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Editorial on the Research Topic

Computational intelligence for signal and image processing, volume II

1 Introduction

The second volume of this Research Topic features eight research articles that explore

the use of Computational Intelligence in Signal and Image Processing II applications

(Koundal and Ding, 2023; Wang et al., 2023). This edition explored brain-inspired

algorithms and examined how they have driven the development of new methodologies in

image/video and signal processing (Pan et al., 2024; Saikumar et al., 2022). It emphasized

the significant potential of brain-inspired algorithms to transform multiple fields to

drive innovation and enhance efficiency. Advancements in Artificial Intelligence (AI)

and machine learning have significantly impacted on a variety of fields, ranging from

healthcare and emotion recognition (Bing et al., 2024; Xia et al., 2023; Zhu, 2023) to

image encryption (Chu et al., 2024) and human activity classification. By highlighting

the interconnectedness of deep learning, neuro-fuzzy systems, neural networks, and other

AI methods, it underscored their essential role in understanding and modeling the

complexities of brain functions (Ye et al., 2024; Wen et al., 2024; Hao et al., 2023). This

work connected neuroscience and technology by examining how brain insights can inspire

the creation of novel algorithms and applications across diverse fields (Zhu, 2024; Hu et al.,

2022). These innovations represent a significant leap forward in their respective domains,

offering practical solutions with potential for real-world applications (Gezawa et al., 2023;

Song et al., 2025).

2 Contributions

Cheng introduced a weighted closest neighbor algorithm to predict emotional

distribution in abstract paintings. Emotional features have been extracted and assigned

K-values that are followed by an encoder-decoder model that utilized a pre-trained

network to enhance classification. Incorporating a blank attention mechanism, the model

accurately identified emotional semantics- outperforming existingmethods. This approach

addressed the challenge of emotion recognition in abstract art. However, limitations

are positional link detection and dataset constraints which suggest future expansion

for more comprehensive classification. Sun et al. introduced a classification system for
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epileptic electroencephalography (EEG) signals using an attention

network that has integrated nonlinear dynamic and time-frequency

features. The system consisted of three modules: a parallel

convolutional network for high-resolution Hilbert spectrum

extraction, a residual-connected convolution module for nonlinear

dynamic feature learning via grayscale recurrence plots, and a self-

attention fusion module. The given system significantly improved

the classification accuracy on multiple EEG databases that offered

a promising approach to aid epilepsy diagnosis and treatment with

broad clinical applications. Yaqoob et al. introduced an automated

framework for Alzheimer’s disease (AD) stage prediction using a

Fuzzy Entropy-controlled Path-Finding Algorithm (FEcPFA) and

ResNet-Self architecture. This method addressed dataset imbalance

through data augmentation, incorporated a self-attention module

to extract key information and Bayesian optimization (BO) to

optimize hyperparameters. This framework improved the diagnosis

accuracy, reduced computational time, and offered potential for

early AD detection, though challenges like overfitting remain.

Future improvements include using more diverse MRI datasets.

Hou et al. developed an improved Dijkstra-based image encryption

algorithm for color images that addressed the inefficiencies of

traditional methods to treat color planes separately. Their approach

integrated a new 1D chaotic system with enhanced randomness

and an adaptive diffusion algorithm. The Dijkstra algorithm is

used for cross-plane pixel scrambling to ensure better security and

encryption efficiency. This method provided robust encryption for

both medical images and standard RGB images by outperforming

existing techniques in terms of security, quality, and robust to

attacks especially in telemedicine applications. Roda and Geva

introduced a pool-based semi-supervised active learning method

for image classification using both labeled and unlabeled data.

The approach involved clustering the latent space of a pre-

trained convolutional autoencoder and applied a novel contrastive

clustering loss (CCL) to enhance clustering even with limited

labeled data. The system queries the most uncertain samples for

annotation by iterating until the budget is exhausted. Empirical

results show high accuracy with fewer labeled samples by offering

an effective solution for image classification tasks with reduced

annotation costs. Alarfaj et al. proposed a novel human activity

recognition (HAR) approach using sensor-specific convolutional

neural networks (CNNs) for accelerometers, gyroscopes, and

barometers. Each CNN model is tailored to capture the unique

features of its sensor type by addressing challenges with diverse

data shapes. A late-fusion technique combined predictions from

multiple models to significantly improving accuracy. Alsubai et al.

introduced a facial emotion recognition system using a Modified

ResNet model enhanced with quantum computing and advanced

transfer learning. By integrating quantum convolutional layers

with parameterized filters and employing residual connections, the

system reduced the computation time and improved performance.

The Modified up Sampled Bottle Neck Process (MuS-BNP)

ensured computational efficiency. The model achieved superior

accuracy, recall, precision and F1-score by overcoming challenges

in distinguishing similar facial expressions. The results highlighted

the system’s potential for faster, more accurate facial emotion

detection, using quantum computing and deep learning. Na et al.

introduced FacialNet, a framework for facial emotion recognition

(FER) using UNet image segmentation and transfer learning

with EfficientNetB4. The approach is validated through cross-

validation by offering high reliability and promised real-world

applications in emotion-aware systems to enhance mental health

assessments through more accurate emotion recognition. Zheng

et al. introduced the Visual-Magnocellular Dynamics Dataset

(VMD) with a multi-frame spike temporal encoding strategy to

enhance dynamic visual information processing. They proposed

the DT-MSTS backpropagation method for improved motion

feature extraction in SNNs. Additionally, they integrated MG-SNN

with YOLO to develop a retinal-inspired neural network for drone

motion extraction and object detection. The study highlights the

benefits of combining retinal mechanisms with SNNs, explores

software-based deployment of neuromorphic chips, and suggests

future directions for handling complex spatiotemporal data in

real-world detection tasks.

3 Conclusion

This editorial presented nine research articles focused on the

applications of Computational Intelligence for Signal and Image

Processing. The studies highlighted significant advancements

across various fields, from emotion recognition in abstract art to

medical applications. Techniques such as deep learning, transfer

learning, and quantum computing have shown great potential

in improving accuracy, efficiency, and security. Despite their

successes, challenges like dataset limitations, overfitting, and

computational time remain. Future work includes expanding

datasets, and refining models to enhance applicability in real-world

settings across domains such as healthcare and mental health.
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Prediction of emotion
distribution of images based on
weighted K-nearest
neighbor-attention mechanism

Kai Cheng*

School of Artificial Intelligence, Xidian University, Xi’an, China

Existing methods for classifying image emotions often overlook the subjective

impact emotions evoke in observers, focusing primarily on emotion categories.

However, this approach falls short in meeting practical needs as it neglects the

nuanced emotional responses captured within an image. This study proposes

a novel approach employing the weighted closest neighbor algorithm to

predict the discrete distribution of emotion in abstract paintings. Initially,

emotional features are extracted from the images and assigned varying K-

values. Subsequently, an encoder-decoder architecture is utilized to derive

sentiment features from abstract paintings, augmented by a pre-trained model

to enhance classification model generalization and convergence speed. By

incorporating a blank attention mechanism into the decoder and integrating

it with the encoder’s output sequence, the semantics of abstract painting

images are learned, facilitating precise and sensible emotional understanding.

Experimental results demonstrate that the classification algorithm, utilizing the

attention mechanism, achieves a higher accuracy of 80.7% compared to current

methods. This innovative approach successfully addresses the intricate challenge

of discerning emotions in abstract paintings, underscoring the significance

of considering subjective emotional responses in image classification. The

integration of advanced techniques such as weighted closest neighbor algorithm

and attentionmechanisms holds promise for enhancing the comprehension and

classification of emotional content in visual art.

KEYWORDS

image emotions, classification, weighted closest neighbor algorithm, emotional

features, abstract paintings

1 Introduction

Image data are essentially used for transferring information. The amount of picture

data is even increasing at an exponential speed owing to the advent of the Internet

(Cetinic and She, 2022; Zou et al., 2023). Because of the fast-paced nature of modern

society, people’s ability to extract information from photos is also accelerating, necessitating

more accuracy and efficiency in identifying image data on the network. Based on

this necessity, an effective image processing technique that makes use of computer

vision is required for humans to manage and use picture data more effectively.

Frontiers inComputationalNeuroscience 01 frontiersin.org7

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2024.1350916
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2024.1350916&domain=pdf&date_stamp=2024-04-17
mailto:chengkai7300@163.com
https://doi.org/10.3389/fncom.2024.1350916
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2024.1350916/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Cheng 10.3389/fncom.2024.1350916

Sentiment analysis, often called opinion mining, is the process

of using natural language processing, text analysis, computational

linguistics, and biometrics to systematically unpack subjective

information and emotional states. The notion was initially

introduced by Yang et al. (2023). Sentiment analysis has gained

significant economic and societal significance in the last several

years and has been applied extensively in the domains of opinion

monitoring (Chen et al., 2023), topic inference (Ngai et al., 2022),

and comment analysis and decision-making (Bharadiya, 2023). For

monitoring public opinion, the government canmake timely policy

interventions and accurately determine the direction of public

opinion. When it comes to product recommendations, merchants

can better understand user needs and suggestions by gauging

user satisfaction with product evaluations and enhancing product

quality. In the finance domain, trending financial topics can even

be used to predict stock direction. Furthermore, sentiment analysis

is frequently used for various tasks involving natural language

processing. To increase the accuracy of the system, more exact

terms for sentiment expression are chosen for machine translation

(Chan et al., 2023) by evaluating the sentiment tendency of the

input text. The pixel density extraction of the image information

is shown in Figure 1.

Various classification techniques will be broken down into

different levels for the sentiment analysis task: output results will

categorize the methods into sentiment intensity classification and

sentiment polarity classification; granularity of the processed text

will divide them into three research levels: word level, sentence

level, and chapter level; research methodology will separate

them into unsupervised learning, semi-supervised learning, and

supervised learning, and so on. The majority of the conventional

sentiment classification algorithms employ manually created

feature selection techniques for feature extraction, such as the

maximum entropy model (Chandrasekaran et al., 2022), plain

Bayes (Wang et al., 2022), support vector machines (Zhao et al.,

2021a), and so on. However, these techniques have limitations, such

as being labor-intensive, time-consuming, and hard to train. As a

result, they are not well-suited for use in the current large-scale

application scenarios.

With advancements in machine learning, research efforts

(Milani and Fraternali, 2021) led to the development of deep

learningmethods that give neural networks a hierarchical structure.

This development subsequently resulted in an explosion of deep

learning research. Feature learning, at the heart of deep learning,

uses hierarchical networks to convert unprocessed input into more

abstract and higher-level feature information. With its superior

learning capacity to optimize automated feature extraction, deep

learning has produced remarkable research achievements in recent

years in the domains of speech recognition, picture processing,

and natural language processing. The application of deep learning

techniques to text sentiment analysis has gained popularity as a

natural language processing study area. Among these techniques,

Song et al. (2021) used a convolutional neural network to classify

text emotion for the first time, and the results were superior to those

of conventional machine learning techniques.

The study of human eyesight is where attention mechanism

first emerged. According to cognitive science, humans have a

tendency to ignore other observable information in favor of

focusing on a certain portion of the information based on the

demand imposed by the information processing bottleneck. The

primary objective of attention mechanism is to efficiently separate

valuable information from a vast quantity of data. To understand

the word dependencies inside the phrase and grasp the internal

structure of the sentence, the self-attention mechanism—a unique

form of attention mechanism—is incorporated into the sentiment

classification job. To establish an accurate and efficient technique

for sentiment analysis based on deep learning technology and self-

attention mechanism, this study examines the present technical

issues in the field of sentiment analysis from the standpoint of the

real demands of sentiment analysis.

2 Related studies

Natural language processing has attracted extensive research

attention (McCormack and Lomas, 2021) because it introduced the

idea of sentiment analysis. There are three prominent methods for

conducting sentiment analysis at present: the sentiment dictionary

approach, the classical machine learning approach, and the deep

learning approach.

Experts must annotate the sentiment polarity of the text’s

terms in order for researchers to perform sentiment analysis

based on sentiment dictionary. Based on semantic rules and

sentiment dictionary, researchers compute the text’s sentiment

score and determine the sentiment tendency. Among these

researchers, Toisoul et al. (2021) demonstrated positive findings

on a multi-domain dataset by expanding the domain-specific

vocabulary by extracting subject terms from the corpus using

latent Dirichlet allocation (LDA) modeling based on the pre-

existing sentiment lexicon. Peng et al. (2022) used the point

mutual information (PMI) technique to assess the similarity of

adjectives in WordNet. The polar semantics (ISA) approach was

then used to generate numerous fixed sentence constructions

in order to examine the target text sentiment tendency. To

create a Chinese microblogging sentiment dictionary, Liu

et al. (2021a) first identified microblogging sentences using

information entropy and then filtered network sentiment terms

using the sentiment-oriented pointwise mutual information

(SO-PMI) method.

Ding et al. (2021) introduced the idea of the primary word

and used weight priority calculations to determine the text’s

semantic inclination degree. These developments paved the way

for accomplishing more difficult sentiment analysis tasks. The

approach based on sentiment dictionary has the benefit of being

more accurate in classifying text at the word or phrase level.

However, the system migration is not good, and the sentiment

dictionaries are often geared to certain domains. These days, one

of the most popular techniques for sentiment analysis is classical

machine learning-based techniques. Using simple bag-of-words

features from a movie review dataset, Yang et al. (2021) was the

first to use machine learning techniques to the sentiment binary

classification issue and produced superior experimental outcomes.

Utilizing Twitter comments as test data, Roy et al. (2023) classified

emotions into six categories—happiness, sadness, disgust, fear,

surprise, and anger—and employed plain Bayes for text sentiment

analysis. The data were processed with consideration for lexical and

expression features, leading to a high classification accuracy. To
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FIGURE 1

Example of emotional distribution in images.

address the sentiment classification problem, Sahoo et al. (2021)

merged a genetic algorithm with simple Bayes, and the results of

the experiments indicated that the combined model outperformed

the individual models. To extract rich sentiment data and include

them in the basic feature model, Liu et al. (2021b) used machine

learning techniques with numerous rules, which increased the

classification result in microblog sentiment classification trials. In

order to complete the study of sentiment analysis, Sampath et al.

(2021) included semantic rules into the support vector machine

model. The experiment confirmed that the support vector machine

model with the inclusion of semantic rules performed better in

the sentiment classification task. Deeper text semantic information

is hard to learn, even while machine learning-based techniques

enhance the sentiment classification performance and lower the

reliance on sentiment lexicon.

Text sentiment analysis based on deep learning has garnered a

much interest from academics at both national and international

levels due to its superior performance in the fields of picture

processing and natural language processing. Zhang et al. (2023)

used deep neural network training to create the Collobert and

Weston (C&W) model, which was then used to perform well on

natural language processing tasks including sentiment classification

and lexical annotation. To demonstrate the efficacy of single-layer

convolutional neural networks (CNNs) in sentiment classification

tasks, Zhao et al. (2021b) combined different sizes of convolutional

kernels with maximum pooling and performed comparison tests

on seven datasets. The study employed convolutional neural

networks for sentiment analysis tasks. A number of recurrent

neural networks, including recurrent neural network (RNN),

multiplicative RNN (MRNN), recursive neural tensor network

(RNTN), and others, were progressively suggested by Szubielska

et al. (2021). The RNTN model, for example, uses a syntactic

analysis tree to determine word sentiment and then outputs

the sentence’s sentiment classification result in the form of

word sentiment summation. To tackle the sentiment analysis

problem utilizing a long short-term memory (LSTM) network

with an expanded gate structure, which increases the model’s

flexibility, Li et al. (2022) employed Twitter comments as the

experimental data. RNNs were utilized by Zhou et al. (2023) to

model texts by taking into account their temporal information.

Li et al. (2023) achieved outstanding results in a sentiment

classification test by modeling utterances using a tree LSTM model

to approximate the sentence structure. By segmenting a text

according to sentences, obtaining vectors through convolutional

pooling operation, and then inputting them into LSTM according

to temporal relations to construct a CNN-LSTM model and

apply it to the task of sentiment analysis, Alirezazadeh et al.

(2023) primarily addressed the issue of temporal and long-

range dependencies in a chapter-level text. Teodoro et al.

(2023) constructed an experimental minimal convolutional neural
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FIGURE 2

Model of this article.

network (EMCNN) model using microblog comments as the

experimental data, combining lexical and emoji characteristics.

The model produced experimental findings that outperformed the

benchmark model’s performance.

3 Attention given

We propose an emotion classification method based on

the attention mechanism that sets blank attention in the

decoder and fuses the output sequence of the encoder to

learn the image semantics to guide the model to learn the

image emotion more accurately and reasonably via the

learning mechanism of the decoder. This method is intended

to address the characteristics of small numbers of abstract

painting samples and rich image semantics. Figure 2 depicts the

general flowchart of the procedure used in this article, along

with the encoder–decoder architecture, the emotion classification

module, and the backbone network for extracting picture

feature sequences.

3.1 Image sequence generation

Since the encoder anticipates a sequence as input, the abstract

painting dataset in this study has been uniformly normalized,

meaning that its length and width are 224 and its number

of channels is 3. To extract the image’s features, the image is

supplied into the backbone network. The residual network has a

strong feature learning ability and adapts to the characteristics of

the backbone convolutional network architecture. In this study,

ResNet-50 is adopted as the backbone network to solve the

network degradation problem brought by fewer samples of abstract

paintings to simplify the model training parameters of this article

to a certain extent, improve the training efficiency, and carry out

comparative experiments with the residual network variant in the

ablation experiments, and to assess the influence of the backbone

network on the model accuracy rate (Ahmad et al., 2023). The

abstract painting dataset is generated by the backbone network to

generate canonical image features with a length and width of 7

and a channel count of 256 and is spread into a one-dimensional

sequence, resulting in an image sequence of length 49 and a channel

count of 256 to be fed to the encoder.
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3.2 Encoders

By adjusting the number of encoder layers, the model

demonstrates the significance of global image-level self-attention,

guarantees that there is no appreciable loss of accuracy when N =
6, and prevents an increase in training difficulty brought on by the

addition of too many parameters. This article adopts the position

coding method of detection transformer (DETR), which uses the

sine and cosine functions to encode the positions of rows and

columns of the parity channel of the abstract painting feature map,

adapting to the sequence input of the encoder–decoder architecture

(Ahmad and Wu, 2023). The encoder–decoder architecture is not

sensitive to the order of the image sequence and does not have the

ability to learn the sequence position information. The calculation

for the position coding as shown in Equation (1):

f (x)i =







sin
(

x
10000i/128

)

, i = 2k(k ∈ [0, 127])

cos
(

x
10000i/28

)

, i = 2k+ 1(k ∈ [0, 127])
(1)

where x is the row and column spread value of point
(

p, q
)

and i is

the channel of the feature map. For a feature map with a length and

width of 7 and a channel count of 256, respectively, the row and

column position encoding on the point with a channel of 10 and a

coordinate value of (1,2) is sin [((1×7) +2)/(1,000,010/128)] and

sin [((2×7) +1)/(1,000,010/128)], respectively, and the position

encoding of the remaining image sequences of the channels

is computed by this rule. Encoding finally generates a one-

dimensional feature sequence with a length of 49 and a channel

count of 256 with position information.

The Q,K,V in the encoder is a one-dimensional sequence

of a fixed length of 49 and a channel count of 256, which is

used as sentiment weights in translating the image sequence and

ordering its position in each encoding session. As the model learns

the feature dependencies between image sequences, the multi-

head self-attention module supports the model by reinforcing the

original features with sequence global information. This support

enables the model to learn discriminative features for sentiment

classification. The original image sequence serves as the input for

the first coding layer, and the input for each succeeding layer is

the image sequence encoded in the preceding layer. The picture

feature sequences are given to the decoder after being encoded and

learned by many coding layers of the encoder, avoiding the issue of

delayed network convergence and poorer accuracy brought on by

the increased depth of the model.

3.3 Decoders

The blank attention in this study has the same format as the

feature sequence of the model input, that is, a sequence with a fixed

length of 49 and a channel count of 256. Similar to the encoding

phase, the blank attention is weighted as a query statement with

Q,K,V of the first self-attention layer in the decoder, but at this

point, the blank attention does not need to focus on the location

information. At each decoding stage, the multi-head attention

module transforms the blank attention sequences and generates

FIGURE 3

Emotional classification.

the output of the attention sequences with weights by avoiding the

problem of slower model convergence through the residuals and

normalization module.

The attention sequence with weights from the upper layer

and the output sequence from the encoder are fed into the

second self-attention layer. This study uses the same sine and

cosine functions in the decoder as in the encoder to encode

the position of the weighted attention sequences from the upper

layers since the output sequence of the encoder contains positional

information and needs to accommodate its positional connection.

The positional encoding of the picture sequence for each channel

is calculated for the weighted attention sequence of length 49 and

a channel count of 256. This positional encoding is applied to the

rows and columns of the parity channels. Ultimately, a weighted

attention sequence of length 49 and a channel count of 256 with

position information are obtained. It is combined with the output

sequence of the encoder as a query statement and weighted with

Q,K,V from the second layer in the decoder. In each decoding

stage, the output sequence of the encoder is translated, and the

sequence positions are sorted.

3.4 Classification of emotions

Figure 3 depicts the emotion classification module. The

sentiment classification module combines the output sequences of

the encoder and decoder to produce weighted sentiment sequences,

which suppress redundant sentiment information in the model,

direct the model to concentrate on deep and shallow sentiment

information, and improve the model’s ability to classify sentiment.

The fully connected layer is used to map the weighted sentiment

sequences, and the cross-entropy loss is minimized to produce

stable sentiment classification results (Ahmad et al., 2021). The

normalized exponential function is used to calculate the probability

value of each type of sentiment; the abstract painting sentiment

predicted by the model has the highest probability value.

The normalized exponential function is as shown in

Equation (2):

Si =
ei

12
∑

j=1
ej

(2)
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where Si is the normalized value of a particular sentiment and

computation max (Si) is the abstract painting sentiment label

predicted by the model.

One popular loss function for handling classification difficulties

is the cross-entropy function, which is primarily used to quantify

the difference between two probability distributions. The cross-

entropy loss function is as shown in Equation (3):

Loss =
1

batch_size

∑

i

12
∑

c=1

yiclog2
(

pic
)

(3)

Each term in the cross-entropy function is p and q and

p indicates the true probability distribution and q represents

the predicted probability distribution. The cross-entropy function

describes the difference between the two probability distributions.

For the special case, the cross-entropy function of the binary

classification problem, there are a total of two terms, i.e., probability

distributions of classes 0 and 1, and there is p(0) = 1− p(1), so we

can get the expression for the binary classification cross entropy loss

function, where yic is the true value and pic is the probability of the

predicted value.

4 Image preprocessing

4.1 Datasets

The abstract dataset, which includes 280 abstract paintings,

was created by Machajdik. These paintings are better suited for

challenges requiring the prediction of emotion distribution because

they simply feature colors and textures and not any clearly

discernible objects. The 230 participants in the dataset expressed

their emotions by identifying these 280 photographs, with an

average of 14 people doing so. The final sentiment category is

determined by which of these sentiment markers received the most

votes. Due to the ambiguity of emotions, several categories may

have extremely similar or identical numbers of votes, making the

classification process unclear. Therefore, the ratio of votes for each

emotion category is used as a probability distribution to form a

probability distribution of emotions corresponding to the image,

as shown in Figure 3.

4.2 Feature extraction

Since abstract paintings contain only colors and textures and

do not generate emotions through specific objects, the features

extracted are emotional features based on the theory of artistry.

4.2.1 Color histogram
Artists use colors to express or trigger different emotions in

observers, and extracting color histograms from color features is

a common and effective method. The color histogram space H is

defined as Equation (4):

H =
[

h (0) , h (1) , ...h (Lk)
]

,

K
∑

k=1

h (Lk) = 1 (4)

where h (Lk) denotes the frequency of the kth color. The similarity

of the color histograms of the two images are measured using the

Euclidean distance as shown in Equation (5):

D (Hs,Hd) =
[

(Hs − Hd)
T(Hs − Hd)

1/2
]

(5)

4.2.2 Itten comparison
Itten successfully used the strategy of color combination by

defining seven contrast attributes. Machajdik used seven contrast

attributes such as light and dark contrast, saturation contrast,

extension contrast, complementary contrast, hue contrast, warm

and cool contrast, and simultaneous contrast of images as the

emotional characteristics of artistry theory.

As in the case of light and dark contrast, the image is segmented

into R1,R2...RN , small chunks using the watershed segmentation

algorithm, and the average hn (Chroma) bn (Brightness) sn
(Saturation) is calculated for each chunk. Calculation bn belongs to

five fuzzy luminance:

{

VeryDark(VD), Dark(D), middle (M),

Light(L), Very Light(VL)

}

affiliation function as shown in Equations (6–10).

VD =











1bn 6 21
39−bn
18 21 < bn 6 39

0

(6)

D =











bn−21
18 21 < bn 6 39

55−bn
16 39 < bn 6 55

0

(7)

M =











55−bn
16 39 < bn 655

bn−55
13 55 < bn 6 68

0

(8)

L =











bn−55
13 55 < bn 6 68

84−bn
16 68 < bn 6 84

0

(9)

VL =











84−bn
16 68 < bn 6 84

1 bn > 84

0

(10)

Thus, a 1∗5 dimensional vector for each small block of image

R1,R2...RN is obtained, and for the whole image, the light/dark

contrast is defined as Equation (11):
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FIGURE 4

Layer stacking process e�ect and ink simulation results. (A) One grayscale layer overlay e�ect. (B) Two grayscale layer overlay e�ect. (C) Three

grayscale layer overlay e�ect. (D) Seven grayscale layer overlay e�ect.

B(i) =











1
N
∑

n=1
Rn

N
∑

n=1

Rn
(

Bn(i)− B̄(i)
)2











1/2

(11)

where i = 1, . . . , 5,Rn is the number of pixels in the split block.

In this way, the vector expression of the contrasting attributes of

the images is obtained as features, and the similarity of the different

images is calculated by the Euclidean distance.

The Itten model is also used to determine whether or not an

image is harmonic, and it can also be used to identify an image’s

emotional expression. Select three to four of the image’s prominent

colors, connect them to the colors on the Itten hue wheel, and if

they form a positive polygon, the image is harmonic. To determine

the dominant chromaticity of an image, make a histogram of its N

colors. Ignore the colors with a proportion of<5%. The harmony of

a polygon can be assessed by comparing its internal angles to those

of a square polygon built from the same number of vertices.

4.2.3 Texture
The main idea behind the statistical approach to texture

analysis is to symbolize textures by the randomness of the

distribution of gray levels in a graph. We define z as a random

variable representing the gray levels, L as themaximum gray level of

the image,Zi as the number of pixels with gray level i, 01 denotes the

gray level histogram, and with respect to z, the nth order moments

are calculated as shown in Equation (12):

un (z) =
L
∑

i=0

(Zi −m)np (zi) (12)

m =
L
∑

i=0

zip (zi) is the mean value of z.

The second-order moments are more important in texture

description; it is a measure of grayscale contrast, where R = 1
1+u2(z)

indicates the smoothness of the image, and a smaller value of un(z)

corresponds to a smaller R value, indicating that the smaller the

value of R, the smoother the image.

4.3 Weighted K-nearest neighbor
sentiment distribution prediction algorithm

Assuming that there are M sentiment categories

C1, · · · ,CM and N training images, x1 · · · , xN (which

also denote the corresponding features of the images) use

p = {Pn1, · · · , Pnm · · · , PnM}T to denote the sentiment distribution

of Xn, where Pnm denotes the probability that xn expresses a

sentiment of cm, and for each image, there is
∑M

m=1 Pnm = 1.
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FIGURE 5

Comparison of direct eighth order color reduction and histogram prescribed ink simulation 1. (A) Landscape original 2. (B) Direct eighth order color

reduction link e�ect. (C) Histogram normalization link e�ect.

Assuming that y is a test image, the goal of this study is to find the

sentiment distribution p = {P1, · · · , PM}T of y, i.e., as shown in

Equation (13).

f
(

{

xn, pn
}N

n=1
, y
)

→ p (13)

Training sets that are very far away have little effect on y.

Considering that including all training sets can slow down the run

and irrelevant training samples can also mislead the algorithm’s

classification, the effect of isolated noise samples can be eliminated

by taking a weighted average of the K-nearest neighbors.

Weighted K-nearest neighbor option denotes only the drizzle

functions corresponding to the K training images that assign

the larger weights to the closer nearest neighbors. denotes the

sentiment distribution of the K training images nearest to the test

image, which is considered as a basis function, and the sentiment

distribution P of the test image y is computed by performing a

distance-weighted summation of the basis function, i.e.,

P =
∑K

k=1 skpk
∑K

k=1 sk
(14)

where s is the similarity between the test sample and the training

sample, as shown in Equation (15).

s = e

(

−
d
(

xk, y
)

β

)

(15)

where d is the Euclidean distance and β is the average distance of y

from the training images.

Algorithm: Weighted K-nearest neighbor sentiment

distribution prediction algorithm.

Input: Training set
(

xn, pn
)

, test set y.

Output: Sentiment distribution p for the

test set.

1. Calculate the distance d between the test set image y and each

image in the training set.

2. Select the first k images x1...xk that are closest to y in the

increasing order of distance.

3. β = 1
k

√

(

x1 − y
)2 + · · · +

(

xk − y
)2

is brought

into Equation (14) in order to compute the

similarity s.

4. Calculate the sentiment distribution of the test image y P =
∑K

k=1 skpk
∑K

k=1 sk
.
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FIGURE 6

Comparison of direct eighth order color reduction and histogram prescribed ink simulation 2. (A) Landscape original 3. (B) Direct eighth order color

reduction link e�ect. (C) Histogram normalization link e�ect.

5 Experimentation and analysis

5.1 Landscape image

Experiments on a large number of landscape images (resolution

of ∼1 million pixels, downloaded from “Baidu images”) to achieve

the simulation of ink and wash painting and to achieve a more

satisfactory simulation effect. Figure 4 represents the algorithm

from shallow to deep ink “drawing” simulation process: Figure 4A

shows the layer effect, Figures 4B, C represent the first two layers

and the first three layers of the superposition effect, and Figure 4D

shows the seven-layer superposition effect, that is, the final eight-

ink effect [pu
(

uj
)

= (0.2, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15,

0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15 and

Figure 4A for the 00 layer effect. 15, 0.15, 0.15, 0.11, 0.06, 0.03)].

In the algorithm, the histogram specification serves to preset

the weight of each ink color and enhance the recognition of the

inked area. Figures 5, 6 show a comparison of the ink simulation

experiments for two other sets of landscape images and reveal the

role of histogram specification in the simulation effect. Figures 5B,

6B show the effect of the algorithm based on direct eighth order

grayscale color reduction, and Figures 5C, 6C show the effect of the

algorithm based on histogram specification. The values of pu
(

uj
)

were [0.2, 0.15, 0.15, 0.15, 0.15, 0.15, 0.11, 0.06, 0.03] and [0.3, 0.125,

0.15, 0.125, 0.125, 0.1, 0.05, 0.025]. The direct eight-order color

reduction approach is governed by the color values of the original

diagram, which is easily the source of the imbalance of the weight

of each ink color and the lack of distinctiveness, as can be seen

from the comparison of the two sets of diagrams. The histogram

specification method can better control the amount of ink colors

and especially strengthen the weight of Gray (0) (i.e., white area).

Ink simulation has a better sense of hierarchy and differentiation.

In summary, the algorithm in this article simulates the ink effect

of the landscape map through the method of layer simulation ink

overlay, the simulation map has a strong sense of hierarchy, and the

layers of ink can be integrated with each other and also has a natural

paper-ink penetration effect.

5.2 Abstract paintings

The existing sentiment classification networks ResNet and

Swin Transformer and their variants are compared under the

sentiment classification accuracy metrics in order to assess the

effectiveness of the model in this article. The encoder–decoder

structure with various numbers of layers is set up for this article’s

method; the one-layer encoder–decoder structure is defined as Tiny

and the six-layer encoder-decoder structure is defined as Base.

By training five batches of experimental findings and averaging

them as the final results of the experimental data, five rounds

of cross-validation were used to test the models. To accelerate

the convergence of abstract painting sentiment classification, each
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TABLE 1 Example of part of the abstract painting dataset.

Emotion Painting theme

Character Ghosts Animal Plant

Negative

Be cautious Aversion and resistance Anxiety and tension Faint and wilting

Neutral

Harmony and friendliness Neutral and Pure Be pragmatic and responsive Impartial and impartial

Positive

Diligent and simple Enthusiastic and proactive Elegant and gentle Beautiful and graceful

TABLE 2 Abstract painting emotion classification experiment.

Model Classification accuracy (%)

ResNet-18 64.6

ResNet-34 68.4

ResNet-50 70.3

ResNet-101 71.4

Swin-T 70.1

Swin-S 72.7

Swin-B 73.2

Vit-T 72.7

Vit-B 76.8

Method of this article—Tiny 74.3

Method of this article—Base 80.8

model is fine-tuned based on the ImageNet pre-trained model,

using the Adam W optimizer with a weight decay of 0.1/30 epoch

and an initial learning rate of 0.0001, and trained based on the

NVIDIA RTX 2080Ti.

TABLE 3 Backbone network experiment.

Method Backbone Parameter
quantity (M)

Accuracy
(%)

1 ResNet-18 29 72.5

2 ResNet-34 39 76.7

3 ResNet-50 42 80.8

4 ResNet-101 61 81.9

The actual Naxi Dongba abstract paintings were gathered from

the literature on Na xi abstract paintings, and the abstract paintings

were divided into four categories based on the subject matter of the

painting’s creation. For instance, in the abstract painting data set

shown in Table 1, the figures, ghosts and monsters, animals, and

plants are shown from left to right, and the abstract paintings were

divided into 12 different emotion categories based on the emotions

they conveyed.

ResNet50 was used as the backbone network in order to extract

image features and tested on the test set for sentiment classification

of abstract paintings.

The experimental findings in Table 2 demonstrate that the

algorithm presented in this article is superior to ResNet,
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FIGURE 7

Analysis of the number of encoding and decoding layers.

TABLE 4 Ablation experiment.

Method Decoder
output

Encoder
output

Accuracy
(%)

1 X
√

74.3

2
√

X 77.9

3
√ √

80.8

Swin, and their variation network topologies for the job of

sentiment recognition for abstract paintings. Established sentiment

classification techniques like ResNet-101 and Swin-B achieved

classification accuracies of 71.4 and 73.2%, respectively, whereas

this article’s method-Tiny and method-Base produced the best

classification outcomes with classification accuracies of 74.3 and

80.8%, respectively.

The existing sentiment classification techniques do not account

for the deeper sentiment elements that are buried in abstract

paintings; instead, they focus on predicting the sentiment labels

of abstract paintings while neglecting their linguistically complex

and emotionally varied properties. The method in this article, in

contrast, uses blank attention in the decoder and fuses the encoder’s

output sequence while learning the semantics of the abstract

painting image as the emotion attention through the decoder’s

decoding learning mechanism. As a result, the method employed

in this study is able to achieve a higher classification accuracy rate.

This study first conducts ablation experiments on the backbone

network, compares a variety of Res Net variants to replace the

backbone network, and keeps the structure of this article’s model

unchanged for the experiments in order to assess the impact of the

number of parameters of the backbone network on the accuracy of

sentiment classification. The results of the experiments are shown

in Table 3.

The model parameter amount was 42M and the classification

accuracy was 80.8% when ResNet-50 was used as the backbone

network. The number of model parameters was cut to 29M

with the use of ResNet-18, however the model’s classification

accuracy dropped by 8.3%. ResNet-34, on the other hand, reduced

the number of model parameters by 3M while increasing the

classification accuracy of the model by 4.1% when utilized as the

backbone network. The number of model parameters rises by

19M when ResNet-101 is used as the backbone network, yet the

classification accuracy increases by 1.1%. In this article, choosing

ResNet-50 as the backbone network ensures that there is no

significant decrease in the accuracy rate and avoids the increase in

training difficulty due to the introduction of too many parameters.

Figure 7 displays the line graph of the experimental analysis

of the number of coding–decoding layers; as the number of

coding–decoding layers increases, the model’s accuracy gradually

increases, suggesting that addingmore coding–decoding layers can,

to a certain extent, increase the accuracy of the classification of

the emotions in abstract paintings. The model uses six coding–

decoding layers to achieve 80.8% classification accuracy, avoiding

the overfitting issue that results from the stacking of coding–

decoding layers. However, as the number of coding–decoding

layers increases, the improvement in accuracy eventually slows

down and becomes flat.

To prove the effectiveness of this article’s attention mechanism

for classifying the emotions of abstract paintings, two types of

ablation models are set up to eliminate the decoder and encoder

outputs, based on keeping the backbone network of the model

as ResNet-50: ① The attention mechanism setup is not used in

the ablation model, which eliminates the output of the decoder.

Instead, the model uses the coded sequence output from the

encoder as the basis for emotion classification. The classifier

then normalizes the coded sequence to determine the likelihood

of outputting emotion labels through the full connectivity layer
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spreading. The fully linked layer disperses the coded sequence,

and the normalization of the classifier determines the likelihood of

producing emotion labels; ② The attention mechanism established

in this research is kept in the ablation model that removes the

encoder output, and the model continues to mine the picture

semantics of the abstract paintings without fusing the encoder

output with the attention mechanism. In Table 4, the experimental

findings are displayed.

When the encoder is used to help classify the abstraction

of drawing sentiments, the accuracy of sentiment classification

decreased after eliminating the decoder output by 6.5%, showing

higher classification accuracy than that of the ResNet-50

classification model; however, after eliminating the encoder output,

the accuracy of sentiment classification of the ablation model

decreased by 2.9%, which is higher than that of the ResNet-101

classification model and close to that of the ResNet-50 classification

model. This finding shows that the attention mechanism in this

study can help the model recognize abstract paintings’ emotions

more accurately by acting as a facilitator.

In this study, we used a full convolutional network to calculate

the emotional weights of the model, visualize the weight heat map

of themodel, and simultaneously highlight and locate the regions in

the heat map that significantly influence the expression of emotion.

Figure 8A provides an illustration of an abstract painting’s

original image, which is tagged with the predicted emotions

derived from the image by the model test and contains 12

emotions as determined by the experimental data, respectively. The

ablation model produced by the elimination decoder is depicted in

Figure 8B, with loose regions of attention and unfocused regions of

interest in the model’s heat map; the regions of interest for abstract

paintings of various subjects also differ significantly from one

another. Figure 8C demonstrates that, despite being more compact,

the model heat map’s zone of interest suffers from ambiguous

regions of interest and incorrect localization. It is also unresponsive

to a smaller percentage of the neutral emotion image. The focus in

the figure paintings is on the behavior and movements of the Dong

ba figures, and the areas highlighted by the model labeled colors in

the different image emotions correspond to the areas of the abstract

paintings where the figures are holding arms, dancing, and making

gestures, respectively. Figure 8D shows the model heat map of this

article, which has a more concentrated region of interest and more

stable localization. For emotionally complex animal paintings, the

model expands the emotional expression to the animal’s body area;

for the plant paintings, the color highlighting points out the plant

petal area, which corresponds to the plant’s budding or blossoming

gesture. In the ghost paintings, the model heat map focuses on the

ghost behavior and action area.

The visualization experiments demonstrate the comparison

experiments of the ablation model and the region of interest of the

model described in this article. They also show how the relationship

between the abstract painting emotion attention and the image

emotion learned by this article model is more intimate and how

this has a more immediate effect on the results of the emotion

classification. It demonstrates how well the model in this study

extracts the emotion from images of abstract paintings, making it

more appropriate for classifying the emotions of abstract paintings.

FIGURE 8

Presentation of visualization results: (A) initial image; (B) elimination

decoder; (C) elimination encoder; and (D) model of

this article.
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FIGURE 9

E�ect of di�erent K-values on the prediction of sentiment distribution.

5.3 Predictive distribution

The effect of different values of K (K = 5, 10, 20, 40, 50, 100,

252 using 10-fold cross-validation, where K = 252 is the global

weighting of the training set) on the prediction of the sentiment

distribution in a weighted KKN is shown in Figure 9.

In this example, the optimal K-value is affected by the

sentiment category, and considering the average performance, it

is considered that the best prediction is achieved at K = 40, 50,

which outperforms the global weighting, and when K = 252, all

the training images are used for distribution prediction.

6 Conclusion

The majority of early algorithms employed for sentiment

classification were based on shallow machine learning and

extract features using manually constructed feature selection

techniques that have weak generalization ability, require extensive

training times, and entail high labor costs. Because of its

superior learning capacity to optimize feature extraction and

prevent the flaws of manual feature selection, deep learning has

produced positive research outcomes in the field of text sentiment

categorization. The attention mechanism’s primary objective is

to swiftly separate valuable information from a vast amount of

data. When applied to the sentiment classification task, it is

capable of identifying word dependencies within sentences and

identifying the internal organization of the sentence. Using a

weighted closest neighbor technique, we provide a novel approach

in this study to predict the discrete sentiment distribution of

each picture in an abstract painting. Testing shows that the

attention mechanism-based classification algorithm achieves a

better classification accuracy of 80.7% when compared to state-

of-the-art techniques, thereby resolving the issues of rich material

and difficulties in identifying the emotions shown in abstract

paintings. Nevertheless, there are several drawbacks to the attention

mechanism in this article, such as its incapacity to create the

positional link between objects and scenes in abstract paintings.

Furthermore, it is restricted by the dataset on abstract paintings

and is unable to sufficiently address the issues of imprecise

sentiment categorization and imprecise attention learnt from

datasets that are made publicly available. Future research methods

might thus expand the sentiment dataset to a broader picture

data domain and further expand the abstract painting sentiment

classification system to a multimodal level in order to overcome

these problems.
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Alzheimer’s disease (AD) is a neurodegenerative illness that impairs cognition,

function, and behavior by causing irreversible damage to multiple brain areas,

including the hippocampus. The su�ering of the patients and their family

members will be lessened with an early diagnosis of AD. The automatic diagnosis

technique is widely required due to the shortage of medical experts and eases

the burden of medical sta�. The automatic artificial intelligence (AI)-based

computerized method can help experts achieve better diagnosis accuracy and

precision rates. This study proposes a new automated framework for AD stage

prediction based on the ResNet-Self architecture and Fuzzy Entropy-controlled

Path-Finding Algorithm (FEcPFA). A data augmentation technique has been

utilized to resolve the dataset imbalance issue. In the next step, we proposed

a new deep-learning model based on the self-attention module. A ResNet-50

architecture is modified and connected with a self-attention block for important

information extraction. The hyperparameters were optimized using Bayesian

optimization (BO) and then utilized to train the model, which was subsequently

employed for feature extraction. The self-attention extracted features were

optimized using the proposed FEcPFA. The best features were selected using

FEcPFA and passed to the machine learning classifiers for the final classification.

The experimental process utilized a publicly available MRI dataset and achieved

an improved accuracy of 99.9%. The results were comparedwith state-of-the-art

(SOTA) techniques, demonstrating the improvement of the proposed framework

in terms of accuracy and time e�ciency.

KEYWORDS

Alzheimer’s disease, MRI, deep learning, self-attention, convolutional neural network,

optimization, fuzzy entropy
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1 Introduction

Dementia is the seventh-greatest root cause of mortality and

the main reason for impairment and vulnerability in elderly

individuals (Koul et al., 2023). It is a rapidly spreading disorder

among the elderly population, becoming increasingly common

over the last decade (Sisodia et al., 2023). Dementia greatly

impairs intellectual performance, interfering with daily tasks and

interpersonal interactions (Nagdee, 2011). Alzheimer’s disease

(AD) is an inseparable subclass of dementia that can cause memory

loss in a person (Mahmud et al., 2024). An individual affected

by AD may struggle to recognize family members and experience

difficulties in remembering daily activities. Moreover, it can cause

ultimately lead to the death of the patient (Mohammad and

Al Ahmadi, 2023). Due to these worse health conditions, it is

also referred to as a progressive neurodegenerative disease. It

affects behavioral functions, thinking abilities, decision-making,

and language skills, often leading to memory loss in older people

(Kellar and Craft, 2020).

Brain cell alteration may occur a decade or more before

clinical signs appear. In the beginning, patients with AD

experience unnoticed changes in their brains (Jansi et al.,

2023). Throughout the early AD stage, the brain undergoes

destructive transformations, including ectopic protein deposition

that produces amyloid plaques and tau tangles. Neurons that were

once fully functional cease to function properly, losing connections

to other neurons and eventually undergoing cell death (Hoozemans

et al., 2006). Several additional intricate alterations in the brain

can also lead to Alzheimer’s (Kasula, 2023). The hippocampus and

entorhinal cortex, critical for cognitive control, seem to be the

initial regions of impairment (Shrager et al., 2008). Furthermore,

the signs of AD begin to manifest when nerve cells (neurons) in

certain areas of the brain gradually shrink and eventually become

destroyed or damaged (Khalid et al., 2023). In the final phase of AD,

damage becomes widespread, and a large amount of brain tissue is

destroyed (Bloniecki Kallio, 2002; Carle, 2022).

AD is such a serious brain disease that it can result in a patient’s

death if not effectively treated (Gómez-Isla and Frosch, 2022). To

overcome this disease, patients need good care, regular exercise,

and some memory-sharpening activities as there is currently no

specific medication for AD (Shamrat et al., 2023). In recent

years, a significant increase has been observed in AD (Mirzaei

and Adeli, 2022; Stevenson-Hoare et al., 2023). The number of

deaths from Alzheimer’s disease in 2020 increased by 15,925

compared to the 5 years before 2023, and 44,729 more deaths

were recorded for all dementias, including Alzheimer’s disease

(Chua, 2023). Traditional machine learning (ML) techniques such

as pre-processing (Wen et al., 2020), feature extraction (Rathore

et al., 2017), feature selection (Balaji et al., 2023), feature fusion

(Jia and Lao, 2022), and classification (Tanveer et al., 2020) have

been employed by researchers as a four-step channel in the past

few years. Classification is the bottommost step in which each

object accredits a label, in either a supervised or unsupervised

ML technique (Bondi et al., 2017). Deep learning (DL) (Shaukat

et al., 2022) is a subtype of machine learning that falls under the

umbrella of artificial intelligence, but DL is way more vigorous and

flexible in comparison with ML (Fabrizio et al., 2021). Techniques

such as shallow CNN (Marwa et al., 2023), DNN (Hazarika et al.,

2023), MultiAz-Net (Ismail et al., 2023), hybridized DL method

(Hashmi, 2024), and RVFL (Goel et al., 2023) have been used in

recent years, but these techniques yield low accuracy as compared

to our proposed model (Shamrat et al., 2023).

1.1 Major challenges and gaps

Recent advances inML andDL have opened up new avenues for

assessing AD, but researchers are still grappling with the diagnosis

of the disease (Shamrat et al., 2023). Few of them are related to

insufficient and unbalanced datasets. Furthermore, major problems

with AD patients are the complexity, diversity, and complicated

neurobiological underlying AD (Dhakhinamoorthy et al., 2023).

Architectural variation in scans is another main challenge to

diagnosing and detecting AD. However, the influence of these

challengesmay vary from patient to patient. This research will focus

on AD stages for classification using deep learning and feature

optimization techniques.

1.2 Major contributions

The main contributions of this study are as follows:

• A fine-tuned ResNet-50 architecture has been modified by

adding a self-attention layer and trained from scratch for

feature extraction.

• Hyperparameters of the trained model are initialized using an

optimization technique named Bayesian optimization.

• Improved the extracted self-attention features using an

improved pathfinder optimization named the Fuzzy

entropy-controlled path-finding algorithm (FEcPFA). The

optimization algorithm selects the best features and improves

the efficiency.

• The optimized selected features are finally classified using

machine learning to classify the stages of AD.

This article is organized as follows: Section 2 reviews ML and

DL techniques that have been applied to Alzheimer’s disease, and

Section 3 provides a comprehensive description of the datasets.

The testing outcomes are shown in detail in Section 4. Section 5

summarizes our findings, and Section 6 discusses future work.

2 Related work

Due to the brain’s intricacy, classifying AD is difficult

(Dhakhinamoorthy et al., 2023). Thus, researchers are improving

medical image processing to identify AD correctly. This section

presents relevant literature in the domain of AD detection and

diagnosis, which focuses primarily on classification techniques

based on deep learning for MRI tissue structure analysis (Mohi

et al., 2023). The deep belief network (DBN) was utilized by AI-

Atroshi et al. (2022) to extract feature vectors from detected speech

samples, which has an output accuracy of 90.2%. Shankar et al.

(2022) used HAAR-based object identification techniques because

they are more suitable with discriminant attributes and generated
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37 spatial pieces of information from seven characteristics that

produced 94.1% accuracy on the dataset taken from ADNI. To

aid in the initial diagnosis of AD (FDN-ADNet), Sharma et al.

(2022) used a DL network for all-level feature extraction from

extracted sagittal plane slices of 3D MRI scans and a fuzzy

hyperplane-oriented FLS-TWSVM for the classification of the

retrieved features, which generated 97.29% accuracy on the publicly

available ADNI dataset.

Albright (2019) presented the all-pairs pre-processing

algorithm to train the model. For this experiment, setting data

were taken from ADNI and divided into three datasets, i.e., LB1,

LB2, and LB3, with an mAUC of 0.866. The 3D-CNN networks

by Soliman et al. (2022) predicted AD. It learned basic traits that

catch AD indicators to identify brains with Alzheimer’s disease

from healthy and normal brains using MRI scans. ADNI provided

3,013 photographs with 96.5% training accuracy and 80.6% tested

accuracy. Samhan et al. (2022) adopted CNNs, VGG16, Adam,

activation, and softmax optimizers. The Kaggle dataset of 10,432

images yielded 100% training accuracy, 0.0012 training loss, 97%

validation accuracy, and 0.0832 verifying loss. Jo et al. (2022)

proposed a unique deep learning-based genome-wide approach

called SWAT-CNN that found SNPs associated with AD and

a classification model for AD. It may be useful for a variety of

biomedical applications and was tested on the GWAS dataset by

the AD Neuroimaging Initiative (ADNI).

Zhang et al. (2022) adopted CNN models of various designs

and capacities and assessed them thoroughly. Themost appropriate

model was then applied for AD diagnosis. To increase the

transparency of the model, an explanation heatmap was produced

for AD vs. cognitive normal (CN) classification tasks and pMCI

vs. sMCI using two publicly available datasets. Interestingly, the

study found that a moderately sized model could outperform one

with the largest capacity. Ghazal et al. (2022) proposed the system

named ADDLTA, in which the transfer learning (TL) approach

was used in conjunction with brain medical resonance imaging

(MRI) to classify the image into four categories: mildly demented

(MD), moderately demented (MD), non-demented (ND), and

very mildly demented (VMD), which gave 91.70% accuracy on

simulation results based on the publicly assessable dataset by the

Kaggle repository.

Shanmugam et al. (2022) focused on detecting different phases

of cognitive impairment and AD in the early stages by utilizing TL

in neuroimaging. GoogLeNet, AlexNet, and ResNet-18 were three

pre-trained models adopted for classification, giving an accuracy

of 96.39, 94.08, and 97.51%, respectively, on the ADNI dataset.

Prasath and Sumathi (2024) suggested a compact architecture

by merging two models, LeNet and AlexNet, that outperform

DenseNet. Three parallel tiny filters (1 × 1, 3 × 3, and 5 ×
5) replaced the convolution levels to recover key features that

achieved 93.58% accuracy on the dataset taken from ADNI. Sorour

et al. (2024) proposed a system for the automated diagnosis

of Alzheimer’s disease that integrates multiple customized deep-

learning models to provide an objective evaluation. The very

first methodology addresses AD diseases using SVM and KNN.

The second approach combines rs-fMRI datasets from the ADNI

repository with modified AlexNet and Inception blocks. This

architecture gave 96.61% accuracy. A new optimized ensemble-

based DNN learning model called MultiAz-Net is used by Ismail

et al. (2023) with diverse PET and MRI data to identify AD. The

Multi-Objective Grasshopper Optimization Algorithm (MOGOA)

optimizes MultiAz-Net layers, which produced 92.3% accuracy on

the ADNI dataset. Balaji et al. (2023) suggested a DL approach

to detect AD in its initial stages using multimodal imaging

and the LSTM algorithm, combining MRI, PET, and traditional

neuropsychological examination results. The suggested technique

adjusted the learning weights to improve accuracy and employed

Adam’s optimization. The proposed architecture achieved 98.5%

accuracy on 512 MRI and 112 PET scans.

3 Materials and methods

This section provides a comprehensive exposition of the

experimental dataset and methodologies employed within. It

elucidates the specifics of the experiments, including the nature of

the dataset utilized and the methodologies adopted.

3.1 Dataset

A well-characterized repository has a significant role in the

performance evaluation of a diagnosis system. In this experiment,

a dataset was obtained from Kaggle. This dataset, known as

Alzheimer’s disease, consists of specimens of anonymously affected

individuals with MRI scans and their appropriate class label details.

This multiclass dataset contains four distinct classes and offers

many different views, comprising over 5,000 MRI images. The

four classes are shown in Figure 1: mildly demented (Shanmugam

et al., 2022), moderately demented (Prasath and Sumathi, 2024),

non-demented (Sorour et al., 2024), and very mildly demented

(Ismail et al., 2023). A brief explanation of the four classes of AD

is given in Table 1 for testing and training purposes. The data were

imbalanced in each class. Each class consisted of a different number

of images.

These datasets are the most prominent and effective for

this publicly available domain. The major aim of this study

is to yield high accuracy. Original MRI scans and augmented

image distribution were utilized in the training and testing of

the experiment. Mild demented contained 896 images; moderate

demented contained 64 images; non-demented comprised 3,200

images; and very mild had 2,240 images. After the augmentation,

we took 2,000 images from each class for further proceedings.

Figure 2 illustrates the AD stages with a brief description.

Moreover, an image description that lists the number of classes

and augmented images utilized in this study is found in

Table 2.

3.2 Proposed methodology

Our proposed study presents a deep learning-based

methodology for classifying AD grades. First, the dataset was

taken from Kaggle, a public repository. The data were unbalanced

in each class, so different augmentation techniques were applied.

The data have been enhanced by applying different enhancement

methods. After the enhancement, we fine-tuned the ResNet-50
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FIGURE 1

Classes of Alzheimer’s disease for the classification.

TABLE 1 Description of AD classes dataset.

References Classes Description No of images

Shanmugam et al. (2022) Mild demented People may become socially withdrawn, and noticeable changes occur in their moods and

personality. People may find it hard to remember the faces, people they met a long time

ago, and recent events. Individuals do not recall what they are saying, cannot find their way

to their desired location, and have lost focus and work abilities.

896

Prasath and Sumathi

(2024)

Moderate demented In this phase, the affected person requires help to do their routine work. Inability to recall

important information, such as name of close relatives, home location, time, and date;

however, the person knows their name and family member’s names. The person lacks

sensibility, forgets previous work, and struggles to keep track of finances and daily expenses

while living alone.

3,200

Sorour et al. (2024) Non-demented It usually occurs in elderly persons. People may face difficulty in conversation and

gradually memory loss.

64

Ismail et al. (2023) Very mild

demented

The person may find it hard to adjust to a new environment and experience apathy and

repetition. Affected persons cannot complete the task. There seems to be low memory loss

in this stage. Individuals may forget the names of people who lived with them.

2,240

FIGURE 2

Description of AD stages.

model and added Self-Attention layers. The modified model is

trained on the augmented dataset and extracted deep features

from the self-attention layer. The features are extracted from the

self-attention layer. Bayesian optimization is employed for the

selection of hyperparameters, instead of manual initialization.

Moreover, PFA is utilized to select the optimal features. In

the final stage, KNN, NN, and SVM classifiers are used to

classify AD stages. The proposed model is represented in

Figure 3.

3.2.1 Data augmentation
Augmentation is creating modified image variants from an

existing image dataset to improve its variety artificially. Images are

nothing more than a 2D collection of numbers for a computer.

These numbers indicate intensity values, which may be modified to

produce new, enhanced images. The primary goal of augmentation

is to maintain parity among each group. It improved the outcomes

and made them more precise and effective. In most cases, it

was only useful for very small data sets. Images may be flipped
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TABLE 2 Dataset image description.

S# Dataset Number of classes Total images Augmented images Training/testing

1 Alzheimer’s disease Mild demented 896 3,200 3,200/2= 1,600

2 Moderate demented 64 3,200 3,200/2= 1,600

3 Non-demented 3,200 3,200 3,200/2= 1,600

4 Very mild demented 2,240 3,200 3,200/2= 1,600

FIGURE 3

Proposed model of classification of AD stages.

horizontally, vertically, or rotated using this method. Both of these

techniques expand the quantity of the dataset by producing images

that have been flipped at various angles.

3.2.1.1 Horizontal flip

Complete rows and columns of image pixels are set aside

horizontally. If the image on the right is flipped, the outcome will

be on the left. The mathematical representation for the horizontal

flip is shown by Equation 1.

HF

(

−x, y
)

= HO

(

x, y
)

(1)

The given formula illustrates the horizontal flip of an image

scan. HF shows the flipping function, while HO represents the real

image. The first half
(

x, y
)

displays the actual image, while quadrant

two
(

−x, y
)

displays the replica image. Therefore, the unedited

version of the image resides within the first quarter, which is the

right side, and after horizontal flipping, the image has been flipped

to the second phase, which is the left side.

3.2.1.2 Vertical flip

Complete rows and columns of image pixels are set aside

vertically. When an image is now displayed in the upward position

and flipped, the resulting image will be displayed in the downward

motion. The mathematical representation for the vertical Flip is

shown below:

Hv

(

x, −y
)

= HO

(

x, y
)

(2)

The given formula illustrates the vertical flip of an image

scan. HV shows the flipping function, while HO represents the

real image.

The first half lies in
(

x, y
)

which displays the actual image,

while the third quadrant third
(

x, −y
)

displays the replica image.

Therefore, Equation (2) demonstrates that the initial image resides

in the first half on the right side. When the vertical flip is enforced,

the image goes to the third half, which is in a downward direction.

In short, it flipped the image along with the X-axis.

3.2.1.3 Rotate flip

A 3D graphic item is flipped by rotating it. The following is a

mathematical representation by Equation 3.

g90
◦

(i,j)
=

[

cos90◦ −sin90◦

sin90◦ cos90◦

] [

gi

gj

]

(3)
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FIGURE 4

Visual illustration of image augmentation using mathematical

techniques.

Consequently, image (I) is rotated by angle degrees

counterclockwise around its center. To rotate the image

counterclockwise, input a negative angle value, then (imrotate)

will extend the resultant image (J) to encompass the entire rotated

image. The methods for data augmentation used in the experiment

are shown in Figure 4.

3.2.2 Contrast enhancement
Increasing contrast is one of the most important and useful

techniques for improving the essential elements of an image.

Normally, raw images contain noise, distortion, and low contrast

that lower the image quality, which sometimes causes the loss

of useful information (Perumal and Velmurugan, 2018). Contrast

enhancement improves the image qualities for further processing.

More relevant characteristics may be extracted from the improved

photographs for the classification stage than from the input image.

The datasets chosen in this study have poor-quality images with

low contrast levels. Due to this issue, we could end up incorrectly

categorizing things. Contrast enhancement is further divided into

two main groups, i.e., the spatial and frequency domains, such

as morphological enhancement, histogram equalization, contrast

stretching, contrast slicing, and some contrast enhancement. In

our proposed experiment, two types of contrast enhancement have

been adopted, one by one. First, a fast local Laplacian filter is

applied to the augmented dataset. After this, a top–bottom hat filter

is applied to the enhanced dataset to get better-quality MRI scans.

3.2.2.1 Fast local Laplacian filter

There are two main functions of FLLF. The first is applied

to the raw images to boost the boundary detail and reduce the

noise artifacts. The second is that the images are transformed from

the RGB color system to the YUV color space to isolate the Y

factor. Multiscale adjustments are crucial to photo editing but are

FIGURE 5

Visual illustration of contrast enhancement.

especially vulnerable to halos. Advanced edge-aware algorithms

and careful parametric adjustments are needed to get outcomes

without artifacts. These deficiencies were subsequently remedied

through local Laplacian filters. These filters use typical Laplacian

pyramids to generate a wide variety of effects. However, these filters

are time-consuming, and their link to other methods is obscure.

3.2.2.2 Top–bottom hat filter

In this filter, the top-hat part is employed for objects with a

light color on a darker backdrop, whereas the bottom-hat part

is utilized for images with a dark color on a light background.

The correction of the effects of non-lighting is a key purpose of

the top-hat modification. When the shade is evident in an image,

this filtering technique can effectively highlight the information

in the image. The methods for contrast enhancement are visually

presented in Figure 5.

3.2.3 Bayesian optimization
Bayesian optimization incorporates Bayes’ theorem to guide the

search as a method for minimizing or maximizing an optimization

technique. This method can be very helpful for optimization

algorithms that are difficult to evaluate due to their complexity,

noise, or cost. BO differs from other methods in that it considers

previous parameter data by changing the baseline using Gaussian

progress (GP). Additionally, BO has minimal iterations and a

rapid convergence time. The BO approach may also eliminate

local optimum in non-convex optimization circumstances. BO is

a perfect pick for optimizing HPs due to its high convergence

and resilience. All hyperparameters must be tuned to gain

classification precision while utilizing DL architectures. The choice

of hyperparameters substantially affects the accuracy and precision

of the prediction. When optimizing hyperparameters, the objective

is to choose the values that provide the highest quality validation

findings. Hyperparameter optimization is written mathematically

by Equation 4.

x∗ = argminf (x) (4)

where f(x) shows the cost-minimizing objective score for evaluating

hyperparameter optimization relative to the validation set, and x is
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TABLE 3 Hyperparameter range of BO.

Hyperparameters Ranges

L2Regularization (1e−10 , 1e−2)

Section depth (1, 3)

Momentum (0.7, 0.98)

Learning rate (0.0001, 1)

the set of hyperparameters whose values lie in that range. Training

takes longer and is extremely difficult to do by hand with DNN

models with numerous hyperparameters. ML and simulations

employ BO. FFNN designs alter hyperparameters in CV-based

techniques to enhance the performance of the mode network.

Optimizing several parameters is faster by using it.

In contrast to other methods, BO updates the prior with

Gaussian progress to adjust for past parameter values (GP).

Additionally, BO converges quickly and with a small number of

iterations. When addressing non-convex optimization problems,

the BO approach may be able to sidestep localized optimality. BO

is a great option for optimizing HPs due to its high convergence

and resilience. The stopping condition of the BO algorithm is

based on MaxTime. The BO algorithm stops when it reaches the

MaxTime, which is 54,000 s. This time is approximately equivalent

to 15 h. In this study, we utilized BO along with DCNN, which

fine-tuned the hyperparameters to generate the lowest error rate

with optimal results in an architecture. Optimizing parameters such

as L2Regularization, Section Depth, Momentum, and Learning

Rate have been used in this study, shown along with their ranges

in Table 3, which represents the Bayesian optimization workflow.

Figure 6 illustrates the BO.

3.2.4 Deep transfer learning
Transfer learning is applying a learned model to a different

situation. The fact that it has the potential to train deep neural

networks on very little training data has recently made it more

famous in deep learning. Deep transfer learning is becoming

more prominent in handling image classification issues as it is

feasible to use built-in CNNs on publicly available datasets such

as ImageNet to achieve top classification accuracy in several

application domains. After transfer learning (TL), the framework

is fine-tuned (FT) to relearn all FE and C. FT is performed by

initializing feature extraction parameters and ImageNet weights,

and classification parameters are updated along with TL weights.

Figure 7 illustrates the deep transfer learning workflow.

3.2.5 Proposed ResNet-Self architecture
In this study, we proposed a modified ResNet-50 architecture

based on the self-attention module named ResNet-Self. Initially, we

consider the ResNet-50 architecture based on the residual blocks. In

this network, 48 convolutional layers have been originally added,

along with one max-pooling layer, one average pooling layer, and

one fully connected layer. The residual blocks added in this network

contain skip connections. In this network, bottleneck filters are

applied, such as 1 × 1, which reduces the number of parameters.

The depth size of this model is originally between 64- and 2,048,

and filter sizes of 3 × 3. Moreover, the stride is used 2 out of the

residual blocks, and in the residual blocks, 1 stride is employed.

The average pooling layer has been added at the end of this model

for the features extraction that followed the fully connected and

softmax layers. The initial performance of this model for AD stage

classification was insufficient; therefore, we modified it with the

latest concept named Self-Attention.

The proposed ResNet-Self architecture is illustrated in Figure 8.

This figure shows that the self-attention layer was added after the

global average pooling layer. A flattening layer has been added

before the self-attention layer that converts the input into 1D. The

first channel is passed to the Softmax function that combines with

the second channel for the attention map creation. After that, the

generated attention map is combined with a third channel for final

attention features that are further utilized to classify AD stages.

3.2.5.1 Self-attention

The internal attention approach, sometimes called the self-

attention (SA) strategy, uses internal information to automatically

identify and highlight relevant information without needing

external information. SA has low computational complexity and

allows parallel computing. It consists of three characteristics

matrices such as X, Y , and V , where these are defined by

Equations 5–9.

{Y ,X} ∈ RT×T (5)

V ∈ RT×J (6)

Initially, the correlation score has been computed among all

rows of Y and X as follows:

P = XYτ (7)

where Yτ denotes the transpose of Y and P ∈ RT×T . The softmax

function is applied in the next step, which converts the correlation

score into probability values. Mathematically, it is formulated

as follows:

SM (P)
(

i, j
)

=
eP(i,j)

∑T−1
j=0 eP(i,j)

(8)

Hence, the final attention map has been obtained as follows:

AMp = SM (P)V (9)

3.2.5.2 Proposed network training

After the design of the proposed model, the next step is training

a model using the deep transfer learning concept. The entire

model is trained from scratch, instead of any frozen layer. The

hyperparameters of this network are presented in Table 3. Based

on the selected hyperparameters using BO, the proposed model

is trained on the augmented dataset. The best-returned value of

the learning rate using BO is 0.00032, and the momentum value

is 0.773. After the training process, the test data are employed for

the extraction of the features.
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FIGURE 6

Bayesian optimization workflow for hyperparameters selection.

FIGURE 7

Deep transfer learning architecture for classification of AD stages.

FIGURE 8

Proposed ResNet-Self architecture for classification of AD stages.

Frontiers inComputationalNeuroscience 08 frontiersin.org28

https://doi.org/10.3389/fncom.2024.1393849
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yaqoob et al. 10.3389/fncom.2024.1393849

3.2.5.3 Deep features extraction

Typically, CNNs return the three levels of feature maps:

low-level feature maps, mid-level feature maps, and high-level

feature maps. All of these levels contain different information.

Low-level feature maps contain simple patterns such as edges,

corners, and textures. These maps have high dimensions. Mid-level

feature maps contain abstract and more structured patterns like

specific regions of the objects or textures, but high-level features

contain discriminative and semantically significant information.

The features (high-level) are extracted from the last stage of CNNs

due to their lower dimensions. The low dimensionality reduces the

memory requirement and computational complexity.

This study extracts deep features using the self-attention layer,

instead of the global average pooling layer. The self-attention layer

returns the prominent and relevant global information within the

images. The testing images are utilized, and a trainedmodel is opted

for. The batch size was 128 during the deep features extraction. The

self-attention layer features contain deeper information about the

AD stages. The size of the extracted feature vector isN × 2,048. The

extracted features are analyzed and optimized using an improved

pathfinder optimization algorithm.

3.2.6 Best features selection
In this study, we utilized an evolutionary optimization

algorithm named Entropy Path Finder Optimization (EPFO) for

the best feature selection. Features are selected at the initial step

through original pathfinder optimization and later refined using an

entropy approach that handles the uncertainty.

3.2.6.1 Path finder optimization

In contrast to previously suggested swarm intelligence, the

Pathfinder approach does not specify which species group it

belongs to. For instance, the seagull optimization algorithm

restricts the number of seagulls, whereas the gray wolf optimization

technique restricts the number of gray wolves, etc. The Pathfinder

algorithm is based on many surviving traits and regulations of

animals. Based on the best fitness of the organism, the Pathfinder

algorithm divides cluster animals among two sorts of tasks: the

leader (only with the lowest fitness value) and the follower. The

leader must find the greatest food and label it for the followers.

The markings left behind by the Pathfinder are used as a reference

point by the followers, who then proceed to follow the Pathfinder.

Hence, both the Pathfinder and the follower are skeptical. That is

why the two distinct sorts of responsibilities may switch places with

one another depending on the individual’s level of search capability

as the number of iterative steps of the method rises; that is, those

who lead the way sometimes get followers. Similarly, followers may

also play the role of a pathfinder. To optimize a task, the PFA is split

into two segments. The initial stage is a period of exploration. The

PFA changes the location using the following Equation (10):

xk+1
p = xkp + 2r3 . (xkp − xk−1

p ) + A (10)

where xk+1
p demonstrates the modified position vector of PFA. xkp

indicates the present location of vectors in PFA, while xk−1
p shows

the former position of the vector of PFA. The ongoing iteration

count is denoted by the variable k. R3 is a random vector that

is created in a uniform manner in the range [0,1], whereas A is

produced within every iteration by applying Equation (11). Step

2 is really the exploitation step, which is immediately preceded

by the location change. The following update formula applies

Equation (11):

xk+1
i = xki + R1 . (xkj + xki )+ R2. (xkp + xki )

+ E, i ≥ 2 (11)

where xk+1
i indicates the updated location vector of the i-th integer

just after location modification. xki is the location vector of the

i-th individual, xkj is the neighboring individual, and xkp is the

Pathfinder. The variable k denotes the ongoing iteration count.

Each of the vectors R1 and R2 is completely unpredictable. In

this situation, R1 = (αr1) and R2 = (βr2), and here, R1 and

R2 are random vectors that are created uniformly in the range

[0,1]. α determines the degree to which each component travels

about its neighbors and is hence called the coefficient of iteration. β

establishes a randomized spacing to make the herd fairly constant

along with the leader and hence called the coefficient of attraction

kmax. Mathematically, it is formulated by Equation (12).

h =
(

1−
k

kmax

)

. µ1 . Dij, Dij

∥

∥xi − xj
∥

∥ (12)

Therefore, here µ1 and µ2 are randomly generated two vectors

in the interval of [1,1], Dij is the gap between both individuals,
(

k
)

denotes the present iteration range, and kmax is the maximal

quantity of repetitions. (A) and
(

h
)

may give random walk strides

for all persons when the second part of Equations (10) and (11)

and the third part of Equation (12) are equal to zero. As a result,

in order to ensure that the motion will be in several directions and

completely random, the values of. (A) and
(

h
)

should be within the

proper span.

After every update in the position, the KNN classifier is

employed to measure the fitness value. The cost function of KNN is

mathematically formulated as:

τcost = ϕα × ǫerr + ϕβ ×
(

count of sel_feat

Max(features)

)

(13)

where α and β are denoted, the coefficient having values are 0.94

and 0.014, respectively. The ǫerr presented the error value that is

calculated by employing an Equation (14):

ǫerr = 1− ∂accuracy (14)

3.2.6.2 Entropy selection

AssumeU is a discrete random variable, and it is represented as

u = {u1, u2, . . . , un}, then if an element ui occurs with p(ui), the

entropy H(U) of U is formulated by Equation (15):

H (U) = −
n

∑

i=1

p (ui) log p (ui) (15)
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Load self-attention feature vector

Load parameters of PFA

Initialize the population of size 20

Calculate the fitness of initial

population

Find the Pathfinder

While k<maximum number of iterations

α and β = random number in [1,2]

update the position of Pathfinder

using Equation (10) and check the

bound

if the new Pathfinder is better than old

update the Pathfinder

end

for i=2 to maximum number of populations

update the position of members using

the Equation (11) and check the bound

end

calculate the new fitness of members

find the best fitness using

Equations (13) and (14)

if best fitness < fitness of Pathfinder

pathfinder = best member

fitness = best fitness

end

for i=2 to maximum number of populations

if new fitness of member (i) <

fitness of member (i)

update member

- Find entropy of updated member using

Eq. 15.

- Compute the fuzziness using Eqs. 16-18

- Find the fuzzy entropy value using

Eq. 19.

end

end

generate new A and ε

end

Algorithm 1. The pathfinder algorithm.

where n denotes the total number of features. The fuzzy C-Means

clustering is utilized to construct the membership function of all

features. The fuzzy membership method is defined in the following

five steps.

In the first step, we assumed the number of clusters (C), where

2 ≤ C ≤ N. In the next step, the jth center clusters are computed

by the following Equation (16).

Cj =
∑N

i=1 µe
ijuij

∑N
i=1 µ

g
ij

(16)

where e ≥ 1 is a fuzziness coefficient and µij is the

degree of membership (DOM) for the ith data point ui in jth

cluster. Euclidean distance is computed in the third step using

Equation (17).

Dij =
∣

∣Cj − µi

∣

∣ (17)

In the fourth step, the value of the fuzzy membership function

is updated by Equation (18):

µ =
1

∑e
m=1

(

Dij

Dim

)
2

g−1

(18)

In the final step, we repeated steps 2–4 until the change inµwas

less as per the previous values. Hence, the fuzzy entropy function is

formulated as follows in Equation (19):

Fe
(

Ȟ
)

= −λc

(

Ȟ
)

log λc

(

Ȟ
)

(19)

where λc

(

Ȟ
)

is a class degree of the membership function

(Khushaba et al., 2007). The fuzzy entropy process is applied to the

selected features of Equation (12). The dimensions of the selected

features are N × 1,467. The final features are employed for the

classification. The proposed fuzzy entropy-controlled pathfinder

algorithm’s pseudo-code is given in Algorithm 1.

4 Results and analysis

The proposed AD stage classification model undergoes

evaluation using a Kaggle dataset, providing a robust framework

for assessing its performance. The forthcoming section will

comprehensively showcase all the experiments conducted and the

corresponding results obtained, offering insights into the efficacy

and potential of the proposed model in accurately diagnosing AD.

4.1 Experimental setup and evaluation
measures

The experimental process of this study is discussed here.

The proposed framework of AD is evaluated on a publically

available dataset that includes four classes as mentioned in Section

3.1. The dataset is divided into 50:50 approaches, and training

data augmentation is performed. The training data extracts and

optimizes features for the best feature selection. The selected

features are classified using machine learning classifiers, and the

following measures are computed: recall rate, precision rate, F1-

Score, MCC, and KAPPA. The entire experimental process has

been conducted on MATLAB2023a using a personal computer

with 128GB RAM, 512FB SSD, and a 12GB Graphics Card of

NVIDIA3060 RTX.

4.2 Proposed ResNet-Self results (random
values)

The proposed ResNet-Self CNN architecture is tested on 1,600

images in this experiment. The hyperparameters of this experiment

are randomly initialized (related work knowledge such as learning

rate 0.0001 and momentum 0.70) and performed training. Features

are extracted from the testing data, and the maximum accuracy

Frontiers inComputationalNeuroscience 10 frontiersin.org30

https://doi.org/10.3389/fncom.2024.1393849
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yaqoob et al. 10.3389/fncom.2024.1393849

TABLE 4 Proposed prediction results of AD stages using initialization of random hyperparameters.

S# Classifiers Precision Recall F1-score Kappa MCC Accuracy Time (s)

1 Fine KNN 98.73 98.73 98.72 96.60 98.30 98.7 66.002

2 NNN 99.93 99.93 99.92 99.80 99.90 99.93 33.532

3 MNN 99.90 99.90 99.90 99.73 99.87 99.90 50.399

4 Trilayered NN 99.65 99.65 99.65 99.07 99.53 99.65 41.09

5 Medium KNN 98.99 98.97 98.97 97.27 98.64 98.97 62.531

6 Coarse KNN 83.00 97.60 87.50 30.31 84.03 73.86 63.041

7 Cosine KNN 98.78 98.75 98.75 96.67 98.35 98.75 66.134

8 Bilayered NN 99.88 99.88 99.87 99.67 99.83 99.88 28.071

9 Medium

Gaussian SVM

99.73 99.72 99.73 99.27 99.63 99.72 73.511

Bold values shows the best results.

TABLE 5 Proposed classification results after employing Bayesian optimization-based selection of hyperparameters.

S# Classifiers Precision Recall F1-score Kappa MCC Accuracy Time

1 Fine KNN 98.48 98.48 98.47 95.93 97.97 98.48 35.573

2 NNN 99.90 99.90 99.90 99.73 99.87 99.90 15.874

3 MNN 99.95 99.95 99.95 99.87 99.93 99.95 17.78

4 Trilayered NN 99.75 99.75 99.75 99.33 99.67 99.75 21.891

5 Medium KNN 98.75 98.72 98.72 96.60 98.31 98.72 34.139

6 Coarse KNN 97.11 97.08 97.07 92.20 96.11 97.08 34.571

7 Cosine KNN 98.45 98.40 98.40 95.73 97.89 98.40 37.183

8 Bilayered

KNN

99.58 99.58 99.58 98.87 99.43 99.58 34.292

9 Medium

Gaussian SVM

99.73 99.72 99.73 99.27 99.63 99.72 34.235

Bold values shows the best results.

of 99.93% for the NNN classifier was obtained (results seen in

Table 4). The values of precision measure are 99.93%, and the

Kappa value is 99.80%, respectively. The computational time taken

by the NNN classifier is 33.532 (s), whereas the minimum noted

time is 28.071 (s) for bilayered NN. The rest of the classifiers

obtained accuracies of 98.7, 99.90, 99.65, 98.97, 73.86, 98.75, 99.88,

and 99.72%, respectively.

4.3 Bayesian optimization results

This section presents the results obtained from Bayesian

optimization (BO). We executed our BO algorithm 100 times and

got the value for a learning rate of 0.00010195, momentum value of

0.81079, L2Regularization of 2.8724e−10, and section depth value

of 3. These are the best feasible points. Based on these points, the

classification was performed, and the results are noted in Table 5.

TheMNN classifier achieved amaximum accuracy of 99.95% in this

table. The precision rate of this classifier is 99.95, the Kappa value

of 99.87, and the MCC value of 99.95%, respectively. In addition,

the computation time of this classifier is 17.78 (s). Compared to

the results in Table 4, this experiment shows improved accuracy,

precision, Kappa, and MCC values. Moreover, the computation

time of this experiment was less than that of the results in Table 4.

The results show that selecting hyperparameters using BO can

improve the accuracy and reduce the computational cost.

4.4 Proposed feature selection

Table 6 presents the AD stage classification results using the

proposed selection of BO extracted features. In the first stage of this

table, results are presented for the original pathfinder algorithm.

The PFA was applied to the BO-based deep features extraction and

performed classification. The maximum obtained accuracy for this

experiment is 99.82%. The precision and recall values are 99.83 and

99.83%. In addition, Kappa and MCC measure values of 99.80 and

99.80%, respectively. Compared to Tables 4, 5, the selection results

show better. Moreover, the computation time of each classifier

is also noted, and the minimum noted time for this experiment

is 12.338 (s), which is less than Tables 4, 5. Overall, the time is

decreased after employing the optimization method.

To further improve (minimize) the computational time, we

improved the PFA using Fuzzy Entropy formulation in this study.

The proposed Fuzzy Entropy PFA (FEPFA) results are given in

the second half of Table 6. The maximum obtained accuracy for
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TABLE 6 Proposed classification results after employing Bayesian optimization and proposed feature selection algorithm.

S# Classifiers Precision Recall F1-score Kappa MCC Accuracy Time

Features selection using original PFA

1 Fine KNN 94.34 94.32 94.32 84.82 92.43 94.31 23.406

2 NNN 99.83 99.83 99.82 99.80 99.80 99.82 12.338

3 MNN 99.82 99.80 99.82 99.47 99.80 99.80 14.71

4 Trilayered NN 99.80 99.80 99.80 99.47 99.73 99.80 16.088

5 Medium KNN 98.94 98.92 98.92 97.13 98.57 98.92 14.9

6 Coarse KNN 96.64 96.57 96.57 90.87 95.46 96.57 14.67

7 Cosine KNN 98.73 98.70 98.70 96.53 98.28 98.70 19.92

8 Bilayered

KNN

99.88 99.88 99.87 99.67 99.83 99.80 15.04

9 Medium

Gaussian SVM

99.73 99.73 99.73 99.27 99.63 99.73 17.014

Features selection using proposed fuzzy entropy PFA

1 Fine KNN 99.90 99.90 99.90 99.73 99.87 99.90 18.987

2 NNN 99.93 99.92 99.92 99.80 99.90 99.90 10.231

3 MNN 99.90 99.90 99.90 99.73 99.87 99.90 13.395

4 Trilayered NN 99.73 99.73 99.72 99.27 99.63 99.73 11.411

5 Medium KNN 99.04 99.03 99.03 97.41 98.71 99.03 7.167

6 Coarse KNN 97.05 97.00 96.99 92.00 96.02 97.00 6.77

7 Cosine KNN 98.74 98.70 98.70 96.53 98.28 98.70 8.683

8 Bilayered

KNN

99.85 99.82 99.85 99.60 99.80 99.85 10.336

9 Medium

Gaussian SVM

99.70 99.70 99.70 99.20 99.60 99.70 9.118

Bold values shows the best results.

this technique is 99.90%, whereas the precision rate value of

99.93%. The Kappa and MCC values of this experiment are 99.80

and 99.90%, respectively. In addition, the computation time of

this classifier is 10.231 (s), less than the original PFA (12.338).

Overall, the performance of this technique is improved and time is

minimized. The performance of the NNN classifier can be further

verified using a confusion matrix illustrated in Figure 9. In this

figure, the diagonal values represent the true predicted rates of

each class.

4.5 Discussion and comparison

In this section, a detailed analysis of the proposed study has

been conducted in the form of visual graphs and comparison

with recent state-of-the-art (SOTA) techniques. The proposed

framework of AD stage classification has been discussed in Section

3.1, and the visual illustration is shown in Figure 1. TheMRI dataset

has been used for the experimental process (a few sample images

are shown in Figures 2, 3). The augmentation process has been

performed to increase the number of images for a better training

process. After that, a new model is proposed named ResNet-

Self as shown in Figure 8 for the accurate classification of AD

stages. The performance of AD stage classification is improved

by proposing new FEPFA techniques that select the best features.

The results are presented in Tables 4–6. Table 4 presents results for

the proposed ResNet-Self architecture using random initialization

of hyperparameters. Table 5 presents the results of the proposed

ResNet-Self after employing BO for hyperparameters selection.

Table 5 shows better accuracy, precision rate, MCC, and Kappa

performance than Table 4. The computational time and precision

rate are further improved using the proposed FEPFA feature

selection algorithm, and the results are presented in Table 6. In

this table, accuracy is also improved and time is significantly

decreased. In addition, a comparison is also conducted of the

proposed FEPFA with the original PFA, showing the improvement

in accuracy, precision, MCC, and computational time. Overall,

the time comparison is illustrated in Figure 10. This figure clearly

shows that the proposed selection method consumed less time than

the other steps.

Table 7 compares the methods currently utilized for predicting

AD. To enhance the categorization of early AD phases while

reducing parameters and computational costs, a novel detection

network named DAD-Net was introduced by Mohi et al. (2023).

This network appropriately classified initial AD processes and

depicted class activation characteristics as a heat map of the brain,

achieving 99.2% accuracy using a Kaggle dataset. Additionally,

AI-Atroshi et al. (2022) utilized convolutional layers with freeze
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FIGURE 9

Confusion matrix of the NNN classifier using proposed feature selection algorithm.

FIGURE 10

Comparison among middle steps of the proposed method in terms of computational time.

elements from ImageNet, achieving 99.27% accuracy on ADNI’s

MRI data collection for both binary and ternary classification.

Authors in Shankar et al. (2022) employed a ResNet-18 architecture

using a transfer learning concept and obtained an accuracy of

83.3% on Kaggle datasets. Authors in Sharma et al. (2022) utilized

a CNN-based pre-trained network named ResNet-50 and achieved

91.78% accuracy. Authors in Albright (2019) proposed a ResNet-

15 model and fused it with DenseNet-169 for the classification

of AD prediction. They achieved an improved accuracy of

88.70% on Kaggle’s AD dataset. Furthermore, Soliman et al.

(2022) suggested a novel approach employing three pre-trained

CNN frameworks such as DenseNet196, VGG16, and ResNet-

50, achieving 89% accuracy on MRI brain data from Kaggle.

Hashmi (2024) proposed a compact architecture by merging LeNet

and AlexNet models, achieving 93.58% accuracy on the ADNI

dataset. Goel et al. (2023) proposed a system for automated

AD diagnosis, integrating multiple customized deep-learning

models. This architecture achieved 96.61% accuracy using rs-fMRI

datasets and modified AlexNet and Inception blocks. Ismail et al.

(2023) utilized a new optimized ensemble-based DNN learning

model named MultiAz-Net and obtained 92.3% accuracy on the

ADNI dataset.

Frontiers inComputationalNeuroscience 13 frontiersin.org33

https://doi.org/10.3389/fncom.2024.1393849
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yaqoob et al. 10.3389/fncom.2024.1393849

TABLE 7 Comparison of proposed method results with existing techniques.

References Years Models Datasets Results

Ahmed et al. (2022) 2022 CNN based DAD-Net Kaggle 99.22%

Naz et al. (2022) 2022 CNN using freeze features ADNI 99.27%

Oktavian et al. (2002) 2022 CNN with ResNet-18 Kaggle 83.3%

Ebrahimi et al. (2021) 2021 CNN, ResNet-18, temporalCN, RNN ImageNet 91.78%

Al Shehri (2022) 2022 ResNet-15 Kaggle 88.70%

Techa et al. (2022) 2022 ResNet-15 Kaggle 89%

Abunadi (2022) 2022 ResNet-18, AlexNet Kaggle 99.94%

Prasath and Sumathi (2024) 2023 LeNet, AlexNet ADNI 93.58%

Sorour et al. (2024) 2023 AlexNet, Inception blocks ADNI 96.61%

Ismail et al. (2023) 2023 MOGOA ADNI 92.3%

Proposed model ResNet-50 Kaggle 99.99%

Bold values shows the best results.

5 Conclusion and future study

It is challenging to diagnose and predict Alzheimer’s disease

using multiclass datasets promptly. A computerized technique

is widely required for early AD prediction from MRI images.

This study proposes a computerized framework based on deep-

learning and optimization algorithms. A dataset balancing issue has

been resolved at the initial stage using mathematical formulations

that improved the training capability of the proposed ResNet-Self

deep model. The proposed ResNet-Self model is a combination

of ResNet-50 architecture modified by adding the self-attention

module. The self-attention module shows improved accuracy;

however, the random initialization of hyperparameters impacts the

accuracy and computational time. Therefore, we implemented a

BO technique that automatically initialized the hyperparameters

for the training process. Moreover, we proposed a feature selection

algorithm named FEcPFA that selects the best features and shows

improved accuracy (99.90), precision rate, and Kappa value. In

addition, the computational time is significantly reduced, which is

the strength of FEcPFA. The optimized hyperparameters that make

the proposed model less generalized and lead to overfitting are the

limitations of the proposed framework. In the future, a new custom

model will be proposed based on the fire module, and the output

of that module will be employed with self-attention and cross-

validation to overcome overfitting. In addition, more MRI datasets

will be utilized for the experimental process.
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Active learning is a field of machine learning that seeks to find the most e�cient

labels to annotate with a given budget, particularly in cases where obtaining

labeled data is expensive or infeasible. This is becoming increasingly important

with the growing success of learning-based methods, which often require large

amounts of labeled data. Computer vision is one area where active learning has

shown promise in tasks such as image classification, semantic segmentation, and

object detection. In this research, we propose a pool-based semi-supervised

active learning method for image classification that takes advantage of both

labeled and unlabeled data. Many active learning approaches do not utilize

unlabeled data, but we believe that incorporating these data can improve

performance. To address this issue, our method involves several steps. First,

we cluster the latent space of a pre-trained convolutional autoencoder. Then,

we use a proposed clustering contrastive loss to strengthen the latent space’s

clustering while using a small amount of labeled data. Finally, we query the

samples with the highest uncertainty to annotate with an oracle. We repeat this

process until the end of the given budget. Our method is e�ective when the

number of annotated samples is small, and we have validated its e�ectiveness

through experiments on benchmark datasets. Our empirical results demonstrate

the power of our method for image classification tasks in accuracy terms.

KEYWORDS

active learning, contrastive learning, clustering, semi-supervised learning, human-in-

the-loop

1 Introduction

In recent years, computer vision has made significant advancements, primarily driven

by machine learning and, more specifically, deep learning. However, these methodologies

are highly dependent on having a substantial number of labeled samples. Acquiring such a

large volume of data poses a significant challenge for several reasons. Initially, the process

of annotating images is time-intensive, ranging from a few seconds for simple image

classification to several hours for more complex image segmentation tasks. This makes

it impractical to annotate a large data set in a short time frame. Additionally, image

annotation often requires specialized expertise, adding another layer of complexity. In

some cases, annotations require professionals, which increases the cost and complexity of

the annotation process.

An effective strategy to address these issues involves employing an active learning

methodology. Active Learning, often abbreviated as AL, entails the process of selecting and

prioritizing data that require labeling to have the most significant impact on the training of
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a machine learning task. Through the utilization of AL, machine

learning algorithms can enhance their accuracy using a reduced

number of training labels, thereby economizing time and resources

during model training. Settles (2009) provides a comprehensive

overview of various AL techniques in machine learning. In

essence, there are three primary scenarios where active learning

can be beneficial for those seeking to maximize accuracy while

minimizing the number of labeled instances, typically involving the

submission of queries in the form of unlabeled data instances to be

labeled by an oracle, such as a human annotator. These scenarios

includemembership query synthesis (Angluin, 1988), stream-based

selective (Atlas et al., 1989) sampling, and pool-based sampling. In

this research, we will be focused on the third scenario, pool-based

sampling (Lewis, 1995).

In numerous practical scenarios, it is often straightforward to

gather a substantial amount of unlabeled data, which serves as

a driving force behind the adoption of the pool-based sampling

method. Let us consider a pool of unlabeled data Pu alongside a

limited quantity of labeled data Pl. In pool-based sampling in each

query, we will sample a small amount of data from Pu and annotate

it with human oracle, then add it to Pl. Assuming we have a good

query that selects the most relevant samples from Pu, Pl will be a

good representative group of Pu.

Employing a pool-based sampling active learning approach,

where the model selects samples for annotation, can decrease

the quantity of labeled data required to achieve a similar model

accuracy. This represents a significant benefit of active learning

for deep learning tasks, which has only recently started to be

investigated (Gal et al., 2017; Sener and Savarese, 2017; Sinha et al.,

2019).

As previouslymentioned in numerous practical scenarios, there

is a significant volume of unlabeled data, which motivate our study.

In this research, we present a novel approach that utilizes pool-

based active learning to fully exploit all unlabeled data. The method

we suggest begins by clustering the unlabeled data in the latent

space. Then, it proceeds to choose the samples with the highest

entropy based on their representation in the latent space and the

clustering within that space. Our central concept involves clustering

the unlabeled data from Pu, querying samples with the highest

entropy for human annotation, and employing labeled data from

Pl to refine the clustering via our suggested clustering contrastive

learning. The above process iterates until either a satisfactory level

of accuracy is achieved, the model converges, or the annotation

budget is exhausted.

In addition to addressing the challenges posed by limited

labeled data, our research holds promise for real-world applications

where unlabeled data is abundant. By leveraging a pool-based active

learning approach, our method enables the effective utilization of

unlabeled data in scenarios where acquiring labeled samples is

impractical or costly, such as medical imaging diagnosis, satellite

image analysis, and industrial inspection. This capabilitymaximizes

the efficiency and effectiveness of machine learning models in

practical settings, facilitating improved accuracy and insights from

limited labeled samples. Furthermore, our approach can identify

and prioritize hard examples for labeling, ensuring that the

annotated data provide the most informative training signal for

the model.

The contributions of the research are:

• A new approach is proposed to integrate Deep Clustering

and Deep Active Learning (DAL) in order to maximize the

extraction of information from both labeled and unlabeled

data.

• Propose a novel contrastive clustering loss (CCL) that has

the potential to enhance the transition from unsupervised

clustering to a semi-supervised framework.

• Achieving a high level of accuracy in image classification with

a reduced number of labeled samples.

2 Previous work

2.1 Deep clustering

There has been significant research on deep clustering in

recent years. Most deep clustering algorithms can be categorized

into two groups. The first group includes two-stage clustering

algorithms that first generate a data representation before applying

clustering. These algorithms leverage existing unsupervised deep

learning frameworks and techniques. For instance, Tian et al.

(2014) and Peng et al. (2016) utilize autoencoders to learn low-

dimensional features of original data samples and subsequently

apply conventional clustering algorithms like k-means to the

learned representations. Mukherjee et al. (2019) introduces

ClusterGAN a generative adversarial network that clusters the

latent space by sampling latent variables from a combination of

one-hot encoded variables and continuous latent variables. The

second group comprises approaches that simultaneously optimize

feature learning and clustering. These algorithms aim to explicitly

define a clustering loss, resembling the classification error in

supervised deep learning. Yang et al. (2016) propose a recurrent

framework that integrates feature learning and clustering into a

unifiedmodel with a weighted triplet loss, optimizing it end-to-end.

Xie et al. (2016) suggests a clustering loss that operates on the latent

space of an autoencoder, enabling the simultaneous acquisition

of feature representations and cluster assignments. Building upon

this, Guo et al. (2017) DCEC (Deep Clustering with Convolutional

Autoencoders) enhances the method by proposing Convolutional

Autoencoders (CAE), which surpasses DEC while ensuring the

preservation of local structure. This study directly adopts the

clustering loss and clustering layer from DCEC.

We briefly review their definitions:

The trainable parameters of the clustering layer are µj
k
1

which represent the cluster center. The intuition behind the math

operation of that layer is it maps each embedded point in the latent

space zi into a soft label qi by the student’s t-distribution (Van der

Maaten and Hinton, 2008).

qij =
(1+ ||zi − µj||2)−1

∑

j(1+ ||zi − µj||2)−1
(1)

Where qij is the jth entry of qi, representing the probability of

zi belonging to cluster j.
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The clustering loss is defined as:

Lclu = KL(P||Q) =
∑

i

∑

j

pij log
pij

qij
(2)

where P is the target distribution, defined as:

pij =
q2ij/

∑

i qij
∑

j(q
2
ij/

∑

i qij)
(3)

2.2 Active learning

Active learning is a subfield of machine learning empowering

algorithms to select and prioritize the most informative data points

for labeling, aiming to enhance model performance using less

training data. Active learning scenarios commonly occur in three

main contexts:

1. Membership Query Synthesis: In this scenario (Angluin,

1988), the learner synthesizes new instances to be labeled by

an oracle, aiming to generate maximally informative instances,

particularly beneficial when labeled data is scarce or expensive

to obtain. 2. Stream-Based Selective Sampling: This scenario

(Atlas et al., 1989) involves a continuous stream of unlabeled

instances, with the learner making real-time decisions on which

instances to label based on the current model state and incoming

data. Such scenarios are common in sequential data streams like

online learning or sensor data. 3. Pool-Based Sampling: Here

(Lewis and Gale, 1994), the learner is presented with a fixed

pool of unlabeled instances and selects a subset for labeling,

aiming to identify the most informative instances. This approach

involves evaluating the informativeness of unlabeled samples, often

utilizing query strategies like uncertainty sampling (Lewis and

Gale, 1994), recently Liu and Li (2023) had an extensive work to

explain this strategy even further, or query-by-committee (Seung

et al., 1992). Active learning plays a crucial role in determining

which data should be labeled to maximize the effectiveness of

training supervised models. Traditional active learning methods

are comprehensively reviewed by Settles (2009), while Ren et al.

(2021) offer insights into the more contemporary Deep Active

Learning (DAL) approach, integrating active learning with deep

learning methodologies.

Notable active learning methodologies are Uncertainty

Sampling (Lewis and Gale, 1994) and Variational Adversarial

Active Learning (VAAL) (Sinha et al., 2019). VAAL integrates

variational inference and adversarial training, leveraging a

generator network to produce informative data points and a

discriminator network to differentiate between real and generated

instances, aiding in sample selection. Additionally, LADA (Kim

FIGURE 1

Visual representation of proposed methodology. Images from pl and pu are inferred through the CAE and provide feature vectors in the latent space

the feature vectors are clustered by the clustering layer and the contrastive clustering loss then the n-th feature vectors from the latent space with the

highest entropy are queried and annotated by a human oracle this process is repeated until the end of the annotation budget or model convergance.
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et al., 2021) introduces data augmentation techniques to improve

the efficiency of data acquisition in deep active learning, while

SRAAL (Zhang et al., 2020) integrates adversarial training

techniques with active learning principles to address sample

selection challenges.

Moreover, approaches like the Core-Set Approach (Sener and

Savarese, 2017) and Bayesian Active Learning (BALD) (Houlsby

et al., 2011) offer strategies for selecting informative instances,

with Core-Set identifying a compact, diverse subset of unlabeled

data, and BALD leveraging Bayesian inference for strategic

instance selection. These methodologies collectively contribute to

enhancing model training efficiency and performance in active

learning settings.

2.3 Semi-supervised learning

Semi-supervised learning (SSL) is a specialized form of

supervised learning that involves training on a small set of labeled

data along with a large set of unlabeled data. Positioned between

supervised and unsupervised learning, SSL is commonly used in

scenarios where the availability of labeled data is limited due to

constraints such as budgetary restrictions or data ambiguity, where

the class of a sample is uncertain. Semi-supervised algorithms are

input : Labeled pool (Pl), Unlabeled Pool (Pu),

Model parameters: θE, θD, θc,

Hyperparameters: epochs, α1, α2, α3, γ

output: Labeled pool (Pl), Yp

1 θE , θD ← preTraining(θE , θD, Pl , Pu)

2 θc ← initCentroids(θc , Pl)

3 while budget 6= 0 do

4 // Active Learning Loop

5 Zu = θE(Pu)

6 Xs ← querySamples(Zu , θc, Pu)

7 Pl ← Annotate(Xs)

8 for e in epochs do

9 for b in batches do

10 Zul ← θE(Pu, Pl)

11 Xr ← θD(Zul)

12 Lrec compute using Eq. 5

13 Lclu compute using Eq. 2

14 Lccl compute using Eq. 7

15 Ltotal ← α1 ·Lrec +α2 ·Lclu + α3Lccl

16 θ ′E , θ
′
c ← θE , θc − γ∇Ltotal

17 θc ← updateCentroids(Zul)

18 if updateCentroids is True then

19 P← updateP(zul) compute using Eq. 1

Algorithm 1. Contrastive active learning.

designed to address such challenges. In this study, we propose an

SSL approach for the classification of image data, aiming to leverage

the benefits of both active learning (AL) and SSL. To achieve this,

we suggested clustering contrastive loss (CCL) in conjunction with

unsupervised training.

2.4 Entropy

Entropy Shannon (1948) is an information-theoretic measure

of uncertainty. It quantifies the amount of information needed to

encode a distribution. In active learning, entropy is widely used

to select the most uncertain or ambiguous samples for annotation.

The entropy can be shown as:

H(x) := −
∑

x∈X
p(x) log p(x) (4)

3 Method

This study proposes a novel active learning approach based

on pool-based sampling. It involves training a convolutional

autoencoder (CAE) (Masci et al., 2011) to learn a low-dimensional

latent space for both labeled and unlabeled samples. The latent

space is then clustered using a clustering layer. After each iteration

of the active learning process, a subset of data points associated

with the latent space vectors is selected for annotation. To leverage

information from the labeled data, the study introduces the

contrastive clustering loss (CCL), which is a modified version of

the contrastive loss (Chopra et al., 2005). The CCL operates on the

latent space vectors, pulling samples of the same class toward their

TABLE 1 Algorithm symbols and their explanations.

Notation Explanation

Pl Labeled pool

Pu Unlabeled pool

θE Encoder model parameters

θD Decoder model parameters

θc Centroid parameters

α1 , α2 , α3 Losses weights

γ Learning rate

Zu Encoded representations of unlabeled pool

Xs Samples selected for annotation

Pl Updated labeled pool

Zul Encoded representations of both labeled and unlabeled

pool

Xr Reconstructed samples

θ ′E , θ
′
c Updated encoder and centroid parameters

∇ Gradient operator

P P distribution
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respective cluster centers and pushing samples of different classes

apart.

3.1 Problem definition and notation

The main focus of this study is a semi-supervised active

learning approach designed for image classification. Assuming

there is a large set of unlabeled images Pu and a small set of labeled

images Pl, along with a predetermined annotation budget, the goal

is to select the most informative samples from the unlabeled set

Pu to enhance the classification accuracy. These selected samples

will be labeled by a human annotator and incorporated into the

labeled set Pl. The initial step involves training a Convolutional

Autoencoder (CAE) to learn a condensed representation of the

images, referred to as latent space features. Each image i is

transformed by the CAE into a feature vector zi in the latent space.

Subsequently, all latent space features zi, ∀i ∈ Pl ∪ Pu are clustered

into clusters, denoted as µj where j represents the centroid of the

j− th cluster. Finally, the proposed cluster contrastive loss Lccl (see

Eq. 7) is applied to the labeled samples zl, ∀l ∈ Pl. This loss function

aims to attract the feature vectors zj toward µj while pushing them

away from µn ∀n 6= j. for all n 6= j.

3.2 Suggested method

The primary objective of this study is image classification,

aiming to categorize images into their respective classes with

optimal accuracy by leveraging labeled images from the

restricted labeled data pool Pl. To achieve this, we introduce

a pool-based active learning strategy that integrates contrastive

learning and clustering, mutually enhancing their performance

in every training cycle. Our approach follows a human-in-

the-loop methodology, in which an active learning loop

comprises model training, image quering, and annotation by

an oracle. This iterative process continues until the budget is

fully utilized.

The model consists of a CAE (Masci et al., 2011) and a

clustering layer (Xie et al., 2016). Samples from Pl and Pu are

fed into the model based on the active learning training stage.

During each iteration of the active learning process, samples from

Pu are chosen for labeling. The proposed module is depicted

in Figure 1.

Prior to commencing the active learning iteration, certain

initial steps are carried out. Initially, our CAE is pre-trained

by reconstructing images from Pu and Pl using the MSE loss

(Eq. 5). This process allows the CAE to acquire knowledge of

lower-dimensional features within the dataset. Once the network

is trained, the resulting latent space provides a feature zi∀i ∈ pi ∪
pl. Subsequently, the cluster centroids in the clustering layer are

initialized with the average values of the vectors in the latent space

of each class in our labeled pool Pl as depicted in Eq. 6.

Lrec =
1

n

n
∑

i=1
(Yi − Ŷi)

2 (5)

µc =
1

nc

nc
∑

1

zc (6)

Next, we incorporate clustering into the training of the CAE

by clustering the acquired latent space with the utilization of a

clustering layer (Guo et al., 2017) and employing a Kullback-Leibler

divergence loss (Csiszár, 1975) as shown in Eq. 2. The primary

objective of this stage is to organize the latent space into clusters,

ensuring that similar image pairs produce proximate feature vectors

within the latent space.

In the final stage, we incorporate the image labels from Pl.

To utilize these labels effectively, we employ the suggested cluster

contrastive loss Lccl as shown in Eq. 7 on all vectors in the latent

space derived from Pl, meaning that solely annotated images are

taken into account by this loss. The CCL loss works by either

pulling or pushing the feature vectors Zi in the latent space toward

their respective cluster centerµi, or away from other cluster centers

µj where j 6= i. This method allows us to enhance the purity of

clusters while using a limited number of labeled images from Pl,

during this stage we continue to make use of the previous clustering

stage. Finally, we add all those losses and update the parameters of

the model. The process is reiterated until reaching convergence or

utilizing the entire annotation budget.

At the end of every active learning iteration, we perform query

sampling to choose the n-th image that exhibits features with

the highest entropy compared to all other clusters. These features

are the most ambiguous in terms of their cluster assignment,

and by labeling them, we gain valuable insights that the model

failed to generalize. Algorithm 1 presents a generic pseudo-code

for this approach, in Table 1 the symbols used in the algorithm are

elucidated, providing clarity on their respective meanings and roles

within the context of the algorithm.

FIGURE 2

An intuitive explanation of the contrastive clustering loss is that the

black dots correspond to samples assigned to cluster #1, the blue

dot symbolizes the cluster center, and the green dot represents a

sample from a di�erent cluster. This loss function aims to move the

black dots closer to the blue dot while pushing the green dot farther

away from the blue dot.
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3.2.1 Cluster contrastive loss
The cluster contrastive loss (CCL) is a revised variant of the

supervised contrastive loss introduced in Khosla et al. (2020).

To enhance the purity of the clusters, the proposed approach

incorporates the labeled images from Pl into the clustering

procedure. Consequently, this results in the adoption of the

proposed CCL. The mathematical expression for the CCL is

displayed below:

Lccl = −
∑

c∈C

∑

i∈Ic

log
exp(zi · µc/τ )

∑

z′∈Ic′
exp(z′ · µc/τ )

(7)

Where c ∈ C is the class index, Ic is the set of all the samples

indexes in class c, Ic′ is the set of all the samples indexes in all the

classes beside class c. zi is the i-th sample in the latent space andµ is

the center of the cluster, τ ∈ R+ is a scalar temperature parameter.

An intuition of the loss can be shown in Figure 2.

This loss involves both pulling samples toward their cluster

center and pushing from other unmatched centroids centers

simultaneously. It specifically affects the labeled data points. The

CCL serves as a complementary approach to the unsupervised

methods we currently employ, and empirical experiments indicate

their mutual benefit. Figure 2 provides a visual representation of

CCL as defined in Eq. 7.

3.2.2 The need for the contrastive clustering loss
During the training for CAE, we are provided with

representation vectors in the latent space. In order to group

the latent space into clusters corresponding to each class, as

elaborated in Section 2.1, the clustering layer is utilized. This layer

aims to streamline the process of image classification. Nevertheless,

the clustering mechanism is proficient in grouping vectors with

high certainty, which may result in certain images not being

grouped together, particularly those from the same class that map

to distant vectors in the latent space. Therefore, the integration of

the suggested contrastive clustering loss becomes essential. This

suggested CCL loss function works on adjusting vectors that were

not properly aligned by the clustering process. Through this loss

function, we can enhance the separation of classes in the latent

space, even when dealing with a limited number of labeled images

or when images are challenging to cluster due to the low confidence

in the P-distribution of the clustering process.

3.2.3 Pre-training
During the initial phase, we train the convolutional

autoencoder. We are using all the images from the unlabeled

data pool Pu and the labeled data pool Pl. Each image xi ∼ Pl ∪ Pu
inferences through the encoder and provides zi a lower dimension

latent vector zi = σ (xi ∗W)) where w is the weights of the encoder

layers, σ is a nonlinear activation function, and ∗ is a convolution
operation. The latent vector zi is inference through the decoder

FIGURE 3

TSNE visualization of the query method the red circle represents samples with high entropy.
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which provides an x̂ which is a reconstruction of the original image

xi. x̂ = σ (zi ∗ U) where U is the weight for the decoder. x̂i and xi
are entered to MSE loss (Eq. 5) which provides a high loss when xi
looks different from x̂i and a low loss when they are similar. At the

end of this step, the CAE has trained weightsW and U.

3.2.4 Initialization and update centroids
Once the CNN is pre-trained, the centroids in the clustering

layer are initialized using the average value of each class projection

from Pl in the latent space. Subsequently, every 80 iterations, the

distribution of P is updated by the following (Eq. 3). As detailed

in Section 2.1, the centroids represent the weights of the clustering

layer, and therefore they are adjusted during each training iteration.

3.2.5 Query samples
In this stage, our objective is to acquire image annotations

by engaging a human annotator in the active learning procedure.

At this point, we have already acquired a clustered latent space

generated by the model itself. Any vectors within the latent space

that are not clustered or are distant from the cluster center

are identified as hard examples, representing images that require

annotation. We select samples linked to vectors in the latent space

that do not clearly belong to any cluster and annotate them based

on the uncertainty criterion detailed in Eq. 4. More specifically, we

target the vectors that exhibit the highest entropy in the cluster

distribution. A visual representation of this approach is shown in

Figure 3. By focusing on a small number of samples associated with

feature vectors located far from the cluster center, we gain insight

into these samples and the clusters they are associated with, thereby

enhancing the overall clustering process.

3.3 Combination of contrastive learning
and clustering

When the suggested clustering method is applied to the latent

space, there may be instances where some feature vectors are not

accurately clustered. This situation can arise when feature vectors

within the latent space that should belong to the same cluster

are spatially distant from each other. As a result, the clustering

layer may encounter challenges in grouping these feature vectors

effectively. To address this issue, we introduce our proposed CCL,

FIGURE 5

Visualization of the USPS dataset.

FIGURE 4

Visualization of MNIST and FashionMNIST datasets at the left is the FashionMNIST and on the right is the MNIST dataset.
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which works to minimize the distance between distant feature

vectors that belong to the same cluster while maximizing the

separation between those that do not. Furthermore, we incorporate

a query mechanism to select challenging examples (i.e., samples

that are significantly distant from their corresponding cluster

center) for manual annotation. By integrating these strategies and

progressively bringing the feature vectors closer together in a semi-

supervised fashion, followed by clustering using the clustering layer,

we improve the purity of the clustering outcomes.

3.4 Implementation details

In this work, we used a convolutional autoencoder for our

model. The encoder consists of 3 convolutional layers, a batch

normalization layer, and a linear embedding layer with a size

of 10. The decoder consists of a linear de-embedding layer, 3

deconvolutional layers, and a batch normalization layer. The

clustering layer weights are initialized with the mean of the latent

space clusters using the starting labeled images in Pl, and are then

updated with the kl-loss using the Q and P distribution as described

earlier. The P-distribution, or target distribution, is initialized every

80 steps. Each benchmark dataset is split into a 20% validation set

and 80% training set, which is further divided into two data pools:

a labeled data pool Pl and an unlabeled data pool Pu. First, we pre-

trained the model for 50 epochs. Then each active learning training

iteration was set to 10 epochs and for the duration of overall 20

active learning loops. In each active learning loop, we query 250

image samples using the uncertainty strategy for annotation.

4 Experiments and results

4.1 Datasets

We have evaluated our method in image classification tasks.

We have used MNIST (LeCun, 1998), FashionMNIST (Xiao et al.,

2017), and USPS (Hull, 1994) datasets. Both the MNIST and the

FashionMNIST datasets have 60K grayscale images of size 28x28.

Examples of MNIST and FashionMNIST datasets can be viewed

at Figure 4, and USPS has 9298 grayscale images of 16x16 size. An

example of USPS dataset can be viewed at Figure 5.

4.2 Performance measurement

We evaluate the performance of our method with the image

classification task by measuring the accuracy over different

amounts of labeled images from 500 to 5k images with a raising of

250 images from query to query. The results of all our experiments

are averaged over 3 runs.

FIGURE 6

TSNE visualization of the clustered MNIST latent space after convergence of our method with 10% of annotated samples.
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FIGURE 7

TSNE visualization of the clustered FashionMNIST latent space after convergence of our method with 10% of annotated samples.

TABLE 2 Ablation study: clustering vs. clustering + CCL (3% of annotated

data).

Dataset
Method

Clustering Clustering + CCL

MNIST 81.6% 91.0%

USPS 68.7% 86.5%

4.3 Experiments details

We begin our experiments with an initial labeled pool of

the size of 250 and in each iteration of the training loop we

provided another 250 images that were annotated by the human

oracle and added to the initial labeled pool Pl. Training is

repeated on the new training set with the new labeled images. We

assume that the dataset is balanced and the oracle annotations

are ideal.

In Figure 6 MNIST result. In Figure 7 FashionMNIST result.

4.4 E�ectiveness of the CCL

In Table 2, we present an ablation study comparing our

proposed method with the use of clustering alone. The study

evaluates the performance of both approaches on the Mnist

and USPS datasets. The results demonstrate that integrating

the CCL with clustering, using only 3% of labeled data,

significantly improves model performance. The CCL operates by

encouraging the model to learn discriminative representations

within clusters while simultaneously enforcing compactness

among cluster centroids. By incorporating this loss function

into our framework, we guide the clustering process to yield

clusters that not only capture inherent data structures but also

ensure inter-class separability. This results in more coherent

and well-separated clusters, facilitating better decision boundaries

and ultimately leading to improved classification accuracy.

Additionally, Figure 8 visually illustrates the difference between

using clustering alone and incorporating the CCL into the

clustering process.

4.5 Comparing with other methods

We conducted a comprehensive evaluation of our

proposed method across multiple datasets, including MNIST,

FashionMNIST, and USPS, as detailed in Tables 3–5. Our results

showcase significant performance improvements over baseline

methods, particularly evident in scenarios with limited labeled

data. When compared to state-of-the-art techniques such as

Core-Set Approach (Sener and Savarese, 2017), Variational
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FIGURE 8

On the left: t-SNE visualization after clustering. On the right: t-SNE visualization after applying CCL in conjunction with clustering.

TABLE 3 MNIST accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) Core-set (Sener and

Savarese, 2017) and our method with 1, 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Core-set Ours

1% 0.151 0.251 0.255 0.336 0.832

3% 0.600 0.701 0.735 0.805 0.910

5% 0.805 0.813 0.810 0.888 0.948

10% 0.935 0.945 0.917 0.928 0.983

TABLE 4 Fashion MNIST accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) Core-set (Sener

and Savarese, 2017) and our method with 1, 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Core-set Ours

1% 0.318 0.264 0.189 0.305 0.490

3% 0.468 0.360 0.520 0.627 0.671

5% 0.556 0.616 0.602 0.679 0.697

10% 0.637 0.703 0.673 0.729 0.758

TABLE 5 USPS accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) random sampling and our

method with 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Random sampling Ours

3% 0.770 0.821 0.836 0.797 0.865

5% 0.855 0.860 0.876 0.858 0.895

10% 0.909 0.896 0.926 0.894 0.933

Adversarial Active Learning (VAAL) (Sinha et al., 2019), and

Bayesian Active Learning by Disagreement (BALD) (Houlsby

et al., 2011), our approach consistently demonstrates competitive

performance. Figures 9–11 showing our method comparing to

the others (Notably, leveraging pre-trained) Notably, leveraging

pre-trained clustering models contributes to achieving relatively

high accuracy, particularly in scenarios with a scarcity of

labeled samples.

4.6 Experiment analysis

To comprehensively validate the efficacy of our approach, we

conducted an in-depth analysis of clustering quality throughout

the training process. We monitored the evolution of clustering

performance and visualized the t-SNE projections of learned

latent space representations, as depicted in Figures 6, 7, 12. These

visualizations offer insights into the structure of the learned

Frontiers in Artificial Intelligence 10 frontiersin.org46

https://doi.org/10.3389/frai.2024.1398844
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Roda and Geva 10.3389/frai.2024.1398844

FIGURE 9

Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the MNIST dataset.

FIGURE 10

Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the FashionMNIST dataset.

representations, revealing distinct clusters corresponding to each

class. The observed trends in clustering align well with the

accuracy improvements reported in Tables 3–5, corroborating the

effectiveness of our method.

In addition to accuracy comparisons, it’s imperative to

delve deeper into the performance metrics of our approach

compared to baseline methods. For instance, on the MNIST

dataset, our method achieves an accuracy of 91% with only 3%

labeled data, outperforming the Core-Set Approach, which attains

80.5% accuracy. This notable performance gain underscores the

superiority of our method in leveraging limited labeled data

effectively.

5 Discussion

The integration of convolutional autoencoders, clustering, and

a novel clustering contrastive loss in our semi-supervised active

learning approach presents a unique and promising strategy for

leveraging both labeled and unlabeled data in image classification

tasks. By combining clustering with active learning, our method

offers a distinctive approach that distinguishes it from previous

methodologies.

A significant strength of our approach lies in its ability

to extract valuable insights from unlabeled data by organizing

it into clusters, thereby guiding the query selection process in
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FIGURE 11

Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the USPS dataset.

FIGURE 12

TSNE visualization of the clustered USPS latent space after convergence of our method with 10% of annotated samples.

active learning. However, the effectiveness of our method may

depend on the quality of clustering initialization, which could

potentially limit performance, particularly in scenarios involving

complex, high-dimensional data. Exploring the applicability of

our approach beyond image classification domains warrants

further investigation.
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Despite these potential limitations, our research represents

a notable advancement in the realm of semi-supervised active

learning. By integrating deep clustering, active learning, and

contrastive learning principles, we address challenges associated

with data scarcity, thereby enhancing model performance in

resource-constrained settings. Moving forward, future research

endeavors could explore the development of more robust clustering

techniques, alternative representation learning methods, and

synergistic combinations with other active learning strategies to

further enhance performance and generalization capabilities.

Theoretically, the clustered representations derived by our

approach hold promise for facilitating various downstream

tasks, including data augmentation, domain adaptation, and

the incorporation of weak or noisy labels. Such capabilities

could prove invaluable in addressing the challenges posed

by limited annotation scenarios. While our work contributes

to the field, it also underscores the inherent challenges and

opportunities associated with semi-supervised learning in real-

world applications, paving the way for continued advancements

and innovation in this domain.

It is essential to acknowledge the use of a smaller

model architecture in our experiments. The complexity

introduced by clustering necessitated the use of a smaller

model to maintain tractability and computational efficiency.

While this choice may have influenced our absolute

performance metrics, it enabled us to explore the feasibility

and efficacy of our approach within practical constraints.

It is plausible that in subsequent studies, researchers

may employ larger, more complex models to further

improve performance.

6 Conclusions and future work

In this study, we have introduced a novel approach to image

classification through a pool-based semi-supervised active learning

technique. By integrating deep clustering and deep active learning,

we aim to enhance classification accuracy by using fewer labeled

images. Our method involves clustering feature vectors in the

latent space that corresponds to images from Pl and Pu, thereby

obtaining a more informative representation of the latent space to

support the active learning procedure. We have also incorporated

a clustering contrastive loss to enhance the clustering of the latent

space even with a limited number of labeled images. Cases where

feature vectors in the latent space are not well grouped together

or are far from their respective cluster centers are recognized

as hard examples and are then queried for annotation by a

human oracle.

Our empirical experiments demonstrated that our method

achieves high classification accuracy even with a small number

of annotations. The iterative combination of clustering with the

suggested contrastive learning and query method leads to a more

separated latent space, which in turn facilitates the classification

process. Thanks to the clustering step, our method achieves high

accuracy from the beginning. However, the clustering step may

have a drawback for complicated datasets, as it can be challenging

to cluster them effectively.We believe that future work can improve

the clustering process to provide better clustering initialization even

for complex datasets.

We used a convolutional autoencoder (CAE) to map samples

to the latent space, but future work could explore more robust

methods like a variational autoencoder that creates smoother

and more connected latent spaces, which will help to improve

clustering. Furthermore, our method is currently designed for

image classification tasks, but it could be extended to other

computer vision tasks such as semantic segmentation and object

detection by inserting a suitable network head to the model for the

requested task.
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While encrypting information with color images, most encryption schemes 
treat color images as three different grayscale planes and encrypt each plane 
individually. These algorithms produce more duplicated operations and are less 
efficient because they do not properly account for the link between the various 
planes of color images. In addressing the issue, we  propose a scheme that 
thoroughly takes into account the relationship between pixels across different 
planes in color images. First, we  introduce a new 1D chaotic system. The 
performance analysis shows the system has good chaotic randomness. Next, 
we  employ a shortest-path cross-plane scrambling algorithm that utilizes an 
enhanced Dijkstra algorithm. This algorithm effectively shuffles pixels randomly 
within each channel of a color image. To accomplish cross-plane diffusion, our 
approach is then integrated into the adaptive diffusion algorithm. The security 
analysis and simulation results demonstrate that the approach can tackle the 
issue of picture loss in telemedicine by encrypting color images without any loss 
of quality. Furthermore, the images we utilize are suitable for both standard RGB 
and medical images. They incorporate more secure and highly sensitive keys, 
robustly withstanding various typical ciphertext analysis attacks. This ensures a 
reliable solution for encrypting original images.

KEYWORDS

cross-plane scrambling, adaptive diffusion, image encryption, chaotic system, Dijkstra 
algorithm

1 Introduction

Image encryption technology is gaining popularity due to its ability to enhance the 
security of image communication. This is especially crucial as people become increasingly 
aware of security issues during image transmission (Liang et al., 2022). Image encryption can 
storage by converting it from significative plaintext into purposeless ciphertext to defend it 
against permission access and malicious attacks (Huang et al., 2022).

To maintain digital images’ security, researchers have proposed many attack-resistant 
techniques, including data hiding (Ahmadian and Amirmazlaghani, 2019), image encryption 
(Hu, 2021; Huang et al., 2022; Li et al., 2023), digital watermarking (Zhang X et al., 2020), and 
compressive sensing (Wang and Su, 2021; Chai et al., 2022; Sarangi and Pal, 2022). Of such 
techniques, image encryption is often known for being a direct and significant technique, and 
utilizing the proper key is the only method to recover the original image data. Over the last 
several years, a number of approaches have been used to build plenty of digital image 
encryption algorithms, such as the DNA coding encryption scheme (Liang and Zhu, 2023), 
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the quaternion technique (Wang X. et al., 2022; Wang Y. et al., 2022), 
and the scheme using block compressive sensing and elementary 
cellular automata (Chai et  al., 2018), it uses cellular automata 
scrambling to achieve the goal of making pixel values more difficult to 
predict, and the new zigzag global scrambling scheme designed  
(Li H et al., 2022). These programs offer multiple benefits and a high 
level of security.

Chaotic systems have complex dynamic characteristics, unique 
inherent randomness, control parameters, initial value sensitivity, 
traversal, and long-term unpredictability, making them appropriate 
for application in digital image encryption. Andono and Setiadi 
(2022) introduce several common chaotic systems and utilize multiple 
multidimensional chaotic systems, such as Lorenz system and Henon 
map to complete the image encryption. Researchers (Mansouri and 
Wang, 2020) improved the 2D Arnold mapping by obtaining a 
scrambled Arnold mapping. Hua et al. (2018) used sine and logistic 
mappings to produce a new chaotic 2D system. Although this 
algorithm has high complexity and hyper-chaotic behavior, most 
multidimensional chaotic systems have high computational costs. In 
addition, a 1D chaotic system (Wang et al., 2021) was developed and 
the designed system has the advantages of fast computation and fast 
image encryption, resulting in time savings.

While color photos are more information-dense than grayscale 
images, the majority of color image encryption techniques now in use 
have certain clear shortcomings. The algorithm in Li Q et al. (2022) 
uses a self-designed inter-plane rule, which requires the calculation of 
the pixel inter-plane position each time, leading to repeated 
calculations and a failure to maximize the relationship between pixels 
and planes. Furthermore, the algorithm in Hua et al. (2021) uses a 
Latin cube to design a set of scrambling rules for RGB images. For 
developing the encryption results and safety, the scheme blurs the 
original image’s pixel values, making the decrypted image inconsistent 
with the initial image and impossible to fully recover from the initial 
image. In the later study (Zhou et al., 2021), an RGB image is divided 
into three planes for independent encryption, and a color image is 
reconstructed from the encrypted result. In the password system, the 
security level is low because when a pixel on a plane change, it cannot 
change quickly enough to extend to three planes. Furthermore, 
inefficient is this encryption scheme, which ignores the relationship 
between a color image’s three planes, as a result, real-time encryption 
systems that demand great security and efficiency are not appropriate 
for this encryption technique. Images were encrypted using a discrete 
chaotic system and S-box in the algorithm (Liu et al., 2022), which 
required over 100 iterations of the S-box and consumed a lot of 
processing resources. The algorithm (Zheng et al., 2022) use DNA 
coding to encrypt a portion of the image many times, leading to a 
poor level of efficiency in the image encryption process.

It is evident from the explanation above that a large number of 
current encryption techniques for chaotic and color pictures have 
serious fundamental problems. We provide a fresh approach to color 
image encryption that makes use of a unique one-dimensional chaotic 
system for purposed of overcome these problems. The creation of a 
unique 1D chaotic system with enhanced chaotic performance and a 
broader parameter range is a main component of this technique. 
We have developed an improved Dijkstra algorithm that considers the 
properties of color pictures, building upon the new 1D chaotic system. 
Rather of encrypting each color plane independently, we accomplish 

pixel scrambling across color planes. Next, we  perform adaptive 
diffusion based on plane distribution to further alter pixel values and 
enhance the safety of the encryption method.

The following are this study’s primary contributions:

 1 A performance analysis shows that the 1D chaotic system 
we present eliminates several shortcomings of current chaotic 
mappings, such as restricted parameters, inadequate nonlinear 
behavior, and poor unpredictability. According to the analysis 
of the security performance of Chaos, the new 1D chaotic 
system proposed by us meets the security requirements, is 
evenly distributed, and can generate keys that meet the 
security standards;

 2 Many color image encryption techniques have flaws in their 
architecture. The design of several color picture encryption 
systems is incorrect. Three distinct gray planes are processed 
for the majority of color pictures. Using the design of a novel 
1D chaotic system and an improved Dijkstra algorithm as the 
foundation for a cross-plane color encryption technique. Pixels 
will appear anywhere on any plane, and Adaptive Diffusion 
Based on Plane Distribution will vary the value of each pixel 
sufficiently. In contrast to previous color image encryption 
techniques, our proposed diffusion and permutation operate 
simultaneously on all three planes, rather than individually 
on each;

 3 Simulation findings and implementation analyses show that 
our proposed system outperforms several current image 
encryption techniques in various data aspects and can 
withstand chosen plaintext attacks.

This essay’s remaining sections are as follows: Chaotic system with 
a performance study covered in Section 2. The creation of keys and 
certain encryption procedures, such as diffusion and scrambling 
methods, are covered in Section 3. Section 4 presents method’s 
security analysis and simulation findings. Paper’s conclusion is given 
in Section 5.

2 Related work

2.1 1D-SASCS chaotic system

1D-SASCS chaotic system (Wang and Liu, 2022) is presented Eq. 1:

 
x xn n+ = ( )1 100| |sin / arcsinµ

 (1)

λ is a parameter of control, λ∈ (0, +∞). The chaotic system 
possesses good chaotic characteristics, but the chaotic range of 
1D-SASCS is relatively small.

2.2 Ill-conditioned matrix

When the data are significantly disrupted, an ill-conditioned 
matrix exhibits significant oscillations in the solutions of an equation 
system. Solving linear equation Ax = b, one such matrix is as Eq. 2:
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For example, when R = 400, K1 = −100, and K2 = −200; when 
R = 402, K1 = 99.5025, and K2 = 198.01.

2.3 1D chaotic system

The formula for 1D chaotic system is as Eq. 3:
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(3)

When X(i) ∈ (0, +∞), the mapping demonstrates good chaotic 
behavior. Compared with certain standard 1D chaotic mappings, our 
suggested 1D mapping has a wider parameter range. The chaotic 
system formed when X(1) = 0.5 is adopted by our method, which 
contains two parameters that vary with each repetition of the X(i) 
value. Our scheme also widens the chaotic system’s beginning 
value range.

2.4 Diagram of bifurcation

To ensure that the pseudo-random sequence values of chaotic 
system iteration are evenly distributed throughout a range, 
bifurcation diagram can be  used to visualize the distribution of 
function values. Figure 1 shows parameter μ range of mapping is 
represented by the x-axis of the bifurcation diagram, while the values 
produced by the mapping are represented by the y-axis (Kaçar et al., 
2022). One may judge the quality of a chaotic mapping using the 
bifurcation diagram. 1D chaotic system’s sequence may be examined 
using the bifurcation diagram to see if it is randomly distributed. In 
Figure 1A, K1 = -465.7689. The logistic mapping bifurcation diagram 
is displayed in Figure 1B, with parameter μ∈ [0, 4]. In Figures 1C,D, 
μ∈ [0, 100], K1 and K2 are set to-465.7689, respectively. The uniform 
distribution of values within the range of [0,1] is evident, suggesting 
that the suggested. The chaotic behavior of a 1D system is good. 
These demonstrate its complicated properties and continuous chaotic 
range when seen from the perspective of bifurcation trajectory 
and diagram.

2.5 Lyapunov exponent

Lyapunov exponent (LE) is one of crucial reference indices to 
determining if the chaotic system has especially chaotic qualities. The 
following formula explains how the LE is Eq. 4:
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n
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|

 
(4)

The representation of a chaotic system is f(xi). The value of LE may 
be  found in the formula by calculating the derivative of f(x) and 
averaging the logarithms. A system is considered chaotic when the LE 
value is higher than 0. Conversely, a system is considered stable when 
the LE value is smaller than 0. We will determine whether a chaotic 
system is in a chaotic state within the parameter range by looking at 
the positive and negative LE values.

Figure 2 displays μ∈ (0, 1] LE diagrams for 1D-SASCS chaotic 
system, the Logistic map and 1D map. We select X(1) = 0.1 in this 
case, K1 = 465.7689 and K2 = 465.7689, our chaotic system has a large 
range of control settings since it consistently maintains a positive LE 
value. When K2 = 465.7689 our LE values are the greatest, suggesting 
that our chaotic scheme has more complicated nonlinear behavior 
and superior unpredictability.

2.6 Sample entropy

The accuracy of sample entropy (SE) (Richman and Moorman, 
2000) is higher than that of approximation entropy. The complexity of 
the output produced by chaotic systems during iteration is measured 
quantitatively. A positive SE shows chaotic behavior in the created 
sequence, which deviates from conventional regularity. A higher SE 
value denotes less regularity in the sequence, which suggests that the 
chaotic system’s behavior is more complicated. The SE of various 
chaotic systems is calculated using the computation technique 
outlined. The SE of our new chaotic system that we have presented is 
compared with other 1D chaotic systems in Figure 3 and we set the 
initial value X(1) = 0.5 for all chaos. As can be seen, our suggested 1D 
chaotic system achieves positive SE values for all control parameters. 
The outcomes of our experiments show that our chaotic system 
operates effectively. The computation equations for SE are as Eq. 5:

 
SE m,r,N A

B
( ) = − log

 
(5)

In which A and B denote two successive random sequences of 
chaos, respectively, and m, the array’s dimension, N, the sequence 
length, and r, the threshold. The Chebyshev distance between A and B 
is computed, and it is not more than the threshold’s percentage. We set 
our chaotic, 1D-SASCS and Logistic, X(1) = 0.9, m = 1, r = 0.2. As can 
be observed, the SE value is somewhat larger than the SE value of other 
1D chaos when K1 = 465.7689 and is comparatively steady. The SE value 
is larger than 0 for K2 = 465.7689, which satisfies all safety standards.

3 Related algorithms

We introduce a cross-plane color image encryption scheme in the 
section. The architecture of cross-plane encryption technique is shown 
in Figure 4. The picture is converted into a 384-bit key using SHA-384. 
This key and the chaotic matrix produced by a 1D chaotic system are 
combined to make the encryption key. The image’s three planes are split 
up, and each plane is simultaneously according to chaotic system and 
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an improved Dijkstra algorithm for cross-plane scrambling. This allows 
the original image’s pixel to appear at any location in any plane, making 
it more difficult for an attacker to anticipate where a pixel would appear. 
An adaptive diffusion approach is used after obtaining the scrambled 
matrix. This algorithm starts with bidirectional diffusion on the rows 
and columns, and then moves on to random diffusion over the color 
planes. Finally, the planes of the image were merged to obtain the final 

encrypted image. By modifying pixel values to improve security, and 
because both the improved Dijkstra method and the adaptive diffusion 
based on plane distribution are reversible, the algorithm can retrieve the 
original image information using the proper key.

3.1 Key generation

The research suggests a key generation process that generates four 
chaotic sequences using a 1D chaotic system. Because these sequences 
leverage chaos’ unpredictable nature. To enhance unpredictability, 
we omit the first 1,000 iterations of the chaotic iterations. Moreover, 
this key generation mechanism makes ordinary images highly 
sensitive. The four generated chaotic sequences are denoted as V1, V2, 
V3, and V4. D1, D2, and D3 are matrices generated from the chaotic 
sequences, with the size of M × N.

RGB image P to be encrypted is first input into SHA-384 to obtain 
the 384-bit key Z. Z is the key shifted into 96 decimal numbers, each 
of which has a length of four digits. Z can be represented as Z = h1, h2, 
h3,…, h96. Next, use Z to obtain parameters C1…C12. Then, 3 chaotic 
sequences of U1, U2, and U3 are generated using the specific generation 
method, as Eqs. 6, 7:

 

C h h h
C h h h

C h h h

1 1 2 8

2 9 10 16

12 89 90 96

= + + +
= + + +

= + + +











..

..

..

..  

(6)

A B

C D

FIGURE 1

Bifurcation diagram. (A) When K1  =  −465.7689, bifurcation diagram of 1D chaotic map. (B) Logistic map, (C) When K1  =  −465.7689, larger range of 1D 
chaotic map. (D) When K2  =  −465.7689 larger range of 1D chaotic map.

FIGURE 2

The LE results of logistic map, 1D-SASCS and our method with K1 and K2.
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(7)

3.2 Dijkstra algorithm

One kind of greedy method for determining the shortest path for 
a single source in weighted networks is the Dijkstra algorithm. It can 
be applied to both directed and undirected graphs. It is used here to 
resolve the shortest path issue with directed and undirected graphs. 
Figure 5 shows that the algorithm starts from vertex A and eventually 
obtains the set U {A, C, F, B, E, D}.

3.3 Improved Dijkstra algorithm

Only pixels on the same plane or multiple operations can 
be scrambled using conventional color image schemes. Therefore, it is 
crucial to create a scrambling algorithm that is both effective and 
secure. This research enhances the position updating procedure to 
better satisfy the demands of image encryption. As for the pixel 
weight, which influences both the layer value and the pixel’s 
coordinates in the plane, we utilize a chaotic matrix. By essentially 

removing the link between pixel locations and lowering the correlation 
between neighboring pixels, this method makes it more difficult to 
anticipate the position of pixels.

Our improved Dijkstra algorithm efficiently makes use of the 
inter-plane interactions between pixels, shuffle the image pixel 
position, arrange it across planes, in contrast to conventional color 
image scrambling techniques. The spatial associations of pixels can 
be more randomly shuffled, enabling them to appear at random on 
any plane. This algorithm only requires a single operation to complete 
the encryption process, rather than encrypting the three planes of an 
RGB image separately multiple times. It can better leverage the 
relationships between pixels across different planes, allowing pixels to 
quickly appear at any position on any plane. Original image P with the 
size of M*N, this scheme for scrambling H1(a, b), H2(a, b), and H3(a, 
b) obtained by scanning P from left to right is as shown below.

Step 1: The four chaotic sequences V1, V2, V3, and V4 are taken 
with lengths of M × N, M × N, M × N, and 3 × M × N, respectively.

Step 2: Three chaotic matrices are reshaped by processed the V1, 
V2, and V3 chaotic sequences, denoted as D1, D2, and D3, respectively. 
Where ‘sort’ means to sort the elements of an array. Obtain the index 
matrices I1, I2, and I3 for the three chaotic matrices, as Eq. 8:

 ~ , sortI Di i[ ] = ( ) (8)

Step  3: The three planes of image P—H1, H2, and H3—are 
scrambled to obtain P1, P2, and P3 according to the three index 
matrices a and b, Di acts as the pixel’s weight to guide pixel movement, 
‘find’ represents a vector that returns a linear index, as Eq. 9:

FIGURE 3

The sample entropy comparison on logistic map 1D-SASCS and our method with K1 and K2.
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Step 4: Reshape V4 into a matrix with a row length of 3 and a 
column length of M × N − 1, obtaining matrix I4. The I4 index is sorted 
by row priority and P1, P2 and P3 are scrambled across planes according 
to the improved Dijkstra algorithm I4 will guide the pixel to which level 
of the R, G, B plane, 1, 2, 3 stand for R, G, and B, respectively. Columns’ 
indicates the plane where the pixel values are located.

Both the original Dijkstra algorithm and the improved Dijkstra 
algorithm are methods for determining the shortest path. The 
shortest path cross-plane scrambling algorithm is random, and the 
image pixel is determined by the point-to-point position of the 
chaotic system, which ensures that each pixel of the image can 
determine the final position, and ensures the integrity and 
randomness of the pixel. The magnitude of the comparison weight 
affects how far pixels shift in relation to their ultimate location. A 
cross-plane configuration for a 3 × 3 × 3 colored image is shown in 
Figure 6. Our planes are initially positioned as follows: R(1,1) = 1, 
G(1,1) = 1, B(1,1) = 1. The positions are changed into R1(3,1) = 1, 
G1(2,2) = 1, B1(3,3) = 1 based on our input data: I1(3,1) = 1, I2(2,2) = 1, 
I3(3,3) = 1. This completes the first step of shuffling. The value of V4 
specifies the plane into which the pixel will be  shuffled, and it 
indicates the weights allocated to the pathways used to shuffle the 
image. The row-wise sorting of V4 is I4. For instance, 2, 1, and 3 are 
in the first row of I4. R1 = 1 positions are positioned in the second 
plane, G1 = 1 positions are positioned in the first plane, and B1 = 1 
positions are positioned in the third plane. After guidance, we obtain 
R2(1,2) = 1, G2(1,2) = 1, and B2(2,1) = 1 based on the index order 
established: 1 → 2, 2 → 3… →3 × M × N, 3 × M × N → 1. We obtain the 
final shuffled image when the three planes have finished shuffling. 
The distribution of each element in the sequence is uniform 
and random.

FIGURE 4

The encryption process for a flowchart.

FIGURE 5

An example of in a directed graph.
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FIGURE 6

Example of an improved Dijkstra Algorithm.
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3.4 Adaptive diffusion based on plane 
distribution

Encrypted pixels typically solely pertain to the current pixel; they 
have no effect on following pixels. Even if the current pixel undergoes 
slight changes in the image. The adaptive diffusion strategy proposed in 
the paper is based on plane distribution, that is an encryption scheme 
that utilizes the image’s R, G, and B layers’ pixel values as keys for one 
another. The image encryption task can be successfully completed with 
just one diffusion operation on scrambled image. Modifying pixel value 
of image increases its security and makes it harder for attackers to 
obtain the original. Specifically, row-column diffusion takes place inside 
each of the pixels’ individual planes first, followed by diffusion between 
planes. As a result, pixels differ from one plane to the next. The values 
of succeeding pixels shift significantly when one does. After the original 
image has been disturbed by the trans-plane scrambling of improved 
Dijkstra algorithm. Since neighboring pixels in scrambled image 
originate from several color planes, The scrambled image is then placed 
in adaptive diffusion based on plane distribution, the processing 
sequence is arbitrary and kept a secret, pixel value is severely destroyed 
by our algorithm, the safety of proliferation is further enhanced. The 
technique creates a consistent pixel distribution and one-step 
encryption based on protecting private information, as (Eqs. 10, 11):
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In this case, M × N represents the encrypted image P’s size. In 
addition, the image consists of three layers: R, G, and B. The modulo 
operation is denoted by ‘mod. the bitwise XOR operation by ‘bitxor. 
and the key generation set in Section 2 is denoted by p(k), where k 
ranges from 1 to 12.

4 Simulation results and security 
analysis

To address the requirements of many situations, we discuss the 
results of simulations using a variety of image formats. We also detail 
a significant amount of security research to show the safety and 
effectiveness of our approach. All experiments are conducted and 
simulated using MATLAB 2021a on the laptop with an i7-10710 U 
CPU. In this paper, two sets of ablation experiments are set up, when 
the encryption algorithm is only named EX1 using the improved 
Dijkstra algorithm, and when the encryption algorithm is only used 
adaptive diffusion based on plane distribution, it is named EX2.

This part shows the simulation and testing of the encryption 
technique provided in part 3. We perform tests on the original images 
by employing different-sized standard test images and using the 
encryption method suggested in this study as Figure 7 shown. No 
meaningful data are present in the encrypted image in Figure 7A. The 
contrast between original image and encrypted image, the latter of 
which is a completely black image, is also shown in Figure 7D. This 
result indicates that our method applies to image encryption and 
retrieves images without any loss.

4.1 Simulation results and histogram 
analysis

Histogram analysis is a highly effective means of presenting data 
in a cryptographic system because it provides a visual presentation of 
the statistical information contained within image pixels. Regarding 
cryptography, the distribution of the cipher in the histogram must 
be as uniform as possible because any deviations can provide attackers 
with valuable statistical information that can be used to compromise 
the system’s security. As seen in Figure  8, we  compared different 
images using histograms. Figures 8B,C show histograms of plaintext 
and ciphertext, respectively, demonstrating that our encryption 
scheme produces a relatively flat histogram. This result suggests that 
there is some degree of assault resistance in our design.

4.2 Key space analysis

A wider key area is necessary to successfully deter attackers from 
acquiring the correct key. A secure cryptographic system (Chai et al., 
2017) often requires a key space greater than 2100. Key space for 
SHA-384 of the scheme is 2192 and has 12 keys, which is far greater 
than 2100 to effectively fend against brute-force attack.

4.3 Information entropy

A signal source for distribution can be quantitatively described 
using information entropy. Moreover, 8 is optimal value of entropy for 
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an image of an 8-bit binary. The formula for computing information 
entropy as Eq. 12:

 
E a

i

( ) = − ( ) ( )
=
∑
0

255

2Q a p ai ilog

 
(12)

Where ai represents a pixel’s value, and Q(ai) stands for the 
frequency of ai. When each value is equally likely to occur, the 
maximum value will be reached by information entropy. In an 8-bit 
image, 256 is gray level, and when each pixel appears with a probability 
of 1/256, the maximum information entropy can be obtained. In this 
section, we present entropy testing on the Lena (256 × 256 × 3) image, 
and Table 1 provide a comparison of the test data utilized to develop 
our approach. Even if our values are not the highest, they are similar 
and adhere to security standards, which shows our scheme has 
good performance.

Table 2 shows our scheme results about the entropy for diverse 
image. Because neighboring pixels are associated, rather than 
random, the plaintext image has a low entropy. This shows the 
validity of our hypothesis and comes close to the predicted maximum 
value of 8. The encrypted images suggested in this paper have erratic 
distributional properties, from which no usable data can be derived. 
Table 3 shows the information entropy ablation experiment, and it 
can be seen that the EX1 and EX2 values are low and do not meet the 
safety criteria.

4.4 Analysis of adjacent pixel correlation

The initial pixels’ regular distribution usually creates a stable 
correlation between them, which can negatively impact the quality of 
the ciphertext when introduced in encryption. For evaluating the 
correlation between relevance pixels in our proposed encryption 
system, for test items, we select 3,000 pairs of pixels with the formula 
expressed as  Eq. 13:
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(13)

Where L(A) and L(B) are the sequences ‘a’ and ‘b. respectively, in 
mathematical expectations. A greater correlation between the 
sequences ‘a’ and ‘b’ is indicated by a larger correlation coefficient, 
while a correlation coefficient that is closer to zero suggests 
less correlation.

In contrast to the accompanying ciphertext image, which is evenly 
scattered over the plane in a diagonal orientation. Figure 9 displays the 
pixel distribution in the test image and its surroundings. In Table 4, 
the correlation coefficients are displayed.

Between proposed scheme and the corresponding ciphertext 
images of different plaintext images, owing to the large data redundancy 

A B C D

FIGURE 7

Simulation results of the image encryption algorithm proposed are as follows: (A) and (C) Initial and decrypted images, (B) Encrypted images, and 
(D) Difference between initial images and decrypted image (A–C). The images ‘House’, ‘Couple’ and ‘Female’ have been downloaded from USC-SIPI 
Image Database.
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of the plaintext image, the nearby pixels exhibit a high correlation 
coefficient. Since the ciphertext image’s correlation coefficient is 
practically 0, the suggested approach can be successful in eliminating 
the substantial relationship between adjacent pixels in plaintext image.

Here, we investigate correlation coefficients of ciphertext images 
using various encryption techniques. Three planes of the test image 
Lena, which has dimensions of 256 × 256 px, are used to determine 
correlation coefficients. Table  5 displays data for the correlation 
coefficient comparison of various ciphertext images. The values of our 

scheme are closer to zero, EX1 and EX2 have high correlation between 
adjacent pixels.

4.5 Differential attack experiment

Differential attack is a extensive used and powerful attack strategy. 
By evaluating the impact of the change rate of each pixel between original 
and encrypted images, we find that the best performance indicators for 
judging differentiated attacks are the number of pixels change rate 
(NPCR) and unified average changed intensity (UACI). K1 and K2 are 
two encrypted outputs of the same plaintext image produced after fine-
tuning, NPCR and UACI (Gao et al., 2022) calculated as Eqs. 14, 15:
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U is the difference between K1 and K2, F is the greatest pixel value, D is 
a total number of color plane pixels. K1(i, j) = K2(i, j) if U (i, j) = 0; otherwise, 

A B C

FIGURE 8

(A) The plaintext image, (B) and (C) the histogram of plaintext and cipher images. The images ‘Female’, ‘Lena’ and ‘Tree’ have been downloaded from 
USC-SIPI Image Database.

TABLE 1 Information entropy compares the ‘Lena’ (256  ×  256  ×  3) image 
with other schemes.

Encryption schemes R G B Avg

Lena 7.2353 7.5683 6.9176 7.2404

proposed 7.9969 7.9974 7.9970 7.9971

EX1 7.7253 7.7305 7.7292 7.7283

EX2 7.7974 7.7973 7.7972 7.7973

Zhang Y. Q. et al. (2020) 7.9917 7.9912 7.9917 7.9915

Wang X. et al. (2022) and 

Wang Y. et al. (2022)
7.9973 7.9971 7.9971 7.9972

(Chai et al. (2019) 7.9973 7.9969 7.9971 7.9971

(Hosny et al. (2021) 7.9956 7.9949 7.9953 7.9953
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U(i, j) = 1. As shown in Table 6, we perform a comparison test of our 
method Ex1 and EX2 against others. Using a Lena image (256 × 256 × 3 px). 
The NPCR and UACI are found to be extremely near to the theoretical 
maximums of 99.61 and 33.46%, respectively (Kumar et al., 2018). We also 
observe that our UACI values meet the safety standards and that the NPCR 
values are higher than those of other methods. EX1 and EX2 does not meet 
safety standards. Table 7 shows our scheme’s NPCR and UACI values for 
various image sizes are near the theoretical value, demonstrating the 
system’s strong potential for differential protection.

4.6 Resistance to data loss and noise

The risk of data loss or noise contamination exists while sending 
data over the internet. Images that have lost data or are tainted by noise 
must be  able to retrieve most of their information when using a 
trustworthy encryption technique. To evaluate our system’s resistance 
to these dangers, we simulate data loss and noise pollution on ciphertext 
image. As shown in Figure 10, we tested different attacks, the experiment 
proved our method successfully retrieves most of the information while 
reconstructing an ordinary, visually clear image. Our suggested system 
can therefore successfully withstand data loss and noise pollution.

Peak signal-to-noise ratio (PSNR), a statistic measures the degree 
of visual distortion, is objective. When the PSNR is high, we might get 

results that are closer to original image. The computation equations 
for PSNR and MSE are as  Eqs. 16, 17:
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For plaintext and ciphertext images, M(i,j) and N(i,j) are the 
values of pixel, respectively. Maximum pixel value for images is 
MAXI. Table 8 shows PSNR values larger than 10 dB this technique 
outperforms previous attack techniques in terms of resistance to 
Gaussian noise. We may thus draw the conclusion that this plan 
can ensure security and maintain a strong connection to 
typical images.

4.7 Image autocorrelation test

2D image autocorrelation compares all possible pairs of two 
pixels which shows likelihood of having similar values based on 

TABLE 2 Information entropy of different size and different images.

Image size Images Plain images Cipher images

R G B R G B

256 × 256 × 3 4.1.01 6.4200 6.4457 6.3807 7.9971 7.9972 7.9967

4.1.02 6.2499 5.9642 5.9309 7.9971 7.9973 7.9961

4.1.03 5.7150 5.3738 5.7117 7.9970 7.9973 7.9972

4.1.04 7.2549 7.2704 6.7825 7.9974 7.9973 7.9974

4.1.05 6.4311 6.5389 6.2320 7.9977 7.9969 7.9975

4.1.06 7.2104 7.4136 6.9207 7.9970 7.9971 7.9973

4.1.07 5.2626 5.6947 6.5464 7.9972 7.9970 7.9971

512 × 512 × 3 4.2.05 6.7178 6.7990 6.2138 7.9993 7.9994 7.9993

4.2.06 7.3124 7.6429 7.2136 7.9993 7.9992 7.9994

4.2.07 7.3255 7.3912 6.9169 7.9993 7.9993 7.9994

TABLE 3 Different images of different images of ablation experiments have different sizes of information entropy.

Image size Images EX1 EX2

R G B R G B

256 × 256 × 3 4.1.01 7.7972 7.797 7.7971 7.8972 7.8970 7.8971

4.1.02 6.2948 6.2921 6.2927 7.8970 7.8973 7.8971

4.1.03 5.9691 5.9628 5.9749 7.8976 7.8973 7.8975

4.1.04 7.4229 7.4276 7.4255 7.8970 7.8973 7.8971

4.1.05 7.0711 7.0615 7.0676 7.8972 7.8970 7.8971

4.1.06 7.5335 7.5341 7.5377 7.8967 7.8971 7.8969

4.1.07 6.5855 6.5814 6.5797 7.8972 7.8975 7.8972

512 × 512 × 3 4.2.05 6.6623 6.6639 6.6642 7.9974 7.9973 7.9972

4.2.06 7.7605 7.7613 7.7632 7.9972 7.9970 7.9971

4.2.07 7.5839 7.5824 7.5820 7.9893 7.9893 7.9893
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distance and separation direction. Generally, the autocorrelation 
of a planar image is visualized as a wave and cone shape in the 
spatial domain, whereas the autocorrelation of a cipher image 
appears as a uniform and level surface. Equation is used for the 
image autocorrelation is calculated as in  Eq. 18:

 ´ x,y M,N M,N( ) = ( )  ∗ ( ) 
−D D O D O1

 (18)

In this case, D−1 stands for the conjugate Fourier transform, 
O(M, N) is pixel’s value at position (M, N) in picture, D is the 

A B

C D

E F

FIGURE 9

Lena (256  ×  256  ×  3 px) horizontal, diagonal and vertical distribution of adjacent pixels: (A) and (B) Distribution of adjacent red pixels in the plaintext and 
ciphertext, (C) and (D) distribution of adjacent green pixels in the plaintext and ciphertext, and (E) and (F) distribution of adjacent blue pixels in plaintext 
and ciphertext.

TABLE 4 Correlation among adjacent pixels in different sizes and different images.

Images Directions Plain images Cipher images

R G B R G B

4.1.01 H 0.9593 0.9678 0.9462 −0.0051 −0.0033 −0.0028

D 0.9476 0.9563 0.9398 −0.0056 0.0006 −0.0064

V 0.9766 0.9715 0.9585 −0.0068 −0.0068 −0.0057

4.1.02 H 0.9610 0.9511 0.9491 0.0029 −0.0015 0.0019

D 0.9167 0.9049 0.8844 0.0062 0.0031 0.0009

V 0.9588 0.9320 0.9092 0.0079 0.0072 −0.0086

4.1.03 H 0.9453 0.9226 0.8936 0.0060 0.0061 0.0064

D 0.9125 0.9066 0.8705 −0.0071 0.0008 0.0007

V 0.9739 0.9752 0.9711 0.0068 −0.0067 0.0049

4.2.05 H 0.9537 0.9678 0.9237 −0.0061 0.0046 −0.0025

D 0.9354 0.9287 0.9123 −0.0031 −0.0026 0.0041

V 0.9720 0.9560 0.9648 −0.0035 −0.0053 0.0066

4.2.06 H 0.9576 0.9707 0.9665 −0.0056 −0.0003 0.0026

D 0.9417 0.9506 0.9515 −0.0015 −0.0005 −0.0056

V 0.9568 0.9720 0.9731 0.0062 −0.0036 0.0006

4.2.07 H 0.9656 0.9781 0.9671 0.0046 −0.0028 0.0057

D 0.9533 0.9712 0.9573 −0.0024 −0.0033 0.0045

V 0.9605 0.9816 0.9628 −0.0057 0.0056 −0.0009
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Fourier transform, and P (x, y) is the autocorrelation function. 
According to Figure 11, we utilize ‘Tree’ as the test image with an 
encrypted image across the R, G, B color channels using it as our 
benchmark. The figure depicts our experimental results. The 
autocorrelation of the planar image shown in Figures  11B–D 
demonstrates a wave-like pattern, indicating that the probability of 
pixel pairs with the same pixel value is higher in planar images. By 
contrast, the cipher image is smoother according to the test results 
of autocorrelation (Figures 11F–H), reflecting that our proposed 
method effectively reduces the probability of equal pixel values.

4.8 Floating frequency test

The plain image should uniformly encrypt all rows and 
columns using a good image encryption technique. A key 

indicator for assessing an encryption method that can generate 
stochastic data for all rows and columns and analyze the 
vulnerabilities in the encrypted image is the floating frequency 
test (Murillo-Escobar et  al., 2019). For example, below is the 
procedure for determining the row and column floating 
frequencies for a 256 × 256-px image.

Step  1: Set the 256-element image as a window in each row 
and column.

Step 2: Count the number of diverse components in every window.
Step 3: Determine a number of different items in each window, as 

well as the row and column floating frequency values.
Step 4: Determine the average values of the floating frequency for 

rows and columns.
Here is a sample of the selected color image ‘Lena’. The 

frequency float test as shown in Figure 12, the row and column 
floating frequency values for the original image are relatively low 

TABLE 5 Comparison of correlation coefficients with different methods using the image ‘Lena’.

Planes Directions Plane 
image

Our 
scheme

EX1 EX2 Hosny et al. 
(2021)

Hosny et al. 
(2022)

Zheng et al. 
(2023)

R H 0.9746 −0.0064 0.0150 0.0055 0.0064 −0.0154 0.0071

D 0.9406 −0.0007 0.0114 0.0119 −0.0026 0.0159 −0.0006

V 0.9558 0.0039 0.0120 −0.3333 0.0160 −0.0102 0.0089

G H 0.9722 0.0013 0.0070 −0.0046 0.0009 −0.0096 −0.0012

D 0.9102 0.0015 −0.0316 0.4410 0.0125 −0.0162 −0.0043

V 0.9458 0.0045 −0.0101 −0.0371 0.0034 0.0027 −0.0018

B H 0.9478 0.0030 −0.0213 0.0314 0.0091 −0.0030 −0.0015

D 0.8776 0.0017 0.0204 −0.0092 −0.0090 −0.0026 −0.0019

V 0.9318 −0.0063 0.0119 −0.0056 −0.0045 0.0117 0.0041

TABLE 6 NPCR and UACI data testing using image of ‘Lena’.

Lena NPCR UACI

R G B Avg R G B Avg

Ours 99.6323 99.6338 99.6124 99.6261 33.5163 33.4215 33.4666 33.4681

EX1 3.3707 3.3707 3.3707 3.3707 1.8079 1.7963 1.7838 1.7960

EX2 96.7209 82.5531 63.6673 80.9804 32.9611 29.0607 22.1373 28.0530

Hosny et al. (2022) 99.6017 99.6124 99.6368 99.6149 33.4128 33.4980 33.4974 33.4694

Hosny et al. (2021) 99.6094 99.6124 99.6307 99.6175 33.4666 33.4241 33.4212 33.4373

Gao et al. (2022) 99.6180 99.6376 99.6003 99.6189 33.4285 33.4549 33.4275 33.4399

TABLE 7 NPCR and UACI of different images and different planes.

Images NPCR (%) UACI (%)

R G B Avg R G B Avg

4.1.01 99.6567 99.5972 99.5697 99.6078 33.4495 33.5133 33.5127 33.4918

4.1.02 99.6216 99.6155 99.6140 99.6170 33.5080 33.5635 33.6437 33.5717

4.1.03 99.5911 99.5850 99.5865 99.5875 33.5879 33.4915 33.4298 33.5030

4.1.04 99.6231 99.6017 99.6048 99.6098 33.4754 33.5302 33.5021 33.5025

4.2.05 99.6181 99.6117 99.6193 99.6163 33.4725 33.5218 33.4894 33.4945

4.2.06 99.6151 99.6155 99.6014 99.6106 33.4426 33.4549 33.4847 33.4607

4.2.07 99.6231 99.5914 99.6220 99.6121 33.5338 33.4807 33.4993 33.5046
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TABLE 8 MSE and PSNR are compared under different attack data.

Cipher image MSE PSNR (dB)

Red Green Blue Red Green Blue

1/4 Data loss at the bottom-right corner 5,415 5,402 5,459 10.7945 10.8045 10.7591

1/4 Data loss at the top-left corner 5,456 5,445 5,402 10.7616 10.7705 10.8046

Gaussian noise = 0.000001 0.0493 0.0497 0.0492 61.1982 61.1701 61.2103

Gaussian noise = 0.000003 0.2601 0.2579 0.2575 53.9789 54.0165 54.0232

Salt&Pepper noise = 0.1 2,207 2,131 2,146 14.6927 14.8440 14.8135

Salt&Pepper noise = 0.2 4,309 4,432 4,365 11.7861 11.6647 11.7309

A B C D

E F G H

FIGURE 11

Test for graphic autocorrelation. (A) is the original image and (E) is the corresponding decrypted image. Plaintext images in the R, G, B planes are 
subjected to a 3D graphic autocorrelation test for (B–D), and (F–H) ciphertext image 3D graphic autocorrelation test in R, G, B planes. The image 
‘Sailboat on lake’ has been downloaded from USC-SIPI Image Database.

A B C D E F

FIGURE 10

The first row shows the cipher images with data loss and different levels of noise, respectively, (A) is missing in the bottom right corner, (B) is missing in 
the top left corner, (C) is 0.1 density of salt and pepper noise, (D) is 0.2 density of salt and pepper noise, (E) is 0.000001 density of Gaussian noise, and 
(F) is 0.000002 density of Gaussian noise, While the second row shows the matching decrypted data. The image ‘Female’ has been downloaded from 
USC-SIPI Image Database.
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(Figures 12A–F), indicating the plain image’s pixel distribution is 
uneven (with numerous repeated elements). Figures  12G–L 
displays the cipher image’s row and column floating frequency 
values, both of which are rather high, at about 161, indicating that 
nearly 63% of the 256 elements in each column and row are 
unique. This implies our scheme generates a cipher image and a 
more uniform component distribution.

4.9 χ2 test

χ2 test provi des a quantitative analysis of the homogeneity of the 
image pixel distribution. We calculate the image’s χ2 value (Liu et al., 
2023) g formula and compare it with the benchmark value. The 
distribution of the image’s pixels seems to be more uniform when the 
calculated value is lower than the standard value as Eqs. 19, 20:

A B C

D E F

G H I

J K L

FIGURE 12

Floating frequency test for plain and cipher images. (A–C) and (G–I) show the row floating frequency of the plain and cipher image ‘Lena’ in the R, G, B 
channels. (D–F) and (J–L) show the column floating frequency of the plain and cipher image ‘Lena’ in R, G, B channels. The image ‘Lena’ have been 
downloaded from USC-SIPI Image Database.
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Where the appearance’s pixel frequency value i  in image is 
represented by pi, and the average frequency is represented by p. 
The benchmark for ciphertext images in the second test of this 
technique is 293.24783. As demonstrated in Table 9, the outcomes 
of this approach for numerous images are provided, and our 
ciphertext is fairly evenly distributed. EX1 does not meet safety 
standards, EX2 meets the safety standards but has a higher value 
than the scenario in this article.

Lena is then compared in Table 10 between our plan and other 
plans. It is clear that our system produces far less data than other 
systems, demonstrating our technique’s superior resilience to attacks 
based on pixel feature distribution.

5 Conclusion

The present color image encryption techniques either 
encrypt each of the three planes independently or they include 
repetitive processes that reduce the algorithm’s performance. To 
get beyond these problems, the paper has introduced a novel 1D 
chaotic system. By utilizing the new 1D chaotic system and 
Dijkstra algorithm, we have proposed a new improved Dijkstra 
algorithm and an adaptive diffusion cross-plane color 
encryption technique. We propose an image pixel that can make 
full use of the pixels of different planes and can directly process 
the three color planes of the color image to complete the cross-
plane scrambling. A unique cross-plane permutation strategy 
has been suggested to increase the encryption system’s security 
and effectiveness. In the process of chaotic scrambling using 
cross-planes, we  make great use of the relationship between 
different planar pixels, which makes the pixels very shuffled in 
order, pixels can appear at arbitrary coordinates on any plane, 

making it disrupting correlation between adjacent pixels and 
more difficult to predict pixel positions. Adaptive diffusion 
based on plane distribution utilizes the method of cross-plane 
diffusion, where any change in pixel values will result in a 
significant change in a large number of subsequent pixel values. 
According to the simulation results and security analysis in 
Chapter 4, it shows that our solution complies with various 
security standards, and most of the test indicators show that our 
solution is higher than the current popular image encryption 
schemes, it has been found to have stronger robustness and 
higher security. In this paper, differential attack experiment and 
resistance to data loss and noise simulated attack test are used 
respectively, and the experimental results show that our scheme 
is used that protects against attacks using specific plaintext and 
known plaintext, and compared to other schemes, our NPCR 
value is higher than other schemes, and the UACI value meets 
the safety standards. The original image is used to generate 
SHA-384 and a new chaotic system to compose the key, and the 
keyspace analysis shows that the keyspace size meets the security 
standards. The suggested approach has been demonstrated by 
simulation and security analysis to be successful, indicating that 
its security can render many attack schemes ineffective.

The proposed encryption technique avoids repeatedly 
encrypting the same areas of the image by making greater use of the 
correlation between pixels in distinct planes to encrypt the image 
just once. The improved Dijkstra algorithm used in this paper is a 
point-to-point encryption scheme. It avoids repeatedly encrypting 
the same areas of the image by making greater use of the correlation 
between pixels in distinct planes to encrypt the image just once. No 
new pixels are generated during the encryption process, and no 
pixels are lost, ensuring that the decrypted image is lossless. Color 
medical image is a special kind of RGB image, which has high 
privacy, and ciphertext security is related to the privacy and security 
of patients, Our scheme have been tested to the safety standards of 
Histogram Analysis, information entropy, analysis of adjacent pixel 
correlation, floating frequency test, image autocorrelation test, and 
χ2 test, data analysis has shown that our protocols meet safety 
standards and protect patient privacy. However, currently, this 
scheme is only applicable to RGB images since only the position 
relationship between the three planes of the color image is 
considered in the design, the encryption scheme of single-channel 
or multi-channel image is not considered and is not suitable for 
grayscale images or special images. Compared with other popular 
schemes, the encryption scheme proposed in this paper is normal in 
terms of speed and efficiency, but with the enlargement of image 
size, the number of chaotic iterations and the computation of the 
final position of the pixel are getting larger and larger, the time 
required by the proposed scheme is also increasing, and the time 
cost is higher when large-size image encryption is required, so it is 
not suitable for encryption scheme. In the future, we will attempt to 
develop schemes suitable for multichannel image encryption and 
remote image encryption.

TABLE 9 χ2 test between different images and planes.

Image χ2 test

Plain Cipher EX1 EX2

4.1.04 81,482 237.3906 46396.2734 259.9679

4.1.05 317,260 238.7396 108529.8567 260.8698

4.1.06 89,401 260.8932 45279.6093 279.6484

4.1.07 486,578 261.7838 199795.3515 264.3880

4.2.05 822,925 249.7903 770085.6176 267.7802

4.2.06 223,807 247.9980 74588.0410 277.8831

4.2.07 389,487 244.8919 182028.0351 282.3417

TABLE 10 χ2 test comparison of our algorithm with other algorithms.

Algorithm Proposed EX1 EX2 Richman and 
Moorman (2000)

Liu et al. (2018) Asgari-Chenaghlu et al. 
(2019)

χ2 239.8008 21630.2343 261.5618 254.18 244.9922 262.054
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Epilepsy is a common chronic brain disorder. Detecting epilepsy by observing

electroencephalography (EEG) is the main method neurologists use, but this

method is time-consuming. EEG signals are non-stationary, nonlinear, and

often highly noisy, so it remains challenging to recognize epileptic EEG signals

more accurately and automatically. This paper proposes a novel classification

system of epileptic EEG signals for single-channel EEG based on the attention

network that integrates time-frequency and nonlinear dynamic features. The

proposed system has three novel modules. The first module constructs the

Hilbert spectrum (HS) with high time-frequency resolution into a two-channel

parallel convolutional network. The time-frequency features are fully extracted

by complementing the high-dimensional features of the two branches. The

second module constructs a grayscale recurrence plot (GRP) that contains more

nonlinear dynamic features than traditional RP, fed into the residual-connected

convolution module for effective learning of nonlinear dynamic features. The

third module is the feature fusion module based on a self-attention mechanism

to assign optimal weights to different types of features and further enhance

the information extraction capability of the system. Therefore, the system is

named HG-SANet. The results of several classification tasks on the Bonn EEG

database and the Bern-Barcelona EEG database show that the HG-SANet can

effectively capture the contribution degree of the extracted features from

different domains, significantly enhance the expression ability of the model, and

improve the accuracy of the recognition of epileptic EEG signals. The HG-SANet

can improve the diagnosis and treatment efficiency of epilepsy and has broad

application prospects in the fields of brain disease diagnosis.

KEYWORDS

epilepsy, EEG, Hilbert spectrum, grayscale recurrence plot, self-attention mechanism

1 Introduction

Epilepsy is a kind of brain disease caused by the abnormal hypersynchronous firing of
neurons in the brain, which poses a great threat to the life and health of patients (Acharya
et al., 2013). Therefore, an accurate epilepsy diagnosis is of great clinical significance in
reducing the harm caused by epileptic seizures to patients. Electroencephalography (EEG)
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is the most commonly used and effective procedure for diagnosing
epilepsy (Noachtar and Rémi, 2009). The diagnosis of epilepsy is a
continuous and long-term process (Sazgar and Young, 2019; Jang
and Lee, 2020). Moreover, the characteristic pattern of epileptic
seizures varies greatly among different patients and even within
the same patient (Ren et al., 2023). Therefore, the diagnosis of
epilepsy and the pattern analysis of epileptic seizures are usually
carried out by neurologists through the detailed analysis of a large
number of EEG data by visual detection and manual annotation
(Peng et al., 2022). Since EEG signals are nonlinear, non-stationary,
highly noisy, and tend to be of long duration, manual judgment
to analyze EEG signals is very time-consuming and subject to
the subjective judgment of the clinician (Andrzejak et al., 2001;
San-Segundo et al., 2019; Hamavar and Asl, 2021). Therefore,
more efficient automated detection and analysis methods have
received much attention recently. This work will explore automatic
and accurate recognition techniques of epileptic EEG signals to
assist neurologists in analyzing EEG signals, reduce the burden of
neurologists, and improve the efficiency of epilepsy diagnosis and
treatment.

For the classification methods of epileptic EEG signals, scholars
mainly use statistical analysis-based methods, traditional machine
learning and deep learning methods. Gao et al. (2018) propose
a statistical analysis-based method to detect seizures. First, they
compute joint time-domain features and use the auto-regressive
(AR) linear model to model the data. Then, based on the non-
parametric statistical test of random power martingale (RPM), the
decision is made. Das et al. (2018) extracted time-domain and
frequency-domain features of EEG signals based on variational
mode decomposition (VMD) and then detected epileptic seizure
events by thresholding. Chen et al. (2019) used various distance
measurement methods, such as Bhattacharyya distance, to solve
the feature similarity of the power spectrum features based on
short-time Fourier transform (STFT) of EEG signals at different
moments and then detected the EEG signals by null hypothesis test.
The above method has the advantages of easy implementation and
fast detection speed. Since EEG signals are non-stationary signals,
they are easily disturbed by noise generated by brain activity, and
the extracted features are easily statistically unstable, leading to
inaccurate detection results. In addition, scholars have conducted
a lot of research on the classification of epileptic EEG signals
based on machine learning and deep learning. Wang et al. (2017)
extracted time-domain, frequency-domain, and time-frequency-
domain features of EEG signals based on wavelet transform (WT),
extracted nonlinear features based on information theory, and
then combined the two types of features for epileptic seizure
detection by machine learning methods such as k-nearest neighbor
classification (KNN) and support vector machine (SVM). Lu et al.
(2021) extracted several nonlinear features, such as sample entropy
and Higuchi’s fractal dimension, and combined them with SVM
for epileptic EEG classification. Then, they found that phase space
reconstruction and Poincaré section can improve the recognition
accuracy of epileptic EEG signals. Jang and Lee (2020) use the
wavelet transform (WT) and phase space reconstruction (PSR) to
extract features and then input features to the neural network with
weighted fuzzy membership (NEWFM) to detect seizure. Sui et al.
(2021) proposed a time-frequency hybrid network (TFHybridNet)
based on STFT and a convolutional neural network (CNN) for
epileptic focus localization. Varlı and Yılmaz (2023) propose a

combined deep learning model based on CNN and long short-term
memory (LSTM) to detect seizures. This model uses continuous
wavelet transform (CWT) and STFT methods to input the signal
conversion time-frequency image to the CNN module and the
raw EEG signal to the LSTM module. Compared with traditional
machine learning models and statistical analysis-based methods,
deep learning models have stronger learning ability and better
performance. Current deep learning methods mainly focus on
the construction of deep network structures. Combining the non-
stationary and nonlinear inherent signal characteristics of EEG
with deep learning technology to improve detection accuracy needs
further research.

Empirical mode decomposition (EMD) is a non-stationary
signal analysis method widely used in the study of epileptic
EEG recognition (Mahjoub et al., 2020; Lu et al., 2023). EMD
decomposes EEG signals into several linear combinations of
intrinsic mode functions (IMF). However, due to the mode mixing
problem in EMD, false components in the obtained IMF will
adversely affect the EEG analysis. In our previous work, we
proposed an improved EMD method named adaptively optimized
masking empirical mode decomposition (AOMEMD) (Sun et al.,
2024). AOMEMD can effectively alleviate the mode mixing
problem of EMD so that the obtained IMFs can effectively capture
the underlying physics of EEG. By applying the Hilbert transform
(HT) to the IMFs, the Hilbert spectrum (HS) of the EEG can be
constructed for high-resolution time-frequency representation of
EEG signals. Compared with STFT and CWT methods, this method
does not need to set the basis function in advance and has high
adaptability and flexibility. Therefore, in this paper, time-frequency
features of EEG are represented based on AOMEMD and HT.

The recurrence plot (RP) is a nonlinear time series analysis
method that can reveal hidden dynamic characteristics in EEG
signals in the form of images (Eckmann et al., 1987; Huang
et al., 2023). The traditional RP is a binary symmetric square
matrix, usually using the recurrence quantification analysis (RQA)
method to extract the structural features of RP for classification
recognition. Since the traditional RP cannot reflect detailed time
series information, scholars have proposed various improved RP
methods. Hatami et al. (2017) skipped the threshold segmentation
step in the process of RP construction and combined the gray-
level texture image of RP with CNN to classify the time series.
Khosla et al. (2022) proposed an un-thresholded recurrence plot
(URP) and used the fractal weighted local binary pattern (URP-
FWLBP) method to extract the texture features to classify epileptic
seizure types. Experiments show that the URP-FWLBP method is
better than the traditional method based on RQA. Considering the
nonlinear, dynamic, and complex EEG signal, this paper combines
the time-frequency feature based on HT with the nonlinear and
non-stationary features based on RP to classify epileptic EEG
signals.

Therefore, in this paper, we propose a novel system combining
nonlinear dynamic features of EEG and time-frequency features
extracted by non-stationary time-frequency analysis methods
with deep learning techniques to classify epileptic EEG signals
automatically. The proposed system is based on a self-attention
mechanism to fuse time-frequency features of the HS and nonlinear
dynamic features of the grayscale recurrence plot (GRP) to detect
epileptic EEG signals for single-channel EEG. So, we call the
proposed system HG-SANet. Several classification tasks on the
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TABLE 1 The details of five sets in the Bonn EEG time series.

Set New
name

Subjects Conditions Electrodes

A EO Healthy
volunteers

Eyes open Surface

B EC Healthy
volunteers

Eyes closed Surface

C SOE Epilepsy patients Seizure-free interval
from outside the

epileptogenic zone

Intracranial

D SFE Epilepsy patients Seizure-free interval
from epileptogenic

zone

Intracranial

E ES Epilepsy patients Epileptic seizure Intracranial

Bonn EEG database and the Bern-Barcelona EEG database verify
the performance of the proposed system for the classification of
epileptic EEG signals.

2 Materials and methods

In this section, the public dataset used in this paper is first
introduced. Secondly, the proposed approach of seizure detection
in EEG signals is elaborated. Finally, the experimental setup of this
paper is introduced.

2.1 Dataset and data pre-processing

In this paper, two datasets are used. The first dataset is the Bonn
EEG time series (Andrzejak et al., 2001). The dataset consists of
five sets (denoted A, B, C, D, and E in the original reference) of
single-channel EEG segments from healthy volunteers and epilepsy
patients, with a signal sampling frequency of 173.61 Hz and a
duration of 23.6 s per sample. In order to better distinguish the five
subsets, the names of the five subsets are changed to A (denoted
EO), B (denoted EC), C (denoted SOE), D (denoted SFE), and
E (denoted ES). Each set has 100 recordings and is described in
Table 1. Some samples are shown in Figure 1. All EEG signals
are digitally band-pass filtered over a range of 0.53∼40 Hz. We
used all the samples in this database for experiments to verify the
effectiveness of the proposed method in epilepsy detection. We
split the data to expand the size of the dataset (Varlı and Yılmaz,
2023). The data is divided into a segment of 512 sample points; the
distance between segments is 128 sample points, the last one sample
points of the data are deleted, and the final data is divided into 29
segments.

The second dataset is the Bern-Barcelona EEG database
(Schindler et al., 2012). The dataset consists of focal and non-
focal EEG segments during seizure-free periods from five epilepsy
patients, with a signal sampling frequency of 1,024 Hz and a
duration of 20 s per sample. Each class has 3,750 samples. If
the channel is in the epileptogenic region, its label is focal;
otherwise, its label is non-focal. The database is preprocessed as
follows: (1) Samples are down-sampled to 512 Hz; (2) All EEG
signals are digitally band-pass filtered over a range of 0.5∼150 Hz

using a fourth-order Butterworth filter and phase distortions
are minimized using forward filtering and backward filtering
(Schindler et al., 2012). We used all the samples in this database
for experiments to verify the effectiveness of the proposed method
in epileptic focus localization. Some samples are shown in Figure 2.
According to the previous works (Fasil and Rajesh, 2019), the data
is divided into a non-overlapping segment of 1,024 sample points
to expand the size of the dataset, and the final data is divided into
10 segments.

All the EEG signals in two datasets are normalized by the
following Equation 1 to keep all data at the same scale, helping to
improve recognition performance.

x̃ =
x− µ
σ

(1)

where x is the input signal, µ is the mean of the signal, and σ is the
standard deviation of the signal.

2.2 The proposed framework

The overview of the system based on the proposed HG-SANet
is shown in Figure 3. The HG-SANet consists of three modules:
EEG time-frequency feature extraction module based on HS and
two-channel parallel convolutional neural network (HS-PCNet),
nonlinear dynamic feature extraction module based on GRP and
residual networks (GRP-ResNet), and multi-domain feature fusion
module based on self-attention mechanism (MF-SANet). Below, we
first introduce the construction method of HS and GRP and then
introduce the network structure of each module.

2.2.1 AOMEMD-based Hilbert spectrum
In this part, we use AOMEMD and HT to construct Hilbert

spectrum. For a single-channel EEG signal x(t), the AOMEMD is
first used to decompose x(t) into a finite number of IMFs and a
residue. Therefore, x(t) can be represented as Equation 2:

x(t) =
∑nimf

k = 1
ck(t)+r(t) (2)

where ck(t) (k = 1, 2,..., nimf ) is the kth IMF and r(t) represents
the residue. The frequency of the nimf IMFs decreases from the
first to the nimf th in order. In this work, we use the AOMEMD
without the optimization strategy, which can save computation
time while maintaining performance (Sun et al., 2024). The
AOMEMD obtains IMFs through the following sifting process and
the details of EMD are referred to the work of Huang et al. (1998).

Step 1: Input the signal x(t). Initialize k= 1 and rk−1(t)= x(t).
The number of phases is np.

Step 2: Determine the amplitude ak and frequency f k of the kth
group masking signal vk(t) with resulted IMFs by applying EMD to
rk−1(t).

Step 3: Construct the kth group masking signal
vkj(t) = akcos [2πf kt+2π(j− 1)/np], (j = 1, 2,...,np). Obtain
the kth IMF ck(t) = [

∑np
j = 1 EMD1(rk−1(t)+vkj(t))]/np, where

EMD1 (·) represents to obtain the first IMF using EMD.
Step 4: Update rk(t) = rk−1(t)- ck(t) and k = k+1. If rk−1(t)

fulfils termination criterion, r(t) = rk−1(t); otherwise, go to step 2
and execute the loop.
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FIGURE 1

EEG samples from the Bonn EEG database. (A) Example of set EO. (B) Example of set EC. (C) Example of set SOE. (D) Example of set SFE. (E) Example
of set ES.

FIGURE 2

EEG samples from the Bern-Barcelona EEG database. (A) Example of focal EEG signals. (B) Example of non-focal EEG signals.

For the obtained ck(t) (k = 1, 2,..., nimf ) by AOMEMD,
we use the HT to obtain the instantaneous frequency fk(t) and
instantaneous amplitude ak(t) of ck(t). The formula for yk(t)
obtained by applying the HT to ck(t) is shown in Equation 3
(Huang et al., 1998):

yk (t) =
1
π

p.v.
∫
+∞

−∞

ck (τ )

τ − t
dτ (3)

where p.v. is the cauchy principal value. Then, fk(t) and ak(t) are
solved as shown in Equations 4, 5:

fk(t) =
1

2π
·

d
dt
(arctan

yk (t)
ck (t)

) (4)

ak (t) =
√

c2
k (t)+y2

k (t) (5)

Then the amplitude distribution of x(t) with frequency and time is
the Hilbert spectrum (HS), denoted as HS(f, t), expressed as follows
Equation 6:

HS(f ,t) = Re(
∑nimf

k = 1
ak(t)ei

∫ t
−∞

2πfk(τ )dτ) (6)

Where Re represents the real part and i is the imaginary unit.
HS(f, t) is a two-dimensional matrix with a time resolution equal
to the sampling period (Molla and Hirose, 2007). Examples of HS
are shown in Figure 4. As shown in Figure 4, the time-frequency
distribution of samples from set EC and set ES is quite different.

2.2.2 Grayscale recurrence plot
For a single-channel EEG signal x(t) of length TEEG, the RP is

computed as the following. First, according to Takens’ embedding
theory (Takens, 1985), a phase space is reconstructed for x(t), and
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FIGURE 3

The overview of the proposed epileptic seizure detection system. The cortical model in the figure is from the literature (Andrzejak et al., 2001).

FIGURE 4

Hilbert spectra from the set EC and set ES of the Bonn EEG database. (A) Hilbert spectrum from the set EC. (B) Hilbert spectrum from the set ES.

a phase point in this space is denoted as sn and n = 1, 2, ..., TEEG –
Tps (m–1), where Tps is the time delay and m is the embedding
dimension. Tps and m can be selected using mutual information
(MI) and false nearest neighbor (FNN) methods, respectively (He
et al., 2023). Second, the RP is defined according to Equation 7
below:

RP
(
n,j
)
=

{
1, ε ≥

∣∣∣∣sn − sj
∣∣∣∣

0, ε <
∣∣∣∣sn − sj

∣∣∣∣ ,
n,j = 1, 2,...,TEEG − Tps(m− 1) (7)

where ε is the distance threshold and || · || is the Euclidean norm.
By assigning a black dot to the RP element (n, j) of RP(n, j)= 1 and
a white dot to the RP element (n, j) of RP(n, j)= 0, a binary square
image of an RP can be obtained, as shown in Figures 5A,C.

Binary square images constructed using the threshold method
lose a lot of information, so we convert the RP to a grayscale

intensity image (named grayscale RP, GRP). The examples of GRP
are shown in Figures 5B,D. The GRP is defined according to
Equation 8 below (Chen and Shi, 2019):

GRP
(
n,j
)
=

∣∣∣∣sn − sj
∣∣∣∣−min(

∣∣∣∣sn − sj
∣∣∣∣ )

max
(∣∣∣∣sn − sj

∣∣∣∣)−min(
∣∣∣∣sn − sj

∣∣∣∣ ) ,
n,j = 1, 2,...,TEEG − Tps(m− 1) (8)

2.2.3 Network structure of the HG-SANet
In this section, the network structure in each module of the HG-

SANet is described in detail.
The first HS-PCNet module inputs the HS built in section

2.2.1 into a parallel two-channel CNN network containing
different convolutional kernels. CNN overcomes the limitation of
insufficient feature extraction ability of machine learning methods
through simultaneous shift calculation of convolutional kernel in
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FIGURE 5

Examples of recurrence plots and grayscale recurrence plots from the set EC and set ES. (A) Recurrence plot from set EC. (B) Grayscale recurrence
plot from set EC. (C) Recurrence plot from set ES. (D) Grayscale recurrence plot from set ES.

the time and frequency dimensions of feature maps (Zhang et al.,
2015). It has been used in time-frequency feature extraction of
EEG signals (Sui et al., 2021). Therefore, in this section, we use
CNN to further extract the high-level time-frequency features
of HS. For HS, we design a parallel two-channel CNN network
containing different types of convolutional kernels for feature
extraction. Two types of convolution kernels are set as [Nkernel, 1]
and [Nkernel, Nkernel]. As EEG signals comprise time-series data, we
construct a convolution kernel of size [Nkernel, 1] to make feature
extraction pay more attention to changes in the time domain. The
convolution kernel of size [Nkernel, Nkernel] slides synchronously
in the time domain and frequency domain dimensions of the
HS to retain its original time-frequency characteristics. The time-
frequency features are fully extracted by complementing the high-
dimensional features of the two branches. The structure and details
of the HS-PCNet module are shown in Figure 6A. The structure and
parameter settings in each CNN block of the HS-PCNet module
are shown in Table 2. In Table 2, the serial number corresponds
to the serial number in Figure 6A. Each CNN block has a batch
normalization layer and a ReLU activation layer between the 2D
convolution (Conv 2D) and max pooling layers, which are omitted
to save space. For the HS-PCNet module, the batch normalization
layer normalizes the input data in small batches to speed up the
training of the HS-PCNet and reduce the sensitivity to the network
initialization. The max pooling layer performs downsampling by
dividing the feature map into rectangular pooling regions and
calculating the maximum value for each region, which helps reduce
overfitting. The dropout layer makes the activation value of a
certain neuron stop working with a certain probability, helping to
prevent the HS-PCNet from overfitting (Krizhevsky et al., 2017).

A large number of studies have proved the advantage of residual
networks in the field of image recognition (He et al., 2015).
Therefore, the second GRP-ResNet module inputs the GRP in
section 2.2.2 into a CNN with residual connections to fully learn the
nonlinear dynamic features in the GRP. The convolutional module
in the GRP-ResNet can use the receptive field of neurons to extract
high-level local feature representation of the GRP, and the residual
module allows cross-layer propagation, which can avoid overfitting
caused by too many layers in the network, and will not lose
important information in the feature (He et al., 2015). The overall
structure of the GRP-ResNet module is shown in Figure 6B. The
structure and parameter settings in each residual block and CNN
block are shown in Table 3, and the serial number corresponds

to the serial number in Figure 6B. In each block, there is a batch
normalization layer after the 2D convolution (Conv 2D) layers,
which is omitted to save space.

Research shows that the self-attention mechanism (Vaswani
et al., 2017) can help the network select important features and
assign higher weights to these important features to improve the
performance of downstream tasks (Lin et al., 2022; Yang Q. et al.,
2023). Therefore, in the third MF-SANet, a feature fusion module
based on a multi-head self-attention mechanism is proposed to
assign optimal weights to different types of features obtained
by the HS-PCNet module and GRP-ResNet module to enhance
the information extraction capability of HG-SANet further. The
feature fusion formulas are calculated as follows. First, the features
extracted from the HS-PCNet module and GRP-ResNet module
are concatenated and the concatenated features are denoted as
Feature_initial. In the self-attention mechanism, there are three
kinds of important input queries, keys and values, denoted as QUE,
KEY , and VAL, respectively. They are calculated as Equations 9–11
(Lin et al., 2022):

QUEj = Feature_initial × WQUE
j (9)

KEY j = Feature_initial × WKEY
j (10)

VALj = Feature_initial × WVAL
j (11)

where j= 1, 2, ..., Nhead and Nhead is the number of attention heads.
WQUE

j , WKEY
j , and WVAL

j are the parameter matrices. Then, the
features of the final output are calculated as Equation 12:

Featurefinal = Concat(HEAD1, HEAD2, ..., HEADNhead )W
o

(12)
where Wo is a parameter matric and Concat(·) is the concatenating
operation. The HEADj is calculated as Equation 13

HEADj = softmax(
QUEjKEY j

T
√

dKEY
)VALj (13)

where dKEY is the dimension of keys.
In the classification layer based on the full connection layer,

the activation function after the full connection layer is the
softmax function.
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FIGURE 6

The structure and details of the HS-PCNet module and GRP-ResNet module. (A) The overall structure of the HS-PCNet module. (B) The overall
structure of the GRP-ResNet module.

2.3 Experiment configurations

2.3.1 Evaluation metrics
In this paper, epileptic EEG recognition is evaluated using

precision (P), recall (R), accuracy (Acc), and specificity (SP)
(Sriraam and Raghu, 2017; Gao et al., 2018). The sensitivity and
recall are calculated using the same formula, so we no longer
calculate sensitivity separately. Precision focuses on evaluating
the percentage of true positive samples in all predicted positive
samples. Recall focuses on the percentage of all positive samples
that are successfully predicted to be positive. Accuracy is the
proportion of correctly classified samples in total samples. The
specificity is the proportion of all negative samples predicted
correctly to all actual negative samples. These metrics are calculated
as shown in Equations 14–17.

P =
NTP

NTP + NFP
(14)

R =
NTP

NTP + NFN
(15)

Acc =
NTP + NTN

NTP + NTN + NFN + NFP
(16)

SP =
NTN

NTN + NFP
(17)

where NTP is the number of true positive (TP) samples, NTN is
the number of true negative (TN) samples, NFP is the number
of false positive (FP) samples, and NFN is the number of false
negative (FN) samples.

In the decision stage, the HG-SANet gives prediction labels for
all short segments of each sample. Finally, based on the prediction
labels of short segments, the majority voting method is used to
make the final prediction for the category of each test sample.

2.3.2 Model parameter setting
Parameters of the HG-SANet in the training process are set as

follows. Adaptive moment estimation (Adam) optimizer is used to
train the HG-SANet. The epoch used for training is 30, and the
mini-batch size used for each training iteration is 32. The learning
rate is 0.001. The cross-entropy loss function is used as the loss
function. We reduce the overfitting of the HG-SANet by adding the
regularization term of the weight to the loss function. The number
of heads in the attention module is set to 2. In the testing process,
the testing sample is input into the proposed system trained by the
training set as shown in Figure 3 to obtain the final recognition
result. The ten-fold cross-validation is used to obtain an unbiased
evaluation of classification performance.
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3 Results and discussion

3.1 Analysis of the proposed model

In this part, we designed several ablation experiments to
analyze the effects of each module of the model. First, based
on clinical applications and experiments conducted by scholars
in the Bonn dataset (Ma et al., 2021), we selected three typical
detection tasks to analyze our approach. The three typical tasks
are: (1) Two-class detection task: distinguish between set EO and
set ES, comparing the performance of methods to distinguish
between healthy subjects and epileptic patients. (2) Two-class
detection task: distinguish between set SOE and set ES, comparing
the performance of methods to distinguish between non-epileptic
interictal EEG and seizures in epileptic patients. (3) Three-class
detection task: distinguish between normal (include set EO and
EC), interictal activities (include set SOE and set SFE), and epileptic
seizures (include set ES). This three-class task can be used not only
to find epilepsy patients but also to automatically diagnose their
symptoms, which is of great significance.

TABLE 2 The structure and parameter settings in each CNN block of
HS-PCNet module.

Index CNN block

1 Conv 2D: Size (3× 1), Stride (1× 1), Filters (8)

Max Pooling: Size (3× 1), Stride (2× 2)

2 Conv 2D: Size (3× 1), Stride (2× 1), Filters (16)

Max pooling: Size (3× 1), Stride (2× 1)

3 Conv 2D: Size (3× 1), Stride (2× 1), Filters (8)

Max pooling: Size (3× 1), Stride (2× 2)

4 Conv 2D: Size (5× 5), Stride (2× 2), Filters (16)

Max Pooling: Size (5× 5), Stride (1× 1)

5 Conv 2D: Size (3× 3), Stride (1× 1), Filters (32)

Max pooling: Size (1× 1), Stride (1× 1)

6 Conv 2D: Size (3× 3), Stride (1× 1), Filters (64)

Max pooling: Size (3× 3), Stride (2× 2)

7 Conv 2D: Size (3× 3), Stride (1× 1), Filters (32)

Max pooling: Size (2× 2), Stride (2× 2)

8 Conv 2D: Size (3× 3), Stride (1× 1), Filters (16)

Max pooling: Size (2× 2), Stride (2× 2)

In order to verify the performance of each module, we designed
the following experiments: (1) Use the RQA method to extract the
structural features of RP (Pham, 2020) and input these features
into a SVM to classify three-class detection task (denotes as RQA-
SVM). (2) A fully connected classification layer is added to the
back of the GRP-ResNet module to classify the three-class detection
task (denoted as GRP-ResNet). (3) A fully connected classification
layer is added to the back of the HS-PCNet module to classify
the three-class detection task (denoted as HS-PCNet). (4) The
Hilbert Spectrum of the HS-PCNet module is replaced with a CWT-
based scalogram (denoted as CWT-PCNet). Then, a fully connected
classification layer is added to the back of the CWT-PCNet module
to classify the three-class detection task. The Morlet wavelet is
used as the mother wavelet (Varlı and Yılmaz, 2023). CWT is an
important method for EEG signal analysis. We designed the fourth
experiment to compare AOMEMD method and CWT method.
(5) The features extracted from the HS-PCNet module and GRP-
ResNet module are concatenated and the concatenated features
are input to a fully connected classification layer to classify three-
class detection task, denotes as HG-SANet without self-attention
mechanism (HG-SANet-wo). (6) Use the HG-SANet to classify all
three typical tasks. The classification results are shown in Table 4
and Figure 7.

Figure 7 shows the results of the ablation experiments designed
in this section for the three-class detection task. The average results
of the ten-fold cross-validation method are shown in Figure 7.
As shown in Figure 7, each module can detect seizures, and the
HG-SANet gives the best results in terms of overall performance.
The best result of all the 10-fold cross-validation results is 100%.
Combining the nonlinear features based on GRP-ResNet with
the time-frequency features based on HS-PCNet improves the
average accuracy, precision, and recall of the model. Moreover,
the average accuracy, precision, and recall of the fusion model
with added attention mechanism are increased by 0.8%, 0.67%,
and 0.7%, respectively, compared with the fusion model without
added attention mechanism. The results in Figure 7 demonstrate
the validity of the proposed HG-SANet. The performance of RQA-
SVM is the worst. The dimension of the RQA features is only
eight. The information expression ability of RQA features is limited.
The performance of CWT-PCNet is worse than HS-PCNet. For set
ES, the recall of CWT-PCNet is the worst, only 86%. In Table 4,
we compare the average performance of the proposed HG-SANet
under different classification tasks. As shown in Table 4, in the two-
class detection task of identifying set EO and set ES, our method
achieves 100% recognition rate.

TABLE 3 The structure and parameter settings in each residual block of GRP-ResNet module.

Name Residual block 1 Residual block 2 Residual block 3 CNN block 1

Details Conv 2D: Size (3× 3), Stride
(1× 1), Filters (32)

Conv 2D: Size (3× 3), Stride
(2× 2), Filters (64)

Conv 2D: Size (3× 3), Stride
(2× 2), Filters (128)

Conv 2D: Size (3× 3), Stride (2× 2),
Filters (16)

ReLU ReLU ReLU ReLU

Conv 2D: Size (3× 3), Stride
(1× 1), Filters (32)

Conv 2D: Size (3× 3), Stride
(1× 1), Filters (64)

Conv 2D: Size (3× 3), Stride
(1× 1), Filters (128)

Max pooling size (3× 3), Stride
(2× 2)

Name CNN block 2 CNN block 3 CNN block 4 –

Details Conv 2D: Size (1× 1), Stride
(1× 1), Filters (32)

Conv 2D: Size (1× 1), Stride
(2× 2), Filters (64)

Conv 2D: Size (1× 1), Stride
(2× 2), Filters (128)

–
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TABLE 4 Classification results of the proposed HG-SANet for the three typical tasks.

Cases Class P (%) R (%) Acc (%) Mean P (%) Mean R (%)

Set EO vs. Set ES Set EO 100 100 100 100 100

Set ES 100 100

Set SOE vs. Set ES Set SOE 99 100 99.50 99.50 99.55

Set ES 100 99.09

Set (EO, EC) vs. Set (SOE, SFE) vs. Set ES Set (EO, EC) 98 98.54 98.20 98 98.56

Set (SOE, SFE) 99 97.15

Set ES 97 100

FIGURE 7

Results of ablation experiments in the three-class detection task of the Bonn EEG time series. (A) Precision for each of the three classes. (B) Recall
for each of the three classes. (C) Overall results of the three classes.

TABLE 5 Comparison of different methods on the Bonn EEG time series database.

Case References Methods Acc (%) P (%) R (%) SP (%)

Set SOE vs. Set ES Zhao et al. (2020) Raw EEG + CNN 98.02 – – –

Zeng et al. (2019) Entropy of visibility heights of
hierarchical neighbors +LS-SVM

98.5 – – –

Türk and Özerdem
(2019)

CNN + Scalogram 98.5 – 98.01 98.98

Peng et al. (2021) Dictionary learning with homotopy 99 – 98 100

Proposed HG-SANet 99.50 99.50 99.55 99.50

Set EO vs. Set ES Jang and Lee (2020) Wavelet transform+ PSR+ neural
network with weighted fuzzy

membership

97.5 – 95 100

Varlı and Yılmaz
(2023)

2D CNN + CWT + LSTM 98.97 98.98 98.97 98.97

Fu et al. (2015) HHT+SVM 99.13 – – –

Türk and Özerdem
(2019)

CNN + Scalogram 99.5 – 99.0 100

Zhao et al. (2020) Raw EEG + CNN 99.52 – – –

Proposed HG-SANet 100 100 100 100

Set (EO, EC) vs. Set
(SOE, SFE) vs. Set ES

Ullah et al. (2018) Pyramidal one-dimensional CNN 96.27 97.00 95.00 98.00

Khan et al. (2021) Hilbert vibration decomposition
+LSTM

96.00 95.77 95 –

Zhao et al. (2020) Raw EEG + CNN 96.97 – – –

Varlı and Yılmaz
(2023)

2D CNN + CWT + LSTM 97.3 97.31 97.30 98.35

Proposed HG-SANet 98.20 98 98.56 98.55
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TABLE 6 Comparison of different methods on the Bern-Barcelona EEG database.

References Methods Acc (%) P (%) R (%)

Sharma et al. (2015) Entropy +EMD + SVM 87.00 87.20 90.00

Fasil and Rajesh (2019) Exponential energy features + SVM 89.00 – –

Sriraam and Raghu (2017) Multi-features + SVM 92.15 89.21 94.56

Gao et al. (2018) Joint time-domain features + auto-regressive linear model +
Randomized Power Martingale

– 93.75 93.75

Chen et al. (2019) STFT + Bhattacharyya distance – 88.68 94.00

Zhao et al. (2021) Multi-feature Fusion + FCNN 93.44 94.28 92.50

Sui et al. (2021) Time-Frequency Hybrid Network 94.30 94.30 94.30

Yang Y. et al. (2023) Multi-level temporal-spectral features + FCNN 94.50 94.20 95.00

Proposed HG-SANet 95.60 95.61 95.60

3.2 Comparison with SOTA methods for
the classification of epileptic EEG signals

To further validate the effectiveness of the proposed method,
we compare the proposed HG-SANet with other state-of-the-art
(SOTA) methods on the Bonn EEG time series and the Bern-
Barcelona EEG database. The results of the Bonn EEG time series
are shown in Table 5. All the comparison methods include deep
learning methods and traditional machine learning methods. The
results of the proposed HG-SANet in Table 5 are the mean of
the 10-cross validation results. As shown in Table 5, the proposed
HG-SANet performs best on all the tasks. The proposed HG-
SANet has a high recall value, which indicates that the method
proposed in this paper can detect the seizure signal as much as
possible, which is of great significance for diagnosing the disease.
The proposed model can distinguish not only the EEG data of
epileptic patients and non-epileptic persons but also the EEG
data from epileptic seizures and seizure-free intervals in epileptic
patients. When conducting comparative experiments, it was also
found that deep learning-based methods outperformed other types
of methods.

The results of the Bern-Barcelona EEG database are shown in
Table 6. A binary classification task is performed on this database
(focal vs. non-focal). The comparison methods include deep
learning, traditional machine learning, and statistical modeling
methods. The results of the proposed HG-SANet in Table 6
are the mean of the 10-cross validation results. As seen from
Table 6, the performance of the proposed method in epileptic
focal location is better than that of all the compared methods.
It is also seen on the Bern-Barcelona EEG database that deep
learning methods outperform other methods. The results of the
two datasets show that the proposed method can classify multiple
brain states associated with epilepsy. The proposed method can be
used in automatic epileptic seizure detection, the epileptic focal
location, and other related applications in diagnosing epilepsy
diseases.

4 Conclusion

In this study, a novel model named HG-SANet is developed for
the automated detection of epileptic EEG signals. This innovative

model proposes a multi-channel parallel feature extraction module
based on multi-domain features and a feature fusion module
based on an attention mechanism. Through many experiments,
the proposed network structure can capture the non-stationary
nonlinear properties of epilepsy EEG well and realize the automatic
and high-accuracy detection of epileptic seizures, epileptic focus
localization, and EEG classification. The method proposed in this
paper is of great significance to detecting and warning brain disease.
In the future, we will research other epilepsy-related issues, such
as seizure prediction, and further reduce the time complexity of
the method and make the method better applied to real-time
seizure prediction.
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Human motion detection technology holds significant potential in medicine, 
health care, and physical exercise. This study introduces a novel approach to 
human activity recognition (HAR) using convolutional neural networks (CNNs) 
designed for individual sensor types to enhance the accuracy and address 
the challenge of diverse data shapes from accelerometers, gyroscopes, and 
barometers. Specific CNN models are constructed for each sensor type, 
enabling them to capture the characteristics of their respective sensors. These 
adapted CNNs are designed to effectively process varying data shapes and 
sensor-specific characteristics to accurately classify a wide range of human 
activities. The late-fusion technique is employed to combine predictions from 
various models to obtain comprehensive estimates of human activity. The 
proposed CNN-based approach is compared to a standard support vector 
machine (SVM) classifier using the one-vs-rest methodology. The late-fusion 
CNN model showed significantly improved performance, with validation and 
final test accuracies of 99.35 and 94.83% compared to the conventional SVM 
classifier at 87.07 and 83.10%, respectively. These findings provide strong 
evidence that combining multiple sensors and a barometer and utilizing an 
additional filter algorithm greatly improves the accuracy of identifying different 
human movement patterns.

KEYWORDS

human body motion, inertial measurement unit, barometer, fall detection, machine 
learning, convolutional neural network, sensors, sensor networks

1 Introduction

The elderly demographic is rapidly expanding and is expected to accelerate significantly 
in the 21st century. This projection is based on an analysis conducted by the United Nations 
(UN) examining global population aging trends from 1950 to 2050. Based on the UN, the 
population of Saudi Arabia will increase to 40 million by 2050, with a quarter of this population 
(i.e., 10 million individuals) aged 60 years or older. The population’s age distribution in 
Saudi Arabia during the period 1950–2050 is depicted in Figure 1.

Cohorts aged 60–79 years and those aged above 80 years are currently experiencing 
particularly pronounced growth. In addition, there has been a consistent increase of 
approximately 5% in the number of individuals aged 60 years and over from 1950 to 2015, as 
illustrated in Figure 2.

OPEN ACCESS

EDITED BY

Deepika Koundal,  
University of Petroleum and Energy Studies, 
India

REVIEWED BY

Vatsala Anand,  
Chitkara University, India
Manoj Diwakar,  
Graphic Era University, India

*CORRESPONDENCE

Mohammed Alarfaj  
 mkalarfaj@kfu.edu.sa

RECEIVED 27 April 2024
ACCEPTED 17 June 2024
PUBLISHED 27 June 2024

CITATION

Alarfaj M, Al Madini A, Alsafran A, Farag M, 
Chtourou S, Afifi A, Ahmad A, Al Rubayyi O,  
Al Harbi A and Al Thunaian M (2024) Wearable 
sensors based on artificial intelligence models 
for human activity recognition.
Front. Artif. Intell. 7:1424190.
doi: 10.3389/frai.2024.1424190

COPYRIGHT

© 2024 Alarfaj, Al Madini, Alsafran, Farag, 
Chtourou, Afifi, Ahmad, Al Rubayyi, Al Harbi 
and Al Thunaian. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 27 June 2024
DOI 10.3389/frai.2024.1424190

81

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1424190&domain=pdf&date_stamp=2024-06-27
https://www.frontiersin.org/articles/10.3389/frai.2024.1424190/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1424190/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1424190/full
mailto:mkalarfaj@kfu.edu.sa
https://doi.org/10.3389/frai.2024.1424190
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1424190


Alarfaj et al. 10.3389/frai.2024.1424190

Frontiers in Artificial Intelligence 02 frontiersin.org

Human activity recognition (HAR), a research hotspot in 
academia and industry aiming to further ubiquitous computing and 
human–computer interactions, is utilized in healthcare, fitness, 
gaming, tactical military operations, and indoor navigation. Wearable 
sensors and external equipment (e.g., cameras and wireless RF 
modules) represent two basic HAR systems. In sensor-based HAR, 
sensors are worn on the body to capture segmented and precise sensor 
signal patterns (Alarfaj et al., 2021).

There are many proposed machine learning (ML) algorithms for 
HAR prediction, with the five main types of algorithms as follows: 
algorithms based on fuzzy logic (FL) (Medjahed et al., 2009; Schneider 
and Banerjee, 2021), algorithms based on probabilities (Maswadi 
et al., 2021; Schneider and Banerjee, 2021), algorithms based on rules 
(Hartmann et al., 2022; Radhika et al., 2022), algorithms based on 
distance (Agac et al., 2021; Fahad and Tahir, 2021), and optimization-
based approaches (Muralidharan et al., 2021; Nguyen et al., 2021). The 
six actions recognized in HAR, including exercise, lying down, sitting, 
standing up, walking, and sleeping, are recognized by fuzzy rule-based 
inference systems using FL (Medjahed et al., 2009). Recently, a new 
method for HAR using first-person video and fuzzy rules for inference 
was reported (Schneider and Banerjee, 2021).

This study presents a novel methodology for enhancing HAR 
using sensor-specific convolutional neural networks (CNNs). 
Each CNN is designed to the unique data characteristics and 

shape of a particular sensor type (accelerometer, gyroscope, or 
barometer), facilitating effective processing and accurate 
classification of a wide range of human activities. The 
methodology incorporates a late-fusion technique to integrate 
predictions from these diverse models, generating a comprehensive 
and accurate estimation of human activity. This approach 
addresses the limitations of single-model methods, using the 
strengths of individual sensor-specific CNNs for 
improved performance.

The novelty of this study lies in developing the sensor-specific 
CNN architecture, which enables the effective capture and 
utilization of distinctive features inherent to each sensor type, 
enhancing activity classification accuracy. This research overcomes 
the constraints of single-model approaches by implementing the 
late-fusion technique, which aggregates predictions from 
individual CNNs to comprehensively and accurately estimate 
human activity.

This study significantly contributes to the field of HAR by 
demonstrating the superior performance of the proposed late-fusion 
CNN model compared to the traditional support vector machine 
(SVM) classifier. This model’s enhanced accuracy and robustness can 
revolutionize healthcare applications, enabling advanced monitoring, 
early detection of health issues, and personalized interventions for 
improved patient outcomes.

FIGURE 1

The Saudi Arabian population by age group is in the thousands (Abusaaq, 2015).

FIGURE 2

Share of the population aged over 60  years in Saudi Arabia (Abusaaq, 2015).
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2 Study background

The increased utilization of wearable sensors has stimulated 
notable progress in HAR. Although early-fusion approaches have been 
prominent in industry, late-fusion methods are becoming more 
popular because of their potential for modularity, interpretability, and 
enhanced performance in specific situations. This section examines 
prominent late-fusion techniques for HAR and contrasts them with 
the CNN-based late-fusion method developed in this study. Many 
studies have investigated late-fusion methods for HAR, employing 
various sensor modalities and fusion algorithms. Hammerling and 
Rosipal (2013) used late fusion with support vector machines (SVMs) 
on accelerometer and gyroscope data for classification HAR, which 
resulted in good accuracy but limited interpretability. Yang et  al. 
(2017) introduced a majority voting method for late fusion, which 
revealed promising outcomes but can have neglected intricate 
interconnections among different modalities. Wang et  al. (2016) 
employed a layered generalization model to integrate data from an 
accelerometer, a gyroscope, and a barometer. Although this approach 
yielded better results than utilizing each model individually, more 
processing resources were required. Zhang et al. (2019) combined data 
from various modalities before inputting them into a deep neural 
network, resulting in high accuracy. However, this approach can have 
overlooked inter-modal relationships. Sun et al. (2018) introduced a 
hybrid method integrating early- and late-fusion techniques with deep 
learning (DL) models. This strategy demonstrated better results than 
fusion strategies; however, the fusion architecture must 
be meticulously designed. Yu et al. (2020) employed early fusion to 
extract features and late fusion for decision-making using a deep 
neural network. Although the model showed good accuracy and 
robustness, its complexity increased. The CNN-based late-fusion 
approach proposed in this study presents numerous advantages 
compared to previous research. Utilizing separate CNNs for each 
sensor modality enables customized extraction of features specific to 
each data type to capture more comprehensive and distinguishing 
information than generic techniques that fuse features at a higher 
level. The study utilizes a late-fusion technique where the predictions 
from separate CNN models for each sensor (accelerometer, gyroscope, 
and barometer) are combined at the decision level. Each CNN model 
processes its sensor input independently and generates predictions for 
human activity. The individual predictions are aggregated through a 
weighted average or voting mechanism to get the final prediction.

The widespread adoption and advancement of neural networks 
have led to the displacement of conventional methods by DL 
techniques in solving HAR problems. Many studies have employed 
CNNs to perform activity categorization tasks using sensor data 
(Moya Rueda et al., 2018; Demrozi et al., 2020; Mahmud et al., 2021; 
Sikder et al., 2021). In addition, Sikder et al. (2021) evaluated the 
effectiveness of one-dimensional and two-dimensional (2D) 
sequential CNN models for classifying HAR signals. The results 
indicated that 2D CNNs yield superior results and surpass traditionally 
created models. The DL models were developed to classify HAR tasks. 
Xu et al. (2019) introduced the InnoHAR model, which combines an 
inception neural network with a recurrent neural network. 
iSPLInception drew inspiration from Google’s Inception-ResNet 
architecture and delivered superior predicted accuracy with reduced 
device resource requirements for signal-based HAR (Ronald et al., 
2021). Hybrid models incorporating long short-term memory (LSTM) 

and bi-directional LSTM have become increasingly popular in recent 
studies for human activity classification as they are adept at extracting 
spatial and temporal properties (Hayat et al., 2022; Khan et al., 2022; 
Li and Wang, 2022; Luwe et  al., 2022). Zhao et  al. (2022) used a 
hierarchical LSTM CNN to classify farmers’ behavior in agriculture. 
Zhang et al. (2017) addressed gesture recognition by employing two 
types of neural networks: 3DCNN and ConvLSTM. In addition, many 
studies have used DL and ML to predict HAR (Almabdy and Elrefaei, 
2019; Xu et al., 2019; Mutegeki and Han, 2020; Zheng et al., 2021).

3 Materials and methods

The primary objective of this study is to develop a continuous 
human movement monitoring system capable of acquiring user 
movement data and accurately and efficiently transmitting them to a 
remote server. A wearable device in the form of a bracelet is designed 
to serve three primary functions: monitoring human body movement, 
fall detection, and localization. In addition, the bracelet can measure 
heart rate, pulse oximetry, and body temperature. In addition, an 
alarm system is integrated to become activated in response to concerns 
regarding declines in the user’s vital signs. This bracelet-type wearable 
device is selected for several compelling reasons: first, its accuracy 
remains unaffected by external factors such as weather, location, and 
time; second, the utilization of compact electronic components 
contributes to its low-power consumption; and third, it bears extensive 
adaptability, including minimal distance limitations, the capability to 
process and analyze substantial volumes of data, and user-friendly 
portability. Figure 3 displays the proposed framework of the HAR.

3.1 Hardware

As the detection of movement patterns can be  enhanced by 
combining multiple sensors, this study employs five distinct sensors: 
an inertial measurement unit (IMU), a barometer, a human body 
temperature sensor, a pulse-oximeter sensor, and an active buzzer. 
Each sensor is assigned a specific role with the goal of increasing the 
accuracy and precision of pattern detection. All these sensors are 
interconnected with a single microcontroller. The hardware block 
diagram is depicted in Figure 4.

3.1.1 Arduino Nano RP2040 connect
The Arduino Nano RP2040 Connect device is designed to 

encapsulate the Raspberry PiRP2040 microcontroller in a compact 
nano-sized form. The device uses both Bluetooth® and WiFi 
connectivity and possesses an accelerometer and gyroscope. In 
addition, it incorporates artificial intelligence technologies. Figure 5 
displays the Arduino Nano RP2040 type utilized to develop the 
proposed system.

3.1.2 IMU
IMUs are primarily employed in various devices for measuring 

velocity, orientation, and gravitational force. In its prior technological 
iteration, an IMU comprises two sensor types: accelerometers and 
gyroscopes. Accelerometers are utilized to quantify inertial acceleration, 
whereas gyroscopes measure angular rotation. Typically, both sensors 
provide three degrees of freedom to measure along three axes. 
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FIGURE 3

Framework of the HAR system.
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FIGURE 4

Hardware block diagram.

FIGURE 5

Arduino Nano RP2040.
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Capacitive accelerometers, the most frequently used type, rely on 
changes in electrical capacitance to determine acceleration. When 
subjected to acceleration, the distance between the capacitor plates 
within the sensor changes as the diaphragm moves. Within the IMU, 
the gyroscope quantifies instantaneous angular velocity, typically 
expressed in units of degrees per second. The IMU device that is utilized 
in the framework of the proposed system is presented in Figure 6.

3.1.3 Barometer
Barometers are highly responsive devices employed to measure 

atmospheric pressure at a given location, in which the fluctuations in 
air pressure at varying altitudes are employed to determine the 
changes in elevation at specified points. The ability of an IMU to 
precisely assess changes in height is susceptible to the influence of 
weight. Therefore, using a barometer facilitates quantifying vertical 
displacement within the system. The barometer device used in the 
proposed system is depicted in Figure 7.

3.1.4 Temperature sensor (MAX30205) device
MAX30205 employs a negative temperature coefficient thermistor 

to measure the temperature by detecting variations in resistance in 
response to temperature fluctuations. This thermistor is placed in 
direct contact with the target object, typically the skin, and its resistance 
is measured by passing a small current through it and recording the 
resultant reduction in voltage. In addition, the sensor incorporates a 
digital filter and integrator to process the thermistor output, yielding a 
high-resolution digital representation of the measured temperature. 
The digital filter and integrator employ oversampling and noise-
shaping techniques to enhance the precision and resolution of the 
temperature measurement. The MAX30205 sensor used to measure 
the temperature in the proposed system is depicted in Figure 8.

3.1.5 Oximeter pulse sensor device
The oximeter pulse sensor operates on photoplethysmography 

(PPG) principles, a volumetric measurement technique achieved 
through optical means. PPG quantifies oxygen volume by analyzing 
variations in light absorption within the body. The device aids in 
monitoring respiratory levels and various circulatory parameters in 
the blood. In addition, it enables the calculation of heart rate based on 
peaks detected in the signal (Yang et al., 2017). Figure 9 illustrates the 
oximeter pulse sensor used in the proposed system.

3.2 Datasets

3.2.1 FallAllD: movement pattern detection 
standard data

FallAllD constitutes a comprehensive open dataset that 
encompasses human falls and activities of daily living, as simulated by 
15 participants (Saleh et al., 2021). The dataset comprises 26,420 files, 
collected via three data loggers worn on the users’ waist, wrist, and 
neck. The motion signals were captured using an accelerometer (Acc), 
gyroscope (Gyr), and barometer (Bar); the magnetometer was 
excluded from this study. These sensors were efficiently configured to 

FIGURE 9

Sensor (MAX30102).

FIGURE 6

Inertial measurement unit.

FIGURE 7

Barometer device.

FIGURE 8

MAX30205 device.
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align with potential applications such as fall detection, prevention, and 
HAR (Saleh et al., 2021). Table 1 lists the features of the dataset.

3.2.2 Custom collected data: localization
A total of 260 samples were collected from the three sensor types: 

Acc, Gyr, and a received signal strength indicator (RSSI). Every sample 
included a sequence of sensor readings with corresponding 
timestamps. In addition, the collection consisted of 111 examples 
linked to specific locations, as localization depended on these labeled 
instances as a definitive data source. The features of the customized 
dataset collected from the proposed framework are listed in Table 2.

3.3 Preprocessing

This section comprehensively explains the feature engineering and 
preprocessing procedures employed in the current methodology, 
emphasizing the transformation of raw sensor data into meaningful 
and actionable features. Figure 10 displays the preprocessing approach 
for enhancing the proposed system. The data from the various sensors 
was processed to account for differing data shapes and sensor-
specific characteristics:

 1 Data cleaning: The raw sensor data was first cleaned by 
converting string representations of lists into actual lists using 
the ast.literal_eval function.

 2 Feature extraction: Statistical features (mean, standard 
deviation, and range) were obtained from the accelerometer, 
gyroscope, and barometer data. This was done using separate 
functions for each sensor type:

 o calculate_features: Used for accelerometer and gyroscope data, 
which have X, Y, and Z axes.

 o calculate_features_rssi: Used for barometer data, which has 
pressure and temperature readings.

 3 Combined features: The extracted features from all three 
sensors were then combined into a single feature array for each 
sample. This allowed the data to be input for the ML algorithms.

The preprocessing did differ slightly between sensor types due to 
the different data shapes and characteristics:

 • Accelerometer and gyroscope: These sensors have three axes (X, 
Y, and Z), so the calculate_features function calculated the mean, 
standard deviation, and range for each axis.

 • Barometer: This sensor has two readings (pressure and 
temperature), so the calculate_features_rssi function calculated 
the mean, standard deviation, and range for each reading.

However, the overall preprocessing approach was similar for all 
sensor types, involving data cleaning and feature extraction to prepare 
the data for analysis by the ML models.

3.3.1 Data cleaning
The ast.literal_eval function is employed to convert textual 

representations of lists in the “Acc,” “Gyr,” and “RSSI” columns back 
into actual lists. The calculate_features function is defined and 
implemented to obtain statistical features (mean, standard deviation, 
and range) from accelerometer and gyroscope data. In addition, the 
calculate_features_rssi function is defined and applied to extract the 
same statistical features from the RSSI data.

TABLE 1 Features of the standard FallAllD dataset.

Feature name Data type Feature type Description Sensor

Acc X Float Numerical, Continuous X-axis acceleration Accelerometer

Acc Y Float Numerical, Continuous Y-axis acceleration Accelerometer

Acc Z Float Numerical, Continuous Z-axis acceleration Accelerometer

Gyr X Float Numerical, Continuous X-axis rotational speed Gyroscope

Gyr Y Float Numerical, Continuous Y-axis rotational speed Gyroscope

Gyr Z Float Numerical, Continuous Z-axis rotational speed Gyroscope

RSSI Integer Numerical, Continuous
Received signal strength indicator (RSSI) 

(Wi-Fi/Bluetooth signal power)
Wireless Communication

TABLE 2 Features of the customized FallAllD dataset.

Feature name Data type Feature type Description Sensor

Acc X Float Numerical, Continuous X-axis acceleration Accelerometer

Acc Y Float Numerical, Continuous Y-axis acceleration Accelerometer

Acc Z Float Numerical, Continuous Z-axis acceleration Accelerometer

Gyr X Float Numerical, Continuous X-axis rotational speed Gyroscope

Gyr Y Float Numerical, Continuous Y-axis rotational speed Gyroscope

Gyr Z Float Numerical, Continuous Z-axis rotational speed Gyroscope

Bar Pressure Float Numerical, Continuous Atmospheric pressure Barometer

Bar Temperature Float Numerical, Continuous Temperature Barometer
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3.3.2 Feature extraction approach
The calculate_features function is created, which derives statistical 

features from the sensor data, including the mean, standard deviation, 
and range for each axis (X, Y, and Z for Acc and Gyr; X and Y for Bar). 
This function is used on the preprocessed Acc, Gyr, and Bar data to 
derive their characteristics.

3.3.3 Combined features
The retrieved features from the Acc, Gyr, and Bar data are 

combined into one feature array to be  used as an input for 
ML algorithms.

3.4 Classification algorithms

3.4.1 SVM
SVM is a widely used supervised learning method that can 

be applied to classification and regression tasks. Primarily, it is utilized 
for classification tasks in the field of ML. The objective of the SVM 
method is to establish an optimal line or decision boundary that can 
divide an n-dimensional space into various classes, enabling accurate 
categorization of incoming data points in the future. The optimal 
decision boundary is referred to as a hyperplane. SVM aims to identify 
a hyperplane with the largest margin, namely, the greatest distance 
between data points from different classes. Increasing the margin 
distance enhances the classification confidence of subsequent 
data points.

A standard SVM classifier using the one-vs-rest methodology was 
employed as a baseline for evaluating the performance of the proposed 
late-fusion CNN model in HAR. The SVM was selected as the baseline 
due to specific considerations.

 • SVM is a well-established and commonly utilized ML technique 
for classification tasks, such as HAR. Its performance 
characteristics are widely recognized, making it a suitable 
benchmark for assessing new techniques.

 • SVM is easier to develop and understand than more complex DL 
models such as CNNs. This facilitates comprehension of the 
factors contributing to performance disparities between the 
two strategies.

 • The one-vs-rest methodology is a popular technique for modifying 
binary classifiers such as SVM for multiclass tasks like HAR. This 
enables a balanced comparison between SVM and the late-fusion 
CNN model, both intended for multiclass classification.

3.4.2 Random forest tree
Random forest tree (RFT) is an ML method utilized to address 

regression and classification tasks. It employs ensemble learning, 

which integrates multiple classifiers to address intricate issues. The 
RFT algorithm comprises several decision trees. The “forest” created 
by the RF algorithm is trained using bagging or bootstrap aggregating. 
Bagging is an ensemble meta-algorithm that enhances the precision 
of ML methods. The RF algorithm builds an ensemble of decision 
trees, typically created via a method called “bagging” or “bootstrap 
aggregating.” This process involves creating numerous subsets of the 
original dataset (with the potential for duplication) and training a 
decision tree on each subset. Each tree in the forest is built using a 
bootstrap sample, where a sample is selected from the training set with 
replacement. In addition, when a node is divided during the tree 
construction, the selected split is no longer the most optimal among 
all the features. Instead, the selected split is the most efficient among 
a randomly selected subset of the attributes. Utilizing random subsets 
for training, encompassing both samples and characteristics, ensures 
that the trees within the forest are uncorrelated. By utilizing a forest 
model instead of individual decision trees, the resilience and accuracy 
of the model are improved.

3.4.3 K-nearest neighbors algorithm
The K-nearest neighbors (K-NN) method categorizes new cases 

by comparing their resemblance to existing cases and placing the 
former in the most similar category. The K-NN algorithm retains all 
the existing data and categorizes a new point by assessing its similarity. 
When fresh data are introduced, they can be efficiently categorized 
into a suitable group by utilizing the K-NN method. First, the value K 
is chosen for the neighbors. Then, the Euclidean distance of K 
neighbors is computed. The K-nearest neighbors are selected based on 
the computed Euclidean distance. K-NN functions by determining the 
data points in the training set closest to the new point requiring 
classification. The letter “K” in K-NN represents the nearest neighbors 
to consider. For example, when the value of K is set to 5, the algorithm 
looks for the five nearest neighbors of the new data point. Once the 
nearest neighbors are identified, the algorithm performs a majority 
vote for categorization purposes, allocating the new point to the class 
most frequently observed among its neighboring points. When 
performing regression tasks, it is feasible to determine the mean or 
median of the adjacent data points. The word “nearest” commonly 
refers to calculating the distances among locations utilizing metrics 
such as Euclidean, Manhattan, or Hamming distances.

3.4.4 CNNs
The studies were conducted utilizing two distinct datasets: the 

FallAllD dataset and a custom dataset. The FallAllD dataset, referred 
to as the standard dataset, was primarily used for HAR. When 
developing the CNN models for HAR, the raw sensor readings from 
the Acc, Gyr, and Bar were used directly without feature extraction. In 
contrast, when using the FallAllD dataset for SVM comparison, 
feature extraction was performed. The custom dataset was specifically 

FIGURE 10

Preprocessing steps.
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used for localization tasks, where feature extraction was also applied 
for traditional machine learning algorithms.

The adapted CNNs were created to capture the distinct 
characteristics of each sensor type:

Accelerometers measure acceleration to detect changes in speed 
and direction. The CNN model for accelerometers was developed to 
detect variations crucial for recognizing actions such as walking, 
running, and falling.

Gyroscopes measure angular velocity to detect rotational 
movements. The CNN model for gyroscopes was created to detect 
rotational movements, which is crucial for recognizing actions such 
as turning and twisting.

Barometers measure air pressure to detect variations in height. 
The CNN model for barometers was created to detect variations in 
height, which is crucial for recognizing actions such as ascending 
stairs or descending.

Each CNN model was specifically constructed to efficiently 
process the specific data shapes and characteristics associated with its 
respective sensors. The primary goal of these models was to accurately 
classify a broad spectrum of human activities. A window of 13 s 
instead of 20 s was selected for several reasons. An excessively long 
sliding window is at risk of encompassing extraneous behaviors, 
potentially confusing the classifier. In contrast, an extremely short 
window can fail to adequately capture all stages of falls. The suggested 
duration of 13 s is optimal, as it offers a reasonable timeframe for 
capturing all stages of falls and HAR activities (Zhang et al., 2019).

The design of the CNN models was impacted by these 
characteristics in multiple ways:

 • The input shape of each CNN model was designed to correspond 
with the data shape of the specific sensor it was built for. The 
input shape of the accelerometer CNN model was (2,899, 260, 3), 
representing 2,899 samples of 260 time steps with three axes (x, 
y, and z).

 • The filter size of each CNN model was selected to capture the 
pertinent properties of its corresponding sensor. The filter size of 
the accelerometer CNN model was selected to capture the brief 
alterations in acceleration typical of human motion.

 • The number of layers in each CNN model was selected to strike 
a compromise between the model’s complexity and its capacity 
to learn the pertinent information. The accelerometer CNN 
model featured fewer layers than the gyroscope CNN model due 
to the simpler nature of the accelerometer data.

The data initially obtained from the Acc and Gyr sensors exhibited 
a sampling frequency of 238 Hz. A deliberate decision was made to 
reduce the sampling frequency of these sensors to 20 Hz to enhance 
the ability of the system to detect temporal variations and facilitate a 
more detailed feature analysis. This adjustment extended the duration 
of each sensor measurement by an equivalent of approximately 13 s of 
recorded data. Hence, the dimensions of the Acc and Gyr data 
matrices transformed to (2,899, 260, 3), with each of the 260 samples 
representing a duration of 13 s at a sampling rate of 20 Hz. This 
modification of the CNNs facilitated their ability to analyze sequences 
of sensor data over a longer timeframe, yielding an enhanced capacity 
to detect nuanced activity patterns. The Bar sensor was designed to 
measure the barometric pressure and temperature, acquiring data at a 
sampling frequency of 10 Hz. Hence, each recorded sensor reading 

corresponded to the selected time window of 13 s. This produced a 
modified data matrix with dimensions (2,899, 130, 2). In this case, the 
130 samples represented a duration of 13 s at a frequency of 10 Hz, 
creating 130 samples. This adjustment enabled the CNNs to focus on 
variations in barometric pressure and temperature within the specified 
timeframe. This study ensured that the CNN models can efficiently 
process and extract significant information from the sensor readings 
by employing this method to modify the sensor data. This conversion 
was essential for data preprocessing, enhancing the effectiveness of the 
HAR system. Figure 11 presents the structure of the CNN model.

3.5 Late fusion technique

To capitalize on the strengths of different sensor modalities, 
namely the Acc, Gyr, and Bar, a late-fusion approach was employed in 
our CNN models. Each sensor type was assigned a dedicated CNN 
model specifically trained to capture the unique data characteristics 
pertinent to that sensor. The Acc model was designed to detect linear 
motion, the Gyr model focused on capturing rotational movements, 
and the Bar model aimed to identify changes in altitude. These models 
generated predictions in the form of class probabilities, reflecting the 
likelihood of each activity.

In the late-fusion approach, we  combined these individual 
predictions using SVM. This process involved aggregating the class 
probabilities from each sensor-specific CNN model and feeding them 
into an SVM to form a final, comprehensive prediction. The SVM 
leveraged the strengths of each model’s predictions, ensuring a robust 
and accurate classification.

This technique effectively preserved the unique features captured 
by each sensor, thereby enhancing the overall accuracy and robustness 
of the HAR system. By integrating predictions at the decision level 
with the SVM, the late-fusion method provided a more accurate and 
reliable estimation of human activities compared to single-model 
approaches. The late-fusion CNN and SVM model demonstrated 
superior performance in activity classification, thereby validating the 
efficacy of this multisensory integration strategy.

The choice to utilize late fusion was made due to its various 
benefits compared to other fusion techniques.

 1 Modularity: Late fusion enables the separate development and 
optimization of each sensor-specific CNN model, promoting 
modularity. The system’s modularity enhances its flexibility and 
adaptability to various sensor setups or data types.

 2 Interpretability: Late fusion simplifies the assessment of each 
sensor’s impact on the final prediction. This is beneficial for 
comprehending the significance of various sensor modalities 
for specific activities.

 3 Improved performance: Late fusion can sometimes enhance 
performance compared to early fusion, where sensor data is 
merged before inputting into a single model. Late fusion 
enables each model to concentrate on extracting features from 
its unique sensor data, which can be  more effective than 
attempting to learn features from mixed data with 
diverse properties.

The late-fusion technique was selected for its ability to capitalize on 
the advantages of several sensor modalities and merge their predictions 
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to create a more precise and resilient HAR system. The late-fusion CNN 
model’s performance was assessed based on specific metrics and criteria:

 • Validation accuracy: The precision of the model on a validation 
subset utilized to assess the model’s performance during training.

 • Final test accuracy: The precision of the model on a final test 
set, a subset of the dataset not utilized for training or validation, 
is employed to evaluate the model’s performance on new data.

 • A classification report is a detailed analysis of a model’s 
performance, including precision, recall, and F1-score for each 
class (i.e., each type of human activity).

 • A confusion matrix is a tabular representation that displays the 
counts of true positives, false positives, true negatives, and false 
negatives for each class.

The metrics and criteria were utilized to evaluate the model’s 
efficacy in categorizing human actions precisely. The late-fusion CNN 
model demonstrates good validation and test accuracies and strong 
performance in the classification report and confusion matrix, 
indicating its effectiveness for HAR.

3.6 Evaluation metrics

Evaluation metrics are essential for evaluating the effectiveness of ML 
and DL models. Evaluation metrics also assist in choosing models and 
adjusting hyperparameters. As various jobs necessitate specific measures, 
using the appropriate metrics is crucial for accurately interpreting model 
outcomes. In this study, we employed the following evaluation metrics 
(Equations 1–4):

 
Accuracy TP TN

TP FP FN TN
=

+
+ + +

×100%.
 

(1)

 
Recall TP

TP FN
=

+
×100%.

 
(2)

 
Precision TP

TP FP
=

+
×100%.

 
(3)

 
Fscore preision Sensitivity

preision Sensitivity
=

∗ ∗
+

×
2

100%.

 
(4)

Where True Positive (TP) indicates a correct positive prediction; 
False Positive (FP) indicates an incorrect positive prediction; False 
Negative (FN) indicates an incorrect negative prediction; and True 
Negative (TN) indicates a correct negative prediction. These metrics 
provide a comprehensive understanding of the models’ accuracy, 
precision, recall, and overall effectiveness in classifying human 
activities. By employing these metrics, the study ensured robust and 
reliable performance evaluation, highlighting the strengths and 
weaknesses of both deep learning and traditional machine 
learning approaches.

4 Experimental results

This section presents the proposed wearable system for human 
motion sensing technologies.

4.1 Experimental setup

Developing a wearable system for human motion sensing 
technologies requires substantial hardware and software. Tables 3, 4 
present these hardware and software requirements, respectively.

FIGURE 11

Structure of the CNN.
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4.2 Splitting data

Splitting a dataset into two sections enables the assessment of the 
performance of ML and CNN models, aiding in model selection, 
hyperparameter tuning, and early halting decisions. Table 5 displays 
the standard and customized datasets for splitting.

4.3 Hyperparameter optimization for all 
sensors

Achieving optimal performance for CNN models across different 
sensor types—Acc, Gyr, and Bar—requires a comprehensive 
hyperparameter optimization strategy. This strategy involves tuning key 
parameters such as epochs, batch sizes, learning rates, dropout rates, and 
regularization techniques to enhance model accuracy and robustness.

4.3.1 Accelerometer model
For the accelerometer model, the optimization focused on epochs, 

batch sizes, and learning rates. Combinations of 10 and 20 epochs, 
batch sizes of 32 and 64, and learning rates of 0.0001 and 0.001 were 
evaluated. The optimal configuration, consisting of 20 epochs, a batch 

size of 64, and a learning rate of 0.001, resulted in a test accuracy of 
86.20%. This configuration ensured sufficient training duration and 
stability while balancing convergence speed and precision.

4.3.2 Gyroscope model
The hyperparameter optimization for the gyroscope model 

incorporated L2 regularization and a dynamic learning rate schedule. 
The model utilized 20 epochs, a batch size of 16, and an initial 
learning rate of 0.0005. A learning rate scheduler was applied to halve 
the learning rate after 5 epochs, enhancing the model’s fine-tuning 
capability during later training stages. Additionally, dropout layers 
with a rate of 0.5 were used to mitigate overfitting. This combination 
of regularization, dynamic learning rate adjustment, and early 
stopping produced a robust model capable of effectively interpreting 
gyroscope data.

4.3.3 Barometer model
The optimization process for the barometer model included a 

deeper network architecture with multiple convolutional and dense 
layers, each followed by Leaky ReLU activations and dropout 
regularization. An initial learning rate of 0.001, which decayed 
exponentially every 10,000 steps, allowed for gradual refinement of 
the learning process. The model was trained for up to 50 epochs 
with a batch size of 32, employing early stopping and model 
checkpointing to prevent overfitting and to save the best-performing 
model. This comprehensive approach ensured that the model 
effectively captured the nuances of barometric data, thereby 
enhancing its predictive accuracy.

4.4 Results of standard data

4.4.1 Results of the CNN model
The results obtained from the late-fusion CNN-based model 

exhibited remarkable utility, demonstrating its substantial 
potential to enhance both the accuracy and precision of HAR 
systems. Throughout the experiments, the late-fusion CNN-based 
model consistently delivered outstanding performance metrics. 
The validation accuracy was 98.35%, with a final test accuracy of 
94.83%. For a more comprehensive evaluation of the model’s 
performance, please refer to the classification report in Table 6 
and the confusion matrix illustrated in Figure 12. The outcomes 
presented in this study provide compelling evidence of the 
effectiveness of the late-fusion CNN model in accurately 

TABLE 3 Hardware requirements.

Devices Type

Arduino® Nano RP2040 Connect
Pull up Resistors (4.7 kΩ)

Barometric pressure sensor (BMP581 

Qwiic)

Active buzzer (LTE12-03)

Human body temperature sensor 

(MAX30205)

Battery (3.7 V)

Pulse sensor & oximeter pulse 

(MAX30102)

Circuit charger + boost voltage

PCB 3D Model

TABLE 4 Software requirements.

Library Modules/functions

Pandas
“pd.read_excel,” “pd.sample,” “pd.reset_

index,” “pd.DataFrame.apply,” “pd.concat”

Numpy
“np.mean,” “np.std.,” “np.max,” “np.min,” “np.

array,” “np.hstack”

Ast “ast.literal_eval”

Sklearn.model_selection “train_test_split”

Sklearn.ensemble “RandomForestClassifier”

Sklearn.metrics “classification_report,” “accuracy_score”

Sklearn.neighbors “KNeighborsClassifier”

Sklearn.preprocessing `StandardScaler`

Sklearn.svm “SVC”

Sklearn.multiclass “OneVsRestClassifier”

Keras.models “load_model”

Keras “Sequential”

Google.colab “drive.mount”

TABLE 5 Splitting the datasets.

Split Number of samples

Standard dataset

  Training 60% 1739

  Validation 20% 579

  Test 20% 581

Custom dataset

  Training 60% 66

  Validation 20% 22

  Test 20% 23
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FIGURE 12

Confusion matrix of the results of the late-fusion CNN-based model.

classifying human activities. The model achieved exceptional 
accuracy, recall, and F1 scores across various activity classes, 
emphasizing its ability to accurately distinguish various activities.

4.4.2 Results of the SVM model
Employing a traditional SVM classifier with a one-vs-rest 

approach led to lower performance metrics, as the validation set 
accuracy was 87.07%, and test accuracy was 83.10%. The 262 
performance details of the SVM model are reported in the 
classification report in Table  7, and the confusion matrix is 
displayed in Figure 13. Although the SVM model demonstrates 
satisfactory performance, it is significantly outperformed by the 
late-fusion CNN-based model, with the latter achieving higher 
validation accuracy. This outcome emphasizes the superior 

ability of the CNN model to accurately classify human activities. 
The present findings unequivocally establish that the developed 
CNN model, when combined with the late-fusion technique, 
substantially enhances the accuracy of HAR. In addition, the 
classification report provides empirical evidence of its 
effectiveness in distinguishing a wide range of activities. The 
impressive accuracy of the CNN model at 95% is somewhat 
constrained by the limited availability of datasets featuring 
diverse sensor types and the relatively small dataset size, 
comprising only 2,899 samples. To further advance HAR systems, 
future investigations can explore utilizing larger and more diverse 
datasets to continue improving the accuracy and robustness of 
these models.

4.5 Results of the custom collected data

4.5.1 Results of the RFT
The results provide encouraging possibilities in the realm of 

indoor localization via the use of ML methodologies. Although 
the dataset was limited, with only 111 examples, the principal 
model used (the RF classifier) revealed strong performance in 
accurately identifying the position of users utilizing sensor data. 
The model demonstrated a commendable overall accuracy of 
91.30%. The classification report offers comprehensive metrics 
for each class, further clarifying the model’s performance. The 
metrics of precision, recall and F1-score were calculated for each 
location class (Room1, Room2, and Room3), as presented in the 
classification report provided in Table 8. The confusion matrix of 
the RF model is illustrated in Figure 14.

TABLE 6 Classification report for the late-fusion CNN model.

Precision Recall F1-
score

Support

Fall 0.99 0.98 0.99 339

Standing 0.93 0.88 0.91 98

Walking 0.84 0.91 0.87 92

Running 0.90 0.92 0.91 51

Accuracy 0.95 580

Macro 

average

0.92 0.92 0.92 580

Weighted 

average

0.95 0.95 0.95 580
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4.5.2 Results of the K-NN model
These metrics provide essential insight into the model’s 

capacity to accurately categorize each site. The confusion matrix 
offers a graphical depiction of the model’s predictions compared 
to the actual ground truth, facilitating the evaluation of true 
positives, false positives, true negatives, and false negatives. The 
findings illustrate the resilience of the RF model in indoor 
localization, indicating its potential for practical applications. 
With a larger dataset, the model’s performance can improve in 
robustness and accuracy. The classification report and confusion 
matrix of the K-NN model are presented in Table 9 and Figure 15, 
respectively.

5 Discussion

Wearable devices have enabled a range of functions, including 
recording activities, monitoring wellbeing, and interacting with 
computers, all aimed at evaluating and improving users’ everyday 
habits. These applications make use of low-power sensors on 
mobile and wearable devices to facilitate HAR. The system 
proposed in this study utilizes CNNs within a late-fusion 
framework to analyze and integrate data from various sensors for 
precise HAR specifically designed for healthcare applications. 
Processing inputs from accelerometers, gyroscopes, and other 
sensors provide a comprehensive and dynamic representation of 
patient movements, facilitating accurate and real-time monitoring 
of physical activities.

The advanced approach to HAR provides significant benefits in 
the healthcare sector by enabling continuous, non-invasive monitoring 
of users’ physical activities, contributing to personalized healthcare 
plans, early detection of potential health issues, and enhanced user 
care. The proposed system’s high accuracy and reliability in activity 
recognition can support healthcare professionals in making informed 
decisions, optimizing treatment plans, and monitoring user recovery 
processes, improving overall user outcomes.

This study conducted extensive preprocessing to prepare the 
dataset for training the ML model. The preparation procedures 
included importing the dataset from an Excel file and performing 
random shuffling to provide impartial training data. The string 
representations of the lists in the “Acc,” “Gyr,” and “RSSI” columns 
were transformed into concrete lists. Then, the sensor data were 
analyzed to obtain important statistical parameters (e.g., mean, 

TABLE 7 Classification report for the traditional SVM classifier.

Precision Recall F1-
score

Support

Fall 0.88 0.99 0.93 339

Standing 0.71 0.84 0.77 98

Walking 0.75 0.55 0.64 92

Running 0.82 0.27 0.41 51

Accuracy 0.83 580

Macro 

average

0.79 0.66 0.69 580

Weighted 

average

0.83 0.83 0.81 580

FIGURE 13

Confusion matrix for the traditional SVM model.

93

https://doi.org/10.3389/frai.2024.1424190
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Alarfaj et al. 10.3389/frai.2024.1424190

Frontiers in Artificial Intelligence 14 frontiersin.org

FIGURE 14

Confusion matrix for the random forest model.

standard deviation, and range) like those for the feature engineering 
and traditional SVM preprocessing section above. The features were 
employed as input variables to train the model. The features from 
“Acc,” “Gyr,” and “RSSI” were merged to form a single array of 
features for each sample. Table 10 lists the performance of ML and 
the standard and customized dataset of the CNN model. The study 
demonstrated that the late-fusion approach utilizing CNNs 
outperformed traditional HAR methods, with the former achieving 
a test accuracy of 94.83% compared to that of the SVM classifier at 
83.10%. These findings highlighted the effectiveness of using 
multisensory data through advanced DL techniques, indicating a 
substantial advancement in accurately classifying diverse human 
activities. They also emphasized the potential of CNN-based models 
in setting new standards for HAR applications and the importance 
of integrating complex sensor data for enhanced performance.

This study recommends, in light of the system’s exceptional 
performance and the accuracy of the sensors used, that future research 
efforts focus on the following:

 1 Dataset size: The accumulation of more diverse and extensive 
datasets. Such endeavors will bolster the system’s robustness 
across various scenarios and facilitate the exploration of new 
dimensions in HAR. In addition, the research community is 
encouraged to explore integrating these refined datasets with 
the system to enhance its efficacy and applicability in real-
world contexts. This collaborative approach promises to set 
new benchmarks in the field, extending the frontiers of 
HAR technology.

 2 Sensor fusion challenges: Combining data from various 
sensors such as accelerometer, gyroscope, and barometer can 
be difficult because of differences in sample rates, data formats, 
and sensor-specific traits. The study addressed this issue by 
creating specialized CNN models for individual sensor types 
to capture their distinct characteristics and merge the data 
successfully in a subsequent phase.

 3 Integration of additional sensors: Enhancing the process by 
integrating other sensors like heart rate monitors or 
electromyography (EMG) sensors can provide a more thorough 
understanding of human mobility and physiological reactions.

 4 Computational complexity: CNNs can be costly in terms of 
the computer resources required for training and deployment. 
In the future, this issue can be  resolved by improving the 
architecture of the CNN models using methods such as 
pruning or quantization to decrease the model size or utilizing 
cloud computing resources for training and inference.

TABLE 8 Classification report for the random forest model.

Precision Recall F1-
score

Support

Room 1 1.0 1.0 1.0 6.0

Room 2 0.8 1.0 0.89 8.0

Room 3 1.0 0.78 0.88 9.0

Accuracy 0.91 23

Macro 

average

0.93 0.93 0.92 23

Weighted 

average

0.93 0.91 0.91 23
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 5 Real-world applicability: The model’s performance in practical 
situations can vary from its performance on the test dataset due 
to differences in sensor placement, user behavior, and ambient 
variables. It can collect and test the model using a more diverse 
dataset that accurately reflects real-world scenarios to address 
this issue.

The applicability of the results in the research to different HAR 
applications and datasets is contingent on certain factors:

 • Activity similarity: The behaviors discussed in the study, such as 
walking, running, ascending stairs, and falling, are frequently 
used in various HAR applications. The techniques and models 
presented in the research can be  directly applied or readily 
adjusted for similar HAR circumstances.

 • Sensor configuration: The sensor configuration utilized in the 
paper, consisting of an accelerometer, gyroscope, and barometer, 
is frequently employed in various HAR applications. If the sensor 
setup is substantially different, such as using varied sensor kinds 
or a variable quantity of sensors, the models can require 
adjustments or retraining to accommodate the new data.

 • Data quality and quantity: The performance of models can 
be considerably affected by the quality and quantity of data used 
for training and testing. The FallAllD dataset in the paper was 
minimal, perhaps restricting the models’ applicability to bigger, 
more varied datasets. The models’ generalizability can 
be  enhanced by retraining them on a larger and more 
diverse dataset.

 • Variability: The study recognizes that the model’s performance 
can vary in real-world situations compared to its performance on 
the test dataset due to differences in sensor placement, user 
behavior, and ambient variables. Hence, it is crucial to consider 
these elements when using the methodology in various situations.

6 Conclusion

The primary objective of this study is to investigate the capabilities 
and effectiveness of a multisensory approach, specifically the 
combination of an IMU and a barometer, to observe and track human 
movement. The empirical findings support the idea that integrating a 
triaxial accelerometer, a triaxial gyroscope, and a barometer enhances 
precision in recognizing various human movement patterns. This 
enhancement is further reinforced by incorporating an additional filter 

TABLE 9 Classification report of the K-NN model.

Precision Recall F1-
score

Support

Room 1 0.56 0.83 0.67 6

Room 2 0.71 0.56 0.63 9

Room 3 0.86 0.75 0.80 8

Accuracy 0.70 23

Macro 

average

0.71 0.71 0.70 23

Weighted 

average

0.72 0.70 0.70 23

FIGURE 15

Confusion matrix of the K-NN model.
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algorithm, effectively distinguishing between diverse movement 
patterns, such as standing, falling, running, and walking. In addition, 
the comprehensive monitoring of various physiological indicators 
(e.g., cardiovascular rate, sphygmomanometer readings, and thermal 
body states) provides an additional layer of diagnostic accuracy. This 
array of capabilities represents a significant advancement in the field 
of geriatric care, with the potential to mitigate adverse consequences 
associated with unforeseen movement-related incidents, including falls.

The late-fusion convolutional neural network model in this study 
improves HAR by achieving a final test accuracy of 94.83%, 
outperforming the standard SVM classifier using a one-vs-rest approach, 
which had an accuracy of 83.10%. Using customized CNNs for each 
sensor type and employing the late-fusion strategy to combine their 
predictions has proven beneficial. The improved precision in HAR, 
mainly in distinguishing between behaviors such as falling and regular 
everyday activities, has significant implications for fall detection systems, 
personalized health monitoring, and sports performance analysis. Future 
research will focus on improving the methodology using larger and more 
diverse datasets, adding further sensors, enhancing real-time processing, 
and introducing explainable AI techniques. This research ultimately 
seeks to enhance persons’ quality of life by developing more precise and 
efficient HAR systems that can be integrated into wearable devices.
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Introduction: Facial expressions have become a common way for interaction 
among humans. People cannot comprehend and predict the emotions 
or expressions of individuals through simple vision. Thus, in psychology, 
detecting facial expressions or emotion analysis demands an assessment and 
evaluation of decisions for identifying the emotions of a person or any group 
during communication. With the recent evolution of technology, AI (Artificial 
Intelligence) has gained significant usage, wherein DL (Deep Learning) based 
algorithms are employed for detecting facial expressions.

Methods: The study proposes a system design that detects facial expressions 
by extracting relevant features using a Modified ResNet model. The proposed 
system stacks building-blocks with residual connections and employs an 
advanced extraction method with quantum computing, which significantly 
reduces computation time compared to conventional methods. The backbone 
stem utilizes a quantum convolutional layer comprised of several parameterized 
quantum-filters. Additionally, the research integrates residual connections in the 
ResNet-18 model with the Modified up Sampled Bottle Neck Process (MuS-BNP), 
retaining computational efficacy while benefiting from residual connections.

Results: The proposed model demonstrates superior performance by overcoming 
the issue of maximum similarity within varied facial expressions. The system’s ability 
to accurately detect and differentiate between expressions is measured using 
performance metrics such as accuracy, F1-score, recall, and precision.

Discussion: This performance analysis confirms the efficacy of the proposed 
system, highlighting the advantages of quantum computing in feature extraction 
and the integration of residual connections. The model achieves quantum 
superiority, providing faster and more accurate computations compared to 
existing methodologies. The results suggest that the proposed approach 
offers a promising solution for facial expression recognition tasks, significantly 
improving both speed and accuracy.

KEYWORDS

facial expressions, artificial intelligence, deep learning, quantum computing, ResNet 
model

1 Introduction

Facial expressions are a form of non-verbal communication that arise from the movement 
of facial muscles to convey emotions or gestures (Khan, 2022). They serve as a means of 
expressing emotions, such as opinions, goals, intentions, and feelings. However, predicting 
human expression is challenging. Currently, computer applications are widely used to calculate 
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facial expression scores. Facial emotion recognition (FER) is essential 
for computer vision-aided applications to enhance human–
computer interactions.

Human faces exhibit a heterogeneous nature, with image 
variations caused by factors such as lighting and poses, which pose 
challenges for computer models to achieve robust and accurate 
predictions (Kaur and Singh, 2022). In FER, the process of associating 
different facial expressions with their corresponding emotions 
involves several steps, including image pre-processing, feature 
selection, and feature classification.

In traditional computer-based models, feature extraction and 
noise reduction have been carried out using polyp (Tsuneki, 2022) 
computer-aided classification models. Various feature extraction 
techniques have been used in existing research, such as principle 
component analysis (PCA) (Sachadev and Bhatnagar, 2022), linear 
discriminant analysis (LDA), individual component analysis (ICA), 
local dynamic pattern (LDP) (Makhija and Sharma, 2019), geometric 
feature mapping (Rosen et  al., 2021), and elastic bunch graph 
mapping (EBGM) (Oloyede et  al., 2020). Machine learning 
(ML)-based algorithms can be  used in the classification process. 
However, an additional feature engineering process is required for 
feature extraction. Deep learning (DL) (Karnati et  al., 2023), a 
sub-domain of ML algorithms, has been widely used in image 
classification tasks for enhanced accuracy. The training time for DL 
algorithms has been less than for ML algorithms. Convolutional 
Neural Network (CNN) (Mohan et al., 2020) is a significant algorithm 
used for image classification as part of ML and deep learning-based 
neural networks (Mungra et al., 2020; Mohan et al., 2021). Unlike the 
traditional models, CNN can extract abstract and accurate features. 
Automatic learning can be enhanced with CNN by adopting depth 
features (Karnati et al., 2022) and block architectures. Traditional 
CNN algorithms perform better for many image classification tasks 
like SVNN (Ghasemi et al., 2020), CIFAR (Yang et al., 2020), and 
MNIST (Kadam et al., 2020).

Quantum-based principles can be  integrated into ML models 
across various domains. Quantum-enabled ML models have been used 
in various algorithms such as quantum neural networks, quantum 
generative models, and quantum support vector machines. Artificial 
intelligence (AI)-based algorithms can be seen as a resemblance of the 
human brain with highly abstract functions. Significant AI models 
include capsule neural networks (Jiang et al., 2020), recurrent neural 
networks (RNN) (Mei et  al., 2019), feedforward neural networks, 
(Tacchino et al., 2020) and CNN. Quantum neural networks (QNN) 
employ quantum mechanisms to enhance the structure of neural 
networks (Wang et  al., 2022). The architecture can be  improved 
through the concepts of quantum interference attributes, quantum 
entanglement, and quantum parallelism. The performance of a 
traditional neural network can be  enhanced by implementing a 
conventional neural network with a quantum neural network. The 
hybrid architectures thus formed can be trained and tested on IBM 
Quantum Experience through Qiskit-enabled quantum computers.

QNNs have similarities with traditional neural models and have 
variation parameters. QNNs have several potential advantages. 
Quantum computers can outperform traditional models in speed for 
Fourier transform based on Shor’s factoring technique. Various 
computational issues can be  efficiently resolved with quantum 
contextuality and non-locality. Moreover, the learning process from a 
quantum dataset created by a quantum process is more efficient than 

a traditional dataset. In large-scale exponential datasets such as 
Hilbert space, the ability of QNN to extract adequate data from the 
quantum state is difficult (Li et al., 2022).

Moreover, quantum networks can perform massive parallel 
calculations and provide high-performance speed. An attention 
mechanism has recently been used in QNN models. An enhanced 
CNN model has been used in a DL computer vision application 
named AlexNet. It has performed data augmentation, convolutions, 
ReLU activations, max pooling, stochastic gradient descent (SGD) 
(Zheng et  al., 2019), and dropout. The issue with deep network 
training can be  mitigated by implementing modified blocks that 
ignore and leap over layers. This enhanced the training of large 
networks with fewer training errors.

Another ResNet model has been implemented for deep-coupled 
low-resolution neural networks (Kavitha et  al., 2022). The ResNet 
model has selected dissimilar features in various facial images. The 
image features have been projected with training from coupled 
mappings of branch networks. The models have been evaluated with 
SCface datasets and LFW datasets and have achieved remarkable 
accuracy for face verification (Singhal et al., 2021). Even though various 
face recognition models have been developed, high recognition rates 
are difficult to achieve with traditional feature classification algorithms.

Moreover, convolutional layers have the ability to handle only 
spatial features in images. Subtle and depth features are not properly 
recognized with CNN models. Furthermore, the abstract features 
extracted in the deep CNN model suffer from vanishing gradient 
issues as the number of layers increases. QNN algorithms provide 
correlated and probabilistic components, whereas performance is 
limited by dimensionality issues and computational bottlenecks. To 
resolve all the above issues, the MuS-BNP with ResNet-18 model 
named MuS-BNP is proposed.

The model uses the FER 13 dataset to predict the facial emotions 
in the images. Unlike traditional CNN and ResNet architecture, both 
shallow and deep features are extracted using a backbone stem 
integrated with a quantum convolutional layer. This layer incorporates 
various parameterized quantum filters, which replace the conventional 
kernel in traditional convolutional layers. The parameterized quantum 
filter is used to obtain quantum bit information in the local data space. 
It includes a double-bit gate that performs quantum entanglement on 
other quantum bits, enhancing the interaction between data points.

In this process, pixel value information is converted into quantum 
state information through quantum state encoding, achieved via a 
quantum rotation gate. The model retains the weight-sharing 
mechanism of the traditional kernel while incorporating quantum 
parameters to boost computational capabilities. Furthermore, the filter 
connection phases in the ResNet-18 model are linked with the 
MuS-BNP through residual connections, which significantly enhance 
computational performance. The major contributions of the proposed 
model, combining the MuS-BNP with the ResNet-18 architecture, are 
as follows:

 • To perform shallow and deep feature extraction through a 
backbone stem network and a modified quantum convolutional 
layer with parameterized quantum filters.

 • To perform facial emotion classification through the proposed 
MuS-BNP with the ResNet-18 model in less computation time.

 • To evaluate the efficacy of the proposed model with performance 
metrics such as accuracy, F1-score, recall, and precision.
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1.1 Contributions

QNNs are typically designed to handle large data efficiently, unlike 
conventional NNs (neural networks), which permit them to 
accomplish better classification. The present study proposes ResNet18 
architecture with a Modified Sampled Bottleneck Process for 
FER. Accordingly, residual connections have been utilized to associate 
the filter connection phase in the ResNet-18 model with the 
MuS-BNP. This architecture helps manage computational efficiency 
while leveraging the benefits of residual connections. Moreover, the 
residual version of the ResNet-18 model with the MuS-BNP has 
employed a simplified module.

Furthermore, the filter expansion layer that follows each module 
has been enlarged with the dimensions of the filter bank. For matching 
the input, it has been integrated before. Thus, it reimburses the 
minimization of dimensionality that is available in an n block.

Feature extraction has also been accomplished with the quantum 
convolutional layer. This is encompassed with various parameterized 
quantum filters. Similar to the convolution kernel present in the 
conventional convolutional layer, the parameterized quantum filter 
finds utility for information extraction that is present in individual 
quantum bits. In an image, the pixel value corresponding to the 
information has been altered into the quantum state information (that 
utilizes quantum state encoding) with the means of the quantum 
rotational gate R (ɵ). In accordance with this process, the procured 
information regarding the features of the image has been modified 
into the angle of the quantum rotatory gate.

Furthermore, for the quantum rotatory gate, the corresponding 
parameters have been afforded by each pixel value. The proposed 
method comprises exclusive quantum mechanical features and retains 
the weight sharing in the convolutional kernel. In the proposed 
technique, individual blocks have a self-regulating convolutional way 
of delivering information in the prior and middle layers.

The strategy introduces the concept of “pass-over,” a modification 
from the ResNet model that builds on modest blocks containing 
residual connections. The traditional residual building block has not 
utilized the information accessible in the middle layer. However, the 
proposed model incorporates pass-over information to capture all 
relevant features.

Thus, the proposed ResNets with QNNs possess the ability to 
generalize. Furthermore, by leveraging the effects of quantum-like 
superposition and entanglement, QNNs obtain several complex 
associations amongst the input features, resulting in model robustness 
and better generalization. The proposed QNN could effectively use 
quantum hardware, leading to the count of quantum gates needed for 
computation. Through this system, quantum gates needed for 
computation are also minimized. The proposed framework finds more 
complex and subtle features of an image than traditional algorithms, 
resulting in robust and optimal classification. Moreover, the proposed 
system performs functions on multiple qubits at concurrent times, 
permitting the effective parallel processing of the features from 
the images.

1.2 Paper organization

Section II of the paper deals with the review of existing literature 
for image recognition and classification through various ML models, 

DL models, and quantum-based DL models. The problems identified 
from the existing literature have also been discussed. Section III 
deals with the proposed flow, architecture, and mathematical 
formulations. Section IV deals with the dataset description, 
performance results, comparative results, and discussions. Section 
V deals with the conclusions and future recommendations of 
the work.

2 Review of literature

Image classification and emotion recognition can be performed 
in literature through various ML algorithms, DL algorithms, and 
enhanced quantum-based ML and DL algorithms. The section briefly 
deals with all conventional models, along with the gaps identified 
from the state of artworks.

A human emotion identification model has been proposed in the 
study (Alreshidi and Ullah, 2020) using two ML algorithms for image 
classification and detection. The model has been trained for real-time 
implementations offline. The faces in the image are initially recognized 
with AdaBoost cascade algorithms (Chen et  al., 2019). The facial 
features denoted by localized appearance data named Neighborhood 
Difference Features (NDF) (Kaplan et al., 2020) have been extracted. 
The association among various NDF patterns has been considered 
rather than intensity data. Even though the study calculates only seven 
facial emotions, it can be extended to more facial feature recognition. 
The model has been invariant to skin color, gender, orientation, and 
illumination. The evaluation results on Real-World Affective Faces 
(RAF) (Jiang et al., 2020) and Static Facial Expressions in the Wild 
(SFEW) (Liu, 2020) datasets have exhibited 24 and 13% accuracy 
enhancement, respectively.

Another study has been designed to identify microexpressions in 
human faces. Unsupervised micro-expression detection models based 
on ML algorithms have been suggested with extreme learning 
machines (ELMs). The algorithm offers higher performance and faster 
training ability than conventional algorithms. The ELM model has 
been compared with the Support Vector Machine (SVM) (Okwuashi 
and Ndehedehe, 2020) benchmark model for training time efficacy. 
Feature extraction has been performed through Local Binary Pattern 
(LBP) (Zhao et al., 2019) on apex-micro expression frame and Local 
Binary Pattern on Three Orthogonal Planes (LBP-TOP)-based 
division of image segments from video through spatiotemporal 
features. The model has been evaluated using a dataset from the 
Chinese Academy of Sciences (CASME II). The results indicate that 
ELM has a better prediction rate and less computation time than SVM 
(Adegun and Vadapalli, 2020).

The facial emotion intensity has been encoded by considering 
multimodal facial behavior for recognizing emotions from intensities. 
The intensity extraction has been performed with ML algorithms like 
Random Forest (RF) (Speiser et  al., 2019), SVM, and K-Nearest 
Neighbor (KNN) (Ma et al., 2020). Three feature extraction methods, 
namely local binary pattern (LBP), histogram of oriented gradients 
(HOG) (Zhou et al., 2020), and Gabor features (Munawar et al., 2021), 
have been implemented. Intensity calculation and emotion 
identification have been performed through a comparative analysis of 
three algorithms on CK, B DFE, JAFEE, and private datasets. Emotion 
recognition and facial intensity detection have been analyzed from the 
three algorithms (Mehta et al., 2019).
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Another fake image detection model has been developed with 
generative adversarial networks (GANs) that create fake images with 
low-dimension noise. Fake images have created various issues in social 
media networks. Contrastive loss-based fake image detection has been 
implemented using the DL-based DenseNet model. Pairwise 
information has been fed as input through a two-streamed network 
model. The training has been performed on the pairwise information 
to identify the fake input image (Hsu et al., 2020). DL-based CNN 
models have exhibited high computational efficiency and 
unsupervised feature extraction. CNN-based image prediction has 
been performed on the FER 2013 dataset. The visual geometric group 
(VGG) algorithm (Deepan and Sudha, 2020) has been used to design 
the model with various learning schedulers and optimization 
techniques. The model’s hyperparameters have been tuned, and the 
accuracy is 73.28% (Khaireddin and Chen, 2021).

High-level feature identification from facial images has been 
performed with a two-layer CNN model and sparse representation. 
The training data independent of feature space has been used to 
sparsely denote the facial features in the proposed Sparse 
Representation Classifier (SRC). Real-world classification and feature 
recognition depend on the proper details extracted from the faces of 
images. The results of the SRC-based feature selector have proved 
superior to other traditional classifiers (Cheng et  al., 2019). The 
transfer learning (TL)-based deep CNN (DCNN) model has been 
developed for accurate classification of images, considering shallow 
and depth features. The pertained DCNN model has been modified 
with a FER-compatible upper dense layer fine-tuned to recognize 
facial emotion. The pipelining technique has been adopted after dense 
layer training and tuning. The model has been tested on pertained 
DCNN models like DenseNet-161 (Song et al., 2019), Inception-v3, 
ResNet-152 (Gour et al., 2020), ResNet-50, ResNet-34, ResNet-18, 
VGG19 and VGG-16, along with JAFFE and KDEF, using a 10-fold 
cross-validation approach (Akhand et al., 2021).

Another study identified facial emotion from video sequences 
with global and local networks (Hu et  al., 2019). The cascaded 
CNN-LSTM networks and Local Enhanced Motion History Image 
(LEMHI) (Gavade et al., 2022) have been implemented for the above 
feature extraction. LEMHI has been used to aggregate the video 
frames as a single frame, which has been fed into the CNN for 
prediction. The global features have been extracted through an 
enhanced CNN-LSTM model as a classifier and feature extractor. The 
final prediction was performed using a late fusion fashion-based 
random search summation model. The information to decode the 
features from facial images has been obtained from each CNN layer. 
The experiments on MMI, CK+, and AFEW datasets have exhibited 
better integrated model performance than the individual model. The 
complexity of the CNN (Jing et  al., 2022) model depends on the 
activation function.

Although the ReLU activation function outperforms tanh and 
sigmoid in many cases, it still has limitations. The ReLu model returns 
zero value on negative inputs, which is termed neuronal necrosis. This 
has been eliminated by implementing a piecewise activation function 
in CNN. The new function has been compared with other functions 
such as softplus-ReLu, leaky ReLu, tanh, and Sigmoid (Zhang et al., 
2022). The comparison of results on the Keras framework utilizing the 
FER13 and JAFFE datasets exhibited better activation function 
performance (Wang et al., 2020). Another deep CNN-based model 
has been implemented with residual blocks for enhanced performance. 

The image labels have been initiated, followed by training on the 
proposed DNN model. Japanese Female Facial Expression (JAFFE) 
and Extended Cohn–Kanade (CK+) datasets have been used to test 
the accuracy of the model (Jain et al., 2019). Computational issues 
have been optimized through an unsupervised ensemble model of 
hybrid deep neural networks (HDNN) and an improved quantum-
inspired gravitational search algorithm (IQI-GSA). Quantum 
computing and gravitational search algorithm (GSA) have been 
combined to form IQI-GSA. The local trapping and stochastic features 
have been handled with the enhanced model. The temporal and 
relational components have been optimized by hybridizing recurrent 
and convolutional (HDCR-NN) neural models. The experimental 
analysis has been performed on KDEF and JAFFE datasets to exhibit 
the model’s efficacy (Kumar et al., 2021).

Transfer learning (Tammina, 2019) with a quantum-based hybrid 
approach has been implemented to ensure security and reliability. The 
fake images have been classified using the ResNet-18-based quantum 
neural model. The model has been trained on various depths, and the 
reliability of vision-based models is tested (Ciylan and Ciylan, 2021; 
Kumar et al., 2022). The kernel-based quantum CNN model has been 
implemented to diagnose pneumonia early. The hybrid model can 
detect pneumonia from chest X-ray images obtained from a public 
repository. High classification accuracy has been obtained with the 
inclusion of a quantum model (Tayba et al., 2022). A parameterized 
circuit-based quantum deep convolutional neural network (QDCNN) 
model has been proposed in another study to classify image emotions. 
Quantum-classical training has been implemented through variational 
quantum algorithms. Parameters have been updated through 
QDCNN, and complexity has been analyzed using GTSRB and 
MNIST datasets to evaluate validity and feasibility (Li et al., 2020).

Tensorflow quantum-based (Lazzarin et al., 2022) QCNN models 
have been implemented for binary image classification. Box-counting-
based fractal features, multi-scale entanglement, and the 
renormalization ansatz model have been used for downscaling, 
followed by classification through hybrid QCNN on the breast cancer 
dataset (Chen et al., 2022). Particle swarm optimization with binary 
encoding (BQPSO) based on quantum principles has been adopted to 
perform binary encoding of image emotions. A CNN model has been 
used to classify the features extracted from the hybrid model. The 
efficacy has been tested with seven benchmark datasets (Li et  al., 
2019). A quantum Hopfield network has been designed by combining 
quantum principles with traditional neural networks. The model has 
been applied to image recognition in a conventional computer, and its 
feasibility has been validated (Liu et  al., 2020). Quantum Neural 
Networks (QNNs) have been evaluated for negational summary and 
binary classification in another algorithm on Google’s quantum 
computing platform (Dong et al., 2022).

Moreover, the FER is considered critical for several 
implementations. However, existing studies have shown better results 
in facial recognition. Moreover, the FER systems have shown 
enhanced accuracy in ML and DL methods compared to the 
conventional FER methods (Borgalli and Surve, 2022).

2.1 Problem identification

Various problems identified from the extensive literature have 
been discussed as follows:
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 • ML algorithms for facial expression recognition suffer from 
dynamic head motion, illumination variants, and noise 
sensitivity. Moreover, spatial and temporal features have not been 
integrated in the study. Furthermore, the work has not considered 
facial deformation and geometric features (Alreshidi and 
Ullah, 2020).

 • Deep CNN-based models can handle spatial features alone in the 
FER 13 dataset (Jain et al., 2019). The vanishing gradient problem 
has occurred with an increase in the number of CNN layers. 
Training CNN-based models such as VGG, ResNet, and 
Inception requires significant computational power and large 
datasets (Akhand et al., 2021).

 • Feature extraction capability in conventional shallow CNN 
models has been limited in the case of high-resolution images (Li 
et al., 2019).

3 Proposed methodology

The proposed study aimed to recognize facial expressions by 
employing quantum computing alongside the ResNet-18 model and 
the MuS-BNP architecture. However, many existing studies have 
intended to perform facial expression recognition. The accuracy of the 
already existing study is less and needs further improvement. In the 
present study, the information present in the qubits has been 
manipulated so that it is capable of producing more quality solutions 
to complex problems quickly. Hence, it is clear that quantum 
computing has been used to address difficult problems. The 
classification of quantum images based on facial expressions using 
modified ResNet architecture is shown in Figure 1.

The FER 13 dataset has been loaded and preprocessed. The 
process of preprocessing transformed the raw data into a usable 
format. The transformed data were then split into training and testing 
sets. A train test split has been used for the model validation 
procedure, which stimulates the model’s performance for new and 
unseen data, and the outcome of the train test split is trained data. The 
trained data was classified using the proposed ResNet-18 model with 
the MuS-BNP, which produces the trained model. Both the trained 
model and test data were used to predict the result. Performance 
metrics such as precision, recall, F-measure, and accuracy were used 
to assess the proposed model.

3.1 Quantum architecture

When QCF is exercised on an input tensor, a feature map is 
produced by each QCF due to the spatial transformation of local 
subsections present in the input tensor using QCF. However, in 
contrast to the modest element-wise matrix multiplication that 
traditional convolutional filters have applied, QCF has used a quantum 
circuit to transform structured and random input data. In the present 
study, a quantum circuit, which is randomly generated, has been used 
in QCF, which is different from the designed structure. By using QCF, 
the process can be formalized and transforms the classical data as 
mentioned below:

 1. Single QCF, which used random quantum circuit ‘q’ and a local 
subsection of images, has been taken as input from the 

dataset u . Each input has been defined as xu , and the matrix 
size of each xu  is n by n,where n 1.>

 2. Though many ways are available to encode xu  at the initial state 
of q, for each QCF, one specific encoding function e has been 
chosen, the encoded initialization state ( )x nix as i enc img=  
has been defined.

 3. After applying the quantum circuit to the initialized state ix, an 
output quantum state ox has been attained, which is the result 
of quantum computation where the relationship between ix 
and ox is given as ( ) ( )( )x x no q i q enc img= = .

 4. Though many ways are available with a finite number of 
measurements to decode the information of ox, to confirm the 
consistency of QCF output with other similar output taken 
from regular classical convolution, the final decoded state has 
been given as ( ) ( )( )( )x x nf dec o dec q enc img= =  where d 
refers to the decoding function, and xf  refers to a scalar value.

 5. The complete transformation of ( )( )( )ndec q enc img  has been 
defined as QCF transformation at this point, in which Q of xu
, aka ( ), , ,x nf Q img enc q dec= . A single QCF visualization has 
been shown in Figure 2, which exhibits the process of encoding, 
applied circuits, and decoding.

 6. The number of classifications that happened when the classical 
convolutional filter was applied as an input from dataset u , the 
required number of computations is given as ( )2O n , placing 
the computational complexity squarely in P. It is not considered 
in the case of computational complexity Q . It has emerged 
from the complexity of random quantum circuit transformation 
q, where e and d  show efficient performance on classical 

devices. Figure 2 illustrates the step-by-step QCF procedure 
in detail.

The present study has highlighted the novelties obtained from the 
QNN algorithm: the quantum convolutional layer generalizability 
inside a usual CNN architecture, the quantum algorithm’s ability to 
be used on practical datasets, and the efficient use of features presented 
by quantum convolution transformation. Later, research was 
conducted in the field of using quantum circuits in ML applications, 
in which randomly parameterized quantum circuits were used to 
process classical data and linear models were trained using the output. 
Quantum transformations have built the model and shown more 
benefits in comparison with further linear models, which are directly 
built on the dataset itself, but the level of performance is not the same 
when compared with other classical models. The experiments in the 
present study have been built on these results, in which quantum 
feature detection has been integrated into more difficult neural 
network architecture since the QNN framework introduced classical 
models that contain non-linearities.

3.2 ResNet18 architecture with modified 
up-sampled bottleneck process

A residual network employs residual blocks, which allow additive 
interaction between the input and output present in the two 
convolutional layers. The advantage of ResNet is given as a gradient 
that flows directly on identity function from future layers to past 
layers, which has partially solved the disappearing gradient problem. 
To improve the flow of information between the layers, original blocks 
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FIGURE 1

Classification of quantum image on facial expression with modified ResNet architecture.

FIGURE 2

An in-depth look at the processing of classical data into and out of the random quantum circuit in the quantum convolutional filter.

103

https://doi.org/10.3389/fncom.2024.1435956
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Alsubai et al. 10.3389/fncom.2024.1435956

Frontiers in Computational Neuroscience 07 frontiersin.org

replace the cascade blocks. Two Conv-BatchNorm-ReLU layers are 
used to build every cascade block, two in-out lines, and a shortcut 
connection line. However, the deep layer network contains many 
feature map inputs. To increase computational efficiency, the cascade 
block has been modified into a cascade bottleneck block, which uses 
four four-layer stacks instead of two.

In the present research, residual connections have been used to 
link the filter connection stage in the ResNet-18 model with the 
MuS-BNP. Therefore, the architecture allows for the maintenance of 
computational efficiency, which attains the advantages of the residual 
connection process. A residual version of the ResNet-18 model with 
the MuS-BNP has used a more simplified module. The filter expansion 
layer follows each module in which the dimensions of the filter bank 
have been enlarged. To match the input, it has been added before. 
Hence, it reimburses the reduction of dimensionality available in the 
n block.

Feature extraction was done through the quantum convolutional 
layer, which is composed of several parameterized quantum filters. 
Like the convolution kernel present in the traditional convolutional 
layer, the parameterized quantum filter has been used to extract the 
information present in every quantum bit, which exists in the data 
local space. A quantum filter consists of a double-bit gate in which 
quantum bit unitary conversion can be performed, and a double-bit 
gate is enforced on neighboring quantum bits, which leads to quantum 
entanglement present in neighboring quantum bits. In the image, the 
pixel value of the information has been changed into quantum state 
information (which uses quantum state encoding) using quantum 
rotation gate R(ɵ). Based on the process, the information attained 
about the features of the image has been altered to the angle of the 
quantum rotatory gate. Each pixel value has provided the 
corresponding parameters for the quantum rotatory gate. The 
quantum bit initial state |0 > has been acted by different quantum 
rotatory gates, and the quantum state stores the feature information. 
It can be utilized as model input to QNN. For instance, by considering 
n n∗ , initially, the function of quantum feature extraction is encoded 

into the quantum state by coding the quantum bit. Furthermore, the 
quantum state has evolved by using a parameterized quantum circuit 
and, finally, by using expected value measurement outputs a real 
number. The method possesses both exclusive quantum mechanics 
properties and retains the sharing of weights in the convolutional 
kernel. Figure 3 shows the quantum convolutional layer.

The present study has introduced the quantum circuit with 
parameters to enhance the network’s performance. Quantum filters 
include a rotary gate Ryɵ and a CNOT gate. Figure  4 shows the 
quantum circuit diagram.

ResNet has been used in computer vision applications as a DL 
model. Many convolutional layers have been supported by CNN 
architecture. ResNet-18 is a CNN that consists of 18 layers deep. The 
vanishing of the gradient has been improved by using the network. 
The improved algorithm has used ResNet-18. The existing study has 
optimized the input present in the network. The input features were 
extracted in parallel, and feature fusion was performed at the 
termination of the parallel structure. A specific method has been used 
to accept the three parallel routes. In the convolutional operations 
present in the multi-feature fusion, to confirm the integrity of the 
input image size, the step has been set to 1.

Figure 5 has been used to better understand the process. Similarly, 
when applying the initial residual unit, the number of feature layers 

is increased, and a better interpretation of dimensionalities is 
presented. In the end, the outcomes of three parallel routes were used 
for feature fusion, which extracts the features of the image and, in 
turn, improves the performance of the proposed model. The proposed 
QNN efficiently utilizes quantum hardware and reduces the number 
of quantum gates needed for a particular calculation. Moreover, the 
model outperforms traditional algorithms in identifying complex 
image features, improving classification accuracy and reliability. It 
also performs tasks on several qubits simultaneously, allowing for 
efficient parallel processing of image feature datasets. Figure  6 
illustrates the modified up-sampled bottleneck process with the 
ResNet-18 architecture.

To prevent gradients from vanishing and exploding, the residual 
gradient structure has been used. Feature reuse is helpful for feature 
extraction, and residual units have been improved. During the feature 
extraction process, 128*128 feature information is present as the first 
residual block output, which has been given as the input for the 3rd 
residual block using downsampling, and the input scale has been 
changed to 75*75. Similarly, the first residual block output feature 
information has been sent as input, multiple downsampling has been 
used for the fourth residual block output, and feature size has been 
given as 38*38 and 19*19, respectively. The method that was used in 
the 1st residual block was the same as the second residual block 
output, which was 50*50. The subsampled output has been given to 
the input and output present in the fourth residual block. The residual 
block output is subsampled, and it has been given to the fourth 
residual block output. The complete representation of the modified 
up-sampled bottleneck process is shown in Figure 7.

In the proposed method, every block has an independent 
convolutional way to deliver the information present in the previous 
and middle layers. The strategy exhibits the concept of “pass-over,” 
which has been varied from ResNet, which loads the modest building 
blocks that contain residual connections. The classical residual 
building block does not use the information available in the middle 
layer. However, the proposed model has cached the pass-over 
information to obtain complete features.

The proposed model structure has been designed to achieve many 
features. The pass-over way leads to various feature fields, which 
generate features at various levels of abstraction. Moreover, it 
supported the ensemble effects and showed improved performance 
in classification.

Proposed general form of function, given in Equations 1, 2:

 ( ) ( )g x softmax=  (1)
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During the training process of CNN, it was observed that the 
piecewise point of activation function was set between values of 0 and 
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1, greatly influencing the backward propagation of gradient, forward 
propagation of feature, and curve change. At point 0, the function has 
differentiated, and the slope of the function has been changed to 1 
immediately. After conducting many tests, the piecewise function has 
been set as 0.1, and the function is given below in Equation 3:
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(3)

At the initial stage of the test, the model exhibited overfitting 
directly. It was observed that the slope of the function altered quickly, 
and the transition of the curve’s slope from ( )ln 2 / 1 ln 2+  to 1 could 
not occur directly.

To address this, a linear function was introduced at the range (0.1, 
1), acting as a buffer to stabilize the slope changes. After extensive testing, 
the optimal range was refined to (0.1, 0.2), which effectively mitigated 
the overfitting issue while preserving the model’s performance.

The modified function is as follows in Equation 4:
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(4)

The mean value outcome of ReLU has been compared with a new 
function, and the probability model of the parameter has been set as 
( ),αp a , a+ refers to the positive input, a− refers to the negative 

input, á  refers to the probability of input a. The new function output 

FIGURE 3

Quantum convolution layer.

FIGURE 4

Proposed quantum circuit.
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mean value after non-linear transformation is given as follows in 
Equations 5–8:

 ( ) ( ) ,ours oursE a f a a aβ β β+ −= ∑ = ∑ + ∑  (5)

where
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 ( ) ( )( ).ln exp 1 / 1 ln exp 1a a a aβ β− − − −   ∑ = ∑ + + +     
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FIGURE 5

The flow of the ResNet-18 model with the MuS-BNP.
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The output mean value of ReLU is

 ( ) ( ) 0ReLU ReLUE a f a waβ += ∑ = ∑ +  (8)

where, ( )ReLUE a  always has a positive value and the result of the new 
function ( )oursE a  has both +ve and –ve values that make the mean 
value close to 0. It has accelerated the convergence of the model and 
updated parameters.

Figure 8 illustrates the workflow of the proposed QCNN, where 
QNNs utilize quantum convolution layers and activation layers to 
extract features from the input images. The process begins with data 
encoding, converting actual images into the required quantum state. 
Quantum convolution is achieved by applying a series of quantum 
gates to the encoded state. The process continues through quantum 
pooling and fully connected layers, where neurons are interconnected 
in a feed-forward configuration, linking preceding neurons with 
subsequent ones. The model’s performance is evaluated, and the final 
quantum state is delivered as the output result.

However, integrating conventional CNN with the QCNN 
framework creates a hybrid model that capitalizes on the strengths of 
both technologies. This approach diverges from usual QCNN formats, 
venturing into new areas of neural network configurations as an 
experimental model. Furthermore, utilizing a quantum simulator to 
run the model and generate results represents significant progress in 
the practical applications of QML. The findings from the proposed 
study indicate that employing a quantum strategy yields superior 
outcomes compared to traditional techniques, as demonstrated by 
improved precision rates when examining face images. These findings 
contribute to the growing knowledge of QML, opening the door to 
further research and experimentation, including the application of 
quantum methods to tackle more complex tasks.

4 Results and discussion

The results that have been obtained by implementing the proposed 
system are included in this section, along with a dataset description, 

performance metrics, experimental results, performance analysis, and 
comparative analysis.

4.1 Dataset description

The study used the FER-2013 dataset, which consists of greyscale 
images, each with dimensions of 48*48 pixels. The images are 
automatically registered, meaning the faces are generally centered, and 
each image occupies a consistent volume of space. The goal of the study 
was to classify the emotions displayed in the facial expressions into one 
of seven categories: Neutral, Surprise, Sad, Happy, Fear, Disgust, and 
Angry. The dataset includes approximately 28,709 examples in the 
training set and 3,589 examples in the public test set. The dataset was 
sourced from https://www.kaggle.com/datasets/msambare/fer2013.

The total images that are considered in the FER-2013 
dataset are tabulated in Table 1 with sample images as shown in 
Figure 9.

FIGURE 6

ResNet18 Architecture with Modified Up Sampled Bottleneck Process.

FIGURE 7

Modified bottle neck with up-sampling.
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4.2 Performance metrics

Performance metrics are generally used to determine the 
performance of the proposed model, which is calculated based on the 
accuracy, precision, recall, and f1-score. Performance metrics are also 
used to determine the proposed model’s efficiency.

 i) Accuracy
The term accuracy can be referred to as the model classification 

rate that is provided through the proportion of correctly classified 
instances ( )Po NeTru Tru+  to the sum of instances in the dataset 
( )Po Po Ne NeTru Fal Tru Fal+ + + . The succeeding equation can 
be used to estimate the accuracy range as given in Equation 9:

 
Ne Po

Ne P Ne Po

Tru TruAccuracy
Tru Tru Fal Falo

+
=

+ + +  
(9)

 ii) Precision
The term precision is defined as the degree of covariance of the 

system, which results from the correctly identified instances PoTru  to 
the total number of instances that are correctly classified 
( )Po poTru Fal+ . It is measured by Equation 10:

 
Po

Po Po

TruPrecision
Tru Fal

=
+  

(10)

In this equation, the variables are defined as NeF al -False Negative, 
PoFal -False Positive, NeTru -True Negative, Poand Tru -True Positive.

 iii) F-Measure
F1-score denotes the weighted harmonic mean value of (Rec) 

recall and (Prec) precision. It is calculated with the following 
Equation 11:

 
2 Rec PrecF measure

Rec Prec
∗ ∗

− =
+  

(11)

 iv) Recall
The term recall quantifies the amount of correct positive 

classifications made out of all the positive classifications that are done. 
It is computed with the following Equation 12:

 
( ) po

Ne Po

Tru
Rec Recall

Fal Tru
=

+  
(12)

4.3 Exploratory data analysis (EDA)

In general, EDA indicates the critical procedure of performing 
primary investigations on the data, realizing patterns, verifying 
assumptions, and spotting anomalies with the help of graphical 
representations and summary statistics. This section deliberates on the 
EDA of the proposed models in the present study for the datasets 
FER-13. The training and test data for different emotions are 
mentioned in Figure 9 for better understanding.

For the FER-2013 dataset, sample images for some common 
emotions like happy, neutral, disgust, sad, angry, fear, and surprise 
have been shown in Figure 10. Based on the images in the dataset, the 
emotions are classified.

The test data for the FER-2013 dataset for the mentioned 
emotions, such as neutral, disgust, fear, anger, sadness, surprise, and 
happiness, has been shown in the graphical representation in Figure 11 
to obtain more clarity.

The considered train and test data for the FER-2013 dataset for 
the mentioned emotions like neutral, disgust, fear, anger, sad, 
surprise, and happy has been shown in the graphical representation 
in Figures 12, 13.

4.4 Experimental results

The test results for the proposed model are shown in Figure 14. 
The proposed system, which used quantum computing and the 
ResNet18 architecture with modified-Up Sampled Bottle Neck Process 
for the FER-2013 dataset, produced the exact predictions. Figures 14, 
15 clearly show that the original emotion and predicted emotions are 

FIGURE 8

Framework of the proposed model.

TABLE 1 Total images in the FER-13 dataset.

FER2013 Total number of images

Anger 4,953

Happy 8,989

Disgust 547

Surprise 4,012

Neutral 6,198

Sad 6,077

Fear 5,121
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the same. Thus, the proposed method recognizes facial emotions with 
utmost accuracy. The proposed method has classified the emotions 
into seven categories: neutral, surprised, sad, happy, fearful, disgusted, 
and angry. From Figure 6, it is clear that the proposed method has 
predicted all seven emotions correctly. On the contrary, the 
misclassification results are shown in Figure 15.

From Figure 16, it was found that the misclassification rate of the 
proposed model was 5 for the original 2.

4.4.1 Statistical tests
Distribution tests have been considered in this case. When the 

dataset pursues normal distribution, it could be found that most of the 

FIGURE 9

Sample images from the dataset.

FIGURE 10

Train and test data for the FER-2013 dataset for different datasets.
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images fall within a certain SD (standard deviation) of the mean. When 
distribution seems to be not normal, it might be found that distribution 
is either skewed or possesses a heavy tail. Additionally, it is probable to 
evaluate if the dataset approximately pursues normal distribution with 
the creation of a data histogram and a visually performed inspection. 
Typically, a normal distribution possesses a bell-shaped curve with most 
of the data points clustered about the mean. When it has been assumed 
that FER-13 is a persistent variable (for instance, facial expression 
intensity), then a data histogram could be created and visually inspected 
for normality. When the histogram roughly pursues a bell-shaped curve, 
this could recommend that the dataset pursue a normal distribution. The 
corresponding histogram plot is shown in Figure 17.

In addition, the Shapiro–Wilk test was undertaken, which is a 
statistical test utilized to determine if sample data is typically distributed 
or not distributed. Moreover, the proposed work has used the FER 2013 
BENCHMARK dataset, and the results for Shapiro–Wilk test statistics 
corresponding to the proposed work give 0.9844 with a p-value equal 
to 0, and it is clearly found that pixel values are not normally distributed.

4.5 Performance analysis

The performance of the proposed system has been analyzed, and 
the corresponding outcomes are discussed in this section.

Figure 18 shows the confusion matrix for the proposed model, 
illustrating the accuracy of emotion predictions. The model has 
successfully predicted the true labels, with “surprise” being the most 
accurately predicted emotion (1755 instances). In contrast, the 
predictions for other emotions were as follows: “neutral” (1251), 
“sad” (1243), “disgust” (994), “anger” (967), “fear” (762), and “happy” 
(96), with “happy” being the least predicted emotion. This analysis 

reveals that “surprise” was the most frequently and accurately 
identified emotion, while “happiness” had the fewest correct 
predictions. Moreover, Figure 19 represents the accuracy analysis of 
FER-2013 and shows both trained and validated accuracy.

From Figure 19a, it is clearly visible that both train and validated 
accuracy have some differences until epoch 10. Train and validated 
accuracy have a closer match on 20, 25, and 30 epochs. Moreover, 
from Figure 19b, it is clearly found that both train and validated loss 
have some differences in epoch 0 and epoch 5. In 10,15,20,25, and 30 
epochs, both train loss and validated loss have a closer match. 
Figure 20 visualizes the performance curves of precision-recall and 
receiver operating characteristics (ROC) of the proposed model on 
the FER-2013 dataset.

Figure 20a shows that the proposed model achieved an AUC value 
of 0.99 for the Precision-Recall curve for surprise, neutral, sad, and 
fear; 0.98 for disgust and anger; and 0.82 for happiness. The AUC 
curve confirms that surprise, neutral, sad, and fear have achieved high 
values, whereas happiness had lower prediction accuracy for the 
FER-2013 dataset.

Figure 20b shows that the ROC curve reached a value of 1.00 for 
anger, disgust, neutral, sad, and fear; 0.99 for surprise and happiness. 
Moreover, the performance metrics of the proposed model are 
tabulated in Table 2.

For instance, the proposed model demonstrates strong 
performance in detecting emotions such as anger, disgust, surprise, 
neutral, sad, and fear, achieving precision, recall, and F1 scores close 
to 0.99 for each, indicating high accuracy and consistency in 
predicting these emotions. However, for the “happy” class, the 
model exhibits a distinction with a precision accuracy of 0.97 but a 
reduced recall rate of 0.84, leading to a slightly lower F1-Score 
of 0.90.

FIGURE 11

Sample images for the FER-2013 dataset with different emotions.

FIGURE 12

Test data for the FER-2013 dataset.

FIGURE 13

Train data for the FER-2013 dataset.
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FIGURE 15

Experimental results for the correct classification of the proposed model.

FIGURE 16

Experimental results for misclassification of the proposed model.

Moreover, it shows that while the model is generally accurate in 
predicting happiness, it fails to account for a significant number of 
actual happy instances. These metrics highlight the model’s strengths 
in most emotional categories but highlight the need for improvement 
in predicting happiness.

Additionally, the model achieved a kappa coefficient of 0.9899, 
an overall accuracy of 0.99, a macro average of 0.99 for precision, 0.97 
for recall, and 0.98 for the F1-score. The weighted averages for 
precision, recall, and F1-score were all 0.99, further confirming the 
model’s robust performance.

Based on the performance analysis, the performance of the 
proposed system that has used quantum computing is found to 
be more efficient. In order to gauge its outstanding performance, the 
proposed system was compared with the conventional system, for 
which a comparative analysis was carried out. The results are discussed 
in the succeeding section.

4.6 Comparative analysis

The proposed system has been compared with four conventional 
studies, and the respective results are discussed in this section. The 
existing study has used various models such as DCNN Model1, 
DCNN Model2, EmNet (average fusion), and EmNet (weighted 
maximum fusion), and their corresponding outcomes are given in 
Table 3.

When compared with the existing study, we can observe that 
the proposed model has attained a higher accuracy of 98.19%, 
which is clearly shown in Table 3. The existing study (Zahara et al., 
2020) has been compared with the proposed model, which used 
quantum computing, and the outcomes are 65.97% accuracy for 
the existing model and 98.19% for the proposed model. Hence, it 

FIGURE 14

Experimental results for correct classification of the proposed model.

FIGURE 17

A histogram plot.
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is clear that the proposed model has better accuracy, as shown in 
Table 3.

The train and test accuracy of the proposed method has been 
compared with the existing study (Bodavarapu and Srinivas, 2021), 
which has used various models like FERConvNet_Gaussian, 
FERConvNet_Nonlocal Means, FERConvNet_Bilateral, and 
FERConvNet_HDM, and the outcomes are shown in Table 4.

From Table 4, it is clear that the proposed method has attained 
higher train accuracy at 99%, and the test accuracy value is given as 
98%, compared with the existing methods used in the existing study.

The performance metrics of the proposed method, which used 
quantum computing, have been compared with the existing study 
(Kim et al., 2021), which has used the SGD and Adam models, and it 
is shown that the proposed model achieves 98.19% of accuracy, 98% 
of precision, recall, and f1_score, compared with 76.17 and 77.17% of 
accuracy, 63.0118 and 66.6236% of precision, 61.0729 and 66.8845% 
of recall, as well as 61.0932 and 66.6779% of f1_score, respectively, for 

FIGURE 18

A confusion matrix.

FIGURE 19

Training performance metrics of the two datasets: (a) accuracy analysis of the FER-2013 dataset and (b) loss analysis of the FER-2013 dataset.

FIGURE 20

Curves visualization of the proposed model on the FER-2013 dataset (a) Precision-Recall curve, and (b) receiver operating characteristics (ROC) curve.

112

https://doi.org/10.3389/fncom.2024.1435956
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Alsubai et al. 10.3389/fncom.2024.1435956

Frontiers in Computational Neuroscience 16 frontiersin.org

TABLE 3 Comparative analysis of accuracy (Saurav et al., 2021).

Model Accuracy (%)

DCNN Model 1 72

DCNN Model 2 72.02

EmNet (average fusion) 74.11

EmNet (weighted maximum fusion) 74.06

Proposed 98.19

the SGD and Adam optimizers. Hence, it is clearly found that the 
proposed method has higher values in all performance metrics. 
Furthermore, a comparison has been undertaken between proposed 
and conventional methods by considering the JAFFE dataset. The 
respective outcomes are shown in Table 5.

From Table 5, it can be observed that existing algorithms such as 
VGG-16 have revealed an accuracy rate of 97.62%, DenseNet-161 has 
exposed an accuracy of 99.52%, and the Inception-v3 algorithm has 
shown 99.05% accuracy. However, the proposed model has explored 
a high accuracy rate of 99.68%. Similarly, the proposed system has 
been compared with conventional models for the CK+ dataset 
(Shanthi and Nickolas, 2021), and the corresponding outcomes are 
97.86% for the existing model and 98.19% for the proposed model. 
Hence, it can be  concluded that the proposed model has been 
confirmed to be  more effective than conventional models when 
considering challenging datasets like the CK+ dataset and the JAFFE 
dataset. Hence, from the experimental results, performance analysis, 
and comparative analysis, it is clearly shown that the proposed model, 
which used quantum computing and ResNet18 Architecture with 
Modified Up Sampled Bottleneck Process, shows enhanced 
performance with higher accuracy due to effective feature extraction.

5 Discussion

The study (Bursic et  al., 2020) considered two models, 
GRU-Cell RNN and spatio-temporal CNN. These have been 
initially trained upon the facial features alone. It has been found 
that including information associated with language articulation 
has enhanced the accuracy rate to approximately 12%. However, 

the enhancement in accuracy rate has been highly reliant on the 
consecutive frames that have been afforded as input. Though the 
accuracy rate has been satisfactory, there is scope for further 
enhancement. Following this, the research (Qin et al., 2020) has 
aimed at an issue that conventional FER has not been accurate, for 
which CNN and GWT (Gabor Wavelet Transform) have been 
integrated. Initially, histogram equalization, cropping, face 
positioning, and several pre-processing stages were undertaken for 
expression images. Subsequently, keyframes corresponding to the 
expression sequences have been extracted. In this case, GWT was 
used to procure phase features, while CNN was utilized for 
training purposes. Experimentation has accomplished an accuracy 
rate of 96.81%. Furthermore, this study (El Dahshan et al., 2020) 
aimed to perform FER in accordance with QPSO (Quantum 
Particle Swarm Optimization) and DBN (Deep Belief Network). 
The suggested system has encompassed four stages. Initially, 
pre-processing has been undertaken by cropping region of interest 
(ROI) to attain the preferred region, thereby eliminating 
non-essential parts. Furthermore, image downsampling has been 
adapted to reduce the new sub-image size and enhance the 
performance of the system. Emotion class has been found with 
DBN. Rather than adapting the parameters of DBN manually, 
QPSO has been utilized to optimize DBN parameter values 
automatically. The suggested method has been employed in 
datasets including FER-2013. With the employment of the 
suggested system, the accuracy rate has been found to be 68.1% 
for the FER-2013 dataset. Furthermore, the article (Liu et  al., 
2020) has encompassed three major phases: frontal face 
identification module, feature extraction, and classification. 
Feature extraction encompasses dual channels. In this case, one is 

TABLE 4 Comparative analysis of train and test accuracy (Bodavarapu 
and Srinivas, 2021).

Model Train accuracy 
(%)

Test accuracy 
(%)

FERConvNet_Gaussian 98 58

FERConvNet_Bilateral 98 63

FERConvNet_Nonlocal Means 93 61

FERConvNet_HDM 98 95

Proposed 99 98

TABLE 5 Analysis in accordance with an accuracy rate (Akhand et al., 2021).

Pre-trained deep CNN model Accuracy (%)

VGG-16 97.62

VGG-19 98.41

ResNet-18 98.09

ResNet-34 98.57

ResNet-50 99.05

ResNet-152 99.52

Inception-v3 99.05

DenseNet-161 99.52

Proposed model 99.68

TABLE 2 Performance metrics of the proposed model.

Class Precision Recall F1-score

Anger 0.99 0.99 0.99

Happy 0.97 0.84 0.9

Disgust 0.99 0.99 0.99

Surprise 0.99 1 0.99

Neutral 0.99 1 1

Sad 0.99 0.99 0.99

Fear 0.99 1 0.99

Accuracy 0.99

Marco Avg 0.99 0.97 0.98

Weighted Avg 0.99 0.99 0.99
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for raw facial images, while the other one seems to be  for the 
extraction of features from the images. LBP images have been 
utilized to extract texts to enrich the facial features, thereby 
improving the performance of the network. Furthermore, an 
attention mechanism has been adopted. Moreover, the arc-face 
loss function has been included for improvising the distance of the 
inter class and minimizing the distance of the inner class. 
Experimentations have been undertaken on two accessible 
datasets, namely CK+ and FER-2013. Outcomes have revealed an 
accuracy rate of 94.24% for the CK+ dataset and 72.56% for the 
FER-2013 dataset. In spite of various endeavors undertaken by 
existing works, it has been clearly found that there is a scope for 
enhancement with regard to accuracy. Accordingly, the proposed 
system has shown better results in accordance with accuracy 
(98.19%) than conventional systems.

5.1 Ethical implications of FER

Ethical concerns tied to FER technology, such as privacy, consent, 
and potential abuse, are significant. FER technology could enhance 
user interactions in various fields, such as healthcare and security, but 
it also poses risks like privacy invasion and the possibility of 
misidentification or bias, especially toward marginalized groups. To 
encourage ethical use, it is crucial to set up protocols such as obtaining 
consent before collecting emotional data, explaining the data’s 
purpose, and conducting regular assessments to detect and correct 
algorithm biases. Additionally, the establishment of regulatory 
frameworks can help monitor the deployment of FER technologies, 
ensuring their ethical application and preventing infringements on 
fundamental rights. By prioritizing these approaches, individuals can 
reap FER’s advantages, minimize its drawbacks, and establish trust 
with the public.

6 Conclusion

This study aimed to detect emotions from facial expressions 
using quantum computing. The experimental results showed that 
quantum computing performs more effectively, even with large and 
complex datasets. The FER-2013 dataset used in the research and 
ResNet18 Architecture with Modified Up-Sampled Bottleneck 
Process were used to classify emotion types from the provided 
emotions, such as neutral, disgust, anger, sad, happy, surprise, and 
fear. The proposed system performance was evaluated based on four 
performance metrics, and the outcomes were found to be 98.19% 
accuracy, 98% recall, 98% f1-score, and 98% precision. Furthermore, 
comparative analyses were undertaken with four recent studies to 
confirm the efficacy of the proposed system. The outcomes of the 
analysis showed that the proposed model had better values in the 
performance metrics when compared with the existing models. The 
results showed the efficient performance of the proposed system 
over the existing models, and the proposed method achieved 
98.19% accuracy. Furthermore, the standard deviation of the 
proposed system was determined from the execution of the 
proposed system and was found to be  52.69816460460272. 
Moreover, the computational complexity for QNNs typically relies 
on the depth and size of the circuit, the dimensionality of input, and 

the number of training samples. Accordingly, for ResNet18, the 
computational complexity is O(n2.d), where n represents the length 
of image features and d corresponds to the quantum bit dimension. 
With the integration of position encoding, computational 
complexity increases to O (n2.d + n.d2). Future studies should 
further explore the power of quantum computing in machine 
learning applications.
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Facial emotion recognition (FER) can serve as a valuable tool for assessing

emotional states, which are often linked to mental health. However, mental

health encompasses a broad range of factors that go beyond facial expressions.

While FER provides insights into certain aspects of emotional well-being,

it can be used in conjunction with other assessments to form a more

comprehensive understanding of an individual’s mental health. This research

work proposes a framework for human FER using UNet image segmentation and

transfer learning with the E�cientNetB4 model (called FacialNet). The proposed

model demonstrates promising results, achieving an accuracy of 90% for six

emotion classes (happy, sad, fear, pain, anger, and disgust) and 96.39% for

binary classification (happy and sad). The significance of FacialNet is judged

by extensive experiments conducted against various machine learning and

deep learning models, as well as state-of-the-art previous research works in

FER. The significance of FacialNet is further validated using a cross-validation

technique, ensuring reliable performance across di�erent data splits. The

findings highlight the e�ectiveness of leveraging UNet image segmentation and

E�cientNetB4 transfer learning for accurate and e�cient human facial emotion

recognition, o�ering promising avenues for real-world applications in emotion-

aware systems and e�ective computing platforms. Experimental findings reveal

that the proposed approach performs substantially better than existing works

with an improved accuracy of 96.39% compared to existing 94.26%.
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1 Introduction

Human facial expressions, primarily manifested through

facial features, hold considerable emotional significance (Huang

et al., 2019). People instinctively understand these expressions

as they represent an individual’s emotions and demeanor during

interactions. With technological progress, there’s an increasing

interest in equipping machines with cognitive skills, leading to

research and debate in areas like human-computer interaction and

computer vision. A particular focus is on emotion recognition

via facial expressions, with applications in human-computer

collaborative systems, responsive animation, and human-robot

interaction (Oguine et al., 2022). The challenge of identifying

and classifying human emotions has been a topic of interest in

psychology, anthropology, and computer science. Some researchers

propose universal emotional categories, while others emphasize the

cultural impact on emotional perception and expression. Cross-

cultural studies reveal both similarities and differences in emotional

categorization (Lindquist et al., 2022).

Recognizing human facial emotions (FER) is crucial for digital

applications, human-computer interfaces, and behavioral sciences

(Gupta and Jain, 2021). Understanding the movements of facial

muscles and their link to emotions is essential for creating effective

classification algorithms. Classifying facial emotions involves

feature extraction (Song et al., 2024) and classification methods

(Zhu, 2023). Despite advancements, accurately identifying facial

expression subtleties remains challenging, particularly in online

settings (Zhang et al., 2020). Using image classification to detect

and categorize emotions is an intriguing frontier in emotion

recognition. Deep learning models, specifically convolutional

neural networks (CNNs), stand out for image classification and can

reliably classify emotions in images when trained on datasets of

facial expressions (Canal et al., 2022).

Human facial emotion recognition has several medical

applications. For example, Vignesh et al. (2023) uses a novel

CNN-based model for emotion recognition for psychological

profiling. The model incorporates U-Net segmentation layers

within VGG layers to extract critical features leading to better

performance compared to existing approaches on the FER-2013

dataset. Similarly, other studies also report the use of CNN for

enhanced accuracy in facial emotion recognition (Sarvakar et al.,

2023; Huang et al., 2023). The study (Sarvakar et al., 2023)

introduces a neural networks convolutionary (FERC) approach

based on the CNN model. An expressional vector is leveraged in

the proposed approach to identify five facial emotions. Contrary to

the single-level approach used in traditional CNN, FERC follows a

two-level approach.

Along the same course, the authors (Huang et al., 2023) utilize

a transfer learning approach where CNN and residual neural

network for facial emotion recognition. Features are extracted

using the residual network which is later used with the CNN

model. The authors found important features to provide better

performance. Features around the nose and mouth are reported to

be critical features to obtain enhanced accuracy. Results report an

83.37% accuracy with the AffectNet model using RAF-DB dataset

which contains real-world expressions.

The study (Talaat, 2023) presents a real-time facial emotion

detection approach for children suffering from autism spectrum

disorder (ASD). ASD is a difficult-to-diagnose disorder in the early

stage and facial emotions offer an alternative in this regard. Normal

and ASD children are reported to show different facial emotions.

The study proposes an enhanced deep learning technique based on

the CNN model. Robust and improved results are reported from

the proposed approach.

1.1 Challenges in existing approaches

Despite the improved accuracy and enhanced performance

reported in the existing literature, several challenges require

further efforts. To achieve accurate predictions when training

neural networks, a significant amount of data is required.

However, gathering datasets for subjective emotions poses a big

challenge. Many databases are sourced from platforms like Amazon

Mechanical Turk (AMT) or utilize hashtags of social media to

label image sentiment. These methods demand substantial human

effort and time, leading to increased costs. To address these issues,

integrating the training dataset with synthetic images is suggested

to assess whether it enhances accuracy and reduces the need for

real-face images (Huang et al., 2019). Handling the variations in

the human face including the color, posture, expression, etc. is

challenging for a FER system. Similarly, facial muscular motions

vary, as do the skin deformation from one person to another

making it difficult to make a FER system capable of recognizing

emotions in all scenarios. Consequently, existing FER systems

suffer from low accuracy.

1.2 Contributions of this study

In view of the challenges pointed out earlier, this study aims

to provide robust and precise results for FER. This research work

creates an efficient technique for categorizing human mood from

images. This study fulfills the following tasks.

1. The study proposes the use of the UNet model for image

segmentation with the EfficientNetB4 transfer learning (TL)

model to identify emotions including happy, sad, fear, pain,

anger, and disgust.

2. Multiple experiments are performed to identify emotions.

The first experiment does not involve UNet-based image

segmentation. In the second experiment, UNet segmentation

is performed to identify six emotions. In the third experiment,

UNet segmentation is performed for binary classification

involving happy and sad emotions.

3. Additionally, various ML and DL methods along with TL

approaches are adopted for performance comparison. Based on

the overall results with all classes (without UNet segmentation),

all classes (with UNet segmentation), and binary class (with

UNet segmentation), the effectiveness of the various models is

assessed.

The remaining sections of the paper are arranged as follows: A

summary of is given in Section 2, previous work related to human

emotions for image classification. Section 3 details the dataset,

including preprocessing steps and data visualization techniques
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employed to uncover underlying patterns within the data. This

section also outlines the various algorithms utilized in the study.

In Section 4, the results are discussed and analyzed. In conclusion,

Section 5 summarizes the study’s findings and suggests directions

for further investigation.

2 Related works

As mentioned, major research development has been

conducted on facial emotion recognition systems in the past

few years. Several approaches have been developed to solve

this problem. There have been approaches using features-based

recognition to DL approaches (Vignesh et al., 2023; Sarvakar

et al., 2023; Huang et al., 2023; Talaat, 2023). However, the CNN

models are widely used for this task and reported good results

concerning emotion detection from facial expressions. Qu et al.

(2023) proposed a CNN-based system for FER. They used the

benchmark dataset “FER 2013.” They used two different optimizers

for the optimization of the CNN such as stochastic gradient descent

(SGD) and Adam with different epochs. The study’s results indicate

that the CNN achieved a 60.20% accuracy using SGD optimizer on

00 epochs. Meena and Mohbey (2023) proposed a TL-based system

for the automatic sentiment classification of images. They used the

three TL models such as VGG16, Inception-v3, and XceptionNet.

The authors compared the TL model’s performance on three

different datasets. Results of the study show that the Inception-v3

achieved the highest accuracy on the CK+ dataset which is 99.57%,

VGG-19 performed well on the JAFFE dataset and attained an

accuracy score of 94%, and on the FER 2013 dataset, XceptionNet

achieved the accuracy score of 77.92%.

The research described in Boughida et al. (2022) introduced

an innovative technique for recognizing facial expressions by

utilizing evolutionary algorithms alongside Gabor filters. Facial

landmarks serve to identify crucial facial areas for the extraction of

Gabor features. Additionally, a genetic algorithm was employed to

concurrently select optimal features and fine-tune support vector

machine (SVM) hyperparameters. Regarding the JAFFE, CK, and

CK+ datasets, the test results reveal the method’s exceptional

performance with recognition rates of 96.30%, 94.20%, and 94.26%,

respectively. Gubbala et al. (2023) suggested a random forest

(RF) model enhanced with AdaBoost for the classification of

facial emotions from images. Their model aims to transform

features from social media image posts for emotional analysis.

The Adaboost-based RFmodel for emotion classification (ARFEC)

model’s core stages include class labeling, feature selection, and

feature extraction. The study demonstrates that the ARFEC model

achieved a peak accuracy rate of 92.57% on the CK+ dataset.

Similarly, the research outlined in Oguine et al. (2022) advocated

for a more efficient and accurate approach to classifying both

digital and real-time facial images into one of the seven emotional

categories. Enhanced training efficiency and classification accuracy

are achieved through preprocessing and data augmentation

methods. The proposed CNN+Haar Cascade model attained the

top accuracy of 70.04% on the FER2013 dataset. Gupta and

Jain (2021) developed a deep learning-based system for emotion

recognition via facial expressions. By utilizing a CNN-based system

inspired by the LeNet architecture, the recognition of emotions

through facial features is achieved. Their study employed publicly

accessible datasets featuring seven distinct categories. The proposed

CNNmodel recorded a maximum accuracy of 60.37%.

Haider et al. (2023) proposed an innovative method for

emotion classification through facial imagery. Their method

features a customized ResNet18 model augmented with a triplet

loss function (TLF) combined with a TL, along with an SVM

model for classification purposes. This approach utilizes a facial

vector and classifier to identify facial expressions by exploiting deep

features from a modified ResNet trained with triplet loss. During

preprocessing, facial areas are identified within the source images

via Retina Face, and the features are extracted by training the

ResNet18 model on cropped facial images using the triplet loss. The

SVM classifier then categorizes facial expressions based on these

deep features. Their results indicated that the tailored ResNet18

achieved a maximum accuracy of 99.02% on the MMI dataset. An

additional study (Lucey et al., 2010) compiled the extended Cohn-

Kanade dataset, which provides annotations for both emotions

and action units. The dataset’s performance was assessed using a

combination of SVM and active appearance models (AAMs) for

categorization. AAMs produce a mesh that tracks facial movements

across images, yielding two feature vectors. Initially, the mesh

vertices undergo translation, scaling, and rotation, followed by

conversion of images to grayscale using the input photos and

mesh. Through a leave-one-subject-out cross-validation process,

they reported over 80% accuracy. Huang et al. (2019) proposed an

advanced CNN to enhance the extraction of sentiment from images

based on visual content. They significantly enhanced the training

set by adding artificial face photos. The set exclusively included

synthetic and genuine face images, as well as combinations of both.

The result of the study shows that the AlexNet TL model achieved

the highest accuracy of 87.79%. Similarly, Anilkumar et al. (2024)

propose a deep CNN with hyperparameter optimization (DCNN-

HPO) for correctly predicting sentiment analysis by optimizing

the DCNN parameters. They used three different publicly available

datasets for experiments. The VGG-16 network is used to extract

features from each preprocessed image. Next, the DCNN is updated

using the retrieved features, and the DCNN’s weight parameters

are modified via Krill Herd Optimization (KHO). Classification

result shows that the proposed DCNN-HPO achieved the highest

accuracy of 83.4% DCNN-HPO using the TumEmo dataset. The

summary of the discussed literature is presented in Table 1.

3 Methodology

This study proposes a UNet segmentation-based TL approach

employing the EfficientNetB4 model for emotion recognition.

Figure 1 shows the methodological architecture of the approach.

3.1 Training phase

The training process for the proposedmodel consists of two key

stages:

1. Segmentation with UNet

The UNet architecture is trained on segmented facial regions

to isolate critical areas such as eyes, mouth, and facial contours.
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TABLE 1 Summary of the related work.

References Classifiers Dataset Performance

Qu et al. (2023) CNN FER 2013 60.20%

Meena and Mohbey (2023) VGG16, Inception-v3, and

XceptionNet

FER2013, JAFFE, Cohn-Kanade Dataset

(CK+)

77.92% XceptionNet on FER2013, 99.57% Inception-v3 on

CK+,94% VGG-19 on JAFFE

Boughida et al. (2022) SVM kernel (Linear, RBF),

Gabor filters

CK+ 94.26% Gabor filter

Gubbala et al. (2023) KNN, SVM, ARFEC FFHQ, CK+ and FER2013 ARFEC on FFHQ = 89.5 %, CK+ = 92.5 %, FER2013= 89.5%

Oguine et al. (2022) CNN + Haar Cascade FER2013 70.04%

Gupta and Jain (2021) CNN with LeNet FER 2013 60.37%

Haider et al. (2023) Customized ResNet18,SVM,

LDA, and Softmax

JAFFE, FER2013, AFFECNET, and MMI 99.02% customized ResNet18 on MMI Dataset

Lucey et al. (2010) AAMs, SVM CK+ 80% SVM with CAPP features

Huang et al. (2019) AlexNet Synthetic face dataset collected using

FaceGen software

87.79%

Anilkumar et al. (2024) ConvLSTM, MAN, AHR,

DCNN-HPO

GSO-2016, MVSA-Single, TumEmo 83.4% DCNN-HPO using TumEmo

The segmentation network was optimized using the categorical

cross-entropy loss function (Equation 1) with the Adam optimizer,

achieving rapid convergence. The segmentation step enhances the

quality of the input features for emotion classification.

2. Feature Extraction and Classification with EfficientNetB4

The segmented images are input into the EfficientNetB4

model pre-trained on the ImageNet dataset. The transfer learning

approach ensures efficient feature extraction with minimal

computational overhead. Fine-tuning was performed on the top

layers, including a fully connected layer for emotion classification.

The training parameters were optimized using the following

configuration:

• Learning rate: 1× 10−4

• Batch size: 32

• Epochs: 50

• Optimizer: Adam

A combination of data augmentation techniques (rotation,

flipping, and scaling) was applied to improve model generalization.

3.2 Testing phase

The testing phase involved evaluating the model on unseen

data to measure its performance on both multi-class and binary

classification tasks. The metrics used for evaluation included

accuracy, precision, recall, and F1-score. The testing process was

carried out as follows:

• Multi-class classification: the model classified six emotions:

happy, sad, fear, pain, anger, and disgust. It achieved an

accuracy of 90%, outperforming prior works with 94.26%.

• Binary classification: for the classification of happy

and sad emotions, the model achieved an accuracy of

96.39%, demonstrating superior performance over existing

benchmarks.

The results were further validated using a five-fold cross-

validation approach to ensure consistent performance across

varying data splits.

3.3 Dataset

The Kaggle repository dataset “6 Human Emotions for image

classification” contains facial images indicating people’s sentiments

(Mohamed, 2024). The images are in 224 × 224 dimensions,

however, the position of the face varies slightly. Because of the

automatic registration of the faces, every image has a face that

is about in the middle and occupies a similar area. The dataset

consists of six different classes such as “Happy,” “Sad,” “Fear,” “Pain,”

“Anger,” and “Disgust.” There are a total of 1,200 instances that

belong to six different categories. Class-wise instances of the dataset

are shown in Table 2.

3.4 Dataset preprocessing

Preprocessing includes image segmentation since it allows for

precise extraction of information about distinct image regions and

structures. This precision in segmentation proves indispensable for

a range of image classification purposes. Moreover, it paves the way

for cutting-edge medical research and facilitates various clinical

applications.

3.5 UNet for image segmentation

UNet is a convolutional neural network architecture specifically

designed for image segmentation tasks. In 2015, Olaf Ronneberger,
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FIGURE 1

Methodological architecture of the proposed approach.
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TABLE 2 Dataset statistics.

Category Number of instances

Happy 230

Sad 224

Fear 163

Pain 168

Anger 214

Disgust 201

Philipp Fischer, and Thomas Brox presented it (Krithika

Alias AnbuDevi and Suganthi, 2022). The name “UNet” comes

from its U-shaped architecture, which is the hallmark of this

network. The main objective of image segmentation is to partition

an input image into multiple regions and assign each pixel to a

specific class or category. The UNet architecture consists of an

encoder and a decoder part. Here’s a brief explanation of each of its

components.

3.5.1 Encoder
On the left side of the U-shaped network is the encoder, which

consists of a series of convolutional and max-pooling layers. Its

main function is to extract high-level features and spatial details

from the input image. With increased network depth, the receptive

field expands, allowing the model to recognize more intricate

patterns within the image.

3.5.2 Decoder
The decoder is on the right side of the U-shaped network.

It consists of upsampling and convolutional layers. The decoder’s

role is to take the learned features from the encoder and gradually

upsample the spatial resolution to produce a segmentation map.

The upsampling process helps recover the spatial information lost

during the downsampling in the encoder.

UNet has proven to be very effective for image-segmentation

tasks because it captures both local and global contexts through

the combination of encoder-decoder architecture and skip

connections. It has been widely adopted and adapted for various

segmentation challenges across different domains.

3.6 Mathematical working of UNet
architecture for FER

The UNet architecture utilized in this study is composed of

a contracting path (encoder) and an expansive path (decoder).

Mathematically, the UNet segmentation model can be expressed as:

Y = fUNet(X; θ), (1)

where X is the input image, Y is the segmented output, and θ

represents the trainable parameters of the network. The contracting

path applies convolutional layers followed by max-pooling to

extract feature maps:

Fi = σ (Wi ∗ Fi−1 + bi), i ∈ [1,N], (2)

where Fi is the feature map at layer i,Wi and bi are the weights

and biases, ∗ denotes the convolution operation, and σ is the

activation function (ReLU).

The expansive path performs upsampling and concatenation of

feature maps to recover spatial information:

F
up
i = Up(Fi+1)⊕ Fenci , (3)

where Up(·) represents the upsampling operation, and ⊕
denotes channel-wise concatenation with feature maps from the

encoder (Fenci ).

3.7 Loss function

To optimize the UNet model for segmentation, we employed

the categorical cross-entropy loss, defined as:

LCCE = −
1

N

N
∑

i=1

C
∑

c=1

Yi,c log(Ŷi,c), (4)

whereN is the total number of pixels,C is the number of classes,

Yi,c is the true label, and Ŷi,c is the predicted probability for class c at

pixel i. This loss function ensures pixel-wise classification accuracy

for multi-class segmentation.

3.8 ML models for emotion classification

In order to classify human emotion classification using images

Classification algorithms based on ML are applied. This paper

provides a brief discussion of some prominent classification

methods and their theoretical foundation. The models were

optimized by fine-tuning various hyperparameters for ML models.

3.8.1 Random forest
For supervised learning, decision trees are improved and

employed in random forests. The largest number of votes serves

as the basis for this prediction criterion (Manzoor et al., 2021).

Because there are improper connections between the trees in the

random forest, it has a low error rate when compared to other

classifiers. One way to conceptualize RF is as an ensemble model

composed of several trees. The ultimate forecast of this classifier

is decided by a majority vote after it generates several choice

trees. Compared to decision trees, this is more efficient because

decision trees collaborate and correct one another’s errors. In a

random forest, every tree is trained with distinct data points and

has bagging. The trees are therefore unconnected to one another.
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3.8.2 Logistic regression
LR is a prevalent statistical technique employed for binary

and multiclass classification tasks, even though its name might

suggest a regression application (Rymarczyk et al., 2019). LR

primarily focuses on classification. It models the connection

between independent variables and the likelihood of a specific

outcome occurring. By utilizing the logistic function, LR confines

predictions within a range of 0–1. During the training process, LR

calculates the coefficients for each independent variable through

maximum likelihood estimation. These coefficients signify the

influence of each variable on the probability of the outcome. LR

is easily interpretable, simple to implement, and effective with data

that is linearly separable. It stands as a fundamental model in the

realm of machine learning.

3.8.3 Extra tree classifier
The extra tree classifier (ETC) functions similarly to the RF

classifier, with the exception that a random process of splitting is

used in place of the top-down technique, which reduces variance

by making the tree more biased (Umer et al., 2022). This is

because a significant portion of the generated tree’s variance is

caused by the selection of the ideal cut-point. In contrast to RF

bootstrapping, the ETC does not support this. For instance, the

number of split points is equal to k if k attributes are chosen out

of the entire N attributes in our training class. Let S represent these

split sites, i.e., S1, S2, S3, Sk. These divisions are selected at random.

Every split results in a decision tree being generated. Every split

yields a score representing the likelihood of choosing every class.

Therefore, for class A, PA (i.e., PA1, PA2, PA3,...... Pak) provides

the probability. The class with the highest probability is selected

to determine the prediction, which is determined by averaging the

probabilities of each class. Another name for this is majority voting.

This reduction in complexity lessens the computational load on the

Extra Tree Classifier and enables it to get better results in several

high-dimensional complicated challenges.

3.8.4 Support vector machine
SVM is a powerful supervised learning model used for

challenges involving both regression and classification (Hearst

et al., 1998). They work by locating the ideal hyperplane in the

feature space that optimizes the distance between various classes.

Support vectors or the data points nearest to the decision boundary,

are what decide this hyperplane. SVMs may handle both linearly

and non-linearly separable data by using kernel functions to

transform the data into a higher-dimensional space. This makes it

possible to create more complex decision boundaries.

3.9 DL models for emotion classification

Artificial intelligence methods that imitate human knowledge

acquisition and DL are connected to ML approaches. DL is an

essential part of data science, which encompasses statistics and

predictive modeling. One kind of deep neural network utilized in

deep understanding is the CNN, which analyzes visual data. CNN

is a DL method that employs weights to recognize various objects

in an input image so it can make distinctions between them. CNN

is used to categorize and identify photos due to its high degree of

accuracy.

DL architectures ResNet, MobileNet, VGG19, EfficientNetB4,

and InceptionV3- are employed to categorize the data. These

models are trained by TL. A total of 50 training epochs have been

used to train each model. Below is a thorough explanation.

3.9.1 Convolutional neural network
CNNs are based on the visual system of the human brain.

CNNs therefore aim to make computers able to see the world as

humans do (Lu et al., 2021; Ding et al., 2023). CNNs can thus

be applied to NLP, image classification, and diagnosis. CNN is a

subset of DNN that has nonlinear activation layers, max pooling,

and convolutional layers. The convolutional layer, which is thought

to be responsible for the "convolution” operation that gives CNN

its name, a CNN’s primary layer. Layer inputs are subjected to

the application of convolutional layer kernels. A feature map is

created by convolving each of the convolutional layers’ outputs.

Since the input images in this study are inherently nonlinear, the

ReLU activation function together with maxpooling layers, helps to

augment the non-linearity in the image. Therefore, in the current

scenario, CNN with ReLU is straightforward and faster. The ReLU

can be defined as follows because it is 0 for all negative inputs:

z = max(0, i) (5)

where z shows the output and max calculates the maximum

value from 0 and input value i. In this case, the function suggests

that the positive value stays constant and the output z is zero for all

negative values.

3.9.2 VGG19
The 19-layer VGG19 model is a deep CNN. For tasks involving

picture classification, it is trained using the ImageNet dataset

(Rajinikanth et al., 2020; Cao et al., 2024). A 2 × 2 max pooling

layer and a ReLU activation function come after each repeating 3

× 3 convolutional layer in the architecture. VGG19 is frequently

utilized in computer vision research due to its high accuracy

on a variety of picture classification benchmarks. Nevertheless,

because of its many characteristics, it is computationally costly and

challenging to implement on devices with limited resources.

3.9.3 ResNET
Residual Network (ResNet) is a type of CNN that is commonly

used for TL, especially in the context of DL for image processing

tasks such as image recognition and classification (Yaqoob et al.,

2021). ResNet revolutionized DL by enabling the training of

extremely deep neural networks with 152 layers or more. Before

the introduction of ResNet, such deep networks were hard to train

due to the vanishing gradient problem, where the gradient signal

gets smaller and smaller as it backpropagates through each layer,

eventually becoming too tiny to make any significant changes in

the weights in the lower layers. ResNet addresses this by using skip

connections, or shortcuts to jump over some layers. The outputs

Frontiers inComputationalNeuroscience 07 frontiersin.org123

https://doi.org/10.3389/fncom.2024.1485121
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Na et al. 10.3389/fncom.2024.1485121

of these connections, which carry out identity mapping, are added

to the stacked layer outputs, effectively allowing the training signal

to be directly propagated back through the network. This design

makes it possible to train very deep networks, and thus ResNet

models can learn richer and more complex feature representations.

A ResNet model that has been pre-trained on a large and general

dataset like ImageNet is often used as a starting point for a new task.

Because the initial layers of a CNN tend to learn features that are

generally useful for analyzing images, such as edges and textures,

they can be effectively applied to new tasks with little alteration.

The later layers of the network, which learn more specific patterns,

may be fine-tuned with a smaller dataset specific to the new task,

ensuring adaptability and relevance.

3.9.4 E�cientNetB4
CNN architecture EfficientNetB4 was created to minimize the

amount of computing power needed for training and deployment

while achieving good accuracy on image recognition (Park et al.,

2022). After being trained on the ImageNet dataset, EfficientNetB4

performs well on several image recognition benchmarks. Multiple

pooling layers with activation functions are included in the model

design. With fewer parameters and increased training efficiency,

it additionally combines depthwise and pointwise convolutions.

Because of its strong transferability to different tasks and datasets,

EfficientNetB4 is a valuable tool for TL. However, for effective

deployment and training, specific hardware could be needed.

3.9.5 MobileNet
MobileNet uses depth-wise separable convolutions to

significantly reduce the number of parameters compared to

standard convolutions of the same depth (Srinivasu et al., 2021;

Zhu, 2024). Consequently, lightweight deep neural networks are

generated. Mobile networks are built using depth-wise separable

convolution layers. A pointwise convolution layer plus a depth-wise

convolution layer make up each depth-wise detachable convolution

layer. MobileNet has 28 layers. Through the manipulation of the

width multiplier hyperparameter, a conventional MobileNet can

contain as few as 4.2 million parameters. The input image measures

224 by 224 pixels.

3.9.6 InceptionV3
The Inception-V3 model optimizes the network using multiple

methods for increased model adaptability (Mujahid et al., 2022).

As compared to the V1 and V2 inception models, V3 has a larger

network. The DNNmodel Inception-V3 is trained directly on lesser

parameters.

3.10 Evaluation parameters

The evaluation phase, which includes evaluating learning

models’ performance, is critical to performance analysis. Standard

assessment measures such as F1 score, recall, accuracy, and

precision are used to evaluate FacialNet model performance (Umer

et al., 2022).

Accuracy is the most commonly used performance metric. It

is just the ratio of observations that were successfully predicted to

all observations. It works well with problems involving binary and

multi-class classification.

Accuracy =
(Number of correct pridictions)

(Total number of predictions)
(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

where TP and TN show true positives and true negatives,

respectively while FP and FN indicate false positives and false

negatives, respectively.

Precision is known as positive predictive value, and it is crucial

in situations where the expenses associated with false positives are

substantial.

Precision =
TP

TP + FP
(8)

The percentage of accurately predicted positive observations is

known as a recall to all actual class yes observations. When the

expense of false negatives is substantial, it matters.

Recall =
TP

TP + FN
(9)

The F1 Score is a harmonic mean of precision and recall.

F1− score = 2×
Precision× Recall

Precision+ Recall
(10)

4 Experiments and results

For human emotions classification extensive experiments are

carried out. ML and DL models are applied using the six different

classes without UNet segmentation, six different classes with UNet

segmentation, as well as, the two classes with UNet segmentation.

Results and detailed discussion are analyzed in this section.

4.1 Experimental setup and system
specifications

The Python 3.9 programming environment is used to conduct

the research. The study’s experimental setting includes the

computer language Python 3.8, (Scikit learn version Version

1.5.0 and TensorFlow version r2.15), RAM capacity available

(8GB DDR4), operating system type (64-bit Windows 11), CPU

specifications are Intel Core i7 with a processor frequency at

about 2.8 GHz which belongs to the 7th generation and an Nvidia

GTX1060 GPU. This information is relevant for comprehending

the technical characteristics of the research setting and the

computational resources employed in this study. TheML classifiers’

performances were evaluated using various performance evaluation

metrics.
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TABLE 3 Without UNet segmentation six classes (happy, sad, fear, pain,

anger and disgust) classification.

Model Accuracy Precision Recall F1-score

LR 72.40 73.24 73.39 73.31

RF 70.22 71.37 72.42 72.40

ETC 70.42 71.44 72.14 71.89

SVM 72.49 71.93 70.64 71.09

CNN 74.57 75.74 75.89 75.81

VGG19 69.89 72.17 73.76 72.99

ResNET 73.24 72.52 73.34 72.86

EfficientNetB4 81.56 80.96 81.23 81.19

MobileNet 80.15 81.67 80.54 81.09

InceptionV3 79.95 80.25 80.25 80.25

4.2 Results of multiclass without UNet
segmentation

The first stage of the experiments involved six classes including

happy, sad, fear, pain, anger, and disgust classes without UNet

segmentation and ML and TL models. Table 3 provides a summary

of the models’ performance.

The study showed that TL models EfficientNetB4, MobileNet,

and InceptionV3 had the highest accuracy rates. EfficientNetB4

outperformed all other models in accuracy. Overall, the

performance of all models using six emotion classes without

UNet segmentation data was unsatisfactory.

4.3 Results of models on multiclass with
UNet segmentation

Regarding the subsequent series of tests, the six-class

classification with UNet segmentation in the dataset is used. Many

ML and DL models were trained and tested using the resultant

dataset. Table 4 illustrates the performance of various models with

the UNet segmentation. It shows that ML models have shown the

lowest results as compared to the DL and TL models respectively.

Table 4 presents the performance metrics of various models,

ranging from traditional machine learning models like LR and RF

to advanced deep learning models such as CNN, VGG19, ResNet,

and EfficientNetB4 for emotion recognition tasks. Traditional

models like LR and RF achieved relatively low accuracies of 79.56

and 78.16%, respectively, as these models have limited capacity

to capture complex patterns in high-dimensional image data. The

ETC performed slightly better with an accuracy of 81.17%, and

SVM further improved with 80.94%, which can be attributed to its

strong ability to handle high-dimensional spaces.

In contrast, DL models showed a marked improvement, with

CNN achieving 84.74% accuracy, demonstrating its effectiveness in

capturing spatial hierarchies in images. ResNet and InceptionV3

continued this trend, with ResNet scoring 85.67% and InceptionV3

reaching 90.07%, thanks to their deeper architectures and

TABLE 4 With UNet segmentation six classes (happy, sad, fear, pain, anger

and disgust) classification.

Models Accuracy Precision Recall F1-score

LR 79.56 80.37 80.93 80.77

RF 78.16 79.73 80.24 79.97

ETC 80.46 81.17 81.14 81.15

SVM 80.94 81.48 80.17 81.11

CNN 84.74 85.24 85.30 85.27

VGG19 79.25 79.71 80.24 80.15

ResNET 83.36 85.17 85.67 85.42

EfficientNetB4 90.11 90.34 91.27 91.05

MobileNet 88.53 89.86 89.94 89.90

InceptionV3 89.66 90.11 90.07 90.10

additional design elements like residual connections and inception

modules. EfficientNetB4, however, stood out with the highest

accuracy of 91.27%, due to its compound scaling approach

that optimally balances network depth, width, and resolution.

MobileNet, while designed for mobile devices, still performed

well with 89.94% accuracy, though it trailed behind EfficientNet.

VGG19, on the other hand, performed similarly to traditional

models with an accuracy of 79.71%, suggesting that depth alone is

not enough for superior performance, and additional architectural

innovations are essential. Overall, deep learning models, especially

EfficientNetB4, significantly outperformed traditional methods in

the emotion recognition task.

The integration of UNet segmentation in the proposed model

significantly enhances the overall performance by providing a

refined preprocessing step that isolates relevant facial features,

enabling the classifier to focus on key regions of interest related to

emotions. The UNet architecture’s encoder-decoder design excels

in capturing detailed spatial features, enabling precise segmentation

of facial regions such as eyes, mouth, and forehead, which are

essential for emotion detection. This enhances the input quality for

subsequent models, like EfficientNet, leading to improved accuracy

and generalization. However, segmentation does come with its

challenges. The final classification accuracy is significantly affected

by segmentation quality; poor outcomes can cause errors or omit

critical emotional cues, especially in situations with occlusions,

varying lighting, or unusual facial expressions. Additionally,

segmentation increases computational demands, potentially

impacting real-time performance in practical applications. Yet,

when used with advanced models like EfficientNet, the precise

feature extraction benefits generally surpass the computational

costs, making it advantageous for detailed facial analysis tasks

like Facial Emotion Recognition (FER). The evaluation showed

that the transfer learning models EfficientNetB4, MobileNet, and

InceptionV3 classifiers attained accuracy rates of 90.11%, 88.53%,

and 89.66%, respectively. The results demonstrated significant

enhancements in learning model performance using UNet

segmentation across the six classes, with noticeable improvements

in machine learning models on the segmented dataset compared

to data without UNet segmentation. The EfficientNetB4 model
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TABLE 5 Binary class (“positive,” and “negative”) classification with UNet

segmentation.

Models Accuracy Precision Recall F1 score

RF 87.55 88.64 88.19 88.42

LR 89.24 90.54 90.48 90.52

ETC 90.22 91.29 91.41 91.34

SVM 90.57 91.14 90.79 91.04

CNN 92.24 93.25 93.90 93.52

VGG19 89.64 90.56 90.42 90.49

ResNET 94.44 95.42 94.19 94.88

EfficientNetB4 96.39 96.88 97.39 97.27

MobileNet 94.28 93.10 94.04 93.97

InceptionV3 95.24 94.87 95.17 95.11

achieved the highest accuracy. Furthermore, its precision, recall,

and F1 scores were 90.34%, 91.27%, and 91.05% respectively.

The RF linear model showed the lowest accuracy at 78.16%. The

development of the FacialNet model using UNet coupled with

EfficientNetB4 leverages the distinct advantages of each framework

for emotion recognition and mental health evaluation. UNet is

adept at segmenting images to pinpoint crucial facial features

indicative of emotional states. Its segmentation accuracy allows

for a focused examination of important facial areas. Conversely,

EfficientNetB4, with its effective feature extraction and pre-trained

weights, captures intricate patterns in high-dimensional facial

datasets efficiently. This hybrid model, fusing UNet’s segmentation

skills with EfficientNetB4’s feature extraction capabilities, achieves

a commendable balance between accuracy and computational

cost-ideal for emotion recognition tasks in mental health contexts.

4.4 Binary classification results with UNet
segmentation

The experiments involved binary classification on datasets

segmented with UNet. Given the dataset contains six classes,

the outcomes for multi-class classification were unsatisfactory.

Consequently, So, in this set of experiments we treated two classes

such as happy and sad (Sad, Fear, Pain, Anger, and Disgust) classes,

and performed the binary classification on this type of dataset

with UNet segmentation results of the learning models are shown

in Table 5.

Results of the experiments show that the proposed

EfficientNetB4 with the UNet segmentation features outperformed

the other learning models and achieved an accuracy of 96.39%.

Followed by InceptionV3 achieved an accuracy of 95.24%. The

proposed TL model EfficientNetB4 achieved the highest value for

the other evaluation parameters, 96.88% precision, 97.39% recall,

and an F1 score of 97.27%. In this part of the experiment, a notable

improvement in the performance of ResNet is noted. In this part of

the experiment ML model, RF is the least performer and achieved

an accuracy of 87.55%. Overall, there is a significant improvement

TABLE 6 Paired t-test results between the models.

Model Comparison t-statistic p-value

EfficientNetB4 vs. MobileNet 8.75 0.0031

EfficientNetB4 vs. InceptionV3 7.57 0.0048

TABLE 7 UNet segmentation cross-validation results.

Models Accuracy Precision Recall F1-score

First-fold 96.33 96.54 97.34 97.62

Second-fold 97.84 97.67 98.58 98.59

Third-fold 97.77 97.19 97.49 97.49

Fourth-fold 96.68 97.49 97.59 97.38

Fifth-fold 96.71 97.88 97.89 97.49

Average 96.68 97.45 97.52 97.50

in the performance of the learning classifiers used for the emotions

classification is noted.

4.5 Results for statistical significance test

To further evaluate the differences in performance among the

models, a paired t-test was conducted between EfficientNetB4,

MobileNet, and InceptionV3. The results demonstrated in Table 6

show that the difference in performance is statistically significant.

EfficientNetB4 significantly outperforms both MobileNet and

InceptionV3 across accuracy, precision, recall, and F1-score. The

p-values for both comparisons are below 0.05, confirming that

EfficientNetB4 provides a substantial performance improvement

over the other models.

4.6 Cross-validation technique results

One method for assessing how well ML algorithms work

is cross-validation. Although there are other cross-validation

techniques, k-fold cross-validation is preferred because it is well-

liked, simple to comprehend, and typically produces less bias than

the other techniques.

The choice of k = 5 strikes a balance between computational

efficiency and reliable estimation. Larger k-values (such as 10)

would provide even more precise performance estimates but at the

cost of increased training time. On the other hand, smaller k-values

(such as 2 or 3) might not provide enough diversity in training and

validation sets, leading to less reliable generalization performance.

By choosing k = 5, the method ensures a comprehensive evaluation

while keeping computational demands manageable, enhancing the

robustness and reliability of the reported results.

The data set is split into k equal-sized portions for k-fold cross-

validation. The first k groups are used to train the classifiers, while

the remaining portion is utilized to evaluate outperformance at

each stage. There are k repetitions of the validation process. Based

on k outcomes, the classifier performance is calculated. Various
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TABLE 8 Performance comparison with previous approaches.

References Classifiers Accuracy Limitations

Qu et al. (2023) CNN 60.20% No prepossessing, No multi-class classification, No segmentation, No cross-validation

Boughida et al. (2022) Gabor filter 94.26% No prepossessing, No multi-class classification, No segmentation, No cross-validation

Gubbala et al. (2023) ARFEC 92.5 % No prepossessing, No segmentation, No cross-validation

Oguine et al. (2022) CNN + haar cascade 70.04% No prepossessing, No multi-class classification, No segmentation, No cross-validation

Gupta and Jain (2021) CNN with LeNet 60.37% No prepossessing, No segmentation, No cross-validation

Lucey et al. (2010) SVM with CAPP features 80.00% No prepossessing, No segmentation, No cross-validation

Huang et al. (2019) AlexNet 87.79% No prepossessing, No segmentation, No cross-validation

Anilkumar et al. (2024) DCNN-HPO 83.40% No multi-class classification, No cross-validation

Proposed EfficientNetB4 96.39% Computational complexity

Bold values indicating the results of the proposed approach which are better than all previously published research works.

values of k are chosen for cross-validation. Since k=5 performs well,

we employed it in the experiments. 90% of the data in the five-fold

cross-validation procedure were used for training, while 10% were

used for testing. All occurrences in the training and test groups

were randomly distributed throughout the whole dataset before

selecting, training, and testing fresh sets for the following cycle.

This process was performed five times for each fold of the process.

Finally, averages of all performance metrics are calculated after the

five-fold process. The suggested TL model EfficientNetB4 yields a

mean accuracy score of 96.68, and average scores of 97.45, 97.52,

and 97.50 for precision, recall, and F1, in that order, according to

the cross-validation results displayed in Table 7.

4.7 Performance comparison with previous
approaches

In Table 8, we performed a comparison with other studies that

have previously worked on facial emotion classification to highlight

the importance of the suggested method. The accuracy attained in

those earlier tests showed a significant gap, indicating that there

is a great deal of space for accuracy improvement. The majority

of earlier research leveraged TL approaches and concentrated on

using the facial expression image dataset directly. This study, on

the other hand, made use of UNet segmentation characteristics that

were taken from an image dataset. The suggested EfficientNetB4

model produced highly significant results by utilizing this feature

set, as seen in the Table 8. This indicates that the suggested method

is effective in outperforming the results of earlier research and

points to the possibility of more developments in this area.

Facial emotion recognition using CNN in Qu et al. (2023)

utilizes a traditional CNN architecture, achieving moderate

performance. In contrast, FacialNet’s combination of UNet

segmentation and EfficientNetB4 enhances feature extraction

accuracy, leading to superior results, particularly for complex

emotion datasets. Similarly, Meena and Mohbey (2023) explore

transfer learning models for sentiment analysis, but their lack

of specialized segmentation, like UNet, limits their performance.

FacialNet’s segmentation provides more refined facial feature

representation, achieving 96% accuracy for binary classification.

The study by Boughida et al. (2022) uses Gabor filters and a genetic

algorithm for feature selection, which, although effective, falls short

in real-time applications where FacialNet’s deep learning approach

offers faster and more accurate predictions. AdaBoost-based RF

models in Gubbala et al. (2023) exhibit inferior performance

when compared to the cutting-edge deep learning architecture of

FacialNet, which employs the EfficientNetB4 backbone combined

with UNet segmentation to achieve notably superior outcomes.

In addition, although Oguine et al. (2022) presents a hybrid

FER model, it lacks the use of advanced segmentation strategies,

resulting in inferior emotion classification accuracy compared to

FacialNet, which outperforms due to its precise segmentation and

broad emotion classification capabilities.

4.8 Practical implications of proposed
approach

This research significantly enhances the field of facial

emotion recognition, with notable applications in mental health

assessments and emotion-aware technologies. The integration

of UNet segmentation with EfficientNet boosts accuracy by

capturing detailed facial nuances, rendering the model highly

suitable for practical applications such as telemedicine and adaptive

educational settings. Future advancements could involve testing

with varied datasets, inclusion of multi-modal data, and real-time

optimization for use on mobile or embedded platforms. Additional

future research directions might focus on further optimizing the

model design, investigating supplementary features, and assessing

larger, more varied datasets to improve the model’s resilience and

ability to generalize effectively.

5 Conclusion

This research proposes FacialNet for human FER using

UNet image segmentation in conjunction with TL utilizing the

EfficientNetB4 model. The proposed model has demonstrated

impressive performance, achieving an accuracy score of 90%

for six emotion classes including happy, sad, fear, pain, anger,
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and disgust, and 96% for binary classification including positive

and negative classes. Through extensive experimentation and

comparison with other ML and DL models, as well as state-of-

the-art previous research works, we have validated the effectiveness

and superiority of our proposed approach. Furthermore, the

robustness and generalization capability of the proposed model

have been thoroughly evaluated using a five-fold cross-validation

technique. This validation methodology ensures the reliability and

consistency of our results across different data splits, highlighting

the significance and reliability of the proposed approach. The

findings indicate that leveraging UNet image segmentation and

EfficientNetB4 TL yields promising outcomes in the domain of

FER, paving the way for the development of more accurate

and efficient emotion recognition systems in various real-world

applications.
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Motion feature extraction using 
magnocellular-inspired spiking 
neural networks for drone 
detection
Jiayi Zheng 1,2†, Yaping Wan 1†, Xin Yang 2, Hua Zhong 1, 
Minghua Du 3 and Gang Wang 2,4*
1 Department of Computer, University of South China, Hengyang, China, 2 Center of Brain Sciences, 
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Traditional object detection methods usually underperform when locating tiny 
or small drones against complex backgrounds, since the appearance features of 
the targets and the backgrounds are highly similar. To address this, inspired by 
the magnocellular motion processing mechanisms, we proposed to utilize the 
spatial–temporal characteristics of the flying drones based on spiking neural 
networks, thereby developing the Magno-Spiking Neural Network (MG-SNN) for 
drone detection. The MG-SNN can learn to identify potential regions of moving 
targets through motion saliency estimation and subsequently integrates the 
information into the popular object detection algorithms to design the retinal-
inspired spiking neural network module for drone motion extraction and object 
detection architecture, which integrates motion and spatial features before 
object detection to enhance detection accuracy. To design and train the MG-
SNN, we propose a new backpropagation method called Dynamic Threshold 
Multi-frame Spike Time Sequence (DT-MSTS), and establish a dataset for the 
training and validation of MG-SNN, effectively extracting and updating visual 
motion features. Experimental results in terms of drone detection performance 
indicate that the incorporation of MG-SNN significantly improves the accuracy of 
low-altitude drone detection tasks compared to popular small object detection 
algorithms, acting as a cheap plug-and-play module in detecting small flying 
targets against complex backgrounds.

KEYWORDS

bio-inspired vision computation, spiking neural networks, motion detection, drone 
target recognition, motion saliency estimation, visual motion features

1 Introduction

The rapid development of unmanned aerial vehicle technology has led to the wide use of 
small civilian drones for various tasks such as security patrols, agricultural monitoring, and 
disaster relief. However, there is also misuse of drones for illegal activities such as smuggling 
contraband, espionage mapping, and close-range reconnaissance, posing a significant threat 
to public safety (AL-Dosari et al., 2023). Therefore, it is crucial to develop an early warning 
detection system for low-altitude, short-range small drones. Traditional radar detection 
methodologies encounter challenges in identifying small drones due to their limited radar 
cross-section, low operational altitude, slow velocity, and inclination to conceal within intricate 
backgrounds, rendering them susceptible to ground clutter interference (Abro et al., 2022). 
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Recent studies have shown the potential of advanced communication 
and machine learning approaches in improving UAV detection 
capabilities and reducing interference from complex backgrounds 
(Khalil et al., 2022). Conversely, optoelectronic sensors, encompassing 
the infrared and visible light spectra, prove more adept at detecting 
short-range, low-altitude drone targets in complex settings, and the 
image and video data it captures need to be further processed using 
object detection to output results.

Previous research on drone detection has employed various 
techniques, primarily developed based on deep neural networks. 
These techniques are classified into two-stage and single-stage 
algorithms, depending on whether candidate regions are explicitly 
generated. Two-stage methods, such as the Faster R-CNN (Ren et al., 
2015), have achieved success, although they require substantial 
computational resources and have certain limitations in real-time 
processing. In contrast, single-stage algorithms, represented by 
methods like YOLO (Redmon et al., 2016) and SSD (Liu et al., 2016), 
offer faster detection speeds but lower accuracy. These models perform 
effectively on static images and general large-scale datasets but often 
struggle to identify small targets in cluttered and dynamic 
environments, particularly due to the information loss associated with 
small targets. Issues such as motion blur, object occlusion, lighting 
variations, angle changes, and device defocusing in video object 
detection highlight the necessity for more efficient and accurate 
methods for detecting small drones in complex environments (Jiao 
et al., 2021). To address the above challenges, gaining an understanding 
of the operational mechanisms of the biological retina (Yücel et al., 
2003) offers valuable insights. Serving as the initial stage in visual 
information processing, the biological retina is responsible for 
converting optical stimuli into electrical signals. These signals undergo 
preliminary processing by the retinal neuron network before being 
transmitted to the output neurons of the retina—ganglion cells. 
Ultimately, they are transformed into action potentials and conveyed 
to the visual center via the optic nerve. The biological retina is 
endowed with highly specialized functions, encompassing high-
resolution color perception, swift response to dynamic images, and 
effective processing of intricate scenes. These attributes equip the 
retina to manage a wide range of visual information, facilitating 
complex visual tasks such as motion detection, depth perception, and 
image segmentation (Neuroscience, 2020).

Despite drawing inspiration from the biological visual system for 
feature extraction and hierarchical processing, traditional visual 
perception algorithms struggle to adapt to swift-moving targets or 
intricate backgrounds, particularly within dynamic environments where 
erroneous detections are prevalent. Unlike conventional artificial neural 
networks, the biological retina possesses the ability to directly process 
dynamic temporal information and adjust to complex environments 
through mechanisms such as neural plasticity, a trait that proves 
challenging to completely replicate (Wohrer and Kornprobst, 2009; 
Hagins, 1972; Field and Chichilnisky, 2007; Beaudot et  al., 1993). 
Bio-inspired models that emulate the workings of the biological retina 
offer improved capabilities in extracting motion features, thereby 
elevating the precision and dependability of object detection.

Spiking Neural Networks (SNNs), recognized as the third 
generation of neural networks (Maass, 1997), are computational 
models that closely emulate biological neural networks by processing 
information through the spiking activity of neurons. Unlike 
conventional Artificial Neural Networks (ANNs), SNN neurons 

communicate using binary events rather than continuous activation 
values. This approach not only mirrors the structure and function of 
the biological retina but also encodes and transmits information 
through the processing of temporal spike sequences, displaying 
spatiotemporal dynamic characteristics. This intricate activity pattern 
enables the system to maintain overall stability while adapting to 
environmental changes and acquiring new motion information 
through plasticity mechanisms, mirroring the visual filtering observed 
in biological systems. Due to their event-driven nature, SNNs can 
more accurately utilize energy when processing sensor data similar to 
the retina (Jang et al., 2019), which is particularly useful for drone 
applications (Dupeyroux et al., 2021; Sanyal et al., 2024). They can 
be applied to tasks requiring real-time or edge computing and can 
integrate with neuromorphic processors (Calimera et al., 2013) to 
achieve rapid response in challenging scenarios. Recent years have 
witnessed the versatility and efficiency of SNNs across diverse 
domains (Mehonic et al., 2020; Kim et al., 2020), notably excelling in 
speech recognition (Wu et  al., 2020; Wu et  al., 2018), image 
classification (Kim et al., 2022; Vaila, 2021; Zhu et al., 2024), sensory 
fusion (Glatz et al., 2019), motion control (Glatz et al., 2019), and 
optical flow computation (Gehrig et al., 2020; Ponghiran et al., 2022). 
Compared to earlier methods such as Convolutional Neural Networks 
(CNNs) and optical flow techniques, SNNs provide a more biologically 
plausible and energy-efficient solution, particularly well-suited for 
feature extraction of small drones in scenarios where rapid adaptation 
to environmental changes is crucial, and facilitates a synergistic 
balance between the efficient encoding and processing of visual 
information and biological authenticity.

In time-sensitive scenarios, the incorporation of motion features 
proves advantageous for visual perception tasks, particularly in the 
context of processing temporal information and its implications for 
learning mechanisms. Currently, there is no research utilizing SNNs 
to model the dynamic visual information processing mechanisms of 
the retina and apply the motion information extracted by SNNs to 
drone object detection tasks. To address this issue and achieve both 
biological realism and efficiency in handling complex dynamic visual 
tasks, we introduce dynamic temporal information into the retinal 
output model. We have devised a primary motion saliency estimation 
algorithm, exclusively comprising an SNN architecture, serving as a 
visual motion perception model to emulate the processing and output 
of dynamic information by the biological retina in visual perception 
tasks. The acquired motion information is subsequently amalgamated 
with spatial information for utilization in drone object detection tasks.

Our research encompasses several key aspects: First, we develop 
a magnocellular pathway dataset based on the biological characteristics 
of the retinal magnocellular pathway computational model. Second, 
we investigate how SNNs encode and transmit temporal information 
through spike sequences, emulating the biological retina ex-traction 
of dynamic visual information. Third, we  propose a biologically 
inspired visual motion perception model, referred to as the Magno-
Spiking Neural Network (MG-SNN). This model comprises a 
computational framework solely using spiking neural networks to 
process visual information, acting as a primary motion saliency 
estimation model aligned with the retinal magnocellular pathway. 
We validate the accuracy of the SNN model in extracting motion 
features. Finally, the MG-SNN is used as a motion feature extraction 
module, which is combined with the object detection model to form 
a target detection framework, and the experimental results indicate 
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that the framework can accurately identify and detect low-altitude 
drone targets.

Specifically, the main contributions of this paper are summarized 
as follows:

 • This research is the first attempt (to our knowledge) to effectively 
simulate the magnocellular function of extracting motion 
features of objects using a two-layer spiking neural network 
framework, as a motion detection plug-in geared towards 
object detection;

 • Experimental validation shows that the MG-SNN model closely 
matches biological retina processing and enhances object 
detection accuracy and reliability, demonstrating the potential of 
biologically inspired SNN models in drone detection;

 • In conjunction with the magnocellular pathway computational 
model, we design the Visual-Magnocellular Dynamics Dataset 
(VMD) for supervised learning of motion features. The 
MG-SNN, combined with popular traditional object detection 
models, improves small drone detection performance in 
complex backgrounds.

The remainder of this paper is organized as follows. In Section 2, 
we introduce the related work on motion saliency computation and 
motion object detection, biologically inspired retinal models, and 
spiking neural networks for visual tasks. In Section 3, we present the 
retinal-inspired spiking neural network module for drone motion 
extraction and object detection architecture. This includes introducing 
the magnocellular pathway dataset inspired by the retinal 
magnocellular pathway computational model, explaining the 
proposed spike temporal encoding method for processing input video 
frames, and discussing in detail the primary motion saliency 
estimation model MG-SNN based on the SNN architecture, along 
with theoretical derivations and feasibility explanations of the 
proposed method. In Section 4, we  describe the comparative 
experimental conditions and evaluation methods for motion feature 
extraction and object detection, followed by a thorough discussion 
and analysis of the experimental results. Finally, in Section 5, 
we provide a summary of the entire paper.

2 Related work

2.1 Motion saliency computation and 
motion object detection

The initial research into motion saliency calculation initially 
emphasized single visual cues, such as motion speed or direction. 
However, these methods often lacked adaptability to rapidly changing 
scenes. Researchers utilized techniques like Support Vector Machines 
(SVM) to improve the prediction of salient motion areas, but these 
approaches incurred substantial computational loads when handling 
large-scale video data. In recent years, composite models (Wang et al., 
2017; Bi et al., 2021) have gained traction by integrating multiple 
visual cues to enhance overall system performance. Notably, models 
(Maczyta et al., 2019) have been employed to extract motion saliency 
over video segments, leveraging their exceptional feature learning 
capabilities for dynamic scene analysis. Similarly, Guo et al. (2019) 
calculated motion saliency between adjacent frames by analyzing 

optical flow fields to obtain foreground priors. They utilized a 
multi-cue framework to integrate various saliency cues and achieve 
temporal consistency.

In the early research on moving object detection, traditional 
algorithms focused on simple techniques such as background 
subtraction and threshold processing. For instance, reference (Yang 
et  al., 2012) utilized dynamic thresholds to compensate for the 
shortcomings of fixed-threshold background subtraction, enabling 
timely background updates and overcoming the limitations of 
traditional background update methods. While these techniques are 
straightforward to implement, their performance in dynamic 
backgrounds is suboptimal and offers limited potential for 
improvement. With advancements in computational power, methods 
integrating multiple sensory information (such as motion, color, and 
geometry) (Bhaskar, 2012; Minaeian et al., 2015) began to be employed 
to enhance the accuracy and robustness of object detection. Compared 
to traditional algorithms that detect small target locations through 
inter-frame target association, deep learning-based methods operate 
directly on keyframes by generating bounding boxes around targets 
to detect and track moving objects more effectively in complex 
environments. For example, methods from the YOLO series (Redmon 
et al., 2016) and the SSD series (Liu et al., 2016) regress directly on the 
input image to obtain localization and classification information for 
motion objects.

The algorithms exhibit certain limitations in the task of motion 
object detection, potentially resulting in the oversight of smaller or 
infrequently appearing objects, the loss of temporal information, and 
insufficient accuracy in dense scenes. In specific situations, they 
require more computational resources, which may reduce their 
suitability for highly real-time applications. Our approach departs 
significantly from previous methodologies by directly integrating 
biological principles into object motion sensitivity, as opposed to 
relying on arbitrary network architectures or parametric models. 
Opting for spiking neural networks over artificial neural networks 
holds promise in providing a more organic approach to processing 
visual information, thereby enabling the attainment of detection 
outcomes that more closely mirror human visual perception.

2.2 Biologically-inspired retinal models

The initial research into motion saliency calculation initially 
emphasized single visual cues, such as motion speed or direction. 
However, these methods often lacked adaptability to rapidly changing 
scenes. In the realm of bio-inspired retinal models, initial research 
centered on emulating the photoreception and primary processing 
mechanisms characteristic of the human retina. For instance, 
Melanitis and Nikita, 2019 explored the simulation of photoreceptors 
and initial signal processing in computational models of the retina, to 
replicate the early stages of visual processing observed in biological 
systems. Recently, researchers have been investigating the potential 
use of these models in more complex visual tasks for feature extraction 
and decision support. For example, Aboudib et al. (2016) proposed a 
bio-inspired framework for visual information processing that 
specifically focuses on modeling bottom-up visual attention, utilizing 
the retinal model for testing and theoretical validation.

Given the characteristics of various types of neurons and neural 
circuits in the retina, researchers have developed a range of models 
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tailored to distinct task types within the retina-inspired visual motion 
perception domain. Most of these models are multi-scale CNNs and 
Recurrent neural network (RNNs) models, constructed to mimic 
biological visual perception mechanisms. For instance, Zheng et al., 
2021 designed a model comprising feed-forward convolutional filters 
and recurrent units to represent temporal dynamics displayed in 
continuous natural videos and neural responses within the retina; 
McIntosh et al. (2016) developed a deep learning model based on 
CNNs to capture responses to motion stimuli; Parameshwara (2022) 
designed a retinal-inspired visual sensor model and framework, 
integrating CNNs and LSTMs to execute motion perception tasks. 
Moreover, Lehnert et al. (2019) introduced a retinal-inspired visual 
module encompassing CNN and LSTM layers for navigation 
perception tasks in complex settings. These models extract motion 
features from time-series images to identify and analyze motion 
stimuli and thus might lose temporal information.

Furthermore, attention mechanisms, inspired by the biological 
visual system, are used to enhance the recognition accuracy of 
significant motion targets by emulating the retinal focus mechanism 
on crucial visual features to detect prominent moving objects within 
videos. Lukanov et al. (2021) proposed an end-to-end model grounded 
in feature saliency, influenced by the retinal sampling mechanisms 
observed in primates; the BIT model (Sokhandan and Monadjemi, 
2024) employs a bio-inspired mechanism with an attention 
mechanism to effectively track targets in video sequences, and 
Malowany and Guterman (2020) utilize deep feedforward CNNs 
combined with top-down attention mechanisms from the human 
visual system for object recognition tasks.

While drawing inspiration from the multilayered visual systems 
and yielding outputs consistent with visual mechanisms, these models 
fall short of replicating the information-processing pathways of the 
human brain. By simplifying complex biological structures and 
functions to achieve specific capabilities, they do not truly reflect the 
transmission and processing of information in the temporal dimension.

2.3 Spiking neural networks for visual tasks

Furthermore, attention mechanisms, inspired by the biological 
visual system, are used to enhance the recognition accuracy of 
significant motion targets by emulating the retinal focus 
mechanism on crucial visual features to detect prominent moving 
objects within videos. Initially, the application of SNNs in visual 
tasks was primarily focused on basic image and video processing 
tasks, such as image reconstruction and simple object recognition. 
These tasks utilized the temporal dynamics of SNNs to mimic the 
primary stages of visual perception. Despite the tremendous 
success of CNNs in visual tasks, research into SNNs aims to 
leverage their event-driven characteristics for encoding 
information, with the expectation of achieving greater efficiency in 
power consumption and algorithmic complexity. Most relevant to 
processing visual motion information is the SpikeMS model 
(Parameshwara et al., 2021), which accurately segments and tracks 
dynamic moving targets in video sequences. This model uses an 
architecture that combines multilayer CNNs with SNNs to extract 
spatial features from video sequences and ultimately produces 
segmentation results for dynamic targets. Similarly, the Spike-
FlowNet model (Lee et al., 2020) utilizes a deep SNN encoder and 

an ANN decoder architecture for self-supervised optical flow 
estimation. Additionally, the U-Net-like SNN model (Cuadrado 
et al., 2023) integrates the U-Net architecture with SNN neuron 
models to extract motion and optical flow information in the 
temporal dimension, by combining event-based camera data with 
SNNs for optical flow and depth prediction. Another architecture 
(Hagenaars et  al., 2021) designed for optical flow estimation 
processes event data using an ANN-SNN hybrid approach. It is 
evident that most visual motion perception models related to SNNs 
are based on hybrid ANN-SNN architectures. Although SNN 
neurons are introduced to handle the temporal dimension, fully 
simulating the dynamic behavior of neurons remains challenging, 
and there is a performance and accuracy loss during the 
conversion process.

Frame-based images and feature vectors need to be encoded as 
spike trains to be  processed within SNNs. These spike events are 
non-differentiable, making traditional backpropagation methods 
challenging to employ. Early attempts at training SNNs focused on 
biologically inspired Hebbian mechanisms (Sejnowski and Tesauro, 
1989). Spike Time Dependent Plasticity (STDP) (Mozafari et al., 2018) 
strengthens synapses that may aid in neuron firing, thus avoiding the 
gradient issue. In ANN-SNN methods, input representations are 
formed by binning events within time intervals and converting them 
into image-based frame structures, referred to as “event frames.” Most 
dynamic information processed in SNNs also originates from event 
data generated by Dynamic Vision Sensors (DVS) (Haessig et  al., 
2019). However, our method is distinct in that it directly feeds video 
frames into the network through spike encoding, capitalizing on the 
temporal properties of SNNs combined with the temporal properties 
of spike trains. By encoding pixel intensity as spike timing, this 
approach naturally reduces the processing of redundant information 
while preserving all significant information, as only notable visual 
changes trigger spikes.

3 Materials and methods

This section will provide a detailed overview of the learning and 
inference process of the algorithm developed using SNNs, which 
simulates the retinal channel process of handling motion information 
and extracting accurate motion feature information. The extracted 
visual dynamic features are then used as a motion guidance module 
applied to drone object detection. First, we will introduce the overall 
architecture of the retinal-inspired spiking neural network for drone 
motion extraction and object detection. Then, we will describe the two 
main components: extracting visual motion information with 
MG-SNN and applying it to drone object detection. In the first part, 
the MG-SNN (Magno-Spiking Neural Network) model for motion 
saliency estimation includes the design of the Visual Magnocellular 
Dynamics Dataset (VMD), inspired by the computational model of 
the retinal magnocellular pathway. We will discuss the process of 
handling multiple frames through a spike temporal encoding strategy. 
Subsequently, we propose a Dynamic Threshold Multi-frame Spike 
Time Sequence backpropagation method (DT-MSTS) based on 
dynamic thresholds and the STDP rule to guide the learning of the 
SNN network. In the second part, concerning the application to object 
detection, we will primarily discuss combining MG-SNN with the 
YOLO model to achieve the task of detecting small drone targets.
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3.1 Overall architecture

The overall architecture of the drone motion extraction and object 
detection system based on a retina-inspired spiking neural network is 
illustrated in Figure  1. In the motion feature extraction module, 
MG-SNN is constructed by modeling the structure of the biological 
retina. The input video stream is converted into a temporal spike 

sequence using a spike temporal encoding strategy in the 
photoreceptor simulation layer. These sequences then undergo 
processing in the inner plexiform layer (IPL). During forward 
propagation in the IPL, the integrate-and-fire (IF) neurons in each 
layer integrate the presynaptic spike sequences. By employing a 
dynamic threshold mechanism, thresholds are dynamically calculated 
based on the time steps of the input spikes, enabling IF neurons to 

FIGURE 1

This is the overall architecture of the drone motion extraction and object detection system based on a retina-inspired spiking neural network.
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determine whether to fire at specific moments. This allows for 
synchronous processing of each video frame and the generation of 
corresponding postsynaptic spike sequences. Simultaneously, the label 
information of the magnocellular pathway dataset is also converted 
into spike time sequences using the spike temporal encoding strategy, 
guiding the subsequent backpropagation process. Ensuring that each 
neuron can fire at least once, synaptic weights are adjusted according 
to the spike times of the neurons. This process accurately measures the 
differences between the output spike sequences and the target spike 
sequences for supervised learning. It not only simulates the learning 
process of bipolar cells, horizontal cells, and amacrine cells in the 
biological retina but also preserves temporal precision.

In the ganglion cell output layer, the output corresponds with 
motion saliency estimation consistent with the magnocellular pathway. 
Information is transmitted through discrete-time sequences in the 
network layers, aligning with the dynamic processing characteristics of 
the biological retina. After processing the forward and backward 
propagation of the input spike time sequences within a time step, the 
membrane potentials of all IF neurons are reset to zero, ensuring stability 
and continuity when the network processes multiple frames continuously.

In the object detection module, the visual motion features 
extracted by MG-SNN are combined with the YOLO model (Redmon 
et al., 2016) to perform drone object detection tasks. This combination 
enhances the detection capability of small targets in dynamic scenes, 
achieving accurate detection and rapid response. YOLOv5 is primarily 
utilized in this experiment. All input channels are first sliced and sent 
to the convolutional layer, to create a visual object detection model 
based on SNN motion guidance.

In this implementation, the focus is placed on achieving high 
detection accuracy in challenging scenarios. MG-SNN serves as a 
motion-guidance module that extracts dynamic features from video 
frames and generates a motion intensity map, converting spiking 
activity into a single-channel grayscale image where dynamic regions 
are assigned higher intensity values (e.g., 1) and static backgrounds 
are assigned lower intensity values (e.g., 0). Following the YOLOv5 
framework, all input channels are sliced and sent to the convolutional 
layers. The convolutional responses of the motion intensity map and 
preprocessed video frames are concatenated and passed into the 
detection pipeline. This design ensures that regions with higher 
motion intensity responses are more likely to be activated during 
subsequent processing, thereby enhancing the detection of dynamic 
objects within the scene. The synchronized processing of MG-SNN 
outputs with the original video frames ensures that the entire object 
detection framework operates in real time without introducing 
latency. This architecture highlights the flexibility and utility of 
MG-SNN as a plug-and-play module that enhances object detection 
tasks. It effectively balances computational efficiency with detection 
accuracy, addressing the challenges of detecting small and dynamic 
objects in complex environments.

3.2 Drone motion feature extraction based 
on retinal-inspired spiking neural networks

3.2.1 Magnocellular pathway dataset inspired by 
the retinal magnocellular pathway computational 
model

The structure and function of the retina (Yücel et al., 2003) are the 
cornerstone of the visual system, with its layered structure facilitating 

the efficient transmission and processing of visual signals. As 
illustrated in Figure 2, these layers consist of the Outer Nuclear Layer 
(ONL), Outer Plexiform Layer (OPL), Inner Nuclear Layer (INL), 
Inner Plexiform Layer (IPL), and Ganglion Cell Layer (GCL). The 
ONL houses photoreceptor cell bodies, while the OPL and IPL serve 
as synaptic connection layers. The INL includes horizontal, bipolar, 
and amacrine cells (Stacy and Lun Wong, 2003). Horizontal cells 
regulate the electrical signals of photoreceptor cells through lateral 
inhibition, while amacrine cells are responsible for signal processing 
within the retina by forming synapses with ganglion and bipolar cells. 
Ultimately, the processed visual information is conveyed to the 
primary visual cortex in the form of action potentials (Arendt, 2003; 
Benoit et al., 2010).

The biological visual system processes visual information through 
two parallel pathways, one dedicated to motion information and the 
other to static appearance information (Bock and Goode, 2008). These 
pathways are commonly referred to as the magnocellular path-way 
(Magno) and the parvocellular pathway (Parvo). The magnocellular 
pathway plays a crucial role in the processing of visual 
motion information.

We referred to the magnocellular pathway computational model 
proposed by Benoit et al. (2010). According to this model, video 
streams are processed through photoreceptor cells to acquire visual 
data and normalize light intensity (Beaudot, 1994), thereby 
enhancing the contrast in dark areas of the video frames while 
maintaining the visibility of bright areas. The processed frames 
undergo low-pass filtering and pass through the ON/OFF channels 
of horizontal and bipolar cells, forming synaptic triads. In the 
magnocellular pathway, amacrine cells establish connections with 
bipolar cells and ganglion cells, thereby providing high-pass filter 
functionality that enhances sensitivity to temporal and spatial 
changes in visual information. When processing spatial information, 
ganglion cells act as spatial low-pass filters and compress the 
contrast of video frames, thereby enhancing low-frequency spatial 
motion contour information. This dual functionality allows 
ganglion cells to play a crucial role in integrating visual information, 
particularly in visual tracking and target recognition in 
dynamic environments.

By processing multi-frame historical information, it demonstrates 
exceptional sensitivity to moving objects, effectively filtering out noise 
and static backgrounds, as illustrated in Figure 3. This capability is crucial 
for extracting motion intensity information from visual scenes, 
facilitating attention guidance and target search. Leveraging this motion 
processing response, the magnocellular pathway improves focus on 
potential target areas while adeptly suppressing static backgrounds, 
which is particularly valuable in visual information processing.

In this research, we utilized the output from the magnocellular 
pathway as the label information for our neural network model and 
developed the Visual Magnocellular Dynamics Dataset (VMD) as 
illustrated in Figure 4. This dataset is constructed based on the Anti-
UAV-2021 Challenge dataset1 and the Anti-UAV-2023 Challenge 
dataset (Zhao et  al., 2023). The videos showcase natural and 
man-made elements in the backgrounds, such as clouds, buildings, 
trees, and mountains, realistically simulating scenarios encountered 
in drone surveillance tasks, the dataset includes target objects of 

1 https://anti-uav.github.io/dataset/
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varying sizes, from large to extremely small, intensifying the difficulty 
of object detection. Furthermore, the Anti-UAV-2023 Challenge 
dataset to enrich the VMD dataset, aimed specifically at small target 
recognition tasks, which include more challenging video sequences 
featuring dynamic backgrounds, complex rapid movements, and small 
targets, thereby encompassing a wider range of small target 
drone scenarios.

The VMD dataset comprises a total of 650 video samples, divided 
into 500 training samples and 150 test samples, each showcasing 
various natural and man-made diverse scenes with target objects of 
small sizes, scenes such as open skies, urban environments, forested 
areas, and mountainous regions. Motion complexity is introduced 
with sequences containing both static and dynamic backgrounds, and 
targets moving at different speeds and directions, challenging the 
motion detection capabilities of the model. The VMD dataset is 
created based on the magnocellular pathway computational model 
and is developed using the bioinspired library in OpenCV. Several 
preprocessing steps are applied to ensure the quality and consistency 
of the dataset: normalization of pixel values, setting the video frame 
resolution to 120 × 100 pixels to ensure computational efficiency, and 
adjusting each video segment to a frame rate of 20 frames per second 
with durations ranging from approximately 5 to 10 s, and only the 
content within the salient bounding boxes is retained to ensure precise 
labeling. The choice of a 120 × 100 resolution is a practical balance 
that provides sufficient detail for detecting and identifying small drone 
targets in complex scenarios. Compared to the simpler tasks often 
addressed by existing models, such as MNIST handwritten digit 
classification (32 × 32 resolution), our approach processes more 
complex inputs while maintaining an efficient computational profile. 

This resolution ensures that the detection framework operates 
effectively without compromising the precision required for small 
drone detection.

3.2.2 Video frame processing based on spike 
temporal encoding

To replicate visual processing akin to that of the human brain and 
extract motion features, it is crucial to effectively retain and transform 
the wealth of information present in external stimuli into sequences 
of neuronal action potentials. The selection of an appropriate encoding 
strategy is vital for connecting neuronal action potential sequences 
with behavioral information and for closely integrating the 
mechanisms of processing in the primary visual cortex with spiking 
neural networks (Field and Chichilnisky, 2007). Currently, two main 
types of spike encoding are employed in SNNs (Brette, 2015) rate 
coding and temporal coding.

In most sensory systems, neurons adjust their firing frequency 
according to the frequency and intensity of stimuli. However, rate 
coding (Field and Chichilnisky, 2007; Salinas et al., 2000) does not 
fully account for the rapid response capability of the visual system. 
Furthermore, accurately representing complex values with single 
neuron spikes is challenging and results in a loss of temporal 
information. Visual information transmission involves multiple 
synaptic transmissions, with each processing stage being extremely 
brief. Consequently, the firing frequency of neurons in the primary 
visual cortex is relatively low in these rapid response processes, a 
single neuron may only fire 0 or 1 action potential, making it 
impossible to estimate instantaneous firing rates based on the interval 
between two action potentials (Thorpe et al., 2001; Salinas et al., 2000), 

FIGURE 2

Conversion of the retina to the magnocellular pathway computational model.
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the use of changes in firing frequency to encode specific features of 
complex stimuli is inadequate.

To simulate the flexibility and adaptability demonstrated by the 
primary visual cortex in processing images or video data, this study 
adopts a temporal encoding strategy for spike encoding of input 
information. By representing specific values at precise moments of a 
single spike, the temporal structure of action potential sequences can 
encode information related to temporal changes in stimuli (Bair and 
Koch, 1996), such as the temporal variations in stimulus intensity. This 
allows for a more accurate representation of input grayscale value 
information in the temporal dimension.

 ( ) max1.0i iT I T= − ×  (1)

In subsequent experiments, we determine the activation time iT  
of each input neuron based on the normalized intensity value of 
the i-th pixel as shown in Equation 1. For this purpose, we employ a 
spike temporal encoding method to process the input video frames. 
The specific encoding formula is described as follows:

maxT  represents the maximum time step of the input spike 
sequence, while iI  is the normalized intensity value of the i-th pixel. 
Under this encoding mechanism, each pixel in the input layer 
generates a single spike at a specific moment iT , forming a temporal 
spike sequence. The higher the intensity value of the input, the earlier 

the corresponding spike firing time. Figure  5 illustrates the 
visualization result after encoding a video frame.

Temporal encoding utilizes earlier spike firing times to represent 
pixels with higher grayscale values, while higher thresholds cause 
neuronal discharge to delay, indicating that the pixel has a lower 
grayscale value. Our experiments make use of this time encoding 
mechanism to accurately map the temporal dimension of visual 
information, enabling efficient and sensitive processing of visual 
stimuli within the spiking neural network.

3.2.3 Spiking neurons
In this study, we  utilized Integrate-and-Fire (IF) neurons to 

develop a motion saliency estimation model using a pure SNN 
architecture. IF neurons operate by accumulating incoming signals 
until a certain threshold is reached, after which an action potential or 
“spike” is generated, and then resets its state, mimicking the basic 
behavior of biological neurons (Smith et al., 2000).

As Figure 6 illustrates, input video frames are encoded into a time 
spike sequence of length [0, maxt ], then the presynaptic spike sequence 
enters the network. Through IF neurons, when the membrane 
potential of an IF neuron exceeds the threshold potential thV , it 
generates a postsynaptic spike sequence. To ensure that non-firing 
neurons also transmit video frame information, it is defined that 
non-firing neurons emit a single spike containing minimal 

FIGURE 3

Input video images of flying birds with magnocellular pathway outputs, respectively, are the results of the two frames before and after. In order to 
obtain better viewing results, we performed min-max normalization of the dynamic motion.
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information at time maxt . The simplified formula for IF neurons is 
shown in Equation 2:

 

( ) ( ) ( ) ( )

( ) ( ) ( ),

−= − +

≥ = =

∑ 1

1

l l

l
th reset

t V t T w t S t

if V t V then r t V t V  
(2)

where ( )V t  represents the membrane potential of the neuron, lw  
is the synaptic weight between layers, and ( )1lS t−  is the incoming 
spike sequence from the previous layer. The spike firing rate ( )r t  is 1 
when a spike is emitted and 0 when no spike is emitted. When the 
membrane potential exceeds the threshold thV , the membrane 
potential is immediately reset to the resting potential resetV , which is 
typically set to 0.

FIGURE 5

The visualization depicts a single drone video frame along with its spike temporal coding sequence spanning 256-time steps.

FIGURE 4

The Anti-UAV2021 challenge dataset and VMD dataset contain large and small objects on clear backgrounds, as well as complex backgrounds (clouds 
and cities).
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During the processing of video frames after spike temporal 
coding by IF neurons, the threshold of the neuron affects its moment 
of discharge and maintains the system homeostasis (Abbott, 1999). 
Based on the leaky adaptative threshold (LAT) mechanism (Falez, 
2019), this study introduces a dynamic threshold mechanism that 
linearly increases with the input time steps. This mechanism is the 
first attempt to combine dynamic threshold adjustment with a video 
frame time encoding strategy, aiming to emphasize the importance 
of spike information in early time steps, which are considered to 
contain more distinct features compared to later information. This 
strategy, by enhancing the sensitivity of neurons to high-intensity 
inputs in early time steps, optimizes the efficiency of information  
processing.

The dynamic threshold mechanism contains a baseline threshold 
thV , which is linearly with the increase in input time steps to preserve 

the unique response characteristics of each IF neuron as in Equation 3. 
The threshold adjustment thD  occurs when the neuron is excited and 
upon receiving inhibitory spikes, reducing the discrepancy between 
the actual firing time iT  and the expected firing time labelT . The 
introduction of a dynamic threshold allows the neuron threshold to 
adjust automatically, encouraging the firing time iT  to approach the 
target time labelT , while maintaining the system equilibrium. The 
threshold learning rate θ  allows for adjustment of the rate of threshold 
change based on specific circumstances. The specific adjustment rule 
is as follows:

 th th iD V Tθ= +  (3)

This rule is designed to correct the timing error between the 
actual firing timestamp iT  and the target timestamp labelT  each time 
the neuron fires. The specific value of the threshold learning rate θ  
depends on the dataset and characteristics of the input video frames 
and requires an exhaustive search within the range [0, maxt ] to 
determine the optimal value. Since the membrane potential is 
determined by synaptic weights and the input spike sequence, 
designing an appropriate dynamic threshold rule can effectively 
enhance the influence of the input spike sequence on the membrane 
potential, thereby significantly improving the overall performance of 
the network.

3.2.4 Backpropagation method
The Spike-Timing Dependent Plasticity (STDP) rule adjusts 

synaptic strengths based on the precise timing of neuronal spikes. This 
rule leverages the temporal relationships between neuron firing times 
(Diehl and Cook, 2015), not only effectively encoding temporal 
information within neural circuits but also facilitating the update of 
specific synaptic weights. By adjusting synaptic weights based on the 
relative timing differences between input and output spikes, a 
biologically plausible learning mechanism is achieved.

 
( )

( ){ }
( )

1l

l
total

t r t
V t V t

∈ =
= ∑

 
(4)

This study introduces a method that combines the STDP rule 
(Bi and Poo, 1998; Caporale and Dan, 2008) and a time error 
function—Dynamic Threshold Multi-frame Spike-Time Sequence 
Backpropagation Method (DT-MSTS)—to perform 
backpropagation computations after temporal encoding of video 
frames. Our approach made improvements based on the BP-STDP 
method described in the literature (Sjöström and Gerstner, 2010). 
As shown in Equation 4, an IF neuron with no leak characteristics 
accumulates membrane potential over time with the output spike 
sequence and fires when it’s membrane potential ( )V t reaches the 
neuron threshold thV .

Considering that network decisions rely on the first spike signal 
from the output layer, earlier spikes thus contain more information. 
Under the same input and synaptic weights, the membrane potential 
of an IF neuron approximates the activation value of the Rectified 
Linear Unit (ReLU) neuron Tavanaei and Maida, 2019 as in 
Equation 5. We  can assume there is an approximate relationship 
between the output of the ReLU neuron and the firing time lt  of the 
corresponding IF neuron:

 max~l ly t t−  (5)

In the forward propagation process we constructed, l
jy  represents 

the activation value of the j -th neuron in layer l , and l
jz  is the 

weighted input of that neuron. As IF neurons approximate ReLU 

FIGURE 6

Processing of multi-frame video frames by IF neurons.
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neurons, in the ReLU function, /l l
j jy z∂ ∂  acts as the derivative at that 

point as shown in Equation 6:

 

1 0
0

l lj j
l
j

y if y
otherwisez

∂ >= 
∂   

(6)

However, in IF neurons, since l
jt  is not a function of l

jw , we cannot 
compute /l l

j jt w∂ ∂ . For each neuron j  in layer l , if its threshold time 
l
jt  is less than maxt , the derivative of its membrane potential l

jV  with 
respect to input weight l

jiw  can be calculated through the spike activity 
of the preceding layer neuron i. If max

l
jt t< , then assume / 1l l

j jt V∂ ∂ = − ,  
where maxt  is the maximum spike firing time.

 ( )2 2
max/l l

ij ole T T tµ= −
 

(7)

If IF neurons fire within the maximum time window, the time 
error gradient related to the neuron firing time can be calculated. 
During the learning process, we initially utilize the Stochastic Gradient 
Descent (SGD) algorithm in conjunction with the backpropagation 
algorithm to minimize the mean squared time error function. For 
each training sample, the mean squared time error function ije is 
defined as follows in Equation 7:

where l
lT  represents the target spike firing time, and l

oT  is the spike 
firing time output for each layer, µ  used for error updating. As the 
equation illustrates, we introduce the STDP factor ( )i tε  to guide the 
backpropagation update process of the time error function. This 
means that if the firing time of the label information in the 
magnocellular pathway is earlier than the output spike firing time, 
synaptic connections will be weakened through a negative feedback 
STDP factor ( ( ) 1i tε = − ); conversely, if the firing time is later, 
connections will be strengthened through a positive feedback STDP 
factor ( ( ) 1i tε = ).
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Thus, combining the mean squared time error function ije , the 
total loss function L is defined as:
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where O is the number of output layer neurons, where µ  is time 
error update parameter. For the output layer ( )l o= , the error term is 
calculated as:
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(10)

where w
jδ  directly reflects the prediction error of each output 

neuron. Finally, the error term obtained can be used to adjust the 
network weights:

 ( )1l l w l
ji ji j i iw w S tβδ ε−= +  (11)

where β  is the learning rate, which controls the step size of weight 
updates, and 1l

iS −  is the output of the previous layer of neurons. This 
ensures that the network can learn to reduce output errors, thereby 
improving the accuracy of outputs corresponding to the magnocellular 
pathway according to the calculations in Equations 8–11. Ultimately, 
the output layer of ganglion cells will produce a time spike sequence 
that corresponds to that of the magnocellular pathway in the 
primary visual.

3.3 Drone object detection based on 
retinal-inspired spiking neural networks

The YOLOv5 structure comprises several crucial components that 
ensure its efficiency and accuracy in object detection tasks. Firstly, 
YOLOv5 employs the Cross-Stage Partial Network (CSPNet) (Wang 
et al., 2020) as part of its backbone network, enhancing the model 
learning capability and generalization ability. CSPNet reduces 
computational cost while preserving spatial feature information by 
dividing the feature map into two parts: one that passes directly 
through dense blocks and another that merges with the backbone 
network. Additionally, YOLOv5 incorporates the Path Aggregation 
Network (PANet) (Liu et al., 2018) and the Spatial Pyramid Pooling 
(SPP) (He et al., 2015) module. PANet enhances feature fusion by 
combining high-level and low-level features, thereby improving object 
detection performance. The SPP module acts as a spatial pyramid 
pooling module, integrating information at different scales through 
pooling operations of various sizes, effectively expanding the receptive 
field and capturing more contextual information, which enhances the 
accuracy of drone detection.

The YOLOv5 structure incorporates multiple convolutional layers, 
pooling layers, and activation function layers, which collectively 
enable the model to extract crucial features from images and map 
these features to specific detection results through the final output 
layer. The Feature Pyramid Network (FPN) (Lin et al., 2017) connects 
up sampled mappings with corresponding feature mappings in the 
down sampling branch.

By integrating the dynamic visual features extracted by MG-SNN 
as a motion-guidance module with the spatial information present in 
drone video frames into the YOLOv5 model, the primary motion 
saliency estimation features output by MG-SNN are linked with the 
convolutional responses of preprocessed video frames. This 
connection ensures that regions with higher motion intensity response 
values are more likely to be activated during subsequent processing. 
Consequently, YOLOv5 is effectively guided to focus on key dynamic 
areas during detection, which leads to a reduction in false positives 
and an improvement in recognition accuracy. This innovative 
approach realizes the integration of SNNs as a visual motion 
information guidance module with the spatial appearance information 
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represented by deep neural networks for object detection and  
recognition.

4 Results

In this section, we conduct experiments on the VMD datasets to 
validate the performance of our model and evaluate its performance 
across various scenarios. Additionally, we introduced new comparative 
methods for experimentation and examined the superiority of our 
model compared to traditional methods based on the 
magnocellular pathway.

The experiments were conducted on an Ubuntu operating system. 
The experimental setup was executed on a PC equipped with an AMD 
EPYC 7502 32-core processor and an A100-PCI-E-40GB GPU. We set 
the number of training epochs to 20 and employed a learning rate 
strategy, while the input size for the network was fixed at 120 × 100. 
The other parameter settings are shown in Table 1.

4.1 Quantitative results of motion feature 
extraction

 


1

1MAE
N

i i
i

T T
N =

= −∑
 

(12)

To quantify and evaluate the performance of MG-SNN in 
simulating the output of the magnocellular pathway, we employed a 
statistical error measurement method: Mean Absolute Error (MAE). 
As shown in Equation 12, for each neuron i in the video frame, where 
iT  is the firing time of the spike sequence output by the i-th neuron in 

the magnocellular pathway, and iT  is the firing time of the spike 

sequence output by the i-th neuron in the MG-SNN, with n being the 
total number of input neurons.

When the MAE value is smaller, it indicates better model 
performance. By synthesizing this metric, we can comprehensively 
assess the model performance on the magnocellular pathway dataset, 
ensuring the model not only achieves outputs consistent with the 
visual pathway but also possesses robustness against outliers.

As shown in Figure 7, the performance of MG-SNN is evaluated 
by analyzing the training and testing MAE loss over 20 epochs on the 
VMD dataset. Initially, both training and testing losses exhibit a sharp 
decline, indicating that the model learns and fits the data quickly 
during the early epochs, the losses converge rapidly, stabilizing after 
approximately 10 epochs, which illustrates that MG-SNN avoids 
overfitting, demonstrates a certain level of generalization, and 
maintains stable learning of spatiotemporal information present in 
dynamic data.

Visual representations observed in the early visual areas of the 
primate brain show similarities to those in CNN frameworks trained 
on real images (Arulkumaran et al., 2017). This indicates that CNN 
frameworks also possess a degree of brain inspiration, capable of 
mimicking the hierarchical structure of simple and complex cells, 
thereby simulating the function of the retina in object perception to 
provide stable object representations. To enrich the comparative 
experiments based on this theoretical foundation, we  designed a 
convolutional neural network model with 3 × 3 two-dimensional 
convolution kernels (referred to as RetinaCNN) to simulate the output 
of the magnocellular pathway. The structure is 1C16-3C32-3C1. 
RetinaCNN directly processes grayscale intensity information in the 
video stream, sequentially through convolution and activation 
functions in each layer, ultimately generating an output consistent 
with the magnocellular pathway. Additionally, based on the 
RetinaCNN model, a spike-time encoding-based CNN-SNN motion 
saliency estimation model, named RetinaSNN, was developed by 
replacing the original activation functions with IF neurons. The 
structure of RetinaSNN is 1C16-IFNode-32C3-IFNode-1C3.

We conducted tests on the VMD dataset, where each network 
input consists of three video frames. This comparative experiment 
includes the output results of the magnocellular pathway 
computational model, the CNN model (RetinaCNN), and the 
CNN-SNN hybrid model (RetinaSNN). Furthermore, ordinary frame 
difference (OFD) and multi-frame difference (MFD) methods were 
added to enrich the comparative experiments. To achieve a processing 
mechanism consistent with MG-SNN, the multi-frame difference 
method accumulates data from three frames in the channel dimension 
for learning.

4.2 Qualitative results of motion feature 
extraction

Since the output of MG-SNN is a temporal spike sequence, for a 
more stable and accurate analysis of experimental results at the 
beginning of the test set, it is necessary to transcode the output before 
performing visual analysis. The visualization results are shown in 
Figure 8.

The results indicate that most “edge glow” and “video subtitles” 
phenomena caused by the camera are effectively filtered out regardless 
of the target size, but MG-SNN does not eliminate all noise 

TABLE 1 This is a table of the parameter settings for MG-SNN.

Parameters Description Value

maxt Maximum time step of the input spike 

sequence

256

Vth Baseline threshold for dynamic 

threshold

0 mV

Vreset Resting potential 0 mV

è Dynamic threshold learning rate 0.5

ì Time error update parameter 0.02

I Number of input neurons in the 

photoreceptor layer

12,000

O Number of output neurons in the 

ganglion cell layer

12,000

â Learning rate 10−6

Gray level Maximum gray value of temporal 

coding video frame

255

maxwo Initialize maximum synaptic weights 1

minwo
Initialize minimum synaptic weights -1
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interference, as some irrelevant neurons fire prematurely. This does 
not affect the identification of the main dynamic targets. In complex 
background test scenarios, compared to metrics such as OFD and 
MFD, MG-SNN can better focus on filtering and identifying dynamic 
information, effectively filtering out most of the interference caused 
by camera shake and moving cloud backgrounds. Its performance falls 
short in urban backgrounds, possibly due to inadequate filtering of the 
complex background and the generation of leading spikes by buildings 
after spike temporal encoding, making it difficult to identify objects 
clearly. Nonetheless, the neurons corresponding to tiny targets in 
complex mixed backgrounds can still produce leading spikes, ensuring 
effective recognition of moving targets.

Table  2 presents the experimental results, showcasing the 
performance and effectiveness of different methods on the VMD 
dataset in handling visual perception tasks. In terms of Mean Absolute 
Error (MAE) performance, MG-SNN demonstrates an ability to 
achieve an MAE of 6.4733 within a relatively short training period (20 
epochs), showcasing its rapid adaptation to initial training data and 
its quick attainment of optimal performance in the short term. 
Notably, MG-SNN outperforms traditional 2D convolutional neural 
networks (RetinaCNN) and hybrid CNN-SNN architectures 
(RetinaSNN) in terms of accuracy. This superior performance 
indicates it effectively captures and processes spatiotemporal 
information. RetinaCNN struggles to process complex dynamic 
scenes in comparison due to their inadequate capture of deep 
spatiotemporal features. Furthermore, the lower MAE observed in the 
CNN-SNN hybrid architecture compared to traditional CNNs 
indicates that spike-time encoding-based methods can better extract 
spatiotemporal information to some extent.

4.3 Quantitative results of object detection

In this section, we  leverage the motion features generated by 
MG-SNN for drone object detection. We use the Average Precision 

(AP) value as a quantitative measure, reflecting the model detection 
accuracy at varying thresholds. As shown in Equations 13, 14, Precision 
represents the proportion of correctly detected results, while Recall 
represents the proportion of all objects that are correctly detected.

 
TPPrecision

TP FP
=

+  
(13)

 
TPRecall

TP FN
=

+  
(14)

TP denotes the number of correctly detected objects, FP denotes 
the number of non-object targets detected as objects, and FN denotes 
the number of missed object targets.

In this comparative experiment, MG-SNN utilizes the VMD 
dataset, consistent with previous experiments, while other models use 
the Anti-UAV-2021 Challenge dataset and the Anti-UAV-2023 
Challenge dataset. All models are provided with identical inputs, 
which include complex backgrounds such as clouds and buildings, 
reflecting real-world scenarios in drone surveillance. Due to the 
limited computational capacity of MG-SNN, the input size is restricted 
to 100×120. Therefore, the input features were adjusted to 100×120 
before feature fusion to obtain the corresponding quantitative results. 
The Intersection-over-Union (IoU) threshold greater than 0.25 
method was employed. Since the input size is small and the images are 
of low resolution with fewer pixels per target, a higher IoU threshold 
might cause valid detections to be overlooked. Using an IoU of 0.25, 
the model achieves a better balance on the 120×100 input images, 
striking an optimal balance between precision and recall.

4.3.1 Cooperate with different object detection 
models

We demonstrate the compatibility of MG-SNN with various 
object detection models by integrating the motion features extracted 
by MG-SNN with YOLOv6-l (Li et  al., 2022), YOLOv5-s, and 

FIGURE 7

MAE loss curves of MG-SNN on the VMD dataset.
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FIGURE 8

Output results after testing on the VMD dataset. (The first row is the original image; the second row is the VMD dataset labels; the third row is the 
output of the magnocellular pathway computational model; the fourth row is the output of the ordinary frame difference method (OFD); the fifth row 
is the output of the multi-frame difference method (MFD); the sixth row is the output of RetinaCNN; the seventh row is the output of RetinaSNN; the 
eighth row is the output of MG-SNN. The first column shows the results of a small target moving quickly to the right against a cloud background; the 
second column shows the results of a small target moving quickly to the left against a cloud background; the third column shows the results of a small 
target moving quickly up and down against a cloud background; the fourth column shows the results of a small target tested against an exposure 
background; the fifth column shows the results of a small target against a composite background (clouds and city); the sixth column shows the results 
of a tiny object moving quickly against a cloud background; the seventh column shows the results of a tiny object moving quickly against a city 
background.).

TABLE 2 Comparison of experimental results.

Method Structure Network 
structure

Learning Minimum MAE 
during the first 

20 Epochs

MAE Epoch

MG-SNN SNN 12000FC-IFNode-

12000FC-IFNode

DT-MSTS (Dynamic 

thresholds +STDP)

6.4733 6.4733 20

RetinaCNN CNN 1C16-3C32-3C1 Backpropagation 35.7711 13.7086 200

RetinaSNN Spiking CNN 1C16-IFNode-32C3-

IFNode-1C3

ANN-SNN Conversion 8.8214 5.1386 200
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YOLOv5-x. We also compare the performance of these combined 
models with the original YOLOv6 and YOLOv5 structures to highlight 
the superiority of adding motion information. YOLOv6-l decouples 
the detection head and redesigns it with an efficient decoupled head, 
enhancing the model’s detection accuracy and convergence speed.

The evaluation results are shown in Table 3. The combination of 
MG-SNN and YOLO models consistently outperforms standalone 
YOLO models in terms of detection AP, precision, and recall. Notably, 
the combination of MG-SNN and YOLOv5-x achieves a precision of 
98.3%. Our method improves precision, indicating that it can detect 
more true objects in complex backgrounds. Further analysis of recall and 
AP shows that MG-SNN + YOLOv5-x achieves a recall of 81.1% and an 
AP of 86.1%, both of which are the highest values in Table  3. This 
demonstrates that the combination not only effectively reduces false 
positives but also accurately identifies all true targets. The YOLO 
methods are limited to handling single-frame information, neglecting 
the processing of motion information in multi-frame inputs. Adding 
MG-SNN enhances the capability to capture deep spatiotemporal 
features, resulting in a significant 2.0 to 5.0 AP improvement in the 
performance of popular object detection algorithms. This improvement 
indicates that input from MG-SNN effectively compensates for the lack 
of motion information when dealing with complex dynamic scenes.

Table  4 shows that integrating MG-SNN into existing object 
detection models introduces minimal computational overhead while 
maintaining real-time performance. For example, after adding MG-SNN, 
the GFLOPs of the model slightly increase from 203.8 to 204.5, while the 
FPS improves from 64.5 to 69.9. This demonstrates that the enhanced 

motion-guidance functionality provided by MG-SNN does not 
compromise the efficiency of the framework. Specifically, our method is 
capable of processing up to 69.9 frames per second, making it highly 
suitable for real-time small drone detection tasks, which effectively 
balances computational complexity and performance, meeting the 
demands of dynamic and time-sensitive environments.

4.3.2 Comparison to the advanced competing 
methods

We compared our method with popular object detection 
algorithms, including YOLOv7 (Wang et al., 2023), CFINet (Yuan 
et al., 2023), and DyHead (Dai et al., 2021). Compared to YOLOv5 
and YOLOv6, the YOLOv7 model introduces a new set of trainable 
Bag-of-Freebies strategies to enhance detection performance in small 
targets and complex scenes by better leveraging cross-layer feature 
fusion. CFINet is a network architecture that improves small object 
detection performance through coarse-to-fine region proposal 
networks (RPN) and imitation learning (Yuan et al., 2023). DyHead 
employs an attention mechanism to unify different detection heads 
into a dynamic head framework (Dai et al., 2021).

The evaluation results are shown in Table  5. Although 
YOLOv7x achieves a high precision of 95.9%, its recall and AP 
rates of 80.5 and 85.6%, respectively, still fall short of the 
performance of MG-SNN combined with YOLOv5-x (98.3%). By 
capturing motion information, MG-SNN can more accurately 
identify and locate targets in dynamic scenes, effectively 
enhancing the contrast between targets and backgrounds. This 
enables the detection algorithm to more precisely separate and 
identify small targets. The CFINet and DyHead models, which are 
designed for small object detection, achieve AP values of 96.4 and 
91.2%, respectively. However, the recall of CFINet is only 
62.0%, lower than the performance of MG-SNN combined 
with YOLOv5-x (81.1%). Compared with other models, 
MG-SNN + YOLOv5-x achieves a competitive balance between 
computational complexity and real-time performance, with 
GFLOPs increasing slightly to 204.5 while maintaining a high FPS 
of 69.9, which demonstrates the integration’s ability to enhance 
detection capabilities without significant additional computational 
cost, making it suitable for dynamic, real-time applications. 
MG-SNN has proven to outperform other methods in detecting 
small-target drones within complex backgrounds. This is because 
it can extract motion information and integrate spatiotemporal 
features from historical data. Combining motion saliency 
extraction networks with advanced object detection networks 

TABLE 3 Ablation study on the generalization of MG-SNN when applying 
to popular object detection methods.

Methods Precision (%) Recall (%) AP (%)

YOLOv6-l 90.6 78.0 82.4

MG-SNN+ 

YOLOv6-l
95.6 80.6 85.0

YOLOv5-s 93.5 79.2 81.9

MG-SNN+ 

YOLOv5-s
95.5 79.4 84.3

YOLOv5-x 95.4 77.4 82.8

MG-SNN+ 

YOLOv5-x
98.3 81.1 86.1

Bold values indicate the best performance for each metric within the respective method 
comparison.

TABLE 4 Computational complexity and performance study of MG-SNN 
when applied to common object detection methods.

Methods Prrams (M) GFLOPs FPS

YOLOv6-l 59.54 150.5 47.9

MG-SNN+ 

YOLOv6-l
59.54 152.0 45.2

YOLOv5-s 7.01 15.8 128.2

MG-SNN+ 

YOLOv5-s
7.01 16.0 126.0

YOLOv5-x 86.17 203.8 64.5

MG-SNN+ 

YOLOv5-x
86.18 204.5 69.9

TABLE 5 This is the result of a comparison experiment.

Methods Precision 
(%)

Recall 
(%)

AP 
(%)

GFLOPs FPS

YOLOv7-x 95.9 80.5 85.6 188.0 65.4

CFINet 93.4 62.0 71.4 111.57 38.6

DyHead 85.8 72.0 73.4 43.52 15.4

YOLOv5-x 95.4 77.4 82.8 203.8 64.5

MG-SNN+ 

YOLOv5-x

98.3 81.1 86.1 204.5 69.9

Bold values indicate the best performance for each metric within the respective method 
comparison.
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FIGURE 9

Visual comparison of test methods in test set videos of detection results. Green rectangles stand for the ground truth of object targets. Red rectangles 
represent detection results obtained by the test methods. The marked numbers are the confidence scores for the corresponding results.

significantly enhances overall object detection performance. This 
approach effectively utilizes spatiotemporal features from 
historical data to improve the detection of small drones in 
complex backgrounds.

4.4 Qualitative results of object detection

The experimental results are shown in Figure 9. In the figure, 
green rectangles represent ground truth annotations, and red 
rectangles represent the detection result bounding boxes. The test 
data covers urban and cloud backgrounds, where drone targets 
are difficult to identify. In complex backgrounds, YOLOv5 can 
detect drone targets in most scenarios, but some bounding boxes 
do not fully overlap with the actual annotations, resulting in false 
detections. The CFINet and DyHead models fail to generate 
accurate detection results, missing the targets and producing 
erroneous detections. YOLOv7 fails to detect drone targets in 
several scenarios, indicating a tendency to miss small targets. By 
utilizing the motion saliency features extracted by the SNN and 
combining them with the response maps generated by YOLOv5, 
the target areas are significantly enhanced. Post-processing the 
spatiotemporal depth information of the video frames improves 

target recognition accuracy. This demonstrates that MG-SNN can 
be combined with other models for tasks such as object detection. 
By effectively integrating spatiotemporal information, the 
reliability and accuracy of detection are enhanced, providing 
stronger technical support for various practical applications.

5 Discussion

The MG-SNN has demonstrated outstanding performance in 
complex dynamic visual tasks, producing outputs that align with 
the processing of dynamic data in the primary visual cortex. It 
shows lower MAE in traditional performance evaluation metrics, 
validating its accuracy in extracting motion information. 
Compared to traditional convolutional neural networks and 
hybrid architectures, MG-SNN has demonstrated stable responses 
to dynamic targets with reduced iterations. The visual dynamic 
features extracted by MG-SNN have served as a motion guidance 
module, enhancing the object detection capabilities of small 
drones in complex backgrounds and enabling the deployment of 
drone feature extraction on neuromorphic hardware. 
Experimental results have indicated that the fused model 
outperforms the original model in terms of recognition accuracy 
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and reliability. It can be flexibly integrated into existing object 
detection frameworks, effectively addressing the adaptability 
issues of traditional visual perception algorithms when handling 
fast-moving targets and complex backgrounds.

The two-layer MG-SNN model involves video frames passing 
through the photoreceptor input layer before the extracted 
features are transmitted to the ganglion cell output layer. During 
this process, spikes are fired when a neuron membrane voltage 
reaches a certain threshold, influenced by the input signals and 
synaptic weights, using neuron populations for information 
encoding helps mitigate noise. Even if individual neurons transmit 
erroneous information, the network as a whole can correct this 
deviation, reflecting the collective intelligence of biological 
neural systems.

The YOLO method is limited to processing single-frame 
information and neglects the handling of motion information in 
multi-frame inputs. Traditional artificial neural networks process 
only spatial information, while SNNs propagate spike times from 
presynaptic to postsynaptic neurons, thereby conveying temporal 
information. Other potential information in presynaptic neurons, 
which could provide valuable insights for the network, is 
discarded. Experimental results demonstrate that MG-SNN +  
YOLO achieves significant performance improvements over the 
baseline YOLO model, with an accuracy increase of 2.0–5.0%, a 
recall improvement of 0.2–3.7%, and an AP enhancement of 
2.4–3.3%. Adding MG-SNN enhances the ability to capture deep 
spatiotemporal features, making the model more robust in 
distinguishing targets from complex backgrounds, leading to 
higher precision and recall, and stronger generalization 
capabilities. MG-SNN effectively compensates for the lack of 
motion information in handling complex dynamic scenes. 
Through advanced temporal processing, bio-inspired feature 
extraction, and spatiotemporal information computation, the 
combined architecture processes these scenes efficiently and 
enhances object detection accuracy. By integrating the MG-SNN 
motion guidance module with the YOLO framework, the system 
maintains real-time performance while improving detection 
capabilities, particularly for small targets in dynamic scenarios.

Future work will prioritize optimizing the current 
implementation of MG-SNN to enable seamless real-time 
integration for dynamic environments. Deploying MG-SNN on 
neuromorphic hardware optimized for event-driven and energy-
efficient processing, such as Loihi or SpiNNaker, designed for 
event-driven and energy-efficient processing, will reduce 
computational overhead and latency, addressing current 
challenges in resource-constrained systems. Simplifying the 
MG-SNN architecture through model pruning and approximation 
will further enhance scalability, making the MG-SNN + YOLO 
framework more suitable for real-time detection tasks while 
maintaining accuracy and robustness in complex dynamic scenes, 
including improved resolution handling. In addition to improving 
real-time scalability, future research will explore the application 
of MG-SNN in swarms of small drones, transitioning from 
single-drone operations to collaborative multi-drone systems. 
This will involve integrating multi-source information, including 
pose estimation and data from lidar, RGB-D cameras, and inertial 
sensors, to enhance motion feature extraction and target 
detection in dynamic environments. Transitioning the framework 

towards online algorithms, incorporating event-based processing 
and real-time learning techniques will reduce memory 
consumption, computational overhead, and latency by optimizing 
the spiking neuron calculations within the current model. These 
improvements will also enhance system responsiveness and 
adaptability. With its advanced temporal processing, bio-inspired 
feature extraction, and combined spatio-temporal information 
computation, the MG-SNN framework has the potential to 
provide robust, scalable, and energy-efficient solutions for 
complex real-world scenarios, especially in resource-constrained 
systems and multi-drone platforms.

6 Conclusion

Achieving motion feature extraction and object detection for 
objects in terms of complex dynamic backgrounds and 
neuromorphic hardware deployment remains a challenging task. 
This study has delved into the potential of integrating the processing 
mechanisms of the biological retina with spiking neural networks 
(SNNs) for the first time. A two-layer pure SNN model, the Magno-
Spiking Neural Network (MG-SNN), has been proposed to simulate 
the visual information transmission process and achieve motion 
feature outputs consistent with biological visual pathways as a 
motion feature extraction module for object detection tasks. A 
Visual-Magnocellular Dynamics Dataset (VMD) has been developed 
and a multi-frame spike temporal encoding strategy has been 
adopted to effectively extract and process dynamic visual 
information. By combining dynamic thresholds and the STDP rule, 
a Dynamic Threshold Multi-frame Spike Time Sequence (DT-MSTS) 
backpropagation method has been proposed to facilitate the 
extraction of motion features within the SNN architecture. 
Additionally, MG-SNN has been integrated with the YOLO model 
to design a retinal-inspired spiking neural network architecture for 
drone motion extraction and object detection. This study has 
demonstrated the synergistic advantages of retinal mechanisms and 
SNNs in visual information processing, highlighting the potential 
for advancing drone visual detection technology, explores the 
possibility of deploying neuromorphic chips in the form of software, 
and points towards future directions for managing complex 
spatiotemporal data in real-world object detection tasks. Future 
research will focus on expanding the applicability of MG-SNN to 
broader contexts, including collaborative multi-drone systems and 
dynamic, resource-constrained environments. Advancements such 
as the deployment of neuromorphic hardware, the development of 
efficient real-time algorithms, and the integration of multi-source 
information will further enhance the system scalability, robustness, 
and energy efficiency, and are expected to extend the MG-SNN to 
semantic segmentation or video tracking. These efforts aim to bridge 
the gap between experimental research and practical deployment, 
enabling applications in areas such as multi-drone coordination, 
large-scale surveillance, and disaster response.
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