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Editorial on the Research Topic

Changing Plankton Communities: Causes, Effects and Consequences

Marine ecosystems are changing in response to multiple stressors such as global warming,
increasing carbon dioxide (CO2) and decreasing oxygen (O2) concentrations and eutrophication
of coastal waters, among others. The direct effects of these changes on plankton physiology have
been studied for decades; less are known about possible effects these changes might have on the
composition of plankton communities, and even less about what effects any such shift in plankton
community composition will have on marine ecosystems. The plankton community makes up
the base of the marine food web (i.e., primary producers, decomposers, and primary consumers)
and plays a pivotal role in global biogeochemical cycles (e.g., Falkowski and Raven, 2013). Any
change of the plankton community structure, driven by natural or human induced changes, may
consequently have indirect effects on marine ecosystem functioning.

This Research Topic focused on causes, effects and consequences of changing composition of
plankton communities. The 12 contributions to this volume include seven original research papers,
one method paper, and four reviews; all touching the state-of-the-art in current plankton research,
and each from a complementary angle.

Several of the original research papers deal with changing phytoplankton communities,
environmental drivers and ecosystem effects. Fernández-Méndez et al. analyzed sea-ice ridges and
the snow-ice interface, which are algal hotspots in the Arctic Ocean. Both sea-ice ridges and the
snow-ice interface are projected to increase due to thinning of the ice, and Fernández-Méndez
et al. described the algal communities, mostly dominated by different diatoms, in these habitats
in the Arctic. von Scheibner et al. examined the phytoplankton and bacterioplankton response
to short-term warming. Warming increased carbon availability for the bacterial community, but
the ratio between bacterial and primary production was still relatively low, suggesting it is not
much changed by short-term warming events. Cohen et al. described diatom transcriptional and
physiological responses to changes in iron availability in the open Northeast Pacific Ocean and
in the California upwelling system. They found species specific differences in gene expression to
changes in nutrient availability and taxa specific strategies for coping with Fe stress. Ajani et al.
investigated the realized niches of phytoplankton using a long-term data set collected off Eastern
Australia. They demonstrated that the ecological niches can be dynamic and that climate change
models cannot use fixed niches when forecasting the phytoplankton community composition.
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There are three original research papers on zooplankton
dynamics. Lips and Lips investigated the increasing importance
of the mixotrophic ciliate Mesodinium rubrum in the Baltic Sea.
The abundance of this species was higher in years of earlier
warming and the authors suggest that it plays an important
role in shaping the inorganic nutrient pools at the start of the
summer (Lips and Lips). Haraguchi et al. studied the coupling
between phytoplankton and ciliates inDanish waters over 2 years,
and demonstrated a close coupling between these communities,
suggesting top down control of the phytoplankton community
by the ciliates. Karlsson and Winder examined ecosystem effects
of two locally adapted populations of the filter feeding copepod
Eurytemora affinis that differed in size. They demonstrated that
morphologically divergent populations of the same species can
perform different ecosystem functions through differences in
quantitative and qualitative feeding, and by having different
population response to changes in resource supply and the
phytoplankton community composition.

In the method paper by Engel et al., they tested three different
ways to manipulate species loss in natural phytoplankton
communities. Dilution, filtration, and heat stress was used to
remove rare, large and sensitive species, respectively, and this can
be used as a method for non-random species manipulation in
experiments. Themajority of research on species loss has used the
approach of random species removal, whichmay not be a suitable
approach for studies of fragile species. The method development
and standardization of approaches suggested by Engel et al. are
essential for more realistic species loss modeling.

The review papers covered different aspects of plankton
dynamics and trait-based approaches. Lindh and Pinhassi
presented a comprehensive review of bacterioplankton
communities in the Baltic Sea and environmental drivers
for community changes based on field and experimental studies.
Bartoli et al. reviewed the drivers of cyanobacterial blooms
in the Curonian Lagoon (Baltic Sea), where cyanobacteria
has benefitted from long term increase in the temperature
and reduction in the inorganic N:P ratio. A comparison of
the differences between freshwater and marine studies of
phytoplankton traits and community assembly is presented
by Weithoff and Beisner. Finally, Spilling et al. reviewed
and synthesize state-of-the-art knowledge on the observed,
long-term increase in dinoflagellate abundance in the
Baltic Sea during spring bloom and the consequences

the shift from diatom to dinoflagellate dominance has for
biogeochemical cycles.

The topics of the papers published in this Research
Topic ranged from heterotrophic bacteria, phytoplankton to
zooplankton and covered different marine ecosystems. The
potential shift in community composition may have dramatic
effects on ecosystem functioning, for example on trophic transfer,
and on biogeochemical fluxes through changes in export of
organic material, i.e., the biological pump. One of the key
challenges for predicting changes to the plankton community
is to understand the various functional groups and their niche
separation in combination with individual taxa’s ability to
acclimate, adapt and compete in a changing environment. This
trait-based community ecology of plankton has started to gain

traction (Litchman and Klausmeier, 2008; Litchman et al., 2013),
and is a useful framework to investigate potential effects of
environmental change on plankton community structure. In
order to disentangle the potential consequences of shifts in
plankton communities, more empirical studies of ecological
interactions and export are needed. Hence, we consider the
research papers in this Research Topic will be a valuable
addition to the accumulating empirical evidence of how plankton
communities are modulated by natural and human induced
changes and the indirect effect this has on marine ecosystems.
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Sensitivity of Bacterioplankton to
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Review of Baltic Sea Field Studies
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Meteorological and Hydrological Institute, Gothenburg, Sweden

Bacterioplankton communities regulate energy and matter fluxes fundamental to all

aquatic life. The Baltic Sea offers an outstanding ecosystem for interpreting causes

and consequences of bacterioplankton community composition shifts resulting from

environmental disturbance. Yet, a systematic synthesis of the composition of Baltic

Sea bacterioplankton and their responses to natural or human-induced environmental

perturbations is lacking. We review current research on Baltic Sea bacterioplankton

dynamics in situ (48 articles) and in laboratory experiments (38 articles) carried out

at a variety of spatiotemporal scales. In situ studies indicate that the salinity gradient

sets the boundaries for bacterioplankton composition, whereas, regional environmental

conditions at a within-basin scale, including the level of hypoxia and phytoplankton

succession stages, may significantly tune the composition of bacterial communities. Also

the experiments show that Baltic Sea bacteria are highly responsive to environmental

conditions, with general influences of e.g. salinity, temperature and nutrients. Importantly,

nine out of ten experiments that measured both bacterial community composition

and some metabolic activities showed empirical support for the sensitivity scenario

of bacteria—i.e., that environmental disturbance caused concomitant change in both

community composition and community functioning. The lack of studies empirically

testing the resilience scenario, i.e., experimental studies that incorporate the long-term

temporal dimension, precludes conclusions about the potential prevalence of resilience

of Baltic Sea bacterioplankton. We also outline outstanding questions emphasizing

promising applications in incorporating bacterioplankton community dynamics into

biogeochemical and food-web models and the lack of knowledge for deep-sea

assemblages, particularly bacterioplankton structure-function relationships. This review

emphasizes that bacterioplankton communities rapidly respond to natural and predicted

human-induced environmental disturbance by altering their composition and metabolic

activity. Unless bacterioplankton are resilient, such changes could have severe

consequences for the regulation of microbial ecosystem services.

Keywords: bacterial diversity, archaea, 16S rRNA, metabolic activity, ecosystem functioning, climate change
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BACTERIOPLANKTON COMMUNITY AND
FUNCTIONAL DYNAMICS

Bacterioplankton communities have a remarkable capability in
responding to environmental disturbances, such as changes in
temperature, salinity and nutrients (Allison and Martiny, 2008;
Logares et al., 2013; Cram et al., 2015; Salazar et al., 2016). Rapid
responses are made possible thanks to relatively short generation
times, and involve both adjustments in metabolic activity and
restructuring of community composition (Box 1; Allison and
Martiny, 2008; Brettar et al., 2016). There is now ample evidence
that bacterioplankton activity and community composition play
central roles in regulating biogeochemical cycles of elements,
with particular focus on carbon in the form of dissolved organic
matter (DOM) and dissolved organic carbon (DOC; Azam and
Malfatti, 2007; Falkowski et al., 2008).

Given the importance of bacterioplankton-driven cycling of
carbon, a fundamental question in microbial ecology is whether
shifts in bacterioplankton community composition resulting
from changes in environmental conditions also lead to changes
in ecosystem functioning (Loreau, 2000, 2004; Langenheder
et al., 2010; Comte and Del Giorgio, 2011; Beier et al., 2017).
Bacterioplankton communities could, in theory, respond to
environmental disturbances according to three scenarios termed
sensitivity, resistance, and resilience [Box 2; sensu Allison and
Martiny (2008); Shade et al. (2012)]. Each of these scenarios
have distinctly different implications regarding how we interpret
the consequences of environmental disturbances on the linkages
between shifts in community composition and changes in
community functioning. Ecosystem stability is linked with a
community’s response to disturbance. The stability depends
on the sensitivity, resistance (insensitivity to disturbance), and
the resilience (ability to return to original condition after
disturbance) of the ecosystem (Shade et al., 2012). A disturbance
is an event that can influence the community in pulses
(discrete short-term events) or presses (long-term or continuous
events). Shade et al. (2012) carried out a literature review
to investigate bacterioplankton community responses to such
disturbances in a variety of habitats. The authors identified
that bacterioplankton communities are, in general, sensitive to
disturbances but highlighted that empirical tests of resilience,
i.e., studies that explicitly and comprehensively included the
temporal dimension, were lacking.

THE BALTIC SEA AND PREDICTED
CLIMATE CHANGE

The shallow brackish Baltic Sea system, with an average depth of
∼54m, varies in both hydrology and physicochemical features; it
consists of a 2,000 km long salinity gradient ranging from truly
marine to freshwater conditions through several basins of which
three are major (the Baltic Sea Proper, the Bothnian Sea, and the
Bothnian Bay; Omstedt et al., 2014). In addition to strong shifts in
salinity, Baltic Sea basins are affected by different magnitudes of
river discharges, transferring freshwater, and terrestrial DOM, so-
called allochthonous DOM (i.e., DOM transported into the sea
from terrestrial sources; Kritzberg et al., 2004), to coastal waters,

with seasonal variation (Omstedt et al., 2014; Rowe et al., 2018).
The Baltic Sea is periodically affected by seasonal phytoplankton
blooms, including typical diatom/dinoflagellate spring blooms
and massive blooms of cyanobacteria in summer (Legrand et al.,
2015), producing so-called autochthonous DOM (i.e., DOM
produced in situ by e.g., phytoplankton; Kritzberg et al., 2004).

Projections of human-induced climate change in aquatic
environments, with global temperature increases of 1.4–5.8◦C
and a global atmospheric CO2 increase of 400 atm, resulting in
lower pH by ∼0.4 units until 2,100, implicate that ecosystem
changes of unparalleled extent will occur (Brettar et al., 2016).
In the Baltic Sea region the Swedish meteorological and
hydrological institute (SMHI) projects increased precipitation
by up to 48% until 2,100, leading to lower salinities and
increased output of allochthonous matter from river discharge
(Meier, 2006). Moreover, cyanobacterial blooms are increasing
in magnitude due to human-driven climate change and the
hydrography of this semi-enclosed system (Omstedt et al., 2014;
Legrand et al., 2015). Eutrophication brings excess nutrients to
the microbial food web, stimulating phytoplankton blooms that
in turn influence the bacteria, resulting in increased community
respiration rates through the degradation of phytoplankton
DOM that sinks and ultimately causes bottom water and
sediment hypoxia (Tamelander et al., 2017). Decreasing oxygen
levels (<2mg ml−1 O2) at the seafloor and in sediments
of the Baltic Sea have been documented in the last 100
years and decreases are predicted to intensify in the future
(Carstensen et al., 2014). Taken together, future selective
forces in the marine environment will include, among others,
increased sea surface temperatures, lower pH, eutrophication,
hypoxia, increased allochthonous carbon inputs, decreased
salinity, and massive cyanobacterial blooms (Andersson et al.,
2015). Thus, the Baltic Sea offers a unique study system to
investigate, in depth, both the causes and consequences of shifts
in bacterioplankton community composition and functioning
responding to environmental perturbations.

OVERVIEW OF BALTIC SEA
BACTERIOPLANKTON STUDIES

We identified a total of 86 articles carrying out field studies
and/or experiments focusing on bacterioplankton community
composition in the Baltic Sea, as summarized in Table 1 and
Figure 1. Studies performed in the Skagerrak and Kattegatt
seas were examined (Supplementary Table 1), but were not
included in the main analyses. Among the Baltic Sea studies,
48 were categorized as research performed in situ and 38 were
experimental studies at different scales (micro- or mesocosms;
Table 1). Twenty-six articles included samples from deep-
waters/sediments. Among all articles, one third (n= 29) included
some form of activity measurement and among the in situ studies
less than one fifth (n= 9)measuredmetabolic activity. Amajority
of the articles focus on spatial distributions for in situ data (n
= 27; 56% of all in situ studies) and on the effect of nutrient
additions for experimental data (n = 22; 58% of all experimental
studies; Table 1). The conducted studies have been performed
throughout the Baltic Sea and include empirical evidence of shifts

Frontiers in Marine Science | www.frontiersin.org October 2018 | Volume 5 | Article 3618

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Lindh and Pinhassi Sensitivity of Baltic Sea Bacterioplankton

BOX 1 | Determining bacterioplankton community composition.

Marine bacteria and archaea, collectively known as bacterioplankton, are a fundamental part of the planktonic food-web and imperative for ecosystem functioning

(Falkowski et al., 2008). Bacterioplankton community composition refers to the taxonomic identity of organisms and their frequency distribution in the ecosystem.

However, phenotypic identification of bacterioplankton is problematic since only a small fraction of all bacterioplankton are easily cultivable and these typically

do not mirror the complete bacterioplankton diversity (Pedros-Alio, 2006; Hagström et al., 2017). Microbial ecologists therefore use culture-independent genetic

identification techniques to differentiate bacterioplankton taxa (see e.g., Hugerth et al., 2015; Sunagawa et al., 2015; Beier et al., 2017; Celepli et al., 2017). In

general, identification of individual bacterioplankton taxa is done by sequencing of the 16S rRNA gene, ITS (Internal Transcribed Spacer) or similar genetic fragments,

processing raw sequence reads using bioinformatic methods (see e.g., Edgar, 2013; Callahan et al., 2015) and clustering these into specific phylotypes or operational

taxonomic units (OTUs), followed by taxon delineation at a specific sequence identity threshold (typically 97–99% sequence identity; Hugerth and Andersson, 2017).

Taxonomic annotation of these OTUs is then performed by matching a type- or centroid sequence of the OTU cluster against a database with taxonomic information

(see e.g., Quast et al., 2013).

Technical advances in the last decade in the form of high-throughput sequencing have increased the sequencing resolution and thereby the detection levels of

individual OTUs by several orders of magnitude at rapidly decreasing costs (Poisot et al., 2013; Hugerth and Andersson, 2017). As a result, the field of microbial

ecology has advanced from primarily describing major bacterioplankton groups or a few dominant populations to resolving the distribution of thousands of populations

over different temporal and spatial scales. This makes bacterioplankton attractive also for monitoring and thus important for stakeholders and marine management.

BOX 2 | Bacterioplankton community responses to environmental disturbance

Below follows a brief description of three theoretical

responses that bacterioplankton assemblages may

undertake in the light of natural or human-induced

changes in environmental conditions, sensu Allison and

Martiny (2008), (Shade et al., 2012). The figure is laid so

that it emphasizes the temporal dimension on the x-axis

in the resilience scenario.

Sensitivity—when community composition is

altered by environmental disturbance and the resulting

community functioning (f2) is typically different from the

initial functioning (f1).

Resistance—when community composition is not

altered by environmental disturbance and community

functioning (f2) may be different from, or the same as the

initial f1.

Resilience—when community composition is initially

altered by environmental disturbance but returns to the

original composition and f2 is typically temporally different

from the initial f1 but community functioning over time

“returns to” f3 similar to the initial f1.

in bacterioplankton community composition in different basins
(Figure 1). It is noteworthy that detailed temporal studies are
typically limited to two sites in the Baltic Sea Proper (i.e., the
Landsort Deep in the central Baltic Sea and at the Linnaeus
Microbial Observatory off the coast of the island Öland in the
Baltic Sea Proper) and that many deep-water/sediment samples
have primarily been obtained from only two locations in the
central Baltic Sea Proper (the Landsort and Gotland deeps in the
central Baltic Sea; n= 10; 40% of all deep-water/sediment studies;
Figure 1).

TEMPORAL AND SPATIAL VARIABILITY IN
BACTERIOPLANKTON

Extended temporal studies are scarce in the Baltic Sea, but
there are four published reports of bacterioplankton dynamics
extending over ≥1 year at semi- to high-resolution (Pinhassi
and Hagström, 2000; Riemann et al., 2008; Andersson et al.,

2010; Lindh et al., 2015c). They all show pronounced shifts
in bacterioplankton community composition with fairly
distinct spring, summer and autumn communities. In general,
Bacteroidetes dominate in spring during the diatom and
dinoflagellate bloom. In summer, particular populations
of e.g., Verrucomicrobia increase in abundance, associated
with pronounced blooms of picocyanobacterial populations
and filamentous Cyanobacteria. In autumn, actinobacterial
populations proliferate, potentially following changes in
temperature, mixing of the water column, and/or autumn
phytoplankton blooms. Changes in temperature over the yearly
cycle typically explain around 0.45 (Pearson r) of total variation
in community composition (Andersson et al., 2010; Lindh et al.,
2015c).

There have been three major transects studies of
bacterioplankton community composition across the entire
salinity gradient of the Baltic Sea, showing that changes in
salinity is the major driver of the distribution of bacterial
populations (OTUs) at large spatial scales in the Baltic Sea
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FIGURE 1 | Map showing in situ transects and temporally sampled stations (yellow symbols) and all stations that have been sampled for use in experimental studies

with empirical evidence for the effect of natural or human-induced changes in environmental conditions on bacterioplankton community dynamics (blue symbols).

Filled circles and triangles denote samples obtained from surface waters and from deep-water/sediment, respectively. Insert is a zoomed in map of the central Baltic

Sea Proper with particularly many samples obtained, and a 3D rendition of the Gotland and Landsort Deep, frequently sampled to retrieve deep water and sediment

samples. Dashed lines indicate boundaries for the three major basins; Bothnian Bay, Bothnian Sea and the Baltic Sea Proper. The map and bathymetry was produced

using the package “marmap” (Pante and Simon-Bouhet, 2013) in R V.3.4.4 (R Core Development Team, 2017) and the bathymetry data was retrieved from NOAA

(http://www.noaa.gov).

(Herlemann et al., 2011, 2016; Dupont et al., 2014; Larsson et al.,
2014; Celepli et al., 2017). Notably, salinity explained almost
all of the observed variation in bacterioplankton community
composition with r values ranging from 0.78 to 0.97. In contrast,
in a transect across one particular basin, the Baltic Sea Proper,
Bunse et al. (2016a) found that, instead of salinity, the advancing
phytoplankton spring bloom had a substantial influence in
structuring the bacterial community (i.e., the distribution of
specific OTUs). The authors emphasized how interactions
between bacterioplankton and phytoplankton populations
may influence carbon cycling to higher trophic levels thus
extending the importance of bacterioplankton dynamics for
ecosystem services. In addition, there have been several transects
performed at high-resolution spatial scales of which two
locations are particularly well-studied; the western Gotland Sea
(Bertos-Fortis et al., 2016; Lindh et al., 2016, 2017) and the
Gulf of Finland (Laas et al., 2014, 2015, 2016). For example,
Bertos-Fortis et al. (2016) show that Cyanobacteria have plastic
responses to changes in environmental conditions where
opportunistic picocyanobacteria and N2-fixing cyanobacteria
may be able to utilize nutrients from filamentous Cyanobacteria
during the summer bloom (Bertos-Fortis et al., 2016). An
approach using metacommunity theory (Leibold et al.,
2004) found that local environmental conditions rather
than dispersal-driven assembly is the main mechanism for
structuring bacterioplankton assemblages in the Baltic Sea
(Lindh et al., 2016). Similarly, bacterioplankton communities
in areas such as the Pacific Ocean and East China Sea are
also mainly shaped by environmental factors and to a less
extent by spatial factors (Yeh et al., 2015; Lindh et al., 2018).
Moreover, deep-water bacterioplankton communities in the Gulf

of Finland are structured by seasonally anoxic conditions where
redox-specialized bacterioplankton populations proliferate
(Laas et al., 2015). Surface seawater communities in that
study, on the other hand, were largely assembled following
variation in phytoplankton succession. Collectively, these studies
indicate that whereas the salinity gradient sets the boundaries
for bacterioplankton composition, regional environmental
conditions at a within-basin scale, including the level of hypoxia
and phytoplankton succession stages, may significantly tune the
composition of bacterioplankton.

EXPERIMENTAL MANIPULATION OF
ENVIRONMENTAL CONDITIONS

Salinity
The in situ studies described above dictate that grand scale spatial
distributions of particular OTUs in the Baltic Sea are driven
by changes in salinity. In accordance, manipulated changes in
salinity in micro- and mesocosm experiments also show that
salinity can significantly shape bacterioplankton community
composition (Langenheder et al., 2003; Kaartokallio et al., 2005;
Sjöstedt et al., 2012b; Lindh et al., 2015a). For example, shifts
in bacterioplankton community structure occurred in response
to salinity changes following the experimental melting of sea
ice (Kaartokallio et al., 2005). Compositional shifts occurred in
response to a change in salinity and DOM conditions using
chemostats, showing how rare or inactive taxa already present
in the “seed bank,” proliferated over time (Sjöstedt et al., 2012b).
Moreover, a transplant experiment showed how transfer of
bacterioplankton assemblages from ambient to changed salinity
(brackish compared to near freshwater) and DOM conditions
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TABLE 1 | Summary of Baltic Sea bacterioplankton studies in which data on community composition is available (n = 83).

Study Type Water source¶ Include activity

measurements?*

Factor tested Total community

or specific group

Glaubitz et al., 2009 Central Baltic Sea YES Dark CO2 fixation Total community

Holmfeldt et al., 2009 Northern Baltic

Sea

YES Spatial Actinobacteria

Lindh et al., 2015c Baltic Sea Proper YES Temporal Total community

Pinhassi et al., 1997 Northern Baltic

Sea

YES Temporal Total community

Piwosz et al., 2013 Baltic Sea Proper YES Temporal Total community

Rieck et al., 2015 Baltic Sea YES Particle associated

compared to

free-living

Total community

Riemann et al., 2008 Central Baltic Sea YES Temporal Total community

Andersson et al., 2010 Central Baltic Sea NO Temporal Total community

Bengtsson et al., 2017 Western Baltic Sea NO Epibiont Total community

Bergen et al., 2014 Baltic Sea NO Spatial Spartobacteria

Bertos-Fortis et al.,

2016

Baltic Sea Proper NO Spatiotemporal Cyanobacteria

Brettar et al., 2012 Baltic Sea NO Spatial Total community

Bunse et al., 2016a Baltic Sea Proper NO Spatiotemporal Total community

Buongiorno et al., 2017 Baltic Sea NO Molecular

methods (Spatial)

Total community

Celepli et al., 2017 Baltic Sea NO Spatial Cyanobacteria

Dupont et al., 2014 Baltic Sea NO Spatial Total community

Eiler and Bertilsson,

2006

Baltic Sea NO Spatial Vibrio

Eiler et al., 2006 Baltic Sea NO Spatiotemporal Vibrio

Golebiewski et al.,

2017

Baltic Sea Proper NO Spatial Total community

Grote et al., 2012 Central Baltic Sea NO Spatial Sulfurimonas

Hagström et al., 2000 Northern Baltic

Sea

NO Spatial Total community

Herlemann et al., 2011 Baltic Sea NO Spatial Total community

Herlemann et al., 2016 Baltic Sea NO Spatial Total community

Hofle and Brettar, 1995 Central Baltic Sea NO Spatial Total community

Hu et al., 2016 Baltic Sea NO Spatial Total community

Kaartokallio et al., 2008 Northern Baltic

Sea

NO Temporal Total community

(Continued)
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TABLE 1 | Continued

Study Type Water source¶ Include activity

measurements?*

Factor tested Total community

or specific group

Kisand and Wikner,

2003

Northern Baltic

Sea

NO Allochtonous DOM Total community

Klier et al., 2018 Baltic Sea NO Spatial Total community

Koskinen et al., 2011 Northern Baltic

Sea

NO Spatiotemporal Total community

Laas et al., 2016 Gulf of Finland NO Spatiotemporal Total community

Laas et al., 2014 Gulf of Finland NO Spatiotemporal Total community

Laas et al., 2015 Gulf of Finland NO Spatial Total community

Larsson et al., 2014 Baltic Sea NO Spatial Cyanobacteria

Lindh et al., 2016 Baltic Sea Proper NO Spatiotemporal Total community

Lindh et al., 2017 Baltic Sea Proper NO Spatiotemporal Total community

Lindroos et al., 2011 Northern Baltic

Sea

NO Spatiotemporal Total community

Pinhassi and

Hagström, 2000

Northern Baltic

Sea

NO Temporal Total community

Rahlff et al., 2017 Baltic Sea NO Wind speed

(spatial)

Total community

Reindl and Bolałek,

2017

Baltic Sea Proper NO Methane

production

Archaea

Reunamo et al., 2013 Baltic Sea Proper NO Petroleum

hydrocarbon

Total community

Reyes et al., 2017 Baltic Sea NO Fe and S

Reducing Bacteria

Total community

Salka et al., 2008 Baltic Sea NO Spatial Aerobic

anoxygenic

phototrophic

bacteria

Salka et al., 2014 Baltic Sea NO Spatial Actinobacteria

Simu and Hagström,

2004

Baltic Sea Proper NO Single cell life

strategy

Oligotrophic

bacteria

Stolle et al., 2011 Western Baltic Sea NO Bacterioneuston Total community

Tiirik et al., 2014 Baltic Sea NO Antibiotic

resistance (spatial)

Total community

Tuomainen et al., 2006 Gulf of Finland NO Nodularia sp.

(Cyanobacteria)

Aggregates

Total community

Zinke et al., 2017 Baltic Sea NO Activity of deep

sea microbes

Total community

(Continued)

Frontiers in Marine Science | www.frontiersin.org October 2018 | Volume 5 | Article 36112

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Lindh and Pinhassi Sensitivity of Baltic Sea Bacterioplankton

TABLE 1 | Continued

Study Type Water source¶ Include activity

measurements?*

Factor tested Total community

or specific group

Berg et al., 2013 Central Baltic Sea YES Carbon substrate

and trace metals

Total community

Berg et al., 2015 Central Baltic Sea YES Ammonia

oxidation

Archaea

Bergen et al., 2016 Western Baltic Sea YES Acidification Total community

Brettar et al., 2006 Central Baltic Sea YES Denitrification Thiomicrospira

denitrificans

Camarena-Gómez

et al., 2018

SW Coast of

Finland

YES Phytoplankton/

Autochtonous

DOM

Total community

Dinasquet et al., 2013 Northern Baltic

Sea

YES DOC Total community

Glaubitz et al., 2014 Central Baltic Sea YES Carbon substrate Sulfurimonas

Gomez-Consarnau

et al., 2012

Baltic Sea Proper YES Carbon substrates Total community

Grubisic et al., 2012 Northern Baltic

Sea

YES DOM and

stratification depth

Total community

Hannig et al., 2007 Central Baltic Sea YES Denitrification and

anammox

Annamox bacteria

Herlemann et al., 2014 Western Baltic Sea YES Allochtonous DOM Total community

Kaartokallio et al., 2005 Northern Baltic

Sea

YES Salinity Total community

Labrenz et al., 2005 Central Baltic Sea YES Different electron

donor/acceptor

combinations

Total community

Lindh et al., 2015a Baltic Sea YES Salinity,

Autochtonous and

Allochtonous DOM

Total community

Reunamo et al., 2017 Baltic Sea YES Petroleum

hydrocarbon

Total community

Stolle et al., 2010 Western Baltic Sea YES Bacterioneuston,

low wind

Total community

Tammert et al., 2012 Gulf of Finland YES Nutrient limitation

and DOC

Total community

Traving et al., 2017 Northern Baltic

Sea

YES Allochtonous DOM Total community

Vaquer-Sunyer et al.,

2015

Baltic Sea Proper YES DON Total community

Vaquer-Sunyer et al.,

2016

Baltic Sea Proper YES Wastewater

treatment plant

effluent input

Total community

(Continued)
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TABLE 1 | Continued

Study Type Water source¶ Include activity

measurements?*

Factor tested Total community

or specific group

von Scheibner et al.,

2014

Western Baltic Sea YES Temperature Total community

von Scheibner et al.,

2017

Western Baltic Sea YES Temperature Glaciecola sp.

Anderson et al., 2013 Central Baltic Sea NO Grazing Sulfurimonas

Broman et al., 2017a Baltic Sea Proper NO Oxygen shifts Total community

Broman et al., 2017b Baltic Sea Proper NO Oxygen shifts Total community

Degerman et al., 2013 Northern Baltic

Sea

NO Increased

temperature and

nutrients

Total community

Eiler et al., 2007 Central Baltic Sea NO Temperature and

DOM

Vibrio

Kisand et al., 2002 Northern Baltic

Sea

NO Allochtonous DOM Total community

Langenheder et al.,

2004

Northern Baltic

Sea

NO Allochtonous DOM Total community

Langenheder et al.,

2003

Northern Baltic

Sea

NO Salinity and

allochtonous DOM

Total community

Lindh et al., 2015b Northern Baltic

Sea

NO Allochtonous DOM

and temperature

Total community

Lindh et al., 2013 Baltic Sea Proper NO Acidification and

increased

temperature

Total community

Sipura et al., 2005 Northern Baltic

Sea

NO Inorganic nutrient

addition

Total community

Sjöstedt et al., 2012a Baltic Sea Proper NO Increased

temperature

Total community

Sjöstedt et al., 2012b Baltic Sea NO Salinity and DOC Total community

Tank et al., 2011 Western Baltic Sea NO Temperature and

salinity

Purple sulfur

bacteria

Viggor et al., 2015 Gulf of

Finland/Riga

NO Petroleum

hydrocarbon

Total community

Viggor et al., 2013 Baltic Sea Proper NO Petroleum

hydrocarbon

Total community

Yellow symbols denote in situ transects and temporally sampled stations and blue symbols denote all stations that have been sampled for use in experimental studies with empirical

evidence for the effect of natural or human-induced changes in environmental conditions on bacterioplankton community dynamics. Filled circles and triangles denote samples obtained

from surface waters and from deep-water/sediments, respectively. The table is sorted according to (i) Field or experimental studies, (ii) include activity measurements, and (iii) author

name.

¶ A water source from the “Baltic Sea” denotes multiple locations across different basins.

*Activity measurements encompass uptake rates such as 3H-Leucine/Thymidine and enzymatic activities.
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(allochthonous compared to autochthonous) has a major impact
on composition and metabolic activity (Lindh et al., 2015a). Still,
how such changes in salinity affect bacterioplankton community
functioning, with potential implications for ecosystem services,
remains largely unknown.

Temperature and pH
Seasonal variation in temperature significantly affects
bacterioplankton community dynamics in the Baltic Sea
(Andersson et al., 2010; Lindh et al., 2015c). Empirical evidence
from micro- and mesocosm experiments highlights temperature
as a major driver of compositional shifts in bacterioplankton
(Muren et al., 2005; Sommer et al., 2007; Hoppe et al.,
2008; von Scheibner et al., 2014; Vaquer-Sunyer et al., 2015).
Typically, OTUs affiliated with Gammaproteobacteria such
as Glaciecola spp. proliferate at higher temperatures (von
Scheibner et al., 2017). Gammaproteobacteria also increased in
relative abundance in warming experiments of bacterioplankton
amended with dissolved organic nitrogen sources and incubated
in higher temperatures (Vaquer-Sunyer et al., 2015). Here it
is also worthwhile to mention that cell size is influenced by
increasing temperatures (Sjöstedt et al., 2012a), as also observed
in other marine ecosystems (Morán et al., 2015).

Evidence for the effect of ocean acidification on Baltic Sea
bacterioplankton community dynamics are few (Bergen et al.,
2016). Still, there are some indications of synergistic effects
between increased temperature and pCO2 levels (Lindh et al.,
2013). This is in line with analyses from other systems suggesting
that ocean acidification could affect bacterioplankton growth and
physiology both directly and indirectly, e.g., by affecting DOM
release and composition originating from higher trophic levels
(Vega Thurber et al., 2009; Joint et al., 2011; Bunse et al., 2016b;
Sala et al., 2016). Therefore, increased sea surface temperatures
together with acidification due to climate change will likely affect
the dynamics of particular bacterioplankton populations either
alone or synergistically with potential amplification effects.

Nutrient Inputs
The quality and composition of DOM is partly dependent on
its origin, which can be either allochthonous or autochthonous
(Kritzberg et al., 2004; Nagata, 2008). Since bacteria are the main
contributors to the biological transformation of marine DOM,
much attention has been put into uncovering the role of bacterial
community composition in this biogeochemical process. In the
Baltic Sea, particular opportunistic bacterioplankton populations
are capable of successfully utilizing elevated concentrations
of labile, low-molecular weight (LMW) compounds (Gomez-
Consarnau et al., 2012). Moreover, multiple studies report
important effects of allochthonous DOM on Baltic Sea
bacterioplankton responses in community composition (Kisand
et al., 2002; Grubisic et al., 2012; Herlemann et al., 2014). An
important and intriguing future challenge is to determine the
relationship between DOM composition and bacterioplankton
community composition and functioning. Curiously, we found
few studies reporting on the direct effects of inorganic nutrient
enrichments on Baltic Sea Bacterioplankton communities (but
see Tammert et al., 2012). This is perhaps surprising given the

importance nitrogen and phosphorus plays in eutrophication
of the Baltic Sea (Conley et al., 2009). Simple experiments with
bacterioplankton assemblages and nitrogen and phosphorus
additions will be a promising avenue of future research to
couple changes in inorganic nutrients and DOM to shifts in
bacterioplankton community structure and its relationship with
Baltic Sea ecosystem function.

Opportunistic
Gammaproteobacteria—Bottle Effects or
True Dynamics?
OTUs affiliated with Gammaproteobacteria often increase in
relative abundance in micro- and mesocosm experiments. Such
dynamics are sometimes attributed to the so-called “bottle effect”
in which confinement of water causes shifts in bacterioplankton
community composition and physiological rates (Fuchs et al.,
2000; Massana et al., 2001; Baltar et al., 2012). Such effects
are typically detected by rapidly increasing proportions of
copiotrophic gammaproteobacterial populations and metabolic
activity (see e.g., Gomez-Consarnau et al., 2012; Sjöstedt et al.,
2012b). However, we note that particular gammaproteobacterial
OTUs also peak in relative abundance in situ (Andersson et al.,
2010; Lindh et al., 2015c). This pattern does not only occur in
the Baltic Sea but also in the North Sea and Mediterranean Sea
(Fodelianakis et al., 2014; Alonso-Saez et al., 2015; Teeling et al.,
2016). These findings suggest that Gammaproteobacteria could
respond faster to environmental disturbances aided by their
copiotrophic lifestyle and thus potentially become dominant
more frequently due to increased incidence of perturbation in
situ. It remains to be determined whether such changes would
significantly alter microbial-driven carbon cycling or if these
Gammaproteobacteria perhaps carry functional redundancy (see
e.g., Pedler et al., 2014).

BACTERIOPLANKTON COMMUNITY
FUNCTIONING IS CORRELATED WITH
COMMUNITY DYNAMICS BUT DATA IS
SCARCE

In this section we provide an overview of experimental
studies that statistically tested the linkage between changes in
bacterioplankton community composition andmetabolic activity
(i.e., functioning) upon environmental forcing (disturbance;
Table 2). A few in situ studies have shown simultaneous shifts in
bacterioplankton community composition andmetabolic activity
(Pinhassi et al., 1997; Riemann et al., 2008; Glaubitz et al.,
2009; Holmfeldt et al., 2009; Piwosz et al., 2013; Lindh et al.,
2015c; Rieck et al., 2015; Table 1), but as these measurements
can be influenced by and/or auto-correlated to a number of
undetermined environmental variables they were not included
in the current analysis. A majority of experimental studies
performed (non-quantitative) cluster-like analyses based on beta-
diversity estimates that indicated shifts in composition (see e.g.,
Lindh et al., 2013; von Scheibner et al., 2014). Notably, most of
the studies using cluster statistics methods show that functioning
to some degree changes upon shift in composition. A number
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TABLE 2 | Summary of Baltic Sea bacterioplankton studies in which experimental data with empirical testing of the effect of natural or anthropogenically induced

disturbances on total bacterioplankton community composition and functioning have been determined concomitantly (n = 10).

Study* Summary Function

change?

Composition

shift?

Statistical tests Indicated p-values

Bergen et al.,

2016

Tested the effect of increased temperature and pCO2

levels on bacterioplankton communities. Found that

warming and not pCO2 lead to changes in

bacterioplankton community composition and metabolic

activity.

YES YES Repeated

measures ANOVA

| PERMANOVA/

Linear discriminant

effect size

≤0.01|0.001/LDA

values>3.6 (LEfSe)

Camarena-Gómez

et al., 2018

Tested how bacterial physiology and community

structure were affected by changes in phytoplankton

community composition.

YES YES Tukey’s b |

PERMANOVA

<0.05|<0.05

Dinasquet et al.,

2013

Investigated how bacterioplankton communities respond

to varying supply of bioavailable carbon (bDOC) and how

this affected bacterioplankton community composition

and functioning. Found that bDOC triggered a shift in

community composition and changed the abundance of

specific extracellular enzymes.

YES YES Factorial analysis

of variance |

Mantel’s test

0.005|0.017

Grubisic et al.,

2012

Tested the effect of changed DOM quality and

concentrations and stratification depth on

bacterioplankton communities. Bacterioplankton

community composition were influenced both by

stratification depth and DOM but only stratification depth

affected bacterial heterotrophic production.

YES YES MANOVA | PLS

analysis

<0.001|VIP-values >1

(PLS)

Herlemann et al.,

2014

Investigated potential biodegradation of experimentally

added riverine DOM by bacterioplankton communities.

Found no evidence of a direct link between

bacterioplankton composition and community

functioning responding to riverine DOM.

NO NO Repeated

measures ANOVA

| two-way

ANOSIM

>0.05|>0.05

Lindh et al., 2015a Tested the impact of changed salinity and DOM quality

on bacterioplankton communities, with a transplant

experiment. Demonstrated shifts in bacterioplankton

community composition coupled with changed

metabolic activities responding to changes in the

environmental conditions. After communities were

re-transplanted to original environmental conditions they

did not return to original composition nor functioning.

YES YES Repeated

measures ANOVA

|

PERMANOVA/Mantel’s

test

0.001|0.001

Tammert et al.,

2012

Tested the effects of nutrient limitation and bioavailable

DOC additions on bacterioplankton communities. bDOC

changed bacterial heterotrophic production and led to

shifts in community composition.

YES YES Generalized least

squares models |

Permutations test

<0.001|<0.05

Traving et al., 2017 Investigated the effects of elevated levels of riverine DOM

on bacterioplankton communities. DOM additions

stimulated protease activity and specific operational

taxonomic units responded significantly.

YES YES Linear mixed

model | GLM

analysis

<0.0002|<0.05

Vaquer-Sunyer

et al., 2015

Investigated synergistic effects of simultaneous DON

additions and warming on bacterioplankton

communities. Bacterioplankton community composition

and metabolic rates changed in relation to temperature

and DON additions.

YES YES Mixed-effects

model | Mantel’s

test

< 0.01|0.001

Vaquer-Sunyer

et al., 2016

Tested the effects of wastewater treatment plant effluent

inputs on bacterioplankton communities. Nutrient

addition lead to shifts in bacterioplankton community

composition linked with changed metabolic activity.

YES YES Repeated

measures

MANOVA |

Mantel’s test

<0.0001|<0.001

Statistical tests of significant effects and indicated p-values are given for bacterioplankton functioning followed by community composition separated by “|”. All studies consisted of

samples obtained from the surface and not from the deep-water or sediments. None of the studies measured shifts in bacterioplankton community composition and functioning over a

longer period of time, therefore we can only determine initial sensitivity and not resilience.
*Only studies with total community and with statistical testing of observed effects were included in this qualitative analysis.

of studies focused on changes in the relative or absolute
abundance of particular taxa or groups of bacterioplankton
such as Sulfurimonas GD-1, Thiomicrospira denitrificans, and

Glaciecola spp. and also measured metabolic activity of these
populations (Brettar et al., 2006; Glaubitz et al., 2014; von
Scheibner et al., 2017). Importantly, shifts in abundance of these
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particular populations were typically coupled to pronounced
changes in metabolic activity when exposed to environmental
disturbance.

Relatively few studies have carried out statistical assessments
with quantitative data for changes in both the overall
bacterioplankton community composition and bacterial
functioning (e.g., using multivariate statistics such as Mantel’s
test, PERMANOVA, or similar). We analyze in detail these
studies to reach a general understanding of current quantitative
data. We note a lack of deep-water or sediments studies
that in a strict sense target such quantitative assessments.
Consequently, only studies with surface water samples were
included in this analysis (Table 2). Nine out of ten studies
with measurements of total bacterioplankton community
composition and metabolic activity show empirical evidence of
concomitant shifts in community composition and functioning.
One study, by Herlemann et al. (2014), found no significant
effects on bacterioplankton community dynamics responding
to riverine DOM additions, including limited growth, nor links
between composition and functioning. Thus, a majority of
studies highlight bacterioplankton assemblages responding to
disturbances following the sensitivity scenario (Table 2; Box 2).

The studies showing statistical support for concomitant
shifts in community composition and functioning essentially
investigated the effect of nutrient amendments on
bacterioplankton community composition dynamics and
metabolic activity (Grubisic et al., 2012; Tammert et al., 2012;
Degerman et al., 2013; Lindh et al., 2015a; Vaquer-Sunyer
et al., 2015, 2016; Bergen et al., 2016; Traving et al., 2017;
Camarena-Gómez et al., 2018). The Bergen et al. (2016) study
emphasized how temperature significantly alters community
composition and heterotrophic bacterial production but that
pCO2 had a more limited effect. The authors noted how these
changes in bacterioplankton dynamics could be indicative of
changed carbon fluxes in a future ecosystem where heterotrophy
may become more important compared to today. Dinasquet
et al. (2013) showed that bioavailable DOC triggered a shift
in community composition and changed the abundance of
specific extracellular enzymes suggesting that bacterioplankton
communities can respond, following the sensitivity scenario,
to varying supplies of DOC ultimately affecting heterotrophic
respiration. Vaquer-Sunyer et al. (2015) also noted that nutrient
inputs of dissolved organic nitrogen (DON) and changed
temperature may lead to a more heterotrophic system. In a
different study by Vaquer-Sunyer et al. (2016), they showed
an effect of wastewater treatment plant effluent inputs on
bacterioplankton dynamics, with an increase in the relative
abundance of Cyanobacteria responding to the influx of
wastewater with concomitant changes in metabolic activity. A
recent study by Camarena-Gómez et al. (2018) investigated the
relationship between phytoplankton bloom dynamics (different
phytoplankton species) and bacterioplankton community
function and taxonomic structure. Their work emphasized
how bacterial metabolic activity and community composition
were affected by changes in the phytoplankton community—in
particular the divergent bacterial responses to phytoplankton
dominated by diatoms compared to dinoflagellates. Amendment

of a diatom dominated community resulted in a significantly
changed bacterial heterotrophic production and shift in
bacterioplankton community structure compared controls,
while amendment of a dinoflagellate community had overall
smaller impact on both community function and composition
Camarena-Gómez et al., 2018). It is noteworthy how the addition
of riverine DOM could result in changed ecosystem function
from shifts in bacterioplankton community dynamics toward
a more heterotrophic system (Degerman et al., 2013; Figueroa
et al., 2016). Also in the Gulf of Finland enrichment with
labile DOC changed bacterial production and led to shifts
in community composition, promoting filamentous bacteria
- the authors indicate that this DOC source may impact
diversity, food-web structure and biogeochemical processing of
carbon (Tammert et al., 2012). Only three specific studies have
directly determined the correlation between shifts in community
composition andmetabolic activity responding to environmental
perturbations (Lindh et al., 2015a; Vaquer-Sunyer et al., 2015,
2016). These studies indicated that variation in bacterioplankton
community functioning is often significantly explained by
changes in metabolic activity explaining up to around 0.65 of the
variance (Pearson r).

Although environmental disturbances can influence bulk
bacterioplankton community composition, the replacement of
sensitive taxa will occur at the individual OTU level. For
example, although Bergen et al. (2016) implicated limited effects
on bulk community dynamics resulting from increased pCO2,
there was a substantial influence on particular populations with
statistical support from linear discriminant effect size (LEfSe).
Traving et al. (2017) performed statistical tests (generalized
linear models) to determine the coupling between specific OTUs
and amendment of riverine DOM where several OTUs were
significantly correlated with changed environmental conditions.
Although these shifts in the relative abundance of particular
OTUs were not coupled directly to metabolic activity there
were concomitant significant changes in protease activity. Taken
together, the nine studies emphasize the sensitivity scenario of
bacterioplankton communities in Baltic Sea, where particular
populations respond to different sets of environmental forcing.
The causal loop diagram in Figure 2 summarizes the significant
effects of changes in environmental conditions for community
composition and functioning included in this review. Overall, the
studies in this section highlight how changes in environmental
forcing may significantly impact pelagic remineralization of
organic carbon and result in a drastic reduction in the flow of
organic matter through the microbial loop.

OUTSTANDING QUESTIONS

Although the Baltic Sea bacterial communities are fairly well
studied, research to integrate bacterioplankton dynamics and its
consequences in food-web and biogeochemical models is much
needed. We infer that such integration is necessary to allow
predictions and counter measures of detrimental future climate
change effects on microbial food webs and their ecosystem
services.
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FIGURE 2 | Causal-loop diagram indicating potential ecosystem-wide effects

in carbon cycling due to responses among bacterioplankton populations to

natural and anthropogenic disturbances. Bacterioplankton community

composition and functioning have been abbreviated to BCC and BCF,

respectively. The figure is redrawn and modified from (Azam and Malfatti,

2007). Continuous and dashed arrows denote nutrient fluxes and changes in

environmental variables with empirical evidence of significant effects on

bacterioplankton community composition covered in this review, respectively.

Changes in bacterioplankton community functioning, such as bacterial

heterotrophic production and respiration, may occur due to increases in the

availability of dissolved organic matter (DOM), resulting from, for example,

increased freshwater runoff and phytoplankton blooms.

Recent work on bacterial populations and their activity at the
seafloor of the Baltic Sea has shown a plethora of interesting
dynamics and lifestyles including, an active community that was
previously deemed unlikely (Glaubitz et al., 2009, 2014; Berg
et al., 2013, 2015; Broman et al., 2017a,b; Reyes et al., 2017; Zinke
et al., 2017). Detailed studies with concomitant measurements
of bacterioplankton community composition and function are
required in deep-waters and sediments of the Baltic Sea to
determine the role of bacteria in key biogeochemical cycles (e.g.,
of C, N, P, and S) in general, and in relation to hypoxia in
particular.

Seasonal in situ studies of bacterioplankton community
dynamics have emphasized how communities return to a
similar composition and functioning in specific seasons year
after year (Fuhrman et al., 2006; Andersson et al., 2010;
Lindh et al., 2015c). This could indicate that bacterioplankton
communities are in fact resilient to recurrent pulse and press
disturbances, but could also indicate that the environmental
conditions over seasons are “repeated” and that the same
bacterial populations are repeatedly selected for. Overall, there
is a recognized need to incorporate the long-term temporal
dimension when quantifying resistance and resilience of
microbial communities (Shade et al., 2012; Fodelianakis et al.,
2017; Liu et al., 2018). Only by including the temporal dimension
can microbial ecologists fully understand the consequences
of ocean change for bacterioplankton community dynamics,

and we urgently need more information on changes occurring
over time, preferably long-term studies. In particular, for
experimental studies, there is a lack of data that empirically
test the scenarios of resistance and resilience for Baltic Sea
bacterioplankton communities. Nevertheless, in one study
using a transplant and re-transplant experimental design
(Lindh et al., 2015a), we showed how bacterioplankton
community dynamics remain altered even after returning to
the same environmental conditions as the original community
experienced. One of the most important questions to address in
future studies in the Baltic Sea will therefore be to empirically
test whether bacterioplankton communities remain sensitive
to an environmental disturbance or if the community can
return to a similar original community structure and function
following the resilience scenario. Presently, we observe that a
majority of the Baltic Sea studies point toward the sensitivity
scenario, and that it is necessary to await future research to
make definite conclusions regarding the extent of resilience.
Thus, within the time frame of 2 weeks, the studies indicate
that sensitivity is more developed than resistance. Nevertheless,
natural temporal changes in environmental conditions for time
frames of more than a month will alter the composition and
functioning of bacterioplankton communities, likely interfering
with interpretations of the scenarios of sensitivity, resistance and
resilience.

SUMMARY

A majority of the studies included in this review show that
bacterioplankton community composition is sensitive to changes
in environmental conditions, in particular salinity and nutrient
inputs, with empirical support for simultaneous changes also
in community functioning. As noted also in other aquatic
environments, pronounced shifts in composition and bacterial
heterotrophic production occur following spring diatom and
dinoflagellate blooms and summer blooms of filamentous
Cyanobacteria. The sensitivity scenario and its impact on the
microbial loop is highlighted in Figure 3A. Salinity singles out as
a principal determinant of the distribution of bacterioplankton
populations across basin-wide spatial scales in the Baltic Sea.
Nevertheless, at regional (within-basin) scales, changes in
nutrient availability and both autochthonous and allochthonous
DOM influence the bacterioplankton community composition.
Hence, this review provides a roadmap as to what ecological
consequences climate change could have on the Baltic Sea
ecosystem if bacterioplankton dynamics changes. Yet, although
bacterioplankton communities are initially sensitive we know
very little about the potential of resilience due to the lack of
empirical studies testing this scenario (Figure 3B).

For quantifying the level of sensitivity or resilience of
bacterioplankton communities to natural and human-driven
changes in environmental conditions it is essential to investigate
particular bacterioplankton populations and their responses to
alternate physicochemical conditions and specific (in)organic
nutrient sources, e.g., different DOM and DOC compounds.
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FIGURE 3 | Conceptual diagram of two possible scenarios of Baltic Sea bacterioplankton community dynamics, i.e., sensitivity (A), and resilience (B). In both the

sensitivity and resilience scenario an environmental disturbance leads to the replacement of individual bacterioplankton populations and changed community

functioning with potential impact on the microbial loop and carbon cycling. The scenarios differ in that over time the replacement of individual bacterioplankton

populations and changed community functioning remains in (A), but returns to similar individual bacterioplankton populations and community functioning as the

original community in (B). Scenarios with empirical evidence of significant effects on bacterioplankton community composition and functioning in the present review is

the impact of dissolved organic nitrogen (DON) additions and increased temperatures Bergen et al. (2016), Vaquer-Sunyer et al. (2015). However, for Baltic Sea data,

the lack of long-term studies precludes conclusions regarding whether the sensitivity or resilience scenario are the most prominent—currently studies have been

designed primarily to determine the extent of the initial sensitivity (gray filled areas).

The sensitivity scenario has important implications for the Baltic
Sea ecosystem: it dictates that environmental disturbances and
climate change are likely to affect processes like the microbial-
driven carbon pump and/or the general microbial regulation of
energy andmatter fluxes. We infer that knowledge of the linkages
between bacterioplankton composition and bacterial cycling
of carbon and other elements under varying environmental
forcing is critically important for developing action plans to
sustain microbial ecosystem services invaluable for all marine
life.
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Predicted increases in sea surface temperatures are expected to shift the balance

between autotrophic production and the heterotrophic degradation of organic matter

toward a more heterotrophic system. For early phytoplankton spring blooms at low water

temperature the impact of rising temperatures has beenmainly investigated inmesocosm

experiments, while field observations are scarce. During a Baltic Sea research cruise we

examined early spring bloom conditions, characterized by low temperatures (0–3◦C),

and performed on-board warming experiments to compare the responses of phyto- and

bacterioplankton production to an increase in temperature. In the northern Baltic Sea,

the low phytoplankton biomass indicated pre-bloom conditions. In the southern Baltic

Sea, a diatom-dominated phytoplankton bloom with increased primary production (PP)

occurred. Associated with this bloom were increases in bacterial production (BP) and

bacterial abundance as well as shifts in bacterial community composition toward an

increased proportion of Gammaproteobacteria and Bacteroidetes. However, the low

BP/PP ratios (average: 1.2 ± 0.14%) indicated weak coupling between the bacterial and

phytoplankton communities. Short-term warming (6 h, 1+6◦C) significantly enhanced

PP (mean Q10 1.4) and especially BP (mean Q10 2.3). Hence, the higher water

temperature increased both carbon flow into the bacterial community and bacterial

processing of organic matter, thereby confirming previous experimental studies. By

contrast, BP/PP ratios remained relatively low after warming (average: 1.7 ± 0.5%),

unlike in previous mesocosm experiments performed at comparable temperatures and

with similar plankton communities. Overall, these results imply that bacterial activities are

suppressed during early phytoplankton blooms at low temperatures in the Baltic Sea and

are not substantially altered by short-term warming events.

Keywords: phytoplankton spring bloom, bacteria, primary production, bacterial production, temperature, global

warming, Baltic Sea, bacterial community composition
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INTRODUCTION

Under various greenhouse gas emission scenarios, ocean surface
temperatures are predicted to increase 2–5◦C by the end
of this century (IPCC, 2013). Rising temperatures directly
and indirectly impact pelagic organisms and aquatic food
webs, leading to changes in the structure and functioning
of marine ecosystems (Boyd and Doney, 2002; Sarmiento
et al., 2004). Phytoplankton account for ∼50% of global net
primary production (PP) and are the main energy source for
aquatic ecosystems (Field et al., 1998). The major consumers
of phytoplankton-derived organic matter are heterotrophic
bacteria present in the upper water layers of aquatic ecosystems.
The coupling of phytoplankton dissolved organic carbon
(DOC) production with DOC consumption by heterotrophic
prokaryotes (mostly bacteria) plays a central role in the
biogeochemistry of pelagic food webs (Azam, 1998; Ducklow,
2000). The phytoplankton-bacteria relationship and the coupling
between the two components is generally analyzed by comparing
primary production to bacterial production (BP) rates (Hoppe
et al., 2002; Morán et al., 2002, 2013) or, more comprehensively,
to bacterial carbon demand (BCD), thereby also including
bacterial respiration (del Giorgio et al., 1997; Rivkin and
Legendre, 2001). The degree of coupling between autotrophic
producers and heterotrophic decomposers in planktonic systems
has a strong impact on the fate of organic matter and
its partitioning into different pathways, such as microbial
utilization, transfer to higher trophic levels, or accumulation
and export (Wohlers et al., 2009). The DOC production by
phytoplankton also shapes the succession of bacterial taxa and
their specific functions (Sarmento and Gasol, 2012; Teeling
et al., 2012), and the amount and the composition of the
released DOM strongly depend on phytoplankton species and
the physiological status of this cell (Nagata, 2000; Thornton,
2014).

In principle, all biological processes are modulated by
temperature but the observed effects on metabolism in marine
plankton are generally stronger for heterotrophic than for
autotrophic organisms (Pomeroy and Deibel, 1986; Morán
et al., 2006). The metabolic theory of ecology (Brown et al.,
2004) predicts that respiration increases at higher rate than
photosynthesis with increasing temperature, due to the lower
activation energy of autotrophs (Harris et al., 2006). Moreover,
phytoplankton are most often limited by light or nutrient levels
(Tilzer et al., 1986), which diminishes the temperature sensitivity
of growth (Edwards et al., 2016). The effects of temperature
are reflected in reduced bacterial growth during phytoplankton
spring blooms at low temperatures (e.g., polar regions), which
may temporarily uncouple heterotrophic DOC consumption
from autotrophic organic matter production (Pomeroy and
Deibel, 1986; Kirchman et al., 2009). Conversely, an increase
in water temperature has the potential to intensify the degree
of phytoplankton-bacterioplankton coupling by stimulating
bacterial growth and substrate consumption more than for the
phytoplankton. Therefore, an increase in temperature potentially
shifts the balance of autotrophic production and heterotrophic
consumption toward the latter (Hoppe et al., 2002; López-Urrutia

et al., 2006; Morán et al., 2006; O’Connor et al., 2009; Degerman
et al., 2013).

Over the last decade, the impact of temperature changes on
phyto-bacterioplankton coupling and the consequences for the
marine carbon cycle have mainly been investigated in mesocosm
studies that included experimental warming (e.g., Morán et al.,
2006; O’Connor et al., 2009; Lindh et al., 2012). For example,
the effect of sea surface warming on food web dynamics and
pelagic carbon flow patterns has been investigated in several
indoor-mesocosm experiments using natural spring plankton
communities from the Baltic Sea (Sommer et al., 2012; Wohlers-
Zöllner et al., 2012). Among other results, a temperature increase
was repeatedly shown to strongly stimulate bacterial abundance,
bacterial production (BP), and bacterial respiration, resulting in
an increased processing of phytoplankton-derived organicmatter
by heterotrophic bacteria and a higher carbon flow into the
microbial food web (Hoppe et al., 2008; Wohlers et al., 2009;
von Scheibner et al., 2014). The results of other experiments,
performed both in the Baltic Sea (Müren et al., 2005; Eriksson
Wiklund et al., 2009; Degerman et al., 2013; Vaquer-Sunyer
et al., 2015) and in other marine areas (e.g., Keller et al.,
1999; O’Connor et al., 2009), also revealed that an increase in
temperature increases planktonic respiration and intensifies the
coupling of primary producers and heterotrophic consumers.
Overall, warming-induced increases in heterotrophic activities
resulted in a higher net consumption of DOC and subsequently
in a reduced net consumption of dissolved inorganic carbon
(DIC), thus constituting a positive feedback response to global
warming (Wohlers et al., 2009).

However, current knowledge of the underlying mechanisms
by which surface water warming influences food web dynamics
and phyto-bacterioplankton coupling is still limited, and it is
not clear whether the results from mesocosm studies can be
extrapolated to in situ conditions. This is due to a paucity of field
studies investigating the coupling of phyto- and bacterioplankton
production under the in situ conditions of the early spring
bloom, when water temperatures are low and the phytoplankton
development depends on a first and generally weak stratification
of the water column.

The Baltic Sea is a brackish, semi-enclosed shelf sea, with
pronounced phytoplankton blooms in spring and autumn. In
the southern Baltic, the phytoplankton spring bloom normally
occurs between late February and early April whereas in northern
regions it often begins later and extends until May, depending on
the intensity of the surface irradiance, water stratification, and
ice cover (Spilling and Markager, 2008; Wasmund et al., 2008;
Klais et al., 2013). The spring blooms are typically dominated
by diatoms (e.g., Chaetoceros spp. and Skeletonema costatum)
although in some parts of the Baltic Sea (e.g., the central Baltic
Sea) cold-water dinoflagellates may be dominant, especially after
warmer winters (Wasmund et al., 2008, 2011; Klais et al., 2011,
2013). A strong increase in annual mean surface temperature is
predicted for the Baltic Sea, with pronounced winter warming by
up to 6◦C expected by the end of this century (HELCOM, 2013).

The aim of this study was to investigate the phyto-
bacterioplankton coupling during early spring bloom conditions
at low water temperatures in the Baltic Sea, and to examine
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their response to short-term warming. We hypothesized
that at these low temperatures the activity and production
of planktonic bacteria would be suppressed compared to
phytoplankton. For this purpose, we collected water samples
from different stations in the northern and southern Baltic
Sea, assessed phyto- and bacterioplankton composition and
measured primary and bacterial production. Additionally, we
performed shipboard incubations, where PP and BP levels
in response to an increase in temperature were measured.
Some of the results confirmed those of previous mesocosm
warming studies, but striking differences with respect to
the strength of phyto-bacterioplankton coupling became also
obvious.

MATERIALS AND METHODS

Sampling
Water samples were taken at eight stations (stations 1–8),
extending from the Gulf of Finland to the southern Baltic
Sea, during a research cruise of the R/V Alkor between
March 4 and 11, 2009 (Figure 1). Surface water samples were
collected directly after sunrise using a rosette comprising 24
10-L bottles equipped with a conductivity/temperature/depth
(CTD) sensor (SeaBird 911) and sensors for fluorescence.
The concentrations of inorganic nutrients were determined as
described by Grasshoff et al. (1999). To collect microbial biomass
for DNA extraction, water samples of 1–1.5 L were filtered
onto 0.2-µm polycarbonate filters (without pre-filtration) and
stored frozen at −80◦C. DNA was extracted as described in
Weinbauer et al. (2002). For phytoplankton, 250-mL samples
were fixed with Lugol’s iodine and a subsample was later counted
using an inverted microscope (Utermöhl, 1958). Phytoplankton
species identification was performed in agreement with the
HELCOM COMBINE protocol and the Checklist of Baltic Sea
Phytoplankton Species (Baltic Sea Environment Proceedings No.
95, Helsinki Commission). Phytoplankton cell volumes were
calculated after an approximation to geometric standards and
converted to phytoplankton biomass (µg C L−1) according to
HELCOM recommendations (Olenina et al., 2006).

Heterotrophic and autotrophic picoplankton were analyzed
by flow cytometry using a FACScalibur (Becton & Dickinson)
with a constant flow rate (35 µL min−1) and yellow-green
latex beads (0.5µm, Polysciences), which served as an internal
standard. Duplicates of unfiltered 4-mL samples were fixed
with 400 µL of 1% paraformaldehyde and 0.05% glutaraldehyde
(final concentration), shock frozen in liquid nitrogen, and stored
at −20◦C. Smaller autotrophic cells, including Synechococcus
as well as pico- und nanoeukaryotic phytoplankton (<5µm),
were distinguished by size and fluorescence (chlorophyll-a and
phycoerythrin). Heterotrophic cells were analyzed after staining
with 2.5µM (final concentration) SYBR Green (Molecular
Probes). Bacteria were detected by their characteristic position in
a plot of side scatter (SSC) vs. green fluorescence (FL1) and were
further divided into high nucleic acid (HNA) and low nucleic
acid (LNA) bacterial cells as described by Gasol and del Giorgio
(2000).

FIGURE 1 | Map of the Baltic Sea, showing the study area and the position of

the eight sampling stations. According to the GPS coordinates, the station

map was plotted using Ocean Data View (Schlitzer, 2011).

Primary Production and Bacterial
Secondary Production
The first CTD in the morning (7:30 a.m. for all stations except
stations 1, 5, and 8, 10:30 a.m.) was used to collect surface water
(1–2.5m) for the experimental incubations and the PP and BP
measurements at in situ and experimentally increased (+6◦C)
temperatures. PP was measured using the [14C]-bicarbonate
incorporation method of Gragas (1975), with 200 µL of [14C]-
bicarbonate (10 µCi/mL) per 250-mL sample and three different
light intensities (100, 75, and 50% of in situ light irradiation) to
simulate the first few meters of the surface water layer. Triplicate
samples of each light intensity and of one sample subjected to
dark conditions (covered with aluminum foil) were incubated
in a closed transparent incubator for 6 h on the deck of the
ship at two different temperatures (10◦C and 1+6◦C) (Figure
S1). The temperature was carefully adjusted to 1+6◦C using
a thermostatic water bath according to the measured ambient
water temperature (Table 1). The reactions were terminated by
immediately filtering the samples through cellulose-nitrate filters
(0.2µm) and then exposing them to HCl fumes for 10min before
they were fixed with Lumagel scintillation cocktail (Packard). The
PP values were used to calculate the surface water production
rates (µg C m−3). Due to technical problems in gathering data
of daily rates of photosynthetically active radiation (PAR), daily
production rates were roughly estimated by doubling the values
for the half-day incubations (6 h) (Wasmund et al., 2001).

BP was measured based on [3H]-leucine (306 mCi mmol−1)
incorporation as described by Simon and Azam (1989). Triplicate
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TABLE 1 | Overview of the baseline parameters for all sampled stations in the Baltic Sea.

Station no. Temperature

[◦C]

Salinity NO−

3

[µmol L−1]

PO3−

4

[µmol L−1]

Phytoplankton

[µg C L−1]

Bacteria

[106 ml−1]

1 0.1 5.24 6.78 0.85 50.9 –

2 1.4 6.33 6.45 0.88 16.9 0.59

3 3.1 7.33 1.89 0.57 14.4 0.43

4 3.2 7.40 4.01 0.57 – 0.47

5 2.8 7.51 5.32 0.6 104.0 0.90

6 2.5 8.35 0.93 0.45 201.1 0.74

7 2.8 8.45 1.02 0.45 169.8 0.73

8 2.6 10.1 0 0.24 378.1 0.64

10-mL aliquots of the unfiltered samples and of one blank were
incubated in dark with [3H]-leucine (100 nMfinal concentration)
at two different temperatures (10◦C and 1+6◦C) for 2 h before
the reactions were stopped by the incorporation of formaldehyde
(1% final concentration). The blank consisted of a sample in
which formaldehyde was added before the addition of [3H]-
leucine. The same thermostatic water bath, as for the PP, was
used to adjust the temperature to 1+6◦C. All samples were
filtered onto 0.2-µm polycarbonate filters (Millipore) and rinsed
with 10mL of cold 5% trichloroacetic acid. The filters were
dissolved in 4mL of scintillation cocktail (Lumagel Plus) and
the incorporated label subsequently counted in a scintillation
counter (Packard). BP was calculated, assuming a leucine to
carbon conversion factor of 1.5 kgC mol−1 leucine (Kirchman,
2001). Bacterial carbon demand (BCD) was estimated based on
BP and an estimate of bacterial respiration, using the models
proposed by Rivkin and Legendre (2001) as well as by del Giorgio
and Cole (1998), Table 2.

Activation energy for metabolic rates (PP and BP) was derived
from the Arrhenius equation by

ln(k2/k1) = Ea/R
∗(1/T1 − 1/T2) (1)

where k1 and k2 are the metabolic rates at in situ and elevated
temperature, respectively, T1 and T2 are the corresponding in situ
and elevated incubation temperatures in Kelvin (K) and R is the
gas constant (8.314472 mol−1 K−1). The Q10 (the relative change
in a metabolic rate expected for a 10K temperature increase) was
calculated by using the equation of Raven and Geider (1988):

Q10 = e10Ea/RT2 (2)

where Ea is the activation energy, R is the gas constant and T is
the mean temperature in Kelvin.

Analysis of Bacterial Community
Composition
DNA was amplified using the bacterial 16S rRNA gene primers
Bakt_341F (CCTACGGGNGGCWGCAG) and Bakt_805R
(GACTACHVGGGTATCTAATCC) (Herlemann et al., 2011)
and sequenced using pyrosequencing technology. For data
analysis, the resulting sequences were assembled using QIIME

1.9.1 (Caporaso et al., 2010) and the “joins paired-end Illumina
reads” function with default settings to merge forward and
reverse sequences with an overlap of at least 30 bp. Sequences
without overlap were discharged. After converting fastq to
fasta using the “convert_fastaqual_fastq” function, the resulting
sequences were evaluated using the SILVA NGS pipeline
(Klindworth et al., 2013) with default settings. This automated
pipeline aligns the reads to a curated database using the SINA
aligner (Pruesse et al., 2012), in which problematic reads such as
PCR artifacts (including potential chimeras) and non-ribosomal
reads are filtered out. The reads were quality filtered with the
following settings: reads <50 aligned nucleotides and reads
with >2% ambiguities, >2% homopolymers, or low alignment
quality. After alignment, the sequences were dereplicated by
clustering according to their 98% sequence identity with each
other (pairwise distance and single linkage clustering) using
CD-HIT (Li and Godzik, 2006). The longest read in each
cluster was BLAST searched against SILVA SSU Ref 128 for
the classification of sequences. The resulting classification of
the reference sequence of a cluster was mapped to all members
of the respective cluster as well as to their replicates. Similar
classifications (approximately resembling genus level) were
merged to operational taxonomic units (OTUs). Closest related
sequences in the SILVA SSU Ref 128 database to the sequence
with most abundant reads are shown for the dominant OTUs
in Table S1. Sequences having an average BLAST alignment
coverage and alignment identity of <93% were considered
as unclassified and assigned to the group “no relative.” OTU
counts were rarefied to 1000 reads per sample using the
single_rarefraction.py script implemented in Qiime version 2.0
(Caporaso et al., 2010). The 16S rRNA gene sequences were
part of a previous study (Herlemann et al., 2016). The raw
sequencing data were deposited at the Short Sequence Archive
under accession number PRJEB14590.

Statistical Analyses
PP and BP data sets were statistically analyzed using the paired
t-test to determine the significance of the temperature effects
at the in situ (10◦C) and elevated (1+6◦C) temperatures. The
significance level was set at p < 0.05 (IBM SPSS Statistics 20).
To compare the dominant taxa between stations, the relative
abundances of the >75% most abundant OTUs (>40 reads)
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were visualized in a heatmap. Explicet (Robertson et al., 2013)
was used to estimate richness and Shannon diversity for the
eight stations. Bacterial OTUs that significantly differed in their
relative abundances between stations were identified using a
linear discriminant analysis effect size (LEfSe) analysis (Segata
et al., 2011) with the default settings, except the “One against all”
strategy, for multi-class analysis.

RESULTS

In Situ Conditions of the Baltic Sea
During the cruise in early March, the in situ water temperatures
were between 0.1◦ and 3.2◦C (Figure 1, Table 1). Within the
first part of the transect (hereafter called “northern stations”),
extending from the Gulf of Finland (station 1) to those in the
central Baltic Sea (stations 3–4), there was no indication of an
ongoing phytoplankton spring bloom. Phytoplankton biomass
(5.1–39.2 µg C L−1) (Figure 2A, Table 1) and production
(Figure 3A) levels in the surface waters were very low, with
no sign of nutrient depletion (Table 1). The phytoplankton
community was dominated by the dinoflagellate Scrippsiella
sp., which at station 1, for example, contributed ∼95% to
total phytoplankton biomass (Figure 2A, Table S2). Several
large ciliates (mainly Lohmaniella sp.) were also identified. By
contrast, at stations in the southern Baltic Sea (5–8), developing
phytoplankton blooms were evidenced by biomass and PP levels
up to 10 times higher than at the northern stations (PP: 180–
330 vs. 2–20 µg C L−1 day−1, respectively; Figures 2A, 3A) and
by the depletion of nutrient concentrations, particularly nitrate
(Table 1). The phytoplankton communities at the southern
stations were dominated by the diatom Skeletonema costatum
(59–93% of phytoplankton biomass), with minor contributions
by the dinoflagellate Gymnodinium ssp. and other diatoms
(Chaetoceros spp., Thalassiosira rotula) (Figure 2A). Overall,
26 different phytoplankton species within nine phyla (e.g.,
Dinophyta or Heterokontophyta) were detected over the whole
transect (Table S2).

Heterotrophic bacterial abundance was also higher at the
southern (0.64–0.90 × 106 cells mL−1) than at the northern
(0.43–0.59 × 106 cells mL−1) stations but the increase was
relatively modest (Figure 2B). HNA bacteria accounted for 0.13–
0.16 × 106 cells mL−1 at the northern and 0.24–0.35 × 106 cells
mL−1 at the southern stations (average 30 ± 4% and 39 ± 3%
of total prokaryotes, respectively) (Figure 2B). The difference in
BP was much stronger, as the rates measured at the southern
stations were 8-fold higher (Figure 3B). Picocyanobacteria
(mainly Synechococcus), picoeukaryotes, and nanoeukaryotes,
enumerated by flow cytometry, did not show a similarly clear
pattern. Their abundance was highest at station 5 and lowest at
station 2 (Figure 2B).

Temperature Effect on
Bacteria-Phytoplankton Coupling
The experimental temperature rise of △+6◦C resulted in a
significant increase in PP at all stations (paired t-test, p = 0.008,
n= 8) (Figure 3A). This warming-dependent increase in PP was
recorded for incubations at 100 and 75% light intensity, while
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FIGURE 2 | (A) Biomass of the dominant phytoplankton taxa or taxonomic

groups, as well as that of ciliates (µg C L−1) according to the different

stations. No data were obtained for station 4. (B) Bacterial abundance (106

mL−1) at the different stations. Heterotrophic bacteria were distinguished

according to their low and high nucleic acid (LNA and HNA) content.

Autotrophic cells, determined by flow cytometry, are divided into

Synechococcus, picoeukaryotes, and nanoeukaryotes (gray bars).

at 50% light intensity PP remained almost constant (Figure S3).
The temperature increase of △+6◦C led to a stronger relative
increase in PP at stations with a low phytoplankton biomass and
a low rate of PP (stations 1–4; up to 250% at station 3) than at
stations with high PP rates (stations 5–8). The increase at the
latter stations during the incubation period was only 20% on
average (Figure 3A,Table 2), with the strongest increase (36%) at
station 8. The calculated Q10 values were in the range of 1.2–1.7
for the southern, high-PP stations and 1.3–8.2 for the northern,
low-PP stations (Figure 2A; Table 2). However, for the northern
stations these values should be interpreted with caution as the PP
values were very low and the measured increases were in some
cases close to the detection limit.

With a warming of 1+6◦C, BP also increased significantly
(paired t-test, p = 0.008, n = 8), although with a high variability
(mean increase 59± 31%) (Figure 3B). At both the northern and
the southern stations BP increased by 2- to 4-fold (Figure 3B,
Table 2). The resulting Q10 for bacterial production ranged
between 1.1 and 2.8 (mean 2.2 ± 0.7) at high-PP stations (5–8)
and were comparable with BP at low-PP stations which ranged
between 1.5 and 2.2 (mean 1.9 ± 0.3 (Table 2). The calculated
ratios of BP/PP and BCD/PP were much lower at the southern
stations (5–8), where the phytoplankton blooms had developed,
than at the northern non-bloom stations (1–4) (Table 2). This

FIGURE 3 | (A) Primary production (PP) and (B) bacterial production (BP)

rates [µg C L−1 days−1] at two different temperatures (10◦C and 1+6◦C) at

the different stations. Mean (±SD) of three replicate measurements.

was independent of the chosen model for calculating BCD
(Table 2). The experimental temperature increase did not result
in significantly different ratios of BP/PP and BCD/PP at any of
the northern stations (paired t-test, p = 0.798, n = 8) (Table 2).
However, for the southern stations only, warming resulted in
clearly increased BP/PP and BCD/PP ratios.

Bacterial Community Composition
The northern stations (1–4) of the Baltic Sea were dominated
by Actinobacteria (13.4–26.7% of the total sequences),
Alphaproteobacteria (18.7–24.5%), and Bacteroidetes (10.5–
13.9%) (Figure 4). At the southern stations (5–8), where the
diatom-dominated phytoplankton spring bloom occurred,
the same phyla/classes predominated but the proportion of
Bacteroidetes was much larger (15.5–40%). The contribution
of Cyanobacteria (mainly Synechococcus) was maximal at
station 5 (17.9%) and decreased with increasing phytoplankton
biomass in the southern Baltic Sea (stations 7 and 8). This
pattern was consistent with the cell counts of picocyanobacteria
determined by flow cytometry (Figure 2B). Compared to the
northern stations (1–4), the proportions of Bacteroidetes and
Gammaproteobacteria nearly doubled at the southern stations
(5–8), whereas those of Betaproteobacteria, Planctomycetes, and
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Verrucomicrobia decreased (Figure 4). In addition, the bacterial
α-diversity decreased with increasing phytoplankton biomass
(number of bacterial genera, Shannon index; Figure S2).

Among the 75% most abundant bacterial OTUs, LEfSe
analysis identified 14 that differed significantly between
stations with a high (stations 5–8) and low (stations 1–4)
phytoplankton biomass (Figure 5). In the phytoplankton-
dominated samples of the southern stations, several OTUs
belonging to Flavobacteria (unclassified Cryomorphaceae,
Ulvibacter, unclassified Flavobacteriaceae) were particularly
abundant, with OTU NS3a reaching a relative abundance of
16.8% at station 8 (Figure 5). LEfSe analysis also identified
the enrichment of Candidatus Aquiluna (Actinobacteria) as
well as representatives from the unclassified PeM15 group
(Actinobacteria) and the BAL58 group (Betaproteobacteria) at
the southern stations. The dominant OTUs from the northern
stations were more diverse and included representatives from
the Alphaproteobacteria, Betaproteobacteria, Acidobacteria,
and Chloroflexi but also from the flavobacterial NS9 group.
Additionally, several OTUs occurred in higher abundance at all
eight of the investigated stations (Figure 5).

DISCUSSION

Early Spring Plankton Development in the
Baltic Sea
The Baltic Sea is characterized by annual phytoplankton spring
blooms. These occur during late February to early April in
the southern parts but may last into May in the northern
parts (Groetsch et al., 2016). Sufficient light is essential
for the onset of phytoplankton blooms. Diminished vertical
mixing and the associated earlier onset of thermal stratification
depend on the balance of surface warming and wind energy.
In the Baltic Sea, there is a strong inter-annual variation
in the springtime water temperature, which ranges between

−1◦ and +5◦C (HELCOM, 2013). In the northern Baltic,
low water temperatures prevent thermal stratification such
that the phytoplankton spring bloom generally does not start
before April (Spilling and Markager, 2008). However, short-
term warming periods can result in a temporal stratification,
warmer surface temperatures, and the initiation of smaller,
earlier phytoplankton blooms (e.g., Wasmund et al., 1998).
Recent trends of ongoing sea surface warming have already
been shown to impact the phytoplankton spring bloom in the
Baltic Sea, in the form of earlier bloom onsets and changes
in community composition (Klais et al., 2011, 2013; Wasmund
et al., 2011). For example, during recent winter periods, the
earlier stratification of the water column due to the increasing sea
surface temperature frequently led to changes in phytoplankton
composition and abundance, such that the proportions of cold-
water species, including Diatomophyceae, declined and those of
warm-water species, such as Dinophyceae and Cyanophyceae,
increased.

Our study missed the beginning of the early spring bloom
at the northern Baltic Sea stations, where we encountered
pre-bloom conditions, but it did encompass a typical diatom-
dominated spring bloom (mainly Skeletonema costatum), which
developed in late February and reached a peak in early
March (Wasmund et al., 2013; Groetsch et al., 2016), at the
sea’s southern stations. Hence, this study detected the normal
phytoplankton spring succession, whereby stations 5–7 probably
covered the initial phase and station 8 the maximum of
the spring bloom. Here the diatoms were probably already
experiencing nutrient limitation, especially by nitrate availability
(Table 1). This high phytoplankton biomass of 347 µg C L−1 at
station 8 was in accordance with previous phytoplankton peaks
observed during springtime in the Baltic Sea (e.g., Wasmund
et al., 2008). The dominance of one or few taxa during the
phytoplankton spring blooms in the Baltic Sea, as observed here
for Skeletonema costatum (e.g., ∼95% of total phytoplankton

FIGURE 4 | Relative abundance of the major bacterial phyla/classes at the different stations sampled based on 16S rRNA gene analysis.
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FIGURE 5 | Heatmap of the 75% most abundant operational taxonomic units (OTUs) detected in samples from the different stations. The affiliation with the respective

phylum is shown in parentheses.

biomass at station 8) is also a typical feature (Wasmund
et al., 2013). Phytoplankton provides labile organic carbon,
either directly through the exudation of DOC (which resembles
dissolved PP) or indirectly through grazers or viral lysis, thereby
activating the bacterioplankton community and triggering the
growth of adapted bacterial taxa (Sarmento and Gasol, 2012;
Teeling et al., 2012; Wear et al., 2015). However, at very low
temperatures bacterial growth can be suppressed or delayed
despite organic matter production by the phytoplankton spring
blooms (Pomeroy and Deibel, 1986). The latter presumption
has been challenged by studies that demonstrated considerable
bacterial activity at low temperatures (Yager et al., 2001;
Kirchman et al., 2009). Interactive effects between temperature
and substrate supply complicate predictions of the response to
temperature by bacterioplankton communities (Pomeroy and
Wiebe, 2001; Hall and Cotner, 2007; Kritzberg et al., 2010).

In our field study, where the temperature at all stations was
in the 0–3◦C range, activation of the bacterial communities by
blooming phytoplankton was apparent at stations with high PP

(Figures 2B, 3B). Here, increases in bacterial abundance and
production, as well as in the proportion of HNA bacteria, a
common indicator of more active bacterial cells (Gasol et al.,
1999), were recorded. A similar temperature experiment revealed
that in situ BP and BR were positively related to temperature but
BR responded more strongly to temperature than BP, indicating
that increased temperature may result in a higher bacterial
carbon demand and decreased growth efficiency (Kritzberg et al.,
2010). Thus, overall there is considerable evidence that increasing
temperature results in a higher carbon turnover in surface waters
during phytoplankton spring blooms.

At the level of the main phylogenetic phyla/classes, there were
only minor differences in bacterial community composition
(BCC) across the stations sampled (Figure 4) whereas
larger differences were visible at the genus level based OTU
composition (Figure 5). Although salinity is a dominant factor
for BCC in the Baltic Sea, major shifts occur when salinities drop
to <3 or rise to >10 (Herlemann et al., 2011). Modest changes
in main bacterial phyla in our study area can be explained by
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the fact that only stations in a salinity range of 5.2–10 were
covered. Temperature is another strong factor for the BCC, but
since the conditions of the sampled stations were also relatively
similar in terms of temperature (0–3◦C), we assume that the
presence of phytoplankton was probably the main driver for the
differences in the dominating OTUs at the different stations.
Both bacterial richness (here, the number of different OTUs)
and the Shannon index decreased with increasing phytoplankton
biomass (Figure S2), indicating that adapted bacteria became
more dominant. OTUs belonging to Gammaproteobacteria and
Bacteroidetes, which became more dominant at the stations
with high phytoplankton biomass, are characteristic for diatom-
dominated phytoplankton blooms (Teeling et al., 2012; Buchan
et al., 2014; Bunse et al., 2016). For example, at station 8 with
the phytoplankton bloom peak, one OTU of the NS3a marine
group within the Flavobacteriales dominated. The same taxon
occurred in high abundance in a previous mesocosm experiment
with a comparable diatom-dominated phytoplankton bloom
(clone-157; 16% of all 16S rRNA clones; von Scheibner et al.,
2014) as well as in another field study carried out in the same
area of the Baltic Sea during a spring bloom (OTU_000022; 16%
of all 16S rRNA gene sequences; Bunse et al., 2016). This suggests
a key role for this flavobacterial taxa in carbon processing during
early diatom spring blooms in the Baltic Sea. Most of the other
abundant OTUs in our study differed from those reported by
Bunse et al. (2016), perhaps due to the fact that those authors
encountered a higher phytoplankton biomass, with a different
phytoplankton composition in the northern Baltic than was
the case in our study. Generally, the OTUs that were abundant
during the phytoplankton bloom at station 8 were more closely
related to the OTUs from the southern Baltic Sea in the study of
Bunse et al. (2016).

Phyto-Bacterioplankton Coupling and the
Impact of Warming
Although bacterial abundance and production were elevated
at the southern stations (5–8), characterized by high PP rates,
proportionally much stronger increases in phytoplankton
and lower BP/PP ratios (1.0%–1.3%) than generally known
for phytoplankton blooms were recorded. Despite our
measurements of PP are probably only rough estimates of
daily production, as changes in light and radiation could not be
considered, and PP may change from day to day, we do not think
that more extensive PP measurements would have provided very
different BP/PP ratios. For example, the incubations at stations
1, 5 and 8 started later in the morning, and higher radiance over
midday may have resulted in higher PP values, BP increased
equivalent to PP, resulting in comparable BP/PP values. The Q10
values have to be interpreted with caution as the calculation
was based on only two temperatures. However, the obtained
Q10 values are well within the range of reported values from
experimental warming experiments.

According to global observations, water temperature
correlates positively with BP/PP ratios, which increase from 2
to 10% in cold and temperate climate zones up to roughly 40%
at lower latitudes (Carlson and Ducklow, 1996; Ducklow et al.,

1999; Hoppe et al., 2002). This suggests that the low temperature
in our study area suppressed bacterial growth and therefore
prevented stronger phytoplankton-bacteria coupling. The low
BP/PP ratios are comparable to those reported in other studies of
low temperature waters, in which ratios < 10% were interpreted
as evidence of “uncoupled” BP and PP (Cole et al., 1988; Nielsen
and Richardson, 1989). The low water temperatures during early
spring blooms in the Baltic Sea probably delay the bacterial
degradation of phytoplankton-derived organic matter and may
result in the gradual temporal accumulation of DOC. A temporal
delay of bacteria-phytoplankton coupling is often recorded at
these low water temperatures, since the bacterioplankton peak
follows the phytoplankton bloom peak often with a delay of
1–2 weeks and could be a critical factor for the low bacterial
abundance and production in this study (e.g., Hoppe et al.,
2008). Furthermore, high grazing pressure is often observed for
controlling the bacterial growth during phytoplankton spring
blooms at low temperatures and could be another factor for the
reduction in phytoplankton-bacteria coupling (Lignell et al.,
1992; von Scheibner et al., 2014).

Bacterial growth is more dependent on dissolved primary
production (DPP) than on particulate primary production
(PPP) (e.g., Morán et al., 2002). Data concerning the percent
extracellular release (PER) of PP in the Baltic Sea during
phytoplankton spring blooms are scarce, but studies from other
systems indicate that PER is usually <20% of total PP (Nagata,
2000; Teira et al., 2001; Marañón, 2005; Morán et al., 2013).
At a PER of 20%, the estimated BCD at the northern stations
would exceed DPP whereas at the southern stations BCD could
be entirely fueled by DPP. However, other mechanisms also
contribute to the transfer of phytoplankton carbon to bacteria,
such as sloppy feeding by zooplankton or viral lysis. As we did
not measure DPP, we used PPP as a proxy for phytoplankton
organic carbon production, which can fuel the microbial loop.
Although BP/PP ratios are insufficient to completely describe the
pelagic carbon flow, they are indicators of the current relation
between autotrophic production and heterotrophic consumption
of organic matter. Including measurements of DPP, bacterial
respiration, and grazing rates in assessments of the carbon flow
during the phytoplankton spring bloom would lead to more
precise estimates but probably would not change the overall
finding of low phytoplankton-bacteria coupling.

Warming (1+6◦C) stimulated both PP and BP, with distinctly
higher average Q10 values for BP (2.1 ± 0.7) than for PP (1.4
± 0.2) during phytoplankton bloom conditions at the southern
stations (Table 2). This positive effect of higher temperature on
bacterial production rates is in agreement with many previous
studies in the Baltic Sea and other marine locations in this climate
zone (Vázquez-Domínguez et al., 2007; Hoppe et al., 2008;
Panigrahi et al., 2013). However, in some studies the Q10 for BP
even exceeded the normal range of 2–3 known for heterotrophic
organisms during phytoplankton spring blooms (Vaquer-Sunyer
et al., 2015). PP increased significantly with higher temperatures
in all samples, resulting in Q10 values between 1.2 and 8.2
(Table 2). These were within the range reported in other field
studies (e.g., Panigrahi et al., 2013) and in marine mesocosm
experiments in the Baltic Sea (Hoppe et al., 2008; von Scheibner
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et al., 2014). In our study, the warming-related increase in PP
suggested light saturation of phytoplankton, since light-limited
rates of PP are insensitive to temperature changes (Tilzer et al.,
1986), as also shown in mesocosm studies of marine plankton
(e.g., Lewandowska and Sommer, 2010; Lewandowska et al.,
2012; Sommer et al., 2012). Q10 values between 1.2 and 1.7 at
stations with high PP rates indicated that short-term warming
did not greatly disturb biochemical processes. In addition,
these values are in accordance with those of previous studies
demonstrating lower temperature-sensitivity of phytoplankton
growth and production (Marañón et al., 2014). A more detailed
picture would be obtained by measuring not only the response
of particulate but also that of dissolved primary production
(e.g., Morán et al., 2006) as this is expected to be more related
to bacterial substrate utilization. However, other temperature-
sensitive factors, such as grazing pressure (Duarte et al., 2005;
Aberle et al., 2007), qualitative and quantitative aspects of
phytoplankton exudation (Zlotnik and Dubinsky, 1989; Morán
et al., 2006), and substrate affinity (Nedwell, 1999), can strongly
interfere with phytoplankton-bacteria interactions and will have
to be considered for a more comprehensive understanding of
the effects of temperature. Their inclusion would also help to
explain the absence of a temperature effect on the BCD/PP
ratio in samples obtained from the non-bloom conditions of the
northern Baltic Sea (stations 1–4). In these waters, temperature
more strongly stimulated PP than BP, such that carbon flow to
heterotrophic decomposers was reduced by ∼1% per 1◦C. The
high proportion of Dinophyceae (e.g., Scrippsiella sp.), which
often establish a high biomass at low temperature in the northern
Baltic Sea (Kremp, 2000; Kremp et al., 2008), may have been
responsible for the reduced carbon flow to bacterioplankton.
However, at these very low PP and BP rates, carbon budget
calculations should be interpreted with caution, since small
changes, close to the detection limit, nonetheless strongly impact
BP/PP ratios.

Comparison of Field Data With
Experimental Warming Experiments
Our results from the Baltic Sea are consistent with those of
other field studies performed at a similar cold temperature range
(Hoppe et al., 2002; Morán et al., 2002; Duarte et al., 2005).
They suggest that only a small fraction of the fixed carbon
of phytoplankton enters the heterotrophic bacterial community
during early bloom conditions at cold temperatures. Previous
mesocosm studies of Baltic Sea spring communities, examined
at a temperature range similar to that tested in the present work,
showed that BP during phytoplankton spring bloom conditions
was strongly stimulated by warming (Wohlers et al., 2009; von
Scheibner et al., 2014), leading to a closer temporal coupling
of autotrophic and heterotrophic processes as the temperature
rose (Wohlers-Zöllner et al., 2012). The mean Q10 of 2.2 for
the bacterial response in our study was nearly identical to that
reported in a previous experimental warming experiment (Q10 =

2.4) (Hoppe et al., 2008).
However, bacterial stimulation by warming was much less in

this field study than in previous mesocosm studies mentioned

above, as BP/PP ratios were low (0.9–2.1%) even during the
diatom blooms at the southern stations (Table 2), implying
that BP was largely uncoupled from PP also at the elevated
experimental temperatures. By contrast, in the mesocosm
experiments the BCD/PP ratio during the bloom peak was∼19%
at the in situ temperature (∼2◦C) and ∼24% in response to a
warming of +6◦C (von Scheibner et al., 2014). Major differences
with our field study were the higher phytoplankton biomass
(1,000–1,500 µg C L−1) and PP in the mesocosm experiments
(Hoppe et al., 2008; Wohlers et al., 2009; Lewandowska and
Sommer, 2010), significant grazing by mesozooplankton and
a longer duration. This might have provided higher substrate
supply from phytoplankton origin for heterotrophic bacteria.
Several studies already highlighted that bacterial growth is rather
depended on the supply of dissolved PP than to particulate
PP. Moreover, in experimental warming study with slight
temperature increase of 2◦C resulted in massive increase of
dissolved PP, whereas the particulate PP nearly stable (Morán
et al., 2006). In the more unstable physical conditions of the
Baltic Sea (e.g., higher vertical mixing or drifting), phytoplankton
biomass is much lower (Table 1). This could explain the
differences in the carbon flow patterns between the mesocosm
experiments vs. in situ conditions in our study. Another reason
for the distinct differences in phyto-bacterioplankton coupling
might be that the duration of warming in this study was not
sufficient to allow acclimatization of the bacterial communities to
a similar extent as in the mesocosm studies, which were generally
conducted for several weeks.

CONCLUSIONS

Overall, the appearance of diatom-dominated phytoplankton
blooms in the southern Baltic Sea led to a strong activation of
the bacterial communities, in contrast to the northern Baltic Sea,
where the phytoplankton biomass was low and dominated by
dinoflagellates. The experimental temperature increase during
the phytoplankton bloom significantly enhanced both PP and,
especially, BP. This partially confirmed our hypothesis and
previously published considerations that warming results in a
stronger stimulation of bacterioplankton than of phytoplankton
communities under cold-water conditions. However, according
to the low BP/PP ratios, bacteria were still relatively uncoupled
from phytoplankton growth, a situation that remained essentially
unchanged after a temperature increase of 6◦C. This is in contrast
to results from previousmesocosm experiments and suggests that
during the early spring bloom in the Baltic Sea increased sea
surface temperatures will not strengthen bacterio-phytoplankton
coupling to a similar extent as in mesocosm experiments. The
clear differences in carbon flow pattern between field conditions
and experimental studies could be due to different factors such
as physical conditions, food web structure and acclimation,
which remain to be examined. The temporal response patterns
of microbial communities to warming as well as possible
bacterial adaptations are important avenues for future field and
experimental research. By careful comparisons of the results of
experimental mesocosm with those of in situ studies, including
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the different time scales, a more realistic picture of the effects of
global warming on the marine carbon budget will be obtained.
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Changes in iron (Fe) bioavailability influence diatom physiology and community

composition, and thus have a profound impact on primary productivity and ecosystem

dynamics. Iron limitation of diatom growth rates has been demonstrated in both

oceanic and coastal waters of the Northeast Pacific Ocean and is predicted to become

more pervasive in future oceans. However, it is unclear how the strategies utilized by

phytoplankton to cope with low Fe bioavailability and resupply differ across these ocean

provinces. We investigated the response of diatom communities to variable Fe conditions

through incubation experiments performed in the Fe mosaic of the California Upwelling

Zone and along a natural Fe gradient in the Northeast Pacific Ocean. Through coupling

gene expression of two dominant diatom taxa (Pseudo-nitzschia and Thalassiosira)

with biological rate process measurements, we provide an in-depth examination of the

physiological and molecular responses associated with varying Fe status. Following Fe

enrichment, oceanic diatoms showed distinct differential expression of gene products

involved in nitrogen assimilation, photosynthetic carbon fixation, and vitamin production

compared to diatoms from low-Fe coastal sites, possibly driven by the chronic nature

of Fe stress at the oceanic site. Genes of interest involved in Fe and N metabolism

additionally exhibited divergent expression patterns between the two diatom taxa

investigated, demonstrating that diverse diatoms may invoke alternative strategies when

dealing with identical changes in their environment. We report here several mechanisms

used distinctly by coastal or oceanic diatom communities as well as numerous taxa-

specific strategies for coping with Fe stress and rearranging nutrient metabolism following

Fe enrichment.

Keywords: diatoms, Thalassiosira, Pseudo-nitzschia, iron, metatranscriptomics, California Upwelling Zone,

Northeast Pacific Ocean
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INTRODUCTION

Phytoplankton growth is limited by iron (Fe) availability
in ∼30–40% of the ocean (Moore et al., 2001, 2004).
The subarctic Northeast (NE) Pacific Ocean is one of the
most well-characterized of these high-nutrient, low chlorophyll
(HNLC) regions. Productivity in the NE Pacific Ocean remains
low as a result of low Fe concentrations regardless of
sufficient nitrate (NO−

3 ) levels and is typically dominated by
small cells such as the cyanobacterium Synechococcus and
eukaryotic picophytoplankton (Varela and Harrison, 1999). In
this region, Fe is supplied to surface waters mainly through
atmospheric deposition of dust from arid continental regions
and volcanic emissions, with Fe inputs from continental
margin sediments fueling winter phytoplankton blooms when
atmospheric deposition is low (Lam et al., 2006; Lam and Bishop,
2008). A gradient in surface nutrient concentrations is observed
from this oceanic region eastwards toward the continent;
bioavailable Fe increases and supports higher phytoplankton
biomass while NO−

3 concentrations in the upper mixed layer
decrease to limiting levels on the continental shelf (Taylor and
Haigh, 1996; Harris et al., 2009; Ribalet et al., 2010).

Iron-limited growth of phytoplankton may also occur in
coastal waters, notably in regions of the California Upwelling
Zone (CUZ; Hutchins et al., 1998; Bruland et al., 2001). These
regions of the CUZ are characterized by high concentrations of
upwelled macronutrients, but relatively low dissolved Fe (dFe)
such that phytoplankton blooms ultimately become Fe-stressed.
Low Fe levels result from the lack of Fe inputs from rivers and
narrow continental shelves that preventmixing of upwelled water
with Fe derived from Fe-rich shelf sediments (Johnson et al.,
1999; Bruland et al., 2001) and consequently, the primary Fe
source in the CUZ is winter river sediment deposition (Hutchins
et al., 2002; Chase et al., 2005).

Phytoplankton that subsist in Fe-limited environments are
equipped with strategies to sustain growth during periods of
physiological Fe stress and to rapidly respond to sudden increases
in bioavailable Fe. Strategies employed by phytoplankton include
replacement of Fe-containing proteins with Fe-independent ones
to decrease cellular Fe requirements (La Roche et al., 1996;
Peers and Price, 2006; Allen et al., 2008; Lommer et al., 2012),
increasing Fe uptake rates through induction of high affinity Fe
uptake systems (Maldonado and Price, 2001; Morrissey et al.,
2015) and using Fe storage through specialized proteins or
vacuoles (Marchetti et al., 2009; Nuester et al., 2012). In some
diatom laboratory isolates and natural communities, these low-Fe
strategies are rapidly reversed when Fe concentrations increase
(Kustka et al., 2007; Lommer et al., 2012), whereas in others
these strategies are permanent adaptations (Lommer et al., 2010;
Marchetti et al., 2012). Phytoplankton species from low-Fe
oceanic environments generally have lower growth requirements
for cellular Fe than species from higher Fe coastal waters,
largely linked to differences in Fe-containing photosynthetic
proteins and complexes (Sunda and Huntsman, 1995; Strzepek
and Harrison, 2004; Peers and Price, 2006; Behrenfeld and
Milligan, 2013). While we have an understanding of how a
few phytoplankton species alter their nutrient metabolism in

response to chronic Fe limitation from laboratory experiments,
how the nutrient strategies invoked by intermittently Fe-limited
coastal taxa might differ from those used by species residing in
chronically Fe-limited regions of the open ocean has not been
directly compared.

A large amount of genetic diversity exists among diatom taxa,
possibly due to differences in environmental pressures at the time
of evolutionary emergence (Sims et al., 2006; Armbrust, 2009;
Rabosky and Sorhannus, 2009). A genomic comparison between
the evolutionarily older centric Thalassiosira pseudonana and
the more recently evolved pennate Phaeodactylum tricornutum
demonstrates the two diatoms share only 57% of their genes with
each other, suggesting a tremendous amount of genomic diversity
exists between members of these two diatom lineages (Bowler
et al., 2008). Furthermore it is often observed that pennate
diatoms, especially those belonging to the genus Pseudo-nitzschia,
tend to dominate large Fe-induced blooms in HNLC waters (de
Baar et al., 2005; Marchetti et al., 2012). These observations
may suggest that the pennate diatoms have evolved distinct
strategies for optimizing their potential for rapid growth when
transitioning from low to relatively high Fe conditions, resulting
in a competitive advantage over older lineages of diatoms as well
as other types of phytoplankton.

To better understand whether major diatom genera from
coastal and oceanic regions differ in their gene expression
responses to changes in Fe availability, a comparative analysis
across distinct nutrient regimes was performed through
a combination of metatranscriptomic and physiological
approaches. Microcosm incubation experiments were conducted
at geographically diverse sites with different Fe regimes,
macronutrient concentrations, and phytoplankton community
compositions—at an Fe-limited oceanic site and a coastal site in
the subarctic NE Pacific Ocean, and at three biogeochemically
distinct sites within the Fe mosaic of the coastal CUZ. For our
study, we focused on the changes in gene expression patterns
between two dominant taxa across all sites—the pennate diatom
Pseudo-nitzschia and the centric diatom Thalassiosira. These
two taxa were classified by the Tara Oceans circumnavigation
expedition to be two of the eight most abundant diatom genera
in the global ocean (Malviya et al., 2016). Given the large amount
of genetic and physiological variation observed between major
diatom groups (Bowler et al., 2008; Marchetti et al., 2009; Sutak
et al., 2012; Alexander et al., 2015), differences in molecular
responses to changing Fe availabilities across the NE Pacific
Ocean and CUZ were anticipated.

MATERIALS AND METHODS

Experimental Design
Incubation experiments were conducted on two separate
cruises: within regions of the CUZ during July 3–26th 2014
onboard the R/V Melville and along the Line-P transect of
the subarctic NE Pacific Ocean during June 7–23rd 2015
onboard the Canadian Coast Guard Ship (CCGS) John P. Tully
(Figure 1). The incubated phytoplankton community response
was assessed using a combination of physiological measurements
and metatranscriptomics to examine the effects of Fe status
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FIGURE 1 | Locations of incubation experiments in the California Upwelling Zone (C1, C2, C3) and along Line P (C4, O5) in the Northeast Pacific Ocean. Color bar

indicates climatological-averaged chlorophyll a concentrations (µg L−1) from SeaWiFS (1997-2010).

on diatom physiology and gene expression. Each experiment
included three treatments: (1) a 5 nmol L−1 FeCl3 addition (Fe),
(2) a 200 nmol L−1 desferroxamine B (DFB) addition, and (3) an
unamended control (Ctl), each sampled at two time points.

During the CUZ cruise, three incubation experiments were
performed at separate locations corresponding to distinct
Fe and macronutrient regimes (Supplementary Table 1),
including sites of high dFe, macronutrients, and phytoplankton
biomass (C1: 38◦39.30N, 123◦39.87W), relatively low dFe,
high macronutrients and high phytoplankton biomass (C2:
38◦15.31N, 123◦57.98W), and low dFe with highmacronutrients
and low phytoplankton biomass (C3: 42◦40.00N, 125◦0.00W)
(Figure 1). Near-surface seawater was collected from a depth of
∼15m using a trace-metal clean sampling system consisting of a
tow-fish sampler attached to KevlarTM line, PFA Teflon tubing,
and a Teflon dual-diaphragm pump that pumped seawater
directly into a positive pressure trace-metal clean bubble. The
seawater was placed in a large 200 L acid-cleaned HDPE drum
for homogenization before being distributed into 10 L flexible
acid-cleaned polyethylene cubitainers (Hedwin Corporation).
Cleaning protocols for the cubitainers included successive soaks
in 1.2mol L−1 hydrochloric acid (reagent grade) for 3 days,
1.2mol L−1 hydrochloric acid (trace metal grade) for 1 week
and 0.1mol L−1 acetic acid (trace-metal grade) until use. Prior

to filling the cubitainers with seawater, the dilute acetic acid
was removed and the cubitainers were rinsed thoroughly three
times with ambient seawater from the collection site. The primary
objective of these experiments was to elucidate the responses
of target diatom genera and the phytoplankton community
to variable Fe conditions. Therefore, sites were targeted that
would ensure adequate macronutrient concentrations to support
phytoplankton growth. However, at C2, 15µmol L−1 of Si(OH)4
was added to all cubitainers to support growth of diatoms due to
the initially low Si(OH)4 concentration (<4.7µmol L−1).

During the Line-P cruise, incubation experiments were
conducted at the low NO−

3 coastal station P4 (48◦39N,
126◦40W; referred to as C4 in this analysis) and at the chronically
Fe-limited, HNLC oceanic station P26, also known as Ocean
Station Papa (OSP, 50◦00N, 145◦00W; Harrison, 2002; referred
to as O5). Seawater was collected at depths corresponding to
∼30% of incident irradiance (8–12m) at both stations using
a trace-metal clean sampling system consisting of a Teflon air
bellows pump and PTFE lined KevlarTM tubing attached to a
KevlarTM line. The seawater was pumped directly into 10 L acid-
cleaned polyethylene cubitainers placed within an on-deck trace-
metal clean positive pressure flowhood. At site C4, 10µmol L−1

of NO−

3 was added to all cubitainers to support growth of diatoms
due to the initially low NO−

3 concentration (<1.5µmol L−1).
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At the start of the experiments, ambient seawater was
filtered for all initial measurements (T0). For each incubation
experiment, cubitainers were filled to serve as a control
(Ctl) or amended with FeCl3 or DFB just prior to dawn. All
cubitainers were placed in on-deck Plexiglass incubators
with flow-through seawater to maintain near-ambient
surface water temperatures. Incubators were covered with
neutral density screening to achieve ∼30% of the incident
irradiance (Supplementary Figure 1). Following 24–96 h
of incubation (Supplementary Table 1; depending on the
measured macronutrient drawdown) the cubitainers for a
specific time point were removed from the incubators and
filtered immediately. The goal for each time point was to
achieve measureable drawdowns in macronutrients that would
infer stimulation of phytoplankton growth without complete
macronutrient depletion. However, for some experiments
and time points, depletion of NO−

3 or other macronutrients
occurred. All filtrations were conducted at dawn. Subsamples
for dissolved and particulate nutrients, size-fractionated uptake
rates of dissolved inorganic carbon (DIC) and NO−

3 , size-
fractionated chlorophyll a, Fv/Fm, and RNA were collected at T0

and from each cubitainer according to the protocols described
below.

Nutrient Concentrations, Uptake Rates,
and Biogenic Silica Concentrations
For CUZ experiments, dissolved nitrate and nitrite (NO−

3

+ NO−

2 ), phosphate (PO3−
4 ), and silicic acid (H4SiO4)

concentrations were measured onboard using a Lachat Quick
Chem 8000 Flow Injection Analysis system (Parsons et al.,
1984) with detection limits of 0.05µM for NO−

3 + NO−

2 ,

0.03µM for PO3−
4 , and 0.2µM for H4SiO4 (Bruland et al.,

2008). Particles were removed by filtration through a Whatman
GF/F filter (25mm). Reference standards for nutrients in
seawater were run for quality control. During Line-P sampling,
∼15mL of seawater was filtered through a Whatman GF/F
filter into acid-rinsed polypropylene tubes and frozen at −20◦C
in aluminum blocks until onshore analysis. Shortly following
the cruise, the dissolved NO−

3 + NO−

2 , PO
3−
4 , and H4SiO4

concentrations were determined using an Astoria nutrient
analyzer (Barwell-Clarke andWhitney, 1996). Nutrient detection
limits were 0.2µM for NO−

3 + NO−

2 , 0.02µM for PO3−
4 , and

0.5µM for H4SiO4 (Frank Whitney and Mark Belton [IOS],
pers. comm.).

For biogenic silica (bSi) measurements, 335mL (CUZ) or
250mL (Line P) of seawater was filtered onto polycarbonate
filters (1.2µm pore size for CUZ and 0.6µm pore size for Line-P,
25mm), digested with NaOH in Teflon tubes, andmeasured with
the colorimetric ammonium molybdate method (Krause et al.,
2013).

Size-fractionated particulate nitrogen (PN), particulate carbon
(PC), and NO−

3 uptake rates were obtained by adding 15N-
NaNO3 to 618mL subsample of experimental seawater placed
within clear polycarbonate bottles. The concentration of NO−

3
added was no more than 10% of ambient NO−

3 level within CUZ
incubations, and was 1 µmol L−1 within Line-P incubations

(corresponding to NO−

3 levels of 68% at T0 and 10% within
NO−

3 -amended incubations at C4, and ∼10% at O5). DIC
uptake within Line-P incubations was measured by additionally
spiking subsamples with 120µmol L−1 NaH13CO3. Bottles
were incubated in the same flow-through Plexiglass incubators
where cubitainers were kept. Following 8 h of incubation,
seawater samples were filtered in series through a polycarbonate
filter (5µm pore size, 47mm) via gravity filtration, and then
through a pre-combusted (450◦C for 5 h) GF/F filter by
gentle vacuum (<100mg Hg). Particulates collected on the
5µm polycarbonate filter were then rinsed onto a separate
pre-combusted GF/F filter using an artificial saline solution.
Filters were stored at −20◦C until onshore analysis. In the
laboratory, filters were heated to 60◦C for 24 h and pelletized
in tin capsules (Elemental Microanalysis) in preparation for
analysis of the atom % 15N, atom % 13C (for Line-P),
particulate nitrogen (PN), and particulate carbon (PC) using
an elemental analyzer paired with an isotope ratio mass
spectrometer (EA-IRMS). Biomass-normalized NO−

3 uptake
rates (PN-VNO3) and DIC uptake rates (PC-VDIC) for the Line-
P experiments were obtained by dividing the measured NO−

3
and DIC biological uptake rates by PN and PC concentrations,
respectively.

To quantify VDIC in CUZ incubations, incorporation of
14C was determined using a protocol adapted from Taylor
et al. (2013). Briefly, 60mL of seawater from each cubitainer
was distributed into acid-cleaned light and dark polycarbonate
bottles. In each bottle, 1.2µCi of NaH14CO3 was added. Bottles
were incubated in the same flow-through Plexiglass incubators
where cubitainers were kept for 6.5–8 h. Following incubation,
samples were filtered through stacked 47mm polycarbonate
filters (5 and 1µm) separated with a mesh spacer during
filtration. Filters were vacuum dried, placed in 7mL scintillation
vials containing 0.5mL of 6M HCl and permitted to degas for
24 h. Disintegrations per minute (DPM) retained on the filters
were measured using a Beckman Coulter LS 6500 scintillation
counter. Reported values are light bottle DPMsminus dark bottle
DPMs. To obtain VDIC, DIC uptake rates were normalized
to PC concentrations obtained as part of the NO−

3 uptake
measurements within each incubation and size fraction.

Dissolved Iron Concentrations
Seawater samples for Fe analysis within the CUZwere acidified at
sea with the equivalent of 4mL 6N quartz-distilled HCl per L of
seawater (pH ∼ 1.7) and stored in acid-cleaned LDPE bottles for
at least 2 months prior to analysis. Samples were analyzed using
an adaption of Biller and Bruland (2012) as described in Parker
et al. (2016). Briefly, this method involves preconcentrating the
Fe from buffered (pH 6.0) seawater on Nobias-chelate PA1 resin
and eluting with 1N quartz-distilled HNO3. The eluent was
analyzed with a Thermo-Element high resolution XR ICP-MS in
counting mode. Line-P dissolved Fe samples were stored in acid-
cleaned LDPE bottles, acidified post-cruise with Optima-grade
HCl (1mL 12N HCl per L of seawater), and allowed to sit for >3
months. Dissolved Fe was measured via ICP-MS by P. Morton at
Florida State University following resin preconcentration using
the protocol of Milne et al. (2010).
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Chlorophyll a
Four hundred milliliters of seawater was gravity-filtered through
a polycarbonate filter (5µm pore size, 47mm diameter) followed
by vacuum filtration through a GF/F filter (0.7µm nominal
pore size, 25mm diameter) using a series filter cascade for
size fractionation. Filters were frozen at −80◦C until analysis.
Chlorophyll a extraction was performed using 90% acetone at
−20◦C for 24 h and the extracted Chl a was quantified by
fluorometry with a Turner Designs 10-AU fluorometer using the
acidification method (Parsons et al., 1984).

Domoic Acid
Approximately 250mL of seawater from each CUZ site was
filtered through GF/F filters (25mm) via vacuum pressure
(<100mm Hg) and the filters were frozen at −80◦C. The
filters were extracted with 20% methanol (MeOH) in water.
The mixture was sonicated in an ice bath for 2min at 30–
40W with a Sonicator 3000, followed by centrifugation (10min,
1,399 × g). The supernatant was collected and passed through
a 0.22µm syringe filter. Samples were stored at −20◦C until
analysis. Concentrations with a detection limit of 0.01 µg L−1

were obtained using an enzyme-linked immunosorbent assay
(Abraxis, Warminster, PA, USA) following the manufacturer’s
protocol, including running each sample in duplicate at several
dilutions. Final concentrations (pg DA mL extract−1) were
calculated using the manufacturer supplied analysis spreadsheet.

Photophysiology
The maximum photochemical yield of PSII (Fv/Fm) was
measured by fast repetition rate fluorometry (FRRF) using
a custom-built fluorescence-induction and relaxation system
(Kolber et al., 1998; Gorbunov and Falkowski, 2004). Before
each measurement, a 5mL subsample of seawater from each
cubitainer was acclimated to low light for 20min. A saturating
pulse (20,000µmol photons m−2 s−1) of blue light (450 nm)
was applied to dark-acclimated cells for a duration of 100–
200µs. Measurements were obtained using the single-turnover
flash (STF) setting with the average of 50 iterations for the CUZ
experiments, and a single iteration for the Line-P experiments.
Data were blank corrected using 0.2µm filtered seawater.

RNA Extraction and Bioinformatic Analysis
Phytoplankton in seawater samples were filtered onto 0.8µmPall
Supor filters (142mm) via peristaltic pumping, immediately flash
frozen in liquid nitrogen and stored at −80◦C until extraction
onshore. The filters were briefly thawed on ice before being
extracted individually using the ToTALLY RNA Kit (Ambion).
The extraction procedure followed manufacturer protocols with
the modified first step of glass bead addition and vortexing to
facilitate disruption of cells. Removal of DNA was performed
with one round of DNAse I (Ambion) incubation. For the
Line P experiments, due to low yields in treatments, RNA
from the triplicate cubitainers was pooled prior to sequencing.
Within CUZ experiments all triplicate incubation samples were
sequenced separately. At the oceanic site O5, RNA yields
were too low to successfully sequence metatranscriptomes at
the T1 timepoint, and consequently, transcriptomic analyses

were performed using the T0, T2 Fe, and T2 Ctl treatments.
Metatranscriptomic library preparation was performed with the
Illumina TruSeq Stranded mRNA Library Preparation Kit and
HiSeq v4 reagents. Samples were barcoded and run across three
lanes of Illumina HiSeq 2000 (125 bp, paired-end) yielding on
average 23 million paired-end reads per sample (Supplementary
Table 2). The RNA-seq data reported here has been deposited
in the National Center for Biotechnology (NCBI) sequence read
archive (SRA) under the BioProject accession no. PRJNA320398
and PRJNA388329.

Raw reads were trimmed for quality bases and removal of
adapters using Trimmomatic v0.32 (paired-end mode, adaptive
quality trim with 40 bp target length, and strictness of 0.6,
minimum length of 36 bp; Bolger et al., 2014). Trimmed paired
reads were merged into single reads with BBMerge v8.0. For
each site, the resulting merged pairs and non-overlapping paired-
end reads were assembled using ABySS v1.5.2 with a multi-kmer
approach (Birol et al., 2009). The different k-mer assemblies
were merged to remove redundant contigs using Trans-ABySS
v1.5.3 (Robertson et al., 2010). Read counts were obtained
by mapping raw reads to assembled contigs with Bowtie2
v2.2.6 (end-to-end alignment; Langmead and Salzberg, 2012).
Alignments were filtered by mapping quality score (MAPQ)
of 10 or higher as determined by SAMtools v1.2 (Li et al.,
2009). Taxonomic and functional annotations were assigned
based on sequence homology to reference databases via BLASTx
v2.3.0 with an e-value cutoff of 10−3 (Altschul et al., 1990).
Functional annotations were assigned according to the top
hit using the Kyoto Encyclopedia of Genes and Genomes
(KEGG; Release 75), while taxonomic assignments were obtained
according to the top hit using MarineRefII (Laboratory of
Mary Ann Moran, University of Georgia), a custom-made
database comprised of protein sequences of marine prokaryotes
and eukaryotes including all sequenced transcriptomes from
Marine Microbial Eukaryote Transcriptome Sequencing Project
(MMETSP) (Keeling et al., 2014). Taxonomic information was
obtained from NCBI’s Taxonomy Database (each isolate in
MarineRefII is assigned a NCBI taxonomic ID). The information
from NCBI was manually curated to ensure proper assignment
and use of common phytoplankton taxonomic ranks. For our
analysis, we have grouped diatom-associated sequences at the
genus level. Therefore, the patterns in gene expression observed
could be driven by one dominant species or many equally
distributed species belonging to a genus within each site.

All diatom-assigned counts were summed to both the
genus taxonomic rank and KEGG Orthology (KO) functional
annotation level. For genes of interest without a KO assignments
but with an annotated gene definition (i.e., ISIPs and rhodopsin),
raw counts corresponding to KEGG gene definitions were
summed. EdgeR v3.12.0 was used to calculate Pseudo-nitzschia-
or Thalassiosira-specific normalized fold change and counts-
per-million (CPM) from pairwise comparisons using the
exactTest (Robinson and Smyth, 2008; Robinson and Oshlack,
2010; Robinson et al., 2010; Klingenberg and Meinicke,
2017). Significance (p < 0.05) was calculated with edgeR’s
estimate of tagwise dispersions across all samples within
CUZ sites. Heatmaps were produced with the R package
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pheatmap v1.0.8, and dendrograms created using Euclidean
distance and hierarchical clustering. Assembled contigs, read
counts, and functional annotations of contigs are available at
marchettilab.web.unc.edu/data.

In order to directly compare transcript abundance across
locations for principal component analyses (PCA), the assemblies
for all sites were merged with Trans-ABySS. The removal of
redundant contigs was verified with GenomeTools v.1.5.1.
Counts were obtained by aligning raw reads against this merged
metatranscriptome using Salmon v.0.7.3-beta. Normalized
counts were then obtained with edgeR v3.12.0. PCA biplots were
created using log-transformed normalized counts for genes of
interest with ggbiplot v.0.5.

Phylogenetic Analysis of Environmental
Sequences
Environmental Pseudo-nitzschia and Thalassiosira contigs
functionally annotated as RubisCO (RBCL), rhodopsin (RHO),
or superoxide dismutase (SOD) and containing a large number
of mapped reads were compared to diatom reference sequences
for phylogenetic characterization. Diatom sequences used
in reference alignments were obtained through a sequence
homology search using BLASTx v2.2.28 with Pseudo-nitzschia
RBCL, RHO, and SOD against the database MMETSP using an
E-value cutoff of 10−5 (Altschul et al., 1990). Sequences were
aligned using MUSCLE within Geneious v5.6.4 software (Edgar,
2004).

RESULTS

Nutrient Regimes of Experimental Sites
CUZ site C1 (Figure 1) was characterized by high macronutrient
and dFe concentrations in the mixed layer supporting a
high biomass, nutrient-replete phytoplankton community. The
community was dominated by phytoplankton cells in the >5µm
chlorophyll a (chl a) size fraction, constituting 88% of the
total chl a concentration (Figure 2B; Supplementary Table 1).
Macronutrient concentrations were rapidly consumed during the
first 24 h of incubation (T1), with near complete depletion of the
NO−

3 (≤1 µmol L−1 remaining by 48 h [T2]; Figure 2A). The
initially Fe-replete phytoplankton community (dFe: 3.57 nmol
L−1) was mostly unaffected by the additions of Fe or DFB as
demonstrated through relatively constant Fv/Fm, phytoplankton
biomass, particulate nitrogen (PN)-specific nitrate uptake rates
(VNO3, or nitrate assimilation rates), and particulate carbon
(PC)-specific dissolved inorganic carbon uptake rates (VDIC,
or carbon assimilation rates) across treatments at each time
point (Figures 2B–E). Furthermore, the NO3:Fe ratio of the
initial (T0) seawater (3.8µmol:nmol. Supplementary Table 1) was
substantially below the predicted threshold ratio for eventual
Fe stress of 12µmol:nmol for phytoplankton in this region
as proposed by King and Barbeau (2007), albeit this ratio
is subject to variation as a function of phytoplankton iron
demands (Bruland et al., 2001), suggesting this phytoplankton
community was not likely to be driven into Fe limitation prior
to complete NO−

3 utilization. However, indications of molecular-
level responses to Fe and DFB additions were observed; 74

genes were differentially expressed (p < 0.05) in Pseudo-nitzschia
between the Fe and DFB treatments (Supplementary Figure 2A).
Fe-stress bioindicator genes (FLDA, PETE, and ISIP2A;Whitney
et al., 2011; Morrissey et al., 2015; Graff van Creveld et al., 2016)
increased in expression following the addition of DFB relative
to the added Fe treatment, suggesting the onset of Fe stress
following the addition of DFB by the end of the first time point.

CUZ site C2 was located in close geographical proximity to
C1 (Figure 1), yet exhibited different mixed layer properties in
relation to phytoplankton biomass, silicic acid (Si[OH]4) and dFe
concentrations (0.44 nmol L−1). Nitrate and ortho-phosphate
(PO3−

4 ) concentrations were similarly high (10.3 and 0.96µmol
L−1, respectively) as found at site C1, although Si(OH)4 levels
were appreciably lower (4.7µmol L−1) and possibly growth-
limiting to certain diatoms (Nelson et al., 1996). Therefore,
incubations were amended with 15µmol L−1 Si(OH)4 to support
potential diatom growth with added Fe (Brzezinski, 1985).
Although the chl a concentration in the >5µm size fraction was
initially <1µg L−1 and biogenic silica (bSi) concentrations were
<3µmol L−1, by 48 h (T1) the >5µm chl a fraction reached 5–
8µg L−1, and bSi increased to 10–15µmol L−1 in all treatments,
accompanied by appreciable decreases in NO−

3 , PO3−
4 , and

Si(OH)4 concentrations (Figures 2A,B). Since this community
quickly depleted NO−

3 concentrations during the experimental
period, this site presented an opportunity to couple the
physiological indicators of NO−

3 stress with N-related transport
and assimilation genes observed to be elevated in NO3-starved
laboratory diatom cultures (Hildebrand, 2005; Song and Ward,
2007; Bender et al., 2014; Rogato et al., 2015). Apart from Fv/Fm
reaching relatively low values in the DFB treatments, indications
of Fe stress in bulk physiological measurements across treatments
were absent (Figure 2C). However, the initial seawater NO3:Fe
ratio of 23.4µmol:nmol suggests this community may have been
driven into Fe limitation provided sufficient Si(OH)4 was present.
Additionally, a total of 414 Pseudo-nitzschia–associated genes
were differentially expressed (p < 0.05) by T1 between the Fe
and DFB treatments (Supplementary Figure 2). This greater
number of differentially expressed genes in Pseudo-nitzschia
when compared to C1 suggests the C2 diatom community in the
DFB treatment experienced a higher degree of Fe stress during
the incubation period. The initially low dissolved Si(OH)4:NO3

ratio at this site furthermore implies a possible increase in the
Si:N ratios of Fe-stressed diatoms (Hutchins and Bruland, 1998;
Marchetti and Cassar, 2009; Brzezinski et al., 2015). Interestingly,
concentrations of domoic acid (DA), a neurotoxin produced
by Pseudo-nitzschia, was 90 pg mL−1 in initial seawater (T0)
and exceeded 3,000 pg mL−1 in the control treatment by T1

(Supplementary Figure 3). This increase in DA concentration
may be linked to both the increase in Pseudo-nitzschia abundance
and depletion of Si(OH)4 resulting in Si-limited cells which
has been shown to greatly enhance DA production (Pan et al.,

1996).
Site C3 (Figure 1) contained the lowest dFe concentrations

(0.31 nmol L−1) among the CUZ sites along with high
macronutrient concentrations [17µmol L−1 NO−

3 , 19µmol

L−1 Si(OH)4, and 1.5µmol L−1 PO3−
4 ; Figure 2A]. The

corresponding NO3:Fe ratio of the initial seawater was
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FIGURE 2 | Dissolved macronutrient concentrations: nitrate (NO−

3 ), silicic acid (SiOH4), and ortho-phosphate (PO3−
4 ) (A), Size-fractionated chlorophyll a (µg L−1)

within the large (>5µm) and small (<5µm) size fractions or biogenic silica (µmol L−1) (B), Maximum photochemical yield of PSII (Fv/Fm) (C), Particulate carbon

(PC)-specific dissolved inorganic carbon (DIC) uptake rates [VDIC (day−1)] within the large and small size fractions (D), and particulate nitrogen (PN)-specific nitrate

uptake rates [VNO3 (day−1)] within the large and small size fractions (E) in each treatment and sample time points across sites (see Supplementary Table 1). Where

present, error bars represent the standard deviation associated with the mean of triplicate incubations.

∼54.9µmol:nmol (Supplementary Table 1). Following
incubation, the chl a, bSi, PN-specific VNO3, and PC-specific
VDIC were all higher in the Fe-amended treatment relative
to the unamended control by T1 (Figures 2B,D,E). By 72 h,
NO−

3 was completely drawn down within the Fe treatment (T2).
Despite the pronounced influence of Fe enrichment on bulk
parameters, Fv/Fm values were only slightly higher in the Fe

treatment than the control, but they were substantially higher
than in the DFB treatment (Figure 2C). This is likely a reflection
of the different phytoplankton composition at this location
compared to site C2, which did not show indications of an
Fe-addition response on the measured bulk parameters, but did
demonstrate elevated Fv/Fm values in the added Fe treatment.
Site C3 represented the only phytoplankton community in
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the CUZ that displayed a definite physiological response to
Fe addition relative to the control treatment (Supplementary
Table 1). The Fe-induced molecular response in diatoms was
demonstrated by the differential expression of 458 genes in
Pseudo-nitzschia and 1,223 genes in Thalassiosira between the Fe
and DFB treatments (Supplementary Figure 2C), and 365 genes
in Pseudo-nitzschia and 837 genes in Thalassiosira between the
Fe and Ctl treatments (p < 0.05).

Coastal site C4 was located at station P4 of the Line-P transect
in the subarctic NE Pacific Ocean (Figure 1). Initial mixed-layer
seawater properties were characterized by low concentrations of
macronutrients and dFe, which supported a low phytoplankton
biomass. Nitrate concentrations were initially 1.5µmol L−1

(Figure 2A). To facilitate a potential phytoplankton growth
response to added Fe, 10µmol L−1 of NO−

3 was added to
each treatment. Si(OH)4 concentrations were also initially low
(2.2µmol L−1) and incubation concentrations dropped to
<2µmol L−1 in most treatments by the second time point
(T2; Figure 2A). These low concentrations restricted biomass
accumulation as bSi (Figure 2B) and it is likely that the resulting
diatom community experienced Si(OH)4 limitation by the end
of the incubation period. Despite its relatively close proximity
to land and relatively high dFe concentration (0.64 nmol L−1),
there was a pronounced response to Fe addition at C4 as
demonstrated through higher Fv/Fm, PN-specific VNO3, and
PC-specific VDIC in the Fe treatment compared to values in
the unamended control by T1 (Figures 2D,E; Supplementary
Table 1). The NO3:Fe ratio following artificial NO−

3 addition
was 18.8µmol:nmol, sufficiently high to cause Fe stress with
phytoplankton growth following an increase in phytoplankton
biomass.

Oceanic site O5 was located at Ocean Station Papa (OSP),
station P26 of the Line-P transect (Figure 1). This site
demonstrated characteristically highmacronutrients and low dFe
(0.05 nmol L−1), resulting in the highest NO3:Fe ratio observed
across all experimental sites (234µmol:nmol; Supplementary
Table 1). Phytoplankton biomass was initially low, consistent
with historical observations from this well-characterized Fe-
limited region (Figure 2A; Supplementary Table 1; Boyd and
Harrison, 1999). In contrast to most of the coastal sites,
the majority of the phytoplankton biomass was dominated
by picophytoplankton and other small cells (<5µm) initially
and throughout the incubation period (Supplementary Table 1;
Figure 2B). Biogenic Si concentrations only increased after 96 h
with similar responses in controls and Fe treatments (Figure 2B).
Both large and small chl a size fractions, Fv/Fm, PN-specific
VNO3, and PC-specific VDIC were higher in the Fe treatment
than in the unamended control (Ctl), confirming that the
phytoplankton community in the initial seawater and in all
incubation treatments without added Fe were experiencing Fe
limitation (Figures 2B–E).

Community Composition across Sites
Metatranscriptomic assembly of sequence data and subsequent
taxonomic annotation yielded the relative transcript proportions
of phytoplankton functional groups (Figure 3). The CUZ site
C1 was predominantly comprised of diatom transcripts at

T0; however, there was a 26% decrease in diatom transcripts
in both the Fe and DFB treatments by T1, accompanied by
genus-level shifts within the diatoms. In contrast, CUZ site
C2 initially yielded a phytoplankton community transcript pool
dominated equally by diatoms (30%) and prasinophytes (28%),
with diatoms remaining a dominant taxa following incubation
(26–28%) and prasinophyte transcripts substantially decreasing
from 28 to 3–8% in both Fe and DFB incubations. CUZ site C3
contained a phytoplankton community transcript pool almost
equally represented by diatoms, prasinophytes, haptophytes, and
dinoflagellates with little change in community composition
among treatments following incubation. The coastal subarctic
Pacific site C4 yielded an initial phytoplankton community
transcript pool dominated by dinoflagellate-assigned sequences
(24%), although these sequences decreased by ∼10% in the Fe
treatment, concurrent with a 9% increase in diatom transcripts.
At the oceanic site O5, there were initially equal proportions
of prasinophyte (22%) and haptophyte (23%) transcripts, with
little representation by diatoms (4%). However, diatom-assigned
transcripts constituted 9% of the community transcript pool
by T2 in the Fe addition treatment. Pseudo-nitzschia and
Thalassiosira were among the top five diatom genera at all sites
examined based on relative transcript abundance (Figure 3).
These two genera together constituted between 9 and 53% of
the transcript proportions in the initial diatom communities, and
25–58% of the Fe-enriched diatom communities.

Gene Expression Responses to Fe Status
across Sites
Gene expression responses among sites were compared using
Euclidian distance similarity analyses between Fe and DFB
treatments (Fe/DFB, Fe/Ctl for O5) within the diatom genera
Pseudo-nitzschia and Thalassiosira (Figure 4). Expression
responses within coastal sites clustered together, while the
oceanic site O5 displayed distinctly different patterns in both
taxa. At site O5, 83 out of 1,334 KEGG Orthology genes (KOs)
in Pseudo-nitzschia demonstrated >16-fold higher expression
in the added Fe treatment than in the Fe-limited control
treatment (Figure 4, Supplemental Table 4). By comparison,
155 out of 1,241 KOs in Thalassiosira showed >16-fold higher
expression in the added Fe treatment compared to the low
Fe control treatment. The most highly differentially expressed
genes in oceanic Pseudo-nitzschia following Fe enrichment
were ferritin (FTN, 290-fold), a metal transporter (CNNM,
32-fold), a putative bicarbonate (HCO3) transporter (ICTB,
133-fold), and an NADPH-dependent glutamate synthase
(GLT; 146-fold). In oceanic Thalassiosira, highly differentially
expressed genes included ferredoxin-dependent sulfite reductase
(Fd-SIR, 74-fold) and ferredoxin-dependent glutamate synthase
(Fd-GLT; 416-fold). Fe addition induced both genera to increase
the expression of several genes involved in photosynthesis by
>16-fold exclusively at this location. Both taxa overexpressed
gene products involved in vitamin biosynthesis, including the Fe-
dependent vitamin B7 synthesis protein biotin synthase (BIOB),
which increased expression in the Fe enriched treatment by 84-
and 49-fold in Pseudo-nitzschia and Thalassiosira, respectively.
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FIGURE 3 | The average transcript proportions of phytoplankton taxa (outer charts) and diatom genera (inner charts) from initial seawater (T0) and during the first time

point (T1; see Supplementary Table 1) within the Fe addition (Fe) and DFB addition (DFB) treatments at each site. Note that for site O5, the T2 control (Ctl) treatment is

provided as the Fe-limited comparison.

Furthermore, Pseudo-nitzschia increased expression of the
vitamin B1 (thiamine) biosynthetic gene THIC (by 179-fold)
and vitamin B6 (pyridoxine) biosynthetic genes pyridoxine
kinase (PDXK; by 74-fold) and pyridoxine 4-dehydrogenase
(PLDH; by 152-fold) following Fe enrichment at the
oceanic site.

A number of genes demonstrated higher expression in

the Fe-limited control treatment at O5. Forty-eight out of

1,334 genes in Pseudo-nitzschia and 77 out of 1,241 genes
in Thalassiosira showed >16-fold higher expression in the

Ctl treatment than in the added Fe treatment, patterns that

were not found in diatoms from the examined coastal sites
(Figure 4). In Thalassiosira, these genes encode proteins such

as the copper (Cu)/zinc (Zn) superoxide dismutase (Cu-Zn

SOD), an enzyme that removes toxic superoxide radicals
by dismuting them into molecular oxygen and hydrogen
peroxide, and a divalent metal transporter belonging to
the ZIP family (ZIP7) (Marchetti and Maldonado, 2016).
In both taxa, ribulose-1,5-bisphosphate carboxylase oxygenase
(RubisCO; large subunit; RBCL), which catalyzes C-fixation in
the Calvin cycle, had ≥24-fold higher expression in the Ctl
treatment at O5.

Influence of Fe Availability on Fe
Metabolism
The expression of genes involved in cellular growth and function,
including N and C assimilation, vitamin synthesis, Fe-related
metabolism, and trace metal acquisition, were compared in
the dominant diatom genera Pseudo-nitzschia and Thalassiosira
between the Fe and DFB/Ctl treatments (Figure 5). Genes
encoding proteins involved in metal transport were detected
at all locations, with expression patterns varying depending on
site and taxa. Pseudo-nitzscha increased expression of the Fe
transporter ABC.FEV.S by >2-fold under Fe enrichment at all
locations where incubated communities showed a physiological
Fe effect (C3, C4, O5; Supplementary Table 1). Transcripts
for another Fe uptake protein, the high affinity iron permease
FTR, were generally more abundant in the DFB/Ctl treatments
in Thalassiosira, although the gene was more highly expressed
following Fe enrichment in Pseudo-nitzschia at sites C2, C3, and
O5 (Figure 5). The putative metal transporter CNNM was 32-
fold more highly expressed following Fe enrichment in Pseudo-
nitzschia at the oceanic site, but was not detected in Thalassiosira.
Conversely, the non-specific metal transporter ZIP7 was 21-
fold more highly expressed under Fe-limiting conditions in
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FIGURE 4 | Differential expression response of shared KEGG Orthologs (KOs) between the Fe and DFB treatments at T1 in the diatom genera Pseudo-nitzschia (A)

and Thalassiosira (B). Heatmap represents the log2 fold change in gene expression within the Fe addition treatment relative to the DFB addition treatment at each site.

For site O5, the T2 control (Ctl) treatment is used as the Fe-limited comparison. Only KOs with transcript abundances >5 log2 CPM are included. Dendrograms reflect

similarity in expression responses among sites (columns) or KOs (rows).

oceanic Pseudo-nitzschia and similarly not detected in oceanic
Thalassiosira. Transcripts for Fe starvation induced proteins
(ISIPs), including the recently-identified Fe acquisition protein
ISIP2A that binds Fe at the cell surface and is thought to be
involved in intracellular Fe transport (Morrissey et al., 2015),
were highly abundant in Fe-stressed treatments (e.g., DFB and/or
Ctl depending on the site) across all sites and in both taxa
(Figure 5). Although their specific functions in diatoms are
unclear, other ISIPs were markedly abundant and differentially
expressed in the DFB/Ctl treatments, with ISIP1 one of the
most differentially expressed genes between Fe-replete and Fe-
limited treatments at each experimental site and in both taxa
(Supplementary Figure 2).

Other Fe-related metabolic processes similarly varied
depending on both site and taxa. Differences in expression
patterns between taxa were generally greater for these Fe-related
genes than in the N- and C-related genes investigated (Figure 5).
At most sites, transcripts for the Fe storage protein ferritin
(FTN) were higher in the Fe addition treatments than in the
DFB/Ctl treatments. However, at two sites (C2 and C4), FTN
transcripts were more abundant in the DFB treatment compared
to the Fe addition treatment for one of the two genera (e.g.,
at site C2, 3.5-fold higher in Pseudo-nitzschia, p = 1 × 10−3

and at site C4, 90-fold higher in Thalassiosira). SODs were
additionally differentially expressed, but they showed different
expression patterns depending on the enzymes’ metal cofactor(s)
and the diatom genus. Cu-Zn SOD, which contains both Cu

and Zn at its active site, showed a >100-fold higher expression
in Thalassiosira in the Fe-limited control than in the added Fe
treatment at the Fe-limited site O5. In contrast, in the same
Fe-limited control treatment at this location, Pseudo-nitzschia
demonstrated 2-fold higher expression of Fe-Mn SOD, which
contains either Fe or manganese (Mn) as its metal cofactor.
Based on the presence of Mn-coordinating amino acids at sites
G-77 and Q-146 of the most highly expressed Fe-Mn SOD
contigs, this Pseudo-nitzschia SOD was determined to specifically
utilize Mn as its metal cofactor (Crowley et al., 2000; Groussman
et al., 2015) (Supplementary Figure 4C).

Transcriptional responses of genes encoding Fe-dependent
proteins and their functional replacements in photosynthetic
electron transport were examined in both diatom genera
(Figure 5). Transcripts for the Fe-independent protein
flavodoxin (FLDA), which functionally replaces the Fe-protein
ferredoxin (PETF) in photosynthetic electron transport, were
generally more abundant in the DFB/Ctl treatments than in the
Fe treatments in both genera (Figure 5). Conversely, transcripts
of PETF were >2-fold higher in the high-Fe treatment only
in Thalassiosira and across all sites. In Pseudo-nitzschia, PETF
transcripts were either constitutively expressed (C3 and C4),
more highly expressed in the DFB treatment (C1), or not present
(C2 and O5) (Figure 5). Transcripts of cytochrome c6 (PETJ)
and its functional non-Fe replacement, the copper-protein
plastocyanin, also showed differences in gene expression. PETJ
transcripts were more abundant in the high Fe treatment at
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FIGURE 5 | Differential expression responses of select genes involved in nitrogen (N; green), carbon (C; blue), metal transport (orange), iron (Fe; red), and vitamin

(purple)-related processes between the T1 Fe and DFB/Ctl treatments within the diatom genera Pseudo-nitzschia (P) and Thalassiosira (T) (A). Heatmap represents

(Continued)
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FIGURE 5 | Continued

the log2 fold change of gene expression within the Fe addition treatment relative to the DFB treatment at each site. For site O5, the T2 control (Ctl) treatment is used

as the Fe-limited comparison. Gray boxes indicate transcripts were not detected in either treatment. White boxes signify no change in expression between treatments.

A schematic representation of select N, C, Fe, metal transport, and vitamin-related processes within a diatom cell, color-coded by genes of interest included in (A) is

provided (B). Adjacent proteins with black borders indicate similar cellular functions (e.g., FLDA, PETF ). Gene abbreviations are NRT2, nitrate transporter; AMT,

ammonium transporter; URTA, urea transporter; NR, nitrate reductase; NIRA, ferredoxin-nitrite reductase; NIRB, nitrite reductase; NIT-6, nitrite reductase; GLT,

glutamate synthase; Fd-GLT, ferredoxin-glutamate synthase; α-CA, carbonic anhydrase (α family); SLC4A, solute carrier family (bicarbonate transporters); ICTB,

putative bicarbonate transporter; PEPC, phosphoenolpyruvate carboxylase; RBCL, RubisCO large subunit; RBCS, RubisCO small subunit; PGK, phosphoglycerate

kinase; TPI, triseophosphate isomerase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; FBP, fructose-1,2-bisphosphatase I; TKL, transketolase; RPE,

ribulose-phosphate 3-epimerase; PRK, phosphoribulokinase; FBA class I, fructose bisphosphate aldolase (class I); FBA class II, fructose bisphosphate aldolase

(classII); FTR, high affinity iron permease; ABC.FEV.S: iron complex transport system substrate-binding protein; ZIP7, zinc transporter 7; CNNM, metal transporter;

ISIP2A, iron starvation induced protein 2A; ISIP1, iron starvation induced protein 1; ISIP2B, iron starvation induced protein 2B; ISIP3, iron starvation induced protein 3;

FTN, ferritin; FLDA, flavodoxin I; PETF: ferredoxin; PETH, ferredoxin-NADP+ reductase; PETE, plastocyanin; PETJ, cytochrome c6; PETC, cytochrome b6f complex;

Cu-Zn SOD, superoxide dismutase containing Cu and Zn as cofactors; Fe-Mn SOD, superoxide dismutase containing Fe or Mn as cofactor; Fd-SIR, ferredoxin-sulfite

reductase; RHO, rhodopsin (note the localization of RHO within the vacuole membrane is speculative); BIOB, biotin synthase; PDXK, pyridoxal kinase; PLDH,

pyridoxal 4-dehydrogenase; THIC, phosphomethylpyrimidine synthase.

all sites and in both genera, except O5, where it was slightly
more abundant in the Fe-limited control treatment (Figure 5).
By contrast, transcripts for plastocyanin (PETE) displayed
inconsistent expression trends in response to Fe status across
sites, being relatively more abundant following Fe enrichment
in both genera at C3 (1.4-fold in Pseudo-nitzschia; 1.9-fold in
Thalassiosira, p = 5 × 10−4) and at the initially Fe-limited
oceanic site, O5 (1.4-fold in Thalassiosira; Figure 5). At all other
locations PETE transcripts were either more abundant under
DFB conditions or not detected.

Transcripts for the proton-pumping protein rhodopsin

(RHO) furthermore demonstrated differences in expression

patterns among genera. This protein can supplement Fe-

intensive photosynthesis in the light-driven production of

membrane proton gradients and ATP in some diatoms
(Marchetti et al., 2015). Rhodopsin was not detected in
Thalassiosira at any location while its expression increased in
Pseudo-nitzschia by >2-fold in the DFB/Ctl treatments relative
to the Fe treatment at the two lowest dFe sites [C3 (p = 0.01)
and O5; Figure 5; Supplementary Table 1]. At the other sites
RHO expression was constitutive. These rhodopsin contigs were
structurally similar to diatom rhodopsins identified within the
MMETSP database (≥55% similarity; Supplementary Figure 4B).

Relationships among Fe-related transcript abundance,
experimental site and treatment were determined using Principal
Components Analysis (PCA) individually for each diatom
genus. Principle components P1 and P2 explained 54% of the
variation in transcript abundance in Pseudo-nitzschia and 76%
in Thalassiosira (Figure 6C). In Pseudo-nitzschia, transcripts
for the photosynthetic genes ferredoxin-NADP+ reductase
(PETH), PETJ, a cytochrome b6/f complex protein (PETC),
FTN, and Cu-Zn SOD were in higher relative abundance within
Fe addition treatments while RHO, ISIPs, FLDA, PETE, and
FTR were generally more abundant in the Ctl and/or DFB
treatments, as the principle component P1 separated these
samples based on Fe treatment. In Thalassiosira, a similar
response was observed, although RHO was not detected,
and PETF, which was sporadically found and not abundant
in Pseudo-nitzschia, strongly co-varied with the other genes
highly expressed in the treatments where Fe was added
(Figure 6C).

Influence of Fe Availability on N
Metabolism
Genes involved in N transport and metabolism were investigated
to assess the influence of varying Fe status on N assimilation.
Transcripts for genes encoding nitrate (NRT2) and ammonium
(AMT) transporters were detected at all locations, with NRT2
increasing in expression by >2-fold in response to Fe addition
relative to the DFB/Ctl treatment at the majority of sites in both
taxa, while AMT expression varied depending on site (Figure 5).
For instance, C4 was the only location with a >2-fold increase
in AMT expression in the DFB treatment in both Pseudo-
nitzschia and Thalassiosira. Transcripts corresponding to genes
encoding components of NO−

3 assimilation, including nitrate
(NR) and nitrite reductases (NIRA, NIRB, NIT-6) were generally
more abundant in the treatments with added Fe, although NIRA
and NIRB displayed opposite expression patterns in Pseudo-
nitzschia and Thalassiosira at site C3 (Figure 5). Furthermore
Pseudo-nitzschia increased gene expression of one group of
nitrite reductases [NIRB and NIT-6, which use NADPH as the
reductant (Brown et al., 2009)] by 11- and 3.6-fold, respectively,
following added Fe while Thalassiosira conversely increased
NIRB expression by 3.7-fold in the DFB treatment (Figure 5). In
addition, Thalassiosira increased gene expression of another form
of nitrite reductase (NIRA, which uses ferredoxin/flavodoxin
as reductant; Brown et al., 2009) by 8-fold (p = 3 × 10−22)
following Fe enrichment while Pseudo-nitzschia constitutively
expressed NIRA at this location. Noticeably, transcripts for the
genes encoding NIRB and NIT-6 were present in at least one
of the two diatom taxa examined at all sites except the oceanic
site, O5.

The relationships among transcript abundance for N uptake
and assimilation-related genes, experimental sites, treatments
and PN-specific VNO3 measurements within the >5µm size
fraction of the phytoplankton community were examined via
PCA bi-plots. Principle components P1 and P2 explained
86% of the variation in N-related transcript abundance in
Pseudo-nitzschia and 88% in Thalassiosira (Figure 6A). Sites
generally contained high transcript abundances of NRT2 and
NR in the added Fe treatment, with the two genes strongly
co-varying with one another in both Pseudo-nitzschia and
Thalassiosira. Furthermore, the Fe addition treatments at two
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FIGURE 6 | PCA bi-plots depicting the relationship between treatment (color), site (shape), and biomass-normalized N and C rates for transcript abundances of

genes involved in N, C, and Fe-related processes in Pseudo-nitzschia (left) and Thalassiosira (right). Size of points scales with increasing PN-specific VNO3 (day−1)

from 0.04 to 1.63 day−1 (A), and with increasing PC-specific VDIC (day−1) from 0.01 to 1.50 day−1 (B). For the Fe-related genes transcript abundance PCA bi-plot,

sizes remain constant across samples (C). See Figure 5 for the list of gene abbreviations.
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sites that experienced NO−

3 depletion following incubation, C2
and C3, clustered together and contained the highest AMT
transcript abundance at T1 and T2, respectively. Phytoplankton
communities within these incubation treatments concomitantly
displayed low PN-specific VNO3 (0.03–0.13 day−1; Figure 6A).
The highest PN-specific VNO3 were observed in the added Fe
treatment at site C4 at T1 and at C1 within the initial (T0)
phytoplankton community (1.4 day−1), which coincided with
high abundances of NIRA transcripts in both genera at these
locations.

Influence of Fe Availability on C
Metabolism
To further gain insight into how variable Fe status
influences macronutrient resource utilization and regional
biogeochemistry, genes involved in C transport and fixation were
examined among sites and between diatom genera. Transcripts
corresponding to a carbonic anhydrase belonging to the α-family
(α-CA), involved in the carbon concentrating mechanism
(CCM) within photosynthetic eukaryotes (Reinfelder, 2011),
were either constitutively expressed, not detected, or more highly
expressed in the DFB treatment at all locations apart from C1,
where expression was 7-fold higher following Fe addition in
Thalassiosira (Figure 5).

Members of the solute carrier (SLC) family of bicarbonate
transporters (SLC4A-1, -2, and -4), which import bicarbonate
ions from the environment also thought to be involved in
the CCM (Nakajima et al., 2013), were detected intermittently
among sites, though in low transcript abundance (Figure 5).
These genes share sequence homology with the P. tricornutum
genes PtSLC4-1, -2, and -4 (BLASTP; E < 2 × 10−69) and
displayed inconsistent patterns of gene expression with each
another, with no clear relationship to carbon assimilation rates.
Another putative bicarbonate transporter (ICTB) was detected
intermittently across sites and solely in Pseudo-nitzschia, where
it was notably more highly expressed by 128-fold following Fe
addition at O5. Conversely in Thalassiosira, the gene encoding
phosphoenolpyruvate carboxylase (PEPC), which is part of a C4-
CCM in some species of this genus (Reinfelder, 2011), was more
highly expressed by 73-fold following Fe addition at O5.

Gene expression of RubisCO (RBCL) was higher by >24-
fold in the Fe-limited control treatment in both genera at
site O5 while at other sites the gene was either constitutively
expressed, increased expression in the added Fe treatment, or
not detected (Figure 5). In addition, other genes involved in
the Calvin Cycle, including phosphoglycerate kinase (PGK),
transketolase (TKL), ribulose-phosphate 3-epimerase (RPE), and
phosphoribulokinase (PRK), generally increased in expression
following Fe addition compared to the DFB/Ctl treatment
at one or more of the three sites experiencing some degree
of Fe limitation (C3, C4, and O5; Supplementary Table 1;
Figure 5). At the CUZ sites C1 and C2, transcripts for these
genes were either not differentially expressed or were more
abundant in the DFB treatment within both diatom genera.
Fructose-bisphosphate aldolases (FBA), involved in the Calvin
Cycle, glycolysis, and gluconeogenesis, demonstrated strong
Fe-dependent transcriptional patterns regardless of site and taxa
(Figure 5). Transcripts corresponding to class II FBA, likely a

metal-dependent aldolase, increased by 1.5 to 69-fold in the
added Fe treatment as compared to DFB treatments with the
largest fold change attributed to Pseudo-nitzschia from O5.
Class II FBA has been previously demonstrated to be abundant
under high-Fe conditions in diatoms and is hypothesized to
contain Fe2+ as a metal cofactor (Horecker et al., 1972; Allen
et al., 2012; Lommer et al., 2012). Transcripts corresponding
to class I FBA, the metal-independent version of class II FBA,
conversely increased by 1.3 to 16-fold in DFB compared to Fe
treatments.

The relationships in transcript abundance among C fixation-
related genes, experimental sites, incubated treatments and PC-
specific VDIC measurements were assessed using PCA bi-plots.
Principle components P1 and P2 together explained 80% of the
variation in C-related transcript abundance in Pseudo-nitzschia
and 78% in Thalassiosira (Figure 6B). Site C4 contained some
of the highest PC-specific VDIC measurements within the
>5µm size fraction (0.65–1.6 day−1), and coincided with the
highest transcript abundances of PGK, PRK, FBP, TKL, RPE, and
GAPDH in Pseudo-nitzschia (Figure 6B). Conversely, Fe-limited
treatments from C3 and O5 had the lowest transcript abundances
of these genes in both Pseudo-nitzschia and Thalassiosira, with
principle component P1 separating these samples from other
sites and treatments (Figure 6C). Fe-limited sites C3 and O5
phytoplankton communities additionally displayed some of the
lowest PC-specific VDIC observed (0.11–0.17 day−1).

DISCUSSION

Prior to this study, our understanding of the strategies utilized
by phytoplankton to cope with low Fe bioavailability and
resupply across different coastal and oceanic regions was limited.
Furthermore, whether diverse diatom genera from identical
environments would respond similarly when exposed to changes
in Fe availability was unresolved. The gene expression patterns
presented here demonstrate that the cosmopolitan diatom
genera Pseudo-nitzschia and Thalassiosira rely on diverse sets of
strategies to handle Fe stress, and that oceanic diatoms from both
groups are highly responsive to changes in Fe availability with a
greater degree of differentially expressed genes involved in nitrate
assimilation, carbon fixation, and vitamin production compared
to their coastal counterparts.

Iron-Related Gene Expression Responses
across Sites
Differences in gene expression patterns in response to Fe
status were observed between the coastal (C1-C4) and oceanic
sites (O5) examined in this study. This included the >16-fold
higher expression of genes in the added Fe treatment relative
to the Fe-limited control encoding proteins involved in B7
synthesis (BIOB) in both taxa, and B1 (THIC) and B6 (PDXK,
PDLH) synthesis in Pseudo-nitzschia. These increases are
consistent with previous field observations demonstrating
that Fe enrichment of previously Fe-limited oceanic diatom
communities stimulates B-vitamin transcript production (Cohen
et al., 2017). Genes encoding an Fe storage protein (ferritin
[FTN]) and components of amino acid metabolism (glutamate
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synthase [GLT] in Pseudo-nitzschia; ferredoxin-dependent
glutamate synthase [Fd-GLT] in Thalassiosira) were similarly
more highly expressed by >16-fold following Fe addition
exclusively at site O5. Conversely, in the Fe-limited control,
we observed the >16-fold higher expression of genes encoding
the proteins Cu-Zn superoxide dismutase (Cu-Zn SOD) and
RubisCO (RBCL), in either one or both taxa investigated. These
distinct transcriptomic patterns of genes involved in diverse
metabolic processes reflect differences in environmental factors
selecting for diatom growth between the chronically Fe-limited
open ocean and sporadically Fe-limited coastal regions.

In contrast, many photosynthetic genes were highly expressed
following Fe addition regardless of location. A subset of these
genes displayed distinct expression responses depending on
whether the incubated communities experienced Fe limitation
of growth rate (e.g., C3 and O5) or only Fe stress (C4;
Supplementary Table 1). One such gene encodes the putative Fe
transporter ABC.FEV.S, in which expression increased following
Fe addition in Pseudo-nitzschia only at sites C3, C4, and O5.
Additional genes include flavodoxin (FLDA) and plastocyanin
(PETE), in which transcripts were generally more abundant
in the DFB or Fe-limited Ctl treatments, consistent with
flavodoxin’s role as an Fe-independent photosynthetic electron
carrier and plastocyanin’s role as a Cu-dependent replacement
for Fe-dependent cytochrome c6. At the Fe-stressed CUZ
site C3 however, FLDA was either constitutively expressed or
slightly more abundant after Fe addition, depending on the
diatom genus. Plastocyanin (PETE) transcripts were similarly
more abundant after Fe addition in both diatom genera at
C3 and in Thalassiosira at O5. This pattern suggests coastal
diatoms from higher-Fe systems tend to temporarily replace Fe-
dependent photosynthetic proteins with Fe-independent ones,
while certain diatoms in chronically Fe-limited environments
may rely exclusively on the Fe-free alternatives (Marchetti et al.,
2012).

Fe-Related Gene Expression Responses
Between Diatom Taxa
Pseudo-nitzschia and Thalassiosira demonstrated several
distinct responses to changes in Fe status despite co-existing
under identical environmental conditions. Ferredoxin (PETF),
ferredoxin-dependent glutamate synthase (Fd-GLT), and
ferredoxin-dependent sulfite reductase (Fd-SIR) transcripts were
more abundant in Thalassiosira at oceanic site O5 following
Fe addition with these responses absent in Pseudo-nitzschia.
In contrast, ferredoxin-related transcripts in oceanic Pseudo-
nitzschia were constitutively expressed or not detected. These
patterns may suggest oceanic Thalassiosira strongly utilizes
ferredoxin and ferredoxin-dependent proteins following Fe
addition while Pseudo-nitzchia relies on Fe-independent
machinery. Site O5 was additionally the only location in
which Thalassiosira increased gene expression of Cu-Zn SOD
under Fe-limitation. This pattern was not evident in oceanic
Pseudo-nitzschia, where gene expression of this protein was
constitutive, or by either genus at coastal sites, suggesting that
the oceanic Thalassiosira species have distinctly evolved to
rely on this Cu- and Zn-containing enzyme as the preferred

superoxide dismutase in their Fe-limited environment. Pseudo-
nitzschia conversely increased expression of Mn SOD following
Fe addition, likely as a result of iron-induced increases
in photosynthetic rates and photosynthetic production of
superoxide radicals (Asada, 2006). These patterns highlight
differences in preferred metal cofactors as a function of Fe status
and transcriptional tendencies between the two taxa.

Transcripts corresponding to rhodopsin (RHO) increased in
abundance within Pseudo-nitzschia in the DFB/Ctl treatments
at the two sites experiencing pronounced Fe limitation (C3 and
O5), but were not identified in Thalassiosira at any location.
This is consistent with rhodopsin being undetected in sequenced
Thalassiosira spp. transcriptomes (Marchetti et al., 2015) and
supports the notion that Pseudo-nitzschiamay have a competitive
advantage over non-rhodopsin containing taxa, allowing for an
Fe-independent alternative to photosynthesis for ATP generation
during times of Fe stress. Ferritin (FTN) gene expression patterns
furthermore diverged between the two taxa at the coastal
sites C4 (Line-P) and C2 (CUZ). This supports laboratory
findings suggesting FTN may exhibit different expression
patterns among diverse phytoplankton (Marchetti et al., 2009;
Botebol et al., 2015), even between taxa residing in the same
location. Lastly, ABC.FEV.S, encoding a membrane Fe transport
system protein, displayed divergent expression patterns between
the examined genera with only Pseudo-nitzschia increasing
ABC.FEV.S expression after Fe addition in all incubations
exhibiting signs of iron limitation (C3, C4, and O5).

Taken together, these patterns in gene expression demonstrate
that members of the pennate diatom genus Pseudo-nitzschia
and the centric diatom genus Thalassiosira restructure their
functional metabolisms in response to changes in Fe availability
in distinct manners, possibly allowing both species to co-exist in
the same environment. Both taxa are equipped with strategies to
sustain growth under chronic Fe limitation in the open ocean,
as supported by their equal transcript abundance during initial
sampling. Following pulse Fe additions however, oceanic Pseudo-
nitzschia relies in part on the strategies discussed above to gain a
competitive advantage over Thalassiosira and quickly dominates
the phytoplankton community. It remains unclear however
which combination of environmental factors in the NE Pacific
Ocean would select for the preferential growth of Thalassiosira
over Pseudo-nitzschia. We conclude that substantial differences
inmolecular responses to changes in Fe status are observed across
taxonomic groups, and patterns in gene expression should not be
assumed universal across diverse taxa or environments.

Nitrogen-Related Gene Expression as a
Function of Fe Status
The majority of N transport and assimilation genes investigated
increased in expression following Fe addition in both Pseudo-
nitzschia and Thalassiosira. Several site- and taxa-specific
patterns were identified, with some trends also possibly explained
by each site’s initial NO−

3 concentration. For example, most
gene copies encoding the NO−

3 transporter, NRT2, have been
demonstrated in laboratory cultures to increase in expression
in NO3-stressed diatoms (Bender et al., 2014; Rogato et al.,
2015), and transcripts corresponding to this gene were some of
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the most abundant in both Pseudo-nitzschia and Thalassiosira
at C2—the CUZ site where NO−

3 concentrations were depleted
in all incubations by the first sampling time point. This gene
also showed expression trends that correlated with Fe status;
NRT2 transcripts were more abundant after Fe addition at all
locations, regardless of initial NO−

3 concentrations. Based on
these observations, NRT2 in diatoms also appears to be linked
to Fe status and follows the expression of other N-related genes
involved in Fe-dependent NO−

3 assimilation, including those
encoding nitrate reductase (NR) and nitrite reductase (NIRA;
Marchetti et al., 2012).

Diatoms were perhaps relying on NH4 in place of NO−

3 as
a source of N based on gene expression patterns at several
CUZ sites. Fe-enriched treatments at C2 contained the lowest
NO−

3 after 48 h of incubation (0.06 µmol L−1), and the genes
encoding the ammonium transporters AMTs concomitantly
increased in expression in the Fe relative to DFB treatment
(Figure 6). Furthermore at C3, Fe-enriched communities entered
NO−

3 stress by the end of the incubation period, and AMT
expression simultaneously increased in both Pseudo-nitzschia
and Thalassiosira. This negative relationship between NO−

3
concentrations andAMT transcript abundance in natural diatom
assemblages is consistent with those in laboratory Pseudo-
nitzschia multiseries and Fragilariopsis cylindrus cultures (Bender
et al., 2014; Rogato et al., 2015), and is reported here as one of the
first observations of this relationship in natural phytoplankton
communities.

High AMT transcript abundance at some of these locations
may also represent NH4 rather than NO−

3 being preferred as
an N source by Fe-stressed diatoms conserving their cellular Fe
supply, as NO−

3 assimilation depends on various Fe-dependent
processes (Milligan and Harrison, 2000). This is supported by
the increased expression of AMT transcripts in both Pseudo-
nitzschia and Thalassiosira from the Fe-stressed coastal Line-
P incubations at C4. Pseudo-nitzschia from the Fe-limited
site O5 also exhibited this pattern whereas Pseudo-nitzschia
from C3 and Thalassiosira from both C3 and O5 did not,
suggesting other environmental parameters aside from Fe status
are influencing whether diatoms utilize NH4- or NO3-specific N
uptake pathways.

Similar to our Fe-related gene expression results, several
N-related genes demonstrated divergent expression responses
between Pseudo-nitzschia and Thalassiosira. Expression of the
NO−

2 reductase genes, NIRA and NIRB, displayed opposite
patterns between the two genera at the CUZ site where Fe-stress
occurred in incubations (C3), with Pseudo-nitzschia highly
expressing the gene encoding non-ferredoxin-utilizing NO−

2
reductase (NIRB) following Fe addition, and Thalassiosira highly
expressing the gene encoding the ferredoxin-utilizing nitrite
reductase (NIRA). Furthermore at site O5, Pseudo-nitzschia
increased expression of AMT and NADPH-dependent glutamate
synthase (GLT) following Fe addition while Thalassiosira
increased expression of NRT2 and ferredoxin-dependent
glutamate synthase (Fd-GLT). These transcriptomic patterns
may suggest Pseudo-nitzschia continues to rely on the non-
Fe requiring metabolic pathways for assimilating N once Fe
becomes available (AMT, NIRB, GLT), whereas Thalassiosira

shifts over to Fe-dependent ones (NRT2, NIRA, Fd-GLT) upon
Fe resupply.

These expression patterns furthermore support that
substantial variations exist between the two diatom taxa in
terms of N acquisition and assimilation strategies following
changes in Fe supply. Both Pseudo-nitzschia and Thalassiosira
are equipped with distinct strategies to compete under a
variety of Fe and N conditions, and this may contribute to
how multiple diatom species relying upon the same limiting
resources in identical environments co-exist (i.e., paradox of
the plankton; Hutchinson, 1961). These patterns are consistent
with previous reports of resource partitioning among diatoms
based on N and phosphate utilization (Alexander et al., 2015).
Varying environmental pressure likely maintain populations of
diverse diatom genera in the open ocean, with certain species
outcompeting others depending on specific sets of external
factors, including both macro- and micronutrients (Godhe and
Rynearson, 2017).

Carbon-Related Gene Expression
Responses as a Function of Fe Status
Genes encoding proteins involved in C uptake and assimilation
were surveyed in order to determine the influence of Fe
addition or stress on C metabolism. We observed site-specific
expression patterns of the diatom RubisCO large subunit protein
(RBCL), where gene expression was substantially elevated at
site O5 in the Fe-limited control treatment relative to the
Fe addition response in both diatom genera. A sequence
analysis of RubisCO contigs obtained across experimental sites
demonstrates that O5 protein sequences are structurally less
similar to known Pseudo-nitzschia and Thalassiosira RubisCO
protein sequences within the MMETSP database than those at
the four coastal sites (Supplementary Figure 4A; Supplementary
Table 3). This distinction in both protein structure and
transcriptional expression may indicate a distinct adaptation and
utilization of RubisCO in the oceanic diatoms than in those
from high-Fe coastal waters. Phylogenetically diverse diatom
species have been demonstrated to vary in their RubisCO enzyme
kinetics in laboratory cultures, with their RubisCO content
inversely linked to the strength of their carbon concentrating
mechanism (CCM; Young et al., 2016). The CCM increases
CO2 concentrations in chloroplast stroma in the vicinity of
RubisCO and is fueled by the energy (ATP) generated from
the Fe-intensive process of photosynthesis (Reinfelder, 2011;
Young et al., 2016). We hypothesize that chronically Fe-limited
oceanic diatoms are ATP-limited by the scarcity of Fe needed
to support photosynthesis, and instead increase their RubisCO
protein content to maintain high rates of carbon fixation rather
than allocate scarce energy resources to the CCM. Furthermore,
the genes encoding a putative bicarbonate transporter (ICBT)
and a C4-CCM component (PEPC; Reinfelder et al., 2000;
Sage, 2004; Reinfelder, 2011) were highly expressed following
Fe addition in Pseudo-nitzschia and Thalassiosira, respectively,
exclusively at O5. This supports that diatoms may be capable
of shuffling energy pools into either the CCM or RubisCO
production depending on Fe bioavailability. Interestingly, in
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laboratory-based proteomic analyses with cultures of the coastal
diatom T. pseudonana, RubisCO was similarly more highly
expressed under Fe limitation, while PEPC protein levels
were higher under Fe-replete conditions (Nunn et al., 2013).
Consistent with our hypothesis, Hopkinson et al. (2010)
attributed increases in biomass following CO2-enrichment of an
Fe-limited phytoplankton community in the HNLC Northeast
Pacific Ocean to downregulation of the CCM in order to conserve
iron and photosynthetically-produced energy. Laboratory-based
RubisCO kinetic work with cultured diatom isolates is needed
to confirm whether diatoms from HNLC regions minimize their
photosynthetic demand for Fe by synthesizing more RubisCO
enzymes rather than allocating scarce energy resources into
the CCM.

Other C fixation-related gene expression patterns were largely
consistent with C assimilation rates, and generally varied as
a function of both Fe status and ocean province. The genes
PGK, TKL, RPE, and PRK did not exhibit site-specific expression
patterns similar to RBCL, and instead increased in expression
following Fe enrichment at sites where Fe addition increased C
assimilation rates (C3, C4, and O5). Increased expression of these
genes is expected with Fe stimulation of C-fixation and growth.
These expression patterns are in agreement with laboratory
cultures of the diatom P. tricornutum, which increased expression
of genes involved in C fixation during the light portion of their
diel cycle, when DIC is being taken up to support photosynthesis
(Chauton et al., 2013).

CONCLUSION

Gene expression characterization coupled with biological rate
processes across geographically diverse communities suggests
regional and taxa-specific strategies are utilized by diatoms when
rapidly responding to variations in environment. Our analysis
demonstrates that chronically Fe-limited oceanic diatoms will
restructure Fe, N, and C metabolism in a distinctive manner
following Fe addition when compared to the response of coastal
diatom communities that receive inherently more variable Fe
inputs. Pseudo-nitzschia and Thalassiosira, two cosmopolitan
diatom taxa found at all locations investigated, at times
demonstrated divergent transcriptomic responses to changes in
Fe status in terms of photosynthetic processes and Nmetabolism,
even under identical environmental conditions.

Potential limitations to our approach include gene
expression analyses being conducted on specific diatom
genera while the physiological rate process measurements
correspond to bulk phytoplankton communities. We therefore
assumed the physiological characteristics to be representative
of all phytoplankton members present. Furthermore, the
metatranscriptomic approach used here consisted of analyzing
cumulative expression responses of pooled gene copies;
however, distinct gene copies have been shown to vary in their
transcriptional response to environmental conditions within a
single organism (Bender et al., 2014; Levitan et al., 2015; Rogato
et al., 2015). In order to gain further resolution, we recommend
laboratory-based studies be performed investigating the direct
relationships between nutrient uptake rates and expression of

specific gene copies encoding proteins involved in nutrient
assimilation in distinct members from each of the genera
Pseudo-nitzschia and Thalassiosira.

The findings presented here support the notion that a
tremendous degree of genetic diversity is contained within the
diatom lineage, and this may strongly influence the abundance
and distribution of phytoplankton communities. Since Fe
bioavailability to phytoplankton is predicted to change with
increasing temperature and acidification of surface seawater (Shi
et al., 2010; Sunda, 2010; Capone and Hutchins, 2013; Hutchins
and Boyd, 2016), these findings will aid in predicting the
consequences of changing ocean conditions on phytoplankton
productivity and community growth dynamics.
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During the N-ICE2015 drift expedition north-west of Svalbard, we observed the

establishment and development of algal communities in first-year ice (FYI) ridges and at

the snow-ice interface. Despite some indications of being hot spots for biological activity,

ridges are under-studied largely because they are complex structures that are difficult to

sample. Snow infiltration communities can grow at the snow-ice interface when flooded.

They have been commonly observed in the Antarctic, but rarely in the Arctic, where

flooding is less common mainly due to a lower snow-to-ice thickness ratio. Combining

biomass measurements and algal community analysis with under-ice irradiance and

current measurements as well as light modeling, we comprehensively describe these

two algal habitats in an Arctic pack ice environment. High biomass accumulation in ridges

was facilitated by complex surfaces for algal deposition and attachment, increased light

availability, and protection against strong under-ice currents. Notably, specific locations

within the ridges were found to host distinct ice algal communities. The pennate diatoms

Nitzschia frigida and Navicula species dominated the underside and inclined walls of

submerged ice blocks, while the centric diatom Shionodiscus bioculatus dominated

the top surfaces of the submerged ice blocks. Higher light levels than those in and

below the sea ice, low mesozooplankton grazing, and physical concentration likely

contributed to the high algal biomass at the snow-ice interface. These snow infiltration

communities were dominated by Phaeocystis pouchetii and chain-forming pelagic

diatoms (Fragilariopsis oceanica andChaetoceros gelidus). Ridges are likely to formmore

frequently in a thinner and more dynamic ice pack, while the predicted increase in Arctic

precipitation in some regions in combination with the thinning Arctic icescape might lead

to larger areas of sea ice with negative freeboard and subsequent flooding during the

melt season. Therefore, these two habitats are likely to become increasingly important

in the new Arctic with implications for carbon export and transfer in the ice-associated

ecosystem.

Keywords: Arctic ecosystem, ice algae, phytoplankton, infiltration communities, sea-ice ridges, community

composition, climate change
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INTRODUCTION

Current changes in sea-ice conditions have consequences for
algal biomass and growth, with bottom-up cascading effects
on the Arctic marine food web (Wassmann et al., 2011). The
significant decline in sea-ice extent and thickness during the
last 30 years has caused an increase in the light available for
phytoplankton (Arrigo and van Dijken, 2011; Bélanger et al.,
2013) and, thus, an increase in phytoplankton net annual primary
production (Arrigo and van Dijken, 2015). Likewise, there have
been several reports of under-ice phytoplankton blooms in
the recent years enabled by the increased light transmission
through melt ponds (e.g., Mundy et al., 2009; Arrigo et al.,
2012) or through leads (Assmy et al., 2017). In contrast, ice algal
areal production is probably decreasing on a pan-Arctic scale
due to the loss of sea-ice habitat (Dupont, 2012). In addition,
biomass standing stocks are low in young ice compared to the
disappearing older ice, probably limited by recruitment, adding
to the reduction in sea-ice algal areal production (Lange et al.,
2017a; Olsen et al., 2017). As the ice edge retreats further north
each summer, ice algae will be limited to the stratified deep
basins of the Central Arctic with more oligotrophic conditions
compared to the more productive shelves (Barber et al., 2015).
The trend toward earlier ice melt and later ice formation may
furthermore cause a mismatch in the timing between primary
and secondary producers, diminishing the amount of carbon and
energy transferred up the food chain (Søreide et al., 2010; Leu
et al., 2011; Ji et al., 2013).

Diatoms typically dominate both the phytoplankton and
the sea-ice spring blooms, while flagellates, dinoflagellates, and
picoeukaryotes usually dominate in late summer (Tremblay et al.,
2009; Moran et al., 2012; van Leeuwe et al., 2018). Some diatom
species, such as Shionodiscus bioculatus (formerly Thalassiosira
bioculata) (Alverson et al., 2006) and Fragilariopsis cylindrus,
are sea-ice associated and have been observed both in the
water column and in the ice (von Quillfeldt, 2000). Other sea-
ice specialists such as Nitzschia frigida and Melosira arctica
grow attached to the ice, while Chaetoceros gelidus (formerly
Chaetoceros socialis) (Chamnansinp et al., 2013), Fragilariopsis
oceanica and the haptophyte P. pouchetii are typically found in
the water column (Booth and Horner, 1997). Current estimates
of algal biomass and production in the ice-covered Arctic
Ocean generally include phytoplankton and less often sea-ice
algae (Gosselin et al., 1997; Sakshaug et al., 2004). Only recent
studies have quantified the contribution of other sea-ice related
environments, such as melt ponds (Mundy et al., 2011; Lee et al.,
2012; Fernández-Méndez et al., 2015), and other more elusive
forms of algal accumulations under the ice such as floating algal
aggregates (Assmy et al., 2013; Fernández-Méndez et al., 2014).

There are few observations of ice algae growing in ridges
(Syvertsen, 1991; Hegseth, 1992; Legendre et al., 1992) and at
the snow-ice interface in the Arctic (Buck et al., 1998; McMinn
and Hegseth, 2004; von Quillfeldt et al., 2009). Ridges are
known to be hot spots for biological activity since they act as
shelters for ice fauna and ice-associated zooplankton (Hop and
Pavlova, 2008; Gradinger et al., 2010) and juvenile polar cod
(Gulliksen and Lønne, 1989). Ridges have also been recently

identified as locations of high algal biomass using under-water
remotely operated vehicles (Lange et al., 2017b). However, due
to the sampling challenges that these complex structures pose,
algae have only been sampled sporadically. Snow infiltration
communities growing at the snow-ice interface, have been widely
described for Antarctic pack ice (Horner et al., 1988; Spindler,
1994; Robinson et al., 1997; Kristiansen et al., 1998; Garrison
et al., 2003), where they contribute substantially to sea-ice
primary production (Arrigo et al., 1997). In the few observations
obtained from the Arctic, the dominant species reported are
mostly phytoplankton such as P. pouchetii in pack ice north
of Svalbard and Svalbard fjords (McMinn and Hegseth, 2004;
von Quillfeldt et al., 2009), and unidentified pennate and centric
diatoms in Disco Island, Greenland (Buck et al., 1998).

Despite these important observations, algal communities
growing in ridges and at the snow-ice interface are understudied
in the Arctic. Published studies of these two environments mainly
focused on a qualitative assessment of the algal species present
(especially in ridges), and the photosynthetic performance of
the snow infiltration community in the study by McMinn and
Hegseth (2004). During the Norwegian young sea ICE (N-
ICE2015) drift expedition, we followed the evolution of these
communities over 6 weeks and were able to characterize the
physical-chemical environment in which these algal communities
thrive, and we explain why these environments are suitable
habitats for Arctic microalgae.

The aim of this study is to characterize sea-ice ridges and
snow-ice interfaces as potential habitats and refuges for algae
in the Arctic Ocean. In particular, we assess the importance of
their biomass compared to adjacent environments, we define the
light and nutrient regimes that these communities experience,
we assess their photosynthetic activity, and we describe the
species present. Furthermore, we discuss the role of these
environments for hosting algae in the future Arctic Ocean against
the background of the ongoing and predicted changes in the
Arctic icescape.

MATERIALS AND METHODS

Sampling
All samples were collected during the N-ICE2015 drift expedition
that took place between January and June 2015 in ice-covered
waters north-west of Svalbard (Granskog et al., 2016). In
total four ice floes were occupied and monitored during the
expedition. Data presented in this study were obtained during
drifts of Floe 3 and 4 (Figure 1A). Sea-ice algae present in
ridges were sampled during the drift of Floe 3 between 10 May
and 3 June 2015. Between 10 and 18 May, scuba divers using
a slurp gun (modified 3.5 L Trident R© suction gun) collected
samples from the surface of the submerged ledges on the
thin ice side every other day (side labeled with a star in
Figures 1B, 2). These samples were used for algal biomass,
physiology, and community analysis. Slurp gun sampling can
potentially lead to loss of algal biomass, however it can be
considered themost appropriate method to sample these surface-
attached algal layers. To use these samples quantitatively, the
area sampled on the ledge’s surface was measured (0.05 ×
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FIGURE 1 | (A) Study area with bathymetry for the N-ICE2015 expedition. The drift trajectories are shown in thick magenta (Floe 3) and blue (Floe 4) lines. The black

dotted line indicates the ice edge (>10% ice coverage) position on 25 May 2015. Map created by Max König for the Norwegian Polar Institute. Bathymetry with

permission from IBCAO (Jakobsson et al., 2012). (B) Aerial image of the study area during Floe 3 (image taken on 23 May 2015) and location of ridge sampling. The

pink line indicates the transect sampled across the ridge and the star the sampling site from which the videos were recorded and the biomass estimates calculated.

The pink square indicates the low biomass side of the ridge. (C) Aerial image of the study area during Floe 4 (image taken on 14 June 2015) and locations of snow-ice

interface sampling. Vasilii Kustov and Sergey Semenov (Arctic and Antarctic Research Institute. St. Petersburg. Russia).

0.54m) and used to estimate areal biomass. On 28 May, 31
May and 3 June, sea-ice algae at the ridge were sampled by
ice coring with a 9-cm diameter ice corer (Mark II coring
system, KOVACS Enterprise, Roseburg, USA). Bottom and top
0.1m of the cores were collected on 28 May and entire cores
of submerged sea-ice ledges were collected in three pieces with
the ice corer on 30 May and 3 June for chlorophyll (Chl) a
measurements and quantitative taxonomic analysis at both sides
of the ridge. Melting of the ice cores occurred in the dark
without addition of filtered seawater to avoid the addition of
nutrients.

Algae growing at the snow-ice interface were sampled on
Floe 4 between 9 and 18 June. Snow was removed with
a shovel to search for brownish coloration as an indicator
for algae at random areas with negative freeboard and high
snow accumulation. In a radius of 500m around the ship,

we found and sampled these dense algae accumulations
at eight different locations, usually along cracks in the
ice (Figures 1C, 3). Samples for qualitative analysis were
taken with a snow shovel and melted in clean wide-necked
plastic buckets. On 9 June, samples for quantitative analyses
were taken using the bottom part of the ice corer and a
plastic plate to close the bottom once it was filled with
slush.

Characterization of the Physical Setting:
Sea Ice and Snow
The ridge we chose for this study was a typical first-year ice (FYI)
ridge (based on the characterization of its physical properties by
Ervik et al., under review) that had formed adjacent to a refrozen
lead as we started sampling Floe 3 in late April. We were able to
follow its progression for a month. The internal ridge structure
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FIGURE 2 | Scheme of a first-year ice ridge based on observations and measurements performed during May 2015. The square and star correspond to the sampling

sites indicated on Figure 1B. The main water current below the ice is a simplification from Figure 5C. The transmitted irradiance is depicted in a qualitative way to

show the reflections that occur inside ridge cavities where the light might be higher than below the ridge itself. The most abundant algal species at the distinct

surfaces of the ledges are depicted in the circles to the right based on Figure 3.

FIGURE 3 | Scheme of snow-ice interface habitat with algal biomass and simplified taxonomic composition. The snow infiltration community is established when thin

ice with a thick snow cover starts melting and cracks appear in the ice that enable seawater to infiltrate into the snow-ice slush layer.

was determined by drilling holes with a 0.051m auger along a
transect perpendicular to the ridge length, as described in Ervik
et al. (under review). To calculate the ridge macro-porosity (ratio
of voids filled with water or slush to the total thickness of the ice)

of the unconsolidated part (rubble), we added up the lengths of all
the voids inside the rubble ice and divided by the total lengths of
all the drill holes inside the rubble. Six videos of the underwater
part of the ridge were recorded with a GoPro Hero black on 25
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and 28 May (a compilation of these videos can be found in the
Supplementary Material).

Ridge and rubble ice coverage, as well as smooth ice, new
ice and open water percentages were assessed from satellite
scenes. Five Radarsat-2 scenes of areas located within 10 km of
the research vessel’s position from 25 May until 15 June were
processed and the percentage of deformed ice was estimated
(Table S1, Figure S1). Radarsat-2 scenes use the standard
frequency (C-band) for operational sea-ice monitoring and have
successfully been used to separate deformed, FYI and multiyear
ice (MYI) (Casey et al., 2014). The satellite imagery used here
are fully polarimetric scenes with a high spatial resolution
(5m). The scenes were radiometrically calibrated using the
included metadata calibration information (MacDonald, 2016),
and subsequently segmented using the “extended polarimetric
feature space” algorithm (Doulgeris and Eltoft, 2010; Doulgeris,
2013). The segmentation algorithm separated each image
into distinct categories based on the statistical properties of
the texture features. The identification and classification into
open water, new and young ice, smooth ice, and ridges and
rubble ice followed procedures used by operational ice analysts
and documented in MANICE [Canadian Ice Service (CIS)
Meteorological Service of Canada, 2005]. The total percentage
of each category type was estimated once the segments had been
combined into classified areas.

Water currents below the ice close to the ridge were
measured with a medium-range vessel-mounted broadband
150 kHz acoustic Doppler current profiler (ADCP; Teledyne RD
Instruments, Poway, CA, USA). Profiles were averaged hourly in
8-m vertical bins with the first bin centered at 23m (Meyer et al.,
2017). Current speed and direction at 23m depth were used to
analyze the current dynamics relative to the ridge during Floe
3 based on the ship’s navigation data. The 23m depth current
data from the vessel-mounted ADCP were the shallowest current
data set available for the study time period and were validated by
comparing with near surface (1m depth) current speed available
for part of the time period from Acoustic Doppler Velocimeter
instruments (ADV; Sontek Xylem, San Diego, CA, USA).

Snow depth and ice thickness on Floe 4 were determined using
an electromagnetic instrument (EM31) in combination with a
GPS-snow probe as described in Rösel et al. (2018). Negative
freeboard areas that could potentially be flooded through cracks
in the ice were estimated based on data from snow and ice
thickness transects within a radius of 5 km around the ship
(Rösel et al., 2016a,b) and drill hole data (Rösel and King, 2017).
Additionally, a snow pit was dug and analyzed on 13 June at
the first location (SI1) (Figure 1C), where we sampled the snow
infiltration communities. Density, temperature, hardness and
grain size of the snow were determined at 0.1m intervals (Gallet
et al., 2017).

Light Measurements and Calculations
Transmitted irradiance below ridges was measured during
Floe 3 with a vLBV300 remotely operated vehicle (ROV)
(SeaBotix.Inc, San Diego, CA, USA). The amount of transmitted
photosynthetically active radiation (PAR) available below
the studied ridge was measured using a cosine-corrected

hyperspectral irradiance sensor (HyperOCR, Satlantic, Halifax,
Canada) mounted on the upper part of the ROV. The same type
of sensor was mounted on the surface of the ice looking upwards
to measure incoming irradiance. Simultaneous measurements
with both sensors allowed for transmittance estimates. In total,
334 radiation measurements at <5m depth below the ridge were
performed during 7, 18, and 20 May. Moreover, based on the
observations by divers and the videos from the ROV’s camera
(600TVL color), as well as with an underwater camera attached
to a pole and deployed through a hole in the ice, we could
qualitatively assess the light field inside the ridge.

In addition, we used the following modification of the
equation by Light et al. (2008) to calculate light transmitted
(PARz) through the ridge with three overlaid ice ledges, separated
by voids with water:

PARz = (1− R)×PARsurface×exp[−Ksnow×Zsnow

− Kice×(Zice1 + Zice2 + Zice3 )− Kwater×(Zwater1

+ Zwater2 )]

where R is the specular reflection that happens at the surface (5%)
(Perovich, 1989), PARsurface is the incoming PAR from a Trios-
Sensor located at the weather station on the ice camp (Hudson
et al., 2016), Ksnow is the snow light attenuation coefficient for
PAR (14.82 m−1), Kice is the ice light attenuation coefficient (0.93
m−1), Kwater is the water light attenuation coefficient (0.1 m−1),
and Z is thickness of the three different ledges or the depth of the
water voids in between them. The snow attenuation coefficient
was calculated from time series of incident and transmitted PAR
and the sea-ice light attenuation coefficient was taken from Light
et al. (2008). To compare with the ROV under-ice measurements,
we calculated the light transmitted at the side of the ridge facing
the refrozen lead (marked with a star in Figures 1B, 2) from
23 April to 5 June, using its minimum (0.07m) and maximum
(0.11m) snow depths measured on 28May. In addition, to obtain
an idea of the spatial variability of light transmitted through the
ridge, we calculated PAR transmitted at 1-m intervals where we
measured snow depth, ice thickness and water voids on 24 and
31 May.

The amount of light available for the snow infiltration
communities was measured with a scalar Mini PAR logger
(JFE MKV-L, Japan). In addition, we calculated the transmitted
irradiance below 0.2–0.7m of snow using themeasured incoming
irradiance and the snow attenuation coefficient mentioned above.

Chemical and Biological Analysis
Inorganic nutrients (nitrate, phosphate, and silicic acid)
were sampled at 5m below the ridge and at the snow-ice
interface, collected in 20mL scintillation vials, fixed with 0.2mL
chloroform and stored refrigerated until sample analysis ∼6
months later. Nutrients were measured spectrophotometrically
on a modified Scalar auto-analyzer following Bendschneider and
Robinson (1952) for nitrate, and Grasshoff (1965), for phosphate
and silicic acid. The measurement uncertainty was 10% or
less for all nutrients. Ammonium, which can reach very high
concentrations in sea ice, was unfortunately not measured in
these samples. In order to elucidate nitrogen remineralization in
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these high algal biomass environments, it should be measured
in future studies. Nutrient concentrations in the water column
at 5m depth are available at the Norwegian Polar Data Centre
(Assmy et al., 2016).

For chlorophyll a (Chl a) and particulate organic carbon
and nitrogen (POC and PON) 10–200mL of sample (depending
on the coloration of the melted sea-ice sample) were filtered
through GFF and pre-combusted GFF filters (diameter 25mm;
Whatman, GE Healthcare, Little Chalfont, UK), respectively. Chl
a was extracted in 5mL of 100% methanol at 5◦C in the dark
for 12 h and measured fluorometrically using a Turner 10-AU
Fluorometer (Turner Designs, San Jose, USA). POC and PON
samples were analyzed with continuous-flow mass spectrometry
(CF-IMRS) using a Roboprep/tracermass mass spectrometer
(Europa Scientific, UK).

To calculate the percentage of algal biomass that each
environment was contributing to the total sea-ice biomass we
multiplied the percentage of surface that each environment (e.g.,
ridges and deformed ice, deformed edges next to open water or
young ice, flooded FYI; non-flooded FYI or second-year ice (SYI)
and young ice) covered by the range of biomass measured in each
environment.

To calculate nutrient demand we followed Cota et al. (1987)
and used our measured Chl a concentrations, the N:Chl a and
Si:Chl a ratios, and the calculated growth rate based on Chl
a measurements taken over consecutive days. Furthermore, we
calculated the nutrient replenishment rate (mmol m−2 d−1) by
multiplying the measured nutrient concentrations in the under-
ice water (transformed from per cubic meter to per square meter)
by the measured water current velocity below the ice.

The physiological status of the photosynthetic apparatus of
the algae was assessed with Pulse Amplitude Modulation (PAM)
fluorometry using a Phyto-PAM Phytoplankton Analyzer (Walz,
Eiffeltrich, Germany). Samples from the ridge were carefully
collected by divers every 2 days between 10 and 18 May using
a slurp gun, and between 28 and 31 May by scraping the surface
of the ice core (the top and the bottom) into filtered seawater.
Snow-ice infiltration layer samples for PhytoPAM analysis were
collected with a clean bucket on the 9, 10, 11, 13, and 14 June.
The quantum yield (8PSII) of photosystem II fluorescence was
determined on 30-min dark-acclimated samples from the ratio of
variable and maximal fluorescence (Fv/Fm). In addition, Rapid
Light Curves (RLCs) were performed with 20 sec pulses of actinic
light ranging between 1 and 900 µmol photons m−2 s−1 in 13
steps. The relative photosynthetic electron transport rate (rETR)
was calculated as the product of 8PSII, the theoretical absorption
of PSII and the scalar irradiance of PAR at each pulse. The RLCs
were fitted using the equation of Webb et al. (1974) to yield
data from which the initial slope (α), the maximum rETR, and
the photoacclimation parameter (Ek) were derived. There was no
evidence of photoinhibition in any RLCs, so no photoinhibitory
modification was included in the model. Only photosynthetic
parameters obtained from the blue excitation channel (470 nm)
were used, to optimize the signal-to-noise ratio and due to the
strong absorption by Chl c, fucoxanthin and carotenoids in
blue light by diatoms, which were the dominant algal group
in our samples (Walz, 2003; Johnsen and Sakshaug, 2007). To

statistically test for differences in the photosynthetic parameters
of the different algal communities in the ridges we used the
ANCOVA test for comparison of regression lines; (Sokal and
Rohlf, 2012).

An additional approach used to test whether the
diatoms found in the ridges and the snow-ice interface
were actively growing was the silica stain method (McNair
et al., 2015). We added 100 µL of the fluorescent dye 2-(4-
pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl) -
methoxy)phenyl)oxazole (PDMPO) (1mM PDMPO in
dimethylsulphoxide (DMSO) solution; ThermoFisher Scientific,
Waltham, MA, USA) to 70mL of each sample. After incubating
in transparent plastic cell culture bottles in situ for 24 h, the
samples were observed and photographed under an inverted
Nikon TS100 light microscope (Nikon, Tokyo, Japan) on board.
We show a selection of these images taken on board in the
Supplementary Material to demonstrate the in situ uptake of
silicate by the diatoms. Unfortunately, the preservation of these
samples was unsuccessful and therefore further quantitative
analysis could not be performed.

For algal taxonomy analysis, 190mL of melted sample were
filled into brown glass bottles and fixed with an aldehyde
mixture of hexamethylenetetramine-buffered formaldehyde and
glutaraldehyde at 0.1 and 1% final concentration, respectively.
Quantitative estimates of each species were performed using an
inverted Nikon Ti-U light microscope (Nikon TE300 and Ti-S,
Tokyo, Japan) using the Utermöhl (1958) method, as described
in Olsen et al. (2017). Furthermore, a variant of the Imaging
FlowCytobot (IFCB) (Sosik and Olson, 2007) was used to obtain
digital micrographs of algae from ridge-surface samples (slurp
gun and scrapes) in the nano- and micro-size fraction (Olsen
et al., 2017). These images of algae were assigned to taxonomical
groups manually using custom software written by S. R. Laney
at Woods Hole Oceanographic Institution and were used for
quantitative analysis for the slurp gun and scrape samples from
the ridge.

Ice fauna samples collected by divers with a suction
pump (Lønne, 1988) below the ridge were preserved in
4% hexamethylenetetramine-buffered formaldehyde solution
immediately after sampling. Organisms were identified under
a Leica M80 stereo-microscope (Leica Microsystems, Wetzlar,
Germany), equipped with an ocular micrometer.

RESULTS

Sea-Ice Ridge Properties
The ridge chosen for the study was formed during a storm
between 26 and 30 April 2015 from FYI next to a refrozen lead,
as observed from the vessel. Based on its physical properties
we characterized the ridge as a FYI ridge. MYI ridges, which
were not the object of this study, are usually more consolidated
than FYI ridges and have lower macro-porosity. The percentage
of deformed ice (including ridges and rubble ice) in the area
studied between 26 and 31 May 2015, was 50.9 ± 3.2% based
on classifications of surface types in three 25 × 25 km Radarsat
2 scenes (Table S1). The percentage of deformed edges next to
leads was 2.8–7.4%. At the two sides of the ridge, where we
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cored for biological analysis (Figure 1B), we encountered three
ledges on top of each other with voids between them. The three
ledges at the star sampling point (Figure 2), from top to bottom
were 1.29, 0.88, and 1.69m thick on 28 May, and 0.23, 0.80, and
0.55m on 31 May. The decrease in thickness was probably a
combination of melting and spatial variability. In general, across
the ridge, from 24 to 31 May, both snow depth and sea-ice
thickness decreased (Figure 4). The rubble macro-porosity of
the unconsolidated submerged part of the ice, which represents
the percentage of voids in between the ice ledges, was 25% on
24 May and decreased to 16% on 31 May. On 28 May, snow
thickness was 0.13–0.22m on the thick ice side (square) of the
ridge, while it was 0.07–0.11m on the refrozen lead side (star)
(Figure 2).

Incoming PAR averaged from 7, 18 and 20 May was 786 ± 21
µmol photons m−2 s−1 (average and standard deviation). PAR
transmitted through the ridge varied between 0.1 and 8.5% of the
incoming PAR. The average transmitted PAR below the ridge was
24 ± 10 µmol photons m−2 s−1 (n = 334) (n is the number of
samples), i.e., about 3% of the average incoming PAR, based on
ROV measurements at 0–5m below the ridge. This was higher
than light transmitted through the thicker ice (Average 0.37 ±

0.08 µmol photons m−2 s−1, n= 44638) and lower than through
the thin refrozen lead (Average 114± 69µmol photons m−2 s−1,
n = 55) measured during the N-ICE2015 expedition (Taskjelle

et al., 2016; Kauko et al., 2017; Olsen et al., 2017). However,
from the videos we observed that transmitted light was highly
variable and patchy inside the ridge structure. Bright spots were
observed inside the ridge in between the ledges (see Video in
Supplementary Material).

Since light transmission measurements below ridged areas
were scarce, we also attempted to model in a simplistic way
the PAR transmitted through the ridge based on the snow and
ice thickness and based on optical properties (cf. section Light
Measurements and Calculations). The PAR transmitted through
the thick-ice side of the ridge was lower (average on 24 May: 9
µmol photons m−2 s−1; average on 31 May: 59 µmol photons
m−2 s−1) than through the thin-ice side (average on 24 May: 62
µmol photons m−2 s−1; average 31 May: 274 µmol photons m−2

s−1; Figure 4). This coincides with higher snow accumulation on
the thick side of the ridge compared to the thin ice side. On 28
May, snow depth ranged between 0.07 and 0.11m at the thin
ice side of the ridge, so we calculated the theoretical minimum
and maximum light transmitted through that specific spot from
23 April to 3 June to estimate temporal variability according
to measured incoming irradiance (Figure 5A). The calculated
transmitted PAR at one spot, without taking into account changes
in snow and ice light attenuation coefficients as the melt season
progressed, was generally one order of magnitude lower than
the measured PAR with the ROV, except on 7 May when they

FIGURE 4 | Transect of light transmitted through the FYI ridge from the thick ice to the thin-ice side. Snow depth (black), total sea ice thickness (gray), and the

estimated light transmitted below the ridge (yellow).
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FIGURE 5 | Overview of the conditions during Floe 3 with time series of (A) incoming Photosynthetically active radiation (PAR) measured above the ice (yellow) and

calculated below the ridge for two snow thicknesses (dark blue: 0.07m and light blue: 0.11m) and the ice ledge thickness on 31 May. The red dots represent average

and standard deviation of ROV measurements performed on 7, 18, and 20 May; note that PAR values above the ice (yellow) have been scaled down by a factor of 10

for clarity purposes; (B) Nutrient concentrations (nitrate, phosphate, and silicic acid) at 5m depth below the ice; (C) Ocean current speed relative to the ice depicted

by the arrows size and direction relative to the ridge axis at 23m depth depicted in the y-axis (from vessel-mounted ADCP).

compared well (Figure 5A). The ROV measurements covered
a wide area below the ridge and included lateral light sources
since measuring depth was up to 5m below the ridge (Katlein
et al., 2016). Therefore, when comparing the measurements
with the transmitted PAR calculated across the ridge we do
encounter similar values, especially toward the thin ice side
where the influence of the refrozen lead allowed more light to
penetrate. The spatial variability of calculated light transmitted
across the ridge (Figure 4) indicates that changes in snow depth
and ice thickness were the major drivers of light-transmission
variability.

Nutrient concentrations in the water column (at 5m depth)
between 28 April and 25 May were 8.4 ± 0.8µM nitrate, 3.4
± 0.4µM silicic acid and 0.6 ± 0.1µM phosphate (average

and standard deviation) (Figure 5B). After the development
of a Phaeocystis-dominated under-ice bloom in the water
column (26 May−2 June) (Assmy et al., 2017), nitrate
concentrations were reduced to 2.4 ± 1.2µM and phosphate
to 0.4 ± 0.1µM, while silicic acid increased slightly to 4.1 ±

0.1µM (Figure 5B) as we drifted into more Atlantic-influenced
waters.

Overall currents were weak, averaging 0.1m s−1 relative to the
ice, and came from various directions during the study period
(23 April−5 June). However, over the period from 30 May to 5
June, current speeds larger than 0.2m s−1 were observed with a
mean relative current speed of 0.3m s−1 flowing in a north-east
direction (32◦) (Figure S2) that crossed the ridge from the thick-
ice side toward the thin refrozen lead side (Figure 5C). Thus, the
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part of the ridge facing the refrozen lead was on the lee side of the
stronger currents (Figure 2).

Algal Communities in FYI Ridges
Dense accumulations of algae were observed by naked eye on
the top and bottom of the ledges during the entire sampling
period (10 May to 3 June; Figure 7 and Video in Supplementary
Material). When sampling these surfaces communities, a clear
distinction became apparent between the bottom of the ledges
and their vertical surfaces, and the top of submerged ledges.
The bottom and the vertical wall communities were dominated
by the pennate sea-ice diatoms Nitzschia frigida and Navicula

species, while the top community was dominated by Shionodiscus
bioculatus (Figure 6A). Pennate diatoms of the genus Navicula
increased their dominance from 10 to 31 May. The fluffy algal
layer that accumulated on the top of submerged ledges and was
dominated by S. bioculatus could be easily washed off by divers.
A more diverse community was revealed in the ice cores taken
from the ridge (Figure 6B). The three species that dominated
the internal ice community on 31 May were F. cylindrus, N.
frigida, and Pseudo-nitzschia sp. Three days later, on 3 June, the
percentage of dinoflagellate cysts increased from<10% to>25%.
On that day, the most abundant diatoms were Pseudo-nitzschia
sp. and N. frigida (Figure 6B).

FIGURE 6 | Relative composition of ridge communities (A) Surface of the ice ledge samples collected with the slurp gun or by coring and then scraping the bottom

(Bot) or top (Top) of the ice core. Samples analyzed with the imaging FlowCytoBot (IFCB). (B) Entire ledges melted. Numbers at the top correspond to the order of the

ledges from top to bottom and the dates of sampling are indicated below. Samples analyzed by light microscopy enabling a higher taxonomic resolution.
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Samples taken at the ridge and the biogeochemical and
photosynthetic parameters measured are summarized in Table 1.
Chl a concentrations in the slurp gun samples from the beginning
ofMay ranged between 0.3 and 9.9mgm−2. In lateMay and early
June, the volumetric Chl a concentrations, from melting entire
cores from the ledges, ranged between 13.8 and 29.4mg m−3

(n = 6) at the thin ice side, which correspond to an integrated
Chl a stock of 26–74mg Chl am−2. The thick ice side had lower
Chl a concentrations (4–11mg m−3, n = 2) which correspond
to 0.4–1.3mg Chl a m−2 based on one bottom and one top
10-cm section (Table 1); therefore the biomass in the thick ice
is probably underestimated. The integrated POC on the thin
ice side of the ridge was 1,134–2,247mg C m−2 (94–187 mmol
Cm−2), the PON 154–314mg Nm−2 (11–22 mmol Nm−2), and
the biogenic silica 9–77mg Si m−2 (0.3–2.7 mmol Si m−2). The
C:Chl a weight ratio of the integrated biomass in the three ledges
was 35.8± 9.6, the C:Nmolar ratio of the organicmaterial was 8.4
± 0.5, and the N:Si molar ratio 4.7 ± 2.1 (n = 6) (Table 1). The
maximum nutrient demand of the integrated ridge community
on 31 May was 15.7 mmol N m−2 d−1 and 38.9 mmol Si m−2

d−1 based on an estimated growth rate of 0.7 d−1 (derived from
Chl a measurements on 31 May and 3 June) and the measured
N:Chl a w:w ratio of 4.25 and the Si:Chl a ratio of 2.11.

The photosynthetic acclimation of the diatoms to the
prevailing light climate was assessed with photosynthetic
parameters obtained from RLCs. The maximum dark-adapted
quantum yield (ϕ) of the slurp gun and scrape samples was
0.40 ± 0.16 (n = 9) for Nitzschia-dominated bottoms of the
ledge, and 0.42 ± 0.11 (n = 5) for the Shionodiscus-dominated
top part of the ledge (Table 1). Variability was very high
(range: 0.19–0.61), but most samples were photosynthetically
healthy with no evidence of chronic photoinhibition in the
dark-adapted yield data. In addition, on-board observations of
silica stain uptake samples revealed that the N. frigida bottom
community and the S. bioculatus surface community were
growing and taking up silicate at the time of sampling (Figures
S3A–D). The photoacclimation parameter (Ek), calculated from
electron transport with the PhytoPAM, was higher but highly
variable for Nitzschia-dominated communities (421 ± 295 µmol
photons m−2 s−1) and slightly lower with less variability for
Shionodiscus-dominated communities (266 ± 86 µmol photons
m−2 s−1). No statistically significant differences were detected in
the light-response parameters between these two communities
(ANCOVA test for comparison of regression lines; Sokal and
Rohlf, 2012).

The sympagic amphipod Apherusa glacialis was the most
dominant ice fauna species. Other amphipods present were
Themisto libellula, Gammarus wilkitzkii, Onisimus glacialis,
and Eusirus holmi. Some zooplankton species, such as the
copepods Oithona similis, Calanus glacialis and undetermined
Harpacticoida were present, although in lower numbers
(Table S2).

Snow-Ice Interface Properties
When we arrived on Floe 4 on 11 June, the wider surrounding
was mainly composed of FYI with a modal ice thickness of
1.0m and an average snow depth of 0.25 ± 0.17m on top.
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TABLE 2 | Compilation of biogeochemical parameters of the snow-infiltration communities (SI).

Sample ID Date (2015) Chl a POC PON C:N molar Salinity Nitrite Nitrate Phosphate Silicic acid

Units (mg m−3) (mg m−3) (mg m−3) (–) (–) (µM) (µM) (µM) (µM)

SI1 09 June 110.85 3170.0 435.7 8.49 10.90 n.d. n.d. n.d. n.d.

SI1 09 June 135.46 3683.5 522.2 8.23 6.50 n.d. n.d. n.d. n.d.

SI1 10 June 362.46 15002.4 2102.1 8.33 18.00 0.13 1.09 1.90 1.85

SI1 13 June 111.50 6701.6 1078.1 7.25 17.70 0.20 2.21 4.91 4.74

SI2 15 June 14.93 4616.4 608.4 8.85 17.50 0.11 0.40 2.73 8.97

SI3 15 June 2.61 3870.6 414.1 10.91 15.30 0.15 1.03 1.92 5.84

SI4 17 June 1.62 907.8 99.1 10.69 13.80 0.07 1.06 0.29 1.01

SI5 17 June 38.11 5701.3 680.9 9.77 21.10 0.46 0.40 3.12 3.52

SI6 18 June 0.37 692.6 59.0 13.71 10.00 0.06 0.64 0.18 0.70

SI7 18 June 42.25 552.9 74.7 8.64 12.10 0.06 0.40 2.45 6.49

SI8 18 June 46.06 2663.3 317.5 9.79 10.80 0.13 1.48 3.62 11.58

By 18 June, the modal ice thickness decreased to 0.8m due
to a strong bottom melting event, while the snow thickness
remained in the same range (Rösel et al., 2018). Penetrating
swell caused a breakup of the icepack into scattered 100–
200m pieces on the morning of 19 June. The snow depth at
the first snow-ice interface sampled (0.7m) was thicker than
the mean snow depth of 0.32 ± 0.20m on Floe 4 (Rösel
et al., 2018). When the relation between ice thickness and
snow thickness exceeded the hydrostatic equilibrium, the thick
snow cover pushed the ice below sea level creating areas of
negative freeboard. Based on drill hole measurements, 53% of
the area of Floe 4 had negative freeboard (Rösel and King,
2017).

According to the snow pit performed on 13 June at SI1
(Figure S4), the top 0.3m of the snow pack was hard wind slab
of 0.5mm grain size. The bottom 0.5m consisted of refrozen
melt layers of larger grain size (1.0mm). The snow hardness
decreased toward the bottom of the snow pack, close to the slush
where the algae had accumulated (Figure S4). The temperature
profile across the snow showed values around 0◦C in the upper
0.3m and <0◦C in the lower 0.5m (−0.1 to−1.2◦C). Compiling
the information from the eight locations sampled (Figure 1C),
the slush where the algae were found had thickness of 0.04–
0.2m, temperature of −1.2 to −1.7◦C, and bulk salinity of
6.5 to 21.1 (practical salinity unit, henceforth unitless) (average
13.9 ± 4.3, n = 11; Table 2) in the melted slush depending
on the amount of seawater that had percolated to the snow-
ice interface. Snow infiltration communities were typically found
in areas with thick snow (0.2–0.7m), thin ice (0.4–0.9m) in an
advanced stage of melt, and were usually associated with cracks
in the ice. Seawater percolated through the cracks in the ice
toward the flooded snow-ice interface. Algae were found along
the cracks and spreading ∼0.5m to either side of the crack
(Figures 7B,C).

The PAR transmittance through 0.2–0.4m snow cover was
3–14% of the incoming irradiance based on measurements on 11
June at SI1 using a scalar PAR sensor. When using the average
estimated snow light attenuation coefficient of 14.82m−1 for Floe

FIGURE 7 | (A) Underwater photograph of FYI ridge sampled on 31 May

indicating the most abundant species of the bottom and top of the ledges.

Microscopy images of the bottom of the first ledge shows the pennate diatom

Nitzschia frigida (RI19) and the top of the second ledge shows the centric

diatom Shionodiscus bioculatus (RI20). (B) Photo of the snow infiltration

community SI1 found below 0.7m of snow on 9 June 2015. (C) Photo of the

snow-ice interface SI1 with a metric tape in cm scale to give an idea of its

thickness.

3, the calculated transmitted PAR was one order of magnitude
lower than in situ measurements. This is due to the fact that
the scalar PAR sensor collects light from all directions, while
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FIGURE 8 | Relative composition of eight different snow infiltration communities based on cell abundance. Samples analyzed by light microscopy.

our calculations assume a downwelling light field. On an average
sunny day (1,200 µmol photons m−2 s−1 incoming PAR), algae
below 0.2m of snow would receive 62 µmol photons m−2 s−1

and 0.03 µmol photons m−2 s−1 below 0.7m of snow. This
corresponds to 0.0025–5% transmitted PAR.

Algal Communities at the Snow-Ice
Interface
Snow infiltration communities were found at eight different
spots on Floe 4 between 9 and 18 June (Figure 1C). The
taxonomic composition of the snow-infiltration communities
was very diverse and included both pelagic and ice-associated
species. Besides a small percentage of flagellates, ciliates and
dinoflagellates (sum of the three groups 3.4 ± 2.8%), the snow
infiltration communities were dominated by the haptophyte
P. pouchetii (51 ± 31%) and diatoms (42 ± 27%; Figure 8).
Phaeocystis pouchetii, which was the dominating species of the
under-ice phytoplankton bloom taking place at the same time,
was present in the snow infiltration communities (8.3 × 105-
8.7 × 107 cells L−1) in similar concentrations as in the water
column (8.6 × 105-9.9 × 107 cells L−1; Assmy et al., 2017). The
dominant pelagic diatoms present were F. oceanica, C. gelidus,

Pseudo-nitzschia sp. and Thalassiosira spp.; and the main ice-
associated diatoms were F. cylindrus, Navicula sp. and Nitzschia
sp. (Figure 7). However, some species such as F. oceanica and F.
cylindrus can be quite abundant in both sea ice and the water
column making the pelagic vs. ice-associated distinction difficult.
In terms of diatoms, most snow-ice interface communities were
dominated by a typical pelagic algal composition except for SI6
that had a more ice-algal composition (Figure 7). This sample
had very low counts and a higher percentage of resting spores
than all the others, indicating a senescent stage. Also, in many
of the snow-ice interface communities, a high percentage of the
P. pouchetii colonies observed were decaying and contained very
few cells (3–70% of the community was P. pouchetii cells in
bad shape), indicating that this species infiltrated from the water
column but was not performing optimally in its new habitat.

The Chl a concentration in the slush collected at the snow-ice
interface ranged three orders of magnitude: from 0.37 to 362mg
m−3 (Average: 69± 115mg m−3, n= 11; Table 2). The POC was
552–15,000mgCm−3 and the PON 59–2,102mgNm−3 (n= 11)
(Table 2). The average C:N molar ratio of the algal biomass
was 9.7 ± 1.8. Despite being in the middle of the productive
season, some of the nutrients present in the melted slush, such as

Frontiers in Marine Science | www.frontiersin.org March 2018 | Volume 5 | Article 7570

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Fernández-Méndez et al. Ridge and Snow Infiltration Communities

FIGURE 9 | Rapid light curves from ridge (black circles) and snow infiltration

(white circles) communities measured with PhytoPAM. The relative electron

transfer rate (rETR) is plotted against photosynthetically active radiation (EPAR).

Average and standard deviation for each light step are shown and the Webb

et al. (1974) model was used to fit the average curve.

phosphate, had very high concentration. Nitrate ranged between
0.4 and 2.2µM, phosphate between 0.2 and 4.9µM, and silicic
acid between 0.7 and 11.6µM (n= 11) (Table 2). The maximum
nitrate demand of the snow-ice interface community was 17.8
mmol N m−2 d−1 at a growth rate of 0.62 d−1 (calculated with
Chl a values from 9 and 10 June in SI1) and a N:Chl a ratio of 5.7.

On-board observations of silica stain uptake samples revealed
that the diatoms were growing and taking up silicic acid at
the time of sampling (Figures S3E, F), while light microscopy
analysis revealed a high percentage of decaying P. pouchetii cells.
This variability in the physiological status of the algae at the
snow-ice interface was reflected in the photosynthetic activity
measurements performed with the PhytoPAM. The 8PSII, at
SI1 during 5 days (9, 10, 11, 13, and 14 June), ranged between
0.22 and 0.46 (n = 5) indicating that only part of the snow-
ice infiltration community was healthy. The low salinities at SI1
(6–18) could be responsible for the decaying P. pouchetii cells.
The photoadaptation parameter (Ek) ranged between 156 and
453 µmol photons m−2 s−1. When comparing the snow-ice
interface community with the ridge communities, we found that
ridge communities had significantly higher light saturation level
(ANCOVA test for homogeneity of regression curves; Sokal and
Rohlf, 2012), implying that these communities were acclimated
to higher light intensities than the snow infiltration community
(Figure 9).

DISCUSSION AND CONCLUSIONS

Contribution of FYI Ridges and Snow-Ice
Interfaces to Arctic Algal Biomass and
Sampling Challenges
Algal accumulations in complex structures such as ridges and
in hidden layers at the snow-ice interface are understudied in

the Arctic Ocean and thus have not been accounted for in sea-
ice algal biomass estimates. In this study, we have estimated
the contribution of ridge and snow infiltration communities to
the total ice algal biomass for the first time (Table 3) based on
RadarSat-2 satellite scene ice-type classification (Figure S1), in
situ negative freeboard measurements, and the measured Chl a
in each sea-ice environment.

Ridges and rubble ice could contribute 36–96% of the total
sea-ice biomass, assuming that all of this area would sustain
the same amount of biomass as the thin ice side of the ridge
we sampled (Table 3). In reality, the percent contribution was
probably lower since not all ridges are FYI ridges close to a
refrozen lead. Indeed, in our study region, only 2.8–7.4% were
deformed edges next to open water or young ice (Table 3). If
only this particular type of ridge would host algal biomass as we
observed in the thin ice side of our study ridge (26–74mg Chl
am−2) and the rest of the ridges and deformed areas would only
host as much biomass as we observed on thick ice side of the ridge
(0.4–1.3mg Chl a m−2), their contribution would be 34–75% of
the total sea-ice biomass (Table 3). Nevertheless, compared to
other sea-ice environments (FYI, new, and young ice), ridges and
deformed ice areas, can account for most of the sea-ice related
biomass. This is in agreement with large-scale under-ice ROV
surveys that point toward ridges as relevant for algal biomass
accumulation (Lange et al., 2017b). It is therefore critical that
ridges are examined more closely and included in biomass and
productivity estimates for Arctic sea ice.

Snow infiltration communities, which in the Antarctic can
be responsible for most of the ice-associated production (Arrigo
et al., 1997) and biomass (0.5–30mg Chl a m−2; Arrigo and
Thomas, 2004), seem to have a smaller contribution in the Arctic.
Assuming a minimum thickness of the slush layer of 0.04m,
the integrated Chl a was 0.01–14mg m−2. On a larger scale, if
all areas with negative freeboard would be inhabited by these
communities, algal standing stocks on flooded sea ice could
potentially reach 0.1–3.4mg Chl a m−2 and contribute 9–32%
to the total sea-ice integrated Chl a (Table 3). The minimum
percent contribution of snow infiltration communities (9%)
to total ice algal standing stocks was tenfold higher than the
minimum contribution of ice algal biomass in level FYI and SYI
(0.9%). Thus, including snow infiltration communities in sea-ice
biomass and productivity estimates is relevant, especially during
the late productive season when the ice starts melting and bottom
sea-ice production decreases (Leu et al., 2015). However, these
communities were usually only found along cracks in the ice and
not in all flooded areas. Unfortunately, there is currently no way
to quantify the percentage of the flooded area covered by cracks
in the ice, so the estimate provided is just a potential maximum
of the real contribution.

Ridge and snow infiltration algal communities have not been
extensively studied in the Arctic, likely due to the difficulties in
sampling and detecting them. Ridges are complex ice structures
that are challenging to sample using the regular ice-core drilling
techniques (Timco and Burden, 1997; Gradinger et al., 2010;
Lange et al., 2017a). In our study, the ridge algal community was
very loosely attached to the surfaces of the ledge and is therefore,
partially lost when sampling the entire core by drilling. Slurp gun
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samples collected by divers, in otherwise inaccessible cavities and
structures of the ridges, seem to be better suited for determining
the dominant algal species concentrated at the surface of the
submerged ledges compared to ice coring. The latter will likely
result in the loss of loosely attached surface communities, such
as the fluffy layer of S. bioculatus, during core retrieval. Coring
of the entire ridge on the other hand will provide information
on the internal ice community structure and biomass. Thus, a
combination of ice coring and slurp gun sampling or ice coring
from below by divers would be the best approach to assess both
qualitatively and quantitatively the algal community in ridges.

ROVs can be used to study the optical properties and derive
algal biomass from light transmission. However, ROVs are
likely to get entangled in complicated under-ice structures and
therefore, measurements are usually taken several meters below
the ridge (Lange et al., 2016), integrating light from a broad area
under the ridge. Smaller ROVs with better maneuverability might
be a solution tomap the spatial variability in light penetration and
algal biomass inside the ridge structure, but divers are needed
to obtain measurements inside specific structures. In addition,
specific modeling approaches need to be developed to describe
the complex light regime inside the ridge structure, since simple
1D vertical models, like the one we used, fail to reproduce the
observed complex light field inside the ridge.

The challenge in the case of snow infiltration communities
is to detect them since they are covered by snow and therefore
not readily visible from the surface, except at the edge of ice
floes (von Quillfeldt et al., 2009). In addition, upscaling of
the potential habitat suitable for snow infiltration communities
requires a good knowledge of the percentage of the ice floe that
has negative freeboard. In this study, we based our estimates on
in situ observations from several kilometer long transects with
EM31 (Rösel et al., 2016a), the snow probe (Rösel et al., 2016b),
and drill holes (Rösel and King, 2017). Satellites cannot detect
infiltration layers at the snow-ice interface (Ackley et al., 2008).
Detecting potential zones of surface flooding is challenging due
to the difficulties in differentiating wet melting snow from surface
flooding (Onstott, 1992). It is therefore necessary to be either in
person in the field or have autonomous instruments such as Ice
Mass Balance buoys deployed on the ice to qualitatively observe
rapid sea-ice melt events. However, knowing the potentially
flooded area does not give any information on where the snow
infiltration communities grow. Our observations indicate that
they concentrate along cracks in the ice, and these are difficult
to detect when covered with snow, and therefore, difficult
to upscale. Despite the potential local importance of snow
infiltration communities, their upscaling is challenging and this
study is just a first attempt to estimate their contribution to
ice-associated algal biomass that needs to be further refined.

The Role of Ridges and the Snow-Ice
Interface as Algal Safe Havens: Irradiance,
Nutrients, and Grazing Pressure
The high algal biomass encountered in ridges and at the snow-
ice interface during the 2015 productive season in the high
Arctic indicates that these two environments provide shelter T
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and favorable conditions for algal accumulation and potentially
growth.

Newly formed FYI ridges with complex ice structures offer
plenty of cavities and surfaces for attachment and deposition (16–
25% voids). The complex structure of sea ice piled up in ridges
creates an extensive habitat for sea-ice algae which exceeds other
sea-ice related environment in terms of its total surface area,
with the exception of Antarctic platelet ice. Indeed, other studies
have reported highermacro-porosity values of 30–35% (Høyland,
2007; Strub-Klein and Sudom, 2012). In addition, the lee side
of ridges provide algal communities protection from under-
ice water currents, particularly for those algae that are loosely
attached to ice surfaces such as the communities dominated
by S. bioculatus. Therefore, higher biomass concentrations are
expected on the lee side or hydrodynamic shadow of ridges. This
effect has been suggested to explain accumulation of diatoms
(Melnikov and Bondarchuk, 1987; Krembs et al., 2002), algal
aggregates (Katlein et al., 2015b), as well as ice fauna (Hop and
Pavlova, 2008; Kiko et al., 2017) in sheltered areas of ridges.
Indeed, ridges are hot spots for accumulation of sea-ice fauna
(Gradinger et al., 2010) since the organisms can graze on the
abundant surface-attached sea-ice algae. For example,A. glacialis,
which was the most abundant ice-associated amphipod in this
study, has been shown to actively feed on ice algae, which can be
a main contribution to its diet (Werner, 2000; Brown et al., 2017).

The snow-ice interface on the contrary provides shelter from
grazing since only small ciliates were observed grazing on the
snow infiltration community (Figure 8). In addition, the low
salinity in the slush (6–21) would reduce the grazing activity
of potential grazers that could reach this layer. This lack of
strong metazoan grazing pressure in the infiltration community
environment could have favored the accumulation of algal
biomass. Processes of physical concentration of algal biomass in
the slush could also be responsible for the high accumulation of
biomass. Since the highest algal biomass accumulations occurred
within half a meter around cracks in the ice, we hypothesize that
infiltrated communities concentrated in these areas, trapped in
the porous snow-ice slush as water percolates to the rest of the
floe.

The accumulation of snow on the side of ridges (Chapters 3
and 4 in Thomas, 2017) has likely led to the assumption that
light transmission through ridges is very low. However, according
to our observations, inside the complex ridge structure there
are cavities that appear as bright areas inside the ridge. Bright
areas were present especially in ridges associated with leads and
thin ice (Figure 2 and Videos in the Supplementary Material).
Furthermore, cracks at the sides of ridges (Katlein et al., 2015a),
as well as often snow-free portions of high points in a ridge due
to wind erosion (Sturm and Massom, 2010) have been suggested
to transmit more light than adjacent level thick ice (Lange et al.,
2017a). In addition, the side with less snow and close to the
thin ice received more light and could therefore support higher
algal growth rates, assuming light limitation at the thick-ice side
(Table 1).

Snow infiltration communities received more light (PAR
transmittance 3–14%) than ridge algal communities (PAR
transmittance 0.06–8.5%) according to in situ measurements

depending on the snow depth. This transmittance values were
similar to those measured below ridges by an ROV in the Central
Arctic (up to 5%) (Lange et al., 2017b), and lower than the PAR
transmittance in the thin ice next to the ridge (5–40%) (Kauko
et al., 2017). However, in situ measurements below the snow
might be affected by lateral spreading of radiation and light
scatter when removing part of the snow cover to introduce the
sensor. Calculated PAR transmittance at the snow-ice interface
(0.0025–5%) is generally lower than at the ridges (0.12–71%,
range from transects in Figure 4) especially at the thin ice side.
In some cases, the snow-ice interface received one order of
magnitude more light than the water column below thick ice
(Olsen et al., 2017). This implies that the snow-ice interface,
when flooded, might provide an advantage for infiltrated pelagic
diatoms that were growing at low rates in the water column at
that time (Assmy et al., 2017).

The other key factor for algal growth is nutrient availability.
The algal communities growing on the surfaces of submerged
ledges in ridges have direct access to the nutrients in the sea water
(Figure 2), while the ones in the snow-ice interface are dependent
on the nutrients available a priori in the snow-ice layer and those
percolating upwards from the water column (Figure 3). The
observed currents below the ice crossed the ridge from the thick-
ice side to the thin-ice side most of the time, especially toward
the end of May, when stronger currents were observed (Figure
S2). Before we drifted into the under-ice phytoplankton bloom
(Assmy et al., 2017), the currents could have provided a constant
flux of nutrients to the ridge surface-attached communities.
Diatoms are able to store nutrients intracellularly without using
them for growth immediately (Kamp et al., 2011; Fernández-
Méndez et al., 2015). Based on our nutrient and current
measurements, before 25 May (pre-bloom) one centimeter water
layer moving below the ice provided 1.56× 103-7.78× 103 mmol
N m−2 d−1 and 5.18× 103-2.59 × 103 mmol Si m−2 d−1, which
is two orders of magnitude more than the calculated nutrient
demand for these communities (15.7 mmol N m−2 d−1 and
38.9 mmol Si m−2 d−1) using the method explained in Cota
et al. (1987) and our own measured ratios and growth rates. This
calculation suggests that the algae fixed to the ridge surfaces are
flushed with enough nutrients to support their growth demands.
Nevertheless, the currents and nutrient uptake dynamics inside
the ridge and at the ice-water interface would need to be resolved
better in order to assess the reality of the nutrient supply and
limitations. The high C:N ratio (8.4± 0.5, n= 6) of the integrated
biomass in the entire ledges might be due to the higher fraction
of dead cells and/or detritus inside the ice as compared to the
surface layers.

Nutrient concentrations in the melted slush at the snow-ice
interface were highly variable, yet did reach surprisingly high
concentrations, especially phosphate (up to 5µM) and silicic
acid (up to 12µM). Nitrate was lower probably due to active
consumption by P. pouchetii in the water column (Assmy et al.,
2017). The high phosphate concentrations compared to the water
column could be due to leakage of nutrients previously stored
inside the algal cells (Needoba and Harrison, 2004; Kamp et al.,
2011), active remineralization by bacteria (Arrigo and Thomas,
2004; Cowie et al., 2014) or atmospheric deposition with snow
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precipitation (Nomura et al., 2010). A re-supply of nutrients can
eventually come from the infiltrated surrounding seawater. At the
time when the snow-ice infiltration communities were observed,
nitrate concentrations in the water column were relatively low
due to uptake by the under-ice P. pouchetii bloom (Figure 4B).
However, if the ice had been previously flooded, nutrients from a
different watermass could have been trapped in this layer. During
the winter months of the N-ICE expedition, snow-ice formation
was observed in February-March in ice floes of the same area
and similar conditions (Granskog et al., 2017; Merkouriadi et al.,
2017). Nutrient concentrations in the snow/slush sampled in
March 2015 reached values up to 17µMnitrate, 1µM phosphate
and 4µM silicate. This amount of nitrate could yield 42mg Chl a
m−3, which is one order of magnitude less than the maximum
Chl a concentrations observed in the slush layer (362mg Chl
a m−3 SI1, Table 2). This indicates that the winter pre-formed
nutrients are insufficient to explain the high biomass observed at
the snow-ice interface.

In addition, the fact that we found several species of
pelagic diatoms growing in the snow-ice interface points toward
a flooding of the ice and establishment of the infiltration
community in a different water mass with a more diatom-
dominated phytoplankton community than the one we observed.
Backtracking of Floe 4 (Olsen et al., 2017, Figure 1) indicates
that the floe was closer to the shelf break some weeks earlier
and these waters might have hosted a different phytoplankton
community than the P. pouchetii dominated community
observed on the Yermak Plateau. Indeed, the presence of
abundant pelagic diatoms in surface waters on 8 June (Assmy
et al., 2017) could explain the presence of pelagic diatoms
in the snow-ice interface. On the other hand, the haptophyte
P. pouchetii, despite being present in high cell abundance,
was not performing well, indicated by the high amount of
disintegrated cells and colonies observed under the microscope
(Figure 8). These dead cells might be the reason for the high C:N
ratio.

Distinct Algal Communities Occupy
Different Ridge Surfaces
One interesting aspect of understudied ridge environments
is that they seem to favor specific algal communities. Inside
ridges, two clearly distinct communities were observed at the
bottom and at the top of the submerged ledges (Figure 7A). A
mixture of sea-ice pennate diatoms dominated by N. frigida and
Navicula species at the bottom of the ledges is in accordance
with previous observations of FYI and MYI, in which these
species are dominating the bottom of the sea ice (Syvertsen,
1991; Melnikov et al., 2002). Sea-ice pennate diatoms excrete
extracellular polymeric substances that enable them to attach
inside brine channels at the under-side of the ice (Krembs et al.,
2000, 2011; Bowman, 2013). On the contrary, the centric diatom
S. bioculatus seems to have a clear advantage for colonizing the
top of ledges (von Quillfeldt et al., 2009) as a fluffy algal layer
since this species is not able to actively attach to the ice. This
fluffy layer can be easily washed off by strong currents which
agrees with previous observations of Arctic ridge communities

(Hegseth, 1992; Ambrose et al., 2005). Furthermore, their
presence supports the protective role of interior ridge cavities
from currents (Figure 2).

The difference in the photoacclimation parameter (Ek)
between the Nitzschia (421 µmol photons m−2 s−1 on
average) and the Shionodiscus-dominated communities (266
µmol photons m−2 s−1 on average) might indicate that different
parts of the submerged ledges receive on average different light
intensities that favor different species that are able to acclimate
to those light conditions. For example, S. bioculatus is more
light sensitive and better shade adapted since it usually performs
poorly under high light environments such as melt ponds (Assmy
et al., 2013). Small-scale light measurements inside ridges and a
spatially resolved light transmissionmodel for complex under-ice
structures are needed to further confirm this hypothesis.

Diatoms vs. Phaeocystis at the Snow-Ice
Interface
The snow-ice interface had no distinct biotopes within the
slush layer. Nevertheless it is interesting to compare the species
that accumulated in the infiltration layer with the ones in the
water column, which in this study was the source of the snow
infiltration community. In the literature there are examples of
snow-ice interface layers dominated by Phaeocystis (McMinn and
Hegseth, 2004), by diatoms (Buck et al., 1998), or by a mixture of
both (Kristiansen et al., 1998). During our study, we encountered
five snow infiltration communities dominated by P. pouchetii
(SI1, SI2, SI5, SI7, and SI8), and three dominated by diatoms
(SI3, SI4, and SI6), although both groups were present in all
of them. Differences in Phaeocystis vs. diatom dominance could
reflect differences in phytoplankton composition in the source
waters when infiltration occurred through the cracks in the ice
or the time since flooding occurred at a particular site, the latter
on the scale of community succession. Phaeocystis pouchetii was
the most abundant species based on cell numbers in the water
column at the time of sampling (Assmy et al., 2017), which
is consistent with its presence in the infiltration community.
This species is supposed to be very plastic since it can adapt its
photosynthetic efficiency to the rapidly changing light regime
(Palmisano et al., 1986; Cota et al., 1994; McMinn and Hegseth,
2004). However, during a side experiment, in which we removed
the snow on top of SI1 and sampled it 24 h later, we could observe
a decrease in the healthy cell numbers of Phaeocystis and an
increase in poor-quality cell numbers, with no significant change
in the diatom composition (Figure S5). This indicates that P.
pouchetii could not deal with the rapid increase in irradiance and
that diatom frustules are more resistant to decay. The average Ek
of SI1 was 331 ± 125 µmol photons m−2 s−1 (n = 5) and the
measured Ed(PAR) below 0.2–0.7m of snow ranged between 1
and 162 µmol photons m−2 s−1. The difference between Ek and
Ed indicates that the cells are adapted to a higher light intensity
than what they were experiencing in the snow-ice interface at
the time we measured light intensity below the snow. In general,
the higher light intensities experienced in the snow-ice interface
compared to the water column (<1% of incoming irradiance;
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Assmy et al., 2017), as well as the low salinities at the snow-
ice interface (6.5–21), might have negatively affected part of the
P. pouchetii population, while not having as deleterious impact
on the diatom portion of the community due to their rigid
silica frustules. Similar findings have been observed in ice melt
processing studies with respect to flagellate versus diatom species
(Buck et al., 1998; Garrison et al., 2003). Pelagic diatoms such as
F. oceanica, C. gelidus, and Pseudo-nitzschia sp. which were not
abundant in the water column at the time of sampling but might
have infiltrated previously, managed to rapidly accumulate in the
snow-ice interface (Figure 8 and Figure S3).

Future Predictions and Implications
With the ongoing changes in the Arctic icescape due to
anthropogenic climate change, a shift in community composition
and productivity of sea-ice algae is expected (Dupont, 2012;
Fernández-Méndez et al., 2015; Hardge et al., 2016; Olsen et al.,
2017). During May-June 2015, the percentage of ridge and
deformed ice cover was very high (46–51%), in agreement with
recent airborne surveys indicating that ridged ice can make up
a substantial fraction of the pack ice (Haas et al., 2010). For
example, in Fram Strait from 1990 to 2011 ridges contributed
66% of the mean thickness of sea ice (Hansen et al., 2014). In
the coming decades, as the ice gets thinner and more dynamic
due to increased temperatures and wind (Spreen et al., 2011;
Renner et al., 2014), an increase in FYI pressure ridge formation is
expected (Wadhams and Toberg, 2012). As we have shown in this
study, FYI ridges close to refrozen leads can host high biomass of
healthy algal communities and could therefore play an important
role in the Arctic icescape’s future productivity. We encourage
future studies to focus on pressure ridges despite the sampling
challenges, since they are an important and under-quantified part
of the Arctic icescape.

The mean snow thickness observed on FYI on Floe 4 was
0.32 ± 0.20m (Rösel et al., 2018), which is in the same range
given in the Warren-Climatology based on observations from
snow on thick MYI (snow of 0.33m; Warren et al., 1999). Sea-
ice and snow thicknesses have changed toward a thinner, FYI-
dominated ice cover that had less time to collect snow than older
ice (Gallet et al., 2017;Merkouriadi et al., 2017). The combination
of thin and rapidly melting sea ice and a relatively thick snow
cover, led to negative freeboard and flooding of approximately
half of Floe 4. This situation might become more frequent in
the future, as sea-ice thickness continues to decrease (Maslanik
et al., 2007; Stroeve et al., 2012), while precipitation falling on
sea ice has been predicted to increase north of Greenland and
in the Eurasian basin of the high Arctic where the remaining
ice will reside (Bintanja and Selten, 2014). In addition, in the
Atlantic sector, the influence of an increasingly warm Atlantic
water inflow will contribute to faster ice melt from below
(Polyakov et al., 2017). Thus, the contribution of snow to sea-
ice mass balance could increase (Granskog et al., 2017), with
flooding events in early spring (Granskog et al., 2017; Provost
et al., 2017). These conditions favor the accumulation of algae
at the snow-ice interface. These snow-infiltration communities
have been frequently observed in the Antarctic, where the
ratio of snow-to-sea ice thickness is high. We hypothesize that

this “Antarctification” of the Arctic icescape will lead to more
frequent accumulation of sea-ice algae at the snow-ice interface,
especially in the Atlantic sector, and that snow infiltration
communities might play a similarly important role in sea-ice
related productivity in the future Arctic, as in the Antarctic
(Arrigo et al., 1997).

The consequences of more algae accumulating in these two
environments are still unknown, but we can hypothesize that
ridges will become hot spots of biomass that will fuel the ice-
associated food chain, since they will be accessible for grazers
(Gradinger et al., 2010) and their carbon will be transferred to
upper trophic levels (Falk-Petersen et al., 2009). On the contrary,
snow infiltration communities will remain largely inaccessible
for larger grazers during the productive season, although some
grazers have been observed at the ice surface in Antarctic sea
ice (Schnack-Schiel et al., 2001), and will likely sink when the
ice melts, strengthening the sympagic-benthic coupling (Søreide
et al., 2013) if they are not being decomposed and remineralized
by bacteria. Moreover, the different algal species accumulating in
these environments will influence how much carbon is exported
to the seafloor, given that diatoms are more efficient carbon
exporters than P. pouchetii (Reigstad and Wassmann, 2007).
In terms of timing, while snow infiltration communities seem
to appear only at the end of the productive season linked to
ice melt, ridge communities are likely important year-round
but particularly during the summer melt season when most ice
algal biomass is lost from level sea ice. Thus, pressure ridges
might act as refuges for the ice-associated flora and fauna
during times of rapid melt and as an algal seed bank for newly
formed ice.

The key points of this study are:

- Ridge algal communities can account for most of the sea-
ice biomass when compared with other sea-ice environments,
while the snow infiltration communities are difficult to upscale
since they occur below thick snow along cracks, but they are
locally important for sea-ice biomass estimates at the end of
the productive season.

- Ridges are a favorable environment for algal growth because
they provide extensive surfaces for attachment, shelter from
strong currents, light conduits and a sufficient nutrient supply.

- Snow ice interfaces present high accumulations of algal
biomass probably due to physical accumulation, higher
irradiance than below the ice and shelter from grazers.

- Ridges host distinct algal communities with different light
acclimation parameters and attachment strategies. Pennate
sea-ice diatoms are found in the bottom part of the ledges,
while S. bioculatus forms a fluffy layer on the top part of the
ledges.

- Infiltration communities were dominated by the haptophyte
P. pouchetii and pelagic chain-forming diatoms which were
performing better than P. pouchetii.

We conclude that both, ridges and the snow-ice interface
are important and understudied environments in the Arctic
ecosystem. This study provides a comprehensive description of
these two environments and, thus, can be used as a baseline for
more extensive studies in the future. An assessment of the role of
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FYI ridges and snow infiltration communities for Arctic sea-ice
biomass and productivity will become more important in the
future with the ongoing trends of sea-ice thinning and increase
in precipitation.
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Sydney Australia
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1Climate Change Cluster (C3), University of Technology, Sydney, NSW, Australia, 2Department of Mathematics and

Computer Science, Mount Allison University, Sackville, NB, Canada, 3 Environmental Science Program, Mount Allison
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Phytoplankton dynamics are closely linked to the ocean-climate system with

evidence that changing ocean conditions are substantially altering phytoplankton

biogeography, abundance and phenology. Using phytoplankton community composition

and environmental data spanning 1965 to 2013 from a long-term Pacific Ocean coastal

station offshore from Sydney, Australia (Port Hacking 100m), we used the Maximum

Entropy Modelling framework (MaxEnt) to test whether phytoplankton realized niches

are fixed or shift in response to changing environmental conditions. The mean niches

of phytoplankton closely tracked changes in mean temperature, while the mean salinity

and mixed layer depth realized niches were consistently at the extreme range of available

conditions. Prior studies had shown a fixed niche for nitrate in some phytoplankton

species at a site where nitrate concentration was decreasing and potentially limiting;

however, at Port Hacking nitrate and silicate niches increased more rapidly than

environmental conditions, apparently in response to periodic occurrences of elevated

nutrient concentrations. This study provides further evidence that climate change model

projections cannot assume fixed realized niches of biotic communities, whilst highlighting

the importance of sustained ocean measurements from the southern hemisphere to

enhance our understanding of global ocean trends.

Keywords: Port Hacking, climate change, MaxEnt, nitrate, species distribution models

INTRODUCTION

Warming of the Earth’s ocean and atmosphere due to anthropogenic CO2 emissions has seen
a global average increase in surface air temperature of 0.85◦C over the past century (IPCC,
2014), with the upper ocean trapping the majority of the anthropogenic heating (IPCC, 2013).
Atmospheric warming is associated with a decrease in pH and acidification of ocean waters (Rost
et al., 2008; Beaufort et al., 2011). It is in these upper, sunlit waters of the global ocean that
phytoplankton flourish, producing∼ 45Gt a−1 of organic carbon (Falkowski et al., 1998; Field et al.,
1998). Phytoplankton are a critical food source for higher trophic levels, sustaining marine food
webs, which culminate in important fish stocks (Falkowski et al., 2004; Doney, 2006; Richardson
and Poloczanska, 2008).
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The flow-on effects that changes in climate and phytoplankton
communities may have on ocean food webs and global
biogeochemical cycles are poorly understood yet potentially
profound and include the potential for harmful algal bloom
intensification (Edwards and Richardson, 2004; Gobler et al.,
2017). Moreover, establishing links between climate change
and trends in the structure of phytoplankton assemblages is
challenging, as phytoplankton have been shown to exhibit orders-
of-magnitude variability over seasonal, inter-annual and inter-
decadal time scales (Zingone et al., 2010).

With the potential for rapid dispersal, high reproduction
rates and unexpected genetic structuring (Koester et al., 2013),
both the fundamental niche of phytoplankton species and the
ecological space or realized niche occupied in a particular
community (Hutchinson, 1957) may be adaptable to changing
ocean conditions. The set of all abiotic and biotic conditions in
which a species can persist is called the fundamental niche and
is usually determined experimentally in controlled conditions.
Observational studies of natural communities can be used to
document the realized niche where a species actually occurs,
which can be thought of as a modification of the fundamental
niche resulting from competition and biotic interactions. Various
niche characteristics (e.g., niche position, breadth, overlap,
plasticity, and conservatism) have been estimated under varying
single- or multi-stressor conditions both in the laboratory
(Collins et al., 2014; Boyd et al., 2015; Thomas et al., 2016;
Ji et al., 2017) and the field (Irwin et al., 2012; Brun et al.,
2015). However, understanding the organismal tolerance and
plasticity that will drive evolutionary change remains uncertain,
with model projections of biotic communities under climate
change still assuming fixed realized niches (Chivers et al., 2017).

Recent approaches have used many species with different trait
values to seed marine ecosystem models to examine emergent
biogeography of microbial communities (Follows et al., 2007).
Field based observations have been used to compare the changes
in biogeography of different functional groups of phytoplankton
and zooplankton to the velocity of climate change (isotherm
movement) (Chivers et al., 2017). Combined with species
distribution modeling (SDM), field observations have been used
to model phytoplankton biogeography between historical and
projected future ocean conditions (Barton et al., 2016) and to
track species over time at a single location (Irwin et al., 2015).
In the latter example, modeled phytoplankton data from a long-
term coastal station CARIACO (Carbon Retention in a Colored
Ocean) off the coast of Venezuela, revealed that species niches
were not stable over decadal time periods, but were able to exhibit
some adaptive capacity to changes in environmental conditions.
Many questions remain, however, as we assess the importance
and generality of this phenomenon. Little is known about how
quickly species respond to environmental changes, if some
species or functional groups are particularly flexible or resistant
to changes, and what is the potential for contrasting effects of
individual environmental drivers or directional changes. More
time series are needed to resolve these open questions.

The Port Hacking 100m (at a depth of 100m) coastal
monitoring station (hereafter PH100m), located on the east
coast of Australia, is one of the longest established coastal

stations in the Southern Hemisphere. Located 5 km from
Sydney, this station has been the focus of many short-term
phytoplankton and hydrological investigations since its inception
in 1954, with its disparate phytoplankton datasets only recently
assembled (Ajani et al., 2016). In 2009, this station became one
of nine National Reference Stations located around Australia
maintained by the Integrated Marine Observing System (IMOS)
to monitor long-term changes in Australia’s ocean (Lynch et al.,
2014). PH100m is located within a very complex oceanographic
setting, dominated by the East Australian Current (EAC), which
originates in the Coral Sea to the north and brings warm,
oligotrophic waters into more temperate latitudes (Ridgway and
Dunn, 2003). The EAC has strengthened and moved poleward
(Ridgway and Hill, 2012; Wu et al., 2012) with long-term
increases in temperature, salinity, and nitrate and a decline in
silicate recorded at this station over the past 60 years (Thompson
et al., 2009).

While no concomitant shift in total phytoplankton abundance
has been reported at this station over the past 60 years,
species composition over the past decade has seen a decline
in dinoflagellates compared to diatoms toward the present.
There is also an emerging dominance of two tropical species
Trichodesmium erythraeum (cyanobacterium) and Bacteriastrum
spp. (diatom) at this station (Ajani et al., 2014a,b). This shift
in composition, however, has only been reported over the most
recent decade, when water temperatures declined amidst a long-
term warming signal.

With this in mind, we studied the realized niches of
phytoplankton species at PH100m to address the following
questions. Do realized niches change in response to
environmental change, or are they primarily conserved
resulting in a restructuring of communities and changes in
biogeography as environmental conditions change? The changes
in physical and chemical conditions at PH100m allowed us to
test for changes in realized niches over time, so we refined this
question by examining how rapidly realized niches change.
Another refinement recognizes that the realized niche for some
environmental variables may be much more plastic than for
others, so we investigate if niches change at different rates
for different variables. Many environmental conditions and
changes in conditions are correlated, so we investigate if these
correlations are reflected in the realized niches and their changes.
Finally, we investigate if species respond to changes in the mean
environmental conditions, or if more detailed information about
the distribution of environmental conditions is required to
anticipate changes to realized niches.

MATERIALS AND METHODS

Five disparate phytoplankton sampling campaigns were
conducted at the PH100m coastal station (34◦7’3.36”E,
151◦13’5.52”S, Figure 1) over the period from 1965 to 2013
(approximately ∼20 years of sampling over a ∼50 year period).
These were coded OSL (1965–1966), HALLE (1978–1979),
AJANI97 (1997–1998) AJANI98 (1998–2009), and NRS (2009–
2013) and their sampling frequencies, methodologies and
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FIGURE 1 | Map of study area showing southeast Australia (inset) and the

coastal monitoring station Port Hacking 100m (PH100m) indicated by black

circle.

references are summarized in Table 1. In brief, phytoplankton
samples were collected approximately weekly to monthly using
either discrete bottle samples or phytoplankton mesh nets
(20 or 37µm) and preserved before microscopic examination.
Cells were identified to the lowest possible taxon using light
microscopy and where identification to species level was not
possible, cells were assigned to genus level only (e.g., Chaetoceros
spp., Thalassiosira spp. etc.). For comparability across sampling
campaigns, certain taxa were pooled to genus level. Simultaneous
meaurements of several environmental parameters including
temperature (◦C), salinity, oxidized nitrogen (µmol L−1

;
nitrate

and nitrite, hereafter “nitrate”), and dissolved reactive silicate
(µmol L−1; hereafter “silicate”) occurred during these sampling
campaigns (refer to references in Table 1 for all environmental
collection and analytical methodologies).

All phytoplankton abundance data were pooled across 0–50m
except for AJANI97 and AJANI98 which were 0–100m and
converted to simple records of species presence, while all
environmental parameters were averaged across the upper 50m.
To assess if the phytoplankton were tracking changes in thermal
stratification at this location, we also calculated the mixed-layer
depth (MLD) over the sampling duration. This was defined as the
depth where the temperature was more than 0.5◦C lower than the
surface temperature (Levitus, 1982).

Differences in sampling methodology and frequency can
introduce a sampling bias and effect model performance when
performing niche models (Kramer-Schadt et al., 2013). Although
this concern is largely focused on spatial distribution modeling,

similar problems could arise from temporal models collected at
a single station. Temporal filtering of weekly data to monthly
reduced the number of viable species to model, but for those
retained we found significant positive correlations (r = 0.78
to 0.93) between the filtered and unfiltered species in terms
of how each species track their niche. Similarly, a comparison
between the two principal modes of sample collection (net hauls
and discrete bottle samples) during 2009, found that while cell
counts were significantly lower in the bottle samples, over 72%
of the species were collected by both methods and the five most
abundant species were the same. We therefore did not correct
for changes in sampling frequency or method. For sampling
frequency in particular, the spatial filtering would have resulted
in a significant loss of modeled species and our tests suggest there
would be no change to the overall conclusions.

Tracking Changes in Phytoplankton Niches
To investigate whether phytoplankton niches have adapted to
changing environmental conditions on a decadal scale at PH100m,
we divided the combined dataset into three distinct periods
representing different thermal regimes.The first period, P1,
represented four years of stable colder temperatures before the
rapid warming during the mid 1990s, and included data from the
years 1964, 1965, 1978, and 1979. The second period, P2, which
included data from 1997 to 2004, showed no abrubt step-wise
changes in environmental conditions but did exhibit a significant
decline in ocean temperatures. The final period, P3, showed
evidence of renewed warming and included data collected from
2005 to 2013. We chose the end of year midpoint as the division
for the two periods separating the data into an initial post El Niño
cooling phase (P2) and a cooler period with renewed warming
(P3).

Secondly, we investigated how quickly phytoplankton track
changes environmental conditions by observing the rate at
which the niche changed on a rolling annual basis. We limited
this analysis to the years between 1997 and 2013 due to the
large gaps present between the earlier four years of data. We
calculated a running mean niche of each species using a 4-year
moving window which provided a possible total of 14 niche
measurements (i.e., 1997–2001, 1998–2002, . . . , 2010–2013). For
both analyses, species that were found to occur at least 15 times in
at least one period (P1, P2, and P3), or within one 4-year window,
were retained for subsequent niche modeling.

Statistical Analysis
We used the Maximum Entropy Modelling framework (MaxEnt,
Phillips and Dudik, 2008) to estimate the logistic probability of
finding a particular species in univariate or multivariate niche
space by comparing the environmental conditions where a taxon
is present with the measured background environment of all
sampling events. MaxEnt has become one of the most popular
algorithms used tomodel species distributions. It has consistently
been found in comparative studies to give robust estimates and
to perform as one of the best algorithms available (Elith and
Leathwick, 2009). Our focus is on using MaxEnt to describe the
realized niches of phytoplankton and to test for changes over time
in these niches. Alternative modeling frameworks could be used
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TABLE 1 | Phytoplankton sampling campaign codes, frequency, duration, methodology and reference from PH100m coastal station (IMOS = Integrated Marine Observing

System; NRS = National Reference Station).

Code Period Sampling

frequency

Sampling methodology Number of

samples

Counting methodology Reference

OSL P1

Apr 1965–Apr 1966

Weekly 4.5 L using van Dorn

sampler; discrete 0,10,

20m pooled “surface”; 30

and 50m pooled

“intermediate”; 75 and

100m pooled “bottom”

42 Diluted subsamples

counted in gridded chamber

to between 100 and 500

per ml range

Grant and Kerr,

1970

HALLE P1

Apr 1978–Apr 1979

Weekly 24 L-duplicate casts with

twin 6 L water sampler (Jitts,

1964); discrete 0, 10, 20,

30, 40, 50, 75, and 100m;

38 Utermohl chamber and

whole bottom counted at

x200 magnification for rare

and large species; 10–30

random fields counted for

abundant diatoms and small

flagellates

Hallegraeff, 1981

AJANI97 P2

Apr 1997–Apr 1998

Weekly 100m vertical net haul –

37µm mesh (Heron, 1982)

49 Lund cell and light

microscope x400

magnification

Ajani et al., 2001

AJANI98 P2 and P3

Sept 1998–Dec 2009

Monthly 50m vertical net haul-20µm

mesh

113 Lund cell and light

microscope x400

magnification

Ajani et al.,

2014a,b

NRS P3

Feb 2009–Dec 2013

Monthly Niskin bottles- integrated

sample 0–50m

44 Sedgewick-Rafter x200

magnification for large

diatoms and dinoflagellates;

500–600x magnification for

nanoplankton species

imos.aodn.org.au

P1, P2, and P3 refer to the 3 periods of analyses used in this manuscript; P3 starts in 2005 (see methods for additional detail).

ranging from regression to machine learning. MaxEnt is both
highly flexible, with weak a priori assumptions about the response
of each species to each condition, and highly interpretable in
contrast with some “black-box”machine learning techniques. For
each MaxEnt model run, a total of 100 bootstrap re-sampling
runs were performed. Threshold and hinge responses were
disabled as our focus is primarily on the mean niche conditions
for each species and to reduce the likelihood of overfitting of
the model (Elith et al., 2011). Model performance was evaluated
by examining the area under the curve (AUC) of the receiving
operator characteristic, where values approaching one suggest a
higher probability that a model will correctly identify a species
presence. Using the AUC as a single measure for evaluating
model performance can be prone to several biases (Yackulic
et al., 2013). Nevertheless, by raising the minimum AUC for
inclusion of a model to 0.7, we successfully removed the most
poorly fitted models that may have biased our results. We
used the permutation importance to measure the contribution
of each variable to the total AUC on a percentage scale by
permuting the values of one variable at a time at random and
observing the decrease in model performance. A large decrease
in the AUC indicates that the variable is very important in the
characterisation of the species’ niche.

To investigate whether phytoplankton niches have adapted
to changing conditions on a decadal scale, we focused on each
environmental variable individually and used the probability
response curves to calculate the mean realized niche of each

modeled species for each period (P1, P2, P3) or 4-year moving
window during the period 1997–2013. For the decadal analysis,
the background data were sampled from all observations. For the
moving window approach, the background data were sampled
from the years included in the moving window. For both
analyses, only species that were found to occur at least 15 times
in at least one period (P1, P2, and P3), or within one 4-year
window were examined. The 100 bootstrap samples provided an
estimate of 95% confidence intervals of the mean niche for each
species. We restricted our analysis to environmental conditions
that were common to all periods and removed extreme values
present within individual periods of the time series. Had they
been included these extreme values could have had an effect
on the species niche calculation, where a difference in niches
would be found largely due to the change in available background
conditions.

We performed several tests to examine the effect of
the changing environment on the realized niches. For each
environmental variables, we calculated the community average
mean niche for all species within a period as well as the
background environmental conditions. We hypothesize that
the magnitude and direction of the changes in the niche and
environmental differences will be similar. We also hypothesized
that the degree of niche change is dependent upon the initial
niche and its distance from the mean environmental conditions.
To test this, we first examined species that were found in two
or more periods and used a linear regression model to examine
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the pair-wise relationship between the mean niche of the earliest
period and the change in mean niches between the two periods.
We then examined the rate at which changes to a species niche
occurred. We computed the correlations between the running
mean of the background environmental conditions and the
runningmean of themean niche for all species that weremodeled
in at least 5 of the 14 time steps. To test for a delay in the response
of the community to environmental change, we computed these
correlations on simultaneous measures and with a lag of 1–4
years between the environmental conditions and the estimated
mean niches. Since some of the changes in niches did not seem to
be directly proportional to changes in the mean environmental
conditions, we compared the distance between the mean niche
and mean environmental conditions to the standard deviation of
the environmental conditions in each 4-year moving window.

RESULTS

Phytoplankton Niche Modelling
A total of 34 species were present in at least two periods with
a mean AUC of 0.7 or greater (Supplementary Table 1). The
variation in mean AUC was low with a standard deviation of
< 0.1 across all three periods (P1: 0.71± 0.089; P2: 0.81± 0.063;
P3: 0.72 ± 0.061). Four environmental variables (temperature,
salinity, mixed layer depth, and nitrate concentration) allowed
comparisons across all three periods while comparisons for
silicate concentration were only possible between the latter time
periods P2–P3 (Table 2). A total of 16 species were present
in both periods P1 and P2 and 31 species were present in
periods P2 and P3 (Supplementary Tables 2, 3). We found

changes in the community average mean niches and the mean
environmental conditions were always in the same direction for
temperature, MLD and nitrate concentration between P1 and
P2 and between P2 and P3. Changes in the community average
mean niches exceeded changes in the environmental conditions
for temperature, nitrate and silicate concentration (Table 2).
Salinity and mixed layer depth changes were very small or not
significantly different from the environment and mean niche
between both pairs of periods. A few niche changes nominally
in the opposing direction to changes in the environment all
corresponded to small, non-significant changes in environmental
conditions. Changes in the mean niches for each species were
in the same direction as the environmental change for almost
all species (Supplementary Tables 2, 3). For each species, the
magnitude of niche change was negatively associated with their
initial niches, indicating that species with niches in the initial
period (P1 or P2) farthest from new conditions in the second
period (P2 or P3) exhibited the largest change in their mean niche
(Figure 2). We interpreted this as a signal of direct pressure on
the realized niche due to changes in environmental conditions.

The most important variables determining a species’ niche
varied between the three periods examined (Table 3). In P1,
temperature was the most important variable for all species
overall (with a mean permutation importance of 36%), with
nitrate concentration (21%) being marginally more important
than the two remaining variables (silicate was not available for
this period). For P2 temperature was the third most important
variable (18%) having been supplanted by the added variable
silicate concentration (32%) as most important and nitrate
concentration (20%) as the second most important. Period P3

TABLE 2 | Mean environmental conditions (top) and niches (bottom), 95% confidence interval on the mean, and change in means between two periods for temperature,

mixed layer depth (MLD), salinity, nitrate and silicate concentrations over time (P1: 1965–1979, P2: 1997–2004, and P3: 2005–2009) at the Port Hacking monitoring

station.

Variables P1 P1 P2–P1 P2 P2 P3–P2 P3 P3

Mean 95% CI 1 Mean 95% CI 1 Mean 95% CI

ENVIRONMENT

Temperature (◦C) 18.58 (18.14–19.28) 0.7 19.28 (18.89–19.67) −0.47 18.81 (18.49–19.14)

MLD

(m)

28.59 (23.48–33.61) −3.3 25.29 (21.01–29.63) −3.14 22.15 (18.02–26.28)

Salinity 35.51 (35.48–35.54) −0.02 35.49 (35.47–35.51) −0.07 35.42 (35.40–35.44)

Nitrate

(µmol L−1)

2.02 (1.73–2.31) −0.51 1.51 (1.25–1.82) 0.45 1.96 (1.66-2.26)

Silicate

(µmol L−1)

NA NA NA 1.31 (1.15–1.47) −0.08 1.23 (1.16–1.4)

NICHES

Temperature (◦C) 18.23 (18.11–18.34) 1.62 19.85 (19.78–19.92) −1.11 18.74 (18.62–18.86)

MLD

(m)

73.1 (68.9–75.3) −15.44 57.66 (51.66–61.66) −4.96 52.7 (51.6–53.8)

Salinity 35.16 (35.13–35.19) 0.13 35.29 (35.25–35.33) −0.08 35.21 (34.19–35.23)

Nitrate

(µmol L−1)

3.59 (3.56–3.82) −1.72 1.87 (1.64–2.0) 1.88 3.75 (3.69–3.81)

Silicate

(µmol L−1)

NA NA NA 1.42 (1.31–1.53) 1.15 2.57 (2.39–2.75)

Differences between periods shown in bold are statistically significant (P < 0.05).
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FIGURE 2 | Changes in the mean realized niche as a function of the mean

niche in an initial period. Each panel displays changes for one variable

between periods P1 and P2 (triangles) and between periods P2 and P3

(circles): (A) temperature (◦C), (B) mixed layer depth (m), (C) salinity, (D) nitrate

concentration (µmol L−1), (E) silicate concentration (µmol L−1). Each symbol

(Continued)

FIGURE 2 | represents a single species. Regression lines illustrate that the

greatest changes in the realized niche occur in species with an initial niche that

is most dissimilar from the average conditions in the second period (P1–P2,

solid line; P2–P3, dashed line). See Table 2 for changes in mean

environmental conditions and niches. Silicate niches were not available in P1,

so the first difference is not shown in panel (E). Colours correspond to the

phytoplankton groups coccolithophores (gray), diatoms (green), dinoflagellates

(red), and silicoflagellates (blue).

showed an increase in the importance of salinity (22%) and
a slight decrease in importance for both nutrient variables
(Table 3). Overall, all the predictors played an important role in
determining the realized niches of species on average, with no
clear signal in which one variable dominated the information
characterizing the niches.

Tracking Change in Phytoplankton Niches
A total of 33 species appeared in suitable numbers of samples
to model the niche at least once during the period 1997–
2013 (Supplementary Table 4). There were strong positive
correlations found between changes in environmental conditions
and each species niche and the average niches of all species
(Figure 3). We found no evidence of any lagged responses,
meaning that the changes in mean niche likely occurred within
one year of the corresponding change in the environment.
The time-series analysis revealed three different patterns in the
differences between the mean environment and mean realized
niches and how they changed over time. For temperature, the
mean niche was approximately equal to the mean temperature
in the environment, changing at a similar rate and in the same
direction. For salinity and mixed layer depth, the mean niches
were at extreme values of the distributions of environmental
conditions, corresponding to low (relatively fresh) salinity
and large (relatively deep) mixed layer depths. Changes in
environmental conditions and mean niches were relatively
small for both of these variables (summarized in Table 2,
Supplementary Table 3). A third pattern was observed for
nitrate and silicate concentrations. Mean niches increased more
rapidly than corresponding changes in the mean environmental
conditions from 2000 to 2007. The changes arrested in the
second half of the study from 2007 to 2013. Despite the increases
in silicate niches, there was a steady decrease in the mean
silicate concentrations between 1997 and 2013. We computed
the difference between the community average mean niche
and the mean environmental conditions for each variable. This
separation between niches and environmental conditions was
close to 0 for temperature, approximately constant for salinity
and mixed layer depth, and increased rapidly for nitrate and
silicate concentration. Since the mean environmental conditions
was not predictive of this difference, we compared the difference
to the standard deviation of the environmental conditions
(Figure 4). Nitrate and silicate concentrations both showed
strongly positive correlations demonstrating that changes in the
distribution of environmental conditions (represented here by
changes in the standard deviation, but likely due the increasing
frequency of higher nutrient concentrations) led to the changes
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TABLE 3 | The relative importance (Mean, %) and 95% confidence interval (CI) of each of the five environmental variables within each of the three periods (P1: 1964,

1965, 1978, 1979; P2: 1997–2004; P3:2005–2013) averaged over all species analyzed.

P1 P2 P3

Variable Mean CI Mean CI Mean CI

Temperature (◦C) 36 (31.5–39.5) 17.8 (13.4–22.2) 20.8 (19.9–22.7)

MLD (m) 18.1 (15.3–21.9) 12.6 (9.4–15.8) 12.5 (10.9–14.1)

Salinity 21.4 (19.5–25.9) 16.7 (14.5–19.9) 24.1 (21.5–26.6)

Nitrate (µmol L−1) 23.9 (19–26.2) 20.1 (18.3–23) 18.8 (17–20.6)

Silicate (µmol L−1) −− – 31.6 (26.5–36.7) 22.8 (19.5–26.1)

in the mean niches. No such relationship was found for the other
environmental variables (dotted lines in Figure 4) Each variable
is analyzed in a separate panel of Figure 4 and the final panel F
overlays all the variables, standardized to zero mean and unit
variance in each axis to facilitate comparison across variables.
The community was dominated by diatoms so we attempted to
determine if the silicate effect was stronger in diatoms compared
to other functional types, but the small number of species of other
groups made a careful taxonomic analysis inconclusive.

Correlations in the Environment and Niche
Interpretations
Correlations among environmental variables are ubiquitous in
the ocean and always have the potential to complicate the analysis
of observational data. Our focus has been on univariate species
distribution models and the mean realized niche rather than on
a multivariate model which might be selected to get the most
explanatory power to be used for prediction. Univariate niches
are generally easier to interpret (Elith et al., 2011; Irwin et al.,
2012). The correlations among our predictors are generally small
in this time series, and only significantly different from 0 for three
pairs of variables: temperature and nitrate concentration, silicate
and nitrate concentration, and a very small correlation between
silicate concentration and salinity (Table 4). The sign of these
correlations agrees with the relative changes in mean realized
niches, but the relative changes in temperature and nitrate niches
relative to changes in the mean environmental conditions are
very different, indicating that there is an independent signal
observed in changes in the temperature and nitrate realized
niches.

DISCUSSION

The Port Hacking coastal monitoring station (PH100m) is one
of the longest running ocean time series in the Southern
Hemisphere (Figure 1). The hydrography of the region exhibits
complexity at several time scales (Hallegraeff and Jeffrey,
1993; Ajani et al., 2001, 2016; Pritchard et al., 2003). Over
the last 60 years there has been a long-term increase in
temperature (0.75◦C century−1), salinity (0.23 century−1), and
nitrate concentration (0.56 µmol L−1 century−1) and decline in
silicate concentration (−1.97 µmol L−1 century−1) (Thompson
et al., 2009). Superimposed on these multi-decadal trends are

seasonal, annual, and decadal variations. In recent years (1997–
2013) there has been a decline in salinity, likely due to an increase
in rainfall, a modest decline in sea surface temperatures, a decline
in mixed layer depth, an increase in annual average nitrate
concentrations and a decline in silicate concentrations. Climate
predictions for Australia include warmer ocean temperatures and
more intense rainfall events across the nation, although annual-
average rainfall is projected to decline (www.csiro.au/state-of-
the-climate). Australian climate patterns are also influenced
by the long-term increasing trend in global air and ocean
temperatures (http://www.bom.gov.au). It has been hypothesized
that the decline in silicate and other environmental conditions
will lead to changes phytoplankton community composition
at this site (Ajani et al., 2014a,b). Phytoplankton are rapid
and effective indicators of changes in the oceanic environment
(Richardson and Schoeman, 2004). Here we determine the
capacity of the realized niche of phytoplankton at this coastal site
to track changes in their environment conditions since 1965, with
an emphasis on the years from 1997 through 2013.

Microbes may have a high capacity to adapt to climate change
through selection on standing diversity and de novo mutation,
although there may be limits on the ability of species to adapt to
multiple stressors (Collins, 2013). In the laboratory, evolutionary
change has been demonstrated in numerous microbial species
including Escherichia coli, Trichodesmium, Chlamydomonas, and
Emiliania, often in less than a thousand generations, indicating
that marine phytoplankton may be able to adapt to climate
change nearly as rapidly as it occurs (Frank and Slatkin, 1990;
Collins and Bell, 2004; Benner et al., 2013; Collins, 2013; Hutchins
et al., 2015; Walworth et al., 2016). Despite this evidence, many
researchers assume that the physiological traits and niches of
phytoplankton are fixed as this facilitates projections of the effects
of climate change and there remain few studies documenting
changes in phytoplankton niches over time, especially in the field
(Thomas et al., 2004, 2012; Flombaum et al., 2013; Barton et al.,
2016).

The fundamental niche is the full set of environmental
conditions under which a species can persist, and for
phytoplankton, this is typically defined in the laboratory.
In the field, species are influenced by the interaction of multiple
environmental conditions and simultaneous, competition and
other biotic interactions, all of which are rarely examined
in the lab and as a result, their realized niche is generally a
limited subset of their fundamental niche. At a tropical site
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FIGURE 3 | Mean realized niches change over time in response to changes in

mean environmental conditions and their distributions. Running mean niches

are compared to environmental conditions in panels (A–E). Monthly

environmental conditions are shown (black line, filled

circles) for (A) temperature (◦C), (B)mixed layer depth (m), (C) salinity, (D) nitrate

(Continued)

FIGURE 3 | concentration (µmol L−1), and (E) silicate concentration (µmol

L−1). The 4-year running mean of the mean realized niche for species found in

at least 4 of the 15 periods between 1997 and 2013 (dashed lines) and a loess

smoother (black, thick line) with a shaded region 1 standard error wide (red)

are overlaid on these panels.

in coastal Venezuelan waters (Station CARIACO) over a 15
year period (1995–2011), we observed changes in the realized
niches of 67 phytoplankton species in response to warming of
about 1.3◦C and a decrease in nitrate concentration of about
0.7 µmol L−1 (Irwin et al., 2015). While changes in the realized
temperature niche closely tracked changes in average conditions
in the environment, we observed two distinct responses in the
nitrate niches. Some species tracked the decrease in nitrate
concentration while others retained an essentially fixed realized
niche. We do not know if these results are typical of changes in
phytoplankton at other sites, how rapidly the changes occurred,
or the reason for the differences we observed in temperature and
nitrate niche changes.

The evidence from the Port Hacking coastal station is that
realized niches of phytoplankton track changes in environmental
conditions (Figure 2, Table 2). We observed three patterns
of changes in the realized environmental niches that we
believe to be a result of mismatch between the fundamental
niches and available environmental conditions. For temperature,
the mean niche, averaged over all species, is very close
to the mean environmental conditions and the mean niche
closely tracks changes in the environment. The changes in
mean niche have the same sign but are slightly larger than
changes in ocean temperature, whether we examine changes
from one period to the next (Table 2) or changes in the
running-mean estimate over time (Figure 3A). This is expected,
since the fundamental temperature niche for many species
is generally wide compared to the ranges of temperatures
observed at PH100m (Boyd et al., 2013; Brun et al., 2015). In
addition, ocean currents can be expected to have exposed the
drifting phytoplankton communities arriving at PH100m to large
temperature fluctuations, which will have helped retain species
with wide temperature niches (Doblin and van Sebille, 2016),
although in some cases currents may promote local adaptations
and barriers to gene flow (Rynearson and Armbrust, 2005). By
contrast, mean niches are biased relative to the environment
for salinity and mixed layer depth, with salinity niches being
smaller (fresher) by about 0.25 psu compared to the environment
and mixed layer depth niches being larger (deeper) by about
30m. Mean niches for both these variables are generally at an
extreme edge of the distribution of the environmental conditions,
indicating an increased probability of finding phytoplankton
species in general at one end of the distribution of these variables.
Changes in environmental conditions between periods (Table 2)
are not significant, and changes in mean niche are near zero
but significant (for salinity) or not significant (for mixed layer
depth). As with temperature, inter-annual variability in these
environmental conditions is much larger than the changes over
the time-series in mean niche (Figures 3B,C). More dramatic
changes inmean salinity andmixed layer depth could be expected
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FIGURE 4 | The difference between the community average of mean realized

niches and the mean environmental conditions for each 4-year window as a

function of the standard deviation of environmental conditions. For nitrate and

silicate concentration (D, E) increasing variability in the environment led

to larger differences between mean environmental conditions and mean realized

(Continued)

FIGURE 4 | niches (linear regressions, black line, p < 0.05). The relationship

was non-significant (dashed line, p > 0.05) for temperature, mixed layer depth,

and salinity (A–C) revealing close tracking of the mean or an extreme value of

the environmental conditions for these variables.

TABLE 4 | The correlation matrix between the five environmental variables for all

observations between 1997 and 2013. Significant (P < 0.05) correlations are in

bold.

Temperature MLD Salinity Nitrate

Temperature (◦C) –

MLD (m) −0.15 –

Salinity −0.12 0.18 –

Nitrate (µmol L−1) −0.47 −0.18 −0.16 –

Silicate (µmol L−1) −0.16 −0.13 −0.21 0.56

to change the corresponding niches, but the ability of species
to persist at the edge of the distribution of these variables
allowed the realized niches to remain largely unaffected over the
study period. A third pattern is observed for nitrate and silicate
concentrations. Relatively small changes in mean concentrations
in the ocean (Table 2, Figures 3D,E) appear to have resulted in
considerably larger changes in the mean niches, and for silicate
concentration, the change is in the opposite direction (although
the environmental change was not significantly different from
zero). These three different kinds of changes in realized niches
may be related to the mismatch between the fundamental niche
and the available environmental conditions at this site.

Unlike Station CARIACO, wheremany phytoplankton species
displayed a fixed niche for nitrate, the realized niche for
nitrate concentration at PH100m tracks an increase in nitrate
concentration at the site. Also somewhat surprisingly, for
several variables, most notably nitrate and silicate concentration,
the mean realized niche over all species, at times, increases
more rapidly than the mean concentration in the environment
(Figure 3). Differences in the concentration and temporal
dynamics in nitrate concentrations between the two locations
may account for the different phenomena at the two sites. The
average monthly nitrate concentration at Station CARIACO was
<1µmol L−1, indicating that nitratemay be the limiting resource
for many phytoplankton species at this location, whilst the higher
concentrations observed at PH100m (∼2 µmol L−1) may not
be limiting for many species. Diatoms are known to thrive
under variable conditions at PH100m, often taking advantage
of nutrient pulses (Hallegraeff and Reid, 1986; Ajani et al.,
2014a,b). Increasing nitrate loading in the coastal ecosystem
offshore from Sydney is predicted to continue in future years,
with more frequent upwelling events anticipated and an increase
in anthropogenic nutrient loading via river discharges and ocean
outfalls (Pritchard et al., 2003). How phytoplankton will react
to this further increase in nitrate concentration will require
further investigation over longer time scales and highlights the
importance of Australia’s National Reference Stations to monitor
long-term changes in Australia’s ocean.

Because of mismatch between fundamental and realized
niche, the consequences of environmental changes on some of
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the realized niches are not sufficiently well described by changes
in the mean conditions. Nitrate and silicate concentrations
exhibit increasing frequency of relatively high concentrations
over the 1997–2013 time series, starting most noticeably
around 2005 (Figures 3D,E). The standard deviation of nutrient
concentrations, measured over a calendar year, captures this
increase and can be used to explain why mean realized niches
increase more rapidly than mean environmental conditions
(Table 2, Figures 4, Supplementary Tables 3, 4). The difference
between mean realized niche and mean environmental condition
is correlated with the standard deviation of the environmental
conditions; all measured on a calendar year for nitrate and silicate
concentrations (Figure 4). The corresponding relationship
for temperature, salinity, and mixed layer depth was not
significant.

The realized niches of phytoplankton changed rapidly in
response to changes in environmental conditions at Port
Hacking. We evaluated the lag-times associated with the mean
realized environmental niches and environmental conditions and
found the correlation was highest with no lag, demonstrating that
there was no evidence of a lag even as small as 1 year between
environmental change and corresponding changes in the realized
niche. Analyses between non-overlapping periods in this study
(Table 2, Figure 2) and a previous study at Station CARIACO
showed changes in realized niches between periods but did not
address the question of how quickly realized niches changed.
This rapid change in realized niche suggests that niche tracking
arises from rapid processes such as gene frequency change in
the population caused by ecological selection or immigration of
new ecotypes. We do not anticipate that physiological plasticity
is responsible for these changes in realized niche, except possibly
for temperature, since the interannual variation in environmental
conditions is much larger than longer-term changes that we
are emphasizing. If plasticity was responsible, then the niches
would likely be much broader and uniform across species,
encompassing the full range of environmental conditions (Irwin
et al., 2015). Moreover, since the realized niche for temperature
is very close to the mean conditions and tracks the mean very
closely, it is possible that some of the species at Port Hacking have
broad temperature niches relative to the range of environmental
conditions.

Our analysis of phytoplankton realized niches at Port Hacking
has demonstrated that realized niches for the species observed
at this site approximately track changes in environmental
conditions and that these changes happen with a time lag of
less than 1 year. This reinforces results observed at Station
CARIACO which showed that phytoplankton realized niches
adapt to changing ocean conditions. Our analysis at PH100m

provides a second, independent test of this idea. The longer time
record at Port Hacking included some changes in environmental
conditions in opposing directions compared to those observed at
Station CARIACO, and some reversals, for example an increase
in temperature (and niche) between 1965 and 79 (P1) and
1997–2004 (P2) followed by a decrease between 1997 and 2004
(P2) and 2005–2013 (P3). Our results also extend the previous
analysis by illustrating that changes in mean conditions may
not always be sufficient to explain the changes in the mean
niche. Episodic increases in macronutrient concentrations were

sufficient at Port Hacking to enable disproportionate increases
in the corresponding realized niches, as phytoplankton exploited
these new conditions. Furthermore, the East Australian Current
is intensifying (poleward extension of approximately 350 km)
and continuing to undergo significant warming (2.28◦C/century)
(Ridgway and Hill, 2012). This latitudinal shift and warming
trend is predicted to cause shifts in phytoplankton abundance,
distribution and composition along the east Australian coast
with the emergence of tropical species into more temperate
waters already documented (Hallegraeff et al., 2012; Ajani
et al., 2014a,b). This spatial restructuring of the plankton
may in turn cause changes in biotic interactions (predation,
competition), with potential impacts on biogeochemical cycling,
higher trophic levels, and biodiversity (Chivers et al., 2017).
Taken together, these studies and the details of rates and
magnitude of changes in realized niche, emphasize the need
to expect changes in phytoplankton niches when designing
ecosystem models used to project biotic responses to climate
change. This study provides further evidence that climate change
model projections cannot assume fixed realized niches of biotic
communities, and highlights the importance of sustained ocean
measurements from the southern hemisphere (as well as the
northern hemisphere) to enhance our understanding of global
ocean trends. Moreover, future work to test the proposed
mechanisms for the observed niche flexibility should combine
population genetics and microbial experimental evolution to
allow for a mechanistic understanding how changes in realized
niches can be predicted and thereby taken into account in climate
change projections.
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The Baltic Sea is affected by a range of human induced environmental pressures such

as eutrophication. Here we synthesize the ongoing shift from diatom dominance toward

more dinoflagellates in parts of the Baltic Sea during the spring bloom and its potential

effects on biogeochemical cycling of key elements (e.g., C, N, and P). The spring bloom

is the period with the highest annual primary production and sinking of organic matter to

the sediment. The fate of this organic matter is a key driver for material fluxes, affecting

ecosystem functioning and eutrophication feedback loops. The dominant diatoms and

dinoflagellates appear to be functionally surrogates as both groups are able to effectively

exhaust the wintertime accumulation of inorganic nutrients and produce bloom level

biomass that contribute to vertical export of organic matter. However, the groups have

very different sedimentation patterns, and the seafloor has variable potential to mineralize

the settled biomass in the different sub-basins. While diatoms sink quickly out of the

euphotic zone, dinoflagellates sink as inert resting cysts, or lyse in the water column

contributing to slowly settling phyto-detritus. The dominance by either phytoplankton

group thus directly affects both the summertime nutrient pools of the water column

and the input of organic matter to the sediment but to contrasting directions. The

proliferation of dinoflagellates with high encystment efficiency could increase sediment

retention and burial of organic matter, alleviating the eutrophication problem and improve

the environmental status of the Baltic Sea.

Keywords: eutrophication, pelagic-benthic coupling, ecosystem functioning, community composition, plankton

sedimentation, carbon sink

INTRODUCTION

Global change is causing drastic changes to the lowest levels of the marine food web (Halpern et al.,
2008; Duarte, 2014), with evidence of shifting community composition of primary producers in
e.g., the North Atlantic (Leterme et al., 2005), the North Sea (Hinder et al., 2012), parts of
the Mediterranean Sea (Mercado et al., 2007) and the Baltic Sea (Klais et al., 2011). The main
drivers/pressures for this change are warming of the surface water, changes in stratification,
eutrophication, ocean acidification, overfishing, loss of biodiversity, spreading of non-indigenous
species and increasing UV exposure (e.g., Hallegraeff, 2010; Duarte, 2014).
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Different species of phytoplankton have different traits
(Litchman and Klausmeier, 2008), most notably size and
shape, growth rate, life history, and behavior such as motility
that together determine their ecological niche and preferred
environmental conditions, and phytoplankton is a major driver
for global carbon fixation and biogeochemical cycles. State-of-
the-art biogeochemical models typically have several functional
groups of phytoplankton, but as the models become more
advanced we need empirical studies to disentangle what effect
the observed shifts in phytoplankton communities have on
ecosystem functioning (Fennel and Neumann, 2014).

The Baltic Sea is among the shelf seas projected to change
most rapidly, due to its close interaction with land and reduced
alkalinity (Niiranen et al., 2013; BACCI, 2015). Eutrophication
is one of the main threats to the Baltic Sea ecosystem (e.g.,
HELCOM, 2009), but also ocean acidification (Havenhand, 2012;
Omstedt et al., 2014), global warming (Belkin, 2009; Meier
et al., 2014) and pollutants (HELCOM, 2010) greatly affect
this ecosystem and pose challenges for effective management of
natural habitats (Elmgren et al., 2015).

Long-term eutrophication in the Baltic Sea has led to
accumulation of phosphorus (P), particularly in the sediment,
to an extent that internal loading off-sets reduction in nutrient
loading from the catchment (Gustafsson et al., 2012). Spread of
hypoxia in the bottom water and sediments directly affect the
cycling of the main elements (Conley et al., 2011; Carstensen
et al., 2014), which in turn affects the community of primary
producers when bottom water is transported to the surface
during seasonal turnover or upwelling (Cloern, 2001).

Global warming is projected to reduce the sea ice coverage,
ice thickness and increase water temperature in the Baltic Sea
(Thomas et al., 2017). Expected increase in precipitation in
the Northern Baltic catchment will affect freshwater inflow
and nutrient run-off (Andersson et al., 2015). Changes to
both temperature and freshwater inflow have the potential to
change stratification of water layers, with direct implications
for vertical transport of O2 and for planktonic life forms,
in particular during the build-up of stratification in spring
(Stipa, 2004). Input of freshwater will also influence the
concentration of dissolved organic matter with implication for
light dependent phytoplankton (Andersson et al., 2018). At
present, freshwater induced stratification is important for the
initial start of the spring bloom, but thermal stratification may
become more important in the future (Hordoir and Meier,
2012). Warming of the Baltic Sea has already caused temporal
shifts in the phytoplankton distribution during the highly
productive spring, with earlier andmore prolonged spring bloom
(Groetsch et al., 2016; Kahru et al., 2016). In addition, long-
termmonitoring data suggest that the phytoplankton community
is changing during spring in some areas of the Baltic Sea
from diatom to dinoflagellates dominance (Klais et al., 2011),
as a consequence of the ongoing climate change (Klais et al.,
2013).

We have some understanding of how ongoing environmental
changes affect the phytoplankton community, but much less
is known how phytoplankton community composition feeds
back into ecosystem functioning. Using the Baltic Sea as a case

study, we review the present knowledge of the ongoing diatom—
dinoflagellate shift, and provide a synthesis of the existing
knowledge of how the phytoplankton community composition
directly affects ecosystem functioning through species-specific
sedimentation, life cycle changes and yields of resting stages. We
argue that the diatom to dinoflagellate shift has the potential
to induce substantial changes in pelagic and benthic ecosystem
functioning, and we provide a conceptual model of how this
change could affect biogeochemical cycling of key elements. The
ratio of diatoms to dinoflagellates was recently suggested to be a
new environmental indicator, with a high ratio being associated
with good environmental status as diatoms have historically
dominated the spring bloom (Wasmund et al., 2017). However, a
clear understanding of how this shift may affect the environment
is still missing, and we argue that this shift could increase burial of
organicmatter, whichwould alleviate the eutrophication problem
and improve the environmental status of the Baltic Sea.

IMPORTANCE OF THE SPRING BLOOM
FOR BIOGEOCHEMICAL CYCLES IN THE
BALTIC SEA

Long term Chl-a data from western Gulf of Finland indicates a
doubling in the biomass peak during spring from early 1970s to
mid-1980s; the trend has somewhat reversed after the early 1990s
(Raateoja et al., 2005), but it is clear that much of the increased
algal production resulting from eutrophication takes place during
spring. In the most eutrophied parts of the Baltic Sea such as
the Gulf of Finland (Figure 1), 40–60% of annual carbon fixation
takes place during the spring bloom. This covers only 3–5 weeks
of the year, and a large fraction of this fixed carbon sinks to the
seafloor (Lignell et al., 1993; Heiskanen, 1998).

The onset of the spring bloom is related to salinity
stratification and warming of the surface water (Stipa, 2004).
It typically starts in the Southern Baltic Sea in February/March
and moves northwards like a mosaic of patches (Kahru and
Nõmmann, 1990; Kahru et al., 1990). It reaches the Gulf of
Finland in April and the Bothnian Sea and Bothnian Bay in
May/June, but in the Bothnian Bay the biomass amplitude is
much lower than for most other parts of the Baltic Sea. Two
recent papers examining time series of the spring bloom timing
point toward an earlier start and a longer bloom with lower
biomass amplitude (Groetsch et al., 2016; Kahru et al., 2016) in
agreement with modeling scenarios (Thomas et al., 2017). This
was attributed to the general warming of the climate where the
periods with warmwater had expanded temporally over the main
Baltic basins (Kahru et al., 2016). Kahru et al. (2016) also reported
that the summer community of phytoplankton is becoming
more abundant than the spring community based on satellite
observations of Chl a. However, the Chl a determination from
remote sensing is difficult to estimate (Darecki and Stramski,
2004), and recent direct measurements of Chl a, covering large
parts of the Baltic Sea, demonstrate that the Chl a concentration
during spring is still much higher than during summer in the
main basins of the Baltic Sea (Simis et al., 2017).
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FIGURE 1 | Spatial variability of the spring bloom peak biomass (wet weight,

mg L−1) in the Baltic Sea. High biomass (>6mg L−1) is found in the most

eutrophied basins (e.g., Gulf of Finland), mid-level biomass (1.5–3mg L−1) is

found in the larger basins (e.g., Northern Baltic Proper, Bothnian Sea) and low

biomass (<1.5mg L−1) is found in the most oligotrophic parts (e.g., Bothnian

Bay) of the Baltic Sea. The map has been modified from Klais et al. (2011).

The spring bloom in the Baltic Sea (with the exception of
Bothnian Bay that is P-limited) is terminated when inorganic
nitrogen has been depleted, i.e., the community is N-limited
(Wulff et al., 2001; Tamminen and Andersen, 2007). The
cascading effect of increased spring blooms during the last
decades has led to a regime-shift-like development, i.e., non-
linear change, when inorganic P pools of the Baltic Proper and
Gulf of Finland have remained at elevated levels (>0.1 umol
L−1) after the spring bloom (Spilling, 2007b; Raateoja et al.,
2011). Low, hardly detectable phosphate concentrations were as
a rule observed prior to mid-1990s, although N limitation of the
spring bloom was demonstrated even then (Tamminen, 1995).
Similar changes have also been reported in the Bothnian Sea
(Lundberg et al., 2009; Rolff and Elfwing, 2015). The loading of
P from the catchment in these areas has decreased after mid-
1990s, seemingly a paradox, but the reason for this increase
in P concentrations is attributed to the release of P from the
sediment and exchange between sub-basins, which masks the
realized reductions in the P loading (Pitkänen et al., 2001; Kiirikki
et al., 2006; Stigebrandt et al., 2014; Lehtoranta et al., 2017). The
sediment release of P might be much larger than loading from
land in parts of the Baltic Sea (Conley et al., 2002), and the
observed regime shift in P availability has seemingly affected both
the magnitude and source of the P loading.

Diatoms is the only major phytoplankton group to take up
substantial quantities of dissolved silicate (DSi) in addition to

N and P. DSi is used to build their cell walls in the form of
biogenic silicate (BSi) (Martin-Jézéquel et al., 2000). The DSi
originates mainly from natural processes such as weathering
of rock, and human activities such as damming of rivers have
reduced the natural supply DSi to the Baltic Sea (Humborg
et al., 2008). In addition, eutrophication has been suggested to
affect the DSi concentration; if the elevated input of N and P
increases the biomass of fast growing diatoms, the flux of BSi to
the seafloor could increase where it is potentially buried (Schelske
and Stoermer, 1971; Conley et al., 1993). However, in the Gulf of
Finland the release of DSi from the bottom and back to the water
column forms a large part of the pelagic DSi pool (Tallberg et al.,
2017).

The concentration of DSi is important as it may influence
the competition between diatoms and others phytoplankton
groups such as dinoflagellates. For example, the increased
N:DSi ratio associated with eutrophication favors non-siliceous
phytoplankton (Officer and Ryther, 1980). A molar N:DSi ratio
>2 (Gilpin et al., 2004), or absolute concentrations of <2 µmol
DSi L−1 (Egge and Aksnes, 1992) have been suggested to favor
flagellates over diatoms. However, some diatoms can acclimate
to DSi stress and sustain high growth rates despite low DSi
concentrations (Olsen and Paasche, 1986; Brzezinski et al., 1990).

In the Baltic Sea, there has been a long term decrease in
DSi concentration that has leveled off after the 2000s (Papush
and Danielsson, 2006). There is a difference between the sub-
basins in terms of silicate budget and most of the accumulation
of BSi takes place in the Gulfs of Bothnia, Finland and Riga
(Papush et al., 2009), but the spring bloom diatoms are at
present not DSi limited (Wasmund et al., 2013), perhaps with
the exception of Gulf of Riga (Olli et al., 2008). Shifting
nutrient stoichiometry could shift the competitive balance to
non-siliceous phytoplankton in the future (Danielsson et al.,
2008). However, many of the dominant Baltic Sea diatoms seem
to be less silicified in terms of the N:Si ratio than the Redfield ratio
(Spilling et al., 2010) and consequently less sensitive to low DSi
concentration. An exception are their resting spores that typically
have thicker frustules than the vegetative forms, and the spore
formation could be affected by low DSi concentration at the end
of the spring bloom (Kremp et al., 2008).

Changing Phytoplankton Community
The phytoplankton community during the highly productive
spring is dominated by diatoms and dinoflagellates in most of the
Baltic Sea (Niemi, 1975; Heiskanen, 1993; Wasmund et al., 1998;
Höglander et al., 2004; Tamelander and Heiskanen, 2004; Jaanus
et al., 2006). Diatoms are generally very successful during periods
of high new production (i.e., production based on accumulated
nitrate), like the spring bloom, as their higher growth rate
enables them to outcompete e.g., dinoflagellates (Reynolds,
2006). This is also the case for the spring phytoplankton
community in the Baltic Sea, where the dinoflagellates are not
able to achieve growth rates comparable to diatoms under
controlled lab conditions (Spilling and Markager, 2008). Rather,
the recruitment, affecting abundances before the spring bloom
start, seem to govern the success of dinoflagellates during spring
bloom (Kremp et al., 2008). Additionally, certain sequences
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of weather conditions, particularly stratification periods at the
onset of the spring bloom have been related to subsequent
dinoflagellate dominance (Heiskanen, 1998; Höglander et al.,
2004; Klais et al., 2013). Stratification beneath the ice may serve
as a platform for dinoflagellates to build up high biomass already
during winter (Spilling, 2007a). In addition, some dinoflagellates
are mixotrophs (uptake or feeding on organic components),
which may supplement C fixation during light limited conditions
(Carlsson and Graneli, 1998; Legrand and Carlsson, 1998; Rintala
et al., 2007).

In spite of varying dominance of diatoms and dinoflagellates
during the spring bloom period, both of the groups are able
to effectively exhaust the wintertime accumulation of inorganic
N, and produce bloom-level biomasses, and they thus appear
to be functional surrogates (Kremp et al., 2008). However, the
stoichiometry of the sinking material varies depending on the
species composition, as diatom-dominated communities have a
higher C: N: P ratio than mixed or dinoflagellate-dominated
communities (Spilling et al., 2014). Changes in C: N: P ratio may
have consequences for food quality and remineralization in the
pelagic and benthic systems of the Baltic Sea. Grazing pressure
is relatively low during the spring bloom (Lignell et al., 1993),
which is the reason why much of the biomass sink to the seafloor.
However, the planktonic grazer communities can be affected as
changes in spring bloom composition influence the quality of
food available for the emerging copepod populations (Vehmaa
et al., 2011), and increasing temperature may boost heterotrophic
activity and reduce the export of phytoplankton to the seafloor in
the future (Tamelander et al., 2017).

The phytoplankton community composition may also affect
the structure of the sinking biomass that may influence the
benthic biogeochemistry. Diatoms are worldwide known to
be important vehicles for transporting fixed carbon from the
atmosphere to great depths (Doney, 1997; Smetacek, 1998). In the
relatively shallow Baltic Sea, a large fraction of this carbon sinks
to the seafloor. The majority of vegetative dinoflagellate cells lyse,
in contrast to diatoms, leading to remineralization in the pelagic
zone or forming of slow sinking phytodetritus (Heiskanen,
1998; Tamelander and Heiskanen, 2004). Dinoflagellates can
also constitute a major fraction of the sedimentation flux,
with sharp peaks during mass encystment, depending on the
species and their respective encystment strategies. Built for long-
term survival, the cysts that do settle, do not contribute to
the benthic oxygen demand (Spilling and Lindström, 2008),
although they have a similar carbon content (roughly 50% of
the dry weight). Diatoms also have resting stages called spores,
and there is a large variation in the amount of resting spores
being produced after the bloom depending on the species,
ranging from virtually none to most of the cells forming spores
(e.g., Kuosa et al., 1997). The different life history traits have
also been suggested to impact sedimentation of phytoplankton
biomass quantitatively, with higher vertical export from diatom
dominated blooms (Heiskanen, 1998). However, vertical export
estimates of phytoplankton and total particulate organic carbon
(POC) export vary greatly among years characterized by diatom
or dinoflagellate dominance (Heiskanen, 1993, 1995; Tallberg and
Heiskanen, 1998; Tamelander and Heiskanen, 2004), with no

consistent trend. Conceivably, both intact cells (diatoms, spores,
and cysts) and detritus (mainly from vegetative dinoflagellate
cells) may settle but the share of resting stages will depend on
environmental effects on cyst/spore formation and deposition,
and on the life cycle strategy of the prevailing species (Kremp
et al., 2009; Warns et al., 2012).

Consequently, the phytoplankton composition during the
spring bloom may affect both the summertime nutrient pools of
the water column, and the input of labile organic matter to the
bottom sediments. In the case of diatom dominance, drawdown
of nutrients to the bottom is efficient and leaves impoverished
nutrient stocks for summertime regenerated production in the
euphotic zone. During dinoflagellate dominance, more organic
material may be available for remineralization in the productive
surface layer, supporting recycling through the microbial loop.
However, a complicating factor, which may counteract this
assumption, is the active release of dissolved organic matter
that is more prevalent during diatom dominance (Camarena-
Gómez et al., 2018). This can be done for several reasons
(e.g., Thornton, 2014), for example stimulating bacterial growth,
which may provide some benefits in return for phytoplankton
like the production of B12 vitamin (Kazamia et al., 2012), or be a
way to dissipate excess light energy (Zlotnik andDubinsky, 1989).

CHANGING SPECIES COMPOSITION–A
FUNCTIONAL SHIFT IN THE MAKING?

In the last few decades, the proportion of dinoflagellates in the
spring bloom biomass has increased in the northern Baltic Sea,
most notably in the Gulf of Finland. For example, monitoring
data from the waters off the city of Helsinki (see Olli et al.,
2011 for description of data), reveal that in spite of substantial
variation, the proportion of dinoflagellates has increased from
10 to 20% in the 1970s up to around 80% by the turn of the
century (Figure 2). The increase of the dinoflagellate proportion
has been, with varying strength, a common phenomenon in
large parts of the Gulf of Finland, including the north-western
part of the Gulf (e.g., archipelago off the Hanko peninsula),
but also in the eastern parts of the Gulf (Klais et al., 2011).
Overall, the previously diatom dominated spring blooms in
the eutrophied Gulf of Finland have incrementally shifted to
dinoflagellate dominated blooms in just three decades, but with
large inter-annual variation. The inter-annual variation is partly
climate driven (Klais et al., 2013), but the reason for the decrease
of dinoflagellates in the 1990s outside Helsinki (Figure 2) is not
yet resolved, suggesting other variables affecting the population
dynamics e.g., the timing of recruitment is important for
dinoflagellate development (Kremp et al., 2008).

In spite of the general increase in the dinoflagellate proportion
in the Gulf of Finland, opposing decadal scale trends have
occurred in other sub-basins. In the central Baltic Proper,
where the proportion of dinoflagellates was ca. 80–90% for
many decades, a slow decrease have been observed (Wasmund
et al., 1998). Wasmund and Uhlig (2003) reported a weak
increase of spring bloom dinoflagellate biomass in the southern
Baltic Sea, but gave no data on proportions. In the eutrophied
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FIGURE 2 | Temporal change in the proportion of dinoflagellates from the sum

of diatoms plus dinoflagellates in the spring bloom outside the city of Helsinki

(Gulf of Finland). The symbols show the proportion of dinoflagellates in a

particular sample. The gray scale shows the probability of having a particular

dinoflagellate proportion, obtained by a kernel density estimate of a particular

year. The contour line shows the 75% probability level.

Gulf of Riga, strong spring blooms of heavily silicified diatom
species exhausted the dissolved silicate stocks in mid 1990s
(Olli et al., 2008), giving rise to a short period of high
dinoflagellate proportions, in the otherwise diatom dominated
basin.

Dinoflagellates
The dinoflagellate spring bloom community includes several
species that can reach high biomasses depending on conditions
and location. Single-celled, medium-sized, oval-shaped
dinoflagellates regularly reach high abundances in the northern
basins and the central Baltic Sea. These were previously
considered as one species, Scrippsiella hangoei, but high
resolution scanning electron microscopy and rDNA analyses
revealed that this entity is represented by at least three different
species belonging to different dinoflagellate orders: Biecheleria
baltica (synWoloszynskia halophila), Apocalathium malmogiense
(syn S. hangoei), and Gymnodinium corollarium (Larsen et al.,
1995; Kremp et al., 2005; Moestrup et al., 2009). Records of
their specific resting cysts suggest that B. baltica is mainly
found in the northern basins, particularly the Gulf of Finland
(Olli and Trunov, 2010), while G. corollarium has its main
distribution in the central Baltic Sea (Sundström et al., 2009).
A. malmogiense cysts are rare in Baltic surface sediments,
suggesting that this species is of a minor importance in the
spring dinoflagellate community (Kremp et al., 2018). In
addition to the three single-celled species, the chain forming,
arctic Peridiniella catenata can reach high abundances in

some years during spring and it has a wide distribution in
the Baltic Sea. If B. baltica prevails in the Gulf of Finland,
the shift to dinoflagellate dominated spring blooms can be
ascribed to the proliferation of this species alone (Figure 3).
To the best our knowledge, B. baltica has not been found in
any other water body and its origin remains thus enigmatic,
but it seems to have a center of expansion in the western
Gulf of Finland, from where it has in recent decades spread
east- and westwards. Due to the potential of B. baltica to
completely take over the spring bloom in just a few decades,
its unique life history traits, recruitment preferences, and
biogeochemical consequences of dominance are of great interest
(see below). Despite the conspicuous expansion of B. baltica
in the northern Baltic Sea, the species is virtually absent in
the neighboring Gulf of Riga (Olli and Heiskanen, 1999),
suggesting that local hydrography can act as an efficient dispersal
barrier.

The major spring bloom dinoflagellates differ from
each other in several functional traits, which may affect
biogeochemical pathways, e.g., different life cycle strategies may
affect sedimentation rate of the population. Formation and
subsequent sedimentation of cysts now known to be produced
by B. baltica at the end of the spring bloom can contribute up
to 45% of the total vertical POC flux (Heiskanen, 1993) Notable
cyst fluxes have also been documented for G. corollarium from
the Bornholm and Gotland basins (Sundström et al., 2009). For
P. catenata, it has been established that most of the biomass
produced by this species during spring disintegrates in the water
column at the end of the bloom (Heiskanen and Kononen, 1994),
and only a minor part of the population undergoes encystment
(Kremp, 2000; Spilling et al., 2006; Olli and Trunov, 2010).

Species-specific life cycle strategies, involving fundamentally
different mechanisms leading to the respective transitions, likely
affect biogeochemical processes. High cyst yields are triggered
by different environmental factors and physiological processes
(Kremp et al., 2009). Depending on the dominant species,
specific temperature and inorganic nutrient dynamics during
spring will induce different life cycle responses, with different
outcomes regarding vertical fluxes of cyst bound carbon. This
has been demonstrated by simulations of numerical models
that explicitly consider the regulation of life cycle transitions
(Warns et al., 2013). Species-specific differences also exist in
germination efficiencies of cysts, which may affect the fate of
cyst-bound carbon in the sediment. Of the B. baltica cysts
produced, only 10–20% will germinate under optimal conditions
the following spring (Kremp, 2000), which implies that B. baltica
blooms could support long-term organic carbon storage in the
sediments.

The behavioral adaptations of the vernal bloom influence the
biogeochemical cycling within the water column. At the late
phase of the spring bloom, the vertically migrating dinoflagellate
cells (Olli et al., 1998) descend below the euphotic layer (30–
40m depth), where cyst formation takes place (Spilling et al.,
2006). If only a few percent of the cells encyst at most, the bulk
of the biomass disintegrates and contributes to the DOM and
slowly sinking phytodetrital pools in mid-depths of the water
column. This resource, re-mineralized nutrients and organic
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FIGURE 3 | Temporal change in the proportion of Biecheleria baltica from the

total dinoflagellate biomass. All other notions as in Figure 2.

carbon substrate, will only have restricted availability to the
organisms in the euphotic layer, as the rapidly establishing
thermocline effectively segregates the water column. The single
cell dinoflagellates, i.e., Biecheleria complex, was not found to
migrate vertically in the coastal Gulf of Finland (Olli et al.,
1998), but was shown to do so in the open waters of the
north-western Baltic Proper, as a result of mineral nutrient
depletion of the surface layer (Höglander et al., 2004). Thus the
behavioral adaptations are not only species-specific, but probably
also reflect regional variations in hydrodynamics and nutrient
availability.

Diatoms
The diatom community tends to be more diverse during bloom
conditions, compared to dinoflagellates, and functions more
as a guild of complementing species (Smayda and Reynolds,
2003). This is also the case in the Baltic Sea where there are
more diatom species present than dinoflagellates, but only a
few species occur throughout the Baltic Sea during spring,
making up a large fraction of the diatom biomass. Some of
these diatoms are also present during winter in connection to
the ice (Ikävalko and Thomsen, 1997), and can also be found
in the Arctic, e.g., Achnanthes taeniata and Melosira arctica.
These two and Thalassiosira levanderi are generally abundant in
the initial phase of the spring bloom. Other abundant diatoms
during the main bloom phase are Chaetoceros wighamii, C.
holsaticus, Diatoma tenuis, T. baltica, and Skeletonema marinoi,
where the latter typically become relatively more dominating
after the peak of the spring bloom in the Gulf of Finland
(Spilling, 2007b). Although some of these species occur also
outside the Baltic Sea, the strong salinity gradient seems to

be an effective barrier for gene exchange (Sjöqvist et al.,
2015).

Diatom spores are less studied than dinoflagellate cysts in
the Baltic Sea, but they seem to share many of the same
characteristics. The fraction of the population that goes through
the life-cycle change to form spores is highly species-specific and
affected by environmental conditions (Heiskanen and Kononen,
1994; Kuosa et al., 1997). For example, A. taeniata, C. holsaticus,
and M. arctica may settle to the seafloor primarily as spores, but
the spore formation is affected e.g., by the availability of DSi,
and the spore formation could be lower under less favorable
conditions (Kuosa et al., 1997; Heiskanen, 1998). The functional
role of diatom spores is similar to dinoflagellate cysts, i.e., long
term survival in the sediment, and would thus have very much
the same traits in terms of how they affect biogeochemical cycles.
They can be buried and can be a useful tool for studies of
paleoenvironmental changes (Witak et al., 2011). Interestingly,
some spores (and also dinoflagellate cysts) are able to survive for
up to a century in the sediment, enabling genetic comparison
with present day strains (Härnström et al., 2011; Kremp et al.,
2018). To our knowledge, there are no good estimates of how
much carbon and nutrients are buried in the sediments in the
form of diatom spores annually, but it is clear that the community
composition is one of the key components determining this.

LINKING SEDIMENTATION OF
PHYTOPLANKTON TO MICROBIAL
MINERALIZATION PROCESSES

The main driver of sediment nutrient cycling is organic matter
serving the energy source for heterotrophic microorganisms
(Berner, 1974; Froelich et al., 1979). In addition to the organic
matter, the availability of electron acceptors (O2, NO3, Mn, and
Fe oxides and SO4) create the premises for the pathways of
organic carbon mineralization. In the Baltic Sea, availability of
organic matter and electron acceptors vary in the bottoms of the
different sub-basins. For example, the sediments of the Gulf of
Bothnia are organic poor compared to the Gulf of Riga, the Baltic
Proper and the Gulf of Finland (Lehtoranta et al., 2008; Aigars
et al., 2015; Egger et al., 2015). The Bothnian Bay is oxic down to
the seafloor and O2 may penetrate centimeters into the sediment
(Slomp et al., 2013). The sediment of the Gulf of Riga is oxic as
well, but the penetration depth varies considerably throughout
the year (Aigars et al., 2015). In the oxic areas, the bottoms
can use the entire set of electron acceptors to mineralize settled
phytoplankton.

In contrast to the Gulf of Bothnia, the basins of the Baltic
Proper suffer from long-term hypoxia and anoxia, and the O2

penetrates into the sediment only in the shallow slopes with
oxic water and after major Baltic inflow events (Almroth-Rosell
et al., 2015; Mohrholz et al., 2015). Further north, at the entrance
of the Gulf of Finland, anoxic periods vary inter-annually and
seasonally, being most common in summer (Lehtoranta et al.,
2017). The pore-water concentrations of dissolved Fe are low in
the sediments of this region (Lehtoranta and Heiskanen, 2003;
Jilbert et al., 2011), but, the concentration of sulfate is twice as

Frontiers in Marine Science | www.frontiersin.org September 2018 | Volume 5 | Article 32797

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Spilling et al. Shifting Diatom—Dinoflagellate Dominance

high as in the Bothnian Bay. So in the Baltic Proper and the Gulf
of Finland microbes have reduced access to O2, NO3, and Fe(III),
but a continuous contact to abundant sulfate.

To summarize, the ability of the benthic systems to mineralize
the settled phytoplankton, their cysts, spores, and detritus is sub-
basin specific in the Baltic Sea. The marked changes in the pelagic
ecosystem or in the hydrodynamics have the potential to induce
sub-basin specific shifts in the mineralization pathways which
regulate the cycles of C, N, P, Fe, Mn, and S in the sediments.

Settling Spring Bloom Biomass and
Mineralization of N and P
Nitrate (NO3) can be used as a nutrient in the pelagic zone
and as an oxidant in mineralization and in oxidation of reduced
substances such as Fe2+, HS−, H2S, and CH4 leading to
formation of N2 gas in sediments. In the oxic sediments of the
Baltic Sea, the coupled nitrification-denitrification takes place
right below the interface between oxic and anoxic layers, and
is considered to be the major pathway for denitrification in the
Baltic Sea (Hietanen and Kuparinen, 2008). The organic N is
mineralized first to ammonium (NH4) and then oxidized in
the presence of O2 to nitrite (NO2) and subsequently to NO3

which feeds the denitrification process. This process forms a link
between settled organic matter, nitrogen, and respiration because
organic C is oxidized by NO3 to CO2 and nitrate is denitrified to
N2 gas.

Denitrification is often seen as a negative feedbackmechanism
for eutrophication processes as it removes N from the system.
Oxic conditions are needed to maintain the stock of NO3 for
the coupled nitrification-denitrification, but anoxic condition is
obligatory for denitrification. Vahtera et al. (2007a) suggested
that the increase in size of hypoxic area in the Baltic Sea is
linked to the decrease in storage of N through removal of N by
denitrification. However, stratification and excess organic matter
may deplete O2, which inhibits the formation of NO3 and may
lead to accumulation of NH4 and decrease theN removal through
denitrification in sediments (Jäntti and Hietanen, 2012). There
is an alternative pathway for N removal through ammonium
oxidation coupled to nitrite reduction, also leading to the
production of gaseous forms of N (mainly N2 but also NO
and N2O) (Kuypers et al., 2003). This N removing mechanism,
anammox, requires one oxidized N species (NO−

2 ) for every N2

molecule made, which is half the requirement of denitrification.
Anammox bacteria grow relatively slowly and the lack of NO−

2
will also stop the anammox process. However, N removal might
in this case take place further up in the water column in the Baltic
Proper (Dalsgaard et al., 2013), but this is a process that is not
very pronounced in other sub basins such as the Gulf of Finland
(Jäntti and Hietanen, 2012).

The cycling of sediment P is intimately linked to the
mineralization of the settling phytoplankton and detritus.
Phosphate itself is not a redox-sensitive substance, but there
is commonly a strong, negative correlation between O2 and
phosphate concentrations. This relationship can largely be
explained with the coupling of P to the Fe cycling (Einsele, 1938).
Based on literature and the tests with estuarine sediments from

the Gulf of Finland, it is evident that the mineralization through
Fe(III) oxides and Fe reduction by H2S (or HS−) may result in
markedly different outcomes regarding cycling of P in different
sub-basins (Lehtoranta et al., 2009).

In the Bothnian Bay, the concentrations of dissolved Fe2+

and P in pore water indicate that the microbial Fe reduction
may maintain the coupled cycling of Fe and P in the sediments
(Blomqvist et al., 2004; Slomp et al., 2013). The Bothnian Bay,
therefore, has a great potential to capture the P mineralized
from settled phytoplankton and detritus to newly forming Fe(III)
oxides in the oxic zone of the sediment. Also the burial of
the reduced Fe phosphate mineral vivianite (Fe3(PO4)

.
28H2O),

may enhance the P binding in the methanogenic zone of the
Gulf of Bothnia (Slomp et al., 2013; Egger et al., 2015). In
contrast to the Bothnian Bay, the formation of solid Fe sulfide
minerals may block the cycling of Fe in the Baltic Proper and
the Gulf of Finland (Lehtoranta et al., 2008). In these areas the
dominance of sulfate reduction creates sulfidic conditions and
the P mineralized from phytoplankton and Fe(III) oxides may
freely escape from the sediment to water without sequestration by
Fe. From a water quality perspective, the formation of Fe sulfides
rapidly deteriorates environmental conditions as the ability of the
sediment to sorb P into Fe is largely lost. This is the situation in
the Baltic Proper and the Gulf of Finland where the sediments
ability to capture P originating from settling algae has been
reduced or lost.

It is evident that the amount of settled phytoplankton and
detritus has direct consequences for the cycling of N and P in
the Baltic Sea ecosystem. What is less apparent is the qualitative
aspect of the settling biomass and what electron acceptor may
be used in the mineralization process. Spilling and Lindström
(2008) added different cultures of spring bloom algae to a
natural sediment, and found that they produced very different
responses in the sediment, depending on species-specific life
cycle change. In short, a dinoflagellate that produced cysts
did not contribute to oxygen depletion, NH4 formation and P
release. The vegetative stages, in contrast, (of both a diatom
and another dinoflagellate) quickly turned the sediment anoxic
with the formation of Fe sulfides, NH4 and release of P. This
highlights the qualitative aspect of the settling material, i.e., not
all of the phytoplankton settled is easily mineralized, and this
is to our knowledge not taken into account in any models of
biogeochemical cycling.

Resting stages, being cysts or spores, are built to survive
for a long time in the sediment. The qualitative aspect of
the settling biomass cannot be divided into dinoflagellates or
diatoms as such, but is linked to life cycle changes. However,
the amount of resting stages made after the spring bloom is
species-specific, and dinoflagellates tend to produce more carbon
bound to resting stages than diatoms. In particular B. baltica
and G. corollarium go through mass encystment and because
their germination success is low the following year, they are
effective vehicles for carbon burial in the sediment. At least
B. baltica has increased its biomass substantially over the past
decades, and if this continues a larger share of the biomass
produced during spring could be buried permanently at the
seafloor.
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Sediment Thresholds Controlling Nutrient
Dynamics
With increasing transport of phytoplankton to the seafloor, there
will generally be successive, non-linear thresholds that change
the mineralization pathways and geochemical conditions in the
sediment. The first threshold takes place when stratification
decreases the transport rate of O2 downwards, or there is an
excess of organic C input enhancing the oxygen consumption.
Both cases lead to anoxia first in the sediment and then
in overlying water. Under these conditions, the coupled
nitrification-denitrification is blocked and the NO3 flux from
water to sediment starts to control the denitrification, which
is the case in the Gulf of Riga (Aigars et al., 2015). Without
oxidation of NH4 only few micromoles of labile carbon served
by phytoplankton is required to deplete NO3 as the near-bottom
water concentration of NO3 varies commonly from 2 to 10 µmol
L−1 in the Gulf of Finland. Eventually the anoxic conditions
result in the accumulation of NH4 in the near-bottom water.
Then the oxidation of releasedNH4 to NO3 may occur only in the
chemocline between oxic and anoxic water layers and the formed
NO3 may be denitrified with organic matter and sulfides present
in anoxic water as in the Gotland Basin (Dalsgaard et al., 2013).
We have modified the conceptual model of Vahtera et al. (2007a)
to include the threshold regarding the cycling of N (Figure 4).
Although part of the N removal may occur above the seafloor
(Dalsgaard et al., 2013), the potential termination of N-removal
could form a positive feedback loop for eutrophication.

After depletion of NO3 and in the presence of labile organic
C in the sediment, the system is pushed toward a second
threshold when microbe-driven Fe(III) reduction results in and
simultaneous release of Fe and P to the near-bottom water.
When Fe is diffused or transported during vertical mixing or
upwelling events to an oxic environment, the newly formed
Fe(III) oxides have the capacity to resorb P originating from the
settled phytoplankton.

The concentration of poorly crystalline Fe(III) is suggested
to control the Fe reduction rate. Four moles of Fe is needed to
oxidize one mole of organic carbon and without re-oxidation by
oxygen, NO3, and Mn oxides, the pool of bioavailable Fe(III)
oxides can be consumed within days in organic rich marine
sediments, but large regional differences are evident (Rysgaard
et al., 2001; Canfield et al., 2005). The depletion of bioavailable
Fe(III) oxides leads to a third threshold, where sulfate reduction is
the dominant mineralization pathway for settled phytoplankton
biomass. The passing of the third threshold forms enough sulfides
capable to precipitate with reactive Fe and block its cycling.
Under the sulfidic conditions, the sediment and water column
has poor ability to bind P to Fe, which results in a large release
of Fe bound P and organic P and a minor release of Fe to the
overlaying water. Thus, in the Baltic Sea the large pulse of P in
the sulfidic conditions is explained by the dissolution of Fe(III)
oxide bound P and the mineralization of fresh organic P that
may be released within a short period of time compared to “old”
organic P, which may take years to remineralization in sediments
(Ahlgren et al., 2006). Additionally, the high amount of labile C
and abundance of SO4 maintains sulfate reduction and leads to
accumulation of free sulfides in the water column as found in

the bottom water of the Baltic Proper and occasionally in the
Gulf of Finland. The oxidation of these sulfides in the chemocline
consumes O2, NO3, Mn(IV), and Fe(III) present in the water
column, delaying the recovery of the sedimentary system of the
Baltic Sea. Typically, there is too little Fe to bind P in the water
and the ability of the sediment to resorb P to Fe(III) oxides
depends on the re-oxidation of the reduced Fe(II). The oxidation
of Fe by O2 in the water takes place at a very thin surface layer, but
may be extended with the help of benthic animals that burrows
into the sediment, such asMarenzelleria spp., an alien species that
has spread to large bottom areas in the Baltic (Norkko et al., 2012;
Maximov et al., 2015).

Modeling of biogeochemical fluxes relies on the information
of sediment processes and our understanding of these sediment
thresholds as eutrophication increases the amount of sinking
phytoplankton. We have concentrated on solving how easily
degraded organic matter consume the various electron acceptors
in the sediment, and how this affects material fluxes through
the sediment-water interface. However, the qualitative aspect
of the settling material as described above should be taken
into consideration (Stolpovsky et al., 2015), in particular under
the scenario with changing composition of the sinking organic
matter. Another important biological process to consider is
bioturbation by benthic animals, which will affect sediment
processes e.g., by increasing oxygen penetration depth into the
sediment (Norkko et al., 2012). Understanding the complex
interplay between settling phytoplankton biomass, its quality
(labile, semi-labile, or refractory) and biological activity in
the sediment is the target of ongoing modeling efforts (e.g.,
Stolpovsky et al., 2018). In the Baltic Sea, an important step would
be to better predict the quantity of the settling organic matter
that will trigger the three sediment thresholds described above,
taking the qualitative aspect of the biomass and bioturbation into
consideration.

PELAGIC NUTRIENT DYNAMICS—FROM
SPRING TO SUMMER

One of the highly visible effects of the eutrophication problem
in the Baltic Sea is the increased biomass of diazotrophic
cyanobacteria during summer (Elmgren et al., 2015). The
prevailing N limitation at the end of the spring bloom leads
to a low N:P ratio during summer, which favors N-fixing
cyanobacteria during warm, calm summer months (Niemi, 1979;
Wasmund et al., 2005). The cyanobacterial blooms directly affect
the eutrophication problem, as their fixation of N is comparable
in magnitude with anthropogenic loading of N in parts of the
Baltic Sea (Savchuk, 2005; Wasmund et al., 2005). In addition
to the cyanobacterial biomass, the part of the newly fixed N
is released and may be taken up by other components in the
plankton food web (Adam et al., 2016), and this may start right
after the spring bloom when the water is still relatively cold
(10◦C) (Svedén et al., 2015). The cyanobacterial input of N
might have a self-enforcing nature by increasing the biomass load
reaching the sediment, aggravating oxygen consumption and
increasing release of P (Tamminen and Andersen, 2007; Vahtera
et al., 2007a). However, we argue that the species composition
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FIGURE 4 | A modified version of the vicious cycle presented in Tamminen and Andersen (2007) and Vahtera et al. (2007a) where the possible termination of

denitrification has been added (red arrow). This takes place when the amount of organic matter is large enough to reduce both the sediment and bottom water,

leading to a stop in the oxidation of ammonium (nitrification), which is a prerequisite for denitrificaiton to take place; however, denitrification higher in the water column

may to some extent compensate for this (Dalsgaard et al., 2013). Both the quantity and quality (e.g., plankton community composition) of the spring bloom biomass

may affect the magnitude of the nutrient sinks (green arrows).

of the spring bloom could affect this: with the shift toward
a more dinoflagellate-dominated community (Wasmund and
Uhlig, 2003; Klais et al., 2011), the sharp flux of diatom biomass
to the sediment would diminish. This could have ecosystem-wide
consequences as the organic material transport to the sediment
affects both nitrogen and phosphorus cycles (Vahtera et al.,
2007a). To some extent, the sedimentation pattern could be
prolonged with more recycling in the euphotic zone (Tamelander
et al., 2017), but at present we miss an understanding of how the
observed shift in the spring phytoplankton community has on
sedimentation and material fluxes on a large scale.

The pool of bioavailable P at the onset of summer is critical for
the development of the cyanobacterial blooms later in the season.
This has increased over large areas since the mid-1990s. In the
Gulf of Finland and Baltic Proper the concentration may be as
high as >0.5 µmol PO4 L

−1 after N sources have been depleted
(Figure 5). In the Bothnian Sea the development is the same but
with lower remaining P pool and Bothnian Bay is P limited and
has an N surplus.

The two main cyanobacterial species: Aphanizomenon flos-
aquae and Nodularia spumigena have different P uptake
strategies. A. flos-aquae requires inorganic phosphate and can
take up and store excess P for later growth (Larsson et al.,
2001; Kangro et al., 2007), whereas N. spumigena has higher
affinity for P uptake and relies more on recycled P (Hagström
et al., 2001; Vahtera et al., 2007b). Under stable conditions
there is also a spatial separation between the main summer
cyanobacteria where A. flos-aquae typically remains lower in

the water column whereas N. spumigena is found at the surface
(Hajdu et al., 2007). A. flos-aquae is the main diazotroph in the
Northern Baltic Proper, and in addition to N. spumigena, also
Dolichospermum spp. contributes to the N-fixation (Klawonn
et al., 2016). It is clear that cyanobacteria is benefitting from
the oversupply of P (Raateoja et al., 2011), but several open
questions remain. The dominant cyanobacterial species grow
relatively slowly, in particular in water temperatures below
15◦C (but A. flos-aquae is less temperature sensitive than N.
spumigena), and there is typically a relatively short time window
between the draw-down of bioavailable P and cyanobacteria
growth, and it is not enough to satisfy the cyanobacterial
need (Walve and Larsson, 2007; Nausch et al., 2008), so there
must be other components in the plankton community that
takes up the excess P. These could be other primary producers
or heterotrophic bacteria (Nausch and Nausch, 2004). The
prevailing N-limitation, limits growth of other phytoplankton
and consequently inhibits their uptake of excess P. Heterotrophic
bacteria is probably not limited by N, but might be limited by
carbon (Lignell et al., 1992), at least their P uptake intensifies
when they have a sufficient carbon source (Tamminen, 1989).
To our knowledge, it is not clear what plankton groups takes up
the excess P, but it does seem to accumulate in the particulate
fraction and settle before the onset of dense cyanobacterial
blooms (Nausch et al., 2008). It is evident that other P
sources must exist for the cyanobacterial blooms (Raateoja
et al., 2011), most likely through upwelling (Wasmund et al.,
2012).
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FIGURE 5 | Nutrient concentrations (µmol L−1) at the surface (3m depth) following the spring bloom. The samples were taken in May 2015 (A,B) and April 2016

(C,D) during the CFLUX15 and CFLUX16 research cruise, respectively, on board R/V Aranda. The maps have been modified from Spilling (2015) and Spilling (2016).

Role of Dissolved Organic Matter in
Pelagic Nutrient Cycling
Due to the close connection with land with substantial freshwater
input, the Baltic Sea has a large pool of dissolved organic matter
(DOM) originating from outside the system, i.e., allochthonous
DOM. In addition, there are several pathways from primary
production into the DOMpool, such as direct release of exudates,
lysis of cells, and sloppy feeding by grazers, i.e., autochthonous
DOM. DOM is a potential source of carbon (DOC), nitrogen
(DON) and phosphorus (DOP) for bacterial production, which
may lead to remineralization of N and P back to inorganic forms
available for phytoplankton. It may also provide organic matter
to higher trophic levels through the microbial loop, although this
is quite inefficient in trophic transfer (Anderson and Ducklow,
2001). Part of the allochthonous DOM, approximately 10% of
DOC (Asmala et al., 2013), and ∼30% of DON and 75% of DOP

(Stepanauskas et al., 2002) is taken up by bacteria. Photochemical
degradation of allochthonous DOM can also support plankton

production (Vähätalo et al., 2011), and in total, approximately
50% of the riverine DOM is removed (Seidel et al., 2017).
The source of DOM can also be important as it may affect
the phytoplankton community composition by favoring certain
species (Jurgensone and Aigars, 2012). In the future, a warmer
climate might lead to more precipitation and increased input of
allochthonous DOM, in particular in the Northern Baltic Sea
(Andersson et al., 2015), which might reduce light-dependent
primary production and increase the importance of pelagic,
heterotrophic bacteria (Wikner and Andersson, 2012; Andersson
et al., 2018).

The input of autochthonous DOC from primary producers
ranges from 2 to 50% of the fixed carbon in estuaries, averaging
around 12% (Baines and Pace, 1991). In the Baltic Sea, there
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is an increase of DOM during the productive season (Hoikkala
et al., 2012), calculated to be 20–200 µmol DOC L−1 (Hoikkala
et al., 2015). Only a part of the DOC from lysing cells is easily
available for bacterial degradation, and in their review of different
aquatic habitats, Søndergaard and Middelboe (1995) reported an
average of 19% of the total dissolved organic carbon (DOC) pool
to be labile in marine waters. However, higher percentages of 25–
55% have been found in the Baltic Sea (Hoikkala et al., 2016),
and Hoikkala et al. (2015) presented a conceptual model, where
∼50% of DOC produced by phytoplankton is rapidly degraded
by bacteria. As the spring bloom depletes inorganic N sources in
most of the sub basins of the Baltic Sea, autochthonous DON is
an important component for primary and bacterial production
(Korth et al., 2012). Later in the productive season N-fixing
cyanobacteria is generally P limited, and DOP is potentially
important. However, Nausch et al. (2008) studied the P pools
in Baltic Proper and found a stable DOP pool suggesting that
production and consumption was equal, and DOP was not a
major P source for cyanobacteria.

After a dinoflagellate-dominated spring bloom, more DOC
can be expected to be released in the pelagic zone, based on
sedimentation studies (Heiskanen, 1998). However, diatoms are
generally high DOC producers, and they can excrete organic
compounds leading to even higher DOC concentrations than
dinoflagellate-dominated blooms (Spilling et al., 2014). There
are species-specific differences in DOC excretion, and at least
a part of the heterotrophic bacterial community is affected
by the phytoplankton community composition (Bunse et al.,
2016), affecting also the responses in bacterial production
(Camarena-Gómez et al., 2018). There is thus a potential link
between the phytoplankton community composition during
spring and the early summer DOM pool, with the potential
to affect the cyanobacterial blooms during summer. This
link has so far not received much attention, and it is
currently not taken into account in model predictions of
P availability and cascading effects on cyanobacterial bloom
development.

A CONCEPTUAL MODEL

In the relatively shallow coastal and shelf ecosystems, the pelagic-
benthic coupling is more important for ecosystem functioning
than in the deep oceans. Changes in the phytoplankton
communities may consequently lead to spatial and temporal
differences in the quantity and quality of organic matter
input to the seafloor, which in turn is the main driver for
biogeochemical cycling of electron acceptors and nutrients.
The conceptual model presented in Figure 6 summarizes how
different biogeochemical pathways may be altered by the
phytoplankton community composition in the Baltic Sea, as
described above. In particular, we represent the potential
feedback mechanisms of changing plankton community in a
typical site in the Gulf of Finland, characterized by seasonal
sea ice and muddy, soft and oxic sediments inhabited by the
two dominant macrozoobenthos species of soft bottom seabed,
i.e., Marenzelleria spp. and Macoma baltica, which differentiate

mostly by their different feeding habits, efficiency of bioturbation
activities and location within sediments.

During harsh winters with a long ice season and thick
ice cover, the sea-ice algal bloom typically dominated by
diatoms is followed by a pelagic spring bloom of diatoms
of similar species (e.g., Chaetoceros spp. T. baltica, and A.
taeniata (Figures 6A,B). The bloom may be loosely grazed or
degraded in the water column (up to 10%, Lignell et al., 1993),
but most of it sinks to the seafloor. Under oxic sediment
conditions, this large pool of organic matter may be efficiently
consumed by the macrozoobenthos. With ample food supply,
the macrozoobenthos community might increase and improve
the oxygen conditions in the sediments through bioturbation
(Figure 6A). However, if the amount of settling material exceeds
the threshold of being efficiently consumed by the bottom
communities, the result is aggravated oxygen consumption
leading to permanent or seasonal hypoxia (Norkko et al., 2012).
This, in turn, may cause the local fauna to perish with obvious
loss of biodiversity, and may lead to an efflux of P from
the anoxic sediments, further enhancing the summer bloom
of cyanobacteria (Figure 6B), and fuelling the vicious cycle of
Vahtera et al. (2007a) (Figure 4).

During mild winters, with a thin ice cover and short duration,
winter mixing conditions in the water column may enhance the
germination of dinoflagellates cysts (Figure 6C). Depending on
snow thickness combined with photoperiod, the sea-ice diatom
bloom may be enhanced or reduced compared to that of harsh
winter (Tedesco et al., 2017). In the case of favorable light
conditions (e.g., snow-free or little snow on the ice cover), the
sea-ice diatom bloom may be coupled to an under ice bloom of
germinated dinoflagellates after the sea ice has completelymelted.
If the spring bloom would be mostly composed of P. catenata,
this would be mostly degraded in the water column, becoming
part of the phyto-detritus available to the macrozoobenthos,
in particular to Marenzelleria. On oxic sediments and at high
abundances, Marenzelleria may help keep the deep sediments
oxygenated and the sinking organicmatter remineralized without
passing any of the sediment thresholds (Figure 6C). However,
there might be situations when the sinking material is not
efficiently consumed with the risk of seasonal hypoxia/anoxia.
In the case of a spring bloom dominated by B. baltica, about
40–50% of the sinking POC would be composed of not easily
degradable cysts (Figure 6D). On oxic sediments, the remaining
part would be available as a source of food for the macrofauna. Of
this non-degradable carbon pool, only 10–20% of the cysts may
germinate in the following winter (Kremp and Anderson, 2000),
thus 40–45% of this spring production would be buried in the
sediment. This would represent an effective long-term C sink in
the sediments (Figure 6D), which has the potential to improve
the environmental status of the Baltic Sea.

Marine ecosystem models are currently essential tools for
exploring the responses of ecosystems for management actions
and for exploitation, but these models can only be useful if
the ecological processes are correctly described and the essential
components are included. In order to develop and improve
this approach, understanding the transfer of nutrients between
pelagic and benthic systems from winter through spring and
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FIGURE 6 | A conceptual model of how the main spring phytoplankton groups affect sedimentation patterns and biogeochemical cycling of nutrients. The

primary driver for the onset of the spring bloom is the availability of light, which is mainly governed by the mixing/stabilization of the upper parts of the water column. In

the Baltic Sea large outflow of freshwater during spring creates patches of stratified water where the bloom initiates. After the spring bloom, diatoms tend to sink

quickly to the seafloor where the biomass is remineralized. The sediment processes will depend on the amount of settling material and eutrophication have shifted the

pristine state (A) towards a deteriorated environmental state with release of nutrients from the sediments (B). Dinoflagellates on the other hand tend to lyse before

reaching the sediment (C) with the exception of resting cysts (D). These resting stages (some species of diatoms also produce large quantities of resting stages with

the same function) are built for long term survival and are not remineralized in the sediment on a seasonal basis. Some of the resting stages are buried in the seafloor,

providing a biological sink for organic nutrients. The size of this sink largely depends on the species composition of phytoplankton during the productive spring bloom.

into summer is needed. There are open questions related
to the role of DOM in transfer of nutrients (quantity and
quality), and the qualitative aspect of the sinking material, where
changes in functional traits in the spring bloom community
is important. The potential feedback mechanisms through
changing plankton community composition have so far received
relatively little attention, although community structure is
known to play a major role for biogeochemical fluxes. The
inherent difficulty in resolving causal connections from field
observations calls for more dedicated experiments addressing
the plankton community composition and the settling of
phytoplankton in various forms under different environmental
change scenarios.

Finally, as the Baltic Sea is facing increasing temperature
associated with shorter ice season and thinner sea ice (Thomas
et al., 2017), there are indications that climate change will weaken

the magnitude, but prolong the duration of the spring bloom
(Groetsch et al., 2016), which would directly affect the timing
and flux of organic matter to the seafloor (Tamelander et al.,
2017). Earlier stratification could benefit dinoflagellates, and the
observed shift toward more dinoflagellate dominance in Gulf of
Finland could continue and expand spatially. This would affect
both the quantity and quality of the settling material and its
mineralization at the seafloor, with less seabed enrichment in
labile organic matter due to a more efficient pelagic microbial
loop (Figure 6C). Dominance of species with high encystment
rates and low germination success may enhance long-term
burial of organic carbon as more resting stages are settling out
of the water column (Figure 6D). This would functions as a
biological sink and could be an underlying explanation for part
of the unresolved N-burial (Jäntti and Hietanen, 2012), but
this has not to our knowledge been tested before. Increasing
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burial would diminish available nutrients in the ecosystem and
would together with the realized reduction in nutrient loading
counteract the observed spreading of the eutrophication. The
increasing contribution of cyst-producing dinoflagellates could
thus contribute to reversing eutrophication in the Baltic Sea.
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The Curonian Lagoon is Europe’s largest lagoon and one of the most seriously impacted
by harmful blooms of cyanobacteria. Intensive studies over the past 20 years have
allowed us to identify the major drivers determining the composition and spatial extent
of hyperblooms in this system. We summarize and discuss the main outcomes of
these studies and provide an updated, conceptual scheme of the multiple interactions
between climatic and hydrologic factors, and their influence on internal and external
processes that promote cyanobacterial blooms. Retrospective analysis of remote
sensed images demonstrated the variability of blooms in terms of timing, extension and
intensity, suggesting that they occur only under specific circumstances. Monthly analysis
of nutrient loads and stoichiometry from the principal tributary (Nemunas River) revealed
large interannual differences in the delivery of key elements, but summer months were
always characterized by a strong dissolved inorganic N (and Si) limitation, that depresses
diatoms and favors the dominance of cyanobacteria. Cyanobacteria blooms occurred
during high water temperatures, long water residence time and low-wind conditions. The
blooms induce transient (night-time) hypoxia, which stimulates the release of iron-bound
P, producing a positive feedback for blooms of N-fixing cyanobacteria. Consumer-
mediated nutrient recycling by dreissenid mussels, chironomid larvae, cyprinids and
large bird colonies, may also affect P availability, but their role as drivers of cyanobacteria
blooms is understudied.

Keywords: Curonian Lagoon, nitrogen, phosphorus, silica, fluxes, stoichiometry, remote sensing, cyanobacteria

INTRODUCTION

Human activities impact biogeochemical cycles, biological communities and ecosystem functioning
of inland and coastal waters on a global scale (Bernot and Dodds, 2005; Muhlolland et al., 2008;
Paerl, 2009; Han and Allan, 2012). Estuaries and lagoons have become enriched with nutrients
due to wastewater discharge, aquaculture, and agriculture (Galloway et al., 2008; Paerl, 2009).
Excess nutrients result in blooms, where algal biomass accumulates and exceeds the mineralization
capacity of the heterotrophic community (Valiela et al., 1997). In fresh-brackish waters, algal
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blooms may include one or more types of harmful cyanobacteria,
resulting in the presence of cyanotoxins. The development of
hypoxic or anoxic conditions can lead to die-offs of fish and
benthic organisms (Norkko and Bonsdorff, 1996; Ye et al.,
2011). In addition, changes in food web structure brought about
by invasive species may accelerate eutrophication by reducing
grazing pressure and allowing the proliferation of algae, including
toxic forms (Carpenter et al., 1998; Rabalais et al., 2002). The
alteration of nutrient stoichiometry (sensu Redfield) and changes
in climate (e.g., warmer temperatures, precipitation timing and
intensity) have also received attention as potential drivers of
harmful algal blooms (Cloern, 2001; Yunev et al., 2007; Moore
et al., 2008; Howarth et al., 2011). In this review, we analyze the
drivers of algal blooms in the Curonian Lagoon, a hypereutrophic
freshwater estuary. We discuss the relevance of nutrient loads and
their stoichiometry on algal blooms, we analyze how algal blooms
affect the ecosystem functioning (e.g., nutrient mass balances)
and provide a mechanistic interpretation for positive feedbacks
promoting the dominance of cyanobacteria.

THE CURONIAN LAGOON: GENERAL
FEATURES OF A HYPERTROPHIC
FRESHWATER ESTUARY

The Curonian Lagoon is a large (surface area = 1500 km2),
shallow (mean depth = 3.5 m) waterbody located along the
south-eastern portion of the Baltic Sea (Figure 1). The Curonian
Spit (a UNESCO heritage site) divides the lagoon from the
Baltic Sea. The main source of water and nutrients is the
Nemunas River, although the lagoon also exchanges water with
the Baltic Sea via the narrow Klaipeda Strait (Vybernaite-
Lubiene et al., 2017). Exchange of water through the strait is
episodic; during wind-driven forcing events, the salinity of the
lagoon rises to ∼7. The principal tributary (Nemunas River)
bisects the lagoon such that the northern lagoon is subject to
greater fluvial (and marine) influence, whereas the southern
portion of the lagoon is more lentic, and has a longer water
residence time (Umgiesser et al., 2016). The lagoon has a
relatively small hydrologic loading factor (ratio of watershed area
to surface area), which makes this system similar to a flow-
through reactor, and provides an opportunity for mass balance
studies (Bresciani et al., 2012; Zilius et al., 2014; Vybernaite-
Lubiene et al., 2017). Prior work by our multidisciplinary and
multinational team has included assessment of nutrient loads
from the Nemunas watershed, application of hydraulic models
to simulate water circulation in response to changing discharge
and wind conditions, investigation of seasonal dynamics of
biogeochemical cycles, and use of satellite remote sensing to
monitor phytoplankton blooms (Vaičiutė et al., 2015; Petkuviene
et al., 2016; Umgiesser et al., 2016; Vybernaite-Lubiene et al.,
2017, 2018). Our work at this site has also benefitted from long-
term monitoring carried out by the Marine Research Department
of the Lithuanian Ministry of Environment.

Data arising from these efforts have helped to guide
management of the Curonian Lagoon via a number of national
and international programs (HELCOM Baltic Sea Action Plan,

European Water Framework Directive, various habitat and bird
conservation initiatives). Despite the intensive studies carried
out in the lagoon, there remains the question whether and how
cyanobacteria blooms can be mitigated. These blooms extend
over large areas of the lagoon and negatively impact ecosystem
functions, including tourism and recreational activities, as well as
local fisheries (Giardino et al., 2010; Belykh et al., 2013; Šulčius
et al., 2015). The use of science for informing management
decisions is dependent upon the interpretation and integration
of available data, which is the focus of this paper.

SEASONAL SUCCESSION OF
PHYTOPLANKTON

Detailed studies of plankton communities in the Curonian
Lagoon have examined seasonal patterns, species interactions,
production of cyanotoxins and the role of phytoplankton in food
web energetics (e.g., Pilkaitytė and Razinkovas, 2006, Razinkovas,
2007; Lesutienė et al., 2014; Bukaveckas et al., 2017). Diatoms
dominate the spring phytoplankton community, after which,
following a short clear-water phase, cyanobacteria biomass
increases (Gasiunaitė et al., 2005; Pilkaitytė and Razinkovas,
2007). Fresh-brackish species dominate the phytoplankton
community of the Curonian Lagoon. Stephanodiscus hantzschii,
Diatoma tenuis, Aulacoseira islandica, Asterionella formosa are
the dominant diatom species during spring while the N-fixing
cyanobacteria Aphanizomenon flosaquae, Dolichospermum affine,
D. flosaquae, as well as other cyanobacteria such as Microcystis
aeruginosa, M. wesenbergii, M. viridis, and Planktothrix agardhii
contribute to the summer biomass peak (Pilkaitytė and
Razinkovas, 2007; Gasiunaitė et al., 2008). According to long-
term monitoring data (2001–2012), monthly average chlorophyll
a (chl-a) concentrations reach 47 ± 14 mg m−3 during the
spring diatom bloom and 96 ± 56 mg m−3 during the summer
bloom (Marine Research Department of the Lithuanian Ministry
of Environment).

WIND EFFECTS ON ALGAL BLOOM
DEVELOPMENT

Algal blooms in the Curonian Lagoon have been tracked since
the 1930’s via synoptic sampling (Schmidt-Ries, 1940). More
recently, satellite remote sensing has substantially improved our
ability to track the spatial and temporal dynamics of bloom
events and draw links to local weather conditions. The first
attempt to map algal blooms in the Curonian Lagoon utilized
the MEdium Resolution Imaging Spectrometer (MERIS) on
board the Envisat-1 satellite (Giardino et al., 2010; Bresciani
et al., 2012; Vaičiutė et al., 2015). The combination of high
spatial resolution (300 m) and short revisit time (2–3 days)
greatly enhanced our ability to map chl-a. More recently,
the Operational Land Imager (OLI, on board Landsat-8) and
Multispectral Instrument (MSI, on board Sentinel-2A/B) have
further enhanced spatial resolution (10–30 m) and allowed us
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FIGURE 1 | Maps of the Nemunas River watershed (right) and the Lithuanian part of the Curonian Lagoon (left). The lagoon map includes water sampling stations at
the lagoon inlet and outlet, and the main sediment sampling sites located at the confined muddy and transitional sandy areas. Color photos show the Curonian
Lagoon during a summer cyanobacteria bloom.

to investigate the patchy distribution of cyanobacteria blooms
(INFORM, 2017).

Results based on a large number of images from 2004 to 2016
revealed temporal variability and small-scale spatial patchiness
of chl-a (Bresciani et al., 2012, 2014; Vaičiutė et al., 2015).
The southern part of the lagoon exhibited high chl-a (up to
500 mg m−3) while the northern areas were characterized by
lower values (∼50 mg m−3) (Bresciani et al., 2012; Figure 2).
Differences between the northern and southern portions of the
lagoon were documented by earlier studies (Olenina, 1998; Krevs
et al., 2007). However, the use of satellite images allowed us
to identify hot spots of chl-a (up to 400 mg m−3) and the
presence of surface scums (e.g., Bresciani et al., 2014; Figure 2).
Highest concentrations were coincident with prevailing wind
conditions, suggesting that wind speed and direction was a
significant driver for spatial distribution of positively buoyant
cyanobacteria (Bresciani et al., 2014).

Wind speed affects not only the spatial distribution of
cyanobacteria, but also influences water column mixing. Wind
speeds less than 2 m s−1 are common and allow for the
development of transient (daytime) thermal gradients within
the water column (Zilius et al., 2014). The lagoon, though
shallow, is relatively turbid and it is thought that stagnant
conditions associated with low wind allow positively buoyant
cyanobacteria to obtain favorable, near-surface light conditions.
The combination of remote sensing, in situ biogeochemical
studies, and local meteorological data allowed us to investigate
these linkages over large spatial scales. Measurements of benthic
and pelagic oxygen metabolism along with spatial patterns of
MERIS-derived chl-a showed that 60–95% of the area of the

lagoon was vulnerable to transient hypoxia when blooms coincide
with calm conditions (Zilius et al., 2014).

HYDRODYNAMIC FACTORS AS
DRIVERS OF BLOOMS

Freshwater inputs to the lagoon are dominated by the Nemunas
River, which has an annual average discharge of 21.8 km3, and
accounts for 96% of total inputs (Jakimavičius and Kriaučiunienė,
2013). The Nemunas River discharges into the central part of
lagoon, dividing the system in a northern and a southern region
that differ in water renewal time (Umgiesser et al., 2016). The
northern part of the lagoon is characterized by strong riverine
influence and short renewal time ( < 80 days), which result
in limited accumulation of suspended matter (Ferrarin et al.,
2008; Remeikaitė-Nikienė et al., 2016). The southern part of
the lagoon has a longer water residence time ( > 190 days)
with minimal fluvial influence. The latest efforts to analyze the
water exchange within the Curonian Lagoon (Umgiesser et al.,
2016) revealed different seasonal patterns of residence time,
primarily driven by changes in hydrographic forcing by the
Nemunas River. During elevated spring discharge, the entire
lagoon is strongly flushed by Nemunas River. During summer,
river discharge decreases, resulting in increased water residence
time, particularly in the southern lagoon. Summer stagnation
has implications for water temperature, stratification, nutrient
availability and stoichiometry, and phytoplankton abundance
and composition. In summer, wind forcing appears to be the
most important factor influencing water column mixing and
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FIGURE 2 | Maps of Chl-a concentrations in the Curonian Lagoon from MERIS images (A) and cyanobacteria surface accumulations as retrieved by Landsat-8 OLI
and Sentinel-2 MSI during June-September 2013-2016 (B).

exchange between the southern and the northern part of the
lagoon (Umgiesser et al., 2016).

NUTRIENT LOADS AND THEIR
ECOLOGICAL STOICHIOMETRY

A study coupling the Curonian Lagoon with its watershed
was started in 2012 to better characterize the timing of
nutrient inputs and their stoichiometry. From 2012, on at
least a monthly basis and more frequent (weekly) during high
discharge periods, discharge and water chemistry (including
all dissolved and particulate forms of N, Si, and P ) were
monitored near the inflow of the Nemunas River to the lagoon
(Vybernaite-Lubiene et al., 2017; Figure 1). Discharge and
nutrient concentrations displayed strong seasonality. Nitrate and
reactive Si concentrations decreased by two orders of magnitude
from spring to summer (e.g., NO3

− from > 300 µM to < 1,
SiO2 from > 200 to < 1 µM) while reactive P concentrations
showed comparatively smaller changes (from 0.2 to 4 µM). These
seasonal patterns resulted in reduced DIN:DSi and DIN:DIP
ratios, which shift the lagoon from an excess of N and Si
in colder months, to P excess (DIN:DIP < 16) in warmer
months (Figure 3). These findings support the hypothesis that
cyanobacterial blooms are favored during summer by the limited

FIGURE 3 | The stoichiometric DIN:DIP and DIN:DSi ratios during 2012–2016
at the Nemunas River gaging station. Dashed lines indicate the theoretical
Redfield ratio (DIN:DSi = 16:15 and DIN:DIP = 16:1). Averages ± standard
deviations (n = 6) are reported.

N and Si supply via riverine inputs (Pilkaitytė and Razinkovas,
2007).

Our analyses of nutrient loads showed that recent (2012–
2016) N export from the Nemunas River basin is similar to
historical data (1986–2002), whereas P loads have declined by
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nearly 60 % as a result of sewage treatment plant improvements
(Vybernaite-Lubiene et al., 2018). Despite reductions in P loads,
the lagoon remains imbalanced with an excess of P relative to N,
thereby favoring the growth of N-fixing cyanobacteria. Further
P reductions are needed to promote- limitation or co- limitation
and thereby diminish the dominance of cyanobacteria. It is also
important to stress that despite strong N limitation in the lagoon,
hyperblooms of cyanobacteria do not occur every summer due to
the influence of other factors that regulate blooms.

SEDIMENTS AND BENTHIC PROCESSES
AS DRIVERS OF BLOOMS

The distribution of sediment types in the Curonian Lagoon
is determined by hydrodynamic factors and by contributions
from autochthonous and allochthonous materials (Pustelnikovas,
1994; Ferrarin et al., 2008). Curonian Lagoon sediments include
a broad spectrum of deposits, from sand-dominated in the
northern (riverine-influenced) sector to silt-dominated in the
southern (more lentic) area (Trimonis et al., 2003). Declines in
external (riverine) loads during the transition from spring to
summer enhances the importance of internal recycling from the
benthic compartment as a nutrient source for pelagic primary
production. Studies of sedimentary processes revealed a shift in
dominant microbial processes and benthic fluxes from spring
to summer (Zilius et al., 2012, 2014; Petkuviene et al., 2016).
For example, net N2 production suggests the dominance of
denitrification over N-fixation during spring; however N2 fluxes
are reversed during summer, suggesting net N import to the
benthic compartment (Zilius et al., 2018).

Since 2009, oxygen penetration depth, total and diffusive
sedimentary oxygen demand, pore water chemical environments,
sedimentary pools and benthic fluxes were measured or
calculated at sites representative of dominant sedimentary
environments including littoral, pelagic transitional and confined
zones (Zilius et al., 2012; Figure 1). In this turbid system,
benthic photosynthesis was measurable only in shallow littoral
illuminated sediments (∼1 m depth) representing a minor
fraction (5%) of the total lagoon surface (Benelli et al., 2018).
Here, benthic algae oxidize the upper sediment layer and
efficiently retain nutrients, thereby impeding regeneration to the
water column (Zilius et al., 2012; Benelli et al., 2018). Deeper sites
were always heterotrophic and their seasonal oxygen metabolism
and nutrient regeneration was driven by water temperature
and phytoplankton blooms; recently settled fresh phytoplankton
resulted in significantly higher oxygen uptake, limited oxygen
penetration in sediments ( < 1 mm), and high rates of anaerobic
to aerobic metabolism (Zilius et al., 2012, 2016).

The mechanisms underlying P release from sediments were
analyzed in detail, as they contribute to lower inorganic DIN:DIP
ratio in the water column and favor cyanobacteria (Zilius et al.,
2014, 2015, 2016; Petkuviene et al., 2016). The distribution of
sedimentary pools of P, Fe, Mn and S in the Curonian Lagoon
was related to riverine influence; sandy sediments adjacent the
Nemunas delta were oxidized and have a large geochemical buffer
capacity against the effects of anoxia, with limited accumulation

of free sulfide (Petkuviene et al., 2016). Muddy areas along the
western and southern portion of the lagoon had chemically
reduced sediments where the reduction of iron may result
in large P release (Petkuviene et al., 2016). In manipulative
experimental studies, simulated deposition of phytoplankton
material, primarily composed of cyanobacteria, resulted in an
increase of dissimilative nitrate reduction over denitrification and
large methane production, but with limited reactive P release
(Zilius et al., 2016). Experimental manipulations of intact cores,
targeting short-term effects of anoxia, revealed that pools of
detritial Ca bound P ( > 70 % of inorganic P) and oxidized
Fe and Mn, prevent or buffer redox-dependent reactive P
release from sediments (Zilius et al., 2015). However, seasonal
measurements of reactive P fluxes at sandy and muddy areas
revealed large summer P release at muddy sites coinciding
with the occurrence of cyanobacterial blooms, and the onset of
hypoxia and anoxia in the water column (Zilius et al., 2014;
Petkuviene et al., 2016). These events occurred under specific
conditions during prolonged stable weather, with no wind and
high water temperature. Benthic P release occurred when the
oxidized pools of metals within sediments were exhausted and
contributed to the imbalanced stoichiometry by further lowering
the DIN:DIP ratio. P regeneration from sediment, despite
occurring over short period, had a significant effect on the lagoon
P budget, resulting in a large export of P (Petkuviene et al., 2016).

TOP-DOWN DRIVERS OF BLOOMS

Zooplankton
The shift from diatom- to cyanobacteria- dominated
phytoplankton communities was accompanied by a decline
in relative zooplankton grazing. During the spring diatom
bloom, maximum consumption by zooplankton corresponded
to 34% of NPP (324 µgCL−1d−1), whereas during the summer
cyanobacteria bloom grazing decreased to 8 % of NNP
(470 µgCL−1d−1) (Figure 4). A similar pattern was observed
in the southern part of the lagoon where zooplankton grazing
declined from 60% of phytoplankton production during
spring to 4 % in summer (Semenova and Aleksandrov, 2009).
Despite reduced grazing rates, stable isotope studies show that
cyanobacteria blooms support secondary production in a diverse
group of benthic and pelagic consumers within the lagoon
(Lesutienė et al., 2014). Our studies also show that cyanotoxins
(microcystin) are found in tissues of fish and shellfish, indicating
that cyanobacteria production supports higher trophic levels in
this system (Bukaveckas et al., 2017).

Grazing by zooplankton may be an important driver of
cyanobacteria bloom development. During winter, ciliate growth
is limited by low biomass of phytoplankton. In the early
spring, when small-sized phytoplankton are dominant, the
ciliate assemblage was dominated by small naked oligotrichs
and prostomatids. After the late spring diatom bloom, the
ciliate assemblage shifted to medium sized tintinnids, which
feed on the same nano-fraction of phytoplankton or/and
heterotrophic flagellates as ciliates. The summer/autumn phase
was characterized by increased taxonomical and functional
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FIGURE 4 | Dynamics of net primary production and consumption by
zooplankton (NPP, consumption, µgCL−1d−1), and estimated grazed NPP
(%) by micro- and mesozooplankton during vegetative season in the Curonian
Lagoon.

diversity of ciliates indicating exploitation of a wide size
range of food. Small sized naked oligotrichs (Strobilidium
spp.) and peritrichs (Vorticella spp.) (mainly bacterivorous
ciliates) dominated in summer, indicating a shift from algal
food to bacteria (Grinienė, 2013; Grinienė et al., 2016). The
shift from large Daphnia to small-bodied Chydorus sphaericus
coincides with the dominance of cyanobacteria (Gasiunaitė and
Razinkovas, 2004; Figure 5). Chydorus graze on smaller algae and
therefore give an advantage to large cyanobacteria (Gasiunaitė
and Olenina, 1997). In addition, the presence of large filamentous
colonies and toxic strains may foster the dominance of bloom
forming cyanobacteria (Pilkaitytė and Razinkovas, 2007).

Macrofauna
Excluding the littoral zone, sediments of the Curonian Lagoon
host few macrofauna species due to high organic content
and poor oxygen conditions (Zettler and Daunys, 2007).
Among them, oligochaetes, chironomid larvae and freshwater
mussels, including native unionids and invasive dreissenids,
are dominant groups (Daunys, 2001). Chironomid larvae and
mussel aggregations may, due to their high densities, influence
phytoplankton composition and abundance (Dame et al., 1980;
Officer et al., 1982; Gili and Coma, 1998). We discuss here if and
under which circumstances macrofauna may favor the onset of
cyanobacterial blooms in the Curonian Lagoon.

In the lagoon, periods of short water residence time may
impede efficient removal of particulate matter by suspension
feeding. In spring (average residence time 7 days) only 10 %
of particulate matter was removed by zebra mussels, while
in summer (average residence time up to 15 days), the
proportion of particulate matter removed increased to 30%
(Daunys et al., 2006). Chironomid larvae and mussels may
exert a top-down control of pelagic primary production but

FIGURE 5 | Seasonal dynamics of zooplankton biomass in the Curonian
Lagoon.

they may simultaneously excrete large amount of nutrients.
Their activities also enhance the organic matter content of
sediment via biodeposition, stimulating microbial activity and
re-mineralization (Caraco et al., 1997; Stief, 2013; Ruginis
et al., 2014; Benelli et al., 2017). It is unclear whether the
net effect of phytoplankton removal via grazing is offset
by nutrient regeneration via excretion and whether these
processes have a specific benefit to cyanobacteria. Dreissena
polymorpha was intensively studied due to its top-down control
on phytoplankton and the possible management of its biomass
to reverse eutrophication. However, such top-down control
on pelagic primary production resulted to be site-specific and
context-dependent (e.g., in shallow, well-mixed environments
with low nutrient background more than in deep, stratified
ecosystems with high nutrient inputs) (Conroy et al., 2005;
Caraco et al., 2006). Furthermore, dreissenids excrete large
amounts of reactive P and different authors have suggested
that these mussels may change nutrient stoichiometry, via P
mobilization and by enhancing N removal via denitrification
(Zhang et al., 2008; Ruginis et al., 2014). The inability of zebra
mussels to graze on larger forms of cyanobacteria may provide a
competitive advantage over other algae, which, in combination
with increased rates of reactive P re-cycling, enhances the
potential for cyanobacteria blooms. These aspects need further
study, but suggest that the presence of dreissenids mussels on the
Curonian Lagoon may exacerbate the effects of nutrient loading,
and favor increased dominance by cyanobacteria.

Birds
The Curonian Lagoon hosts a large bird community, including
tufted ducks and common pochards with 24,500–54,700 and
1,800–41,000 individuals, respectively (Stanevičius et al., 2009),
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goosanders (Žydelis, 2001), cormorants, with more than 10,000
breading birds (Švažas et al., 2011; Dagys and Zarankaitë,
2013), mallards, geese (3,000–6,500 ind/day) and little and black-
headed gulls (1,000–1,500 ind./day). High densities of water birds
are vectors of seeds, invertebrates, bacteria and phytoplankton
(Tobiessen and Wheat, 2000), and also contribute to nutrient
loads (Manny et al., 1994; Hahn et al., 2007; Green and Elmberg,
2014; Han et al., 2017).

During nesting, breeding and roosting periods, water birds
enrich the water with guano (Klimaszyk et al., 2015). In enclosed
aquatic ecosystems bird feces may contribute 50–69%, 27–
40%, and 70–75% of total C, N, and P loads, respectively
(Manny et al., 1994; Post et al., 1998; Boros et al., 2008;
Gwiazda et al., 2014). Bird feces have low N:P, implying that
water bird excretions may strengthen N limitation and promote
cyanobacteria blooms (Rönicke et al., 2008; Han et al., 2017).
Birds also have indirect effects on nutrient cycling by removing
macrophytes, invertebrates and fish. Herbivorous birds, by
removing plants, remove those elements that trap nutrients in
the benthic compartment, provide shelter for zooplankton and
allow sediment oxidation via radial oxygen loss. While grazing
on macrophytes, birds resuspend sediments and mobilize pore

water nutrients (Klimaszyk et al., 2015; Klimaszyk and Rzymski,
2016). Furthermore, a large fraction of macrophyte-associated
P is released to the water column in the reactive form and
is readily available to phytoplankton. The mechanisms that
regulate P mobility in sediments are redox-dependent such that
the removal of roots and macrofauna, together with particle
resuspension, has the potential to mobilize sediment sources
of P. In the Curonian Lagoon herbivorous birds represent the
second largest water bird group, peaking in spring and distributed
throughout the Nemunas River deltaic area and the littoral
zone.

Benthivorous birds, feeding on macrofauna, produce an effect
on the benthic system similar to that of fishes, removing
animals that may keep the sediment oxidized and resuspending
sediments and nutrients (Werner et al., 2005; Sánchez et al.,
2006; Rodríguez-Pérez et al., 2007; Matuszak et al., 2014).
Piscivorous birds convert fish-associated P into reactive P (Putys
and Zarankaitė, 2010). Large colonies of cormorants have their
peak activity during summer. The large bird community in the
Curonian Lagoon may therefore affect by various direct and
indirect mechanisms the cycling of nutrients and that of P in
particular.

FIGURE 6 | Drivers of cyanobacterial blooms in the Curonian Lagoon during the transition from spring to summer. The lower panel on the right represents a
hyperbloom event, leading to water anoxia.
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Fish
Benthivorous fish, including carp, roach, bream and perch,
represent the dominant fish component in the Curonian Lagoon
(Cline et al., 1994; Persson and Svensson, 2006; Lithuanian
Environmental Protection Agency (EPA), 2008; Adámek and
Maršálek, 2013). Fish may produce both top-down (e.g., removal
of grazers and competitors) and bottom-up effects (nutrient
mobilization) that favor eutrophic conditions and cyanobacterial
blooms (Shormann and Cotner, 1997; Roozen et al., 2007).
The diet of benthivorous fish in the Curonian Lagoon includes
mussels, chironomidae larvae, detritus, zooplankton and plants
(Bubinas and Ložys, 2000). Benthivorous fish may impact
the water quality, leading to nutrient accumulation and algal
growth, by suspending the sediments and by feeding on filter-
feeding zooplankton, burrowing macrofauna and macrophytes
(Zambrano and Hinojosa, 1999; Williams et al., 2002; Parkos
et al., 2003). Sediment resuspension by the benthic fish
community increases water turbidity, limits light penetration
and rooted macrophytes and favors P release and cyanobacteria
growth (Hellström, 1991; Breukelaar et al., 1994). By removing
invertebrates from the sediments, benthivorous fishes mobilize
nutrients from the pore water (Tarvainen et al., 2002; Phan-Van
et al., 2008). Resuspension itself may oxidize sediments, but this
is a short-term and local effect, while reductions in invertebrate
abundance impacts N removal via denitrification and P
sequestration. Moreover, fish predation reduces zooplankton
populations, resulting in low grazing on phytoplankton (Jeppesen
et al., 1999). Fish excretions are very soluble and rich in N
and P which stimulate periphyton growth and negatively affect
macrophytes (Tarvainen et al., 2002; Williams et al., 2002).
Excreted nutrients are dispersed horizontally and vertically and
from littoral to pelagic areas (Schindler et al., 1996; Persson and
Svensson, 2006).

SYNTHESIS

Cyanobacterial blooms in the Curonian Lagoon arise from
multiple interacting factors, which include external forcing
(riverine discharge and wind conditions) and internal processes
(consumer-mediated nutrient cycling and sediment-water
nutrient exchange). We summarize the information discussed in
this review through a graphical representation of the multiple
mechanisms that drive cyanobacterial blooms in the Curonian
Lagoon (Figure 6).

During spring, the lagoon is diatom-dominated due to a
combination of low water temperatures, high river discharge and
availability of inorganic N and Si, in excess to P. The system
alternates phases with clear and turbid water depending on the
intensity of the spring diatom bloom and the occurrence of
wind-associated sediment resuspension events. During spring,
light penetration may attain 1–2 m and grazers exert appreciable
control of algal biomass accrual. The water column is generally
well mixed and normoxic; under these circumstances the upper
sediment layer is oxidized and acts as a nutrient sink.

The spring-summer transition is marked by a decline in
discharge of the Nemunas River, which is accompanied by

the depletion of N and Si within the lagoon. Reductions
in external loadings, together with processes occurring
within the lagoon (high spring denitrification rates and Si
sequestration via uptake and accumulation in sediment),
result in the onset of N and Si limitation. Cyanobacteria
become dominant, resulting in a series of cascade effects
that include increased algal-associated turbidity and water
stratification. Positive feedbacks arise as large colonies of
cyanobacteria limit the capacity of grazers to control biomass
accrual and high respiration rates promote oxygen under-
saturation. Climatic conditions, which are highly variable,
play an important role, as low wind conditions may further
push the system toward hyperbloom events, with extensive
surface scums (Figure 7). Water column respiration, not
sediment oxygen demand, promote oxygen depletion in the
system, due to the large availability of labile organic matter
from decaying algal cells. By this mechanism, hyperblooms
promote their persistence as hypoxia results in sediment
P release. Other factors that may contribute to these large
periodic outbreaks include the presence of waterbirds. Large
colonies of cormorants settle in spring along the Curonian
Spit and have their most intense period of activity during
summer. Cormorants, through the production of guano,
make large amounts of P available in surface water. Besides
cormorants, colonies of seagulls, swans and duck have large
numbers and may contribute to make fish or macrophyte
P pools readily available to cyanobacteria. Other biological
agents supporting algal blooms include the invasive freshwater
mussel (D. polymorpha), which excretes large amounts of
reactive P relative to the native unionid mussels and may
therefore contribute to the low DIN:DIP ratio in the lagoon.

FIGURE 7 | Cyanobacteria hyperbloom with scum formation in the Curonian
Lagoon, August 2013.
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MANAGEMENT POLICIES AND
PERSPECTIVES

The Curonian Lagoon ecosystem provides a number of
provisioning and cultural ecosystem services, most directly linked
to the main economic activities in the lagoon area – recreation
and fishery (Rashleigh et al., 2012; Razinkovas-Baziukas et al.,
2012). The lagoon also provides ecosystem services of relevance
to the Baltic Sea region such as denitrification and phosphorus
burial. Management efforts to improve water quality in the
Curonian Lagoon have targeted reductions of nitrogen loads
by 15 % and phosphorus by 8%. Model simulations (Ertürk
et al., 2016) revealed that reductions of nitrogen loads by
14 % and phosphorus loads by 6%, will bring about a
10% reduction in the abundance of cyanobacteria (Razinkovas
et al., 2008). Further reductions in riverine nutrient loads
(40% decrease in both N and P) produced only a 10%
decrease in peak chl-a concentrations (Razinkovas et al., 2008).
Further efforts to improve water quality may require within-
system bioengineering solutions (biomanipulations, mussels,
reed harvesting).

Climate change projections for the Curonian Lagoon
(Jakimavičius et al., 2018) indicate an increase of average
water temperature up to 1.7–2◦C by the middle of this
century, consistent with trends observed during the last
three decades (Dailidienë et al., 2011). According to this
modeling study, the increase in water temperature was mostly
confined to the summer-early autumn period, which may
therefore favor the development of cyanobacteria blooms.
Biogeochemical cycles of the Curonian Lagoon will be affected
by changes in the water balance of the lagoon. A decline in
contributions from Nemunas River coupled with an increase
in Baltic water intrusions (due to sea level rise) will alter
the water balance during the winter–spring period. A shift
in the timing of peak discharge from spring to winter,
as observed in recent decades (Dailidienë et al., 2011),
may diminish algal blooms if a larger proportion of the
nitrogen load from the Nemunas River passes through the
Curonian Lagoon during the period of low phytoplankton
productivity. However, the predicted decrease of ice cover
is expected to reduce winter hypoxia, which would result
in reductions in denitrification. Despite the intensive studies
of this system, we are not able to predict whether climate
change will exacerbate or mitigate cyanobacteria blooms.
However, it is apparent that further management actions
are needed to reduce nutrient loads and restore ecosystem
services. There is a need for additional studies, both
at the watershed-scale and the lagoon scale, to facilitate
science-based management decision. At the watershed scale,
long-term monitoring is needed to better understand the
effectiveness of improved agricultural practices and water
treatment on N, Si, and P export from the Nemunas
basin to the Curonian Lagoon. Watershed practices may
differentially affect the three elements further modifying their
ecological stoichiometry, with implication for algal blooms

(Yunev et al., 2007; Bresciani et al., 2014; Vybernaite-Lubiene
et al., 2017).

CONCLUSION

This review analyzes the available information on the
mechanisms driving cyanobacterial blooms in the Curonian
Lagoon. Results from our analysis suggest that blooms are
a consequence of multiple, interplaying factors, producing a
cascade of processes and positive feedbacks. The hot moment
for cyanobacteria blooms is the summer, due to combination
of favorable nutrient stoichiometry (N and Si limitation),
elevated water temperature, low wind speed, unbalanced internal
recycling (P > N) and low grazing pressure. The hot spots of
cyanobacteria are stagnant areas where limited water circulation
and stratification provide these organisms a competitive
advantage. These hot spots may serve as bloom initiation areas
from which cyanobacteria are dispersed by prevailing winds.
Ecological interactions among aquatic organisms, and how these
respond to changes in climate and to species invasions remain
understudied. The combination of satellite remote sensing,
traditional monitoring of environmental parameters, detailed
analysis of processes at the macro and microscale and the
application of ecological network models, have proved to be
useful tools for understanding the mechanisms underlying the
development of cyanobacteria blooms. Our further efforts seek
to improve our capacity to predict the occurrence and severity of
algal blooms and guide prevention measures.
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Phytoplankton plays a key role as primary producers and mediating biogeochemical

cycles in the water column. The understanding of the temporal dynamic of primary

grazers channeling energy and carbon from primary producers is important for

evaluating aquatic ecosystems functioning. This study investigates the coupling between

phytoplankton and ciliates from live samples collected with approximately daily frequency

during an almost 2-year cycle. The study site is a nutrient-rich temperate estuary,

Roskilde Fjord (Denmark). Our aim is to evaluate the importance of protist grazers,

especially ciliates, as predators on phytoplankton and to evaluate differences among

multiple nutritional strategies through different seasons. The phytoplankton community,

was mostly dominated by small organisms (<20µm) with few observations of diatoms.

In most of observations, heterotrophic dinoflagellates biomass was smaller than biomass

of ciliates (<10%), indicating that ciliates are the main component of microzooplankton.

Except for the spring 2016, the ciliate community closely followed the phytoplankton

community, showing a tight coupling between the primary producers and grazers during

all seasons. This somehow contradicts the general assumption that ciliate dominance

is restricted to periods of nutrient limitation dominated by the microbial food web and

suggests a year-round key role of ciliates as consumers of phytoplankton biomass.

Biomasses of ciliates increased during spring and were highest during summer. Relative

importance of mixotrophs were high due to occurrence of Mesodinium rubrum blooms

as well as other mixotrophic ciliates in late spring/early summer.M. rubrum biomass had

the opposite pattern of the cryptophyte prey Teleaulax spp., and the coupling between

the two populations was very strong in late spring. Ciliates that grazed on selected

phytoplankton, had a smaller potential grazing impact regarding their biomasses, likely

due to food limitation; conversely ciliates that feed on diverse prey items were less

constrained by food limitation, and their seasonality appear to be driven by other factors.

These findings suggest that the ciliate community structure and dynamics is important

in structuring the phytoplankton community on short and seasonal scale.

Keywords: phytoplankton community, ciliates, grazing rates, mixotrophy, trophic strategies
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Haraguchi et al. Ciliate Trophic Strategies and Phytoplankton Dynamics

INTRODUCTION

Phytoplankton primary production supports higher trophic
levels and fuels microbial remineralization (Azam et al., 1983;
Sherr and Sherr, 1988). The dominant pelagic grazers of
phytoplankton are typically associated with distinct operating
modes of the food web compartments and nutrient cycling.

Heterotrophic protist grazers and microzooplankton dominance
is usually associated with the microbial loop and regenerated
production; while mesozooplankton is associated with a linear
food chain and export production (Fenchel, 1988; Buitenhuis
et al., 2006). Grazing on particulate primary production in the
global ocean surface is ∼10–15% for mesozooplankton and 59–
75% for microzooplankton (Behrenfeld and Falkowski, 1997;
Calbet, 2001; Landry and Calbet, 2004; Buitenhuis et al., 2010),
with estimates for coastal and estuarine systems usually in the a
lower range (Landry and Calbet, 2004).

Ciliates constitute an important component of the

microzooplankton community with preference for small-
sized preys, in contrast to mesozooplankton, and many ciliate
species are also grazed bymesozooplankton (Hansen et al., 1997).
Thus, ciliates can be an important link between small cells and
higher trophic levels (Nielsen and Kiørboe, 1994). Besides their
significant role in carbon transfer, ciliates are also considered
high quality food, as a source of proteinaceous compounds with
a low C:N ratio in comparison to phytoplankton (Stoecker and
Capuzzo, 1990; Gifford, 1991).

Although many ciliates are heterotrophs, a number of pelagic

species are mixotrophic, combining both phagotrophic and
phototrophic nutrition (Stoecker, 1998). The recognition of
mixotrophy in the marine plankton food web has challenged
the classical understanding of pelagic food webs, as autotrophy
and heterotrophy are not necessarily two distinct functional
compartments (Flynn et al., 2013). Classical understanding of
ecological interactions among plankton, such as competition
for nutrients, indicates that nutrient uptake affinity decreases
with organism size (Edwards et al., 2012), favoring smaller sizes
under resource limiting conditions. Mixotrophy is advantageous
to organisms under nutrient limited conditions, allowing
them to reduce direct competition by grazing on smaller
prey and increase direct ingestion of nutrients (Mitra et al.,
2014). Modeling results suggest that mixotrophy favors larger
organisms, and therefore enhances trophic transfer efficiency
(Mitra et al., 2014; Ward and Follows, 2016). On top of that,
mixotrophy appears to be important over both, space and
time, in marine systems (Leles et al., 2017), stressing the need
for ecological field studies to further elucidate the role of
mixotrophy.

Today, the importance of ciliates in the marine environment,
including coastal and estuarine systems, is well recognized
(Calbet and Landry, 2004). However, the role of ciliate
nutrition mode and its impacts on ecosystem productivity is
understudied for a number of reasons. One is that most plankton
monitoring programs focus on analyzing phytoplankton and
mesozooplankton only and similarly, many field studies do not
include analyses of ciliates. Second, fixation can destroy cells
and change their characteristics, such as color, size, and shape

(Choi and Stoecker, 1989; Stoecker et al., 1994), constraining the
distinction between mixotrophs and heterotrophs. In addition,
even if ciliates are properly recorded, many studies employ
monthly sampling, which hampers the investigation of ecosystem
trophodynamics due to the fast growth responses of ciliates and
phytoplankton.

The use of in-flow systems (e.g., flow cytometry) have
routinely been used to assess plankton communities, including
different size fractions (Dashkova et al., 2017). Using these
technologies in high frequency monitoring of plankton has
demonstrated that short-term events can be easily missed
with sampling frequencies typically employed for monitoring
(Thyssen et al., 2008; Campbell et al., 2013; Dugenne et al., 2014).
Furthermore, in-flow systems allow analysis of live samples,
avoiding loss and shrinkage of cells due to fixation (Jakobsen and
Carstensen, 2011; Haraguchi et al., 2017). Thus, the use of in-flow
systems can improve our knowledge on the coupled dynamics
of phytoplankton and ciliates, by allowing a large number of
samples to be analyzed in relatively short time.

This study aims to assess the temporal coupling between
phytoplankton and its protist grazers in a temperate mesohaline
estuary (Roskilde Fjord, Denmark), evaluating differences in
potential grazing rates of distinct trophic strategies over different
time scales. More specifically, this study seeks to answer the
following questions: (1) Are ciliates the dominant pelagic grazers
in Roskilde Fjord? (2) Do mixotrophic ciliates comprise a
significant proportion of the total ciliate biomass and thereby
contribute significantly to the transfer of energy to higher trophic
levels?

MATERIALS AND METHODS

Study Area and Sampling
Roskilde Fjord (RF; see Figure S1 for a map of the study area
and sampling pier) is a mesohaline, shallow and well-mixed
estuary with a long residence time (up to 2 years) due to low
river discharge and low tidal influence (Kamp-Nielsen, 1992).
The estuary consists of two larger broads connected by a long
narrow channel oriented in a south-north direction. It receives
relatively high nutrient inputs due to dominance of agriculture
in the RF catchment, which enhance primary production (Staehr
et al., 2017).

Surface water (2 L) was sampled with a bucket from the Risø
pier (55◦41′30.19′′N, 12◦ 4′55.24′′E; Figure S1) almost every day
from 15 February 2016 until 01 November 2017. Samples were
delivered to the laboratory for immediate analysis within 10 to
20min after sampling. Temperature and salinity were measured
with an YSI Professional Plus multiparameter handheld meter
(YSI, USA). Phytoplankton was analyzed with a pulse shape
recording flow cytometer, whereas ciliates were analyzed by a
color FlowCAM IV (see below).

Laboratory Analysis
Nutrients
Dissolved inorganic nutrient samples were stored frozen in 30ml
acid-washed plastic bottles. The samples were analyzed on a San
++ Continuous Flow Analyser (Skalar Analytical B.V, Breda,
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NL) as previously described (Grasshof, 1976; Kaas andMarkager,
1998). Detection limits were 0.04, 0.1, and 0.3µmol L−1 for NO−

2 ,
NO−

3 , NH
+

4 . Dissolved inorganic nitrogen (DIN) concentrations
were calculated as the sum of the concentrations of NO−

2 , NO
−

3 ,
and NH+

4 .

FlowCAM
Ciliate abundances and body volumes were analyzed from
live samples using a color FlowCAM IV (Fluid Imaging
Technologies, USA), following Calbet et al. (2014). From 15
March 2016 until 20 February 2017, samples were analyzed
using a 4x objective and a flow cell FC300, whereas samples
from 21 February until 1 November 2017 were analyzed using
a 10x objective and a flow cell FC100x2. User calibration
with standard beads (polymer microspheres of 50µm, Thermo
scientificTM) were done for both magnification to validate counts
and volumes calibration. The instrument was run in auto
image-mode for both magnifications, capturing all particles
in the range of 15–1,000µm. The analysis time for each
sample was ca. 40min. (4x) or ca. 3 h (10x), corresponding
to the analyzed volume of 20 and 10ml, respectively. During
analysis, samples were gently stirred (approx. 3.14 rad s−1)
and kept under dim light at room temperature (about 15–
20◦C). We assumed that cell loss during the analysis was
insignificant, as no differences were observed between cell
numbers recorded at the start and end of the runs. After
sample processing, recorded images were manually sorted into
ciliate morphotypes and dinoflagellate trophy, based on features
such as cell size, color, and general morphology. Equivalent
Spherical Diameter (ESD) and body volume were estimated
by the software package VISP 3.17 (FluidImagineTM). Cell size
was estimated by the area based diameter (ABD) algorithm
of VISP 3.17 (Jakobsen and Carstensen, 2011), except for
tintinnids. This group of loricated ciliates can have their volumes
overestimated from FlowCAM images, thus their individual
volume was calculated as a prolate spheroid with diameter
equal to the lorica width, and the length as 120% of width.
Carbon biomass was obtained by converting volume to biomass
using a generic protist volume-to-carbon conversion formula
(Menden-Deuer and Lessard, 2000). The higher magnification
allowed for identification of more morphotypes, which were
grouped when necessary to match the 4x morphotypes. In all
samples non-identified blurred images of ciliates were present,
however these accounted for <5% of the observations in all
samples.

Flow Cytometer
We employed a pulse-shape recording flow cytometer (PFCM)
(CytoSense, Cytobuoy, NL) to analyse phytoplankton. This
technique is suitable for rapid analysis of the phytoplankton
size spectra, providing cell counts comparable to those obtained
with traditional microscopy and more reliable information for
picoplankton (Haraguchi et al., 2017). Additionally, it also
provides information on cell size and morphology due to its
capacity to store the optical profile for each particle, recorded as
they travel through the flow cell. The instrument has a 488 nm
laser, fluorescence sensors (yellow/green ∼550 nm, orange

∼ 600–650 nm and red ∼650–700 nm) and two scatter sensors,
for light scattered parallel (forward scatter) and orthogonal
(sideward scatter) to the incident laser beam. All the optical
sensors are duplicated (except for the forward scatter) but set
to different sensitivity for precise recording of both larger and
smaller particles. Optical particle profiles from live samples (500–
1000 µL, sampled at a flow rate of 8 µL s−1) were collected using
the software CytoUSB (cytobuoy.com), with a lower threshold
of 30mV for the high sensitivity red fluorescence sensor. This
trigger was set to include only particles containing chlorophyll
a (phytoplankton cells). Recorded cells were clustered according
to similarities in their optical properties [length and total
Forward Scatter (FWS), total red fluorescence (FLR); total
orange fluorescence (FLO); total Sideward Scatter (SWS)],
using the software CytoClus3 (cytobuoy.com). Particles were
assigned to one cluster only and the same clustering algorithm
was employed for all samples. Taxonomical information was
obtained for some of the clusters based on their optical
characteristics and photos taken by the equipment, which were
cross-referenced with qualitative information obtained from live
samples examined by light microscopy. Carbon biomass was
obtained by converting total FWS to volume by applying the
empirical formula in Haraguchi et al. (2017) and then converting
volume to biomass using a generic protist volume-to-carbon
conversion formula (Menden-Deuer and Lessard, 2000). Note
that for some characteristic and/or abundant groups (e.g., chains,
pico-eukaryotes, Teleaulax spp.) group-specific clusters were
identified based on cells characteristics (size, shape, fluorescence).
Other clusters, like nano-flagellates and micro-phytoplankton,
comprised multiple species with lower relative abundance and no
specific clusters could be drawn. For those, cluster definition was
based on general functional features such as size and fluorescence
levels.

Ciliates Potential Grazing Rates
Ciliate Trophic Strategy Definitions
During the study, 13 different ciliate morphotypes were identified
(Figure 1). Heterotrophs were divided into three groups: (i)
herbivores that were always observed with the same type of
food in vacuole; (ii) herbivores with varying food content; and
(iii) carnivores (ciliates that can also feed on other ciliates).
Mixotrophs were identified as ciliates with a strong colouration
and chloroplasts located throughout the cell periphery, and were
assigned into two different groups following Mitra et al. (2016).
Based on compiled information from the literature (Table 1), the
ciliate morphotypes were grouped into five trophic strategies:

1. Specialist Non-Constitutive Mixotroph (SNCM): ciliates that
acquire their chloroplasts and obtain them from specific prey.

2. General Non-Constitutive Mixotroph (GNCM): ciliates that
acquire their chloroplasts and obtain them frommultiple prey.

3. Selective herbivore (SH): heterotrophs that ingest a narrow
range of prey.

4. Generic herbivore (GH): heterotrophs that ingest a broad
range of prey.

5. Carnivore (Cv): heterotrophs that ingest a broad range of prey,
including other ciliates.
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FIGURE 1 | Selected images showing different ciliates morphotypes found in Roskilde Fjord during the study period: (1) Mesodinium rubrum; (2) Strombidium spp; (3)

Strombidium cf. capitatum; (4) Strombidium cf. conicum; (5) Tinitinnids; (6) Mesodinium cf. velox; (7) cf. Pelagostrobilidium; (8) Balanion comatum; (9) cf. Urotricha;

(10) Choreotrichida; (11) Oligotrichida; (12) Askenasia; and (13) Didinium. Assigned trophy strategies are displayed as letters, accompanying the morphotypes

numbers: (a) Specialist Non-Constitutive Mixotroph (SNCM); (b) General Non-Constitutive Mixotroph (GNCM); (c) Selective phagotroph (SP); (d) Generic phagotroph

(GP); and (e) Carnivore (Cv). Note that some of displayed cells of M. rubrum (1a) are grabbing particles that are not their preferential prey (Teleaulax spp).
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TABLE 1 | Ciliate morpho-types, trophy mode, their assigned potential preys in

this study and references used to support preys assignment.

Number

(Figure 1)

Ciliate

morpho-type

Prey References

SPECIALIST NON CONSTITUTIVE MIXOTROPH (SNCM)

1 Mesodinium rubrum Teleaulax spp. Smith and Hansen,

2007; Peltomaa and

Johnson, 2017

GENERALIST NON CONSTITUTIVE MIXOTROPH (GNCM)

2 Strombidium spp Pico eukaryotes

and small

nano-flagellates

Johnson, 2011;

Schoener and

McManus, 2012; this

study

3 Strombidium cf.

capitatum

Pico eukaryotes

and small

nano-flagellates

Johnson, 2011;

Schoener and

McManus, 2012; this

study

4 Strombidium cf.

conicum

Pico eukaryotes

and small

nano-flagellates

Johnson, 2011;

Schoener and

McManus, 2012; this

study

SELECTIVE HERBIVORE (SH)

5 Tintinnids Pico eukaryotes

and small

nano-flagellates

Montagnes, 2012

6 Mesodinium cf.

velox

Nanoflagellates Tamar, 1986

7 cf.

Pelagostrombilidium

Pico eukaryotes

and small

nano-flagellates

This study

GENERIC HERBIVORE (GH)

8 Balanion comatum 5µm <prey>

15µm

Jakobsen and

Montagnes, 1999

9 cf. Urotricha 10µm <prey>

25µm

This study

10 Choreotrichida 10µm <prey>

25µm

This study

11 Oligotrichida 10µm <prey>

25µm

This study

CARNIVORE (CV)

12 Askenasia 15µm <prey>

40µm

M. rubrum

Earland and

Montagnes, 2002; this

study

13 Didinium 15 µm<prey>

40µm Including

ciliates

Hewett, 1988

Prey Definition
FlowCAM IV allowed for identification of different ciliate
morphotypes, and for the identification of prey items inside
many of the ciliates. Food items were identified from food
vacuoles, and based on their characteristics (size, shape, color),
they were related to phytoplankton groups when possible.
While some morphotypes were always observed with similar
food vacuoles, others were observed with food vacuoles of
different shapes, colors and sizes, indicating selective or generic
prey preferences among ciliates types (Figure 1). Potential prey
items used in the modeled grazing rates were assigned to

each ciliate morphotype based on FlowCAM images (Figure 1;
Table 1).

Potential Grazing
The potential grazing of different ciliate groups were estimated
by calculating ingestion and clearance rates (see Table 2

for nomenclature) following Hansen et al. (1997), with the
exception ofMesodinium rubrum (see below). Generic maximum
ingestions and clearance rates (normalized to predator volume)
at standard temperature of 20◦Cwere estimated from the volume
of the ciliate cell using parameters from Hansen et al. (1997).

Imax = 50.1 · Vcil
−0.225 (1)

Cmax = 70.6 · 10−6
· Vcil

−0.225 (2)

From these, the half-saturation food density was found

Km =
Imax

Cmax
= 0.710 · 106 (3)

equivalent to 0.710 ppm. Cell-specific ingestion rates for the
different ciliate groups were subsequently calculated as a function
of food density of preferred prey (d) and water temperature (T)
using the overall average Q10 =2.8 from Hansen et al. (1997).

Icell(d,T,Vcil) = Vcil ·
Imax · d

(Km + d)
· Q10

(T−20)
10

= Vcil ·
50.1 · Vcil

−0.225
· d

(Km + d)
· Q10

(T−20)
10 (4)

The ingestion rate for the entire ciliate group was found by
summation across all cells within the group and accounting for
the sampling volume

I(d,T,Vcil) =
1

Vsample
·

∑
Icell(d,T,Vcil) (5)

This volume-specific ingestion rate was subsequently converted
into carbon units with a scaling factor (rC :V ), which was
calculated from the volume-to-carbon conversion formula (f ())
of Menden-Deuer and Lessard (2000) applied to the sample
distribution of prey cell volumes (Vprey)

rC :V =

∑
cellcarbon∑
cellvolume

=

∑
f (Vprey)∑
Vprey

(6)

When prey densities (d) were smaller than the half-saturation
food density (Km), potential food limitation is indicated. When
food-limitation is observed, the prey ingested by a given ciliate
is smaller than what it could potentially ingest based on its body
volume, thus resulting grazing rates are smaller than expected for
that ciliate.

For M. rubrum, potential grazing was defined based on
cell counts, as daily specific prey intake has previously been
reported to vary between 0.4 and 5 Teleaulax cells for each
Mesodinium (Smith andHansen, 2007). Three potential ingestion
scenarios were estimated based on minimum (0.4 cryptophyte
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TABLE 2 | Variables used for estimating ciliate grazing rates in Eq. 1–6.

Variables Unit Description

T ◦C Water temperature

Vsample ml Volume of the FlowCAM sample

Vcil µm3 Ciliate cell volume

Vprey µm3 Prey cell volume

d µm3
(prey)

ml−1 Prey density

Km µm3
(prey)

ml−1 Half-saturation for food density

Cmax µm−3
(predator)

ml d−1 Volume-specific maximum

clearance rate

Imax µm3
(prey)

µm−3
(predator)

d−1 Volume-specific maximum

ingestion rate

Icell (d,T,Vcil ) µm3
(prey)

d−1 Volume-specific ingestion rate

per ciliate cell

I(d,T,Vcil ) µm3
(prey)

ml−1 d−1 Volume-specific ingestion rate for

ciliate group

cells Mesodinium−1 day−1), maximum (5 cryptophyte cells
Mesodinium−1 day−1), and average (2.7 cryptophyte cells
Mesodinium−1 day−1). Daily intake rates (min, average, and max
in cells L−1 d−1) were calculated by scaling the cell-specific rates
with the observed M. rubrum cell density. Finally, these daily
intake rates were converted into carbon units by multiplying with
the average individual cryptophyte C biomass of that particular
sampling day.

STATISTICAL ANALYSIS

To evaluate the seasonality of the different ciliate morphotypes, a
linear mixed model was fitted to quantify the biomass variation
across months. Biomass observations were log-transformed to
account for scale-dependent variability. The model included a
random factor for the seasonal variation between the years and
residual variation included an autoregressive process AR(1) to
account for potential autocorrelation between the daily samples.
The mixed effect models were fitted in R (R Core Team, 2017),
using the nlme package (Pinheiro et al., 2017).

Prey-predator biomasses dynamics were quantified as the
distance between consecutive observations, as the distance is
proportional to differences in biomasses of both prey and
predator. The distances were calculated as the Euclidean distance
of log-transformed biomass data of phytoplankton and ciliates,
which were separated according to the ciliates trophic strategies
and their assigned preys (Table 1). Therefore, the Euclidean
distance was used as a descriptor of the prey-predator dynamics,
with longer distances associated with more variability in the
biomasses of prey-predator pairs. As the study does not
encompasses two full year cycles, differences between years were
assessed considering only the productive season (15 March until
1 November).

To summarize the potential C flux through ciliates, simplified
estimates of prey C biomass and potential grazing by the
different trophic strategies were calculated as daily average for the
productive season of each year.

RESULTS

Physical Environment
Water temperature in the study area varied seasonally from
∼4◦C in winter to 20◦C during summer, whereas salinity
variation did not exhibit any consistent seasonal pattern, except
for a small decrease during winter (Figure 2A). Although the
2 years appeared similar, subtle differences were observed:
(i) spring warming was faster and summer temperatures
remained at maximum level longer in 2016 than in 2017
(Figure 2A); (ii) salinity was lower in 2016 (Figure 2A). DIN
varied seasonally, from >20µM in winter to < 2µM in
summer, as well as inter-annually with 2-fold higher winter
concentrations observed in 2016 in comparison to 2017
(Figure 2A).

Phytoplankton and Microzooplankton
Overall Dynamics
Interannual variations were observed, with considerably higher
phytoplankton biomass in 2016 (Figure 2B), and higher ciliate
biomass in 2017 (Figure 2C). The low phytoplankton biomass
in 2017, compared to 2016, was mainly associated with lower
abundance of cryptophytes, small nano-flagellates, and pico-
eukaryotes in 2017 (data not shown). The average ciliate
biomass for the entire study period was 22.3 µg C L−1, and
the average biomass during the productive season (March–
November) was 12.3 and 55.8 µg C L−1 in 2016 and
2017, respectively. Heterotrophic dinoflagellates were also more
important in 2017 than in 2016 with average biomass during
the productive season of 4.45 and 2.37 µg C L−1, respectively.
Overall, heterotrophic dinoflagellate biomass was much smaller
than ciliate biomass, averaging 2.72 µg C L−1 for the entire
period, although biomass peaks could reach up to 40 µg C
L−1 (Figure 2D). Higher summer biomasses of heterotrophic
dinoflagellates were associated with increased abundance of
large-sized heterotrophic dinoflagellates, such as Polykrikos,
Protoperidinium, and Warnowiids.

The higher ciliate biomass in 2017 was associated with
increasing abundance of representatives of all trophic strategies
(Table 1). The dominance of heterotrophs (herbivores +

carnivores) was higher during spring and summer of 2016, while
2017 was characterized by slightly varying high biomass for
most of the year (Figure 3A). Biomass of GNCM (mixotrophs
excluding M. rubrum) was generally higher in 2017 than in
2016, with values peaking in late spring and summer for both
years (Figure 3B). The biomass proportion between GNCM and
heterotrophic ciliates was variable and higher contributions (up
to 90% of the ciliates biomass, excluding M. rubrum, in 2017)
of GNCM were recorded in summer (Figure 3C). Biomass of
M. rubrum was also higher in 2017 and generally above 10 µg
C L−1 from April to October (Figure 3D).

Seasonality of Ciliate Morphotypes
Some ciliate morphotypes exhibited distinctive and recurring
seasonal pattern (Table 3). cf. Pelagostrombilidium occurred
during winter at temperatures <10◦C, whereas Askenasia
and Strombidium cf. capitatum were associated with higher

Frontiers in Marine Science | www.frontiersin.org August 2018 | Volume 5 | Article 272126

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Haraguchi et al. Ciliate Trophic Strategies and Phytoplankton Dynamics

FIGURE 2 | Time series of abiotic variables (A), carbon biomass of all phytoplankton cells (B), all ciliate cells (C), and all heterotrophic dinoflagellates cells (D) in inner

Roskilde Fjord during the study period.

temperatures, mainly during late spring and summer
(Figures 4A–C). Other ciliate morphotypes exhibited distinct
seasonal patterns of high biomass, although their presence was
not restricted to a specific seasonal window. S. cf. conicum

and tinitinnids were most abundant during late spring and
summer, but also found during autumn (Figures 4D,E). Other
morphotypes, such as cf. Urotricha (Figure 4F), did not display
any pronounced recurring seasonal pattern despite of the high
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FIGURE 3 | Carbon biomass of three main ciliate groups in Roskilde Fjord (A, B, D) and the biomass proportion between GNCM and heterotrophic ciliates (C). The

black dashed horizontal lines in panels (A, B, D) represent the average of total ciliate biomass (22.26 µg C L−1) over the entire study period. The thick blue line in

panel c represents the centered moving average, using a 15 days window.

temporal variability. In spite of the significant differences among
months (Table 3), some ciliates (Didinium,Mesodinium cf. velox,
and Choreotrichida) did not have any clear occurrence pattern
over the study period.

Potential Grazing by Ciliates
Potential grazing varied broadly over time for the five trophic
strategies of ciliates and their associated preys (Table 1),
displaying highly variable patterns of potential food limitation
(Figure 5).

Temporal variations in biomass ofM. rubrum (SNCM) and its
cryptophyte prey were inversely related (Figure 5A). Teleaulax
spp. was most abundant in winter when SNCM biomass was

low, and decreased in late spring and summer when blooms of
M. rubrum occurred. The seasonal pattern in SNCMbiomass also
shifted between the 2 years; the biomass was low in summer 2016,
whereas it remained high from mid-April until late October in
2017.

GNCM ciliates attained similar biomass levels in 2016 and
2017, but their potential ingestion was lower in 2017 due to
stronger food-limitation (Figure 5B), which was observed in
98% of the occasions in 2016 and in all observations in 2017.
Consequently, biomass and potential ingestion observations were
decoupled for this group. On the other hand, it also indicates
strong grazing pressure on small phytoplankton cells by these
ciliates during spring and summer (Figure 5B).
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TABLE 3 | Seasonality test for the log-transform of carbon biomass of different

ciliate morphotypes.

Ciliate morphotype P (month)

Mesodinium rubrum 0.150

Strombidium spp. 0.464

Strombidium cf. capitatum <0.001

Strombidium cf. conicum 0.014

Tintinnids 0.352

Mesodinium cf. velox <0.001

cf. Pelagostrombilidium <0.001

Balanion comatum 0.086

cf. Urotricha 0.577

Choreotrichida 0.007

Oligotrichida <0.001

Askenasia 0.006

Didinium <0.001

Significant variation (P < 0.05) among months are highlighted in bold.

SH ciliates were often food limited (82% of observations),
even during winter and spring (Figure 5C). SH grazing impact
varied interannually and was most intense from May to July in
2016, and from June to October in 2017. SH food limitation was
observed more frequently in 2017 than in 2016 (60 and 77% of
the observations in 2016 and 2017, respectively).

GH ciliates were food limited in 49 and 66% of the
observations in 2016 and 2017, respectively (Figure 5D). The
potential grazing for this group of ciliates seemed to be more
intense in autumn 2017 compared to autumn 2016, and potential
food limitation appeared to have started earlier in 2017 (around
April) than 2016 (around June). A shift in the most abundant
morphotype was observed between years, with Choreotrichida
being the main GH morphotype in 2016, and cf. Urotricha in
2017. Together with SH, these ciliates appeared to be the main
grazers during the winter period.

The carnivore ciliates (Cv) had high grazing rates during
summer (Figure 5E), associated with high biomass of Askenasia
(Figure 4B), but carnivores grazing can also be high in other
periods, such as the spring bloom with high abundance of
Didinium (Figure 5E). During 2016, potential grazing had higher
peaks, observed in distinct periods of the year, while potential
grazing rates had lower maximum values in 2017 but were
consistently higher throughout a longer period (until autumn).
Food limitation was observed in 32% of the observations (14% in
2016, and 55% in 2017), and as for the other trophic strategies,
more frequent in 2017.

Interannual Differences in Prey-Predator
Dynamics
Dynamics of prey-predator biomasses were analyzed for the
productive season (15 March to 01 November) of each
year (Figure 6). The arrows represent the distance between
observations, and longer arrows can be used as a proxy for higher
variability in the prey-predator relationships.

For the SNCM-prey coupling, the average distance between
observations was lower in 2016 (d = 1.19) than in 2017

(d = 1.36), indicating higher variability in 2017. For this pair,
variation between sampled days were higher (41% higher than
the rest of productive season) during late spring to summer (day
of year 110–200) in 2016 (Figure 6A). Distances in 2017 were
more evenly distributed, with the distances found in late spring to
summer, being only 8% longer than for the rest of the productive
season (Figure 6B).

For GNCM-prey and SH-prey pairs, average distance between
observations were higher in 2016 than in 2017, with d2016 = 1.48
and d2017 = 0.74 for GNCM; and d2016 = 0.94 and d2017 = 0.85
for SH (Figures 6C–F).

GH-prey dynamics did not appear to differ between
years, with d = 1.07 and d = 1.10 for 2016 and 2017,
respectively (Figures 6G,H). Similarly, Cv.-prey observations
average distance did not vary between years (d2016 = 1.22 and
d2017 = 1.26), however differences over specific periods of the
productive season were observed for this group (Figures 6I,J).
From spring to early summer (day of year 75–160) in 2016,
distances were about 15% longer than for the rest of the period,
while in 2017, distances in the same period were 58% longer than
the rest of the productive season.

A simplified scheme (Figure 7) summarizes the daily average
biomass for each group of phytoplankton preys and the potential
daily C intake for the different ciliate trophic strategies during
the productive season of each year. In 2016, biomasses of all
phytoplankton prey groups were higher than in 2017, except for
nano-flagellates (5–15µm). The intake by ciliates was generally
lower in 2016, with an overall relative removal of about 9%
of phytoplankton daily standing biomass (Figure 7A). The
potential grazing impact over the phytoplankton varied among
the different trophic strategies, being low for SNCM and GH
(∼3% of C prey biomass being grazed) and higher for GNCM
and SH (about 19 and 14% of C prey biomass being grazed,
respectively). In 2017, phytoplankton standing biomasses were
modest when compared to the previous year, and potential
grazing was higher for most ciliate trophic strategies (Figure 7B).
The relative impact of grazing by the ciliates was about 31% of
phytoplankton standing biomass in 2017, with GH being able
to remove 12% of its prey biomass, while GNCM and SNCM
being able to graze 37 and 46% of their preys standing biomasses
daily.

DISCUSSION

Our results underline that microzooplankton, especially ciliates,
can be an important component of the pelagic food web in
temperate nutrient-rich estuaries at all times. On top of that, we
also demonstrate that different components of the heterotrophic
protist plankton have distinct ecological strategies, each affecting
the phytoplankton community in its own way. Even though our
results are based on standing biomasses and do not include
any direct rate measurement (neither primary production nor
grazing), we believe that the high temporal resolution data
on both phytoplankton and microzooplankton support our
findings. Furthermore, our results explore the diets of different
ciliates in detail, revealing the existence of various prey-predator
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FIGURE 4 | Biomass variations over time for selected ciliates morphotypes: cf. Pelagostrombilidium (A), Askenasia (B), Strombidium cf. capitatum (C), S. cf. conicum

(D), Tintinnids (E), and cf. Urotricha (F).

couplings that are likely to influence the community functioning
in distinct ways. Additionally, we structured potential grazing
calculations as proposed by Hansen et al. (1997), following
the Michaelis-Menten kinetics, in contrast to the rectilinear
model approach suggested by other authors, e.g., Zervoudaki
et al. (2009). The Michaelis-Menten kinetics allow grazing
estimation at varying prey concentrations, whereas a rectilinear
model assumes a linear increase in ingestion rate until food
saturation is reached, which can overestimate the potential
grazing.

Classically, the relative importance of trophic pathways of
phytoplankton primary production in any specific ecosystem is
highly dependent on the balance between nutrient inputs and

recycling, with increasing dominance of larger phytoplankton
species and mesozooplankton in areas with higher input of
new nutrients (Azam et al., 1983; Fenchel, 1988; Buitenhuis
et al., 2006). Although Roskilde Fjord (RF) is a nutrient
rich system (Staehr et al., 2017), its inner portion, which
is also the area of interest in this study, has always been
dominated by small phytoplankton organisms (<20µm), not
diatoms, evidenced by the long term monitoring data. Besides
microzooplankton, potential consumers of phytoplankton in RF
are pelagic mesozooplankton and benthic filter feeders; however,
benthic grazers were not sampled in this study, therefore we
cannot compare directly the relative importance of pelagic vs.
benthic grazing. We also acknowledge that protozooplankton
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FIGURE 5 | Temporal dynamics of assigned phytoplankton prey, ciliate biomass, and potential grazing rates for the different trophic strategies: SNCM, Specialist Non

Constitutive Mixotroph (A), GNCM, Generalist Non Constitutive Mixotroph (B), SH, Selective Herbivore (C), GH, Generic Herbivore (D), and Cv, Carnivore (E). The

upper limits of the yellow colored area indicate the half-saturation constant for food density (Km), thus when prey concentrations are smaller than Km (within the yellow

area) it indicates potential food limitation. As SNCM potential grazing (A) was estimated in a distinct way, the Km criteria was not used for this trophic strategy. For

further details on Km definition and calculation, see “Potential Grazing” in the section Materials and Methods.

grazing in RF was only calculated for larger protozooplankton
(ciliates and heterotrophic dinoflagellates). Other organisms,
such heterotrophic nano-flagellates and small heterotrophic
dinoflagellates (<15µm), were not properly recorded by any
of the methods used in this study, and likely increase the real
contribution of protozooplankton grazing.

Heterotrophic dinoflagellates can be an important component
of microzooplankton and microbial food webs (Sherr and Sherr,
2007), but their importance in RF seems low compared to ciliates.
Heterotrophic dinoflagellates biomass was less than 10% of ciliate
biomass in most samples, even though it was higher in a few

instances. On top of that, dinoflagellates have lower growth
and grazing rates than ciliates (Hansen, 1992; Jakobsen and
Hansen, 1997), which indicates a minor role of this group for
carbon cycling in RF. Seasonality of heterotrophic dinoflagellates
was marked by the increased occurrence of large sized cells
during summer. The observed increase in size of heterotrophic
dinoflagellates is in agreement with what has previously been
described for other open areas, such as Kattegat and Kiel Bight
(Smetacek, 1981; Hansen, 1991), and might reflect an adaptation
in the dinoflagellate assembly to the larger prey items. However,
summer is also characterized by higher biomass of ciliates, and
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FIGURE 6 | Prey-predator biomass dynamics for the five trophic strategies in 2016 (left) and 2017 (right): SNCM, Specialist Non Constitutive Mixotroph (A,B), GNCM,

Generalist Non Constitutive Mixotroph (C,D), SH, Selective Herbivore (E,F), GH, Generic Herbivore (G,H), and Cv, Carnivore (I,J). Arrows represent the distance

between observations (Euclidean distance) and color gradient indicate the day of year. Text depicts the phytoplankton prey assigned for each predator group (green),

and the average Euclidean distance (d) between observation in the productive season of each year (black). Right limits of the yellow colored area indicate the

half-saturation constant of food density (Km), and the observations to the left, within the colored area, indicate potential food limitation (except for SNCM, see

explanation in Figure 5).

the increasing proportion of large heterotrophic dinoflagellates
might indicate a change in ecological strategy which aims to avoid
competition with ciliates that graze on smaller phytoplankton.

Salinity variations are mainly associated with freshwater
discharges during winter, enhancing dissolved inorganic
nitrogen (DIN) concentrations that are mainly consumed by
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FIGURE 7 | Simplified scheme showing the daily average biomass of each phytoplankton prey group and the average grazing rates of each ciliate trophic strategy in

2016 (A) and 2017 (B). Averages calculated only for the productive season (March to November).

phytoplankton during spring (Staehr et al., 2017). Although
inter-annual differences in salinity were modest, DIN inputs
were higher in 2016. This could explain the intense spring
bloom observed in 2016 compared to the modest one in 2017,
but it cannot explain entirely the consistently higher biomass
of all ciliate types and heterotrophic dinoflagellates in 2017
compared to 2016. Differences in phytoplankton biomass
could be due to the higher microzooplankton biomass in 2017
compared to 2016, indicating a more intense grazing in 2017.
Thus, it is likely that phytoplankton is top-down controlled by
microzooplankton in RF, and that due to fast turnover rates
of both communities, primary production is higher despite
relatively lower phytoplankton biomasses. Additionally, it is
likely that the high DIN inputs in the winter of 2016 disrupted
the coupling between phytoplankton and their ciliate predators
that was better depicted in 2017. DIN concentrations were
depleted to similar levels after the spring bloom in both years,
indicating that higher concentrations in the winter of 2016
probably supported the larger bloom observed in this year.
This large perturbation in the prey-predator coupling at the
beginning of the productive season probably shaped also the
rest of the year, causing interannual differences in prey-predator
coupling, and reduced the number of observations with food-
limitation in 2016. The prey-predator coupling varied among
trophic strategies, resulting in the following contrasts between
the studied years: (1) larger variation in the coupling in 2016
than in 2017 (for GNCM and SH); (2) differences in the timing
when variations were observed during the productive season
(SNCM and Cv.); and (3) changes in the dominance of the main
morphotype (GH).

Previous studies have described various seasonal dynamics
of ciliates in coastal and estuarine areas, and their importance
in the trophic energy transfer. In Gulf of Maine, distinct ciliate
assemblages were dominant at specific seasons, with larger
ciliates found in spring, associated with larger preys, and smaller
ciliates in other periods, when available prey were smaller

(Montagnes et al., 1988). Conversely, ciliates in Coos Bay were
reported to control small-sized phytoplankton throughout the
year (Cowlishaw, 2004). In our study, ciliate biomass and their
estimated potential grazing rates were in the same range as
biomass of phytoplankton prey, especially for sizes <15µm and
cryptophytes, indicating selective pressure by ciliates grazing
on small phytoplankton cells. The phytoplankton groups with
lower standing biomass in 2017 compared to 2016 (cryptophytes,
pico-eukaryotes, and small nano-flagellates) were subject to
intense grazing pressure by different ciliate morphotypes, which
probably substituted each other over the year in succession.
These ciliate morphotypes also tended to be more food limited
(GNCM and SH). Furthermore, as potential ingestion rates were
modeled from standing biomass and not directly measured,
it is likely that our grazing rates, especially for 2017, are
underestimated due to intense grazing that resulted in low
standing biomass of some phytoplankton groups. Yet, they
provide valuable information on potential impact of ciliates,
suggesting that ciliate grazing is an important driver for the
phytoplankton succession, and that the microbial loop is a key
pathway in the RF food web, despite of the high new nutrient
input from land, which was assumed to promote the short-chain
food web (Azam et al., 1983). Thus, ciliates might be a key
player in the overall trophic transfer in RF, as an intermediate
step between small-sized phytoplankton and mesozooplankton
(Calbet and Saiz, 2005) and benthic filter feeders (Zeldis et al.,
2004).

Organism with acquired phototrophy, including ciliates, are
considered to have an increased gross growth efficiency, and
therefore enhancing carbon export and nutrient cycling (Stoecker
et al., 2009, 2017; Mitra et al., 2016). Experimental studies have
shown that among non-constitutive mixotrophs, the acquired
capability of photosynthesis can increase the specific growth
rates. However, this should not be generalized, as specific
growth rate varies among species, and for some mixotrophs,
it can still be low compared to autotrophs or heterotrophs
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(Jakobsen et al., 2000; Jakobsen and Strom, 2004; Schoener
and McManus, 2012). Despite the fact that these organisms
can often dominate microzooplankton communities and be
responsible for a considerable proportion of primary production
and/or grazing, in situ ecological data describing processes and
importance of those organisms are still sparse (Stoecker et al.,
2017). It is hypothesized that autotrophic and heterotrophic
organisms dominate during the developmental phase of the
ecosystems, while mixotrophs dominate in mature systems,
benefiting from a flexible nutrition (Mitra et al., 2014). Our study
shows that mixotrophic nutrition is increasingly important at the
decline of spring bloom and during summer, when the system
shifts from net autotrophy to net heterotrophy (Staehr et al.,
2017). Additionally, our results demonstrated that mixotrophs
(SNCM and GNCM, and even morphotypes among GNCM)
have distinct temporal dynamics, reflecting different ecological
strategies.

Mesodinium rubrum acquires its chloroplasts from
specific prey (Teleaulax spp.), taking strong control over
the photosynthetic apparatus of its prey, and being able
to survive at low prey concentrations (Smith and Hansen,
2007; Peltomaa and Johnson, 2017). These organisms have
been the focus of many ecophysiological studies. Blooms
of M. rubrum are common in coastal areas and have been
associated with occurrence of cryptophytes (Johnson et al.,
2013; Hamilton et al., 2017; Lips and Lips, 2017). Our data
shows that periods with high M. rubrum biomass are associated
with low cryptophyte biomass, except for the spring bloom
(March–April). Even though high biomass of M. rubrum
occur around summer, M. rubrum was present in most
(>95%) of samples during all seasons. Using the higher
magnification of FlowCAM in 2017 allowed us to observe cell
discolouration and size reduction of M. rubrum individuals
during late summer/autumn, coinciding with the period of
higher temperatures and low DIN in RF. At the same time,
cells of M. rubrum were observed capturing particles other
than cryptophytes with their oral tentacles (see Figures 1,1a-
lower row). This emphasizes that the ecological flexibility of
M. rubrum remains poorly understood, but that the flexibility
could also explain the apparent success of M. rubrum in
many environments and, in the case of RF, over the entire
year.

In contrast toM. rubrum, oligotrichids that retain chloroplasts
(GNCM), do not seem to be able to maintain them and need to
feed at higher rates than M. rubrum, to replace aging plastids at
higher rate (Jakobsen and Strom, 2004; Schoener and McManus,
2012). The plastid turnover rate depends on the availability of
the plastid source, and GNCM usually use plastids of different
origin, although they have a preferred type, depending on the
species (Stoecker et al., 1988; Stoecker and Silver, 1990; Schoener
andMcManus, 2012). Under controlled conditions, Strombidium
rassoulzadegani had newly acquired plastids positioned at the
cell periphery within 30min after being offered new prey, and
it replaced all plastids after 2–3 days, yielding a plastid turnover
rate slower than other Strombidium species (Stoecker and Silver,
1990; Schoener and McManus, 2012). Thus, GNCM can ingest
phytoplankton prey at similar rates as heterotrophic ciliates

(Jakobsen and Strom, 2004; Schoener and McManus, 2012),
having a potential impact on carbon cycling, especially when
larger species are present. GNCM in our study were composed
of different species, with higher biomasses being associated
with the proliferation of large morphotypes (Strombidium cf.
conicum and S. cf. capitatum). These morphotypes were usually
found during spring and summer, but higher biomasses were
observed mainly in late spring. As those ciliates were food limited
in most occasions (<95% of observations), their estimated
grazing rates were around 10 times smaller than their potential
ingestion based on cell volume. This indicates that despite of
having a strong presence in RF, grazing imposed by mixotrophs
is lower than by heterotrophic ciliates. On the other hand,
mixotrophic nutrition supports their survival until suitable prey
is encountered.

High volatility in the dominance of different types of
ciliates was observed in this study. The temporal dynamics of
the different trophic strategies demonstrated that mixotrophs
(SNCM and GNCM) and carnivores exhibited strong seasonality
in their occurrence and potential impact, predominating during
summer. Conversely, herbivores (SH and GH) appeared to
be widely distributed throughout the year, but apparently
with different ecological strategies. GH types are present in
low concentrations in most of the samples; whereas SH
types occur with variable importance over the annual cycle
(cf. Pelagostrobilidium in winter and tintinnids in summer),
but together covering different seasons. This illustrates how
complex and flexible ciliate communities can be, showing a
great potential to control and drive changes of phytoplankton.
We also observed a gradient in the prey-predator coupling
among trophic strategies of ciliates, in which the more
selective ciliates tend to be more efficient in removing their
prey and are more often food limited, while the opposite
is observed for ciliates that have a wider prey range, with
exception of SNCM. However, those patterns are subjected
to variability introduced by exogenous forcing (i.e., nutrient
loads).

CONCLUSION

The use of in-flow techniques supports the analysis of
phytoplankton and their microzooplankton grazers with
high frequency. Additionally, the use of live samples
further allows exploring trophic characteristics of ciliates,
providing insights to the trophic strategies and specific prey
classification. Ciliates are likely the main pelagic grazers
in RF and probably play an essential role in the food web,
linking primary production of small-celled organisms to
higher trophic levels. Although ciliates are most abundant
during summer, they are still important in other seasons. This
is due to the range of different ecological strategies within
the diverse ciliate community, combining different trophic
strategies with different physiological adaptations. Thus, the
ciliate community structure is highly complex and most
likely an important driver for structuring the phytoplankton
community.
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The inter-annual dynamics of the photosynthetic ciliateMesodinium rubrum in the central

Gulf of Finland in spring-summer continuum during 5 years were followed. The analysis

was mainly based on high-resolution measurements and sampling in the surface layer

along the ferry route Tallinn-Helsinki. The main purpose was to analyze the dynamics

of M. rubrum biomass, its contribution to the photosynthetic plankton biomass, and

the influence of water temperature and variations of inorganic nutrients in the surface

and sub-surface layer on its dynamics. The analysis revealed that the outcome of the

M. rubrum bloom in spring was largely related to the surface layer water temperature—in

the years of earlier warming, the higher biomass of this species was formed. The

photosynthetic ciliate was an important primary producer in all studied years during the

late phase or post-spring bloom period in the Gulf of Finland. The maximum proportion

ofM. rubrum in the photosynthetic plankton community was estimated up to 88% in May

and up to 91% in June.We relate the observed post-spring bloom decrease of phosphate

concentrations in the surface layer to the dominance and growth of M. rubrum. We

suggest that this link can be explained by the vertical migration behavior of M. rubrum

and phosphate utilization in the surface layer coupled with inorganic nitrogen assimilation

in the sub-surface layer. Thus, the dynamics of M. rubrum could strongly influence

the amount of post-spring bloom excess PO3−
4 in the euphotic layer and the depth of

nitracline in the Gulf of Finland.

Keywords: Mesodinium rubrum, spring bloom, nutrients, stratification, Baltic Sea

INTRODUCTION

Phytoplankton production, together with the terrestrial organic carbon load, is the largest primary
source of organic carbon to the Baltic Sea (Kulinski and Pempkowiak, 2011). As total annual
ecosystem respiration in temperate estuaries and estuarine type seas like Baltic Sea exceeds gross
primary production, the temporary shift to autotrophy state only occurs during seasonal and
episodic bloom events of photosynthetic plankton when photosynthesis exceeds total system
respiration (Cloern et al., 2014). In the Baltic Sea, during the phytoplankton spring bloom,
up to 60% of annual carbon fixation takes place, and 40–80% of this fixed carbon sinks out
from the surface layer (Heiskanen, 1998; Tamelander and Heiskanen, 2004). The spring bloom
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leads to depletion of inorganic nutrients in the euphotic layer and
through the sedimentation of phytoplankton-derived organic
carbon to the acceleration of benthic respiration and nutrient
regeneration rates (Conley and Johnstone, 1995).

Spring bloom in the Baltic Sea is co-dominated by diatoms
and dinoflagellates (e.g., Kononen and Niemi, 1984; Wasmund
and Uhlig, 2003). The late phase of the spring bloom (in
May) in the Gulf of Finland is dominated by vertically
migrating dinoflagellates together with ciliates (Heiskanen,
1995; Höglander et al., 2004; Lips et al., 2014). Ciliates
are an important trophic link between primary producers
and metazoa consuming a significant fraction of small-
sized phytoplankton and bacterioplankton production and are
important in remineralization of macronutrients (Rivkin et al.,
1999; Calbet and Landry, 2004). Besides this, ciliates can
also be significant contributors to primary production through
mixotrophy which is the occurrence of phagotrophy and
phototrophy in the same organism. Mixotrophic oligotrichs have
been reported both in freshwater and in seawater ecosystems
(Esteban et al., 2010).

Mass occurrences of photosynthetic ciliate Mesodinium
rubrum Lohmann 1908 (Myrionecta rubra Jankowski 1976) are
reported around the world (e.g., Mackenzie and Gillespie, 1986;
Crawford, 1989; Wilkerson and Grunseich, 1990; Cloern et al.,
1994; Johnson et al., 2013; Kang et al., 2013). In the Baltic Sea,
the highest abundances/biomasses and largest size distribution
of M. rubrum are observed after the diatom-dinoflagellate
dominated spring bloom, usually in May–June (Lindholm, 1985;
Passow, 1991; Rychert, 2004; Thamm et al., 2004). The peak
of M. rubrum biomass mostly coincides with the period when
nitrates are exhausted from the upper mixed layer and the
increase of photosynthetic biomass is mostly regarded to be based
on regenerated nutrients (according to Dugdale and Goering,
1967).

M. rubrum is extremely mobile, known to be fastest autotroph
in the sea with a swimming velocity that is reported to reach
8.5mm s−1 (30m h−1; Smayda, 2010) and showing marked
phototaxis and vertical migrations (Lindholm, 1985). Some
studies already a long time ago demonstrated the very high
rate of primary production of this species (e.g., Mackenzie and
Gillespie, 1986; Crawford, 1989; Stoecker et al., 1991; review
by Johnson, 2011). Increased temperature and water column
stability, decreased salinity and depletion of dissolved inorganic
nitrogen from the surface layer are known to have positive
influence to the occurrence and abundance of M. rubrum
(Lindholm and Mörk, 1990; Cloern et al., 1994; Montagnes
et al., 2008; Johnson et al., 2013) in different locations
worldwide. In several studies, the ability of directly utilize nitrate,
ammonium, dissolved organic nitrogen (Lindholm and Mörk,
1990; Wilkerson and Grunseich, 1990; Tong et al., 2015) and
phosphates (review by Lindholm, 1985; Tong et al., 2015) have
been reported. M. rubrum mass occurrences tend to develop
in a chemical environment where competing photosynthetic
species are a resource (nutrient) limited or are not able to
migrate vertically to exploit the pools of dissolved inorganic
nutrients below the euphotic layer. Ability to migrate vertically
complemented with efficient nutrient uptake has been considered

to enable M. rubrum to compete with phytoplankters (Stoecker
et al., 1991).

The main aim of this paper is to present the interannual
dynamics of photosynthetic ciliate M. rubrum in the central
Gulf of Finland in spring-summer continuum and to analyze
how the increase in mixotrophic ciliate biomass affects the
spatial distribution (both horizontal and vertical) and temporal
variation of nutrients in the stratified water column. We
hypothesize that the magnitude and intensity of M. rubrum
bloom has a significant impact on the inorganic nutrient
concentrations after the spring bloom and hence may influence
the outcome of summer phytoplankton blooms. The analysis
is based on high-resolution measurements and sampling
in the surface layer along the ferry route Tallinn-Helsinki
complemented with vertical profiling and sampling through the
water column at one station close to the ferry line. We recognize
that M. rubrum belongs to a species complex (Johnson et al.,
2016) and that our data may include M. major and/or multiple
variants of M. rubrum. However, since we did not measure
the diversity of genetic variants, we will refer to all observed
Mesodinium ciliates asM. rubrum.

MATERIALS AND METHODS

Study Region
The dataset analyzed was collected during 5 years (2009–
2012, 2014) in the central part of the Gulf of Finland, the
easternmost basin of the Baltic Sea (Figure 1). The Gulf of
Finland is a stratified elongated estuarine basin where the general
water movement in the surface layer is anticlockwise (Alenius
et al., 1998) but the dynamics of water masses are very much
meteorologically driven at the mesoscale. The surface layer
salinity in the area is typically between 4 and 6 g kg−1, decreasing
from west to east due to the major river discharge at the
eastern end of the Gulf and slightly from south to north due
to the anti-clockwise general circulation. A seasonal variation
of inorganic nutrient concentrations is observed in the Gulf of
Finland upper layer—minimum values in summer andmaximum
in winter. Nitrogen is considered the limiting nutrient in the
Baltic Sea, and after the development of thermal stratification
in spring the nitrogen-rich deeper layers are separated from
the nitrogen-depleted surface layer causing the rapid decline
in the phytoplankton biomass co-dominated by diatoms and
dinoflagellates. At the same time there can be observed the
residual amounts of phosphates and silicates in the surface layer
after the spring bloom (e.g., Tamelander and Heiskanen, 2004).
In summer, the strong stratification and nitrogen limitation give
competitive advantages for cyanobacteria (Lips and Lips, 2008)
able to fix molecular nitrogen and photosynthetic species able to
migrate vertically in the water column (Lips et al., 2011).

Measurements and Sample Analysis
Measurements were conducted using autonomous ferrybox
system (-4H- Jena Engineering GmbH) installed on board the
passenger ferry “Baltic Princess” (AS Tallink Grupp) plying
between Tallinn and Helsinki (Figure 1) in 2009–2012 and 2014.
Seawater was pumped through the measuring system from ∼4
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FIGURE 1 | Map of the Baltic Sea and the study area. Ferrybox route is shown as a solid line and Station AP5 as a black circle.

to 5m depth while the ferry was moving at an average speed of
15–16 knots. The temperature, salinity, and chlorophyll a (Chl
a) fluorescence were measured with the time resolution of 20 s
corresponding approximately to a spatial resolution of 160m.

Weekly-biweekly water sampling from up to 17 locations
along the 75-km-long ferry route was conducted using an
automatic refrigerating (4◦C) sampler (Sigma 900 MAX), being
part of the ferrybox system. Sampling dates and number of
samples collected for nutrient and phytoplankton analyses on
each date along the south-north transect are shown in Table 1.
Altogether 753 samples were collected from the surface layer in
five studied years and analyzed to determine the concentrations
of PO3−

4 , NO−

2 +NO−

3 , Chl a, and phytoplankton species
composition, wet weight, and carbon (C) biomass.

Sampling and measurements on board the research vessel
SALME were performed at the station AP5 (Figure 1) in spring-
summer 2010–2012 and 2014 (the sampling days and depths can
be seen in Figure 3). CTD measurements using an Ocean Seven
320plus CTD probe (Idronaut S.r.l.) equipped with a Seapoint
Chl a fluorometer were performed, and water samples with a
vertical resolution from 5 to 10m were collected. Collected water
samples were analyzed to determine the same parameters as from
ferrybox samples. On 20–21 May 2014, the 24 h campaign for
measurements and sampling was performed. Vertical profiles of
temperature, salinity, Chl a fluorescence and dissolved oxygen
content were registered together with phytoplankton sampling

with 2 h interval. Samples for nutrient analysis were collected
with 6 h interval.

Inorganic nutrients were analyzed with the automatic nutrient
analyzers µMac 1000 (Systea S.r.l.) and Lachat QuikChem 8500
Series 2 (Lachat Instruments, Hach Company). The nutrient
analyses were performed according to the guidelines of the
American Public Health Association (APHA, 1992; methods
4500-NO3 and 4500-P for µMac 1000) and recommendations
made byUSEPA, ISO, andDIN standards (methods 31-107-04-1-
D NO3 (Egan, 2000) and 31-115-01-1-I PO4 (Ammerman, 2001)
for the Lachat instrument). The lower detection range for PO3−

4
and NO−

2 +NO−

3 was 0.03 and 0.07µM, respectively.
The Chl a concentration in the water samples was determined

using Whatman GF/F glass fiber filters following extraction at
room temperature in the dark with 96% ethanol for 24 h. The Chl
a content from the extract was measured spectrophotometrically
(Thermo Helios γ) in the laboratory (HELCOM, 1988). Chl a
fluorescence measured on board the research vessel and by the
ferrybox system was calibrated against Chl a measured in the
water samples. For each device and season, a linear regression
equation between fluorescence and Chl a was found and used to
convert fluorescence values into Chl a content values.

Phytoplankton sub-samples (100ml) were preserved and
analyzed according to the HELCOM recommendations and
EVS-EN 15972:2011 standard. The wet weight biomasses
were calculated according to Olenina et al. (2006), and
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TABLE 1 | Ferrybox sampling dates and number of samples (n) in different years.

2009 n 2010 n 2011 n 2012 n 2014 n

5.04.2009 17 4.04.2010 17 2.04.2012 12 06.04.2014 9

12.04.2009 17 12.04.2010 17 11.04.2011 16 9.04.2012 10 13.04.2014 9

19.04.2009 17 19.04.2010 17 17.04.2011 16 16.04.2012 12 22.04.2014 10

26.04.2009 17 27.04.2010 15 24.04.2011 17 23.04.2012 12 28.04.2014 10

3.05.2009 17 3.05.2010 17 2.05.2011 16 1.05.2012 12 04.05.2014 11

10.05.2009 17 10.05.2010 17 8.05.2011 17 7.05.2012 12 15.05.2014 11

17.05.2009 17 17.05.2010 17 15.05.2011 16 14.05.2012 12 20.05.2014 11

24.05.2009 17 24.05.2010 17 22.05.2011 17 25.05.2014 11

31.05.2009 17 31.05.2010 17 1.06.2011 9 28.05.2012 12 01.06.2014 11

7.06.2010 16 7.06.2012 12

14.06.2009 17 14.06.2010 17 12.06.2011 9 10.06.2014 11

21.06.2009 17 21.06.2010 17 17.06.2012 12

28.06.2009 17 30.06.2010 16 26.06.2011 9 25.06.2012 12 25.06.2014 11

the phytoplankton carbon (C) content was calculated using
C:biovolume factors according to Menden-Deuer and Lessard
(2000). Carbon biomass of naked ciliates was calculated
according to the method described by Putt and Stoecker
(1989).

Calculations
For the years, when the autonomous profiler data were available,
the stratification parameter P

[
J m−3

]
was estimated after

Simpson et al. (1990) as

P =
1

h2 − h1

−h1∫

−h2

(ρA − ρ (z)) gzdz, ρA =
1

h2 − h1

−h1∫

−h2

ρ (z) dz

where ρ(z) is the density profile in the water layer between the
depths h1 and h2. The obtained estimates of P characterize the
strength of stratification between the depth of 40m (h2) where
nutrients were always available and the ferrybox sampling depth
of 4m (h1). The pre-processed CTD-profiles with a depth step of
0.5m acquired at station AP5 were used.

All correlations between the data series are given as Pearson
correlation coefficients. Only significant correlations are referred
with a p-value < 0.05.

The consumption rate of phosphates was estimated as
suggested by Lips et al. (2014) assuming that the temporal
changes in phosphate concentrations, using a large enough
number of analyses over the entire transect, were mostly related
to the consumption. A linear regression equation between the
measured phosphate concentrations and date (day of the year)
was found for each post-spring bloom period using the least
squares method. The slope of the found regression line was
taken as the estimate of the consumption rate of PO3−

4 (units
µM day−1). The related need for NO−

2 +NO−

3 was calculated
according to the Redfield ratio (N:P ratio 16:1).

RESULTS

Inter-Annual Changes in Sea Surface
Temperature and Salinity
The Gulf of Finland was partially ice-covered in 2009 and 2014,
and ice-covered in 2010, 2011, and 2012; however, in 2012 the ice
winter was 2 weeks shorter than on average. The spring warming
of the surface layer differed in timing and rate of temperature
increase in the studied years (Figure 2). The earliest warming
was observed in 2014 when the average cross-gulf surface layer
temperature exceeded 4◦C by 21 April and 5◦C 1 week later
(see Figure 2, where relevant dates are marked with vertical red
and black lines). The average cross-gulf surface layer temperature
exceeded 4 and 5◦C a few days earlier in 2009 compared with
2012 (Table 2). The warming of the surface layer in 2010 and
2011 was slower compared with other years, and spring 2011
was characterized by several warming-cooling periods in April-
May. Due to several cooling periods in spring 2011, the average
cross-gulf temperature stayed around 4◦C until 21 May.

The surface layer salinity (Figure 2) in spring-early summer
differed between the years, indicating the complex wind-driven
circulation patterns and mixing in the Gulf of Finland surface
layer in the studied years. On average, the lowest surface layer
salinity was registered in 2009 and the highest in 2011. Most
probably the high surface layer salinity in 2010 and 2011 was
caused by intense vertical mixing in winters 2009–2010 and
2010–2011, respectively. For instance, in winter 2010–2011, there
occurred two longer periods with westerly-southwesterly winds
resulting in estuarine circulation reversals (eastward flow in the
surface layer and westward flow in the deeper layers) that led
to intense vertical mixing and a temporal collapse of vertical
stratification (Liblik et al., 2013). The latter could also influence
the concentrations of nutrients in the surface layer at the onset of
the spring bloom.

A typical north-south gradient of the surface layer salinity
(on average, salinity is higher near the Estonian coast than near
the Finnish coast; e.g., (Kikas and Lips, 2016) was well seen in
spring 2009. In spring 2012, a water tongue with slightly lower
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FIGURE 2 | The temporal variation of horizontal distribution of temperature and salinity in the surface layer along the cross-gulf section in the Gulf of Finland in

2009–2012 and 2014. Data of daily measurements with a spatial resolution of 160m are used. Distance from the southern end of the study transect (see Figure 1) is

plotted on the y-axis. The days when the average cross-gulf temperature exceeded 4◦C (red line) and 5◦C (black line) are indicated.
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TABLE 2 | The warming of the surface layer: dates (Julian day) when the certain

average cross-gulf temperature was reached and dates when maximum

M. rubrum biomass was observed.

2009 2010 2011 2012 2014

≥4◦C 27.04 (117) 03.05 (123) 15.05* (135) 28.04 (119) 21.04 (111)

≥5◦C 03.05 (123) 12.05 (132) 21.05** (141) 05.05 (126) 28.04 (118)

≥6◦C 12.05 (132) 16.05 (136) 25.05** (145) 09.05 (130) 14.05 (134)

≥10◦C 30.05 (150) 07.06 (158) 07.06 (158) 27.05 (148) 24.05 (144)

Max MR BM 17.05 (137) 14.06 (165) 01.06 (152) 01.05 (122) 15.05 (135)

*First warming was registered on 27.04., after that, several colder periods with water

temperature around 4◦C were registered.

**Warming over 5◦C registered on 08.-12.05.2011 was followed by lower water

temperatures until 21.05.2011.

salinity occurred in the central part of the Gulf. The horizontal
distribution of salinity was uniform across the Gulf in March-
April-May 2014, while slightly less saline waters appeared in the
northern Gulf in June 2014 and the ordinary north-south salinity
gradient was established.

Vertical stratification of the water column at low temperatures
in April–early May is mostly controlled by the vertical
distribution of salinity. The strongest stratification in the upper
40m layer at station AP5 until mid-May was found in 2010 and
2012 (Figure 3) with stratification parameter varying from 32.5
to 45.7 J m−3 and from 34.5 to 46.9 J m−3, respectively. At the
same time, the stratification was weak in April–early May both
in 2011 and 2014. The stratification parameter varied from 12.0
to 22.0 J m−3 in 2011 and from 12.4 to 24.6 J m−3 in 2014,
although the surface layer salinity was clearly higher in 2011 than
in 2014. In all studied years, vertical stratification strengthened in
late May–June due to the formation of the seasonal thermocline.
Vertical stratification in June was still stronger in 2010 and 2012
(stratification parameter exceeded 70 J m−3) than in 2011 and
2014, but a change from a weak to strong stratification was also
clear at the measurement site in June 2014 with the estimated
stratification parameter up to 55.4 J m−3 in late June.

Inter-Annual Changes in Inorganic Nutrient
Concentrations
Sampling for the analysis of inorganic nutrient concentrations
started in the second week of April (during the phytoplankton
spring bloom and was usually performed until the end of
May-beginning of June when the NO−

2 +NO−

3 concentrations
were below or close to the detection limit (Figure 4). In April,
during the development of phytoplankton spring bloom, the
NO−

2 +NO−

3 concentrations decreased weekly in all studied
years. The highest initial NO−

2 +NO−

3 concentrations were
measured in 2011 among the all five spring periods. The
NO−

2 +NO−

3 concentrations were below or close to the detection
limit by the 24 April in 2014, by the 2 May in 2011 and by
the 7 May in 2012. In 2009 and 2010, the concentrations of
NO−

2 +NO−

3 fell close to detection limit by 10 May (except in the
southern part of the study transect in 2010). A late spring increase
in the surface layer NO−

2 +NO−

3 concentration was detected in
2010 and 2011.

The measurements of NO−

2 +NO−

3 concentrations at station
AP5 in 2010–2012 and 2014 (Figure 3) were conducted during
the same period as sampling along the ferry route, and the
analysis results allow following the depletion of inorganic
nitrogen in the surface and sub-surface layer and deepening of
the nitracline with time. By mid-April in 2010, the NO−

2 +NO−

3
concentrations in the upper 10m layer were in the range of 0.2–
0.4µMwhereas high levels weremeasured at the depths of 15 and
20m (1.6 and 6.8µM respectively). A significant deepening of
the nitracline was observed at the beginning of May, and higher
concentrations were reintroduced to the upper layer due to the
rise of the pycnocline at the end of May (Figure 3). In 2011,
the upper 10m layer was depleted of NO−

2 +NO−

3 by the start
of sampling on 21 April whereas relatively high concentrations
were measured at a depth of 15 and 20m (0.7 and 1.9µM
respectively). The sharp deepening of the nitracline down to 25m
was observed at the beginning of May, and a similar rise of the
pycnocline, as it was registered in 2010, took place by 18 May.
Due to this process, higher NO−

2 +NO−

3 concentrations were
detected in the upper layer again in both years. The subsequent
samplings in 2011 were conducted with an ∼2-week time lag,
and probably the NO−

2 +NO−

3 were depleted faster than seen
from the interpolated field in Figure 3. In 2012, the deepening
of the nitracline was observed from the beginning of May, and
no significant rise in NO−

2 +NO−

3 concentrations was detected in
the second half of May at station AP5; instead, the continuous
deepening of the nitracline down to 25–30m was observed. In
2014, the NO−

2 +NO−

3 were depleted down to the 25m depth and,
like in 2012, no significant rise in nitracline depth was revealed
after the spring bloom.

After the depletion of NO−

2 +NO−

3 , there was always some

PO3−
4 left in the surface layer (Figure 4) and the concentrations

of excess PO3−
4 were quite different in the studied years. In

2009 and 2012, the average concentrations were 0.13µM (in
the range of 0.12–0.16µM) and 0.18µM (in the range of 0.08–
0.24µM), respectively. For the same period, the concentrations
of PO3−

4 were on average 0.33µM (in the range of 0.20–0.42µM)
and 0.37µM (in the range of 0.23–0.48µM) in 2010 and 2014
respectively, and 0.76µM(in the range of 0.44–0.97µM) in 2011.
The observed late spring rise of the pycnocline increased the
surface layer PO3−

4 concentrations in 2010 and 2011 remarkably
(Figures 3, 4).

Consumption of Inorganic Nutrients in
May–June
The PO3−

4 was depleted in the surface layer by 31 May in 2009,
an increase in concentration in the surface layer was observed in
mid-June, and the PO3−

4 was depleted again by the end of the

month. In 2010, the sampling for PO3−
4 analysis was performed

until 14 June, and there was still on average 0.16µM PO3−
4

left (range of 0.11–0.24µM) in the surface layer. In 2011, the
sampling period for nutrient analysis was shorter compared with
other years in this study, but by 1 June, there was still on average
0.42µM PO3−

4 left (range of 0.30–0.56µM) in the surface layer
along the cross-gulf study transect. In 2012, the sampling of
nutrients was conducted until 7 June, and by that time, the
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FIGURE 3 | The temporal variation of vertical distribution of density and inorganic nutrients at station AP5 in 2010–2012 and 2014. The sampling days are indicated

with vertical lines, and sampling depths are shown as white circles.

phosphate concentrations in the surface layer were close to the
detection limit. In 2014, nutrients were sampled until 25 June,
and PO3−

4 levels were below detection limit by 10 June.

According to the availability of PO3−
4 in the surface layer after

the depletion of NO−

2 +NO−

3 , the consumption of surplus PO3−
4

was estimated (Table 3). The consumption rates of PO3−
4 were

estimated for the following periods: from 10 May until 31 May
in 2009 (days 130–151), from 10 May until 14 June in 2010
(days 130–165), from 2 May until 1 June in 2011 (days 122–152),
from 7 May until 7 June in 2012 (days 129–160), and from 4
May until 25 June in 2014 (days 125–146). The consumption of
PO3−

4 within these periods was much lower compared with the

consumption during the antedate phytoplankton spring bloom
(data not presented). Relatively low consumption of PO3−

4 in

the post-spring bloom period was found in 2009 and 2012,
and the estimates were significantly higher in 2010, 2011, and

2014. The probable consumption/need of NO−

2 +NO−

3 , assuming

that nutrients were consumed according to the N:P ratio of
16:1, was also estimated. Higher inorganic nitrogen needs to
deplete surplus PO3−

4 from the surface layer were found in 2010,
2011, and 2014 compared with 2009 and 2012. The statistically
significant relationship between the decrease of PO3−

4 and an
increase of M. rubrum biomass in the surface layer was found
(R= 0.70, p < 0.01, n= 27) for all springs except the year 2010.
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FIGURE 4 | The temporal variation of the horizontal distribution of inorganic nutrients in the surface layer along the cross-gulf section in the Gulf of Finland in

2009-2012 and 2014. Sampling sites are indicated as white circles on left panels. The open circles on right panels indicate the distribution and intensity of M. rubrum

biomass (µgC l−1; smallest circle = 0 µgC l−1; biggest = 510 µgC l−1).
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TABLE 3 | Estimated consumption rates of PO3−
4 after the depletion of nitrites-nitrates in the surface layer (n = number of observations and R = correlation coefficient;

for all series p < 0.01), standard errors of the estimates seb, and calculated potential need for NO−

2 +NO−

3 to consume the observed excess PO3−
4 according to the N:P

ratio of 16:1.

2009 2010 2011 2012 2014

consumption of PO3−
4

µM day−1

−0.004

(n = 68; R = 0.79)

−0.007

(n = 93; R = 0.79)

−0.007

(n = 83; R = 0.39)

−0.005

(n = 47; R = 0.69)

−0.007

(n = 43; R = 0.83)

seb µM day−1 0.0003 0.0006 0.002 0.0007 0.0008

need for NO−

2 +NO−

3

µM day−1/

µM

0.064

1.28

0.112

4.0

0.112

2.56

0.080

1.44

0.112

3.52

Interannual Changes in Mesodinium

rubrum Biomass in May–June
The ciliate M. rubrum was an important primary producer in
all studied years during the late phase or post-spring bloom
(dominated by diatoms and dinoflagellates) period in the Gulf
of Finland. In April, during the spring bloom peak, its average
contribution to the photosynthetic plankton community was
low, on average 8% (n = 213) in all studied years, being the
lowest in 2011 when it stayed around 4% (n = 50). The average
contribution of M. rubrum to the photosynthetic plankton
community in the sea area between Tallinn and Helsinki in May
was very variable in studied years. The lowest contribution in
2010 and 2011 (11–13% with n = 51 and n = 66, respectively)
and the highest in 2009 and 2014 (53–61% with n = 81 and n =

44, respectively) were registered. The average contribution to the
photosynthetic plankton biomass in May 2012 was 28% (n= 48).
Even the M. rubrum biomass seemed modest in spring-summer
2010 its proportion in the overall phytoplankton community was
similar to the year 2012—on average 32% if the period from
the beginning of May until the end of June was taken into
account.

The most significant differences between the years were in the
timing of the maximum contribution ofM. rubrum. The highest
proportion in the photosynthetic plankton community measured
in May was in 2009 (81%, n= 85), 2012 (72%, n= 48), and 2014
(86%, n = 44). The highest contributions in June were observed
in 2010 (97%, n = 99), 2011 (91%, n = 27), and 2014 (86%, n
= 33). In addition, the remarkable differences in biomass and
distribution of M. rubrum were observed (Figure 4). The most
intensive blooms, distributed quite evenly across the Gulf, were
registered in 2009 and 2014 when very high biomass values were
measured at the first half of May – on 10 and 17May (91–457 and
106.6–510.1 µgC l−1, respectively) in 2009 and on 15 May (136–
439 µgC l−1) in 2014. The year 2014 is characterized by a longer
period with high biomass values of M. rubrum either along the
entire cross-gulf transect or in the different parts of it (28 April
until 4 June, Figure 4). High values of M. rubrum biomass were
also detected in 2011 and 2012 but the cross-gulf distribution was
patchy and the intensive bloom period shorter with biomasses
over 300 µgC l−1 only at one sampling date, on 22 May in 2011
(9.5–508 µgC l−1) and on 1 May in 2012 (24.2–479.4 µgC l−1).
Remarkably lower M. rubrum biomass values were observed in
May–June 2010 when the highest values were measured a month

later, compared with the other studied years, on 14 June (76–276
µgC l−1).

A significant relationship (R = 0.60, p < 0.01, n = 22) was
found between the start (a week with a noticeable increase in
biomass compared with the previous sampling) of theM. rubrum
bloom and warming of the sea surface layer. The clear increase
in M. rubrum biomass was observed after the cross-gulf average
surface layer temperature had reached over 4◦C (Figure 5). The
maximumM. rubrum biomass was higher and established earlier
in warmer springs (2009 and 2014; Table 2). Also, the average
cross-gulf biomass of M. rubrum in May was greater in the
years characterized by earlier surface layer warming (2009–155
µgC l−1, 2012–119 µgC l−1, and 2014–193 µgC l−1). Springs
with slower surface layer warming or very dynamic temperature
pattern were characterized by lower M. rubrum average biomass
in May (2010–51 µgC l−1 and 2011–62 µgC l−1).

A moderate relationship was found with average cross-gulf
surface layer salinity andM. rubrum biomass build up (R= 0.40,
p < 0.05, n= 28).

A qualitative relationship between the vertical stratification
and bloom outcome could be demonstrated based on the
estimated stratification parameter at station AP5 (located at the
distance of 22 km north from the southern end of the cross-
gulf study transect; Figure 3) and M. rubrum biomass in the
area. The lowest biomass of M. rubrum in spring was observed
in 2010 when also the vertical stratification was very strong at
station AP5. The highest biomass was found in spring 2014,
characterized with the weak vertical stratification, and the decline
of M. rubrum biomass in the southern part of the study transect
coincided with the strengthening of stratification at station AP5
in late May 2014. Nevertheless, similar outcomes of the bloom
with occasional high biomass of M. rubrum were registered
in 2011 and 2012, although the vertical stratification differed
significantly between these years—the stratification parameter
varied from 12.0 to 35.6 J m−3 in 2011 and from 26.3 to 51.0 J
m−3 (72.1 J m−3 in early July) in 2012.

Moderate but statistically not significant agreement of

M. rubrum biomass in May with preceding period cryptophyte

biomass was found (Figure 6). Still, the years with higher

cryptophyte biomass in April showed the earlier establishment
of the ciliate bloom, except in 2011 when the surface layer
temperature was very variable in April. In addition, the decline
of the M. rubrum bloom corresponds with the development of
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FIGURE 5 | Mesodinium rubrum biomass increase up to maximum concentration observed in relation to the average cross-gulf surface layer temperature.

Color-coded vertical lines mark the days in different years when average surface layer temperature rose over 4◦C (upper panel) and 5◦C (lower panel).

Dinophysis acuminata (Claparède and Lachmann 1859) biomass
increase in June (Figure 6; R= 0.51, p < 0.05, n= 23).

Diel Vertical Dynamics in Mesodinium

rubrum Abundance in Spring 2014
On 21–22 May 2014, the 24 h measurement and sampling
campaign was performed at station AP5. By this time, the water
temperature in the upper 5m layer was above 7◦C (Figure 7).
The surface layer salinity was about 5.45 g kg−1, and a clear
vertical salinity gradient was observed in the sub-surface layer
below 20m depth. The NO−

2 +NO−

3 was depleted down to 20m

depth, but there was still some PO3−
4 left in the surface layer

(Figure 7).
Phytoplankton sampling at 2 h intervals and 5m vertical

resolution allowed following the vertical displacement of
M. rubrum cells (Figure 7). Although the highest abundances
were usually obtained from the 1m depth, the clear increase

in abundance in the sub-surface layers can be observed at
night. Cells started to descend after 7 p.m. (local time) and
maximum abundances at 25–30m depth were registered in the
early morning between 1 and 7 a.m. Most of the descending
cells did not migrate deeper than 20m depth, where the start of
nitracline was located. By 11 a.m. next day, the cells were again
mainly concentrated in the upper 15m layer.

DISCUSSION

The biomass of the photosynthetic ciliate M. rubrum had
an evident influence on the primary production of plankton
community and nutrient cycling. The inorganic nitrogen,
accumulated in the upper layer in the Gulf of Finland during
winter, is consumed on average by the beginning of May
(Figure 4) by rapidly growing spring bloom diatoms and
dinoflagellates (Lips et al., 2014). Due to the low N:P ratio
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FIGURE 6 | Mesodinium rubrum (MR), cryptomonads (CRY), and Dinophysis acuminata (DA) biomass dynamics in different years (a−2009, b−2010, c−2011,

d−2012, e−2014). The number of the week is shown on the x-axis.

in the winter pool of nutrients and nutrients in the sub-
surface layer after the formation of stratification, vertical mixing,
and/or advection introduces PO3−

4 into surface layer always
in excess compared with nitrogen (Laanemets et al., 2011).
The depletion of excess PO3−

4 in the surface layer before
the increase of biomass of N-fixing cyanobacteria (at the
end of June-beginning of July) was recognized in the present
study.

The depletion of surplus PO3−
4 would need significant

amounts of inorganic nitrogen which is depleted from the surface
layer after the spring bloom. It is possible to roughly estimate the
potential need for inorganic nitrogen (Table 3) and to predict
biomass increase of photosynthetic plankton according to the
Redfield ratio (C:N:P of 106:16:1) based on the available PO3−

4 in
the surface layer and neglecting the remineralization process and
consumption by bacteria. For example, the predicted increase
in photosynthetic biomass in the surface layer for the period
from 3 May to 17 May 2009 (after the depletion of NO−

2 +NO−

3
in the surface layer; days 122–136) could be ∼100 µgC l−1

taking into account the average concentration of available PO3−
4

(0.08µM). The real measured biomass increase in photosynthetic

plankton (including ciliate M. rubrum) was on average 42%
higher. This discrepancy can be explained either by the fact
that net community production may be underestimated if it
is based on nutrient concentrations and Redfield ratios only
because the contributions of recycled nutrients cannot be taken
into account (Thomas et al., 1999) or there are other potential
nutrient sources unnoticed when sampling only from the surface
layer. In the present study, during the selected period, the shift to
species able to migrate vertically in the stratified water column,
took place. In fact, the main biomass increase was formed by
phototrophic ciliate M. rubrum—the biomass increased more
than two times from an average 95–220 µgC l−1 in the study
area. During the first week (3–10 May), the total biomass of
phytoplankton increased only by 50 µgC l−1 while the biomass
of M. rubrum increased at the same time by 120 µgC l−1 (the
difference is due to the disappearance of spring bloom species
from the community after the inorganic nitrogen depletion from
the surface layer). Within the next week (10–17May), the average
increase in total biomass of phototrophic plankton was 130
µgC l−1, whereas, on average 100 µgC l−1 was due to the
increase of biomass of M. rubrum. The estimated consumption
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FIGURE 7 | Temporal changes in vertical distribution of temperature (◦C), salinity (g kg−1), chlorophyll a (µ l−1) and dissolved oxygen (mg l−1; left panels) measured

at station AP5 during the 24 h experiment (2 h interval) on 20–21 May 2014. Temporal changes in vertical distribution of nutrients (nitrites-nitrates and phosphates;

µM), M. rubrum abundance (units l−1) and biomass (µ l−1; right panels) sampled at 6 and 2 h intervals respectively at station AP5; sampling depths are indicated as

white circles.

rate of PO3−
4 in the surface layer would have supported the

total photosynthetic biomass increase approximately by 65 and
40 µgC l−1 only, respectively for these 2 weeks. Hence, the
observed biomass increase in the whole period of 3–17 May
was suggested to be mainly established due to the change in the
photosynthetic plankton community composition and the ability
of particular species to migrate to the sub-surface layers and
assimilate nutrients (both nitrates and phosphates) necessary for
their growth.

Still, there are other features and mechanisms to be
considered. One should note the increase in NO−

2 +NO−

3
concentration in the surface layer by 17 May 2009 (day 136,
Figure 4). When the measured decrease of PO3−

4 in the surface
layer for the period of 10–17 May was rather low (0.03µM),
the increase in NO−

2 +NO−

3 concentration at the same time was
remarkable (0.34µM) and coincided with the highestM. rubrum
biomass values measured in spring 2009 in the study area. If to
assume that the increase of inorganic nitrogen concentration in
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the surface layer was induced by the rise of pycnocline, as it was
observed in May 2010 and 2011 (Figure 3; no vertical profiles
available for spring 2009), there should have also been observed
the increase in PO3−

4 concentration in the surface layer. Instead,

the slight decrease in PO3−
4 concentration coincided with the

increase in NO−

2 +NO−

3 concentration and M. rubrum biomass.
The first major increase in M. rubrum biomass (from 3 to 10
May) was proposed to be mainly related to the species ability to
migrate to the lower layers and exploit nutrient reserves there
to be able to multiply later in the surface layer. The N-depleted
surface layer together with significant biomass increase support
this assumption. The second biomass increase (from 10 to 17
May) of M. rubrum is most probably a combination of previous
and following growth, and advection of water masses with lower
salinity into the study area (Figure 2), which probably had
higher inorganic nitrogen concentration. Hence, high-resolution
measurements and sampling enable to see a more comprehensive
picture.

Similar calculations were made for May-June 2014, a period
when a decrease in PO3−

4 concentration in the surface layer
during M. rubrum bloom was observed. The predicted average
biomass increase of primary producers for a period from 22 April
to 15 May (∼100 µgC l−1) was also lower than the average
real outcome (155 µgC l−1). It is important to note, that the
increase of M. rubrum biomass was as high as 4.7 times during
the considered period, increasing its contribution to the overall
photosynthetic plankton biomass from 15 to 56%. These noticed
simultaneous dynamics of nutrients and phototrophic plankton
biomass suggest the assimilation of inorganic nutrients (both
– nitrates and phosphates) in the sub-surface layers and their
transport to the surface layer by vertically migratingM. rubrum.

The year 2010 was characterized with the lowest maximum
biomass of M. rubrum. Calculations showed that in the period
from 31 May to 14 June, the decrease of PO3−

4 by 0.11µM could
have supported the biomass increase according to the Redfield
ratio approximately by 140 µgC l−1, which was slightly lower but
still quite close to the measured average biomass increase for this
period (159µgC l−1). For the same period, the average increase in
M. rubrum biomass was 100µgC l−1, and the contribution of this
species to the total phototrophic plankton biomass was increasing
within 2 weeks from 50 to 85%. The biomass increase seemed
to be mostly based on the PO3−

4 left in the surface layer and
assimilation of sub-surface NO−

2 +NO−

3 after the rise of nitracline
at the second half of May (Figure 3).

These kind of calculations, without taking into account all
possible sources and sinks of inorganic nutrients, are very rough.
In addition, dynamic mesoscale features on the background
of meteorologically forced transport and mixing (as intensive
horizontal flows of water masses with different salinity and/or
nutrient concentration to or through the study area) make these
simplified calculations/assessments complicated. At the same
time, the decrease in the surface layer PO3−

4 concentration in
spring is very often significantly associated with the M. rubrum
biomass increase and dominance in the community. Hence,
the contribution of this species to the dynamics of inorganic
nutrients cannot be neglected. The biomass of photosynthetic
plankton in the second half of May was dominated byM. rubrum

(70%) in all studied years. As the main increase in total
photosynthetic plankton biomass was due to the growth of this
species, the significant amounts of available inorganic nutrients
(both in horizontal and vertical scale) were consumed most
probably by it.

The spring bloom is predominantly regarded as a new
production according to the definition of Dugdale and Goering
(1967). After the nitrate depletion and decline of the spring
bloom, the primary production in the Baltic Sea is mostly
assumed to be based on the availability of regenerated nutrients
(e.g., Kivi et al., 1993). Earlier studies (Jimenez and Intriago, 1987;
Lindholm and Mörk, 1990and references therein, Crawford and
Lindholm, 1997; Lips and Lips, 2014) are supporting the results
of the present study about the importance of vertical migration
to the nutrient dynamics and autotrophic growth in periods
characterized by inorganic nutrient limitation in the surface
layer. The remarkable growth of M. rubrum and formation
of red tides in different seasons are based on new nutrients
introduced to the surface layer either by physical processes (rise
of the thermocline/pycnocline, advection of surface layer water
masses, upwelling) or biological capabilities (vertical migration
through pycnoclines). The dominance of photosynthetic ciliate
M. rubrum after the spring bloom not only increases the
retention time of newly produced material in the nutrient-
limited euphotic layer (Lips et al., 2014) but its contribution to
the overall photosynthetic community and primary production
can be outstanding. Leppänen and Bruun (1986) estimated that
Mesodinium contributed about 10% of primary production in
spring (April-May) in the open Northern Baltic Proper having at
the same time on average only 2% of the total biomass of primary
producers. Three decades later the overall contribution of this
photosynthetic ciliate to the spring primary producers biomass
seems to be increased significantly allowing the estimation on
average 8–38% of total primary producers for the same period.
Hence, 4–19 times higher contribution to the spring primary
production can be expected, and the even greater contribution
due to the overall climate change and an increase in sea surface
temperature can be foreseen.

The very dynamic nature of M. rubrum blooms in spring
would make difficult predictions of impact to the other trophic
levels without knowledge of this species ecological preferences.
Considering the regulating factors in dynamics of plankton
community, limiting factors affecting population growth directly
and controlling factors influencing the outcome of growth
processes exist (Thingstad and Sakshaug, 1990). Johnson et al.
(2013) have shown a significant positive correlation ofM. rubrum
field population with temperature in spring. Also, Montagnes
et al. (2008) demonstrated a significant effect of temperature on
M. rubrum abundance; the one-degree increase would increase
the mean abundance by 1.42, and explained it with a decreased
growth rate at low temperature. The limitation of cellular
metabolic capacity by the thermal stress (Moeller et al., 2011) and
a decrease in swimming velocity with decreasing temperatures
(Riisgård and Larsen, 2009) have also been suggested. Themotion
of M. rubrum is characterized by jumping after shorter or
longer periods of motionless, but it is also capable of sustained
swimming (Fenchel and Hansen, 2006). Besides escape from
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predators, the jumping is necessary to create fluid motion
surrounding the ciliate to increase the contribution of advective
transport in nutrient uptake (Jiang, 2011). Slow warming
(Figure 2, Table 2) in the study area at the end of April in
2010 probably created a physical environment not supporting
the intensive growth and active motions, including the vertical
migrations to assimilate nitrates from deeper layers, ofM. rubrum
compared with other studied years. Hence, when migratory
capabilities were reduced, the competitive advantages over other
migrating photosynthetic plankton were downgraded. The other
important factor in combination with the low surface water
temperature to influence the growth of M. rubrum is the low
position of nitracline (below 20m already by the end of April)
in 2010 (Figure 3). Although the ability ofM. rubrum to migrate
through the density gradients is well-documented (e.g., Figueroa
et al., 1998), the present results suggest that vertical stratification
could notably influence the growth and bloom outcome of this
species. The latter is also supported by the data from spring 2014.
The observed clear decrease of M. rubrum biomass in late May
2014 in the southern part of the transect (Figure 4) coincided
with the strengthening of vertical stratification (Figure 3).

M. rubrum is an obligate phototroph obtaining most of its
carbon from photosynthesis, and only one cryptophyte prey per
cell is required to maintain its maximum growth (Hansen and
Fenchel, 2006). The suitable prey and predator relationships are
hypothesized to support theM. rubrum surface bloom formation
(Stoecker et al., 2009). Cryptophytes-M. rubrum relationships
can also be followed in the data set of studied years with
significant bloom maximum in 2009, 2011–2012, and 2014
(Figure 6), but the same does not hold for the year 2010 when the
initial biomass of cryptophytes was several times lower in April
compared with other years. Most probably, the combination of
regulating factors (both limiting and controlling) influenced the
M. rubrum biomass outcome in 2010.

Complex migratory patterns observed in the present study
and described by others (e.g., review by (Crawford, 1989) might
be related to a combination of requirements for light, cryptophyte
prey, and nutrients, especially nitrates. The migrations in
response to nutrient and light conditions in the stratified sea
can lead to a vertical distribution in which the majority of the
population may be concentrated close to the surface during the
day and in deeper layers at night. Most commonly, only part
of the populations are performing such daily migrations (Pérez
et al., 1999; Rychert, 2004), but getting a more realistic picture
of the extent of such migrations temporally very high-resolution
measurements are needed. The suggested vertical migrations of
M. rubrum between the surface layer and the nitracline should
create incidents when during the high biomass period of this
ciliate in the plankton community the Chl a concentrations
could occasionally be elevated in the sub-surface layer. Sub-
surface maxima have been reported earlier in the Gulf of Finland
in summer in the cases when the dinoflagellate Heterocapsa
triquetra (Ehrenberg) Stein 1883 was present in the community
in high abundances (Lips et al., 2011; Lips and Lips, 2014). The
high-resolution measurements with a profiling mooring and a
towed undulating vehicle (data not presented here) registered
the sub-surface Chl a maxima in spring 2012. During the period
of the high biomass of M. rubrum in the first half of May, thin

layers of relatively high Chl a values were observed on several
occasions. In the frame of the present study, the vertical sampling
conducted at 2 h intervals and resolution of 5m might have been
too low as M. rubrum could have theoretically made several
migrations within 2 h or was missed in the depths not sampled.
Still, the integrated biomass values increased slightly from 21 p.m.
until 1 a.m. (240–380 µC l−1) and decreased again afterwards,
indicating the high probability of success in sampling during the
active migration. The high swimming speed allowsM. rubrum to
descend to the nitracline in the evening, stay there to assimilate
nutrients andmigrate back to the well-lit surface layer bymidday.
From the presented 24-h study, the observed migration pattern
allows suggesting the diurnal vertical migrations of this species.
Still, extensive studies should be made in the future to see
the longer pattern and regularity of such migrations and assess
more precisely the influence not only to the horizontal but also
to the vertical distribution of inorganic nutrients. The ability
to migrate vertically and exploit the nutrient pools from the
lower layers may significantly influence the nutricline depth after
the development of stratification in spring. Interestingly, even
the nitracline was located at 20m depth in May 2014, part of the
M. rubrum cells migrated deeper—down to 25 and 30m depth.

The photosynthetic ciliate M. rubrum might be a key player
in the trophic transfer of energy after the decline of spring
bloom and establishment of late summer phytoplankton blooms.
This phototrophic ciliate not only prolongs the autotrophic
production in the nutrient-depleted surface layer but also acts
as an important food supply to other organisms (e.g., Park
et al., 2006; Fileman et al., 2007; Lee et al., 2014; Figure 6).
Also, the excretion of nutrients through mineralization and cell
explosion can be a significant source of nitrogen (Lindholm,
1985; Miller et al., 1995) to phytoplankton species present
in the surface layer community. High nitrate and phosphate
assimilation rates reported in previous studies (Dugdale et al.,
1987; Jiang, 2011; Tong et al., 2015), support the assumption
that inorganic nitrogen available in spring-summer continuum,
either brought close to the surface through pycnocline rise or
from adjacent areas, will be mostly assimilated by dominating
M. rubrum if the other environmental conditions support its
growth. Also, the dominance of M. rubrum in May-June, its
migration behavior, and phosphate utilization in the surface
layer is strongly influencing the amount of excess PO3−

4 that is
usually regarded to support the summer cyanobacterial bloom
development (e.g., Janssen et al., 2004; Laanemets et al., 2006;
Raateoja et al., 2011). The years, when PO3−

4 was depleted or
close to the depletion by the end of our study period, are
characterized by lower cyanobacterial biomass development and
vice versa (Kahru and Elmgren, 2014). Hence, the dynamics
and intensity of M. rubrum blooms in May-June have, besides
nutrient distribution, the significant impact also on the late
summer phytoplankton communities. The interactions between
M. rubrum biomass development and other phytoplankton
groups should be studied further as its contribution to the
total photosynthetic biomass has increased in all seasons in
the Baltic Sea (Jaanus et al., 2011). Thamm et al. (2004) have
demonstrated the shift of the peak occurrence of this species
from spring (in 1987) over spring/summer (in 1990) to summer
(in 1997).
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CONCLUSIONS

The clear relationship between the start and outcome of
the M. rubrum bloom and average cross-gulf surface layer
temperature emphasize the potentially high impact of this
species to the spring–early summer plankton community in
the background of overall climate change and continuous
increase in sea surface temperature. The very high proportion
of M. rubrum in the phototrophic plankton community has
created the shift from, previously acknowledged, regenerated
production toward new production at the period between
spring bloom and summer cyanobacterial bloom in the Baltic
Sea. The dominance of M. rubrum after the spring bloom
in vertically stratified Gulf of Finland strongly influences
the amount of excess phosphates in the surface layer and
vertical inorganic nutrient dynamics. Within present study,
comprising sampling with high temporal and spatial resolution,
the understanding of dynamics and possible impacts of spring
M. rubrum blooms to the Gulf of Finland ecosystem was
increased.
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Little is known about the ecosystem effects of locally adapted populations. The filter

feeding copepod Eurytemora affinis is an abundant and important zooplankton in coastal

waters that consist of a cryptic species complex with locally adapted populations. We

used a mesocosm setup to investigate population and ecosystem interactions of two

populations from the Baltic Sea with different morphology and life history traits. One

population is laterally wider, larger-sized, more fecund, and have higher growth rate than

the other. The experimental ecosystems varied in algae community (pelagic algae, and

pelagic algae + benthic diatoms) with two resource supply scenarios. Results showed

that the large-sized population is a more effective grazer. In low resource supply the

small-sized population starved, whereas the large-sized population was unaffected,

resulting in a larger population increase of both nauplii and copepodites than for the

small-sized population. Addition of benthic diatoms to the pelagic algae community

had much more negative effects on the reproduction of the large-sized population.

This suggests that the large-sized population feeds near benthic to a greater extent

than the small-sized population, and that filamentous benthic diatoms interfere with

the grazing process. Despite the negative effects of benthic diatoms, the large-sized

population could maintain similar or higher reproduction than the small-sized population.

In addition, the high grazing efficiency of the large-sized population resulted in a different

community composition of algae. Specifically, flagellated species and small sized benthic

diatoms were more grazed upon by the large-sized population. Our results show that

morphologically divergent, yet phylogenetically closely related zooplankton populations

can have different ecosystem functions, and in turn have different population increase in

response to resource supply and algae community.

Keywords: local adaptation, common gardening experiment, intraspecific variation, ecological-evolutionary

dynamics, resource specialization, morphological divergence, niche partitioning, size efficiency

1. INTRODUCTION

The number of species in an ecosystem and their traits affect diverse ecosystem processes (Hooper
et al., 2005). A key question is whether the species or their traits are the best predictor of ecosystem
functions because variation within species, such as differences in resource specialization and life
history traits (e.g., growth and fecundity) can affect ecosystem processes (Harmon et al., 2009;
Bassar et al., 2010; Walsh et al., 2012). Consequently, variation in ecosystem processes can be larger
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within species than between species (Gianuca et al., 2016) and
not all conspecifics can be regarded as ecologically equal (Bolnick
et al., 2002). Furthermore, interactions of species and ecosystems
are bilateral so that species may diverge depending on the type of
habitat (Marklund et al., 2018).

Many species exhibits adaptations dependent on attributes
in their local habitat. Differences between locally adapted
populations can be quantified by rearing populations in
a common garden where the environments are identical
for all individuals (Falconer and Mackay, 1996), thereby
the environmental source of phenotypic variance between
populations can be eliminated. Hence the phenotypic variance
of a quantified trait is caused by genetic variance when the
environment is identical. In addition, locally adapted populations
may have different ecological effects (Schoener, 2011), which can
be estimated by common gardening experiments. The difference
between a common garden and a common gardening experiment
is the switch of focal point. In the former the focus is on the
environmental effects on phenotypes. In the latter the focus is on
the effect of phenotypes on the environment. Therefore, there are
two focal points for delineating evolutionary diversification: the
effect of ecology on phenotypes, and the effect of phenotypes on
ecology. By constructing common gardening experiments, where
one put specific phenotypes (e.g., populations) in replicated
ecosystems, it is possible to quantify both of these effects
(Matthews et al., 2011b, 2014).

Overlooking divergence within species results in loss of
information about how organisms interact with and shape
their ecosystems. A common procedure when conceptualizing
ecosystems is to use a trait-based approach (Litchman et al., 2013;
Colina et al., 2016). However, to describe trait diversity correctly
one has to acknowledge that traits diverge also within species.
For instance, in a fish species when averaging consumption of
benthic and pelagic resources it seems as if fish are connectors
of the pelagic and benthic food webs (Schindler and Scheuerell,
2002; Vander Zanden and Vadeboncoeur, 2002). However, when
accounting for that fish can specialize for either benthic or pelagic
resources it seems as if they disconnect these two food webs
(Quevedo et al., 2009). In fish, there are many examples of
how adaptive radiations and plastic specializations in resource
use have caused intra-specific morphological variation, which
results in different ecosystem effects by the differentmorphotypes
(Harmon et al., 2009; Palkovacs and Post, 2009; Post and
Palkovacs, 2009; Lundsgaard-Hansen et al., 2014). In addition
to morphological traits, life history traits such as divergence in
populations’ growth rates and fecundity can affect ecosystem
processes differently (Bassar et al., 2010; Walsh et al., 2012).
Furthermore, traits that diverge under artificial selection can
have different effects in experimental ecosystems (Becks et al.,
2010; Pantel et al., 2015), giving a direct link from adaptation to
ecosystem effects.

The focal species in the present study is the calanoid copepod
Eurytemora affinis (Poppe, 1880), a dominant zooplankton
species in estuaries in the northern hemisphere and an important
grazer and prey for fish (Hernroth and Ackefors, 1979; Diekmann
et al., 2012; Rajasilta et al., 2014). It consists of a cryptic species
complex (Lee and Frost, 2002) and inter-population crosses

have shown that certain populations cannot reproduce further
than two generations (Lee, 2000). Specifically, in the Baltic Sea
the great morphological variation in E. affinis have led to past
taxonomic confusion and classification into invalid species (Lee
and Frost, 2002; Sukhikh et al., 2016) because the females of some
populations can be larger, laterally wider, and carry more eggs
than others do (Gurney, 1931).

Revisions of the E. affinis species complex have been ongoing
since it was first described by Poppe (1880) and Gurney
(1931). Recently, a new species within the complex, Eurytemora
carolleeae, was described (Alekseev and Souissi, 2011). This
species originate from the North American east coast and is
listed as an invasive species in the Baltic Sea, with occurrences
in the Gulf of Finland and the Gulf of Riga (Alekseev and
Souissi, 2011; Sukhikh et al., 2013). The morphological traits
used to discriminate between E. affinis and E. carolleeae are non-
adaptive (Alekseev and Souissi, 2011; Sukhikh et al., 2013; Lajus
et al., 2015), and thus unlikely to have any ecosystem effects
(Matthews et al., 2011a). Furthermore, taxonomic classification
based onmorphology alone is not distinct because some key traits
overlap between the two species (Sukhikh et al., 2013; Vasquez
et al., 2016) and differentiate between E. affinis populations
(Sukhikh et al., 2016). Therefore, we use the E. affinis species
name throughout and refer to the E. affinis species complex in
the present study.

A previous common garden experiment revealed differences
in development time as a response to temperature between
Baltic Sea E. affinis populations, where a population from
the Gulf of Riga (Pärnu Bay) had similar (12 and 17◦C) or
shorter (22.5◦C) development time than a population from the
Swedish coast (Stockholm Archipelago) (Karlsson and Winder,
unpublished data). Females from the Gulf of Riga population
also appeared to have a larger body size than the Swedish coast
population, which was however not quantified. For copepods
in general, development time increase with species size and
fecundity (Allan, 1976; Gillooly, 2000), thus this large-sized
population breaks this norm. The trait differences between
the two populations’ may affect ecosystem processes, such as
differences in prey size spectra, prey selection, and grazing
efficiency (Bassar et al., 2010; Walsh et al., 2012; Gianuca et al.,
2016).

The aim of this study is to (i) describe and quantify
morphology and fecundity in a common garden experiment
and (ii) quantify ecosystem responses and reciprocal effects in
a common gardening experiment (mesocosms) of these two
E. affinis populations from the Baltic Sea. We constructed
mesocosm environments with two types of algae (prey)
community and two types of resource supplies. To investigate if
the described trait differences affect feeding efficiency and algae
community, and the reciprocal effects of algae community and
resource supply on population growth, female prosome length,
and clutch size. Algae community included two treatments one
with pelagic species and one with pelagic species plus benthic
diatoms, resource supply included two levels of nutrients. The
mesocosm experiment lasted for 14 days, which corresponds
to approximately one generation time for both populations at
the experimental temperature of 17◦C (Karlsson and Winder,
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unpublished data). We hypothesized that populations would
differentiate over the algae treatment if they diverged in their
feeding behavior and resource specialization, and differentiate
over the resource supply treatment if they diverge in their
demand for food and feeding efficiency.

2. MATERIALS AND METHODS

2.1. Sampling and Rearing of Cultures
No specific ethical permits were needed for research on
invertebrate crustaceans. This study does not include vulnerable
populations and endangered animal species. Populations were
sampled in spring 2014 in the Stockholm archipelago at
Askö monitoring station B1 (hereafter referred to as STHLM)
58◦48.19′,17◦37.52′ (latitude, longitude) and in summer 2014 in
the Pärnu Bay a shallow inner part of Gulf of Riga (hereafter
referred to as GOR) 58◦21.67′, 24◦30.83’ by vertical tow nets.
More than 300 adult copepods were taken from the samples and
used to start stock cultures. Before measurements of morphology
and clutch size (number of eggs), stock cultures were kept for a
minimum of three generations to reduce imprints of maternal
effects (Sanford and Kelly, 2010) in 3 L (Exo TerraTM) aquariums
at 17◦C and 7 PSU and fed with the cryptophyte Rhodomonas
salina. Aquariums were aeriated by gently stirring the water once
a day. Before the mesocosm experiment, cultures were kept for
at least three generations in 45 L plastic tubs at 15◦C and 7
PSU and fed with the cryptophyte Rhinomonas nottbecki. The
two experiments were separated in time by 2 years, from 2014
to 2016 and during this time we predict that approximately 42
generations have past, given a generation time of 17 days at 15◦C
(Karlsson and Winder, unpublished data).

The zooplankton were at all times kept in tap water that had
been circulated for about a week in an aquarium with gravel from
a freshwater stream to condition the water for aquatic organisms
(reduce chlorine and excessive gas); to adjust the right salinity we
used Instant OceanTM sea salt.

2.2. Common Garden Experiment:
Measurements of Morphology and Clutch
Size
In autumn 2014 we started up 5 cultures per population by
taking 10 egg carrying females from our stock cultures into 3 L
aquariums with GF/F WhatmanTM filtered aquarium water of
2 PSU. The copepods were fed ad libitum of the cryptophyte
Rhodomonas salina (100,000–200,000 cells ml−1). More than
27,000 cells ml−1 did not increase egg production (a proxy for
growth in adult female copepods) in Acartia tonsa (Kiørboe
et al., 1985) a copepod of similar size as E. affinis. As soon
as the daughters of the inoculated females had developed egg
sacks they were picked out to be photographed dorsal or ventral
side, measured (prosome length), and the number of eggs in
each female clutch were counted. We sampled 50 females per
population, 10 from each culture.

We measured shape and size of the females’ prosomen with
14 landmark data points from the digitized images. To visualize
shape of the two populations we ran a principal component

analysis with the landmark data (14 x and 14 y coordinates,
in pixel units), made by R package geomorph (Adams and
Otarola-Castillo, 2013), and depicted the individuals of each
population that hadminimum andmaximum values on principal
component 1 (Figures 1, 2). We computed landmarks with
the software packages tpsUtil and tpsDig2 (Rohlf, 2011b,
2013). We computed partial warps, uniform variables, and
centroids with tpsRegr (Rohlf, 2011a). To test if shape differed
between populations we used a MANCOVA with partial warps
(11 x and 11 y) and uniform variables (1 x and 1 y) as response,
size (centroid of each specimen) was included as covariate, and
population as explanatory variable. The centroid size is calculated
in pixel units as the square root of the sum of squared landmark
distances to the centroid, which is a two-dimensional measure
of size (1 pixel correspond to ca 0.89 µm). The interaction of
population and size was not significant, thereby we concluded
that the size and shape slopes of both populations do not
differ, and therefore removed the interaction and use size as
covariate (Engqvist, 2005). We used a two-way ANOVA to test
the interaction of prosome length and population on clutch
size. Furthermore, we followed up this analysis with a one-
way ANOVA to test for differences in prosome length between
populations.

2.3. Common Gardening Experiment: Set
Up and Treatments
For the common gardening experiment, we used three types
of factors each with two levels of treatment: two zooplankton
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FIGURE 1 | Principal component axes 1 and 2 of shape variation of

Procrustes aligned specimens for the STHLM (orange) and GOR (blue)

E. affinis populations, individuals with minimum and maximum value on

principal component 1 from the respective population are marked out. These

individuals are depicted in Figure 2.
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populations (STHLM and GOR), two nutrient treatments (low
and high), and two types of algae community (pelagic and pelagic
+ benthic diatoms). We replicated each factor combination 10
times, summing up to 80 mesocosms (2 × 2 × 2 × 10). For
control treatments we used factor combinations of nutrient levels
and algae community without zooplankton, replicated 5 times,
summing up to 20 control mesocosms (2× 2× 5).

The mesocosms were 3 L plastic aquariums (Exo TerraTM)
filled with GF/FWhatmanTM filtered aquarium water, placed in a
rooftop greenhouse at the Department of Ecology, Environment
and Plant Sciences at Stockholm University. The mesocosms
received natural light as well as light from metal halide lamps
in 12:12 h night:day cycle, with an average 55.8 (range 16.7,
202.1) µmol m−2 s−1 on the bottom of the mesocoms. Average
temperature during the experiment was 17.0◦C, but oscillated
during the night day cycle and was highest just before lamps
turned off (average 18.8◦C, range 16.8–20.6◦C) and lowest just
before lights turned on (average 14.9◦C, range 13.6–15.9◦C). We
added nutrients and Instant OceanTM sea salt while the water
was separated into two containers one for low and one for high
resource supply treatment, water was later portioned out to the
mesocosm after thoroughmixing.We added 57.6 µmol L−1 SiO4,
28.4 µmol L−1 of NO3, and 2.4 µmoles L−1 PO4 to the high
resource supply treatment, for the low nutrient treatment the
respective concentrations were 30.6, 12.9, and 1.1 µmol L−1.
Ratios of Si:N:P were similar for the high and low resource supply
treatment with 24:12:1 and 28:12:1, respectively. We further
added micronutrients, B vitamins, and peat extract (Table S1).
Concentrations of NO2 + NO3 and SiO4 (Figure S1) were higher
than deliberately, suggesting that additional nutrients came into
the mesocosm from either the algae or zooplankton cultures.
Either way, the contrasts of resource supply treatments were
clearly visible and quantifiable. We added salt to reach a salinity
of 10 PSU, which was a salinity where both zooplankton and algae
could coexist.

The two communities of algae consisted of either five pelagic
species or the same pelagic species plus an addition of three
benthic species (Table S2). The pelagic species were: the pooled
sample of R. nottbecki and R. salina referred to as cryptophytes,
Heterocapsa triquetra, Pseudoscourfeldia marina, Skeletonema
marinoi, and Isochrysis sp. The benthic species where the pooled
sample of Nitzschia aurariae and Navicula perminuta, Melosira
sp., and Fragilaria sp. We selected algae species that belonged
to some of the commonly found taxonomic classes in the Baltic
Sea, with the compromise that they should be readily cultured
in lab conditions on the same growth media (Table S1) and
at the same salinity (10 PSU). We added the pelagic species
in equal amounts to all mesocosms and the benthic species
in equal amounts to half of the mesocosms. Therefore, at the
beginning of the experiment the benthic treatment contained
more food than the pelagic, but over time the amount of
food was constrained to the concentration of nutrients. We
inoculated the mesocosms by adding 1 ml from the same
homogenized culture to each mesocosm for each species of
algae. The inoculation concentrations were measured on the
start day (October 4th) from Lugol-preserved samples diluted
10 times and placed in a tubular plankton chamber. We then

FIGURE 2 | Pictures of E. affinis individuals with minimum and maximum value

on principal component 1 from the respective population, these individuals are

marked out in Figure 1. Pictures include locations of the 14 landmarks used in

the principal component analysis. The prosome lengths of the individuals

depicted are 833 and 776µm for STHLM min and max, and 833 and 923µm

for GOR min and max, respectively. Note that the pictures are meant to show

variation in shape and not in size and length. The scale of the pictures are

2,300µm wide and 1,725µm high.

took pictures by inverted light microscopy at specific locations
in the chamber and calculated the number of cells per picture
by EBImage R package (Pau et al., 2010), these numbers
were calculated back to cells ml−1 algae ml−1 algae culture
(Table S2).

One day after mesocosm setup, we added zooplankton from
the stock cultures that consisted of similar ratios of nauplii,
copepodites, and adults for both populations. Zooplankton were
added by taking aliquots of the thoroughly mixed stock cultures
to each mesocosm. We added slightly less individuals from the
GOR population since these individuals are larger to get similar
zooplankton bio-volumes for both populations. Aliquots (n =10)
of the starting concentrations for each population were put in
4% formalin to be counted and measured. For these samples
we counted the number of nauplii in stage 1–3 and 4–6 and
copepodites in stage 1–3 and 4–6 (where stage 6 are the adults),
and made measurements of length, width, and depth of the
prosome body for all individual life stages. We then calculated
the average bio-volume for an individual within one of these
four groups by using the volume of an ellipse and multiplied the
bio-volume with the number of individuals in the corresponding
life-stage interval. Subsequently, we used the bio-volume sum in
each sample to test if initial volumes were different for the two
populations by a t-test.

2.4. Common Gardening Experiment:
Sampling and Sample Analysis
We took two types of algae samples, one to measure relative
fluorescence units (RFU) and one to count and identify the
algae. We took samples directly after the mesocosms were gently
stirred. RFU samples were measured in a TrilogyTM fluorometer
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(Turner design), samples for counts were preserved in acidic
Lugol, and were counted with an inverted light microscope.

We counted cryptophytes, H. triquetra, Fragilaria sp., and
Melosira sp. in continuous transects (field of view) over the
full diameter of the chamber at 100 times magnification. We
counted N. aurariae and N. perminuta in a continuous transect
in 400 times magnification, and the smallest species P. marina,
Isochrysis sp., and S. marinoi in 20 fields of view in a transect
at 1,000 times magnification. We took samples of both RFU
and Lugol on day 2, 6, 10, and 14. For RFU we measured all
100 mesocoms at each sampling occasion. Samples for counts
of the pelagic species were 5, 2, 5, and 2 samples per treatment
combination (including controls) and respective day. Samples for
counts of the benthic species were 5, 2, 5, and 2 per treatment
combination of the controls; and 5, 4, 7, and 2 per treatment
combination with zooplankton.

At the same days as algae sampling we took two samples per
treatment combination of free phosphate (PO4), nitrite + nitrate
(NO2 +NO3), ammonia (NH4), and silicate (SiO4) by filtering 10
ml water through a 0.45 µm filter and then analyzing the filtrate
in a segmented flow analysis (Figure S1).

At the end of the experiment on day 15 (14 days after copepod
innoculation), which corresponds to the development time for
one generation (given ad libitum food conditions and 17◦C,
Karlsson and Winder, unpublished data), the mesocosms were
poured through a 45 µm net and all inhabiting zooplankton
were filtered out and put in 4% formalin. From these samples
we counted the number of nauplii and the pooled number of
copepodites and adults. Two egg-carrying females from each
sample (mesocosm) were picked at random and their prosome
lengths were measured and clutch size counted. We expected
the nauplii to have been born in the mesocosm during the
experiment, and that the copepodites and adults mainly to be part
of the individuals inoculated at the beginning.

2.5. Statistical Analyses of the Common
Gardening Experiment
We used R for all analyzes (R Core Team, 2017). The response
variables: counts of nauplii (N1-N6) and copepodites + adults
(C1-C6), prosome length of females, and female clutch size, were
fitted as Gaussian response models by functions lme or gls
from the nlme (Pinheiro et al., 2017) package. When there was
more than one observation per mesocosm we used mesocosm
ID as random effect in the linear mixed effect models (lme),
and when variances in the different treatments were unequal
we fitted extended linear models with power covariates in the
linear models (gls). Models were evaluated by starting with
a full model containing all treatment interactions (population,
algae, and nutrients) and subsequently removing non-significant
interactions, based on AIC. We only included the highest order
of significant interactions or main effects in the running text, full
model outputs can be found in the Supplementary Material.

RFU and species counts were analyzed by extended linear
mixed models (function lme), with power covariates to control
for the increasing residual variation due to algal growth. For
both RFU and species counts we omitted the control to test for

the difference between populations. The pelagic species occurred
both with and without benthic diatoms, whereas the benthic
diatoms only occurred with pelagic species, and hence the main
effect of the addition of benthic diatoms was only estimated
for the pelagic species. The RFU analysis was split up between
pelagic and pelagic + benthic algae treatments as we expected
the emitted fluorescence to differ between pelagic flagellates and
benthic diatoms, and therefore a direct comparison could be
spurious. The effects of resource supply were estimated for both
RFU and species counts. We included a third degree polynomial
of time as an interaction with the treatments (population,
algae, resource supply) in both the RFU and the species counts
models. This tests if the polynomial relationship with time differs
between treatment contrasts. However, we did not include the
estimates of the treatment main effects (i.e., time = 0), and
the main effect of time in the results as it is not the focus of
this study.

3. RESULTS

3.1. Common Garden Experiment:
Morphology and Clutch Size
The shape of the females prosomen differed significantly between
the populations [MANCOVA, F(24, 74) = 5.19, p < 0.001] the
GOR population was wider and rounder than the more laterally
compressed STHLM population (Figures 1, 2) and the size of
the prosomen had no significant effect on shape [MANCOVA,
F(24, 74) = 1.51, p= 0.090].

We found a significant interaction of population and prosome
length on clutch size [two-way ANOVA, F(1, 96) = 6.68,
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p = 0.011]. Hence, the relationship between prosome length and
clutch size differs between the two populations (Figure 3), and
a 1µm increase in length increased clutch size with 0.25 and
0.09 eggs for the GOR and STHLM populations respectively.
Furthermore, the main effects of population [two-way ANOVA,
F(1, 96) = 48.06, p < 0.001] and prosome length [two-way
ANOVA, F(1, 96) = 25.64, p < 0.001] were significant, the
average clutch sizes were 34.6 (28.1, 41.0; 95% CI) for the STHLM
population and 54.4 (49.8, 58.9) eggs female−1 for the GOR
population. Furthermore, the females’ prosome length differed
between populations [one-way ANOVA, F(1, 98) = 124, p <

0.001] and was on average 762.1 (743.1, 781.1; 95% CI) for the
STHLM population and 869.8 (856.4, 883.3)µm for the GOR
population.

3.2. Common Gardening Experiment
The averages of zooplankton bio-volumes at the start of
the experiment were not significantly different between the
populations [t-test, t(18) = -0.541, p = 0.595] and was 3.08 (±
0.24, SE) for the STHLM population and 2.91 (± 0.22) mm-3 for
the GOR population. Number of individuals per stage at the start
of the experiment (averages rounded to whole numbers) were for
the STHLM population, N1-N3: 105 (86–116, range), N4-N6: 10
(3–22), C1-C3: 9 (1–17), C4-C6: 30 (18–49). Respective numbers
for the GOR population were, N1-N3: 69 (51–92), N4-N6: 28
(15–38), C1-C3: 14 (5–20) and C4-C6: 17 (10–27).

Algae concentrations measured as RFU were significantly
lower with the GOR population than with the STHLM
population. The lower values for the GOR population were
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circles are respective pelagic and benthic treatments. Estimates and 95% CI

are fitted by restricted maximum likelihood.

consistent over both resource supply and algae treatments,
suggesting that this population is a more efficient grazer than the
STHLM population (Figure 4, Table 1).

Concentrations of all the pelagic species (cryptophytes, H.
triquetra, Isochrysis sp., and P. marina) were significantly lower
with the GOR population than the STHLM population, whereas
for S. marinoi there was no difference between the populations
(Figure 5, Table 2). Concentrations of the large filamentous
benthic diatoms Fragilaria sp. and Melosira sp. did not differ
between the populations, while the smaller single celled benthic
diatoms N. aurariae + N. perminuta were significantly lower
with the GOR population than the STHLM population (Figure 5,
Table 3).

The addition of benthic diatoms had a negative effects on
the concentrations of all the pelagic species except H. triquetra
(Figure 5, Table 2). Addition of nutrients had positive effects on
the concentrations of all species exceptH. triquetra and Fragilaria
sp. (Figure 5, Tables 2, 3).

The numbers of nauplii at the end of the experiment
depended on the interaction of algae treatment and population
[t(5, 72) = 3.15, p = 0.002] and on the interaction of population
and resource supply [t(5, 72) = 2.66, p = 0.001]. The GOR
population was more negatively affected by benthic algae
than the STHLM population, and the STHLM population was
more negatively affected by low resource supplies (Figure 6A,
Table S3).

For copepodites + adults we found a significant interaction
of population origin and resource supply [t(4, 73) = 5.24,
p < 0.001], where low resources led to a striking decrease in
numbers for the STHLM population, but not for the GOR
population. Furthermore, we found a significant main effect of
algae treatment [t(4, 73) = 3.88, p < 0.001] indicating that the
addition of benthic diatoms had weak negative effects for both
populations (Figure 6B, Table S4).

The females clutch sizes depended on the three-way
interaction of population x resource supply x algae [t(69) = 3.02,
p = 0.004]. For the STHLM population, clutch sizes were
unaffected by algae treatment but smaller in low resource supply.
For the GOR population, clutch sizes differed between algae
treatments in low resource supplies (Figure 7A, Table S5).
For female prosome length (Figure 7B) we found no

TABLE 1 | ANOVA output from the mixed models on the relative fluorescence

units.

numDF denDF F-value p-value

PELAGIC ALGAE

Population * time 3 111.00 44.55 <0.001

Nutrients * time 3 111.00 216.41 <0.001

PELAGIC ALGAE + DIATOMS

Population * time 3 111.00 25.24 <0.001

Nutrients * time 3 111.00 47.11 <0.001

The interactions tests for differences in the trend over time for the treatments: population

and resource supply. Output of the treatments main effects, and the main effect of time

are omitted.
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FIGURE 5 | Concentrations in cells ml−1 of the different algae species over time (days) in the common gardening experiment, for the treatments: algae community,
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ggplot2 (Wickham, 2009), points are observed values.

interactive effects, but both the main effects of population
[t(74) = 14.45, p < 0.001] and resource supply were significant
[t(74) = 3.87, p < 0.001], whereas the effect of algae was not
[t(74) = 0.19 p = 0.848]. Females were generally smaller in the
STHLM population compared to the GOR population, and in
low resource supply compared to high resource supply.

4. DISCUSSION

In the common garden experiment we could show that the
two E. affinis populations from the Baltic Sea differentiate
genetically in female morphology and clutch size. These trait
differences further affect how the populations interact with
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TABLE 2 | ANOVA output from the mixed models on the pelagic algae.

numDF denDF F-value p-value

Cryptophyceae

Population * time 3 59 25.38 <0.001

Algae * time 3 59 23.08 0.005

Nutrients * time 3 59 4.66 <0.001

H. tiquetra

Population * time 3 59 9.74 <0.001

Algae * time 3 59 0.89 0.452

Nutrients * time 3 59 0.14 0.935

Isochrysis sp.

Population * time 3 59 66.45 <0.001

Algae * time 3 59 3.30 0.026

Nutrients * time 3 59 13.14 <0.001

P. marina

Population * time 3 59 6.77 <0.001

Algae * time 3 59 6.26 <0.001

Nutrients * time 3 59 71.38 <0.001

S. marinoi

Population * time 3 59 2.63 0.058

Algae * time 3 59 14.08 <0.001

Nutrients * time 3 59 42.80 <0.001

The interactions tests for differences in the trend over time for the treatments: population,

algae, and nutrients. Output of the treatments main effects, and the main effect of time

are omitted.

TABLE 3 | ANOVA output from the mixed models on the benthic algae.

numDF denDF F-value p-value

Fragilaria sp.

Population * time 3 36 1.30 0.288

Nutrients * time 3 36 2.66 0.063

Melosira sp.

Population * time 3 36 1.98 0.134

Nutrients * time 3 36 5.05 0.005

N. aurariae + N. perminuta

Population * time 3 36 4.95 0.005

Nutrients * time 3 36 13.00 <0.001

The interactions tests for differences in the trend over time for the treatments: population

and nutrients. Output of the treatments main effects, and the main effect of time are

omitted.

various experimental ecosystems. In general, the small-sized
STHLM population was more sensitive to resource supply,
whereas the large-sized GOR population was more sensitive to
the type of algal community.

4.1. Common Garden Experiment:
Morphology and Clutch Size
The two populations clearly differentiated in females’ average
shape, length, and clutch size. The differences in average
length persisted from the first common garden experiment and
throughout the mesocosm experiment made 2 years and ca 42

generations later. Thus, there should be little doubt that these
differences are due to genetic differentiation. A previous study by
Winkler et al. (2011) found neutral (mitochondrial DNA) genetic
differentiation between populations from the Gulf of Riga and
the Swedish Baltic coast. Our study confirms this by showing
genetic differentiation in quantitative traits. There were however
large individual variation within populations and individuals
from the two populations overlap in shape, length and clutch
size. This large morphological variation implies that whenever
these two morphotypes coexists complete discrimination of the
two will be difficult. The morphological variation in E. affinis has
led to previous confusion in species classification. In Northern
European estuaries two species of Eurytemora were described
in the nineteenth century, E. affinis (Poppe, 1880) and E.
hirundoides (Nordqvist, 1888). According to the taxonomic
key provided by Gurney (1931) the small-sized population
from the Stockholm Archipelago (STHLM) corresponds to a
morphotype that was described as E. hirundoides. Our study
shows that classification of Eurytemora by prosome length
and fecundity can be spurious. Because these traits overlap
between individuals even in genetically distinct populations
in a controlled environment. Furthermore, prosome length
and egg production in zooplankton are highly plastic traits
that can be affected by both food conditions and temperature
(Ban, 1994), which can further impede discrimination of
the two populations unless they are reared under common
conditions (Falconer and Mackay, 1996; Sanford and Kelly,
2010).

4.2. Common Gardening Experiment
Based on the populations different effect on RFU we concluded
that the GOR population were more efficient grazers than the
STHLM population, which was expected because of their larger
size. We found that the pelagic flagellates and the benthic
diatomsN. aurariae +N. perminutawere in lower concentrations
with the GOR population than with the STHLM population.
Whereas there was no difference in the concentration of the
pelagic diatom S. marinoi between populations. Perhaps this is
due to that motile flagellates can escape the copepods feeding
current (Jakobsen, 2002) whereas non-motile diatoms probably
cannot. In general, larger copepods have a stronger feeding
current (Peters and Downing, 1984) which could be harder for
flagellates to evade and explain why the GOR population is
more efficient in feeding on flagellates. Given that N. aurariae
+ N. perminuta settle on the bottom, their lower concentrations
with the GOR population suggest that this population occupy
the bottom of the mesocosms to a greater extent than the
STHLM population. Furthermore, the concentrations of the two
largest filamentous diatoms Melosira sp. and Fragilaria sp. did
not differ between the populations. Our results suggest that
there is no difference in the size spectrum of resource use
between the populations, despite the populations’ difference in
size.

We found contrasting effects on the amount of nauplii and
copepodites + adults for the two populations at the end of
the experiment, which depended on resource supply and algae
treatment. The large-sized GOR population was a more efficient
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grazer and could therefore acquire the amount of resources
needed even in low resource concentrations, which allowed
them to maintain a similar population size in both high and
low resource supply (Figure 4). In contrast, for the small-sized
STHLM population, less resources resulted in a notable decrease
in nauplii and copepodites + adults (Figures 6A,B). Larger
animals are in general more efficient in resource acquisition
and can feed on a wider size range of resources than smaller
ones (Wilson, 1975; Gianuca et al., 2016), therefore the GOR
population have a competitive advantage over the STHLM
population. The STHLM population starved in the low nutrient

treatment, probably because metabolic demand relative to body
size is higher for smaller-sized zooplankton (Hansen et al., 1997),
while both filtration and feeding rates of zooplankton increase
with increasing size (Peters and Downing, 1984; Gianuca et al.,
2016). Thus, the STHLM population acquires fewer resources
while needing relatively more, and hence performs poorly at low
resource concentrations. Our results suggest that a larger body
size enables copepods to graze more efficiently and mitigate
starvation at low resource concentrations.

The addition of benthic diatoms had a greater effect on
the number of nauplii than on the number of copepodites +
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adults, with a stronger negative effect in the presence of benthic
diatoms for the GORpopulation than for the STHLMpopulation.
For calanoid copepods feeding on large aggregates is difficult
compared to smaller particled food and can result in starvation
(Koski et al., 2017). Thus, large filamentous diatoms may have
disturbed the feeding process and reduced the copepods feeding
efficiency. Because the GOR population was more negatively
affected by benthic diatoms than the STHLM population , it
suggests that females of the GOR population feed more from the
bottom of the mesocosm where the filaments settled.

Differences in habitat use of E. affinis populations have been
reported in the past and according to Gurney (1931) the GOR
morphotype corresponds to “Buchtenplankton" (bay plankton)
while the STHLMmorphotype corresponds to “Kustenplankton"
(coastal plankton). This is in agreement with the habitats
where the populations were sampled. Similarly, two clades of
E. affinis are reported from the St. Lawrence estuary. One
clade mainly inhabits the inner reaches of the estuary and
has invaded the Great Lakes (Winkler et al., 2008; Favier and
Winkler, 2014), and has been reported as epi-benthic in the
lakes (Torke, 2001). The clade in the Great Lakes have been
classified as E. carolleeae by Vasquez et al. (2016). The other
clade in St. Lawrence is mainly found in the middle parts of the
estuary, suggesting that it occupies the pelagic habitat (Winkler
et al., 2008; Favier and Winkler, 2014). Furthermore, epi-benthic
zooplankton are often larger than pelagic zooplankton because
a large size in a pelagic habitat increases the risk of predation
by planktivorous fish (Brooks and Dodson, 1965). For the
GOR population the larger sized females are likely prevented
to enter the pelagic because of their conspicuousness, while
nauplii and copepodites in the low stages likely stay closer to
the surface, which is the general pattern for copepods (Irigoien
et al., 2004; Casper and Thorp, 2007). This suggests that apart
from morphological differences, the populations’ behavior also
differ.

Comparisons showed considerably smaller female clutch
sizes of a European E. affinis population from the Seine than
of two North American east coast populations assumed to
be E. carolleeae from the St. Lawrence and the Chesapeake
Bay (Beyrend-Dur et al., 2009; Devreker et al., 2012). Hence,
the larger clutch size and epi-benthic behavior of the GOR
population, similar to what has been reported in North American
clades, suggest that this population could be the invasive
E. carolleeae. In contrast, similar trait differences as observed in
the present study have been reported between European E. affinis
populations since the beginning of the 20th century (Gurney,
1931 and references therein, Sukhikh et al., 2016). The species
name E. carolleeae has not been fully applied by researchers in
the field. Regardless, if one categorize the E. affinis complex into
clades (e.g., Favier and Winkler, 2014; Lee, 2016) or species (e.g.,
Sukhikh et al., 2013), it is important to focus on the contrasting
ecological effects (e.g., freshwater invasions, habitat preferences)
of adaptive variation within the E. affinis species complex.

Competition for nutrients between benthic diatoms and
flagellates led to lower concentrations of flagellated species.
However, we do not believe the lower concentrations of flagellates
in the benthic algae treatment is the cause for the decline in

nauplii for the GOR population. Because the resource supply
treatment had no effect even in the treatments without benthic
diatoms (Figure 6A). In contrast, the STHLM population was
sensitive to resource supply, and for this population a reduction
in flagellates caused by competition with benthic diatoms could
explain why the nauplii count is lower when benthic diatoms
were added.

4.3. Conclusion
Our study indicates that the large-sized GOR population of
E. affinis is a superior competitor in low resource supply mainly
because they can feed more efficiently on motile flagellates,
than the small-sized population. However, when the resource
supply is high and benthic diatoms are present, their competitive
advantage disappears. We suggest that the benthic diatoms
used in our study interfere in the feeding process and reduce
their filtration efficiency. These results suggest that the GOR
population exhibits a close relation to benthic habitats and
that this morphotype is mainly found in shallow bay areas of
the Baltic Sea. Apart from the morphological differences, the
populations diverge in habitat choice rather than in resource
specialization. We suggest that adaptive radiation in resource
use is not the driver of morphological variation in E. affinis,
but rather the trade-off between size-efficiency and vulnerability
to predators. Perhaps the GOR population can afford to have
a larger size because the adults stay close to the bottom. An
important question for further research is to address the effects of
planktivorous fish on zooplankton of different size and behavior,
in pelagic vs. benthic habitats. This would highlight if the shallow
littoral zone acts as a refugium for large epi-benthic morphotypes
of E. affinis, whereas smaller morphotypes inhabit the coastal
pelagic waters.

The past and current eutrophic state of the Baltic Sea
(Andersen et al., 2017) may have been more advantageous for
the small-sized STHLM population than the large-sized GOR
population because the small-sized population has a positive
response to increased resource supply. In addition eutrophication
has reduced the extent of the littoral zone (Ojaveer et al., 2010)
and thus the habitat for the larger-sized population. Given
the area of suitable habitats, we assume that the small-sized
population is by far the most common in the Baltic Sea. For
example, we have only found the small-sized morphotype (i.e.,
none of the large extremes indicates a large-size morphotype)
in samples from the central parts of Bothnian Bay, Bothnian
Sea, Gulf of Finland, Gulf of Riga and the Baltic Proper
(Karlsson, personal observation). We speculate that the large-
sized morphotype is not unique to the Pärnu Bay in the Gulf
of Riga, but can probably be found in similar shallow bays
with outlets of freshwater along the eastern and southern Baltic
Proper.

Our results show that morphologically divergent, yet
phylogenetically closely related zooplankton populations can
have different effects on ecosystem functions, and in turn have
different population increase in response to resource supply and
algae community. These results underline that the two E. affinis
morphotypes cannot be regarded as ecologically equal in their
interaction with algae communities. Furthermore, their different
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habitat choice implies that the pelagic morphotype are more
important for pelagic feeding fish such as herring and sprat,
whereas the benthic morphotype is more important for fish
species that feed in more complex littoral habitats such as perch
and sticklebacks. This highlights the large morphological and
life history variation in the E. affinis species complex and that
populations affect ecosystem properties in different ways.
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Trait-based approaches to investigate (short- and long-term) phytoplankton dynamics
and community assembly have become increasingly popular in freshwater and marine
science. Although the nature of the pelagic habitat and the main phytoplankton taxa and
ecology are relatively similar in both marine and freshwater systems, the lines of research
have evolved, at least in part, separately. We compare and contrast the approaches
adopted in marine and freshwater ecosystems with respect to phytoplankton functional
traits. We note differences in study goals relating to functional trait use that assess
community assembly and those that relate to ecosystem processes and biogeochemical
cycling that affect the type of characteristics assigned as traits to phytoplankton taxa.
Specific phytoplankton traits relevant for ecological function are examined in relation to
herbivory, amplitude of environmental change and spatial and temporal scales of study.
Major differences are identified, including the shorter time scale for regular environmental
change in freshwater ecosystems compared to that in the open oceans as well as the
type of sampling done by researchers based on site-accessibility. Overall, we encourage
researchers to better motivate why they apply trait-based analyses to their studies and
to make use of process-driven approaches, which are more common in marine studies.
We further propose fully comparative trait studies conducted along the habitat gradient
spanning freshwater to brackish to marine systems, or along geographic gradients.
Such studies will benefit from the combined strength of both fields.

Keywords: algae, functional traits, ocean, lake, biogeochemistry, community assembly

INTRODUCTION AND SOME HISTORY OF TRAIT-BASED
APPROACHES IN PHYTOPLANKTON ECOLOGY

Phytoplankton has been studied for a very long time, starting with the description and identification
of the diverse plethora of species. The linkage between phenotypically-based taxonomy and
evolutionary history led to an initial scientifically sound categorization. Since a number of traits are
linked to phylogeny, this phylogenetic categorization inherently incorporated a (weak) trait-based
component (Bruggeman, 2011; Narwani et al., 2015). Moreover, long before trait-based approaches
became popular, what are currently considered phytoplankton traits (e.g., edible or motile)

Frontiers in Marine Science | www.frontiersin.org February 2019 | Volume 6 | Article 40165

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2019.00040
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2019.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2019.00040&domain=pdf&date_stamp=2019-02-12
https://www.frontiersin.org/articles/10.3389/fmars.2019.00040/full
http://loop.frontiersin.org/people/47824/overview
http://loop.frontiersin.org/people/602984/overview
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00040 February 11, 2019 Time: 17:0 # 2

Weithoff and Beisner Phytoplankton Trait-Based Ecology

were commonly referred to, without explicitly using the term
“trait.” A good example is the conceptual narrative PEG model
for seasonal lake plankton community succession that emerged
as early as the 1980s (Sommer et al., 1986). This oft-referred
to lake model is essentially trait-based, without using the term
trait. The roots of trait-based thinking about phytoplankton
are in Ramon Margalef ’s original work describing the “life-
forms” and “functional morphologies” favorable to remaining
in the water column under different nutrient conditions,
irrespective of whether one considers freshwater or marine
environments (Margalef, 1978). Margalef ’s Mandala, as it has
become known, underlies much thinking on phytoplankton
community assembly based on traits. Margalef ’s thinking formed
a strong undercurrent in the pillar of the development of
trait-based approaches to phytoplankton community assembly
in freshwaters. Subsequently, in the 1980s, Colin Reynolds
established a functional classification of lake phytoplankton
assemblages based on observations from field data (summarized
in Reynolds, 1997 and elaborated further in Reynolds et al., 2002).
Using this classification scheme, characteristic phytoplankton
communities comprised of key species were identified and
related to specific environmental conditions, including season,
lake trophy, lake morphometry, light availability. Within
each assemblage, functionally different groups were usually
represented, demonstrating that for a particular environment,
complementarity through different ecological strategies or trait
combinations enable thriving communities. It is from these
sources that the application of trait-based thinking and theory
with respect to phytoplankton has its roots, and from which it
is currently rapidly expanding.

PHYTOPLANKTON TRAIT TYPES

Traits for phytoplankton have been fairly well-explored and
described for both marine and freshwater ecosystem types.
In freshwaters, the focus has been on lake phytoplankton,
and the conceptual link back to Reynold’s earlier work on
functional groups (see previous section) can be directly traced
in many cases. There are now essentially two schools of thought,
although they are highly related. One “explicitly” defines traits
as categorical, nominal or continuous and the other groups
organisms by morphometric features into functional groups
sometimes called “morphospecies,” continuing more directly
Reynold’s classification. The first is common to both marine
and freshwater studies while the morphospecies classification
has been more commonly used only in freshwater studies, likely
owing to the tradition of studying seasonal succession in these
environments and less focus on biogeochemical cycling that
preclude the need for high quality physiological processing rates.

Explicitly-Defined Traits
Using explicitly defined traits lends itself well to the estimation
of functional diversity indicators (such as functional dispersion,
richness, diversity and evenness; Weithoff, 2003; Villéger et al.,
2008; Laliberté and Legendre, 2010) as well as community
weighted means to characterize functional composition of

communities (e.g., Beisner and Longhi, 2013; Moser et al.,
2017). It also enables the examination of trade-offs between
different continuously measured traits such as those associated
with nutrient uptake and storage (Litchman et al., 2007;
Edwards et al., 2012). All of these indicators are relevant to
questions of competitive interaction between phytoplankton,
interaction with predators, and thus community assembly.
Explicitly-defined traits will also characterize ecosystem
functioning, including processes such as primary production,
trophic transfer (biomass) and nutrient cycling and this has
been addressed mainly in studies relating biodiversity to
ecosystem function (BEF studies) (e.g., Zwart et al., 2015;
Abonyi et al., 2018).

Generally, trait matrices are created for communities of
interest whereby each species is characterized by a series of
explicit traits. The traits used reflect both functions related
to resource acquisition (bottom–up processes) and predation
(top–down processes). In the explicit framework, commonly
used traits are classified by type (Litchman and Klausmeier,
2008) as follows:

First: Morphological: size, biovolume, mucilage
presence/absence, biological form (unicellular/colonial/
coenobium/sincoenobium/filament/chains).
Second: Physiological: (a) presence/absence of silica
demand, heterocysts (N2-fixation), mixotrophy, toxin
production, resting stages; (b) dominant pigment
type; (c) nutrient and/or light uptake parameters; (d)
temperature optima.
Third: Behavioral: presence/absence of flagella, aerotypes.

Generally many of these traits are based on literature or
expert knowledge to classify traits, although many gaps still exist.
There are new and evolving techniques to fill the data gaps on
traits, mainly through the use of phylogenetic relationships (e.g.,
Bruggeman, 2011).

An important potential drawback with this approach, that
assigns static traits to species, is that the actual expression of
traits in phytoplankton may depend heavily on local (spatial and
temporal) environmental conditions (but see section “Study of
Communities vs. Selected Taxonomic Groups” on phenotypic
plasticity). However (Violle et al., 2007), based on trait-based
approaches in plants, argue that traits should be measurable
on individuals independently of the environmental conditions.
It is clear that such arguments do not necessarily apply in
the case of the short-generation time and fast response times
characteristic of phytoplankton. Notably, phytoplankton traits
related to physiology may not always be expressed to the same
degree, nor even active at all– for example classifying a species as
a nitrogen-fixer does not characterize temporal variability in this
trait that may occur in a changing environment. The next step
in functional trait consideration of phytoplankton communities
will be to better characterize in situ trait expression using genetic,
biochemical or physiological probes. The challenge is doing so at
the community level for the wide range of phytoplankton taxa
and cells potentially present.
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Morphospecies Classification
This approach is also commonly used, mainly in freshwater
ecosystems in which it has roots (Reynolds et al., 2002),
specifically in Reynolds (1997) trait-based “response
group” classification of lake phytoplankton. Response
group classification was based largely on how communities
changed reliably year-to-year during seasonal succession.
The morphospecies approach in particular counts, among
other things, on the fact that shape (including size) affects
buoyancy, uptake parameters and predator handling time
and thus simplifies the original classification proposed by
Reynolds (1988).

Morphospecies classification assumes that the empirical
observation of the morphology of phytoplankton community
constituents reflects the environmental and biotic interaction
constraints on the community as well as the physiology
of the organisms. It relies heavily on the idea that the
morphometry of taxa reflect their autecology (physiology and
functioning) (Kruk et al., 2010). Thus, like the response
group approach of Reynolds (1988, 1997), it differs from
the explicit trait approach in that it considers trait-mediated
effects that arise from species interactions (by empirically
assessing group composition) (Abonyi et al., 2018). Summarily,
clusters of taxa based entirely on morphological features can be
defined statistically and should represent meaningful functional
phytoplankton groups.

In many ways, the original morphospecies classification
resembles a reduced version of the explicitly-defined traits (Kruk
et al., 2010). It was based originally on nine morphological traits
including many that overlap with the previous classification:
volume, maximum linear dimension, surface area, and the
presence of mucilage, flagella, gas vesicles (or aero-topes),
heterocysts or siliceous exoskeletal structures. Essentially, what
is not found explicitly in the morphospecies approach is any
explicit reference to physiological parameter rates – these are
assumed (and were shown by Kruk et al., 2010) to be correlated
with the morphological traits and group classification. The
other difference from the explicitly-defined trait approach, is
that instead of creating a species x trait matrix, then used
to estimate functional composition or diversity, the focus
here is on creating morphologically based functional groups
(MBFGs) using clustering techniques. The groups thus created
can then be related to environmental gradients or ecosystem
functioning. In this approach, a potential short-coming however
is the need to translate these morpho-groups into fitness
(Naselli-Flores and Barone, 2011).

“Master” Traits
There has been a large focus on cell or body size as a
“master” trait – so-called because of the large number of
physiological and morphometric features that are regulated
by body size. Also feedbacks with the environment are
related to body size, as evident in the metabolic theory of
ecology (e.g., Brown et al., 2004), which demonstrates the
theoretical link between body size and ecosystem processes.
Furthermore, it is recognized that body size and body size
distribution (e.g., biomass size spectra) in phytoplankton

communities can reflect many environmental factors such as
vertical water dynamics and depth, trophic state, predation,
and factors affecting growth (reviewed in Mouillot et al., 2006;
Litchman and Klausmeier, 2008). It should be noted that
the use of biomass size spectra has a long history in both
marine and freshwater plankton studies: with older studies
usually focused on estimating food web transfer efficiencies
(e.g., Kerr, 1974; Gaedke, 1993; Sprules and Goyke, 1994)
and not to prediction of other functional traits important
for community assembly within specific groups like the
phytoplankton themselves. More recent work has directly
considered the relations between size spectra and effect traits
such as nutrient recycling rates and in response to environmental
conditions in aquatic ecosystems (e.g., Rodríguez et al., 2001)
as is currently done in more explicit trait-based approaches.
In phytoplankton body size is usually estimated as cell size
along the maximum linear dimension (abbreviated as MLD
or GALD: greatest axial linear dimension). The use of cell
size is common to both the explicit trait and morphospecies
frameworks and lends itself well to ecosystem modeling
(e.g., Acevedo-Trejos et al., 2016).

Elemental stoichiometry of phytoplankton cells could
be considered a type of “master trait” because, like size,
these relationships are subject to biophysical rules that link
growth rates with environments, food web interactions
and thus biogeochemical cycles (Finkel et al., 2010). This
consideration stems originally and largely from marine studies
of phytoplankton (Finkel et al., 2010; Litchman et al., 2015), in
large part due to the longer focus on biogeochemical cycles and
feedbacks with phytoplankton (e.g., Follows and Dutkiewicz,
2011). Phytoplankton taxa have distinct stoichiometric ratios in
both the macronutrients (e.g., C:P, N:P), but also in relation to
micronutrients such as Cu, Fe, Zn, Co, Cd, and Mn; relationships
that have evolved over time (reviewed in Litchman et al., 2015).
Because of the strong potential effect of changes in stoichometry
that would accompany changes in phytoplankton communities
driven by environmental factors (other than biogeochemical
ones), it is argued that the stoichiometric properties or traits
of altered communities could inform on how biogeochemical
processes are likely to be altered.

More recently, and in a different context, an interest
in using phytoplankton to produce biofuel has lead to a
fuller investigation of the stoichiometric traits in freshwater
phytoplankton as well (Shurin et al., 2013, 2014). The goal
has been to optimize long-term culture conditions for
commercial-grade algal biofuels through the manipulation
of C:N:P ratios that best optimize desired phytoplankton
biomass production based on organismal requirements
(stoichiometric traits).

Other Trait Types
There are a series of other trait types being developed, some
focusing on more aggregate properties of communities (i.e.,
defined at the community and not individual level) and others
focussing directly on the many individual phytoplankton present
in a community. We will describe these briefly working from the
aggregate community to the individual level.
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Remotely-Sensed Traits
In marine ecosystems, researchers have begun to use optical
properties measured from satellites to estimate overall
phytoplankton community structure. Essentially, from MERIS
wavelengths, bio-optical traits (BOTs) have been derived to
characterize phytoplankton functional types (PFTs) (Aiken et al.,
2007, 2008). Such PFTs can then be linked to the global carbon
cycle using bio-mechanistic models (Aiken et al., 2008). As
with other trait-based methods, estimating the functional type
(PFT) from remotely sensed oceanographic data requires that a
specific BOT exist for each taxon. Bio-optical traits are derived
more specifically from a suite of variables: Chl-a concentration;
accessory pigments (Chl-b, Chl-c, carotenoids, phycobillins);
pigment ratios (TChl-a/AP, TChl-a/TP, PPC/TC); phytoplankton
absorption at 443 nm (aph443), and the spectral slope of aph.

Pigments as Traits
Using high performance liquid chromatography (HPLC), it is
possible to characterize phytoplankton communities by their
pigments (e.g., Zhao and Quigg, 2014). Post-processing of HPLC
results enables observation of changes in communities in terms
of often highly phylogenetically conserved pigment groups.
Because taxa with different pigments respond differently to the
light environment, their pigment profiles can be considered as
functional traits.

Cell Chemotyping for Macromolecular Traits
This method relies on the fact that there are conserved
strategies in energy and C partitioning amongst phytoplankton
species that can then be used to characterize their growth rate
traits. Cell chemotyping can be done using Fourier transform
infrared (FTIR)-spectroscopy to obtain biochemical signatures
in phytoplankton cells (Fanesi et al., 2017). In this study, the
authors demonstrated that the macromolecular (FTIR absorption
peaks of proteins, lipids, carbohydrates, and phosphorylated
compounds) composition of phytoplankton cells was able to
better characterize details of cell physiology related to growth
rates. In this way, a common set of physiological traits can be
used to define species and it has the potential to apply to in situ
estimates of functioning of cells, even in dynamic environments.

Scanning Flow Cytometry Traits
Another recent method applies to characterizing individual cells
in a community, rather than assigning traits to all individuals
in the same taxon. Thus, the focus is on intra-specific variation.
The idea is to scan communities using flow cytometry to obtain
a series of parameter estimates (traits) for all individual cells
present in a community (Fontana et al., 2014). These traits
characterize morphology (length, area) as well as fluorescence
characters (chlorophyll a, accessory and degraded pigments) on
the individual level, thereby allowing for intra-specific variation
in these traits to be estimated.

Trait Concept Standardization
To better integrate the various ways in which traits have been
defined and used for phytoplankton, recent developments have
been underway to better harmonize data and allow for its

interoperability (e.g., exchange between computer platforms or
software). In particular the development of thesauri is occurring
generally in ecology, to standardize the semantic properties
for trait labels, including their definitions. For phytoplankton,
the PhytoTraits thesaurus has recently been created1 (Rosati
et al., 2017). This thesaurus creates a standard definition of
phytoplankton traits and their measurements that will permit
better data integration across studies. A thesaurus ensures
the integration amongst different datasets that use different
terms for the same concept (for example biomass, weight, or
dry weight; Rosati et al., 2017). Thesaurus construction uses
eco-informatics approaches to acquire, integrate and analyze
trait terms, developing a standard terminology or “controlled
vocabulary” to which the scientific community can refer. Each
term or concept obtains its own Uniform Resource Identifier
(URI that is a unique, persistent internet label). New terms can
then be added to thesauri such as PhytoTrait via a portal and
traits labeled differently but referring to the same concept can be
identified and properly classified.

Traits Used in Marine and Freshwater Research
Due to the similar nature of marine and freshwater habitats,
relevant phytoplankton traits are also very similar between
marine and freshwater species. The master trait size is commonly
used independently of the habitat under consideration, being
a unifying trait (Litchman and Klausmeier, 2008). Other, less
frequently used traits, are resource use traits, e.g., nitrate
acquisition (N-fixation), mixotrophy or traits related to light
harvesting (Barton et al., 2013; Edwards et al., 2013). In
freshwater studies, size is often expanded to a more complex
measure of shape, taking morpho-functional differences between
species into account (e.g., Kruk et al., 2010), often in combination
with phylogenetic/taxonomic relatedness (Huszar and Caraco,
1998; Cellamare et al., 2013; Segura et al., 2013). In studies
investigating the vertical structure of lakes, the pigment
composition (Beisner and Longhi, 2013) and the motility of cells
(by gas vacuoles or flagella) are further relevant traits (e.g., Pomati
et al., 2012), likely less important in the well-mixed surface layer
of the open ocean.

LITERATURE SURVEY

To better compare how trait-based approaches have been used
in phytoplankton ecological research in marine and freshwater
studies, we performed a literature search using the criteria
“phytoplankton” AND “trait∗” in the Web of Science (Clarivate
Analytics) on March 7, 2018. A total of 631 entries matched
our criteria; the oldest one is from 1976 (Vladimirskaya et al.,
1976), taking 15 years until the next papers appeared. From
that point onwards, the number of contributions increased
rapidly with a total of 243 papers published in 2015–2017 on
phytoplankton and trait∗. We discarded > 300 papers from
our subsequent analysis because the term trait was not at all
related to phytoplankton or because the study did not fit into

1http://thesauri.lifewatchitaly.eu/PhytoTraits/index.php
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the context of phytoplankton trait-based ecology. Another ca.
150 were also removed because of a lack of a community
context, dealing with only a single trait or a single species,
or a particular measurement technique. A total of 150 papers
remained and these were grouped into marine or freshwater
(lakes and rivers) studies, then classified according to study
type (field observational surveys, experimental, mathematical
modeling and conceptual/review) and according their research
question (community assembly, response to environmental
change or relations with biogeochemical cycling). A substantial
number of the papers could not assigned clearly to each
category, because research questions were overarching or the
themes were only loosely related to our categories. Thus, the
exact numbers we present are debatable, but they do indicate
some overall tendencies. From the subset of 150 articles, we
found an almost equal share of marine (67) and freshwater
(76) studies (Figure 1 and Table 1). Furthermore, there
were several modeling or conceptual/review studies that were
either not specific to one habitat type or explicitly dealt with
both. Grouping these articles into field surveys, experimental,
mathematical modeling and conceptual/review studies, it became
obvious that experimental studies were underrepresented, while
field surveys and mathematical modeling studies dominate the
literature. Mathematical modeling studies were more commonly
applied to marine ecosystems, while field studies were more
often conducted in freshwater studies. This might reflect the
accessibility and higher sampling frequencies of freshwater
sites, but also the goal of the respective studies (see section
“Comparing Freshwater and Marine Trait Studies: Assembly
vs. Biogeochemistry”). This literature survey better enabled us
to determine the different ways in which traits have been
incorporated into the study of phytoplankton ecology in both
freshwater and marine environments, which we now elaborate
with some examples.

STUDY OF COMMUNITIES vs.
SELECTED TAXONOMIC GROUPS

Trait-based phytoplankton studies generally consider either the
whole community or focus on responses in certain phylogenetic
groups such as the diatoms or other major phyla. Whole
community studies from freshwater sites typically analyze
seasonal dynamics or a component of temporal variation, such
as the spring bloom, using classical phylogenetic (taxonomic)
approaches. A trait component, such as cell size as a master trait,
or some measures of functional diversity based on functional
traits is sometimes added to broaden the view. However, such
studies do not focus on a trait-based approach per se making it
difficult to group them unambiguously into our categories.

Another aspect in community studies is the analysis of spatial
(mostly vertical) differences in communities from stratified
environments (e.g., Longhi and Beisner, 2010; Santana et al.,
2017). Often the response to environmental changes or a detailed
analysis of the traits within a particular taxonomic group
(representing a particular set of traits) has been the focus. For
example, diatoms represent a phylogenetic group common to

FIGURE 1 | Results of the literature search using “phytoplankton” AND
“trait∗.” From a total 631 articles, 150 were selected that used a trait-based
approach to study phytoplankton ecology. The remaining studies were
assigned to four different types according to their predominant approach and
according to ecosystem type. The conceptual/review articles were often not
specific to a habitat type, so no further distinctions were made.

both marine and freshwater studies. They are abundant in lakes,
rivers and oceans alike, and play an important role in food webs
and the biogeochemical cycles. As a result, their trait distribution
and the consequences for diatom dynamics have been commonly
studied in both ecosystem types (e.g., Terseleer et al., 2014;
B-Béres et al., 2017; Taherzadeh et al., 2017). Diatoms come with
the added advantage that they preserve in sediments and can
thus be the focus of longer-term paleo-limnological or paleo-
oceanographic analyses (Smol et al., 2005; McKay et al., 2012).
In marine studies dinoflagellates and coccolithophores represent
other target groups. For dinoflagellates, important traits relate
either to toxin production or to mixotrophy, for coccolithophores
relevant traits relate to the tolerance to ocean acidification (see
section “Genotypic Trait Plasticity”).

TRAIT VARIABILITY: GENOTYPIC vs.
PHENOTYPIC

An important, though often neglected, aspect in the
quantification of traits is the phenotypic and genotypic plasticity
of traits. Plasticity or trait variation is difficult to measure, but
it is important for the parametrization of mathematical models
and for the understanding of community processes on timescales
relevant for phytoplankton ecology.

Phenotypic Trait Plasticity
Many traits can vary substantially according to environmental
conditions. While some traits can be measured on individuals
(e.g., body size), some are more amenable to measurement at
the community level, representing the average of a population of
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TABLE 1 | Summary of the focus of the 73 trait-based studies examining entire (or a majority of groups within) phytoplankton communities.

Research perspective Marine Freshwater Marine/freshwater Estuaries

Effects of the environment on trait assembly or dynamics 8 29 1 3

Trait interactions on community structure or dynamics 7 6 3 0

Traits on ecosystem function or its biogeography 8 3 2 0

Other topics 1 1 1 0

Total 24 39 7 3

Note in some studies, the focus could not clearly assigned to one of the categories.

individuals, such as nutrient ratios or physiological traits. Size,
as a master trait (see section “Phytoplankton Trait Types”), is
related to many ecological processes, but it can also be highly
variable. To account for cell size variation within a phytoplankton
population or community and over extended periods, modern
techniques now exist, although not regularly utilized to assess size
variation, including flow cytometry or related systems that also
provide images (e.g., Flow-CAM, CytoBOT).

Body size variation, in addition to being easy to measure,
is ecological very relevant in phytoplankton and thus often
considered in ecological studies. For example, because
zooplankton herbivory is often size-selective, a selective
pressure on distinct prey size classes is introduced, thereby
changing the size distribution of a population or community
(Sommer et al., 2001; Lewandowska et al., 2014). Furthermore,
in freshwater ecosystems, it has been observed that the mere
presence of the herbivore Daphnia, can induce changes in
the colony size of their algal prey driven by kairomones, even
without any herbivory (Hessen and VanDonk, 1993). In another
example, the physiological status of phytoplankton cells can
also drive their body sizes and thus the variation observed in a
population or community: during the regular cell growth cycle
the size of the cells might vary by a factor of two or even more
(Massie et al., 2010). With increasing nutrient limitation, the
cell cycle arrests at a certain limiting nutrient concentration
and it continues only under nutrient replete conditions, which
may synchronize a population’s cell size to a smaller value
(Massie et al., 2010). Body size in diatoms is a particularly
interesting case of size variation. Diatoms reduce their average
cell size through progressive population growth, because after
cell division the newly-built theca is formed from the inner
(smaller) part of the mother theca leading to a continuous
cell size reduction of one of the daughter cells (Lee, 1999).
Associated to a smaller body size is an increase in the surface to
volume ratio, facilitating the nutrient uptake per unit of volume
(Reynolds, 1997).

Physiological traits also vary in response to environmental
changes. A common strategy is the optimization of resource use
efficiency. This includes an increase in chlorophyll-a or other
photosynthetic pigments by phytoplankton cells to better collect
photons at low light availabilities or spectral discontinuities
(Richardson et al., 1981; Falkowski and LaRoche, 1991). Another
example is the production of the enzyme nitrogenase under
nitrogen limiting conditions, which enables the fixation of
elementary nitrogen. An increasing nitrogenase activity is
typically found with increasing duration of nitrogen-depleted
conditions (e.g., Paerl, 1988).

Genotypic Trait Plasticity
Traits and trait values not only vary in response to environmental
factors but also among different genotypes within a population.
Information on genotypic trait variation is surprisingly rare
and often stems from research in other fields than trait-
based ecology. We can draw on several examples involving
phytoplankton. First, with respect to toxicity, different strains
of potentially toxic algae have been analyzed to understand the
mechanisms and physiological costs behind toxin production. In
marine habitats, dinoflagellates (e.g., Alexandrium) are the most
prominent toxic group, while cyanobacteria (e.g., Microcystis and
others) are the main toxin producers in freshwaters. Within one
species, the ability and magnitude of toxin production among
different strains varies considerably, making it difficult to assign
this trait to a species (Ichimi et al., 2002; Kardinaal et al.,
2007; Touzet et al., 2008). Another source for information on
trait plasticity comes from invasion biology: invasive species
usually regarded as species with a high genotypic plasticity
facilitating their establishment in newly invaded habitats. For
the invasive cyanobacterium Cylindrospermopsis, high genotypic
trait variability is notable (Willis et al., 2016; Bolius et al.,
2017). Genotypic variation in phytoplankton also comes from
global change research as it is related to ocean acidification. The
response of coccolithophores to declining pH-levels has been
shown to be strain-specific (Müller et al., 2015; Rickaby et al.,
2016) and varies at different times scales (Meyer and Riebesell,
2015; Schlüter et al., 2016). Differentiating between such short-
term strain-specific acclimation and long-term adaptation makes
it difficult to predict community responses to ocean acidification.

Consequences for Trait-Based Modeling
For several applications of trait-based approaches, trait variability
might not be a serious disadvantage, as for example with
respect to aspects of community assembly in relatively stable
environments. However, for modeling ecosystem processes or
species interactions more directly and on shorter timescales,
the variability in traits may be critical. However, not only does
the variability itself complicate trait-based modeling (Coutinho
et al., 2016), but the shape of the trait distribution also plays an
important role (Gaedke and Klauschies, 2018). The shape of the
trait distribution determines the potential for adaptive responses
to environmental change. For example, when environmental
forces act specifically on a certain trait and a distinct range of
the trait values, a bimodal trait distribution might permit a more
sustainable response option relative to a normal trait distribution,
especially if the pressure is imposed around the mean. A great
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deal more work will be necessary to establish the distributions of
highly variable individual phytoplankton traits to inform these
modeling approaches.

COMPARING FRESHWATER AND
MARINE TRAIT STUDIES: ASSEMBLY vs.
BIOGEOCHEMISTRY

Narrowing our literature survey subset of 150 articles further,
by including only those studies that had either a broad spatial
(many samples over a broader area) or temporal scale (time
series data), as well as those that considered the entire (or
a substantial part of the) phytoplankton community under
a trait-based view, 73 articles remained. The majority were
freshwater studies, with 29 dealing mostly with environmental
factors driving community assembly or temporal dynamics when
assessed using traits (perspective 1, Table 1 and Supplementary
Table S1). Other studies at the community level examined
trait distributions more directly by focusing on interactions
between them and how this could influence community structure
or dynamics (without explicit consideration of environmental
variation). This group (perspective 2, Table 1) was more evenly
split between marine and freshwater environments (6–7 per
environment). On the other hand, studies that focused more
directly on ecosystem consequences of traits (perspective 3,
Table 1), including ecosystem biogeography and biogeochemical
processes including stoichiometry, were much less numerous
(total of 13), with the majority (8) from marine environments
and another two combining freshwater and marine. Irrespective
of research perspective, a total of seven studies used trait-
based approaches in marine and freshwaters together, and three
considered estuaries.

Generally speaking, for phytoplankton, the nature of the
pelagic habitat as well as the main representative phyla and
their ecology are relatively similar across both marine and
freshwater ecosystems. Despite this similarity, research questions
and approaches have evolved, at least in part, separately, in
the two environments. One crucial difference between these
ecosystem types is the accessibility and the possibility to take
frequent samples. For many lakes, routine sampling campaigns
are regularly conducted, either by local authorities or scientific
institutes and universities. Thus, many data sets with some
temporal resolution and good physico-chemical background
data exist. In comparison, less data exists for coastal regions,
and regular, high temporal resolution biological sampling in
open ocean sites is very rare (but see Buitenhuis et al., 2013;
Brun et al., 2015).

Traditionally, much ecological research was performed at
field stations investigating the on-site environment. This is
particularly the case for freshwater biological stations, many of
which were established to combine monitoring and research,
often in relation to water utilities and providers related to
drinking water, fisheries or recreational uses. For these purposes,
water quality and phytoplankton community composition has
been extensively studied, with frequent and regular sampling of
the pelagic food web, to ensure the management of drinking

water quality and quantity or of fish harvest. At marine biological
stations, local sites have also been sampled, although they have
served primarily as entry points to understanding the open
ocean, for which cruises are expensive and do not allow for
regular sampling.

These different ecosystem accessibility and scientific histories
are mirrored in the different research questions addressed in
phytoplankton trait-based studies in freshwater and marine
systems. Trait-based studies from the open ocean preferentially
investigate biogeographic trait patterns (Acevedo-Trejos et al.,
2013; Barton et al., 2013) or they have a strong biogeochemical
focus aiming for the quantification of globally important
processes related to primary production such as carbon-dioxide
acquisition, nitrogen fixation (Breton et al., 2017), or oceanic
stoichiometry and biochemistry (Litchman et al., 2007, 2015;
Strom, 2008; Finkel et al., 2010; Bonachela et al., 2016),
but also on phytoplankton dynamics (Alexander et al., 2015)
(Figure 2). In oceanography, many studies model trait-based
processes, aiming for broad-scale extrapolation of these globally
(Smith et al., 2016; Vallina et al., 2017). From a conceptual
point of view, marine research considers how traits and trait
distribution drive processes determining the environmental
conditions (e.g., biogeochemistry).

In the more accessible coastal or freshwater sites such as lakes,
the conceptual view is often in the opposite direction (Figure 2),
considering instead how phytoplankton communities respond to
the environment and which environmental factors drive the trait-
based community assembly. Answers to these research questions
rely on a sampling regime with a high temporal resolution.
A prominent example for a coastal long-term sampling site is
the Western Channel Observatory site in the English Channel off
the coast of Plymouth, United Kingdom (Edwards et al., 2013;
Mutshinda et al., 2017). Coastal sites that are influenced by the
tide or estuaries are subjected to rapid environmental changes
so that the response to such changes became into the focus of
the investigations (Aubry et al., 2017; Klais et al., 2017; Moser
et al., 2017). On a similar time-scale, lakes (and rivers) are also
characterized by rapid environmental changes and studies on
these systems thus often deal with trait-driven responses to these
by the community. Longer-term studies that consider several

FIGURE 2 | Schematic of the pre-dominant perspectives in marine and
freshwater phytoplankton trait-based research. Line thickness indicates the
relative number of studies.
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months or years are highly suitable to these types of questions,
especially when similar environmental changes are repeated
during the investigation, representing a form of temporal
replication (Pomati et al., 2012; Edwards et al., 2013; Tsai et al.,
2014; Weithoff et al., 2015; Bortolini et al., 2016; Weithoff and
Gaedke, 2017). Alternatively, instead of temporal replication,
trait-based approaches also enable a space-for-time substitution
in which many sites receiving a similar environmental signal (e.g.,
sites along a coastal or river stretch or lakes within the same
region) are sampled only once or a very few times (Longhi and
Beisner, 2010; Machado et al., 2016; Santana et al., 2017; Vadrucci
et al., 2017). Trait-based approaches become particularly helpful
in such cases, as they are ataxonomic, facilitating the detection
of common response patterns within these potentially disparate
communities. Another aspect of freshwater trait-based studies is
the analysis of the vertical distribution of phytoplankton (Pomati
et al., 2012; Beisner and Longhi, 2013; Santana et al., 2017),
when steep physical-chemical gradients exist. One drawback we
noted in several studies is that they lack a clear rationale as to
why they use trait-based approaches in relation to the ecological
goals (as also argued by Hébert et al., 2017 for zooplankton).
Clearly outlined goals related to improved understanding of
community assembly vs. contributions of phytoplankton to
biogeochemical cycles should be a part of every study that uses
trait-based approaches.

RECOMMENDATIONS AND
CONCLUSION

Similarities and differences in phytoplankton trait-based
approaches between marine and freshwater studies can be
identified by the ways in which traits are assigned and the focus of
the primary research questions to which traits are applied. With
respect to trait assignment, two related schools of thought exist,
either “explicitly” defining several species’ traits simultaneously
so that there is little overlap between taxa, or by restricting
classification to “morphospecies” types, continuing more directly
Reynold’s earlier classification. Explicitly-defined traits are
commonly used in both marine and freshwater studies, while
morphospecies classification has been more commonly used in
freshwater habitats. We attribute this difference to the tradition
of studying seasonal succession and community assembly under
varying environmental conditions in highly accessible freshwater
environments that preempts the need for higher resolution
physiological processing rates. Marine studies often focus on
globally relevant biogeochemical cycles, for which key process-
related traits are studied on the most abundant taxa, especially

coccolithophores, diatoms, dinoflagellates and prochlorophytes.
In general, researchers are encouraged to better motivate, why
they apply trait-based analyses to their studies. They will benefit
from applying the strong process-driven approaches used in
most marine studies to investigate the relationship between traits
and biogeochemical processes. Marine researchers might benefit
from the mechanistic approaches used by freshwater researchers
to better understand community assembly using traits, if more
resolved time-series data can be obtained through autonomous
buoys or remote sensing. As another avenue of future research,
we propose fully comparative trait studies conducted along
the habitat gradient spanning freshwater to brackish to marine
systems. Such studies can combine the strengths of both fields
and would be of general ecological interest. Other comparative
studies could analyze latitudinal, altitudinal, or trophic gradients
using phytoplankton traits as a common currency to assess
community structure. In some cases, data likely already exist
to conduct these studies. Given the low number of experimental
studies we noted in our literature survey, it would be very useful
to test the field survey patterns more explicitly in manipulated
experiments, such as in mesocosms, to ascertain mechanisms
influencing trait distribution and expression. Last, but not least,
a common challenge for future research in both systems remains
to account for within-species trait variation, a critical component
to trait-based studies in all aquatic habitats, especially in an era of
rapid environmental change.
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Ecological research in recent decades revealed that species loss has a predominantly

negative effect on ecosystem functioning and stability. Most of these studies were based

on random species loss scenarios, but extinctions in nature are not random. Recent

experimental studies using macroscopic communities largely advanced knowledge

about the effects of non-random species loss. However, in microscopic communities

like the phytoplankton, implementing realistic species loss scenarios is challenging and

experimental data are scarce. Creating more realistic experiments to study the role

of phytoplankton diversity for ecosystem functioning is particularly important, as they

provide up to 50% of global primary productivity, form the basis of all pelagic food webs,

and are important for biogeochemical cycling. In this study, we experimentally tested and

evaluated three methods for non-random species loss in a natural marine phytoplankton

community. Dilution, filtration, and heat stress removed the targeted rare, large, and

sensitive species, respectively. All these species groups are extremely vulnerable to

extinction in future climate scenarios and play important roles in the communities. Dilution

and filtration with a fine mesh additionally decreased initial biomass, which increased the

variability of species left in the respective replicates. The methods tested in this study

can be used to non-randomly manipulate phytoplankton species diversity in communities

used for experiments. However, in studies where species identities are more important

than species richness, the dilution and filtration methods should be modified to eliminate

the effect of decreasing initial biomass.

Keywords: phytoplankton, non-random species loss, realistic species loss, species loss manipulation, extinction

INTRODUCTION

Over the last centuries, humans have increasingly influenced andmodified all ecosystems on planet
Earth. Habitat destruction, the emission of greenhouse gases, and the introduction of non-native
species led to species loss rates comparable to historicmass extinction events (Barnosky et al., 2011).
A large number of experimental studies tested the effects of species loss on different ecosystem
processes. They uncovered a generally negative effect of species loss on ecosystem functioning
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and stability (Hooper et al., 2005; Cardinale et al., 2012).
Depending on the magnitude of species loss, its effect size
on ecosystem functioning is comparable to those arising from
direct effects of environmental factors, such as acidification
or nutrient pollution (Hooper et al., 2012). To date, in most
diversity manipulation experiments, researchers altered species
richness by randomly adding species to or excluding them
from communities (Bracken and Low, 2012; Mensens et al.,
2015; Radchuk et al., 2015). However, loss of species in natural
communities is not random, but depends on a multitude
of factors including population size (i.e., rarity), body size,
and sensitivity to environmental stress (Gross and Cardinale,
2005). Previous research showed that the effects of biodiversity
loss on ecosystem functioning can largely differ in randomly
assembled communities compared to communities experiencing
non-random species loss (Solan et al., 2004; Bracken et al., 2008;
Mensens et al., 2015).

Manually removing or adding target species is feasible in
communities with larger and substrate-bounded organisms,
such as in grasslands (Zavaleta and Hulvey, 2004; Selmants
et al., 2012, 2014) or the marine benthos (Bracken et al.,
2008; Stachowicz et al., 2008; Bracken and Low, 2012).
However, in microbial communities, such as phytoplankton,
the manipulation of non-random species loss from natural
communities is particularly challenging. A recent laboratory
experiment with freshwater phytoplankton showed that it is
possible to create communities with distinct species richness
gradients using different levels of dilution and disturbance
(Hammerstein et al., 2017). Nevertheless, technically it is
nearly impossible to remove certain target species or groups
from a natural microbial community without significantly
altering the overall organism density. Hence, such diversity
manipulations are prone to be confounded with a hidden density
treatment, which can have two major consequences. First, it
can directly affect the total biomass which is often used as
a measure for ecosystem functioning. Second, it can enhance
the variability of which species are remaining in a treated
community and thus indirectly affect ecosystem functioning.
To date the latter problem remains largely unquantified, so
that the effects of realistic changes in phytoplankton diversity
on ecosystem functioning in experiments remain essentially
unknown (Gamfeldt et al., 2015).

Even though extinctions in the oceans are not as common
as on land, and direct extinctions caused by humans were less
often recorded for marine organisms, the influence humans
have on aquatic ecosystems is immense and will likely continue
to increase (McCauley et al., 2015). In particular for marine
phytoplankton, that contribute almost 50% to global primary
production (Field et al., 1998) and play an important role in
biogeochemical cycling (Falkowski et al., 1998), future changes
in biodiversity remain speculative.

In the present study, we tested different methods to non-
randomly remove rare, large and sensitive species from natural
phytoplankton communities. These methods can be employed
to manipulate community composition before the onset of an
experiment or they can be used as factors in the experiment to
create different levels of species composition. In the following

section we elaborate on the rationale behind focusing on these
particular groups.

Loss of Rare Species
Rare species are often characterized by small population sizes,
narrow geographical ranges and little genetic variation within
populations (Rabinowitz, 1981; Frankham, 2005; Harnik et al.,
2012). These characteristics in combination with stochastic
processes make rare species more likely to go extinct than
common species (Lande, 1993; Frankham, 2005; O’Grady et al.,
2006; Leitão et al., 2016). Due to numerical disadvantages, rarity
is often accompanied by competitive inferiority which can lead to
extinction by competitive exclusion. An example of competitive
inferiority can be seen in the context of priority effects, where the
first colonizers exhibit a numerical advantage such that they can
exclude later arriving species by monopolizing shared resources
(Urban and De Meester, 2009; de Meester et al., 2016). Priority
effects can also happen at the onset of a phytoplankton bloom.
Eggers and Matthiessen (2013) showed experimentally that the
initial structure of a phytoplankton community influenced the
identity of the respective dominant species at bloom peak.

Despite their increased risk of extinction, rare species are
important in communities because they can maintain ecosystem
functions under changing environmental conditions when they
substitute for dominant species that are lost or decline in
numbers (Walker et al., 1999; Norberg et al., 2001; Elmqvist et al.,
2003; Lyons et al., 2005; Mouillot et al., 2013; Jain et al., 2014;
Leitão et al., 2016; Jousset et al., 2017). Hence, manipulating the
loss of rare species in bloom building phytoplankton can provide
important information about possible future scenarios, in which
these species might be lost at disproportionally high rates.

Loss of Large Species
Experiments and observations have shown that rising seawater
temperatures lead to the reduction of average cell size in
phytoplankton communities (Morán et al., 2010; Peter and
Sommer, 2012; Sommer et al., 2012). Though the underlying
reasons are not completely understood yet, current research
suggests that it is partly driven by decreased nutrient availability
in the euphotic layer of the oceans due to stronger stratification
under warmer conditions (Hofmann et al., 2011; Winder and
Sommer, 2012; Acevedo-Trejos et al., 2014; Lewandowska et al.,
2014). This situation benefits smaller-sized cells. Small cells
have more efficient nutrient uptake rates because they have
more favorable surface area to volume ratios (Aksnes and Egge,
1991; Raven, 1998; Mara-ón, 2014). Additionally, experiments
have attributed the increase in smaller phytoplankton cell
sizes with warming to trophic interactions. Depending on the
preferred size spectrum of the prey, more intense grazing by
zooplankton under higher temperatures can lead to the reduction
in average phytoplankton cell size in a community (Sommer and
Lewandowska, 2011). Since smaller cell size has been proposed to
be one of the universal responses to global warming for aquatic
organisms (Daufresne et al., 2009), testing the effect of losing
larger species from phytoplankton communities can be very
important for future phytoplankton diversity experiments.
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Loss of Sensitive Species and Potential
Interaction with Rarity
Species are considered sensitive when they have a narrow
environmental optimum and therefore steep reaction norms.
They are generally very susceptible to changes in the environment
including a variety of biotic and abiotic factors, such as salinity,
pH, and temperature. In this study, we tested the effect of losing
heat sensitive species, because one of the major changes in
the future ocean is predicted to be an increase in the average
surface ocean temperature (IPCC, 2014). Many species that are
sensitive to environmental change are at the same time low
in their abundance, because they have very specialized habitat
requirements (Davies et al., 2004). Therefore, we additionally
combined the loss of sensitive and rare species as one of the
treatments, a valuable addition to the experimental design as it
can improve our understanding of the mechanisms underlying
sensitive species loss.

The aim of this study was to test the immediate effects of
the above described non-random species loss scenarios on a
natural phytoplankton community and to evaluate their impact
on diversity change at bloom peak. Additionally, we aimed to
qualitatively analyze how far the manipulations led to increased
variability in species identities present in the communities (i.e.,
whether the methods manipulated the loss of the same species
among replicates).

MATERIALS AND METHODS

Experimental Set-Up
The experimental units consisted of white polypropylene buckets
filled with 25 L of sterile filtered (0.2µm) seawater that we
collected from the Kiel Fjord (Kiel, Germany) in March 2013.
At that time it was possible to obtain nutrient-rich winter water
with dissolved inorganic nutrient concentrations of 30.73 µmol
L−1 nitrate and nitrite (NO3 + NO2), 0.77 µmol L−1 phosphate
(PO4), and 34.77 µmol L−1 silicate (SiO4).

We distributed the experimental units randomly in two
temperature controlled rooms (10◦C) that were equipped with
computer-programmed ceiling light units (Econlux, Hibay LED
100W, full sun-light spectrum) providing light from above and
creating an underwater light intensity of 130 µmol m−2 s−1 and

a light-dark cycle of 16:8 h. This corresponded to the local
irradiance levels in Kiel Fjord at the time of the year the
experiment was conducted (Brock, 1981).

Depending on the treatment, we inoculated the experimental
units with different volumes of a natural phytoplankton stock
community that was collected shortly before the experimental
start from surface waters of the Kiel Fjord, Germany in April 2013
at the onset of spring bloom. To excludemeso-grazers (copepods)
from the experiment, we pre-filtered the stock community with a
200µm sieve. For a detailed description of treatment application
see section Manipulation of Different Species Loss Scenarios and
Table 1.

We stirred the water body of each experimental unit carefully
once per day to ensure a homogenous distribution of the
phytoplankton in the experimental units. To prevent airborne
particle transport into the experimental units, but still allowing
for oxygen exchange and light penetration, we loosely covered
the buckets with transparent polyethylene foil.

Manipulation of Different Species Loss
Scenarios
We applied three methods (dilution, filtration, and heat
stress), resulting in five treatments (Table 1): control (Co–no
manipulation), dilution to remove rare species (two levels: D1–
weak dilution, D2–strong dilution), filtration to remove large
species (two levels: F1–coarse filtration, F2–fine filtration), heat
stressed (S) to remove heat sensitive species, and dilution of

heat stressed to simultaneously remove sensitive and rare species
(two levels: SxD1–weak dilution of heat stressed, SxD2–strong
dilution of heat stressed). Each treatment level and combination
was 4-fold replicated which resulted in 32 experimental units in
total.

In order to lose temperature sensitive species prior to the
experimental onset, we separated the collected and pre-filtered
stock community into two temperature treatments (control
(10◦C) = non-heated stock community; heat stress (22◦C) =

heated stock community). We chose 22◦C, because it represents
a critical temperature for many Baltic Sea auto- and heterotrophs
(Reusch et al., 2005; Eggers et al., 2012; Werner et al., 2016). The
stock communities were stored in closed glass bottles (Duran,
2,500mL) in climate cabinets for 24 h. After 24 h, we inoculated

TABLE 1 | Overview of the experimental design with treatment names and levels, abbreviations, and how the treatments were realized.

Treatment name Treatment level Abbrev. Treatment description Added inoculum Target species

Control (Co) No manipulation 10mL of non-heated stock community none

Dilution weak (D1) 10% concentration of control inoculum 1mL of non-heated stock community rare

strong (D2) 1% concentration of control inoculum 0.1mL of non-heated stock community rare

Filtration coarse (F1) Filtration through 100µm sieve 10mL of filtered non-heated stock community large

fine (F2) Filtration through 20µm sieve 10mL of filtered non-heated stock community large

Heat stressed (S) Heat stressed with 22◦C for 24 h 10mL of heat stressed stock community sensitive

Dilution of heat stressed weak (SxD1) 10% concentration of heat stressed inoculum 1mL of heat stressed stock community rare and sensitive

strong (SxD2) 1% concentration of heat stressed inoculum 0.1mL of heat stressed stock community rare and sensitive

The last column shows which species groups were targeted for removal.
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the experimental units according to the different treatments
(Table 1). For the control (Co), we added 10mL of the non-
heated stock community. We applied the two levels of the
dilution treatment by adding inocula of 1 and 0.1mL of the
non-heated stock community, resulting in 10% (D1) and 1%
(D2) of the control concentrations, respectively. For the two
levels of the filtration treatment, we filtered the non-heated
stock community with 100µm (F1) and 20µm (F2) sieves,
respectively. 10mL of the respective filtrates were added to the
experimental units. For the heat stressed treatment (S), we added
10mL of the heated stock community to the experimental units.
To prepare the combined treatment of heat stress and dilution,
we added inocula of 1 and 0.1mL of the heated stock community
to achieve 10% (SxD1) and 1% (SxD2) concentrations of the
heat stressed treatment, respectively. For an overview of all
treatments, treatment levels and combinations as well as their
respective inocula volumes see Table 1.

To assess if the targeted species were actually lost due to the
specific diversity manipulations, we classified each species as at
least one of the following four categories: common, rare, large,
and sensitive (Table 2, Figure 1). We based these categorizations
on species abundances (common or rare species) and cell
sizes (large species) obtained microscopically from a 100mL
sample of the non-heated stock community. Additionally, we
microscopically determined species abundances in a 100mL
sample of the heated stock community to define sensitive species.
For a detailed overview of the categorizations see Table 2.

Because phytoplankton species often belong to more than one
of the above defined four categories, overlapping species were
placed as shown in Figure 1. Since the sample that we initially
analyzed for the control treatment already represented a dilution
of the total species pool present in the stock community, it did
not contain the full set of phytoplankton species at the onset of
the experiment. More precisely, we found single individuals of
some species in initial samples of specific treatments but not in
the control. We defined these species as rare (Figure 1). Resulting
from this, we based the qualitative assessment of the initial loss of
target species caused by the treatments on the total species pool
of 30 species. In addition, we related the quantitative assessment
of how many species were effectively lost in the treatments to the
control.

TABLE 2 | Categorization of species into separate groups based on 100mL

samples analyzed of the control (non-heated stock community) and heat stressed

treatment (heated stock community).

Category Abbrev. Criteria for grouping Reference sample

Common C >1% contribution to total

community biomass and >100 cells

control

Rare R <1% contribution to total

community biomass and <100 cells

control

Large L average of largest cell dimension

exceeds 20µm (corresponding to

the mesh size of the fine filtration

sieve)

control

Sensitive Se At least 75% decrease in species

biomass compared to the control

heat stressed

Sampling and Analysis
We sampled phytoplankton twice over the course of the
experiment: at the onset of the experiment (initial), and
after the community had reached stationary phase (bloom
peak). To determine when each community had reached the
stationary phase, we took daily fluorescence measurements with
a fluorometer (Turner Designs 10AUTM Field Fluorometer). We
applied a sigmoidal growth model (Equation 1) to confirm the
exact developmental stage of the bloom:

ft =
a

1+
[
a−b
b

]
e−µt

(1)

where ft is the relative fluorescence after t days, a is the maximum
relative fluorescence (carrying capacity), b is the starting relative
fluorescence, and µ is the growth rate. The treatments reached
their termination point when the growth curve of at least
one replicate of that treatment significantly fit the model for
three consecutive days. At this time, the other replicates of
the treatment had reached stationary phase and we sampled all
replicates of the same treatment.We took the last samples 18 days
after starting the experiment, corresponding to approximately
9–18 microalgae generations. We preserved the phytoplankton
samples in Lugol’s iodine solution and stored them in the
dark until further processing. To determine phytoplankton
cell numbers and biovolume, we counted the samples using
an inverted microscope after Utermöhl (1958). For the initial
samples (i.e., at the onset of the experiment), we examined
a 100mL sample of each treatment. This corresponded to
cell abundances ranging from approximately 200 (D2, SxD2)
to over 14,000 (Co, S) cells counted (see Supplementary
Table 1). Identifications were made to the species level when

FIGURE 1 | Categorization of common, rare, sensitive, and large species

initially present in the total species pool. Combinations of more than one

category are displayed as overlapping areas in the Venn diagram. For

abbreviations of species names and their initial relative biomass in each

treatment see Supplementary Table 2. The black letters show species that

were initially present in the control. The gray italic letters show species that

were initially not present in the control but found in other treatments.
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possible, otherwise genera were determined. Based on procedures
described in Hillebrand et al. (1999), we calculated species-
specific cell biovolume by approximating cell shapes to simple
geometric bodies. By summing up species specific biovolumes,
we calculated the total biovolume of a sample, which is used as a
proxy for total biomass hereafter.

To compare phytoplankton communities, we calculated
species richness, Pielou’s evenness (Pielou, 1966) and Bray-
Curtis dissimilarity (Bray and Curtis, 1957; Clarke et al., 2006)
using the vegan package in R version 3.2.3 (Oksanen et al.,
2017; R Core Team, 2017). The latter two were calculated
based on species-specific biomass data. For the bloom peak
samples, we computed Bray-Curtis dissimilarity both as average
within (B-Cintra) and between (B-Cinter) treatments. For the
initial samples, we could only calculate B-Cinter, because we
did not have any replication of the inocula. Therefore, the
initial samples could only be compared quantitatively. Taking
multiple sub-samples at this point would have led to pseudo-
replication. To compare treatments at bloom peak, we performed

a multi-factorial ANOVA in R 3.2.3 (R Core Team, 2017).
We tested the main effects of the categorical factors dilution,
filtration and heat stress as well as the interaction of dilution
and heat stress on species richness, Pielou’s evenness (J’), and
within-treatment variation (B-Cintra). Evenness and dissimilarity
data were log-transformed to increase normality and account
for non-homogenous variance distribution, respectively. We
performed post-hoc tests (Tukey HSD) to specify which
treatments significantly differed from one another. Finally, we
created multi-dimensional scaling (MDS) plots based on the
Bray-Curtis dissimilarity matrix in Primer 6 (Clarke and Gorley,
2006).

RESULTS

Initial Treatment Effects
All diversity manipulations initially decreased species richness by
at least two species compared to the control (Figure 2A). We
found the strongest declines in initial richness in the dilution

FIGURE 2 | Initial species richness (A), total biomass (shown as biovolume; B), and Pielou’s evenness (J’; C); bloom peak species richness (D); within treatment

variation (as Bray-Curtis dissimilarity (B-Cintra); E), and Pielou’s evenness (J′, F). Filled gray dots represent treatment means (±95% CI), while open dots show the

single replicates of the bloom peak samples. Asterisks denote statistically significant differences from the control detected with Tukey HSD tests (*p < 0.05, **p <

0.01, ***p < 0.001).
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treatment (D1 and D2) and in the strong dilution of stressed
treatment (SxD2). Compared to the control, the decreases were
six and nine species, respectively (Figure 2A). Both filtration
treatment levels, as well as the heat stressed treatment (S),
reduced initial richness by two species compared to the control
(Figure 2A).

The total species pool in the initial samples consisted of 30
species, of which 22 were present in the control treatment (Co)
(Figures 1, 2A, 3). Generally, the vast majority (i.e., 22) of the
species in the total pool was rare, including 12 species that were
additionally large and/or sensitive (Figures 1, 3).

Dilution successfully implemented the loss of rare species. In
both levels of the dilution treatment (D1 and D2), 14 species
were absent from the total species pool, of which 13 were initially
defined as rare (Figure 3). Likewise, in the two levels of the
dilution of stressed treatment (SxD1 and SxD2) almost only
rare species were absent from the total species pool. That is, in
the weak dilution of stressed treatment (SxD1), 11 species were
missing from the total species pool, of which 10 were rare. In the
strong dilution of stressed treatment (SxD2), 15 of the 17 missing
species were rare (Figure 3).

Filtration only partially removed large species. In both levels
(F1 and F2), five of the ten species that were missing from the
total species pool were large (Figure 3). However, six species that
we initially categorized as large species were still found in both
levels of the filtration treatment (Figure 3). All of them appeared
in low abundances in the fine filtration (F2), but some of them
were frequent in the coarse filtration (F1). As a side effect, both
filtration treatment levels also removed five small rare species
(Figure 3). This is comparable to the absence of rare species in
the control treatment and can be attributed to detection limits
(i.e., not all species were found in the sub-sample of the initial
communities).

Heat stress successfully removed sensitive species. Ten species
from the total species pool were missing in the heat stressed
treatment (S), of which four were sensitive (Se; Figure 3).
Considering the fact that we initially defined five species as
sensitive (Figure 1), a high proportion of sensitive species were
effectively lost with heat stress. Similarly, in the two levels of

FIGURE 3 | Initial number of species belonging to the different categories.

Species were defined as common (C), rare (R), large (L), rare large (RL), rare

sensitive (RSe), large sensitive (LSe) or rare large sensitive (RLSe) as seen in

Figure 1 and abbreviated as in Table 2. Opaque bars framed by black lines

depict the number of species present in each category while transparent bars

show categories of species missing from the total species pool of 30 species.

the dilution of heat stressed treatment, three out of five sensitive
species were missing (Figure 3). All but one of the remaining
missing species in the heat stressed treatment (S) were rare
(Figure 3).

The treatments differentially affected initial total biomass.
Reduction of total biomass in the strong dilutions (D2 and SxD2)
was highest (99% compared to the control; Figure 2B). The heat
stressed treatment (S) and the coarse filtration (F1) reduced total
initial biomass by 15% compared to the control (Figure 2B).
Reduction in the fine filtration (F2) and weak dilutions
(D1 and SxD1) was intermediate ranging from 68 to 88%
(Figure 2B).

Those treatments that substantially reduced the initial total
biomass (i.e., F2, D1 SxD1, D2, SxD2; Figure 2B) had the
biggest influence on community composition which is reflected
in the alignment of the community similarities along the initial
biomass dilution gradient (Figure 4A). Whereas, the community
composition of the heat stressed treatment (S) and the coarse
filtration (F1) remained very close to the control (60% similarity
in community structure, Figure 4A), the strong dilutions (D2
and SxD2) were least similar in their community structures to all
other treatments (<20% similarity, Figure 4A).

Initially, Thalassiosira sp. (THA) was the dominant species
in most treatments according to biomass data, followed by
Skeletonema costatum (SKE) and Detonula confervaceae (DET).
These three species together contributed over 70% to total
biomass in nearly all treatments. Only the strongly diluted
treatments (D2 and SxD2) were dominated by other species.
In the strong dilution (D2), Ceratium fusus (CER) was the
dominant species (41% contribution to total biomass) and in
the strong dilution of stressed treatment (SxD2), the primarily
benthic diatom Licmophora sp. (LIC) was the most dominant
species (45% biomass; Figure 4A, Supplementary Table 2). This
was caused by the extremely large cell-size of individual CER
and LIC in relation to the here concurrently diluted contribution
to biomass of smaller-sized THA and DET. Though community
compositions largely differed between the treatments, initial
Pielou’s evenness remained similar in all species loss scenarios
(between 0.5 and 0.6; Figure 2C).

Treatment Effects at Bloom Peak
Compared to the initial values, species richness, evenness,
community composition, and hence similarity between the
communities changed in all treatments, including the control.
In the control, the average species richness at bloom peak
was 13 (Figure 2D), a decrease by nine species compared to
experimental onset (Figure 2A). Likewise, evenness at bloom
peak decreased by 0.11 in the control compared to the
initial value (Figure 2C), resulting in an average value of 0.45
(Figure 2F). Since a decrease in species richness and Pielou’s
evenness was apparent in all treatments, the control remained the
most species rich and evenly distributed treatment at bloom peak
(Figures 2D,F).

The strongly diluted treatments (D2 and SxD2), that initially
led to the strongest species loss, still showed a significantly
lower species richness at bloom peak compared to the control
(Figure 2D). In the strong dilution (D2), richness declined by
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FIGURE 4 | Schematic representation of community similarities between the different treatments. The distances are based on MDS plots that were obtained by

calculating a Bray-Curtis dissimilarity matrix (B-Cinter) between the replicates of each treatment. The overlain pie charts show initial (A) and bloom peak (B) species

composition in the different treatments. The dashed lines depict percentages of community composition similarities between different treatments. Pie diagrams

represent average species composition based on biomass data. In (A), the pie charts for S, F1, and Co correspond to highly similar data points overlapping in

between these three pie charts. F1 and Co of the initial samples had a similarity of more than 80%, but this could not be represented graphically. Legend with

color-coded species abbreviations is valid for both, a and b. 2D stress for (A,B): 0.01.

four species and in the combination of heat stress and strong
dilution (SxD2) it declined by six species (Figure 2D; Tukey
HSD: p = 0.002 and < 0.001, respectively; for ANOVA results
see Table 3). The latter effect seemed largely driven by the strong
dilution because heat stress alone did not result in a significant

species loss at bloom peak compared to the control (Figure 2D;
Tukey HSD: p = 0.99; ANOVA results in Table 3). Filtration did
not have a lasting significant effect on species richness at bloom
peak [Figure 2D, Tukey HSD: p = 0.95 (F1) and p = 0.55 (F2);
ANOVA results in Table 3].
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TABLE 3 | ANOVA results showing the effects of the factors dilution, filtration, heat

stress and the interaction between dilution and heat stress on species richness,

Pielou’s Evenness (J’), and within-treatment variation (B-Cintra) at bloom peak.

Response Factor df Sums of

squares

Mean

squares

F p-value

Richness whole model 7,24 106.40 15.20 9.23 <0.001

dilution 2 91.13 45.56 27.68 <0.001

filtration 2 5.13 2.56 1.56 0.231

stress 1 9.37 9.37 5.70 0.025

dilution:stress 2 0.75 0.38 0.23 0.798

J′ whole model 7,24 3.44 0.49 2.56 0.040

dilution 2 0.01 <0.01 0.02 0.986

filtration 2 0.68 0.34 1.76 0.194

stress 1 1.97 1.97 10.26 0.004

dilution:stress 2 0.79 0.40 2.07 0.149

B-Cintra whole model 7,24 6.78 0.97 28.63 <0.001

dilution 2 4.10 2.05 60.65 <0.001

filtration 2 0.97 0.49 14.38 <0.001

stress 1 0.89 0.89 26.16 <0.001

dilution:stress 2 0.82 0.41 12.10 <0.001

Statistically significant results (p < 0.05) are displayed in bold letters.

At bloom peak, the treatments were more equal in their
species composition compared to the initial samples. Whereas,
similarity of the community structure of some treatments were
initially <20% (Figure 4A), similarity at bloom peak was more
than 60% between all treatments (Figure 4B). This was mainly
caused by the dominance of SKE that contributed at least 52%
to total biomass in all treatments at bloom peak (Figure 4B,
Supplementary Table 3).

Generally, community composition of the treatments at
bloom peak was no longer mainly influenced by the dilution
gradient; instead the level of heat stress had the most pronounced
effect on community composition and similarity between
treatments (Figure 4B). This effect was driven by even stronger
dominance (90%) of SKE in the heat stressed treatment compared
to the control (65%), and by the strong joined dominance of SKE
and CHA in the dilution of stressed communities (Figure 4B,
Supplementary Table 3). Even though heat stress did not affect
Pielou’s evenness initially (Figure 2C), the strong dominance
of SKE in the heat stressed community significantly decreased
evenness at bloom peak (J’ = 0.16) compared to the control
(J’ = 0.45; Figure 2F; Tukey HSD: p = 0.038; ANOVA results
in Table 3). SKE is a species that has been observed to have
higher growth rates under warmer conditions and performs best
in temperatures between 20 and 24◦C (Sanchez et al., 1995). The
initial effects of filtration (F1 and F2) and weak dilution (D1)
on community composition (Figure 4A) were not mirrored at
bloom peak. Thus, community compositions in these treatments
were similar to the control (Figure 4B).

Within-Treatment Variation
As an important side-effect, we observed high within-treatment
variation (dissimilarity between replicates of a treatment, B-
Cintra) in most dilutions (D1, D2, and SxD2) and in the fine

filtration (F2) treatment (Figure 2E). Random effects, such as
differing species-specific relative contribution to total biomass,
or the absence and presence of certain species in replicates of
the same treatment (Supplementary Figure 1), could manifest
themselves in the treatments that initially decreased total biomass
(Figure 2B). More precisely, the weak dilution (D1) had two
pairs of replicates that were alike but differed from the other two
replicates (Supplementary Figure 1). The strong dilution (D2)
had one replicate that contained a large biomass of Thalassiosira
rotula (THAR), contributing 40% to total biomass, while the
other three replicates did not contain any THAR at all. In
the strong dilution of stressed treatment (SxD2), two replicates
had very high proportions (47 and 61%) of Chaetoceros spp.
(CHA), while the other two replicates had minimal amounts
of CHA (0.8 and 3.2%). In the strong filtration treatment (F2),
one replicate differed from the rest in that it contained a larger
proportion of THA and DET compared to the other three
replicates (Supplementary Figure 1). Consequently, as stated
above, B-Cintra clearly coincided with the amount of initially
removed biomass in the different treatments. The only exception
to this pattern was the weak dilution of stressed treatment (SxD1),
in which the replicates were very homogenous at bloom peak
(Supplementary Figure 1), resulting in a significantly lower B-
Cintra value than in the control (Figure 2E).

DISCUSSION

Using non-random species loss scenarios for experiments in
community ecology is becoming increasingly important, because
it allows for a more realistic approach to predict phytoplankton
communities’ functional reaction to changing environmental
conditions. The here tested methods advance the marine sciences
in two ways: first, they give the opportunity for more realistic
experiments in phytoplankton community ecology and second,
they allow a quantification of the hidden treatment effect
due to initial variation of phytoplankton density. Certainly,
these two factors are linked—in that the dilutive manipulations
always alter both species richness and species identities
simultaneously.

Essentially, all three treatments (dilution, heat stress, and
filtration) reduced richness of the targeted species groups. That is,
dilution effectively removed rare (decrease by 93% compared to
the total species pool) and heat stress sensitive species (decrease
by 80% compared to the total species pool). Filtration removed
some of the large species, but the success rate was only 50%
removal compared to the total species pool.

Effects of Dilution
Successful decrease of species richness due to dilution at the
onset of the bloom (Figure 2A) translated into lower species
richness at bloom peak (Figure 2D), but did not significantly
influence Pielou’s evenness at bloom peak (Figure 2F). Since
rare species are statistically more likely to be excluded from
a smaller inoculum, we expected an initial decrease in species
richness. Problematic is that even though dilution lead to
the effective loss of rare species, it was not possible to
control which species were lost in replicates of the same
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treatment. This lead to a high variability of species present
at bloom peak, causing more heterogeneous responses in
species composition and evenness between replicates of the
same treatment (Figure 2F, Supplementary Figure 1). In
experiments studying the effect of species loss on ecosystem
processes, the high variability of species causes problems,
because the effects observed in these experiments cannot
clearly be attributed to the decrease in richness. It could
just as likely be an effect of species identity carrying certain
functional traits. Furthermore, in many experiments—especially
those focusing on species traits—species identity is of great
importance. For example, in grazing experiments it is essential
to distinguish whether edible or inedible species are lost. In
certain climate change studies, it is of great interest if calcifying
coccolithophores or silicifying diatoms are lost. In these cases,
our methods of non-random species loss should be modified
(e.g., by using other stress factors) or might not be suited at
all.

To eliminate the problem of not only decreasing species
numbers, but also losing random species traits in different
replicates of the same treatment, the inoculum size could be
adjusted so that starting densities between treatments would be
more comparable. In culture experiments with bacteria, this is
already practiced (Franklin et al., 2001; Hol et al., 2015). For
this, the diluted community is allowed to grow for several days
such that an increase in biomass can be achieved before the
start of the experiment. However, to the best of our knowledge,
this method has not been used for phytoplankton and therefore
should be tested experimentally. It has to be confirmed that rare
phytoplankton species are actually removed from the culture in
the long run and cannot grow back to original numbers if the
inoculum is re-grown.

Nevertheless, for experiments that only focus on species
richness, dilution is a good method to create non-randomly
assembled communities. With dilution, distinct gradients of
species richness can be created (Roger et al., 2016; Hammerstein
et al., 2017), which is a large improvement over traditional
culture experiments with randomly assembled communities.
Furthermore, some experimental ecologists have used this
side effect of dilution to their advantage. Trommer et al.
(2012) for example, aimed at reaching high variation within
treatments to increase ecological noise and make the community
response broader. In addition to being an experimental
manipulation method, the dilution treatment can be useful for
other applications, such as long-term phytoplankton evolution
experiments. In these experiments, researchers use semi-
continuous culturing approaches where each new culture is
established as a (diluted) inoculum of the former (Lohbeck et al.,
2012; Schlüter et al., 2014). For these types of experiments, the
tested levels of dilution allow to estimate the potential loss of
genotypes at each step.

In general, dilution can be used as a standard method to lose
rare species or genotypes in natural phytoplankton communities,
for experiments that only manipulate richness. For experiments
with an additional focus on species identities, some adjustments
should be made to the dilution method and within-treatment
variation should be considered.

Effects of Heat Stress
Heat stress successfully decreased species richness of sensitive
species (Figure 2A). This did not have an immediate effect
on community composition (Figure 4A), but was reflected at
bloom peak by the extreme dominance of a warm-adapted
species (Figure 4B). For this manipulation it is helpful to have
a good knowledge of the community present at the onset of the
experiment, because that allows for fine-tuning of the heat stress
treatment (e.g., setting a specific target temperature or exposing
species to a certain temperature for a specific time frame).
Other methods to target different types of sensitive species
are also feasible. Hammerstein et al. (2017) used a mechanical
disturbance by shaking the cultures to create communities with
distinct gradients of species richness with the goal to lose sensitive
species. Summarizing, heat stress can be one successful method to
lose sensitive species in natural phytoplankton communities.

Effects of Filtration
In this study, fine filtration (20µm) successfully decreased initial
richness (Figure 2A), and similarly to the dilution treatment,
reduced initial biomass (Figure 2B). The observed effects on
within-treatment variability at bloom peak were also comparable
to dilution (Figure 2E). This problem can easily be mitigated
by adjusting the inoculum volume of the filtration treatment
so that it contains comparable phytoplankton densities to the
control.

A disadvantage of the filtration method was that it did not
completely remove all large species. Many large species are
long and thin, which means that individuals could still pass
through the sieve if they reach it in the right angle. This can
create a bias in size class categorization (Graham and Jones,
2007). Sieving the samples multiple times could minimize this
problem. In contrast to this, cells of some species that were
not defined as large were filtered out in this treatment. This
included genera like Skeletonema, Chaetoceros, and Detonula,
which are chain-forming and therefore accumulate to a greater
size (Round et al., 1990). The individual cell size, however, can be
smaller than the colony size. In this case, it has to be clarified
whether an individual cell or the entire colony is categorized
in a specific size class. Related to this, the special morphology
of some genera, including Chaetoceros, can also lead to a size
class bias. Chaetoceros cells themselves may not have an average
dimension exceeding 20µm, but many species of this genus
are conspicuous due to long spines protruding from the valves
(Round et al., 1990). We also observed this in the present study:
the overall largest cell dimension including spines often exceeded
20µm and therefore fewer cells of this genus were found in
the filtration treatment. The morphology and life history of
species has to be considered when targeting specific species for
removal.

Another challenge to the accuracy of the filtration treatment
in our experiment is based on the definition for large species
that we employed (i.e., the largest cell dimension exceeds
20µm). We chose this definition due to the scarcity of species
exceeding 100µm in size. We still found several species
initially categorized as large in the coarse filtration treatment
(F1), for which we had used the 100µm sieve (Figure 2). In
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other studies, the definition of large species might be chosen
differently as there may be predominantly species in larger
size classes, depending on the sampling location and time of
the year.

If all these complications are considered, filtration can
be a successful method to test the ecosystem consequences
of manipulating the “master trait” cell size in experimental
phytoplankton communities.

CONCLUSION

In general, the tested manipulations of non-random species loss
allow to assess the effects of realistic phytoplankton diversity
change. These methods can be used to manipulate species
composition for a wide variety of biodiversity experiments
independent of their scale (i.e., micro- and mesocosm) or
location (i.e., outdoor and indoor). However, researchers should
take special care to avoid the pitfalls of the dilution and filtration
methods, especially when species identities are important
for the experimental outcome. All in all, these methods are
a valuable improvement for hitherto artificially assembled
phytoplankton communities in biodiversity—ecosystem
functioning experiments, simply because non-random species
loss is more realistic (Gamfeldt et al., 2015).
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