 996

samples spanning from 1940 to 2022. Of these, the first 800 samples

are used as the training dataset, and the remaining samples are used

as the test dataset.

5.1.1.2 Ocean salinity

The ocean salinity data utilized in this study is also derived from

the IAP Global Ocean Salinity Dataset (Cheng et al., 2024b). This

dataset also includes bias-corrected data from the World Ocean

Database and the IAP research group, as well as model simulation

data (Cheng and Jiang, 2016; Cheng et al., 2020). Similar to the

temperature data, salinity data from the North Pacific region,

sharing the same geographical range, were extracted. The

geospatial resolution is 1°×1°. This ocean salinity dataset

encompasses 41 vertical levels ranging from 0 to 2000 meters. For

this experiment, the salinity data from the first vertical level were

used. The temporal resolution of this dataset is monthly, spanning

from January 1940 to December 2021, comprising a total of 984

samples. Of these, the first 800 samples are used as training data,

while the remaining samples are used as test data.

5.1.2 Quality of reconstruction
The performance of the proposed method is evaluated by

reconstruction errors, which are represented as follows:

Rerror =
‖Test − T̂ est ‖2

‖Test ‖2
(38)

Wherein Test is input test data from the test set, T̂ est is

reconstructed by T from Equation 28 and the sensor’s

measurement data Ytest = CJ � Test, as T̂ est = T � Ytest . J is

obtained from the sensor selection methods and CJ is the

corresponding sensor selection matrix.

5.1.3 Experimental setting
The hardware and software environment used in the

experiment is shown in Table 1.

The specific parameter settings for the MCC_RSS algorithm are

as follows: a=1×106, b=1×10-5, g=1×10-4, m=1×10-4, with the

maximum number of iterations set to 400. During the execution
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of the MCC_RSS algorithm, the data is first normalized, followed by

iterative updates of each subproblem solution based on BCU. The

selection of these parameters is determined according to the

algorithm’s iterative process. Specifically, inappropriate

parameters can lead to non-convergence of the objective function

or premature termination of iterations. For instance, the value of a
affects the solution process of Equation 23; an unsuitable a will

prevent effective updates of matrix C. We determined the specific

value of a by observing the algorithm’s iterative process during

experiments. Similarly, the values of b and g influence the solution
of the weight matrix W. Inappropriate values can cause the

elements wij of Equation 32 to quickly converge to infinity or a

constant, such as 1/2 (this conclusion can be easily derived by

analyzing the relative relationship between b and g in Equation 32).

The value of m is selected based on the overall distribution range of

the objective function, ensuring it does not affect the convergence

speed of the objective function value. Finally, among several

alternative parameter combinations, the aforementioned

parameters were selected as they exhibited the lowest error in the

absence of noise.

To compare the robustness of different methods, we introduced

varying proportions of outliers into the training data to simulate the

loss conditions of actual oceanographic data. Considering the

impact of non-Gaussian noise, we use the a-stable distribution to

simulate heavy-tailed non-Gaussian noise, setting the signal-to-

noise ratio parameter to 60. The alpha value (denoted as a0 to avoid

confusion with the model parameter a) is used to control the

magnitude of the heavy tail, with a0 set to1.

In the following experiments, Po=20% indicates that the

proportion of outliers is 20%. Meanwhile, Sn=60 means that the

signal-to-noise ratio of non-Gaussian noise is 60.
5.2 Reconstruction for ocean temperature

5.2.1 Compared with comparative methods
5.2.1.1 Reconstruction for different test snapshot

Figure 2 illustrates the comparison of reconstruction errors

between the proposed method and the comparative methods for

different snapshots in the test set. The number of selected sensors is

set to 10. Due to the presence of random components in the

comparative methods, each baseline method was executed 10

times, and the median error of the results was taken for

comparison. Referring to Figure 2A, when there are outliers and

noise in the training data, the reconstruction errors of the

comparative methods increase rapidly. This indicates that the

effectiveness of the QR and SR methods in the comparative

methods is highly dependent on the quality of the training

dataset. In contrast, the proposed MCC_RSS method can still

minimize the impact of noise and maintain a low reconstruction

error even in the presence of outliers and noise, achieving relatively

stable reconstruction of test snapshots. Referring to Figure 2B, when

the proportion of outliers in the training data increases and noise is

still present, the proposed MCC_RSS method still exhibits the

lowest reconstruction error compared to the comparative

methods. Although the reconstruction error increases slightly
TABLE 1 Experimental environment.

Hardware

Memory 16.0 GB

CPU
AMD Ryzen 5
5600G @3.9GHz

Software
Programming Language Matlab

Operating System Windows 11 Professional
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compared to the case with weaker noise, the overall difference is

small. This fully demonstrates that the proposed MCC_RSS method

is minimally affected by noise in the training dataset during data

reconstruction, and its sparse sensor selection process has

good robustness.

Figure 2 also illustrates that the reconstruction errors of

different methods fluctuate over different time periods. Despite

the varying degrees of noise contamination in the training data, the

proposed MCC_RSS method effectively captures these temporal

fluctuations with only 10 selected sensors, demonstrating

superior stability.

5.2.1.2 Reconstruction for one test snapshot

To better reflect the sensitivity of different methods to outliers, a

10-fold cross-validation approach was employed. The results for

each method, based on a single snapshot with p = 10, are compared

and illustrated in Figure 3. Figure 3A demonstrates that the overall

reconstruction error of the proposed method is consistently than

that of other methods after multiple validations. Figure 3B indicates

that even as the number of outliers increases, the reconstruction

error of the proposed method remains lower than that of the other

three methods, with only the POD method occasionally achieving

lower reconstruction error. However, overall, the results of the

proposed method are highly stable, with outcomes remaining

concentrated even after multiple experiments. In contrast, the

results of the comparative method exhibit a larger distribution

range and lack stability across multiple validations. This stability is

primarily due to the iterative optimization algorithm proposed in

this paper, which focuses on gradually approaching the optimal
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solution until the algorithm termination condition is met. In the

comparative method, the reconstructing based on the basis or

orthogonal basis of SVD decomposition is significantly influenced

by the data itself, leading to the instability of the solution.

Based on Figure 4, we present a randomly selected snapshot

from the test set along with the corresponding reconstruction maps

using different methods. In this scenario, the outlier ratio is set to

20%, and the signal-to-noise ratio is 60. The red dots in each

reconstruction map indicate the sensor locations selected by the

respective method. As shown in Figure 4B, the method proposed in

this paper can effectively reconstruct the sea surface temperature

distribution in the North Pacific region using only 10 selected

sensors for this snapshot. Among the compared methods, only the

POD method can relatively reconstruct the temperature

distribution for this snapshot, but it still contains numerous noise

points. Naturally, the reconstruction results vary for different

snapshots, as indicated by the numerical comparison of

reconstruction errors mentioned above. Although the POD

method performs relatively well for this particular snapshot, the

numerical results demonstrate that its reconstruction error is still

higher than that of the proposed method when only 10 sensors are

selected, and its stability is compromised by the randomly chosen

sensor locations.

5.2.1.3 Reconstruction error by different number
of sensors

Figure 5 presents a comparison of reconstruction errors for

different methods when varying the numbers of selected sensors,

under noise conditions of Po=20% and Sn=60%. To mitigate the
FIGURE 2

Reconstruction error for temperature comparation. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
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influence of random factors, the comparative methods were

subjected to 10-fold cross-validation. The error comparison

results in Figure 5 indicate that when the training data contains

noise, the proposed MCC_RSS method consistently achieves

significantly lower reconstruction errors than other comparative

methods, regardless of the number of sensors selected. Additionally,
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while the reconstruction errors of the comparative methods

decrease as the number of sensors increases, the reconstruction

error obtained by the proposed method shows almost no significant

change. The primary reason for this is that, in the proposed method,

after obtaining a C matrix through subspace learning, the column

indices (i.e., sensor locations) are determined by selecting the
FIGURE 3

Reconstruction error of temperature for a snapshot. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
FIGURE 4

Reconstruction error of temperature for a snapshot. (A) Snapshot of test; (B) Reconstructed temperature by MCC_RSS; (C) Reconstructed
temperature by POD; (D) Reconstructed temperature by QR; (E) Reconstructed temperature by SR; (F) Reconstructed temperature by RS.
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columns with the largest 2-norms for a given number of sensors.

Therefore, once the training data is given, the low-dimensional

subspace obtained through subspace learning is fixed, and selecting

more sensors does not contribute additional useful information to

the identified subspace. This results in the reconstruction error

remaining nearly constant regardless of the number of sensors.

Consequently, a very small number of sensors can still achieve good

reconstruction performance. In contrast, the comparative methods

increase the number of features used as the number of sensors

increases, leading to a reduction in reconstruction error. Therefore,
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the proposed method is more suitable for scenarios requiring a

limited number of sensors.

5.2.2 Compared with MSE_RSS methods
To better demonstrate the effectiveness of the MCC method in

improving robustness, we compare the proposed MCC_RSS method

with the MSE_RSS method, as shown in Figure 6. The primary

difference betweenMSE_RSS and MCC_RSS lies in the measurement

of the discrepancy between the original and reconstructed data, with

MSE_RSS lacking the local geometric structure preservation
FIGURE 5

Reconstruction error of temperature by different number of sensors.
FIGURE 6

Comparison between MCC_RSS and MSE-RSS of ocean temperature. (A) No additional noise; (B) Po =20%, Sn=60.
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term. The update formulas for Lipschitz constant of MSE_RSS

are presented as: LkC = ‖Ak ‖22 ‖X ‖22 ‖Wk ‖2, where X remains

unchanged during the iteration process.

The reconstruction error results shown in Figure 6A indicate

that even for subspace learning on training data without added

noise, the sensor subset selected by the proposed MCC_RSS method

achieves superior data reconstruction performance compared to the

MSE_RSS method. This is primarily because, even without

additional noise in the ocean temperature training data, the

original data inherently contains model noise introduced during

the ocean data assimilation process. The sensor selection method

based on MCC proposed in this paper can minimize the impact of

such noise as much as possible. Furthermore, Figure 6B presents the

reconstruction results of these two methods when the training data

contains 40% outliers and non-Gaussian noise. The results

demonstrate that, with more severe noise, the difference in

reconstruction performance between the sensor subset selected by

the proposed MCC_RSS method and the MSE_RSS method further

increases. This indicates that the proposed MCC_RSS method, by

using MCC as the measure of the difference between the original

and reconstructed data, is better able to mitigate the impact of noise

on the results when the training data contains noise.
5.3 Reconstruction for ocean salinity

5.3.1 Compared with comparative methods
5.3.1.1 Reconstruction for different test snapshot

Figure 7 presents a comparison of the reconstruction errors

between the proposed method and the comparative methods for
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ocean salinity data, with the number of sensors selected being 10.

From Figures 7A, B, it can be observed that when the training data

contains varying levels of noise, the reconstruction errors of the

proposed MCC_RSS method are consistently lower than those of

the comparative methods. Additionally, the reconstruction errors

still reflect the periodicity of the ocean data to a certain extent. As

the level of noise contamination in the training data increases, the

reconstruction errors of all methods decrease. However, compared

to the comparative methods, the decrease in reconstruction error

for the proposed MCC_RSS method is less significant. This further

demonstrates that, when selecting sensors for ocean salinity data,

the proposed MCC_RSS method is less affected by the noise present

in the data compared to the comparative methods.
5.3.1.2 Reconstruction for one test snapshot

Figure 8 presents a comparison of reconstruction error for a

randomly selected sample (snapshot) using 10-fold cross-

validation, with p=10. From Figures 8A, B, it can be observed that

despite variations in outliers and noise distribution in the ocean

salinity training data during multiple implementations of both the

proposed method and the comparison method, the reconstruction

error distribution of the proposed MCC_RSS method remains

relatively concentrated, indicating better algorithm stability. In

contrast, the reconstruction error distribution of the comparison

method becomes more dispersed when the noise distribution in the

training data changes. Additionally, the proposed method

consistently achieves the lowest reconstruction error. This result

further demonstrates that the MCC_RSS algorithm, based on MCC

subspace learning, can iteratively learn a relatively stable low-
FIGURE 7

Reconstruction error for salinity comparation. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
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dimensional subspace under different conditions, thereby ensuring

that the selected subset of sensor measurements exhibits good

robustness and achieves better data reconstruction.

Figure 9 presents a comparison of the reconstruction effects of

different methods on the aforementioned randomly selected

snapshot, with the noise in the training data set to Po=20% and

Sn=60%. The red dots indicate the positions of the sensors selected
Frontiers in Marine Science 1316
by the different methods. As shown in Figure 9B, the proposed

MCC_RSS method achieves effective reconstruction of ocean

salinity data with only a subset of 10 sensors, successfully

capturing the main characteristics of the salinity distribution in

the North Pacific region when compared to the test snapshot. The

POD method, while slightly inferior to the proposed method, also

generally reflects the main patterns of salinity distribution in the
FIGURE 8

Reconstruction error of salinity for a snapshot. (A) Po =20%, Sn=60; (B) Po =40%, Sn=60.
FIGURE 9

Reconstruction error of salinity for a snapshot. (A) Snapshot of test; (B) Reconstructed salinity by MCC_RSS; (C) Reconstructed salinity by POD;
(D) Reconstructed salinity by QR; (E) Reconstructed salinity by SR; (F) Reconstructed salinity by RS.
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North Pacific region. However, the other three comparative

methods fail to capture the salinity distribution characteristics

with only a subset of 10 sensors. This indicates that, even with a

certain level of noise in the training data and a limited number of

sensors, the sensor subset selected by the proposed MCC_RSS

method can still achieve effective data reconstruction.

5.3.1.3 Reconstruction error by different number
of sensors

Figure 10 presents a comparison of the reconstruction errors

for different methods when selecting varying numbers of sensors.

The noise in the training data is set to Po=40% and Sn=60. As

shown in the figure, the proposed MCC_RSS method consistently

achieves the lowest reconstruction error compared to the

comparative methods, regardless of the number of sensors

selected. Additionally, as the number of sensors increases, the

reconstruction error remains relatively stable. As previously

mentioned, once the proposed MCC_RSS method determines

the matrix C corresponding to the low-dimensional subspace,

the indices of the selected sensors, regardless of their number, are

derived from the entries of matrix C with the largest 2-norms of

the columns. This selection process does not significantly alter the

obtained subspace, further demonstrating that the low-

dimensional subspace derived from the proposed method is

relatively stable. Consequently, it is more suitable for scenarios

with fewer sensors compared to the comparative methods.

In contrast, for the comparative methods, particularly the QR and

RSmethods, the reconstruction error decreases rapidly as the number

of selected sensors increases. However, they are still significantly

affected by noise, and their reconstruction errors are not as favorable

as those of the proposed method. The SR method, which relies more

heavily on the library established from the training data, is the most

affected by noise. Comparatively, the PODmethod performs closer to

the proposed method in terms of ocean salinity reconstruction and

can reasonably reconstruct salinity data with different numbers of
Frontiers in Marine Science 1417
sensors. Nevertheless, its error remains significantly higher than that

of the proposed method.

Therefore, utilizing the sensors selected by the proposed

MCC_RSS method for data reconstruction can achieve more

desirable results, particularly when the number of sensors is limited.

5.3.2 Compared with MSE_RSS methods
Figure 11 shows the experimental results of the proposed

MCC_RSS method and the corresponding MSE_RSS method on

global ocean salinity data, using 10 sensors. As shown in

Figure 11A, when no additional noise is introduced to the

training data, there is no significant difference in the

reconstruction errors between the two methods. Differences are

observed only in specific time samples, such as in the trough region

between sample indices 100 and 140, where the error of the

MCC_RSS method is smaller than that of the corresponding

MSE_RSS method. In Figure 11B, when the training data

contains noise, it is evident that the overall fluctuation of the

reconstruction error of the MCC_RSS method is significantly

smaller than that of the MSE_RSS method. The average error of

the MCC_RSS method is 0.0375, while the average error of the

MSE_RSS method is 0.0391. This further demonstrates that the

proposed method can more effectively mitigate the impact of noise.
6 Conclusion and discussion

Considering the distinct low-rank characteristics of ocean data,

we explored how to optimally utilize subspace learning methods to

derive a more reasonable low-dimensional subspace of high-

dimensional ocean data. This approach facilitates the selection of

low-dimensional measurements from sensors that better meet the

requirements. Based on this premise, we develop a robust sensor

selection method that establishes an evaluation function based on

the Maximum Correntropy Criterion (MCC) and selects sensor
FIGURE 10

Reconstruction error of salinity by different number of sensors.
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subsets to reconstruct the full state ocean data through subspace

learning. Compared to the Euclidean distance used in existing

methods, MCC demonstrates superior robustness in evaluating

the discrepancies between reconstructed data and original data,

particularly in the presence of varying levels of noise in the original

data. The model also incorporates noise weighting and optimizes

noise distribution using entropy terms, effectively controlling sparse

severe noise and mitigating the impact of non-Gaussian noise and

outliers. The use of noise weighting in the proposed method allows

for better identification of varying levels of noise during the

subspace learning process. This reduces the impact on the learned

subspace, resulting in more stable reconstruction outcomes for

sensor selection under different noise conditions.

Furthermore, the integration of the local geometric structure of

data samples further enhances the reconstruction accuracy achieved

by the selected sensors. By minimizing the similarity of the selected

sensor measurement subset through the graph Laplacian matrix

between samples, the reconstruction capability of the selected

sensors for the full state data is further improved. To better solve

the model’s evaluation function, the half-quadratic BCU method

was employed, effectively addressing the challenge of solving the

non-convex parts of the objective function. During the iterative

solving process, the selection matrix, transformation matrix, and

noise weighting matrix continuously evolve towards the optimal

solution. This ultimately results in the learned low-dimensional

subspace, along with the corresponding selection and

transformation matrices, achieving superior data reconstruction

outcomes. Additionally, the model effectively converges to the

optimal solution with a low number of iterations.
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Compared to the benchmark methods, our approach performs

better and yields highly robust solutions under varying noise

conditions. Specifically, the proposed method demonstrates that

even with data containing different levels of noise, it can achieve

effective data reconstruction using a smaller number of sensors.

This makes it particularly suitable for ocean data reconstruction

where the number of sensors is limited. This provides a valuable

reference for future ocean environment monitoring systems on how

to deploy fewer sensors more efficiently.

In our future work, we will explore how to improve the method

proposed in this paper to reduce its computational complexity. For

example, after preliminary screening of location features using

statistical methods such as variance analysis and correlation

coefficients, BCU iterative solving can be performed, or location

features can be grouped and optimized separately before combining

the results. For the parameter selection, we will also explore more

scientific methods, such as grid search and Bayesian methods, to

obtain parameter values that can achieve the optimal convergence

results of the objective function. In addition, the method proposed

in this paper does not make a significant contribution to the results

when the number of sensors increases. Therefore, with the increase

in the number of selected sensors, further exploration is needed to

obtain a better low-dimensional subspace that can introduce more

effective information. Potential improvements include

incorporating oceanographic knowledge to screen location

features, thereby identifying the most valuable candidate locations

for monitoring. Alternatively, oceanographic models can be used to

assess the value of each location feature, facilitating the

optimization of a data-driven sensor selection model.
FIGURE 11

Comparison between MCC_RSS and MSE-RSS of ocean salinity. (A) No additional noise; (B) Po =20%, Sn=60.
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Appendix A

The Lipschitz constant LkC could be obtained by computing the

derivative of C in Equation 18A Ĝ k = ∇CF(Ĉ
k,Tk,Wk, qk).

Through matrix calculation, it is easy to derive:

∇CF(C,T ,W , qk)

= TT ½W⨀ (Xk − TCXk)�(Xk)T − mCXLXT (39)

where Xk is the updated data at i-th iteration by variable q.

Given two matrix variables Ĉ and ~C, then we have:

‖∇CF(Ĉ ,T ,W) − ∇CF(~C,T ,W) ‖F
= ‖TT ½W⨀ (Xk − TĈXk)�(Xk)T − mĈ XLXT − TT

½W⨀ (Xk − T~CXk)�(Xk)T + m~CXLXT ‖F
= ‖TT W⨀½T(Ĉ − ~C)Xk�� �

(Xk)T + m(~C − Ĉ )XLXT ‖F

≤ ‖TT W⨀½T(Ĉ − ~C)Xk�� �
(Xk)T ‖F +m ‖ (~C − Ĉ )XLXT ‖F

≤ ‖T ‖22 ‖Xk ‖22 ‖W ‖2 ‖ Ĉ − ~C ‖F +m ‖XLXT ‖2 ‖ ~C − Ĉ ‖F
= ‖T ‖22 ‖Xk ‖22 ‖W ‖2 +m ‖XLXT ‖2
	 


‖ Ĉ − ~C ‖F
(40)

The inequality part in above equation is transformed according

to the Cauchy-Schwarz inequality. By Equation 40, we have the

Lipschitz constant LkC as:

LkC = ‖Tk ‖22 ‖Xk ‖22 ‖Wk ‖2 +m ‖XLXT ‖2 (41)
Appendix B

To facilitate reading, a nomenclature listing used in this study is

provided here; please refer to Table A1.

TABLE A1 Abbreviations and Full Term.

Abbreviation Full Term

MCC Maximum Correntropy Criterion

RSS Robust Sensor Selection

BCU Block Coordinate Update

NP-hard
Non-deterministic Polynomial-

time hard

POD Proper Orthogonal Decomposition

SVD Singular Value Decomposition

ITL Information Theoretic Learning

LPP Linear Preserve Projection

SR Sparse Representation

RS Random Selection

MSE Mean Square Error
F
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ISSA optimized spatiotemporal
prediction model of dissolved
oxygen for marine ranching
integrating DAM and Bi-GRU
Wenjing Liu1,2, Ji Wang1,2*, Zhenhua Li1,2 and Qingjie Lu1,2

1School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang,
Guangdong, China, 2Guangdong Province Smart Ocean Sensor Network and Equipment Engineering
Technology Research Center, Guangdong Ocean University, Zhanjiang, Guangdong, China
In marine ranching aquaculture, dissolved oxygen (DO) is a crucial parameter that

directly impacts the survival, growth, and profitability of cultured organisms. To

effectively guide the early warning and regulation of DO in aquaculture waters,

this study proposes a hybrid model for spatiotemporal DO prediction named

PCA-ISSA-DAM-Bi-GRU. Firstly, principal component analysis (PCA) is applied to

reduce the dimensionality of the input data and eliminate data redundancy.

Secondly, an improved sparrow search algorithm (ISSA) based on multi strategy

fusion is proposed to enhance the optimization ability and convergence speed of

the standard SSA by optimizing the population initialization method, improving

the location update strategies for discoverers and followers, and introducing a

Cauchy-Gaussian mutation strategy. Thirdly, a feature and temporal dual

attention mechanism (DAM) is incorporated to the baseline temporal

prediction model Bi-GRU to construct a feature extraction network DAM-Bi-

GRU. Fourthly, the ISSA is utilized to optimize the hyperparameters of DAM-Bi-

GRU. Finally, the proposed model is trained, validated, and tested using water

quality and meteorological parameter data collected from a self-built LoRa+5G-

based marine ranching aquaculture monitoring system. The results show that:

(1) Compared with the baseline model Bi-GRU, the addition of PCA, ISSA and

DAM module can effectively improve the prediction performance of the model,

and their fusion is effective; (2) ISSA demonstrates superior capability in

optimizing model hyperparameters and convergence speed compared to

traditional methods such as standard SSA, genetic algorithm (GA), and particle

swarm optimization (PSO); (3) The proposed hybrid model achieves a root mean

square error (RMSE) of 0.2136, a mean absolute percentage error (MAPE) of

0.0232, and a Nash efficient (NSE) of 0.9427 for DO prediction, outperforming

other similar data-driven models such as IBAS-LSTM and IDA-GRU. The

prediction performance of the model meets the practical needs of precise DO

prediction in aquaculture.
KEYWORDS

marine ranching, dissolved oxygen prediction, improved sparrow search algorithm
(ISSA), dual attention mechanism, Bi-GRU
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1 Introduction

As one of the crucial indicators of water quality, dissolved

oxygen directly determines the health status of the water

environment in marine ranching, and then affects the overall

aquaculture benefits. Its concentration is influenced by factors

such as air temperature, atmospheric pressure, and water body

conditions, exhibiting nonlinear, coupled, and time-varying

characteristics (Cuenco et al., 1985; Lipizer et al., 2014). When

the DO concentration in water is too high or insufficient, it can

directly or indirectly alter other water quality indicators, affecting

the health status of aquacultured species, leading to decreased

resistance, slow growth, stagnation, or even death (Abdel-Tawwab

et al., 2019; Neilan and Rose, 2014; Jiang et al., 2021). Therefore,

through real-time monitoring and effective prediction of DO

concentration in water aquaculture, precise regulation of the

water quality environment can be achieved, reducing the

aquaculture risks in marine farms and enhancing their

economic benefits.

Currently, artificial intelligence technology is widely used for

modeling complex nonlinear systems (Zhu et al., 2019; Choi et al.,

2021; Than et al., 2021; Guo et al., 2022, 2023). Scholars have

proposed various methods for water quality prediction in different

environments and achieved certain results. Wu et al. (2018) used a

BP neural network model optimized by particle swarm optimization

(PSO) for dissolved oxygen prediction. Zhu et al. (2017) established

a dissolved oxygen prediction model based on the least squares

support vector regression (LSSVR) model and fruit fly optimization

algorithm (FOA). Li et al. (2023) applied a prediction model

combining PCA with particle swarm optimization-based LSSVM

to dissolved oxygen prediction in the Yangtze River Basin in

Shanghai. Kuang et al. (2020) proposed a hybrid DO prediction

model KIG-ELM consisting of K-means, improved genetic

algorithm (IGA), and extreme learning machine (ELM). Cao et al.

(2021a) proposed a method based on k-means clustering, PSO, and

an improved soft ensemble extreme learning machine (SELM). The

BP, SVM, LSSVM, and ELM prediction methods mentioned above

all belong to shallow machine learning models. They have fast

training speeds and can achieve high accuracy, but their

representation capabilities for complex functions are limited

under limited samples and computing units. Their generalization

ability for complex classification problems is also constrained to a

certain extent.

Additionally, scholars have also proposed an adaptive network-

based fuzzy inference system (ANFIS), which combines the

characteristics of fuzzy logic and neural networks. By learning the

fuzzy rules and weight parameters from data, ANFIS can predict

unknown data. Sharad et al. (2018) introduced two data-driven

adaptive neuro-fuzzy systems: fuzzy C-means and ANFIS based on

subtractive clustering, which were used to predict sensitive

parameters in monitoring stations that could lead to changes in

existing water quality index values. Arora and Keshari (2021)

employed ANFIS with grid partitioning (ANFIS-GP) and

subtractive clustering (ANFIS-SC) to simulate and predict high-

dimensional river characteristics. The results showed that both

ANFIS models could fully and accurately predict DO. However,
Frontiers in Marine Science 0223
ANFIS lacks adaptability, precise control over complex systems, and

may encounter high computational complexity when dealing with

complex problems.

In recent years, the development of deep learning models has

provided an effective solution for the prediction of dissolved oxygen

in aquaculture. Deep learning can achieve complex function

approximation by learning a deep nonlinear network structure and

mine the implicit information in data. Compared with machine

learning methods with shallow structures, it has stronger learning

and generalization abilities and demonstrates a strong ability to learn

the essential features of data sets from a small number of samples.

Among them, the recurrent neural network (RNN) based on deep

learning, as a powerful tool for modeling sequential data, has received

widespread attention and application. By introducing a recurrent

structure within the network, RNN can model the temporal

dependencies in sequential data, thereby capturing temporal

dependencies and contextual information. However, due to

parameter sharing and multiple multiplications, RNN is prone to

the problems of gradient vanishing or gradient explosion during

backpropagation, making it difficult to train the model or causing it to

fail to converge. Long short-term memory (LSTM) and gated

recurrent unit neural network (GRU), as the most popular variants

of RNN, can effectively address the issues of gradient vanishing and

gradient explosion during RNN training, and have become the

mainstream for time series prediction (Li et al., 2021; Liu P. et al.,

2019). Compared to LSTM, GRU consists of an update gate and a

reset gate with simpler structure and fewer number of

hyperparameters. Liu Y. et al., (2019) conducted research on short-

term and long-term DO predictions using attention-based RNN,

indicating that the proposed model outperformed five attention-

based RNN methods and five baseline methods. Zhang et al., 2020

introduced a DO prediction model, kPCA-RNN, which combines

Kernel PCA and RNN demonstrating that the model’s prediction

performance surpassed current feedforward neural networks

(FFNNs), support vector regression (SVR), and general regression

neural networks (GRNN). Sun et al., 2021 proposed a DO prediction

model that integrates an improved beetle antennae search algorithm

(IBAS) with LSTM networks. Cao et al. (2021b) proposed a LSTM

prediction model based on K-means clustering and improved particle

swarm optimization (IPSO). Huan et al., 2022 systematically

discussed and compared GRU water quality prediction methods

based on the attention mechanism. The results showed that its

performance in DO prediction surpassed that of LSTM based on

the attention mechanism, as well as five traditional baseline

algorithms: ANFISR, BF-AN, ELM, SVR, and ANN. However, only

the feature attention mechanism was utilized in their study. Chen

et al. (2022) established an attention-based LSTMmodel (AT-LSTM)

to predict water quality in the Burnett River in Australia. The

research findings indicated that the incorporation of the attention

mechanism enhanced the prediction performance of the LSTM

model. Only the temporal attention mechanism was used in their

study. Tan et al. (2022) constructed a neural network model

combining CNN and LSTM to predict DO demonstrating that this

model achieved more accurate peak fitting predictions than

traditional LSTM models. Yang and Liu (2022) utilized an

improved whale optimization algorithm (IWOA) to optimize a
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GRU, creating a water quality prediction model for sea cucumber

aquaculture. Experimental results showed that this model surpassed

prediction models such as Support Vector Regression (SVR),

Random Forest (RF), CNN, RNN, and LSTM networks in terms of

prediction accuracy and generalization performance. Jiange et al.

(2023) proposed a prediction model combining improved grey

relational analysis (IGRA) with LSTM optimized by the ISSA

named IGRA-ISSA-LSTM. Results indicated that the proposed

model achieved higher determination coefficients (R2) for

predicting DO, pH, and KMnO4 compared to the IGRA-BP,

IGRA-LSTM, and IGRA-SSA-LSTM models. Zhang et al. (2023)

introduced an DO spatio-temporal prediction model based on an

improved RGU with a dual attention mechanism (IDA-GRU) and an

improved inverse distance weighting (IIDW) interpolation algorithm.

Existing research has shown that various models can be

employed for DO prediction, with deep learning-based models

outperforming shallow machine learning models and ANFIS. The

critical aspects of building an efficient and accurate DO prediction

model focus on preprocessing of input data, model selection and

improvement and hyperparameter optimization (Wang et al.,

2023). Based on these findings, this paper proposes an hybrid

model, named PCA-ISSA-DAM-Bi-GRU, to predicting DO in

marine aquaculture farms. Specifically, PCA is utilized for

dimensionality reduction of the model input data, while the DAM

integrating both temporal and feature attention, is fused with the

bidirectional gated recurrent unit (Bi-GRU) neural network for

feature extraction. Furthermore, an enhanced ISSA incorporating

multiple strategies is employed to search and optimize the

hyperparameters of the Bi-GRU, aiming to enhance the model’s

prediction precision. Finally, the accuracy and reliability of the

model are validated using data collected from a self-built LoRa+5G-

based marine aquaculture farm monitoring system.
2 Materials and methods

2.1 Marine ranching environment
monitoring system based on LoRa+5G

This experiment has independently established a marine

ranching environment monitoring system based on LoRa+5G,

which integrates functions such as data collection, remote

transmission, storage management, remote monitoring, and data

analysis. The overall architecture is shown in Figure 1 and can be

functionally divided into a perception layer, a network layer, and an

application layer. The perception layer utilizes various sensors to

collect water quality parameters and meteorological parameters.

The network layer transmits the collected data to the application

layer through the LoRa sensor network combined with 5G

communication technology. The application layer stores and

analyzes the collected data, providing a user interface as needed.

For this experiment, the monitoring system was deployed at an

aquaculture farm in Xiayang Town, Xuwen County, Zhanjiang City,

Guangdong Province, China, covering a sea area of 40m in length

and 40m in width. To collect three-dimensional distribution data of

the aquaculture area, nine water quality sensors were placed at
Frontiers in Marine Science 0324
corresponding locations above and below water depths of 0.8m and

1.6m. The monitor point distribution is shown in Figure 2.

The data collected by the water quality sensors include dissolved

oxygen, water temperature, conductivity, pH value, ammonia

nitrogen content, and turbidity. The meteorological monitoring

station, located near the aquaculture farm, gathers data on

atmospheric temperature, atmospheric relative humidity,

atmospheric pressure, wind speed, wind direction, solar radiation,

and rainfall. During the data collection process, factors such as the

aquaculture environment, sensor malfunctions, and fluctuations in

network signals can lead to the presence of abnormal values and a

small number of missing values in the sample data. In this study, the

mean smoothing method is adopted to eliminate abnormal data,

and the linear interpolation method is used to fill in missing values.

Additionally, a min-max normalization process is applied to each

variable to ensure consistent scaling for analysis.
2.2 Construction of dissolved oxygen
prediction model

2.2.1 Principal component analysis
On the basis of ensuring the integrity, validity, and accuracy of

the input data, dimensionality reduction can be applied to eliminate

redundancy in the input data, effectively reduce the complexity of

the model structure, and enhance the model’s learning performance

and prediction accuracy. Principal Component Analysis (PCA) is a

commonly used data analysis method that transforms data from a

high-dimensional space to a low-dimensional space. It recombines

numerous indicators with certain correlations into a new set of

uncorrelated comprehensive indicators, thereby achieving the goals

of removing redundant information and noise reduction. Assuming

the input raw data is in the form of a matrix, the specific steps for

PCA to extract the principal components are as follows:
1. Data Decentralization: subtract the mean of each feature

from itself X0
ij = Xij − �Xi;

2. Compute the Covariance Matrix: X0
ijX

0 T
ij ;

3. Calculate Eigenvalues and Eigenvector;

4. Select Principal Components: sort the eigenvalues from

largest to smallest and select the top k eigenvalues;

5. Construct Projection Matrix: combine the eigenvectors

corresponding to the selected eigenvalues to form the

projection matrix;

6. Dimensionality Reduction: multiply the original matrix by

the projection matrix to obtain a new set of samples that

retains most of the representative feature information from

the original samples.
2.2.2 Bi-directional gated recurrent unit
neural network

The GRU network is a simplified variant of the LSTM network.

It consists of an update gate and a reset gate, resulting in a simpler

structure with fewer hyperparameters. GRU networks take
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sequential data as input and utilize recurrent convolutional neural

networks for feature extraction, making them well-suited for time

series prediction. The specific structure of the GRU network cycle

unit is illustrated in Figure 3. The input of the network unit includes

the current input xt and the hidden state ht-1 passed down from the

previous time step. The output is both the output for the current

time step and the hidden state ht passed to the next time step. The

specific calculation process is described by Equations 1–4:

rt = s (Wrxxt +Wrhht−1 + br) (1)

zt = s (Wzxxt +Wzhht−1 + bz) (2)

h
0
t = tanh (Whxxt +Whrrtht−1 + bh) (3)

ht = (1 − zt)ht−1 + zth
0
t (4)

where rt , zt , h
0
t and ht represent the output of the reset gate, the

output of the update gate, the candidate state, and the hidden state,

respectively. Wrx and Wrh are the weight matrices of the reset gate,
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Wzx andWzh are the weight matrices of the update gate, andWhx and

Whr are the weight matrices of the candidate output. br , bz and bh are

the bias vectors for the reset gate, the update gate, and the candidate

output, respectively. s and tanh denote the sigmoid activation

function and the hyperbolic tangent function, respectively.

Since GRU can only establish unidirectional associations in

time series, the concentration of dissolved oxygen at a given

moment should be related to both the preceding and following

water quality and meteorological factors. The bidirectional GRU

(Bi-GRU) can simultaneously mine the sequential correlation and

reverse correlation of the time series, and comprehensively extract

the timing features. Therefore, this study employs bi-directional

GRU (Bi-GRU), which simultaneously explores the sequential and

inverse sequential correlations in the time series, comprehensively

extracting temporal features. The Bi-GRU network comprises two

independently and symmetrically structured GRUs with identical

inputs but opposite information transmission directions. The

outputs from these two GRUs, which are independent and do not

interact with each other, are concatenated to form the output for

each time step, as shown in Figure 4.
FIGURE 1

Overall structure of the aquaculture environmental monitoring system.
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2.2.3 Dual attention mechanism
The attention mechanism in deep learning is a biomimetic

technique that mimics the selective attention behavior in human

reading, listening and speaking. Integrating attention mechanisms

into neural network can make it autonomously learn and pay more

attention to the important information in model input, and enhances

the model’s feature extraction capabilities, robustness, and

generalization ability by assigning different weights to the model’s

inputs. In the DO prediction, the importance of each environmental

factor is different, and the influence weight of the same

environmental factor on DO concentration at different time points

is also different. Furthermore, environmental factors at different

historical moments have different importance in influencing

current DO concentrations. Therefore, in this study, a feature
Frontiers in Marine Science 0526
attention mechanism is introduced at the Bi-GRU encoder stage to

adaptively assign weights to different environmental factors at each

time step. This mechanism enables the model to focus on the most

influential factors for DO prediction. Additionally, a temporal

attention mechanism is introduced at the decoder stage of the fully

connected layer to dynamically adjust the weights of different time

steps’ influence on the current DO concentration, so as to better

capture the key information in the time series data. The combination

of these two attention mechanisms allows for a more comprehensive

and nuanced understanding of the complex relationships between

environmental factors and DO concentrations over time.

The feature attention mechanism in the encoder utilizes multi-

layer perceptron operations to quantify the feature attention

weights, as illustrated in Figure 5. Its input comprises n
FIGURE 3

Basic structure of GRU.
FIGURE 2

The distribution of monitor points.
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environmental feature vectors xt = (x1t , x
2
t ,⋯, xnt ) at time t and the

hidden layer state ht-1 output by the encoder at the previous time

step. The output is the attention weight of each feature at this time

step a t = (a1
t ,a2

t ,⋯,an
t ), where ak

t assesses the importance of the

k-th feature. Subsequently, the updated ~xt = (a1
t x

1
t ,a2

t x
2
t ,⋯,an

t x
n
t )

is employed as the encoder input for time t. The specific calculation

process is outlined in Equations 5 and 6:

rkt = VT
r tanh (Wrht−1 + U rx

k + br) (5)

ak
t = softmax(rkt ) =

exp (rkt )

o
n

i=1
exp (rit)

(6)
Frontiers in Marine Science 0627
where VT
r , Wr and U r represents the network feature weights

that need to be learned, and br is the bias parameters. The softmax

function is applied for normalization, ensuring that the sum of all

weights equals 1.

The temporal attention mechanism structure in the decoder is

illustrated in Figure 6. Take the encoder’s historical hidden state

H = (h1,⋯, ht ⋯, hT ) and the decoder’s hidden layer state at the

previous moment dt-1 as the input of the temporal attention

mechanism to obtain the temporal attention weight coefficient b t =

(b1
t , b2

t ,⋯, bT
t ) at the current moment. bk

t represents the influence

of the hidden layer state at the k-th layer on the DO prediction at

the current moment. By weighted summing the bk
t with the

corresponding hidden layer state hk, the comprehensive

information of the predicted time series features could be

obtained:. The calculation process is shown in Equations 7 and 9:

lkt = VT
d tanh (Wddt−1 + Udhk + bd) (7)

bk
t = softmax(lkt ) =

exp (lkt )

o
T

i=1
exp (lit)

(8)

ct = o
t

k=1

bk
t hk (9)

where VT
d , Wd and Ud represents the network feature weights

that need to be learned, and bd is the bias parameters. The softmax

function is applied for normalization, ensuring that the sum of all

weights equals 1.

Fuse the dissolved oxygen yt with ct as the input to the GRU

network:

~yt = ~W
T ½yt , ct � + ~b (10)

where ~WT and ~b represents the weights and biases for the fused

input to the GRU neural network.

The hidden state after incorporating the temporal attention

mechanism is updated using Equation 11:
FIGURE 5

Structural diagram of the feature attention mechanism.
FIGURE 4

Bi-GRU network structure.
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dt = f1(dt−1,~yt−1) (11)

The predicted value of the dissolved oxygen to be predicted is:

~yT+1 = F(y1, y2,…yT , x1, x2,…xT )

= VT
y (Wy½dT , cT � + bw) + by (12)

where Wy and bw are the weights and biases of the GRU

network, respectively; while VT
y and by are the weights and biases

of the entire network, respectively.
2.2.4 Improved sparrow search algorithm
The hyperparameters of neural network models affect the

structure, topology, and details of the training process, which in

turn impact the learning process and performance of the models.

Traditionally, the setting of Bi-GRU hyperparameters often relies

on trial and error based on experience, leading to poor stability,

susceptibility to overfitting and underfitting, and time-consuming

processes. Existing research has demonstrated the importance of

hyperparameter optimization in enhancing the robustness,

generalization, stability, and accuracy of models (Sun et al., 2021;
Frontiers in Marine Science 0728
Yang and Liu, 2022; Jiange et al., 2023). There are numerous

hyperparameter optimization algorithms, among which the

sparrow search algorithm (SSA) proposed in 2020 is a novel

swarm intelligence optimization algorithm inspired by bird

foraging behavior (Xue and Shen, 2020). By simulating the

foraging process of sparrows to search for optimal solutions, SSA

boasts high search accuracy, fast convergence speed, and strong

robustness, making it widely applicable to various optimization

problems. This study proposes an improved sparrow search

algorithm (ISSA) that integrates multiple strategies to search and

optimize the hyperparameters of the Bi-GRU model, thereby

enhancing the model’s optimal learning capabilities.

SSA is a discoverer-follower model which superimposes detection

and early warning mechanism. The individual who finds the best

food in the sparrow acts as the discoverer, and the other individuals

act as followers, and compete with the discoverer for food when the

discoverer finds the better food. Additionally, a certain proportion of

individuals within the population are selected as scouts to conduct

reconnaissance and warning, abandoning food sources if danger is

detected. Addressing the issues of insufficient population diversity,

poor convergence performance, and the imbalance between global
FIGURE 6

Structural diagram of the temporal attention mechanism.
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exploration and local exploitation capabilities in the standard SSA,

this study proposes improvements to the algorithm from the

following aspects.

2.2.4.1 Incorporating gauss chaotic sequence into
population initialization

The standard SSA randomly generates the initial population,

and once the population gathers, it will affect the breadth of the

search space. Additionally, if a “super sparrow” (an individual with

a fitness value significantly higher than the average) emerges

prematurely during the iteration process, a large number of

participants may converge towards it, drastically reducing the

diversity of the population. To address these issues, the gauss

chaotic sequence is introduced into the initialization phase of the

SSA algorithm. The gauss chaotic mapping possesses properties

such as regularity, randomness, and ergodicity, which can help

ensure a uniform distribution of the initial population, enhancing

both the diversity of the population and the global search

performance of the model. The mathematical expression for the

gauss chaotic mapping is given as:

xk+1 =
0                       xk = 0      

1
xk mod (1) ,          xk ≠ 0

(
(13)

where “mod” represents the modulo operation.

2.2.4.2 Improving the discoverer’s position update
strategy by borrowing from the salp group algorithm

The position update strategy for discoverers in the standard SSA is:

xt+1i,d =
xti,d · exp ( −

i
b1Tmax

)        R2 < ST

xti,d + b2 · L                     R2 ≥ ST

(
(14)

where t represents the current iteration number; Tmax represents

the maximum number of iterations; b1 and b2 are random numbers,

b1 ∈ (0, 1� and b2 follows a normal distribution; L is a 1×d matrix

filled with 1; R2 ∈ ½0, 1�,which represents the warning value; and ST ∈
½0:5, 1� represents the safe value.

According to the Equation 14, when R2 < ST , each dimension of

the position converges towards zero, leading the algorithm to easily

become trapped in local optima near zero and potentially miss

optimal solutions located away from zero. In order to improve the

global search ability of the algorithm, this study draws on the

leader’s update strategy in the Salp Group Algorithm (Mirjalili et al.,

2017), and modified the position update formula for the discoverer

as follows:

xt+1i,d =
xti,d ·

c1½(ub−lb)c2+lb)� 
(1+c3)ub

    R2 < ST

xti,d + b2 · L               R2 ≥ ST

8<
: (15)

c1 = 2 exp−(
4t

Tmax
)2 (16)

In Equation 15, ub and lb represents the lower and upper

bounds of the current dimension’s search space, respectively. c2, c3
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∈ (0, 1) are random variables that follow a uniform distribution,

and c1 serves as a balancing parameter that regulates the trade-off

between the algorithm’s global search and local search capabilities.

With these modifications, the SSA discoverer’s position does not

necessarily decrease in each dimension at the early stage of iteration,

which improved the search range and global search ability of the

population. Meanwhile, it also maintains a balance with the

convergence speed and local search capabilities during the later

iterations of the algorithm.

2.2.4.3 Improving the follower’s position update strategy
inspired by chicken swarm optimization

In the standard SSA, the follower’s position update strategy is

typically defined as follows:

xt+1i,d =
b2 · exp (

xtworst−x
t
i,d

i2 )                i > N
2

xt+1p,d + xti,d − xt+1p,d

��� ��� · A+ · L  i ≤ N
2  

8><
>: (17)

where xt+1p,d refers to the best position found by the discoverer (or

leader) of the swarm during the t+1-st iteration of the algorithm,

and xtworst represents the worst position found by any individual

(including both followers and the discoverer) in the current

iteration or across all iterations so far. A+ = AT (AAT )−1, where A

is a 1-by-dmatrix whose elements are randomly chosen from the set

{1, −1}.

According to Equations 17, when i ≤ N
2  , the follower’s position

update is primarily guided by the leader xt+1p,d . It is prone to rapid

aggregation of the population within a short period, leading to a

sharp decline in population diversity and significantly increasing

the probability of the algorithm falling into a local optimum.

Drawing inspiration from the random following strategy in the

chicken swarm algorithm (Osamy et al., 2020), where hens converge

towards roosters with a certain probability, the follower’s position

update strategy is improved as follows:

xt+1i,d =
b2 · exp(

xtworst−x
t
i,d

i2 )          i > N
2

xti,d + Srand(0, 1)(xtk,d − xti,d)        i ≤
N
2  

   

8<
: (18)

S = exp (fs� fi) (19)

where k ∈ ½1,N� represents the fitness of any k-th sparrow, and

k ≠ i. The improved SSA ensures both convergence and population

diversity, balancing local exploitation and global search capabilities.

2.2.4.4 Introduction of Cauchy-Gaussian
mutation strategy

The standard SSA is prone to falling into local optima and

stagnation in the later stages of iteration due to the decrease in

population diversity. Therefore, the Cauchy-Gaussian mutation

strategy (Wang et al., 2020) is adopted in this study to ensure

population diversity and resistance to stagnation, thereby

avoiding premature convergence of the algorithm. The specific

formula is as follows:
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ubest = xbest ½1 + l1Cauchy(0,s
2) + l2Gauss(0,s

2)� (20)

s =
1,          f (xbest) < f (xi)

exp ( f (xbest )−f (xi)f (xbest )j j )       f (xbest) ≥ f (xi)

(
(21)

In Equations 20 and 21, ubest represents the position of the

optimal individual after mutation; s denotes the standard deviation

of the Cauchy-Gaussian mutation strategy; Cauchy(0,s 2) is a

random variable that follows a Cauchy distribution; Gauss(0,s 2)

is a random variable that follows a Gaussian distribution; l1 =
1 − t2

T2
max

and l2 = t2

T2
max

are dynamic parameters adaptively adjust

with the number of iterations.

2.2.5 Dissolved oxygen prediction model fuse
DAM and Bi-GRU optimized by ISSA

The flowchart of the ISSA-optimized DO prediction model

integrating DAM and Bi-GRU proposed in this study is shown in

Figure 7. The main processes include data the preprocessing based

on PCA, the hyperparameter optimization conducted by ISSA, the

training and optimization of the DAM-Bi-GRU model, and the

evaluation of model performance.
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3 Results

3.1 Data processing

To validate the performance of the proposed model in this

article, data from the study area spanning 86 days from June 1st

2023 to August 25th 2023 were collected, with each data point

recorded every 30 minutes, resulting in a total of 4,184 data sets for

every given monitor point. The first 60 days’ data were used as the

training set, the next 13 days’ data as the validation set, and the final

13 days’ data as the test set, following a 7:1.5:1.5 ratio. For any given

time t, the model’s input comprised the aquaculture environmental

parameters from the preceding 24 hours, and its output predicted

the dissolved oxygen levels for the following 2 hours. This resulted

in 2,832 training samples, 624 validation samples, and 624 test

samples. Due to space limitations, a portion of the raw data

collected on June 20th 2023 is presented in Table 1. Furthermore,

taking monitor point A9 as an example, after removing outliers and

filling in missing values through linear interpolation, statistical

analysis was conducted on the data, as shown in Table 2.

Subsequently, the PCA algorithm was applied to reduce the data’s
FIGURE 7

Flowchart of DO prediction algorithm PCA-ISSA-DAM-Bi-GRU.
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dimensionality, eliminating redundant information and noise.

Finally the processed data was input into the neural network

model for feature extraction. The PCA of the aquaculture

environmental parameters is presented in Table 3. As can be

seen, the cumulative contribution rate of the first seven

components reaches 86.27%, representing the majority of

environmental information. Therefore, this study selected seven

principal components, utilizing PCA to reduce the original 13-

dimensional data to seven dimensions.
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3.2 Hyperparameter optimization and
training of the model

The data, after being processed through outlier removal, linear

interpolation for missing values, and principal component analysis,

was input into the neural network model for hyperparameter

optimization and training.

Step 1: Initialize the hyperparameters of the ISSA. The number

of sparrows was set to 50, the maximum number of iterations T was
frontiersin.or
TABLE 1A Water quality data collected by monitoring station A9 on June 20, 2023.

Time

Water quality parameters

Dissolved
oxygen/
(mg·L−1)

Water
temperature/°C

Conductivity/
(mS·cm−1)

pH
value

Ammonia
nitrogen/
(mg·L−1)

Turbidity/
NTU

06:00 5.35 27.14 2980.52 7.72 0.27 18.27

06:30 5.39 27.14 3080.74 7.72 0.27 18.29

07:00 5.47 27.14 3220.28 7.75 0.27 19.11

07:30 5.58 27.24 3170.19 7.76 0.28 19.63

08:00 5.77 27.24 3586.48 7.77 0.28 19.92

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

14:00 8.23 29.52 3800.46 7.82 0.38 20.35

14:30 8.41 29.64 3740.74 7.87 0.38 20.77

15:00 8.65 29.02 3826.92 7.95 0.39 21.06

15:30 8.92 30.18 3780.36 8.02 0.39 21.95

16:00 8.78 30.15 3776.62 8.11 0.41 21.84
TABLE 1B Meteorological parameter data collected by monitoring station A9 on June 20, 2023.

Time

Meteorological parameters

Temperature/
°C

Relative
humidity/%

Pressure/KPa
Wind
Speed/
(km·h−1)

Wind
direction/°

Solar
radiation/
(W·m−2)

Rainfall/
mm

06:00 28.46 87.38 101.42 12.25 117.75 68.45 0

06:30 28.64 87.24 101.42 14.37 127.36 60.24 0

07:00 28.91 87.41 101.42 13.96 123.95 88.90 0

07:30 29.32 86.95 101.41 16.75 131.24 120.37 0

08:00 29.75 86.23 101.41 15.33 135.78 135.66 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

14:00 33.72 84.66 101.26 16.82 130.25 458.36 0

14:30 33.48 83.35 101.26 14.29 123.74 520.59 0

15:00 32.95 84.71 101.27 12.88 119.55 330.47 0

15:30 32.53 83.29 101.26 15.26 121.57 220.69 0

16:00 31.47 83.04 101.25 16.88 120.49 392.21 0
g
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100, with the proportions of producers, followers, and scouts being

70%, 10%, and 20% respectively. The safety threshold was set to 0.6,

and the search space was 5-dimensional. For the two-layer Bi-GRU,

the optimization range for the number of hidden neurons was [8,

128], the optimization range for the maximum number of iterations

was [10, 100], the optimization range for the batch size was [16,

128], and the optimization range for the learning rate was

[0.001, 0.1].

Step 2: Train the DAM-Bi-GRU model using the

hyperparameter combinations provided by ISSA. Each sparrow

corresponds to a set of hyperparameter combinations. The model

was trained using supervised learning, with the root mean square

error (RMSE) function serving as the loss function. The

mathematical definition of RMSE is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi − ŷ i)

2

r
(22)

where yi and ŷ i represents the actual value and the predicted

value by the model respectively, and N is the number of training

samples in a batch. An end-to-end learning approach was adopted,

where the neural network’s weights were continuously adjusted

through forward propagation and backward propagation of

gradients. The iteration stops once the preset number of iterations

is reached or the training objective is achieved, completing the neural

network training. Ultimately, each hyperparameter combination

corresponds to a trained DAM-Bi-GRU model.

Step 3: Validate the DAM-Bi-GRU models trained in Step 2

using the pre-divided validation dataset. The validation result of

each trained DAM-Bi-GRU model was measured by RMSE, and the

fitness of the sparrow corresponding to the set of hyperparameter

combinations for that model is also evaluated using the same

RMSE value.

Step 4: Determining whether the model training has concluded

based on the fitness value. If it has reaches the maximum number of
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the presented iterations of ISSA or the optimal fitness value of the

sparrow population has met the training objective, end the training

and output the DAM-Bi-GRU model with the optimal parameter

combination. Otherwise, update the positions of producers,

followers, and scouts based on the fitness values of the sparrow

population, and generate new hyperparameter combinations.

Repeat Steps 2 to 4 until the training is completed.

Following the above optimization and training steps, the final

results of DAM-Bi-GRU hyperparameter optimization were

obtained, with the hidden neuron counts for the two-layer Bi-

GRU being 46 and 72 respectively; the maximum number of

iterations being 86; the batch size being 66; and the learning rate

being 0.004. Furthermore, the proposed ISSA was compared with the

original SSA, PSO, and GA in terms of optimization performance.

The convergence of the algorithms during the iterative optimization

process is illustrated in Figure 8. It can be seen that the fitness value

of ISSA converges to around 0.21 after approximately 35 iterations,

while SSA converges to around 0.23 after about 45 iterations, PSO

converges to around 0.26 after approximately 55 iterations, and GA

converges to around 0.28 after approximately 70 iterations. This

indicates that the optimization ability and convergence speed of ISSA

are significantly higher than those of SSA, GA, and PSO.

Additionally, the fluctuating downward trend of the fitness value

of ISSA in Figure 8 suggests its ability to quickly escape local optima.

In contrast, the other three optimization algorithms exhibit varying

degrees of stagnation.
3.3 Testing and evaluation of the model

In this study, the root mean squared error (RMSE), mean

absolute percentage error (MAPE), and Nash-Sutcliffe efficient

(NSE) were adopted to evaluate the predictive performance of the

model. The calculation formulas are as follows:
TABLE 2 Statistical results of data collected by monitoring station A9.

Category Indicators Mean ± SD Range

Water quality parameters

Dissolved oxygen/(mg·L−1) 7.534 ± 2.175 3.29∼11.64

Water temperature/°C 27.422 ± 3.210 18.58∼33.36

Conductivity/mS·cm−1 3450.463 ± 400.675 2240.45∼5300.60

pH value 7.920 ± 0.218 7.24∼8.91

Ammonia nitrogen/(mg·L−1) 0.324 ± 0.112 0.06∼0.58

Turbidity/NTU 20.301 ± 2.430 15.4∼30.5

Meteorological Parameters

Temperature/°C 28.512 ± 5.351 22.32∼34.05

Relative humidity/% 85.638 ± 6.250 73.45∼94.68

Pressure/KPa 101.512 ± 0.782 99.25∼102.07

Wind speed/(km·h−1) 16.578 ± 5.530 7.00∼52.00

Wind direction/(°) 173.539 ± 56.821 22.5∼360

Solar radiation (W·m−2) 625.537 ± 568.248 0.0∼1915.00

Rainfall/mm 2.350∼8.852 0.0∼38.8
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi − ŷ i)

2

r
(23)

MAPE =
1
No

N
i=1

yi − ŷ i

yi

����
���� (24)
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NSE = 1 −o
N
i=1(yi − ŷ i)

2

oN
i=1(yi − �yi)

2 (25)

where yi is the actual value, �yi is the mean of the actual values, ŷ i

is the predicted value by the model, and N is the number of data

points in the data set used for evaluating the model’s performance.

A lower RMSE indicates better predictive performance. MAPE

measures the average magnitude of the percentage errors in a set

of predictions, without considering their direction. A lower MAPE

indicates better predictive accuracy. NSC ranges from negative

infinity to 1, with 1 indicating a perfect match between observed

and predicted values. Higher NSE values indicate better predictive

performance. In summary, a lower RMSE and MAPE, and a higher

NSC, all suggest better predictive performance of the model.

The 624 test data set samples were inputted one by one into the

trained DAM-Bi-GRU model with the optimal combination of

hyperparameters, the prediction results were obtained sequentially.

The model’s performance parameters on the test set were calculated by

Equations 23–25, namely RMSE, MAPE, and NSE which found to be

0.2136, 0.0232, and 0.9427, respectively. Additionally, Figures 9A–D

sequentially present the comparison curves of predicted and actual

values for the test samples, the prediction errors, the distribution of

prediction errors, and the linear fitting between predicted and actual

values. From Figure 9A, it can be observed that the proposed PCA-

ISSA-DAM-Bi-GRUmodel is capable of capturing the changing trends

of real dissolved oxygen data, sensitively identifying subtle fluctuations
TABLE 3 Principal component coefficient matrix of aquaculture environment parameters.

Indicators
Component

1
Component

2
Component

3
Component

4
Component

5
Component

6
Component

7

Water
temperature

0.467 −0.184 −0.114 0.147 −0.052 −0.030 −0.124

Conductivity −0.352 −0.038 0.294 −0.132 −0.160 −0.084 −0.131

pH value −0.278 −0.241 0.469 0.153 −0.078 −0.232 −0.094

Ammonia
nitrogen

0.314 −0.296 −0.370 0.055 0.079 0.140 −0.207

Turbidity 0.114 −0.385 −0.208 −0.258 0.1411 −0.273 0.776

Temperature 0.452 0.242 −0.213 0.147 −0.037 −0.063 −0.097

Relative
humidity

0.135 0.644 −0.187 −0.037 −0.087 −0.197 0.226

Pressure −0.378 −0.229 −0.340 0.068 0.063 0.025 −0.075

Wind speed −0.060 0.161 −0.305 −0.218 0.581 0.688 0.050

Wind direction −0.086 0.032 −0.027 0.844 −0.055 0.280 0.416

Solar radiation −0.306 0.197 −0.458 0.136 0.084 0.024 −0.258

Rainfall 0.018 0.281 0.031 0.249 0.761 −0.498 −0.065

eigenvalue 3.632 1.585 1.402 1.050 0.976 0.903 0.804

Contribution
rate/%

30.266 13.208 11.686 8.750 8.136 7.524 6.701

Cumulative
contribution

rate/%
30.266 43.474 55.160 63.910 72.046 79.570 86.271
FIGURE 8

Iterative optimization and convergence curves for different
optimization algorithm.
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in the data, and maintaining a high prediction accuracy. Figures 9B–D

demonstrate that there is a small discrepancy between the predicted

and actual values.
3.4 Comparison and analysis of the models

To analyze and evaluate the competitiveness and superiority of

the proposed model, this article designed ablation experiments and

comparative experiments, selecting different models to compare

their predictive performance.

3.4.1 Ablation experiments
The ablation experiments were conducted in two groups, A and

B. The models in Group A do not incorporate the hyperparameter

optimization module ISSA, with the baseline model being Bi-GRU.

The models in Group B all include the ISSA, with the baseline

model being ISSA-Bi-GRU. Each group include three models: one

with PCA added alone to the baseline module, one with DAM

added alone, and one with both PCA and DAM added
Frontiers in Marine Science 1334
simultaneously. For experiments in Group A, the random search

method was used to determine the model’s hyperparameters with

the number of random searches setted to be 100, which is equivalent

to the maximum number of iterations for the ISSA module.

The prediction performance of each model on the test data set is

shown in Table 4. In Group A, the prediction performance

indicators RMSE, MAPE, and NSE of the baseline model Bi-GRU

are 0.4077, 0.0527, and 0.8358, respectively. Compared with it, the

PCA-Bi-GRU model shows a 9.22% decrease in RMSE, a 11.76%

decrease in MAPE, and a 1.99% increase in NSE. The DAM-Bi-

GRU model exhibits a 18.42% reduction in RMSE, a 28.27%

reduction in MAPE, and a 5.56% increase in NSE. The PCA-

DAM-Bi-GRU model, on the other hand, demonstrates a 24.63%

decrease in RMSE, a 40.23% decrease in MAPE, and a 8.91%

increase in NSE compared to the baseline. In Group B, the

prediction performance indicators RMSE, MAPE, and NSE of the

base model ISSA-Bi-GRU are 0.3424, 0.0392, and 0.8682,

respectively. The PCA-ISSA-Bi-GRU model shows a 4.35%

decrease in RMSE, a 8.16% decrease in MAPE, and a 3.44%

increase in NSC compared to it. The ISSA-DAM-GRU model
FIGURE 9

(A) DO prediction of the proposed model on the test data set. (B) Prediction error of the test data set; (C) Histogram of the prediction error
distribution on the test data set; (D) Linear fitting between predicted and observed values.
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exhibits an 18.81% reduction in RMSE, a 17.6% reduction in MAPE,

and a 6.73% increase in NSC. The PCA-ISSA-DAM-Bi-GRU

model, however, demonstrates a 37.62% decrease in RMSE, a

40.82% decrease in MAPE, and an 8.85% increase in NSE

compared to the base model. This indicates that both the DAM

module and the PCA module can enhance the prediction

performance of the models, with the DAM module showing a

more significant improvement than PCA, and their fusion being

even more effective. Figures 10A–C represent the three evaluation

indicators (RMSE, MAPE, and NSE) for the models in Groups A

and B, respectively. It can be observed that optimizing the

hyperparameters of the Bi-GRU module through the ISSA

module indeed enhances the prediction performance of the models.

3.4.2 Comparative experiments
3.4.2.1 Comparison with baseline modules

To evaluate the superiority of PCA, ISSA, and Bi-GRU in

enhancing prediction accuracy within the proposed model, the

following comparative experiments were also conducted in this

study: 1) Pearson correlation coefficient analysis was used to

replace PCA, resulting in the comparative model P-ISSA-DAM-Bi-

GRU; 2) ISSA was replaced with SSA, GA, and PSO, respectively,

generating comparative models PCA-SSA-DAM-Bi-GRU, PCA-GA-

DAM-Bi-GRU, and PCA-PSO-DAM-Bi-GRU; 3) Bi-GRU was

replaced with Bi-LSTM, LSTM, and CNN, respectively, resulting in
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comparative models PCA-ISSA-DAM-Bi-LSTM, PCA-ISSA-DAM-

LSTM, and PCA-ISSA-DAM-CNN. Eight comparative models were

evaluated in total corresponding to serial numbers 1 to 8. The

experimental results are presented in Table 5 and Figure 11,

revealing the following: 1) The prediction performance metrics of

the PCA-ISSA-DAM-Bi-GRUmodel are superior to those of P-ISSA-

DAM-Bi-GRU, indicating that PCA outperforms the Pearson

correlation coefficient analysis method in dimensionality reduction

for data input in terms of dissolved oxygen prediction performance;

2) The prediction performance metrics of PCA-ISSA-DAM-Bi-GRU

are superior to those of PCA-SSA-DAM-Bi-GRU, PCA-GA-DAM-

Bi-GRU, and PCA-PSO-DAM-Bi-GRU, with the NSE value reaching

0.9807, demonstrating that compared to baseline approaches such as

SSA, GA, and PSO, the optimization of Bi-GRU hyperparameters by

ISSA results in better model fitting; 3) The prediction performance

metrics of PCA-ISSA-DAM-Bi-GRU are slightly higher than those of

PCA-ISSA-DAM-Bi-LSTM and significantly higher than those of

PCA-ISSA-DAM-LSTM and PCA-ISSA-DAM-CNN, indicating that

bidirectional neural networks enhance temporal feature extraction for

contextually related time series prediction.

3.4.2.2 Comparison with existing models

Furthermore, in order to test the overall predictive performance

of the proposed hybrid model PCA-ISSA-DAM-Bi-GRU, this paper

also selected dissolved oxygen prediction models proposed in the
TABLE 4 Predictive performance of different models for the ablation experiments.

Group Model RMSE/(mg·L−1) MAPE NSE

A
(Model with-out ISSA)

Bi_GRU 0.4077 0.0527 0.8358

PCA_Bi_GRU 0.3701 0.0465 0.8524

DAM_Bi_GRU 0.3326 0.0378 0.8823

PCA_DAM_Bi_GRU 0.3073 0.0315 0.9103

B
(Model with ISSA)

ISSA_Bi_GRU 0.3424 0.0392 0.8682

PCA_ISSA_Bi_GRU 0.3275 0.0360 0.8981

ISSA_DAM_Bi_GRU 0.2780 0.0323 0.9266

PCA_ISSA_DAM_Bi_GRU 0.2136 0.0232 0.9427
FIGURE 10

Prediction performance presented by (A) RMSE, (B) MARE and (C) NSE for various models in the ablation study. Group A do not incorporate attention
mechanism and Group B incorporate attention Mechanism.
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past three years, namely IPSO-LSTM (Cao et al., 2021b), IBAS-

LSTM (Sun et al., 2021), CNN-LSTM (Tan et al., 2022) and IDA-

GRU (Zhang et al., 2023) for comparison. The results in Table 6

show that the model proposed in this paper outperforms those 4

models, indicating the effectiveness and superiority of the individual

modules and their fusion in enhancing the prediction accuracy of

dissolved oxygen.
3.5 Application of the model

To evaluate the practical effectiveness of the proposed model, the

dissolved oxygen prediction for August 26, 2023, at the A9

monitoring station was selected as the experimental case. The

prediction results and prediction error curves from the proposed

PAC-ISSA-DAM-Bi-GRU model, along with the PCA-ISSA-Bi-

GRU, PCA-DAM-Bi-GRU, IBAS-LSTM (Sun et al., 2021), and

IDA-GRU (Zhang et al., 2023) models discussed in the previous

section, are presented in Figure 12. The error value curves visually

reflect the differences between the predicted curves and the actual

curves, with smaller fluctuations and closer proximity to the zero-

value line indicating better prediction performance. The analysis is as

follows: 1) The prediction curve of the PCA-ISSA-DAM-Bi-GRU

model proposed in this paper (Figures 12A, B) is closest to the actual

observed values; 2) The prediction accuracy of PCA-ISSA-Bi-GRU

without the dual attentionmechanism (Figures 12E, F) and the IBAS-

LSTM (Sun et al., 2021)model (Figures 12G, H) is significantly lower
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than that of the other three models, especially during the daytime.

This maybe due to the factor that the dissolved oxygen is greatly

affected by light intensity, and the introduced attention mechanism

increases the weight of light intensity to improve the prediction

accuracy; 3) The PCA-DAM-Bi-GRUmodel (Figures 12C, D), which

do not incorporate hyperparameter optimization module ISSA,

performs slightly better than IDA-GRU (Zhang et al., 2023)

(Figures 12I, J), but both are significantly inferior to the PCA-

ISSA-DAM-Bi-GRU model (Figures 12A, B) that incorporates

ISSA for hyperparameter optimization.

As can be seen from Figure 11, the daily dissolved oxygen

reaches the peak at around 15:00 and reaches the valley value at

around 06:00, which can reflect the health state of the water

environment to a large extent. Figure 13 presents the predicted

dissolved oxygen distribution at various depths and monitoring

stations at 06:00 and 15:00 on August 26, 2023, using the proposed

PCA-ISSA-DAM-Bi-GRU model. The analysis of this distribution

provides valuable insights into the health status of the aquatic

environment. The key observations are: 1) Vertical dissolved

oxygen gradient: compared Figures 13A–D, it could be concluded

that within the same vertical profile, the dissolved oxygen levels at

1.6 meters depth are consistently lower than those at 0.8 meters,

with this difference being more pronounced during the day

compared to night. This vertical gradient is a common

phenomenon in aquatic systems, where oxygen solubility

decreases with depth due to factors such as temperature and

pressure. 2) Spatial variations during daytime: it could be seen
TABLE 5 Predictive performance of different models for the comparative experiments.

Model number Prediction model RMSE/(mg·L−1) MAPE NSE

1 PCA-ISSA-DAM-Bi-GRU 0.2136 0.0232 0.9427

2 P-ISSA-DAM-Bi-GRU 0.2742 0.0306 0.9294

3 PCA-SSA-DAM-Bi-GRU 0.2821 0.0317 0.9316

4 PCA-GA-DAM-Bi-GRU 0.2933 0.0346 0.9358

5 PCA-PSO-DAM-Bi-GRU 0.2928 0.0336 0.9346

6 PCA-ISSA-DAM-Bi-LSTM 0.2178 0.0292 0.9401

7 PCA-ISSA-DAM-LSTM 0.2558 0.0287 0.9395

8 PCA-ISSA-DAM-CNN 0.2931 0.0358 0.9162
FIGURE 11

Prediction performance presented by (A) RMSE, (B) MARE and (C) NSE for various models in the comparative experiments.
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from Figure 13A that during the day, the dissolved oxygen

concentration in regions A1, A2, and A4 is higher than in A3 and

A7. This can be attributed to various factors, including wind

direction, water temperature, and the photosynthetic activity of

aquatic plants (e.g., phytoplankton). Favorable wind conditions can

enhance mixing and oxygenation, while increased photosynthetic

activity during daylight hours releases oxygen into the water.

3) Spatial variations during nighttime: it could be seen from

Figure 13C that The distribution of dissolved oxygen at night is

influenced by different factors, such as the aggregation patterns of

fish schools, wind direction, and the location of feeding devices.

Notably, the dissolved oxygen levels in regions A1 and A9 are
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higher, while those in A7 and A8 are lower. This can be explained

by the possible concentration of fish schools or the efficiency of

oxygen replenishment mechanisms in these areas. Additionally, the

reduced photosynthetic activity at night leads to a general decrease

in dissolved oxygen levels across all regions.

The observed diurnal and spatial variations in dissolved oxygen

concentrations highlight the complexity of aquatic ecosystems and

the importance of accurate monitoring and prediction. The PCA-

ISSA-DAM-Bi-GRU model, by capturing these dynamic changes,

provides a powerful tool for assessing the health of aquaculture

systems and informing management decisions aimed at optimizing

conditions for fish growth and welfare.
4 Discussion

4.1 Optimization mechanism of ISSA

As can be observed from Figure 8, the proposed ISSA in this study

exhibits superior capability in optimizing model hyperparameters and

convergence speed compared to the original SSA, GA, and PSO.

Table 5 further indicates that the DO prediction performance of Bi-

GRU optimized by ISSA is superior to that optimized by SSA, GA, and
TABLE 6 Predictive performance of existing models.

Model
RMSE/
(mg·L−1)

MAPE NSE

PCA-ISSA-DAM-Bi-GRU 0.2136 0.0232 0.9427

IPSO-LSTM (Cao et al., 2021b) 0.3861 0.0492 0.8635

IBAS-LSTM (Sun et al., 2021) 0.3528 0.0426 0.8724

CNN-LSTM (Tan et al., 2022) 0.3495 0.0358 0.8631

IDA-GRU (Zhang et al., 2023) 0.3128 0.0327 0.9084
FIGURE 12

The prediction results and prediction error curves from five models on August 26, 2023. (A, B) PCA-ISSA-DAM-Bi-GRU model; (C, D) PCA-ISSA-Bi-
GRU; (E, F) PCA-DAM-Bi-GRU; (G, H) IBAS-LSTM (Sun et al., 2021); (I, J) IDA-GRU (Zhang et al., 2023).
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PSO. The optimization capability and convergence speed of SSA are

primarily influenced by factors such as population diversity, global

search performance, and local search ability. ISSA employs a multi-

strategy fusion approach for improvement, which not only enhances

the diversity and quality of the initial population but also fully utilizes

information exchange among sparrow individuals to achieve a balance

between local exploitation and global search in the algorithm.

Additionally, it improves the algorithm’s ability to escape from local

extrema. Firstly, the introduction of Gauss chaotic sequence into the

population initialization process ensured a uniform distribution of

the initial population, thereby enhancing population diversity and the

global search performance of the model. Secondly, the improvement

of the position update strategy for discoverers by drawing inspiration

from the Salp Swarm Algorithm allowing the discoverers to not

necessarily decrease in every dimension during the early iterations,

enhancing the search range and global search capability of the

population while also maintaining the convergence speed and local

search ability during the later iterations of the algorithm. Furthermore,

the improvement of the position update process for followers by

adopting the random following strategy from the Chicken Swarm
Frontiers in Marine Science 1738
Optimization (CSO) algorithm, where hens converge towards roosters

with a certain probability. This ensures both convergence and

population diversity, balancing local exploitation and global search.

Lastly, the introduction of the Cauchy-Gaussian mutation strategy

maintains population diversity and resistance to stagnation,

preventing premature convergence of the algorithm.
4.2 Optimization effects of each module in
the proposed PAC-ISSA-DAM-Bi-GRU

Based on ablation and comparison experiments, the analysis of the

optimization effects of each module in the PCA-ISSA-DAM-Bi-GRU

model on DO prediction is as follows: 1) ISSA can optimize the

hyperparameters of the neural network model, thereby enhancing its

prediction performance for the factor that hyperparameters control

the structure, topology, and training process of the network, directly

impacting the model’s fitting degree, generalization ability, and

stability during training. 2) Dimensionality reduction of data using

PCA can improve model performance, and the effect is superior to
FIGURE 13

Dissolved oxygen distribution on different time at different water layers on August 26th 2023. (A) Dissolved oxygen distribution at a depth of 0.8
meters on 15:00; (B) Dissolved oxygen distribution at a depth of 1.6 meters on 15:00; (C) Dissolved oxygen distribution at a depth of 0.8 meters on
06:00; (D) Dissolved oxygen distribution at a depth of 1.6 meters on 06:00.
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that of the Pearson correlation coefficient analysis method. This is

because the Pearson correlation coefficient analysis method only

selects factors with high correlation coefficients with dissolved

oxygen as inputs, completely ignoring factors weakly correlated with

dissolved oxygen. In contrast, the PCA analysis method used in this

study can capture 86.27% of water quality and meteorological

information with only 7 dimensions of data. While reducing the

dimensionality, it ensures that the input information is more complete

and comprehensive, facilitating subsequent feature extraction. 3) The

DAM module introduces a dual attention mechanism combining

feature and temporal attention. The feature attention mechanism

adaptively assigns weights to different environmental factors at each

time point, while the temporal attention mechanism dynamically

adjusts the weights of different time steps on the current DO

concentration. This enables the neural network to better capture

critical information in time series data. 4) The prediction

performance of Bi-GRU is significantly higher than that of LSTM

and CNN. This is because the dissolved oxygen concentration at a

particular moment is correlated with environmental factors both

before and after it. Bi-GRU can simultaneously explore the

sequential and inverse correlations in time series, comprehensively

extracting temporal features.
4.3 Competitiveness and superiority
compared to existing models

4.3.1 Comparison with IPSO-LSTM and
IBAS-LSTM

Both the IPSO-LSTM (Cao et al., 2021b) and IBAS-LSTM (Sun

et al., 2021) models employed modified optimization algorithms, IPSO

and IBAS, respectively, to optimize the hyperparameters of LSTM

networks. In contrast to the PCA-ISSA-DAM-Bi-GRU model

proposed in this paper, neither of these models performed PCA

dimensionality reduction nor incorporates the feature and temporal

attention mechanism DAM. Firstly, an ISSA-Bi-GRU model was

constructed, and experiments revealed that its prediction

performance was slightly higher than that of IPSO-LSTM (Cao

et al., 2021b) and IBAS-LSTM (Sun et al., 2021), as shown in

Table 7. This demonstrates the superiority of the ISSA and Bi-GRU

modules proposed in this paper. Therefore, the optimization

capabilities and convergence speeds of ISSA, IPSO, and IBAS were

compared in this paper. As shown in Figure 14 and significantly higher

than those of IPSO. This demonstrates that the ISSA, with its enhanced

search mechanisms and adaptive parameter adjustments, exhibits
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superior performance in finding optimal solutions and converging

towards them efficiently, compared to the other two algorithms.

Furthermore, PCA-IPSO-DAM-LSTM and PCA-IBAS-DAM-LSTM

were constructed based on IPSO-LSTM (Cao et al., 2021b) and IBAS-

LSTM (Sun et al., 2021), respectively. Significant improvements in

prediction performance were observed as shown in Table 7,

thoroughly validating the effectiveness of PCA and DAM proposed

in this paper in enhancing the predictive capabilities of the models.

4.3.2 Comparison with CNN-LSTM
CNN-LSTM (Tan et al., 2022) employed CNN to extract local

features from the data before feeding them into the LSTM network.

Compared to the PCA-ISSA-DAM-Bi-GRU model proposed in this

paper, CNN-LSTM functionally lacks the integration of the feature

and temporal attention mechanism DAM, as well as the utilization

of ISSA for optimizing the hyperparameters of the neural network.

Firstly, PCA-Bi-GRU model was constructed for comparative

experiments, with hyperparameter optimized through random

search. Experimental results in Table 8 indicated that its

predictive performance was slightly inferior to CNN-LSTM (Tan

et al., 2022), suggesting that the combination of CNN and LSTM

indeed enhances the feature extraction capability of the data.

Furthermore, CNN-ISSA-DAM-LSTM model was built upon

CNN-LSTM (Tan et al., 2022). Experiments revealed significant

improvement in predictive performance as shown in Table 8, which

reaffirms the effectiveness of the ISSA and DAM proposed in this

paper in enhancing the predictive functionality of the model.

TABLE 7 Predictive performance of various models.

Model
RMSE/
(mg·L−1)

MAPE NSE

ISSA-Bi-GRU 0.3424 0.0392 0.8682

IPSO-LSTM (Cao et al., 2021b) 0.3861 0.0492 0.8635

IBAS-LSTM (Sun et al., 2021) 0.3528 0.0426 0.8724

PCA-IPSO-DAM-LSTM 0.3082 0.0397 0.8963

PCA-IBAS-DAM-LSTM 0.2762 0.0324 0.9178
FIGURE 14

Iterative optimization and convergence curve for different
optimization algorithm.
TABLE 8 Predictive performance of existing models.

Model
RMSE/
(mg·L−1)

MAPE NSE

PCA-Bi-GRU 0.3701 0.0465 0.8524

CNN-LSTM (Tan et al., 2022) 0.3495 0.0358 0.8631

CNN-ISSA-DAM-LSTM 0.2474 0.0256 0.9397
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4.3.3 Comparison with IDA-GRU
IDA-GRU (Zhang et al., 2023) employed a dual attention

mechanism similar to this paper to optimize the hyperparameters of

GRU, incorporating both feature and temporal attention at the input

ends of the GRU encoder and decoder. However, its optimization

effect is inferior to the model presented in this paper. Firstly, IDA-

GRU (Zhang et al., 2023) utilized the Pearson correlation coefficient

method to select environmental factors with high correlation

coefficients with DO as input variables, whereas this paper adopts

PCA, preserving approximately 86.27% of the information from all

environmental factors. Secondly, IDA-GRU (Zhang et al., 2023) did

not employ an intelligent optimization algorithm for hyperparameter

tuning. In the comparison experiment, random search method was

used to determine its hyperparameters, but its predictive performance

still lags behind the model in this paper. This underscores the

effectiveness of the ISSA proposed in this paper in enhancing the

predictive performance of the model.
4.4 Practical application significance,
limitations, and future research prospects
of the model

This model utilized historical data from the past 24 hours to make

real-time predictions of dissolved oxygen concentration 2 hours

ahead, combined with LoRa+5G-based sensor deployment, enabling

simultaneous prediction of dissolved oxygen concentrations at

multiple points, thereby effectively forecasting the dissolved oxygen

distribution in aquaculture areas. The engineering application analysis

of the model reveals that it achieves good prediction results, effectively

guiding water quality early warning and regulation, reducing

aquaculture risks in marine ranching, and enhancing aquaculture

efficiency. However, this study has limitations in spatial dimension

prediction. The spatial distribution of dissolved oxygen was achieved

through joint multi-point prediction, and the prediction accuracy of

dissolved oxygen between points is related to the density of sensor

deployment. Moreover, due to the limited availability of observed

data, this study does not discuss the prediction performance of the

model under different weather conditions. In future research, we will

add more monitoring points in depth and attempt to employ a 3D

convolutional neural network (3D-CNN) to capture the

spatiotemporal characteristics of the data, providing more accurate

prediction results. Additionally, we will further extend the

experimental period to accumulate more data, which will be

clustered according to weather conditions before predictive

modeling for different categories, thereby enhancing the

applicability and accuracy of the model.
5 Conclusion

To enhance the accuracy, generalization, and robustness of the

dissolved oxygen prediction model in aquaculture water, this paper

constructed a data-driven dissolved oxygen prediction model that

integrates principal component analysis (PCA), dual attention

mechanism (DAM), and bi-directional gated recurrent unit (Bi-
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GRU) neural network. Furthermore, an improved sparrow search

algorithm with multi-strategy fusion (ISSA) is introduced for

hyperparameter optimization. The main conclusions are as follows:
1. By applying PCA, the 13-dimensional input is reduced to 7

dimensions, eliminating redundancy and correlation

among variables. This enhances the feature representation

power of the input data for the prediction model and

reduces its complexity. The fusion of DAM and Bi-GRU

strengthens the feature extraction capability of the

prediction model. The introduction of the feature

attention mechanism in the encoder stage adaptively

assigns weights to different environmental factors at each

time step, while the time attention mechanism in the

decoder stage dynamically adjusts the weights of the

influence of different time steps on the current dissolved

oxygen concentration. This enables the model to better

capture the key information in the time series data.

Combined with Bi-GRU, it simultaneously mines the

sequential and inverse sequential correlations in the time

series, comprehensively extracting temporal features.

2. The hyperparameters of the Bi-GRUmodel are searched and

optimized using ISSA to enhance the model’s optimal

learning capability. The Gauss chaotic sequence is

introduced into the population initialization, and the

updating strategy of the discoverer’s position is improved

by referencing the salp swarm algorithm. Meanwhile, the

updating strategy of the follower’s position is optimized by

drawing inspiration from the chicken swarm algorithm, and

the Cauchy-Gaussian mutation strategy is incorporated to

enhance the convergence performance of the SSA algorithm,

balancing its global search and local exploitation capabilities.

3. The root mean square error (RMSE), mean absolute

percentage error (MAPE), and Nash-Sutcliffe efficiency

(NSE) of the proposed PCA-ISSA-DAM-Bi-GRU model

for predicting dissolved oxygen are 0.2136, 0.0232, and

0.9427, respectively. The ablation study demonstrates that

each component of the hybrid model contributes to

enhancing the predictive performance of the model. By

comparing the results with traditional baseline approaches,

it is evident that each module in the hybrid model provides a

more significant optimization effect on prediction accuracy.

4. By combining the proposed model with wireless sensor

deployment, it can effectively predict the spatio-temporal

distribution characteristics of dissolved oxygen in

aquaculture water, enabling dynamic monitoring of water

quality in marine ranching and intelligent analysis of the

aquaculture environment, thereby facilitating the

construction of modern marine ranching.
In summary, the model proposed in this paper, combined with

wireless sensor deployment, can effectively predict the spatio-temporal

distribution characteristics of dissolved oxygen in aquaculture water

bodies. This enables dynamic monitoring of water quality in marine

ranching and intelligent analysis of the aquaculture environment,

thereby contributing to the modernization of marine ranching
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construction. The model provides a powerful tool for managing and

optimizing aquaculture operations, ensuring sustainable development

and improved productivity in marine ranching systems.
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The composition and size distribution of particles in the ocean control their

optical (scattering and absorption) properties, as well as a range of

biogeochemical and ecological processes. Therefore, they provide important

information about the pelagic ocean ecosystem’s structure and functioning,

which can be used to assess primary production, particle sinking, and carbon

sequestration. Due to its harsh environment and remoteness, the particulate bio-

optical properties of the Southern Ocean (SO) remain poorly observed and

understood. Here, we combined field measurements from hydrographic casts

from two research voyages and from autonomous profiling floats (BGC-Argo) to

examine particulate bio-optical properties and relationships among several

ecologically and optically important variables, namely the phytoplankton

chlorophyll a concentration (Chl), the particulate absorption coefficient (ap),

the particulate backscattering coefficient (bbp), and the particulate organic

carbon (POC) concentration. In the clearest waters of the SO (Chl < 0.2 mg

m−3), we found a significant contribution to absorption by non-algal particles

(NAP) at 442 nm, which was up to 10 times greater than the absorption by

phytoplankton. This makes the particulate bio-optical properties there

remarkably different from typical oceanic case 1 water. A matchup analysis

confirms the impact of this larger NAP absorption on the retrieval of Chl from

satellite ocean colour observations. For waters with Chl > 0.2 mg m−3, no

significant differences are observed between the SO and temperate waters.

Our findings also demonstrate consistency in predicting phytoplankton carbon

from either Chl or bbp, suggesting that both methods are applicable in the SO.
KEYWORDS

Southern Ocean, particles, bio-optical properties, bio-optical relationships, BGC-
Argo floats
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1 Introduction

In the sunlit upper ocean, autotrophic organisms take up CO2

and utilise inorganic nutrients via photosynthesis to produce organic

matter, packaged in the form of phytoplankton cells, that

accumulates in the water column as suspended particles (Falkowski

et al., 1998). These phytoplankton cells provide energy for essentially

the entire pelagic ecosystem and are, thereby, transformed into a large

variety of living and nonliving particles through a myriad processes:

viral infection, shedding of vesicles and other cellular parts, grazing

by zooplankton (Jackson, 1980; Steinberg and Landry, 2017; Karakus ̧
et al., 2022), remineralisation by microbes (Boyd et al., 2015; Belcher

et al., 2016; Cavan et al., 2017), and (dis)aggregation by a series of

biogeophysical and biogeochemical processes (Jackson and Burd,

1998; Slade et al., 2011; Briggs et al., 2020). A fraction of their

accumulated carbon and nutrients eventually sinks (or is advected)

into deep unlit layers as part of the so-called biological pump

(Buesseler et al., 2007; Turner, 2015; Boyd et al., 2019). The particle

flux and its composition in the water column represent a dynamic

balance between ecosystem-driven processes that generate large

sinking particles in the upper ocean and particle recycling processes

within the ocean interior that consume, modify, and produce new

sinking particles (Clements et al., 2022). Therefore, marine particles

are critical in the characterisation of pelagic ecosystems, as they

control a range of biogeochemical and ecological processes, and

influence the ability of the ocean to sequester carbon.

The Southern Ocean (SO) is responsible for ~ 40% of the global

oceanic CO2 uptake (Gruber et al., 2009) and is a key driver of

global ocean circulation and climate (Stark et al., 2019).

Characterising and understanding particle dynamics in the

surface layer is particularly important for assessing the strength of

the biological pump under the pressure of climate change. However,

the remoteness and difficult field conditions limit the opportunities

for in situ studies of the SO. In this context, ocean colour remote

sensing (OCRS) can provide a powerful tool to monitor it and

obtain spatially resolved information. However, given the

importance of the SO in oceanic carbon uptake and productivity,

estimates must be accurate, as any error will have a large impact on

our ability to obtain global estimates. In turn, for remote sensing to

be accurate, we must determine whether global relationships

derived elsewhere between satellite-measured quantities—such as

spectral remote sensing reflectance or normalised water-leaving

radiance—and in situ variables are applicable in the SO. This need

has spurred studies examining the particulate bio-optical properties

and relationships in the SO.

Allison et al. (2010a) found a different relationship between

particulate organic carbon (POC) and the blue-to-green band ratios

of reflectance in the SO compared to other oceans, such as the

North Polar Atlantic (Stramska et al., 2003) and the eastern South

Pacific and eastern Atlantic oceans (Stramski et al., 2008). Their

new relationship has been applied to satellite observations to

characterise the seasonal and interannual variability of POC in

the SO (Allison et al., 2010b). Johnson et al. (2013) have reported
Frontiers in Marine Science 0244
three improved satellite chlorophyll algorithms for the SO to better

monitor phytoplankton dynamics. These improved ocean colour

products and relationships would lead to better estimation of

primary production using bio-optical productivity models (Arrigo

et al., 2008; Hirawake et al., 2011). However, due to the lack of

contemporaneous in situmeasurements in the SO, these particulate

bio-optical relationships obtained from space have not been

thoroughly evaluated and validated.

More observations are now available due to the BGC-Argo

program, which deploys autonomous profiling floats worldwide,

particularly in the SO, following the initial deployments by the

Southern Ocean Carbon and Climate Observations and Modelling

(SOCCOM) program (Sarmiento et al., 2023). To maximise the use

of the BGC-Argo data, continuing efforts have been made to

accurately convert chlorophyll fluorescence signals into

chlorophyll a concentrations (Johnson et al., 2017; Roesler et al.,

2017; Schallenberg et al., 2022). Particulate backscattering

coefficients (bbp) at 700 nm have been used to estimate POC in

the SO by Johnson et al. (2017). In addition, Schallenberg et al.

(2019) used 6 years of mooring data collected at the Southern Ocean

Time Series (SOTS) site in the Subantarctic Zone south of Australia

to estimate carbon-to-Chl ratios and interpret their seasonal

dynamics. However, these particulate bio-optical relationships

applied to float data in these studies were empirically developed

based on limited concurrent measurements from hydrological casts

on cruises. It is still unknown whether they are suitable for waters

other than those where the relationships were developed.

In addition to pigment concentration (a desirable proxy for

phytoplankton biomass) and the bbp, hydrological casts during

cruises can also provide data on mass concentrations (e.g., POC,

particulate organic nitrogen (PON), macronutrients, and trace metal)

and particle size distribution. These variables are essential for a better

understanding of the particulate bio-optical properties and

relationships in the SO. Based on ~ 280 samples collected during

the Antarctic Circumpolar Expedition (ACE), Robinson et al. (2021)

found that high-latitude SO phytoplankton have distinctive

absorption properties compared to lower-latitude populations.

However, other particulate bio-optical properties of the SO remain

poorly observed and understood, leaving the question of whether

they conform to or diverge from global relationships unanswered.

Both the correct interpretation of satellite ocean colour observations

and the appropriate parameterisation of bio-optical properties in

biogeochemical models rely on this answer.

To address this gap, we collated field measurements from both

hydrological casts and BGC-Argo floats to derive relationships among

variables that are commonly used to describe the particulate pool,

namely the particulate backscattering coefficient, bbp (m−1), the

particulate absorption coefficient, ap (m−1), Chl (mg m−3), POC

(mg m−3), and phytoplankton carbon (Cphyto, mg C m−3). We

specifically aim to elucidate large-scale distribution patterns of

particle-related properties and evaluate the applicability of

particulate bio-optical relationships developed for temperate oceanic

waters to the SO.
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2 Materials and methods

2.1 Datasets

The field data used in this study were acquired during the ACE

aboard the RV Akademik Tryoshnikov during the austral summer

from 20 December 2016 to 19 March 2017 (Walton and Thomas,

2018), and during the Southern Ocean Large Areal Carbon Export

(SOLACE) research voyage aboard the RV Investigator (voyage

IN2020_V08) from 05 December 2020 to 16 January 2021

(Figure 1). The ACE cruise travelled eastward around the

Southern Ocean, starting from Cape Town, South Africa, to

Hobart, Australia (leg 1), then proceeding via the Pacific Ocean

to Punta Arenas, Chile (leg 2), and finally returning through the

Atlantic Ocean back to Cape Town (leg 3). The SOLACE cruise

investigated three sites: a subpolar site—SOTS (47°05′S, 141°22′E,
Wynn-Edwards et al., 2019), and two polar possible phytoplankton

bloom sites—Southern Site 1 (SS1, 55°49′S, 138°40′E) and Southern
Site 2 (SS2, 57°54′S, 141°32′E), along with several stations during

the transit (Figure 1, inset).

Measurements from both cruises and BGC-Argo floats were

classified based on the seven bioregions defined by Ardyna et al.

(2017) (Figure 2). This split aims to examine whether our dataset

evenly samples various oceanographic regimes and to assess whether

there are regional differences in the particulate bio-optical properties

in addition to their large-scale patterns. The data from floats mostly
Frontiers in Marine Science 0345
fall into bioregions 3, 4, and 5, with only one-third belonging to the

other bioregions. The distribution of cruise data is similar to that of

float data, although high-latitude regions 6 and 7 are more

prominently represented. Only average values from the top 10 m of

the BGC-Argo data profiles are used in this work, combined with

cruise data from underway sampling (depth ~5 m) and the top 10 m

of data from CTD casts, as described in the following sections.

The BGC-Argo profiling floats (https://biogeochemical-argo.org)

used in this study, equipped with CTD and bio-optical sensors,

measured temperature, salinity, pressure, chlorophyll fluorescence,

and volume scattering (used to derive backscattering coefficient).

Figure 1 shows the geographical location of all profiles collected by

254 floats from January 2016 to June 2023. The data points are

colour-coded based on the bioregions in which the floats operated,

following the regionalisation outlined by Ardyna et al. (2017).
2.2 Phytoplankton pigments and
particulate absorption

Phytoplankton pigment concentrations from ACE and

SOLACE were determined using high-performance liquid

chromatography (HPLC, see details in Ras et al. (2008); Antoine

et al. (2020) and references therein). On both cruises, 2.2 L water

samples were collected either 3 hourly from the underway seawater

supply (sampling depth ~ 5 m) or from the shallowest depth of the
FIGURE 1

Sampling locations during ACE (squares) and SOLACE (SOTS, SS1, SS2, and transit sites, inset), as well as surface sampling points from BGC-Argo
floats, colour-mapped according to the bioregions described in Ardyna et al. (2017). The Northern boundary (NB), Subantarctic Front (SF), Polar Front
(PF), Southern Antarctic Circumpolar Current Front (SACCF), and Southern boundary (SB) from Park et al. (2019) are also displayed (black lines).
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conductivity, temperature, and depth (CTD) rosette casts (see

Table 1 for a summary of the number of samples). Total

chlorophyll a concentration was defined as the sum of mono- and

divinyl chlorophyll a concentrations, chlorophyllide a, and the

allomeric and epimeric forms of chlorophyll a (Hooker and

Zibordi, 2005; Reynolds et al., 2016).

The pigments are used here to determine the relative

contributions of micro- (fmicro, > 20 µm), nano- (fnano, 2–20 µm),

and picophytoplankton (fpico, < 2 µm) to the total population,

following Brewin et al. (2015).

For the BGC-Argo floats, the calibrated fluorescence profiles

were adjusted for nonzero deep values (below 600 dbar) and

corrected for spikes using a five-point median filter. Subsequently,

they were divided by 3.79, as recommended by Schallenberg et al.

(2022) for the SO. The surface Chl was obtained by averaging the

values within the top 10 dbar.

A full description of the determination of the absorption

coefficient of phytoplankton and non-algal particles (NAP) from

the total particulate absorption coefficient can be found in Robinson

et al. (2021), which is not repeated here.
2.3 Backscattering measurements

The particulate backscattering coefficient, bbp(l) (m−1), was

determined on ACE and SOLACE using HOBI Labs HydroScat-6

sensors, which provide a measurement of the total spectral volume

scattering function b(y) (m−1 sr−1) at an effective scattering angle
Frontiers in Marine Science 0446
y = 140 °. The following equation (Maffione and Dana, 1997) was

used to convert b(140 °, l) to bbp (l),

bbp(l) = 2pc½b(140 °, l) − bw(140 °, l)� (1)

Where the subscripts p and w indicate the contributions from

particles and seawater to scattering, respectively. c is the coefficient

of proportionality between b and bb for particles, set to 1.13 for the

HydroScat. Pure water values for bw(140 °, l) at given temperature

and salinity were calculated following Zhang et al. (2009). Finally,

vertical profile data of bbp(l) were filtered to remove spikes and

averaged into 0.5 m depth bins for analysis and correlation with

discrete water samples. The Hydroscat channels were 420 nm, 488

nm, 550 nm, 620 nm, and 700 nm for ACE (the 442 nm channel

failed), and 420 nm, 442 nm, 470 nm, 510 nm, 590 nm, and 700 nm

for SOLACE. For ACE, only 13 bbp spectra were obtained, primarily

during leg 2 near the Antarctic continent.

To examine the wavelength dependency of particle

backscattering, discrete spectral measurements were fitted to a

power function of the following form:

bbp(l) = bbp(l0) l
l0

� �h
(2)

Where l0 represents a reference wavelength, and h denotes the

dimensionless spectral slope of bbp. Nonlinear least-squares fitting

was applied to account for bbp at all channels to derive h. Since the
442-nm spectral channel failed during the ACE cruise, this

wavelength was excluded from the fitting of spectral relationships

for the SOLACE cruise to ensure consistency between cruises.

Since our focus is on the total particle pool, we did not apply the

nonzero deep value correction to the backscattering profile of BGC-

Argo floats, as proposed by Uchida et al. (2019). This correction is

meant to isolate the part of bbp attributed to phytoplankton by

removing the average of deep values (below 600 dbar), which are

assumed to represent the NAP contribution. We applied a five-

point median filter to remove spikes (Carranza et al., 2018; Mignot

et al., 2018). Surface values were obtained by averaging the data

within the top 10 dbar of the profile.
FIGURE 2

Distribution of cruise and float measurements among the seven bioregions defined by Ardyna et al. (2017).
TABLE 1 Summary of the in situ dataset.

Chl bbp(l) ap(l) POC PSD

ACE 221 13 274 355 264

SOLACE 31 3 31 3 3

BGC-Argo
floats

21,872 21,872 – – –
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2.4 Particulate organic
carbon concentration

For the ACE dataset, the concentration of POC was obtained

from the underway seawater supply every 3 h, as well as from

several depths during the CTD rosette casts, and processed at the

University of Cape Town (Fawcett and Forrer, 2020). Up to 2 L

water samples were filtered through precombusted 25 mm GF/F

filters. The filters were then dried at 40°C for 24 h, acidified to

remove inorganic carbon, and stored until elemental analysis.

Finally, POC for each sample was obtained by subtracting the

average concentration of carbon in the dry blanks and was

expressed in units of milligrammes per cubic metre. Samples

outside the detection limits were eliminated. The same

methodology was used for the SOLACE POC data, although it

was processed at the University of Tasmania by Cathryn

Wynn-Edwards.
2.5 Particle size distributions

The particle size distributions (PSD) determine their optical

properties along with the particle composition. During ACE, PSD

was measured with a Beckmann Coulter Counter Multisizer, which

measures particle sizes by quantifying changes in electrical

resistance produced by particles suspended in seawater as they

pass through an aperture (Kinsman, 2018). In this study, 0.2 µm

filtered seawater was used as the blank to detect particles in the

range of 2–60 µm across 400 bins at each underway station. Twenty

replicate measurements of 2 ml subsamples were made by the

Counter for each sample and summed up to provide larger sample

volumes, thereby improving statistical accuracy. Each discrete

Coulter measurement included a set of values representing the

particle concentrations (m−3) within a size bin D, N(D). The bin

diameters were restricted to 2–30 µm, as no particles were observed

in larger bins. Plots of particle concentration versus bin diameter

were visually inspected, and samples with high noise levels or

particle concentrations constrained to just a few bins were flagged

as poor quality and removed (Robinson et al., 2021). Finally, 264

records of PSD were retained for further analysis.

During SOLACE, the PSD of large (> 100 mm) particles was

measured using an Underwater Video Profiler 5 (UVP-5, Picheral

et al., 2010) mounted on the rosette. Particle cross-sectional areas

are quantified by assessing the contiguous pixels for a given image

brightness level, which were then used to estimate the equivalent

circular diameter. Finally, PSDs were determined for 24 bins, with

centre bin sizes ranging from 115 to 23,300 µm. An upper limit of

2,315 µm was chosen to avoid regions of low particle counts and

high statistical noise at large particle diameters. All data were

binned vertically into 5-m intervals, and only surface values were

used in this study.

The particle size distribution was fitted to a power law model

(Bader, 1970; Jonasz and Fournier, 2011):

N(D) = N0
D
D0

� �z
(3)
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Where D0 is a reference diameter, N0 is the particle number at

D0, and z is the dimensionless slope of the distribution. For the

Coulter measurements, these metrics were calculated to

characterize the samples and were computed over the size range

of 4–20 µm. Since z is very sensitive to the range of effective

diameters used and can be biased when an abundant phytoplankton

cell size is present, leading to a bump on the PSD, we visually

inspected the spectra and removed 15 spectra where clear bumps

were present to avoid these cases.
2.6 Phytoplankton carbon estimations

Cphyto is a key parameter in estimating primary production using

various models (Sathyendranath et al., 2007). It also allows an

understanding of phytoplankton physiology, as reflected in

variations of cellular chlorophyll-to-carbon ratios generated by

changes in light, temperature, and nutrients (Behrenfeld et al., 2005).

However, Cphyto is difficult to distinguish experimentally in situ or in

laboratory studies from the total carbon included in phytoplankton

plus zooplankton, detritus, and bacteria. Consequently, direct Cphyto

estimations are scarce, and essentially proxy measurements have been

used to quantify it, such as Chl, cell biovolume, POC, and bbp.

Here, in the absence of direct Cphyto measurements, it was

estimated using either the POC vs. Chl relationship or from bbp.

The former approach assumes that at any given Chl, the lowest POC

observed represents the phytoplankton fraction, Cphyto

(Sathyendranath et al., 2009). In this approach, a 1% quantile

regression is applied to the fit between POC and Chl to obtain

Cphyto, hereafter denoted as Cphyto-S09. Since there will always be

some contribution to POC from material other than phytoplankton,

such as heterotrophs and detritus, this Cphyto estimate likely represents

an upper limit for a given Chl. In addition, this approach does not

allow for scenarios where Cphyto increases or decreases without a

corresponding change in Chl (Thomalla et al., 2017). However, it is

unlikely to be influenced by phenomena such as coccolith blooms or

bubbles, which can significantly increase backscattering or the

attenuation coefficient without increasing Chl.

Backscattering-based approaches allow Cphyto to vary

independently of Chl, making them less susceptible to the

package effect or photoacclimation. As a result, they are able to

detect the high temporal variability in Chl:Cphyto ratios. These

methods assume Cphyto is linearly related to bbp. Behrenfeld et al.

(2005) established such a relationship by fitting satellite-derived bbp
(440) to which a background value of 3.5 × 10−4 m−1 is subtracted to

laboratory Cphyto values:

Cphyto = 13,000� (bbp(440) − 3:5� 10−4) (4)

which is denoted as Cphyto-B05 hereafter. The subtraction of the

background value accounts for the portion of backscattering

attributed to a background of NAP that does not covary

with phytoplankton.

Based on direct measurements of both Cphyto and bbp in

the Atlantic Ocean, Martinez-Vicente et al. (2013) found a

significant linear relationship between Cphyto and bbp(470)
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(denoted as Cphyto-M13):

Cphyto = 30,100� (bbp(470) − 7:6� 10−4) (5)

This linear regression was initially limited to bbp (470) < 0.003

m−1 or Chl < 0.4 mg m−3; however, in this study, we extended it for

the larger Chl range as well.

Using data from the Equatorial Pacific Ocean and from the

22nd Atlantic Meridional Transect cruise, Graff et al. (2015)

established yet another relationship:

Cphyto = 12,128� bbp(470) + 0:59 (6)

Hereafter denoted as Cphyto-G15.

Note that, for backscatter measurements lacking a 440- or 470-

nm channel, the values at 700 nm were converted to these other

wavelengths using Equation 2, with h equal to 1.08 (mean of the

measured values).
3 Results and discussions

3.1 General latitudinal distribution
of properties

The latitudinal distribution of average values of major

environment parameters and inherent optical properties (IOPs) is

presented in Figure 3. These values are calculated from all data

found in 2° latitude bands centred on latitudes from 40°S to 74°S.

Hereafter, Chl and bbp are measured both through ship-based

hydrographic casts and BGC-Argo floats are denoted separately

as Chl-Cruise and Chl-Float (and bbp-Cruise and bbp-Float).

Temperature decreases toward the south (Figure 3A), from

about 15°C at 40°S to − 1°C close to the Antarctic continent. Salinity

also shows a general decreasing trend toward the south (Figure 3B),

with two relative maxima observed around 65°S and near

the continent.

Minima of Chl-Cruise are found around 60°S~68°S and maxima

around 45°S and 72°S (Figure 3C). The Chl-Cruise and Chl-Float

are quite consistent, with the differences mainly due to the uneven

cruise sampling. In the 41°S~45°S latitudinal belt, Chl-Cruise

measurements were constrained in the area south of the African

continent and are higher than Chl-Float. In the 59°S to 67°S

latitudinal belt, Chl-Cruise was at the lowest level (< 0.2 mg m−3)

at the Drake Passage and the Dumont d’Urville Sea. As for the 69°

S~76°S latitudinal belt, Chl-Float measurements are higher than

Chl-Cruise and have larger variance because they were collected in

more varied environments. Among the SOLACE data, Chl-Cruise is

the highest at SOTS with a mean value of 0.64 mg m−3, followed by

SS2 (0.31 mg m−3) and SS1 (0.15 mg m−3).

The latitudinal distribution of aph(442) (Figure 3D) reflects that

of Chl-Cruise, yet shows a smaller relative increase toward high

latitudes, leading to a decrease of the chlorophyll-specific

absorption coefficient at 442 nm, a*ph(442) (Figure 3E).

The fraction of larger phytoplankton, fmicro, increases from

about 0.3 to 0.9 toward the south (Figure 3F), which is consistent

with the findings by Robinson et al. (2021).
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Generally, bbp (700) (Figure 3G) is quite stable in the 40 to 60°S

belt, with a mean value of ~ 0.0012 m−1. South of 60°S, the mean

values and associated variance both increase. The 16 bbp-Cruise all

fall within the range of the bbp-Float values. Due to the very limited

bbp measurements on cruises, they were excluded from further

analyses with respect to the large-scale latitudinal analyses. The

mean bbp:Chl ratios across latitudes (Figure 3H) fluctuate between

0.005 and 0.008 m2 mg−1.

The POC (Figure 3I) varies between 30 and 200 mg m−3, with

minimum values around 60°S and an average value of 105 mg m−3

across the dataset. The POC:Chl ratio (Figure 3J) varies over one

order of magnitude, from 100 to 1,000, and shows relative maxima

around 54°S and 64°S, with a regular decrease for latitude south of

about 64°S.

It is worth noting that BGC-Argo data from all seasons have

been pooled together here, whereas the cruise data are for the

summer months only (December to February, plus early March for

ACE). If Figure 3 was to include BGC-Argo data for only the 3

summer months, the only two notable differences would be the

slightly higher bbp(700) values (0.002 instead of 0.0015 m−1 on

average for latitudes above 70°S) and, similarly, the slightly higher

Chl for latitudes above 60°S (with an average of approximately 0.4

instead of 0.25 mg m−3). The discrepancy between Chl-Cruise and

Chl-Float would be reinforced in the 60°S–68°S band, primarily due

to the ship sampling being restricted to the Drake Passage and

Dumont d’Urville Sea.

When the zonal averages displayed in Figure 3 are restricted to

the Atlantic, Indian, and Pacific sectors, the latter displays the

lowest Chl (average 0.2 mg m−3). In contrast, the subtropical

latitudes of the Indian Ocean are saltier (salinity ~ 35 psu),

warmer (SST up to 17°C), and have the largest POC

concentrations (around 100 mg m−3). No other major differences

are observed among the three sectors and between the results for

each sector and those for the entire SO.
3.2 Bio-optical relationships

The various bio-optical relationships we have explored are

illustrated in Figure 4. The ratio of NAP to phytoplankton

absorption, aNAP: aph (Figure 4A), shows an upward tail in low

Chl waters (Chl < 0.2 mg m−3), with values larger than 1 and as large

as 10. For larger Chl values (> 0.2 mg m−3), the ratio slowly

decreases as Chl increases. This result not only suggests a high

contribution of NAP, such as heterotrophs and detritus, to the

particle pool in clear waters of the SO, but also that this contribution

is highly variable.

This large contribution of NAP to the particle pool in the SO

seems corroborated by the POC vs. Chl relationship (Figure 4B).

Here, Chl-Cruise varies over nearly three orders of magnitude, and

POC over two, and their relationship shows the generally expected

increasing trend but only for Chl > 0.2 mg m−3. Below this

concentration, POC fluctuates around 80 mg m−3, independent of

Chl levels, again suggesting that NAP significantly contributes to

POC in the clear waters of the SO.
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The POC vs. Chl relationship is generally expressed through a

linear fit on log-transformed data. For instance, Sathyendranath

et al. (2009) found such a linear relationship (r2 = 0:58) using data

from the equatorial Pacific and Atlantic Oceans, denoted POC-S09

hereafter (solid purple line in Figure 4B). In our study, a linear

regression in log space is not appropriate to describe the POC vs.

Chl relationship because of the relatively constant POC in waters

where Chl is less than 0.2 mg m−3, attributed to the contribution of

NAP to POC. Therefore, we added a constant background POC in

our linear regression. When a linear fit without constant

background value is applied to data for Chl > 0.2 mg m−3 only,

the obtained POC vs. Chl relationship shows no significant

difference with POC-S09.
Frontiers in Marine Science 0749
We also applied 1% quantile regression on the data where Chl >

0.2 mg m−3 to derive Cphyto, following the approach of

Sathyendranath et al. (2009), resulting in a remarkably similar

relationship (dashed and solid purple lines in Figure 4B). By

converting bbp-Float to Cphyto according to Behrenfeld et al. (2005);

Martinez-Vicente et al. (2013), and Graff et al. (2015), Cphyto vs. Chl

can be obtained as well, denoted as B05, M13 and G15, respectively.

Their comparison with S09 is illustrated in Figure 4C. The slope of

M13 is significantly higher than the others, resulting in a difference up

to 160 mgm−3 in Cphyto at Chl = 3 mgm−3. B05 and G15 have similar

intercepts, although the slope of B05 is slightly higher. Their largest

difference is about 50 mg m−3 in Cphyto at Chl = 6 mg m−3. S09

generally derives higher Cphyto per Chl, while G15 intersects with B05
FIGURE 3

Latitudinal distribution of (A) temperature, (B) salinity, (C) Chl, (D) aph(442), (E) a*ph(442), (F) fmicro, (G) bbp(700), (H) bbp(700) to Chl ratio, (I) POC, and

(J) POC to Chl ratio. Black symbols represent measurements made from hydrographic casts on ships, while orange symbols refer to BGC-Argo float
measurements. The red, blue, and green dots refer to the SOTS, SS1, and SS2 sites, respectively. Data were grouped into 2° latitude intervals, within
which the mean values and standard deviations were calculated.
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at Chl = 4.3 mg m−3, with their differences in Cphyto remaining within

50 mg m−3 across all Chl ranges.

B05 and M13 assume a constant background bbp due to NAP

(denoted bbp-NAP) that does not covary with phytoplankton.

However, Bellacicco et al. (2016) found that bbp-NAP varies both

seasonally and regionally by more than one order of magnitude,

which might result in significant errors in the Cphyto estimates. G15

is the only one using analytical field-measured Cphyto, which has

been found to have a significant correlation with bbp in the

Equatorial Pacific Ocean and Atlantic Ocean.
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None of these methods (either Chl or bbp-based) have been

derived using data collected in the SO, so their applicability here

cannot be ascertained. Their consistent Cphyto prediction is however

encouraging. It is still worth noting that the aforementioned

approaches do not seem applicable to waters with Chl < 0.2 mg

m−3, due to the high NAP contribution to the particle pool. The

substantial contribution of NAP to POC and bbp further

complicates the accurate estimation of Cphyto in such waters.

Therefore, sufficient concurrent measurements of phytoplankton

community composition and their specific chlorophyll and carbon
FIGURE 4

Bio-optical relationships. (A) aNAP:aph ratio at 442 nm vs. Chl. The black solid line represents the fourth-degree polynomial regression in log space for our

dataset, y = −0:26 − 3:0x + 1:36x2 − 0:90x3 + 0:08x4 (y = log10(aNAP(442)=aph(442)),  x = log10Chl,  n = 201,  r2 = 0:57). (B) POC vs. Chl. The black solid

curve represents POC = 67:4 + 93:3 Chl0:87 (n = 229,  r2 = 0:42). The dashed black line represents the 1% quantile regression on the same data,

representing the relationship between Cphyto and Chl (Cphyto = 78:5 Chl0:63), following Sathyendranath et al. (2009). The purple solid and dashed lines refer

to the POC vs. Chl and Cphyto vs. Chl relationships from Sathyendranath et al. (2009), respectively. (C) Cphyto vs. Chl. See Section 2.6 for S09, B05, M13,
and G15. (D) bbp(700) vs. Chl. The background orange symbols refer to the density of float measurements. The solid black line represents the regression

line between bbp(700) and Chl, using both ship and float data from this study: bbp(700) = 0:0005 + 0:0028 Chl (Chl ≤ 0.2 mg m−3); bbp(700) =

0:0031 Chl0:67 (Chl > 0.2 mg m−3). The blue, green, and purple lines refer to the relationships from Antoine et al. (2011) in the Northwestern
Mediterranean Sea and Santa Barbara Channel, Huot et al. (2008) in the Eastern South Pacific Ocean, and Morel and Maritorena (2001) for global oceanic
waters, respectively. (E) POC vs. bbp(470). S99, L01, S08, C12, J17, and T17 refer to the relationships from Stramski et al. (1999) in the Antarctic Polar Front
Zone (APFZ) and the Ross Sea, Loisel et al. (2001) in the Mediterranean Sea, Stramski et al. (2008) in the Pacific and Atlantic Oceans, Cetinić et al. (2012) in
the North Atlantic Ocean, Johnson et al. (2017) in the SO, and Thomalla et al. (2017) in the South Atlantic and SO, respectively. Note that for models
without bbp at 470 nm, values were propagated from other available bands according to Equation 2 using h = 1:08.
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content are needed to evaluate and validate optical methods of

determining Cphyto concentrations, and then to assess Chl: Cphyto

ratios for better understanding phytoplankton physiology under

environmental forcing.

The bbp-Cruise and bbp-Float data are displayed as a function of

Chl in Figure 4D. The former varies between 0.0004 and 0.004 m−1

in the combined ACE and SOLACE dataset, and all fall within the

larger range (0.0002~0.1 m−1) measured by floats over the entire

SO. Values obtained during SOLACE were generally higher than

those observed during ACE leg 2 near the Antarctic continent. The

highest values were obtained at SS2 with the smallest variation,

followed by those at SOTS and SS1. The spectral slope of bbp(l),
calculated using all available wavebands, fluctuates from 0.5 to 1.6,

with a mean value of 1.08. The bbp-Float values generally increase

with Chl, although they remain relatively constant in the low Chl

range (again, Chl < 0.2 mg m−3). For Chl > 0.2 mg m−3, bbp covaries

with Chl, which is consistent with previous observations (Antoine

et al., 2011; Bellacicco et al., 2019). Therefore, we here combined a

linear regression for Chl < 0.2 mg m−3 with a power law for Chl >

0.2 mg m−3 to fit the data (solid black curve in Figure 4D).

For comparison, other relationships obtained from in situ data

collected in the Northwestern Mediterranean Sea and Santa Barbara

Channel by Antoine et al. (2011) (denoted A11) and in the Eastern

South Pacific Ocean by Huot et al. (2008) (denoted M08) are also

shown. For A11, their bbp(560) was converted to bbp(700) according

to Equation 2. The bbp(700) vs. Chl relationship from Morel and

Maritorena (2001) (denoted MM01) developed for the oceanic case

I waters is shown as well. Generally, the bbp(700) of MM01 is

significantly higher than H08 and A11 across the Chl range, which

might be due to the difference in study regions. For Chl > 0.2 mg

m−3, our fit generally coincides with MM01, but with a slightly

larger slope. For Chl < 0.2 mg m−3, bbp(700) is higher than predicted

by MM01, with differences that can reach up to one order of

magnitude. The high contribution of NAP is likely responsible for

these larger bbp values in clear waters as compared to what global

models predict from Chl. Such relative constant bbp is likely a

consequence of the combination of photoacclimation and the high

proportion of NAP. The former is typical for polar waters, where
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Chl variation is driven by photoacclimation to low light and thus

uncoupled with biomass, leading to an increase of Chl without a

corresponding increase in bbp (Behrenfeld et al., 2005; Brewin et al.,

2012; Bellacicco et al., 2019).

It is also worth noting that we did not find significant

differences among bbp-Float vs. Chl-Float relationships as

separately derived for each Ardyna’s bioregions.

The ACE and SOLACE datasets have only 16 concurrent

measurements of POC and bbp(470). They are shown in

Figure 4E on top of relationships obtained from both temperate

oceans and subregion of the SO (see figure caption for details).

There is a large spread of POC vs. bbp(470) relationships across

different regions. The highest POC: bbp(470) statistical mean ratio is

noticed in the Ross Sea, while the lowest is also found in the SO

from 20°W ~ 20°E by Thomalla et al. (2017). In addition, their

difference in POC is about 350 mg m−3 at bbp(470) = 0.004 m−1 and

continues to increase as bbp increases. Thus, there is no clear POC

vs. bbp relationship in the SO, especially for high-scattering waters.

This lack of correlation is due to the contributions of both POC and

particulate inorganic carbon (PIC) to backscattering.

It appears that in the SO, we cannot use a single linear

regression to describe the relationships of bio-optical properties

and chlorophyll over the full concentration range. For Chl < 0.2 mg

m−3, the large NAP contribution tends to mask any possible

phytoplankton-related changes in bio-optical properties.
3.3 Particle size distributions

PSD of surface waters measured by the Coulter Counter and

UVP-5 are illustrated in Figure 5. Particle concentrations

(m−3 mm−1) decrease when the equivalent spherical diameter

increases and generally follow a Junge-type size distribution. This

is expected, yet exceptions occur, with peaks appearing at certain

diameters, e.g., 10 mm, which may indicate phytoplankton blooms

dominated by a particular size group. Although the Coulter and

UVP-5 use different approaches to determine particle size, cross-

sectional area for the UVP-5, and particle volume for the Coulter
FIGURE 5

Particle size distributions derived from Coulter Counter and UVP-5.
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Counter, the slopes determined over different size ranges are quite

similar (a mean value of 3.99 for Coulter Counter data and 4.29 for

UVP-5 data). Among the SOLACE data, the number of particles is

overall larger at SS1 and SS2 than at SOTS, although the latter

displays a larger Chl. This observation of more large particles

(UVP-5 data start at 100 µm) at the two clearer southern sites

seems consistent with the larger NAP contribution already

identified for the domain of smaller particles.

PSD slopes (z, unitless) are displayed as a function of Chl,

colour-mapped as a function of the fraction of microphytoplankton

(fmicro) derived according to Brewin et al. (2015) (Figure 6). The

slope z varies between 3 and 5. A somewhat decreasing trend can be

discerned for Chl > 0.2 mg m−3, similar to what Buonassissi and

Dierssen (2010) have found in temperate regions, yet there is no
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significant relationship when Chl appears below 0.2 mg m−3,

suggesting the particle distribution is heterogenous within the SO.

In addition, we did not notice a clear impact of fmicro on z. The
expectation would be that populations dominated by larger cells

would have a lower z, which is not clearly observed here.
3.4 Implications for ocean colour
remote sensing

The absorption of NAP follows an exponential decay from the

blue to the red parts of the spectrum. In the clear waters we have

analysed here (Chl < 0.2 mg m−3), the large NAP contribution leads

to significant non-chlorophyll absorption in the blue part of the
FIGURE 6

PSD slope z vs. Chl relationship. The dots are colour-mapped as a function of the fraction of micro-phytoplankton derived from Brewin et al. (2015).

The purple line represents the relationship obtained by Buonassissi and Dierssen (2010) in the North Atlantic, where z = −0:63 log10Chl + 3:56,  n =

25,   r2 = 0:45.
FIGURE 7

Comparisons between in situ and satellite-derived Chl. The black dashed line represents the 1:1 relationship. Error bars indicate the typical 30%
uncertainty for both the HPLC- and satellite-derived Chl.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1466037
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1466037
spectrum (l < ~ 500 nm). A likely consequence is a lower blue-to-

green remote-sensing reflectance band ratio than would otherwise

exist for the same Chl concentration but with a lower NAP

contribution. This would result in a significant overestimation of

Chl when using global empirical ocean colour algorithms to derive

Chl from the reflectance ratio, as the NAP absorption would be

wrongly interpreted as phytoplankton absorption.

To verify this, we compared in situ Chl from both cruise and float

measurements with satellite-derived Chl estimates. For this purpose, we

used the Moderate Resolution Imaging Spectroradiometer (MODIS)

L3b binned chlorophyll products, which use a sinusoidal projection so

that each grid cell covers the same area, regardless of latitude. For each

in situmeasurement covered by a product, a 3 × 3 window centred on

the in situ location was extracted. In total, we found 311 in situ and

satellite-derived Chl matchups, which are displayed in Figure 7.

Previous similar matchup studies generally reported an

underestimation of Chl by satellite products in the SO (Garcia

et al., 2005; Marrari et al., 2006; Kahru and Mitchell, 2010; Szeto

et al., 2011; Johnson et al., 2013; Jena, 2017; Pereira and Garcia, 2018;

Moutier et al., 2019). This is confirmed here, but only for Chl > 0.2

mg m−3. For lower values, we conversely observe an overestimation.

This is consistent with the excess NAP absorption reported here. It

cannot be ruled out, however, that larger absorption by coloured

dissolved organic matter (CDOM) would also contribute to this

overestimation of Chl (Morel and Gentili, 2009). The absence of

reflectance measurements from the ACE and SOLACE voyages did

not allow these hypotheses to be further tested here.
4 Conclusions

By combining ship-based measurements from the ACE and

SOLACE research voyages and profiling-float-based measurements

from over 20,000 profiles collected by the BGC-Argo network, we

were able to analyse the general latitudinal distribution patterns of

particle-related bio-optical and biogeochemical variables, as well as

the associated bio-optical relationships.

At latitudes beyond 60°S, Chl, aph, bbp, POC, and fmicro increase

toward the Antarctic continent. In parallel, the chlorophyll-

normalised values of aph and POC decrease, while the

chlorophyll-specific bbp remains stable across latitudes.

The absorption data showed a high proportion of NAP (aNAP:

aph up to 10) in the clear waters (Chl < 0.2 mg m−3) of the SO. This

substantial NAP contribution leads to higher POC and bbp values,

making particulate bio-optical properties significantly different

from what is expected for temperate areas. In contrast, this

divergence is not evident in waters with Chl > 0.2 mg m−3.

Therefore, using bio-optical relationships developed in temperate

waters to study the SO is probably acceptable outside the domain of

low Chl. The specific relationships we propose here (Figure 4) are

presumably better adapted to the SO. Nonetheless, caution is

warranted, as even minor alterations in these relationships can

result in notable absolute differences due to the substantial

variability present.
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The implication for satellite ocean colour applications seems

to be an overestimation of Chl in clear waters when using

standard algorithms (again, in areas with Chl levels below 0.2

mg m−3). Deriving better SO-adapted Chl retrieval algorithms

that account for this peculiarity would, however, require more

comprehensive datasets of bio-optical properties and radiometry

measurements, which still do not exist at the required scale. This

is definitely where more effort should be directed if we are to

expect significant improvements in our ability to monitor SO

ecosystems from space.
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optical relationships and ocean color algorithms for the north polar region of the
Atlantic. J. Geophys. Res. 108, 3143. doi: 10.1029/2001JC001195

Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R.,
et al. (2008). Relationships between the surface concentration of particulate organic
carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans.
Biogeosciences 5, 171–201. doi: 10.5194/bg-5-171-2008

Stramski, D., Reynolds, R. A., Kahru, M., and Mitchell, B. G. (1999). Estimation of
particulate organic carbon in the ocean from satellite remote sensing. Science 285, 239–
242. doi: 10.1126/science.285.5425.239

Szeto, M., Werdell, P. J., Moore, T. S., and Campbell, J. W. (2011). Are the world’s
oceans optically different? J. Geophysical Research: Oceans 116. doi: 10.1029/
2011JC007230

Thomalla, S. J., Ogunkoya, A. G., Vichi, M., and Swart, S. (2017). Using optical
sensors on gliders to estimate phytoplankton carbon concentrations and chlorophyll-
to-carbon ratios in the southern ocean. Front. Mar. Sci. 4. doi: 10.3389/
fmars.2017.00034

Turner, J. T. (2015). Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean’s biological pump. Prog. Oceanography 130, 205–248. doi: 10.1016/
j.pocean.2014.08.005

Uchida, T., Balwada, D., Abernathey, R., Prend, C. J., Boss, E., and Gille, S. T. (2019).
Southern ocean phytoplankton blooms observed by biogeochemical floats. J.
Geophysical Research: Oceans 124, 7328–7343. doi: 10.1029/2019JC015355

Walton, D. W. H., and Thomas, J. (2018). Cruise report - antarctic circumnavigation
expedition (ACE) 20th december 2016 - 19th march 2017. doi: 10.5281/zenodo.1443511

Wynn-Edwards, C., Davies, D. M., Jansen, P., Bray, S. G., Eriksen, R., and Trull, T.
W. (2019). IMOS-Southern Ocean Time Series (SOTS)-Annual Reports: 2012/2013.
(Australian Integrated Marine Observing System, University of Tasmania).

Zhang, Y. L., Liu, M. L., Wang, X., Zhu, G. W., and Chen, W. M. (2009). Bio-
optical properties and estimation of the optically active substances in Lake
Tianmuhu in summer. Int. J. Remote Sens. 30, 2837–2857. doi: 10.1080/
01431160802558592
frontiersin.org

https://doi.org/10.1029/2022JG006798
https://doi.org/10.1201/9781351075350-9
https://doi.org/10.1029/2001GL013863
https://doi.org/10.1364/AO.36.006057
https://doi.org/10.1016/j.rse.2006.07.008
https://doi.org/10.1002/grl.50252
https://doi.org/10.1038/s41467-017-02143-6
https://doi.org/10.1038/s41467-017-02143-6
https://doi.org/10.1016/j.rse.2009.01.008
https://doi.org/10.1029/2000JC000319
https://doi.org/10.3390/rs11151793
https://doi.org/10.1029/2019JC015024
https://doi.org/10.1016/j.dsr2.2017.12.018
https://doi.org/10.4319/lom.2010.8.462
https://doi.org/10.5194/bg-5-353-2008
https://doi.org/10.1002/lno.10341
https://doi.org/10.1364/OE.426737
https://doi.org/10.1002/lom3.10185
https://doi.org/10.1016/j.pocean.2023.103130
https://doi.org/10.1016/j.pocean.2023.103130
https://doi.org/10.1109/OCEANSE.2007.4302468
https://doi.org/10.3354/meps07998
https://doi.org/10.3389/fmars.2019.00595
https://doi.org/10.1029/2021GL097616
https://doi.org/10.1029/2021GL097616
https://doi.org/10.1364/OE.19.007945
https://doi.org/10.1016/B978-0-12-805068-2.00002-4
https://doi.org/10.1016/B978-0-12-805068-2.00002-4
https://doi.org/10.1146/annurev-marine-010814-015924
https://doi.org/10.1029/2001JC001195
https://doi.org/10.5194/bg-5-171-2008
https://doi.org/10.1126/science.285.5425.239
https://doi.org/10.1029/2011JC007230
https://doi.org/10.1029/2011JC007230
https://doi.org/10.3389/fmars.2017.00034
https://doi.org/10.3389/fmars.2017.00034
https://doi.org/10.1016/j.pocean.2014.08.005
https://doi.org/10.1016/j.pocean.2014.08.005
https://doi.org/10.1029/2019JC015355
https://doi.org/10.5281/zenodo.1443511
https://doi.org/10.1080/01431160802558592
https://doi.org/10.1080/01431160802558592
https://doi.org/10.3389/fmars.2024.1466037
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Jianchuan Yin,
Guangdong Ocean University, China

REVIEWED BY

Richard Arthur Allard,
Naval Research Laboratory, United States
Qiannan Zhang,
Shanghai Maritime University, China

*CORRESPONDENCE

Aleksei V. Buinyi

a.buinyi@marine.tech

RECEIVED 28 June 2024
ACCEPTED 10 October 2024

PUBLISHED 07 November 2024

CITATION

Buinyi AV, Irishev DA, Nikulin EE,
Evdokimov AA, Ilyushina PG and Sukhikh NA
(2024) Optimizing data-driven arctic marine
forecasting: a comparative analysis of
MariNet, FourCastNet, and PhyDNet.
Front. Mar. Sci. 11:1456480.
doi: 10.3389/fmars.2024.1456480

COPYRIGHT

© 2024 Buinyi, Irishev, Nikulin, Evdokimov,
Ilyushina and Sukhikh. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 07 November 2024

DOI 10.3389/fmars.2024.1456480
Optimizing data-driven
arctic marine forecasting: a
comparative analysis of MariNet,
FourCastNet, and PhyDNet
Aleksei V. Buinyi1,2*, Dias A. Irishev1, Edvard E. Nikulin1,
Aleksandr A. Evdokimov3, Polina G. Ilyushina4

and Natalia A. Sukhikh1,2

1Research and Development Department, Marine Information Technologies LLC, Moscow, Russia,
2Department of Hydrometeorological Modeling, Lomonosov Moscow State University Marine
Research Center (LMSU MRC), Moscow, Russia, 3Department of Hydrometeorological Research,
Lomonosov Moscow State University Marine Research Center (LMSU MRC), Moscow, Russia,
4Geoinformation Technologies Department, Lomonosov Moscow State University Marine Research
Center (LMSU MRC), Moscow, Russia
Introduction: Marine forecasts play a crucial role in ensuring safe navigation,

efficient offshore operations, coastal management, and research, particularly in

regions with challenging conditions like the Arctic Ocean. These forecasts

necessitate precise predictions of ocean currents, wind-driven waves, and

various other oceanic parameters. Although physics-based numerical models

are highly accurate, they come with significant computational requirements.

Therefore, data-driven approaches, which are less computationally intensive,

may present a more effective solution for predicting sea conditions.

Methods: This study introduces a detailed analysis and comparison of three data-

driven models: the newly developed convLSTM-based MariNet, FourCastNet,

and PhydNet, a physics-informed model designed for video prediction. Through

the utilization of metrics such as RMSE, Bias, and Correlation, we illustrate the

areas in which our model outperforms well-known prediction models.

Results: Our model demonstrates enhanced accuracy in forecasting ocean

dynamics when compared to FourCastNet and PhyDNet. Additionally, our

findings reveal that our model demands significantly less training data and

computational resources, ultimately resulting in lower carbon emissions.

Discussion: These findings indicate the potential for further exploration of data-

driven models as a supplement to physics-based models in operational marine

forecasting, as they have the capability to improve prediction accuracy and

efficiency, thereby facilitatingmore responsive and cost-effective forecasting systems.
KEYWORDS

Arctic, machine learning, ocean prediction, LSTM, short-term forecast
frontiersin.org0156

https://www.frontiersin.org/articles/10.3389/fmars.2024.1456480/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456480/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456480/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456480/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1456480&domain=pdf&date_stamp=2024-11-07
mailto:a.buinyi@marine.tech
https://doi.org/10.3389/fmars.2024.1456480
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1456480
https://www.frontiersin.org/journals/marine-science


Buinyi et al. 10.3389/fmars.2024.1456480
1 Introduction

Machine Learning is the process of making computer systems learn

without explicit instructions by analyzing and drawing inferences from

data patterns using algorithms and statistical models. One of the major

limitations of Artificial Intelligence and Machine Learning has always

been computational power, which has been a cause of concern for

researchers. CPUs were not as powerful and efficient a few decades ago

when it came to running large computations for machine learning.

Hardware manufacturers have worked hard to create a processing unit

capable of performing any AI operation.

Though CPUs are no longer viable sources of computational

power, they were the pioneers. Today, those CPUs are rightfully

replaced by GPUs and AI accelerators, specifically designed for

large computing. The main features considered while purchasing an

AI accelerator are cost, energy consumption, and processing speed.

The study of ocean circulation is crucial for many reasons,

including the climate research, determining marine life distribution,

shaping human activity, and more. Accurate prediction of currents

can help forecast weather, estimate energy transfer rates in the

ocean, predict the spread of oil spills and drift of the sea ice and

icebergs. Sediment transport is another important correlated aspect

correlated with the water circulation, affecting marine economic

activities such as fishing, transport, logistics, and tourism.

Therefore, in the seas, especially in the high latitudes, the

prediction of currents is crucial for port, pipeline, and logistics

development, as well as for the analysis of sea ice drift for safe

logistics. In this context, the development of a machine learning

model for the prediction of sea water movement and sea level

variations is essential.

Sea currents and sea surface level prediction have a long history

of development, starting with traditional empirical methods and

evolving into modern AI methodologies. The early efforts held in

the 17th -19th centuries (e.g. Halley, 1686; Maury, 1855) and relied

on accidental in situ observations. With the transition from single

observations to systematic measurements, the emergence of

scientists specializing in hydrodynamics and ocean studies, the

development of a network of observation stations and scientific

equipment, analytical methods of describing observed phenomena

were formed in (Navier, 1822; Stokes, 1845) and numerically solved

in (Bjerknes, 1903, 2023). In the early 20th century, V. Walfrid

Ekman’s research on wind-driven surface currents laid important

groundwork for understanding ocean transport mechanisms. It laid

the foundation of geophysical fluid dynamics and led to the

pioneering work of numerical weather forecasting of (Richardson,

1922). The first numerical forecasts in oceanography were

developed for the wind-driven waves by (Sverdrup and Munk,

1947). Development of numerical methods based on solving the

Navier-Stokes equations continued in the ocean simulations with

the first models (Bryan, 1969) and succeeded in mesoscale ocean

circulation forecasting by 1983 (Robinson, 1983). Over time,

increased computational power and improved mathematical

representations of ocean processes have enabled more

sophisticated forecasting models. The satellite remote sensing era,

that began nearly at the same time, provided massive volume of data

for observing and assimilating sea surface height data into models.
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All it made the global ocean reanalysis and forecasting projects

available. Operational forecasting centers like the European

Centre for Medium-Range Weather Forecasts (ECMWF) and

the National Oceanic and Atmospheric Administration (NOAA)

began running global ocean prediction systems to support

weather, climate and marine applications (Storto et al., 2019),

while regional models with finer resolutions also emerged for

areas like the Arctic (Chen et al., 2009).

With the availability of petabytes of oceanographic and remote

sensing observations, with the outputs of numerical model

simulations, with the growth of computational power, artificial

intelligence (AI) tools are increasingly being leveraged in a variety

of applications in oceanography (Dong et al., 2022). The high

energy efficiency of the AI models (e.g. (Pathak et al., 2022) also

contributes to their spreading.

Various AI algorithms are now being used for the identification

of mesoscale eddies (Franz et al., 2018; Lguensat et al., 2018; Du et al.,

2019; Duo et al., 2019; Xu et al., 2019, 2021; Santana et al., 2020),

forecasting surface waves (Mandal and Prabaharan, 2006; Fan et al.,

2020; Gao et al., 2021; Zhou et al., 2021; Buinyi et al., 2022),

prediction of features, like the Indian Ocean Dipole, with a multi-

task deep learning model in (Ling et al., 2022), that outperformed

traditional numerical multiseasonal prediction.

The topics of sea surface heights and currents forecasting are also

covered with the AI methods. One approach is the use of deep

learning methods such as ConvLSTMP3, which extracts spatial-

temporal features of sea surface heights using convolutional

operations and long short-term memory (LSTM) (Song et al.,

2021). One more paper (Zulfa et al., 2021) uses LSTM to predict

sea surface velocity and direction, achieving good results with low

Mean Absolute Percentage Error (MAPE) values in Labuan Bajo

waters. In the paper (Ning et al., 2021) an optimized Simple Recurrent

Unit (SRU) deep network was developed for short-to-medium-term

sea surface height prediction with AVISO data.

There are a lot of promising results in geosciences now. We

have created MariNet, the ML architecture, and compared its

output with two state-of-art ML models of different architectures

to test their ability in the Arctic region forecasting. In the current

work, we test the algorithms on the surface currents data and sea

surface heights.
2 Materials and methods

In the initial stages of our research, we harnessed PhyDNet and

FourCastNet, two of the most promising machine learning

architectures applicable to the ocean state forecasting available at

the time, for the comparison with MariNet, our Neural Network.

The neural networks are described below.
2.1 MariNet neural network

MariNet is an artificial neural network (ANN) based on the

parallel encoder-decoder architecture within which ConvLSTM

modules are embedded in latent space (Buinyi et al., 2023). The
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ConvLSTM itself is introduced by (Shi et al., 2015) and described as

a type of neural network architecture that combines convolutional

and LSTM layers. Because of its successful design, it has been used

for spatiotemporal data analysis and prediction in various

applications, including precipitation nowcasting (Shi et al., 2015),

air temperature forecasting (Lin et al., 2019), flood forecasting

(Moishin et al., 2021), arctic sea ice concentration prediction (Liu

et al., 2021), and seismic events prediction (Fuentes et al., 2021),

with relatively high reliability.

The architecture of our model is shown on the Figure 1.

MariNet consists of several interconnected encoder-decoder

blocks, within which ConvLSTM modules are embedded between

the encoder and the decoder. For this study, we employed four

encoder layers and four decoder layers. Each ConvLSTM module

contains several parallel ConvLSTM cells connected in a manner

that the sum of their outputs forms the resulting forecast of time

series in the latent space. This design enables the neural network to

simultaneously detect temporal dependencies at various frequencies

without assuming any specific frequency distribution and a priori

defined data distributions.

The encoder-decoder blocks are interconnected in such a way

that the input to each subsequent block is the result of subtracting

the original data from the original data passed through the first

convolutional layer in the block, which produces average pooling.

Moreover, the size of the convolution in the first layer of the block
Frontiers in Marine Science 0358
varies for each block. This solution facilitates hierarchical pattern

highlighting in images: first, the neural network is trained to work

with larger patterns. Then it analyzes smaller patterns and their

conditional dependencies on larger ones.

During this research, we employed three encoder-decoder

architectures. We settled on using three parallel architectures because

they enabled us to capture different scales of spatial and temporal

variability. The first block learns and captures the largest features,

which can be considered as general sea state variability. The second

block focuses on large-scale patterns, such as global circulation

dynamics. Meanwhile, the third block captures the finest details.

A key feature of the model’s operation is the forecasting

algorithm. Unlike typical recursive algorithms, where the forecast

from the previous step is cyclically fed into the neural network to

form a forecast for the next steps, our neural network sequentially

receives several previous values for the water velocity and sea surface

heights. When predicting the sea state 3 days ahead with a temporal

resolution of 6 hours (i.e., 12 timesteps), we provide the model with

12 consecutive input sequences. Therefore, instead of getting a single

array for one time point, our neural network is initialized by the

dynamics of such arrays, which allows for a more accurate assessment

of the state of the forecasted values, and consequently, ensures a more

precise forecast. To train MariNet, we used a learning rate of 0.001, a

sigmoid activation function, and the Adam optimizer. The number of

training epochs turned out to be 300.
FIGURE 1

The architecture of MariNet.
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2.2 PhyDNet neural network

PhyDNet is a deep learning model introduced in (Le Guen and

Thome, 2020) and designed for unsupervised video prediction. Due

to its architecture, the model integrates physical knowledge into the

learning process, making it effective for tasks such as weather

forecasting, fluid dynamics, and other physical phenomena

prediction. The model leverages physical knowledge on dynamics

and disentangles it from other unknown factors. To achieve this

goal, the authors introduced a PhyDNet disentangling architecture,

and PhyCell physically-constrained recurrent cell. The recurrent

block projects input video frames into a latent space. This

projection is achieved through a deep convolutional encoder,

which transforms the input video into a lower-dimensional

representation. The latent space is where the disentanglement of

physical dynamics and residual information occurs. Two parallel

neural networks are responsible for it: PhyCell and ConvLSTM.

PhyCell is a recurrent cell that models and solves Partial Differential

Equations (PDE) with internal physical predictor computing and

combining partial derivatives with convolutions. PhyCell allows

exploiting prior physical knowledge to improve prediction of a

model, add explainability and leverages physical constraints to limit

the number of model parameters. The ConvLSTM network is

trained to learn the residuals, or errors, of the physical model’s

predictions. By learning these residuals, the network can correct the

physical model’s predictions and improve the overall accuracy of

the system. Learned physical and residual representations are

summed before decoding to predict the future video frame. As a

result, PhyDNet generates one-step-ahead prediction that can be

extended by recursive feeding predicted frame into the model. It’s

important to note that predictions are reinjected as the next input

only for the ConvLSTM branch, and not for PhyCell. This is

because the PhyCell is designed to capture the deterministic

physical dynamics, which should not be influenced by

the predictions.

In (Le Guen and Thome, 2020) PhyDNet has been compared

with PredRNN, ConvLSTM, Causal LSTM, Memory in Memory

(MIM), outperformed them and showed itself as one of the state-of-

the-art model of its time. Therefore, we have chosen PhyDNet to

compare with our model.
2.3 FourCastNet neural network

FourCastNet, or Fourier ForeCasting Neural Network is first

described in (Pathak et al., 2022). It is a data-driven global weather

forecasting model that provides short to medium range predictions.

It is trained with an ERA5 reanalysis from the European Centre for

Medium-Range Weather Forecasts (ECMWF), which has hourly

estimates of atmospheric variables at a 0.25° resolution.

FourCastNet utilizes a Fourier transform-based token-mixing

scheme (Guibas et al., 2021) which is complemented with a vision

transformer (ViT) backbone (Dosovitskiy et al., 2021). This method

is grounded in the recent advancements in the Fourier neural

operator, or Adaptive Fourier Neural Operator (AFNO) that has
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demonstrated success in modeling challenging partial differential

equations (PDE), including fluid dynamics, in a resolution-

invariant manner (Li et al., 2020).

According to (Pathak et al., 2022) the use of ViT backbone is

preferred due to its ability to effectively model long-range

dependencies. The combination of ViT and Fourier-based token

mixing produces a model that effectively resolves fine-grained

features and scales well with the size and resolution of the

dataset, leading to the training of high-fidelity data-driven models

at an unprecedented resolution.

The original version of FourCastNet models 20 variables at five

vertical levels, that are: surface air pressure, mean sea level pressure,

air temperature at 2m from the surface, zonal and meridional wind

velocity 10m from the surface; zonal and meridional wind velocity

at 1000, 850, and 500 hPa; air temperature at 850 and 500 hPa;

geopotential at 1000, 850, 500, and 50hPa; relative humidity at 850

and 500hPa, and Total Column Water Vapor. The authors use the

model to predict such variables as the surface wind speed,

precipitation, and atmospheric water vapor. They propose

FourCastNet to be used for planning wind energy resources,

predicting extreme weather events such as tropical cyclones,

extra-tropical cyclones, and atmospheric rivers. FourCastNet

matches the forecasting accuracy of the ECMWF Integrated

Forecasting System (IFS), a state-of-the-art Numerical Weather

Prediction (NWP) model, at short lead times for large-scale

variables, while outperforming IFS for small-scale variables,

including precipitation.

According to (Pathak et al., 2022), the FourCastNet uses

such metrics as Root Mean Squared Error (RMSE), Anomaly

Correlation Coefficient (ACC) at lead times of up to three days

and gives results comparable to the ECMWF Integrated Forecasting

System (IFS), considered one of the best classical numerical

model used by ECMWF to construct reanalyzes and make

weather forecasts.
2.4 Metrics for the model output
quality estimation

We trained all three networks with the data on the surface water

currents and the sea surface heights, started the inferences and

compared their outputs with several metrics: Root Mean Squares

Error (RMSE), Bias and Correlation. They are defined as:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi   − xi  )

2

r
,
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where xi  is the original data value for a given timestep, yi  is a

predicted value for a given timestep, N – the length of

the timeseries.

In scholarly terms, the Root Mean Square Error (RMSE)

quantifies the divergence in magnitude between the model’s

predictions and the actual observations. It is preferable for the

RMSE to be smaller as this signifies a better alignment between

predicted and actual values.

Bias, on the other hand, signifies the systematic deviation of the

approximated quantifier from the real value and can be interpreted

as a consistent overestimation or underestimation of an output. It is

desirable for the bias to be closer to zero, indicating that the

estimates are nearer to the actual data.

The correlation, in contrast, is a statistical measure that sheds

light on the degree to which two variables share a linear relationship.

This relationship is frequently deployed to depict the linear

association between two contingent factors. Greater values of

correlation denote a stronger relationship between the two variables.
3 Data

The Copernicus Marine Environment Monitoring Service

(CMEMS) offers a comprehensive global ocean analysis and

forecast system through its Global Ocean Physics Analysis and

Forecast (CMEMS-GLO-PUM-001-024) product. The system

operates at a resolution of 1/12°, updated daily, and provides global

ocean forecasts for a 10-day period (Operational Mercator Global

Ocean System). The dataset employs a combination of the numerical

ocean model NEMO 3.6 with LIM3 Multi-categories sea ice model,

ECMWF IFS HRES atmospheric forcing, and several data

assimilation techniques, like SAM2 (SEEK Kernel) 4D, allowing for

seamless integration of in-situ and satellite observations.

For our needs we choose the region bounded by 60°N-90°N and

5°E-150°W and obtain the hourly surface data of zonal sea water

velocity (u), meridional sea water velocity (v), and sea surface height

above geoid (zos) for 2019-2022. We interpolate them to the 6-hour

temporal resolution and 0.25°x0.25° spatial resolution with and feed

the data to the ML models.
4 Results and discussion

The MariNet model demonstrates promising performance.

Notably, the figures representing metrics for the FourCastNet

model display artifacts. The average metrics are presented in

Table 1. As shown in the table, the MariNet model demonstrates

minimal RMSE values for sea surface heights and components of

surface sea water velocities. Furthermore, the bias of the MariNet
Frontiers in Marine Science 0560
model is closest to zero among the mentioned models. Although the

mean correlation between models is not significantly high,

PhyDNet and MariNet display the highest correlation,

approximately 0.5 for sea surface velocities and 0.4 for sea

surface heights.

Figure 2 illustrates the temporal evolution of RMSE for sea

surface velocity and sea surface heights for the selected models

throughout the prediction period. As observed, all RMSE values

monotonically increase over time. Notably, MariNet and PhyDNet

demonstrate comparable results, with their RMSE values growing

from approximately 0.01 m/s and 0.01 m to about 0.04 m/s and

0.045 m for sea water velocity and sea surface heights, respectively.

Figures 3–8 depict maps of RMSE for zonal and meridional

components of surface water velocity within the research area. All

three models exhibit similar spatial distributions of RMSE values,

with high values observed in the Barents Sea, Kara Sea, and coastal

areas of other seas, as well as low values in eastern offshore regions

and the region to the north of the continental shelf. The high RMSE

values may be attributed to two primary factors: (1) the model’s

poor learning quality or (2) the high standard deviation and

variability of the original data. Conversely, the low RMSE values

observed in the eastern and northern parts may be due to the

relatively low variability of the original water velocity data, with the

latter potentially being exacerbated by the presence of sea ice cover

in these areas for a significant portion of the year. On the other

hand, the high RMSE values in coastal areas could be attributed to

the active hydrodynamics in these regions, characterized by larger

values and greater variability of the water velocity data.

Notably, the general patterns of spatial variability for RMSEs are

consistently present across all models’ results; however, MariNet

outperforms the other two neural networks in terms of absolute

error values. Furthermore, FourCastNet is observed to exhibit

artifacts both in zonal and meridional components of surface

water velocity. This could indicate that the FourCastNet model

fails to accurately capture sea water dynamics patterns.
TABLE 1 Metrics of MariNet, FourCastNet and PhyDNet for zonal and
meridional components of surface water velocities and Sea
Surface Heights.

Model RMSE (m/s) Bias (m/s) Correlation

u

MariNet 0.027 -0.001 0.507

FourCastNet 0.051 0.003 0.432

PhyDNet 0.043 0.004 0.519

v

MariNet 0.028 0 0.515

FourCastNet 0.051 0.002 0.428

PhyDNet 0.044 0 0.524

ssh

MariNet 0.027 -0.001 0.430

FourCastNet 0.082 -0.050 0.367

PhyDNet 0.046 0.003 0.451
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4.1 Computational cost of MariNet

With the CodeCarbon software package, we have calculated

the carbon emissions and the energy consumption of the

MariNet, FourCastNet and the PhyDNet for our calculations.
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Results are shown in the Table 2. Training of the MariNet

model has the least carbon emission rate, but, due to the

relatively large time of training, it takes the most energy. At the

same time, PhyDNet wins the energy consumption and the

emission rate challenges.
FIGURE 3

RMSE (in m/s) for zonal component of the surface water velocity for MariNet model.
FIGURE 2

Plots of temporal evolution of RMSE for zonal (upper image), meridional (middle image) components of surface water velocity (m/s), and the sea
surface heights (m) above geoid for MariNet (blue line), PhyDNet (green line), and FourCastNet (orange line).
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FIGURE 4

RMSE (in m/s) for zonal component of the surface water velocity for FourCastNet model.
FIGURE 6

RMSE (in m/s) for meridional component of the surface water velocity for MariNet model.
FIGURE 5

RMSE (in m/s) for zonal component of the surface water velocity for PhyDNet model.
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5 Conclusions

In the study, we proposed a forecast model MariNet model,

based on the encoder-decoder architecture, and compared it with
Frontiers in Marine Science 0863
FourCastNet and PhyDNet, the most promising ML models in the

field weather prediction of their time. We have chosen the Arctic

region, one of the hottest spots of the modern climate science

research and obtained the hourly data on zonal and meridional
FIGURE 7

RMSE (in m/s) for meridional component of the surface water velocity for FourCastNet model.
TABLE 2 Comparison of the carbon emissions and energy consumption during the models training and inference.

Model Training Model Inference

Emissions Rate
(g/s)

Energy Consumed
(kW)

Time (hrs)
Emissions Rate
(g/s)

Energy Consumed
(W)

Time (sec)

FourCastNet 0.100 103.356 103.30 0.104 0.431 1.997

PhyDNet 0.116 103.734 119.06 0.02353 0.001097 0.0224

MariNet 0.083 214.788 257.90 0.0908 0.0973 0.515
FIGURE 8

RMSE (in m/s) for meridional component of the surface water velocity for PhyDNet model.
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velocities of the surface sea water and sea surface heights above

geoid from the Copernicus Marine Data Store. We switched

temporal resolution from 1 hour to 6 hours and fed the datasets

to the MariNet model, PhyDNet and FourCastNet.

In comparison with the other mentioned MLmodels, the RMSE

and bias of the MariNet model are significantly lower. At the same

time, the mean correlations of all three models with the original

data are moderate and located between 0.4-0.5.

The above experimental results all show that the MariNet model

has great potential in the mid-term predictions of the ocean

dynamics. The further development of the model incudes

improving the efficiency of computational operations, expanding

the number of parallel running modules of our model to capture

more temporal and spatial features of data variability, and increase

the number of variables used in training.
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Modeling Atlantic herring
distribution in the Northeast
Atlantic for informed decision-
making towards
sustainable fisheries
Ward Standaert1, Rutendo Musimwa1, Martha Stevens1,
Jesus Alonso Guerra1, Carlota Muñiz1, Elisabeth Debusschere1,
Steven Pint1,2 and Gert Everaert1*

1Research Department, Flanders Marine Institute, Ostend, Belgium, 2Marine Biology Research Group,
Ghent University, Ghent, Belgium
The withdrawal of the United Kingdom from the European Union will likely result

in reduced fishing grounds for the Belgian fishing fleet. This fleet now targets

demersal fish, but there used to be a tradition of catching Atlantic herring (Clupea

harengus). After the stock collapse of Atlantic herring in the 1970s, fishing on

herring by the Belgian fleet did not recover and herring quotas are now

exchanged with the Netherlands and Germany. To assess the feasibility of

reintroducing herring fisheries for the Belgian fishing fleet, our study created

spatiotemporal species distribution models for Atlantic herring in the Northeast

Atlantic Ocean, focusing results on the Belgian Part of the North Sea. In total

30078 occurrence records were derived and processed to fit species-

environmental relationships with temperature, salinity, seabed characteristics

and plankton concentration using Maximum entropy (Maxent) models. The Area

Under the Curve of the Receiver Operating Characteristic plot (AUC) and the

True Skill Statistic (TSS) were used to assess model fit. Models performed well

(AUC > 0.7 and TSS > 0.6). While a broad spatiotemporal distribution of Atlantic

herring in the Northeast Atlantic Ocean was inferred, regional differences show

that herring habitat is most suitable during winter months in the Belgian Part of

the North Sea for both adult and larval herring (habitat suitability index > 75%).

This regional trend in the Belgian Part of the North Sea was negatively correlated

(R = -0.8) with the North Atlantic Oscillation (NAO). We anticipate that these

findings will provide valuable insights for policymakers to implement sustainable

fisheries management practices.
KEYWORDS

Atlantic herring, species distribution modeling, machine learning, fishery, sustainable
blue economy, Northeast Atlantic, North Atlantic Oscillation, Belgian Part of the
North Sea
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1 Introduction

Since the start of the Common fisheries policy in 1970,

European Union (EU) members have been allowed equal access

to fish in their shared waters, including those of the United

Kingdom (UK). With the withdrawal of the UK from the EU on

the 1st of January 2021, it was decided that this will change

(Regulation 1380/2013, 2013). As a transition period, EU vessels

are allowed to access UK waters until 30 June 2026 and afterwards,

access will require annual negotiation. Furthermore, fishing quotas

with a value of 25% of the EU landings in UK waters will be

gradually transferred from the EU to the UK from 2021 to 2025

(Popescu and Scholaert, 2022).

For the Belgian fishing fleet, the loss by transfer offishing quota to

the UK is estimated at 3.7 million euros in 2023 (Popescu and

Scholaert, 2022) and estimated to increase up to 6.8 million euros

in 2026 (Coudyser, 2021). Recently, the Belgian fishing fleet has

experienced a steady decline in catches in the southern North Sea and

a decrease in the number of vessels (data up to 2021, Maertens, 2022).

The Belgian fleet targets demersal fish, mainly sole (Solea solea) and

plaice (Pleuronectes platessa) using beam trawlers (Regulation No

1380/2013). Historically, pelagic fish species, particularly Atlantic

herring (Clupea harengus), were also targeted with annual yields

reaching up to 58 000 tons in 1943 (Lescrauwaet et al., 2010). One of

the initiatives to overcome the loss of fishing grounds and quota

following Brexit is to provide information about alternative fishing

grounds and niche fisheries (European Commission, 2020). One of

those alternatives for the Belgian fishing fleet could be the restoration

of pelagic fisheries in Belgian waters. Because the current Belgian

fishing fleet mainly targets bottom-dwelling fish (Regulation No 1380/

2013, n.d), the whereabouts of pelagic fish are often unknown,

anecdotical, or expert-based.

Atlantic herring is a valuable pelagic fish species in the North

Sea in terms of both economy but also in terms of ecology. It plays a

key role in the ecosystem as a regulator for seabird abundance

(through bottom-up control; Fauchald et al., 2011) and

zooplankton (through top-down control; Fauchald et al., 2011).

During early larval stages, Atlantic herring feeds on phytoplankton

and unicellular organisms (Marshall et al., 1937; Joly et al., 2021),

subsequently larval diet shifts towards zooplankton (Van

Ginderdeuren et al., 2014). For adults, the main prey is copepods,

but feeding on other zooplankton and fish larvae is also common

(Van Ginderdeuren et al., 2014). Atlantic herring can tolerate a wide

range of temperatures (1 – 19°C; de Groot, 1980; Whitehead, 1985)

and salinities (2 – 35 PSU; Brevé et al., 2007; de Groot, 1980), which

allows them to migrate between feeding, spawning, and nursing

grounds. Typical for this species is their natal homing behavior or

the return to the same area where they hatched for spawning

(Geffen, 2009).

In the Northeast Atlantic, Atlantic herring populations are

divided into several distinct stocks, based primarily on their

spawning grounds and migration behaviors. These stocks include

the North Sea autumn spawners, the West of Scotland stock, the

Irish and Celtic Sea stocks, and the Downs stock. Each stock shows
Frontiers in Marine Science 0267
unique migration and spawning behaviors. Based on the spawning

period, Atlantic herring populations are divided into two groups in

the Northeast Atlantic: spring and autumn spawners (Heath, 1993).

Herring in the Belgian Part of the North Sea (BPNS) belong to the

Downs stock which are autumn spawners.

Currently, the stock of autumn-spawning Atlantic herring is

stable in the North Sea (ICES, 2023a). For the Irish and Celtic Sea,

the International Council for the Exploration of the Sea (ICES)

advises zero catches of herring to sustain maximum sustainable

yield (ICES, 2023b, ICES, 2023c, ICES, 2023d). Atlantic herring

stocks are prone to collapse due to natural fluctuations in

abundance, aggravated by poorly managed fishing pressure with

slow recovery rates (Stephenson et al., 2001). In addition to

maintaining the overall stock biomass, effective management also

requires the preservation of their spatial and temporal spawning

distribution (Frost and Diele, 2022; Stephenson et al., 2001). During

spawning, herring lay their eggs on the seabed or aquatic vegetation

creating dense egg carpets that are vulnerable to bottom trawling

(Morrison et al., 1991; Watling and Norse, 1998). Since visual

observations of spawning grounds in situ are scarce, spawning areas

have been allocated using the position of young larvae (Frost and

Diele, 2022). Following a stock collapse of the Down’s stock of

Atlantic herring in 1955, which saw recovery only after a fishing ban

was implemented from 1977 to 1980, commercial pelagic fisheries

disappeared completely in the Belgian fishing fleet (Cushing, 1992;

Lescrauwaet et al., 2010). Currently, Belgium exchanges its Atlantic

herring fishing quota with the Netherlands and Germany in return

for quotas on sole and Atlantic cod (Gadus morhua) (Departement

Landbouw en Visserij, 2021).

Species distribution models use species field observations and

environmental information to create species-environment

relationships and infer the spatial distribution and ecological niche of

a species. Outcomes quantify the habitat suitability for the species at

each location, given the local environmental conditions. Previous

studies by Turner et al. (2016) and Wang et al. (2018) modeled the

distribution of adult Atlantic herring, while Aires et al. (2014) and

Maravelias et al. (2000) modeled their spawning distribution. Of these

studies, they either looked at different areas (Shetland Islands,

Maravelias et al., 2000; Northeast US continental shelf, Turner et al.,

2016 and Northwest Atlantic Shelf, Wang et al., 2018) or did not

consider the monthly variation of their distribution (Aires et al., 2014;

Maravelias et al., 2000). In addition to studying the monthly

distributional variation (Turner et al., 2016), the current abundance

of available data enables analysis of distributional variation across

different years (Wang et al., 2018). Notably, comparable models for

both adults and larvae are lacking. Generating two models with

identical settings for these two life stages of herring facilitates the

comparison of their seasonal distribution and their ecological tolerance

to various environmental gradients within the research area.

The objective of this study is to model the spatiotemporal

distribution of Atlantic herring in the Northeast Atlantic towards

informing sustainable fisheries. Due to our focus on the Belgian

fishing fleet, outcomes for the BPNS will be highlighted throughout

the study. Furthermore, since Atlantic herring is prone to stock
frontiersin.org
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collapse, we aim to model their spawning distribution as well and

compare the ecological needs of two life stages: adults and larvae. It

is expected that this study will contribute to sustainable fisheries

management by providing the time and location of Atlantic herring

occurrences and by giving insight into the ecological needs of

Atlantic herring. In the Northeast Atlantic, we hypothesize that

both adults and larvae will have recurring annual distributional

patterns due to their natal homing behavior (Geffen, 2009).

Furthermore, we expect that larvae and adults will occur in the

BPNS during November – January since they are known to spawn

in the English Channel during this period (Limborg et al., 2012).
2 Materials and methods

2.1 Occurrence data

A total of 22176 occurrences of adult Atlantic herring were

retrieved from the Database of Trawl Surveys (DATRAS) for the

Northeast Atlantic (http://marineregions.org/mrgid/5664), restricted

to 48°N – 62°N and 12°W – 10°E for all months for the years 2000

to 2020 (Figure 1, Supplementary Table 1; ICES, 2023e). This region

spans about 1 367 600 km² of ocean and includes the English

Channel, the North Sea, the Scottish Sea, the Irish Sea, the Celtic Sea

and part of the North Atlantic Ocean. Following a general overview

of the Northeast Atlantic, we specifically looked at the model

outcomes for the BPNS, situated between 51°N – 52°N and 2°E –
Frontiers in Marine Science 0368
4°E and spanning 3454 km² or 0.25% of the total area of the study

area (https://marineregions.org/gazetteer.php?p=details&id=3293,

Figure 1). Herring observations with a length below 20 cm, the

approximate length when Atlantic herring become mature (Brevé

et al., 2007), were discarded from the adult set. This way, in total

13112 occurrences of adult herring were available for the Northeast

Atlantic in all months excluding April, May and June and this for a

time frame of 21 years (i.e. years 2000 – 2020; Figure 1). Larval

occurrence data of Atlantic herring was retrieved from the

International Herring Larvae Surveys (IHLS) within the same

spatiotemporal frame as adult occurrences (ICES, 2023f). In total

7902 larval observations were available for the North Sea and the

English Channel in September, October, December, and January

from 2000 to 2020 inclusive (Figure 1) with larval size ranging from

5 – 24 mm in length. Since these are the months when spawning

occurs in the North Sea and the English Channel (Geffen, 2009),

larval model outcomes were restricted to these months.

Four steps were taken to transform the raw occurrence data into

the final pre-processed occurrence dataset ready for analysis, being

1) conducting outlier analysis, 2) eliminating duplicated

occurrences, 3) applying geographical filtering to address spatial

bias and 4) applying environmental filtering to address spatial

autocorrelation (SAC).

Outliers were defined as being farther away from other

observations than 1.5 times the interquartile range of

geographical distances (Yang et al., 2019) and were flagged using

the cc_outl function from R-package CoordinateCleaner (Zizka
FIGURE 1

Study area with occurrences in green and background points in red of adult (A; ICES, 2023e) and larval herring (B; ICES, 2023f). Occurrences were
compiled from the period 2000 – 2020 inclusive. In this period, larvae were present in September, October, December and January only, while
adults were present in all months excluding April, May and June. Background points were restricted to the International Council for the Exploration
of the Sea (ICES) statistical areas where occurrences are present. The location of geographic features that are used throughout the text are indicated
in panel (C). Here, names of water bodies are denoted in blue and names of terrestrial areas in black or white. Projection: EPSG 4326/WGS 84.
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et al., 2019). For the response variable, no outliers were identified,

and all observations were kept. Next, duplicated occurrences per

location (grid cell, 10 x 10 NM, see section 2.2) and time steps

(months) were removed (Phillips, 2021).

To account for sampling bias in the compiled datasets of

DATRAS and IHLS (Loiselle et al., 2008; Merow et al., 2013), we

applied a filtering technique in geographical space as per Vollering

et al. (2019). Occurrences were removed randomly until a dataset

was retained where each pair of occurrences had a minimum

distance of 10 nautical miles (NM, or 18.5 km), which is the

recommended distance between valid hauls in the DATRAS trawl

surveys (ICES, 2020). This filtering was done on the projected

datum ETRS89-extended/LCC Europe (EPSG 3034), which covers

the entire study area, using the R-package spThin (Aiello-Lammens

et al., 2015).

Spatial autocorrelation (SAC), where locations close to each

other are more similar than locations further apart, is common in

spatial data. Spatial autocorrelation in model residuals violates the

assumption that model residuals are independent and identically

distributed (Legendre, 1993). Since initial results revealed SAC in

the model residuals (tested using Moran’s I statistic from the ape

package; Paradis and Schliep, 2019), SAC was reduced by an

additional filtering technique in environmental space (de Oliveira

et al., 2014). First, the environmental Mahalanobis distance was

calculated between all observations using eight environmental

variables (see section 2.2). Based on these environmental

distances, the two most distant observations were selected and

added to a new dataset. Subsequently, we iteratively added the

observation that is most distant to this new dataset until we retained

a new dataset of 400 occurrences. The objectively selected 400

occurrences minimized SAC while keeping enough observations to

construct robust models. We applied this procedure to both adult

and larval datasets, resulting in a total of 800 occurrences for

calibrating and validating the two species distribution models

(Figure 1, section 0).
2.2 Environmental variables

Relevant environmental variables were selected through a

literature review on the ecology of Atlantic herring and include

bathymetry, sea surface temperature (SST) (Turner et al., 2016;

Wang et al., 2018), sea surface salinity (SSS) (Aires et al., 2014),

seabed substrate and energy (Brevé et al., 2007; Maravelias et al.,

2000), sea surface phytoplankton concentration (Marshall et al.,

1937), zooplankton concentration in the epipelagic layer

(Maravelias et al., 2000; Van Ginderdeuren et al., 2014), and

windfarm presence to include a measure of artificial coarse

substrate (Frost and Diele, 2022). Substrate energy is a measure of

the average hydrodynamics of the seabed by European Marine

Observation and Data Network (EMODnet Seabed Habitats

product). It has been found that a highly energetic seabed is

important for Atlantic herring egg development (Haegele and

Schweigert, 1985). Of all eight variables, bathymetry, seabed

substrate and energy were considered static variables over time

for each location, while the remaining variables were dynamic and
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derived monthly for 2000 – 2020. All environmental variables used

were obtained from the European Marine Observation and Data

Network (EMODnet) and the Copernicus Marine Service

(CMEMS, Table 1). Zooplankton concentration was derived from

CMEMS, with the units g C/m², representing the average biomass

(expressed in carbon content) over the depth of the epipelagic layer

(see also Global ocean low and mid trophic levels biomass content

hindcast | Copernicus Marine Service).

Preprocessing of the environmental variables involved

aggregation by averaging to match the coarser spatiotemporal

resolution of the occurrence data (10 NM x 10 NM, monthly for

2000 – 2020 inclusive) (Sillero and Barbosa, 2021). Additionally, we

calculated a measure of windfarm presence using a buffer of 200 m

around active windfarms to indicate nearby windfarm presence

since Atlantic herring are known to spawn on coarse substrate

(Frost and Diele, 2022). To avoid adding highly correlated variables

in the models, the Variance Inflation Factor (VIF) was calculated

for each combination of variable pairs and a VIF larger than 10 was

considered as a threshold for collinearity (Zuur et al., 2010). No

correlated variable pairs were found and hence all variables

were kept.
2.3 Model settings

Since Atlantic herring is a mobile and migratory species, the

absence of the fish at a location during a sampling event does not

necessarily indicate that environmental conditions are not suitable

at this location and time (Lobo et al., 2010). For this reason, we

based our models on presence-background data instead of

presence-absence data (Fernandez et al., 2022). Background

points are defined as a general sample of the environmental

conditions of the entire study area or a sample of all sites that are

available for the species to occupy (Phillips et al., 2009). We

developed Maximum entropy (Maxent) presence-background

models, a machine learning model that is commonly used in

species distribution modeling because it is flexible, simple to use

and performs well (using R-package dismo; Hijmans et al., 2023)

(Barber et al., 2022; Phillips et al., 2006; Valavi et al., 2023).

Background points were sampled randomly in the study area,

restricted to the ICES areas of the occurrences (Figure 1). The

number of background points was set at 10 times the number of

presences (Hysen et al., 2022). Maxent can be tailored by employing

combinations of feature classes and regularization multipliers

(Phillips et al., 2006). Feature classes are transformations that can

be applied to each predictor variable by the model, for example,

linear and quadratic transformations, while the regularization

multiplier is a penalty to avoid overfitting (Merow et al., 2013).

Fifteen combinations were tested using the corrected Akaike’s

Information Criterion (AICc) as a selection criterion (R-package

ENMeval; Kass et al., 2021) (Table 2A; Zeng et al., 2016). Following

the recommendations of Merow et al. (2013), we included all

combinations of the feature classes L, LQ and LQH (with L

linear, Q quadratic and H hinge) and the regularization

multipliers 1, 2, 4, 8 and 32. Finally, one model was retained for

adult herring and one model for larvae. Next, habitat suitability
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maps were calculated per month and year in 2000 - 2020, by

applying the models to each monthly map of the environmental

variables in 2000 - 2020. Average and standard deviation maps were

calculated per month. Model outcomes are shown in terms of

habitat suitability indices (HSI). To enhance clarity, habitat

suitability indices above 50% will be addressed as suitable and

indices below 50% as unsuitable (Manel et al., 1999).

The importance of each environmental variable in the model

was evaluated using a bootstrapping method adopted by Thuiller

et al. (2009). Hereby, the correlation was calculated between the

original model prediction and a model prediction where one

variable was randomly permuted. Following the approach of

Thuiller et al. (2009), this calculation was repeated 50 times for

each variable. The variable importance score was calculated as the

mean correlation coefficient for each variable, normalized across all

variables to collectively contribute to a total variable importance of

100%. Response plots were created that depict the modeled

relationship between each environmental variable and the HSI.

For each plot, HSI was simulated across 100 values over the range of

the environmental variable, with other variables constant at their

mean value (response.plot function from R-package Maxnet,

Phillips, 2021).

Model performance was evaluated using the Area Under the

Curve of the Receiver Operating Characteristic plot (AUC) and the

True Skill Statistic (TSS) metrics (Báez et al., 2020; Liu et al., 2013).

The AUC ranges from 0 to 1, whereby an AUC of 0.5 or lower
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indicates that the model is no better than random and 1 indicates

perfect model performance; the TSS ranges from -1 to 1, whereby a

random model would have a TSS of 0 or less, and a perfect model a

TSS of 1. To have a full view of the various aspects of the model

performance (Grimmett et al., 2020), the model sensitivity (ability

to accurately predict presences) and specificity (ability to accurately

predict background points) were also included as performance

metrics. All four metrics (AUC, TSS, sensitivity and specificity)

were calculated using k-fold cross-validation as follows: (1) the

complete dataset was divided randomly into a training and a test set

(training-test ratio of 80-20%), (2) a model was built on the training

set and (3) the model performance was tested based on its ability to

predict the test set. This process was repeated ten times.
2.4 North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is an important climate

process in the North Atlantic and affects ocean dynamics (Hurrell

and Deser, 2010). Variations in the NAO index can have direct

effects on the biology in the ocean (e.g., Alheit et al., 2005). For

example, Corten (1999) found a link between the NAO and the

occurrence of Atlantic herring in the Norwegian trench and Gröger

et al. (2010) between the NAO and the number of Atlantic herring

recruits in the North Sea. We correlated the seasonal and inter-

annual variability of our models’ spatiotemporal HSI with NAO
TABLE 1 Selected environmental variables for modeling with the corresponding source, value range, data type, uni, original resolution, and DOI/URL.

Variable Source name Value range
in
study area

Value
range
in BPNS

Data
type/
unit

Original resolution DOI/URL

Spatial Temporal

Bathymetry EMODnet Digital Bathymetry
(DTM)- 2022

5 - 4866 12 - 37 m 0.063’
x 0.063’

/ https://
emodnet.ec.europa.eu/
en/bathymetry

Seabed substrate EUSeaMap 2023 Broad-Scale
Predictive Habitat Map
for Europe

/ / Categorical Polygon / https://
emodnet.ec.europa.eu/
en/seabed-habitats

Seabed energy EUSeaMap 2023 Broad-Scale
Predictive Habitat Map
for Europe

/ / Categorical Polygon / https://
emodnet.ec.europa.eu/
en/seabed-habitats

Windfarm presence EMODnet Human Activities / / Binary
data

Polygon / https://
emodnet.ec.europa.eu/
en/human-activities

Sea surface temperature Global Ocean Physics Reanalysis 0 - 22 5 – 21 °C 0.083°
x 0.083°

Monthly https://doi.org/
10.48670/moi-00021

Sea surface salinity Global Ocean Physics Reanalysis 24 – 36 30 – 35 PSU 0.083°
x0.083°

Monthly https://doi.org/
10.48670/moi-00021

Sea surface
phytoplankton
concentration

Atlantic- European North West
Shelf- Ocean
Biogeochemistry Reanalysis

0 – 47 0 – 24 mmol C
m-3

0.111°
×0.067°

Monthly https://doi.org/
10.48670/moi-00058

Zooplankton
concentration in the
epipelagic layer

Global ocean low and mid
trophic levels biomass
content hindcast

0 - 81 1 – 25 g C m-2 0.083°
×0.083°

Daily https://doi.org/
10.48670/moi-00020
Before modeling, all variables were resampled from their original resolution towards a resolution of 10 NM x 10 NM and monthly. C, Carbon; EMODnet, European Marine Observation and
Data Network.
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indices. The impact of the NAO varies across regions of the

Northeast Atlantic (van der Molen and Pätsch, 2022). Therefore,

a regional assessment was made, particularly for the focus area of

this study: the BPNS.

To analyze the effect of the NAO on the HSI in the BPNS, the

following method was adapted from the one used by Corten (1999):

Monthly NAO indices from 2000 – 2020 were retrieved from the

National Oceanic and Atmospheric Administration (NOAA,

https://www.ncei.noaa.gov/access/monitoring/nao/) and seasonal

averages were calculated. For each season, a separate time series

was created. For example, for the winter, NAO indices of January,

February and March were averaged for each year from 2000 until

2020. Next, based on our model outcomes, an average HSI was

calculated for adults and larvae in the BPNS for each year in 2000 –

2020, using the months during which habitat was calculated to be

most suitable in the BPNS (winter, specifically January –March and

December – January for adults and larvae respectively, see section

3.4). As per Corten (1999), these NAO and HSI time series were

smoothed using a running average. We used three smoothing

windows: (1) non-smoothed indices, (2) a three-year average

window and (3) a five-year average window. Finally, the

autocorrelation was calculated by crossing NAO and HSI time

series using the base R function ccf (R Core Team, 2023). This

autocorrelation was calculated for each of the three smoothing

windows and for each of the four seasonal NAO time series. Besides

calculating autocorrelation, the ccf function was also used to detect

if there is a lag between two correlated time series. The significance

of the correlation coefficients was tested by calculating 99%

confidence intervals using Fisher’s Z transformation for

correlation coefficients (CorCI function from R-package

DescTools; Signorell, 2024) (Zou, 2007).
3 Results

3.1 Data exploration

After filtering, 400 adult and 400 larval Atlantic herring

occurrences were retained for modeling. Of these, two adult

occurrences and four larval occurrences were located in the

BPNS. After filtering in geographical and environmental space,

adult occurrences were present at a broad range of bathymetry (8 –

700 m), sea surface temperature (3 – 20°C) and sea surface salinity

(29 – 35 PSU) and at zooplankton concentrations in the epipelagic

layer of 0 – 12 g C m-2, sea surface phytoplankton concentrations of

0 – 11 mmol C m-3, all seabed energy classes (low, moderate and

high) and above multiple seabed substrate classes (including both

coarse and muddy classes and several categories in between). Larval

occurrences for modeling were present at a narrower range of

bathymetry (12 – 134 m), sea surface temperature (5 – 17°C), sea

surface salinity (31 – 35 PSU), zooplankton concentrations in the

epipelagic layer (1 – 10 g C m-2) and sea surface phytoplankton

concentrations (0 – 8 mmol C m-3). Additionally, these occurrences

were situated above all seabed energy levels and sandy and coarse

substrate types.
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3.2 Model performance

The larval model performed best with an AUC of 0.9 and a TSS

of 0.7 (Table 2). The adult model had lower performance metrics

with an AUC of 0.7 and a TSS of 0.6. The adult model scored better

at accurately predicting presences (model sensitivity) than

background points (model specificity). Optimal Maxent model

settings (minimal AICc) were obtained using feature classes

linear, quadratic and hinge and a regularization multiplier of one

for both adult and larval models. Filtering in environmental space

was successful in reducing spatial autocorrelation but did not

remove it completely (from I = 0.18 to I = 0.09 and from I = 0.16

to I = 0.14 for the adult and larval models, respectively). However,

bootstrapping methods for variable importance ensured that

selected variables were not selected due to type I errors derived

from SAC in the residuals of the models.
3.3 Variable importance and
response curves

Bathymetry was the most influential variables for both adults

(63%) and larvae (37%) (Table 3). The dynamic variables SST, SSS,

phyto- and zooplankton concentrations were important in both

models but have a higher summed importance in the larval model

(46%) compared to the adult model (35% in total). Seabed

characteristics were important (18% in total) in the larval model

only, while windfarm presence did not influence any model.

Response curves displayed distinct patterns for the adult and

larval life stages (Figure 2). In general, adult Atlantic herring were

inferred to have a capacity to withstand a broader range of

environmental conditions than their larvae. For both larvae and

adults, the habitat was most suitable at shallow depths with a

decreasing HSI towards deeper depths. Adults were able to tolerate

a wider bathymetrical range compared to larvae (HSI drops to 25% at

660 and 81 m respectively). Sea surface temperature was optimal at 5

and 7°C for adults and larvae respectively, situated at the lower end of

the temperature range observed in the study area (Northeast Atlantic

2000 – 2020, 3 – 20°C). Adult herring tolerate a wide temperature

range (3 – 15°C, HSI > 50%), while larvae favor a narrower

temperature range (5 – 8°C). The response of suitability to salinity

is low in the study area. The highest HSI (38%) were reached for

adults at high salinity values around 35 PSU and at both ends of the

salinity range for larvae (HSI > 50% at 29 – 35 PSU). Adult herring
TABLE 2 Model evaluation using the area under the curve (AUC), true
skill statistic (TSS), sensitivity and specificity.

Adult Larva

AUC 0.73 ± 0.02 0.89 ± 0.02

TSS 0.61 ± 0.03 0.71 ± 0.05

Sensitivity 0.78 ± 0.14 0.71 ± 0.01

Specificity 0.68 ± 0.01 0.72 ± 0.01
Numbers depict averages and standard deviations after ten cross-validation repetitions.
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was more likely to be found in low concentrations of zooplankton in

the pelagic layer (< 2.5 g C m-²), although other concentrations in the

study area were not restrictive (HSI around 50%). For larvae, optimal

zooplankton concentrations were quantified at 4.5 – 6.5 g C m-². On

top of these environmental variables that were important in both

adult and larval models, larval models were also influenced by seabed

substrate and sea surface phytoplankton concentration (Table 3).
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Models suggested that larvae are more likely to be found above coarse

substrate, sandy mud, and sand (HSI > 45%) than the unclassified

group ‘seabed’ (unclassified in EMODnet Predictive Habitat Map for

Europe), fine mud, and rock or other hard substrata (HSI < 20%).

Finally, larvae were simulated to be found in the highest

concentrations of phytoplankton in the study area (8 mmol C m-³).
3.4 Spatiotemporal distribution maps

On average, adult Atlantic herring was projected to have a wide

spatial distribution across the Northeast Atlantic throughout the

entire year (Figure 3, left; see Supplementary Figure 1 for

distribution maps for all months). Early in the year, habitat was

suitable in the North Sea and around the Faroe Islands (HSI > 50%,

Figure 3). No observations were present around the Faroe Islands,

so this is an extrapolation of the model and should be interpreted

with caution (Elith et al., 2010). In July, waters surrounding Ireland

become suitable and in October, the English Channel was included

as suitable waters for adult herring (HSI > 50%). Year-to-year

variability of the habitat suitability was highest in the Celtic Sea in

July and October (Figure 3, right). For example, the standard

deviation peaked at 18% in October in the Celtic Sea.
FIGURE 2

Response curves relating the modeled habitat suitability index for Atlantic herring to the environmental variables for adult and larval life stages. Only
environmental variables with a variable importance larger than 5% are shown. The range of the environmental values shown was restricted to the
range of values of the variable where occurrences were present.
TABLE 3 Variable importance (%) of the environmental variables in the
adult and larval models.

Adult Larvae

Bathymetry 62.6 36.7

Sea surface temperature 12.8 14.7

Sea surface salinity 11.1 5.3

Zooplankton concentration 6.2 12.6

Phytoplankton concentration 4.9 13.3

Seabed substrate 2.4 13.6

Seabed energy 0.0 3.8

Windfarm presence 0.0 0.0
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Zooming in on the BPNS specifically, habitat was calculated to

be suitable for adult Atlantic herring throughout the entire year

with increasing values through autumn and peaking in winter

(January, February, and March, Figure 4). More specifically,

monthly averages never dropped below 25% HSI and the highest

average HSI was 75% in February. The variability of the HSI was

highest in March and April with HSI varying between 21 and 85%

and 12 and 64%, respectively.

For larvae of Atlantic herring, a gradual southward movement

of suitable areas (HSI > 50%) can be seen in the distribution maps

from September to January in the Northeast Atlantic (Figure 5). In

September and October, high habitat suitability was calculated

surrounding Ireland and the United Kingdom. Later, in

December and January, areas with high habitat suitability

occurred in the Celtic Sea and the English Channel (including the

BPNS, HSI up to 85%, Figure 5). Year-to-year variability was higher

in larval HSI than adult HSI (Figure 3 right vs. Figure 5 right) and

reached up to a standard deviation of 30% in all months (Figure 5,
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right). In the BPNS, this variation showed an oscillating pattern, as

visualized using boxplots in Figure 6.
3.5 North Atlantic Oscillation

The presence of Atlantic herring did not only show seasonal

patterns (section 3.4) but also patterns across years. The HSI in the

BPNS was negatively correlated with the NAO. More specifically

and using a confidence interval of 99%, a significant correlation

coefficient was found between winter NAO and winter HSI of adults

(correlation of -0.57) at a moving average window of one year. At a

moving average window of three years, significant correlation

coefficients were found between autumn NAO and the winter

HSI (-0.83 and -0.63 for adults and larvae respectively) and

winter NAO and winter HSI (-0.83 and -0.76 for adults and

larvae respectively). At a moving average of five years, both the

autumn NAO and winter HSI (-0.86 and -0.63 for adults and larvae
FIGURE 3

Average HSI (left) and average year-to-year variability (given as standard deviation, right) of the habitat suitability for adult Atlantic herring for
January, April, July and October (representing the four seasons) in 2000 – 2020. High values are indicated in red, and low values in blue. Areas
where the model extrapolated, i.e., where no occurrences were present, are hatched. Projection: EPSG 4326/WGS 84. Distribution maps for all
months are shown in Supplementary Figure 1.
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FIGURE 5

Average HSI (left) and average year-to-year variability (given as standard deviation, right) of the habitat suitability for larvae of Atlantic herring for
September, October, December and January (months where data was available) in 2000 – 2020. High values are indicated in red, and low values in
blue. Areas where the model extrapolated, i.e., where no occurrences were present, are hatched. Projection: EPSG 4326/WGS 84.
FIGURE 4

Monthly variability of the habitat suitability index for adult Atlantic herring in the Belgian Part of the North Sea, averaged over 2000 – 2020. For each
month, the horizontal lines in the rectangular part of the boxplot represent, from low to high respectively, the 25th percentile, the 50th percentile
and the 75th percentile. Points that fall outside of these ranges are shown by whiskers (vertical lines) that extend up to 1.5 times the interquartile
range. Points falling outside of 1.5 times the interquartile range are shown as dots.
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respectively) and the winter NAO and winter HSI were significantly

correlated (-0.88 and -0.78 for adults and larvae respectively). For

all correlations, the time lag was either zero (winter NAO – winter

HSI) or one season (autumn NAO – winter HSI), but no

autocorrelations with a time lag of (over) a year were seen. For

example, the effect of the winter NAO on the winter HSI for adults

using a three-year averaging window is shown in Figure 7. In the

winter of 2010 in the BPNS, the HSI for adults was simulated high

(0.8) coinciding with low average NAO indices (-0.7). In contrast in

the winter of 2015, the HSI was simulated relatively low (0.6) during

high average NAO indices (0.8). The same pattern can be seen for

the other significant combinations from above between autumn/

winter NAO and modeled HSI for adults/larvae (Supplementary

Figures 5–7).
4 Discussion

This is one of the first studies making dynamic species

distribution models for both adults and larvae of Atlantic herring

in the Northeast Atlantic. Model outcomes suggest that suitable
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habitat for adult herring is widely spread over the Northeast

Atlantic throughout the entire year (Figure 3). Suitable habitat for

larvae occurs first in the North of the UK in September and moves

gradually southward towards the English Channel throughout the

spawning season (Figure 5). Focusing on the BPNS provided

valuable insights for the development of spatiotemporally specific

management strategies for fisheries on Atlantic herring by the

Belgian fishing fleet. In this area, both adults and larvae are most

likely to occur during winter months (adults: January – March;

larvae: December – January).
4.1 Modeling outcomes in an
ecological context

Bathymetry was the main explanatory variable in the adult

model, followed by sea surface temperature and salinity (variable

importance of 63, 13 and 11% respectively, Table 3). Response

curves showed that habitat was suitable at depths shallower than

200 m, aligning with the region of the European continental shelf of

which the edge is situated at approximately 200 m depth (Figure 2,
FIGURE 7

Effect of the North Atlantic Oscillation (NAO) on modeled habitat suitability indices (HSI) of adults in the Belgian Part of the North Sea during winter.
(A) time series of 3-year averaged winter HSI (left y-axis) and winter NAO (in red, right y-axis). (B) Correlation plot between three-year averaged
winter NAO and winter HSI.
FIGURE 6

Yearly variability of habitat suitability for larvae of Atlantic herring in January in the Belgian Part of the North Sea. For each month, the horizontal
lines in the rectangular part of the boxplot represent, from low to high respectively, the 25th percentile, the 50th percentile and the 75th percentile.
Points that fall outside of these ranges are shown by whiskers (vertical lines) that extend up to 1.5 times the interquartile range. Points falling outside
of 1.5 times the interquartile range are shown as dots.
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Ricker and Stanev, 2020). The importance of bathymetry is assumed

to be related to the Atlantic herring’s adaptability to a wide range of

temperatures and salinities (de Groot, 1980; Whitehead, 1985). This

was also reflected in the response curves for sea surface temperature

and salinity, being able to tolerate the entire range of values over 21

years in the study area (Figure 2).

To model the distribution of larvae, apart from bathymetry, sea

surface temperature and salinity, also seabed substrate, zooplankton

and phytoplankton concentration were important variables (37, 15,

5, 14, 13 and 13% variable importance respectively, Table 3). In

terms of abiotic factors, response curves matched well with known

characteristics of Atlantic herring spawning sites for the

bathymetric range (7 – 150 m, Figure 2; Brevé et al., 2007;

Dickey-Collas et al., 2004; Frost and Diele, 2022), substrate

(sandy and course; de Groot, 1980) and salinity (both marine and

brackish; Frost and Diele, 2022). Modeled temperature ranges

(optimum at 7°C) also agree well with historical catch data from

the North Sea (8°C; Hay et al., 2000). The inferred inclination of

Atlantic herring towards colder water temperatures suggests that

global warming may disrupt their current migration patterns,

potentially leading to a shift towards more northern spawning

grounds. However, the visual feeding behavior of herring,

dependent on light for hunting (Blaxter, 1968), may hinder a

northward shift during the short daylengths in northern winters,

as suggested by Hufnagl and Peck (2011). Spawning sites are often

classified as high-energy environments, by wave or tidal movement,

which is important for egg development (Haegele and Schweigert,

1985). Seabed energy was included for modeling, but no effect

was found.

A remarkable difference between the adult and the larval model

was that prey concentration was important to model the

distribution of larvae (26% variable importance in total including

both phyto- and zooplankton concentration) while being less

important to model the distribution of adults (11% variable

importance in total, Table 3). An explanation could be that the

adult model includes data on the complete cycle of their migration,

including feeding and spawning grounds (de Groot, 1980; Coull

et al., 1998). Therefore, the effect of feeding might be partly

obscured. Furthermore, even though adult herring may be drawn

to areas with high concentrations of zooplankton, their top-down

influence could lead to lower concentrations of phyto- and

zooplankton in those specific locations. Supporting both

scenarios, Atlantic herring has previously been reported directly

inside or at the edges of plankton patches (Maravelias, 2001).

For larvae, habitat suitability increased with increasing

phytoplankton concentration and was optimal at zooplankton

concentration in the epipelagic layer between 4.5 and 6.5 g C m-².

This aligns with the fundamental physiological need of early life

stages, as young herring prioritize somatic growth. Phytoplankton

serves as the base of the food web, and the availability of

zooplankton, which feeds on phytoplankton, becomes crucial for

larval development. A lack of sufficient prey during these early

stages can hinder growth and survival, as larvae rely on abundant

food sources to sustain their rapid growth during early life (Fletcher

et al., 2019). For example, for an epipelagic layer depth of 81 m (the

average epipelagic layer depth in the Northeast Atlantic at noon, 01/
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01/2020, https://doi.org/10.48670/moi-00020), this would

correspond to 55.6 – 80.2 mg C m-3. Spawning grounds of

Atlantic herring are chosen to promote larval retention (Sinclair

and Power, 2015) and longer retention times near spawning

grounds can lead to higher recruitment of Down’s herring

(Dickey-Collas et al., 2009). On top of this, Hufnagl and Peck

(2011) reported that the duration of the hatching period is

influenced by minimum prey concentration and prey size.

Integrating these findings with our modeling results suggests that

optimal spawning occurs in specific spawning grounds that

promote retention and where an ample supply of prey is

available. Our modeled outcomes suggest optimal prey

concentrations for larval herring in the Northeast Atlantic.

The inclusion of nearby wind farm presence as a predictive

variable to model the distribution of Atlantic herring is novel.

During the construction of offshore wind farms, no spatial

deterrence was found for free-ranging pelagic fish (Hubert et al.,

2024). Offshore wind farms with scour protection introduce

artificial hard substrates on the seabed and can attract demersal

benthopelagic fish species by providing shelter, food sources and

spawning sites (Degraer et al., 2018). To date, the spawning of

Atlantic herring on windfarm substrate has not been observed, nor

has our model detected any effect of nearby windfarm presence on

the occurrence of Atlantic herring. However, the potential for wind

farms to serve as artificial reefs could offer some benefits,

particularly for larvae and early life stages. Artificial reefs have

been shown to enhance local biodiversity by providing shelter,

feeding opportunities, and protection from predators (Higgins et al.,

2022). For herring larvae, the structural complexity of wind farms

could increase prey availability and offer protection from predation,

supporting their early development. However, the effect might be

obscured by (1) inadequate sampling near windfarms due to fishing

restrictions (Bonsu et al., 2024) or (2) the dispersal of larvae away

from spawning sites following hatching (Sinclair and Power, 2015).
4.2 North Atlantic Oscillation

Adding on to the specific spawning requirements, larval habitat

suitability indices had a larger year-to-year variability than adult

HSI (up to 30 and 18% standard deviation respectively). This

variability was found to be correlated with the NAO index. More

specifically, positive autumn and winter NAO indices had a

negative effect on adult and larval occurrence in the BPNS during

winter. The NAO index represents an atmospheric sea level

pressure difference between the Azores, Portugal and Iceland

(Rogers, 1984). These pressure differences result in temporal

variation of storms, precipitation, temperature, salinity, mixed-

layer depth and circulation patterns (Hurrell and Deser, 2010).

From the 1960s until the early 1990s a general positive trend of

winter NAO indices has been observed and afterwards, the trend

was less positive or even negative (Gulev et al., 2021). Climate

models forecast a slight increase in the winter NAO in the future,

with large natural variations (Lee et al., 2021).

Positive NAO indices and associated westerly winds lead to

increased inflow of Atlantic waters in the North Sea which can
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increase nutrient concentrations and temperatures (van der Molen

and Pätsch, 2022). Additionally, a stronger outflow of Baltic waters

under positive NAO indices leads to a reduced exchange between

the northern and southern North Sea (Salt et al., 2013). Considering

the modeled response curves for temperature for both life stages of

herring, the increase in temperature during positive NAO indices

might have a direct impact on their physiology. Furthermore, the

reduced exchange will affect the plankton distribution, which might

affect herring. Investigating a correlation between temperature and

Atlantic herring spawning stock biomass, Akimova et al. (2016)

employed comparable reasoning. They suggested that the

correlation was more likely attributed to fluctuations in the

zooplankton composition than a direct impact of water

temperature on larval growth rates. However, they were not able

to find a match between the time series of the spawning stock

biomass of Atlantic herring and zooplankton species in the North

Sea. Finally, the impact of large-scale climate processes, including

the NAO, on North Sea herring stock was modeled by Gröger et al.

(2010). Gröger et al. (2010) did not find any correlation between the

NAO and herring spawning stock biomass but did find a correlation

with the number of recruits at a time lag of 5 years. Here they

defined the number of recruits as the number of fish at 1 year of age

(about 10 cm in length, Brevé et al., 2007), which is a different age

group from the larvae used for modeling in our study (0.5 – 2.4 cm

length). The age difference can partly explain the time lag seen in

the study of Gröger et al. (2010), a phenomenon we did not observe

in our study. On top of this, Gröger et al. (2010) looked at a different

spatial scale than we did (North Sea vs. BPNS) and the effect of the

NAO differs regionally (van der Molen and Pätsch, 2022). Since

Atlantic herring is a key species in the North Sea food web

(Fauchald et al., 2011) and is impacted by both top-down and

bottom-up processes (Lynam et al., 2017), the net effect of NAO on

the larval occurrence of herring in the BPNS is probably a

combination of different effects. We recommend future ecological

modeling work to focus on integrated approaches that include

environmental variables, food web interactions, and climate

processes and consider both the effects of space and time.
4.3 Model validation & limitations

Models performed well in terms of AUC and TSS values.

Performance of the larval model was higher (AUC of 0.89 and

TSS of 0.71) compared to the adult model (AUC of 0.73 and TSS of

0.61). To get a comprehensive understanding of the model’s

strengths and weaknesses, Grimmett et al. (2020) emphasize the

importance of using multiple performance statistics alongside

commonly used metrics like AUC. Specifically, the sensitivity and

the specificity give information on the model’s capability of

predicting presences and background points, respectively. The

adult model showed a better performance in predicting suitable

habitat (sensitivity of 0.78), compared to unsuitable habitat

(specificity of 0.68). The lower specificity suggests that the actual

species range might be more confined than what the

models projected.
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The higher performance of the larval model compared to the

adult model indicates that larvae exhibit more characteristics of

habitat specialists than the generalist adults. Habitat specialists,

characterized by narrow environmental tolerances, are often more

straightforward to model compared to habitat generalists (Brotons

et al., 2004; Elith et al., 2006). In modeling terms, this can be

explained by the selection of background points, which are more

likely to be true absences for a species with a narrow spatial

distribution (habitat specialist) compared to a widely distributed

species (habitat generalist; Grimmett et al., 2020; Lobo et al., 2008).

Fernandez et al. (2022) suggest adopting the non-observation of

highly mobile species in dynamic environments (such as the ocean)

as part of the study area background, rather than treating it as an

absence. Building upon this recommendation, we opted for Maxent

models, which integrate non-observations as background points.

One of the limitations of this study is the reliance on occurrence

data rather than abundance data to model Atlantic herring

distribution. While occurrence-based models such as Maxent are

valuable for capturing species-environment relationships, they do

not account for the density or biomass of herring, which is essential

for effective fisheries management. Species that are found in high

numbers in specific locations can play a significant role in ecosystem

dynamics, and focusing solely on occurrence datamay miss capturing

these ecological interactions. On the other hand, incorporating

abundance data poses challenges of its own. Abundance data can be

influenced by biases stemming from differences in samplingmethods,

spatial and temporal coverage, and variable sampling efforts, leading to

difficulties in interpreting true species-environment relationships

(Bonar et al., 2011). Factors like fishing gear types and tactics can

strongly impact the perceived abundance of species in aparticular area,

introducing inaccuracies in data analysis (Mehdi et al., 2021; Moriarty

et al., 2020). Additionally, the migratory nature and aggregative

behavior of Atlantic herring makes it challenging to gather

consistent and comprehensive abundance data.

While abundancedatawas available for adultherring,weoptednot

touse it. The ICES surveys are compiled of different surveys of different

countries (Supplementary Table 1). On top of this, no abundance data

was available for larvae. Using the same form of input data

(occurrences data) for both life stages allowed for comparison of the

ecological needs for the two life stages. While this approach may not

fully capture the ecological dynamics of Atlantic herring, it provides a

reliable and expansive dataset for evaluating habitat suitability over

large spatial extents. Occurrence data is also noted to enhance the

performance of species distributionmodels, particularly formigratory

species or those with extensive ranges. Despite the advantages of using

occurrence data, it is essential to recognize the limitations of this

approach for fisheries management and consider integrating

abundance data where feasible to gain a more nuanced insight into

herring distribution and its implications for fisheries.

We acknowledge that the outcomes of our model may be partly

biased due to the use of demersal input data to model pelagic adult

herring (Brevé et al., 2007; ICES, 2023e). Demersal sampling is

likely to miss some occurrences of herring when they are swimming

in the upper water column. Since the Maxent model does not

consider non-observations as true absences, but rather as a part of
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the background, this model could be more robust against such

biases (Fernandez et al., 2022). Additionally, the DATRAS trawl

surveys, which are compiled from different surveys organized by

multiple countries, involve varying sampling depth ranges

(Supplementary Table 1). This variation can introduce bias into

the model output, leading to instances such as the unsuitability of

deeper waters in the Norwegian Trench (Figure 3). The absence of

occurrences at these depths is reflected in the model as being

unsuitable, despite evidence that spring-spawning Atlantic herring

are present in this region during winter (Corten, 2000). To address

these biases, we have highlighted areas where the model

extrapolates beyond the spatial range of observations in Figure 3

and Figure 5. Moreover, to the best of our knowledge, we have used

the most reliable dataset currently available for our study area.

Fisheries independent datasets, such as the DATRAS trawl surveys,

are often preferred over fishery dependent data because they follow

a recurring sampling scheme with sufficient spatiotemporal

coverage (Hilborn and Walters, 2013). Finally, other studies such

as Turner et al. (2016) and Wang et al. (2018) have also employed

demersal surveys to develop species distribution models for Atlantic

herring with good model prediction accuracies (AUC values > 0.75).
4.4 Spatiotemporal distribution maps

A visual comparison shows a good match of our spatiotemporal

habitat suitability maps of larval herring with the location and timing of

known spawning grounds (Figure 5 and Supplementary Figure 8).

Spawning time is used to distinguish different autumn-spawning

stocks (Heath et al., 1997). In the North Sea, spawning starts in

August around the Shetland Islands, Orkney Islands and west of

Scotland and ends in January in the southern North Sea (Figure 7;

Coull et al., 1998; Gröger et al., 2010). On the east of the UK, model

outcomes (Figure 5) correspond accurately with the Shetland stock in

September, theBuchan stock inSeptember–October, theBanks stock in

October – December and the Downs stocks in December – January

(Figure 7). No observationswere found to include in themodel from the

west side of the UK, however, the model was able to extrapolate larval

habitat preferences to these areas aswell. These extrapolations accurately

show the spawning grounds west of Scotland and Ireland during

September and October. Spawning grounds in the east of Ireland

(October – December – January) and in the English Channel

(December – January) were predicted wider than the findings from

Coull et al. (1998) (Figures 5 , 7). These authors stress that the location of

spawning grounds should be under continuous revision. The precise

locationmightbeblurred inourmodeldue to the lackofdirect spawning

groundobservations since larvaecanshowsomedegreeofdispersal from

spawning grounds through local currents (Bauer et al., 2014; Funk et al.,

2001; Sinclair and Power, 2015).

The adult model forecasts a wide distribution of Atlantic herring

across the Northeast Atlantic throughout the entire year (Figure 3).

Over different seasons, some regional differences could be seen. The

most suitable areas were centered in the North Sea and around the

Faroe Islands in thefirst half of the year to an evenwider area including

the east of the UK during the second half of the year.
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4.5 Implications for fisheries, particularly
the Belgian fishing fleet

The Belgian fishing fleet has witnessed a steady decline in

number of catches and number of fishing vessels in the southern

North Sea (Maertens, 2022) and this decline might be aggravated

when the effects of Brexit come fully into force (Popescu and

Scholaert, 2022). This study aimed to provide information on the

location of Atlantic herring as a first assessment towards restoring

pelagic fishing for the Belgian fishing fleet. Note that our models

predict environmentally suitable areas where herring can be found

during different seasons, but they do not provide any information

on their biomass at those locations. The outcomes of the adult

model show that Atlantic herring is likely to occur in the Greater

North Sea throughout the entire year. For the Belgian fishing fleet,

fishing directly in the BPNS would incur the lowest cost for ship

operation. Here, areas of high habitat suitability for Atlantic

herring were simulated in December – January for larvae and

later, in January – February, for adults. The habitat in the BPNS

being suitable for larvae first, before adults, could indicate that

early spawning takes place outside of the BPNS in November –

December and that, following hatching, larvae could be

transported towards the BPNS through eastward local currents

(Turrell, 1992). Sinclair and Power (2015) found that Atlantic

herring choose their spawning sites to limit larval transport and

hence spawning might occur nearby, likely in the Downs and

Banks stocks. Later, in December – January adults arrive in the

BPNS and spawning might occur on the sandbanks and gravel

grounds of the BPNS itself.

Given these outcomes, pelagic fishing on adult Atlantic herring

in the BPNS would be most suitable during winter months.

However, due to the potential presence of spawning nearby and

herring’s susceptibility to collapse (Stephenson et al., 2001),

fisheries must be managed effectively. Bottom trawling can have a

direct negative impact on deposited eggs (Watling and Norse,

1998). Atlantic herring are caught using different types of gear

including purse seine, mid-water trawl, pair trawl and otter trawl

(ICES, 2005). Therefore, if fishing near spawning areas would be

permitted, fisheries should at least consider employing non-

bottom-stirring techniques.
5 Conclusion

Our study showed the widespread spatiotemporal distribution

of Atlantic herring in the Northeast Atlantic, using species

distribution models (AUC of 0.7). Models based on larval data

were effective in deriving the Atlantic herring spawning distribution

(AUC of 0.9). For the BPNS, outcomes show that Atlantic herring is

likely to be present during winter months, both as adults and larvae.

The year-to-year variability of habitat suitability during these

months in the BPNS was negatively correlated (up to - 0.88) with

the autumn and winter NAO indices. Positive NAO events might

negatively impact spawning success through increased temperature

and changes in prey composition.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1485161
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Standaert et al. 10.3389/fmars.2024.1485161
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://datras.ices.dk/home/descriptions.

aspx#FRA; https://www.ices.dk/data/data-portals/Pages/DATRAS.

aspx; https://emodnet.ec.europa.eu/en/bathymetry; https://

emodnet.ec.europa.eu/en/seabed-habitats; https://emodnet.ec.

europa.eu/en/human-activities; https://doi.org/10.48670/moi-

00021; https://doi.org/10.48670/moi-00021; https://doi.org/10.

48670/moi-00058; https://doi.org/10.48670/moi-00020. All

datasets and scripts of this study can be found in the Marine

Data Archive (MDA), https://doi.org/10.14284/657 (under Creative

Commons Attribution 4.0 International License).
Author contributions

WS: Writing – review & editing, Writing – original draft,

Visualization, Validation, Software, Methodology, Investigation,

Formal analysis, Data curation, Conceptualization. RM: Writing –

review & editing, Methodology, Investigation, Formal analysis, Data

curation, Conceptualization. MS: Writing – review & editing,

Conceptualization. JG: Writing – review & editing, Resources,

Data curation. CM: Writing – review & editing, Project

administration, Funding acquisition. ED: Writing – review &

editing, Project administration, Funding acquisition. SP: Writing

– review & editing, Conceptualization. GE: Writing – review &

editing, Supervision, Project administration, Methodology,

Investigation, Formal analysis, Conceptualization.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the European Commission’s Brexit Adjustment

Reserve (BAR) – Veerkracht voor de kustvloot en klein

vlootsegment post-Brexit (project No 1654) and the EU Public

Infrastructure for the Digital Twin of the Ocean (EDITO-Infra)

(project No 101101473).
Frontiers in Marine Science 1479
Acknowledgments

The authors would like to thank Damian Villagra Villanueva

(Flanders Research Institute for Agriculture, Fisheries and Food)

and Ruben Perez Perez (Flanders Marine Institute) for their vital

help with the data retrieval of the DATRAS and OBIS occurrence

data. Furthermore, we would like to thank Dr. Leandro Ponsoni

(Flanders Marine Institute) for his input on the decomposition of

the NAO effect. This study has been conducted using E.U.

Copernicus Marine Service Information; https://doi.org/10.48670/

moi-00021, https://doi.org/10.48670/moi-00058, https://doi.org/

10.48670/moi-00020. During the preparation of this work, the

authors used ChatGPT 3.5 and Grammarly to improve readability

and language. After using this tool/service, the authors reviewed

and edited the content as needed and take full responsibility for the

content of the publication.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fmars.2024.1485161/

full#supplementary-material
References
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., and Anderson, R. P.
(2015). spThin: an R package for spatial thinning of species occurrence records for use
in ecological niche models. Ecography 38, 541–545. doi: 10.1111/ecog.01132
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methods improve prediction of species' distributions from occurrence data. Ecography
29, 129–151. doi: 10.1111/j.2006.0906-7590.04596.x

Elith, J., Kearney, M., and Phillips, S. (2010). The art of modelling range-shifting
species. Methods Ecol. Evol. 1, 330–342. doi: 10.1111/j.2041-210x.2010.00036.x

European Commission (2020). Proposal for a regulation of the European Parliament
and of the Council establishing the Brexit Adjustment Reserve. Available online at:
https://commission.europa.eu/publications/brexit-adjustment-reserve_enfiles
(Accessed February 14, 2024).

Fauchald, P., Skov, H., Skern-Mauritzen, M., Johns, D., and Tveraa, T. (2011). Wasp-
Waist interactions in the North Sea ecosystem. PloS One 6. doi: 10.1371/
journal.pone.0022729

Fernandez, M., Sillero, N., and Yesson, C. (2022). To be or not to be: the role of
absences in niche modelling for highly mobile species in dynamic marine
environments. Ecol. Modell 471. doi: 10.1016/j.ecolmodel.2022.110040

Fletcher, C., Collins, S., Nannini, M., and Wahl, D. (2019). Competition during early
ontogeny: Effects of native and invasive planktivores on the growth, survival, and
habitat use of bluegill. Freshw. Biol. 64, 697–707. doi: 10.1111/FWB.13255

Frost, M., and Diele, K. (2022). Essential spawning grounds of Scottish herring:
current knowledge and future challenges. Rev. Fish Biol. Fish 32, 721–744. doi: 10.1007/
s11160-022-09703-0

Funk, F., Blackburn, J., Hay, D., Paul, A. J., Stephenson, R., Toresen, R., et al. (2001).
Herring: expectations for a new millennium (Anchorage, Alaska, USA: University of
Alaska Sea Grant).

Geffen, A. J. (2009). Advances in herring biology: from simple to complex, coping with
plasticity and adaptability. Available online at: https://academic.oup.com/icesjms/
article/66/8/1688/672963 (Accessed June 1, 2023).

Grimmett, L., Whitsed, R., and Horta, A. (2020). Presence-only species distribution
models are sensitive to sample prevalence: Evaluating models using spatial prediction
stability and accuracy metrics. Ecol. Modell 431. doi: 10.1016/j.ecolmodel.2020.109194
Frontiers in Marine Science 1580
Gröger, J. P., Kruse, G. H., and Rohlf Gröger, N. (2010). Slave to the rhythm: how
large-scale climate cycles trigger herring (Clupea harengus) regeneration in the North
Sea. Available online at: https://academic.oup.com/icesjms/article/67/3/454/732742
(Accessed February 1, 2024).

Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S.,
et al. (2021). “Changing state of the climate system,” in Climate change 2021 – the
physical science basis. Eds. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C.
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In challenging visibility conditions, the reliability of existing port lighting systems

is significantly affected by abrupt changes in environmental factors (primarily

stemming from ocean weather). This study proposes a cloud-edge collaborative

dimmingmodel that integrates a combined filter, enabling dynamic adaptation to

these weather variations to ensure the stability of the lighting system.

Additionally, the application of edge computing not only alleviates

computational pressure but also facilitates the model’s ability to achieve

effective regional adaptive dimming in accordance with environmental

regulations. Experimental results indicate that this method is suitable for

scenarios with unknown mutations under extreme conditions, providing a

more reliable and intelligent solution for port lighting systems within the

Internet of Things (IoT) framework.
KEYWORDS

extreme weather, port streetlights, Internet of Things (IoT), combined filtering,
adaptive dimming
1 Introduction

In recent years, global climate change has led to an increasing probability of extreme

weather events (Clarke et al., 2022). Due to the complexity and variability of weather in

coastal ports, various challenging visibility conditions (such as haze, overcast skies, and

heavy rain) frequently occur, resulting in economic losses and casualties in several coastal

cities and ports (Yang et al., 2021). Geographical factors contribute to the significant impact

of extreme weather on coastal ports (Izaguirre et al., 2021). These weather conditions can

rapidly alter the lighting environment of the port, causing dramatic fluctuations in natural

light intensity and visibility, which directly impacts the safety of vehicle movements and
frontiersin.org0182

https://www.frontiersin.org/articles/10.3389/fmars.2024.1493275/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1493275/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1493275/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1493275/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1493275/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1493275&domain=pdf&date_stamp=2024-11-20
mailto:210321050349@stu.haust.edu.cn
https://doi.org/10.3389/fmars.2024.1493275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1493275
https://www.frontiersin.org/journals/marine-science


Jiang et al. 10.3389/fmars.2024.1493275
cargo handling operations (Al-Behadili et al., 2023). Therefore,

under these challenging visibility conditions, effective and reliable

port lighting systems are crucial for ensuring traffic and personnel

safety (Galbraith and Grosjean, 2019).

To ensure the safety and visual comfort of port personnel,

lighting systems are among the highest energy-consuming

components in port operations, sometimes accounting for over

70% of the port’s total energy consumption (Sifakis et al., 2021).

This has prompted many researchers to focus on the integration of

the Internet of Things (IoT, refers to the interconnection of various

physical devices via the internet, allowing them to communicate

and exchange data with each other) with port lighting systems,

exploring methods such as adjusting lighting schedules (Sun, 2019),

introducing solar-assisted lighting (Muhamad and Ali, 2018), and

optimizing energy management strategies (Prousalidis et al., 2019)

to save energy required for lighting. However, despite the important

role these lighting systems play in port safety, there is still a problem

of insufficient intelligence (Pham, 2023). Under extreme conditions,

existing lighting systems often require manual intervention and

have long response times, lacking real-time monitoring and fine-

tuning of environmental changes (Yau et al., 2020). Meanwhile,

with the widespread adoption of intelligent assisted driving, safety

hazards for logistics vehicles are becoming increasingly serious

under the influence of extreme weather (He et al., 2021).

Therefore, it is necessary to conduct further research on the

perception capabilities and adaptive regulation capabilities of port

lighting systems under extreme conditions.

In the face of extreme weather conditions, the effectiveness of

environmental perception and dimming in port lighting systems

relies not only on accurate localized weather data but also on

overcoming the influence of urban structures on roadway

monitoring (Bowden and Heinselman, 2016; Gao et al., 2024; Cao

et al., 2024). However, existing methods struggle to meet these

requirements. In recent years, although artificial intelligence

technologies such as deep neural networks (e.g., MetNet, AI

Earth) have gradually been applied to extreme weather forecasting

and can achieve minute-level short-term predictions under ideal

conditions with a resolution of up to 1 kilometer, these methods still

have limitations in model interpretability and input sample quality

(Bojesomo et al., 2021). Additionally, AI methods face challenges in

integrating heterogeneous data and computational capabilities,

making it difficult for existing port lighting systems to meet their

computational demands (Zhang and Lu, 2021; Gao et al., 2023c, a,

b; Zhang et al., 2024). Therefore, from a technical perspective, it is

necessary to introduce a cloud-edge collaborative computing model

to address the tracking and dimming issues of port lighting through

edge computing methods. This approach not only enables real-time

detection of environmental changes at the port but also ensures the

precision of dimming adjustments on the edge, thereby improving

the overall efficiency and reliability of the system while reducing

computational pressure (Saeik et al., 2021).

Since 2015, countries such as China have gradually

implemented smart streetlight infrastructure in major cities and

published relevant standards (Wang et al., 2019). These standards

define smart lighting, video capture, and mobile communication as

standard configurations for urban roadways and require the
Frontiers in Marine Science 0283
deployment of weather monitoring functions at major roads,

bridges, and intersections. The deployment of these functions

enables cities to directly perceive weather changes based on edge

computing capabilities, determine dimming targets, and achieve

tracking and dimming of municipal lighting systems under extreme

weather conditions (De Paz et al., 2016). Therefore, this paper will

explore the application prospects of smart streetlights in port

lighting, focusing on adaptive dimming management methods

based on the perception of ocean weather conditions to enhance

the intelligence level of port lighting systems and ensure safe

operations. Specifically, it aims to clarify how to utilize the

information collected from smart streetlight hardware systems, in

conjunction with the physical state of extreme weather (primarily

the impacts brought by ocean conditions) in the port environment,

to improve combined tracking filters and achieve precise dimming

of port lighting.
2 Problem description

2.1 Smart lighting system description

The system composition of intelligent street lighting is

illustrated in Figure 1. It primarily consists of six components: the

lighting module, video monitoring module, power supply module,

environmental monitoring module, communication module, and

information display module. The lighting module can be configured

with either a light sensor or a photovoltaic panel. The brightness of

the light source is regulated through the lighting controller.

Currently, individual lamp control is primarily achieved through

the DC intelligent control power supply, while centralized control

of an entire street is accomplished by the centralized controller in

the power distribution cabinet. The edge controller in the power

distribution cabinet possesses enhanced computational capabilities,

enabling smooth processing of video and image streams. It also

offers a wide range of communication interfaces, such as Ethernet,

RS485/232, CAN, HDMI, LVDS, USB2.0, line out, etc., facilitating

the integration of diverse data sources and expanding various

analyt ical funct ional i t ies . The video monitoring and

environmental monitoring modules serve as the information

foundation for intelligent light poles. Equipped with various

sensor devices, the cameras primarily serve the recognition and

tracking of specific targets for urban security, while also providing

real-time monitoring of traffic flow and pedestrian movement. The

environmental sensors encompass a variety of types, capable of

measuring parameters such as temperature, humidity, particle

concentration, wind speed, wind direction, air pressure, noise,

and more. The information obtained or received by the

aforementioned modules, including weather and traffic data, can

be disseminated to pedestrians through LED display screens and

speakers mounted on the light poles. Simultaneously, the

communication module transmits this information to the big data

cloud platform of the lighting system. This transmission trend is

gradually shifting towards the development of 5G, facilitating

distributed connections while serving as small base stations to

provide external support for WIFI signals.
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Currently, the vast amount of data generated by intelligent light

poles is primarily transmitted to dedicated management and operation

platforms through optical fiber communication, as illustrated in

Figure 2. Multiple communication protocols, including MoDBUS,

DMX512, MQTT, GPRS/LTE, RPC, and HTTPS, are employed to

enable application interactions at the Internet layer. To support the IoT

information system implemented on light poles, the intelligent light

pole system requires collaborative power supply from photovoltaic

renewable energy and the grid. It is equipped with energy storage and
Frontiers in Marine Science 0384
control systems to provide energy assurance for electric vehicle

charging and 5G services. Therefore, an intelligent street light, as

indicated by the green arrows in Figure 1, can be regarded as a

process that starts from the power supply module, delivers data to

various information modules, and then transmits it externally through

the communication (closed-loop) or information display (open-loop)

modules. Tracking and dimming for extreme weather conditions

deviate from the fixed path and enable information flow equivalent

to the red arrows in Figure 2.
FIGURE 2

Smart streetlights control system.
FIGURE 1

Description of smart streetlights system architecture.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1493275
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2024.1493275
Due to the lack of unified management entities for the operation

of intelligent streetlights, different operators tend to emphasize

different aspects based on their respective business characteristics.

To ensure the general applicability of the research methodology (to

address the dimming requirements of smart streetlights under

various conditions in the port, thereby achieving a level of normal

operation and safety assurance), it is necessary to consider the

hardware configuration standards of smart streetlights. Figure 3

presents a reference specification indicating the configuration

standards. It can be observed that smart lighting, video capture,

and mobile communication are fundamental and commonly found

configurations of smart streetlights. Additionally, meteorological

monitoring is also required in urban road regulations. Therefore,

this standard can serve as a hardware constraint reference for

algorithm design, ensuring the consistency and compatibility of

the proposed methods.
Frontiers in Marine Science 0485
2.2 Description of the dimming problem

The impact of extreme weather in coastal port scenarios on port

lighting systems primarily manifests in sudden changes in

meteorological conditions such as rain and fog, posing threats to

the safety of logistics vehicles and pedestrians. Extreme weather

reduces visibility, thereby affecting traffic safety and logistics

efficiency. In this context, the smart streetlights system at the port

faces photometric issues, with the adjustment target being the

luminous flux Fv. Given that existing streetlights are generally

optimized through lens design, it is assumed that they possess

directional uniformity within the specified emission angle (non-

uniformity is considered an optimization problem of the luminaire

hardware and is not included in the scope of this discussion).

Therefore, the adjustment of the luminance Lv with respect to the

emission angle Ω can be simplified as a problem of constant light
FIGURE 3

Installation scenarios and configuration of smart streetlights (Zhou, 2018).
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emission degree Mv. To further optimize the target illuminance

Ev, two ideal assumptions are made: 1) assuming that the port road

environment is fully diffusive, the illuminance can be considered

uniformly consistent within a certain range of streets; 2) assuming

that there is little difference between the light escaping at the

boundaries and entering, or that the total amount of escaping

light is small, thus considering the dynamic energy balance within

the entire study space. Although these two ideal conditions may

deviate to some extent in practical construction, they can be

effectively approximated through engineering optimization of the

lighting system. Therefore, under a fixed area conversion coefficient

KA, Ev can be expressed as:

KAEv = Mv =
Z

LvdW = dFv=dA (1)

where A is the illuminated area, measured in square meters.

Introducing extreme weather factors, it is considered that the

illuminance from the environment undergoes attenuation or

fluctuation, and environmental factors weaken the inherent

illuminance of the lighting system. It is believed that this

attenuation or fluctuation exhibits a significant dynamic range,

during which both the cone and rod cells of the human eye are

involved. The spectral luminous efficiency function for mesopic

vision is denoted as Vm, and it is defined using the MES2-system

model as Vm (Gao et al., 2018):

Vm(l, p) = ½pV(l) + (1 − p)n(l)�=M(p) (2)

where l represents the wavelength of light, p denotes a

coefficient, V (l) corresponds to the luminous efficiency function

under photopic vision, n(l) represents the luminous efficiency

function under scotopic vision, and M (p) stands for a

normalization function that is influenced by photopic luminance

and determined by visual adaptation conditions. Therefore, the

appropriate mesopic luminance, Lm, can be defined as follows:

Lm = Km

Z ∞

−∞
E(l)Vm(l, p)dl, (3)

under the given light source, where E(l) represents the spectral
radiance distribution of the light source, and Km is the maximum

spectral luminous efficiency, the luminance standard for mesopic

vision can be obtained by measuring the standard photopic

luminance and the standard scotopic luminance of the given light

source. Consequently, Lm can be used as a reference for adjusting

the system dimming based on mesopic vision.

Based on Equation 1 and its validity conditions, it is evident that

the introduction of extreme weather conditions disrupts the energy

balance of the existing lighting system, necessitating a reevaluation

of the regulation behavior. However, the specific manner in which

this balance is disrupted varies depending on the type of weather.

For instance, cloudy conditions primarily lead to rapid changes

(reductions) in natural illuminance, which can be addressed by

directly adjusting the brightness or color (i.e., wavelength) of the

light source based on the corresponding visual state. On the other

hand, degradation of effective illuminance caused by rain (liquid

droplets), haze (liquid-solid aerosols), or dust storms (solid

particles) occurs due to the scattering and absorption of light by
Frontiers in Marine Science 0586
particulate matter, resulting in attenuation of light intensity after

propagation through the medium. The extent of this attenuation is

dependent on the size and concentration of the particles and can be

described by the Lambert-Beer law (Swinehart, 1962):

I = I0 exp ( − t l), (4)

where I0 represents the initial intensity of light, and I denotes

the intensity of light after extinction, which is equivalent to the

integral of the corresponding luminance over the spherical degree.

Here, l represents the optical path length, and t signifies the

turbidity of the medium. For a polydisperse particle system

consisting of n particles with an average diameter of v , t can be

quantitatively expressed as described by (Gledhill, 1962):

t = p=4
Z b

a
n(v)v2kext(l,v ,m)dv , (5)

where a and b represent the lower and upper limits, respectively,

of the particle size distribution. The parameterm corresponds to the

relative refractive index of the particles with respect to the

surrounding medium, while kext denotes the extinction coefficient

(Bruce et al., 1980). When both absorption kabs and scattering ksca
processes occur simultaneously:

kext = kabs + ksca = 2=a2o
∞

l=0

(2l + 1)( alj j + blj j), (6)

where

al = (jl(a)jl(ma) −mjl(a)jl(ma))=(zl(a)jl(ma)

−mzl(a)jl(ma)), (7)

bl = (mjl(a)jl(ma) − jl(a)jl(ma))=(mzl(a)jl(ma)

− zl(a)jl(ma)), (8)

where

jl =
ffiffiffiffiffiffiffiffiffiffiffi
pa=2

p
J1+1=2(a), (9)

zl =
ffiffiffiffiffiffiffiffiffiffiffi
pa=2

p
H1+1=2(a) : (10)

The functions J1+1=2(a) and H1+1=2(a) represent the Bessel

functions of half-integer order and the Hankel functions of the first

kind, respectively, both of which are series functions. It can be

assumed that the absorption of particulate matter in general

weather conditions is negligible, that is, the imaginary part of the

complex refractive indexm is zero. However, this calculation requires

a substantial number of computational resources (the speed of

convergence is directly proportional to the computational resources

invested), which consequently increases the energy required for the

entire port lighting system. Therefore, when designing tracking and

dimming algorithms for extreme weather variations, it is advisable to

avoid direct computation of the extinction coefficient or make

necessary simplifications.

Based on the foundational discussions above, the regulation

problem of the port illumination system in the face of extreme

oceanic conditions can be transformed into a strong tracking
frontiersin.org

https://doi.org/10.3389/fmars.2024.1493275
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2024.1493275
problem by leveraging existing smart streetlight hardware standards.

Guided by this approach, this paper proposes a method for regulating

the port illumination system based on a combined tracking filter,

consisting of three main components: the physical acquisition layer,

the edge processing layer, and the platform processing layer. The

physical acquisition layer is primarily responsible for providing

observation data and system structural information. The edge

processing layer is focused on tracking Ex
k (the actual value of the

streetlight illumination state during the k-th tracking dimming) and

adjusting the vector Iqv (the dimming matrix received by the q

streetlights at the edge). The platform processing layer is responsible

for receiving the dimming matrix Iv, updating, and issuing

macroscopic decisions T, as illustrated in Figure 4, outlining the

basic framework. In a nutshell, the main contributions of this paper

are outlined as follows:
Fron
• In response to the impact of extreme oceanic weather on port

road illuminance, a cloud-edge collaborative dimming model

is proposed, incorporating the hardware system of smart

streetlights. The dimming model’s cloud control risk items

and decision items are expanded and described in detail, while

optimization objectives for the target matrix are provided.

• To address the real-time dynamic changes of the dimming

matrix, this paper presents state estimation and observation

methods under static conditions. Specifically, for air turbidity,

a calculation method based on video monitoring devices and
tiers in Marine Science 0687
neighboring streetlights is proposed, circumventing the direct

computation of the extinction coefficient.

• A dynamic systemmodel for discretized illuminance based on

Kalman filtering theory is presented to address the dynamic

adjustment problem of illuminance in response to time-

varying solar input and air turbidity. The uncertainties and

nonlinearity of the system are decoupled from the state vector,

ensuring that the main iterative process achieves a

convergence rate suitable for edge computing capabilities.

• Given the challenge of a priori judgment of state mutation

resulting from the aforementioned operations, and

considering the distinctions between the two strong

tracking filtering methods, STF and STAKF, a strategy

that combines the strengths of both approaches is

proposed. Additionally, an optimized step size is adopted

to account for the variability in tracking.
3 Cloud-edge collaborative
dimming model

3.1 Model architecture

According to Section 2.1, it is evident that there are multiple

approaches for controlling the luminous intensity of smart
FIGURE 4

Overview of research ideas in this paper.
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streetlights. In this subsection, a cloud-edge collaborative dimming

strategy model will be proposed, where the dimming decisions of all

smart streetlights are based on the cloud-edge collaborative

streetlight network model presented in this subsection, and the

smart streetlights are interrelated while operating. The decision of

whether to adopt a centralized or fixed strategy, which is cost-

effective, requires prior decision-making at the cloud level. Based on

this decision, concrete collaborative strategies can be formulated.

The decision model can be expressed in the following form:

T = Iv ∗ (M ∗D) ∗ (C ∗W) : (11)

LetW denote the risk matrix primarily based on meteorological

observations. For convenience, let’s assume that the streetlights

scattered within the selected urban area for dimming can be

projected into a square matrix of size Q × Q through an affine

transformation. Here, B represents the smallest scale that the

existing forecasting system (mainly based on meteorological

satellites and radars) can discern in the projection onto W. The

matrix W can be expressed as follows:

W =

B11 ⋯ B1~Q

⋮ ⋱ ⋮

B~Q1 ⋯ B~Q~Q

2
664

3
775
Q�Q

(12)

where ~Q ∈ N+, the matrix Bii represents a submatrix of size B ×

B, which can be interpreted as a city block within the port area. Due

to variations in port planning and infrastructure, different blocks

may exhibit varying levels of response to extreme marine

meteorological risks.

Therefore, based on meteorological forecasts of disaster types

and severity from marine meteorological monitoring, the cloud

platform can leverage historical data and the GIS+BIM system of

the smart city to further refine and adjust Bii, forming a transition

matrix C:

C =  

C11 ⋯ C1Q

⋮ ⋱ ⋮

CQ1 ⋯ CQQ

2
664

3
775
Q  �Q

(13)

where, Cii ∈ R+ is the adjustment factor. C and W together

constitute the risk term in the collaborative dimming model T.

Their purpose is to assign varying degrees of dimming based on

evaluations of the individual impacts of extreme marine

meteorological conditions on port streetlights.

The decision matrix D primarily serves to accommodate

constraints from the power system and other aspects, including

considerations of hardware controllability, grid dispatch, and

economic factors. It can be represented as a binary matrix (1-0

matrix). If optimization operations on the D matrix are required in

subsequent model applications, a sigmoid transformation can be

applied to the matrix:

D = Sigmoid  

X11 ⋯ X1Q

⋮ ⋱ ⋮

XQ1 ⋯ XQQ

2
664

3
775
Q  �Q

(14)
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where X ∈ {0,1}.

In addition, the influence of extreme marine weather types

needs to be considered. As discussed in Section 2.2, existing LED

port lighting systems can adjust the color temperature based on

marine meteorological conditions and environmental changes.

Different color temperatures correspond to different S/P ratios,

which in turn affect the intermediate visual brightness Lm. Since Iv =

∫LvdA cos q , the differences in brightness adjustment targets will

impact the decision-making process for light intensity adjustment.

To ensure a unified behavioral scale for the dimming matrix Iv in

the model, it is necessary to normalize the influence in this aspect

into a pattern matrix M, where the matrix elements Mii ∈ (0,1].

Both W, C, D, and M can be determined based on the existing

information and instructions from the cloud-based control system

of smart streetlights. The matrix Iv needs to reflect the dynamic

changes in extreme marine meteorological conditions on the edge

side, thus requiring the adoption of a strong tracking algorithm

combined with relevant sensor data for control. The evaluation

target ET of the entire control can be written as the target matrix T

norm regularization form:

ET =o
Q2

i=1
ti − t∗ik k2+xo

Q2

i=1
o

j∈N(i)

kij ti − tj
�� ��

1 (15)

In the above equation, ti represents the elements in T arranged

according to certain geographic rules. We define the calibration

matrix T∗ as the reference values for evaluating T, where t*i
corresponds to the elements in T∗ that correspond to ti. The

determination of T∗ is carried out by specialized instruments

carried by engineering vehicles during road maintenance

operations under specific conditions. It is based on standards

(Jaskowski et al., 2022) that are related to road types, traffic flow,

road morphology, and luminaire settings. Ideally, the dimming

target T should closely resemble the standards and measured values

in T∗. Hence, the evaluation objective ET includes the 2 norms || · ||2
of both T and T∗.

However, due to uncertainties in the model, standards, and

measurement processes, including inaccuracies and imprecisions, as

well as inherent biases in the control system transfer function,

overfitting tendencies may arise when characterizing T with respect

to T∗. To limit local flatness and encourage proximity, a sparse 1

norm || · ||1 is introduced in the regularization term. This ensures

that adjacent light intensities do not exhibit sudden changes and are

as close as possible. c represents a tunable hyperparameter of the

evaluation model, which controls the tendency for proximity and

can be freely set based on preferences. N(i) denotes the local

neighborhood of i, determined by the field of view of the smart

streetlight’s video surveillance module (as discussed in Section 2.2).

tj represents the light intensity of the streetlights within the field of

view. kij denotes the affinity coefficient, and its calculation method

can be expressed as (Li et al., 2020):

Kij = exp( − ti − tj
�� ��

2=(s
2
1 ))exp( − (max(STi,  STj)))=(s

2
2 )) (16)

where the constants s1 and s2 are predefined constants used to

control the model’s attention to the differences in light intensity and

structure. STi and STj represent the multi-scale structures based on
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a priori weighted strategies at points i and j, respectively. Taking STi

as an example:

STi = max ( o
tj∈W(ti)

j( o
tj∈W(ti)

Gp(ti,tj)∇T(tj))j=(Gp(ti, tj))) (17)

here, Gr= exp(−||ti−tj||
2/2s2) denotes the two-dimensional

Gaussian kernel with multi-scale parameter s, where s ∈ {1,2,3}.

In summary, the main objective of evaluating and optimizing T

is to adjust the decision and risk terms of the entire model. The

parameters or strategies in this part are relatively fixed and can be

allowed to be completed offline with a delay. It can be observed that

the entire model, based on a large-scale data-driven smart

streetlight operation and management cloud platform, is

executable. Therefore, the key focus of this research lies in

utilizing the edge hardware capabilities of smart streetlights to

achieve tracking and adjustment of Iv.
3.2 Dimming matrix

As indicated in Section 3.1, the key challenge of the entire T

model lies in handling the real-time dynamic variations of Iv.

Following a data-driven approach, the main task in this regard is

to establish a dataset comprising measurements from smart

streetlight solar irradiance sensors, ground illuminance, and

corresponding adjustment values of Iv. The real-time adjustment

value of Iv can be directly obtained from the electrical system of the

smart streetlight. On one hand, the solar irradiance intensity Isolar
originating from solar radiation can be acquired or estimated

through the environmental-meteorological sensing system

integrated into the smart streetlight. On the other hand, in a

more general scenario, Isolar can also be estimated from the solar

panel mounted on the top of the streetlight, which processes the

solar power Psolar:

Î solar = K(Psolar=ϱApv − Ir) (18)

where Psolar represents the output power of the photovoltaic

array, ϱ denotes the photoelectric conversion efficiency of the

photovoltaic cells, and Apv signifies the total area of

the photovoltaic panel. The solar power Psolar is determined by

the total solar irradiance received on the photovoltaic array, which

includes the ground-reflected component multiplied by the spectral

efficiency factor K to account for photometric considerations. Since

the smart streetlight’s photovoltaic panel is typically installed at the

top of the pole and is nearly horizontal, Ir = 0 is negligible. The

remaining term Isolar/K comprises the direct solar irradiance Id and

the sky-scattered radiation Is :

Isolar=K = Id + Is =   Iba   cos(h)cos(Dj)sin(q) + sin(h)cos(q) + ksca
1 − cosq

2

� �� �

(19)

In the above equation, Iba represents the total solar radiation at

the location, primarily determined by factors such as solar declination

angle, and is a known function of the date. h denotes the solar altitude

angle, Dj represents the angle between the solar azimuth angle and
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the orientation of the photovoltaic array, and q is the tilt angle of the

photovoltaic array. Under non-extreme marine climatic conditions,

atmospheric scattering due to particle sizes a ≪ 1 is mainly

accounted for by Rayleigh scattering. In this case, the received solar

radiation intensity Isolar is primarily composed of the direct solar

radiation intensity Id. Additionally, assuming that the tilt angle q of

the photovoltaic panel at the top of the smart streetlight tends

towards zero, the ideal form of I*solarcan be expressed primarily in

terms of the local solar altitude angle:

I*solar ≈ KIba sin(h) (20)

Clearly, the height of the streetlight pole can be disregarded

compared to the atmospheric height, and the differential unit area

can be approximated as a solid angle. Therefore, the illuminance Ei
v1

of any streetlight i on the road surface below it is expressed as:

Ei
v = (Î isolar + Iiv) exp ( − tI) + w (21)

In this case, the range of Î isolar , is [0, I(Lm)] where I(Lm)

represents the upper limit for intermediate vision [which can be

defined according to relevant standards Ito et al. (2024)]. w denotes

the uncertainty of the real-time state of Ev1, and its magnitude is

mainly positively correlated with Î solar=I*solar . Since Ei
v has a well-

defined reference standard, the estimation of turbidity t is required
to compute the value of exp(−tl) in order to generate the dimming

matrix Iv, where l is known as the height of the lamp post.

As discussed in Section 2.2, it is not feasible to estimate t in real-
time solely relying on the environmental monitoring devices at the

edge of the smart streetlights. However, the emitted light intensities

of adjacent centrally controlled streetlights within any solid angle Ω

are known, and their relative positional relationships are

determinate. Therefore, an estimation of t can be achieved by

observing nearby streetlights using a video surveillance system

installed beneath the streetlight, obtaining the observed values of

road surface illuminance Ei
v2. Consequently, Z neighboring

streetlights within the field of view of the video surveillance

equipment are selected to estimate t, and the i-th estimation

result ti is given by:

ti =
cosWi

d
ln

Ii
I0i Wi

(22)

Ii represents the illumination intensity of the current streetlight,

I01 represents the illumination intensity of the nearest streetlight,

and d denotes the vertical height between the observation device of

the current streetlight and that of the nearest streetlight’s light

source. Then we have

t̂ = w⊤t : (23)

In the case of data availability, the adjustment of the dynamic

weights of vector w can be achieved using shallow neural networks

such as Extreme Learning Machines (ELM) (Liu et al., 2022) to

solve for it. Alternatively, considering that the nearby streetlights

have stronger light intensity and therefore a higher signal-to-noise

ratio, an exponential weighted average can be employed to assign

higher weights to the closest streetlights. Neglecting the influence of
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road surface materials, it is worth noting that different road surfaces

(such as concrete or asphalt) have varying reflectance coefficients.

For the sake of convenience in the discussion, it is assumed that the

road surface undergoes complete diffuse reflection. The observed

brightness of the road surface in the vertical direction below the

nearest neighboring streetlight, as captured by the camera, is

denoted as IK. To mitigate the impact of outliers, actual image

processing can replace individual pixel values with the average value

within a pixel region, denoted as �IK, corresponding to the direction

angle g. Therefore, under the condition of camera height hc, the

following relationship holds:

Ei
v2 = Q(

�IKcos
3g

h2c exp ( − t hc
cosg )

) + v (24)

Q represents the transfer function, which is dependent on the

specific parameter settings of the camera. Therefore, there exists a

constant proportionality relationship between Ei
v2 and �IK.

Furthermore, as discussed in Section 3.1, the overall optimization

strategy exhibits smoothness locally due to the constraint imposed

by the 1 norm. Consequently, the illuminance of the nearest

neighboring road surface captured by the camera can be regarded

as an observation of the vertical illuminance of the i-th streetlight,

with v representing the uncertainty associated with this observation.

Based on the above analysis, static computation of Iv can be

achieved. However, extreme weather conditions are typically subject

to dynamic changes. Therefore, the introduction of robust tracking

filtering methods is necessary to enable adaptive adjustment of Iv.
4 Adaptive adjustment method based
on STF-STAKF combination

4.1 Dynamic system model

Considering the variation of Iv with extreme marine weather

conditions, Isolar, t, and other parameters are functions of time. The

estimates Î solar  , t̂ , and so on form time series with a certain interval

(time step) Dt. By discretizing Ev according to Equations 21 and 24,

and extending it to the illuminance vector E corresponding to q

streetlights:

Ex
k+1 = (I + Dtk)E

x
k + Uk + wk (25)

Ez
k = HEx

k + vk (26)

where Ex
k   ∈  Rq�1 is the state vector, I ∈ Rq×q is the identity

matrix, Uk ∈ Rq�1 is the control vector, and the process noise wk ∈
Rq�1 satisfies the Gaussian distribution N(0,DtkQkDt⊤k ); E

z
k  ∈  Rq�1

is the observation vector, H ∈ Rq×q is the observation matrix, and

the observation noise vk ∈ Rq�1 satisfies the Gaussian distribution

N(0,DtkRkDt⊤k ). Define:

Uk = D((Î qsolar + Iqv ) exp ( −   t̂ ql)) (27)

H = Iq=(h2c  exp( − t̂ qhc)) : (28)
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Referring to the standard linear Kalman filter theory (Shao et al.,

2021), the recursive calculation formula can be listed as follows:

Ê x
kjk−1 = (I + Dtk)Ê

x
k−1 + Uk (29)

Pkjk−1 = (I + Dtk)Pk−1(I + Dtk)
⊤ + DtkQkDtk (30)

Kk = Pkjk−1H
⊤(HPkjk−1H

⊤ + DtkRkDtk)
−1 (31)

Ê x
k =   Ê x

kjk−1 +  Kk   (E
z
k − HÊ x

kjk−1) (32)

Pk = (I − KkH)Pkjk−1 (33)

where Ê x
kjk−1  ∈  Rq�1 represents the a priori estimate of Ex

k ,  

Pkjk−1  ∈  Rq�q denotes the a priori error covariance, I ∈ Rq×q is the

identity matrix, Kk ∈ Rq×q represents the Kalman gain, Ê x
k   ∈  Rq�1

is the posterior estimate of Ê x
k , and Pk ∈ Rq×q corresponds to the

updated error covariance. In the context of adaptive adjustment of

the time step, the standard Kalman filter, as a non-closed-loop filter,

faces challenges in adapting Kk to sudden changes caused by

extreme ocean weather conditions and accumulated errors

resulting from limited modeling accuracy. Consequently, there is

room for improving the performance in practical light adjustment

tracking and response.

To address the aforementioned issues, the algorithm needs to

incorporate robust tracking filtering to tackle the challenges posed by

inaccurate modeling and sudden environmental state changes. The

core idea is to introduce a dynamically changing fading factor to

adjust the covariance matrix of the prediction error. A

computationally efficient approximation of this approach is given by:

xk =
x0, x0 ≥ 1

1, x0 < 1
,

(
(34)

Where

x0 = tr½Nk�=tr½Ak� (35)

where

Nk = Vk − HDtkQkDtkH
⊤ − bDtkRkDtk (36)

Ak = (I + Dtk)HPk−1H
⊤(I + Dtk)

⊤ (37)

In Equation 36, the parameter b∈ [1,∞) is a user-defined damping

factor that controls the smoothness of the state estimation. It plays

a role in adjusting the level of smoothing in the estimated values.

Vk represents the innovation covariance matrix (Zhou et al., 1991):

Vk =
ϒ1ϒ⊤

1 , k = 0

rVk−1+ϒkϒ⊤
k

1+r , k ≥ 1
,

8<
: (38)

where r ∈ (0,1] is the forgetting factor, and ϒk is the innovation

sequence:

Υk =   Ez
k −  HÊ x

kjk−1 (39)
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If the fading factor xk is applied to the error covariance matrix, the

Strong Tracking Filter (STF) method is obtained (Han et al., 2006):

P1
kjk−1 = xk(I + Dtk)Pk−1(I + Dtk)

⊤ + DtkQkDtk (40)

Under the constraint of the orthogonality principle, adjusting

the error covariance matrix is equivalent to a modification of

process noise without differentiation. However, by directly

applying the damping factor to the process noise, we can obtain

the Strong Tracking Adaptive Kalman Filter (STAKF) method with

multiple fading factors (Ge et al., 2016):

P2
kjk−1 = (I + Dtk)Pk−1(I + Dtk)

⊤ + DtkGkQkDtk (41)

Where

Gk =

lk,1 0 ⋯ 0

0 lk,2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ lk,q

2
666664

3
777775 (42)

To ensure the symmetry of Pk|k−1 when the diagonal elements of

Gk are not equal, Equation 41 can be written as

P2
kjk−1 = (I + Dtk)Pk−1(I + Dtk)

⊤ + Dtk�GkQk
�G⊤
k Dtk (43)

where �Gk is obtained by performing Cholesky decomposition on Gk:

Gk = �Gk � �G⊤
k (44)

Fk = (H)+(Vk − DtkRkDtk − (1 + Dtk)HPk−1H
⊤(1

+ Dtk)
⊤)(H⊤)+ (45)

let Fii
k represent the element in the i-th row and i-th column on

the diagonal of Fk, and Qii
k denote the corresponding element in Qk.

Then, we have:

lk,i = Fii
k =Q

ii
k (46)

As a result, the matrix Gk or �Gkwith multiple fading factors can be

determined. The difference in this approach is reflected in the

tracking performance of transient variables. STF tends to assume

the system model is reliable and focuses on modifying the estimation

error from the previous time step. On the other hand, STAKF tends

to attribute the transient changes to the inaccuracy of the system

model, indicating a difference in their underlying processing

principles. In this research problem, optical-electric measurement

methods are frequently employed, which are susceptible to

environmental disturbances. Moreover, the study focuses on

extreme oceanic weather conditions where the parameters may

undergo sudden changes within a processing interval. Therefore, an

effective combination of both tracking filters is required.
4.2 Adaptive adjustment method based on
STF-STAKF combination

Due to the time-varying nature of fitting functions such as

Isolar and t, which may exhibit non-stationary first and second-
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order differentials, it is crucial to emphasize the role of the

discrete time step Dtk in order to closely capture the trajectory of

extreme oceanic meteorological variations. Moreover, the

determination and updating of Dtk need to be considered. To

begin, we define the normalized distance of the error covariance

matrix as Dk:

Dk = (Pkjk−1 − Pk)(Pkjk−1 + Pk)
−1 (47)

By introducing Dk, we establish a criterion for adjusting

Dtk, such that as Dtk approaches zero, Dk tends to zero. Referring

to (Or et al., 2021), we can obtain the minimum value dk of the

diagonal elements of Dk and define a target threshold dk.

Consequently, the adjustment rule for Dtk can be formulated as

follows:

Dtk+1 =

Dtk−e , dk − d∗ > sd∗

Dtk, dk − d∗j j < sd∗

Dtk+e dk − d∗ < sd∗

8>><
>>: (48)

the parameter s takes values within the range of 0.1 to 0.2,

primarily serving as an auxiliary criterion for convergence

determination. The fine-tuning quantity e is a predefined

parameter, and its range is constrained as follows:

0 <
e
Dtk

< 2sd∗ (49)

In order to meet the deployment requirements of the margin,

the handling approach for the dynamic system model deliberately

avoids nonlinearity in the state transition matrix. This strategy

facilitates the real-time adaptability and tracking of various

hyperparameters within the model. For states with unclear trends

in extreme marine meteorological variations, a conservative

adjustment effect is desired. Specifically, the outputs of the two

filters under this condition, denoted as ~Ex
k for Filter 1 and Filter 2,

are collectively referred to as Y1 and Y2. Consequently, the final

output result, denoted as ~Ex
k , is obtained by:

~Ex
k = hkY1 + (I − hk)Y2 (50)

the fusion coefficient matrix hk∈ Rq×q is a diagonal matrix. In

this example, Pk is also a diagonal matrix of the same size as hk. As a

result, there exists a correspondence between the diagonal elements

P1
k,  i and P2

k,  i of the a priori error covariance Pk for the two filters

and the diagonal elements hi
k of hk. By calculating hi

k (Claser and

Nascimento, 2021), the fusion coefficient matrix hk is obtained:

hi
k =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q
+
(P1

k,i −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q
)(P2

k,i −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q
)

P1
k,i + P2

k,i − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q : (51)

To further prevent interference in the combined filtering under

extreme oceanic weather conditions, the normalization of hi
k is

performed for k ≥ 2 as follows:

hi
k = (hi

k −min(hi
k))=(max(hi

k) −min(hi
k)) : (52)

A single filter can be regarded as hk taking values of 0 or 1.

Consequently, the difference between ~Ex
k and the target illuminance
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~E*k in the coordinate system can be used to set Uk+1 and obtain Iqv at

time k + 1. The collection of Iqv received by the cloud is arranged

according to predefined rules, resulting in the overall dimming

matrix Iv. The complete algorithm flow is illustrated in Figure 5.
5 Experiments and analysis

The effectiveness of the STF-STAKF (Strong Tracking Filter -

Strong Tracking Adaptive Kalman Filter) approach will be validated

through two aspects:
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Computer data simulation will be employed to compare the

tracking performance of STF, STAKF, and STF-STAKF under

scenarios involving abrupt process noise mutations. This analysis

aims to verify the effectiveness of STF-STAKF in the presence of

process noise mutations. Observational data of port street lighting

illuminance, influenced by oceanic meteorological factors, will be

utilized to compare the tracking performance of STF, STAKF, and

STF-STAKF. This evaluation will further validate the effectiveness

of STF-STAKF in real-world scenarios where both process noise

and state value mutations occur simultaneously.The experimental

Root Mean Square Error (RMSE) formula is:
FIGURE 5

Flowchart of algorithm based on STF-STAKF combination.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T o

T

K=1
(Ê x

kjk − Ex
k)

2

s
(53)

The advantage of RMSE in measuring filter performance lies in

its ability to effectively quantify the differences between predicted

values and true values, providing an intuitive understanding of

estimation errors and making it easier to identify situations of

poor performance.
5.1 Computer data simulation

This part mainly uses computer numerical simulation examples

to verify the effectiveness of combined filtering in the event of

sudden changes in process noise. Since the research object of this

study is extreme oceanic meteorological conditions, the relevant

parameters may change suddenly in a short period of time, and the

response scenarios mostly involve short-term parameter mutations

and filter tracking. To analyze the tracking effect of the combined

tracking filter when the process noise changes abruptly, the

parameters and model of the simulation system are set as follows,

and the filtering effect is analyzed.

The observation matrix and observed noise covariance are as

follows:

H =

9 2 1

1 1 1

1 2 1

2
664

3
775,R =

5 8 6

8 5 6

6 6 5

2
664

3
775 (54)

define the process noise covariance as follows

Q =

4 1 0

1 8 0

0 0 1

2
664

3
775 , 1 < t ≤ 15

20 5 0

5 30 0

0 0 5

2
664

3
775 , 15 < t ≤ 30

30 10 0

10 50 0

0 0 10

2
664

3
775 , 30 < t ≤ 45

50 20 0

20 80 0

0 0 20

2
664

3
775 , 45 < t ≤ 50

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(55)

The initial state vector and the initial state vector covariance are

divided into:

Ê x
0j0 =

0

0

1

2
664

3
775,   P0j0 =

1 0 0

0 1 0

0 0 1

2
664

3
775 (56)

In this subsection, computer simulation experiments are

conducted by pre-setting parameters artificially, fixing certain
Frontiers in Marine Science 1293
model parameters (H, R and P), while configuring Q in a

dynamic form to simulate an environment of abrupt process

noise changes. The experimental interval is set to 1 second, and a

total of 1000 Monte Carlo simulations are performed.

The following will compare the three filtering methods of

the STF algorithm, the STAKF algorithm, and the fusion

algorithm discussed in this paper, and analyze the filtering effects

of the three.

In Figure 6, the root mean square error (RMSE) of both STAKF

and combined filtering is lower than that of STF, indicating good

tracking performance for STAKF, with the combined filtering curve

being close to or slightly better than STAKF, demonstrating

effective filtering.

In cases of sudden changes in process noise, STAKF shows good

filtering effects, and combined filtering can closely approach the

STAKF curve in real time, often providing better tracking

performance. This experiment verifies that under such conditions,

the estimation error of STAKF is smaller than that of STF, with the

overall root mean square error of combined filtering (refer to

Table 1) being better than STAKF, achieving improved

tracking effects.
5.2 Experiment on actual observational
data of port street lighting under rain and
fog conditions

This subsection uses actual observational data of port street

lighting under rain and fog conditions to simulate and verify the

effectiveness of the combined filter for tracking dimming in extreme

oceanic weather conditions. Most of the street lighting and ocean

weather data are sourced from the Qiandao Lake Research Institute

and Guangdong Ocean University.

5.2.1 Single head streetlight
During extreme oceanic weather conditions such as rain and fog

at the port, there may also be sudden changes in the observation

data itself, leading to some uncertainty. This section analyzes the

tracking effect of the fusion tracking filter when the observed data

changes abruptly. Here, the change curve of streetlight dimming

illuminance in rainy and foggy weather is selected to experiment

with the tracking effect of combined filtering and illuminance. This

observational data can be directly collected by the weather

perception and video monitoring modules of the smart

streetlights in the actual project. The photovoltaic panel on top is

calculated simply.

This part of the experimental principle obtains the

observational data of sudden changes in rainy and foggy weather

by monitoring the illuminance of the nearest single-head streetlight

using the monitoring device (refer to Figure 7), which does not

affect the verification of the effectiveness of the combined strong

tracking filter for tracking dimming in this experiment. In the actual

project, the observational data obtained by adjusting the dynamic

weights of turbidity after observing multiple streetlights or multi-

head streetlights in the current weather (such as ELM), according to
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the actual streetlight placement and the position of the observation

camera, can be used as the final observational data.

In calm and clear oceanic meteorological conditions, the

adjustment of port streetlight brightness is related to factors such

as traffic flow and the speed of port vehicles from morning to night.
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The experiment collected relevant information through the camera

to detect the lighting output values when different port vehicle flows

and speeds were matched. The lighting output calculation program

is developed based on PSO-FNN. As shown in Figure 8, the lighting

trend meets the requirements for urban lighting energy
frontiersin.or
FIGURE 6

Estimation error. (A) Estimation error of state 1. (B) RMSE of state 1. (C) Estimation error of state 2. (D) RMSE of state 2. (E) Estimation error of state 3.
(F) RMSE of state 3.
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conservation control. To better reduce the residues between actual

and predicted values, the residues were optimized using BLS. The

results are shown in Figure 9. This method can effectively fit the

actual port streetlights based on small experimental samples.
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In rainy and foggy weather, the size of air particles changes,

fog suddenly appears and disappears, natural illuminance

suddenly increases and decreases, and the extinction coefficient

changes abruptly. These factors lead to sudden changes in the

observed values. Through the video surveillance system installed

under the smart streetlight, the above factors and turbidity t in

rainy and foggy weather were estimated. Figure 10 shows the

change curve of the observation data of streetlight illumination

and the filtered curve during rainy and foggy conditions over a

short period.

As shown in Figure 11, when the observation data is abrupt, the

tracking effect of STF is better than that of STAKF, and the

combined filtering has a conservative tracking effect, positioned

between STF and STAKF at this time. According to Table 2, the

overall estimation error of the combined filter is better than that of
FIGURE 7

Observation and shooting map of smart streetlight in rainy and foggy weather.
TABLE 1 Mean square error of three algorithms.

RMSE STF STAKF STF-STAKF

X1RMSE 0.6085 0.1332 0.1362

X2RMSE 3.0825 0.3842 0.3840

X3RMSE 4.3652 3.4802 3.4708

MEAN 2.6854 1.3325 1.3324
FIGURE 8

Lighting fitting results based on PSO-FNN.
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STF when observed mutations occur. From this, it can be predicted

that when multiple observations undergo mutations, the estimation

error of combined filtering will increasingly approach and exceed

the current optimal filtering.
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This experiment verifies that the estimation error of STF is

smaller than that of STAKF in the case of sudden changes in

extreme weather observation data, with STF showing better

tracking performance at that time. The combined filtering curve
FIGURE 9

Output results after BLS optimization.
FIGURE 10

Illuminance observation curve of streetlight in rainy and foggy weather.
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lies between the STF and STAKF curves during abrupt changes (as

shown in Figure 11), and the overall root mean square error of the

combined filtering (see Table 2) is better than that of STF, achieving

improved tracking effects.
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5.2.2 Multiple streetlights
Since, in extreme oceanic weather conditions, any possible

situation is unpredictable, data exchange between multiple port

streetlights may sometimes fail to work for special reasons,

preventing effective communication of the average illumination of

the surrounding environment. Under this assumption, three adjacent

streetlights are dimmed and tracked using the same method as

described in section 5.2.1, and the noise parameters are as follows

(This data is sourced from Guangdong Ocean University, and the

relevant parameters were obtained by collecting hardware

information from three adjacent smart streetlights):
FIGURE 11

Filtering part diagram. (A) Filtering part diagram 1. (B) Filtering part diagram 2. (C) Filtering part diagram 3.
TABLE 2 Mean square error of three algorithms.

STF STAKF STF-STAKF

RMSE 20.1759 20.7000 20.1680
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(57)

Through preprocessing and noise simulation of the actual data

collected, each streetlight is independently estimated based on the

processed data, and its observational data is dynamically affected by
Frontiers in Marine Science 1798
the dimming of other streetlights. When both the observational data

and noise are abrupt, the dimming error of the three filters after 50

Monte Carlo simulations is shown in Figure 12 and Table 3, with

the error of combined filtering being significantly smaller than that

of STF and STAKF. This demonstrates that in extreme oceanic

climate conditions, whether it is a single-head streetlight under data

interconnection or multiple streetlights under data interconnection,

combined filtering exhibits a certain effectiveness and versatility,

effectively addressing the impacts of extreme weather.
FIGURE 12

Estimation error of streetlight. (A) Estimation error of streetlight q1. (B) Estimation error of streetlight q2. (C) Estimation error of streetlight q3.
TABLE 3 Mean square error of three algorithms.

RMSE STF STAKF STF-STAKF

q1RMSE 3.396 2.922 3.039

q2RMSE 14.36 15.86 12.34

q3RMSE 3.202 3.109 2.857

MEAN 6.986 7.297 6.078
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6 Conclusions

Under challenging conditions influenced by various factors, the

causes of visibility mutations in coastal ports typically stem from the

weather’s impact on the environment surrounding the port

streetlights. When the mutation arises from process noise, STF-

STAKF can closely approximate the current optimal STF in real-

time and outperform STF in most states. When the mutation arises

from the state value itself, observation noise, and process noise, the

combined filtering approach can dynamically approach and surpass

the current optimal tracking performance of STAKF. Experimental

data from STF-STAKF demonstrate its overall real-time tracking

performance, closely approximating and exceeding the current

optimal filtering method. This tracking performance is highly

suitable for scenarios with unknown mutations in extreme

oceanic climate conditions. Moreover, due to limited

computational resources at the edge of the port streetlight

network, the proposed STF-STAKF approach can effectively

utilize edge computing power to implement adaptive dimming at

the edge. Considering that the dimming basis of port streetlights in

actual projects will be based on regulations and standards stipulated

by the state, the dimming standards should be set according to the

environmental regulations of the streetlights. In practical

engineering, the calculation methods for pavement materials,

reflection coefficients, and brightness distribution have been

studied in more detail, allowing for more accurate initial

estimates and calibration judgments. However, these corrections

do not affect the core idea of this paper, and it can be considered to

further improve accuracy by combining and comparing more actual

data in larger-scale application processes.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Marine Science 1899
Author contributions

HJ: Funding acquisition, Investigation, Methodology, Resources,

Writing – review & editing. XZ: Conceptualization, Data curation,

Formal analysis, Project administration, Software, Writing – original

draft, Writing – review & editing. ZZ: Supervision, Writing – review

& editing. JJ: Validation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was supported in part by the National Natural Science Foundation

of China under Grant 62272109.
Acknowledgments

We would like to thank Guangdong Ocean University and

Qiandao Lake Research Institute for their support and

contributions to this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Al-Behadili, A. A., Al-Taai, O. T., and Al-Muhyi, A. H. A. (2023). “Impact of weather
on marine vessel accidents in the Iraqi port of umm qasr, a case study of the salihiah
tugboat accident,” in IOP Conference Series: Earth and Environmental Science, Vol.
1158. 032008 (Bristol, UK: IOP Publishing).

Bojesomo, A., Al-Marzouqi, H., Liatsis, P., Cong, G., and Ramanath, M.
(2021). “Spatiotemporal swin-transformer network for short time weather
forecasting,” in Proceedings of the (CIKM) 2021 Workshops co-located with 30th
(ACM) International Conference on Information and Knowledge Management (CIKM
2021), Gold Coast, Queensland, Australia, November 1-5, 2021. (Gold Coast, Australia:
Central Europe (CEUR) Workshop).

Bowden, K. A., and Heinselman, P. L. (2016). A qualitative analysis of nws
forecasters’ use of phased-array radar data during severe hail and wind events.
Weather Forecasting 31, 43–55. doi: 10.1175/WAF-D-15-0089.1

Bruce, C. W., Yee, Y. P., and Jennings, S. (1980). In situ measurement of the ratio of
aerosol absorption to extinction coefficient. Appl. Optics 19, 1893–1894. doi: 10.1364/
AO.19.001893

Cao, C., Bao, L., Gao, G., Liu, G., and Zhang, X. (2024). A novel method for ocean
wave spectra retrieval using deep learning from sentinel-1 wave mode data. IEEE Trans.
Geosci. Remote Sens. 62, 1–16. doi: 10.1109/TGRS.2024.3369080
Clarke, B., Otto, F., Stuart-Smith, R., and Harrington, L. (2022). Extreme weather
impacts of climate change: an attribution perspective. Environ. Res.: Climate 1, 012001.
doi: 10.1088/2752-5295/ac6e7d

Claser, R., and Nascimento, V. H. (2021). On the tracking performance of adaptive
filters and their combinations. IEEE Trans. Signal Process. 69, 3104–3116. doi: 10.1109/
TSP.2021.3081045

De Paz, J. F., Bajo, J., Rodr´ıguez, S., Villarrubia, G., and CorChado, J. M. (2016).
Intelligent system for lighting control in smart cities. Inf. Sci. 372, 241–255.
doi: 10.1016/j.ins.2016.08.045

Galbraith, D., and Grosjean, L. (2019). “Wind-alarm systems: Emerging observing
technologies for port operations,” in Australasian Coasts and Ports 2019 Conference:
Future directions from 40 [degrees] S and beyond, Hobart, 10-13 September 2019: Future
directions from 40 [degrees] S and beyond, Hobart, 10-13 September 2019 (Hobart:
Engineers Australia), 418–423.

Gao, G., Bai, Q., Zhang, C., Zhang, L., and Yao, L. (2023a). Dualistic cascade
convolutional neural network dedicated to fully polsar image ship detection. ISPRS J.
Photogrammetry Remote Sens. 202, 663–681. doi: 10.1016/j.isprsjprs.2023.07.006

Gao, G., Dai, Y., Zhang, X., Duan, D., and Guo, F. (2023b). Adcg: A cross-modality
domain transfer learning method for synthetic aperture radar in ship automatic target
frontiersin.org

https://doi.org/10.1175/WAF-D-15-0089.1
https://doi.org/10.1364/AO.19.001893
https://doi.org/10.1364/AO.19.001893
https://doi.org/10.1109/TGRS.2024.3369080
https://doi.org/10.1088/2752-5295/ac6e7d
https://doi.org/10.1109/TSP.2021.3081045
https://doi.org/10.1109/TSP.2021.3081045
https://doi.org/10.1016/j.ins.2016.08.045
https://doi.org/10.1016/j.isprsjprs.2023.07.006
https://doi.org/10.3389/fmars.2024.1493275
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2024.1493275
recognition. IEEE Trans. Geosci. Remote Sens. 61, 1–14. doi: 10.1109/TGRS.2023.
3313204

Gao, G., Yao, B., Li, Z., Duan, D., and Zhang, X. (2024). Forecasting of sea surface
temperature in eastern tropical pacific by a hybrid multiscale spatial–temporal model
combining error correction map. IEEE Trans. Geosci. Remote Sens. 62, 1–22.
doi: 10.1109/TGRS.2024.3353288

Gao, C., Zhang, X., Xu, Y., Wang, Z., Melgosa, M., Quesada-Molina, J. J., et al. (2018).
Theoretical consideration on convergence of the fixed-point iteration method in cie
mesopic photometry system mes2. Optics Express 26, 31351–31362. doi: 10.1364/
OE.26.031351

Gao, G., Zhang, C., Zhang, L., and Duan, D. (2023c). Scattering characteristic-
aware fully polarized sar ship detection network based on a four-component
decomposition model. IEEE Trans. Geosci. Remote Sens. 61, 1–22. doi: 10.1109/
TGRS.2023.3336300

Ge, Q., Shao, T., Duan, Z., and Wen, C. (2016). Performance analysis of the kalman
filter with mismatched noise covariances. IEEE Trans. Automatic Control 61, 4014–
4019. doi: 10.1109/TAC.2016.2535158

Gledhill, R. (1962). Particle-size distribution determination by turbidimetry. J. Phys.
Chem. 66, 458–463. doi: 10.1021/j100809a021

Han, C., Zhu, H., and Duan, Z. (2006). Multi-source Information Fusion (Beijing,
China: Tsinghua University Press).

He, R., Wan, C., and Jiang, X. (2021). “Risk management of port operations:
A systematic literature review and future directions,” in 2021 6th International
Conference on Transportation Information and Safety (ICTIS). (Wuhan, China:
IEEE), 44–51.

Ito, K., Kang, Y., Zhang, Y., Zhang, F., and Biljecki, F. (2024). Understanding urban
perception with visual data: A systematic review. Cities 152, 105169. doi: 10.1016/
j.cities.2024.105169

Izaguirre, C., Losada, I. J., Camus, P., Vigh, J. L., and Stenek, V. (2021). Climate
change risk to global port operations. Nat. Climate Change 11, 14–20. doi: 10.1038/
s41558-020-00937-z

Jaskowski, P., Tomczuk, P., and Chrzanowicz, M. (2022). Construction of a
measurement system with gps rtk for operational control of street lighting. Energies
15, 9106. doi: 10.3390/en15239106

Li, Z., Xu, G., Cheng, Y., Wang, Z., Wu, Q., and Yan, F. (2020). Spatially adaptive
hybrid variational model for temperature-dependent nonuniformity correction of
infrared images. Optical Eng. 59, 123103–123103. doi: 10.1117/1.OE.59.12.123103

Liu, R., Liang, Z., Yang, K., and Li, W. (2022). Machine learning based visible light
indoor positioning with single-led and single rotatable photo detector. IEEE Photonics
J. 14, 1–11. doi: 10.1109/JPHOT.2022.3163415

Muhamad, M., and Ali, M. M. (2018). “Iot based solar smart led street lighting
system,” in TENCON 2018 - 2018 IEEE Region 10 Conference. (Jeju, Korea (South):
IEEE), 1801–1806.
Frontiers in Marine Science 19100
Or, B., Bobrovsky, B.-Z., and Klein, I. (2021). Kalman filtering with adaptive step size
using a covariancebased criterion. IEEE Trans. Instrumentation Measurement 70, 1–10.
doi: 10.1109/TIM.19

Pham, T. Y. (2023). A smart port development: Systematic literature and bibliometric
analysis. Asian J. Shipping Logistics 39, 57–62. doi: 10.1016/j.ajsl.2023.06.005

Prousalidis, J., Kanellos, F., Lyridis, D., Dallas, S., Spathis, D., Georgiou, V.,
et al. (2019). “Optimizing the operation of port energy systems,” in 2019 IEEE
International Conference on Environment and Electrical Engineering and 2019 IEEE
Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). (Genova,
Italy: IEEE), 1–6.

Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J., et al.
(2021). Task offloading in edge and cloud computing: A survey on mathematical,
artificial intelligence and control theory solutions. Comput. Networks 195, 108177.
doi: 10.1016/j.comnet.2021.108177

Shao, T., Duan, Z., and Tian, Z. (2021). Performance ranking of kalman filter with
pre-determined initial state prior. IEEE Signal Process. Lett. 28, 902–906. doi: 10.1109/
LSP.2021.3071979

Sifakis, N., Kalaitzakis, K., and Tsoutsos, T. (2021). Integrating a novel smart control
system for outdoor lighting infrastructures in ports. Energy Conversion Manage. 246,
114684. doi: 10.1016/j.enconman.2021.114684

Sun, Q. (2019). Opening time control method of port building lighting based on
artificial intelligence. J. Coast. Res. 93, 335–340. doi: 10.2112/SI93-044.1

Swinehart, D. F. (1962). The beer-lambert law. J. Chem. Educ. 39, 333. doi: 10.1021/
ed039p333

Wang, A., Xiang, M., Chen, W., and Chen, D. (2019). Exploration into the
development of smart cities and the application of smart light poles (Zhao, Xiaolong,
Trans). Light Lighting 43, 33–37. doi: CNKI:SUN:LAMP.0.2019-01-009

Yang, Z., Kagawa, S., and Li, J. (2021). Do greenhouse gas emissions drive extreme
weather conditions at the city level in China? evidence from spatial effects analysis.
Urban Climate 37, 100812. doi: 10.1016/j.uclim.2021.100812

Yau, K.-L. A., Peng, S., Qadir, J., Low, Y.-C., and Ling, M. H. (2020). Towards
smart port infrastructures: Enhancing port activities using information and
communications technology. IEEE Access 8, 83387–83404. doi: 10.1109/ACCESS.
2020.2990961

Zhang, C., and Lu, Y. (2021). Study on artificial intelligence: The state of the art and
future prospects. J. Ind. Inf. Integration 23, 100224. doi: 10.1016/j.jii.2021.100224

Zhang, C., Zhang, X., Gao, G., Lang, H., Liu, G., Cao, C., et al. (2024). Development
and application of ship detection and classification datasets: A review. IEEE Geosci.
Remote Sens. Magazine, 2–36. doi: 10.1109/MGRS.2024.3450681

Zhou, Y. (2018). Urban management based on the internet of lights (Zhao, Xiaolong,
Trans). Shanghai Informatization 05, 48–52. doi: CNKI:SUN:SHXX.0.2018-05-014

Zhou, D., Xi, Y., and Zhang, Z. (1991). An extended kalman filter with multiple
suboptimal fading factors. Chin. J. Automation 17, 689–695.
frontiersin.org

https://doi.org/10.1109/TGRS.2023.3313204
https://doi.org/10.1109/TGRS.2023.3313204
https://doi.org/10.1109/TGRS.2024.3353288
https://doi.org/10.1364/OE.26.031351
https://doi.org/10.1364/OE.26.031351
https://doi.org/10.1109/TGRS.2023.3336300
https://doi.org/10.1109/TGRS.2023.3336300
https://doi.org/10.1109/TAC.2016.2535158
https://doi.org/10.1021/j100809a021
https://doi.org/10.1016/j.cities.2024.105169
https://doi.org/10.1016/j.cities.2024.105169
https://doi.org/10.1038/s41558-020-00937-z
https://doi.org/10.1038/s41558-020-00937-z
https://doi.org/10.3390/en15239106
https://doi.org/10.1117/1.OE.59.12.123103
https://doi.org/10.1109/JPHOT.2022.3163415
https://doi.org/10.1109/TIM.19
https://doi.org/10.1016/j.ajsl.2023.06.005
https://doi.org/10.1016/j.comnet.2021.108177
https://doi.org/10.1109/LSP.2021.3071979
https://doi.org/10.1109/LSP.2021.3071979
https://doi.org/10.1016/j.enconman.2021.114684
https://doi.org/10.2112/SI93-044.1
https://doi.org/10.1021/ed039p333
https://doi.org/10.1021/ed039p333
https://doi.org/CNKI:SUN:LAMP.0.2019-01-009
https://doi.org/10.1016/j.uclim.2021.100812
https://doi.org/10.1109/ACCESS.2020.2990961
https://doi.org/10.1109/ACCESS.2020.2990961
https://doi.org/10.1016/j.jii.2021.100224
https://doi.org/10.1109/MGRS.2024.3450681
https://doi.org/CNKI:SUN:SHXX.0.2018-05-014
https://doi.org/10.3389/fmars.2024.1493275
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Jianchuan Yin,
Guangdong Ocean University, China

REVIEWED BY

Zeguo Zhang,
Guangdong Ocean University, China
Lianbo Li,
Dalian Maritime University, China

*CORRESPONDENCE

Xuegang Wang

510simon@163.com

RECEIVED 29 September 2024
ACCEPTED 31 October 2024

PUBLISHED 25 November 2024

CITATION

Shen W, Ying Z, Zhao Y and Wang X (2024)
Significant wave height prediction in
monsoon regions based on the
VMD-CNN-BiLSTM model.
Front. Mar. Sci. 11:1503552.
doi: 10.3389/fmars.2024.1503552

COPYRIGHT

© 2024 Shen, Ying, Zhao and Wang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 25 November 2024

DOI 10.3389/fmars.2024.1503552
Significant wave height
prediction in monsoon regions
based on the VMD-CNN-
BiLSTM model
Wengeng Shen1, Zongquan Ying1,2,3, Yiming Zhao1

and Xuegang Wang1,2,3*

1China Communications Construction Company (CCCC) Fourth Harbor Engineering Institute Co.,
Ltd., Guangzhou, China, 2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai, China, 3Key Laboratory of Environment and Safety Technology of Transportation
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A novel significant wave height prediction method for monsoon regions is

proposed, utilizing the VMD-CNN-BiLSTM model to enhance prediction

accuracy under complex meteorological conditions. Traditional numerical

models exhibit limitations in managing extreme marine conditions and fail to

fully integrate wind field information. Meanwhile, existing machine learning

models demonstrate insufficient generalization and robustness for long-term

predictions. To address these shortcomings, the predictive approach combines

Variational Mode Decomposition (VMD) with a hybrid deep learning model

(CNN-BiLSTM). VMD is employed to decompose the original wave height

sequence and extract key features, while CNN captures the spatial features of

wind field and wave height data. BiLSTM, in turn, models the temporal

dependencies. Experimental results reveal that the VMD-CNN-BiLSTM model

provides substantial advantages in prediction performance across all seasons,

including the entire year. Compared to traditional models, the proposed method

demonstrates significantly reduced Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE), alongside an improved coefficient of determination (R²).

These findings confirm the effectiveness and reliability of the method under

complex meteorological conditions such as monsoons and typhoons.
KEYWORDS

wave height, prediction, CNN-BiLSTM, VMD, monsoon
1 Introduction

Wave height prediction is a crucial issue in coastal and marine engineering. The larger

the wave height, the worse the sea conditions, significantly impacting the safe operation of

platform structures (Abed-Elmdoust and Kerachian, 2012). Therefore, forecasting wave

height in advance allows for timely assessment of platform safety levels and risk mitigation.
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However, due to the highly nonlinear and non-stationary statistical

characteristics of waves, analyzing and predicting wave height

is challenging.

Numerous efforts have been made in existing research on wave

height prediction. Numerical wave models are widely applied in

global sea state forecasting (Simmons et al., 2004). The principle of

numerical wave models is to obtain information such as wave height

and period by solving the wave spectrum equation of oceanic

physical processes. Bottcher et al. (2012) compared the wave

heights observed by buoys with the model predictions, concluding

that numerical prediction is a reliable method for wave height

forecasting. Advanced third-generation models, such as the Wave

Model (WAM) (Mentaschi et al., 2015), WAVEWATCH-III

(WW3) (Rogers et al., 2003), and Simulation Waves Nearshore

(SWAN) (Swain et al., 2019), are currently among the most

sophisticated numerical models. The WAM and WW3 models

have a similar structure, but WW3 uses more complex dissipation

source terms and wind input terms than WAM. Liu et al. (2019)

compared the performance of WAM andWW3 using data from the

South Indian Ocean, concluding that both methods can predict

significant wave height well. The SWAN model was developed to

address complex wave conditions in coastal areas. Liang et al. (2019)

validated the performance of SWAN through buoy measurements

in the northwest Pacific, northeast Pacific, and northwest Atlantic.

The experimental results showed that, under accurate boundary

conditions, the SWAN model could simulate coastal waves

effectively. However, the fixed energy spectrum equations with

fixed expressions used by these models may not fully represent

the complex and variable ocean environment. Specifically, the

accuracy of numerical wave predictions under extreme and highly

variable ocean conditions still needs improvement.

Machine learning is a data-driven approach that has recently

been successfully applied to wave height prediction (Yu and Wang,

2021). Based on long-term, accurate wave height measurements

obtained from buoys, satellites, and scatterometers, machine

learning methods predict future wave heights by learning the

inherent variability in the data (Fan et al., 2019). Deo et al. (2001)

explored a three-layer feedforward network to obtain significant wave

height outputs. Berbic et al. (2017) used artificial neural networks

(ANN) and support vector machines (SVM) to predict significant

wave heights over 0.5–5.5 hours, demonstrating that ANN and SVM

outperform numerical models in this range. Shen Lixiang et al. (2023)

proposed an Attention-LSTMmodel based on attention mechanisms

and multivariable inputs for short-term wave height prediction in the

Longkou sea area of Shandong. Pradnya and Londhe (2016) used

neural wavelet technology to predict extreme wave heights, showing

that multi-level decomposition of wave data helps improve prediction

accuracy. Recurrent neural networks (RNN) (Mikolov et al., 2021)

and their variant long short-term memory networks (LSTM) (Gers

et al., 2002) have unique advantages in solving prediction problems.

Zhang et al. (2021) proposed the N-LSTM model, combining

numerical forecasts with measured data, using LSTM and Gaussian

approximation modules to improve the accuracy of numerical

forecasts. Pushpam and Enigo V.S., 2020) applied RNN-LSTM to

predict significant wave heights, showing good performance within

24 hours. Kaloop et al. (2020) integrated wavelet, particle swarm
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optimization (PSO), and extreme learning machine (ELM) methods

into the wavelet PSO-ELMmodel for estimating coastal and deep-sea

wave heights, with evaluation results showing high prediction

accuracy. Hao et al. (2023) systematically analyzed the effects of

input length, forecast length, and model complexity on wave height

prediction using RNN/LSTM/GRU and other recurrent neural

networks. Minghao et al. (2024) introduced Rayleigh parameters in

wave height prediction, showing improvements in mid- to long-term

prediction capabilities for BPNN and LSTM. Yifan et al. (2024)

introduced Spearman correlation analysis into RNN/LSTM/GRU

models and proposed the LSTM-Attention model. These studies

achieved promising results using various neural network models for

wave height prediction. However, they have not fully incorporated

wind field information. As the key driver of wave formation and

evolution, wind field data is crucial for wave height prediction.

Ignoring wind field information may limit the model’s ability to

capture the complex relationships between wind and waves (Ahmed

et al., 2024). Yin et al. (2023) proposed an adaptive tidal level

prediction mechanism based on EMD and the Lipschitz quotients

method, combining harmonic analysis with a variable structure

neural network to automatically determine model parameters,

thereby improving the accuracy and adaptability of tidal level

prediction. Additionally, machine learning models often experience

a decline in prediction accuracy over long-term forecasts, particularly

when dealing with complex nonlinear time series wave data, limiting

the model’s generalization capability and robustness.

This study addresses the limitations in existing models,

particularly their inability to fully incorporate wind field

information for long-term wave height prediction, and proposes a

hybrid model based on VMD-CNN-BiLSTM for a typical wind-

wave region—the southeastern sea of China—aimed at improving

wave height prediction accuracy by comprehensively considering

wind field and significant wave height information. First, the model

uses Variational Mode Decomposition (VMD) to decompose the

wave height data, breaking down the complex non-stationary wave

height sequence into multiple relatively stationary mode functions,

facilitating subsequent feature extraction. Then, the decomposed

wave height modes and wind field data are input into a

Convolutional Neural Network (CNN) for feature extraction,

where CNN extracts local spatial features of the wind field and

wave height modes. Finally, the extracted features are fed into a

Bidirectional Long Short-Term Memory (Bi-LSTM) network to

capture the dependencies in the wave height time series, thereby

better understanding the intrinsic relationship between wind and

waves. Through this approach, the proposed model demonstrates

greater robustness and generalization ability in long-term wave

height prediction, providing a more reliable solution for significant

wave height forecasting.
2 WW3-SWAN numerical simulation

2.1 Model settings

The WW3 model (Tolman, 2009) was developed based on the

third-generation wave model WAM, with its governing equations
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modeled by solving the action balance equation over the wave

number-direction spectrum. The model uses the global digital

elevation model (DEM) dataset released by the General

Bathymetric Chart of the Oceans (GEBCO), with a resolution of

15″×15″, and wind field data at a height of 10 meters from the ERA5

reanalysis data by the European Centre for Medium-Range

Weather Forecasts (ECMWF), with a resolution of 0.25°×0.25°,

from January 1, 2017, 00:00 to December 31, 2021, 23:00. The extent

of the wind field should be greater than or equal to the extent of the

WW3 and SWAN numerical simulations. No additional data is

input into the boundary conditions of the WW3 model. The wave

spectrum grid of the WW3 model is set to 32×24, with a frequency

range from 0.0373 Hz to 0.7159 Hz, divided into 32 bands, and wave

direction divided into 24 directions. The calculation area of the

model covers the longitude range of 110°E to 130°E and the latitude

range of 10°N to 30°N, with a spatial resolution of 0.25°×0.25°. The

layout of the model region is shown in Figure 1.

The SWAN model was modified and improved by Booij et al.

(1996) from Delft University of Technology based on the third-

generation wave model WAM. The model discretizes the governing

equations using an implicit method, taking into account wave-wave

interactions and the breaking effects caused by depth changes

during wave propagation, making it effective in simulating the

evolution of nearshore waves. The computational range of the

SWAN model is from 115.59°E to 117.71°E in longitude and

from 21.78°N to 23.66°N in latitude, using an unstructured grid,

as shown in Figure 1B. Bathymetric data comes from the GEBCO

dataset, wind field data uses ERA5 reanalysis data, and the wave

spectrum data at open boundary points is obtained from the wave

spectrum output of the WW3 model. The simulation time range is

from 00:00:00 on January 1, 2017, to 23:00:00 on December 31,

2021, with an output time interval of one hour.

To verify the accuracy of the WW3-SWAN numerical model, a

MARK III Wave Rider instrument was deployed in the waters off

the Stone Tablet Mountain Cape, at the coordinate position (22°

55.7046′N, 116°31.4034′E), as shown in Figure 2. The Wave Rider

instrument has a wave height measurement range of ±20m. The

measured data were processed by the instrument’s built-in software,
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which then statistically generated hourly wave height observation

data. The observation period was from 00:00 on April 1, 2021, to

23:00 on November 18, 2021.
2.2 Data validation

Figure 3 shows a comparison between the significant wave

heights from the numerical model and the measured values. The

significant wave height values from the WW3-SWAN numerical

simulation are consistent with the observed values in terms of the

overall trend. However, due to the ERA5 reanalysis data

underestimating the intensity of typhoons in the Northwest Pacific

(Li and Hu, 2021), the numerical simulation slightly underestimates

the peak values of the significant wave heights.

Figure 4 shows the situation of some typhoons in the Western

Pacific in 2021, with longitude on the horizontal axis, latitude on the

vertical axis, and wind speed represented by the color scale. As shown

in Figure 4A, during the spring season, Typhoon Surigae formed on

April 10, 2021, with wind speeds rapidly increasing from 28 m/s to 60

m/s, and was upgraded to a super typhoon on April 17-18, 2021. The

typhoon’s center was located approximately 1,280 km southeast of

Manila, Philippines, in the Northwest Pacific Ocean (10.3°N, 131.9°E),

with maximum winds near the center reaching 15 on the Beaufort

scale (50 m/s). It transitioned into an extratropical cyclone on April

25. At 12:00 on April 18, 2021, the South China Sea was affected by the

typhoon, with wind speeds around 10 m/s in the area of the wave

monitoring site, leading to higher waves. Therefore, during the

typhoon period, the average significant wave height measured in

Figure 3A was 1.4m, slightly higher than the numerical simulation

value. InMay, with no typhoon influence, the average significant wave

height at the wave monitoring site was 0.66m, with relatively calm sea

conditions, and the numerical simulation values were closer to the

measured values at this time.

As shown in Figure 4B, during the summer season, Typhoon

Choi-Wan entered the South China Sea on June 3, 2021, with

maximum sustained winds near the center reaching 65 km/h. At

9:00 on June 4, 2021, wind speeds at the wave monitoring site
FIGURE 1

Calculation area of the WW3-SWAN model. (A) WW3-SWAN, (B) SWAN unstructured grid.
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reached 6-10 m/s, with a peak significant wave height of around 1.5

m. As shown in Figure 4C, Typhoon Lupit formed in Zhanjiang,

Guangdong, on August 2, 2021, and gradually approached the

coasts of Fujian and Guangdong. By 15:00 on August 6, 2021,
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wind speeds from Typhoon Lupit along the Fujian-Guangdong

coast reached around 10 m/s, causing the wave height at the

monitoring site to reach a maximum of approximately 2.5 m.

Therefore, during the typhoon periods shown in Figure 4B, the
FIGURE 3

Comparison of WW3-SWAN SWH with the measured value. (A) Spring, (B) Summer, (C) Fall.
FIGURE 2

MARK III Wave instrument monitoring position.
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observed values of significant wave height were consistently higher

than the values simulated by the numerical model.

As shown in Figure 4D, during the autumn season, Typhoon

Kompasu formed in the Philippine Sea on October 8, 2021, and

steadily moved westward after entering the South China Sea, with

its center approaching the coastal areas of the South China Sea.

Therefore, as seen in Figure 3C, the measured wave heights

increased significantly during mid-October 2021, while the

simulated wave heights were slightly lower.

To further validate the accuracy of the numerical simulation

results in this study against the measured data, Mean Absolute Error

(MAE), Root Mean Square Error (RMSE), and the coefficient of

determination (R²) were used to quantitatively evaluate the accuracy

of the numerical results. The calculation formulas are shown in

Equations 1–3.

MAE =
1
no

n

i=1
xi − yij j (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(xi − yi)

2

s
(2)
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R2 = 1 −
o
n

i=1
(xi − yi)

2

o
n

i=1
(xi − �y)2

(3)

In the formulas, xi represents the numerical simulation values,

yi represents the measured values, n is the total number of samples,

and �x and �y are the mean values of the numerical simulation and

measured values, respectively.

To evaluate the WW3-SWAN numerical simulation model,

Table 1 uses MAE, RMSE, and R² for a quantitative assessment of

model performance. Statistical analysis shows that the WW3-

SWAN model performs well across different seasons. The MAE

ranges from 0.1413 m to 0.2130 m, indicating that the average

deviation between the simulated and observed values is quite small.

RMSE, which is more sensitive to larger errors, is slightly higher,

ranging from 0.1828 m to 0.2844 m. This is mainly due to the

impact of extreme weather conditions like typhoons, which cause

deviations in significant wave height at peak values. The R² values

are notably high, between 0.7801 and 0.8493, indicating a strong

linear relationship between the simulated and observed significant

wave heights. The model performs best in the spring, with the
FIGURE 4

Typhoons in the Western Pacific during 2021. (A) Surigae, (B) Choi-wan, (C) Lupit, (D) Kompasu.
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highest R² value of 0.8493. In summer and autumn, frequent

typhoons lead to reduced accuracy in the numerical simulation.

Overall, the WW3-SWAN model reliably reflects the significant

wave height in the study area, capturing the magnitude and

temporal variation, and can serve as input data for the VMD-

CNN-BiLSTM model.
3 Forecasting models

3.1 VMD model

VMD (Variational Mode Decomposition) is an adaptive, fully

non-recursive signal processing technique that combines Wiener

filtering, Hilbert transform, and the Alternating Direction Method

of Multipliers (ADMM). As a non-stationary time series, significant

wave height is well-suited for decomposition using VMD. The VMD

decomposition process effectively transforms into an optimization

process. The two main components of VMD are constructing the

variational problem and solving it. Variational modes refer to the

modes obtained by solving the variational problem. VMD iteratively

searches for the optimal solution of the variational modes, adaptively

updating the optimal center frequency and bandwidth for each

Intrinsic Mode Function (IMF). VMD redefines the intrinsic mode

function, as shown in Equation 4. Compared to other decomposition

methods like Empirical Mode Decomposition (EMD) or Wavelet

Transform, VMD was chosen for its superior ability to reduce mode

mixing and provide more stable component separation under

complex wave conditions.

uk(t) = Ak(t) cos (fk(t)) (4)

Where k represents the mode number, Ak(t) is the amplitude of

the k-th mode, jk(t) is the phase of the k-th mode, and uk(t) is the

k-th mode function.

At this point, the variational problem constructed by VMD is

shown in Equation 5:

min
uk ,�wkf g o

K

k=1

∥ ∂t d (t) +
j
p t

∗ uk(t)
� �� �

e−j�wkt ∥22

( )

s : t :⋯o
K

k=1

ut(t) = f (t)

8>>>><
>>>>:

(5)

Where uk represents the corresponding mode function, and �wk

represents the center frequency of the corresponding mode.

By introducing Lagrange multipliers, the constrained

optimization problem above is transformed into an unconstrained

problem, as shown in Equation 6:
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L( ukf g, �wkf g) = ao
K

k=1

∥ ∂t d (t) +
j
p t

∗ uk(t)
� �� �

e−j�wkt ∥
2

2

+ ∥ f (t) −o
K

k=1

uk(t) ∥
2
2 + l(t), f (t) −o

K

k=1

uk(t)

* +
(6)

Where a represents the variance regularization parameter, and

l represents the Lagrange multiplier.

To solve this problem, the Alternating Direction Method of

Multipliers (ADMM) is used. The specific solving steps are

as follows:
1. Initialize uk1, �wk, lk
1 and the iteration number n.

2. Increase the variable n to 1 and enter the loop.

3. Update the variables according to Equation 7 until the

number of iterations exceeds k, then stop updating:

û k
n+1(w) =

f̂ (w)−o
i<k

û i
n+1(w) +o

i>k

û i
n(w) + l̂ n(w)=2

1+2a(w−�wk
n)

2

�wk
n+1 =

Z ∞

0
wjû k

n+1(w)j2dwZ ∞

0
jû k

n+1(w)j2dw

8>>>>>>>><
>>>>>>>>:

(7)

4. Update the Lagrange multipliers l

l̂ n+1(w) = l̂ n(w) + t f̂ (w) −o
K

k=1

û k
n+1(w)

 !
(8)

5. If the condition of Equation 9 is met, the loop ends; if not,

return to step 2.
o
K

k=1

∥ û k
n+1(w) − û k

n(w) ∥22
∥ û k

n(w) ∥22
< ∈ (9)

By constructing and solving the variational problem, VMD can

effectively decompose non-stationary data. However, the number of

modes after VMD decomposition needs to be manually selected.

Multiple tests are required to find the most appropriate number

of modes.
3.2 CNN model

CNN are an effective deep learning model widely used for feature

extraction in image processing and spatio-temporal data. Through

mechanisms like local receptive fields and weight sharing, CNNs can

effectively capture local spatial features in the data. In this forecasting

model, CNN is used to extract the spatial features of wind fields and

wave heights, which will serve as inputs for subsequent time series

modeling. CNN architecture is constructed by stacking three main

types of layers: convolutional layers, pooling layers, and fully

connected (FC) layers. Each convolutional layer contains a set of

learnable filters, which aim to automatically extract local features

from the input matrix. These filters perform convolution operations

based on two important concepts: weight sharing and local

connections, which help reduce computational complexity and
TABLE 1 Numerical simulation error.

Season MAE/m RMSE/m R2

Spring (April and May) 0.1540 0.2067 0.8493

Summer (June, July and August) 0.1413 0.1828 0.7910

Fall (September, October and November) 0.2130 0.2844 0.7801
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enhance model performance. The pooling layer follows the

convolutional layer, performing down-sampling. A notable feature

of the pooling layer is its ability to reduce the dimensionality of

feature maps, thus preventing overfitting. Typically, FC layers are

used in the final layers of CNN architecture, and their role is to learn

nonlinear combinations of features extracted by convolutional layers,

generating the final output. Since wave height and wind field data

usually exhibit significant spatio-temporal dependencies, CNN can

effectively extract local features and patterns from this data through

its receptive fields. Therefore, CNN is selected to extract features from

wind fields and wave heights in this study.

Figure 5 illustrates the specific process of wind field and wave

height data processed through a one-dimensional Convolutional

Neural Network (1D-CNN). The input data, representing a sample

at a certain time from the dataset, is preprocessed and fed into the

convolutional layer of the CNN in sequence form. In the

convolutional layer, multiple filters (also known as convolutional

kernels) slide over the input sequence, extracting local temporal

features through local connectivity and weight sharing. After the

convolution operation, the data moves to the pooling layer for

downsampling. By selecting the maximum value (max pooling) or

the average value (average pooling) within a window, the

dimensionality of the feature map is reduced. This not only

decreases the computational complexity of the model but also

effectively prevents overfitting. After processing by the pooling

layer, the dimensionality of the feature map is significantly reduced,

preserving key features while lowering computation costs. Finally,

these processed feature maps are flattened into a one-dimensional

vector, which serves as input for subsequent fully connected layers or

other models (such as LSTM or BiLSTM) for the final prediction task.
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3.3 BiLSTM model

Additionally, since the current wave height is not only related to

the current wind field conditions but also influenced by historical

wind field and wave height changes, traditional neural networks

struggle to capture this long-term dependency. LSTM, with its

special architecture, can effectively retain and utilize information

from long-term time series, allowing it to capture complex temporal

patterns in the data. Moreover, LSTM can solve the vanishing

gradient problem found in conventional Recurrent Neural

Networks (RNN), making it more stable and accurate in

predicting long sequences. Therefore, in wave height forecasting

tasks, LSTM becomes a natural choice to better model the temporal

dependency and dynamic changes in the data.

A typical LSTM unit contains three types of gates: the input gate

it, forget gate ft, and output gate ot, as shown in Figure 6. In each

gate, the state of the memory cell is controlled through element-wise

multiplication and the Sigmoid function. The inputs to the LSTM

model are the input data at the current state xt and the output of the

hidden state from the previous layer ht-1.

The input data first passes through the forget gate, which

determines which information should be discarded or retained.

The equation for the forget gate is as follows:

ft = s(Wf · ½ht−1, xt � + bf ) (10)

Here, s represents the Sigmoid activation function, andWf and

bf represent the weights and biases of the forget gate, respectively.

The current input xt and the previous hidden state ht-1 are fed into

the Sigmoid function. By transforming values between 0 and 1, the

forget gate determines which information needs to be updated,
FIGURE 5

Flow chart of the one-dimensional CNN model.
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where 0 represents unimportant information and 1 represents

important information.

Next, the data passes through the input gate, with the

calculation formula as follows:

it = s (Wi · ½ht−1, xt � + bi) (11)

Then, the current input xt and the hidden state ht-1 are fed into

the hyperbolic tangent function (tanh). At this point, the cell state is

calculated and updated to the new cell state. The formula is as

follows:

Ĉ t = tanh(Wc · ½ht−1, xt � + bc)

Ct = ft ⨀Ct−1 + it ⨀ Ĉ t

(
(12)

Here, tanh is the hyperbolic tangent activation function, and ⊙
denotes the element-wise multiplication operation, with Ct being

the new cell state.

Finally, the output gate selects the next hidden state. The new

cell state Ct and the new hidden state ht are passed to the next time

step. The formula for the output gate is as follows:

ot = s (Wo · ½ht−1,Ct � + bo)

ht = ot ⨀ tanh(Ct)

(
(13)

A unidirectional LSTM can only process information flow in

one direction, whereas a bidirectional LSTM (BiLSTM) enhances

the model’s ability to understand wave height and wind field

temporal evolution by analyzing both forward and backward
Frontiers in Marine Science 08108
information in parallel. BiLSTM consists of two LSTM layers

operating in opposite directions, as illustrated in Figure 7.

The horizontal dashed line represents the time axis flow of the

time series data, while the vertical slanted lines depict the

information transmission paths between network layers.
3.4 VMD-CNN-BiLSTM model

The VMD-CNN-BiLSTM model is shown in Figure 8. VMD

decomposes the wave height data into several Intrinsic Mode

Functions (IMFs), breaking down the non-stationary wave height

time series into relatively stationary subcomponents. The CNN

network extracts local features from wind speed and IMFs, while the

BiLSTM network models the wave time series data to accurately

predict future wave heights. The detailed process is as follows:
1. Data collection and preprocessing: Gather datasets that

include wind field and wave height data, and perform

preprocessing steps like data cleaning and normalization

to ensure the data is suitable for model training.

2. Dataset splitting: Divide the dataset into training and

testing sets to ensure that the training set has enough

data for model learning, while the testing set is used to

evaluate the model’s performance.

3. VMD decomposition: Apply VMD to decompose the wave

height data. The original wave height data is decomposed
FIGURE 7

Bi-LSTM structure diagram.
FIGURE 6

LSTM structure diagram.
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Fron
into several IMFs, each representing different frequency

components of the data. This decomposition helps CNN

better extract multi-scale features from the wave data.

4. Feature extraction via CNN: Apply a multi-layer

Convolutional Neural Network (CNN) to process the input

data, extracting spatial features from the wind field and IMFs.

The CNN layers help identify patterns and relationships

between spatial data points that affect wave heights.

5. Temporal feature extraction via Bi-LSTM: Pass the spatial

features extracted by CNN into a bidirectional Long Short-

Term Memory network (Bi-LSTM), which extracts the

temporal features from the data. The Bi-LSTM layer captures

time dependencies, allowing the model to account for how

event sequences and timings affect wave height variations.

6. Feature merging and fully connected layers: Merge the

features extracted by CNN and Bi-LSTM and pass the

merged features through fully connected layers for learning.

7. Output layer: After the last fully connected layer, a single

neuron output layer is used to produce the final wave

height prediction.
4 Wave height prediction

The southeastern seas of China are influenced by the monsoon

climate, with prevailing northerly winds in winter and

predominantly southerly winds in summer. Waves, influenced by

these wind fields, exhibit a seasonal distribution characterized by

lower effective wave heights in spring and summer, and higher

effective wave heights in autumn and winter (Qiu et al., 2019). As
tiers in Marine Science 09109
shown in Figure 9, during spring and summer, the effective wave

heights in the southeastern sea area range mainly from 0.2 to 1.2

meters. In autumn, the effective wave heights significantly increase,

with the mean value ranging from 0.6 to 1.6 meters. In winter, the

mean wave height increases further, with the maximum average

reaching approximately 2.3 meters. Therefore, when using the

VMD-CNN-BiLSTM model to predict effective wave heights, it is

necessary to predict the wave heights for each season separately.
4.1 VMD decomposition

Before being input into the prediction model, the wave height

dataset was normalized to a range between 0 and 1, which accelerates

the model’s convergence and improves prediction accuracy.

Due to the influence of the monsoon climate and typhoons in this

sea area, the effective wave height sequence fluctuates greatly,

requiring data processing. This paper uses Variational Mode

Decomposition (VMD) to decompose the original sequences of

wind fields and effective wave heights into several relatively smooth

components. Taking the spring period from 2017 to 2021 as an

example, with a data time interval of 1 hour, the VMD decomposition

results are shown in Figure 10.

From the decomposition, we can observe that the wind field

(Figure 10A) and the effective wave height (Figure 10B) sequences

are decomposed into five components (IMF1 to IMF5),

transitioning from high-frequency to low-frequency components.

To compare the impact of VMD decomposition of wind fields

and effective wave heights on wave height prediction, two cases were

designed: Case 1 includes seven vectors, namely the wind field,

IMF1 to IMF5 of the effective wave height, and the original effective
FIGURE 8

CNN-BiLSTM Flowchart.
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wave height; Case 2 includes 12 vectors, specifically IMF1 to IMF5

of the wind field, the wind field, IMF1 to IMF5 of the effective wave

height, and the original effective wave height.

According to the data in Table 2, the prediction results of Case 1

and Case 2 show significant differences across different seasons.
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In all seasons, the errors in Case 1 are generally smaller than those

in Case 2, indicating that decomposing only the effective wave

height better captures its intrinsic features, while introducing the

IMF components of the wind field increases the model’s complexity,

leading to greater errors. Notably, the computation time for Case 1
FIGURE 10

VMD decomposition of significant wave height sequence. (A) Wind, (B) SWH.
FIGURE 9

Seasonal distribution of significant wave heights over five years. (A) Spring, (B) Summer, (C) Fall, (D) Winter.
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is significantly shorter than for Case 2, especially in winter, where

the CPU time for Case 2 is more than 10 times that of Case 1. This

further suggests that introducing the IMF components of the wind

field not only increases the model’s computational complexity but

also significantly prolongs the computation time. Therefore, in the

subsequent predictions, to simplify the computation and improve

model efficiency, only the effective wave height data, which has a

more significant impact on the predictions, will be decomposed.
4.2 Univariate prediction

This experiment used data from spring, summer, autumn, and

winter between 2017 and 2021 as model driving data, with data

from 2017 to 2020 used as the training set and data from 2021 as the

test set. In the univariate model, only significant wave height is used

as the input parameter for the BiLSTM, CNN-BiLSTM, and VMD-

CNN-BiLSTM models.

Figure 11 compares the univariate predictions of BiLSTM,

CNN-BiLSTM, and VMD-CNN-BiLSTM models with the WW3-

SWAN simulation values. As shown in Figure 11, the bidirectional

LSTM (BiLSTM) is capable of considering both past and future

information and performs well in predicting the overall trend,

especially in periods with smaller fluctuations. However, in

regions of sharp changes in wave peaks and troughs (as indicated

by the black boxes in Figure 11), BiLSTM shows significant errors

compared to the WW3-SWAN values. This may be due to

BiLSTM’s tendency to over-smooth the predictions during

periods of sharp fluctuations. In contrast, the CNN-BiLSTM

model is more effective at capturing the short-term fluctuations of

wave peaks, particularly in areas of peak changes, outperforming
Frontiers in Marine Science 11111
BiLSTM. However, CNN-BiLSTM is less effective at capturing

troughs, possibly due to limitations in its ability to extract local

features. By decomposing the significant wave height data using

VMD, the model can effectively extract important frequency

components, and combined with CNN’s ability to extract local

features, it significantly improves prediction accuracy in areas of

sharp changes in wave peaks and troughs. Overall, the VMD-CNN-

BiLSTM model performs best in capturing changes in wave peaks

and troughs.

Figure 12 and Table 3 compare the error metrics of the three

models (BiLSTM, CNN-BiLSTM, and VMD-CNN-BiLSTM) in

univariate significant wave height prediction, including mean

absolute error (MAE), root mean square error (RMSE), and

coefficient of determination (R²). The left y-axis of Figure 11

represents the specific values of MAE, RMSE, and R² for each

model, while the right y-axis shows the relative values of each model

compared to BiLSTM. Negative values of MAE and RMSE indicate

that the model performs better than BiLSTM, while positive values

indicate poorer performance; for R², larger positive values indicate

better prediction accuracy. The results show that the VMD-CNN-

BiLSTM model’s error is significantly lower than the other two

models, especially in regions of sharp changes in wave peaks and

troughs. Across all seasons, the VMD-CNN-BiLSTM model

demonstrates the best prediction performance, particularly in the

autumn and winter seasons, where complex wave height changes

caused by typhoons and strong monsoons are present. For example,

in the spring season, the MAE of the VMD-CNN-BiLSTM is 0.0159

meters, a 51.23% reduction compared to BiLSTM; across the entire

year, the RMSE of the VMD-CNN-BiLSTM is 0.0256 meters, a

62.30% reduction compared to BiLSTM. Furthermore, the R² of the

VMD-CNN-BiLSTM is the highest across all seasons and in annual

statistics, reaching 0.9979 in the spring, a 1.04% improvement

compared to BiLSTM. This indicates that the VMD-CNN-

BiLSTM model has a stronger correlation between the predicted

results and the actual observations, reflecting the actual wave height

changes more accurately. Therefore, the MAE and RMSE of the

VMD-CNN-BiLSTM model are significantly lower than those of

other models across different seasons, indicating superior

performance in capturing wave peaks and troughs. The higher R²

value further demonstrates the model’s advantage in trend

prediction, particularly in handling complex fluctuations.
4.3 Multivariate forecasting

Due to the influence of the monsoon climate in the region, this

study conducted a multivariate prediction research to further

improve prediction accuracy. In the experiment, both wind speed

and significant wave height were used as parameters for the

prediction model, considering the impact of the wind field.

Similarly, data from spring, summer, autumn, and winter between

2017 and 2021 were used as model driving data, with data from

2017 to 2020 as the training set and data from 2021 as the test set.

Figure 13 presents the comparison curves of multivariate

predictions from BiLSTM, CNN-BiLSTM, and VMD-CNN-BiLSTM

models with WW3-SWAN simulation values. The figure shows that
TABLE 2 VMD decomposition signal impact.

Season Evaluation Case 1 Case 2

Spring

MAE/m 0.0147 0.0214

RMSE/m 0.0202 0.0285

R2 0.9981 0.9962

CPU time/s 308 3544

Summer

MAE/m 0.0112 0.0197

RMSE/m 0.0147 0.0258

R2 0.9980 0.9938

CPU time/s 332 3345

Fall

MAE/m 0.0228 0.0340

RMSE/m 0.0306 0.0491

R2 0.9971 0.9925

CPU time/s 311 3597

Winter

MAE/m 0.0197 0.0273

RMSE/m 0.0268 0.0363

R2 0.9977 0.9958

CPU time/s 254 5098
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the monsoon climate significantly affects the wind field and wave

height variations in the Southeast China Sea, especially in summer and

autumn, where the frequent occurrence of typhoons exacerbates the

complexity of wave height changes. Therefore, considering multivariate

factors such as the wind field is crucial for improving the accuracy of

wave height predictions. Spring is a transitional period from the winter

to summer wind directions, with complex wind field changes,

especially during the impact of typhoon “Shuriki,” where wind speed

and wave height fluctuations significantly increase. Figure 13A shows

that, compared to univariate predictions, multivariate predictions more

accurately capture the overall trend of spring wave heights. Notably, the

VMD-CNN-BiLSTM model, by effectively integrating instantaneous

changes in the wind field, can accurately predict wave peak and trough

changes, with its prediction curve highly aligning with WW3-SWAN
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simulation values, demonstrating high prediction accuracy. In summer,

the prevailing southeast monsoon leads to a relatively stable wind field.

Figure 13B indicates that, compared to univariate predictions, the

VMD-CNN-BiLSTM model performs particularly well when

considering wind field factors, with its prediction curve closely

matching the WW3-SWAN simulation values, especially during

August 17 to August 20, when VMD-CNN-BiLSTM accurately

captures the characteristics of wave troughs. Autumn is a transitional

period from summer to winter winds, with frequent typhoons and

significant wave height changes. Figure 13C shows that the VMD-

CNN-BiLSTM model better utilizes the intense changes in wind field

data to accurately capture extreme wave peak values. The model

performs excellently under extreme weather conditions such as

typhoons, with its prediction curve closest to the WW3-SWAN
FIGURE 11

The WW3-SWAN simulated and predicted values of SWH of univariate. (A) Spring, (B) Summer, (C) Fall, (D) Winter.
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simulation values. In winter, the Northeast monsoon prevails in the

Southeast China Sea, with strong winds and long durations, resulting in

higher overall wave height levels and frequent fluctuations. Figure 13D

shows that in winter, the VMD-CNN-BiLSTM model effectively

captures the overall trend and local fluctuations of wave heights,

with its prediction curve highly consistent with the WW3-SWAN

simulation values, demonstrating the best prediction performance.

Figure 14 and Table 4 show the error performance of

multivariate significant wave height prediction models (BiLSTM,

CNN-BiLSTM, and VMD-CNN-BiLSTM) in different seasons and

annual statistics, including mean absolute error (MAE), root mean

square error (RMSE), and coefficient of determination (R²), as well

as the ratios of each model relative to BiLSTM. The influence of the
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Southeast China Sea monsoon climate and typhoons was

considered to evaluate each model’s performance under complex

meteorological conditions. The data in Figure 14 and Table 3

indicate that, within the same season, the VMD-CNN-BiLSTM

model has significantly lower errors than the other two models.

Particularly, after considering multivariate factors such as the wind

field, the prediction performance of VMD-CNN-BiLSTM has

significantly improved. Seasonal differences in prediction

performance indicate that VMD-CNN-BiLSTM performs

exceptionally well in autumn and winter, accurately capturing the

drastic wave height changes brought by typhoons and strong

monsoons. VMD-CNN-BiLSTM shows optimal performance in

MAE and RMSE across all seasons, indicating that this model
TABLE 3 Statistics of univariate SWH prediction error.

Season Error BiLSTM CNN-BiLSTM VMD-CNN-BiLSTM

Spring

MAE/m 0.0326 0.0259 (-20.55) 0.0159 (-51.23)

RMSE/m 0.0514 0.0396 (-22.96) 0.0210 (-59.14)

R2/% 0.9876 0.9926 (0.51) 0.9979 (1.04)

Summer

MAE/m 0.0315 0.0265 (-15.87) 0.0150 (-52.38)

RMSE/m 0.0471 0.0418 (-11.25) 0.0201 (-57.32)

R2/% 0.9794 0.9838 (0.45) 0.9962 (1.72)

Fall

MAE/m 0.0715 0.0660 (-7.69) 0.0242 (-66.15)

RMSE/m 0.0979 0.0863 (-11.85) 0.0325 (-66.80)

R2/% 0.9701 0.9767 (0.68) 0.9967 (2.74)

Winter

MAE/m 0.0460 0.0470 (2.17) 0.0213 (-53.70)

RMSE/m 0.0635 0.0654 (2.99) 0.0292 (-54.02)

R2/% 0.9873 0.9865 (-0.08) 0.9973 (1.01)

Annual

MAE/m 0.0449 0.0388 (-13.58) 0.0187 (-58.35)

RMSE/m 0.0679 0.0558 (-17.82) 0.0256 (-62.30)

R2/% 0.9836 0.9889 (0.54) 0.9977 (1.43)
The values in parentheses represent the percentage improvement of each model’s performance indicators compared to BiLSTM.
FIGURE 12

The WW3-SWAN simulated and predicted values of SWH of multivariate. (A) Spring, (B) Summer, (C) Fall, (D) Winter.
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significantly outperforms BiLSTM and CNN-BiLSTM in

multivariate prediction accuracy. For example, in spring, the

MAE of VMD-CNN-BiLSTM is 0.0147 meters, a 51.48%

reduction compared to BiLSTM; in annual statistics, the RMSE of

VMD-CNN-BiLSTM is 0.0244 meters, a 61.81% reduction

compared to BiLSTM. Additionally, the R² value of VMD-CNN-

BiLSTM is the highest across all seasons and annual statistics,

reaching 0.9981 in spring, a 0.79% improvement compared to

BiLSTM, indicating stronger correlation and consistency in

multivariate predictions. The inclusion of wind speed significantly

improved the predictive performance of the VMD-CNN-BiLSTM

model, particularly under complex meteorological conditions in

autumn and winter, resulting in lower MAE and RMSE, as well as

higher R². This indicates that the model is more effective at
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capturing the complex relationship between wind fields and wave

heights, thereby enhancing the accuracy and stability of wave

height predictions.
5 Conclusion

This study employs Variational Mode Decomposition (VMD)

to extract significant features of significant wave height as intrinsic

mode functions, combines Convolutional Neural Networks (CNN)

to capture complex internal mappings of wind and waves, and

integrates with Bidirectional Long Short-Term Memory (BiLSTM)

networks to establish the VMD-CNN-BiLSTM model. The research

focuses on the Southeast China Sea, with datasets provided by
FIGURE 13

The WW3-SWAN simulated and predicted values of SWH of multivariate.
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ECMWF and WW3-SWAN simulations. The case study and

prediction results lead to the following conclusions:
Fron
1. Compared to models like BiLSTM and CNN-BiLSTM, the

VMD-CNN-BiLSTM model is able to more accurately

capture the peaks and smooth trends of wave height,

resulting in higher prediction accuracy.

2. After incorporating wind field data, the MAE and RMSE of

each prediction model decrease. Specifically, the VMD-

CNN-BiLSTM model’s MAE and RMSE are reduced to
tiers in Marine Science 15115
0.0174 meters and 0.0244 meters respectively for annual

statistics, with the coefficient of determination (R²)

increasing to 0.9979, outperforming other prediction models.

3. The VMD-CNN-BiLSTM model exhibits optimal prediction

performance across all four seasons, particularly in winter under

the influence of strong northeastmonsoons and during summer

and autumn when typhoons and extreme weather events occur.

Its prediction performance significantly surpasses that of

BiLSTM and CNN-BiLSTM models, demonstrating the

model’s excellent adaptability to complex sea conditions.
TABLE 4 Statistics of multivariate SWH prediction error.

Season Evaluation BiLSTM CNN-BiLSTM VMD-CNN-BiLSTM

Spring

MAE/m 0.0303 0.0234 (-22.77) 0.0147 (-51.48)

RMSE/m 0.0455 0.0337 (-25.93) 0.0202 (-55.60)

R2/% 0.9903 0.9947 (0.44) 0.9981 (0.79)

Summer

MAE/m 0.0298 0.0329 (10.40) 0.0112 (-62.42)

RMSE/m 0.0404 0.0409 (1.24) 0.0147 (-63.61)

R2/% 0.9848 0.9844 (-0.04) 0.9980 (1.34)

Fall

MAE/m 0.0697 0.0476 (-31.71) 0.0228 (-67.29)

RMSE/m 0.0932 0.0699 (-25.00) 0.0306 (-67.17)

R2/% 0.9729 0.9847 (1.21) 0.9971 (2.49)

Winter

MAE/m 0.0465 0.0328 (-29.46) 0.0197 (-57.63)

RMSE/m 0.0631 0.0437 (-30.74) 0.0268 (-57.53)

R2/% 0.9875 0.9940 (0.66) 0.9977 (1.03)

Annual

MAE/m 0.0444 0.0367 (-17.34) 0.0174 (-60.81)

RMSE/m 0.0639 0.0551 (-13.77) 0.0244 (-61.81)

R2/% 0.9855 0.9892 (0.38) 0.9979 (1.26)
The values in parentheses represent the percentage improvement of each model’s performance indicators compared to BiLSTM.
FIGURE 14

Multivariate significant wave height prediction error, (A) MAE, (B) RMSE, (C) R2.
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Risk performance analysis model
of escort operation in Arctic
waters via an integrated FRAM
and Bayesian network
Zhuang Li1, Xiaoming Zhu2, Shiguan Liao3*,
Kaixian Gao1 and Shenping Hu2

1Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang, China, 2Merchant
Marine College, Shanghai Maritime University, Shanghai, China, 3School of Management, Shenzhen
Polytechnic University, Shenzhen, China
Escort operation is an effectivemean to ensure the safety of ship navigation in the

Arctic ice area and expand the window period for ship navigation. At the same

time, the operationmode between icebreaker and escorted ship may also causes

collision accident. In order to scientifically reflect the complex coupling

relationship in the escort operation system in Arctic waters and effectively

manage the navigation risks. This study proposes to use the functional

resonance analysis method (FRAM) to identify the risk factors of ship escort

operation in Arctic waters, and uses the Bayesian network (BN) method to

establish a risk assessment model for escort operation collision accident. The

cloud model is used to process the uncertain data information. The proposed

method is applied during the actual escort operation of a commercial ship on the

Arctic Northeast Passage. According to the model simulation results, the risk

performance of ship escort operation in Arctic waters is quantitatively analyzed,

and the key risk causes are further analyzed. This study has positive significance

for better understanding the risk evolutionmechanism of ship escort operation in

Arctic ice area and helping relevant management departments to take risk

control measures.
KEYWORDS

risk performance, functional resonance accident model, Bayesian network, cloud
model, escort operation, Arctic waters
1 Introduction

The shipping industry undertakes the transportation of most commodities in the

world’s foreign trade and has made great contributions to the industrial development of

countries around the world (Otheitis and Kunc, 2015; Lenzen et al., 2023). In recent years,

people have been seeking more economical and convenient ways of maritime

transportation. The opening of the Arctic route has brought new opportunities for the
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development of the world’s shipping industry (Ryan et al., 2021).

The Arctic route has greatly shortened the transportation distance

from Asia to Europe, more and more commercial ships have begun

to try to use the Arctic route for ocean-going cargo transportation.

Due to the influence of extreme natural phenomena such as sea ice

and strong winds in Arctic waters, there are great safety issues in

conducting commercial navigation in Arctic waters. In order to

ensure the safety of ships in Arctic waters, most ships will choose

icebreaking escort services during navigation in the Arctic ice area.

Under the leadership of icebreakers, ordinary commercial ships

pass through the ice area by following, which greatly improves the

navigation safety level of ships in the Arctic ice area (Zhang et al.,

2017). However, in this operation mode, how to effectively avoid

collisions between icebreaker and escorted ship becomes the key to

escort operation. Therefore, it is necessary to introduce new theories

and methods to scientifically analyze and manage the collision

accident risk during escort operation in Arctic waters.

For the escort operation in Arctic waters, it consists of a series of

operational tasks, and there exists a complex spatial and temporal

correlation between different tasks, which is a typical complex system.

Process safety is a commonly used safety analysis method in the

industrial field. It emphasizes that the occurrence of a dangerous

event will not only affect the current situation, but also the safety of

the next link and subsequent processes. It is often used to analyze

systemic risks (Amin et al., 2019; Behari, 2019). When quantitatively

analyzing the risk of collision accident in ship escort operation in

Arctic waters, it is necessary to combine the analytical ideas of process

safety, introduce relevant complex system theoretical methods,

characterize the complex coupling relationship in the ship escort

operation system in Arctic waters, and clarify the law of changes in

the navigation risks of ships during escort operations.

In order to scientifically analyze the complex coupling mechanism

and risk quantification characteristics of ship escort operation in Arctic

waters, this study proposes to combine the functional resonance

analysis method (FRAM) with the Bayesian network (BN) to

establish a quantitative analysis model for the collision accident risk

of ship escort operation in Arctic waters, and adopts the cloud model

(CM) for uncertain information processing to quantitatively analyze

the risk of escort operation in specific scenarios.

This study is organized as follows. Section 2 analyzes and

summarizes the current research status. Section 3 describes in

detail the proposed method for quantitative analysis of collision

accident risks of ship escort operation in Arctic waters. Section 4

applies the proposed method in combination with the specific

scenario of ship escort operation in Arctic waters. Section 5

discusses the methods and results proposed in this study. Section

6 is the conclusion of this study.
2 Literature review

2.1 Ship escort operation risk in
Arctic waters

As seasonal navigation in Arctic waters becomes a reality, the

issue of ship navigation risks has received a lot of attention (Khan
Frontiers in Marine Science 02119
et al., 2020; Yao et al., 2024; Kandel and Baroud, 2024). In order to

effectively expand the navigation window in Arctic waters,

icebreaker escort operation has become a common mean (Moe

and Brigham, 2017; Zhang et al., 2018). Relevant studies on the ship

escort operation risks in Arctic waters has continued to increase.

Zhang et al. (2019a) analyzed the safety risks of ship formation

operations from the perspective of safe distance and speed in the

multi-ship following mode of escort operations in Arctic ice area. Fu

et al. (2022) combined failure mode and effects analysis (FMEA)

and FRAM to simulate the evolution of ship traffic accident

scenarios in Arctic waters, and further evaluated the changes in

the probability of navigation risks of nuclear-powered icebreakers

in Arctic waters under independent navigation and escort operation

modes. Xu and Kim (2023) established a hybrid causal logic model

for ship–ship and ship–ice collision accidents in Arctic waters and

conducted a quantitative evaluation of the risks of collision

accidents. Xu et al. (2023) used ship networking technology to

develop an intelligent micro-model to analyze the stability of ship

formations based on the movement trend and sea ice conditions of

ship formations in Arctic waters to ensure the safety of ship

formation operations in Arctic waters. Zhu et al. (2024) identified

the risk factors affecting ship escort operations in Arctic waters

from the perspective of complex system theory, and combined

the BN analysis method to predict and analyze the risk

characterization of escort operations. According to the current

research status, compared with the study of navigation risk under

the state of independent navigation of ships, escort operations

need to consider traffic accidents between ship formations under

the coordinated navigation of multiple ships. Due to the

complexity of the task of escort operations in Arctic waters, in

the research related to the risk of escort operations in Arctic

waters, relevant methods suitable for complex system analysis are

often used to analyze the causes of accidents (Fu et al., 2022; Zhu

et al., 2024).
2.2 FRAM method for risk analysis

When analyzing the risk of ship navigation, a combination of

qualitative and quantitative analysis is often used. FRAM can

effectively explain the deep logic of complex system accidents by

analyzing system functions and focusing on the changes and

coupling relationships of system functions when accidents occur,

and is widely used in risk factor identification and correlation

analysis (Tian et al., 2016; Li et al., 2019; Yousefi et al., 2019; Ma

et al., 2023). França and Hollnagel (2023) used FRAM to model and

analyze human factors in accidents when analyzing production

accidents in the industrial field, and analyzed the main human

factors affecting process safety. Liu et al. (2024a) combined FRAM

and reinforcement learning to construct an emergency plan for

blowout accidents, in which FRAM was used to simulate the

emergency response process. Yu et al. (2024) analyzed the

functions related to maritime accidents based on the maritime

accident investigation report for grounding accidents in Arctic

waters, and constructed a FRAM model to analyze the functional

resonance of accidents. Zheng et al. (2024) designed a FRAMmodel
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consisting of four stages: understanding, designing, analyzing, and

enhancing the response process, to provide a decision-making basis

for emergency response to fuel storage accidents.

Ship navigation operations are a complex social system. Water

traffic accidents have the characteristics of low probability and

serious consequences, and the causes of accidents are often

difficult to clarify. FRAM is suitable for analyzing the causes of

complex system accidents and has been widely used in the study of

water traffic accident risk analysis (Lee et al., 2020; Salihoglu and

Besikci, 2021). The Arctic waters are well known for their harsh

navigation environment (Abbassi et al., 2017; Yao et al., 2022; Li et

al., 2023b). Ship escort operations increase the complexity of

operational tasks in such harsh environments. FRAM can help

analyze the occurrence process of escort operations in Arctic waters

and clarify the complex interaction relationship between system

modules when accidents occur.
2.3 BN risk quantification method

The BN analysis method can effectively integrate various risk

factors and carry out BN reasoning by combining various subjective

and objective data information. It is widely used in the quantitative

reasoning of ship navigation risks (Baksh et al., 2018; Zhang et al.,

2019; Zhang et al., 2019b; Xu and Kim, 2023; Li et al., 2024). BN

analysis methods have also been widely used in the quantitative

analysis of ship navigation risks in Arctic waters. Vanhatalo et al.

(2021) combined AIS data, satellite data, and accident data to

predict the probability risk of ship ice entrapment accidents in

the Arctic ice zone using the BN modeling method. Wang et al.

(2022) collected relevant data sets and conducted a quantitative

analysis of environmental risks on the Arctic Northwest Passage

based on the establishment of a dynamic BN risk assessment model.

Fu et al. (2023) used an object-oriented Bayesian network (OOBN)

analysis method to quantitatively analyze the risks of multi-type

ship traffic accidents in the Arctic ice area. Afenyo et al. (2023)

proposed a hybrid method based on the Bayesian loss function to

evaluate the losses caused by oil spill accidents in Arctic waters. Liu

et al. (2024b) quantitatively analyzed the propagation mechanism of

the Arctic navigation network under uncertain interference based

on a data-driven BN model and proposed corresponding resilience

enhancement strategies.

In the quantitative analysis of ship navigation risks, the uncertainty

information band has a great impact on the quantification of risks

(Nguyen et al., 2021). Due to the particularity of the navigation

environment in Arctic waters, these uncertainties are more intense.

The advantage of the BN analysis method is that it can integrate multi-

source and multi-category information, and can perform network

reasoning on a few basis. In addition, the Bayesian analysis method

mostly adopts the form of network reasoning, which can effectively

reflect the correlation between risk factors of complex systems.

Therefore, it is appropriate to use the BN analysis method for

various uncertainties in the risk quantitative analysis of ship escort

operations in Arctic waters.
Frontiers in Marine Science 03120
2.4 Cloud model for uncertain information

Since the risk factors affecting the occurrence of ship traffic

accidents are diverse, many of which often have no direct data

source, information uncertainty is the main obstacle to the

quantification of ship navigation risks. In the process of

quantifying uncertain information, cloud model is an uncertain

artificial intelligence method that can realize the conversion

between qualitative judgment and quantification, and has received

extensive attention from relevant scholars in recent years (Peng

et al., 2017; Ma et al., 2022). Wang et al. (2015) proposed a decision-

making method based on cloud model for multi-criteria decision-

making problems with unknown decision-makers’ weights. Guo

et al. (2020) proposed a comprehensive evaluation method based on

cloud model for the randomness and fuzziness of subjective

information, which realized the simultaneous consideration of

randomness and fuzziness in the process of quantification of

subjective information. Cloud model has also been widely used in

the study of water traffic accident risks. Wu et al. (2019) combined

Markov chain and cloud model to quantitatively reason about the

process risk of bauxite ships during maritime transportation. Liu

et al. (2020) developed a ship collision accident risk reasoning

system based on cloud model for the risk of ship collision accidents.

Li et al. (2023a) used cloud model to quantify the uncertainty

information in the evolution characteristics of the Maritime

Autonomous Surface Ship navigation risk. Xi et al. (2024)

integrated evidence theory and cloud model to fuse multi-source

subjective information when analyzing human operational errors

during ship icebreaking escort operations in Arctic waters. It can be

seen that since cloud model can handle uncertain information with

fuzziness and randomness, it is suitable for quantitative analysis of

the uncertainty in ship navigation risks.
2.5 Contributions of this study

Ship escort operation in Arctic waters is a special operation

mode. During the escort operation, the risk factors affecting

different operation links are different, and there are complex

coupling relationships between risk factors. These unique

characteristics bring a series of new challenges to understanding

the random phenomenon of system risks caused by the dynamic

changes of risk factors and to quantitatively analyze the risks of

escort operation processes. This study uses a system analysis

method to analyze the dynamic behavior and nonlinear coupling

effects in the process risks of complex technical systems in escort

operations in Arctic waters. By introducing FRAM into escort

operation in Arctic waters, key events or factors affecting the risks

of escort operations are identified. Based on the network topological

relationship between the risk factors of escort operations in Arctic

waters, the cloud model is used to quantify the uncertain

information, and the BN analysis method based on conditional

probability reasoning is used to achieve quantitative analysis of

escort operation process risks.
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3 Methodology

3.1 A hybrid approach for escort operation
risk assessment

The main framework of the risk assessment method for escort

operation in Arctic waters proposed by this study is shown in

Figure 1. In this method, the complexity analysis method FRAM is

used to identify risk factors, and the BN analysis method is used to

establish a risk assessment model. For the uncertain information in

the risk factors, the cloud model is proposed to achieve quantitative

processing of subjective information. The main contents of the

proposed method are divided into the following three steps.
Fron
1. By analyzing the main behavioral characteristics of the

escort operation system composed of icebreaker and

escorted ship, the escort operation system is converted

into multiple functional modules. The characteristics of

each functional module are described from six aspects: I, O,

C, P, R, and T. By analyzing the main factors leading to

functional failure, the failure links between functional

modules are determined, and the functional failure

network diagram is completed by combining chain

connections. In-depth analysis of each functional module

is carried out to find out the potential key risk factors that

lead to accident.

2. According to the risk factors identified by the FRAM

model, with the help of expert knowledge or reference to

other literature, the influence relationship between risk

factors is judged. With risk factors as network nodes, the

influence relationship between factors forms directed edges,

and the risk assessment BN structure is preliminarily
tiers in Marine Science 04121
constructed. On this basis, according to the type of each

node in the BN, the model input required for each risk

factor is judged as a priori probability table or conditional

probability table.

3. For the model input required for each risk factor in the risk

assessment BN model, it is judged whether it has an

objective data source. For risk factors with direct data

sources, their prior probability tables are obtained

through probability statistics. For risk factors without

direct data sources, the cloud model is used to quantify

expert knowledge, thereby further obtaining its prior

probability table. On this basis, the BN reasoning is used

to quantitatively assess the risk of escort operation collision

accident in Arctic waters.
3.2 Escort operation risk in Arctic waters

The risk of ship navigation is often understood as a

combination of the possibility of a ship traffic accident and

the severity of the accident consequences. In the research

related to the risk assessment of ship navigation in polar

waters, the probability of a certain type of accident is often

quantitatively inferred (Afenyo et al., 2021). This probabilistic

risk assessment method has been widely used. Escort operation

in Arctic waters is a formation consisting of an icebreaker and a

following escorted ship. During the escort operation, collision

accident between ship formations is the main threat faced

during navigation. The risk of collision accident is often

caused by the complex coupling of multiple risk factors (Khan

et al., 2020), which can be expressed by Equation 1. How to
FIGURE 1

Methodology framework.
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objectively reflect the complex correlation between risk factors

and use quantitative analysis methods to evaluate the risk of

collision accidents between ship formations is the key issue to be

solved in this study.

R = R1 ⊗R2 ⊗⋯⊗Rn (1)
3.3 FRAM method

FRAM is a method for describing and analyzing the functions

and activities of socio-technical systems based on the perspective of

functional resonance (Patriarca et al., 2017; Kim and Yoon, 2021).

In the process of using FRAM for accident investigation and risk

assessment, the focus is mainly on the connection between the

subcomponents of the system. The system is often decomposed into

multiple functional modules for identification and analysis, which is

conducive to the positive control of system safety. The functional

modules of FRAM are generally represented in the form of

functional hexagons, representing six aspects of information:

input (I), output (O), control (C), premise (P), resource (R) and

time (T). These aspects of information are connected using chains

according to the specific situation of the system to complete the

construction of the FRAM model.

Safety-II focuses on the safety of the system and emphasizes

how to make the system safer through various measures. As a

system method from the Safety-II perspective, FRAM not only

analyzes the complex nonlinear coupling between system functional

modules, but also emphasizes the internal changes of the system

based on human, technical and management factors, and can

achieve good phenomenon expression. When using FRAM to

analyze the collision accident risk of escort operations in Arctic

waters, the construction of the FRAM model mainly follows the

following steps.
Fron
1. Identify and describe the basic functions of the system. For the

ship escort operation system in Arctic waters, it is converted

into multiple functional modules through analysis. From the

functional characteristics of I, O, C, P, R, and T, the

characteristics of each functional module and the relationship

between the functions are further described.

2. Analyze the potential changes of each functional module of

the system. Analyze the main factors that may cause

functional failure from the two aspects of the system

inside and outside.

3. Draw a functional failure network diagram. Analyze the

coupling relationship between the functional modules of

the ship escort operation system in Arctic waters,

determine the failure links, and complete the drawing of

the functional failure network diagram by combining the

chain connection.

4. Analyze the cause of the accident. Combined with the

functional failure network diagram, deeply analyze each

functional module to find out the key risk factors leading to

collision accidents in Arctic waters escort operation.
tiers in Marine Science 05122
3.4 BN analysis method

A BN structure is a directed acyclic graph consisting of variable

nodes and directed edges. It can intuitively reflect the causal

relationship between factors, and can perform network learning

and reasoning under limited information. It is often used to assess

and predict the risk of ship traffic accidents (Sakar et al., 2021;

Basnet et al., 2023). In the process of constructing a BNmodel, once

the nodes, directed edges, and probability tables are determined, the

BN model is established.

When constructing the BN model of escort operation collision

accident risk in Arctic waters, the risk factors that affect the

occurrence of accident represent nodes, and the coupling

relationship between risk factors is represented by directed edges.

The relationship strength between nodes is represented by a

conditional probability table. Nodes without parent nodes need to

use a bright probability table to express information. In this study, the

nodes and directed edges in the BN can be obtained through the

constructed FRAM model. The conditional probability table is

generally obtained through logical judgment. The prior probability

table often needs to be obtained through statistical calculations based

on the objective discrete data set of risk factors. However, in practice,

some risk factors often have missing data. Expert knowledge is the

main means to make up for the missing data, but it is often necessary

to use certain methods to convert subjective information into

objective data information (Chen et al., 2022).
3.5 Cloud model

The cloud model is often used for the quantitative processing of

uncertain information. It can complete the conversion between

qualitative concepts and quantitative data. The cloud model uses

three characteristic quantities: expectation (Ex), entropy (En) and

hyperentropy (He) to express the randomness and fuzziness of

qualitative concepts, and overall reflects the quantitative expression

of qualitative concepts (Li et al., 2022). Among them, the

mathematical expression of Ex is shown in Equation 2, which is

similar to the concept of mean and represents its concentration. Xi  

represents the subjective evaluation value of the expert on the

uncertain information. n represents the number of evaluation

values. The mathematical expression of En is shown in Equation 3,

which represents the uncertainty of the target of interest. The larger

its value, the wider the cloud droplet. The mathematical expression of

He is shown in Equation 4, which represents the discreteness of En.

The larger its value, the wider the thickness of the cloud droplet. In

the field of ship navigation risk management research, cloud models

are often used to quantify the uncertainty information of risk factors

(Li et al., 2023a; Xi et al., 2024).

Ex =o
n

i=1
Xi=n (2)

En =

ffiffiffiffi
p
2

r
o
n

i=1
(Xi − Ex)=n (3)
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He =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
½(Xi − Ex)

2 − E   2
n �=(n − 1)

�����
�����

vuut (4)

In order to complete the conversion from qualitative

description to quantitative expression based on the three

characteristic quantities of Ex, En and He, a forward cloud

generator is often used to implement this function. For a random

realization of a risk factor, its membership function needs to satisfy

Equation 5. Through multiple random accumulations of cloud

droplets, a large number of cloud droplets can be generated to

form a cloud model.

m(x) = exp½−(x − Ex)
2=2E2

n� (5)
4 Case study

4.1 Scenario description

The Northeast Passage in the Arctic is the busiest waters for

commercial ships to conduct navigation operations in Arctic

waters. The seasonal navigation characteristics of the Northeast

Passage in the Arctic are obvious. It can be freely navigated in the

summer months with the highest temperature. In the seasons close

to the summer months, the ice conditions are good, and commercial

ships reinforced with ordinary ice class can conduct commercial

navigation under the escort of icebreaker. During the escort

operation, the icebreaker in front has a higher icebreaking level,

which can directly break the sea ice that hinders navigation and
Frontiers in Marine Science 06123
form a navigable channel. The escorted ship behind follows the

navigation track of the icebreaker in front to complete the ice zone

navigation operation. This method greatly improves the navigation

efficiency and safety of ordinary ice class reinforced ships in the

Arctic ice zone. However, the escort operation itself is still a high-

risk water transportation activity. First of all, the width of the

icebreaker and the escorted ship will affect the level of risk of the

escort operation. If the width of the icebreaker is smaller than that

of the escorted ship, the width of the channel formed by the

icebreaker will not meet the navigation needs of the escorted ship,

greatly increasing the navigation risk. Secondly, the closing speed of

the channel formed by the icebreaker has a great impact on the risk

of escort operations. If the ice channel closes quickly, the escorted

ship will maintain a high speed, and the icebreaker and the escorted

ship will also maintain a close distance, which will directly increase

the risk of collision accidents. In addition, the size, strength and

thickness of the remaining floating ice in the ice channel will also

have a great impact on the risk of escort operations. Therefore, for

high-risk water transportation activities such as escort operations, it

is necessary to take scientific means to quantify its risk level.

In this study, a formation mode consisting of an icebreaker and

an escorted ship is used to quantitatively analyze the safety risks of its

operation process. The escort operation risk of the TIAN HUI ship in

2018 is taken as the research object. The ship departed from the

Barents Sea on July 20 and arrived at the Bering Strait on August 3.

During the Arctic voyage, the voyage from July 29 to August 2 was

escorted by the icebreaker VAYGACH. In Figure 2, relying on AIS

data, the route information of the ship from the departure point to

the Bering Strait section and the changes in the ship’s position every

day are shown.
FIGURE 2

Study area and escort operation information.
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4.2 Model establishment

According to the timing characteristics of ship escort operation

in Arctic waters, it can be mainly divided into the preparatory stage

before the operation, the icebreaking escort operation stage, and the

end of the escort operation. In the preparatory stage before the

operation, it is necessary to combine the weather forecast

information to formulate a comprehensive navigation plan.

Before the escort operation officially begins, it is also necessary to

select a suitable icebreaker and conduct a comprehensive safety

inspection. After the escort operation mission begins, the icebreaker

must choose a suitable forward strategy in front to ensure that it can

effectively break the sea ice and form a reliable navigable waterway.

By maintaining timely and effective communication between the

two ships, ensure that the ship speed remains within a safe and

efficient range. At the same time, ensure that the distance between

the two ships is not too long or too short. During the icebreaking

escort operation stage, due to the dynamic adjustment of the ship

movement between the two ships at any time, this stage is also a

high-incidence period for collision accidents. It is necessary to

analyze and judge the collision risk in a timely manner and make

effective risk prevention and control strategies.

By analyzing the main operational tasks of each stage and

further subdividing the key subtasks of each step, the escort

operation system in Arctic waters can be mainly divided into nine

functional modules: “Make a suitable sailing plan”, “Choosing the

r ight icebreaker” , “Effect iveness of communicat ion” ,

“Comprehensive safety inspection”, “Identify effective ice-

breaking strategies”, “Maintain a suitable speed”, “Keep a safe

distance”, “Judge the collision risk”, and “Risk control measures”.

Combined with the main steps of FRAM model construction, the

functional characteristics of each functional module are analyzed

from six aspects: I, O, C, P, R, and T. Taking the functional module

“Make a suitable sailing plan” as an example, its functional

description is shown in Table 1.

On this basis, the relationship between different functional

modules of the escort operation system in Arctic waters is further

described, and the main factors that may lead to functional failure
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are analyzed from the two aspects of the system internal and

external, as shown in Table 2. According to the correlation and

potential changes between the functional modules, the failure links

are analyzed to establish the functional failure network diagram of

the ship icebreaking escort operation in Arctic waters, as shown

in Figure 3.

According to the main factors leading to functional failure

analyzed in Table 2 and the functional failure network of ship escort

operation in Arctic waters described in Figure 3. Considering that in

the Arctic waters escort operation system, abnormal changes in

functional output will lead to an increase in the risk of collision

accidents through the coupling resonance of upper and lower

related functional modules. Through the functional resonance

analysis between functional modules, combined with the specific

task characteristics of ship escort operation, the risk factors leading

to escort operation collision accident are further analyzed in depth.

The analysis results are shown in Table 3.

Through FRAM, the basic functions of the system and potential

changes of modules of ship escort operation in Arctic waters are

analyzed, and the risk factors affecting the safety of escort operation

are preliminarily obtained. Further, through the analysis of the

coupling relationship between modules, a functional failure

network diagram is drawn. On this basis, the key risk factors

leading to collision accidents of escort operations in polar waters

are identified. These analyses can provide a direct basis for the

establishment of a BN model for risk assessment of ship escort

operation in Arctic waters. Combined with the risk factors of

collision accident of escort operation in Arctic waters obtained

from the analysis in Table 3, according to the rules of establishing
TABLE 1 Functional characterization of “Make a suitable sailing plan”.

Function name Dimension Description

Make a suitable
sailing plan

I
Prepare to make a
sailing plan

O Sailing plan for the voyage

C
Environment, relevant laws
and regulations

P
Reasonable crewing, ship’s
condition, cargo allocation,
fuel and supplies, etc.

R
Nautical charts, sailing
directions, etc.

T –
TABLE 2 Identification of function module changes.

Function
name

Function
type

Source of
change

Relevant
factors

Make a suitable
sailing plan

Organization External
changes

Inadequate
voyage planning

Choosing the
right icebreaker

Organizations External
changes

Inappropriate choice
of icebreaker

Effectiveness
of
communication

Human Internal
changes

Inadequate
communication
between ships

Comprehensive
safety inspection

Organizations External
changes

Inadequate
safety inspections

Identify effective
ice-breaking
strategies

Organizations Internal
changes

Unreasonable ice-
breaking strategies

Maintain a
suitable speed

Technology Internal
changes

Speed too fast/slow

Keep a
safe distance

Technology Internal
changes

Ships too close/far

Judge the
collision risk

Human Internal
changes

Insufficient awareness
of risks

Risk
control measures

Human Internal
changes

No risk control
measures are taken
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the BN model, the risk factors affecting the occurrence of collision

accidents of escort operation in Arctic waters are taken as nodes,

and the coupling relationship between risk factors is taken as

directed edges, and the BN structure of collision accident during

escort operation in Arctic waters is obtained, as shown in Figure 4.
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4.3 Model input

In the established BN model for risk assessment of escort

operation in Arctic waters, the node states are divided into two

types: “yes” and “no”. The model inputs required in the model

include two types: prior probability table and conditional probability

table. The conditional probability table can be obtained through

logical judgment, and the prior probability table needs to be obtained

through statistical calculation based on the objective discrete data set

of risk factors. In the model, the node that needs prior probability

input is the root node, including “harsh environmental conditions”

“too much broken ice in the waterway” “insufficient information”

“cognitive bias” “inadequate professional skills” “inadequate look-

out” “equipment damage” “insufficient reading of relevant materials”

“violations” “relevant system is not perfect” “insufficient attention”.

Nowadays, a variety of marine observation and prediction methods

are commonly used to facilitate the acquisition of ship navigation

data (Yin et al., 2023). Among them, the environmental risk factors

can be statistically calculated through objective data. The

environmental data used in this study are the fifth-generation

reanalysis data provided by the European Centre for Medium-

Range Weather Forecasts. This dataset combines model data with

observational data from all over the world to form a globally complete

and consistent dataset. The dataset contains data on a variety of

meteorological and oceanographic environmental parameters,

including temperature, air pressure, precipitation, snowfall, wind

speed, wave height, sea ice, etc. Figure 5 shows the environmental

distribution of Arctic waters, among which (Figure 5A) shows the

overall environmental distribution of the entire Arctic waters. Here,

sea ice concentration is used as an example for display. Due to space

limitations, other environmental factors are not displayed one by one.

In (Figures 5B–D), the dynamic distribution of temperature, sea ice
FIGURE 3

Functional resonance analysis for escort operation in Arctic waters.
TABLE 3 Risk factor analysis of escort operations in Arctic waters.

No
Functional
failure

Root cause

1
Inadequate
voyage planning

Violations; Inadequate professional skills;
Insufficient reading of relevant materials

2
Error
in judgement

Insufficient information; Cognitive bias; Harsh
environmental conditions

3
Inappropriate
choice of
icebreaker

Error in judgement; Inadequate voyage planning

4
Inadequate
communication

Equipment damage; Inadequate look-out;
Inadequate professional skills; Harsh
environmental conditions

5
Inadequate
safety inspections

Insufficient attention; Relevant system is
not perfect

6
Unreasonable
ice-breaking
strategies

Inadequate communication; Error in judgement

7 Improper speed
Unreasonable ice-breaking strategies; Equipment
damage; Inadequate safety inspections;
Inappropriate choice of icebreaker

8 Improper distance Improper speed; Harsh environmental conditions

9
Level of
collision risk

Error in judgement; Improper distance; Too much
broken ice in the waterway
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FIGURE 4

BN risk assessment model for escort operations in Arctic waters.
FIGURE 5

Natural environmental conditions for navigation in Arctic waters. (A) shows the overall environment of the Arctic waters. (B) shows the temperature
changes at fixed coordinate points. (C) shows the sea ice changes at fixed coordinate points. (D) shows the wind speed changes at fixed
coordinate points.
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and wind speed at the ship station of TIAN HUI on the eighth day is

shown respectively. Referring to the classification of the impact of

environmental factors in Arctic waters on ship navigation safety in

Li et al. (2023b), these discrete environmental data sets can provide a

reference for solving the prior probability of environmental risk

factors such as “Too much broken ice in the waterway” and “harsh

environmental conditions”. Taking the node “Too much broken ice

in the waterway” as an example, when calculating the prior

probability distribution of its ship station every day, the change of

sea ice concentration at the location is extracted according to the grid

where the longitude and latitude of its ship station are located, as

shown in Figure 6. Considering the strong icebreaking performance

of the icebreaker, the value of sea ice concentration of 0.55 is

considered as the state threshold, and then the prior probability

distribution table of the node “Too much broken ice in the waterway”

at each ship station can be directly obtained by statistics, as shown

in Table 4.

In the BN risk assessment model, there are still some nodes that

do not have direct data sources. According to the proposed cloud

model quantitative analysis method, the cloud characteristic

distribution value of the risk factor is obtained by relying on

expert knowledge, and the random sample distribution of the risk

factor is further obtained through cloud simulation. Here, five

experts from related fields are invited to provide expert

knowledge for the quantification of subjective information.

Among them, three experts are professors from Shanghai

Maritime University, who have been engaged in the research of

risk management of ship navigation in Arctic waters for a long time.

Two experts are captains with rich experience in driving polar

commercial ships, from COSCO SHIPPING Special Transport Co.,

Ltd. For each risk factor, a subjective evaluation of the quantitative

value of the factor is carried out based on their experience and
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knowledge. Based on the evaluation, the Ex, En, and He of risk

factor are obtained by combining Equations 2–4, and the cloud

simulation results are further obtained according to Equation 5.

Take the prior probability distribution calculation of the node

“inadequate professional skills” as an example. During the voyage of

the TIAN HUI ship in the Arctic waters, the voyage from July 29 to

August 2 was escorted by the icebreaker VAYGACH. According to

its icebreaking escort operation characteristics, its icebreaking

escort voyage was divided into three stages, namely the first day

of icebreaking escort operation (Stage 1), the middle stage of

icebreaking escort operation (Stage 2), and the last day of

icebreaking escort operation (Stage 3). For these three stages of

the ship’s voyage in the Arctic waters, the three characteristic

quantities of the risk factor “inadequate professional skills” in

each stage are obtained through expert judgment, and its cloud

droplet distribution is further obtained according to cloud

simulation, as shown in Figure 7. Taking the quantitative value of

0.75 as the threshold for state division, the prior probability

distribution of each stage of ship navigation operations in Arctic

waters is calculated by counting the number of cloud droplets in

each cloud droplet distribution, as shown in Table 5.
4.4 Results

According to the prior probability distribution and conditional

probability distribution of each node, the quantitative assessment

results of the navigation risk of the TIAN HUI ship during the

icebreaker escort operation in the Arctic waters are obtained

through BN reasoning, as shown in Figure 8. According to the

results of the risk quantification assessment, during the icebreaker

escort operation, the navigation risk of the ship showed a
FIGURE 6

Changes in sea ice concentration at the ship’s position point on a daily basis.
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fluctuating downward trend. The average risk value per day during

the ship’s icebreaker escort operation is 0.087. The highest risk time

occurred on the second day of the escort operation, and the lowest

risk time occurred on the last day. The difference between the

highest and lowest risk quantitative values is 0.176. This shows that

during the icebreaker escort operation in Arctic waters, the risk level

fluctuates greatly. Carrying out icebreaker escort operations is a

high-risk water transportation activity, and special attention should

be paid to the safety threats brought by sudden risk events in the

operation. Specifically, on the first day of the icebreaking escort

operation, the risk of ship navigation is at a high level, with a

quantitative value of 0.157. On the second day of the icebreaking

escort operation, the risk of ship navigation reached the highest

value, with a quantitative result of 0.185. Subsequently, the risk of

ship navigation gradually decreased, and the risk level is the lowest

on the last day of the escort operation, with a quantitative value

of 0.009.

In order to further analyze the key risk factors during the escort

operation in Arctic waters, the node “Level of collision risk” is set as

the target node in the BN model, and the BN sensitivity analysis is

carried out. The main risk factors affecting the occurrence of collision

accident during the escort operation in Arctic waters are obtained, as

shown in Figure 9. The top ten risk factors affecting the occurrence of

collision accident are obtained through analysis, namely “Harsh

environmental conditions (R1)” “Too much broken ice in the

waterway (R2)” “Improper distance (R3)” “Error in judgement

(R4)” “Insufficient information (R5)” “Cognitive bias (R6)”

“Improper speed (R7)” “Inappropriate choice of icebreaker (R8)”
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“Unreasonable ice-breaking strategies (R9)” “Inadequate professional

skills (R10)”. It can be seen that among the main risk factors affecting

the occurrence of collision accident during escort operations in Arctic

waters, the most important risk factor comes from the navigation

environment, followed by inappropriate ship following distance and

mistakes of ship operators.
5 Discussion

5.1 Risk performance of escort operation in
Arctic waters

It is a high-risk water traffic activity for ordinary commercial ships

to carry out navigation in Arctic waters. In order to ensure navigation

safety, escort operation is an effective operation mode. However, while

this operationmode improves the navigation safety level of ships, it may

cause collision accidents due to the following mode between icebreaker

and escorted ship. This study quantitatively analyzes the risk level of

collision accident during escort operation in Arctic waters. In order to

verify the reliability of the risk assessment model established in this

study and the effectiveness of escort operation on the navigation safety

level in Arctic waters, it is necessary to conduct comparative verification

analysis. During the five days when the TIAN HUI ship carried out

escort operations, considering the impact of the icebreaking level of

icebreakers on navigation risks, the risk assessment results were

compared and analyzed. At a lower icebreaking level, the impact of

sea ice on the navigation safety of ships will be greater. Assuming that

the icebreaking performance of icebreakers is reduced, the possibility of

sea ice threats increases by 20%. Therefore, in the BN risk assessment

model in Figure 4, the model input of the node “too much broken ice in

the waterway” is changed to analyze the navigation risk during escort

operations. The results are shown in Figure 10.

From the quantitative results, it can be seen that with the decrease

in icebreaking performance of icebreakers, the fluctuation trend of the
TABLE 4 Prior probability distribution of “too much broken ice in the
waterway” during ship navigation in Arctic waters.

Date July 29 July 30 July 31 August 1 August 2

Yes 0.55 0.71 0.13 0.32 0.01

No 0.45 0.29 0.87 0.68 0.99
FIGURE 7

Quantitative cloud of information on risk factors for ship escort operations in Arctic waters.
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escort operation risk in Arctic waters is consistent with the previous

trend. However, under the strong condition of reduced icebreaking

performance of icebreakers, the overall level of navigation risk is higher

than that of icebreakers with high icebreaking levels. This is consistent

with the actual navigation conditions of ships in Arctic waters, which

shows the reliability of the model. Specifically, during the five days

when TIAN HUI ship took icebreaking escort operations, the risk

difference in the first two days was much higher than that in the last

three days. By analyzing the sea ice conditions in Table 4, it was found

that the value of ice cover in the first two days of icebreaking escort

operations was much higher than that in the last three days. This also

shows that when the sea ice conditions are more severe, it is very

necessary to choose a reliable high-level icebreaker.
5.2 Uncertainty of risk information during
escort operation in Arctic waters

Ship navigation risk management often faces the problem of missing

information, and how to solve the uncertainty in it has become one of the

main problems to be solved in current research. The uncertainty of risk

information often comes from several aspects. On the one hand, in the

stage of risk identification, in the process of identifying risk factors and

determining the logical relationship between them, different scholars have

different logical thinking, and the various theoretical methods used are
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different, so the results often have strong uncertainty. On the other hand,

in the process of quantitative analysis of ship navigation risk, there is often

the problem of missing data sources for some risk factors, thus bringing

uncertainty in data information. Compared with ordinary waters, the

navigation environment in Arctic waters is more severe, and the task of

escort operation is very complex, so the uncertainty faced in the process of

quantitative analysis and management of navigation risk is even stronger,

and new ideas are urgently needed to solve these problems.

In this study, to address the uncertainty in the risk modeling

process, based on the functional resonance perspective, the FRAM

method is used to describe and analyze the functions and activities of

the escort operation system in Arctic waters, to establish a functional

failure network of the ice-breaking escort operation in Arctic waters,

and to analyze in depth the main risk factors that lead to collision

accident during escort operation. This method effectively overcomes

the problem of excessive subjectivity in risk factor identification under

the traditional “man-machine-environment” perspective. Moreover,

the logical relationship between the risk factors can be sorted out in

a scientific and logical way, which can help to establish the risk network

model of collision accident of escort operation in Arctic waters. In the

process of quantitative risk analysis, this study proposes the use of

FRAM and BNmethod effectively combined to establish a quantitative

model for risk assessment, which has the advantage of integrating

multi-source information and carrying out quantitative analysis of risk

by means of network reasoning, and it is a reliable method of

quantitative risk analysis for the characteristics of the escort

operation in Arctic waters. In addition, in the processing of

uncertain data information, this study proposes the use of a cloud

model to realize the conversion of subjective experience to objective

data, and cloud simulation through the eigenvalues of risk factors, thus

providing a direct data source for BN risk inference. This approach

brings new ideas for dealing with the uncertainty of data information in

ship navigation risk management.
TABLE 5 Prior probability distributions for each stage of ship navigation
in Arctic waters.

State Stage 1 Stage 2 Stage 3

Yes 0.13 0.45 0.24

No 0.87 0.55 0.76
FIGURE 8

Ship escort operation risks in Arctic waters.
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6 Conclusion

This study proposes an approach combining FRAM and BN to

quantitatively analyze the risk of ship escort operation in Arctic waters.

In the proposed method, to address the complexity of the ship escort

operation system in Arctic waters, FRAM is used to model and analyze
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the complex coupling relationship between the systems, and the key

risk factors in the system are further analyzed. Based on the

correlation relationship between risk factors, a BN analysis method is

used to establish a collision risk assessment model for ship escort

operation in Arctic waters. Relying on multi-source data, the subjective

information is quantified by combining the cloud model of uncertain
FIGURE 10

Navigation risks at different icebreaking levels.
FIGURE 9

Main risk factors leading to collision accident.
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information processing. For the specific scenarios of ice-breaking escort

operation of ships in Arctic waters, the escort operation risk is

quantitatively analyzed.

The results show that during the escort operation, the average value

of ship navigation risk is 0.087, which is at a high level, and the

maximum difference in risk reaches 0.176, with a large level of risk

fluctuation during the escort operation. Among the main risk factors

affecting the occurrence of collision accident during ship escort

operation in Arctic waters, the risk factor with the greatest impact is

“Harsh environmental conditions”, followed by “Too much broken ice

in the waterway”. Taken together, among the main risk factors affecting

the occurrence of collision accidents during escort operation in Arctic

waters, the most important risk factor comes from the navigational

environment, especially the influence of sea ice conditions. Unsuitable

following distance of the ship and the error of the ship operator are also

the key reasons affecting the collision accident. During ship escort

operation in Arctic waters, it is essential to select icebreakers of the

appropriate icebreaking class according to the sea ice conditions.

The method proposed in this study is effective in understanding the

level of navigational risk during ship escort operation in Arctic waters,

clarifying the key risk factors involved, and improving the safety level of

escort operations. In future research, the model can be further expanded

to introduce decision analysis methods to assess the effectiveness of

various types of risk control measures by proposing them, so as to

maximize the safety level of ship escort operations in Arctic waters.
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Path planning for unmanned
surface vehicles in anchorage
areas based on the risk-aware
path optimization algorithm
Hongbo Wang1,2,3, Shuaiwei Mao1, Xiaoguang Mou4*,
Jinfeng Zhang2 and Ronghui Li1

1Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang, China, 2Hubei Key
Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan, China,
3Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching,
Guangdong Ocean University, Zhanjiang, China, 4School of Mechanical Engineering, Guangdong
Ocean University, Zhanjiang, China
In dense anchorage areas, the challenge of navigation for Unmanned Surface

Vehicles is particularly pronounced, especially regarding path safety and

economy. A Risk-Aware Path Optimization Algorithm is proposed to enhance

the safety and efficiency of Unmanned Surface Vehicle navigating in anchorage

areas. The algorithm incorporates risk assessment based on the A* algorithm to

generate an optimized path and employs a Dual-Phase Smoothing Strategy to

ensure path smoothness. First, the anchorage area is spatially separated using a

Voronoi polygon, the Risk-Aware Path Optimization Algorithm includes a grid

risk function, derived from the ship domain and Gaussian influence function, in

the path evaluation criteria, directing Unmanned Surface Vehicle to successfully

bypass high-risk areas and as a result. Then the Dual-Phase Smoothing Strategy is

used to decrease path turning points and boost path continuity, which in turn

improves path economy. Simulation results demonstrate that this method

significantly reduces the path length and the number of turning points,

enhancing Unmanned Surface Vehicle navigation safety and economy in

anchorage areas.
KEYWORDS

unmanned surface vehicles, anchorage areas, risk-aware path optimization, ship
domain, Gaussian influence function, dual-phase smoothing strategy
1 Introduction

Ships need to anchor in anchorage waters for quarantine, waiting for berths, tide

waiting (Yin et al., 2023), unloading at anchorage, or sheltering from typhoons. Anchorage

areas are typically densely populated, with ships varying in size and type, as illustrated in

Figure 1. Navigating vessels are typically needed to avoid these waters to prevent collisions.
frontiersin.org01133

https://www.frontiersin.org/articles/10.3389/fmars.2024.1503482/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1503482/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1503482/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1503482/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1503482&domain=pdf&date_stamp=2025-01-22
mailto:mouxg@gdou.edu.cn
https://doi.org/10.3389/fmars.2024.1503482
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1503482
https://www.frontiersin.org/journals/marine-science


Wang et al. 10.3389/fmars.2024.1503482
The application of intelligent ships is becoming increasingly

common (Zhou et al., 2024). For example, USVs could decrease

the risk of collisions for tasks such as maritime monitoring and

transporting materials in complex navigation environments. USVs

are autonomous surface vessels capable of navigating without

onboard personnel (Specht et al., 2017). Generally, USV is smaller

in size and do not require human operation, which can significantly

enhance safety when navigating through anchorage areas, improve

operational efficiency, and reduce labor costs. USVs can keep an eye

on the marine environment and the status of anchored vessels in

real time, which effectively boosts the efficiency of safety

management (Wang et al., 2023). Also, USVs can effectively carry

materials in a range of weather and sea conditions, which makes

them especially fit for high-risk environments or those not suitable

for human operations (Bae and Hong, 2023).

The core task of path planning is to design a collision-free route on

a map from the starting point to the endpoint (Yin and Wang, 2021).

Path planning is crucial in the navigation systems of USVs (Liu and

Bucknall, 2015). It involves devising the optimal route for USVs from

a starting point to a destination, primarily considering navigational

safety and path efficiency. The goal of path planning is to minimize

navigational risks and path costs as much as possible while ensuring

mission completion by the USVs (Shu et al., 2023). Currently, various

path planning algorithms can be applied in different scenarios, such as

the A* algorithm, Dijkstra’s algorithm, Artificial Potential Field (APF),

Rapidly-Exploring Random Tree (RRT), Genetic Algorithm (GA),

and Particle Swarm Optimization (PSO).
Frontiers in Marine Science 02134
The Dijkstra algorithm is a traditional shortest path search

algorithm (Dijkstra, 1959). This algorithm identifies the shortest

route from an origin to a destination, and finding paths using it is

quite simple (Cover and Hart, 1967). Dijkstra’s algorithm, however,

computes all nodes during path searches, which leads to poor

efficiency. Improving computational efficiency involves the

selection of the nearest nodes and the exclusion of unnecessary

ones (Julius Fusic et al., 2018), which greatly reduces computational

load and speeds up the path planning process. The optimal path can

be found by calculating the number of turns and travel time through

the introduction of a travel time calculation function and in

complicated environments, the best route may still not be

achievable (Qing et al., 2017).

The A* algorithm, as a heuristic search algorithm (Sang et al.,

2021), finds the shortest path between two points. It evaluates the

cost from the current node to the target using a heuristic function

and expands the most promising nodes. A poorly designed heuristic

function can adversely affect the smoothness and continuity of the

path (Julius Fusic et al., 2018). Traditional A* can only generate

piecewise linear paths, which often results in unsmooth trajectories

(Dolgov et al., 2010). Dynamic simplification of the A* algorithm

can reduce computation time (Lima et al., 2019). However, the

adaptability of the algorithm is insufficient; especially in different

scenarios, multiple adjustments of algorithm parameters are

required to adapt to changing environments. To obtain safer

paths, methods incorporating safe distance maintenance and

heuristic function optimization were introduced (Singh et al.,
FIGURE 1

Anchorage area layout and ship distribution.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1503482
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1503482
2018). However, manual adjustment of safe distance parameters is

required in different scenarios. Additionally, three path smoothing

techniques were integrated into the A* algorithm (Song et al., 2019),

generating smoother paths with fewer turns. However, the

smoothing effect of this algorithm depends on parameter

selection and lacks adaptability to different environments.

The basic idea of the APF method is to construct repulsive

potential fields around obstacles and an attractive potential field at

the target point. The attraction pulls the USVs toward the target,

while the repulsion pushes the USVs away from obstacles. This

method has a simple computational principle and fast operation

speed but easily falls into local optima (Peng et al., 2024).

Incorporating Genetic Algorithms into the APF method can

effectively alleviate local minima and oscillation problems

(Pan et al., 2022). However, the generated paths exhibit frequent

turns, and parameter tuning becomes complex, with the design of the

fitness function depending on the task scenario. Introducing the

temperature parameters of a deterministic annealing strategy into the

APF method (Wu et al., 2023) allows the system to increase the

temperature when trapped in local minima to escape them. However,

this method relies on the initial setting of temperature parameters

and cooling rate; improper settings may lead to excessively long paths

or failure in obstacle avoidance.Combining Model Predictive Control

(MPC) with the APF forms the Model Predictive Artificial Potential

Field (MPAPF)method (He et al., 2023). This approach considers the

vessel’s kinematic constraints and incorporates the International

Regulations for Preventing Collisions at Sea (COLREGs), effectively

solving the local optimum problem of the traditional APF. However,

the path changes direction frequently, affecting the vessel’s

operational stability.

The RRT is a sampling-based path planning algorithm proposed

by LaValle in 1998 (LaValle, 1998). This algorithm takes the starting

point as the root node and performs searches in the space using

random sampling, continuously adding leaf nodes to form a random

tree until it reaches the endpoint. Although this algorithm is highly

effective, the process of randomly generating nodes consumes a

significant amount of time, and the resulting path is not smooth. By

integrating AIS information and Douglas-Peucker (DP) compression

to improve the traditional RRT algorithm (Gu et al., 2023), the

convergence speed is increased, redundant turning points are

reduced, and path smoothness is optimized. However, performance

may be limited in areas with insufficient AIS data. By combining

Voronoi diagrams to improve the Artificial Potential Field (APF)

method (Chi et al., 2022), it guides the sampling of RRT, solves the

local optimum problem, and enhances efficiency. However, in

environments with fewer obstacles, the path may become longer due

to detours. The improved heuristic bidirectional RRT algorithm

(Zhang et al., 2022) uses a heuristic biased sampling strategy to

reduce ineffective random sampling and increase convergence speed.

It also reduces unnecessary turning points through path reorganization.

However, in uncertain environments, inaccurate heuristic information

may cause the path planning to deviate from the optimal route.

The GA is a bioinspired algorithm for optimisation that identifies

the best solution to a problem by mimicking biological processes such

as natural selection, inheritance, crossover, and mutation but can act
Frontiers in Marine Science 03135
as a general search technique to address path planning problems (Niu

et al., 2022). The Genetic Algorithm, however, results in a high

computational load, a slow convergence speed, and a tendency to fall

into local optima. The addition of a new genetic mutation operator to

the GA (Qu et al., 2013) can successfully stop the algorithm from

reaching local optima and boost its convergence speed. The GA still

raises computational complexity when dealing with extensive data

and thus the combination of Voronoi diagrams with the GA (Niu

et al., 2020) can markedly reduce the number of redundant nodes in

the path, which helps to lower energy consumption and improve path

smoothness. However, the algorithm is sensitive to parameter

selection. Path planning can be considered a multi-objective

optimization problem. By introducing different fitness functions for

various objectives (Cheng et al., 2020), the feasibility of the path is

ensured, and optimization is performed in terms of time, smoothness,

and safety. However, its generality in different environments requires

further verification. Using a heuristic median insertion method to

generate a high-quality initial population (Li et al., 2021) and

optimizing the Genetic Algorithm through multi-objective fitness

functions (path length, safety, energy consumption) improved the

convergence speed and shortened the path length. However, this

method did not perform detailed optimizations on path smoothness.

The PSO (Kennedy and Eberhart, 1995) is another biologically

inspired algorithm. It was originally designed to simulate the

movement of particles in a solution space, iteratively updating

their positions and velocities to search for the optimal solution to

a function. The AquaFeL-PSO algorithm (Jara Ten Kathen et al.,

2024), which integrates multimodal PSO, Gaussian Processes (GP),

and Federated Learning (FL), reduces the likelihood of getting

trapped in local optima, while improving both convergence speed

and algorithm robustness. However, the Gaussian Process modeling

may lead to high computational complexity. Traditional PSO-based

path planning algorithms typically assume a static environment,

making them less effective in complex dynamic scenarios. To

address this limitation, the OkayPlan algorithm (Xin et al., 2024)

combines dynamic obstacle motion modeling, Dynamic Priority

Initialization (DPI), and a relaxation strategy, significantly

enhancing both the safety and real-time performance of path

planning. However, the conservative planning strategy of

OkayPlan may compromise the optimality of path length. ACO-

based path planning, through parameter optimization and

adjustment of its search strategies (Heng et al., 2024), can identify

the shortest obstacle-free path while ensuring safety. However, in

complex environments, ACO is prone to falling into local optima,

failing to achieve a truly global optimal path.

In anchorage areas, the high density of anchored vessels

complicates traditional path planning, making it difficult to guarantee

both safety and efficiency. The close proximity between vessels

increases the collision risk for USVs. Therefore, an algorithm that

can recognize and avoid risk areas while maintaining path efficiency is

proposed. In this paper, a modified A* algorithm, named RAPO, is

introduced, which incorporates risk awareness andmodels the risk field

using a Gaussian influence function. After the path is optimized, the

DPSS is applied to smooth the path, ensuring its smoothness and

feasibility. The main contributions of this paper are as follows:
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• The RAPO is proposed, which effectively incorporates the

risk characteristics of anchorage areas, thus improving both

path safety and economic efficiency.

• AGaussian influence function is used to model the risk field

in the anchorage area, addressing the limitations of the

traditional A* algorithm in complex environments.

• The DPSS is applied to smooth the optimized path,

ensuring its navigability and smoothness, thereby

enhancing its applicability in real-world scenarios.
2 Methodology

2.1 Traditional A* algorithm

The A* algorithm is one of the most widely used methods in

path planning. The basic idea involves define the starting point S as

the parent node, to estimate the cost to the surrounding nodes n,

and selecting the node with the lowest cost as the next parent node

until the target node G is identified. Commonly used search

directions consist of 4-connected and 8-connected grid searches.

The 4-connected mode considers only horizontal and vertical

movements, whereas the 8-connected mode additionally accounts

for diagonal movements. Due to the complex movement

characteristics of USVs in anchorage areas, this paper uses an 8-

connected grid search to support more flexible and efficient

navigation and thus the node evaluation function consists of two

components, as shown in Equation 1:

f ðnÞ = gðnÞ + hðnÞ (1)

where f(n) is the total cost of the current node, g(n) represents

the minimum path cost from the starting point S to the current

node n and h(n) represents the estimated minimum cost from the

current node n to the target node G.

The traditional A* algorithm typically uses heuristic functions

such as the Euclidean distance and the Manhattan distance. This

paper employs the Euclidean distance, which calculates the straight-

line distance between two points to provide an accurate estimation

of the path cost. The direct use of the straight-line distance between

two points allows for the estimation of movement cost in path

planning. Thus the Euclidean distance in the A* algorithm

effectively directs the search process to favour paths that are

physically nearer to the target, thereby improving search

efficiency and reducing computational costs. The heuristic

function h(n) is shown in Equation 2, the actual cost g(n) is

shown in Equation 3, and the path cost is shown in Equation 4:

 h(n) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xn − xG)

2 + (yn − yG)
2

q
(2)

 g(n) =o
n

i=1
cost(i − 1, i) (3)

cost(i − 1; i) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − xi−1)

2 + (yi − yi−1)
2

q
(4)
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where xn is the x-coordinate of any node n, yn is the y-

coordinate of node n, xG is the x-coordinate of the target node G,

yG is the y-coordinate of the target node G, and i is the index of the

nodes in the path.
2.2 Risk-aware path optimisation algorithm

The RAPO algorithm was proposed to improve the safety and

efficiency of USVs navigation through anchorage areas. The RAPO

integrates risk assessment with a dual-phase smoothing strategy.

Risk assessment guides the A* algorithm to avoid high-risk areas by

evaluating each grid based on a ship domain model and Gaussian

influence function. The DPSS smooths the path in two phases. First,

Bresenham’s algorithm is used to reduce the number of sharp turns.

Second, cubic B-spline path smoothing is applied to enhance

path continuity.

2.2.1 Risk assessment
The ship domain (Pietrzykowski and Uriasz, 2009) is a concept

used to represent the safe area around a vessel. It is typically defined

as a two-dimensional area surrounding the vessel, which other ships

should avoid to prevent collisions. The size and shape of this

domain can vary on the basis of the vessel’s size, speed, and

navigational environment. The ship domain is usually quantified

by boundary radii in four directions around the vessel: forwards

(bow), aft (stern), left (port side), and right (starboard side),

expressed in multiples of the ship’s length (L). The establishment

of an unnavigable zone around a ship prevents collision accidents.

A typical ship domain representation is illustrated in Figure 2,

where the boundary radii in each direction are used to depict the

safe zones around the vessel in different orientations.

A reasonable establishment of unnavigable zones can

significantly reduce collision risk, improve navigation efficiency,

and enhance overall safety (Goerlandt and Kujala, 2014). A

dodecagonal forbidden zone model (Kundakçı et al., 2023), which

closely approximates an elliptical shape, was proposed by Kundakçı

et al. As shown in Figure 3, the dark purple area represents the

forbidden zone. In this paper, an elliptical shape was directly adopted

for the forbidden zone. Using an elliptical shape for the unnavigable

zone around the anchored ship has significant advantages. The long

axis of the elliptical unnavigable zone aligns with the longitudinal axis

of the ship, providing greater fore-and-aft safety distance. The short

axis provides the lateral safety distance, preventing other ships from

approaching the sides of the anchored ship and reducing the collision

risk. In this paper, elliptical unnavigable zones were set up on the

basis of the captain’s navigational experience. If the ship’s length is L,

then the semimajor axis would be 1.2L; if the ship’s width isW, then

the semiminor axis would be 2W. The risk value for grids within the

unnavigable zones is set to infinity.

When a USV navigates through an anchorage area, the

anchored ships pose a certain risk to the USV. This risk can be

characterised by the Gaussian function (Liu and Ma, 2023). The

Gaussian function was introduced by the German mathematician

Carl Friedrich Gauss. It was first introduced in his work in the early

19th century and has been widely applied in probability theory and
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statistics, especially in normal distributions. The normal

distribution is one of the most important distributions in statistics

and describes the distributions of many natural phenomena and

experimental data. The standard form of the Gaussian function is

shown in Equation 5, and the graph of the Gaussian function is

shown in Figure 4:

 f (x) =
1ffiffiffiffiffiffi
2p

p
s
e�

(x�m)2

2s2 (5)
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In Equation 5, m is the mean, indicating the central position of

the Gaussian distribution. It is the symmetric centre of the Gaussian

curve, determining its position and controlling the peak position of

the curve, which reaches its maximum at x = m. The s is the

standard deviation, representing the width of the Gaussian

distribution, which determines the degree of data dispersion: the

larger the standard deviation is, the wider and flatter the curve; the

smaller the standard deviation is, the narrower and steeper the

curve. In statistics, the normal distribution has an important

property known as the three-sigma rule (68-95-99.7 rule), which

states that in a normal distribution, approximately 68.27% of the

data lie within one standard deviation of the mean [m − s, m + s],
approximately 95.45% of the data lies within two standard

deviations [m − 2s, m + 2s], and approximately 99.73% of the

data lies within three standard deviations [m − 3s, m + 3s].
The Gaussian influence function is a variant of the Gaussian

function and is used mainly to describe the exponential influence of

a quantity with distance or time. Its form is shown in Equation 6.

The three-sigma rule of the Gaussian function also applies to the

Gaussian influence function. In the Gaussian influence function, the

values range from (0, 1), which aligns with the typical range of risk

values.

 f (x) = e�
x2

2s2 (6)

The Gaussian influence function is used to describe the ship

domain and assess risks (Im and Luong, 2019), this method is

highly reliable and effective. In risk assessment, the Gaussian

influence function represents the attenuation of risk with

distance, providing an intuitive and computationally simple

model for path planning and obstacle avoidance. Its smoothness

and symmetry ensure continuity and uniformity in risk

distribution, making it especially effective for representing the

high risk near anchored ships, where risk diminishes gradually

with increasing distance.

In this paper, the map is divided into Voronoi polygons. The

distance from each ship to the Voronoi polygon boundary is half of

the ship spacing, the risk posed by each anchored ship is confined to

the area within its assigned Voronoi polygon. For example, a

Gaussian influence function with a parameter of s = 80 can be

used to depict the risk values, as shown in Figure 5.

The Gaussian influence function ensures that the risk gradually

decreases with distance, naturally simulating the risk posed by the

anchored ship to its surroundings. By calculating the distance d

from a point to the boundary of the unnavigable zone and applying

the Gaussian influence function, precise risk assessments can be

provided for path planning, thus enhancing navigation safety and

the effectiveness of path selection. The map is converted to grids,

with d being the distance from the centre of the grid to the boundary

of the unnavigable zone, which is calculated as shown in Equation 7.

Every grid outside the unnavigable zone has a risk value with the

range set to [1,2), and the grid risk function derived from the

modified Gaussian influence function is shown in Equation 8.

 d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� xedge)

2 + (y� yedge)
2

q
(7)
FIGURE 3

Distribution of ship domain with forbidden and avoidance areas.
FIGURE 2

Ship domain.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1503482
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1503482
In Equation 7, x and y are the 2-dimensional coordinates of the

grid centre, whereas xedge and yedge are the 2-dimensional

coordinates of the corresponding point on the ellipse boundary.

 D(n) =
1 + e�

d2

2s2 ,   d > 0

∞  ,   d ≤ 0

8<
: (8)

In Equation 8, n represents the index or identifier of the

current grid point, which is used to indicate its position within the

overall risk matrix. D(n) is the grid risk degree function, and d

represents the distance from a point to the boundary of the

unnavigable zone. When d > 0, the point is outside the

unnavigable zone, and the risk decreases as the distance

increases. When d = 0, the point lies on the boundary, and the

risk is set to infinity (∞). When d< 0, the point is inside the

unnavigable zone, and the risk is also set to infinity (∞).

The risk caused by a single ship to its surroundings is displayed

on the grid map, with white representing the forbidden zone, and
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yellow to purple indicating gradually decreasing risk levels, as

shown in Figure 6.

The traditional A* algorithm uses only path length as its

heuristic function, causing planned paths to often approach

obstacles and fail to guide USVs to navigate safely and smoothly.

To address this issue, the RAPO incorporates the ship domain and

Gaussian influence function to determine the risk zones formed by

anchored ships for other vessels. The risk degree function is

included as part of the RAPO evaluation function for path planning.

The evaluation function is shown in Equation 9:

 f (n)¼ p(n) + h(n) (9)

 p(n) =o
n

i=1
cost(i − 1; i)� D(i) (10)

 h(n) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xG − xn)

2 + (yG − yn)
2

q
(11)
FIGURE 4

Gaussian function plot.
FIGURE 5

Gaussian influence function plot (s = 80).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1503482
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1503482
where f(n) is the total cost of the current node D(n) is the grid

risk degree function, p(n) represents the path cost from the start

point S to the current point n after including the risk, h(n)

represents the estimated minimum cost from the current point n

to the goal node G, xG is the x-coordinate of the target node G, and

yG is the y-coordinate of the target node G.

The superiority of Equation 9 over Equation 3 lies in its better

consideration of potential collision risks. By introducing the grid

risk degree function D(n), USVs can effectively avoid entering

unnavigable zones.

2.2.2 Dual-phase smoothing strategy
2.2.2.1 Bresenham-based path smoothing

The RAPO, which incorporates risk assessment, is limited by

the heuristic search principle, which does not allow cross-grid

search, resulting in many redundant turning points in the

planned path. Path smoothing aims to improve the continuity

and feasibility of the USV path and lower the energy

consumption. In practical applications, path smoothing can

significantly enhance the navigation performance and task

execution efficiency of USVs. By introducing a path smoothing

strategy, the path length can be optimised, removing redundant

nodes and unnecessary turns.

The initial path, generated by the RAPO, which incorporates risk

assessment, may contain many redundant nodes and turns. To

optimise this path, the Bresenham line algorithm (Wang et al.,

2024) is used to check the connections between every pair of

adjacent nodes, and a schematic of Bresenham line path smoothing

is shown in Figure 7. If the risk values of all intermediate nodes

between the current node and a distant node are within an acceptable

range (below the set threshold), these nodes can be directly

connected. By doing so, intermediate redundant nodes are skipped.

The pseudocode for the initial smoothing is shown in Algorithm 1.
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2.2.2.2 Cubic B-spline-based path smoothing

After the initial smoothing by the Bresenham algorithm,

although redundant nodes and sharp turns have been partially

reduced, significant angular changes may persist. These changes can

lead to large turning angles, increasing energy consumption and

operational difficulty for USVs during actual operation. To further

optimise the smoothness and continuity of the path, a path

smoothing method based on cubic B-splines (Muñoz, 2008) was

introduced in the second stage of the DPSS. The mathematical

definition of the B-spline curve is shown in Equation 12:

C(u) =o
n

i=0
Ni,k(u)Pi (12)

In Equation 12, C(u) represents the point on the curve at

parameter u, Pi is the ith control point, and Ni,k(u) is the B-spline

basis function, with k=3 indicating a cubic B-spline.

The recursive definition of the cubic B-spline basis function

Ni,3(u) is as follows:

For the zeroth-degree B-spline basis function, as shown in

Equation 13:

Ni,0(u) =
1 if     ui ≤ u < ui+1

0 otherwise

(
(13)

For higher-degree B-spline basis functions, as shown in

Equation 14:

Ni,k(u) =
u − ui
ui+k − ui

Ni,k−1(u) +
ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u) (14)

To generate smooth B-spline curves, uniformly distributed knot

vectors were adopted. If there are n+1 control points, the knot

vectors are typically defined as:

u = u0, u1,…, uk−1, uk,…, un, un+1,…, un+kf g (15)
FIGURE 6

Risk distribution around an anchored ship.

FIGURE 7

Schematic diagram of Bresenham-based path smoothing.
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Fron
Algorithm: BresenhamLineSmoothPath

Input: path - a list of points forming the initial path

risk_matrix - a 2D grid representing risk values of

the area

threshold - maximum acceptable risk value for a

path to be

considered safe

Output: smoothed_path - a list of points forming the

smoothed path

1: Initialise smoothed_path with the first point

of path

2: Set skip to 0

3: For each point i from 1 to the second last point

of path

4: If skip is not zero then

5: Decrement skip

6: Continue to the next iteration of the loop

7: End If

8: For each point j from end of path down to i + 1

9: Generate all points on the line from the last point

o f s m o o t h e d _ p a t h t o p a t h [ j ] u s i n g t h e

BresenhamLine function

10: If all points on the line have a risk value<=

threshold Then

11: Add path[j] to smoothed_path

12: Set skip to j - i - 1

13: Break the inner loop

14: EndIf

15: EndFor

: If no suitable connection point was identified Then

17: Add path[i] to smoothed_path

18: End If

19: End For

20: Return smoothed_path
ALGORITHM 1 Bresenham-based path smoothing pseudocode..

These uniformly distributed knot vectors ensure a smooth

transition between control points in the B-spline curve.

In accordance with the standards set forth in the U.S. Navy’s “Navy

USVMaster Plan”, USVs with lengths ranging from 3 to 11 metres are

widely employed in various mission scenarios. In this paper, a typical

10-metre USV with a turning radius of approximately 30 metres was

selected. The 30-meter insertion interval not only meets the

requirements for path smoothing but also aligns with the

maneuvering characteristics of the USV, ensuring that the generated

path is both operationally stable and feasible. Consequently, control

points were inserted every 30 metres. A schematic of the second

smoothing is shown in Figure 8. The pseudocode for the second path

smoothing is shown in Algorithm 2.

The cubic B-spline method significantly improved path

smoothness, reduced the number of sharp turns, enhanced the

navigational stability of the USV, and optimised the path’s continuity

and length. As a result, the economic efficiency and safety of the

generated path in complex environments were effectively improved.
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3 Simulation experiments

3.1 Experimental environment setup

All simulations were conducted on a computer with Microsoft

Windows 11 as the operating system, an Intel i5 3.10 GHz twelve-

core CPU, and 16 GB of RAM. To validate the rationality and

efficiency of the RAPO algorithm proposed in this paper,

simulations were carried out on a 2D static grid map with

PyCharm as the development environment.
3.2 Anchorage area model construction

3.2.1 Ship positioning and Voronoi
polygon partitioning

In this paper, anchorages and anchored ships in Beibu Gulf

waters were referred to. The simulated anchorage size was set to

5.5 km × 4.8 km. Sixty anchored ships, each with lengths ranging

from 90 to 150 m, were included. The distance between ships was

set to 500 to 750 metres. The heading of each ship was uniformly

distributed within the range of 135° to 165°. The coordinates of the

anchored ships were set to determine their positions. Thirteen ships

with lengths of 90 to 110 m are represented by green dots. Twenty-

four ships with lengths of 110 to 130 m are represented by blue dots.

Twenty-three ships with lengths of 130 to 150 m are represented by

red dots. The anchored ships were used as points Pi to partition the

anchorage area via the Voronoi polygon. This process prepares for

the introduction of risk from the anchored ships. With Voronoi

polygon partitioning, the distribution of the simulated ships in the

defined anchorage area is shown in Figure 9.

3.2.2 Grid-based processing and risk evaluation
When processing environmental maps, grid-based maps are the

most commonly used form of representation and processing, as they

effectively convey spatial information and support the application of
FIGURE 8

Schematic diagram of the path smoothing process using cubic
B-Splines.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1503482
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1503482
various algorithms. The grid size was set to 30 m × 30 m, considering

that the normal length of a USV is approximately 10 m. The resulting

grid map used in the risk assessment is shown in Figure 10.

Before the simulation experiments, risk values were assigned to

each grid on the basis of the Gaussian influence function. Each

anchored ship formed a risk area. The anchored ships were used as

seed points for the Voronoi polygons. Each polygon was a risk

assessment unit. It was assumed that each anchored ship affected

only the navigable waters within its corresponding Voronoi

polygon. The distance between anchored ships ranges from 500

to 750 m, and the shortest distance from an anchored ship to the

boundary of its Voronoi polygon is approximately 250 m.

Considering that the main influence range of the Gaussian

distribution is concentrated within [−3s,+3s], corresponding to

an actual risk range of 250 m, 3s =250 is set, yielding s ≈ 80. So, the

parameter s in the Gaussian influence function was set to 80.
Fron
Algorithm: B-SplineSmoothPath

Input: smoothed_path: A list of points forming the

smoothed path after the first smoothing. interval:

The distance interval for inserting control points along

the smoothed path (set to 30 metres). degree: The

degree of the B-Spline (set to 3).

Output: b_spline_path: A list of points forming the

final smoothed B-Spline path.

1: Initialise control_points as an empty list.

2: For each pair of consecutive points (start_point,

end_point) in smoothed_path:

3: Calculate the segment_length between start_point

and end_point.

4: If segment_length > 0:

5: Calculate the number of control points to insert

(num_points = segment_length//interval).

6: For each j from 0 to num_points:

7: Calculate the interpolated point between

start_point and end_point using linear interpolation.

8: Add the interpolated point to control_points.

9: Else:

10: Skip the segment (if start_point and end_point

are identical).

1 1 : A d d t h e l a s t p o i n t o f s m o o t h e d _ p a t h

to control_points.

12: Generate a uniform knot vector based on the number of

control_points and the degree of the B-Spline.

13: Create a B-Spline curve using the control_points and

the knot vector.

14: Generate a dense set of points along the B-Spline curve

to represent the final smoothed path (b_spline_path).

15: Return b_spline_path.
ALGORITHM 2 B-Spline-based path smoothing pseudocode..

After the map was converted to grids, each grid was assigned a

risk value. The risk value for unnavigable zones was set to infinity.

Grids in this area are displayed in white. The risk values for risk
tiers in Marine Science 09141
zones ranged from 1 to 2, with colours representing the risk value

from purple (low risk) to yellow (high risk), transitioning through

cyan and green. A risk distribution map of anchored ships is shown

in Figure 11, where “Start” is the starting point and “Goal” is the

ending point.
3.3 Path planning and smoothing

The RAPO algorithm was used to plan safe and efficient paths

for USVs in anchorage areas. First, a modified Gaussian influence

function was used to conduct risk assessments to minimize

potential risks. Then, the algorithm optimises the path through

two stages of DPSS path smoothing. In the first phase, a Bresenham-
FIGURE 9

Simulated ship positions and Voronoi polygon partitioning in
the experiment.
FIGURE 10

Simulated ship positions and Voronoi polygon partitioning in
the experiment.
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based path smoothing method is employed to eliminate

unnecessary turns and redundant nodes in the initial path. In the

second phase, a cubic B-spline-based path smoothing method is

used to further smooth the path obtained from the first phase,

inserting a control point every 30 meters on the path obtained from

the first-phase smoothing, and then applying a cubic B-spline curve

to smooth the path. After the DPSS, the number of turns is

significantly reduced, and the smoothness of the path is improved.
3.4 Simulation results

The RAPO algorithm integrates risk assessment and the DPSS,

to verify that the RAPO algorithm can be applied to path planning

in anchorage areas, simulation experiments were conducted. The

path planning results of the RAPO algorithm at a path risk value of

1.5 are shown in Figure 12, where the blue solid line represents the

initial path from the risk-improved A* algorithm within RAPO, the

black solid line indicates the path after the first-phase smoothing

based on Bresenham’s algorithm, and the red solid line shows the

final path after the second-phase smoothing using a cubic B-spline.

The path planning results indicate that the RAPO algorithm, which

includes DPSS, significantly improves both path length and the

number of turns across different path risk tolerances. Table 1

presents the path lengths, number of turns, and maximum turning

angles for the RAPO algorithm under path risk tolerances of 1.2, 1.5,

and 1.8. Compared with the original paths generated through risk
Frontiers in Marine Science 10142
assessment within the RAPO algorithm, the lengths of the smoothed

paths were reduced by 7.13%, 7.60%, and 7.70%, respectively. The

number of turns decreased by 81.13%, 90.57%, and 94.34%,

respectively, while the maximum turning angle was reduced by

17.78%, 13.33%, and 11.11%, respectively. When comparing the

smoothed paths at different risk tolerances, the path length with a

risk tolerance of 1.5 was reduced by 4.9%, and the number of turns

decreased by 57.14% compared with the smoothed path with a risk

tolerance of 1.2. The path length at a risk tolerance of 1.8 is reduced by

0.51% compared to that at a risk tolerance of 1.5, and the number of

turns decreases by 50%. The path length at a risk tolerance of 1.8 is

reduced by 0.61% compared to that at a risk tolerance of 1.2, and the

number of turns decreases by 70%. As the risk tolerance increases, the

resulting path length continuously shortens, and the number of turns

decreases, thereby reducing the operational difficulty and energy

consumption of the USV, thus ensuring the economy of the path.
4 Discussions

The RAPO algorithm proposed in this paper first assesses the

risk of anchored ships and then plans a route, while also smoothing

the route to ensure a safe and economical path for USVs in

anchorage areas. The results from simulation experiments

demonstrate that the RAPO algorithm outperforms the A*

algorithm (Hart et al., 1968), the Voronoi-based A* algorithm
FIGURE 11

Risk distribution map of anchored ships.

FIGURE 12

Path planning outcomes under a risk tolerance of 1.5 using the
RAPO algorithm.
TABLE 1 Comparison of path planning of the RAPO algorithm under different risk tolerances.

Risk
Tolerance

Original Path
Length (Risk-
Assessed) (m)

DPSS Smoothed
Path Length (m)

Original
Number
of Turns

Smoothed
Number
of Turns

Original Max
Turning
Angle (°)

Smoothed Max
Turning
Angle (°)

1.2 8.641 8.025 53 10 45° 37°

1.5 8.641 7.984 53 5 45° 39°

1.8 8.641 7.976 53 3 45° 40°
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(Fedorenko and Gurenko, 2016), RRT algorithm (LaValle, 1998)

and PSO algorithm (Kennedy and Eberhart, 1995) in terms of path

length, the number of turns as well as a path smoothness.

Figure 13 illustrates the paths obtained by the five algorithms.

The blue solid line represents the path generated by the RAPO

algorithm, the red solid line represents the path produced by the

traditional A* algorithm, the orange solid line shows the path from

the Voronoi-based A* algorithm, the golden yellow solid line

represents the path obtained by the RRT algorithm, and the black

solid line represents the path from the PSO algorithm.

When the risk tolerance is 1.5, path planning was conducted

using five different algorithms, and the simulation results are shown

in Table 2. In terms of path length, the RAPO algorithm resulted in a

path length of 7.984 km, which is significantly shorter than the paths

obtained by the other four algorithms. It can be seen that while

considering risk factors to ensure path safety, its path length is also
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the shortest, and the overall path length was further optimized after

applying the DPSS. Regarding the number of turns, the path obtained

by the RAPO algorithm has only 5 turns, which is significantly fewer

than the 39 turns of the traditional A* algorithm, the 20 turns of the

Voronoi-based A* algorithm, the 68 turns of the RRT algorithm, and

the 7 turns of the PSO algorithm. In terms of the maximum turning

angle, the path generated by the RAPO algorithm has a maximum

turn of only 40°, which is significantly lower than the 45° of the

traditional A* algorithm, the 90° of the Voronoi-based A* algorithm,

the 128° of the RRT algorithm, and the 57° of the PSO algorithm. It

can be seen that the path smoothing phase in the RAPO algorithm

effectively reduces unnecessary turns, enhances path smoothness, and

decreases the operational difficulty and energy consumption of USVs.

Additionally, the maximum risk value of the path obtained by the

RAPO algorithm is 1.484, which, although higher than that of the

path obtained by the Voronoi-based A* algorithm, is still within the
（a）Paths with different algorithms in 

simulation
（b）RAPO Path （c）A* Path

（d）Voronoi-based A* Path （e）RRT Path （f）PSO Path

FIGURE 13

Path planning outcomes by different algorithms.
TABLE 2 Comparison of different path planning algorithms with risk tolerance of 1.5.

Algorithm Type Path Length (km) Number of Turns Maximum Turning Angle (°) Maximum Risk Value

RAPO 7.984 5 40° 1.484

Traditional A* 8.013 39 45° 2

Voronoi-based A* 9.257 20 90° 1.214

RRT 9.299 68 128° 2

PSO 8.991 7 57° 1.97
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set range. Therefore, the RAPO algorithm can plan a safe path for

USVs in anchorage areas.

The traditional A* algorithm focuses solely on finding the

shortest path, without considering path safety, resulting in poor

overall path safety. Additionally, the traditional A* algorithm

generates paths with numerous redundant turns, which increases

operational complexity and energy consumption. Although the

Voronoi-based A* algorithm considers path safety, it does not

optimize path length, resulting in longer paths. Furthermore, the

paths are constrained by the boundaries of Voronoi polygons,

leading to more sharp turns, which further increases operational

difficulty and energy consumption. The RRT algorithm lacks path

smoothness in path planning, generating longer paths with

excessive sharp turns and limited overall optimization capability.

Although the PSO algorithm demonstrates certain global

optimization capabilities, its generated paths perform poorly in

risk avoidance, making it difficult to ensure path safety.

The RAPO algorithm mainly combines risk assessment with the

DPSS. The addition of risk assessment to path planning allows the

path to successfully bypass high-risk areas. The DPSS process

eliminates a large quantity of unneeded turns and improves the

flow of the path. The RAPO algorithm is capable of designing routes

for USVs in challenging environments, ensuring both the safety and

economy of the path, and also making USVs operations less difficult

and less energy intensive.
5 Conclusions

This paper proposes the RAPO algorithm to enhance the

safety and efficiency of USVs in anchorage areas. The algorithm

integrates a grid-based risk function derived from the ship domain

model, a Gaussian influence function, and the DPSS. By defining

prohibited zones using the ship domain and conducting risk

assessments on waters outside these zones with the Gaussian

influence function, the algorithm effectively avoids high-risk

areas, improving the safety of path planning. Furthermore, the

DPSS reduces the number of turns, resulting in a smoother and

more efficient planned path.

Still, the algorithm has some inherent limitations. Initially, the

algorithm’s computational burden is quite high, which leads to an

increase in time needed and the smoothing results are contingent

upon the parameter settings. Then, the algorithm is currently

mostly focused on static environments, which may influence its

use in real complex marine settings.

In future research, the role of ocean currents in the navigation

environment will be examined to better understand USVs

navigation in anchorage areas. In addition, the exploration of

path planning for USVs in dynamic environments with both

static and dynamic obstacles will be undertaken to further

improve the practicality of the RAPO algorithm, allowing it to

perform well in static environments and to provide safe and

effective path planning in complex dynamic settings.
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Large-scale weather forecasting is critical for ensuring maritime safety and

optimizing transoceanic voyages. However, sparse meteorological data,

incomplete forecasts, and unreliable communication hinder accurate, high-

resolution wind system predictions. This study addresses these challenges to

enhance dynamic voyage planning and intelligent ship navigation. We propose

IPCA-MHA-DSRU-Net, a novel deep learning model integrating incremental

principal component analysis (IPCA) with a spatial-temporal depthwise separable

U-Net. Key components include: (1) IPCA preprocessing to reduce dimensionality

and noise in 2D wind field data; (2) depthwise-separable convolution (DSC) blocks

to minimize parameters and computational costs; (3) multi-head attention (MHA)

and residual mechanisms to improve spatial-temporal feature extraction and

prediction accuracy. The framework is optimized for real-time onboard

deployment under communication constraints. The model achieves high

accuracy in high-resolution wind predictions, validated through reanalysis

datasets. Experiments demonstrated enhanced path planning efficiency and

robustness in dynamic oceanic conditions. The IPCA-MHA-DSRU-Net balances

computational efficiency and accuracy, making it viable for resource-limited ships.

This novel IPCA application provides a promising alternative for preprocessing

large-scale meteorological data.
KEYWORDS

extreme wind forecast, machine learning, marine navigation, incremental principal
component analysis, depthwise-separable convolution
1 Introduction

Marine transportation has been recognized as one of the indispensable transport models

for developing a global logistics network. In recent years, with the rapid development of global

trade and the vast expansion of the supply chain network, the demand for reliable and

efficient marine transport has increased sharply (Koukaki and Tei, 2020). Yet, potential
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challenges and risks arise for sea-going vessels when it comes to long-

distance path planning due to the instability and unpredictability of

the meteorological environment resulting in too much uncertainty

(Lau et al., 2024). This is especially so when encountering adverse sea

conditions, such as extreme wind and wave scenarios, that can

significantly impede ship navigation, thus, requiring timely speed

reduction and route deviation so as to ensure safety (Rawson et al.,

2021). Ocean state conditions can significantly impact the safety and

decision-making of marine vehicles. Although shipping route

recommendations could be obtained from weather routing

companies (Szlapczynski et al., 2023), real-time access to weather

forecasts is becoming more crucial for underway ships. Accurate and

timely weather forecasting can support the captain in designing and

determining the ship’s path in advance and further ensure the safety

of mariners and ships. More importantly, efficient and handy

onboard weather predictions can provide invaluable marine

environment references for intelligent navigation (He et al., 2022).

Accurate and fine-grid weather predictions are essential for the

seaworthiness and safety of sea-going ships, especially during long

transoceanic voyages, where vessels are exposed to the open ocean’s

full range of meteorological and oceanographic phenomena. These

voyages can last days or weeks, during which weather and sea states

can change rapidly and drastically, impacting both the physical safety

of the vessel and the efficiency of its journey. Fine-scale weather

predictions play a critical role in enhancing situational awareness for

shipping operations, enabling them to anticipate and mitigate risks

associated with severe sea conditions, such as strong winds, and

intense storms. For instance, accurate, high-resolution weather

forecasts enable route planning to avoid severe weather, which

reduces fuel consumption, lowers operational costs, and minimizes

emissions. Given the substantial size and fuel requirements of ocean-

going vessels, even minor deviations from optimal weather

conditions can result in significant additional fuel consumption,

which contributes to both increased costs and environmental

impact. Fine-grid predictions allow for precise navigational

adjustments that align with favorable weather patterns, helping

ships follow safer and more efficient routes. Moreover, a precise

forecast of extreme wind on a fine grid can give shipping operators

and crew sufficient warning to take preventive measures, such as

adjusting speed, changing course, or securing loose cargo. For crews,

these predictions mean better preparation and safety measures,

reducing the likelihood of accidents or fatalities. As a consequence,

providing accurate and efficient meteorological prediction is crucial

for achieving intelligent, safe, and green ship path planning (Zis

et al., 2020).

Classical ocean and meteorology forecasting relies on the

numerical weather prediction model (NWP). It uses the collected

meteorological parameters, geographical boundaries, and initial

conditions to predict weather variability based on a physical

conservation equation (Cheng et al., 2013; Hur, 2021). Nevertheless,

the inherent instability and stochasticity characteristics of earth system

evolution make it challenging to forecast global weather using

deterministic weather forecast models. In addition, with the

increasing complexity, higher uncertainty, and variability of earth

systems due to global climate changes, traditional numerical
Frontiers in Marine Science 02147
forecasting models tend to fail to capture abrupt and intricate

spatial-temporal disturbances and dependencies inherited in earth-

evolving systems (Ouyang et al., 2017; Wu et al., 2023). The

computational cost of a physical model-based numerical method is

very high. These intricate numerical models pose significant challenges

in development and maintenance, yet, are quite rigid for real-time

applications (Cai et al., 2020; Yan et al., 2023). Moreover, the spatial-

temporal resolution of a numerical model would have a significant

impact on prediction accuracy, such as the grid and temporal interval

resolution. Improving the grid resolution will achieve longer processing

times and higher computational requirements. Most weather forecast

and weather observation systems mainly provide sparse low-resolution

data samples. For instance, as illustrated in Figure 1, there is missing

wind forecasting or observational data in different large regions, and as

marine meteorology is vast and complex, the observational and

monitoring costs of the marine environment are much higher than

those of the continents. Only certain parts of the ocean region where

data samples are available can be validated.

Tremendous efforts have been implemented to explore ship path

planning and optimization based on ocean forecasts, such as dynamic

programming, A-star algorithm, and genetic algorithm (Chen et al.,

2021b; Khan et al., 2022). For example, a new stability-related, dynamic

route constraint was proposed for path optimization (Krata and

Szlapczynska, 2018). Du (2022) developed an improved 3D dynamic

programming algorithm for ship path planning, which takes the

meteorological conditions, constraints of engine power, and safety

into consideration. Yet, many previous ship path planning approaches

primarily focused on realizing the shortest navigation time. Those

optimization methods usually neglected the comprehensive energy

consumption and motion response factors, especially when

encountering severe sea states. Currently, the marine industry is

paying more and more attention to shipping energy efficiency, thus,

more comprehensive factors, including fuel consumption, the safety of

mariners and vessels, reduction of greenhouse gas emissions, and so on,

have to be taken into account to achieve greener route planning

(Moradi et al., 2022; Chen and Mao, 2024). For example, a multi-

objective route optimization methodology was proposed (Vettor and

Soares, 2016) by employing the genetic evolution algorithm while

realizing route and speed optimization simultaneously. Ma et al. (2021)

established a ship routing and speed multi-objective optimization

framework for minimizing greenhouse gas emissions by selecting

appropriate plans. A genetic algorithm is employed to derive the

optimal route based on a ship heading or on both heading and

propulsion power information. Yet, a low-resolution sea state dataset

was integrated into this study and their main focus was to achieve fuel

savings (Kytariolou and Themelis, 2022). Important weather and sea

state information is often absent for the ship sensors, thus, a hybrid

data fusion and machine learning model was proposed to evaluate the

relationship between fuel consumption rate and the voyage’s weather

situation. This study attempted to aggregate meteorological data and

sensor information for the purpose of enhancing the accuracy of

machine learning (ML) models, and they focused on quantifying

ship fuel consumption based on weather conditions, sailing speed,

and sea conditions (Du et al., 2022). A novel study established a hybrid

genetic algorithm to optimize ship path planning for safe transoceanic
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navigation with complicated sea conditions. They mainly focused on

the voyage time and fuel consumption as the optimization criteria, yet

overlooked the issue of the ship’s own structure’s resistance to wind

and waves and the workload of personnel during high wind and wave

weather (Zhou et al., 2023). An improved A* algorithm was proposed

for ship collision avoidance path planning by integrating the multi-

target point artificial potential field method (MPAPF). They analyzed

the static environment and ship navigating situation, thus, the dynamic

weather information may be lost (Huang et al., 2024). The Non-

Dominated Sorting Genetic Algorithm III (NSGA-III) model was

employed to realize ship weather routing tasks by integrating ship

heading angle and speed. The main aim was to optimize operational

costs and CO2 emissions (Ma et al., 2024). A constrained policy

optimization (CPO) perspective was proposed for a multi-objective

path planning model to investigate Pareto-optimal paths, and the

results demonstrated that adapting the potential policy factors into the

ship path planning model could achieve an advantageous result in

complex environments (Zhu et al., 2025a). In order to reduce fuel

consumption during a ship voyage, a route planning model that is able

to identify energy-efficient routes in complicated sea conditions was

proposed by combining ocean currents into the traditional level set

method. They proved that ocean environmental factors, such as ocean

currents, were very useful for energy-efficient ship voyage planning

(Zhu et al., 2025b).

The above studies focused on ship path planning from different

perspectives. Nevertheless, most of these approaches employed

meteorological forecasts with very low spatial-temporal
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resolution. It has been emphasized that low spatial and temporal

resolution weather forecasting data usually result in inaccuracy in

shipping path optimization (Wu et al., 2023). In addition, high-

resolution ocean weather prediction plays a major role in ensuring

the safe navigation of intelligent autonomous marine vehicles

(Chen et al., 2021a; Qiao et al., 2023).

Deep learning methods have been demonstrated to show

promise in mitigating the gaps in numerical weather forecasting

models and marine environment monitoring systems (Kochkov

et al., 2024; Zhao et al., 2024). A deep learning-based weather

prediction model has exhibited great potential in uncovering

underlying climatic patterns from historical records, enabling the

acquisition of high-resolution forecasting data, which provides a

new perspective for improving the reliability of highly efficient and

intelligent ship path planning. Many researchers have been

attempting to explore different kinds of ML methods for

obtaining accurate natural wind estimations (Wang et al., 2021).

However, the intricate non-linear spatiotemporal properties of

large-scale spatial-temporal weather systems represent great

challenges for traditional machine learning which attempts to

extract sequential evolutionary trends from past records

(Khodayar and Wang, 2018).

For the purpose of alleviating the above-mentioned limitations

and research gaps, an incremental principal component analysis

(IPCA) based on a spatial-temporal depthwise separable U-Net

model by aggregating an attention and residual learning scheme, the

IPCA-MHA-DSRU-Net, was developed for fine-grid large-scale
FIGURE 1

Global sea surface wind from National Satellite Ocean Application Service (http://www.nsoas.org.cn/eng/column/141.html).
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extreme wind speed field system predictions. Specifically, the

depthwise-separable convolution (DSC) blocks first introduced

into this proposed method can provide an effective way to

improve forecasting efficiency and performance while reducing

their computational and memory requirements. The depthwise

separable blocks greatly reduce the number of parameters and

computation requirements compared to traditional convolutions.

They can allow for better feature extraction and aggregation by

separating the spatial and channel-wise information in the input

data (Zhou et al., 2024; Xu et al., 2024). Incremental principal

component analysis (IPCA) is also employed for 2D wind field

preprocessing, which can effectively filter the feature space of data

samples by reducing dimensionality and redundant noise effects.
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IPCA is an adaptive version of principal component analysis (PCA)

designed for large or streaming datasets. Instead of processing the

entire dataset at once, IPCA updates the principal components

incrementally as new data arrives, making it memory-efficient and

suitable for real-time or large-scale applications. Moreover, a

sequential sliding-data window scheme (Yin et al., 2023), obeying

a strictly chronological order, was mixed into the tensor-

preparation phase, which would enable the accurate preservation

of wind temporal-dependent variabilities within consecutive spatial

patterns. The framework of the developed wind system forecast

model is displayed in Figure 2.

As can be seen in Figure 2, the wind system forecast model

demonstrates the structure and workflow of the IPCA-based
FIGURE 2

The diagram of the proposed wind forecast model.
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spatial-temporal depthwise separable U-Net model. U-Net is a

convolutional neural network (CNN) architecture designed for

computer vision tasks. It features a symmetric U-shaped structure

with an encoder-decoder pathway: the encoder captures contextual

information by downsampling the input, while the decoder

reconstructs precise localization by upsampling. Skip connections

between corresponding encoder and decoder layers help preserve

spatial details, making U-Net highly effective for tasks like 2D image

processing and object detection. This developed forecasting model

utilizes modular IPCA preprocessing to effectively reduce the

dimensionality of the input data while preserving key spatial-

temporal patterns, which are essential for forecasting wind

systems. By incorporating depthwise separable convolutions, the

model achieves computational efficiency, allowing the processing of

large-scale spatial-temporal datasets with reduced complexity. The

attention mechanism selectively focuses on the most critical regions

in the input data, enhancing the model’s ability to capture

significant features that influence wind predictions. Meanwhile,

the residual learning scheme aids in preserving finer details and

mitigates the vanishing gradient problem, allowing deeper layers to

learn more nuanced patterns in the data.

First, the reanalysis dataset, which assimilates real observations

with numerical simulation, is employed as the input, and then the

input data sample is preprocessed by the employed IPCA method to

filter noise and retain principle components of wind variability. Next,

the processed wind dataset is fed into the proposed forecasting hybrid

U-Net model. The last step is to aggregate the forecasting output from

the hybrid U-Net model and analyze the forecasting performance.

The figure provides a step-by-step visual representation of the data

flow, making it easier to understand the contributions of each

component in achieving accurate and efficient wind forecasting.

This comprehensive architecture, with its innovative use of IPCA,

depthwise separable convolutions, attention, and residual

connections, demonstrates a balanced approach to handling

complex spatial-temporal wind data for forecasting applications.

Our study developed a novel deep learning model for onboard

weather prediction during large-scale ocean voyages. It provided us

with a fully complete large-scale sea surface wind field forecasting

with very high resolution and accuracy, which is very important and

valuable for voyage scheduling to avoid severe sea states and ensure

the safety of seafarers and ship transoceanic navigation. In addition,

the transferability of the proposed model is also verified by utilizing

two different geospatial regions with various weather characteristics.

By mapping weather observational gaps into a fine-grid and complete

spatial perspective, the proposed approach, implemented on a single

laptop, aims to enhance the timeliness and accuracy of onboard ship

routing, thereby enhancing ship navigation safety. The main aim and

focus of this study is to provide ships undertaking transoceanic ship

voyages with a highly accurate and high-resolution sea state

forecasting model onboard while taking the factors of ship

structure safety and seafarer workload into consideration. Finally,

the model provides instantaneous extreme wind system pattern

mapping, helping achieve adaptive and intelligent path planning

for marine vehicles, especially for sea-going navigations in large-

scale oceans.
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The main contributions of this study can be summarized

as follows:
1. A novel intelligent neural-learning model was developed by

aggregating a depthwise-separable convolution-based U-

Net framework with attention and residual learning blocks.

2. Incremental principal component analysis was first

introduced to preprocess a fine-grid wind dataset, filter

Empirical Orthogonal Function (EOF) models, and retain

principal wind evolution information.

3. The DSC-based methodology was developed to achieve

fine-grid spatial-temporal extreme wind field forecasting on

a large scale.

4. The fine-grid wind prediction model can enhance the

navigation safety of sea-going vessels.

5. A sequential sliding-data window is adopted for the

aggregation of input-target tensor pairs to better preserve

the temporal wind evolution information.

6. A sensitivity trial was implemented to explore wind

forecasting model parameter adjustment and optimization.

7. The transferability of the intelligent neural learning model

was validated by employing two geographic regions with

different wind patterns.
The remainder of this article is arranged as follows. Section 2

introduces the developed spatial-temporal wind prediction

approach. The targeted experimental case is presented in Section

3 with the quantitative forecasting analysis, and Section 4 validates

the model transferability. Finally, Section 5 summarizes the work

and outlines future directions.
2 Methodology

The novel hybrid wind systems forecasting model, IPCA-MHA-

DSRU-Net, integrates IPCA with a spatial-temporal depthwise

separable U-Net architecture, enhanced by attention and residual

learning mechanisms. This model aims to achieve fine-grid, large-

scale wind system predictions, improving voyage planning and

navigation safety. The use of DSC blocks significantly reduces model

parameters and computational complexity. By leveraging the strengths

of modular IPCA preprocessing, residual learning, multi-head

attention, and the depthwise separable CNN-based U-Net

architecture, this hybrid framework is optimized to predict complex,

spatial-temporal variations in extreme wind signals. Detailed

explanations for each component of the proposed model are as follows.
2.1 Incremental principal component
analysis

The basic theory of PCA is to generate a set of independent

composite indicators by recombining the raw variables, thereby

reducing the dimensionality of the original data samples while

retaining most of the original/principal information features.
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Specifically, PCA performs data transformation on the original data

and projects it onto a new coordinate system, resulting in the

projected data having the largest variance. The main merits of PCA

include reducing data dimensionality, decreasing computational

complexity and model complexity, reducing the impact of noise,

improving the signal-to-noise ratio of data, identifying the most

important features in data samples through dimensionality reduction,

and removing some redundant features, thereby reducing the risk of

overfitting and improving the model’s generalization ability (Xu et al.,

2023a; Xiao et al., 2023; Zhang et al., 2024b).

Provided that the targeted data-sample size is m x n, the data

sample matrix is represented in the Equation 1 as follows:

P =

p11   p12  ⋯   p1n

p21   p22  ⋯   p2n

⋯  ⋯  ⋯  ⋯

pm1   pm2  ⋯   pmn

2
666664

3
777775 (1)

subtract the average value of each column in the Equation 2:

P =

p11 − b1   p12 − b1  ⋯   p1n − b1

p21 − b1   p22 − b1  ⋯   p2n − b1

⋯  ⋯  ⋯  ⋯

pm1 − b1   pm2 − b1  ⋯   pmn − b1

2
666664

3
777775 (2)

where bi is the average of each column in the Equation 3:

bi =
1
mo

m

i=1
pji (3)

The covariance CM is an m × m matrix, and the CMij of the

covariance matrix indicates the covariance value of the targeted

variables pi and pj. Next, the eigenvalues of the covariance CM are

derived and the computed eigenvalues are filtered in descending

order. The eigenvectors related to the first k eigenvalues are

employed to aggregate a new feature matrix. Finally, after the

dimensionality reduction operation, the projection of P on the

new eigenvector matrix is computed to represent the eigenvectors.

IPCA decomposes a large-scale sample into multiple small-

batch datasets through gradual iterations and performs principal

component analysis on each small-batch dataset. This avoids the

memory and computing resource consumption caused by

processing the entire dataset at once. After conducting principal

component analysis on each small-batch dataset, the obtained

principal components are merged so as to obtain the principal

components of the entire dataset. Compared to traditional PCA

algorithms, IPCA has lower computational complexity and can

obtain principal components with greater efficiency. It can also

perform incremental updates when new data arrives without

recalculating the principal components of the entire dataset, thus

achieving real-time data processing. IPCA employs singular value

decomposition to perform linear dimensionality reduction on target

data samples, retaining only the most important singular vectors,

and then processing/projecting the data samples into a lower

dimensional feature space. It finds principal components by

calculating singular value decomposition, processing only one
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batch of samples in one iteration to reduce memory consumption

(Greenacre et al., 2022; Weng et al., 2003). The principal

component is calculated by the Equations 4 and 5:

fPCi(n) = PCi(n − 1) + ai(n)u(n)u
T (n)PCi(n − 1) (4)

PCi(n) = orthonormalizefPCi(n)  with   respect   to   PCi(n),

  j = 1, 2,…, i − 1
(5)

where the PCi(n) denotes the projection of the ith dominant

eigenvector for the derived sample covariance matrix CM = E{u(n)

uT(n)}. The ai indicates a stochastic approximation gain. The un is a

m-dimensional vector.

The full wind speed field can be reconstructed by the linear

combination of the leading principal components (PCs) and their

corresponding EOFs after filtering redundant features and noise

signals. The EOF analysis is a statistical technique used to identify

dominant patterns or structures in spatial-temporal datasets, such

as climate or geophysical data. It decomposes the data into EOFs

that capture the maximum variance, with associated time

coefficients describing their temporal evolution. A given wind

field Windt, at time step t can be calculated as follows in the

Equation 6:

Windm,t = o
k

n=1
PCn,tEOFm,n (6)

where m denotes the grid index of the wind field, t indicates the

time index, and k is the total number of retained PCs.

IPCA is an adaptation of PCA that allows for processing data in

an incremental manner, rather than requiring the entire dataset to

be available in memory at once. Thus, instead of computing the

covariance matrix from the entire dataset at once, the algorithm

updates the principal components incrementally as new data

arrives. The key idea is that there is no requirement to store the

whole dataset, but data is processed in small batches (minibatches)

and the principal components are updated as new data is fed into

the model.

The application of IPCA in 2D extreme wind field

preprocessing offers a strategic approach to handle data

dimensionality and mitigate noise interference. It is very crucial

for improving prediction accuracy in wind field forecasting models.

Here is a detailed explanation of IPCA’s principles, and how they

rationalize its application in this context. Since wind field data are

typically represented as large 2D grids, with each cell corresponding

to specific wind metrics (e.g., speed and direction) at that spatial

point. Processing such high-dimensional input directly in deep

learning models would lead to high computational costs and

increase the risk of overfitting, especially with limited training

data. The IPCA reduces the spatial dimensions, retaining only

essential components that reflect the primary spatial patterns in

wind fields, making the data manageable without significant

information loss. By focusing on principal components, the IPCA

naturally discards lower-variance components, which are likely to

be noise. This selective filtering of information means that the data
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entering the forecasting model is “cleaner,” which supports better

model training and more accurate predictions. In addition, as a ship

navigates through different ocean regions, wind patterns will vary

significantly. The IPCA’s incremental nature allows it to adapt to

these changes by updating principal components with incoming

data. This ongoing adaptation ensures that the data fed into the

forecasting model always reflects current environmental conditions,

enhancing prediction accuracy, which allows forecasting models to

focus on essential features without the burden of excessive,

redundant information. This burden reduction lowers

computational demands, allowing models to train faster and

reducing the risk of overfitting. Additionally, because the model is

working with a cleaner, lower-dimensional dataset, prediction

accuracy tends to improve.

In summary, the choice of IPCA in 2D wind field preprocessing

is rational due to its ability to reduce dimensionality, handle real-

time data, and filter out noise, all while requiring limited resources.

This pre-processing step enhances the predictive model’s accuracy

and efficiency by supplying a refined, lower-dimensional input that

captures the most relevant spatial patterns in the wind field data. As

a result, IPCA-based preprocessing is a practical and effective

solution to prepare 2D wind data for deep learning models in a

constrained, dynamic environment like that on a ship.
2.2 Depthwise separable convolution

In general, the basic U-Net framework is prone to overfitting

and is computationally heavy with traditional convolution

operations. In this study, we introduced the DSC block to reduce

the basic U-Net model size and trainable parameters (Chollet,

2017). The DSC block separates a complete convolution operation

into two steps: pointwise convolution (PTC) and depthwise

convolution (DC). The operation of PTC is similar to classical

convolution, and its convolution kernel has a size of 1 × 1. Unlike

the classical convolution computing process, a kernel of DSC is

responsible for one channel. Therefore, the entire model parameters

are greatly reduced. Each input channel was applied by a single

convolutional kernel in the depthwise convolution and outputs the

respective feature maps.

In a standard 2D convolutional operation, a kernel spans all

input channels (or depth) and slides over the spatial dimensions

(height and width) of the input, creating output channels by

combining information from all input channels. However, in

depthwise convolution, each input channel has its own

independent kernel. Specifically, instead of applying a single

kernel across all input channels, the depthwise convolution

applies one filter per implementation independently. This process

captures spatial information within each channel but does not

combine information across different channels, which limits its

expressive power. Thus, the next step, pointwise convolution, is

introduced to address this issue. The pointwise convolution can

adjust the number of output channels and helps to combine the

channel-wise information produced by the depthwise convolution.
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By performing these two operations sequentially, the depthwise-

separable convolution emulates the effect of a standard convolution

while significantly reducing the computational cost.

Considering the input feature map I is (DI, DI, M), the target-

output O is (DO, DO, N); and the standard convolutional operation

kernel K indicates (DK, DK, M, N), of which M and N represent the

number of inputs and target channels, correspondingly. D denotes

the size of convolved high-dimensional feature maps. Specifically,

the kernel K is divided into two convolutional modulations: the

depthwise (DK, DK, 1, N) and pointwise convolution (1, 1, M, N). In

addition, the classical 1 x 1 convolutional kernel is employed in the

pointwise convolution modulation, and the channel features

derived by depthwise convolution operation are then projected

onto the deeper and higher channel space. The pointwise

convolution was applied after the depthwise operation, using N

convolutional kernels with 1 x 1 x M size for the purpose of

representing the M DK x DK feature maps. The weighted

combination operation is then performed in the depth direction

in order to generate the N DK, DK x 1 feature maps O (DO, DO, N).

The two convolutional modulations are illustrated in Figure 3.

The formula of standard convolution is expressed in the

Equation 7:

Ok,l,n = o
i,j,m

Ki : j,m,n   :     Ik+i−1,l+j−1,m (7)

and the formula of depthwise separable convolution is shown in

in the Equation 8:

Ô k,l,m =o
i,j
K̂ i,j,m   :     Ik+i−1,l+j−1,m (8)
2.3 Multi-head attention

The attention strategy in deep learning is widely used in image,

natural language processing, speech recognition, and so on. The

core task of the attention mechanism is to optimally extract critical

information from mass data samples quickly and accurately.

Compared with the standard convolution mechanism, the

attention strategy is characterized by fewer parameters, high

accuracy, and lower computational cost. The basic scaled dot-

production attention block consists of multi-head attention

modulation. It has been demonstrated that multi-head attention

is able to better catch and preserve underlying high-dimensional

features (Xu et al., 2023b, 2024). In particular, the attention

mechanism has been proven to be helpful for spatial-temporal

wind speed forecasting (Yu et al., 2023), and more non-linear

dynamics could potentially be reproduced, especially for the

dynamic fluid field (Niu et al., 2021; Che et al., 2022) based on

the multi-head strategy. The attention can be understood as a key-

value query, which maps queries and key values to the target output.

The essence of the attention is the processing of weighted

summation for values based on keys and queries, together with

the weight redistribution.
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The multi-head attention strategy exhibits lower complexity

compared to the scaled dot-product attention, allowing the

forecasting model to deeply map different high-dimensional

representations while avoiding the loss of small targets. In this

study, the query matrices were linearly projected three times on the

sequential wind-speed tensors. Then, the projected weight matrices

were concatenated to generate the refinement forecasting outputs.

In wind field forecasting, multi-head attention enhances the

model’s ability to interpret the spatial and temporal relationships

within the wind data. By simultaneously attending to multiple areas

of the input grid, the model captures subtle, location-specific

patterns (e.g., shifts in wind intensity across regions and changes

over time) that a standard convolutional layer may miss. Moreover,

traditional convolutional layers have a fixed receptive field and

struggle with long-range dependencies, particularly in spatial-

temporal data. Multi-head attention addresses this limitation by
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dynamically focusing on relevant areas across both spatial and

temporal dimensions. In the U-Net model, this allows the encoder-

decoder structure to more effectively aggregate spatial-temporal

information, which is crucial for fine-grid forecasting of fluctuating

wind conditions. More importantly, for real-time applications on

ships, balancing latency with model accuracy is essential. Multi-

head attention, while enhancing predictive accuracy through

improved feature attention, may introduce latency due to the

processing load. Efficient implementation techniques, such as

attention approximation methods (e.g., sparse or low-rank

approximations), can be considered to reduce the burden of

multi-head attention.

H and W are the height and width of the 2D input matrix and

the C indicates the feature number for the input-sequential tensors.

Providing that the sequential series represent Wind = ½x1,…, xN � ∈
RHxWxC, the dot-product will aggregate and derive the K and the Q
FIGURE 3

The Schematic illustration of depthwise separable CNN.
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together with the V query terms using three projected matrices Wk

∈ RDxxDk , Wq ∈ RDxxDq , and Wv ∈ RDxxDv in the Equation 9:

K = WinsWk ∈ RHxWxDk

Q = WindWq ∈ RHxWxDk

V = WindWv ∈ RHxWxDk

(9)

In the attention-based data-processing stage, a specific

normalization term x(qTi kj)   ∈ R1 will be introduced to calculate

the similarity between the ith query qTi ∈ RDk and the jth key kj ∈
RDk . Then at a designated position i, the attention weight is derived

by the Equation 10

ϑ(Q,K ,V) = x(
QKTffiffiffiffiffi

dk
p )V (10)

Larger dk derived from the input sequential tensors with higher

dimensions will then lead to the softmax-normalization trapped

into local optima with extremely small gradients. The scaled term
1ffiffiffiffi
dk

p , laterally aggregated into the weighted summation, will

alleviate this traditional vanishing gradient issue.

The ith row weights can be derived as the Equation 11

ϑ(Q,K ,V)i =
oN

j=1e
qTi kjvjffiffiffiffiffi

dk
p

oN
j=1e

qTi kj
(11)

sequentially, it can be simplified as

ϑ(Q,K ,V)i =
Y (qi)

ToN
j=1r(kj)v

T
jffiffiffiffiffi

dk
p

Y (qi)
ToN

j=1r(kj)
(12)

The Equation 12 can, then, be illustrated when different types of

normalization functions f() were aggregated

ϑ(Q,K ,V)i =
oN

j=1f(qi, ki)vi

oN
j=1f(qi, ki)

(13)

f(qi, kj) function will calculate the correlated similarities

between qi and kj.
A constraint term can be illustrated as the ker(x, y) R2xF → R+,

which would ensure that the specific attention blocks are non-

negative. The Equation 13 can be expressed as

ϑ(Q,K ,V) = o
N
j=1ς(qi)

Tς(ki)vi

oN
j=1ς(qi)

Tς(ki)
(14)

The associative property of the matrix multiplication was used

to rewrite Equation 14

ϑ(Q,K ,V) = V 0 =
ς(qi)

ToN
j=1ς(ki)v

T
i

ς(qi)
ToN

j=1ς(ki)
(15)

Equation 15 can, subsequently, be simplified when the

numerator is in the vector form as the Equation 16:

(ς(Q)ς(K)T )V = ς(Q)(ς(K)TV) (16)
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2.4 Spatial-temporal forecasting network

The underlying spatial-temporal features inherited in the

sequential wind speed systems with low-level nonlinearities are

mapped by the encoder module of the U-Net backbone, and high-

level semantic representations will then be extracted into the

decoder modulation (Ronneberger et al., 2015). Yet, the ordinary

skip-connection operations would usually lead to insufficient

exploration of potential semantic and contextual features,

especially for fine-grid 2D wind speed system mapping tasks.

Thus, in this study, two additional multi-head attention blocks

together with deep residual learning (Manucharyan et al., 2021) are

introduced together with depthwise separable convolutional

modulation to mitigate these issues. The residual learning block

mitigates the vanishing gradient problems that would usually occur

in very deep networks. It enables the constructed wind mapping

network to be deep enough. In addition, in the context of wind field

forecasting, residual learning allows the model to refine spatial-

temporal representations by focusing on differences in wind

patterns across time and space. This focus is especially important

for forecasting applications where subtle changes in wind

conditions need to be captured accurately. Residual learning

supports the model’s ability to detect and propagate important

spatial-temporal features throughout the network, improving

forecasting accuracy. The IPCA-based dimensionality reduction

further enhances residual learning by streamlining the data. With

IPCA pre-compressing high-dimensional inputs, residual layers can

focus on fine-tuning only the most critical components of the

compressed data, which reduces both computation and memory

usage without compromising model performance. Finally, residual

learning enables the model to adapt to rapidly changing wind

conditions by emphasizing residuals, or deviations, in the wind

field data. This adaptability is particularly valuable in marine

environments where weather and wind conditions can shift

quickly. With residual learning, the model becomes better

equipped to capture these subtle changes, leading to more

accurate and timely forecasts.

The diagram of the wind system mapping based U-Net model

combination is illustrated in Figure 4.

The residual block was only integrated into two layers of the

Decoder part, which would alleviate the total computational

burden. Specifically, one block was incorporated into the last

layer of the decoder, and the other one was located in the first

layer of decoder modulation. The attention block in between the

Bottleneck layer and 2D depthwise separable CNN layers can query

and reproduce more embedded spatial wind system features with

refinement operations. The second one further augments original

feature maps aggregated by skip-connections, deeper refinement,

and feature augmentation realized by the attention operations can

improve the final forecasting performance (Vaswani et al., 2017).

These newly introduced modifications, including DSC modulation,

attention blocks, and residual learning strategy, for the raw U-Net-

backbone, can enhance the reproduction performance of

underlying fine-grid 2D wind spatial variabilities. In addition,
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dropout layers were retained in the forecasting operations due to the

dropout being a potential Bayesian approximation that could

mitigate the predictive uncertainty for deep learning regression

tasks (Gal and Ghahramani, 2016).

The core architecture of this hybrid model is a depthwise

separable CNN-based U-Net-like structure, as illustrated in

Figure 4. The model adopts a U-Net-like architecture, which is

characterized by an encoder-decoder structure with skip

connections. This design is particularly effective for capturing

multi-scale features, making it suitable for spatiotemporal data

such as wind fields, and the 2D DSC layers employed in the U-

Net framework can process spatial data (e.g., wind speed maps)

across time steps, enabling it to learn spatial patterns and temporal

dynamics simultaneously. One of the major innovation points of

this proposed model is that the depthwise separable convolutions

are employed as the main CNN block, as shown in Figure 3, which

could reduce computational complexity and the number of

trainable parameters. This convolution operation separates spatial

filtering (depthwise convolution) from channel-wise feature

combinations (pointwise convolution), making the model more

efficient. This depthwise separable CNN block enhances the model’s
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ability to extract localized spatial features from extreme wind data

samples, which is critical for capturing fine-grained patterns in

wind fields. The other innovation of this model is that multi-head

attention is integrated into the proposed network to capture long-

range dependencies and interactions across both spatial and

temporal dimensions. This mechanism allows the model to focus

on the most relevant regions of the input data at different scales. By

computing attention scores across multiple heads, the model can

dynamically weight the importance of different spatial and temporal

features, improving its ability to model complex wind dynamics. In

addition, the residual connections are also incorporated to facilitate

gradient flow during training, mitigating issues such as vanishing

gradients and enabling the training of deeper networks. These

connections allow the model to reuse features from earlier layers,

enhancing its ability to learn hierarchical representations of wind

field data. As can be seen in Figures 2, 4, a reanalysis of the extreme

wind field dataset, which combines the real observation and

numerical model simulations using the data assimilation method,

was aggregated from the ERA5 model, and we then implemented z-

score normalization in the raw extreme wind dataset and

transformed the dataset into a standard form with a mean of 0
FIGURE 4

The wind system forecasting network.
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and a standard deviation of 1. Then, the IPCA approach was

employed for 2D wind field decomposition, which can effectively

filter the feature space of data samples by reducing dimensionality

and redundant noise effects. The autocorrelation analysis, as

outlined in section 3.1, is employed to obtain a comprehensive

perspective on the temporal dependency of the overall extreme

wind speed field sequential lagging. The sequential wind field time

lag is determined as 12 time steps, and the target wind field is a one-

time step. We then split the dataset into 70% training and 30%

testing parts. Afterward, several batch-size wind map data samples

with the aggregated wind tensors were fed into the developed

forecasting network for parameter training and optimization, and

the rest 30% testing data sample was used to test the model

performance compared to the reanalysis target.

A novel architecture was designed specifically for spatiotemporal

significant extreme wind signal prediction in a large-scale perspective,

which leverages the strengths of U-Net framework for precise feature

extraction. The IPCA approach was employed for 2D wind field

decomposition, which can effectively filter the feature space of data

samples by reducing dimensionality and redundant noise effects. The

depthwise separable convolution block was incorporated to reduce

computational complexity and improve model efficiency without

sacrificing performance. In addition, the multi-head attention

mechanism was introduced to enhance the model’s ability to capture

complex spatiotemporal dependencies in wind data. Finally, the

residual learning block was also aggregated into the new framework

to address potential vanishing gradient issues in deep networks,

ensuring stable training and improved feature representation.
3 Experimental results and discussion

3.1 Case study

This study utilized a Linux platform as the simulation

environment based on the Tensorflow framework by employing a

single NVIDIA-A100 GPU. The forecasting experiment covers the

Asia-Pacific region within a longitude of 96.5-160°E and a latitude

of 6-69.5°N, and 2 years of hourly wind data samples spanning from

2016 to 2017 with fine-grid 256 x 256 spatial resolution were

selected. One year of hourly samples from 2016 were utilized to

train the forecasting model, and the independent validation dataset

covers 3 months of data samples from January to March in 2017

(UTC). The weather forecast ERA5 data was provided by the

European Centre for Medium-Range Weather Forecasts

(ECMWF), while the weather observation data was provided by

the National Satellite Ocean Application Service (IMOS). The

spatial resolution of the hourly weather forecast was 0.25° × 0.25°.

The reanalysis data had global horizontal coverage. The temporal

coverage was from 1940 to the present. The dataset size utilized in

this research was approximately 9Gb, covering a time period from

2016 to 2017 with 256x256 spatial resolution (the pixel size is

256x256 for each hourly wind field snapshot).
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3.2 Wind field decomposition

The dominant variability of spatial-temporal wind speed

patterns could be decomposed into a certain number of principal

EOF models, and the derived EOF time series is able to represent

wind spatial variation patterns associated with its corresponding

temporal PC time series. Based on the IPCA data-preprocessing

approach, the reconstruction of the wind speed pattern, after

cleaning redundant wind features and noise signal, is calculated

by multiplying the decomposed PCs with retained EOFs models

(Zhang et al., 2022):

Windrecon = fPCiEOFi (17)

As can be seen from Figure 5, far more than 1,000 principal

wind variability components were decomposed from the original

raw wind data samples in Panel (a), which explained most of the

wind evolutional variance, yet, a certain portion of noise signals and

irrelevant features have already been coupled and embedded within

the original data samples due to the stochasticity and non-linearity

of the evolved earth system. Panel (b) clearly illustrates that the first

25 PC models would be capable of explaining almost 70% of the

total wind evolutional variance. In order to save computational

resources, reduce time consumption, and further clean up the

additional redundant noise signals with potentially irrelevant

features, the first 25 EOFs (as displayed in Figure 6) were selected

as the primary evolutional variability model of wind speed patterns.

Finally, the cleaned input wind data samples were reconstructed by

employing the 25 principal EOF models with their corresponding

PC time series based on Equation 17.
3.3 The sliding-data window method

The autocorrelation analysis was employed to obtain a

comprehensive perspective on the temporal dependency of the

overall wind field sequential-lagging, which can usually explore

the relatively optimal historical time lags, coupled with the most

inter-correlated sequential information, for the aggregated wind

samples by showing time-series correlation maps of both regionally

averaged and randomly selected grid-cell based wind series. In

Figure 7, the bounds of the derived 95% confidential interval are

represented as the shadow blue band.

Given a time series for correlation analysis with its delayed

values, the formula of correlation can be calculated based on the

following Equations 18, 19 and 20:

corr(X,Y) =
cov(X,Y)
sXsY

(18)

corr(X,Y) =
E½(X − mX)(Y − mY )�

sXsY
(19)
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corr(X,Y) =
E½X,Y � − E½X�E½Y �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½X2� − E½X�2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½Y2� − E½Y �2
q (20)

for wind time-series G in time t step, X = Gt+1 and Y = Gt.

The partial autocorrelation function (PACF) also employs the

same correlation formula to derive the autocorrelation in between

time lags, yet the PACF disregards the indirect correlations between

Gt+1 and Gt. The Equation 21 is as follows given k≥ 2:

PACF(k) = corr(Gt−k − Pt,k(Gt+k),Wt − Pt,k(Gt)) (21)

where Pt,k (x) indicates the subjective operator of the

orthogonal projection for x onto the linear subspace of Hilbert

spanned by Gt+1,…,Gt+k.

As shown in Figure 7, the PACF within the shadow blue band

occurred at lag step 12 and lag step 7, correspondingly. Note that

the correlation values distributed within the shadow blue band

indicate these time lags were not significant. Thus, in this study, the
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wind time series ranging from historical time-lag t-1 to t-7 was

finally filtered to aggregate the input-tensor depth. In this study, the

wind pattern time series consists of 256 x 256 (Width × Height)

grids. Based on the optimal correlated time lags, the sequential

sliding data window with a fixed window size of 7 was set. Each pair

of the training and validation sample contains seven wind field

snapshots with strict chronological order as SSWt = (Windt-10, …,

Windt-2,Windt-1), combining one or more output-wind speed maps

with a specific given leading time-steps. Specifically, the prepared

modeling data sample was normalized into the value range [-1,1] to

speed up convergence efficiency. In addition, the scale consistency

will be eliminated between data samples by implementing

normalization pre-processing. The learning rate of the selected

Adam optimizer in the wind-forecasting model was set to 1e-4,

the batch size was set as 200, and the loss function employed Huber

loss, which was minimized by using the gradient descent approach.

An early-stopping criterion that the training iteration will be
FIGURE 5

The variance explained based on the decomposed spatial wind patterns. Panels (a, c) indicate the complete explained wind evolutional variance,
panels (b, d) represent 70% explained wind variance.
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terminated if the loss metric has stopped improving after

consecutive 12-iterations was further employed. The Huber loss

Equation 22 is as follows:

Lς(O, ϑ(X)) =
1
2 (O − ϑ(X))2

ς 0 − ϑ(X)j j 12 ς2

(
(22)

where O is the reanalysis model and ϑ denotes the deep neural

learning model. In this study, the ς was tested and set as 1.0. The

Huber loss is usually less sensitive to outliers, since it can approach

an L2 loss if the ς approximate to 0, and approaches L1 when the ς is

positive infinity. The flowchart of the established wind pattern

forecasting network is presented in Figure 8, so as to provide an

clear model operation process.
3.4 Model sensitivity analysis

The rationale concerning how to determine the model

hyperparameter settings is very important to evaluate its

robustness and uncertainty. In this study, we tested a range of

hyperparameters, consisting of the batch size, activation function,
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learning rates, and loss function, to assess the model’s robustness

based on forecasting performance.

The statistics forecasting skills for wind pattern prediction are

illustrated in the Appendix (Supplementary Table S1–S4), employing

the varied hyperparameters. Note that we implemented forecasting

experiments using different parameter settings, yet, for the

optimization algorithm, the reasonable parameter range settings are

also determined by preliminary experiments and domain knowledge

(Parri and Teeparthi, 2024). Also, it has been emphasized that

optimizing hyperparameters of machine learning models is a

laborious process (Zhang et al., 2024a). Moreover, one can better

monitor the comprehensive model performance and robustness by

applying model sensitivity experiments in which varied model

parameter settings are explored, which can provide us with a

deeper insight into a better understanding of which

hyperparameters might have a potential impact on the predictive

capability. More importantly, it has been illustrated that a sensitivity

trial can provide a basis for model parameter adjustment and

optimization, and further enable quantification of the potential

model uncertainties (Asheghi et al., 2020). The uncertainty of the

specific model settings can be quantified by exploring the underlying
FIGURE 6

The first 25 decomposed EOF models of raw wind pattern.
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impact of these hyperparameters on predictive performance. Thus,

potential model uncertainties together with its robustness derived

from varied parameter settings could furnish us with a valuable

reference concerning optimization and adjustment of the developed

framework, and better show the confidence interval of the model

settings (Abbaszadeh et al., 2022).
3.5 Wind system prediction

In order to evaluate the prediction errors, several methods

including recurrent neural network (RNN), Long-short term

memory network (LSTM), CNN-LSTM, Encoder-decoder, ResU-

Net, and MHA-ResU-Net were used for a comparison with the

proposed approach. For the prediction experiments, the mean

absolute error (MAE) derived using Equation 23 and the root

mean square error (RMSE) derived using Equation 24 were

employed as model-evaluation metrics to reveal the performance.

MAE =  
1
no

n

i=1
Xprediction,i − Yobservation,i

�� �� (23)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Xprediction,i − Yobservation,i)

2

r
(24)
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where the Yobservation,i denotes the reanalysis 2D wind map and

the Xprediction,i indicates the predicted snapshot.

The forecasting metrics are illustrated in Figure 9. The lowest

forecasting errors were obtained by the proposed prediction model

amongst all individual experiments, which verified that the

proposed deep neural learning model outperforms the rest of the

models, especially in fine-grid spatial-temporal 2D wind system

mapping. The derived area-mean RMSEs for 1-hour-ahead and 12-

hour-ahead predictions were less than 0.15 m/s and 0.53 m/

s, respectively.

The spatial-resolved wind gust speed predictions were derived

and are shown in Figure 10, to further explore the model

performance in a fine-grid spatial perspective. Pre indicates model

forecasting, ob represents the reanalysis samples. As displayed in

Figure 10, the proposed neural-learning method can preserve the

spatial-temporal sequential wind system variabilities, which shows

that the spatial-temporal wind evolution patterns were well

reproduced for each single wind field snapshot. In addition,

extreme wind signals were also well captured continually within

the sequential wind evolving trend. Longer leading-step predictions

with corresponding deviation maps are shown in Figure 11.

In order to explore the effectiveness of deep-learning-based

weather prediction for ship path planning, two types of weather

predictions were employed to evaluate an empirical shipping route.
FIGURE 7

The Autocorrelation analysis of wind component pattern variability with field-mean time series panels (a, b), the random selected grid-point time
series panels (c, d).
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It has been proven that if the raw numerical model forecasting data

with sparse-grid resolution and with 24-h intervals are utilized to

schedule the voyage path, the extreme wind field could not be

identified by the ship route optimization software (Yuan et al., 2022;

Wu et al., 2023). On the contrary, the developed spatial-temporal

deep learning model is able to provide continuous weather

forecasting with a very high spatial resolution of 0.25° × 0.25° and

an hourly time scale, which will help the path optimization software

to identify dangerous navigation regions with accurate area

boundaries where severe sea states exist, as displayed in Figure 12.

More importantly, the proposed model is able to offer continuous

weather forecasting updates, even on a single laptop. This means
Frontiers in Marine Science 15160
that the proposed framework combined with reanalysis data

samples is very convenient and practical for adaptive path

planning of marine vehicles, especially for sea-going navigation in

large-scale oceans.

Moreover, a shipping path application was evaluated based on

the deep learning-based wind forecast for the sake of better

illustrating its effectiveness for efficient and intelligent route

planning. Generally speaking, the major part of the experimental

shipping route would directly pass through the high sea-state

region, if the sparse weather forecasting and weather observation

system could not recognize the severe sea state. However, the

adaptive ship route based on the proposed continuous fine-grid
FIGURE 8

The flowchart of the established wind pattern forecasting network.
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wind forecasting model would accurately avoid adverse weather

conditions as much as possible, since the variability of the sea state

would be perceived based on weather routing software (Vettor and

Soares, 2016; Wu et al., 2023). In addition, it can be seen in

Figure 12 that the fine-grid sea-state region detection can help to

adjust the experimental path planning accurately using 1-day

weather forecasting, and from a sea-going navigation practical

perspective, a longer prediction time-span that exceeds 1 day

would provide a timely reference for future voyage adjustment.

Moreover, with the efficient and intelligent identification of severe

weather conditions, autonomous marine vehicles would be able to

achieve active obstacle avoidance and intelligent route adjustment,

which will lay a solid foundation for intelligent ocean environment

perception and the development of smart ships.
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4 Model transferability

Deep learning model transferability is a strategy that involves

transferring knowledge obtained from the source domain to solve the

tasks in a related target domain (Pan and Yang, 2009; Hu et al., 2016).

This study provides a machine learning approach that can be

employed to transfer the weather forecasting model knowledge

gained for available trained jobs from one specific geospatial region

to another region’s field and time span. It provides an opportunity to

transfer information between different datasets and different

geospatial regions. Model transferability, including the model

hyperparameters and model weights relocation, demonstrates

whether a newly developed machine learning method can be

transferred directly to an unknown region to realize specific
FIGURE 9

Wind pattern forecasting error analysis.
FIGURE 10

Snapshots of spatial-resolved wind speed patterns forecasting.
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weather forecasting-based ship path planning tasks. A square area

covering the North Atlantic Ocean within 6.25 - 70°N, -53.75 - 10°E

was selected as the modeling region to realize the same model-

hyperparameter transferability-based wind field forecasting directly.

It is illustrated in Figure 13 that the developed neural-learning

approach reproduced the spatial-temporal sequential wind system

variabilities again. This indicates that the spatial-temporal wind
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distribution patterns located in different geospatial regions were

well preserved for each single field snapshot. The extreme wind

signals were also continually captured within the sequential wind-

evolving trend. The corresponding longer leading-step forecasting

with its deviation fields is displayed in Figure 14.

A new shipping path was evaluated using the deep learning-based

wind forecast for the sake of better illustrating its effectiveness on the
FIGURE 11

Longer surface extreme wind forecasting.
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route plan in the North Atlantic Ocean. It can be seen that the major

part of the experimental shipping route directly passes through the high

sea state region in Figure 15. However, the adaptive ship route based on

the proposed continuous fine-grid wind forecasting model was able to

avoid adverse weather conditions as accurately as possible. This can not
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only ensure the safety of marine vehicles and navigators but also

provide voyage planning with timely or real-time path adjustment. The

smart shipping industry will greatly benefit from the efficient and

intelligent detection of severe large-scale sea states using the proposed

wind forecasting model.
FIGURE 12

Ship path planning based on the wind field forecasting, the white dash-line indicates adaptive path and white line is experimental route.
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5 Discussion and conclusion

5.1 Discussion of the model’s potential
applications and limitations

A depthwise separable U-Net with spatial-temporal attention

layers typically has a lower parameter count than standard

convolutional U-Nets. Yet, the model is still complex and requires

significant computing power for real-time inference. Wind field

forecasting involves large volumes of spatial-temporal data, often

requiring high-resolution inputs over a continuous time frame.

Real-time processing is necessary for effective forecasting, meaning

the model must handle frequent data updates without lag. IPCA

facilitates dimensionality reduction, which helps manage data size,

but there is still a need for fast data preprocessing pipelines to feed

into the model without creating bottlenecks. The IPCA-based

model necessitates sufficient memory to handle large input

matrices (spatial-temporal wind data), intermediate activations,

and model weights. The memory requirement can be reduced by

applying IPCA to pre-process and compress the input data, but this

is still contingent on having enough capacity to maintain

intermediate data during real-time inference.

Most ships are limited in terms of the onboard processing

power available, typically having less powerful central processing

units (CPUs) and possibly limited or no GPUs. While some larger

vessels may have limited GPU capacity, deploying such a GPU-

based model requires specialized hardware, such as embedded

systems with tensor-processing units (TPUs) or compact GPUs.

Alternatively, high-performance CPUs capable of supporting

multithreading and parallel processing may also be viable, though

potentially slower. In addition, other constraints are critical on

ships where energy resources are shared among navigation,
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communication, and other systems. Depthwise separable U-Nets

help in reducing computation costs by focusing only on the most

relevant filters in the spatial-temporal data. Additionally, IPCA can

reduce the data dimensions, resulting in lower power consumption.

Nevertheless, the system should be designed to operate within the

ship’s power constraints, often requiring energy-efficient

processors. IPCA provides an advantage by enabling incremental

updates, essential for real-time processing on ships, where data is

generated continuously and model re-training is impractical. IPCA

reduces data dimensions iteratively, which is efficient, but still

requires sufficient processing power to perform real-time updates.

A balance is necessary between the model’s forecasting accuracy

and the latency in delivering these forecasts. The depthwise

separable U-Net offers computational efficiency, but the real-time

application might still necessitate simplifying the model further or

accepting coarser forecasting to ensure timely output.

In summary, implementing an IPCA-based spatial-temporal

depthwise separable U-Net model on ships requires hardware

capable of efficient parallel processing, compact design, and low

power consumption. Compact GPUs or embedded TPUs are ideal

but may not always be feasible, especially on smaller vessels. CPU-

based implementations are possible but might face latency issues.

Reducing model complexity and utilizing IPCA for dimensionality

reduction can mitigate some hardware limitations, but ongoing

trade-offs between computational power, accuracy, and latency will

be required to make this model operational on actual ships. For

stakeholders, understanding these constraints is crucial for

planning resource allocation, assessing deployment feasibility, and

selecting suitable hardware for maritime forecasting applications.

Concerning the model’s limitations, in marine environments, wind

patterns are highly variable and can be influenced by various factors

such as shipmovements and surrounding weather systems. The IPCA’s
FIGURE 13

Snapshots of spatial-resolved wind speed patterns forecasting as Figure 10, but for the North Atlantic Ocean region.
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incremental learning approach may not fully capture this complexity,

as it assumes incremental changes to the learned principal components,

which may not adapt quickly enough to abrupt shifts or highly

dynamic wind fields. Furthermore, incremental updates in IPCA rely

on frequent model retraining with new data. This approach risks

underperforming if updates are too infrequent or if older components

fail to capture emerging patterns. This can lead to model drift, where
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the U-Net model’s depthwise separable convolutions become

misaligned with the shifting data distributions. Moreover, onboard

computing systems may be limited in memory and processing power,

restricting the model’s ability to perform complex IPCA

transformations alongside the spatial-temporal depthwise separable

U-Net operations. This constraint could necessitate simplifying the

model at the cost of predictive accuracy.
FIGURE 14

The same as Figure 11, but for the North Atlantic Ocean.
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While depthwise separable convolutions reduce computation by

splitting spatial and channel-wise filtering, combining them with

IPCA can lead to a loss in detail, particularly in fine-grid scenarios

where capturing spatial intricacies is critical. Depthwise operations,

while efficient, may not fully exploit the principal components’ spatial

relationships, leading to potential oversimplification. Depthwise

separable convolutions, when paired with IPCA, might over-rely on
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a limited number of components, as selecting too many can offset

efficiency gains. Choosing an appropriate number of components

becomes crucial but challenging in achieving a balance between

spatial detail and computational feasibility. In addition, ships’

routes, speeds, and maneuvers might introduce unique challenges

in wind field predictions. These unpredictable movements can make

it difficult for an IPCA-based U-Net model to maintain consistent
FIGURE 15

The same as Figure 12, but for ship path planning at the North Atlantic Ocean.
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predictive accuracy, as rapid course or speed changes could invalidate

previously learned components or spatial patterns. Addressing these

limitations would involve strategies such as incorporating more

adaptive or hierarchical components within the IPCA process,

leveraging advanced real-time data filtering, or incorporating more

sophisticated recurrent mechanisms within the U-Net architecture in

the future steps to handle temporal dynamics better.
5.2 Conclusions

In order to provide instantaneous extreme wind system pattern

mapping tasks, and provide adaptive and intelligent path planning for

marine vehicles, especially for sea-going navigations in large-scale

oceans, a spatial-temporal 2D depthwise separable convolutional

based neural-learning model was developed by integrating the multi-

head feature-concentrated attention scheme. Specifically, incremental

principal component analysis was first employed to filter the feature

space of 2D wind data samples by reducing dimensionality and

redundant features. The proposed wind forecasting network was

employed to capture and preserve the intermittence and non-

linearity of spatial-temporal wind system evolutions between the

future wind pattern distributions and the historical wind time-series

snapshots. The historical wind time lags with a strict chronological

order were determined by further introducing a sequential sliding-data

window approach and the established spatial-temporal feature

mapping methodology was then able to capture the underlying

temporal dependencies and variabilities from the consecutive wind

maps. In addition, the transferability of the proposed model was

verified by employing two geospatial regions with different weather

characteristics. By mapping weather observational gaps into a fine-grid

and complete spatial format, the proposed approach, implemented in a

single laptop, aimed to improve the timeliness and accuracy of onboard

ship routing, thereby enhancing ship navigation safety. Based on the

efficient and intelligent identification of severe weather conditions,

autonomous marine vehicles will be able to achieve active obstacle

avoidance and intelligent route adjustment, which will lay a solid

foundation for intelligent ocean environment perception for the

development of smart shipping.

The experimental findings in this study demonstrate that the

developed deep learning-based methodology can accurately and

effectively detect severe wind fields. Yet, some limitations remain. For

example, other meteorological factors such as atmosphere pressure and

wave height conditions were not fully taken into account. Furthermore,

issues such as fuel consumption were not considered, which could

impact intelligent weather routing-based predictions and ship

navigation safety, thus, future research is required to better consider

ship navigation performance and its efficiency index and realize a more

reliable smart ship path planning task.
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