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Editorial on the Research Topic
Computational intelligence for signal and image processing, volume ||

1 Introduction

The second volume of this Research Topic features eight research articles that explore
the use of Computational Intelligence in Signal and Image Processing II applications
(Koundal and Ding, 2023; Wang et al., 2023). This edition explored brain-inspired
algorithms and examined how they have driven the development of new methodologies in
image/video and signal processing (Pan et al., 2024; Saikumar et al., 2022). It emphasized
the significant potential of brain-inspired algorithms to transform multiple fields to
drive innovation and enhance efficiency. Advancements in Artificial Intelligence (AI)
and machine learning have significantly impacted on a variety of fields, ranging from
healthcare and emotion recognition (Bing et al., 2024; Xia et al., 2023; Zhu, 2023) to
image encryption (Chu et al., 2024) and human activity classification. By highlighting
the interconnectedness of deep learning, neuro-fuzzy systems, neural networks, and other
Al methods, it underscored their essential role in understanding and modeling the
complexities of brain functions (Ye et al., 2024; Wen et al., 2024; Hao et al., 2023). This
work connected neuroscience and technology by examining how brain insights can inspire
the creation of novel algorithms and applications across diverse fields (Zhu, 2024; Hu et al.,
2022). These innovations represent a significant leap forward in their respective domains,
offering practical solutions with potential for real-world applications (Gezawa et al., 2023;
Song et al., 2025).

2 Contributions

Cheng introduced a weighted closest neighbor algorithm to predict emotional
distribution in abstract paintings. Emotional features have been extracted and assigned
K-values that are followed by an encoder-decoder model that utilized a pre-trained
network to enhance classification. Incorporating a blank attention mechanism, the model
accurately identified emotional semantics- outperforming existing methods. This approach
addressed the challenge of emotion recognition in abstract art. However, limitations
are positional link detection and dataset constraints which suggest future expansion
for more comprehensive classification. Sun et al. introduced a classification system for
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epileptic electroencephalography (EEG) signals using an attention
network that has integrated nonlinear dynamic and time-frequency
features. The system consisted of three modules: a parallel
convolutional network for high-resolution Hilbert spectrum
extraction, a residual-connected convolution module for nonlinear
dynamic feature learning via grayscale recurrence plots, and a self-
attention fusion module. The given system significantly improved
the classification accuracy on multiple EEG databases that offered
a promising approach to aid epilepsy diagnosis and treatment with
broad clinical applications. Yaqoob et al. introduced an automated
framework for Alzheimer’s disease (AD) stage prediction using a
Fuzzy Entropy-controlled Path-Finding Algorithm (FEcPFA) and
ResNet-Self architecture. This method addressed dataset imbalance
through data augmentation, incorporated a self-attention module
to extract key information and Bayesian optimization (BO) to
optimize hyperparameters. This framework improved the diagnosis
accuracy, reduced computational time, and offered potential for
early AD detection, though challenges like overfitting remain.
Future improvements include using more diverse MRI datasets.
Hou et al. developed an improved Dijkstra-based image encryption
algorithm for color images that addressed the inefficiencies of
traditional methods to treat color planes separately. Their approach
integrated a new 1D chaotic system with enhanced randomness
and an adaptive diffusion algorithm. The Dijkstra algorithm is
used for cross-plane pixel scrambling to ensure better security and
encryption efficiency. This method provided robust encryption for
both medical images and standard RGB images by outperforming
existing techniques in terms of security, quality, and robust to
attacks especially in telemedicine applications. Roda and Geva
introduced a pool-based semi-supervised active learning method
for image classification using both labeled and unlabeled data.
The approach involved clustering the latent space of a pre-
trained convolutional autoencoder and applied a novel contrastive
clustering loss (CCL) to enhance clustering even with limited
labeled data. The system queries the most uncertain samples for
annotation by iterating until the budget is exhausted. Empirical
results show high accuracy with fewer labeled samples by offering
an effective solution for image classification tasks with reduced
annotation costs. Alarfaj et al. proposed a novel human activity
recognition (HAR) approach using sensor-specific convolutional
neural networks (CNNs) for accelerometers, gyroscopes, and
barometers. Each CNN model is tailored to capture the unique
features of its sensor type by addressing challenges with diverse
data shapes. A late-fusion technique combined predictions from
multiple models to significantly improving accuracy. Alsubai et al.
introduced a facial emotion recognition system using a Modified
ResNet model enhanced with quantum computing and advanced
transfer learning. By integrating quantum convolutional layers
with parameterized filters and employing residual connections, the
system reduced the computation time and improved performance.
The Modified up Sampled Bottle Neck Process (MuS-BNP)
ensured computational efficiency. The model achieved superior
accuracy, recall, precision and F1-score by overcoming challenges
in distinguishing similar facial expressions. The results highlighted
the system’s potential for faster, more accurate facial emotion
detection, using quantum computing and deep learning. Na et al.
introduced FacialNet, a framework for facial emotion recognition
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(FER) using UNet image segmentation and transfer learning
with EfficientNetB4. The approach is validated through cross-
validation by offering high reliability and promised real-world
applications in emotion-aware systems to enhance mental health
assessments through more accurate emotion recognition. Zheng
et al. introduced the Visual-Magnocellular Dynamics Dataset
(VMD) with a multi-frame spike temporal encoding strategy to
enhance dynamic visual information processing. They proposed
the DT-MSTS backpropagation method for improved motion
feature extraction in SNNs. Additionally, they integrated MG-SNN
with YOLO to develop a retinal-inspired neural network for drone
motion extraction and object detection. The study highlights the
benefits of combining retinal mechanisms with SNNs, explores
software-based deployment of neuromorphic chips, and suggests
future directions for handling complex spatiotemporal data in
real-world detection tasks.

3 Conclusion

This editorial presented nine research articles focused on the
applications of Computational Intelligence for Signal and Image
Processing. The studies highlighted significant advancements
across various fields, from emotion recognition in abstract art to
medical applications. Techniques such as deep learning, transfer
learning, and quantum computing have shown great potential
in improving accuracy, efficiency, and security. Despite their
successes, challenges like dataset limitations, overfitting, and
computational time remain. Future work includes expanding
datasets, and refining models to enhance applicability in real-world
settings across domains such as healthcare and mental health.
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Prediction of emotion
distribution of images based on
weighted K-nearest
neighbor-attention mechanism

Kai Cheng*

School of Artificial Intelligence, Xidian University, Xi'an, China

Existing methods for classifying image emotions often overlook the subjective
impact emotions evoke in observers, focusing primarily on emotion categories.
However, this approach falls short in meeting practical needs as it neglects the
nuanced emotional responses captured within an image. This study proposes
a novel approach employing the weighted closest neighbor algorithm to
predict the discrete distribution of emotion in abstract paintings. Initially,
emotional features are extracted from the images and assigned varying K-
values. Subsequently, an encoder-decoder architecture is utilized to derive
sentiment features from abstract paintings, augmented by a pre-trained model
to enhance classification model generalization and convergence speed. By
incorporating a blank attention mechanism into the decoder and integrating
it with the encoder’'s output sequence, the semantics of abstract painting
images are learned, facilitating precise and sensible emotional understanding.
Experimental results demonstrate that the classification algorithm, utilizing the
attention mechanism, achieves a higher accuracy of 80.7% compared to current
methods. This innovative approach successfully addresses the intricate challenge
of discerning emotions in abstract paintings, underscoring the significance
of considering subjective emotional responses in image classification. The
integration of advanced techniques such as weighted closest neighbor algorithm
and attention mechanisms holds promise for enhancing the comprehension and
classification of emotional content in visual art.

KEYWORDS

image emotions, classification, weighted closest neighbor algorithm, emotional
features, abstract paintings

1 Introduction

Image data are essentially used for transferring information. The amount of picture
data is even increasing at an exponential speed owing to the advent of the Internet
(Cetinic and She, 2022; Zou et al., 2023). Because of the fast-paced nature of modern
society, people’s ability to extract information from photos is also accelerating, necessitating
more accuracy and efficiency in identifying image data on the network. Based on
this necessity, an effective image processing technique that makes use of computer
vision is required for humans to manage and use picture data more effectively.
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Sentiment analysis, often called opinion mining, is the process
of using natural language processing, text analysis, computational
linguistics, and biometrics to systematically unpack subjective
information and emotional states. The notion was initially
introduced by Yang et al. (2023). Sentiment analysis has gained
significant economic and societal significance in the last several
years and has been applied extensively in the domains of opinion
monitoring (Chen et al., 2023), topic inference (Ngai et al., 2022),
and comment analysis and decision-making (Bharadiya, 2023). For
monitoring public opinion, the government can make timely policy
interventions and accurately determine the direction of public
opinion. When it comes to product recommendations, merchants
can better understand user needs and suggestions by gauging
user satisfaction with product evaluations and enhancing product
quality. In the finance domain, trending financial topics can even
be used to predict stock direction. Furthermore, sentiment analysis
is frequently used for various tasks involving natural language
processing. To increase the accuracy of the system, more exact
terms for sentiment expression are chosen for machine translation
(Chan et al,, 2023) by evaluating the sentiment tendency of the
input text. The pixel density extraction of the image information
is shown in Figure 1.

Various classification techniques will be broken down into
different levels for the sentiment analysis task: output results will
categorize the methods into sentiment intensity classification and
sentiment polarity classification; granularity of the processed text
will divide them into three research levels: word level, sentence
level, and chapter level; research methodology will separate
them into unsupervised learning, semi-supervised learning, and
supervised learning, and so on. The majority of the conventional
sentiment classification algorithms employ manually created
feature selection techniques for feature extraction, such as the
maximum entropy model (Chandrasekaran et al, 2022), plain
Bayes (Wang et al., 2022), support vector machines (Zhao et al.,
2021a), and so on. However, these techniques have limitations, such
as being labor-intensive, time-consuming, and hard to train. As a
result, they are not well-suited for use in the current large-scale
application scenarios.

With advancements in machine learning, research efforts
(Milani and Fraternali, 2021) led to the development of deep
learning methods that give neural networks a hierarchical structure.
This development subsequently resulted in an explosion of deep
learning research. Feature learning, at the heart of deep learning,
uses hierarchical networks to convert unprocessed input into more
abstract and higher-level feature information. With its superior
learning capacity to optimize automated feature extraction, deep
learning has produced remarkable research achievements in recent
years in the domains of speech recognition, picture processing,
and natural language processing. The application of deep learning
techniques to text sentiment analysis has gained popularity as a
natural language processing study area. Among these techniques,
Song et al. (2021) used a convolutional neural network to classify
text emotion for the first time, and the results were superior to those
of conventional machine learning techniques.

The study of human eyesight is where attention mechanism
first emerged. According to cognitive science, humans have a
tendency to ignore other observable information in favor of
focusing on a certain portion of the information based on the
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demand imposed by the information processing bottleneck. The
primary objective of attention mechanism is to efficiently separate
valuable information from a vast quantity of data. To understand
the word dependencies inside the phrase and grasp the internal
structure of the sentence, the self-attention mechanism—a unique
form of attention mechanism—is incorporated into the sentiment
classification job. To establish an accurate and efficient technique
for sentiment analysis based on deep learning technology and self-
attention mechanism, this study examines the present technical
issues in the field of sentiment analysis from the standpoint of the
real demands of sentiment analysis.

2 Related studies

Natural language processing has attracted extensive research
attention (McCormack and Lomas, 2021) because it introduced the
idea of sentiment analysis. There are three prominent methods for
conducting sentiment analysis at present: the sentiment dictionary
approach, the classical machine learning approach, and the deep
learning approach.

Experts must annotate the sentiment polarity of the texts
terms in order for researchers to perform sentiment analysis
based on sentiment dictionary. Based on semantic rules and
sentiment dictionary, researchers compute the text’s sentiment
score and determine the sentiment tendency. Among these
researchers, Toisoul et al. (2021) demonstrated positive findings
on a multi-domain dataset by expanding the domain-specific
vocabulary by extracting subject terms from the corpus using
latent Dirichlet allocation (LDA) modeling based on the pre-
existing sentiment lexicon. Peng et al. (2022) used the point
mutual information (PMI) technique to assess the similarity of
adjectives in WordNet. The polar semantics (ISA) approach was
then used to generate numerous fixed sentence constructions
in order to examine the target text sentiment tendency. To
create a Chinese microblogging sentiment dictionary, Liu
et al. (2021a) first identified microblogging sentences using
information entropy and then filtered network sentiment terms
using the sentiment-oriented pointwise mutual information
(SO-PMI) method.

Ding et al. (2021) introduced the idea of the primary word
and used weight priority calculations to determine the text’s
semantic inclination degree. These developments paved the way
for accomplishing more difficult sentiment analysis tasks. The
approach based on sentiment dictionary has the benefit of being
more accurate in classifying text at the word or phrase level.
However, the system migration is not good, and the sentiment
dictionaries are often geared to certain domains. These days, one
of the most popular techniques for sentiment analysis is classical
machine learning-based techniques. Using simple bag-of-words
features from a movie review dataset, Yang et al. (2021) was the
first to use machine learning techniques to the sentiment binary
classification issue and produced superior experimental outcomes.
Utilizing Twitter comments as test data, Roy et al. (2023) classified
emotions into six categories—happiness, sadness, disgust, fear,
surprise, and anger—and employed plain Bayes for text sentiment
analysis. The data were processed with consideration for lexical and
expression features, leading to a high classification accuracy. To
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Example of emotional distribution in images.
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address the sentiment classification problem, Sahoo et al. (2021)
merged a genetic algorithm with simple Bayes, and the results of
the experiments indicated that the combined model outperformed
the individual models. To extract rich sentiment data and include
them in the basic feature model, Liu et al. (2021b) used machine
learning techniques with numerous rules, which increased the
classification result in microblog sentiment classification trials. In
order to complete the study of sentiment analysis, Sampath et al.
(2021) included semantic rules into the support vector machine
model. The experiment confirmed that the support vector machine
model with the inclusion of semantic rules performed better in
the sentiment classification task. Deeper text semantic information
is hard to learn, even while machine learning-based techniques
enhance the sentiment classification performance and lower the
reliance on sentiment lexicon.

Text sentiment analysis based on deep learning has garnered a
much interest from academics at both national and international
levels due to its superior performance in the fields of picture
processing and natural language processing. Zhang et al. (2023)
used deep neural network training to create the Collobert and
Weston (C&W) model, which was then used to perform well on
natural language processing tasks including sentiment classification
and lexical annotation. To demonstrate the efficacy of single-layer
convolutional neural networks (CNNs) in sentiment classification
tasks, Zhao et al. (2021b) combined different sizes of convolutional

Frontiersin Computational Neuroscience 9

kernels with maximum pooling and performed comparison tests
on seven datasets. The study employed convolutional neural
networks for sentiment analysis tasks. A number of recurrent
neural networks, including recurrent neural network (RNN),
multiplicative RNN (MRNN), recursive neural tensor network
(RNTN), and others, were progressively suggested by Szubielska
et al. (2021). The RNTN model, for example, uses a syntactic
analysis tree to determine word sentiment and then outputs
the sentence’s sentiment classification result in the form of
word sentiment summation. To tackle the sentiment analysis
problem utilizing a long short-term memory (LSTM) network
with an expanded gate structure, which increases the model’s
flexibility, Li et al. (2022) employed Twitter comments as the
experimental data. RNNs were utilized by Zhou et al. (2023) to
model texts by taking into account their temporal information.
Li et al. (2023) achieved outstanding results in a sentiment
classification test by modeling utterances using a tree LSTM model
to approximate the sentence structure. By segmenting a text
according to sentences, obtaining vectors through convolutional
pooling operation, and then inputting them into LSTM according
to temporal relations to construct a CNN-LSTM model and
apply it to the task of sentiment analysis, Alirezazadeh et al.
(2023) primarily addressed the issue of temporal and long-
range dependencies in a chapter-level text. Teodoro et al
(2023) constructed an experimental minimal convolutional neural
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Model of this article.

O

Location encoding

Blank attention

network (EMCNN) model using microblog comments as the
experimental data, combining lexical and emoji characteristics.
The model produced experimental findings that outperformed the
benchmark model’s performance.

3 Attention given

We propose an emotion classification method based on
in the
decoder and fuses the output sequence of the encoder to

the attention mechanism that sets blank attention

learn the image semantics to guide the model to learn the
image emotion more accurately and reasonably via the
learning mechanism of the decoder. This method is intended
to address the characteristics of small numbers of abstract
painting samples and rich image semantics. Figure 2 depicts the
general flowchart of the procedure used in this article, along
with the encoder-decoder architecture, the emotion classification
module, and the backbone network for extracting picture
feature sequences.
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3.1 Image sequence generation

Since the encoder anticipates a sequence as input, the abstract
painting dataset in this study has been uniformly normalized,
meaning that its length and width are 224 and its number
of channels is 3. To extract the images features, the image is
supplied into the backbone network. The residual network has a
strong feature learning ability and adapts to the characteristics of
the backbone convolutional network architecture. In this study,
ResNet-50 is adopted as the backbone network to solve the
network degradation problem brought by fewer samples of abstract
paintings to simplify the model training parameters of this article
to a certain extent, improve the training efficiency, and carry out
comparative experiments with the residual network variant in the
ablation experiments, and to assess the influence of the backbone
network on the model accuracy rate (Ahmad et al., 2023). The
abstract painting dataset is generated by the backbone network to
generate canonical image features with a length and width of 7
and a channel count of 256 and is spread into a one-dimensional
sequence, resulting in an image sequence of length 49 and a channel
count of 256 to be fed to the encoder.
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3.2 Encoders

By adjusting the number of encoder layers, the model
demonstrates the significance of global image-level self-attention,
guarantees that there is no appreciable loss of accuracy when N =
6, and prevents an increase in training difficulty brought on by the
addition of too many parameters. This article adopts the position
coding method of detection transformer (DETR), which uses the
sine and cosine functions to encode the positions of rows and
columns of the parity channel of the abstract painting feature map,
adapting to the sequence input of the encoder-decoder architecture
(Ahmad and Wu, 2023). The encoder-decoder architecture is not
sensitive to the order of the image sequence and does not have the
ability to learn the sequence position information. The calculation
for the position coding as shown in Equation (1):

sin (W) i = 2k(k € [0,127])

f)' = ),i=2k+1(ke [0,127])

ey
co

s 0007
where x is the row and column spread value of point (p, ) and i is
the channel of the feature map. For a feature map with a length and
width of 7 and a channel count of 256, respectively, the row and
column position encoding on the point with a channel of 10 and a
coordinate value of (1,2) is sin [((1x7) +2)/(1,000,010/128)] and
sin [((2x7) +1)/(1,000,010/128)], respectively, and the position
encoding of the remaining image sequences of the channels
is computed by this rule. Encoding finally generates a one-
dimensional feature sequence with a length of 49 and a channel
count of 256 with position information.

The Q,K,V in the encoder is a one-dimensional sequence
of a fixed length of 49 and a channel count of 256, which is
used as sentiment weights in translating the image sequence and
ordering its position in each encoding session. As the model learns
the feature dependencies between image sequences, the multi-
head self-attention module supports the model by reinforcing the
original features with sequence global information. This support
enables the model to learn discriminative features for sentiment
classification. The original image sequence serves as the input for
the first coding layer, and the input for each succeeding layer is
the image sequence encoded in the preceding layer. The picture
feature sequences are given to the decoder after being encoded and
learned by many coding layers of the encoder, avoiding the issue of
delayed network convergence and poorer accuracy brought on by
the increased depth of the model.

3.3 Decoders

The blank attention in this study has the same format as the
feature sequence of the model input, that is, a sequence with a fixed
length of 49 and a channel count of 256. Similar to the encoding
phase, the blank attention is weighted as a query statement with
Q, K,V of the first self-attention layer in the decoder, but at this
point, the blank attention does not need to focus on the location
information. At each decoding stage, the multi-head attention
module transforms the blank attention sequences and generates
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Emotional classification.

the output of the attention sequences with weights by avoiding the
problem of slower model convergence through the residuals and
normalization module.

The attention sequence with weights from the upper layer
and the output sequence from the encoder are fed into the
second self-attention layer. This study uses the same sine and
cosine functions in the decoder as in the encoder to encode
the position of the weighted attention sequences from the upper
layers since the output sequence of the encoder contains positional
information and needs to accommodate its positional connection.
The positional encoding of the picture sequence for each channel
is calculated for the weighted attention sequence of length 49 and
a channel count of 256. This positional encoding is applied to the
rows and columns of the parity channels. Ultimately, a weighted
attention sequence of length 49 and a channel count of 256 with
position information are obtained. It is combined with the output
sequence of the encoder as a query statement and weighted with
Q, K,V from the second layer in the decoder. In each decoding
stage, the output sequence of the encoder is translated, and the
sequence positions are sorted.

3.4 Classification of emotions

Figure 3 depicts the emotion classification module. The
sentiment classification module combines the output sequences of
the encoder and decoder to produce weighted sentiment sequences,
which suppress redundant sentiment information in the model,
direct the model to concentrate on deep and shallow sentiment
information, and improve the model’s ability to classify sentiment.
The fully connected layer is used to map the weighted sentiment
sequences, and the cross-entropy loss is minimized to produce
stable sentiment classification results (Ahmad et al., 2021). The
normalized exponential function is used to calculate the probability
value of each type of sentiment; the abstract painting sentiment
predicted by the model has the highest probability value.

The normalized exponential function is as shown in
Equation (2):

2
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where S; is the normalized value of a particular sentiment and
computation max (S;) is the abstract painting sentiment label
predicted by the model.

One popular loss function for handling classification difficulties
is the cross-entropy function, which is primarily used to quantify
the difference between two probability distributions. The cross-
entropy loss function is as shown in Equation (3):

12

1
Loss = W XI: ;yﬂlogz (pic) (3)

Each term in the cross-entropy function is p and g and
p indicates the true probability distribution and g represents
the predicted probability distribution. The cross-entropy function
describes the difference between the two probability distributions.
For the special case, the cross-entropy function of the binary
classification problem, there are a total of two terms, i.e., probability
distributions of classes 0 and 1, and there is p(0) = 1 — p(1), so we
can get the expression for the binary classification cross entropy loss
function, where y;. is the true value and pj. is the probability of the
predicted value.

4 |Image preprocessing
4.1 Datasets

The abstract dataset, which includes 280 abstract paintings,
was created by Machajdik. These paintings are better suited for
challenges requiring the prediction of emotion distribution because
they simply feature colors and textures and not any clearly
discernible objects. The 230 participants in the dataset expressed
their emotions by identifying these 280 photographs, with an
average of 14 people doing so. The final sentiment category is
determined by which of these sentiment markers received the most
votes. Due to the ambiguity of emotions, several categories may
have extremely similar or identical numbers of votes, making the
classification process unclear. Therefore, the ratio of votes for each
emotion category is used as a probability distribution to form a
probability distribution of emotions corresponding to the image,
as shown in Figure 3.

4.2 Feature extraction

Since abstract paintings contain only colors and textures and
do not generate emotions through specific objects, the features
extracted are emotional features based on the theory of artistry.

4.2.1 Color histogram

Artists use colors to express or trigger different emotions in
observers, and extracting color histograms from color features is
a common and effective method. The color histogram space H is
defined as Equation (4):
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K
H=[h(0),h(1),.h(L)],> hLy) =1 (4)

k=1

where h (L) denotes the frequency of the kth color. The similarity
of the color histograms of the two images are measured using the
Euclidean distance as shown in Equation (5):

D(Hs, Hd) = I:(HS — Hd)T(Hs _ Hd)l/z] (5)

4.2.2 Itten comparison

Itten successfully used the strategy of color combination by
defining seven contrast attributes. Machajdik used seven contrast
attributes such as light and dark contrast, saturation contrast,
extension contrast, complementary contrast, hue contrast, warm
and cool contrast, and simultaneous contrast of images as the
emotional characteristics of artistry theory.

As in the case of light and dark contrast, the image is segmented
into Ry, Ry...Ry, small chunks using the watershed segmentation
algorithm, and the average h, (Chroma) b, (Brightness) s,
(Saturation) is calculated for each chunk. Calculation b, belongs to
Very Dark(VD), Dark(D), middle (M),
Light(L), Very Light(VL)
affiliation function as shown in Equations (6-10).

five fuzzy luminance:

1b, < 21
VD={ ¥ 21 <b, <39 (6)
0
bur2l 21 < by, < 39
D=1 2k 39 < p, <55 7)
0
b 39 < b, <55
M={ b 55 < p, <68 (8)
0
bu55 55 < b, < 68
L= 8 68 < b, < 84 )
0
870n 68 < by, < 84
VL = 1 b, > 84 (10)
0

Thus, a 1*5 dimensional vector for each small block of image
Ry, R;..Ry is obtained, and for the whole image, the light/dark
contrast is defined as Equation (11):
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FIGURE 4
Layer stacking process effect and ink simulation results. (A) One grayscale layer overlay effect. (B) Two grayscale layer overlay effect. (C) Three
grayscale layer overlay effect. (D) Seven grayscale layer overlay effect.

gray level histogram, and with respect to z, the nth order moments
are calculated as shown in Equation (12):

1/2
. i N YIRY)
B() = | - > Ru(Ba(i) — B() (11) L
Y R, =l un (2) = Y (Zi —m)"p (z) (12)
n=1 i=0
wherei =1,...,5, R, is the number of pixels in the split block.
In this way, the vector expression of the contrasting attributes of L
the images is obtained as features, and the similarity of the different m= Z zip (z;) is the mean value of z.
images is calculated by the Euclidean distance. i=0

The Itten model is also used to determine whether or not an

. . . . . . . > Th nd-order moments are more important in textur
image is harmonic, and it can also be used to identify an image’s e second-order moments are more important in texture

ST _ 1
description; it is a measure of grayscale contrast, where R = Tuo

emotional expression. Select three to four of the image’s prominent
indicates the smoothness of the image, and a smaller value of u,(z)

colors, connect them to the colors on the Itten hue wheel, and if

they form a positive polygon, the image is harmonic. To determine corresponds to a smaller R value, indicating that the smaller the

the dominant chromaticity of an image, make a histogram of its N value of R, the smoother the image.
colors. Ignore the colors with a proportion of <5%. The harmony of
a polygon can be assessed by comparing its internal angles to those

4.3 Weighted K-nearest neighbor
sentiment distribution prediction algorithm

of a square polygon built from the same number of vertices.

4.2.3 Texture Assuming that there are M sentiment categories

The main idea behind the statistical approach to texture Cj,---,Cy and N training images, x;---,xy (which
analysis is to symbolize textures by the randomness of the also denote the corresponding features of the images) use
distribution of gray levels in a graph. We define z as a random  p = {Py1, -+ , Py - - - ,P,}T to denote the sentiment distribution
variable representing the gray levels, L as the maximum graylevel of = of X,, where P,, denotes the probability that x, expresses a
the image, Z; as the number of pixels with gray level 7,01 denotesthe ~ sentiment of c,,, and for each image, there is Zi\::l P,y = 1.
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FIGURE 5

Comparison of direct eighth order color reduction and histogram prescribed ink simulation 1. (A) Landscape original 2. (B) Direct eighth order color

reduction link effect. (C) Histogram normalization link effect.

Assuming that y is a test image, the goal of this study is to find the
sentiment distribution p = {Py,--- P T of y, i.e., as shown in
Equation (13).

£({wnpai, v) = p (13)

Training sets that are very far away have little effect on y.
Considering that including all training sets can slow down the run
and irrelevant training samples can also mislead the algorithm’s
classification, the effect of isolated noise samples can be eliminated
by taking a weighted average of the K-nearest neighbors.

Weighted K-nearest neighbor option denotes only the drizzle
functions corresponding to the K training images that assign
the larger weights to the closer nearest neighbors. denotes the
sentiment distribution of the K training images nearest to the test
image, which is considered as a basis function, and the sentiment
distribution P of the test image y is computed by performing a
distance-weighted summation of the basis function, i.e.,

_ ZkK:1 SkPk
Zf:l Sk

p (14)
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where s is the similarity between the test sample and the training
sample, as shown in Equation (15).

(15)

where d is the Euclidean distance and B is the average distance of y
from the training images.

Algorithm:  Weighted K-nearest neighbor sentiment
distribution prediction algorithm.

Input: Training set (xn, p,,), test set y.

Output: Sentiment distribution p for the
test set.

1. Calculate the distance d between the test set image y and each
image in the training set.

2. Select the first k images xj..x; that are closest to y in the
increasing order of distance.

3. B = %\/(xl - y)2 4ot (o —y)2 is  brought
into  Equation (14) in order to compute the
similarity s.

4. Calculate the sentiment distribution of the test image y P =
Yk Sk

Zf:] Sk ’
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FIGURE 6

Comparison of direct eighth order color reduction and histogram prescribed ink simulation 2. (A) Landscape original 3. (B) Direct eighth order color

reduction link effect. (C) Histogram normalization link effect.

5 Experimentation and analysis

5.1 Landscape image

Experiments on a large number of landscape images (resolution
of ~1 million pixels, downloaded from “Baidu images”) to achieve
the simulation of ink and wash painting and to achieve a more
satisfactory simulation effect. Figure 4 represents the algorithm
from shallow to deep ink “drawing” simulation process: Figure 4A
shows the layer effect, Figures 4B, C represent the first two layers
and the first three layers of the superposition effect, and Figure 4D
shows the seven-layer superposition effect, that is, the final eight-
ink effect [p, (14j) = (0.2, 0.15,0.15,0.15,0.15,0.15,0.15, 0.15, 0.15,
0.15,0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15 and
Figure 4A for the 00 layer effect. 15, 0.15, 0.15, 0.11, 0.06, 0.03)].

In the algorithm, the histogram specification serves to preset
the weight of each ink color and enhance the recognition of the
inked area. Figures 5, 6 show a comparison of the ink simulation
experiments for two other sets of landscape images and reveal the
role of histogram specification in the simulation effect. Figures 5B,
6B show the effect of the algorithm based on direct eighth order
grayscale color reduction, and Figures 5C, 6C show the effect of the
algorithm based on histogram specification. The values of p,, (1)
were [0.2,0.15,0.15,0.15,0.15, 0.15,0.11, 0.06, 0.03] and [0.3, 0.125,
0.15, 0.125, 0.125, 0.1, 0.05, 0.025]. The direct eight-order color
reduction approach is governed by the color values of the original
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diagram, which is easily the source of the imbalance of the weight
of each ink color and the lack of distinctiveness, as can be seen
from the comparison of the two sets of diagrams. The histogram
specification method can better control the amount of ink colors
and especially strengthen the weight of Gray (0) (i.e., white area).
Ink simulation has a better sense of hierarchy and differentiation.
In summary, the algorithm in this article simulates the ink effect
of the landscape map through the method of layer simulation ink
overlay, the simulation map has a strong sense of hierarchy, and the
layers of ink can be integrated with each other and also has a natural
paper-ink penetration effect.

5.2 Abstract paintings

The existing sentiment classification networks ResNet and
Swin Transformer and their variants are compared under the
sentiment classification accuracy metrics in order to assess the
effectiveness of the model in this article. The encoder-decoder
structure with various numbers of layers is set up for this article’s
method; the one-layer encoder-decoder structure is defined as Tiny
and the six-layer encoder-decoder structure is defined as Base.
By training five batches of experimental findings and averaging
them as the final results of the experimental data, five rounds
of cross-validation were used to test the models. To accelerate
the convergence of abstract painting sentiment classification, each
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TABLE 1 Example of part of the abstract painting dataset.

10.3389/fncom.2024.1350916

Emotion Painting theme
Character Ghosts Animal
Negative
Be cautious Aversion and resistance Anxiety and tension Faint and wilting
Neutral
Neutral and Pure Be pragmatic and responsive Impartial and impartial
Positive
Diligent and simple Enthusiastic and proactive Elegant and gentle Beautiful and graceful
TABLE 2 Abstract painting emotion classification experiment. TABLE 3 Backbone network experiment.
Model Classification accuracy (%) ‘ Method Backbone Parameter Accuracy
quantity (M) (%)
ResNet-18 64.6
1 ResNet-18 29 72.5
ResNet-34 68.4
2 ResNet-34 39 76.7
ResNet-50 70.3
3 ResNet-50 42 80.8
ResNet-101 71.4
4 ResNet-101 61 81.9
Swin-T 70.1
Swin-S 72.7
Swin-B 732 ) o
The actual Naxi Dongba abstract paintings were gathered from
Vit-T 727 the literature on Na xi abstract paintings, and the abstract paintings
Vit-B 76.8 were divided into four categories based on the subject matter of the
Method of this article—Tiny 743 pamtmgs creation. For instance, in the abstract pamtlr?g data set
shown in Table 1, the figures, ghosts and monsters, animals, and
Method of this article—Base 808 plants are shown from left to right, and the abstract paintings were

model is fine-tuned based on the ImageNet pre-trained model,
using the Adam W optimizer with a weight decay of 0.1/30 epoch
and an initial learning rate of 0.0001, and trained based on the
NVIDIA RTX 2080Ti.

Frontiersin Computational Neuroscience

divided into 12 different emotion categories based on the emotions
they conveyed.

ResNet50 was used as the backbone network in order to extract
image features and tested on the test set for sentiment classification
of abstract paintings.

The experimental findings in Table 2 demonstrate that the
algorithm presented in this article is superior to ResNet,
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Analysis of the number of encoding and decoding layers.
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TABLE 4 Ablation experiment.

Method Decoder Encoder Accuracy
output output (VA

1 X Vv 74.3

2 J X 77.9

3 v v 80.8

Swin, and their variation network topologies for the job of
sentiment recognition for abstract paintings. Established sentiment
classification techniques like ResNet-101 and Swin-B achieved
classification accuracies of 71.4 and 73.2%, respectively, whereas
this article’s method-Tiny and method-Base produced the best
classification outcomes with classification accuracies of 74.3 and
80.8%, respectively.

The existing sentiment classification techniques do not account
for the deeper sentiment elements that are buried in abstract
paintings; instead, they focus on predicting the sentiment labels
of abstract paintings while neglecting their linguistically complex
and emotionally varied properties. The method in this article, in
contrast, uses blank attention in the decoder and fuses the encoder’s
output sequence while learning the semantics of the abstract
painting image as the emotion attention through the decoder’s
decoding learning mechanism. As a result, the method employed
in this study is able to achieve a higher classification accuracy rate.

This study first conducts ablation experiments on the backbone
network, compares a variety of Res Net variants to replace the
backbone network, and keeps the structure of this article’s model
unchanged for the experiments in order to assess the impact of the
number of parameters of the backbone network on the accuracy of
sentiment classification. The results of the experiments are shown
in Table 3.
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The model parameter amount was 42 M and the classification
accuracy was 80.8% when ResNet-50 was used as the backbone
network. The number of model parameters was cut to 29M
with the use of ResNet-18, however the model’s classification
accuracy dropped by 8.3%. ResNet-34, on the other hand, reduced
the number of model parameters by 3M while increasing the
classification accuracy of the model by 4.1% when utilized as the
backbone network. The number of model parameters rises by
19 M when ResNet-101 is used as the backbone network, yet the
classification accuracy increases by 1.1%. In this article, choosing
ResNet-50 as the backbone network ensures that there is no
significant decrease in the accuracy rate and avoids the increase in
training difficulty due to the introduction of too many parameters.

Figure 7 displays the line graph of the experimental analysis
of the number of coding-decoding layers; as the number of
coding-decoding layers increases, the model’s accuracy gradually
increases, suggesting that adding more coding-decoding layers can,
to a certain extent, increase the accuracy of the classification of
the emotions in abstract paintings. The model uses six coding-
decoding layers to achieve 80.8% classification accuracy, avoiding
the overfitting issue that results from the stacking of coding-
decoding layers. However, as the number of coding-decoding
layers increases, the improvement in accuracy eventually slows
down and becomes flat.

To prove the effectiveness of this article’s attention mechanism
for classifying the emotions of abstract paintings, two types of
ablation models are set up to eliminate the decoder and encoder
outputs, based on keeping the backbone network of the model
as ResNet-50: [ The attention mechanism setup is not used in
the ablation model, which eliminates the output of the decoder.
Instead, the model uses the coded sequence output from the
encoder as the basis for emotion classification. The classifier
then normalizes the coded sequence to determine the likelihood
of outputting emotion labels through the full connectivity layer
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spreading. The fully linked layer disperses the coded sequence,
and the normalization of the classifier determines the likelihood of
producing emotion labels; [J The attention mechanism established
in this research is kept in the ablation model that removes the
encoder output, and the model continues to mine the picture
semantics of the abstract paintings without fusing the encoder
output with the attention mechanism. In Table 4, the experimental
findings are displayed.

When the encoder is used to help classify the abstraction
of drawing sentiments, the accuracy of sentiment classification
decreased after eliminating the decoder output by 6.5%, showing
higher classification accuracy than that of the ResNet-50
classification model; however, after eliminating the encoder output,
the accuracy of sentiment classification of the ablation model
decreased by 2.9%, which is higher than that of the ResNet-101
classification model and close to that of the ResNet-50 classification
model. This finding shows that the attention mechanism in this
study can help the model recognize abstract paintings’ emotions
more accurately by acting as a facilitator.

In this study, we used a full convolutional network to calculate
the emotional weights of the model, visualize the weight heat map
of the model, and simultaneously highlight and locate the regions in
the heat map that significantly influence the expression of emotion.

Figure 8A provides an illustration of an abstract painting’s
original image, which is tagged with the predicted emotions
derived from the image by the model test and contains 12
emotions as determined by the experimental data, respectively. The
ablation model produced by the elimination decoder is depicted in
Figure 8B, with loose regions of attention and unfocused regions of
interest in the model’s heat map; the regions of interest for abstract
paintings of various subjects also differ significantly from one
another. Figure 8C demonstrates that, despite being more compact,
the model heat map’s zone of interest suffers from ambiguous
regions of interest and incorrect localization. It is also unresponsive
to a smaller percentage of the neutral emotion image. The focus in
the figure paintings is on the behavior and movements of the Dong
ba figures, and the areas highlighted by the model labeled colors in
the different image emotions correspond to the areas of the abstract
paintings where the figures are holding arms, dancing, and making
gestures, respectively. Figure 8D shows the model heat map of this
article, which has a more concentrated region of interest and more
stable localization. For emotionally complex animal paintings, the
model expands the emotional expression to the animal’s body area;
for the plant paintings, the color highlighting points out the plant
petal area, which corresponds to the plant’s budding or blossoming
gesture. In the ghost paintings, the model heat map focuses on the
ghost behavior and action area.

The visualization experiments demonstrate the comparison
experiments of the ablation model and the region of interest of the
model described in this article. They also show how the relationship
between the abstract painting emotion attention and the image
emotion learned by this article model is more intimate and how
this has a more immediate effect on the results of the emotion
classification. It demonstrates how well the model in this study
extracts the emotion from images of abstract paintings, making it
more appropriate for classifying the emotions of abstract paintings.
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FIGURE 8

Presentation of visualization results: (A) initial image; (B) elimination
decoder; (C) elimination encoder; and (D) model of

this article.
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Effect of different K-values on the prediction of sentiment distribution.
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5.3 Predictive distribution

The effect of different values of K (K = 5, 10, 20, 40, 50, 100,
252 using 10-fold cross-validation, where K = 252 is the global
weighting of the training set) on the prediction of the sentiment
distribution in a weighted KKN is shown in Figure 9.

In this example, the optimal K-value is affected by the
sentiment category, and considering the average performance, it
is considered that the best prediction is achieved at K = 40, 50,
which outperforms the global weighting, and when K = 252, all
the training images are used for distribution prediction.

6 Conclusion

The majority of early algorithms employed for sentiment
classification were based on shallow machine learning and
extract features using manually constructed feature selection
techniques that have weak generalization ability, require extensive
training times, and entail high labor costs. Because of its
superior learning capacity to optimize feature extraction and
prevent the flaws of manual feature selection, deep learning has
produced positive research outcomes in the field of text sentiment
categorization. The attention mechanism’s primary objective is
to swiftly separate valuable information from a vast amount of
data. When applied to the sentiment classification task, it is
capable of identifying word dependencies within sentences and
identifying the internal organization of the sentence. Using a
weighted closest neighbor technique, we provide a novel approach
in this study to predict the discrete sentiment distribution of
each picture in an abstract painting. Testing shows that the
attention mechanism-based classification algorithm achieves a
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better classification accuracy of 80.7% when compared to state-
of-the-art techniques, thereby resolving the issues of rich material
and difficulties in identifying the emotions shown in abstract
paintings. Nevertheless, there are several drawbacks to the attention
mechanism in this article, such as its incapacity to create the
positional link between objects and scenes in abstract paintings.
Furthermore, it is restricted by the dataset on abstract paintings
and is unable to sufficiently address the issues of imprecise
sentiment categorization and imprecise attention learnt from
datasets that are made publicly available. Future research methods
might thus expand the sentiment dataset to a broader picture
data domain and further expand the abstract painting sentiment
classification system to a multimodal level in order to overcome
these problems.
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Alzheimer's disease (AD) is a neurodegenerative illness that impairs cognition,
function, and behavior by causing irreversible damage to multiple brain areas,
including the hippocampus. The suffering of the patients and their family
members will be lessened with an early diagnosis of AD. The automatic diagnosis
technique is widely required due to the shortage of medical experts and eases
the burden of medical staff. The automatic artificial intelligence (Al)-based
computerized method can help experts achieve better diagnosis accuracy and
precision rates. This study proposes a new automated framework for AD stage
prediction based on the ResNet-Self architecture and Fuzzy Entropy-controlled
Path-Finding Algorithm (FECPFA). A data augmentation technique has been
utilized to resolve the dataset imbalance issue. In the next step, we proposed
a new deep-learning model based on the self-attention module. A ResNet-50
architecture is modified and connected with a self-attention block for important
information extraction. The hyperparameters were optimized using Bayesian
optimization (BO) and then utilized to train the model, which was subsequently
employed for feature extraction. The self-attention extracted features were
optimized using the proposed FEcCPFA. The best features were selected using
FECPFA and passed to the machine learning classifiers for the final classification.
The experimental process utilized a publicly available MRI dataset and achieved
animproved accuracy of 99.9%. The results were compared with state-of-the-art
(SOTA) techniques, demonstrating the improvement of the proposed framework
in terms of accuracy and time efficiency.

KEYWORDS

Alzheimer’'s disease, MRI, deep learning, self-attention, convolutional neural network,
optimization, fuzzy entropy
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1 Introduction

Dementia is the seventh-greatest root cause of mortality and
the main reason for impairment and vulnerability in elderly
individuals (Koul et al., 2023). It is a rapidly spreading disorder
among the elderly population, becoming increasingly common
over the last decade (Sisodia et al., 2023). Dementia greatly
impairs intellectual performance, interfering with daily tasks and
interpersonal interactions (Nagdee, 2011). Alzheimer’s disease
(AD) is an inseparable subclass of dementia that can cause memory
loss in a person (Mahmud et al, 2024). An individual affected
by AD may struggle to recognize family members and experience
difficulties in remembering daily activities. Moreover, it can cause
ultimately lead to the death of the patient (Mohammad and
Al Ahmadi, 2023). Due to these worse health conditions, it is
also referred to as a progressive neurodegenerative disease. It
affects behavioral functions, thinking abilities, decision-making,
and language skills, often leading to memory loss in older people
(Kellar and Craft, 2020).

Brain cell alteration may occur a decade or more before
clinical signs appear. In the beginning, patients with AD
experience unnoticed changes in their brains (Jansi et al,
2023). Throughout the early AD stage, the brain undergoes
destructive transformations, including ectopic protein deposition
that produces amyloid plaques and tau tangles. Neurons that were
once fully functional cease to function properly, losing connections
to other neurons and eventually undergoing cell death (Hoozemans
et al., 2006). Several additional intricate alterations in the brain
can also lead to Alzheimer’s (Kasula, 2023). The hippocampus and
entorhinal cortex, critical for cognitive control, seem to be the
initial regions of impairment (Shrager et al., 2008). Furthermore,
the signs of AD begin to manifest when nerve cells (neurons) in
certain areas of the brain gradually shrink and eventually become
destroyed or damaged (Khalid et al., 2023). In the final phase of AD,
damage becomes widespread, and a large amount of brain tissue is
destroyed (Bloniecki Kallio, 2002; Carle, 2022).

AD is such a serious brain disease that it can result in a patient’s
death if not effectively treated (Gémez-Isla and Frosch, 2022). To
overcome this disease, patients need good care, regular exercise,
and some memory-sharpening activities as there is currently no
specific medication for AD (Shamrat et al., 2023). In recent
years, a significant increase has been observed in AD (Mirzaei
and Adeli, 2022; Stevenson-Hoare et al., 2023). The number of
deaths from Alzheimer’s disease in 2020 increased by 15,925
compared to the 5 years before 2023, and 44,729 more deaths
were recorded for all dementias, including Alzheimer’s disease
(Chua, 2023). Traditional machine learning (ML) techniques such
as pre-processing (Wen et al., 2020), feature extraction (Rathore
et al., 2017), feature selection (Balaji et al., 2023), feature fusion
(Jia and Lao, 2022), and classification (Tanveer et al., 2020) have
been employed by researchers as a four-step channel in the past
few years. Classification is the bottommost step in which each
object accredits a label, in either a supervised or unsupervised
ML technique (Bondi et al., 2017). Deep learning (DL) (Shaukat
et al., 2022) is a subtype of machine learning that falls under the
umbrella of artificial intelligence, but DL is way more vigorous and
flexible in comparison with ML (Fabrizio et al., 2021). Techniques
such as shallow CNN (Marwa et al., 2023), DNN (Hazarika et al.,
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2023), MultiAz-Net (Ismail et al., 2023), hybridized DL method
(Hashmi, 2024), and RVFL (Goel et al., 2023) have been used in
recent years, but these techniques yield low accuracy as compared
to our proposed model (Shamrat et al., 2023).

1.1 Major challenges and gaps

Recent advances in ML and DL have opened up new avenues for
assessing AD, but researchers are still grappling with the diagnosis
of the disease (Shamrat et al., 2023). Few of them are related to
insufficient and unbalanced datasets. Furthermore, major problems
with AD patients are the complexity, diversity, and complicated
neurobiological underlying AD (Dhakhinamoorthy et al., 2023).
Architectural variation in scans is another main challenge to
diagnosing and detecting AD. However, the influence of these
challenges may vary from patient to patient. This research will focus
on AD stages for classification using deep learning and feature
optimization techniques.

1.2 Major contributions
The main contributions of this study are as follows:

e A fine-tuned ResNet-50 architecture has been modified by
adding a self-attention layer and trained from scratch for
feature extraction.

e Hyperparameters of the trained model are initialized using an
optimization technique named Bayesian optimization.

e Improved the extracted self-attention features using an
improved pathfinder optimization named the Fuzzy
entropy-controlled path-finding algorithm (FEcPFA). The
optimization algorithm selects the best features and improves
the efficiency.

e The optimized selected features are finally classified using
machine learning to classify the stages of AD.

This article is organized as follows: Section 2 reviews ML and
DL techniques that have been applied to Alzheimer’s disease, and
Section 3 provides a comprehensive description of the datasets.
The testing outcomes are shown in detail in Section 4. Section 5
summarizes our findings, and Section 6 discusses future work.

2 Related work

Due to the brains intricacy, classifying AD is difficult
(Dhakhinamoorthy et al., 2023). Thus, researchers are improving
medical image processing to identify AD correctly. This section
presents relevant literature in the domain of AD detection and
diagnosis, which focuses primarily on classification techniques
based on deep learning for MRI tissue structure analysis (Mohi
et al., 2023). The deep belief network (DBN) was utilized by AI-
Atroshi et al. (2022) to extract feature vectors from detected speech
samples, which has an output accuracy of 90.2%. Shankar et al.
(2022) used HAAR-based object identification techniques because
they are more suitable with discriminant attributes and generated
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37 spatial pieces of information from seven characteristics that
produced 94.1% accuracy on the dataset taken from ADNI. To
aid in the initial diagnosis of AD (FDN-ADNet), Sharma et al.
(2022) used a DL network for all-level feature extraction from
extracted sagittal plane slices of 3D MRI scans and a fuzzy
hyperplane-oriented FLS-TWSVM for the classification of the
retrieved features, which generated 97.29% accuracy on the publicly
available ADNI dataset.
Albright (2019)
algorithm to train the model. For this experiment, setting data
were taken from ADNI and divided into three datasets, i.e., LB1,
LB2, and LB3, with an mAUC of 0.866. The 3D-CNN networks
by Soliman et al. (2022) predicted AD. It learned basic traits that
catch AD indicators to identify brains with Alzheimer’s disease

presented the all-pairs pre-processing

from healthy and normal brains using MRI scans. ADNI provided
3,013 photographs with 96.5% training accuracy and 80.6% tested
accuracy. Samhan et al. (2022) adopted CNNs, VGG16, Adam,
activation, and softmax optimizers. The Kaggle dataset of 10,432
images yielded 100% training accuracy, 0.0012 training loss, 97%
validation accuracy, and 0.0832 verifying loss. Jo et al. (2022)
proposed a unique deep learning-based genome-wide approach
called SWAT-CNN that found SNPs associated with AD and
a classification model for AD. It may be useful for a variety of
biomedical applications and was tested on the GWAS dataset by
the AD Neuroimaging Initiative (ADNI).

Zhang et al. (2022) adopted CNN models of various designs
and capacities and assessed them thoroughly. The most appropriate
model was then applied for AD diagnosis. To increase the
transparency of the model, an explanation heatmap was produced
for AD vs. cognitive normal (CN) classification tasks and pMCI
vs. sSMCI using two publicly available datasets. Interestingly, the
study found that a moderately sized model could outperform one
with the largest capacity. Ghazal et al. (2022) proposed the system
named ADDLTA, in which the transfer learning (TL) approach
was used in conjunction with brain medical resonance imaging
(MRI) to classify the image into four categories: mildly demented
(MD), moderately demented (MD), non-demented (ND), and
very mildly demented (VMD), which gave 91.70% accuracy on
simulation results based on the publicly assessable dataset by the
Kaggle repository.

Shanmugam et al. (2022) focused on detecting different phases
of cognitive impairment and AD in the early stages by utilizing TL
in neuroimaging. GoogLeNet, AlexNet, and ResNet-18 were three
pre-trained models adopted for classification, giving an accuracy
of 96.39, 94.08, and 97.51%, respectively, on the ADNI dataset.
Prasath and Sumathi (2024) suggested a compact architecture
by merging two models, LeNet and AlexNet, that outperform
DenseNet. Three parallel tiny filters (1 x 1, 3 x 3, and 5 X
5) replaced the convolution levels to recover key features that
achieved 93.58% accuracy on the dataset taken from ADNI. Sorour
et al. (2024) proposed a system for the automated diagnosis
of Alzheimer’s disease that integrates multiple customized deep-
learning models to provide an objective evaluation. The very
first methodology addresses AD diseases using SVM and KNN.
The second approach combines rs-fMRI datasets from the ADNI
repository with modified AlexNet and Inception blocks. This
architecture gave 96.61% accuracy. A new optimized ensemble-
based DNN learning model called MultiAz-Net is used by Ismail
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et al. (2023) with diverse PET and MRI data to identify AD. The
Multi-Objective Grasshopper Optimization Algorithm (MOGOA)
optimizes MultiAz-Net layers, which produced 92.3% accuracy on
the ADNI dataset. Balaji et al. (2023) suggested a DL approach
to detect AD in its initial stages using multimodal imaging
and the LSTM algorithm, combining MRI, PET, and traditional
neuropsychological examination results. The suggested technique
adjusted the learning weights to improve accuracy and employed
Adam’s optimization. The proposed architecture achieved 98.5%
accuracy on 512 MRI and 112 PET scans.

3 Materials and methods

This section provides a comprehensive exposition of the
experimental dataset and methodologies employed within. It
elucidates the specifics of the experiments, including the nature of
the dataset utilized and the methodologies adopted.

3.1 Dataset

A well-characterized repository has a significant role in the
performance evaluation of a diagnosis system. In this experiment,
a dataset was obtained from Kaggle. This dataset, known as
Alzheimer’s disease, consists of specimens of anonymously affected
individuals with MRI scans and their appropriate class label details.
This multiclass dataset contains four distinct classes and offers
many different views, comprising over 5,000 MRI images. The
four classes are shown in Figure 1: mildly demented (Shanmugam
et al,, 2022), moderately demented (Prasath and Sumathi, 2024),
non-demented (Sorour et al., 2024), and very mildly demented
(Ismail et al., 2023). A brief explanation of the four classes of AD
is given in Table 1 for testing and training purposes. The data were
imbalanced in each class. Each class consisted of a different number
of images.

These datasets are the most prominent and effective for
this publicly available domain. The major aim of this study
is to yield high accuracy. Original MRI scans and augmented
image distribution were utilized in the training and testing of
the experiment. Mild demented contained 896 images; moderate
demented contained 64 images; non-demented comprised 3,200
images; and very mild had 2,240 images. After the augmentation,
we took 2,000 images from each class for further proceedings.
Figure 2 illustrates the AD stages with a brief description.
Moreover, an image description that lists the number of classes
and augmented images utilized in this study is found in
Table 2.

3.2 Proposed methodology

Our proposed study presents a deep
methodology for classifying AD grades. First, the dataset was

learning-based

taken from Kaggle, a public repository. The data were unbalanced
in each class, so different augmentation techniques were applied.
The data have been enhanced by applying different enhancement
methods. After the enhancement, we fine-tuned the ResNet-50
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FIGURE 1
Classes of Alzheimer's disease for the classification.

TABLE 1 Description of AD classes dataset.

References

Shanmugam et al. (2022)

Classes Description No of images

Mild demented People may become socially withdrawn, and noticeable changes occur in their moods and 896
personality. People may find it hard to remember the faces, people they met a long time
ago, and recent events. Individuals do not recall what they are saying, cannot find their way

to their desired location, and have lost focus and work abilities.

Prasath and Sumathi Moderate demented | In this phase, the affected person requires help to do their routine work. Inability to recall 3,200
(2024) important information, such as name of close relatives, home location, time, and date;
however, the person knows their name and family member’s names. The person lacks
sensibility, forgets previous work, and struggles to keep track of finances and daily expenses
while living alone.
Sorour et al. (2024) Non-demented It usually occurs in elderly persons. People may face difficulty in conversation and 64
gradually memory loss.
Ismail et al. (2023) Very mild The person may find it hard to adjust to a new environment and experience apathy and 2,240
demented repetition. Affected persons cannot complete the task. There seems to be low memory loss
in this stage. Individuals may forget the names of people who lived with them.
Dementia due to AD
Pre-clinical .
AD MCI to due to AD Mild Moder ate Severe
Very mild Symptoms S ymptoms Symptoms
Non Symptoms symptoms that interfere interfere with interfere with
don't effect daily some daily many daily many everyday
activities activities acitvities activities
FIGURE 2
Description of AD stages.

model and added Self-Attention layers. The modified model is
trained on the augmented dataset and extracted deep features
from the self-attention layer. The features are extracted from the
self-attention layer. Bayesian optimization is employed for the
selection of hyperparameters, instead of manual initialization.
Moreover, PFA is utilized to select the optimal features. In
the final stage, KNN, NN, and SVM classifiers are used to
classify AD stages. The proposed model is represented in
Figure 3.

Frontiersin Computational Neuroscience

3.2.1 Data augmentation

Augmentation is creating modified image variants from an
existing image dataset to improve its variety artificially. Images are
nothing more than a 2D collection of numbers for a computer.
These numbers indicate intensity values, which may be modified to
produce new, enhanced images. The primary goal of augmentation
is to maintain parity among each group. It improved the outcomes
and made them more precise and effective. In most cases, it
was only useful for very small data sets. Images may be flipped
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TABLE 2 Dataset image description.

Number of classes

Total images

10.3389/fncom.2024.1393849

Training/testing

Augmented images

1 Alzheimer’s disease Mild demented 896 3,200 3,200/2 = 1,600
2 Moderate demented 64 3,200 3,200/2 = 1,600
3 Non-demented 3,200 3,200 3,200/2 = 1,600
4 Very mild demented 2,240 3,200 3,200/2 = 1,600

Preprocessing
Mild- [ S e > S > S S R =% 7y > v e o o o v v 9w 9w o0 v o e oy
demented : Data Augmentation : : Enhanced Images :
! rizontal | Ay
| image || M=l W vy
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: @ ' Bayesian Optimization
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FIGURE 3
Proposed model of classification of AD stages.

horizontally, vertically, or rotated using this method. Both of these
techniques expand the quantity of the dataset by producing images
that have been flipped at various angles.

3.2.1.1 Horizontal flip

Complete rows and columns of image pixels are set aside
horizontally. If the image on the right is flipped, the outcome will
be on the left. The mathematical representation for the horizontal
flip is shown by Equation 1.

Hp (—x y) = Ho (x.5) O]

The given formula illustrates the horizontal flip of an image
scan. HF shows the flipping function, while Ho represents the real
image. The first half (x, y) displays the actual image, while quadrant
two (—x, y) displays the replica image. Therefore, the unedited
version of the image resides within the first quarter, which is the
right side, and after horizontal flipping, the image has been flipped
to the second phase, which is the left side.

3.2.1.2 Vertical flip
Complete rows and columns of image pixels are set aside
vertically. When an image is now displayed in the upward position
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and flipped, the resulting image will be displayed in the downward
motion. The mathematical representation for the vertical Flip is
shown below:

H, (x, —y) = Ho (x.y) (2)

The given formula illustrates the vertical flip of an image
scan. HV shows the flipping function, while Ho represents the
real image.

The first half lies in (x,y) which displays the actual image,
while the third quadrant third (x, —y) displays the replica image.
Therefore, Equation (2) demonstrates that the initial image resides
in the first half on the right side. When the vertical flip is enforced,
the image goes to the third half, which is in a downward direction.
In short, it flipped the image along with the X-axis.

3.2.1.3 Rotate flip
A 3D graphic item is flipped by rotating it. The following is a
mathematical representation by Equation 3.

90° _ | €0s90° —sin90° | | g; 3)
861~ | sin90°  c0s90° gj
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Data Augmentation
Right Flip
Left Flip
Original Images Rotate
FIGURE 4
Visual illustration of image augmentation using mathematical
techniques.
Consequently, image (I) is rotated by angle degrees
counterclockwise around its center. To rotate the image

counterclockwise, input a negative angle value, then (imrotate)
will extend the resultant image (J) to encompass the entire rotated
image. The methods for data augmentation used in the experiment
are shown in Figure 4.

3.2.2 Contrast enhancement

Increasing contrast is one of the most important and useful
techniques for improving the essential elements of an image.
Normally, raw images contain noise, distortion, and low contrast
that lower the image quality, which sometimes causes the loss
of useful information (Perumal and Velmurugan, 2018). Contrast
enhancement improves the image qualities for further processing.
More relevant characteristics may be extracted from the improved
photographs for the classification stage than from the input image.
The datasets chosen in this study have poor-quality images with
low contrast levels. Due to this issue, we could end up incorrectly
categorizing things. Contrast enhancement is further divided into
two main groups, i.e., the spatial and frequency domains, such
as morphological enhancement, histogram equalization, contrast
stretching, contrast slicing, and some contrast enhancement. In
our proposed experiment, two types of contrast enhancement have
been adopted, one by one. First, a fast local Laplacian filter is
applied to the augmented dataset. After this, a top-bottom hat filter
is applied to the enhanced dataset to get better-quality MRI scans.

3.2.2.1 Fast local Laplacian filter

There are two main functions of FLLF. The first is applied
to the raw images to boost the boundary detail and reduce the
noise artifacts. The second is that the images are transformed from
the RGB color system to the YUV color space to isolate the Y
factor. Multiscale adjustments are crucial to photo editing but are
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Contrast Enhancement

Input Image Output Image

FIGURE 5
Visual illustration of contrast enhancement.

especially vulnerable to halos. Advanced edge-aware algorithms
and careful parametric adjustments are needed to get outcomes
without artifacts. These deficiencies were subsequently remedied
through local Laplacian filters. These filters use typical Laplacian
pyramids to generate a wide variety of effects. However, these filters
are time-consuming, and their link to other methods is obscure.

3.2.2.2 Top—bottom hat filter

In this filter, the top-hat part is employed for objects with a
light color on a darker backdrop, whereas the bottom-hat part
is utilized for images with a dark color on a light background.
The correction of the effects of non-lighting is a key purpose of
the top-hat modification. When the shade is evident in an image,
this filtering technique can effectively highlight the information
in the image. The methods for contrast enhancement are visually
presented in Figure 5.

3.2.3 Bayesian optimization

Bayesian optimization incorporates Bayes’ theorem to guide the
search as a method for minimizing or maximizing an optimization
technique. This method can be very helpful for optimization
algorithms that are difficult to evaluate due to their complexity,
noise, or cost. BO differs from other methods in that it considers
previous parameter data by changing the baseline using Gaussian
progress (GP). Additionally, BO has minimal iterations and a
rapid convergence time. The BO approach may also eliminate
local optimum in non-convex optimization circumstances. BO is
a perfect pick for optimizing HPs due to its high convergence
and resilience. All hyperparameters must be tuned to gain
classification precision while utilizing DL architectures. The choice
of hyperparameters substantially affects the accuracy and precision
of the prediction. When optimizing hyperparameters, the objective
is to choose the values that provide the highest quality validation
findings. Hyperparameter optimization is written mathematically
by Equation 4.

x* = argminf (x) (4)
where f(x) shows the cost-minimizing objective score for evaluating

hyperparameter optimization relative to the validation set, and x is
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TABLE 3 Hyperparameter range of BO.

Hyperparameters Ranges

L2Regularization (1e719, 1e72)
Section depth (1,3)
Momentum (0.7,0.98)
Learning rate (0.0001, 1)

the set of hyperparameters whose values lie in that range. Training
takes longer and is extremely difficult to do by hand with DNN
models with numerous hyperparameters. ML and simulations
employ BO. FFNN designs alter hyperparameters in CV-based
techniques to enhance the performance of the mode network.
Optimizing several parameters is faster by using it.

In contrast to other methods, BO updates the prior with
Gaussian progress to adjust for past parameter values (GP).
Additionally, BO converges quickly and with a small number of
iterations. When addressing non-convex optimization problems,
the BO approach may be able to sidestep localized optimality. BO
is a great option for optimizing HPs due to its high convergence
and resilience. The stopping condition of the BO algorithm is
based on MaxTime. The BO algorithm stops when it reaches the
MaxTime, which is 54,000 s. This time is approximately equivalent
to 15h. In this study, we utilized BO along with DCNN, which
fine-tuned the hyperparameters to generate the lowest error rate
with optimal results in an architecture. Optimizing parameters such
as L2Regularization, Section Depth, Momentum, and Learning
Rate have been used in this study, shown along with their ranges
in Table 3, which represents the Bayesian optimization workflow.
Figure 6 illustrates the BO.

3.2.4 Deep transfer learning

Transfer learning is applying a learned model to a different
situation. The fact that it has the potential to train deep neural
networks on very little training data has recently made it more
famous in deep learning. Deep transfer learning is becoming
more prominent in handling image classification issues as it is
feasible to use built-in CNNs on publicly available datasets such
as ImageNet to achieve top classification accuracy in several
application domains. After transfer learning (TL), the framework
is fine-tuned (FT) to relearn all FE and C. FT is performed by
initializing feature extraction parameters and ImageNet weights,
and classification parameters are updated along with TL weights.
Figure 7 illustrates the deep transfer learning workflow.

3.2.5 Proposed ResNet-Self architecture

In this study, we proposed a modified ResNet-50 architecture
based on the self-attention module named ResNet-Self. Initially, we
consider the ResNet-50 architecture based on the residual blocks. In
this network, 48 convolutional layers have been originally added,
along with one max-pooling layer, one average pooling layer, and
one fully connected layer. The residual blocks added in this network
contain skip connections. In this network, bottleneck filters are
applied, such as 1 x 1, which reduces the number of parameters.
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The depth size of this model is originally between 64- and 2,048,
and filter sizes of 3 x 3. Moreover, the stride is used 2 out of the
residual blocks, and in the residual blocks, 1 stride is employed.
The average pooling layer has been added at the end of this model
for the features extraction that followed the fully connected and
softmax layers. The initial performance of this model for AD stage
classification was insufficient; therefore, we modified it with the
latest concept named Self-Attention.

The proposed ResNet-Self architecture is illustrated in Figure 8.
This figure shows that the self-attention layer was added after the
global average pooling layer. A flattening layer has been added
before the self-attention layer that converts the input into 1D. The
first channel is passed to the Softmax function that combines with
the second channel for the attention map creation. After that, the
generated attention map is combined with a third channel for final
attention features that are further utilized to classify AD stages.

3.2.5.1 Self-attention

The internal attention approach, sometimes called the self-
attention (SA) strategy, uses internal information to automatically
identify and highlight relevant information without needing
external information. SA has low computational complexity and
allows parallel computing. It consists of three characteristics
matrices such as X, Y, and V, where these are defined by
Equations 5-9.

{Y,X} e RTXT (5)

Vv e R (6)

Initially, the correlation score has been computed among all
rows of Y and X as follows:

P=XY" (7)

where Y7 denotes the transpose of Y and P € R"*T. The softmax
function is applied in the next step, which converts the correlation
score into probability values. Mathematically, it is formulated

as follows:
oPli)
M (P) (i,j]) = ————— 8
SM (P) (i,) ZjT:—Ol o) ®
Hence, the final attention map has been obtained as follows:
AMp = SM (P) V )

3.2.5.2 Proposed network training

After the design of the proposed model, the next step is training
a model using the deep transfer learning concept. The entire
model is trained from scratch, instead of any frozen layer. The
hyperparameters of this network are presented in Table 3. Based
on the selected hyperparameters using BO, the proposed model
is trained on the augmented dataset. The best-returned value of
the learning rate using BO is 0.00032, and the momentum value
is 0.773. After the training process, the test data are employed for
the extraction of the features.
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Proposed ResNet-Self architecture for classification of AD stages.
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3.2.5.3 Deep features extraction

Typically, CNNs return the three levels of feature maps:
low-level feature maps, mid-level feature maps, and high-level
feature maps. All of these levels contain different information.
Low-level feature maps contain simple patterns such as edges,
corners, and textures. These maps have high dimensions. Mid-level
feature maps contain abstract and more structured patterns like
specific regions of the objects or textures, but high-level features
contain discriminative and semantically significant information.
The features (high-level) are extracted from the last stage of CNNs
due to their lower dimensions. The low dimensionality reduces the
memory requirement and computational complexity.

This study extracts deep features using the self-attention layer,
instead of the global average pooling layer. The self-attention layer
returns the prominent and relevant global information within the
images. The testing images are utilized, and a trained model is opted
for. The batch size was 128 during the deep features extraction. The
self-attention layer features contain deeper information about the
AD stages. The size of the extracted feature vector is N x 2,048. The
extracted features are analyzed and optimized using an improved
pathfinder optimization algorithm.

3.2.6 Best features selection

In this study, we utilized an evolutionary optimization
algorithm named Entropy Path Finder Optimization (EPFO) for
the best feature selection. Features are selected at the initial step
through original pathfinder optimization and later refined using an
entropy approach that handles the uncertainty.

3.2.6.1 Path finder optimization

In contrast to previously suggested swarm intelligence, the
Pathfinder approach does not specify which species group it
belongs to. For instance, the seagull optimization algorithm
restricts the number of seagulls, whereas the gray wolf optimization
technique restricts the number of gray wolves, etc. The Pathfinder
algorithm is based on many surviving traits and regulations of
animals. Based on the best fitness of the organism, the Pathfinder
algorithm divides cluster animals among two sorts of tasks: the
leader (only with the lowest fitness value) and the follower. The
leader must find the greatest food and label it for the followers.
The markings left behind by the Pathfinder are used as a reference
point by the followers, who then proceed to follow the Pathfinder.
Hence, both the Pathfinder and the follower are skeptical. That is
why the two distinct sorts of responsibilities may switch places with
one another depending on the individual’s level of search capability
as the number of iterative steps of the method rises; that is, those
who lead the way sometimes get followers. Similarly, followers may
also play the role of a pathfinder. To optimize a task, the PFA is split
into two segments. The initial stage is a period of exploration. The
PFA changes the location using the following Equation (10):

kK

P P (10)

k k—1
+ 2r3. (xp— x, ) +A
where x";*l demonstrates the modified position vector of PFA. x}f

indicates the present location of vectors in PFA, while x’;_l shows
the former position of the vector of PFA. The ongoing iteration
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count is denoted by the variable k. R3 is a random vector that
is created in a uniform manner in the range [0,1], whereas A is
produced within every iteration by applying Equation (11). Step
2 is really the exploitation step, which is immediately preceded
by the location change. The following update formula applies
Equation (11):

xf.“H =% 4+ R1.(F

5o+ xR + X

+Ei > 2 (11)

k
1
just after location modification. xﬁ‘ is the location vector of the

where x! indicates the updated location vector of the i-th integer

i-th individual, x}‘ is the neighboring individual, and xls is the
Pathfinder. The variable k denotes the ongoing iteration count.
Each of the vectors R1 and R2 is completely unpredictable. In
this situation, R; = (arl) and R, = (B72), and here, Ry and
R, are random vectors that are created uniformly in the range
[0,1]. o determines the degree to which each component travels
about its neighbors and is hence called the coefficient of iteration.
establishes a randomized spacing to make the herd fairly constant
along with the leader and hence called the coefficient of attraction

Kmax. Mathematically, it is formulated by Equation (12).

h = (1 — kn]:ax) A .Dij, D,‘j ||x, — x]H (12)

Therefore, here 1 and |1, are randomly generated two vectors
in the interval of [1,1], D;; is the gap between both individuals,
(k) denotes the present iteration range, and kpyay is the maximal
quantity of repetitions. (A) and ( h ) may give random walk strides
for all persons when the second part of Equations (10) and (11)
and the third part of Equation (12) are equal to zero. As a result,
in order to ensure that the motion will be in several directions and
completely random, the values of. (A) and (h ) should be within the
proper span.

After every update in the position, the KNN classifier is
employed to measure the fitness value. The cost function of KNN is
mathematically formulated as:

count of sel_feat) (13)

T = X €, + X
cost = Pa err T 9B ( Max( features )

where o and B are denoted, the coefficient having values are 0.94
and 0.014, respectively. The €., presented the error value that is
calculated by employing an Equation (14):

(14)

€err = 1 — aaccumcy

3.2.6.2 Entropy selection

Assume U is a discrete random variable, and it is represented as
u = {uy,uz, ..., up}, then if an element u; occurs with p(u;), the
entropy H(U) of U is formulated by Equation (15):

H(U) ==Y pu)logp (u;) (15)

i=1
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Load self-attention feature vector
Load paraneters of PFA
Initialize the population of size 20

Cal cul ate the fitness of initial
popul ati on

Fi nd the Pathfinder

Wi | e k<maxi mum nunber of iterations

a and B = random nunber in [1, 2]
updat e the position of Pathfinder
usi ng Equation (10) and check the
bound

if the new Pathfinder
updat e the Pathfinder
end
for i =2 to maxi mum nunber of popul ations
update the position of nmenbers using
the Equation (11)
end

cal cul ate the new fitness of nenbers
find the best fitness using

Equations (13) and (14)

if best fitness < fitness of Pathfinder
pat hfi nder = best nenber

fitness = best fitness

end
for i=2 to maxi mum nunber of popul ations
if new fitness of nember (i) <
fitness of nmenber (i)

updat e nmenber

- Find entropy of updated nenber using
Eq. 15.

- Conpute the fuzziness using Egs. 16-18
- Find the fuzzy entropy val ue using

Egq. 19.

end

end

generate new A and ¢

end

is better than old

and check the bound

Algorithm 1. The pathfinder algorithm.

where n denotes the total number of features. The fuzzy C-Means
clustering is utilized to construct the membership function of all
features. The fuzzy membership method is defined in the following
five steps.

In the first step, we assumed the number of clusters (C), where
2 < C < N. In the next step, the jth center clusters are computed
by the following Equation (16).

N e
Dim1 M
G= tN Ug] (16)
i=1 Mij

where ¢ > 1 is a fuzziness coefficient and u;; is the
degree of membership (DOM) for the ith data point u; in jth
cluster. Euclidean distance is computed in the third step using

Equation (17).
Dj = |G — uil (17)
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In the fourth step, the value of the fuzzy membership function
is updated by Equation (18):

! (18)

2

b= 1z
ij | &1
S (72)

In the final step, we repeated steps 2—4 until the change in 1 was

less as per the previous values. Hence, the fuzzy entropy function is
formulated as follows in Equation (19):

Fe (H) =_A, (H) log A (H) (19)

where A, (H) is a class degree of the membership function
(Khushaba et al., 2007). The fuzzy entropy process is applied to the
selected features of Equation (12). The dimensions of the selected
features are N x 1,467. The final features are employed for the
classification. The proposed fuzzy entropy-controlled pathfinder
algorithm’s pseudo-code is given in Algorithm 1.

4 Results and analysis

The proposed AD stage classification model undergoes
evaluation using a Kaggle dataset, providing a robust framework
for assessing its performance. The forthcoming section will
comprehensively showcase all the experiments conducted and the
corresponding results obtained, offering insights into the efficacy
and potential of the proposed model in accurately diagnosing AD.

4.1 Experimental setup and evaluation
measures

The experimental process of this study is discussed here.
The proposed framework of AD is evaluated on a publically
available dataset that includes four classes as mentioned in Section
3.1. The dataset is divided into 50:50 approaches, and training
data augmentation is performed. The training data extracts and
optimizes features for the best feature selection. The selected
features are classified using machine learning classifiers, and the
following measures are computed: recall rate, precision rate, F1-
Score, MCC, and KAPPA. The entire experimental process has
been conducted on MATLAB2023a using a personal computer
with 128GB RAM, 512FB SSD, and a 12GB Graphics Card of
NVIDIA3060 RTX.

4.2 Proposed ResNet-Self results (random
values)

The proposed ResNet-Self CNN architecture is tested on 1,600
images in this experiment. The hyperparameters of this experiment
are randomly initialized (related work knowledge such as learning
rate 0.0001 and momentum 0.70) and performed training. Features
are extracted from the testing data, and the maximum accuracy
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TABLE 4 Proposed prediction results of AD stages using initialization of random hyperparameters.

S#  Classifiers Precision Recall Fl-score Kappa Accuracy Time (s)

1 Fine KNN 98.73 98.73 98.72 96.60 98.30 98.7 66.002

2 NNN 99.93 99.93 99.92 99.80 99.90 99.93 33.532

3 MNN 99.90 99.90 99.90 99.73 99.87 99.90 50.399

4 Trilayered NN 99.65 99.65 99.65 99.07 99.53 99.65 41.09

5 Medium KNN 98.99 98.97 98.97 97.27 98.64 98.97 62.531

6 Coarse KNN 83.00 97.60 87.50 30.31 84.03 73.86 63.041

7 Cosine KNN 98.78 98.75 98.75 96.67 98.35 98.75 66.134

8 Bilayered NN 99.88 99.88 99.87 99.67 99.83 99.88 28.071

9 Medium 99.73 99.72 99.73 99.27 99.63 99.72 73.511
Gaussian SVM

Bold values shows the best results.
TABLE 5 Proposed classification results after employing Bayesian optimization-based selection of hyperparameters.

S#  Classifiers Precision Recall Fl-score Kappa MCC Accuracy Time ‘

1 Fine KNN 98.48 98.48 98.47 95.93 97.97 98.48 35.573

2 NNN 99.90 99.90 99.90 99.73 99.87 99.90 15.874

3 MNN 99.95 99.95 99.95 99.87 99.93 99.95 17.78

4 Trilayered NN 99.75 99.75 99.75 99.33 99.67 99.75 21.891

5 Medium KNN 98.75 98.72 98.72 96.60 98.31 98.72 34.139

6 Coarse KNN 97.11 97.08 97.07 92.20 96.11 97.08 34.571

7 Cosine KNN 98.45 98.40 98.40 95.73 97.89 98.40 37.183

8 Bilayered 99.58 99.58 99.58 98.87 99.43 99.58 34.292
KNN

9 Medium 99.73 99.72 99.73 99.27 99.63 99.72 34.235
Gaussian SVM

Bold values shows the best results.

of 99.93% for the NNN classifier was obtained (results seen in
Table 4). The values of precision measure are 99.93%, and the
Kappa value is 99.80%, respectively. The computational time taken
by the NNN classifier is 33.532 (s), whereas the minimum noted
time is 28.071 (s) for bilayered NN. The rest of the classifiers
obtained accuracies of 98.7, 99.90, 99.65, 98.97, 73.86, 98.75, 99.88,
and 99.72%, respectively.

4.3 Bayesian optimization results

This section presents the results obtained from Bayesian
optimization (BO). We executed our BO algorithm 100 times and
got the value for a learning rate of 0.00010195, momentum value of
0.81079, L2Regularization of 2.8724e~ 10, and section depth value
of 3. These are the best feasible points. Based on these points, the
classification was performed, and the results are noted in Table 5.
The MNN classifier achieved a maximum accuracy of 99.95% in this
table. The precision rate of this classifier is 99.95, the Kappa value
of 99.87, and the MCC value of 99.95%, respectively. In addition,
the computation time of this classifier is 17.78 (s). Compared to
the results in Table 4, this experiment shows improved accuracy,
precision, Kappa, and MCC values. Moreover, the computation
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time of this experiment was less than that of the results in Table 4.
The results show that selecting hyperparameters using BO can
improve the accuracy and reduce the computational cost.

4.4 Proposed feature selection

Table 6 presents the AD stage classification results using the
proposed selection of BO extracted features. In the first stage of this
table, results are presented for the original pathfinder algorithm.
The PFA was applied to the BO-based deep features extraction and
performed classification. The maximum obtained accuracy for this
experiment is 99.82%. The precision and recall values are 99.83 and
99.83%. In addition, Kappa and MCC measure values of 99.80 and
99.80%, respectively. Compared to Tables 4, 5, the selection results
show better. Moreover, the computation time of each classifier
is also noted, and the minimum noted time for this experiment
is 12.338 (s), which is less than Tables 4, 5. Overall, the time is
decreased after employing the optimization method.

To further improve (minimize) the computational time, we
improved the PFA using Fuzzy Entropy formulation in this study.
The proposed Fuzzy Entropy PFA (FEPFA) results are given in
the second half of Table 6. The maximum obtained accuracy for
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TABLE 6 Proposed classification results after employing Bayesian optimization and proposed feature selection algorithm.

S#  Classifiers Precision Recall Fl-score Kappa MCC Accuracy Time
Features selection using original PFA
1 Fine KNN 94.34 94.32 94.32 84.82 92.43 94.31 23.406
2 NNN 99.83 99.83 99.82 99.80 99.80 99.82 12.338
3 MNN 99.82 99.80 99.82 99.47 99.80 99.80 14.71
4 Trilayered NN 99.80 99.80 99.80 99.47 99.73 99.80 16.088
5 Medium KNN 98.94 98.92 98.92 97.13 98.57 98.92 14.9
6 Coarse KNN 96.64 96.57 96.57 90.87 95.46 96.57 14.67
7 Cosine KNN 98.73 98.70 98.70 96.53 98.28 98.70 19.92
8 Bilayered 99.88 99.88 99.87 99.67 99.83 99.80 15.04
KNN
9 Medium 99.73 99.73 99.73 99.27 99.63 99.73 17.014
Gaussian SVM
Features selection using proposed fuzzy entropy PFA
1 Fine KNN 99.90 99.90 99.90 99.73 99.87 99.90 18.987
2 NNN 99.93 99.92 99.92 99.80 99.90 99.90 10.231
3 MNN 99.90 99.90 99.90 99.73 99.87 99.90 13.395
4 Trilayered NN 99.73 99.73 99.72 99.27 99.63 99.73 11411
5 Medium KNN 99.04 99.03 99.03 97.41 98.71 99.03 7.167
6 Coarse KNN 97.05 97.00 96.99 92.00 96.02 97.00 6.77
7 Cosine KNN 98.74 98.70 98.70 96.53 98.28 98.70 8.683
8 Bilayered 99.85 99.82 99.85 99.60 99.80 99.85 10.336
KNN
9 Medium 99.70 99.70 99.70 99.20 99.60 99.70 9.118
Gaussian SVM

Bold values shows the best results.

this technique is 99.90%, whereas the precision rate value of
99.93%. The Kappa and MCC values of this experiment are 99.80
and 99.90%, respectively. In addition, the computation time of
this classifier is 10.231 (s), less than the original PFA (12.338).
Overall, the performance of this technique is improved and time is
minimized. The performance of the NNN classifier can be further
verified using a confusion matrix illustrated in Figure 9. In this
figure, the diagonal values represent the true predicted rates of
each class.

4.5 Discussion and comparison

In this section, a detailed analysis of the proposed study has
been conducted in the form of visual graphs and comparison
with recent state-of-the-art (SOTA) techniques. The proposed
framework of AD stage classification has been discussed in Section
3.1, and the visual illustration is shown in Figure 1. The MRI dataset
has been used for the experimental process (a few sample images
are shown in Figures 2, 3). The augmentation process has been
performed to increase the number of images for a better training
process. After that, a new model is proposed named ResNet-
Self as shown in Figure 8 for the accurate classification of AD
stages. The performance of AD stage classification is improved
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by proposing new FEPFA techniques that select the best features.
The results are presented in Tables 4-6. Table 4 presents results for
the proposed ResNet-Self architecture using random initialization
of hyperparameters. Table 5 presents the results of the proposed
ResNet-Self after employing BO for hyperparameters selection.
Table 5 shows better accuracy, precision rate, MCC, and Kappa
performance than Table 4. The computational time and precision
rate are further improved using the proposed FEPFA feature
selection algorithm, and the results are presented in Table 6. In
this table, accuracy is also improved and time is significantly
decreased. In addition, a comparison is also conducted of the
proposed FEPFA with the original PFA, showing the improvement
in accuracy, precision, MCC, and computational time. Overall,
the time comparison is illustrated in Figure 10. This figure clearly
shows that the proposed selection method consumed less time than
the other steps.

Table 7 compares the methods currently utilized for predicting
AD. To enhance the categorization of early AD phases while
reducing parameters and computational costs, a novel detection
network named DAD-Net was introduced by Mohi et al. (2023).
This network appropriately classified initial AD processes and
depicted class activation characteristics as a heat map of the brain,
achieving 99.2% accuracy using a Kaggle dataset. Additionally,
Al-Atroshi et al. (2022) utilized convolutional layers with freeze
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Confusion matrix of the NNN classifier using proposed feature selection algorithm.
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elements from ImageNet, achieving 99.27% accuracy on ADNTI’s
MRI data collection for both binary and ternary classification.
Authors in Shankar et al. (2022) employed a ResNet-18 architecture
using a transfer learning concept and obtained an accuracy of
83.3% on Kaggle datasets. Authors in Sharma et al. (2022) utilized
a CNN-based pre-trained network named ResNet-50 and achieved
91.78% accuracy. Authors in Albright (2019) proposed a ResNet-
15 model and fused it with DenseNet-169 for the classification
of AD prediction. They achieved an improved accuracy of
88.70% on Kaggle’s AD dataset. Furthermore, Soliman et al.
(2022) suggested a novel approach employing three pre-trained
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CNN frameworks such as DenseNetl196, VGG16, and ResNet-
50, achieving 89% accuracy on MRI brain data from Kaggle.
Hashmi (2024) proposed a compact architecture by merging LeNet
and AlexNet models, achieving 93.58% accuracy on the ADNI
dataset. Goel et al. (2023) proposed a system for automated
AD diagnosis, integrating multiple customized deep-learning
models. This architecture achieved 96.61% accuracy using rs-fMRI
datasets and modified AlexNet and Inception blocks. Ismail et al.
(2023) utilized a new optimized ensemble-based DNN learning
model named MultiAz-Net and obtained 92.3% accuracy on the
ADNI dataset.
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TABLE 7 Comparison of proposed method results with existing techniques.

10.3389/fncom.2024.1393849

References Years Models Datasets Results
Ahmed et al. (2022) 2022 CNN based DAD-Net Kaggle 99.22%
Naz et al. (2022) 2022 CNN using freeze features ADNI 99.27%
Oktavian et al. (2002) 2022 CNN with ResNet-18 Kaggle 83.3%
Ebrahimi et al. (2021) 2021 CNN, ResNet-18, temporalCN, RNN ImageNet 91.78%
Al Shehri (2022) 2022 ResNet-15 Kaggle 88.70%
Techa et al. (2022) 2022 ResNet-15 Kaggle 89%
Abunadi (2022) 2022 ResNet-18, AlexNet Kaggle 99.94%
Prasath and Sumathi (2024) 2023 LeNet, AlexNet ADNI 93.58%
Sorour et al. (2024) 2023 AlexNet, Inception blocks ADNI 96.61%
Ismail et al. (2023) 2023 MOGOA ADNI 92.3%
Proposed model ResNet-50 Kaggle 99.99%

Bold values shows the best results.

5 Conclusion and future study

It is challenging to diagnose and predict Alzheimer’s disease
using multiclass datasets promptly. A computerized technique
is widely required for early AD prediction from MRI images.
This study proposes a computerized framework based on deep-
learning and optimization algorithms. A dataset balancing issue has
been resolved at the initial stage using mathematical formulations
that improved the training capability of the proposed ResNet-Self
deep model. The proposed ResNet-Self model is a combination
of ResNet-50 architecture modified by adding the self-attention
module. The self-attention module shows improved accuracy;
however, the random initialization of hyperparameters impacts the
accuracy and computational time. Therefore, we implemented a
BO technique that automatically initialized the hyperparameters
for the training process. Moreover, we proposed a feature selection
algorithm named FEcPFA that selects the best features and shows
improved accuracy (99.90), precision rate, and Kappa value. In
addition, the computational time is significantly reduced, which is
the strength of FECPFA. The optimized hyperparameters that make
the proposed model less generalized and lead to overfitting are the
limitations of the proposed framework. In the future, a new custom
model will be proposed based on the fire module, and the output
of that module will be employed with self-attention and cross-
validation to overcome overfitting. In addition, more MRI datasets
will be utilized for the experimental process.
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Active learning is a field of machine learning that seeks to find the most efficient
labels to annotate with a given budget, particularly in cases where obtaining
labeled data is expensive or infeasible. This is becoming increasingly important
with the growing success of learning-based methods, which often require large
amounts of labeled data. Computer vision is one area where active learning has
shown promise in tasks such as image classification, semantic segmentation, and
object detection. In this research, we propose a pool-based semi-supervised
active learning method for image classification that takes advantage of both
labeled and unlabeled data. Many active learning approaches do not utilize
unlabeled data, but we believe that incorporating these data can improve
performance. To address this issue, our method involves several steps. First,
we cluster the latent space of a pre-trained convolutional autoencoder. Then,
we use a proposed clustering contrastive loss to strengthen the latent space’s
clustering while using a small amount of labeled data. Finally, we query the
samples with the highest uncertainty to annotate with an oracle. We repeat this
process until the end of the given budget. Our method is effective when the
number of annotated samples is small, and we have validated its effectiveness
through experiments on benchmark datasets. Our empirical results demonstrate
the power of our method for image classification tasks in accuracy terms.

KEYWORDS

active learning, contrastive learning, clustering, semi-supervised learning, human-in-
the-loop

1 Introduction

In recent years, computer vision has made significant advancements, primarily driven
by machine learning and, more specifically, deep learning. However, these methodologies
are highly dependent on having a substantial number of labeled samples. Acquiring such a
large volume of data poses a significant challenge for several reasons. Initially, the process
of annotating images is time-intensive, ranging from a few seconds for simple image
classification to several hours for more complex image segmentation tasks. This makes
it impractical to annotate a large data set in a short time frame. Additionally, image
annotation often requires specialized expertise, adding another layer of complexity. In
some cases, annotations require professionals, which increases the cost and complexity of
the annotation process.

An effective strategy to address these issues involves employing an active learning
methodology. Active Learning, often abbreviated as AL, entails the process of selecting and
prioritizing data that require labeling to have the most significant impact on the training of
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a machine learning task. Through the utilization of AL, machine
learning algorithms can enhance their accuracy using a reduced
number of training labels, thereby economizing time and resources
during model training. Settles (2009) provides a comprehensive
overview of various AL techniques in machine learning. In
essence, there are three primary scenarios where active learning
can be beneficial for those seeking to maximize accuracy while
minimizing the number of labeled instances, typically involving the
submission of queries in the form of unlabeled data instances to be
labeled by an oracle, such as a human annotator. These scenarios
include membership query synthesis (Angluin, 1988), stream-based
selective (Atlas et al., 1989) sampling, and pool-based sampling. In
this research, we will be focused on the third scenario, pool-based
sampling (Lewis, 1995).

In numerous practical scenarios, it is often straightforward to
gather a substantial amount of unlabeled data, which serves as
a driving force behind the adoption of the pool-based sampling
method. Let us consider a pool of unlabeled data P, alongside a
limited quantity of labeled data P;. In pool-based sampling in each
query, we will sample a small amount of data from P, and annotate
it with human oracle, then add it to P;. Assuming we have a good
query that selects the most relevant samples from P,, P; will be a
good representative group of P,,.

Employing a pool-based sampling active learning approach,
where the model selects samples for annotation, can decrease
the quantity of labeled data required to achieve a similar model
accuracy. This represents a significant benefit of active learning
for deep learning tasks, which has only recently started to be
investigated (Gal et al., 2017; Sener and Savarese, 2017; Sinha et al.,
2019).

As previously mentioned in numerous practical scenarios, there
is a significant volume of unlabeled data, which motivate our study.
In this research, we present a novel approach that utilizes pool-
based active learning to fully exploit all unlabeled data. The method
we suggest begins by clustering the unlabeled data in the latent
space. Then, it proceeds to choose the samples with the highest
entropy based on their representation in the latent space and the
clustering within that space. Our central concept involves clustering
the unlabeled data from P,, querying samples with the highest
entropy for human annotation, and employing labeled data from
P to refine the clustering via our suggested clustering contrastive
learning. The above process iterates until either a satisfactory level
of accuracy is achieved, the model converges, or the annotation
budget is exhausted.

In addition to addressing the challenges posed by limited
labeled data, our research holds promise for real-world applications
where unlabeled data is abundant. By leveraging a pool-based active
learning approach, our method enables the effective utilization of
unlabeled data in scenarios where acquiring labeled samples is
impractical or costly, such as medical imaging diagnosis, satellite
image analysis, and industrial inspection. This capability maximizes
the efficiency and effectiveness of machine learning models in
practical settings, facilitating improved accuracy and insights from
limited labeled samples. Furthermore, our approach can identify
and prioritize hard examples for labeling, ensuring that the
annotated data provide the most informative training signal for
the model.
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The contributions of the research are:

e A new approach is proposed to integrate Deep Clustering
and Deep Active Learning (DAL) in order to maximize the
extraction of information from both labeled and unlabeled
data.

e Propose a novel contrastive clustering loss (CCL) that has
the potential to enhance the transition from unsupervised
clustering to a semi-supervised framework.

e Achieving a high level of accuracy in image classification with
a reduced number of labeled samples.

2 Previous work

2.1 Deep clustering

There has been significant research on deep clustering in
recent years. Most deep clustering algorithms can be categorized
into two groups. The first group includes two-stage clustering
algorithms that first generate a data representation before applying
clustering. These algorithms leverage existing unsupervised deep
learning frameworks and techniques. For instance, Tian et al.
(2014) and Peng et al. (2016) utilize autoencoders to learn low-
dimensional features of original data samples and subsequently
apply conventional clustering algorithms like k-means to the
learned representations. Mukherjee et al. (2019) introduces
ClusterGAN a generative adversarial network that clusters the
latent space by sampling latent variables from a combination of
one-hot encoded variables and continuous latent variables. The
second group comprises approaches that simultaneously optimize
feature learning and clustering. These algorithms aim to explicitly
define a clustering loss, resembling the classification error in
supervised deep learning. Yang et al. (2016) propose a recurrent
framework that integrates feature learning and clustering into a
unified model with a weighted triplet loss, optimizing it end-to-end.
Xie etal. (2016) suggests a clustering loss that operates on the latent
space of an autoencoder, enabling the simultaneous acquisition
of feature representations and cluster assignments. Building upon
this, Guo et al. (2017) DCEC (Deep Clustering with Convolutional
Autoencoders) enhances the method by proposing Convolutional
Autoencoders (CAE), which surpasses DEC while ensuring the
preservation of local structure. This study directly adopts the
clustering loss and clustering layer from DCEC.

We briefly review their definitions:

The trainable parameters of the clustering layer are /tj]f
which represent the cluster center. The intuition behind the math
operation of that layer is it maps each embedded point in the latent
space z; into a soft label g; by the student’s t-distribution (Van der
Maaten and Hinton, 2008).

g = A+ 2 = wlH)~!
P+ Iz — il

1

Where g;j is the jth entry of g;, representing the probability of
z; belonging to cluster j.
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The clustering loss is defined as:
Loy = KLP|IQ =YY pj log% 2)
i Y

where P is the target distribution, defined as:

o= a5/ X qij
T Y Y ai)

2.2 Active learning

Active learning is a subfield of machine learning empowering
algorithms to select and prioritize the most informative data points
for labeling, aiming to enhance model performance using less
training data. Active learning scenarios commonly occur in three
main contexts:

1. Membership Query Synthesis: In this scenario (Angluin,
1988), the learner synthesizes new instances to be labeled by
an oracle, aiming to generate maximally informative instances,
particularly beneficial when labeled data is scarce or expensive
to obtain. 2. Stream-Based Selective Sampling: This scenario
(Atlas et al., 1989) involves a continuous stream of unlabeled

10.3389/frai.2024.1398844

instances, with the learner making real-time decisions on which
instances to label based on the current model state and incoming
data. Such scenarios are common in sequential data streams like
online learning or sensor data. 3. Pool-Based Sampling: Here
(Lewis and Gale, 1994), the learner is presented with a fixed
pool of unlabeled instances and selects a subset for labeling,
aiming to identify the most informative instances. This approach
involves evaluating the informativeness of unlabeled samples, often
utilizing query strategies like uncertainty sampling (Lewis and
Gale, 1994), recently Liu and Li (2023) had an extensive work to
explain this strategy even further, or query-by-committee (Seung
et al., 1992). Active learning plays a crucial role in determining
which data should be labeled to maximize the effectiveness of
training supervised models. Traditional active learning methods
are comprehensively reviewed by Settles (2009), while Ren et al.
(2021) offer insights into the more contemporary Deep Active
Learning (DAL) approach, integrating active learning with deep
learning methodologies.

Notable active learning methodologies are Uncertainty
Sampling (Lewis and Gale, 1994) and Variational Adversarial
Active Learning (VAAL) (Sinha et al,, 2019). VAAL integrates
variational inference and adversarial training, leveraging a
generator network to produce informative data points and a
discriminator network to differentiate between real and generated
instances, aiding in sample selection. Additionally, LADA (Kim

Uniabeled Data
Pool

Encoder

Cluster Layer,

MSE Loss

Q - distribution

vector

KLD Loss

contrastive
clustering loss

T

FIGURE 1

Visual representation of proposed methodology. Images from p; and p,, are inferred through the CAE and provide feature vectors in the latent space
the feature vectors are clustered by the clustering layer and the contrastive clustering loss then the n-th feature vectors from the latent space with the
highest entropy are queried and annotated by a human oracle this process is repeated until the end of the annotation budget or model convergance.
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et al., 2021) introduces data augmentation techniques to improve
the efficiency of data acquisition in deep active learning, while
SRAAL (Zhang et al, 2020) integrates adversarial training
techniques with active learning principles to address sample
selection challenges.

Moreover, approaches like the Core-Set Approach (Sener and
Savarese, 2017) and Bayesian Active Learning (BALD) (Houlsby
et al., 2011) offer strategies for selecting informative instances,
with Core-Set identifying a compact, diverse subset of unlabeled
data, and BALD leveraging Bayesian inference for strategic
instance selection. These methodologies collectively contribute to
enhancing model training efficiency and performance in active
learning settings.

2.3 Semi-supervised learning

Semi-supervised learning (SSL) is a specialized form of
supervised learning that involves training on a small set of labeled
data along with a large set of unlabeled data. Positioned between
supervised and unsupervised learning, SSL is commonly used in
scenarios where the availability of labeled data is limited due to
constraints such as budgetary restrictions or data ambiguity, where
the class of a sample is uncertain. Semi-supervised algorithms are

input : Label ed pool (P;), Unlabeled Pool (P,),
Model paraneters: 6g, 6p, 6.
Hyper paraneters: epochs, a1, az, o3, y
output: Label ed pool (P), Y,

1 Og,0p <« preTraining(0g, Op, Pj, Py)

2 0, < initCentroids(0,, P;)

while budget #0 do
/1 Active Learning Loop

Zu = eE(Pu)
X; < querySamples(Z,, 0, Py,)
P; < Annotate(X;)

for einepochs do
for b in batches do

10 Zy < Op(Py, Pl)

11 X, < 0p(Zy)

12 L. conpute using Eq. 5

13 L, conpute using Eq. 2

14 L. conpute using Eq. 7

15 Liotar <= a1+ Lree +oz - Loy +a3Log

16 05, 0. < 08,0 — vV Liotal

17 0. < updateCentroids(Z,;)

18 if updateCentroids is True then

19 LP < updateP(z,;) conpute using Eq. 1

Algorithm 1. Contrastive active learning.
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designed to address such challenges. In this study, we propose an
SSL approach for the classification of image data, aiming to leverage
the benefits of both active learning (AL) and SSL. To achieve this,
we suggested clustering contrastive loss (CCL) in conjunction with
unsupervised training.

2.4 Entropy

Entropy Shannon (1948) is an information-theoretic measure
of uncertainty. It quantifies the amount of information needed to
encode a distribution. In active learning, entropy is widely used
to select the most uncertain or ambiguous samples for annotation.
The entropy can be shown as:

H(x) i=— ) p(x)logp(x) (4)

xeX

3 Method

This study proposes a novel active learning approach based
on pool-based sampling. It involves training a convolutional
autoencoder (CAE) (Masci et al., 2011) to learn a low-dimensional
latent space for both labeled and unlabeled samples. The latent
space is then clustered using a clustering layer. After each iteration
of the active learning process, a subset of data points associated
with the latent space vectors is selected for annotation. To leverage
information from the labeled data, the study introduces the
contrastive clustering loss (CCL), which is a modified version of
the contrastive loss (Chopra et al., 2005). The CCL operates on the
latent space vectors, pulling samples of the same class toward their

TABLE 1 Algorithm symbols and their explanations.

P, Labeled pool

P, Unlabeled pool

O Encoder model parameters

Op Decoder model parameters

[ Centroid parameters

oy, 0, A3 Losses weights
Learning rate

Zy Encoded representations of unlabeled pool

X Samples selected for annotation

P, Updated labeled pool

Zy Encoded representations of both labeled and unlabeled
pool

X, Reconstructed samples

0r, 0! Updated encoder and centroid parameters

\4 Gradient operator

P P distribution
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respective cluster centers and pushing samples of different classes
apart.

3.1 Problem definition and notation

The main focus of this study is a semi-supervised active
learning approach designed for image classification. Assuming
there is a large set of unlabeled images P, and a small set of labeled
images Py, along with a predetermined annotation budget, the goal
is to select the most informative samples from the unlabeled set
P, to enhance the classification accuracy. These selected samples
will be labeled by a human annotator and incorporated into the
labeled set P;. The initial step involves training a Convolutional
Autoencoder (CAE) to learn a condensed representation of the
images, referred to as latent space features. Each image i is
transformed by the CAE into a feature vector z; in the latent space.
Subsequently, all latent space features z;, Vi € P; U P, are clustered
into clusters, denoted as j1; where j represents the centroid of the
j — th cluster. Finally, the proposed cluster contrastive loss L. (see
Eq. 7) is applied to the labeled samples z;, VI € P;. This loss function
aims to attract the feature vectors z; toward j1; while pushing them
away from u, Vn # j. for all n # j.

3.2 Suggested method

The primary objective of this study is image classification,
aiming to categorize images into their respective classes with
optimal accuracy by leveraging labeled images from the
restricted labeled data pool P;. To achieve this, we introduce
a pool-based active learning strategy that integrates contrastive
learning and clustering, mutually enhancing their performance
in every training cycle. Our approach follows a human-in-
the-loop methodology, in which an active learning loop
comprises model training, image quering, and annotation by
an oracle. This iterative process continues until the budget is
fully utilized.

The model consists of a CAE (Masci et al., 2011) and a
clustering layer (Xie et al., 2016). Samples from P; and P, are
fed into the model based on the active learning training stage.
During each iteration of the active learning process, samples from
P, are chosen for labeling. The proposed module is depicted
in Figure 1.

Prior to commencing the active learning iteration, certain
initial steps are carried out. Initially, our CAE is pre-trained
by reconstructing images from P, and P; using the MSE loss
(Eq. 5). This process allows the CAE to acquire knowledge of
lower-dimensional features within the dataset. Once the network
is trained, the resulting latent space provides a feature z;Vi € p; U
p1- Subsequently, the cluster centroids in the clustering layer are
initialized with the average values of the vectors in the latent space
of each class in our labeled pool P; as depicted in Eq. 6.

1 .
Lyec = ; ZI:(Yi - Yi)2
i=
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1 &
He = e ; Zc (6)

Next, we incorporate clustering into the training of the CAE
by clustering the acquired latent space with the utilization of a
clustering layer (Guo et al.,, 2017) and employing a Kullback-Leibler
divergence loss (Csiszar, 1975) as shown in Eq.2. The primary
objective of this stage is to organize the latent space into clusters,
ensuring that similar image pairs produce proximate feature vectors
within the latent space.

In the final stage, we incorporate the image labels from P;.
To utilize these labels effectively, we employ the suggested cluster
contrastive loss L.y as shown in Eq. 7 on all vectors in the latent
space derived from Pj, meaning that solely annotated images are
taken into account by this loss. The CCL loss works by either
pulling or pushing the feature vectors Z; in the latent space toward
their respective cluster center 1, or away from other cluster centers
wj where j # i. This method allows us to enhance the purity of
clusters while using a limited number of labeled images from P;,
during this stage we continue to make use of the previous clustering
stage. Finally, we add all those losses and update the parameters of
the model. The process is reiterated until reaching convergence or
utilizing the entire annotation budget.

At the end of every active learning iteration, we perform query
sampling to choose the n-th image that exhibits features with
the highest entropy compared to all other clusters. These features
are the most ambiguous in terms of their cluster assignment,
and by labeling them, we gain valuable insights that the model
failed to generalize. Algorithm 1 presents a generic pseudo-code
for this approach, in Table 1 the symbols used in the algorithm are
elucidated, providing clarity on their respective meanings and roles
within the context of the algorithm.

°
o\...
® o
L ]
@ center cluster #1
° sample from cluster #1
[ ) sample from diffrent cluster

FIGURE 2

An intuitive explanation of the contrastive clustering loss is that the
black dots correspond to samples assigned to cluster #1, the blue
dot symbolizes the cluster center, and the green dot represents a
sample from a different cluster. This loss function aims to move the
black dots closer to the blue dot while pushing the green dot farther
away from the blue dot.
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3.2.1 Cluster contrastive loss

The cluster contrastive loss (CCL) is a revised variant of the
supervised contrastive loss introduced in Khosla et al. (2020).
To enhance the purity of the clusters, the proposed approach
incorporates the labeled images from P; into the clustering
procedure. Consequently, this results in the adoption of the
proposed CCL. The mathematical expression for the CCL is
displayed below:

exp(z; - [Le/T)
> exp(z - pue/7)

/
Z'ely

Lccl = - Z Zlog

ceC i€l

Where ¢ € Cis the class index, I is the set of all the samples
indexes in class ¢, Iv is the set of all the samples indexes in all the
classes beside class c. z; is the i-th sample in the latent space and 1 is
the center of the cluster, T € RT is a scalar temperature parameter.
An intuition of the loss can be shown in Figure 2.

This loss involves both pulling samples toward their cluster
center and pushing from other unmatched centroids centers
simultaneously. It specifically affects the labeled data points. The
CCL serves as a complementary approach to the unsupervised
methods we currently employ, and empirical experiments indicate
their mutual benefit. Figure 2 provides a visual representation of
CCL as defined in Eq. 7.

10.3389/frai.2024.1398844

3.2.2 The need for the contrastive clustering loss

During the training for CAE, we are provided with
representation vectors in the latent space. In order to group
the latent space into clusters corresponding to each class, as
elaborated in Section 2.1, the clustering layer is utilized. This layer
aims to streamline the process of image classification. Nevertheless,
the clustering mechanism is proficient in grouping vectors with
high certainty, which may result in certain images not being
grouped together, particularly those from the same class that map
to distant vectors in the latent space. Therefore, the integration of
the suggested contrastive clustering loss becomes essential. This
suggested CCL loss function works on adjusting vectors that were
not properly aligned by the clustering process. Through this loss
function, we can enhance the separation of classes in the latent
space, even when dealing with a limited number of labeled images
or when images are challenging to cluster due to the low confidence
in the P-distribution of the clustering process.

3.2.3 Pre-training

During the initial phase, we train the convolutional
autoencoder. We are using all the images from the unlabeled
data pool P, and the labeled data pool P;. Each image x; ~ P; U P,
inferences through the encoder and provides z; a lower dimension
latent vector z; = o (x; % W)) where w is the weights of the encoder
layers, o is a nonlinear activation function, and x* is a convolution

operation. The latent vector z; is inference through the decoder
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FIGURE 3

TSNE visualization of the query method the red circle represents samples with high entropy.
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which provides an X which is a reconstruction of the original image
Xi. ¥ = o(z; * U) where U is the weight for the decoder. x; and x;
are entered to MSE loss (Eq. 5) which provides a high loss when x;
looks different from x; and a low loss when they are similar. At the
end of this step, the CAE has trained weights W and U.

3.2.4 Initialization and update centroids

Once the CNN is pre-trained, the centroids in the clustering
layer are initialized using the average value of each class projection
from P; in the latent space. Subsequently, every 80 iterations, the
distribution of P is updated by the following (Eq. 3). As detailed
in Section 2.1, the centroids represent the weights of the clustering
layer, and therefore they are adjusted during each training iteration.

3.2.5 Query samples

In this stage, our objective is to acquire image annotations
by engaging a human annotator in the active learning procedure.
At this point, we have already acquired a clustered latent space
generated by the model itself. Any vectors within the latent space
that are not clustered or are distant from the cluster center
are identified as hard examples, representing images that require
annotation. We select samples linked to vectors in the latent space
that do not clearly belong to any cluster and annotate them based
on the uncertainty criterion detailed in Eq. 4. More specifically, we
target the vectors that exhibit the highest entropy in the cluster
distribution. A visual representation of this approach is shown in
Figure 3. By focusing on a small number of samples associated with
feature vectors located far from the cluster center, we gain insight
into these samples and the clusters they are associated with, thereby
enhancing the overall clustering process.

10.3389/frai.2024.1398844

3.3 Combination of contrastive learning
and clustering

When the suggested clustering method is applied to the latent
space, there may be instances where some feature vectors are not
accurately clustered. This situation can arise when feature vectors
within the latent space that should belong to the same cluster
are spatially distant from each other. As a result, the clustering
layer may encounter challenges in grouping these feature vectors
effectively. To address this issue, we introduce our proposed CCL,
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FIGURE 5
Visualization of the USPS dataset.

FIGURE 4

Visualization of MNIST and FashionMNIST datasets at the left is the FashionMNIST and on the right is the MNIST dataset.

Wh 0N NW o W
v AAwWwWBWoNnga9s
N pP-DOWIONN

7
>
&
Y
3
3
/
Q

\
oA

/

7
g

'S
9
é
O
&~

Frontiersin Artificial Intelligence

43

frontiersin.org


https://doi.org/10.3389/frai.2024.1398844
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Roda and Geva

which works to minimize the distance between distant feature
vectors that belong to the same cluster while maximizing the
separation between those that do not. Furthermore, we incorporate
a query mechanism to select challenging examples (i.e., samples
that are significantly distant from their corresponding cluster
center) for manual annotation. By integrating these strategies and
progressively bringing the feature vectors closer together in a semi-
supervised fashion, followed by clustering using the clustering layer,
we improve the purity of the clustering outcomes.

3.4 Implementation details

In this work, we used a convolutional autoencoder for our
model. The encoder consists of 3 convolutional layers, a batch
normalization layer, and a linear embedding layer with a size
of 10. The decoder consists of a linear de-embedding layer, 3
deconvolutional layers, and a batch normalization layer. The
clustering layer weights are initialized with the mean of the latent
space clusters using the starting labeled images in Pj, and are then
updated with the kl-loss using the Q and P distribution as described
earlier. The P-distribution, or target distribution, is initialized every
80 steps. Each benchmark dataset is split into a 20% validation set
and 80% training set, which is further divided into two data pools:
a labeled data pool P; and an unlabeled data pool P,,. First, we pre-
trained the model for 50 epochs. Then each active learning training

10.3389/frai.2024.1398844

iteration was set to 10 epochs and for the duration of overall 20
active learning loops. In each active learning loop, we query 250
image samples using the uncertainty strategy for annotation.

4 Experiments and results
4.1 Datasets

We have evaluated our method in image classification tasks.
We have used MNIST (LeCun, 1998), FashionMNIST (Xiao et al.,
2017), and USPS (Hull, 1994) datasets. Both the MNIST and the
FashionMNIST datasets have 60K grayscale images of size 28x28.
Examples of MNIST and FashionMNIST datasets can be viewed
at Figure 4, and USPS has 9298 grayscale images of 16x16 size. An
example of USPS dataset can be viewed at Figure 5.

4.2 Performance measurement

We evaluate the performance of our method with the image
classification task by measuring the accuracy over different
amounts of labeled images from 500 to 5k images with a raising of
250 images from query to query. The results of all our experiments
are averaged over 3 runs.
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FIGURE 6

TSNE visualization of the clustered MNIST latent space after convergence of our method with 10% of annotated samples.
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FIGURE 7
TSNE visualization of the clustered FashionMNIST latent space after convergence of our method with 10% of annotated samples.

TABLE 2 Ablation study: clustering vs. clustering + CCL (3% of annotated
data).

and USPS datasets. The results demonstrate that integrating
the CCL with clustering, using only 3% of labeled data,

Method significantly improves model performance. The CCL operates by
Dataset : e .
: . encouraging the model to learn discriminative representations
Clustering Clustering + CCL . &g . . . P
within clusters while simultaneously enforcing compactness
MNIST 81.6% 91.0% among cluster centroids. By incorporating this loss function
USPS 68.7% 86.5% into our framework, we guide the clustering process to yield

4.3 Experiments details

We begin our experiments with an initial labeled pool of
the size of 250 and in each iteration of the training loop we
provided another 250 images that were annotated by the human
oracle and added to the initial labeled pool P;. Training is
repeated on the new training set with the new labeled images. We
assume that the dataset is balanced and the oracle annotations
are ideal.

In Figure 6 MNIST result. In Figure 7 FashionMNIST result.

4.4 Effectiveness of the CCL

In Table2, we present an ablation study comparing our
proposed method with the use of clustering alone. The study
evaluates the performance of both approaches on the Mnist

Frontiers in Artificial Intelligence

clusters that not only capture inherent data structures but also
ensure inter-class separability. This results in more coherent
and well-separated clusters, facilitating better decision boundaries
and ultimately leading to improved classification accuracy.
Additionally, Figure 8 visually illustrates the difference between
using clustering alone and incorporating the CCL into the
clustering process.

4.5 Comparing with other methods

We conducted a comprehensive evaluation of our
proposed method across multiple datasets, including MNIST,
FashionMNIST, and USPS, as detailed in Tables 3-5. Our results
showcase significant performance improvements over baseline
methods, particularly evident in scenarios with limited labeled
data. When compared to state-of-the-art techniques such as

Core-Set Approach (Sener and Savarese, 2017), Variational

frontiersin.org


https://doi.org/10.3389/frai.2024.1398844
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Roda and Geva

10.3389/frai.2024.1398844

60 ks - F
40 % . 3
: o
g £
20 > ,‘{, 20
W . ﬁ'
° T Whigoe
center center .
e 0 e 0 - i
° 1 204 ® 1 - 3 .
-20 ° 2 & 2 - 2 L4
e 3 e 3 A 'y
o 4 [ il .
* 5 e 5 .
- T e §
e 8 e 8
® 9 e 9 A
o samples —60{ ® samples
60 & conters ® centers
—40 -20 o 20 40 60 -60 —-40 =20 o 20 40 60
FIGURE 8
On the left: t-SNE visualization after clustering. On the right: t-SNE visualization after applying CCL in conjunction with clustering.

TABLE 3 MNIST accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) Core-set (Sener and

Savarese, 2017) and our method with 1, 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy Core-set

1% 0.151 0.251 0.255 0.336 0.832
3% 0.600 0.701 0.735 0.805 0.910
5% 0.805 0.813 0.810 0.888 0.948
10% 0.935 0.945 0917 0.928 0.983

TABLE 4 Fashion MNIST accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) Core-set (Sener
and Savarese, 2017) and our method with 1, 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Core-set Ours
1% 0.318 0.264 0.189 0.305 0.490
3% 0.468 0.360 0.520 0.627 0.671
5% 0.556 0.616 0.602 0.679 0.697
10% 0.637 0.703 0.673 0.729 0.758

TABLE 5 USPS accuracy results on entropy sampling (Wang and Shang, 2014) BALD (Gal et al., 2017) Vaal (Sinha et al., 2019) random sampling and our
method with 3, 5, and 10% of the data labeled.

Percentage of labeled data Entropy BALD Vaal Random sampling Ours
3% 0.770 0.821 0.836 0.797 0.865
5% 0.855 0.860 0.876 0.858 0.895
10% 0.909 0.896 0.926 0.894 0.933

Adversarial Active Learning (VAAL) (Sinha et al, 2019), and
Bayesian Active Learning by Disagreement (BALD) (Houlsby
et al,, 2011), our approach consistently demonstrates competitive
performance. Figures 9-11 showing our method comparing to
the others (Notably, leveraging pre-trained) Notably, leveraging
pre-trained clustering models contributes to achieving relatively
high accuracy, particularly in scenarios with a scarcity of
labeled samples.

Frontiersin Artificial Intelligence

4.6 Experiment analysis

To comprehensively validate the efficacy of our approach, we
conducted an in-depth analysis of clustering quality throughout
the training process. We monitored the evolution of clustering
performance and visualized the t-SNE projections of learned
latent space representations, as depicted in Figures 6, 7, 12. These
visualizations offer insights into the structure of the learned
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FIGURE 9
Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the MNIST dataset.
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Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the FashionMNIST dataset.
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representations, revealing distinct clusters corresponding to each
class. The observed trends in clustering align well with the
accuracy improvements reported in Tables 3-5, corroborating the
effectiveness of our method.

In addition to accuracy comparisons, it’s imperative to
delve deeper into the performance metrics of our approach
compared to baseline methods. For instance, on the MNIST
dataset, our method achieves an accuracy of 91% with only 3%
labeled data, outperforming the Core-Set Approach, which attains
80.5% accuracy. This notable performance gain underscores the
superiority of our method in leveraging limited labeled data
effectively.

Frontiers in Artificial Intelligence

5 Discussion

The integration of convolutional autoencoders, clustering, and
a novel clustering contrastive loss in our semi-supervised active
learning approach presents a unique and promising strategy for
leveraging both labeled and unlabeled data in image classification
tasks. By combining clustering with active learning, our method
offers a distinctive approach that distinguishes it from previous
methodologies.

A significant strength of our approach lies in its ability
to extract valuable insights from unlabeled data by organizing
it into clusters, thereby guiding the query selection process in
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FIGURE 11
Accuracy of our method compared to other state-of-the-art methods as a function of the number of labeled images for the USPS dataset.
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FIGURE 12
TSNE visualization of the clustered USPS latent space after convergence of our method with 10% of annotated samples.

active learning. However, the effectiveness of our method may  complex, high-dimensional data. Exploring the applicability of
depend on the quality of clustering initialization, which could our approach beyond image classification domains warrants
potentially limit performance, particularly in scenarios involving  further investigation.
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Despite these potential limitations, our research represents
a notable advancement in the realm of semi-supervised active
learning. By integrating deep clustering, active learning, and
contrastive learning principles, we address challenges associated
with data scarcity, thereby enhancing model performance in
resource-constrained settings. Moving forward, future research
endeavors could explore the development of more robust clustering
techniques, alternative representation learning methods, and
synergistic combinations with other active learning strategies to
further enhance performance and generalization capabilities.

Theoretically, the clustered representations derived by our
approach hold promise for facilitating various downstream
tasks, including data augmentation, domain adaptation, and
the incorporation of weak or noisy labels. Such capabilities
could prove invaluable in addressing the challenges posed
by limited annotation scenarios. While our work contributes
to the field, it also underscores the inherent challenges and
opportunities associated with semi-supervised learning in real-
world applications, paving the way for continued advancements
and innovation in this domain.

It is essential to acknowledge the use of a smaller
The
introduced by clustering necessitated the use of a smaller

model architecture in our experiments. complexity

model to maintain tractability and computational efficiency.
While  this
performance metrics, it enabled us to explore the feasibility

choice may have influenced our absolute
and efficacy of our approach within practical constraints.
It is that in

may larger,

researchers
further

plausible subsequent  studies,

employ more complex models to

improve performance.

6 Conclusions and future work

In this study, we have introduced a novel approach to image
classification through a pool-based semi-supervised active learning
technique. By integrating deep clustering and deep active learning,
we aim to enhance classification accuracy by using fewer labeled
images. Our method involves clustering feature vectors in the
latent space that corresponds to images from P; and Py, thereby
obtaining a more informative representation of the latent space to
support the active learning procedure. We have also incorporated
a clustering contrastive loss to enhance the clustering of the latent
space even with a limited number of labeled images. Cases where
feature vectors in the latent space are not well grouped together
or are far from their respective cluster centers are recognized
as hard examples and are then queried for annotation by a
human oracle.

Our empirical experiments demonstrated that our method
achieves high classification accuracy even with a small number
of annotations. The iterative combination of clustering with the
suggested contrastive learning and query method leads to a more
separated latent space, which in turn facilitates the classification
process. Thanks to the clustering step, our method achieves high
accuracy from the beginning. However, the clustering step may
have a drawback for complicated datasets, as it can be challenging
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to cluster them effectively. We believe that future work can improve
the clustering process to provide better clustering initialization even
for complex datasets.

We used a convolutional autoencoder (CAE) to map samples
to the latent space, but future work could explore more robust
methods like a variational autoencoder that creates smoother
and more connected latent spaces, which will help to improve
clustering. Furthermore, our method is currently designed for
image classification tasks, but it could be extended to other
computer vision tasks such as semantic segmentation and object
detection by inserting a suitable network head to the model for the
requested task.
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While encrypting information with color images, most encryption schemes
treat color images as three different grayscale planes and encrypt each plane
individually. These algorithms produce more duplicated operations and are less
efficient because they do not properly account for the link between the various
planes of color images. In addressing the issue, we propose a scheme that
thoroughly takes into account the relationship between pixels across different
planes in color images. First, we introduce a new 1D chaotic system. The
performance analysis shows the system has good chaotic randomness. Next,
we employ a shortest-path cross-plane scrambling algorithm that utilizes an
enhanced Dijkstra algorithm. This algorithm effectively shuffles pixels randomly
within each channel of a color image. To accomplish cross-plane diffusion, our
approach is then integrated into the adaptive diffusion algorithm. The security
analysis and simulation results demonstrate that the approach can tackle the
issue of picture loss in telemedicine by encrypting color images without any loss
of quality. Furthermore, the images we utilize are suitable for both standard RGB
and medical images. They incorporate more secure and highly sensitive keys,
robustly withstanding various typical ciphertext analysis attacks. This ensures a
reliable solution for encrypting original images.

KEYWORDS

cross-plane scrambling, adaptive diffusion, image encryption, chaotic system, Dijkstra
algorithm

1 Introduction

Image encryption technology is gaining popularity due to its ability to enhance the
security of image communication. This is especially crucial as people become increasingly
aware of security issues during image transmission (Liang et al., 2022). Image encryption can
storage by converting it from significative plaintext into purposeless ciphertext to defend it
against permission access and malicious attacks (Huang et al., 2022).

To maintain digital images’ security, researchers have proposed many attack-resistant
techniques, including data hiding (Ahmadian and Amirmazlaghani, 2019), image encryption
(Hu, 2021; Huang et al., 2022; Li et al., 2023), digital watermarking (Zhang X et al., 2020), and
compressive sensing (Wang and Su, 2021; Chai et al., 2022; Sarangi and Pal, 2022). Of such
techniques, image encryption is often known for being a direct and significant technique, and
utilizing the proper key is the only method to recover the original image data. Over the last
several years, a number of approaches have been used to build plenty of digital image
encryption algorithms, such as the DNA coding encryption scheme (Liang and Zhu, 2023),
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the quaternion technique (Wang X. et al., 2022; Wang Y. et al.,, 2022),
and the scheme using block compressive sensing and elementary
cellular automata (Chai et al., 2018), it uses cellular automata
scrambling to achieve the goal of making pixel values more difficult to
predict, and the new zigzag global scrambling scheme designed
(Li H et al,, 2022). These programs offer multiple benefits and a high
level of security.

Chaotic systems have complex dynamic characteristics, unique
inherent randomness, control parameters, initial value sensitivity,
traversal, and long-term unpredictability, making them appropriate
for application in digital image encryption. Andono and Setiadi
(2022) introduce several common chaotic systems and utilize multiple
multidimensional chaotic systems, such as Lorenz system and Henon
map to complete the image encryption. Researchers (Mansouri and
Wang, 2020) improved the 2D Arnold mapping by obtaining a
scrambled Arnold mapping. Hua et al. (2018) used sine and logistic
mappings to produce a new chaotic 2D system. Although this
algorithm has high complexity and hyper-chaotic behavior, most
multidimensional chaotic systems have high computational costs. In
addition, a 1D chaotic system (Wang et al., 2021) was developed and
the designed system has the advantages of fast computation and fast
image encryption, resulting in time savings.

While color photos are more information-dense than grayscale
images, the majority of color image encryption techniques now in use
have certain clear shortcomings. The algorithm in Li Q et al. (2022)
uses a self-designed inter-plane rule, which requires the calculation of
the pixel inter-plane position each time, leading to repeated
calculations and a failure to maximize the relationship between pixels
and planes. Furthermore, the algorithm in Hua et al. (2021) uses a
Latin cube to design a set of scrambling rules for RGB images. For
developing the encryption results and safety, the scheme blurs the
original image’s pixel values, making the decrypted image inconsistent
with the initial image and impossible to fully recover from the initial
image. In the later study (Zhou et al., 2021), an RGB image is divided
into three planes for independent encryption, and a color image is
reconstructed from the encrypted result. In the password system, the
security level is low because when a pixel on a plane change, it cannot
change quickly enough to extend to three planes. Furthermore,
inefficient is this encryption scheme, which ignores the relationship
between a color image’s three planes, as a result, real-time encryption
systems that demand great security and efficiency are not appropriate
for this encryption technique. Images were encrypted using a discrete
chaotic system and S-box in the algorithm (Liu et al., 2022), which
required over 100 iterations of the S-box and consumed a lot of
processing resources. The algorithm (Zheng et al., 2022) use DNA
coding to encrypt a portion of the image many times, leading to a
poor level of efficiency in the image encryption process.

It is evident from the explanation above that a large number of
current encryption techniques for chaotic and color pictures have
serious fundamental problems. We provide a fresh approach to color
image encryption that makes use of a unique one-dimensional chaotic
system for purposed of overcome these problems. The creation of a
unique 1D chaotic system with enhanced chaotic performance and a
broader parameter range is a main component of this technique.
We have developed an improved Dijkstra algorithm that considers the
properties of color pictures, building upon the new 1D chaotic system.
Rather of encrypting each color plane independently, we accomplish
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pixel scrambling across color planes. Next, we perform adaptive
diffusion based on plane distribution to further alter pixel values and
enhance the safety of the encryption method.

The following are this study’s primary contributions:

1 A performance analysis shows that the 1D chaotic system
we present eliminates several shortcomings of current chaotic
mappings, such as restricted parameters, inadequate nonlinear
behavior, and poor unpredictability. According to the analysis
of the security performance of Chaos, the new 1D chaotic
system proposed by us meets the security requirements, is
evenly distributed, and can generate keys that meet the
security standards;

2 Many color image encryption techniques have flaws in their
architecture. The design of several color picture encryption
systems is incorrect. Three distinct gray planes are processed
for the majority of color pictures. Using the design of a novel
1D chaotic system and an improved Dijkstra algorithm as the
foundation for a cross-plane color encryption technique. Pixels
will appear anywhere on any plane, and Adaptive Diffusion
Based on Plane Distribution will vary the value of each pixel
sufficiently. In contrast to previous color image encryption
techniques, our proposed diffusion and permutation operate
simultaneously on all three planes, rather than individually
on each;

3 Simulation findings and implementation analyses show that
our proposed system outperforms several current image
encryption techniques in various data aspects and can
withstand chosen plaintext attacks.

This essay’s remaining sections are as follows: Chaotic system with
a performance study covered in Section 2. The creation of keys and
certain encryption procedures, such as diffusion and scrambling
methods, are covered in Section 3. Section 4 presents method’s

security analysis and simulation findings. Paper’s conclusion is given
in Section 5.

2 Related work
2.1 1D-SASCS chaotic system
1D-SASCS chaotic system (Wang and Liu, 2022) is presented Eq. 1:
Xpe1=| sin(lOOu /arcsinxn) | 1)
A is a parameter of control, A& (0, +o0). The chaotic system

possesses good chaotic characteristics, but the chaotic range of
1D-SASCS is relatively small.

2.2 Ill-conditioned matrix
When the data are significantly disrupted, an ill-conditioned

matrix exhibits significant oscillations in the solutions of an equation
system. Solving linear equation Ax=b, one such matrix is as Eq. 2:
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R 201\(K;) (200 o
—-800 401\ K, ) | -200

For example, when R=400, K,=-100, and K,=-200; when
R=402, K,=99.5025, and K,=198.01.

2.3 1D chaotic system

The formula for 1D chaotic system is as Eq. 3:

—-800401

5| 200
~| 200 ®)

A [400.5 +X(i)- 201]

When X(i) € (0, +o0), the mapping demonstrates good chaotic
behavior. Compared with certain standard 1D chaotic mappings, our
suggested 1D mapping has a wider parameter range. The chaotic
system formed when X(1)=0.5 is adopted by our method, which
contains two parameters that vary with each repetition of the X(i)
value. Our scheme also widens the chaotic system’s beginning
value range.

2.4 Diagram of bifurcation

To ensure that the pseudo-random sequence values of chaotic
system iteration are evenly distributed throughout a range,
bifurcation diagram can be used to visualize the distribution of
function values. Figure 1 shows parameter p range of mapping is
represented by the x-axis of the bifurcation diagram, while the values
produced by the mapping are represented by the y-axis (Kagar et al.,
2022). One may judge the quality of a chaotic mapping using the
bifurcation diagram. 1D chaotic system’s sequence may be examined
using the bifurcation diagram to see if it is randomly distributed. In
Figure 1A, K, =-465.7689. The logistic mapping bifurcation diagram
is displayed in Figure 1B, with parameter pe [0, 4]. In Figures 1C,D,
pe [0, 100], K, and K, are set to-465.7689, respectively. The uniform
distribution of values within the range of [0,1] is evident, suggesting
that the suggested. The chaotic behavior of a 1D system is good.
These demonstrate its complicated properties and continuous chaotic
range when seen from the perspective of bifurcation trajectory
and diagram.

2.5 Lyapunov exponent
Lyapunov exponent (LE) is one of crucial reference indices to

determining if the chaotic system has especially chaotic qualities. The
following formula explains how the LE is Eq. 4:
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n

-1 ;
LE = lim lZlnlf(x,-)| (4)
0

n—o0 M {7

The representation of a chaotic system is f(x;). The value of LE may
be found in the formula by calculating the derivative of f(x) and
averaging the logarithms. A system is considered chaotic when the LE
value is higher than 0. Conversely, a system is considered stable when
the LE value is smaller than 0. We will determine whether a chaotic
system is in a chaotic state within the parameter range by looking at
the positive and negative LE values.

Figure 2 displays pe (0, 1] LE diagrams for 1D-SASCS chaotic
system, the Logistic map and 1D map. We select X(1)=0.1 in this
case, K, =465.7689 and K,=465.7689, our chaotic system has a large
range of control settings since it consistently maintains a positive LE
value. When K, =465.7689 our LE values are the greatest, suggesting
that our chaotic scheme has more complicated nonlinear behavior
and superior unpredictability.

2.6 Sample entropy

The accuracy of sample entropy (SE) (Richman and Moorman,
2000) is higher than that of approximation entropy. The complexity of
the output produced by chaotic systems during iteration is measured
quantitatively. A positive SE shows chaotic behavior in the created
sequence, which deviates from conventional regularity. A higher SE
value denotes less regularity in the sequence, which suggests that the
chaotic system’s behavior is more complicated. The SE of various
chaotic systems is calculated using the computation technique
outlined. The SE of our new chaotic system that we have presented is
compared with other 1D chaotic systems in Figure 3 and we set the
initial value X(1) =0.5 for all chaos. As can be seen, our suggested 1D
chaotic system achieves positive SE values for all control parameters.
The outcomes of our experiments show that our chaotic system
operates effectively. The computation equations for SE are as Eq. 5:

SE(m,r,N)= —log% (5)

In which A and B denote two successive random sequences of
chaos, respectively, and m, the array’s dimension, N, the sequence
length, and 1, the threshold. The Chebyshev distance between A and B
is computed, and it is not more than the threshold’s percentage. We set
our chaotic, 1D-SASCS and Logistic, X(1)=0.9, m=1, r=0.2. As can
be observed, the SE value is somewhat larger than the SE value of other
1D chaos when K, =465.7689 and is comparatively steady. The SE value
is larger than 0 for K,=465.7689, which satisfies all safety standards.

3 Related algorithms

We introduce a cross-plane color image encryption scheme in the
section. The architecture of cross-plane encryption technique is shown
in Figure 4. The picture is converted into a 384-bit key using SHA-384.
This key and the chaotic matrix produced by a 1D chaotic system are
combined to make the encryption key. The image’s three planes are split
up, and each plane is simultaneously according to chaotic system and
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FIGURE 1
Bifurcation diagram. (A) When K; = —465.7689, bifurcation diagram of 1D chaotic map. (B) Logistic map, (C) When K; = —465.7689, larger range of 1D
chaotic map. (D) When K, = —465.7689 larger range of 1D chaotic map

10 Logisitc ours K2=465.7689
ours K1=465.7689 1D-SASCS
e R S
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FIGURE 2
The LE results of logistic map, 1D-SASCS and our method with K; and K,

an improved Dijkstra algorithm for cross-plane scrambling. This allows
the original image’s pixel to appear at any location in any plane, making
it more difficult for an attacker to anticipate where a pixel would appear.
An adaptive diffusion approach is used after obtaining the scrambled
matrix. This algorithm starts with bidirectional diffusion on the rows
and columns, and then moves on to random diffusion over the color
planes. Finally, the planes of the image were merged to obtain the final
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encrypted image. By modifying pixel values to improve security, and
because both the improved Dijkstra method and the adaptive diffusion
based on plane distribution are reversible, the algorithm can retrieve the
original image information using the proper key.

3.1 Key generation

The research suggests a key generation process that generates four
chaotic sequences using a 1D chaotic system. Because these sequences
leverage chaos’ unpredictable nature. To enhance unpredictability,
we omit the first 1,000 iterations of the chaotic iterations. Moreover,
this key generation mechanism makes ordinary images highly
sensitive. The four generated chaotic sequences are denoted as V,, V,,
Vs, and V. D;, D,, and D; are matrices generated from the chaotic
sequences, with the size of MxN.

RGB image P to be encrypted is first input into SHA-384 to obtain
the 384-bit key Z. Z is the key shifted into 96 decimal numbers, each
of which has a length of four digits. Z can be represented as Z=h, h,,
h;...., hes. Next, use Z to obtain parameters C;...C,,. Then, 3 chaotic
sequences of U, U,, and Uj are generated using the specific generation
method, as Eqs. 6, 7:

Ci=h+h +..+h8
Cy :/’19 +h10 +..+h16
(6)

C12 = hgg +/’190 +..+ /’196
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FIGURE 3
The sample entropy comparison on logistic map 1D-SASCS and our method with K; and K,.
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3.2 Dijkstra algorithm

One kind of greedy method for determining the shortest path for
a single source in weighted networks is the Dijkstra algorithm. It can
be applied to both directed and undirected graphs. It is used here to
resolve the shortest path issue with directed and undirected graphs.
Figure 5 shows that the algorithm starts from vertex A and eventually
obtains the set U {A, C, E, B, E, D}.

3.3 Improved Dijkstra algorithm

Only pixels on the same plane or multiple operations can
be scrambled using conventional color image schemes. Therefore, it is
crucial to create a scrambling algorithm that is both effective and
secure. This research enhances the position updating procedure to
better satisfy the demands of image encryption. As for the pixel
weight, which influences both the layer value and the pixel’s
coordinates in the plane, we utilize a chaotic matrix. By essentially
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removing the link between pixel locations and lowering the correlation
between neighboring pixels, this method makes it more difficult to
anticipate the position of pixels.

Our improved Dijkstra algorithm efficiently makes use of the
inter-plane interactions between pixels, shuffle the image pixel
position, arrange it across planes, in contrast to conventional color
image scrambling techniques. The spatial associations of pixels can
be more randomly shuftled, enabling them to appear at random on
any plane. This algorithm only requires a single operation to complete
the encryption process, rather than encrypting the three planes of an
RGB image separately multiple times. It can better leverage the
relationships between pixels across different planes, allowing pixels to
quickly appear at any position on any plane. Original image P with the
size of M*N, this scheme for scrambling H,(a, b), H,(a, b), and H;(a,
b) obtained by scanning P from left to right is as shown below.

Step I: The four chaotic sequences V,, V,, V;, and V, are taken
with lengths of Mx N, MxN, MxN, and 3 x M x N, respectively.

Step 2: Three chaotic matrices are reshaped by processed the V,
V,, and V; chaotic sequences, denoted as D,, D,, and D;, respectively.
Where ‘sort’ means to sort the elements of an array. Obtain the index
matrices I;, I, and I; for the three chaotic matrices, as Eq. 8:

[~ ,1,'] = SOI"[(D,') (8)
Step 3: The three planes of image P—H,, H,, and H,—are
scrambled to obtain P,, P,, and P; according to the three index

matrices a and b, D; acts as the pixel’s weight to guide pixel movement,
‘find’ represents a vector that returns a linear index, as Eq. 9:
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FIGURE 4
The encryption process for a flowchart.

FIGURE 5
An example of in a directed graph

{[m,n] = find(D; = N *(a—1)*b) ©)

F(m,n)=H;(a,b)

Step 4: Reshape V, into a matrix with a row length of 3 and a
column length of M x N — 1, obtaining matrix I,. The I, index is sorted
by row priority and P1, P2 and P3 are scrambled across planes according
to the improved Dijkstra algorithm I, will guide the pixel to which level
ofthe R, G, B plane, 1, 2, 3 stand for R, G, and B, respectively. Columns’
indicates the plane where the pixel values are located.

Frontiers in Artificial Intelligence

Both the original Dijkstra algorithm and the improved Dijkstra
algorithm are methods for determining the shortest path. The
shortest path cross-plane scrambling algorithm is random, and the
image pixel is determined by the point-to-point position of the
chaotic system, which ensures that each pixel of the image can
determine the final position, and ensures the integrity and
randomness of the pixel. The magnitude of the comparison weight
affects how far pixels shift in relation to their ultimate location. A
cross-plane configuration for a 3x3x3 colored image is shown in
Figure 6. Our planes are initially positioned as follows: R(1,1) =1,
G(1,1)=1, B(1,1)=1. The positions are changed into R,(3,1)=1,
G,(2,2)=1, B,(3,3) =1 based on our input data: I,(3,1)=1, I,(2,2) =1,
I,(3,3) = 1. This completes the first step of shuffling. The value of V,
specifies the plane into which the pixel will be shuffled, and it
indicates the weights allocated to the pathways used to shuffle the
image. The row-wise sorting of V, is I,. For instance, 2, 1, and 3 are
in the first row of I,. R, =1 positions are positioned in the second
plane, G, =1 positions are positioned in the first plane, and B, =1
positions are positioned in the third plane. After guidance, we obtain
R,(1,2)=1, G,(1,2)=1, and B,(2,1)=1 based on the index order
established: 1 = 2,2—3... 53xMxN, 3x M x N — 1. We obtain the
final shuffled image when the three planes have finished shuffling.
The distribution of each element in the sequence is uniform
and random.
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FIGURE 6
Example of an improved Dijkstra Algorithm.
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3.4 Adaptive diffusion based on plane
distribution

Encrypted pixels typically solely pertain to the current pixel; they
have no effect on following pixels. Even if the current pixel undergoes
slight changes in the image. The adaptive diffusion strategy proposed in
the paper is based on plane distribution, that is an encryption scheme
that utilizes the image’s R, G, and B layers’ pixel values as keys for one
another. The image encryption task can be successfully completed with
just one diffusion operation on scrambled image. Modifying pixel value
of image increases its security and makes it harder for attackers to
obtain the original. Specifically, row-column diffusion takes place inside
each of the pixels’ individual planes first, followed by diffusion between
planes. As a result, pixels differ from one plane to the next. The values
of succeeding pixels shift significantly when one does. After the original
image has been disturbed by the trans-plane scrambling of improved
Dijkstra algorithm. Since neighboring pixels in scrambled image
originate from several color planes, The scrambled image is then placed
in adaptive diffusion based on plane distribution, the processing
sequence is arbitrary and kept a secret, pixel value is severely destroyed
by our algorithm, the safety of proliferation is further enhanced. The
technique creates a consistent pixel distribution and one-step
encryption based on protecting private information, as (Egs. 10, 11):

R(1,j)=R(Lj)®U (1))
R(i,j)=R(i-1,7)@1 (1, /)®R(i))
G(1j)=6(1j)eu, (1)
G(i.j)=6(i-1,j)®1,(L,)®G(i,)
B(1,j)=B(Lj)®U (1))
B(i.j)=8(i-1,)®1 (1)@ B (i)

R(i,1) =R, @U (i,1) (10)
R(i.j)=R(i,j-1)®1(i,/))®R(i.j)
G(i,1)=6(i1)eu, (i1)
G(i.j)=G(i.j-1)e1(i./)®G ()
B(i,1)=B(i,1)®U, (i,1)
B(i.j)=B(i.j-1)®1 (i,/)®B(i.j)

k =mod (k,12) +1
bitxor
R(i,j)=mod| | double| (R(i,}), ,256
(i*j*p(k)j
bitxor )
G (i, j) =mod| | douvle| (G(i,}), ,256
((H/’).’*R(i,j)j
bitxor
B(i,j) =mod| | double| (B(i,}), ,256
((H/‘).’*G(i,j)j
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In this case, Mx N represents the encrypted image P’s size. In
addition, the image consists of three layers: R, G, and B. The modulo
operation is denoted by ‘mod. the bitwise XOR operation by ‘bitxor.
and the key generation set in Section 2 is denoted by p(k), where k
ranges from 1 to 12.

4 Simulation results and security
analysis

To address the requirements of many situations, we discuss the
results of simulations using a variety of image formats. We also detail
a significant amount of security research to show the safety and
effectiveness of our approach. All experiments are conducted and
simulated using MATLAB 2021a on the laptop with an i7-10710U
CPU. In this paper, two sets of ablation experiments are set up, when
the encryption algorithm is only named EX1 using the improved
Dijkstra algorithm, and when the encryption algorithm is only used
adaptive diffusion based on plane distribution, it is named EX2.

This part shows the simulation and testing of the encryption
technique provided in part 3. We perform tests on the original images
by employing different-sized standard test images and using the
encryption method suggested in this study as Figure 7 shown. No
meaningful data are present in the encrypted image in Figure 7A. The
contrast between original image and encrypted image, the latter of
which is a completely black image, is also shown in Figure 7D. This
result indicates that our method applies to image encryption and
retrieves images without any loss.

4.1 Simulation results and histogram
analysis

Histogram analysis is a highly effective means of presenting data
in a cryptographic system because it provides a visual presentation of
the statistical information contained within image pixels. Regarding
cryptography, the distribution of the cipher in the histogram must
be as uniform as possible because any deviations can provide attackers
with valuable statistical information that can be used to compromise
the system’s security. As seen in Figure 8, we compared different
images using histograms. Figures 8B,C show histograms of plaintext
and ciphertext, respectively, demonstrating that our encryption
scheme produces a relatively flat histogram. This result suggests that
there is some degree of assault resistance in our design.

4.2 Key space analysis

A wider key area is necessary to successfully deter attackers from
acquiring the correct key. A secure cryptographic system (Chai et al.,
2017) often requires a key space greater than 2'™. Key space for
SHA-384 of the scheme is 2'? and has 12 keys, which is far greater
than 2' to effectively fend against brute-force attack.

4.3 Information entropy

A signal source for distribution can be quantitatively described
using information entropy. Moreover, 8 is optimal value of entropy for
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FIGURE 7

Image Database.

Simulation results of the image encryption algorithm proposed are as follows: (A) and (C) Initial and decrypted images, (B) Encrypted images, and
(D) Difference between initial images and decrypted image (A—C). The images ‘House’, ‘Couple’ and 'Female’ have been downloaded from USC-SIPI

an image of an 8-bit binary. The formula for computing information
entropy as Eq. 12:

255

E(a)=-> 0(a;)logs p(a;) (12)

i=0

Where a; represents a pixel’s value, and Q(a;) stands for the
frequency of a. When each value is equally likely to occur, the
maximum value will be reached by information entropy. In an 8-bit
image, 256 is gray level, and when each pixel appears with a probability
of 1/256, the maximum information entropy can be obtained. In this
section, we present entropy testing on the Lena (256 x 256 x 3) image,
and Table 1 provide a comparison of the test data utilized to develop
our approach. Even if our values are not the highest, they are similar
and adhere to security standards, which shows our scheme has
good performance.

Table 2 shows our scheme results about the entropy for diverse
image. Because neighboring pixels are associated, rather than
random, the plaintext image has a low entropy. This shows the
validity of our hypothesis and comes close to the predicted maximum
value of 8. The encrypted images suggested in this paper have erratic
distributional properties, from which no usable data can be derived.
Table 3 shows the information entropy ablation experiment, and it
can be seen that the EX1 and EX2 values are low and do not meet the
safety criteria.

Frontiers in Artificial Intelligence

4.4 Analysis of adjacent pixel correlation

The initial pixels’ regular distribution usually creates a stable
correlation between them, which can negatively impact the quality of
the ciphertext when introduced in encryption. For evaluating the
correlation between relevance pixels in our proposed encryption
system, for test items, we select 3,000 pairs of pixels with the formula
expressed as Eq. 13:

SN (Xi-1(a)) (% - L(5))

(13)

C(xy)=

_ N
LB (@) (L5 (-2

Where L(A) and L(B) are the sequences @ and ‘b. respectively, in
mathematical expectations. A greater correlation between the
sequences @ and ‘b’ is indicated by a larger correlation coefficient,
while a correlation coeflicient that is closer to zero suggests
less correlation.

In contrast to the accompanying ciphertext image, which is evenly
scattered over the plane in a diagonal orientation. Figure 9 displays the
pixel distribution in the test image and its surroundings. In Table 4,
the correlation coeflicients are displayed.

Between proposed scheme and the corresponding ciphertext
images of different plaintext images, owing to the large data redundancy
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FIGURE 8
(A) The plaintext image, (B) and (C) the histogram of plaintext and cipher images. The images ‘Female’, ‘Lena’ and ‘Tree’ have been downloaded from
USC-SIPI Image Database.

TABLE 1 Information entropy compares the ‘Lena’ (256 x 256 x 3) image
with other schemes.

Encryption schemes R (€] B Avg
Lena 7.2353 7.5683 6.9176 7.2404
proposed 7.9969 7.9974 7.9970 7.9971
EX1 7.7253 7.7305 7.7292 7.7283
EX2 7.7974 7.7973 7.7972 7.7973
Zhang Y. Q. et al. (2020) 79917 | 7.9912 7.9917 7.9915
Wang X. et al. (2022) and

Wang ¥ etal, (2022) 7.9973 7.9971 7.9971 7.9972
(Chai et al. (2019) 7.9973 7.9969 7.9971 7.9971
(Hosny et al. (2021) 7.9956 | 7.9949 7.9953 7.9953

of the plaintext image, the nearby pixels exhibit a high correlation
coefficient. Since the ciphertext image’s correlation coefficient is
practically 0, the suggested approach can be successful in eliminating
the substantial relationship between adjacent pixels in plaintext image.

Here, we investigate correlation coefficients of ciphertext images
using various encryption techniques. Three planes of the test image
Lena, which has dimensions of 256 x 256 px, are used to determine
correlation coefficients. Table 5 displays data for the correlation
coefficient comparison of various ciphertext images. The values of our

Frontiers in Artificial Intelligence

scheme are closer to zero, EX1 and EX2 have high correlation between
adjacent pixels.

4.5 Differential attack experiment

Differential attack is a extensive used and powerful attack strategy.
By evaluating the impact of the change rate of each pixel between original
and encrypted images, we find that the best performance indicators for
judging differentiated attacks are the number of pixels change rate
(NPCR) and unified average changed intensity (UACI). K; and K, are
two encrypted outputs of the same plaintext image produced after fine-
tuning, NPCR and UACI (Gao et al., 2022) calculated as Eqs. 14, 15:

M N (y(i;
NPCR(CI,Cz)zzzyxloO%, (14)
i=lj=1

M N K (i) - Ko (i)
UACI(C,Cp) =) Y ————~
i=1j=1 D*F

x100%, (15)

U is the difference between K; and K, F is the greatest pixel value, D is
a total number of color plane pixels. K;(i, j) = K;(1, j) if U (i, j) =0; otherwise,

frontiersin.org


https://doi.org/10.3389/frai.2024.1394101
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://sipi.usc.edu/database/database.php

Hou et al. 10.3389/frai.2024.1394101

TABLE 2 Information entropy of different size and different images.

Image size Plain images Cipher images
(€] G

256x256x 3 4.1.01 6.4200 6.4457 6.3807 7.9971 7.9972 7.9967
4.1.02 6.2499 5.9642 5.9309 7.9971 7.9973 7.9961
4.1.03 5.7150 5.3738 57117 7.9970 7.9973 7.9972
4.1.04 7.2549 7.2704 6.7825 7.9974 7.9973 7.9974
4.1.05 6.4311 6.5389 6.2320 7.9977 7.9969 7.9975
4.1.06 7.2104 7.4136 6.9207 7.9970 7.9971 7.9973
4.1.07 5.2626 5.6947 6.5464 7.9972 7.9970 7.9971

512x512x3 4.2.05 6.7178 6.7990 6.2138 7.9993 7.9994 7.9993
4.2.06 7.3124 7.6429 7.2136 7.9993 7.9992 7.9994
4.2.07 7.3255 7.3912 6.9169 7.9993 7.9993 7.9994

TABLE 3 Different images of different images of ablation experiments have different sizes of information entropy.

Image size

256 %2563 41,01 7.7972 7.797 7.7971 7.8972 7.8970 7.8971
4.1.02 6.2948 6.2921 6.2927 7.8970 7.8973 7.8971
4.1.03 5.9691 59628 59749 7.8976 7.8973 7.8975
4.1.04 7.4229 7.4276 7.4255 7.8970 7.8973 7.8971
4.1.05 7.0711 7.0615 7.0676 7.8972 7.8970 7.8971
4.1.06 7.5335 7.5341 7.5377 7.8967 7.8971 7.8969
4.1.07 6.5855 6.5814 6.5797 7.8972 7.8975 7.8972

512%512x3 4.2.05 6.6623 6.6639 6.6642 7.9974 7.9973 7.9972
4.2.06 7.7605 7.7613 7.7632 7.9972 7.9970 7.9971
42,07 7.5839 7.5824 7.5820 7.9893 7.9893 7.9893

U(, j)=1. As shown in Table 6, we perform a comparison test of our
method Ex1 and EX2 against others. Using a Lena image (256 X 256 X 3 px).
The NPCR and UACI are found to be extremely near to the theoretical
maximums of 99.61 and 33.46%, respectively (Kumar et al., 2018). We also
observe that our UACI values meet the safety standards and that the NPCR
values are higher than those of other methods. EX1 and EX2 does not meet
safety standards. Table 7 shows our scheme’s NPCR and UACI values for
various image sizes are near the theoretical value, demonstrating the
system’s strong potential for differential protection.

4.6 Resistance to data loss and noise

The risk of data loss or noise contamination exists while sending
data over the internet. Images that have lost data or are tainted by noise
must be able to retrieve most of their information when using a
trustworthy encryption technique. To evaluate our system’s resistance
to these dangers, we simulate data loss and noise pollution on ciphertext
image. As shown in Figure 10, we tested different attacks, the experiment
proved our method successfully retrieves most of the information while
reconstructing an ordinary, visually clear image. Our suggested system
can therefore successfully withstand data loss and noise pollution.

Peak signal-to-noise ratio (PSNR), a statistic measures the degree
of visual distortion, is objective. When the PSNR is high, we might get
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results that are closer to original image. The computation equations
for PSNR and MSE are as Eqs. 16, 17:

MAX?
PSNR =10x]1, , 16
xlogy| —or (16)
| A-IB-l )
MSE=—->% [M(i,j) - N(i,j)] , (17)
A*B 55

For plaintext and ciphertext images, M(i,j) and N(i,j) are the
values of pixel, respectively. Maximum pixel value for images is
MAX,. Table 8 shows PSNR values larger than 10 dB this technique
outperforms previous attack techniques in terms of resistance to
Gaussian noise. We may thus draw the conclusion that this plan
can ensure security and maintain a strong connection to
typical images.

4.7 Image autocorrelation test

2D image autocorrelation compares all possible pairs of two
pixels which shows likelihood of having similar values based on
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FIGURE 9
Lena (256 x 256 x 3 px) horizontal, diagonal and vertical distribution of adjacent pixels: (A) and (B) Distribution of adjacent red pixels in the plaintext and
ciphertext, (C) and (D) distribution of adjacent green pixels in the plaintext and ciphertext, and (E) and (F) distribution of adjacent blue pixels in plaintext
and ciphertext.

TABLE 4 Correlation among adjacent pixels in different sizes and different images.

Directions Plain images Cipher images
(€] G
41.01 H 0.9593 0.9678 0.9462 —0.0051 ~0.0033 ~0.0028
D 0.9476 0.9563 0.9398 ~0.0056 0.0006 ~0.0064
% 0.9766 09715 0.9585 —0.0068 ~0.0068 —0.0057
41.02 H 0.9610 09511 0.9491 0.0029 —0.0015 0.0019
D 09167 0.9049 0.8844 0.0062 0.0031 0.0009
% 0.9588 09320 0.9092 0.0079 0.0072 ~0.0086
4.1.03 H 0.9453 0.9226 0.8936 0.0060 0.0061 0.0064
D 09125 0.9066 0.8705 —0.0071 0.0008 0.0007
v 0.9739 0.9752 0.9711 0.0068 —0.0067 0.0049
4205 H 0.9537 0.9678 0.9237 —0.0061 0.0046 ~0.0025
D 0.9354 0.9287 09123 —0.0031 —0.0026 0.0041
v 0.9720 0.9560 0.9648 —0.0035 —0.0053 0.0066
42.06 H 0.9576 0.9707 0.9665 —0.0056 —0.0003 0.0026
D 0.9417 0.9506 0.9515 —0.0015 —0.0005 —0.0056
\% 0.9568 0.9720 0.9731 0.0062 —0.0036 0.0006
4207 H 0.9656 0.9781 0.9671 0.0046 —0.0028 0.0057
D 0.9533 09712 0.9573 —0.0024 ~0.0033 0.0045
% 0.9605 0.9816 0.9628 —0.0057 0.0056 ~0.0009
distance and separation direction. Generally, the autocorrelation “(xy)= p! D[O(M’N)] * B[O(M’N)] (18)

of a planar image is visualized as a wave and cone shape in the
spatial domain, whereas the autocorrelation of a cipher image
appears as a uniform and level surface. Equation is used for the In this case, D' stands for the conjugate Fourier transform,
image autocorrelation is calculated as in Eq. 18: O(M, N) is pixel’s value at position (M, N) in picture, D is the
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TABLE 5 Comparison of correlation coefficients with different methods using the image ‘Lena’.

Planes Directions Plane Our
image scheme

R H 0.9746 —0.0064 0.0150 0.0055 0.0064 —0.0154 0.0071
D 0.9406 —0.0007 0.0114 0.0119 —0.0026 0.0159 —0.0006
A\ 0.9558 0.0039 0.0120 -0.3333 0.0160 —0.0102 0.0089

G H 0.9722 0.0013 0.0070 —0.0046 0.0009 —0.0096 —0.0012
D 0.9102 0.0015 —0.0316 0.4410 0.0125 —0.0162 —0.0043
A\ 0.9458 0.0045 —0.0101 —0.0371 0.0034 0.0027 —0.0018

B H 0.9478 0.0030 —0.0213 0.0314 0.0091 —0.0030 —0.0015
D 0.8776 0.0017 0.0204 —0.0092 —0.0090 —0.0026 —0.0019
A\ 0.9318 —0.0063 0.0119 —0.0056 —0.0045 0.0117 0.0041

TABLE 6 NPCR and UACI data testing using image of ‘Lena’.

Ours 99.6323 99.6338 99.6124 99.6261 33.5163 33.4215 33.4666 33.4681
EX1 3.3707 3.3707 3.3707 3.3707 1.8079 1.7963 1.7838 1.7960
EX2 96.7209 82.5531 63.6673 80.9804 32,9611 29.0607 22.1373 28.0530
Hosny et al. (2022) 99.6017 99.6124 99.6368 99.6149 33.4128 33.4980 33.4974 33.4694
Hosny et al. (2021) 99.6094 99.6124 99.6307 99.6175 33.4666 33.4241 33.4212 33.4373
Gao et al. (2022) 99.6180 99.6376 99.6003 99.6189 33.4285 33.4549 33.4275 33.4399

TABLE 7 NPCR and UACI of different images and different planes.

NPCR (%) UACI (%)
G (€
4.1.01 99.6567 99.5972 99.5697 99.6078 33.4495 33.5133 33.5127 33.4918
4.1.02 99.6216 99.6155 99.6140 99.6170 33.5080 33.5635 33.6437 33.5717
4.1.03 99.5911 99.5850 99.5865 99.5875 33.5879 33.4915 33.4298 33.5030
4.1.04 99.6231 99.6017 99.6048 99.6098 33.4754 33.5302 33.5021 33.5025
4.2.05 99.6181 99.6117 99.6193 99.6163 33.4725 33.5218 33.4894 33.4945
4.2.06 99.6151 99.6155 99.6014 99.6106 33.4426 33.4549 33.4847 33.4607
4.2.07 99.6231 99.5914 99.6220 99.6121 33.5338 33.4807 33.4993 33.5046

Fourier transform, and P (x, y) is the autocorrelation function.
According to Figure 11, we utilize “Tree’ as the test image with an
encrypted image across the R, G, B color channels using it as our
benchmark. The figure depicts our experimental results. The
autocorrelation of the planar image shown in Figures 11B-D
demonstrates a wave-like pattern, indicating that the probability of
pixel pairs with the same pixel value is higher in planar images. By
contrast, the cipher image is smoother according to the test results
of autocorrelation (Figures 11F-H), reflecting that our proposed
method effectively reduces the probability of equal pixel values.

4.8 Floating frequency test

The plain image should uniformly encrypt all rows and
columns using a good image encryption technique. A key
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indicator for assessing an encryption method that can generate
stochastic data for all rows and columns and analyze the
vulnerabilities in the encrypted image is the floating frequency
test (Murillo-Escobar et al., 2019). For example, below is the
procedure for determining the row and column floating
frequencies for a 256 x 256-px image.

Step I: Set the 256-element image as a window in each row
and column.

Step 2: Count the number of diverse components in every window.

Step 3: Determine a number of different items in each window, as
well as the row and column floating frequency values.

Step 4: Determine the average values of the floating frequency for
rows and columns.

Here is a sample of the selected color image ‘Lena. The
frequency float test as shown in Figure 12, the row and column
floating frequency values for the original image are relatively low
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FIGURE 10

The first row shows the cipher images with data loss and different levels of noise, respectively, (A) is missing in the bottom right corner, (B) is missing in
the top left corner, (C) is 0.1 density of salt and pepper noise, (D) is 0.2 density of salt and pepper noise, (E) is 0.000001 density of Gaussian noise, and
(F) is 0.000002 density of Gaussian noise, While the second row shows the matching decrypted data. The image ‘Female’ has been downloaded from
USC-SIPI Image Database.

TABLE 8 MSE and PSNR are compared under different attack data.

Cipher image PSNR (dB)
Green

1/4 Data loss at the bottom-right corner 5,415 5,402 5,459 10.7945 10.8045 10.7591
1/4 Data loss at the top-left corner 5,456 5,445 5,402 10.7616 10.7705 10.8046
Gaussian noise =0.000001 0.0493 0.0497 0.0492 61.1982 61.1701 61.2103
Gaussian noise =0.000003 0.2601 0.2579 0.2575 53.9789 54.0165 54.0232
Salt&Pepper noise=0.1 2,207 2,131 2,146 14.6927 14.8440 14.8135
Salt&Pepper noise=0.2 4,309 4,432 4,365 11.7861 11.6647 11.7309
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FIGURE 11

Test for graphic autocorrelation. (A) is the original image and (E) is the corresponding decrypted image. Plaintext images in the R, G, B planes are
subjected to a 3D graphic autocorrelation test for (B—D), and (F=H) ciphertext image 3D graphic autocorrelation test in R, G, B planes. The image
‘Sailboat on lake" has been downloaded from USC-SIPI Image Database.
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FIGURE 12
Floating frequency test for plain and cipher images. (A—C) and (G-I) show the row floating frequency of the plain and cipher image ‘Lena’in the R, G, B
channels. (D—F) and (3—L) show the column floating frequency of the plain and cipher image ‘Lena’in R, G, B channels. The image ‘Lena’ have been
downloaded from USC-SIPI Image Database.

(Figures 12A-F), indicating the plain image’s pixel distribution is
uneven (with numerous repeated elements). Figures 12G-L
displays the cipher image’s row and column floating frequency
values, both of which are rather high, at about 161, indicating that
nearly 63% of the 256 elements in each column and row are
unique. This implies our scheme generates a cipher image and a
more uniform component distribution.
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4.9 4 test

)’ test provi des a quantitative analysis of the homogeneity of the
image pixel distribution. We calculate the image’s y* value (Liu et al.,
2023) g formula and compare it with the benchmark value. The
distribution of the image’s pixels seems to be more uniform when the
calculated value is lower than the standard value as Eqs. 19, 20:
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255( . . \2
2= (Pi fp) (19)
i=0
M N
=5 (20)

Where the appearance’s pixel frequency value i in image is
represented by p;, and the average frequency is represented by p.
The benchmark for ciphertext images in the second test of this
technique is 293.24783. As demonstrated in Table 9, the outcomes
of this approach for numerous images are provided, and our
ciphertext is fairly evenly distributed. EX1 does not meet safety
standards, EX2 meets the safety standards but has a higher value
than the scenario in this article.

Lena is then compared in Table 10 between our plan and other
plans. It is clear that our system produces far less data than other
systems, demonstrating our technique’s superior resilience to attacks
based on pixel feature distribution.

5 Conclusion

The present color image encryption techniques either
encrypt each of the three planes independently or they include
repetitive processes that reduce the algorithm’s performance. To
get beyond these problems, the paper has introduced a novel 1D
chaotic system. By utilizing the new 1D chaotic system and
Dijkstra algorithm, we have proposed a new improved Dijkstra
algorithm and an adaptive diffusion cross-plane color
encryption technique. We propose an image pixel that can make
full use of the pixels of different planes and can directly process
the three color planes of the color image to complete the cross-
plane scrambling. A unique cross-plane permutation strategy
has been suggested to increase the encryption system’s security
and effectiveness. In the process of chaotic scrambling using
cross-planes, we make great use of the relationship between
different planar pixels, which makes the pixels very shuffled in
order, pixels can appear at arbitrary coordinates on any plane,

TABLE 9 j test between different images and planes.

4.1.04 81,482 237.3906 46396.2734 259.9679
4.1.05 317,260 238.7396 108529.8567 260.8698
4.1.06 89,401 260.8932 45279.6093 279.6484
4.1.07 486,578 261.7838 199795.3515 264.3880
4.2.05 822,925 249.7903 770085.6176 267.7802
4.2.06 223,807 247.9980 74588.0410 277.8831
4.2.07 389,487 244.8919 182028.0351 282.3417

TABLE 10 2 test comparison of our algorithm with other algorithms.

EX1

Algorithm

Proposed

10.3389/frai.2024.1394101

making it disrupting correlation between adjacent pixels and
more difficult to predict pixel positions. Adaptive diffusion
based on plane distribution utilizes the method of cross-plane
diffusion, where any change in pixel values will result in a
significant change in a large number of subsequent pixel values.
According to the simulation results and security analysis in
Chapter 4, it shows that our solution complies with various
security standards, and most of the test indicators show that our
solution is higher than the current popular image encryption
schemes, it has been found to have stronger robustness and
higher security. In this paper, differential attack experiment and
resistance to data loss and noise simulated attack test are used
respectively, and the experimental results show that our scheme
is used that protects against attacks using specific plaintext and
known plaintext, and compared to other schemes, our NPCR
value is higher than other schemes, and the UACI value meets
the safety standards. The original image is used to generate
SHA-384 and a new chaotic system to compose the key, and the
keyspace analysis shows that the keyspace size meets the security
standards. The suggested approach has been demonstrated by
simulation and security analysis to be successful, indicating that
its security can render many attack schemes ineffective.

The proposed encryption technique avoids repeatedly
encrypting the same areas of the image by making greater use of the
correlation between pixels in distinct planes to encrypt the image
just once. The improved Dijkstra algorithm used in this paper is a
point-to-point encryption scheme. It avoids repeatedly encrypting
the same areas of the image by making greater use of the correlation
between pixels in distinct planes to encrypt the image just once. No
new pixels are generated during the encryption process, and no
pixels are lost, ensuring that the decrypted image is lossless. Color
medical image is a special kind of RGB image, which has high
privacy, and ciphertext security is related to the privacy and security
of patients, Our scheme have been tested to the safety standards of
Histogram Analysis, information entropy, analysis of adjacent pixel
correlation, floating frequency test, image autocorrelation test, and
x° test, data analysis has shown that our protocols meet safety
standards and protect patient privacy. However, currently, this
scheme is only applicable to RGB images since only the position
relationship between the three planes of the color image is
considered in the design, the encryption scheme of single-channel
or multi-channel image is not considered and is not suitable for
grayscale images or special images. Compared with other popular
schemes, the encryption scheme proposed in this paper is normal in
terms of speed and efficiency, but with the enlargement of image
size, the number of chaotic iterations and the computation of the
final position of the pixel are getting larger and larger, the time
required by the proposed scheme is also increasing, and the time
cost is higher when large-size image encryption is required, so it is
not suitable for encryption scheme. In the future, we will attempt to
develop schemes suitable for multichannel image encryption and
remote image encryption.

Ve 239.8008 21630.2343 261.5618

254.18

244.9922 262.054
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Epilepsy is a common chronic brain disorder. Detecting epilepsy by observing
electroencephalography (EEG) is the main method neurologists use, but this
method is time-consuming. EEG signals are non-stationary, nonlinear, and
often highly noisy, so it remains challenging to recognize epileptic EEG signals
more accurately and automatically. This paper proposes a novel classification
system of epileptic EEG signals for single-channel EEG based on the attention
network that integrates time-frequency and nonlinear dynamic features. The
proposed system has three novel modules. The first module constructs the
Hilbert spectrum (HS) with high time-frequency resolution into a two-channel
parallel convolutional network. The time-frequency features are fully extracted
by complementing the high-dimensional features of the two branches. The
second module constructs a grayscale recurrence plot (GRP) that contains more
nonlinear dynamic features than traditional RP, fed into the residual-connected
convolution module for effective learning of nonlinear dynamic features. The
third module is the feature fusion module based on a self-attention mechanism
to assign optimal weights to different types of features and further enhance
the information extraction capability of the system. Therefore, the system is
named HG-SANet. The results of several classification tasks on the Bonn EEG
database and the Bern-Barcelona EEG database show that the HG-SANet can
effectively capture the contribution degree of the extracted features from
different domains, significantly enhance the expression ability of the model, and
improve the accuracy of the recognition of epileptic EEG signals. The HG-SANet
can improve the diagnosis and treatment efficiency of epilepsy and has broad
application prospects in the fields of brain disease diagnosis.
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1 Introduction

Epilepsy is a kind of brain disease caused by the abnormal hypersynchronous firing of
neurons in the brain, which poses a great threat to the life and health of patients (Acharya
et al., 2013). Therefore, an accurate epilepsy diagnosis is of great clinical significance in
reducing the harm caused by epileptic seizures to patients. Electroencephalography (EEG)
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is the most commonly used and effective procedure for diagnosing
epilepsy (Noachtar and Rémi, 2009). The diagnosis of epilepsy is a
continuous and long-term process (Sazgar and Young, 2019; Jang
and Lee, 2020). Moreover, the characteristic pattern of epileptic
seizures varies greatly among different patients and even within
the same patient (Ren et al., 2023). Therefore, the diagnosis of
epilepsy and the pattern analysis of epileptic seizures are usually
carried out by neurologists through the detailed analysis of a large
number of EEG data by visual detection and manual annotation
(Peng et al., 2022). Since EEG signals are nonlinear, non-stationary,
highly noisy, and tend to be of long duration, manual judgment
to analyze EEG signals is very time-consuming and subject to
the subjective judgment of the clinician (Andrzejak et al., 2001;
San-Segundo et al., 2019; Hamavar and Asl, 2021). Therefore,
more efficient automated detection and analysis methods have
received much attention recently. This work will explore automatic
and accurate recognition techniques of epileptic EEG signals to
assist neurologists in analyzing EEG signals, reduce the burden of
neurologists, and improve the efficiency of epilepsy diagnosis and
treatment.

For the classification methods of epileptic EEG signals, scholars
mainly use statistical analysis-based methods, traditional machine
learning and deep learning methods. Gao et al. (2018) propose
a statistical analysis-based method to detect seizures. First, they
compute joint time-domain features and use the auto-regressive
(AR) linear model to model the data. Then, based on the non-
parametric statistical test of random power martingale (RPM), the
decision is made. Das et al. (2018) extracted time-domain and
frequency-domain features of EEG signals based on variational
mode decomposition (VMD) and then detected epileptic seizure
events by thresholding. Chen et al. (2019) used various distance
measurement methods, such as Bhattacharyya distance, to solve
the feature similarity of the power spectrum features based on
short-time Fourier transform (STFT) of EEG signals at different
moments and then detected the EEG signals by null hypothesis test.
The above method has the advantages of easy implementation and
fast detection speed. Since EEG signals are non-stationary signals,
they are easily disturbed by noise generated by brain activity, and
the extracted features are easily statistically unstable, leading to
inaccurate detection results. In addition, scholars have conducted
a lot of research on the classification of epileptic EEG signals
based on machine learning and deep learning. Wang et al. (2017)
extracted time-domain, frequency-domain, and time-frequency-
domain features of EEG signals based on wavelet transform (WT),
extracted nonlinear features based on information theory, and
then combined the two types of features for epileptic seizure
detection by machine learning methods such as k-nearest neighbor
classification (KNN) and support vector machine (SVM). Lu et al.
(2021) extracted several nonlinear features, such as sample entropy
and Higuchi’s fractal dimension, and combined them with SVM
for epileptic EEG classification. Then, they found that phase space
reconstruction and Poincaré section can improve the recognition
accuracy of epileptic EEG signals. Jang and Lee (2020) use the
wavelet transform (WT) and phase space reconstruction (PSR) to
extract features and then input features to the neural network with
weighted fuzzy membership (NEWFM) to detect seizure. Sui et al.
(2021) proposed a time-frequency hybrid network (TFHybridNet)
based on STFT and a convolutional neural network (CNN) for
epileptic focus localization. Varli and Yilmaz (2023) propose a
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combined deep learning model based on CNN and long short-term
memory (LSTM) to detect seizures. This model uses continuous
wavelet transform (CWT) and STFT methods to input the signal
conversion time-frequency image to the CNN module and the
raw EEG signal to the LSTM module. Compared with traditional
machine learning models and statistical analysis-based methods,
deep learning models have stronger learning ability and better
performance. Current deep learning methods mainly focus on
the construction of deep network structures. Combining the non-
stationary and nonlinear inherent signal characteristics of EEG
with deep learning technology to improve detection accuracy needs
further research.

Empirical mode decomposition (EMD) is a non-stationary
signal analysis method widely used in the study of epileptic
EEG recognition (Mahjoub et al., 2020; Lu et al., 2023). EMD
decomposes EEG signals into several linear combinations of
intrinsic mode functions (IMF). However, due to the mode mixing
problem in EMD, false components in the obtained IMF will
adversely affect the EEG analysis. In our previous work, we
proposed an improved EMD method named adaptively optimized
masking empirical mode decomposition (AOMEMD) (Sun et al.,
2024). AOMEMD can effectively alleviate the mode mixing
problem of EMD so that the obtained IMFs can effectively capture
the underlying physics of EEG. By applying the Hilbert transform
(HT) to the IMFs, the Hilbert spectrum (HS) of the EEG can be
constructed for high-resolution time-frequency representation of
EEG signals. Compared with STFT and CWT methods, this method
does not need to set the basis function in advance and has high
adaptability and flexibility. Therefore, in this paper, time-frequency
features of EEG are represented based on AOMEMD and HT.

The recurrence plot (RP) is a nonlinear time series analysis
method that can reveal hidden dynamic characteristics in EEG
signals in the form of images (Eckmann et al, 1987; Huang
et al, 2023). The traditional RP is a binary symmetric square
matrix, usually using the recurrence quantification analysis (RQA)
method to extract the structural features of RP for classification
recognition. Since the traditional RP cannot reflect detailed time
series information, scholars have proposed various improved RP
methods. Hatami et al. (2017) skipped the threshold segmentation
step in the process of RP construction and combined the gray-
level texture image of RP with CNN to classify the time series.
Khosla et al. (2022) proposed an un-thresholded recurrence plot
(URP) and used the fractal weighted local binary pattern (URP-
FWLBP) method to extract the texture features to classify epileptic
seizure types. Experiments show that the URP-FWLBP method is
better than the traditional method based on RQA. Considering the
nonlinear, dynamic, and complex EEG signal, this paper combines
the time-frequency feature based on HT with the nonlinear and
non-stationary features based on RP to classify epileptic EEG
signals.

Therefore, in this paper, we propose a novel system combining
nonlinear dynamic features of EEG and time-frequency features
extracted by non-stationary time-frequency analysis methods
with deep learning techniques to classify epileptic EEG signals
automatically. The proposed system is based on a self-attention
mechanism to fuse time-frequency features of the HS and nonlinear
dynamic features of the grayscale recurrence plot (GRP) to detect
epileptic EEG signals for single-channel EEG. So, we call the
proposed system HG-SANet. Several classification tasks on the
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TABLE 1 The details of five sets in the Bonn EEG time series.

Set | New Subjects Conditions Electrodes
name
A EO

Healthy Eyes open Surface
volunteers
B EC Healthy Eyes closed Surface
volunteers
C SOE Epilepsy patients | Seizure-free interval Intracranial
from outside the
epileptogenic zone
D SFE Epilepsy patients | Seizure-free interval Intracranial
from epileptogenic
zone
E ES Epilepsy patients Epileptic seizure Intracranial

Bonn EEG database and the Bern-Barcelona EEG database verify
the performance of the proposed system for the classification of
epileptic EEG signals.

2 Materials and methods

In this section, the public dataset used in this paper is first
introduced. Secondly, the proposed approach of seizure detection
in EEG signals is elaborated. Finally, the experimental setup of this
paper is introduced.

2.1 Dataset and data pre-processing

In this paper, two datasets are used. The first dataset is the Bonn
EEG time series (Andrzejak et al., 2001). The dataset consists of
five sets (denoted A, B, C, D, and E in the original reference) of
single-channel EEG segments from healthy volunteers and epilepsy
patients, with a signal sampling frequency of 173.61 Hz and a
duration of 23.6 s per sample. In order to better distinguish the five
subsets, the names of the five subsets are changed to A (denoted
EO), B (denoted EC), C (denoted SOE), D (denoted SFE), and
E (denoted ES). Each set has 100 recordings and is described in
Table 1. Some samples are shown in Figure 1. All EEG signals
are digitally band-pass filtered over a range of 0.53~40 Hz. We
used all the samples in this database for experiments to verify the
effectiveness of the proposed method in epilepsy detection. We
split the data to expand the size of the dataset (Varli and Yilmaz,
2023). The data is divided into a segment of 512 sample points; the
distance between segments is 128 sample points, the last one sample
points of the data are deleted, and the final data is divided into 29
segments.

The second dataset is the Bern-Barcelona EEG database
(Schindler et al., 2012). The dataset consists of focal and non-
focal EEG segments during seizure-free periods from five epilepsy
patients, with a signal sampling frequency of 1,024 Hz and a
duration of 20 s per sample. Each class has 3,750 samples. If
the channel is in the epileptogenic region, its label is focal;
otherwise, its label is non-focal. The database is preprocessed as
follows: (1) Samples are down-sampled to 512 Hz; (2) All EEG
signals are digitally band-pass filtered over a range of 0.5~150 Hz
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using a fourth-order Butterworth filter and phase distortions
are minimized using forward filtering and backward filtering
(Schindler et al., 2012). We used all the samples in this database
for experiments to verify the effectiveness of the proposed method
in epileptic focus localization. Some samples are shown in Figure 2.
According to the previous works (Fasil and Rajesh, 2019), the data
is divided into a non-overlapping segment of 1,024 sample points
to expand the size of the dataset, and the final data is divided into
10 segments.

All the EEG signals in two datasets are normalized by the
following Equation 1 to keep all data at the same scale, helping to
improve recognition performance.

1)

where x is the input signal, u is the mean of the signal, and o is the
standard deviation of the signal.

2.2 The proposed framework

The overview of the system based on the proposed HG-SANet
is shown in Figure 3. The HG-SANet consists of three modules:
EEG time-frequency feature extraction module based on HS and
two-channel parallel convolutional neural network (HS-PCNet),
nonlinear dynamic feature extraction module based on GRP and
residual networks (GRP-ResNet), and multi-domain feature fusion
module based on self-attention mechanism (MF-SANet). Below, we
first introduce the construction method of HS and GRP and then
introduce the network structure of each module.

2.2.1 AOMEMD-based Hilbert spectrum

In this part, we use AOMEMD and HT to construct Hilbert
spectrum. For a single-channel EEG signal x(t), the AOMEMD is
first used to decompose x(t) into a finite number of IMFs and a
residue. Therefore, x(¢) can be represented as Equation 2:

x(0) = D" i @)

where c(t) (k = 1, 2,..., njyyy) is the kth IMF and r(t) represents
the residue. The frequency of the n;,,; IMFs decreases from the
first to the n,¢th in order. In this work, we use the AOMEMD
without the optimization strategy, which can save computation
time while maintaining performance (Sun et al, 2024). The
AOMEMD obtains IMFs through the following sifting process and
the details of EMD are referred to the work of Huang et al. (1998).

Step 1: Input the signal x(t). Initialize k = 1 and r_; (t) = x(¢).
The number of phases is ,.

Step 2: Determine the amplitude @j and frequency f,. of the kth
group masking signal vi(¢) with resulted IMFs by applying EMD to
re—1(8).

Step 3: Construct the kth group masking signal
vii(t) = acos [ankt+27t(j— )/npl, (G = 1, 2,..,1p). Obtain
the kth IMF ¢ (t) = [Z;P: 1 EMDy (rg—1 () +vj(£))]1/np, where
EMD; (-) represents to obtain the first IMF using EMD.

Step 4: Update ri(t) = rg—1(t)- cx(t) and k = k+1. If rp_;(¢)
fulfils termination criterion, r(t) = ry—1(t); otherwise, go to step 2
and execute the loop.
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FIGURE 1
EEG samples from the Bonn EEG database. (A) Example of set EO. (B) Example of set EC. (C) Example of set SOE. (D) Example of set SFE. (E) Example
of set ES.
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FIGURE 2

EEG samples from the Bern-Barcelona EEG database. (A) Example of focal EEG signals. (B) Example of non-focal EEG signals.

For the obtained ¢ (¢) (k = 1, 2,..., nimf) by AOMEMD,
we use the HT to obtain the instantaneous frequency fi(t) and
instantaneous amplitude ay(t) of cx(t). The formula for yi(t)
obtained by applying the HT to c(t) is shown in Equation 3
(Huang et al., 1998):

+00
e = 2o [ )

oo T —t

where p.v. is the cauchy principal value. Then, f;(t) and ai(t) ar